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Abstract
In recent decades, the automotive industry has largely adopted advanced controllers,
such as advanced driver assistance systems (ADASs), traction control systems, and
anti-lock braking systems. Moreover, the significance of virtual prototyping tools has
grown substantially in vehicle and controller design. These applications often depend on
a controller responsible for generating vehicle input signals, e.g., accelerator, brake, and
steering wheel angle. Within this context, Nonlinear Model Predictive Control (NMPC)
has been widely employed due to its systematic approach in handling constrained multi-
input multi-output systems. However, implementing NMPC strategies involves the
necessity for a vehicle model, including complex subsystems like tires and suspensions.
Hence, the model must be tailored to suit real-time applications while ensuring enough
precision for achieving high-performance control. Furthermore, the versatility of NMPC
controllers introduces a large number of parameters that require careful tuning, posing a
significant challenge in NMPC design.

To deal with these issues, Learning-based Nonlinear Model Predictive Control (LbN-
MPC) could be exploited. It is an innovative control strategy that integrates NMPC
techniques with data-driven methods, allowing to leverage the advantages of both the
methodologies. In its framework, different categories have been explored. On one side,
the learning dynamics branch aims at obtaining or refining the dynamics model by
using data-driven techniques. On the other side, the learning design branch exploits
learning-based strategies to maximize the closed-loop performance of the underlying
NMPC controller, by algorithmically tuning the NMPC parameters.

In this thesis, implementations of LbNMPC methods for two-wheels and four-wheels
vehicles are presented. On the learning dynamics branch, the development of grey-box and
black-box dynamics models for both two-wheels and four-wheels vehicles is detailed, with
specific focus on meeting the real-time constraint. Gaussian Process (GP) Regression has
been chosen to model the data-driven components of the dynamics, due to the possibility
of limit the dimensionality while preserving the model characteristics. Different offline
and online reduction techniques have been explored, e.g., feature selection procedures,
sparse GP approximations, and local GP approximations, and they have been adapted to
the specific case of interest. On the learning design branch, the application of a genetic
algorithm to obtain a high-performance virtual rider that considers the sensitivity with
respect to parameters changes is described.

The results show proficiency of the presented methodologies in both realizing data-
driven model dynamics for control purposes while maintaining real-time applicability,
and in obtaining an appropriate tuning of the NMPC controller for a virtual motorcycle.
Within the former strategies, the development of grey-box models resulted very effective
in improving the tracking performance of an NMPC controller for a virtual motorcycle,
and in enhancing the efficacy of a nonlinear model predictive contouring controller for
lap-time minimization for a virtual high-performance car. Moreover, the implementation
of a LbNMPC based on a black-box model for a real go-kart shows the applicability of
the strategy using purely data-driven models in a challenging scenario. Finally, the data-
driven tuning of the virtual rider allowed to establish the trade-off between performance
and robustness of the controller.
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1 Introduction

1.1 State of the Art

In recent decades, the use of advanced controllers has been spreading in all types of
vehicles, e.g. advanced driver assistance systems (ADASs), traction control systems,
anti-lock braking systems, etc. [1]. A large research effort has been dedicated to the design
of ADASs with autonomy-like characteristics, aimed at assisting the driver in increasing
both safety in emergency situations and comfort in highway and urban scenarios. At the
same time, virtual prototyping tools acquired great importance in designing new vehicles
and controllers. Indeed, offline tests in simulative scenarios allow to highly reduce both
cost and time-to-market of newly developed products, making them established tools
in the automotive industry. These applications often rely on a vehicle controller which
generates input signals for the actual vehicle commands (e.g., accelerator, brake, steering
wheel angle), in order to follow a given reference or to compute the optimal velocity and
trajectory profiles. In this context, MPC has become widely used due to its ability to
methodically handle constrained multi-input multi-output systems [2]. Indeed, MPC
allows to exploit the dynamics model of a vehicle, to consider the maximum performance
in terms of accelerations, and to include the physical constraints for inputs and states.
In particular, Non-linear MPC (NMPC), i.e., MPC that exploits a non-linear model of
the plant, is a well established methodology in the automotive framework, and promising
results have been obtained in (semi-)autonomous driving tasks, for both two-wheel and
four-wheel vehicles, e.g. in [3–6].

For four-wheel vehicles, different NMPC solutions have been proposed. The real-time
trajectory planning problem and the tracking of the corresponding planned path has been
addressed in [3,4] applying NMPC. In [3], the problem of real-time obstacle avoidance on
low-friction road surfaces is addressed, while in [4] a tailored NMPC strategy is proposed,
aiming at tracking the lane center line while avoiding collisions with obstacles. NMPC
has also been effectively applied to autonomous 1:43 scale RC electric vehicles, aiming at
minimizing the lap time, either by maximizing the progress on track over the prediction
horizon of the NMPC [7], or by addressing a minimum traveling time objective [8], and a
NMPC controller for an autonomous Formula Student racing car is presented in [9].

For two-wheel vehicles, different implementations of path tracking (N)MPC controllers
have been studied. In [10], a model consisting in an inverted pendulum mounted on a
non-holonomic cart is used to track given path and velocity profiles. The roll angle is
assumed to be a virtual input and the steering and longitudinal controls are obtained
by inverting the dynamics. An MPC controller is designed in [11], where the model is
linearized by assuming time-invariant dynamic response over the prediction horizon. An
extensive parameter study on the predictive steering control is reported by the same
authors in [12]. An NMPC strategy based on an internal model linearized at the steady
state condition of motorcycle motion (i.e. constant speed and constant radius turn) is
adopted in [5]. NMPC has been aslo used in [6], where the internal model is linearized
at the quasi steady state condition taking into account longitudinal acceleration and
roll derivatives. In [13], the usage of NMPC for controlling the rider-bicycle system by
roll-angle tracking is investigated, while using a linear model for the control design.

However, the application of the NMPC strategy is characterized by the need for a
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1.1 State of the Art

complex nonlinear model, comprehensive of involved subsystems, e.g., tires, suspensions,
etc. Indeed, modest inaccuracies can highly affect performance, e.g. lead to undesired
under- or over-steer behavior, hence the model must be able to predict the dynamics
very accurately. At the same time, the evaluation of the model and the calculation of its
sensitivities account for the major part of the computational complexity of the NMPC,
and thus its definition must be explicitly tailored for a real-time application. Therefore,
obtain the most suitable characterization of the system is critical for high-performance
control. Moreover, the versatility of NMPC controllers imply a high number of parameters
that must be properly tuned, making the tuning procedure an important challenge in
NMPC design, as it is often accomplished by the control engineer through a trial-and-error
procedure [14]. In particular, a critical tuning parameter of the controller is the set of
weights used in the objective function, and finding the best configuration is essential to
obtain a proficient controller.

To cope with the modeling and tuning issues, the usage of data-driven techniques
to enhance MPC strategies is an innovative solution, namely Learning-based MPC
(LbMPC) [15], that allows to improve the control capability of the closed-loop system
while preserving the MPC advantages. The arising problem from the combination of these
strategies can be formulated as a Stochastic Optimal Control Problem (SOCP), where the
minimization function is an expected value, the differential equation constraint (i.e. the
dynamics of the system) is subject to uncertainties and the system constraints must be
satisfied in probability. However, the direct solution of SOCP is computationally hardly
possible. In this framework, the MPC scheme can be then used to approximate the SOCP
iteratively, solving a simplified version of the problem initialized at the current state on
a shorter prediction horizon. The LbMPC framework, also referred to as Learning-based
Nonlinear Model Predictive Control (LbNMPC) when applied to nonlinear systems,
can then be divided into three main categories: (i) Learning Dynamics, a data-driven
improvement of the underlying dynamics model for enhancing the prediction accuracy,
(ii) Learning Design, a data-driven optimization of the controller parametrization for
achieving maximum closed-loop performance, and (iii) MPC for safe learning, where
MPC is used to obtain safety guarantees in learning-based controllers (as depicted in Fig.
1.1). Throughout the thesis, the first two categories will be considered.

The learning dynamics technique aims specifically at enhancing or deriving the predic-
tion model of the (N)MPC through the exploitation of system data acquired interacting
with the system. Two categories can be defined based on the model uncertainty repre-
sentation, i.e., if the uncertainty is assumed to belong to a compact set, they fall in the
robust models category, e.g., as in [16,17], while if the uncertainty is represented trough

Learning Dynamics Learning Design

Performance-
driven Learning

Inverse Opti-
mal ControlRobust Models Stochastic Models

LbMPC

MPC for Safe
Learning

Figure 1.1. State of the art representation of the Learning-based MPC framework [15].
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1 Introduction

distributional information, they fall in the stochastic models one, e.g., as in [18–20]. Both
robust and stochastic models can be characterized as grey-box or black-box. The former
relies on a mathematical description of the system known a priori, which is complemented
by a learning-based modeling of the model mismatch, defined by exploitation of the
data. Different formulations have been proposed, e.g., in [21] an arbitrary continuous
and bounded oracle function is used to obtain the learning-based part of the model,
Gaussian Processes (GP) have been used in [22], and in [23] a parametric model derived
by combining physical principles, causal relations and experimental data has been con-
sidered. The black-box approach, instead, completely bases the modeling on the data,
and different strategies have been studied, e.g., in [24] the model derivation is obtained
by nonlinear set membership methodology, in [25] the use of neural networks has been
proposed, in [26] input-output modeling trough kinky inference has been developed, in [27]
a Takagi-Sugeno adaptive neuro-fuzzy inference system has been considered, while in [28]
non-parametric kernel regression has been adopted. In the learning dynamics context,
Gaussian Process Regression (GPR) [29] has demonstrated remarkably effective thanks
to offline and runtime reduction techniques that maintain the GP characteristics, e.g.
continuity and smoothness of the function, favoring its usage in strictly real-time scenarios.
Moreover, GPR exploits a solid probabilistic framework that favors the inclusion of a
priori knowledge to define input-output models or to compensate modeling inaccuracies
by employing data of the real system, and its implementation in Learning-based Model
Predictive Control has been studied in different applicative scenarios, e.g., automotive,
robotics [30–34].

The learning design branch addresses the optimization of a true closed-loop cost for
the whole task, as a mapping from a parametrized form of the MPC cost function,
model or constraints to high-level control objectives. It can be divided in two subcat-
egories. On one side, the inverse optimal control strategy deals with the automatic
design of a controller that imitate a chosen desired system behaviour. On the other
side, performance-driven learning adapts the parametric problem to enhance controller
performance, stability and/or robustness in an episodic setting. Within the latter frame-
work, Bayesian Optimization has been used to tune the model and controller in iterative
tasks [35], and the demonstration that MPC can be tuned to obtain the optimal policy
even with a wrong model description led to its adoption as a function approximator in
the Reinforcement Learning scheme [36]. Moreover, different MPC auto-tuning strategies,
i.e. which specifically considers the cost function weights as tuning parameters, have
been implemented based on data-driven techniques [37], e.g. Reinforcement Learning [38],
Bayesian Optimization [39], Particle Swarm Optimization [40] and Genetic Algorithm [41].
Due to the possibility of solving multi-objective optimization problems with constraints,
Genetic Algorithms (GAs) result to be a common approach for tuning complex NMPC
controllers [41–44]. Using GA, in fact, it is possible to define an optimal tuning problem
that considers and balances different aspects of the desired control performance.

Recently, the application of LbNMPC strategies to four-wheel vehicles control is
gaining academic and industrial interest, and it has been proposed for different tasks, e.g.,
powertrain and vehicle dynamics control. A comprehensive summary of the Learning-
based NMPC publications in the automotive sector can be found in [45]. Specifically,
vehicle dynamics control comprehends driving assistance, stability control and autonomous
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1.2 Thesis Contribution

driving. In this context, learning dynamics approaches have been proposed to obtain
the model, exploiting different data-driven representations, e.g. Set Membership [24],
Fuzzy Modeling [27] and GPs [31–34]. In particular, GP-based implementations resulted
very effective in enhancing the control performance and they have been recently applied
in autonomous driving. A driverless race car controller has been developed in [31],
where a dynamic bicycle model is improved using a sparse GP formulation obtained by
Fully Independent Training Conditional to reduce the GP dimension, the path following
problem for off-road mobile robots has been studied in [32], where a kinematic unicycle
model is enhanced by a learned disturbance model representing both unmodelled robot
dynamics and systematic environmental disturbances, a control design for aggressive
vehicle maneuvers is described in [33], where Gaussian processeses on polynominal
basis are introduced to improve the accuracy of vehicle and tire dynamics, and an high
performance control method for remote-controlled race cars is presented in [34], where a
bicycle model considering Pacejka tire forces is enriched by GP-based velocity prediction
error estimates.

As shown in the literature, to obtain effective real-time LbNMPC controllers different
methodologies must be considered, e.g., feature selection procedures to reduce the GP
dimension, sparse GP formulations to further reduce the model complexity, fast NMPC
approaches to accelerate the optimal control problem solution. In this sense, the most
suitable GP characterization, its approximation and their correct integration within
the NMPC controller is still under investigation. Notably, for two-wheel vehicles the
integration of learning-based strategies and NMPC is still an open research topic, and
the promising results achieved for four-wheel vehicles suggest interesting possibilities in
further developments for autonomous riders.

1.2 Thesis Contribution

The main contribution of the thesis consists in the application of LbNMPC methodologies
in automotive scenarios. The doctoral scholarship has been funded by an agreement of
the Department of Information Engineering of University of Padova with the company
VI-Grade GmbH, with the specific topic “Desing of control systems for virtual vehicles and
driving simulators”, hence most results regard virtual drivers and riders, i.e., controllers
for virtual vehicles, while a concluding application on a real go-kart platform has been
implemented. In theses cases, the task is to obtain real-time capable controllers by
balancing prediction accuracy, horizon length, and computational cost. Both two-wheel
and four-wheel vehicles have been considered, focusing mainly on learning dynamics
strategies to enhance or derive the control model, and a data-driven tuning procedure for
a virtual rider has been developed.

1.2.1 Two-wheel vehicles

Virtual riders design based on LbNMPC methodology is an innovative research topic,
and it has been addressed in this thesis both in the context of learning dynamics and
learning design.
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1 Introduction

Firstly, a tailored LbNMPC that relies on a continuous grey-box model based on GPs
has been implemented. The formulation leverages the data acquired in specific training
runs to obtain a more accurate characterization of the accelerations. To cope with the
computational burden induced by the GP, the following features have been explored:
(i) the dimension of the GP input is reduced through a systematic feature selection
strategy; (ii) an off-line sparse GP approximation based on Variational Free Energy
approach is exploited; (iii) an online sparse GP approximation based on Transduction
Learning technique is applied; (iv) Non-Uniform Grid integration has been employed
taking advantage of the continuous-time formulation, i.e., modeling the acceleration
mismatch rather then the velocity prediction one. The results show the proficiency of the
proposed approach in remarkably enhancing the tracking performances of the controller
while maintaining real-time capabilities.

Secondly, a data-driven tuning procedure based on a Genetic Algorithm for an NMPC-
based virtual rider has been developed. The considered optimization objectives of the
GA are both the high-level performance of the control task, i.e. the lap-time on the
track, and the sensitivity of the solution to variations of controller parameters, as an
indicator of robustness with respect to the configuration changes. In particular, to
enforce robustness an additional criterion has been added by casting the single-objective
optimization problem into a multi-objective one. Moreover, the possibility to fail the task,
due to the motorcycle falling down or numerical issues related to NMPC fast/approximate
solutions, is explicitly considered in the problem formulation. The proposed method
results suitable for tuning a nonlinear MPC-based virtual motorcycle rider, obtaining
better results with respect to previously published manual tuning, and for evaluating the
trade-off between performance and robustness of the controller.

1.2.2 Four-wheel vehicles

LbNMPC methodologies for four-wheel vehicle control have been recently studied, and
they have been addressed in this thesis both in the context of virtual models and
experimental scenarios.

Firstly, a LbNMPC for a high-performance virtual driver running real-time has been
developed. The target is to enhance performance through the development of a discrete
grey-box model, improving physically-derived dynamics by training GPs to compensate
for velocity prediction errors. In particular, the definition of the most appropriate GP
has been explicitly addressed by: (i) implementing a specific feature selection procedure,
(ii) considering different stationary kernel functions, and (iii) analyzing the trade-off
between sparse reduction and prediction accuracy. Moreover, the task is formulated
in a space-domain rather than time-domain, and it has been provided a specific data
acquisition method to deal with this case. The obtained behavior clearly outperforms the
purely physical models, both in open-loop predictions and in closed-loop performance,
still maintaining real-time feasibility.

Secondly, a LbNMPC controller for a real go-kart based on a pure black-box model
obtained by GPs has been designed and tested. The experimental environment is a very
challenging scenario for the proposed methodology, due to low computational power
on embedded computers, sensor noise, communication flaws, etc. In this sense, the

6
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implementation and validation of an LbNMPC controller on a physical system is the main
contribution of the thesis, demonstrating the effectiveness of the approach in real contexts.
Specifically, by conveniently adopting a continuous model of accelerations, it has been
possible to directly use a space-based contouring problem formulation, computing the
optimal trajectory and velocity profiles directly within the online optimization. To limit
the computational burden, an offline GP model reduction strategy based on Subset of
Data is implemented, and an online Nearest Neighbours method relying on the state
prediction of the LbNMPC is used, leading to a sequence of low-dimensional local GP
models. Validation of the approach has been accomplished by autonomously driving
a real go-kart vehicle on a 180m long indoor track. The proposed method allowed for
accomplishing the driving task, properly performing the lap while keeping the go-kart
within the track bounds, demonstrating that the black-box dynamic model can be a
viable approach even in such a complex scenario.

Publications

Through the thesis, some of the author’s recently published and submitted papers are
presented. In particular, Part I contains the continuous learning dynamics characterization
published in [46]; Part II includes the NMPC controller for virtual motorcycles published
in [47], the data-driven tuning of the aforementioned NMPC controller presented in [48]
and its grey-box modeling LbNMPC implementation submitted as [49]; Part III contains
the NMPC controller for a virtual car published in [50], its grey-box modeling LbNMPC
implementation presented in [51] and the black-box modelling LbNMPC for a real go-kart
published in [52]. Finally, the Appendix contains the toolbox LbMATMPC presented in [53].

1.3 Outline of the Thesis

The thesis is organized as follows. Part I comprehends the methodological framework,
describing in Ch. 2 the Learning-based Nonlinear Model Predictive Control scheme,
and in Ch. 3 the Gaussian Process Regression methodology with specific reference to
the relevant features in the applicative case of interest. Part II concerns the virtual
motorcycles control, and it includes in Ch. 4 the NMPC controller underlying the
following works, in Ch. 5 the data-driven tuning procedure implemented to optimize
the controller behaviour, and in Ch. 6 the LbNMPC controller based on a grey-box
dynamics model. Part III deals with four-wheel vehicles control, describing in Ch. 7
the NMPC controller underlying the following learning-based implementation, in Ch.
8 the LbNMPC controller based on a grey-box dynamics model developed in a virtual
environment, and in Ch. 9 the LbNMPC implementation for an experimental go-kart
platform based on a black-box dynamics model. Finally, the developed MATLAB toolbox
that allows to integrate data-driven components in the NMPC prediction model, namely
LbMATMPC, is presented in Appendix, together with a comparison between the continuous
and discrete formulations for dynamics learning.
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In this part, the background on the methodological framework and the most relevant
algorithms applied through the thesis are presented. Chapter 2 describes the Learning-
based Nonlinear Model Predictive Control scheme, detailing the Stochastic Optimal
Control Problem formulation and its approximation and solution through Nonlinear
Model Predictive Control technique. Moreover, it illustrates the Learning Dynamics
and Learning Design techniques, together with the related algorithms. In chapter 3, the
Gaussian Process Regression is outlined, specifying the relevant reduction techniques
used for real-time feasibility of the LbNMPC problem solution.
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2
Learning-based Nonlinear Model

Predictive Control
The Learning-based Nonlinear Model Predictive Control strategy deals with the control
of nonlinear dynamical systems in presence of uncertainty, where the task is to create an
optimal controller for the unknown/disturbed system. In this sense, it can be interpreted
as an ideal Stochastic Optimal Control Problem (SOCP), that is approximated by a
specifically designed Nonlinear Model Predictive Control problem. Different variants
can be derived, relying on data-driven techniques either to constitute or enhance the
prediction model within the NMPC, i.e. learning dynamics branch, or to optimize the
closed-loop behaviour, i.e. learning design one.

2.1 Stochastic Optimal Control Problem

In general, the system uncertainty can be represented both as process noise w, i.e. a
sequence of random variables assumed to be independent and identically distributed, or a
parametric uncertainty θ ∼ Q, i.e. a random variable constant over time, the performance
is related to a cost function J and the controller should fulfill the constraints on states
and inputs with a given probability, namely, chance constraints. Hence, a generic SOCP
in discrete time domain may be defined similarly to [15] as

min
{πk}

J =E

( ∞∑
k=0

l(ξ(k),u(k), k)

)
(2.1a)

s.t. ξ(k + 1) = ϕ(ξ(k),u(k),w(k),θ, k), (2.1b)

u(k) = πk(ξ(0), . . . , ξ](k)), (2.1c)

Pr(Ξ ∈ Ξ̄) ≥ pξ (2.1d)

Pr(Υ ∈ Ῡ) ≥ pu (2.1e)

where the minimization is taken with respect to the control policy at k-th time instant
πk, the cost is defined as the expected value with respect to the random variables of
the sum of stage costs in the future, the system evolution is characterized by ϕ, the
control inputs are defined by the control policy πk, and the states Ξ = [ξ0, ξ1, ...] and
inputs Υ = [u0, u1, ...] must lie within their constraint sets Ξ̄ and Ῡ with probability pξ,u,
respectively. In particular, the system dynamics in Eq. (2.1b), i.e.

ξ(k + 1) = ϕ(ξ(k),u(k),w(k),θ, k),

13



2 Learning-based Nonlinear Model Predictive Control

where ξ ∈ nξ is the state, u ∈ nu is the input, w ∈ nw is the process noise, and θ ∈ nθ
is an (uncertain) parameter vector, represents the (partially unknown) discrete-time
evolution of the system.

The obtained minimization problem can hardly be solved, and becomes intractable
for nonlinear system. In fact, a direct optimization over general feedback laws πk is
not feasible, even since the cost function may be non-convex. In this sense, Nonlinear
Model Predictive Control can be used to approximate the SOCP iteratively at runtime,
to obtain a relatively optimal policy for the system. Specifically, the LbNMPC framework
aims at defining a deterministic NMPC problem that achieves the desired performance,
either through the exploitation of a probabilistic model of the system or by a data-driven
adaptation of the problem parameters (e.g. cost weights, prediction horizon length, etc.).

2.2 Nonlinear Model Predictive Control

Model Predictive Control is a an optimization-based control technique that leverages
explicitly system models and constraints. It computes a control sequence by minimizing
a cost function in the prediction horizon [tk, tk+T ], while satisfying the dynamics of the
system. Then, only the first control action of the sequence is applied to the plant, the
current state measurements (or estimates) are obtained and the procedure is repeated,
as depicted in Fig. 2.1, [54, 55].

Figure 2.1. MPC scheme [55].

When leveraging nonlinear dynamics, the technique is referred to as Nonlinear MPC
(NMPC). A precise characterization of the system can highly enhance the control perfor-
mance, but, at the same time, the nonlinearities could yield to difficulties in solving the
optimization problem accurately and in real-time. However, fast solution algorithms and
high computational power even in embedded control units led to the adoption of NMPC
in different industrial scenarios [56, 57].

2.2.1 Optimal Control Problem

The NMPC scheme requires, at each time step, to solve an Optimal Control Problem
(OCP) that, given the current state measurement ξ̌k, allows to find the optimal control
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2.2 Nonlinear Model Predictive Control

trajectory in the prediction horizon [tk, tk+T ]. The OCP can be stated as

min
ξ(·),u(·)

J =

∫ tk+T

tk

(l(ξ(k),u(k), k)dt) + L(ξ(tk+T )) (2.2a)

s.t. ξ(tk) = ξ̌k (2.2b)

ξ̇ = f(ξ(t),u(t)), ∀t ∈ [tk, tk+T ], (2.2c)

r(ξ(t),u(t)) ≤ 0, ∀t ∈ [tk, tk+T ] (2.2d)

rT (ξ(tk+T )) ≤ 0, (2.2e)

where T is the prediction horizon length, l(·) represent the control objective, L(·) is the
terminal cost, r(·) defines the states and input constraints, and rT (·) is the boundary
condition, i.e. the terminal constraint. The definition of those quantities is particularly
critical, as the prediction horizon length, the terminal costs and terminal constraints can
be used to guarantee stability of the system under NMPC control law, i.e. ensuring that,
for a constant reference, the system will steer to a stable equilibrium point. Moreover, the
existence of a solution depends on the constraints definition, hence their characterization
should be well-posed. Specifically, feasibility of the OCP means that it exist a solution
trajectory, in terms of (ξ,u), for which all the constraints are satisfied. Eq. (2.2c), i.e.

ξ̇(t) = f(ξ(t),u(t)),

where ξ ∈ Rnξ is the state and u ∈ Rnu is the input, is a system of Ordinary Differential
Equations (ODE) and describes the behaviour of the plant under the control input.
Given an initial condition ξ(tk) = ξ̌k and a control input u(t), it defines an Initial Value
Problem. Throughout the thesis, the assumption that ϕ is uniformly Lipschitz continuous
in ξ and u and continuous in t will be assumed, to apply the Picard’s existence theorem
that assures there is a unique solution ξ(t) on a given interval t ∈ [tk, tk+T ].

In LbNMPC framework, the OCP formulation can represent an approximation of the
SOCP stated in Eq. (2.1) by embedding a deterministic approximation of both the
probabilistic dynamics in the ODE by, e.g., considering the mean of the random variables
or perturbations, and of the chance constraint in the states and input constraints function
by, e.g., considering the variance or the domain of the random variables or perturbations.
In this context, robustness of the NMPC scheme is a desiderable property, as it determines
the ability of the control algorithm to maintain certain characteristics, e.g. stability,
feasibility, and/or performance, in the presence of unmodelled or uncertain dynamics.

2.2.2 Nonlinear Programming Problem

Different methods are available to solve the OCP in Eq. (2.2): (i) dynamic programming,
(ii) indirect methods and (iii) direct methods [58, 59]. The third one is the most used in
fast NMPC algorithms, thanks to the possibility to exploit numerical optimization solvers.
Direct methods rely on a finite dimensional parametrization of the OCP, obtaining a
discrete Nonlinear Programming Problem (NLP) that approximates the OCP solution [60].
In the thesis setup, multiple shooting method is used, due to its efficiency in practical
applications. Indeed, the possibility to incorporate information about the behaviour of
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the state trajectory into the initial guess for the iterative solution procedure can damp
the influence of poor initial guesses for the controls (which are usually much less known).
In the context of NMPC, where a sequence of neighbouring optimization problems is
treated, solution information of the previous problem can be effectively exploited [61].

In the multiple shooting method, the prediction horizon is divided in N shooting
intervals [t0|k, t1|k, . . . , tN |k], the input trajectory is parametrized as piece-wise constant,
the system dynamics is integrated to obtain a discrete state evolution and the constraints
are imposed only at the shooting points. Specifically, at every time instant k, the OCP
is converted in a NLP over the prediction horizon as follows:

min
ξ,u

N−1∑
j=0

1

2

∥∥hj(ξj|k,uj|k)∥∥2W +
1

2

∥∥hN (ξN |k)
∥∥2
WN

(2.3a)

s.t. 0 = ξ0|k − ξ̌0|k, (2.3b)

0 = ξj+1|k − ϕk(ξj|k,uj|k), j = 0, 1, . . . , N − 1, (2.3c)

rj|k ≤ r(ξj|k,uj|k) ≤ rj|k, j = 0, 1, . . . , N − 1, (2.3d)

rN |k ≤ rN (ξN |k) ≤ rN |k, (2.3e)

(2.3f)

where ξ̌0|k is the state at the current time instant k. At the discrete time point tj|k
for j = 0, . . . , N the system states ξj|k ∈ Rnx are defined while the control inputs
uj|k ∈ Rnu for j = 0, . . . , N − 1 are piece-wise constant. Eq. (2.3a) refers to the objective
function, where h is the inner objective and W is the weight matrix, Eq. (2.3b) refers
to the initial value embedding, and the constraint functions (2.3d)-(2.3e) are defined as
r(ξj|k,uj|k) : Rnx ×Rnu → Rnr and rN (ξN |k) : Rnx → RnrN with upper and lower bound
rj|k, rj|k. The system dynamics, Eq. (2.2c), is enforced by the continuity constraint, Eq.
(2.3c), where ϕk(ξk,uk) is a numerical integration operator that solves the following IVP
and returns the solution at tk+1, i.e.

0 = ϕ(ξ̇(t), ξ(t),u(t), t), ξ(0) = ξk. (2.4)

2.2.3 Sequential Quadratic Programming

To solve the NLP problem, Sequential Quadratic Programming (SQP) is used in the
presented works. It is an iterative procedure which reformulates the NLP at a given
iterate in a Quadratic Programming (QP) problem [62, 63]. Specifically, the objective
functions (2.3a) are replaced by their local quadratic approximation and the constraint
functions (2.3b)-(2.3e) by their local affine approximations. Thus, at SQP iterate l, a
QP problem is formulated as follows (the subscript ·|k is omitted for clarity):
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min
∆ξ,∆u

N−1∑
j=0

(
1

2

[
∆ξj
∆uj

]⊤
H l
j

[
∆ξj
∆uj

]
+ gi

⊤
j

[
∆ξj
∆uj

]
) (2.5a)

+
1

2
∆ξ⊤NH

l
N∆ξN + gl

⊤
N ∆ξN (2.5b)

s.t. ∆ξ0 = ξ̌0 − ξ0, (2.5c)

∆ξj+1 = Alj∆ξj +Bj∆uj + a
l
j , (2.5d)

clj ≤ C lj∆ξj +Dl
j∆uj ≤ clj , (2.5e)

clN ≤ C lN∆ξN ≤ clN , (2.5f)

where ∆ξ = Ξ−Ξl,∆u = U−U l, using the compact notation Ξ =
[
ξ⊤0 , ξ

⊤
1 , . . . , ξ

⊤
N

]⊤
, U =[

u⊤
0 ,u

⊤
1 , . . . ,u

⊤
N−1

]⊤ for the discrete state and control variables, and Ξl and U l are the
previous guess for state and control trajectories. The linearized matrices are given by

Alj =
∂ϕ

∂ξj
, Bl

j =
∂ϕ

∂uj
,

alj = ϕ(ξ
l
j ,u

l
j)− ξlj+1,

C lj =
∂rj
∂ξj

, Dl
j =

∂rj
∂uj

, C lN =
∂rN
∂ξN

,

clj = rj − rj(ξlj ,ulj), clj = rj − rj(ξlj ,ulj),
clN = rN − rN (ξlN ), clN = rN − rN (ξlN ),

(2.6)

while the Hessian matrices H l
j , H

l
N are computed through the Gauss-Newton method.

The solution of the QP problem can be obtained by different methods [64,65], and the
most suitable ones in this scenario are active-set and interior point. Active-set techniques
are based on the detection of the active inequality constraints, i.e. the ones that are
needed to correctly obtain the QP solution [66], while interior point ones remove the
inequality constraints by adding slack variables with a penalty term [67]. Both methods
can be used within the proposed methodology, and the most appropriate should be chosen
depending on the specific application.

Thanks to the similarity of the NLPs at two consecutive sampling instants in this
framework, different methodologies have been developed to speed up the solution time of
the problem. In particular, Real-Time Iteration (RTI) scheme is a strategy that performs
only one SQP iteration to solve the NLP, providing a sub-optimal solution that is a
tangential predictor of the exact one [68]. If the initial trajectory is close enough to
the optimal one, local convergence of the algorithm is ensured by RTI guarantees on
contractivity and boundness of the loss of optimality compared to optimal feedback
control [69].

The complete solution of (2.3) is obtained by using solution of (2.5) through

Ξl+1 = Ξl + βl∆ξl,

U l+1 = U l + βl∆ul,
(2.7)

where βl can be computed at each step by globalization strategies to apply the optimal
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step size.

2.3 Learning Design

The cost function and constraints have a great impact on the closed-loop performance
of a predictive controller, and their tuning through specific automatic algorithms has
been recently studied. Two categories can be defined: (i) Inverse Optimal Control,
where the controller is tuned in order to imitate a given closed-loop behaviour, and (ii)
Performance-driven Learning, where the aim is to improve the performance by consecutive
adjustments of the parametrization.

The Performance-driven Learning is a very active research field, and different auto-
tuning strategies have been implemented based on data-driven techniques. In this episodic
framework, a further optimization problem that minimizes a true closed-loop cost of the
whole task Jt(Θ) is defined, considering the tuning parameters Θ as optimization variables.
Hence, by consecutive runs of the task using a parametrized NMPC controller, the
strategies aim at minimize high-level control objectives such as the controller performance,
stability and/or robustness [37]. The high-level problem can be defined as

argmin
Θ

Jt(Θ) (2.8)

and the NLP to be solved by the NMPC controller is expressed in general form as

min
ξ,u

N−1∑
j=0

1

2

∥∥hj(ξj|k,uj|k;θl)∥∥2W +
1

2

∥∥hN (ξN |k;θl)
∥∥2
WN

(2.9a)

s.t. 0 = ξ0|k − ξ̄0|k, (2.9b)

0 = ξj+1|k − ϕ(ξj|k,uj|k;θϕ), j = 0, 1, . . . , N − 1, (2.9c)

rj|k ≤ r(ξj|k,uj|k;θr) ≤ rj|k, j = 0, 1, . . . , N − 1, (2.9d)

rN |k ≤ rN (ξN |k;θr) ≤ rN |k, (2.9e)

(2.9f)

where the vector Θ comprehends the whole parametrization, i.e., θl ∈ Θ are the cost
function parameters, θϕ ∈ Θ the system dynamics one, and θr ∈ Θ the constraints one.
Note that the parametrization comprehends also the system dynamics, hence the method
can be used to learn the best control model that allows to obtain the desired performance.
Contrary to the Learning Dynamics approach, that seeks to characterize the system itself,
in the Learning Design characterization there is no identification process but a direct
definition of the most suitable model parameters.

Most solution methods are derived from the machine learning framework, e.g. Reinforce-
ment Learning [38, 70], Bayesian Optimization [39, 71], Particle Swarm Optimization [40]
and Genetic Algorithm [41]. Due to the possibility of solving multi-objective optimization
problems with constraints, Genetic Algorithms (GAs) result to be a common approach
for tuning complex NMPC controllers [41–44]. Using GA, in fact, it is possible to define
an optimal tuning problem that considers and balances different aspects of the desired

18



2.3 Learning Design

Figure 2.2. Example of a 2-dimensional Pareto front.

control performance. In particular, the robustness of the control system to parameters
changes is a desiderable characteristic that should be considered alongside the control
performance. In fact, in practical problems, if the optimal solution is sensitive to small
changes of the design variables, the implemented solution, e.g. realized with limited accu-
racy, may result in a highly different objective values by affecting the real performance
of the controller. Indeed, in the case the environment changes slightly or the parameters
are affected by uncertainty, the solution on a high plateau of the performance objective
is expected to yield more consistent performance than the solution on the peak [72].
A solution proposed in literature is to enforce robustness during optimization, which
can be done either by correcting the original cost function with a robustness-related
element or by inserting an additional optimization criterion assessing robustness [73].
The latter technique consists in casting a single-objective optimization problem into a
multi-objective one where a second robustness objective is added [74,75].

In the following of the thesis, Multi-Objective Genetic Algorithms will be used to
achieve the desired data-driven tuning of the NMPC Controller, and hence their definition
is reported here for completeness.

2.3.1 Multi-Objective Genetic Algorithm

Multi-objective optimization (MOO) is the problem of finding a vector of decision variables
(or parameters) which satisfies constraints and optimizes a vector field, whose elements
represent the conflicting objective functions [76]. In this framework, no single global
solution is obtained, and a whole set of points can be defined as optima. Specifically, the
multi-objective optimality is defined as follows [76]

Definition 2.3.1 (Pareto optimality). A point, p⋆ ∈ P ⊂ Rl, is Pareto optimal with
respect to P iff there does not exist another point, p ∈ P , such that J(p) ≤ J(p⋆) and
Ji(p) < Ji(p

⋆) for at least one objective functions.

The points that satisfy Def. (2.3.1) are called Pareto-optimal solutions (or non-
dominated solutions), and they constitute the Pareto front. An example of a 2-dimensional
Pareto front is depicted in Fig. 2.2.

To solve MOO, GAs are widely used because they are derivatives-free, can handle non-
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Figure 2.3. NSGA-II procedure summary.

convex problems and can be implemented by parallelization to reduce the computational
burden. Specifically, GA is a stochastic optimization technique inspired by the process of
natural selection the involves four steps depicted in Fig. 2.3:

1. initialization of population with a set of individuals that represent a possible solution
within the constrained search space;

2. evaluation of the fitness functions, to determine the performance of each individual
with respect to the optimizations objectives;

3. selection of the individuals with the higher performances for the next generation;

4. crossover and mutation of the selected individuals to produce a new generation.

Cycling on steps (2)-(4) continues until a termination condition is met, e.g., the maximum
number of generations is reached or a specific threshold has been exceeded.

NSGA-II

The Non-dominated Sorting Genetic Algorithm (NSGA-II) [77] is a very popular algorithm
to solve constrained multi-objective optimization problems. It is a global multi-objective
optimization algorithm proposed as an improvement of NSGA [78] by introducing the
elite strategy based on the crowding distance and rank operator of fast non-dominated
sorting algorithm. With this approach, the number of computations to complete a
generation is O(MN2), where M is the number of objectives and N is the population
size. A crowded-comparison approach is implemented to preserve diversity in the solution.
This method is based on a density-estimation metric and a crowded-comparison operator,
and it does not require any user-defined parameter for maintaining diversity among
population members.

Constraint-Handling Approach

In the presence of constrained problem, each founded optimal solution can be either
feasible or infeasible. In this case, the NSGA-II adopted a constraint handling approach
based on the following definition.
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Definition 2.3.2. A solution i is said to constrained-dominate a solution j, if any of the
following conditions is true.

1. Solution i is feasible and solution j is not.

2. Solutions i and j are both infeasible, but solution i has a smaller overall constraint
violation.

3. Solutions i and j are feasible and solution i dominates solution j.

The effect of using this constrained-domination principle is that any feasible solution
has a better non-domination rank than any infeasible solution.

2.4 Learning Dynamics

The model of the system is a fundamental element of the NMPC algorithm, hence its
correct definition is crucial to obtain satisfactory closed-loop performance. In this sense,
learning dynamics strategies aim at defining or refining the system model to be used
within the NMPC.

In the framework of learning dynamics, the learning-based modeling is usually con-
sidered in the discrete formulation, obtaining an expression of the system state at the
next discrete time instants. NMPC modeling, on the other hand, is usually derived
starting from the continuous-time model, i.e. acceleration definition, that is then inte-
grated through a numerical integrator (e.g. Euler, Runge-Kutta, etc.). Incorporating the
learning-based modeling within the accelerations ensures that both the regression process
and the obtained model are independent on the time step and hence regression can be
accomplished with available data at any frequency. Then, using this characterization, it
is possible to arbitrarily change the NMPC integration step. This feature is particularly
valuable in the design phase, or if any change in the control system task is needed.
Moreover, non-uniform integration grids can be adopted, achieving high reductions in
computational burden. Therefore, all the results presented in the thesis, except for Ch. 8
and the comparison in Appendix B, are defined as continuous-time model.

In the following, a description of the discrete-time dynamics is reported, and the
definition of continuous-time acceleration is introduced. The learning-based definition
assumes to employ Gaussian Process Regression, which is detailed in Ch. 3, but different
methodologies could similarly apply. Both black- and grey-box models are characterized,
either exploiting a nominal model and model-mismatch data or directly input-output
system measurements, respectively. Explicit definition of the GP-based model and its
characterization are given. A thorough comparison of the approaches in an experimental
scenario is reported in Appendix B.

2.4.1 System Dynamics

Consider the following real system

ξ̇(t) = f(ξ(t),u(t)), (2.10)
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where ξ ∈ Rnξ is the system state and u ∈ Rnu is the system input, and denote by

˜̇
ξ(t) = f̃(ξ(t),u(t)) (2.11)

the nominal dynamics, i.e. a model of the system evolution.

Since the model is usually derived from a physical description, the state (both actual
and nominal) can be divided as

ξ = [q, q̇]⊤, (2.12)

where q ∈ Rnq and q̇ ∈ Rnq are the position and velocities of the physical system,
respectively1.

For T time instants, the current system state ξk and inputs uk, the actual velocities
at the following time instant q̇k+1, and the real accelerations of the system q̈k can be
grouped as

Ξ = {ξ0, ξ1, . . . , ξT−1}
Υ = {u0,u1, . . . ,uT−1}
Q̇ = {q̇1, q̇2, . . . , q̇T }
Q̈ = {q̈0, q̈1, . . . , q̈T−1}

(2.13)

where Q̇ ⊂ Ξ has been explicitly defined for notation convenience, and the real accel-
erations q̈ can be obtained by IMU systems or discrete differentiation of the system
velocities q̇.

2.4.2 Learning-based Discrete Dynamics

Define a numerical integration operator ϕ̃, e.g. 4th order Explicit Runge-Kutta, that
returns the state at tk+1 with x(0) = xk, i.e.

ξ̃k+1 = ϕ̃(ξk,uk), (2.14)

where ξ̃k+1 is the discrete nominal dynamics evolution. Using the integrator and the
quantities in (2.13), it is possible to compute the nominal velocities

˜̇Q = {˜̇q1, ˜̇q2, . . . , ˜̇qT }. (2.15)

Those quantities can then be used to train a GP that compensates for the unknown
dynamics of the system, and estimates the velocity prediction errors q̇k− ˜̇qk. In particular,
for each component of the velocity vector q̇, the prediction error has been modeled with a
distinct and independent GP. The GPs input vector at time tk is the collection ξk−1 and
uk−1. The output of the i -th GP is yik = q̇ik− ˜̇qik, where q̇ik and ˜̇qik are, respectively, values
of the measured and predicted i -th component of q̇. The GPR methodology considered
is detailed in Ch. 3.

1This state definition is common for physical systems, but the framework generalizes to any system
definition.
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The overall discrete grey-box model of the system dynamics is expressed by

ξk+1 = ϕ̃(ξk,uk) + ϕ̄(ξk,uk)[
qk+1

q̇k+1

]
=

[
ϕ̃q(ξk,uk)

ϕ̃q̇(ξk,uk)

]
+

[
ϕ̄q̇(ξk,uk) · Ts2
ϕ̄q̇(ξk,uk)

]
(2.16)

where ϕ̄q̇ is the estimate of the velocity prediction errors, Ts is the sampling interval,
and the acceleration has been considered constant within the sampling interval. In this
formulation, a black-box model, meaning that it is characterized without any nominal
description of the accelerations, can be easily obtained by defining ϕ̃q̇(ξk,uk) = Inq . Note
that, in this case, the velocity prediction of the nominal model is ˜̇qk = q̇k−1, hence the
model mismatch estimated through the GP is the velocity increment q̇k − q̇k−1.

LbNMPC formulation

To include the learning-based dynamics, the continuity constraint in the NLP (2.3c) is
modified as

0 = ξj+1|k −
[
ϕ̃(ξj|k,uj|k) + ϕ̄(ξj|k,uj|k)

]
, j = 0, 1, . . . , N − 1, (2.17)

and consequently the QP approximation (2.5) is reformulated substituting (2.5d) as

∆ξj+1 = (Alj,ODE +Alj,GP )∆ξj + (Bl
j,ODE +Bl

j,GP )∆uj + a
l
j,ODE−GP , (2.18)

where

Alj,ODE =
∂ϕ̃

∂xj
, Bl

j,ODE =
∂ϕ̃

∂uj
,

Alj,GP =
∂ψ̄

∂xj
, Bl

j,GP =
∂ψ̄

∂uj
,

alj,ODE−GP = ϕ̃(xlj ,u
l
j) + ψ̄(x

l
j ,u

l
j)− xlj+1.

(2.19)

2.4.3 Learning-based Continuous Dynamics

Using the quantities in (2.13), it is possible to compute the nominal accelerations ˜̈q

applying Eq. (2.11) to get
˜̈Q = {˜̈q1, ˜̈q2, . . . , ˜̈qT−1}. (2.20)

Those quantities can be used for GPR, compensating for the unknown dynamics of the
system, and estimating the acceleration prediction errors q̈k − ˜̈qk. In particular, for each
component of the acceleration vector q̈, we model the estimation error with a distinct
and independent GP. The GPs input vector at time tk contains both ξk and uk. The
corresponding output of the i -th GP is yik = q̈ik − ˜̈qik, where q̈ik and ˜̈qik are, respectively,
the measured and predicted i -th component of q̈. The GPR methodology considered is
detailed in Ch. 3.
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The overall continuous grey-box model of the system dynamics is defined by

ˆ̇
ξ(t) =

˜̇
ξ(t) +

¯̇
ξ(t)[

ˆ̇q(t)
ˆ̈q(t)

]
=

[
˜̇q(t)
˜̈q(t)

]
+

[
0

¯̈q(t)

]
(2.21)

where ¯̈q is the estimate of the acceleration prediction errors. Using this formulation, a
black-box model, i.e. with no nominal characterization of the accelerations, can be easily
obtained by defining ˜̈q(t) = 0.

Finally, define a numerical integrator operator

ξ̂k+1 = ϕ̂(ξk,uk), (2.22)

that integrates the dynamics ˆ̇ξ(t) and returns the solution at tk+1 with ξ(0) = ξk, e.g.
4th order Explicit Runge-Kutta.

LbNMPC formulation

To include the learning-based dynamics, the continuity constraint in the NLP (2.3c) is
modified as

0 = ξj+1|k − ϕ̂(ξj|k,uj|k), j = 0, 1, . . . , N − 1 (2.23)

and consequently the QP approximation (2.5) is reformulated substituting (2.5d) as

∆ξj+1 = Âlj∆ξj + B̂j∆uj + a
l
j , (2.24)

where

Âlj =
∂ϕ̂

∂ξj
, B̂l

j =
∂ϕ̂

∂uj
,

alj = ϕ̂(x
l
j ,u

l
j)− xlj+1.

(2.25)

Note that the continuous formulation does not modifies the NLP and QP definition with
respect to the integrator function ϕ̂, but just modifies the integrator definition itself.
This allows to easily change the integration step of the NMPC and to apply Non-Uniform
Grids for dynamics integration.
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3
Gaussian Process Regression for

Dynamics Learning
Gaussian Process Regression (GPR) has proven to be a favored approach to address the
problem of learning dynamics in the context of LbMPC, since it is a flexible nonparametric
stochastic approach [15]. Moreover, it is apt for active learning strategies [79], it generally
avoids overfitting, and it is suitable also for advanced frameworks in which stochastic
state distributions are propagated over the prediction horizon, e.g. stochastic MPC.

In the following, the basics of GPR are described, and the relevant Gaussian Process
model approximations to be used in real-time LbNMPC applications are reported.

3.1 Gaussian Process Regression

A Gaussian Process (GP) can be seen as a generalization of the Gaussian probability
distribution, that describes random variables, to the distribution over function. A formal
definition is [29]

Definition 3.1.1 (Gaussian Process). A Gaussian Process is a collection of random
variables, any finite number of which have a joint Gaussian distribution.

In this context, the random variables represent the value of a function f(x) at input
location x, and a generic GP can be expressed as

f(x) ∼ GP(m(x), k(x, x′)), (3.1)

where mean m(x) and covariance functions k(x, x′) completely characterize the GP f(x),
and are defined as

m(x) = E[f(x)], (3.2a)

k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))]. (3.2b)

In the context of learning dynamics framework, GPs have been applied considering a
dataset X containing T noisy observations y of the system and a multidimensional input
x containing the systems states, inputs and possibly derived quantities. The regression
task assumes the following probabilistic model

y =

y1...
yT

 =

f(x1)
...

f(xT )

+

e1...
eT

 = f + e,
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3 Gaussian Process Regression for Dynamics Learning

where y is a vector containing the n noisy observations, e is zero mean Gaussian noise1

with standard deviation σn, and f ∼ N(0,Kxx) is a zero mean Gaussian process with
covariance Kxx defined through a kernel function k(·, ·). More precisely, the covariance
between the output at time tk and tj , i.e. the element of Kxx at row k and column j, is
E[ykyj ] = k(xk,xj). As detailed in [29], the posterior distribution of f in a target input
location x∗ is Gaussian, and its maximum a posteriori estimator is the posterior mean
µ(x∗), given by

µ(x∗) = k⊤
x∗x(Kxx + σ2nI)−1y, (3.3)

with variance
Σ(x∗) = k(x∗,x∗)− k⊤

x∗x(Kxx + σ2nI)−1kx∗x, (3.4)

where kx∗x is the vector of covariances between the test point and the training points,
and I ∈ Rn×n is the identity matrix.

A key aspect of GPR is the choice of the kernel, which encodes the prior assumptions
on the unknown function. In particular, stationary kernels define the similarity of two
points based on their weighted distance

d(xk,xj)
2 = (xk − xj)⊤L−2(xk − xj), (3.5)

where L is a positive diagonal matrix, with the diagonal elements named lengthscales.
Stationary kernels are widely used thanks to their invariance with respect to time
instants, making them well-suited for dynamics learning. In the presented works, different
well-studied stationary kernels have been considered:

• the Squared Exponential kernel, defined by

kSQ(xk,xj) = σn exp(−d(xk,xj)2) , (3.6)

• the Rational Quadratic kernel, defined by

kRQ(xk,xj) = σn

(
1 +

d(xk,xj)
2

2αrq

)−αrq

, αrq > 0 , (3.7)

• the Matern 3/2 kernel, defined by

kM32(xk,xj) = σn

(
1 +

√
3d(xk,xj)

)
exp

(
−
√
3d(xk,xj)

)
, (3.8)

• the Matern 5/2 kernel, defined by

kM52(xk,xj) = σn

(
1 +

√
5d(xk,xj) +

5

3
d(xk,xj)

2

)
exp

(
−
√
5d(xk,xj)

)
.

(3.9)

The regression task is then the selection of the best hyperparameters, that are composed
of the kernel function parameters (e.g., lengthscales) and the noise variance σn, and they
can be tuned relying on empirical methods, such as cross validation, or by maximization

1e usually represents the measurement noise, but, in the simulation frameworks presented in the thesis,
it will represent a regularization parameter that allows to obtain smoother GP characterizations.
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of the training data Marginal Likelihood (ML) [29]. Importantly, the hyperparameter σn
defines the trade-off between adherence to the training data and regularization. High
values of σn promote regularization, i.e., the smoothness of f(x), but could compromise
accuracy. On the other hand, too small values of σn could lead to non-smooth functions,
which might be an issue for the LbNMPC solution.

3.2 GP model approximation for LbNMPC

Even though GPs provide a powerful Bayesian Regression framework, that is nonpara-
metric and interpretable, they suffer from scalability problems. Hence, to apply them in
the LbNMPC framework, sparse approximations are usually required, see e.g. [30, 31].
Approximations can be both global, which distillate the entire original dataset X into a
lower dimensional dataset maintaining the information on the whole input space, and
local, which divide data for subspace learning [80]. In this section, a description of the
employed global approximators, namely, an heuristic procedure named Subset of Data
(SoD), Variational Free Energy (VFE) [81], and Fully Independent Training Conditional
(FITC) [82, 83], is given. Moreover, the Nearest Neighbor (NN) approach [84] and
the application of FITC to online local approximation, namely Transduction Learning
(TL) [85], are described. Finally, two feature selection procedures are illustrated, one
bottom-up iterative incremental approach [86] and one top-down permutation-based
feature set reduction [87].

3.2.1 Global Approximations

Global approximations rely on the hypothesis that the information stored in the original
dataset X can be synthesized through a set of inducing points, obtaining a reduced
dataset Xu. They can be used offline, i.e. in the data gathering and modeling phases, to
reduce the dimensionality of the whole GP model and hence the computational burden
of the LbNMPC problem.

Subset of Data

This heuristic procedure aims at reducing the original dataset X through an iterative
algorithm that exploits information provided by the posterior variance in Eq. (3.4). First,
the reduced dataset Xu is initialized with the first data point of X . Then, the algorithm
iterates over the remaining points in X . For each point, the algorithm computes Eq.
(3.4) using as training data the current points in Xu, and includes the point in Xu if the
variance is higher than a certain threshold provided by the user. The basic idea behind
this approach is that if the model is confident in the current input location the point can
be neglected, while if the variance is high we have to add the point to Xu to improve
prediction accuracy. Once the reduced dataset has been obtained, the same formula
defined for standard inference is used, i.e. Eq. (3.3).
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3 Gaussian Process Regression for Dynamics Learning

Variational Free Energy

VFE inference is based on the idea that the data contained in the original dataset X
can be reproduced through a group of inducing points. Hence, a collection of Tu < T

inducing points Xu can be used to compute each regression target mean with a significant
lower computational effort. The method seeks to reduce the discrepancy between the full
posterior GP and its approximation, i.e. the training of VFE minimizes the following
upper bound on the Negative Log-Likelihood [81]

min
Θ,Xu

=

{
1

2
log
(
det
(
Qxx + σ2nI

))
+

1

2
y⊤ (Qxx + σ2yI

)−1
y +

1

2σ2y
tr (Kxx −Qxx) +

n

2
log(2π)

}
,

(3.10)
where Qxx = KxuK

−1
uuKux. Once the resulting optimal values are obtained, the predic-

tions at the test point x∗ can be computed as

µ(x∗) = kx∗u

(
σ2nKuu +KuxKxu

)−1
Kuxy. (3.11)

Fully Independent Training Conditional

FITC seeks to find a set of m inducing points of the original dataset X that can condense
the information with a significantly lower number of data. In particular, the method
minimizes the following term [88]

min
Θ,Xu

=

{
1

2
log
(
det
(
Qxx + T + σ2nI

))
+
1

2
y⊤ (Qxx + T + σ2yI

)−1
y+

n

2
log(2π)

}
, (3.12)

where Qxx = KxuK
−1
uuKux and T = diag(Kxx −Qxx). In this case, the posterior results

µ(x∗) = kx∗uΣKuxΛ
−1y, (3.13)

where

Σ = (Kuu +KuxΛ
−1Kxu)

−1, (3.14)

Λ = diag(Kxx −KxuK
−1
uuKux + σ2nI). (3.15)

3.2.2 Local Approximations

Local approximations provide GP models valid only in the neighborhood of the current
input, and they should be used online, i.e. while the NMPC controller is running, and
they are particularly useful to further reduce the computational burden of the control
algorithm. The methods rely on the knowledge of the last computed predicted trajectory
in terms of states and inputs of the system {ξ·|i−1,u·|i−1} and compute the predicted GP
inputs x·|i−1 associated. These procedures can be accomplished at runtime before the
LbNMPC call, updating the GP-related parameters within the Nonlinear Programming
Problem (see Sec. 2.4). The main strength of these approaches is that they exploit the
structure of the NMPC problem in order to simplify the GP-based predictive model.
Indeed, inducing variables may be placed directly along the predicted NMPC trajectory,
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3.2 GP model approximation for LbNMPC

as it is highly probable that the system at the next instant will be in that region. More
formally, the evolution of the GP inputs to be used for regression based on the future
trajectory prediction, i.e. steps l = 0 . . . N of the previous NMPC iteration i− 1, may be
summarized as

x·|i−1 =
[
x0|i−1

⊤,x1|i−1
⊤, . . . ,xN |i−1

⊤
]⊤
. (3.16)

Nearest Neighbor

This approach is based on the key idea that the closest points to the target are the most
informative for a local prediction of the GP [84]. In particular, the closest are defined by
the distance considering the trained lengthscales L using a weighted norm, as defined in
Eq. 3.5. The search for the nearest points can be done on a previously obtained inducing
set Xu, further reducing the number of inducing points Tp < Tu < T . Once the points
have been selected, the quantities to obtain the posteriori mean of the GP µ(x∗) have to
be recomputed, substituting in Eq. (3.3) the entire training measures y with the measure
subset relative to the chosen points.

Transduction Learning

The transduction learning relies on an approximation adjusted according to the available
information on the desired test points of the FITC method [85]. To reduce the compu-
tational burden, a subset of the previous trajectory may be employed for transduction.
More precisely, given a transduction ratio h ∈ N and r = ⌊N/h⌋, points may be sampled
from the previous trajectory as

Xs =
[
x0|i−1

⊤,xh|i−1
⊤,x2h|i−1

⊤, . . . ,x(r−1)·h|i−1
⊤
]⊤
. (3.17)

The sampled points Xs can be used to provide a local GP approximation to be employed
for the current LbNMPC control action. This is done using a general (possibly already
sparse) GP model based on dataset Xu and the FITC approximating formula of the mean
of the predictive distribution, Eq. (3.13).

3.2.3 Feature Selection

While the previously described approximation aims at reducing the number of points
used for the GP prediction, in the feature analysis the objective is to select the most
significant quantities to be included within the GP input x. This procedure allows both
to reduce the dimensionality of the GP and to avoid deceptive correlations within the GP.
In particular, starting from a complete feature set x̄ ∈ RD, only the most informative
quantities may be selected as GP inputs x ⊆ x̄. An evaluation procedure on all the 2D

possible feature subsets would be unfeasible, hence we propose an iterative incremental
approach, similarly to [86], and a permutation-based feature set reduction [87].

Both the method apply the R2 index across the whole dataset to measure the fit
quality. The R2 index is computed comparing the real target evolution y and the
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3 Gaussian Process Regression for Dynamics Learning

Listing 3.1 Iterative incremental approach.
for ac c e l e r a t i on_ta rg e t

good_features = [ ] ;
for i t e r = 1 :N

for f e a tu r e not in good_features
s imulate add i t i on o f f e a tu r e to good_features ;
eva luate R^2;

end
add f e a tu r e l ead ing to max(R^2) to good_features ;
for f e a tu r e in good_features

s imulate removal o f f e a tu r e from good_features ;
eva luate R^2;
i f R^2 i n c r e a s e s

remove f e a tu r e ;
end

end
end

end

predicted evolution ŷ as

R2 = 1− SSres
SStot

, (3.18)

where SSres =
∑

k(yk− ŷk)2 =
∑

k e
2
k is the residual sum of squares, ŷ is the GP estimate,

SStot =
∑

k(yk − ȳ)2 is the total sum of squares and ȳ = 1
T

∑T
k=1 yk is the mean value.

Iterative Incremental Approach

This approach is based on the idea of incrementally adding the feature that improves
the most the prediction capability. We adopt a fitting quality to measure the feature
importance, where full GP models should be trained on subsets of the complete training
set, by performing exact inference.

Starting from and empty set of features, at each iteration we add the feature that, if
added, would lead to the highest R2 index, Eq. (3.18). Moreover, a backtracking step has
been applied, where, at each iteration, a fitting analysis is performed to verify whether
the removal of previously added features leads to an improvement of the fit index. This
backward step allows to remove features that become redundant or harmful along the
iterative procedure [86]. The general procedure is schematized in Lis. 3.1.

Permutation-Based Feature Set Reduction

This approach is based on the idea of removing the features that affect the least the
prediction capability. Consider a modified dataset (πl(X ), y) where the l-th component
of the GP inputs x in the whole dataset has been shuffled through a random permutation
πl(·). By training a GP on the standard dataset and another on the modified one, it is
possible to define the permutation sensitivity as

S(l) =
R2(X , y)−R2(πl(X ), y)

R2(X , y)
, (3.19)

where the R2-score is defined as in Eq. (3.18). The sensitivity evaluates the effect on
the GP prediction capability of permuting a feature x(l), hence a low sensitivity S(l)

implies that the l-th feature has a small impact on the prediction performance and can be
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omitted. By iteratively omitting the least important feature and then training a reduced
model, the set of features can be reduced to the most important ones.
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In this part, the applications related to two-wheel vehicles are presented. Chapter 4
describes an NMPC controller for a virtual motorcycle, that is the foundation of the
LbNMPC presented in the next chapters. In particular, Ch. 5 reports the data-driven
tuning of the controller in the learning design framework, while Ch. 6 illustrates a
learning dynamics strategy applied to the virtual rider.
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4
A NMPC for a Virtual

Motorcycle in Real-Time
In this Chapter, the definition of a virtual rider, i.e. a controller for motorcycles in virtual
environment (whose simulation model is depicted in 4.1), based on a real-time capable
NMPC controller is described. The goal is to track a desired trajectory, both in terms
of path and velocity profile, to ride the vehicle along a high-performance virtual circuit.
Sec. 4.1 details the dynamical model underlying the controller, that includes the main
out-of-plane dynamics and the rider movement. Performance of the controller is analyzed
in Sec. 4.2, showing the cosimulation with an accurate real-time multibody simulation
software for two challenging maneuvers, i.e., a chicane and a lap of a virtual track.

Figure 4.1. Representation of the virtual motorcycle in the simulation framework [89].

37



4 A NMPC for a Virtual Motorcycle in Real-Time

Figure 4.2. Scheme of the motorcycle model. The generalized coordinates for the model
derivation and the most relevant parameters are shown.

Figure 4.3. The point mass rider movement model. In (a), the movement direction and the sign
convention from behind is shown, while in (b) the movement direction from upside
(with motorcycle in vertical position) is shown.

4.1 Model for Control Synthesis

The non-linear dynamics model used in the NMPC algorithm is based on the sliding plane
representation [90]. In particular, in the formulation proposed the plane can roll and
slide both in x and y directions (see Fig. 4.2) and a moving point mass with lateral DoF,
representative of the rider, is attached to the plane. The system is driven by drag and tire
forces: the lateral tire forces are generated by using the Pacejka Magic Formula, while
longitudinal forces are linearly dependent on throttle and brake. Specific contributions
for the motorcycle modelling as the effect of caster and roll on the steering angle and
the gyroscopic effects are also considered. Moreover, the maximum transmission torque
is changed on-line to introduce the gearbox effect. A list of the model parameters is
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4.1 Model for Control Synthesis

Table 4.1. Main model quantities and parameters description.
Symbol Description

x longitudinal position
y lateral position
ψ yaw angle
θ roll angle of the vehicle
β sideslip angle of the vehicle
δf steering angle of the front wheel
yr rider lateral position
mb vehicle mass
mr rider mass
hb height of the vehicle’ CM
hr height of the rider’ CM
I inertia of the vehicle
bb rear wheels to CM vehicle longitudinal distance
br rear wheels to CM rider longitudinal distance

F{x,y}i wheels lateral/longitudinal forces in the tire frames
Fd longitudinal drag force in the vehicle frame
Fzi normal forces on the wheels
s curvilinear abscissa
ey lateral tracking error
eψ angular tracking error

presented in Tab. 4.1.

4.1.1 Dynamics

The dynamics have been derived through the Euler-Lagrangian method [90] by using the
generalized coordinates

q = [x, y, ψ, θ]⊤ , (4.1)

where (x, y) are the rear wheel contact patch position coordinates, ψ is the yaw angle,
and θ is the roll angle, as shown in Fig. 4.2. The rider is modelled as a point mass that
can move in the direction perpendicular to the motorcycle vertical axis, as shown in Fig.
4.3.

The Lagrangian equation is L = Kb +Kr − Ub − Ur, where the kinetic and potential
energy are1

Kb =
1

2
mb(ẋ

2
cm,b + ẏ2cm,b + ż2cm,b) +

1

2
ω⊤
b Iωb,

Kr =
1

2
mr(ẋ

2
cm,r + ẏ2cm,r + ż2cm,r),

Ub = mb g hb cθ, Ur = mr g hr cθ.

(4.2)

1The subscript b stands for the motorcycle quantities and r for rider quantities and the notation
cα = cos(α) and sα = sin(α) is used.
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The center of mass (CM) positions and the angular velocity of the motorcycle are derived
as

xcm,b = x+ bb cψ + hb sθsψ, zcm,b = hb cθ,

ycm,b = y + bb sψ − hb sθcψ, ωb = [θ̇, ψ̇sθ, ψ̇cθ]
⊤,

(4.3)

the rider CM position as

xcm,r = x+ br cψ + (hr sθ + yr cθ) sψ,

ycm,r = y + br sψ − (hr sθ + yr cθ) cψ,

zcm,r = hr cθ − yr sθ,

(4.4)

and the parameters are: mb/r, mass of the motorcycle/rider; bb/r, rear contact patch
to motorcycle/rider CM longitudinal distance; hb/r, height of the motorcycle/rider CM;
pb, rear to front contact patch distance; I = diag([Ixx, Iyy, Izz]), inertia matrix of the
motorcycle. The effect of the forces on the system is derived using the generalized forces
formulation [91]

Qj =
N∑
k=1

Fk ·
∂rk
∂qj

, j ∈ {1..4}, k ∈ {1..5}, (4.5)

where Fk is the force vector at point k and rk is the position vector to point k, measured
in the inertial reference frame. The resulting Qj , j ∈ {1..4} can be stacked and expressed
as B(q) ·w where w are the forces applied to the system, i.e.

w = [Fxf , Fyf , Fxr, Fyr, Fd]
⊤ (4.6)

where Fl,i, l ∈ {x, y}, i ∈ {f, r} are the longitudinal/lateral front and rear wheel forces
in the respective tire frame, Fd is the longitudinal drag force in the motorcycle frame.
Note that, the angle used to characterize the direction of the forces on the front tire w.r.t.
the motorcycle direction, namely the steering angle on the ground δG, is related to the
handlebar angle δ as [92, p. 315-324]

δG = atan

(
cϵsδ

cθcδ − sθsϵsδ

)
, (4.7)

where ϵ is the caster angle2.
The equation of motion then results

M(q)q̈ + C(q, q̇) +G(q) = B(q)w. (4.8)

The equation has been reformulated in a frame rotating jointly with the motorcycle
around the global Z-axis, through the definition of a velocity transformation T and new
velocity coordinates [93]

q̇′ =


vx
vy
ψ̇

θ̇

 =


cψ sψ 0 0

−sψ cψ 0 0

0 0 1 0

0 0 0 1



ẋ

ẏ

ψ̇

θ̇

 = T⊤q̇ (4.9)

2The caster angle is the angular displacement of the steering axis from the vertical axis of the front
wheel.
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where vx and vy are longitudinal and lateral velocity in the new frame. Inverting and
differentiating (4.9) yields

q̈ = T q̈′ + Ṫ q̇′ (4.10)

that, substituting in (4.8) and premultiplying by T⊤, gives

T⊤M(q)T q̈′ + T⊤[M(q)Ṫ q̇′ + C(q, T q̇′)] + T⊤G(q) = T⊤B(q)w. (4.11)

The resulting dynamic model is

M̃(q)q̈′ + C̃(q, q̇′) + G̃(q) = B̃w, (4.12)

where
M̃ = T⊤MT, G̃ = T⊤G,

C̃ = T⊤
(
MṪ q̇′ + C(q, T q̇′)

)
, B̃ = T⊤B.

(4.13)

4.1.2 Forces

The longitudinal tire forces are computed as

Fxf = −γbλ
τ fb
rwf

,

Fxr = −γb(1− λ)
τ rb
rwr

+ γt
τMt
rwr

+ (1− γt)
τmt
rwr

(4.14)

where γt ∈ [0, 1] is the normalized throttle input, γb ∈ [0, 1] is the normalized brake input,
λ ∈ [0, 1] is the front-rear brake bias, τ f/rb is the maximum front/rear brake torque, τMt is
the maximum positive transmission torque, τmt is the maximum negative torque given by
engine braking, rwf/r are front and rear wheel radii. The maximum positive and negative
transmission torques are parameters changed on-line depending on the current gear in
order to model the effect of the gearshift.

The lateral tire forces are computed by using the Pacejka Magic Formula for motorcycles
[94, p. 580, eq. 11.E19], i.e.

Fy,i = Di
y sin

[
Ciyatan

(
Biyαi − Eiy

(
Biyαi − atan(Biyαi)

))
+

+ Ciθatan
(
Biθθ − Eiθ

(
Biθθ − atan(Biθθ)

)) ]
,

(4.15)

where αi are the side slip angles of the tires

αr = atan(
vy
vx

), αf = atan(
vy + pb ψ̇

vx
)− δG. (4.16)

The normal forces Fz {f,r} are computed including an estimation of the load transfer
torque as

Fzf =
mT bT g − τLT

pb
, Fzr =

mT (pb − bT ) g + τLT
pb

. (4.17)
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4 A NMPC for a Virtual Motorcycle in Real-Time

where τLT = (Fxf + Fxr)hT cos(θ) and the total inertial and geometric prameters are

mT = mb +mr, bT =
bbmb + brmr

mT
, hT =

hbmb + hrmr

mT
.” (4.18)

The longitudinal drag force is modelled using the formula Fd = 1
2 ρ Cd A v2x where ρ

is the air density, Cd is the drag coefficient, and A is frontal section area [95, p. 92].

4.1.3 Model enhancement

To enhance the model accuracy, the gyroscopic torques generated by the motion of the
wheels [95] have been added to the yaw and roll equations in the damping matrix as

C̄ = C̃ +
[
0, 0, Cyawgyro, C

roll
gyro

]⊤
, (4.19)

where
Cyawgyro = (Iwfωwf + Iwrωwr)θ̇,

Crollgyro = −(Iwfωwf + Iwrωwr)ψ̇cθ,
(4.20)

and ωwi = vx
rwi
, i ∈ {f, r} are the front and rear wheels rotational velocities, Iwi, i ∈ {f, r}

are the front and rear wheels rotational inertias.
The final dynamics is M̃(q)q̈′ + C̄(q, q̇′) + G̃(q) = B̄w and right-hand side equations

are then
q̈′ = M̃−1

(
B̃w − C̄ − G̃

)
. (4.21)

4.1.4 Spatial Reformulation

The system dynamics has been reformulated in the Frenet frame, i.e. using spatial
coordinates w.r.t. s, the arc length along the track [96, 97], in order to eliminate the
dependency on the velocity in the position reference given to the MPC. The reference
trajectory σ is then parameterized on s and the curvature ζ = 1

ρ , where ρ is the
instantaneous curvature radius, is computed as

ζ =
ẋÿ − ẏẍ

(ẋ2 + ẏ2)
3
2

, (4.22)

where ḟ = df(s)
ds and f̈ = d2f(s)

ds2
.

The tracking errors are geometrically derived as

eψ = ψ − ψs, ey = cψs(Ys − Y ) + sψs(Xs −X), (4.23)

where ψs is the reference yaw angle, (Xs, Ys) is the absolute position reference at the
current spatial coordinate and (X,Y ) is the current absolute position.

The tracking errors dynamics are derived as [98]

ėψ = ψ̇ − ζ ṡ, ėy = vxseψ + vyceψ . (4.24)
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4.2 Results

Figure 4.4. Simulation track. The track is available with a standard installation of VI-BRT and
allows to evaluate performance on a high velocity testcase.

Moreover, this allows to differentiate a generic time dependent function Ψ(t) w.r.t the
curvilinear abscissa s using the chain rule as

Ψ′ =
dΨ

ds
=
dΨ

dt

dt

ds
=
dΨ

dt

1

ṡ
=

Ψ̇

ṡ
, (4.25)

where ṡ = 1
1−ζ ey

(
vx ceψ − vy seψ

)
̸= 0∀t.

4.1.5 Complete Model

The complete state vector is

ξ = [eψ, ey, θ, vx, vy, ψ̇, θ̇, δ, γt, γb, yr]
⊤, (4.26)

where these states are assumed to be fully measured or computed by measurable quantities
without noise, and the input vector is

u = [δ̇, γ̇t, γ̇b, ẏr]
⊤, (4.27)

i.e. the derivatives of the actual input to the vehicle. This formulation allows to have a
smoother action of the controller and to avoid too aggressive non-realistic behaviours.

The dynamics equation of the model used in the NMPC algorithm can be compactly
written as

ξ′ = f(ξ(s),u(s);σ(s)). (4.28)

4.2 Results

The controller has been tested on two different scenarios in order to evaluate its capability:

• a chicane maneuver with a double curve of radius r = 40m (Fig. 4.5) to be
performed with a limit constant velocity, used to assess flexibility of the controller
and handling capabilities;
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4 A NMPC for a Virtual Motorcycle in Real-Time

• a race track scenario (Fig. 4.4), available with a standard installation of VI-BRT,
that allows to highlight the effectiveness of the rider movement in travelling curves
at high velocities.

4.2.1 Cosimulation environment

The cosimulation relies on VI-BikeRealTime (VI-BRT), a high fidelity simulation software
specifically designed to reproduce in real time motorcycle behaviour for high performance
driving [89]. Its simulation model has 11 degree of freedom (DoF), 6 for the sprung mass,
2 for each wheel-suspension and 1 for the rotation between pinion and chassis. It includes
comprehensive dynamics of tires, suspensions, brakes, driveline and gyroscopic effects.
Moreover, a moving mass with lateral DoF simulates the rider.

The cosimulation is performed in Simulink, by connecting a VI-BRT simulation block
with the VR. In particular, the controls computed by the MATMPC-based controller are
integrated and fed to the simulation block. VI-BRT is used to simulate at fsim = 1000Hz

the dynamics of the vehicle while the control action is updated by MATMPC at fc = 100Hz,
i.e. updating the control every 10ms.

The simulations have been made on a WINDOWS 10 PC, with Intel(R) Core(TM)
i7-7700 CPU running at 3.60GHz.

The motorcycle used for the simulation is a vehicle available with a standard installation
of VI-BRT.

4.2.2 Controller setup

The NMPC controller relies on the NLP definition in Eq. (2.3). To effectively track the
reference trajectory, the cost function for the virtual rider is defined as

hk(ξk,uk) = [eψ + α, ey, ėψ, ėy, ev, α, yr, γt · γb, δ̇, γ̇t, γ̇b, ẏr]⊤,
hN (ξk) = [eψ + α, ey, ėψ, ėy, ev, α, yr, γt · γb]⊤

(4.29)

where ev = v − vref , v =
√
v2x + v2y, is the vehicle velocity error and α = atan(vy+bψ̇vx

) is
the motorcycle side slip angle. The terms related to errors eψ, ey, ev are needed to make
the controller follow a path, while those related to the derivatives of errors have been
introduced to have smoother actions for tracking. The penalty on the sideslip α is used
to make the controller choose a restrained behaviour of the motorcycle. Note that the
heading error eψ does not penalize the sideslip, while a dedicated term has been used
to have more flexibility in the cost function tuning. The penalty on yr is used to make
the rider return to vertical position and those on γt · γb are used to avoid contemporary
throttling and braking. Finally, the terms on the inputs ensure a smooth control action.

The constraints functions are defined as

rk(ξk,uk) = [δ, γt, γb, yr, δ̇, γ̇t, γ̇b, ẏr]
⊤,

rN (ξk) = [δ, γt, γb, yr]
⊤,

(4.30)

where the constraints on δ, γt, γb and yr are intrinsic bounds of the motorcycle controls,
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Figure 4.5. Reference path and trajectory of the motorcycle on the chicane. The different
behaviours in terms of tracking performance are shown: the higher is the weight on
velocity error qv, the more the trajectory cuts the corners.
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Figure 4.6. Trajectory lateral error along the chicane using different weight configurations: the
higher is the weight on the velocity error qv, the higher is the tracking error.

while those on δ̇, γ̇t, γ̇b and ẏr are added in order to improve the smoothness of the inputs.
The bounds have been set as

rk = [− π

20
, 0, 0,−0.15,−1,−10,−10,−1]⊤,

rk = [+
π

20
, 1, 1,+0.15,+1,+10,+10,+1]⊤,

rN = [− π

20
, 0, 0,−0.15]⊤,

rN = [+
π

20
, 1, 1,+0.15]⊤,

(4.31)

where the bounds on δ, γt, and γb are the limits of the vehicle controls and the one on yr
is an estimate of the maximum lateral displacement of the rider’s CM from the vertical
axis of the motorcycle. The bounds on the control derivatives are set as to have a smooth
action of the controller.

The integrator used in MATMPC for the simulations is Explicit Runge Kutta 4 and the
QP Solver is HPIPM [99]. For the integrator, two integration steps per shooting interval
of length Ts = 2 meter are used. A total number of N = 50 shooting intervals are used,
enabling a prediction length of 100 meters on track.
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Figure 4.7. Velocity of the motorcycle along the chicane using different weight configurations:
the higher is the weight on the velocity error qv, the lower is the velocity error.
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Figure 4.8. Steering angle, rider position and throttle/braking fed to the motorcycle. The
configuration with highest weight on the velocity error anticipates the action for
both steering angle and rider movement in order to cut the corners.

4.2.3 Simulation Results on Chicane

The chicane maneuver requires roll angles over 45deg to be accomplished at the velocity
reference of 30m/s. The comparison of the controller behaviour has been made using
different weights for velocity and trajectory tracking to demonstrate the flexibility of
the controller and the possibility to choose different behaviours. The adopted standard
configuration of weights is

W = diag([qeψ , qey , qėψ , qėy , qev , qα, qyr , qγ , qδ̇, qγ̇t , qγ̇b , qẏr ])

= diag([5 · 10−1, 10−2, 100, 10−4, 10−2, 2 · 102, 10−3,

105, 2 · 100, 2 · 10−1, 5 · 10−1, 5 · 10−2]).

As is common in MPC implementations, a more conservative set of weights is used for the
terminal cost [54] to ensure a stable dynamical behavior. An empirical analysis has been
conducted, resulting in improved stability of the closed-loop system when the terminal
weights on the heading error and its velocity are increased. The terminal weights are
then set as follows

WN = diag([qNeψ , q
N
ey , q

N
ėψ
, qNėy , q

N
ev , q

N
α , q

N
yr , q

N
γ ])

= diag([102, 10−2, 101, 10−4, 10−2, 2 · 102, 10−3, 105]).
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Figure 4.9. Actual and reference velocity along the track. The reference profiles have been
computed as to have the maximum performance in each case. The MR allows higher
cornering velocities in the same boundary conditions.
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Figure 4.10. Roll angle of the motorcycle along the track. The actual roll is close to the
theoretical one (computed for SR case, since the expression does not apply to the
MR case), and reaches spikes around 50deg.

The weights on the velocity and lateral errors are modified in order to define the
"qv ≫" configuration (larger weight on velocity, smaller weight on lateral error), i.e.

qev = 5 · 10−2, qey = 10−2,

and "qv ≪" configuration (smaller weight on velocity, larger weight on lateral error), i.e.

qev = 5 · 10−3, qey = 5 · 10−2.

The different behaviours in terms of trajectory tracking of the controller can be seen
in Figg. 4.5 and 4.6. In particular, Fig. 4.6 shows the value of the lateral error with
respect to the reference trajectory. The results have to be compared to Fig. 4.7, where
the velocity profiles are shown. As expected, using the weight configuration "qv ≫" the
motorcycle heavily cuts the corner to maintain a higher velocity, while using the "qv ≪"
configuration significantly decreases velocity and lateral error.

Finally, the computed controls for the motorcycle are shown in Fig. 4.8. The rider
movement, in accordance with the steering angle, is anticipated by using "qv ≫" configu-
ration before entering the first curve and postponed at the end of the second curve in
order to cut the corners and maintain velocity.
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Figure 4.11. Longitudinal on lateral acceleration of the motorcycle along the track: the maxi-
mum steady-state turning lateral acceleration is around 10m/s2, hence the limits
of the motorcycle are actually reached.
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Figure 4.12. Controls fed to the simulator along the track. Note that the lateral displacement of
the rider is in accordance to the steering angle and the roll angle of the motorcycle,
hence actually supporting the maneuver.

4.2.4 Simulation Results on Track

The simulation on track has been done with both moving (MR) and stationary rider
(SR). In order to compare the two cases with the exact same configuration of weights,
the following set of values that gives good performance for both MR and SR has been
chosen:

W = diag([5 · 10−1, 5 · 10−2, 100, 10−4, 3 · 10−1, 4 · 102, 10−5, 105,

5 · 10−1, 1 · 10−4, 8 · 10−4, 6 · 10−1]),

WN = diag([5 · 10−1, 5 · 10−2, 100, 10−4, 3 · 10−1, 4 · 102, 10−5, 105]).

To prove the effectiveness of the controller in handling aggressive maneuvers, the
velocity reference is generated to specifically maximize the sustained lateral acceleration
during steady-state turning. The velocity profile is computed by means of a commercial
static lap time planner based on tire characteristics, engine and brake power, and
motorcycle geometrical properties. Since the planner only approximates the dynamics
behaviour, the resulting velocity profile is usually conservative. To make the maneuver
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Figure 4.13. KKT values along the simulation using RTI scheme and 20 iterations for solving
SQP. The zoomed plot (bottom) allows to recognize the similarity in the KKT
trend along the path for the different solutions.
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Figure 4.14. Comparison with VI-Rider. Detail of the steering angle and longitudinal com-
mand. A smoother behaviour can be noticed, particularly clear in the commands
derivatives.

more aggressive, i.e. increase the velocity profile, the tire grip has been used as scaling
factor and progressively augmented. The actual velocity profiles in simulation are shown
in Fig. 4.9. The motorcycle with MR control is able to travel all the curves at least 1m/s
faster then the SR case, while maintaining similar (or smaller) values of roll angle.

The roll angle and the theoretical roll angle are shown in Fig. 4.10. The controller
autonomously follow a roll trajectory similar to the theoretical one, computed as θth =

atan
(
(v2ref · ζ)/g

)
, where vref is the SR velocity reference.

In Fig. 4.11, the lateral-longitudinal accelerations plot is shown: the steady-state
turning lateral acceleration in both cases is around 10m/s2 (1g of lateral acceleration),
hence the limits of the motorcycle are reached.

The computed controls for the motorcycle are shown in Fig. 4.12. The rider movement
is in accordance to the steering angle and the roll angle of the motorcycle, actually
contributing to the improvement of performance.

A useful index provided by the optimization is the KKT value, i.e., the norm of the
gradient of the Lagrangian function associated to the NLP problem [100], that is 0 in
the optimal solution. The KKT values for the problem at hand are shown in Fig. 4.13,
compared with the ones obtained by using 20 iterations for solving the SQP, to achieve a
more accurate solution. As expected, with 20 SQP iterations the KKT values are smaller
and more regular w.r.t. the less accurate RTI case. The isolated relatively large KKT
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Figure 4.15. Computational times along the track for RTI and control period. The mean time
is 7.56ms and the maximum is Tmaxsolver = 12.31ms.

δf yr γt − γb

Mean relative difference 0.17% 0.10% 0.16%
Max relative difference 2.93% 0.76% 3.63%

Table 4.2. Relative difference d = |(x− y)/x| · 100 for the commands using RTI or SQP.

values of RTI scheme visible in the plot are essentially due to the absence of a line search
strategy, which is used instead while solving the problem with SQP. However, the closed
loop performance of the RTI and SQP controllers are nearly identical (see Table 4.2),
proving the effectiveness of the RTI scheme in this scenario.

Moreover, a comparison with the commercial virtual rider distributed with VI-BRT,
namely VI-Rider, has been carried out on the same scenario. VI-Rider is based on the
work presented in [10, 101] and references therein. The velocity tracking performance
are similar, but smoother dynamics can be observed both on the steering angle and
the longitudinal command γt − γb (see Fig. 4.14). This characteristic better matches a
human-like behaviour, hence making the virtual prototyping tool more effective.

Finally, the computational times at each iteration for the controller in the MR case
are shown in Fig 4.15. The mean value is Tmeansolver = 7.56ms and the maximum one is
Tmaxsolver = 12.31ms. Values exceeding 10ms are mainly due to the Windows OS, that does
not allow to give priority to a single process. In a RT environment, actual real-time
performance would be achieved.
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5
Data-driven Tuning of a

Real-Time NMPC Virtual Rider
In this Chapter, the data-driven tuning based on a Genetic Algorithm (GA) of the
NMPC-based Virtual Rider (VR) presented in Ch. 4 is described. The goal is to obtain
the most suitable weight configuration to track a desired trajectory, both in terms of path
and velocity profile. The considered optimization objectives of the GA, i.e. the overall
performance and the sensitivity of the solution to variations of controller parameters, are
characterized in Sec. 5.1, while the validation of the procedure and its effectiveness in a
realistic VR scenario (whose simulation model is depicted in 5.1) is reported in Sec. 5.2.

Figure 5.1. Representation of the virtual motorcycle in the simulation framework [89].
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5.1 Data-driven Tuning Strategy

The aim of the strategy is to find the weighting matrices W and WN of the cost function
within the optimal control problem, as illustrated in the previous chapter in Eq. (4.29).
Each individual of the population in the NSGA-II algorithm, then, is composed by the
values of those matrices (weights). The n-tuple of decision variables, i.e. the weights, is
called configuration. For comparison purposes, each configuration is normalized inside
each domain interval.

The single optimization problem of finding the best performing simulation is cast into
a multi-objective one, introducing a sensitivity function as a second objective. For the
problem at hand, in fact, numerical issues are frequent, and it is very valuable to know if
a configuration is robust to small parameters variation. The multi-objective optimization
problem is hence characterized by two objectives and a constraint. In particular, the
two objectives are J1, i.e. the time to complete a lap of the track, and J2, i.e. the
sensitivity of the performance with respect to the weights, and the constraint C represents
the exceeding of the track limits. The GA is then expected to reveal a Pareto front
composed by a set of configurations that explore the trade-off between the lap-time and
the robustness with respect to weight modifications, while excluding configurations that
overcome the track bounds.

Note that, in case the motorcycle falls down or the fast NMPC solver has numerical
issues during the task, the lap will not be concluded. This fact can heavily impact on the
tuning procedure results, hence in the following tailored strategies are defined to account
for it. However, as the NMPC constraints in Eq. (4.30) are defined only on the control
actions and their integration, the feasibility of the NLP is not a fundamental subject,
hence it is not explicitly considered.

5.1.1 Performance function

To assess the performance of a configuration, the track lap-time has been considered.
Moreover, in order to consider task failures, the following cost function has been defined

J1 =

{
tend if simulation does conclude the lap

tmax − tend if simulation does not conclude the lap
(5.1)

where tend is the simulation time (i.e. time passed within the simulation) and tmax is
a user-defined value higher than any possible concluding lap-time. In this way, even if
no simulation is concluding, the ones that run closer to the end are preferred over the
others in the GA algorithm.

5.1.2 Sensitivity function

The sensitivity function J2 considers, for each tested weights configuration, the variation
of the closed loop performance - in terms of J1 - with respect to the variation of the
decision variables values, weighted with respect to the distance in the configuration space
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Figure 5.2. Values of wi for configurations centered in (0, 0) in a 2-dimension decision variable
space, with (left) β = 1, (center) β = 5, (right) β = 7.

Figure 5.3. Point A is less sensitive to variable perturbation than point B in a multi-objective
optimization scenario [75].

(as represented in Fig. 5.3).

To define the sensitivity, a comparison of the lap-time of every configuration wj of a
new generation with respect to all the previously run simulations (in all the generations)
wi, i ∈ {1, . . . , G · M}, where G is the generation number and M is the number of
individuals in each generation, is obtained through the following sensitivity function

Sj =

∑
i qi · Cj,i∑

i qi
(5.2)

where Cj,i defines the performance similarity index between i-th and j-th simulations
and qi weights the distance in the decision variable space as

qi =
1

eβ·di
, (5.3)

where di = ∥wj −wi∥ ∈
[
0,
√
n
]

is the Euclidean distance between the wj and wi, n is
the configuration dimension, and β is the shape factor. In Fig. 5.2, qi for a representative
2 dimensional scenario is shown. If both the simulation j and the compared one i finish
the lap, the index Cj,i is defined as

Cj,i =


−1 if Vj,i ≤ Vm(

Vj,i − Vm
VM − Vm

)
(α+ 1) − 1 if Vm ≤ Vj,i ≤ VM

α if Vj,i ≥ VM

(5.4)
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where Vj,i =
Pi − Pj
Pj

× 100 is the percentual lap-time difference between i-th and j-th

simulations, and Pj and Pi are the lap-time of i-th and j-th simulations, respectively.
VM and Vm are the maximum and minimum threshold, respectively, to consider a match
or a mismatch with respect to the performance, while α ≥ 1 is a user-defined parameter
that defines the importance of a mismatch in the neighborhood. Using this definition,
the comparison results in a perfect match (i.e. Cj,i = −1) if the lap-time differs less then
Vm%, increases linearly to α until VM% difference, and it is a mismatch (i.e. Cj,i = α) if
the lap-time differs more then VM%. If the simulation j finishes the lap but i does not,
the index is defined as a mismatch, i.e. Cj,i = α.

Besides, the sensitivity function for a simulation that does not end the lap lose its
relevance. In this case, the sensitivity function is defined as to support the exploration of
decision variable space where more simulations conclude the lap. To obtain this behavior,
when the simulation j does not conclude the lap

Cj,i =

{
−1 if simulation i does conclude the lap

α if simulation i does not conclude the lap
.

In this way, better values (i.e., lower ones) are given to simulations that do not conclude
the lap but, in their neighborhood, there are more configurations that conclude it.

Finally, the obtained sensitivity value, that lays in the interval S ∈ [−1, α], is shifted
in the range [0, 100], and hence the actual objective function for each configuration j is
given by

J2 =

(
100

α+ 1

)
(S + 1). (5.5)

In particular, a configuration that presents 0% of sensitivity means that little variation
on weights of the cost function produces the same closed-loop simulation results. On the
contrary, 100% of sensitivity means that any slight weights change leads the simulation
to end with totally different behavior.

5.1.3 Constraint

In NSGA-II, the constraints are meant as soft constraints, meaning that they can be
exceeded but, in that case, the solution cannot be in the first Pareto front. In this way,
as soon as one simulation satisfies the constraint, it will be preferred over the others and,
by the end of the procedure, only the simulations that satisfy the constraint will remain.
To do so, a function that measures how much the constraint is violated is recommended.

For this reason, a function that evaluates the percentage of simulation that is traveled
outside the track bounds has been defined as

C =
cout
ctot

, (5.6)

where cout is the part of track that has been traveled outside the bounds and ctot is the
total length of the track.
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5.2 Results

In this section, the results obtained with the proposed tuning strategy are presented.
First, the tuning strategy implementation is described, then an analysis of the tuning
algorithm procedure is shown, a closed-loop performance comparison between the fastest
and the most robust configuration is described, and specific evaluations on the sensitivity
function are presented.

5.2.1 Tuning Strategy Implementation

The tuning strategy described in Sec. 2.3.1 and defined in Sec. 5.1 has been implemented
for the task at hand. The different implementation aspects, i.e. parameters choice, initial
population and algorithm usage are specified in the following.

The automatic tuning procedure presented in this manuscript is developed in MAT-
LAB. The constrained multi-objective optimization problem, properly defined for tuning
purposes, is solved by applying the NSGA-II algorithm and its implementation relies on
the MATLAB-based toolbox proposed by Tamilselvi et al. in [102]. To run the algorithm,
each configuration of weights is set in the NMPC-based virtual rider and a simulation of
the track lap is performed as described in Sec. 4.2.1. At the end of each simulation, the
lap time, the out-of-track percentage, and the sensitivity value are evaluated to determine
the overall performance of each individual.

To speed up the procedure, a parallelization technique is taken into account providing
the possibility of performing different co-simulation of the virtual rider simultaneously.

Finally, in order to further reduce the computational time of the procedure, only the
weights that have proven to be highly significant in improving driving performance have
been manipulated. In particular, these weights are the heading error weight qeψ , the
lateral error weight qey , the velocity error weight qev and the sideslip weight qeα . In
addition, a multiplier of the reference velocity profile is considered. For each weight, a
search range has been defined that varies by two orders of magnitude higher and lower
with respect to the manually tuned configuration

W = diag([qeψ , qey , qėψ , qėy , qev , qα, qyr , qγ , qδ̇, qγ̇t , qγ̇b , qẏr ])

= diag([5 · 10−1, 5 · 10−2, 100, 10−4, 3 · 10−1, 4 · 102,
10−5, 105, 5 · 10−1, 1 · 10−4, 8 · 10−4, 6 · 10−1])

(5.7)

presented in Ch. 4. Regarding the velocity multiplier, its searching interval is defined
between 1 and 1.1.

Hyper-parameters Tuning

Concerning the NSGA-II algorithm parameters, the choice of the population size (M)
and the number of generations (GM ) control the trade-off between the convergence to a
significant final Pareto front and the computational burden of the algorithm. Satisfactory
performance have been obtained setting M = 50 and GM = 50. To reduce the risk of
local minima the distribution index for crossover and mutation have been both set equal
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Figure 5.4. Evolution of the Pareto front at (left) generation 5, (center) generation 10, (right)
generation 50.

to 1 and the mutation probability to 0.9, according to [102].

Regarding the sensitivity function, i.e. Eq. (5.2), the values of the hyperparameters α
and β influence the sensitivity computation. The parameter α defines the importance of
a performance mismatch (or a failing simulation) with respect to a performance match
in the neighborhood, and it has been set to α = 1.2 in order to further penalize the
mismatch in the context of sensitivity. Setting β = 5 resulted in a suitable weighting of
the contribution of neighboring configurations, and hence an appropriate neighborhood
dimension. Indeed, too high values of β would lead to a too small neighborhood, hence to
ignore the adjacent results, while too low values would yield to assign the same importance
to all the simulation results. Finally, Vm = 1% and VM = 5% resulted suitable values for
equivalence classes of the performance.

Concerning the initial population, a correct distribution in the search space help the
algorithm to converge rapidly. In this work, each decision variable presents a choice
interval that spans several orders of magnitude. For this reason, a randomized choice
is made within each magnitude order of each variable. In particular, let w̃u and w̃l be
the upper and lower bounds of a generic component w̃ of the configuration w, we first
consider the magnitude order applying

lU = log10(w̃u), ll = log10(w̃l). (5.8)

Then, for each decision variable, we define M random values of its magnitude order
through

r = (lU − ll) · rand(M) + ll, (5.9)

where the function rand(M) ∈ [0, 1] returns M normalized random values drawn from
a uniform distribution. To obtain the actual initial value of each component, the
exponential is used as w̃0 = 10r. Finally, condensing and reshaping the M values for the
n components, M configurations are defined. The result is an initial population with
M weights configurations randomly distributed in the search space with respect to the
magnitude order.
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5.2 Results

Figure 5.5. Comparison between manually tuned (black), most robust (blue) and fastest (red)
configurations. (Top) sideslip angle, (bottom) steering angle command.

5.2.2 Tuning Algorithm Analysis

The tuning procedure described has been applied to the NMPC virtual rider. At the 1st

generation, only 2 of the 50 configurations of weights, randomly chosen in the search
intervals, complete the lap. Moreover, with both configurations, the rider overcomes the
track limits. As depicted in Fig. 5.4, at the 5th generation all the configurations finish
the lap even if some still exceed the limits of the track. At the 10th generation, all the
simulations correctly complete the lap and the sensitivity index start to decrease and a
Pareto front is emerging. After 50 generations, all the configurations belong to the first
Pareto front, and, as expected, the conflict between robustness and lap-time performance
in the problem at hand can be clearly seen.

5.2.3 Closed-loop Performance Comparison

To better analyze the meaning of the sensitivity index, a comparison of the two configu-
rations at the extremes of Pareto - the faster and more sensitive and the more robust
and slower - has been made. In particular, the dynamics of the bike-rider system during
a lap simulation has been studied, specifically considering the steering angle signal and
the side-slip angle during the simulations (Fig. 5.5). The fastest configuration presents
an aggressive and unstable riding behavior, clearly shown by the ripple on the steering
angle and the peaks on the side-slip angle. On the contrary, the robust configuration
leads to a smoother and more stable behavior of the system.

Notably, the fastest simulation ends the lap in 57.63, which is 0.91 seconds less than
the manually tuned configuration presented in Ch. 4 [103].

5.2.4 Sensitivity Analysis

An explicit sensitivity analysis has been conducted by evaluating the simulation results
of new configurations, generated around both the most robust and the less robust
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Table 5.1. Simulation results for 100 configurations chosen in a 5-dimensional sphere around
the robust and fast configurations.

Around Robust Around Fast
Simulations that correctly ends 98 36

Simulations that overcome limits 1 27
Simulations that fails 1 37
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Figure 5.6. Effect of velocity error weight qev modifications in terms of lap-time.

ones. Specifically, the two new sets of configurations were generated by considering 100

random configurations normally distributed in a 5-dimensional sphere around 30% of
each value of the 5 weights of both configurations. The simulations results, reported in
Tab. 5.1, illustrate that the almost every configuration generated around the robust one
correctly end the lap inside the track limits. On the other hand, with the more sensitive
configuration, only the 36% of the configurations correctly ends the lap and the other
ones fail or overcome the track limits, confirming the sensitivity with respect to weights
changes.

Additionally, an evaluation of the effect on the performance of varying a single weight
has been accomplished. In particular, starting from the robust configuration, the weight
on the velocity error qev was modified up to ±100% of its value while all the others were
kept fixed. As expected, the robustness of this configuration allows to highly modify
the weight and obtain consistent simulation results, as shown in Fig. 5.6. This is an
important feature for possible manual post-tuning by the user. Note that, on the contrary,
most of the configurations around the non-robust one would fail (as revealed by the
previous analysis).
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6
A LbNMPC for a Virtual

Motorcycle in Real-Time
In this Chapter, the definition of a Learning-based NMPC controller for a virtual
motorcycle (depicted in 6.1) is described. The goal is to enhance the tracking performance
of the controller on a desired trajectory, both in terms of path and velocity profile. Relying
on the model described in Ch. 4, a grey-box prediction model is adopted, characterizing
the residual acceleration error by Gaussian Processes, as detailed in Sec. 6.1. The results
show the proficiency of the proposed approach in remarkably enhancing the tracking
performances of the controller while maintaining real-time capabilities, as reported in
Sec. 6.2.

Figure 6.1. Representation of the virtual motorcycle in the simulation framework [89].
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6.1 Model for Control Synthesis

The employed model is based on a nominal description of the system obtained by
Lagrangian formulation, as described in Ch. 4, and integrated by Gaussian Processes to
compensate for the residual acceleration errors. In the following, the main characteristics
of the nominal model are reported for completeness, and the characterization of the
GP-based modeling and the feature selection strategy are described, showing the obtained
acceleration estimates.

The aim is to define the grey-box dynamics equation for the accelerations ˆ̈q as described
in (2.21) in Ch. 2, i.e.

ˆ̈q = ˜̈q + ¯̈q, (6.1)

where ˜̈q is the nominal characterization, and ¯̈q is the GP-based acceleration errors model.
The nominal non-linear dynamics model is based on a sliding plane representation [103],

as described in Ch. 4.1, and reported here for completeness. Its derivation relies on
the Lagrangian framework, where the plane is allowed to roll and slide in both x and y
directions. In addition, a characterization of the rider body is obtained by attaching a
moving point mass with lateral DoF to the plane. Tire and drag forces are the input to the
dynamics, where longitudinal tire forces are linear in throttle and brake commands, and
the lateral tire forces are computed through the Pacejka Magic Formula for motorcycles.
The gyroscopic effects are considered in the formulation, as well as the effect of caster
and roll on the steering angle on the ground. The system dynamics equation is in the
form M(q)˜̈q + C(q, q̇) + G(q) = Bw, where w are the tire and drag forces, and the
resulting right-hand side equation is in the form

˜̈q =M−1 (Bw − C −G) , (6.2)

where q = [x, y, φ, θ]⊤, i.e. the coordinates (x, y) of the rear wheel contact patch position,
the yaw angle φ, and the roll angle θ. Overall, the nominal model comprehends most
of the important out-of-plane dynamics components for the motorcycle, but still lacks
the vertical and pitch movements given by the suspensions as well as the tire combined
behaviour.

6.1.1 Grey-box Dynamics

Given the nominal dynamics, the acceleration error characterization has been obtained
through GPR, as described in Ch. 3. To this aim, a dataset was retrieved riding the
motorcycle using the nominal NMPC controller (i.e. the NMPC controller based on
the nominal dynamics) along different test tracks (shown in Fig. 6.2) in the simulation
framework VI-BRT. Data collection was performed at 100Hz, gathering the actual1

accelerations, the nominal estimates, and the complete feature set at each time-step. This
procedure led to a dataset of 51180 points, to be used for both training and testing of
grey-box regression models. The obtained dataset is composed by the complete features

1quantities computed by the physical engine within the VI-BRT simulation will be referred to as actual.
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6.1 Model for Control Synthesis

(a) VI-Track

(b) Additional training track #1 (c) Additional training track #2

Figure 6.2. Tracks used for data generation.

x̄k and the corresponding targets yik = q̈ik − ˜̈qik, collected at the same time-step, that can
be expressed as

zik = (x̄k, y
i
k), (6.3)

where zik are the whole datapoints, comprising the complete features x̄gpk ∈ RD and
the targets yik ∈ R; index k ∈ {1, . . . , T} refers to the time instant, T = 51180; index
i ∈ {y, φ, θ} refers to the 3 different targets of interest. Note that the target accelerations
are the direct lateral acceleration v̇y, the yaw acceleration φ̈ and the roll acceleration
θ̈, while the longitudinal one v̇x has not been included since it obtained satisfactory
results using just the nominal dynamics description. Thus, the GP-based estimate of the
acceleration prediction error in (6.1) is defined as

¯̈q = [0, ¯̈qy, ¯̈qφ, ¯̈qθ]⊤. (6.4)

To effectively apply GPR, the iterative incremental approach described in Sec. 3.2.3 has
been employed for each component separately. Indeed, for each acceleration target, the
subset of features that are most important to correctly predict the residual acceleration
error q̈ − ˜̈q has been obtained. The complete feature set considered in this work is

x̄ =[θ, vx, vy, φ̇, θ̇, δ, γt, γb, yr, δ̇, γ̇t, γ̇b, ẏr, αr, αf , cos(θ), sin(θ)], (6.5)

x̄ ∈ R17, that includes (i) part of the system state, i.e. θ, vx, vy, φ̇, θ̇, δ, γt, γb, yr, (ii)
the control inputs, i.e. δ̇, γ̇t, γ̇b, ẏr, and (iii) additional features, i.e. the sideslip angles
αr, αf and composite functions cos(θ), sin(θ). In particular, the composite features
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6 A LbNMPC for a Virtual Motorcycle in Real-Time

# of features ¯̈qy ¯̈qφ ¯̈qθ

2 Feat [17,8] [17,7] [17,8]
0.3489 0.2352 0.4631

3 Feat [17,8,7] [17,7,12] [17,8,5]
0.4799 (+38%) 0.3686 (+57%) 0.5324 (+15%)

4 Feat [17,8,7,4] [17,7,12,8] [17,8,5,12]
0.5591 (+17%) 0.4265 (+16%) 0.5932 (+12%)

5 Feat [17,8,7,4,6] [17,7,12,8,9] [17,8,5,12,4]
0.5749 (+3%) 0.4850 (+14%) 0.6588 (+11%)

6 Feat / [17,7,12,8,9,2] [17,8,5,12,4,2]
0.5360 (+11%) 0.7301 (+11%)

7 Feat / [7,12,8,9,2,1] [17,8,5,12,4,2,15]
0.5411 (+1%) 0.7985 (+7%)

Table 6.1. R2 index of different feature combinations for each grey-box acceleration target. The
index has been evaluated on the whole dataset after training on a subset of 2000
points. The numbers represent the chosen features as ordered in Eq. (6.5).

have been used because they can be very expressive and correlate better to the desired
target than the system state itself. See Sec. 6.1.2 for further details on each quantity.
The results obtained by the algorithm in Lis. 3.1 on the grey-box modeling task are
summarized in Tab. 6.1, showing, for each regression target, the features chosen by
the algorithm at each iteration and the resulting R2 index. As expected, the R2 index
tends to grow as new regression features are added. However, in order to maintain the
GP modeling as light as possible, the configuration to be used in the test scenario was
selected according to a parsimony principle. In particular, the chosen feature set is the
one that, if a feature was added, it would lead to an increment of less then 10% of R2.
This resulted in 4 features for ¯̈qy, namely {sin(θ), γb, γt, φ̇}, and 6 features for both ¯̈qφ,
namely {sin(θ), γt, γ̇b, γb, yr, vx}, and ¯̈qθ, namely {sin(θ), γb, θ̇, γ̇b, φ̇, vx}.

Once the feature analysis has been completed, the VFE sparse GP model approximation
described in Sec. 3.2.1 has been employed for offline GP reduction. The accuracy of
the models have been compared to the nominal one, assessing the acceleration estimate
precision with respect to the actual ones. The grey-box acceleration estimates are
evaluated both in their full version (without any reduction) and the sparse one (with
VFE reduction), as depicted in Fig. 6.3. The GPs are remarkably effective in modeling
the acceleration errors, obtaining precise fitting results for all the considered accelerations.
Moreover, a very slight difference is present between the full and sparse implementation.
In particular, note that the nominal accelerations are quite inaccurate, because of the
high impact of unmodeled dynamics, e.g. suspensions and tire combined behaviour.
Indeed, the suspension system is fundamental for the computation of the vertical load on
the tires, that deeply influence the actual lateral and longitudinal forces acting on the
motorcycle body. Moreover, the combined behaviour of the tires is particularly important
in the deceleration phase before a turn and in the acceleration phase after a turn, with a
high impact on yaw and direct lateral acceleration.
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6.1 Model for Control Synthesis

(a) Comparison of the direct lateral acceleration estimate.

(b) Comparison of the yaw acceleration estimate.

(c) Comparison of the roll acceleration estimate.

Figure 6.3. Acceleration estimate comparison for the considered models, i.e. nominal (red), full
GP (yellow), sparse GP (purple), with respect to the actual acceleration (blue).

6.1.2 Complete Model

The dynamics model previously described has been used within the NMPC, implemented
in velocity form and reformulated in spatial coordinates with respect to the arc length
along the track s [96]. In this way, it is possible to define the tracking errors with respect
to the reference path ey and eφ and to eliminate the dependency on the velocity in the
position reference given to the NMPC.
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The state of the NMPC prediction model is then

ξ = [δ, γt, γb, yr, eφ, ey, θ, vx, vy, φ̇, θ̇]
⊤, (6.6)

where δ, γt, γb, yr are the actual commands to the motorcycle, i.e. steering angle, normal-
ized throttle and brake and lateral rider body position, ey and eφ are the lateral and
angular errors, θ is the roll angle, and vx, vy, φ̇, θ̇ are the longitudinal, lateral, yaw and
roll velocities. These states are assumed to be fully measured or computed by measurable
quantities without noise. Since the NMPC is implemented in velocity form and its inputs
are the derivatives of the actual commands, the NMPC input vector is u = [δ̇, γ̇t, γ̇b, ẏr]

⊤.
The resulting Ordinary Differential Equation (ODE) used in the NMPC algorithm is
expressed by

ξ̂′ = f(ξ(s),u(s); ζ(s)), (6.7)

where ζ(s) = 1
ρ is the trajectory curvature, with ρ instantaneous radius of the trajectory

χ, and the ODE is integrated with respect to the arc length along the track s, by applying
the chain rule Ψ′ = dΨ

ds = dΨ
dt

dt
ds = dΨ

dt
1
ṡ = Ψ̇

ṡ . An ERK4 integrator is then applied to
obtain the needed discrete evolution ϕ̂(ξj|k,uj|k).

6.2 Results

The LbNMPC controller has been implemented and run in co-simulation with the high-
fidelity simulation engine VI-BikeRealTime [89]. The software allows to accurately
reproduce the vehicle dynamics, in order to easily test motorcycle virtual prototypes.
The main analyses have been conducted on a VI-Track lap (depicted in Fig. 6.2a).

Both offline and online sparse approximations have been tested within the grey-box
modeling to assess the strategy capabilities. Applying only offline reduction, the minimal
effective GP model obtained by VFE reduction resulted to be composed of 20 points. On
the other hand, the application of online local approximation by Transduction Learning
(TL) resulted effective with a minimum number of 10 points. To efficiently obtain the
TL model online, a prior offline reduction with VFE has been accomplished, getting a 40
points-reduced dataset. Summarizing, in this section we compare the following models:

1. a grey-box model obtained by offline VFE reduction with 20 points, named grey-box
VFE,

2. a grey-box model obtained by online Transduction Learning with 10 points applied
on top of a reduced dataset of 40 points obtained by offline VFE, named grey-box
TL,

3. the nominal physics-based model.

6.2.1 Cosimulation environment

The cosimulation relies on VI-BRT, that is specifically devised to emulate the behaviour
of a motorcycle during high performance driving [89]. It models the system with 11
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degrees of freedom (DoF), 6 for the main body, 2 for each wheel-suspension system and
1 rotation between the pinion and the main body. It comprises realistic dynamics of
driveline, brakes, tires, suspensions and gyroscopic effects. Moreover, the movement of
the rider is simulated as a moving mass with lateral DoF. VI-BRT allows to implement
a cosimulation in Simulink, providing a simulation block that receives in inputs the
vehicle commands. The implemented LbNMPC controller is then used to compute the
commands derivatives u at fc = 100Hz, that are integrated and sent to VI-BRT. The
simulation software internally reproduces the motorcycle dynamics at fsim = 1000Hz and
updates the state to be fed to the LbNMPC controller at fc. The cosimulation has been
run on a Windows 10 PC, with a CPU 11th Gen Intel(R) Core(TM) i7-11800H@2.30GHz.

6.2.2 Controller Setup

The NMPC controller relies on the NLP definition in Eq. (2.3), with the learning-based
continuous dynamics constraint described in Sec. 2.4.3 and specifically defined in Eq.
(2.23). The task is reference tracking on VI-Track, and, in order to obtain effective
results, the cost function has been defined as

hj(ξj|k,uj|k) = [eφ + α, ey, ėφ, ėy, ev, α, yr, γt · γb,
δ̇, γ̇t, γ̇b, ẏr]

⊤,

hN (ξN |k,uN |k) = [eφ + α, ey, ėφ, ėy, ev, α, yr, γt · γb]⊤
(6.8)

comprehensive of the path tracking errors eψ and ey, to follow the given path; their
derivatives, to promote smooth behaviours; the velocity error ev = v − vref where
v =

√
v2x + v2y, to follow the given velocity profile; the rear sideslip angle α = atan(vy+bψ̇vx

),
to maintain a sufficiently restrained behaviour of the motorcycle; the rider lateral position
yr, to favor the vertical position of the rider; the product between throttle and brake
γt ·γb, to avoid their contemporary usage; and the control inputs δ̇, γ̇t, γ̇b, ẏr, to regularize
the optimal control problem. The same quantities are used at the final prediction step,
excluding the inputs.

To allow a fair comparison of the different methodologies, the NMPC controller
has been set up in the same way for every trial, except for the desired change in the
model. In particular, to find the common weight configuration, the genetic tuning
procedure described in [48] has been applied to the nominal implementation. The
procedure optimizes lap-time versus sensitivity of the lap-time itself w.r.t. weights change,
generating a Pareto front that reveals their trade-off. Therefore, a configuration was
selected from the Pareto front that balances the two indicators just introduced. This
configuration allows the riding task to be completed with all the different models and, at
the same time, guarantees sufficiently high performance to stress the differences. The
employed weight matrices are then

W = [0.951, 0.130, 0.900, 10−4, 0.103, 2.084, 10−3, 105,

0.500, 10−4, 8 · 10−4, 0.600]
(6.9)

WN = [0.951, 0.130, 0.900, 10−4, 0.103, 2.084, 10−3, 105]. (6.10)
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nominal grey-box VFE grey-box TL

ey [m] 0.40 0.09 (-77.7%) 0.22 (-45.9%)
eφ [deg] 1.45 0.53 (-63.0%) 0.96 (-33.5%)
ev [m/s] 0.41 0.16 (-60.5%) 0.25 (-39.3%)

Tsolver[ms] 3.74 6.63 (+77.2%) 4.99 (+33.4%)

Table 6.2. Root Mean Square Errors of trajectory tracking indicators, their variations w.r.t.
the nominal NMPC and (Lb)NMPC solution time using the presented models on
VI-Track.

The constraint functions have been defined as

rj|k = [δ, γt, γb, yr, δ̇, γ̇t, γ̇b, ẏr]
⊤,

rN |k = [δ, γt, γb, yr]
⊤,

(6.11)

comprehensive of the states δ, γt, γb and yr, that represent the actual limits of the mo-
torcycle commands, and of the inputs δ̇, γ̇t, γ̇b and ẏr that support the realization of a
smooth control action. Indeed, their bounds have been set as

rk = [− π

20
, 0, 0,−0.15,−1,−10,−10,−1]⊤,

rk = [+
π

20
, 1, 1,+0.15,+1,+10,+10,+1]⊤,

rN = [− π

20
, 0, 0,−0.15]⊤,

rN = [+
π

20
, 1, 1,+0.15]⊤.

(6.12)

Note that the adopted setup of the controller guarantees the recursive feasibility of the
problem since the only constrained quantities are either the actual NMPC input or their
integration over time, that are exactly predicted by the NMPC controller. On the other
side, as it is common for this kind of application [5, 12], formal proofs of stability and
robustness are not explicitly considered, while the local convergence of the algorithm is
ensured by RTI guarantees on contractivity and boundness of the loss of optimality with
respect to optimal feedback control [68, 69].

Within the LbMATMPC toolbox, the ERK4 integrator has been used, with sampling
step Ts = 2m. The sampling step is expressed in meters, thanks to the spatial refor-
mulation detailed in Sec. 6.1.2. The QP solution is obtained through HPIPM sparse
solver [67], while adopting Real-Time Iteration scheme [61] and Non Uniform integration
Grid (NUG) [104] with grid defined as G = [0 : 1 : 10, 12 : 2 : 34, 36 : 1 : 40], where
a : b : c is a vector from a to c at step b expressed in Ts unit. As a result, the number of
shooting points is N = 27, allowing a prediction horizon of 80m.

6.2.3 Results on Track

The controllers relying on the three models previously stated have been tested and the
closed-loop results have been compared. Both grey-box models clearly outperform the
nominal model in terms of tracking performance, with a great reduction of the lateral,
angular, and velocity errors, as shown in Fig. 6.6. In particular, the grey-box VFE model
achieves the best behavior, with 60% to nearly 80% reduction of the tracking errors,
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nominal grey-box VFE grey-box TL

ey [m] 0.41 0.13 (-68.2%) 0.17 (-57.8%)
eφ [deg] 1.32 0.46 (-64.7%) 0.59 (-55.2%)
ev [m/s] 0.30 0.05 (-85.5%) 0.07 (-75.8%)

Table 6.3. Root Mean Square Errors of trajectory tracking indicators and their variations w.r.t.
the nominal NMPC using the presented models on the test track.

while the grey-box TL model obtains between 30% to 45% reduction. On the other hand,
the grey-box VFE is the most computationally demanding solution, with an increment of
nearly 80% for the solution time, while the grey-box TL leads to only around 30% of
increment. However, the inputs computed by the grey-box controllers are quite different,
as the online adaptation of the TL model introduces relevant high-frequency vibrations,
as can be clearly seen in Fig. 6.7(c). Yet, the high-frequency components are mostly
filtered by the actual motorcycle system, and their effect is significantly weakened in the
actual velocity and roll profiles, Fig. 6.7(a), 6.7(b). Moreover, possible solutions for the
input vibrations could be realized in different setups, e.g., increasing the NMPC weights
on the input derivatives, employing a greater TL model, forcing temporal correlations
in the chosen points. Finally, a detail of the trajectory traveled on the first chicane is
depicted in Fig. 6.5, where the similarity of the two LbNMPC controllers is displayed,
while Tab. 6.2 quantifies the performance, reporting the numerical results in terms of
errors and solution time, together with their variation with respect to the nominal case,
confirming previous observations.

Summarizing, both the proposed models highly improve the closed-loop performance,
highlighting the trade-off between computational burden and input consistency. Indeed,
the proposed TL model, based on only 10 points, has been chosen to obtain a significant
solver time reduction with respect to the offline VFE approximation, while both strategies
highlight the potential of the approach to enhance the controller action and emphasize
the possible weaknesses.

Generalization Capability

In order to verify the generalization capability of the proposed LbNMPC controller, an
analysis on a test track that was not used in the training phase (shown in Fig. 6.4) has

Figure 6.4. Test track used for generalization capability assessment.
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Figure 6.5. Detail of the travelled trajectory on the first chicane of VI-Track.

been conducted. Consistently with the results on VI-Track, the tracking performance of
both grey-box VFE and grey-box TL are remarkably better then the nominal NMPC
(as shown in Fig. 6.8 and reported in Tab. 6.3), obtaining 65% to 85% reduction of the
tracking errors using grey-box VFE model, and between 55% to 75% reduction using
grey-box TL model. The test shows a certain level of generalization capability of the
obtained LbNMPC controller, assessing the efficacy of the learned acceleration errors.

Moreover, given the superior behaviour of the LbNMPC controller with respect to the
nominal NMPC, the results also suggest the possibility to ride more extreme maneuvers
using the grey-box modeling within the controller.
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(a) Lateral trajectory error ey along the simulation.

(b) Yaw trajectory error eφ along the simulation.

(c) Velocity trajectory error ev along the simulation.

Figure 6.6. Tracking errors obtained in simulation on VI-Track using the nominal physics-based
model (blue), grey-box with VFE offline reduction only (green), grey-box with VFE
offline reduction and Transduction Learning online reduction (yellow).
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(a) Longitudinal velocity vx along the track.

(b) Roll angle θ along the track.

(c) Steering input δf and throttle/braking effort γ = γt − γb along the track.

Figure 6.7. Motorcycle behavior obtained in simulation on VI-Track using the nominal physics-
based model (blue), grey-box with VFE offline reduction only (green), grey-box
with VFE offline reduction and Transduction Learning online reduction (yellow).
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(a) Lateral trajectory error ey along the simulation.

(b) Yaw trajectory error eφ along the simulation.

(c) Velocity trajectory error ev along the simulation.

Figure 6.8. Tracking errors obtained in simulation on the test track using the nominal physics-
based model (blue), grey-box with VFE offline reduction only (green), grey-box
with VFE offline reduction and Transduction Learning online reduction (yellow).
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In this part, the applications related to four-wheels vehicles are presented. Chapter 7
describes an NMPC controller for a virtual high-performance car, that is the foundation
of the LbNMPC presented in the next chapter. Indeed, Ch. 8 reports a LbNMPC
controller for high-performance driving based on a grey-box model of the vehicle velocities.
Finally, Ch. 9 illustrates a LbNMPC strategy based on a black-box model applied to an
experimental go-kart.
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7
A Contouring NMPC for a

Four-wheel Vehicle in Real-Time
In this Chapter, a NMPC controller for a virtual four-wheel vehicle (depicted in 7.1) at the
limit of handling is presented. The goal is to minimize the travel time on a desired path,
while computing both the trajectory and the velocity profile for the vehicle. A physics-
based model that balance the need to provide an accurate prediction in high-performance
with limited computational load is detailed in Sec. 7.1. The results, illustrated in Sec. 7.2,
show the proficiency of the obtained control action in a high fidelity vehicle simulation
environment, comparing the behaviour with a commercial lap-time minimizer.

Figure 7.1. Representation of a virtual 4-wheel vehicle.
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Table 7.1. Main model quantities and parameters description.
Symbol Description

x longitudinal position
y lateral position
ψ yaw angle
β sideslip angle of the vehicle
δf steering angle of the front wheels
m vehicle mass
Iz inertia around the vertical axis of the vehicle
a front wheels to CM longitudinal distance
b rear wheels to CM longitudinal distance
c wheels to CM lateral distance

hCM height of the vehicle’s CM
F{l,c}{i,j} wheels lateral/longitudinal forces in the tire frames1

F{x,y}{i,j} wheels lateral/longitudinal forces in the vehicle’s frame
Fz{i,j} normal forces on the wheels
F dx downforce in the vehicle’s frame
F dzi longitudinal drag force in the vehicle frame
s curvilinear abscissa
ey lateral tracking error
eψ angular tracking error

7.1 Model for Control Synthesis

The proposed internal Nonliner Model Predictive Contouring Controller (NMPCC) model
is a four-wheel vehicle based on the description in [105], supplemented by load transfers,
gear shift predictions, longitudinal force saturation, and an ellipsoidal tire friction
constraint, improving the overall prediction capabilities of the controller. Moreover, a
time-varying parameter has been used to model the lateral force dependency on the
longitudinal slip, in order to handle locally the tire forces coupling. The model has been
reformulated with respect to the curvilinear abscissa s.

7.1.1 Model Dynamics

The vehicle dynamics model is described as

ξ̇ = ϕ(ξ(t), u(t); p(t)), (7.1)

where ξ(t) ∈ Rnx is the state of the vehicle, u(t) ∈ Rnu is the input and p(t) ∈ Rnp is the
time-varying parameter vector.

The system dynamics ϕ is characterized by the equation of motion of the vehicle center

1Subscripts i ∈ {f, r} refer to front or rear wheels, j ∈ {l, r} left or right wheels.
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Figure 7.2. Quantities defined in the vehicle model for control.

of mass (CM) [4], i.e.

ẍ = ẏψ̇ +
1

m

∑
i,j

Fxi,j − F dx

 , ÿ = −ẋψ̇ +
1

m

∑
i,j

Fyi,j

 ,

ψ̈ =
1

Iz

[
a

∑
j

Fyf,j

− b

∑
j

Fyr,j

+ c

(∑
i

Fxi,r −
∑
i

Fxi,l

)]
,

. (7.2)

The projection of cornering and longitudinal forces in the vehicle frame yields

Fxf,j = Flf,j cos(δf )− Fcf,j sin(δf ), Fxr,j = Flr,j ,

Fyf,j = Flf,j sin(δf ) + Fcf,j cos(δf ), Fyr,j = Fcr,j .
(7.3)

The steering angle is here assumed to be the same for both front wheels.

In Fig. 7.2 the physical quantities involved and directions and application point of the
forces are described.

The dynamics in the inertial frame are then computed as

Ẋ = ẋ cos(ψ)− ẏ sin(ψ),

Ẏ = ẋ sin(ψ) + ẏ cos(ψ)
(7.4)

where (X,Y ) is the position of the vehicle’s CM in the inertial frame.

Finally, the sideslip angle of the vehicle is defined as

β = atan

(
ẏ

ẋ

)
. (7.5)
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7.1.2 Forces

The longitudinal drag force and the downforce are modeled as [106]

F dx,zi =
1

2
ρ Cx,zi Ax,zi ẋ

2, (7.6)

where ρ is the air density, Cx,zi are the drag coefficients and Ax,zi are the interested
section area. The longitudinal tire forces in each wheel reference frame are computed as

Fli,j = fengi,j − fbrki,j , (7.7)

where the engine and braking forces are

fengi,j = sat

(
τengi
rw

, µFzi,j

)
, fbrki,j = sat

(
τbrki
rw

, µFzi,j

)
, (7.8)

where µ is the tire friction coefficient, rw is the wheel radius and the saturation function
is defined as sat(fa, fb) =

fb
1+exp(−5( fa

fb
− 1

2
))
. Then, the engine and braking torques at the

wheels are:
τengi = γt (τ

MAX
eng,i − τmin

eng,i) + τmin
eng,i, τbrki = γb τ

MAX
brk,i , (7.9)

where γt,b are the normalized throttle and braking efforts, τMAX
brk,i is the maximum torque

given by the braking system to front/rear wheels, τMAX,min
eng,i are the maximum and

minimum torque values expressed by the engine at front/rear wheels at a given gear and
are changed as a time-varying parameter to model gearshift. To compute the torques
in the prediction horizon, an iterative strategy predicting the engine rpm, and hence
gearshift, based on the predicted velocity is used. Specifically, the engine rpm are
computed as

rpmpred =
vpredx

rw

diffratio

gearratio

60

2π
, (7.10)

where diffratio and gearratio are the input/output torque ratios at the differential and at
the gearbox (in a specific gear), respectively. The dependence of τMAX,min

eng,i with respect
to the engine rotational velocity has been neglected.

The normal forces are modeled as

Fzf,l =
F 0
zf

2
+
F dzf
2

−∆lon
Fz −∆lat

Fz,

Fzf,r =
F 0
zf

2
+
F dzf
2

−∆lon
Fz +∆lat

Fz,

Fzr,l =
F 0
zr

2
+
F dzr
2

+ ∆lon
Fz −∆lat

Fz,

Fzr,r =
F 0
zr

2
+
F dzr
2

+ ∆lon
Fz +∆lat

Fz,

(7.11)

where the load transfer in steady state condition ∆Fz is computed by

∆lon
Fz = F sat0

x

hCM

a+ b
, ∆lat

Fz = F static
y

hCM

2c
. (7.12)
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To avoid an algebraic loop in the model, the forces used for the load transfer dynamics
computation are F sat0

x (total longitudinal force expressed in the vehicle frame saturated
at nominal Fz) and F static

y (the sum of the lateral forces computed at nominal Fz on each
wheel).

The lateral forces model is based on Pacejka’s Magic Formula [107]. The lateral forces
expression is

F 0
ci,j = Dsin(Catan(Bβi,j − E(Bβi,j − atan(Bβi,j)))), (7.13)

where B is the stiffness factor, that regulates the slope, C is the shape factor, that
determines the stretching with respect to the side slip, D is the peak factor, that defines
the peak value, E is the curvature factor, that affects the transition to the constant
saturation value and βi,j are the wheels side slip angles. Moreover, local information
about the tire coupling has been included through the introduction of the term Gyki,j as
a time-varying parameter, computed as [107]

Gyki,j =
1

Gyk0
{cos(Cykatan(Byk(βi,j)ki,j − Eyk(Byk(βi,j)·

· ki,j − atan(Byk(βi,j)ki,j))))},
(7.14)

where ki,j is the current longitudinal slip, Byk is a function of the lateral slip, Eyk,
Cyk andGyk0 are tire dependent parameters. The structure of the lateral force factors
leads to a cornering force model of the form

Fci,j = F 0
ci,j ·Gyki,j = Ψ(βi,j , Fzi,j ;Gyki,j ). (7.15)

The sideslip angle of each wheel is computed as

βi,j = atan

(
vci,j
vli,j

)
, (7.16)

where the longitudinal and lateral velocities in each wheel frame are

vcf,j = vyf,jcos(δf )− vxf,j sin(δf ), vcr,j = vyr,j ,

vlf,j = vyf,j sin(δf ) + vxf,jcos(δf ), vlr,j = vxr,j ,
(7.17)

and the velocities along x and y directions are

vyf,j = ẏ + aψ̇, vyr,j = ẏ − bψ̇,

vxi,l = ẋ− cψ̇, vxi,r = ẋ+ cψ̇.
(7.18)

7.1.3 Spatial Reformulation

The dynamics have been reformulated in spatial coordinates with respect to the arc
length s along the track in order to allow time to be a minimization variable, to set the
spatial constraints, and to eliminate the dependency on the velocity in the trajectory
reference for the controller. This has been previously studied, e.g. in [108], [47], and the
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procedure is summarized in the following for completeness. The reference trajectory σ is
parameterized in s and the curvature of the trajectory ζ = 1

ρ , where ρ is the instantaneous
curvature radius, is locally defined as

ζ =
x′y′′ − y′x′′

(x′ 2 + y′ 2)
3
2

, (7.19)

where f ′ = df(s)
ds e f ′′ = d2f(s)

ds2
.

The lateral and angular tracking errors are computed as

eψ = ψ − ψs,

ey = (Ys − Y ) cos(ψs) + (Xs −X) sin(ψs),
(7.20)

where ψs is the reference yaw angle and (Xs, Ys) is the absolute reference position at the
current spatial coordinate while (X,Y ) and ψ are the absolute current position and yaw
angle. The tracking errors dynamics are [98]

ėψ = ψ̇ − ζ ṡ,

ėy = vx sin(eψ) + vy cos(eψ).
(7.21)

The state vector ξ is differentiated w.r.t s using the chain rule as

ξ′ =
dξ

ds
=
dξ

dt

dt

ds
=
dξ

dt

1

ṡ
=
ξ̇

ṡ
, ∀ṡ ̸= 0, (7.22)

where ṡ = 1
1−ζ ey (ẋ cos(eψ)− ẏ sin(eψ)).

7.1.4 Full Model

The minimization of the travel time over the prediction horizon must be considered in
the definition of the cost function to enable the contouring formulation; hence, the time
has been included as a state variable with the following ODE ṫ = 1

ṡ . The full state vector
is then given by

ξ = [ẋ, ẏ, ψ̇, eψ, ey, δf , γt, γb, t]
⊤, (7.23)

where these states are assumed to be fully measured or computed by measurable quantities
without noise, and the input computed by the algorithm is

u = [δ̇f , γ̇t, γ̇b, ϵslip, ϵerr, ϵgg]
⊤, (7.24)

where δ̇f , γ̇t, γ̇b are the derivatives of the actual input to the vehicle and ϵ are slack
variables, whose role will be discussed in Sec. 7.2.1. This formulation allows a smooth
action of the controller and avoids too aggressive, unrealistic behaviors.

The dynamics equation of the model used in the NMPC algorithm can be compactly
written as

ξ′ = ϕ(ξ(s), u(s); p(s)), (7.25)

where p(s) =
[
ζ(s), τMAX,min

eng,i (s), Gyki,j (s)
]⊤

is the time-varying parameter vector ex-
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Figure 7.3. The Paul Ricard race track used for testing. The chosen course is highlighted in
black.

pressed as function of the curvilinear abscissa s.

7.2 Results

Since the controller must be able to handle challenging high-performance situations, a
validation has been made by comparing with a commercial dynamic minimum lap-time
tool, VI-MaxPerformance. VI-MaxPerformance is based on an iterative procedure that
acts on the velocity profile to minimize lap time [109]. The comparison has been made
on virtualization of the Paul Ricard race track (Le Castellet, France), shown in Fig. 7.3,
which is 5665m long.

The vehicle dynamics are computed using the simulation tool VI-CarRealTime (VI-CRT),
a multi-body software specifically designed to reproduce vehicle behavior for high perfor-
mance driving in real-time [109]. The underlying simulation model is composed of 14
degrees of freedom, 6 for the chassis and 2 for each wheel, and it includes comprehensive
dynamics of tire, chassis, suspensions, brakes, engine, and transmission.

The co-simulation is performed in Simulink, connecting a VI-CRT simulation block
with the NMPC controller. In particular, the controls δ̇f , γ̇t and γ̇b computed by the
NMPCC controller are integrated and given as inputs to the simulation block. VI-CRT
is used to simulate the dynamics of the vehicle at 1000 Hz while the control action is
updated by the NMPCC controller at fc = 50 Hz.

7.2.1 Controller Setup

The NMPC controller relies on the NLP definition in Eq. (2.3). To effectively generate
the vehicle commands, the cost function for the NMPC is defined as

hk(ξk, uk) = [β, γt · γb, ζ · γt, t, δ̇f , γ̇t, γ̇b, ϵslip, ϵerr, ϵgg]⊤,
hN (ξN ) = [β, γt · γb, ζ · γt, t, ey − erefy , ėy, eψ − erefψ + β, ėψ]

⊤.
(7.26)

The penalty on the sideslip β is used to choose how restrained the behavior of the vehicle
should be. The cost γt · γb penalizes simultaneous throttling and braking, whereas the
ζ · γt cost is used to make the controller accelerate smoothly while exiting the curves.
The objective variable time t supports the computation of a time-minimizing path and
its weight can be used to tune the importance of the performance index. The terms
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on the inputs ensure a smooth control action. The slack variables are used to define
the soft constraints [110] discussed in the next paragraph. Finally, the terms related to
errors ey and eψ, used only as terminal objective variables, are introduced to integrate
information about the trajectory over the prediction horizon.

The constraints are defined as

rk = [δf , γt, γb, δ̇f , γ̇t, γ̇b, ϵslip, ϵerr, ϵgg, β + ϵslip, ey + ϵerr, (µx
ẍext
g

)2 + (µy
ÿext
g

)2 + ϵgg]
⊤,

rN = [δf , γt, γb]
⊤,

(7.27)
where the constraints on δf , γt and γb are intrinsic bounds of the actual vehicle controls,
while those on δ̇f , γ̇t and γ̇b are added in order to improve the smoothness of the computed
inputs and can be used to easily tune the aggressivity of the NMPC driving commands.
Also, the slack variables have been constrained in order to help the optimization procedure
restricting the search space of the inputs. Finally, three soft constraints have been added
to make the controller predict a trajectory with the desired features while supporting the
robustness of the overall procedure. Specifically, the first soft constraint is introduced on
the sideslip of the vehicle in order to force the controller to regain control of the vehicle
in case of skidding; the second one is used to firmly correct the trajectory in case of
out-of-the-track future situations. Finally, the last soft constraint is designed to make
the controller respect the required gg diagram, which represent the maximum combined
longitudinal-lateral acceleration that can be induced by the combined longitudinal-lateral
behavior of the tire forces [111]. µx and µy are the longitudinal and lateral friction
coefficient of the tires, respectively, whereas the considered accelerations on the vehicle
are

ẍext =

∑
i,j Fxi,j−Fxd

m
,

ÿext =

∑
i,j Fyi,j

m
.

(7.28)

The NMPC tool MATMPC has been set to use Explicit Runge-Kutta 4 integrator, HPIPM
as QP sparse solver [67] with RTI scheme [61]. To achieve satisfactory performance in
trajectory planning, the prediction horizon should be long enough to predict the entire
dynamics of both the longest corner on the track, to start positioning and braking in
advance, and of consecutive corners in the chicanes, to calculate a trajectory consistently.
However, to maintain real-time capabilities of the controller, the number of shooting points
was limited to N = 140. Moreover, to maintain good tracking performances, a dense
integration at the beginning of the control horizon is needed. Therefore, Non-Uniform
Grid (NUG) steps [104] have been set as follows

G = [2, 3, 4, 6, 8, 10, 13: 3 : 390, 392: 2 : 396, 397: 1 : 400], (7.29)

where a : b : c means from a to c with step b in meters, enabling a prediction length of
400 meters on track. Note that the first step, that is 2 meters long, allows computing
coherently the first input, i.e. valid for more than one control period (Tc = f−1

c = 20ms),
until the velocity is less than 100ms . The implemented configuration, using RTI scheme
and NUG, is specifically realized as to effectively control the vehicle at the limit of
handling. In this conditions, in fact, the control frequency must be high enough, e.g.
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to react in high sideslip condition with a counter-steering action, while the prediction
horizon must be long enough, as stated before. To ensure both features, a very fast
solution method is implemented through RTI scheme, while a reduction of the needed
points in the prediction horizon is achieved by NUG.

An empirical analysis has been conducted and the weights for the cost function have
been manually set as

W = diag([5 · 103, 105, 6 · 10−1, 101, 4 · 101, 10−2, 10−2, 3 · 102, 5 · 10−1, 102]). (7.30)

In particular, the sideslip weight and the time weight have been set as to maintain the
correct trade-off between a restrained behavior and high performance, a high weight
on γt · γb is used for preventing contemporary throttling and braking, the weight on
ζ · γt has been set to obtain a throttle action at the curve exit that does not lead to tire
spinning, the inputs derivatives have been penalized to obtain the desired smoothness
of the control actions, the weights on the slack variables for sideslip and lateral errors
have been increased until the controller firmly corrects the vehicle behavior in unstable
or out-of-the-track future situations, and finally a high penalty on the gg constraint slack
variable has been set to comply with the desired maximum performance.

The terminal weighting matrix has then been set as

WN = diag([5 · 103, 105, 6 · 10−1, 101, 102, 10−2, 103, 100]). (7.31)

The terminal weights have been set unchanged for the present variables already analyzed,
whereas the weights on the reference errors have been set as to address that the predicted
trajectory concludes, at the end of the prediction horizon, within a reference corner-cutting
trajectory, whose generation is discussed in the next paragraph.

The reference trajectory for the final point of the prediction horizon employed in this
test has been computed using the Corner Cutting procedure embedded in the commercial
tool VI-Road. The process, given the centerline, the track width, and the vehicle width,
computes a path that minimizes

Jpath =

∫
(wι · ι(s)2 + wζ · ζ(s)2)ds, (7.32)

where ι(s) is a measure of the path length, ζ(s) is the local path curvature and wι =

6 · 10−3, wζ = 4 are the respective weights. The minimization is constrained in order to
maintain the vehicle within the track.

Finally, the bounds in (7.27) have been set as

rk = [− π

20
, 0, 0,−2,−10,−100,−2π,−105,−105,−105,− π

15
,−5, 0]⊤,

rk = [ +
π

20
, 1, 1,+2, 1.1,+100,+2π,+105,+105,+105,+

π

15
,+5, 1.9]⊤,

rN = [− π

20
, 0, 0]⊤, rN = [+

π

20
, 1, 1]⊤,

(7.33)

where the bound δf ∈ [− π
20 ,+

π
20 ] is the limit of the vehicle steering system; γt and γb ∈

[0, 1] are normalized; the bounds on the control derivatives are set as to ensure a smooth
action of the controller; the bounds on the slack variables ϵ ∈ [−105,+105] are set to
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Figure 7.4. The velocity mantained and the controls applied by the NMPCC and the commercial
tool VI-MXP on the first chicane of the track (between 400m and 900m).

increase the robustness of the optimization procedure; the limit on the soft constraint
β + ϵslip ∈ [− π

15 ,+
π
15 ] is set to heavily penalize excessive oversteering and the one on

the lateral error ey + ϵerr ∈ [−5,+5] as to force the vehicle within the track boundaries;
finally, the bound on the soft constraint for the gg is set as the vehicle acceleration limit2.

7.2.2 Comparison with VI-MaxPerformance

The results on the Paul Ricard track show the capability of the controller to achieve per-
formance comparable with those of the commercial tool VI-MaxPerformance (VI-MXP)3.
In particular, VI-MXP has been tested both on the corner-cutting path and on the NM-
PCC controller trajectory, leading to a lap-time of 113.27s and 112.46s, respectively,
while for the NMPCC controller the lap-time is 112.16s. Interestingly, the NMPCC
trajectory results to be faster than the corner-cutting one also for the commercial lap
time minimizer.

The commands given by VI-MXP following the NMPCC path and the NMPCC are
shown in Fig. 7.4, where it can be observed that the NMPCC exhibits a smoother
behavior than VI-MXP. This affects in particular the velocity profile, which is smoother
and more representative of a human behavior in the NMPCC case. Note that the
smoothness of the control actions is fundamental for the assistance system in order to
propose consistent and human-like behavior.

The mean computational time for the controller is 12ms while the maximum is 16ms,
2The vehicle used for testing is a race car with aerodynamic downforce, hence the limit is greater than 1.
3VI-MXP uses a specific static solver to compute a velocity profile for the given vehicle compatible with

the requested trajectory and then it drives the vehicle at the obtained speed to verify if the computed
profile is feasible. If the velocity path is unfeasible (maximum path distance exceeded, zero velocity,
etc.) the solver turns back to the static and computes a new velocity profile, modifying only the
portion nearby the unfeasible point. The process is iterated until a feasible velocity profile is found.
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Table 7.2. Comparison between NMPCC and VI-MXP.
NMPCC VI-MXP

lap time 112.16s 112.46s
mean longitudinal velocity 50.3 m/s 50.0m/s

maximum lateral acceleration 1.9 m/s2 1.9 m/s2

maximum sideslip angle 3.4deg 5.1deg
maximum throttle and braking derivative 37.6 s−1 200 s−1

Figure 7.5. Representation of the combined lateral coefficient Gyk w.r.t. lateral and longitudinal
slip of the tire.

which is compatible with the 50Hz control frequency in this real-time application.

7.2.3 Impact of the local information on the combined tire condition

Controlling a vehicle at the limit of handling requires a sufficiently accurate knowledge
of tire forces. In fact, under conditions of high longitudinal forces, e.g. originated by
accelerating after a curve or braking before it, a significant reduction in tire lateral force
occurs, with a relevant impact on vehicle behavior. The information described through
the time-varying parameter Gyk, see Eq. (7.14) and Fig. 7.5, is then crucial to correctly
characterize such conditions. Since Gyk varies at very high frequency, the parameter
is provided to the controller and processed as linearly fading in the first 5 steps of the
prediction horizon. The impact of such a solution is evaluated on the last turn of the
track through two closed-loop simulations obtained with and without scaling of the lateral
forces with Gyk (Figs. 7.6 and 7.7), namely Sim w/ Gyk and Sim w/o Gyk. In both
cases, one-step-ahead sideslip predictions and steering derivative control are shown. An
offline evaluation of the same quantities computed with the alternative approach, i.e.,
with Gyk in the Sim w/o Gyk and vice-versa, is over-imposed for comparison. It can
be noticed that the one-step-ahead sideslip predictions obtained without Gyk is highly
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Figure 7.6. The one-step-ahead sideslip predictions and the steering velocity control
in Sim w/ Gyk. An offline evaluation of the same quantities computed
without Gyk is over-imposed for comparison.

5390 5395 5400 5405 5410 5415 5420 5425 5430 5435 5440
s [m]

0

2

4

6

8

 [d
eg

]

simulation
prediction w/ Gyk
prediction w/o Gyk

5390 5395 5400 5405 5410 5415 5420 5425 5430 5435 5440
s [m]

-0.5

0

0.5

1
control w/ Gyk
control w/o Gyk

Figure 7.7. The one-step-ahead sideslip predictions and the steering velocity control
in Sim w/o Gyk. An offline evaluation of the same quantities computed
with Gyk is over-imposed for comparison.

88



7.2 Results

underestimated (blue line), leading to a high side slip condition in the case Gyk is not
used in closed-loop.

In both cases, without this information, the sideslip evolution is highly underestimated.
This fact leads to a curve exit traveled with the expected restrained behaviour (sideslip
around 4deg) in Test W/, and to a loss of control of the rear of the car in Test W/O.

89





8
A LbNMPC for a Virtual Driver

in Real-Time
In this Chapter, the definition of a Learning-based NMPC controller for a virtual four-
wheel vehicle (depicted in Fig. 8.1) is described. The goal is to enhance the performance
of the controller for the lap-time minimization task, by enhancing the model precision.
Relying on the model described in Ch. 7, a grey-box prediction model is adopted,
characterizing the residual velocity error by Gaussian Processes. To correctly define the
model, different kernels have been tested, the dimension of the GP input is reduced
through a systematic feature selection strategy, and sparse GP approximations have
been exploited, as detailed in Sec. 8.1. The results, illustrated in Sec. 8.2, highlight
the effectiveness of the approach, comparing the performance with the NMPC controller
described in Ch. 7.

Figure 8.1. Representation of the virtual vehicle in the simulation framework [109].
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8.1 Model for Control Synthesis

The dynamics model implemented within the LbNMPC algorithm is based on a nominal
characterization of the system compensated for the residual error through Gaussian
Processes. The obtained evolution of the system state ξk+1 is characterized as detailed
in Sec. 2.4.2, Eq. (2.16), i.e.

ξk+1 = ϕ̃(ξk,uk,pk) + ϕ̄(ξk,uk,pk),

where ϕ̃ is the nominal characterization, while ϕ̄ is the GP-based model error estimation.
For convenience in the task definition, the model is integrated with respect to the
curvilinear abscissa s, hence the nominal dynamics is expressed w.r.t. s and the GPR has
been designed to predict the error compensation at the next space-step. In the following,
the nominal model presented in Ch. 7 is outlined, and the GPR procedure and its results
are described.

8.1.1 Nominal Dynamics

The considered nominal dynamics is a four-wheel vehicle model comprehensive of load
transfers, gear shift predictions, longitudinal force saturation, and an ellipsoidal tire
friction estimate. An extensive description of the model is reported in [50], and the
fundamentals are reported hereafter for completeness.

Model Dynamics

The system dynamics is characterized by the following equation of motion of the vehicle
center of mass [4]

v̇x = vyφ̇+
1

m

∑
i,j

Fxi,j − F dx

 ,

v̇y = −vxφ̇+
1

m

∑
i,j

Fyi,j

 ,

φ̈ =
1

Iz

[
a

∑
j

Fyf,j

− b

∑
j

Fyr,j

+ c

(∑
i

Fxi,r −
∑
i

Fxi,l

)]
.

(8.1)

where the acting forces are given by

• lateral tire forces Fyi,j , based on Pacejka Magic Formula;

• longitudinal tire forces Fxi,j , as linearly dependent on the throttle/braking action
and saturated on the vertical load;

• drag forces F di , both longitudinal and vertical1.
1The vertical force is not explicitly used in the equation of motion, but impacts on the lateral and
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8.1 Model for Control Synthesis

The control model has been formulated in spatial coordinates with respect to the arc
length s [96]. The reference trajectory χ is then parameterized in s and defined by its
curvature ζ = 1

ρ , where ρ is the instantaneous curvature radius. Using this approach, it is
possible to (i) allow the time to be a minimization variable, and (ii) set the track bounds
with respect to the position on the circuit.

In this description, the position of the vehicle within the track is defined with respect
to the centerline as the lateral and angular tracking errors ey and eφ. Moreover, the
dynamics can be integrated w.r.t. s using the chain rule, ∀ṡ ̸= 0, as

f̃(ξ(t),u(t),p(t)) =
dξ

ds
=
dξ

dt

dt

ds
=
dξ

dt

1

ṡ
=
ξ̇

ṡ
(8.2)

Complete Nominal Model

The resulting state vector is

ξ = [vx, vy, φ̇, eφ, ey, δf , γt, γb, t]
⊤, (8.3)

where vx, vy and φ̇ are the longitudinal, lateral and yaw velocities, eφ and ey are the
tracking errors, δf , γt, and γb are the steering, throttle and brake commands, and t is
the time. These states are assumed to be fully measured or computed by measurable
quantities without noise. The input computed by the algorithm is

u = [δ̇f , γ̇t, γ̇b, ϵslip, ϵerr, ϵgg]
⊤, (8.4)

where δ̇f , γ̇t, γ̇b are the derivatives of the actual input to the vehicle and ϵs are slack
variables, whose role is to allow the definition of soft constraints. Finally, the time-varying
parameter vector is

p = [ζ, rgear]
⊤ (8.5)

that contains the current curvature ζ, and gear ratio rgear.

8.1.2 Learning-based Dynamics

Starting from the nominal dynamics previously stated, an additive component charac-
terizing the model error has been obtained through GPR. However, when using the
grey-box model as an internal NMPC model, evaluating and optimizing over GPs is
highly time-consuming, hence the minimal dimension of the learning-based component
has to be developed. In this sense, the most critical quantity to be modeled in our case
is the yaw velocity, since it is responsible for the over- or under-steering behavior of the
vehicle. Therefore, the learning-based modeling focuses only on yaw velocity, i.e.

ϕ̄ =
[
0, 0, ϕ̄φ̇(x), 0, . . . , 0

]⊤
. (8.6)

vertical force computation.
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8 A LbNMPC for a Virtual Driver in Real-Time

Figure 8.2. Example of the input approximation for data acquisition.

Regression Target

The GP is trained to compensate for the mismatch error between the true model and
the nominal model evolution. The model implemented in the LbNMPC algorithm is
formulated in spatial coordinates and it is integrated w.r.t. s, hence the quantities for
GPR need to be estimated in this domain. In this sense, we introduce the notation
tk = t(sk), where sk is the current space coordinate, to indicate the start time of the
integration step and t+k = t(sk + Ts) to indicate the end time of the integration interval,
i.e. the time instant reached after the sampling space Ts [m]. Due to the integration
over space, this is in general different from tk+1, which is the next time instant after a
control period Tc [s]. Using this notation, the true system state variation is given by the
difference after a space-step ∆ξk = ξ+k − ξk, while the nominal model evolution is given
by the integral over space ∆ϕ̃ =

∫ sk+Ts
sk

f̂(ξk,uk,pk)ds. Therefore, the regression target,
i.e. the error arising due to model mismatches in the space domain, is defined as

yk = ∆ξk −∆ϕ̃. (8.7)

In particular, we are interested in yφ̇k = ∆φ̇k −∆ϕ̃φ̇k .

Training Data Acquisition

The data have been collected online while using the nominal NMPC to drive the vehicle
along the track. Accordingly, the NMPC states ξk and parameters pk are stored at each
time step tk. When the car has traveled a space-step Ts, i.e. has reached s(t) = sk + Ts,
the system state variation can be computed. However, since the sample rate of the
controller is given in the time domain and the length of a prediction step in the space
domain, the control action u of the controller (and hence the plant input) can change
multiple times during the length of one prediction step2. To address this problem, the
actual inputs of the vehicle uplant = [δf , γt, γb]

⊤ are linearly approximated in the predicted
dynamics computation, thanks to the fact that the NMPC controls are the derivatives
of the actual vehicle inputs. Specifically, denoting the vehicle inputs that are included
within the NMPC states as ξu = uplant, their linear approximation in time domain can
be computed as

ūplant(t) = ξu(sk) + ū(sk)(t− t(sk)),

t ∈ [t(sk), t(sk + Ts)) ,
(8.8)

2The space step Ts has been designed to be longer than the traveled space in one control period at every
feasible velocity.
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rgearvx δfϕ̇ γtζ γbeyvy u3 eϕu2u1
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Figure 8.3. Mean feature sensitivity based on five repetitions with 50 inducing points.

where ū(sk) is the mean value of the NMPC controls during the considered interval, i.e.

ū(sk) =
ξu(sk + Ts)− ξu(sk)
t(sk + Ts)− t(sk)

. (8.9)

To illustrate the method, an example on a one-dimensional input is shown in Fig. 8.2.

8.1.3 Feature selection

To reduce the GP prediction time, not all states, inputs and parameters vector x̄k =

[x̄
(1)
k , · · · , x̄(nx+nu+np)k ]⊤ have been considered in the kernel formulation, but only the most

important components xk ⊆ x̄k for predicting the target yφ̇, using the permutation-based
feature set reduction described in Sec. 3.2.3. In particular, consider a modified dataset
(πl(X̄),yφ̇) where the l-th feature x̄(l) of the data has been shuffled through a random
permutation πl(·). By training a GP on the standard dataset and another on the modified
one, it is possible to define the permutation sensitivity as

S(l) =
R2(X̄,yφ̇)−R2(πl(X̄),yφ̇)

R2(X̄,yφ̇)
, (8.10)

where the R2-score is defined as

R2(X̄,yφ̇) = 1−

∑
k

(
ϕ̄φ̇(X̄k)− yφ̇k

)2
∑

k (y
φ̇
k )

2
. (8.11)

It evaluates the effect on the GP prediction capability of permuting a feature x̄(l), hence
a low sensitivity S(l) implies that the l-th feature has a small impact on the prediction
performance and can be omitted. By iteratively omitting the least important feature and
then training a reduced model, the set of features can be reduced to the most important
ones.

In our setup, the whole x = [ξ,u,p] except the time component t of ξ has been used.
To obtain reliable results, the analysis averages over five training repetitions, each using
an SQ-kernel with 50 inducing points, shown in Fig. 8.3. Based on that, only the features
with a sensitivity value greater than 0.05 have been chosen, leading to the features vector

x̄ =
[
vx, vy, φ̇, δf ,

¯̇
δf , rgear

]
. (8.12)
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Figure 8.4. Mean and std of R2-score w.r.t. the no. of inducing points.

Figure 8.5. Mean and standard deviation of R2-score with different kernels.

8.1.4 Sparse Approximation

Since the computational load scales with the number of inducing points, it is important
to select the most appropriate compromise to minimize the number of points while
maximizing the estimation accuracy. In this sense, VFE approximation has been applied
as described in Sec. 3.2.1 and an evaluation of the performance while increasing the
number of points has been carried out (shown in Fig. 8.4), averaging over five repetitions.
The analysis highlighted that, after 45 inducing points, the performance increase tendency
is clearly diminishing. Based on this, 50 inducing points have been used for the GP
definition.

8.1.5 Kernel Selection

The kernel selection is a key aspect of GPR, since it defines the shape of the covariance
function, but it is not straightforward to determine which one is the most suitable in
the specific case. Thus, to choose the kernel, a comparison between the GP accuracy
obtained using the four ones introduced in Sec 3.1 has been accomplished, averaging over
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Figure 8.6. Circuit Paul Ricard with highlighted track configuration.

five repetitions. The best performing, both in terms of mean value and variance of the
R2 score, resulted in the Matern 3/2 kernel, as shown in Fig. 8.5.

8.2 Results

The LbNMPC controller designed based on the previously described model has been imple-
mented and tested in a high-fidelity industrial simulation framework, i.e. VI-CarRealTime
(VI-CRT) [109], on a Paul Ricard lap (depicted in Fig. 8.6). An analysis of its predic-
tion capabilities and closed-loop performance has been accomplished, highlighting the
enhancements of the proposed solution with respect to the nominal controller described
in Ch. 7.

8.2.1 Co-simulation environment

The co-simulation relies on VI-CRT, which is specifically designed to reproduce vehicles
behaviour for high-performance driving in real time [109]. Its simulation model has 14
degrees of freedom, 6 for the chassis and 2 for each wheel, and it includes comprehensive
dynamics of tire, chassis, suspensions, brakes, engine and transmission. The standard
demonstration car has been used for simulation.

The co-simulation is performed in Simulink, connecting a VI-CRT simulation block
with the LbNMPC controller. In particular, the controls δ̇f , γ̇t, γ̇b computed by the
controller are integrated and given as inputs to the simulation block. VI-CRT is used
to simulate at fsims = 1000Hz the dynamics of the vehicle while the control action is
updated at f ctrls = 50Hz.

8.2.2 Controller Setup

The NMPC controller relies on the NLP definition in Eq. (2.3), with the learning-based
dicsrete dynamics constraint described in Sec. 2.4.2 and specifically defined in Eq. (2.17).
In order to realize a fair comparison with the nominal controller presented in Ch. 7,
the nominal NMPC and the proposed LbNMPC have been implemented with the same
formulation. However, to obtain the best performances achievable by every model, the
weights have been optimized for the different models using a genetic algorithm specifically
designed to minimize lap-time [48]. An extensive analysis of the controller formulation
and the reasoning behind it are given in Ch. 7, while the main characteristics are reported
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here for completeness.
The cost function for both the LbNMPC and nominal NMPC has been defined as

hk = [β, γt · γb, ζ · γt, t, δ̇f , γ̇t, γ̇b, ϵslip, ϵerr, ϵgg]⊤,
hN = [β, γt · γb, ζ · γt, t, ey − erefy , ėy, eφ − erefφ + β, ėφ]

⊤.
(8.13)

where β = atan

(
vy
vx

)
is the sideslip angle of the vehicle and the other components

have already been introduced. The main characteristic is the presence of time t in the
cost function that supports the computation of a time-minimizing path given the track
bounds.

The constraints are defined as

rk = [δf , γt, γb, δ̇f , γ̇t, γ̇b, ϵslip, ϵerr, ϵgg, β + ϵslip, ey + ϵerr, (µx
ẍext
g

)2 + (µy
ÿext
g

)2 + ϵgg]
⊤,

rN = [δf , γt, γb]
⊤,

(8.14)
where the crucial ones are the second to last, which is used to avoid out-of-the-track
trajectories, and the last one, which makes the controller respect the required gg diagram,
i.e. the maximum combined longitudinal-lateral acceleration that can be induced by the
tire forces.

The bounds have been set as

rk = [− π

20
, 0, 0,−2,−10,−100,−2π,−105,−105,−105,− π

15
,−5, 0]⊤,

rk = [ +
π

20
, 1, 1,+2, 1.1,+100,+2π,+105,+105,+105,+

π

15
,+5, 1.9]⊤,

rN = [− π

20
, 0, 0]⊤, rN = [+

π

20
, 1, 1]⊤.

(8.15)

Explicit Runge-Kutta 4 integrator has been used, and HPIPM has been selected as QP
sparse solver [67] with RTI scheme [61]. The sampling space has been set as Ts = 2m

with N = 140 shooting points, allowing a prediction of 280m on track.

8.2.3 Prediction Capabilities

Since the NMPC applies a moving horizon strategy, it does not allow a straightforward
comparison between the prediction of the NMPC and the actual closed-loop trajectory,
as the latter is given by subsequent input recomputation. Thus, to assess the prediction
capabilities of the models, an actual driven trajectory3 has been compared with the
open loop integration of the nominal and the grey-box dynamics applying the actual
inputs for the length of a representative prediction horizon. An apparent enhancement
in predicting the future trajectory is obtained by the grey-box model, as shown in Fig.
8.7. In particular, the nominal model steers into the chicane much earlier and ends up
with a significant offset from the actual trajectory. The grey-box model steers in slightly
too early as well, but much later than the nominal one, and follows the actual trajectory
much better in the further course. Indeed, the lateral displacement ∆ey with respect to
the actual trajectory is more than halved, as shown in Fig. 8.8.

3The trajectory computed by VI-CRT is referred to as the actual one.
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Figure 8.7. Open-loop trajectory prediction for the first chicane.

Figure 8.8. Lateral displacement w.r.t. the actual trajectory in the open-loop trajectory predic-
tion for the first chicane.
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Figure 8.9. Detail of the closed-loop trajectory on the first chicane.

Figure 8.10. Detail of the velocity and sideslip angle during a closed-loop simulation on the
first chicane.

8.2.4 Closed-loop Performance

controller nominal NMPC LbNMPC

lap time in s 130.98 128.70

average comp. time in ms 12.01 18.76

Table 8.1. Average computation and lap time on the Circuit Paul Ricard.

The LbNMPC controller obtained by using the grey-box model has been used for
driving the vehicle in closed-loop, and compared with the nominal NMPC. As reported
in Tab. 8.1, the LbNMPC achieves a significantly lower lap time, i.e. a difference of
more than 2 seconds, while maintaining real-time capabilities at 50Hz4. In general, the
driven trajectory is quite similar, but the LbNMPC is able to travel the curves at a
higher velocity and with a slightly higher sideslip angle. A plot of these quantities in the
first chicane is shown in Fig. 8.9 and 8.10, where this behavior is clearly visible.

4The computational time has been obtained on a PC mounting an Intel Core i7-7700 CPU @ 3.60GHz.
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9
A LbNMPC for a Real Go-Kart in

Real-Time
In this Chapter, the definition of a Learning-based NMPC controller for an experimental
go-kart (depicted in Fig. 9.1) is described. The goal is to obtain a controller that is able to
drive the vehicle on a circuit, while also computing trajectory and velocity profile, relying
only on a data-driven model. Indeed, a pure black-box prediction model is adopted, as
described in Sec. 9.1, characterizing the accelerations by Gaussian Processes, exploiting
sparse GP approximations, both offline and online to obtain a real-time controller. Sec.
9.2 presents both a preliminary feasibility study in simulation to tune the most relevant
hyperparameters and the obtained results on the real go-kart vehicle in the experimental
setup.

Figure 9.1. The experimental go-kart platform.
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9.1 Model for Control Synthesis

Effectively characterizing 4-wheel vehicles is a challenging task, and several models have
been proposed, ranging from complex dynamics models to simple bicycle models. Each
formulation has advantages and disadvantages in terms of computational resources and
prediction capabilities. Moreover, a precise characterization of car dynamics involves
proper identification of tires, drag and friction forces, suspensions, steering systems, etc.,
which may require expensive and time-consuming specific measurements. Therefore, the
exploitation of IMU and localization data to infer the vehicle dynamics could remove
the necessity of these explicit analyses. The following dynamics are completely data-
driven, i.e. both the direct lateral acceleration v̇y and yaw acceleration θ̈ are entirely
characterized by two different Gaussian Processes. The longitudinal command of the
go-kart is based directly on the requested longitudinal acceleration, i.e. the desired
acceleration is transmitted to the control system of the electric motors on the wheels
that is responsible for actuation, so the characterization of the longitudinal acceleration
is not needed. Both simulation and experimental scenarios are considered, in order to
evaluate the strategy also in absence of noise and actuator dynamics. On the other hand,
the spatial domain reformulation has been mathematically described, characterizing the
velocity rotations, in order to define a time-minimization strategy. Finally, a previously
derived nominal dynamics model is presented for comparison.

9.1.1 Black-box Dynamics Model

The black-box dynamics model has been obtained as detailed in Ch. 3 and applying
the Subset of Data (SoD) and Nearest Neighbor (NN) approximations described in Sec.
3.2. In particular, the go-kart velocity and actual control state components (see Sec.
9.1.3) have been used as regressors for the GP training, i.e. x = [vx, vy, θ̇, γ, β, τv], and
a minimum σn = 0.15 has been imposed to enhance regularization properties, both for
simulation and experimental scenarios. The GP has then been trained in batch, using a
batch size of 100 data points, for 400 epochs and a learning rate of 0.001. Furthermore,
SoD reduction has been applied with threshold 1.0σ2n. To check the prediction capabilities
of the method that will be employed online, the NN strategy with T v̇yp = 30 and T θ̈p = 50

for v̇y and θ̈, respectively, has been applied on the obtained GP. Such dimensions, in
fact, allow balancing between the computational burden and prediction capabilities of
the controller. Moreover, the nominal model (described in Sec. 9.1.4) has been tested on
the same data.

Simulation

Due to the simulation environment structure, a nominal controller-driven run, i.e. using
the nominal model within the NMPC controller, was recorded and used for black-box
model training. As the simulation serves as a preliminary stage for the experimental setup
and manual driving was not possible due to hardware limitations, we used a closed-loop
control action to mimic human driving. This step allows for verifying the capability
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Figure 9.2. Trajectories of the data acquired for training.

of the GP to fit the acceleration data in a fully controlled environment and comparing
the accuracy with respect to the nominal model. The sparse GP after SoD reduction
contains 53 inducing points for both v̇y and θ̈, hence the local approximation with Tp
points precision is almost similar. The Root Mean Squared Error (RMSE) of both lateral
and yaw accelerations for nominal and black-box dynamics resulted to be very similar
(reported in Tab. 9.1), hence supporting the possibility to use the developed strategy for
the real platform.

Experimental

To excite the highly nonlinear and complex dynamics of the system, 10 human-driven
laps close to the vehicle’s maximum acceleration were performed. A total number of
around 5000 data points was recorded, comprising IMU, localization, and velocity data,
along with steering position and longitudinal acceleration commands. A depiction of the
acquired data in terms of path, velocity profiles and used commands is reported in Fig.
9.2-9.4. The travelled trajectories are quite similar, as expected in a track driving task,
but the different laps allow to give sufficient variety in the training data. Additionally, it is
worth mentioning that GPs do not include the curvilinear abscissa as a predictor variable.
Instead, they are capable of estimating accelerations by exploiting the system’s velocities
and inputs, which separates the vehicle’s dynamic behavior from its position on the track.
As a result, the various turns on the track present different operating conditions for the

Table 9.1. RMSE of lateral and yaw accelerations for nominal and black-box models (both using
SoD and NN reductions) in simulation.

model v̇y [m/s2] θ̈ [rad/s2]

nominal 0.62 1.10
black-box SoD 0.44 0.73
black-box NN 0.61 0.74
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Figure 9.3. Longitudinal velocity of the data acquired for training.
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Figure 9.4. Commands given to the go-kart of the data acquired for training.

system, making the 10 laps a sufficiently information-rich training dataset. The resulting
data, acquired at different frequencies depending on the sensor, were interpolated and the
IMU and velocity data were filtered through a Forward Backward Kalman Filter [112],
resulting in aligned and smooth acceleration data for the GP training, shown in Fig. 9.5.
SoD reduction led to sparse GPs of 98 and 114 points for v̇y and θ̈, respectively. The
resulting accelerations estimates, i.e. the mean of the GP for lateral ψv̇y and yaw ψθ̈
accelerations, are shown in Fig. 9.6 and 9.7, together with the real accelerations on the
go-kart. Both the ability of the model to fit the data and the approximation given by
the reduction are clearly visible. In particular, the NN strategy on a 6-dimensional space
is not always effective and may generate some spikes. At the same time, note that also
the nominal model is not able to always describe correctly the acceleration values, but
mostly the tendency. However, the Root Mean Squared Error (RMSE) of lateral and yaw
accelerations, reported in Tab. 9.2, is still comparable with the nominal dynamics ones.
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Figure 9.5. Direct lateral acceleration and yaw acceleration of the data acquired for training.

Table 9.2. RMSE of lateral and yaw accelerations for nominal and black-box models (both using
SoD and NN reductions) on the real go-kart.

model v̇y [m/s2] θ̈ [rad/s2]

nominal 1.68 1.28
black-box SoD 1.03 1.22
black-box NN 1.95 1.81

9.1.2 Spatial Reformulation

The complete model is comprehensive of the yaw eθ and lateral ey errors with respect
to the track centerline and the integration has been applied in spatial coordinates with
respect to the arc length s along the track, previously presented in [50,105]. This strategy
allows for using time as a minimization variable, setting the spatial constraints, and
eliminating the dependency on the velocity in the trajectory reference for the controller.
The kinematic relation between velocities and the angular and lateral errors can be
expressed as

ėθ = θ̇ − ζ ṡ,

ėy = vx sin(eθ) + vy cos(eθ),
(9.1)

where vx, vy, θ̇ are the longitudinal, lateral, and yaw velocities, respectively, ζ = 1
ρ is the

trajectory curvature, and ṡ = 1
1−ζ ey (ẋ cos(eθ)− ẏ sin(eθ)).

9.1.3 Complete Model

The problem has been formulated in velocity form, i.e., the inputs are the derivatives of
the actual go-kart commands. Hence, the state has been defined as

ξ = [vx, vy, θ̇, eθ, ey, γ, β, τv, t]
⊤, (9.2)
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Figure 9.6. Comparison of nominal and black-box models (both with SoD and NN reductions)
with respect to the real direct lateral acceleration v̇y on the real go-kart.

where γ, β, and τv are the actual commands to the go-kart, i.e. the desired longitudinal
acceleration, the steering angle, and the torque vectoring component, respectively, and t
is the time, while the input vector is

u = [γ̇, β̇, τ̇v, η]
⊤, (9.3)

where γ̇, β̇, τ̇v are the derivatives of the actual commands, and η is a slack variable
needed for implementing a soft constraint [110]. The resulting dynamics are expressed by

ξ̇ = [γ, ψÿ, ψθ̈, ėθ, ėy, γ̇, β̇, τ̇v, 1]
⊤. (9.4)

Finally, the state vector x is differentiated w.r.t s using the chain rule as

ξ′ =
dξ

ds
=
dξ

dt

dt

ds
=
dξ

dt

1

ṡ
=
ξ̇

ṡ
, ∀ṡ ̸= 0, (9.5)

thus defining the integration with respect to the curvilinear abscissa s.

9.1.4 Nominal Model

A complete dynamics model was already available and has been used for comparison. It
is based on a three-wheel vehicle and includes different important dynamics, such as

• an identified Pacejka’s magic formula for lateral tire forces,

• an approximation of the adherence ellipsoid for combined tire behavior,

• longitudinal load transfer dynamics.

In particular, the Pacejka’s formulas for front and rear wheels are the core of the model,
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Figure 9.7. Comparison of nominal and black-box models (both with SoD and NN reductions)
with respect to the real yaw acceleration θ̈.

as they require specific tests to correctly identify the shape of the curves. Further details
on the formulation can be found in [113].

9.2 Results

In this section, the results obtained are presented: a preliminary simulative trial allows
the viability of the procedure to be analyzed in a fully controlled environment, while
the experimental scenario illustrates the actual validation of the strategy. The controller
must determine both the trajectory and the velocity profile in the prediction horizon,
knowing the track bounds, while the time-minimization is enforced in the cost function.
This formulation allows adapting to unexpected behaviors of the vehicle since the desired
path and speed are recomputed at every time step. The prediction capabilities are also
investigated, considering the one-step ahead velocity prediction error, i.e. êq̇ = q̇ − ˜̇q,
where ˜̇q is the one-step-ahead velocity prediction and q̇ is the real velocity of the go-kart.
To fulfill hard real-time requirements, the Subset of Data and Nearest Neighbors local
approximations described in Sec. 3.2 have been adopted.

Through the whole section, the proposed LbNMPC based on black-box modeling and
an NMPC based on nominal dynamics are compared, referring to the two controllers as
black-box and nominal strategy, respectively.

9.2.1 Controller Setup

The NMPC controller relies on the NLP definition in Eq. (2.3), with the learning-based
continuous dynamics constraint described in Sec. 2.4.3 and specifically defined in Eq.
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(2.23). The cost function for the LbNMPC is defined as

hj(ξj ,uj) = [γ̇, τ̇v, β̇, η]
⊤,

hN (ξN ) = [t, eψ − erefψ , ey − erefy ]⊤.
(9.6)

The input terms allow a smooth control action, while the objective variable time t

supports the computation of a time-minimizing path and its weight can be used to tune
the importance of the lap time performance. The slack variable η is used to define the
soft constraint on the track bounds violations. The terminal cost terms related to errors
eθ and ey are adopted to enforce reasonable dynamics of the vehicle at the end of the
prediction horizon. The trajectory to be used for this task has been precomputed by
minimizing the path curvature. To maintain the same configuration in all the tests and to
allow fair comparisons of the results in the different cases, the controller tuning has been
accomplished through an empirical analysis, resulting in the following weight matrices

W = diag([2 · 10−3, 5 · 10−2, 10−2, 5 · 101]),
WN = diag([10−1, 103, 102]).

(9.7)

The constraints are defined as

rj = [vx, eθ, γ, β, τv, γ̇, τ̇v, β̇, η, ey + η]⊤,

rN = [vx, eθ, γ, β, τv, ey + η]⊤,
(9.8)

where the constraints on vx and eθ are used to exclude singularities in the model
kinematics and numerical issues, the ones on the states γ, β and τv are the integration
of the computed inputs and represent intrinsic bounds of the actual vehicle commands,
while those on γ̇, β̇ and τ̇v are added in order to improve the smoothness of the computed
inputs and can be used to tune the aggressivity of the NMPC driving commands. Finally,
the constraint on η allows setting a maximum track bound exceed and the one on ey
defines the width of the track. The bounds are hence defined as

r = [2.5,−π/2,−4.2,−π/2,−1.7,−103,−102,−101,−5, elby ]
⊤,

r = [15,+π/2,+2,+π/2,+1.7,+103,+102,+101,+5, euby ]⊤,
(9.9)

where elby and euby are the track bounds updated online based on the current position,
slightly reduced by 0.5m to effectively implement the soft constraint.

HPIPM [67] has been used within LbMATMPC as QP sparse solver and Real-Time
Iteration (RTI) scheme [69] has been adopted. By using the RTI scheme, local convergence
of the algorithm is ensured by RTI guarantees on contractivity and boundness of the loss
of optimality compared to optimal feedback control [68,69]. The integration step has been
set as Ts = 0.3m for N = 80 steps, allowing a prediction horizon of 24m, and a reduction
of the shooting points has been obtained through a non-uniform integration grid of
r = 33 points distributed as G = {1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 20, 23, 26, 29, 32, 35, 38,
41, 44, 47, 50, 53, 56, 59, 62, 65, 68, 71, 74, 77, 80}. The grid allows accurate control actions
to be computed at the beginning of the horizon while reducing the computational burden
and enabling less precision for subsequent points in the future. The technique, with the
number of data points chosen for sparse GPs, i.e. TNNv̇y

= 30 and TNN
θ̈

= 50 for v̇y and θ̈,
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Figure 9.8. The simulation environment in Gazebo.

respectively, allows the controller to run at a control frequency fc = 20Hz on the real
go-kart.

In such complex experimental scenarios, theoretical guarantees on the stability of the
algorithm are hardly achievable. Moreover, the adoption of a black-box model identified
in the continuous domain and then discretized further complicates the mathematical
description. However, our approach empirically supports the recursive feasibility of NLP
by adopting the following expedients:

1. a soft constraint on ey, which is the only constraint where the model uncertainty is
emphasized, that, by marginally reducing the bound value, allows for a collision-free
trajectory;

2. a sufficiently long prediction horizon that includes the next curve, allowing the
controller to compute a velocity profile compatible with the maximum lateral
acceleration and the track boundaries;

3. a final reference with high weights on lateral and angular errors ey and eψ, exploiting
the well-known effect of the final cost to lead to conservative behavior.

9.2.2 Preliminary simulation study

A preliminary study in simulation has been accomplished in order to validate the feasibility
of the developed strategy and identify a tuning set of the hyperparameters, to be used as
a starting point for the experimental scenario in a completely controllable environment.
In particular, the control algorithm is forced to fulfill real-time requirements while no
sensor noise and actuation delays are present, allowing setting the GP number of point
TNN , the prediction horizon length N , the integration step Ts and the grid G.

A previously developed simulation environment [114], [115], based on C++ and Gazebo
within ROS (Robot Operating System) [116], has been used for this phase (see Fig. 9.8).
It uses the same communication protocol and reproduces the same channels as the real
go-kart, allowing for a practical test of the controller as it would be in the experimental
scenario.
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Figure 9.9. Comparison of trajectory obtained by the (Lb)NMPC using the nominal and black-
box models in simulation.
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Figure 9.10. Comparison of longitudinal velocity obtained by the (Lb)NMPC using the nominal
and black-box models in simulation.

The LbNMPC controller has been run in the simulation framework, adopting the same
configuration that will be tested on the real go-kart, except for the black-box prediction
model within. As expected, the black-box model is fairly precise in predicting online
the one-step-ahead velocities for both vy and θ̇, as shown in Tab. 9.3. In particular, the
error is in the same order of magnitude as the nominal model, counting half the error for
vy and slightly lower for θ̇, confirming that the GPs are actually describing the system
dynamics, in average, accurately. This fact is reflected in a superior closed-loop behavior
of the black-box strategy in some curves, but yet worse in others. Indeed, the driven
paths are quite similar (see Fig. 9.9), while the turns are traveled at different velocities
(shown in Fig. 9.10), leading to nearly the same lap-time overall, i.e. 26.80s for black-box
model and 26.55s for the nominal model. The obtained behaviour is relevant in the
perspective of using the scheme in the experimental environment since it illustrates the
validity of the proposed approach.
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Figure 9.11. The real go-kart platform driving autonomously.

9.2.3 Experimental Results

The LbNMPC controller based on the model presented in Sec. 9.1.1 has been implemented
and tested on the real go-kart platform. An indoor 180m long track has been used as
a test bench, comparing the performance obtained using the black-box modeling with
respect to the nominal ones. In the experimental scenario relevant approximations for
the data-driven modeling have been observed, therefore reducing prediction capabilities.
In particular, the higher complexity of the learned functions leads to higher errors when
applying the NN local approximation (as reported in Tab. 9.2). In fact, the real scenario
pose highly complex concerns due to the intrinsic uncertainty in the sensor readings, the
needed filtering of the signals, and the slight environment changes (e.g., temperature,
humidity, etc.) in different tests. The mean time for solving the LbNMPC problem
resulted in 28.53ms, while it resulted in 10.21ms for the nominal NMPC one.

Go-kart Platform and Experimental Environment

The go-kart is based on a RiMO SiNUS iON electric rear wheel-driven go-kart platform.
The vehicle is equipped with different sensors for state estimation and localization such

Table 9.3. RMSE of online one-step-ahead velocity predictions êq̇ for nominal and black-box
model in simulation.

model vy [m/s] θ̇ [rad/s]

nominal 4.03 · 10−2 4.89 · 10−2

black-box 2.04 · 10−2 4.57 · 10−2
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Figure 9.12. Comparison of trajectory obtained by the (Lb)NMPC using the nominal and
black-box models on the real go-kart.

as IMU and LiDAR. It mounts a custom computer on the back, i.e. an Intel Xeon
D-1540 @2.00Ghz CPU with 8 cores. The computer interfaces with the sensors and
the actuators, then it processes the data and runs the localization, mapping, and state
estimation modules while executing the controller. The localization system is based
on a complementary filter that merges the accelerations from the IMU and the Lidar
measurements, matching the sensed nearby obstacles to obtain the position of the go-kart
on the track. The track is a 180m long custom-made path defined by safety barriers and
tires inside an industrial hangar. The communication between the different frameworks
is done using ROS which gives a structured communication layer above the Ubuntu
operating system.

Results on Track

The LbNMPC presented in the previous section has been employed to drive the go-kart
along the track, depicted in Fig. 9.12, obtaining comparable results with respect to the
nominal strategy. Specifically, the driven trajectories resulted very similarly over most of
the track, with slight differences in specific parts. The path, velocity, sideslip and controls
are shown in Fig. 9.12-9.15. In particular, the black-box approach travels the bottom-left

Table 9.4. RMSE of online one-step-ahead velocity predictions êq̇ for nominal and black-box
model on real go-kart.

model vy [m/s] θ̇ [rad/s]

nominal 7.63 · 10−2 5.97 · 10−2

black-box 9.80 · 10−2 8.05 · 10−2
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Figure 9.13. Comparison of longitudinal velocity obtained by the (Lb)NMPC using the nominal
and black-box models on the real go-kart.
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Figure 9.14. Comparison of sideslip obtained by the (Lb)NMPC using the nominal and black-
box models on the real go-kart.
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Figure 9.15. Comparison of controls computed by the (Lb)NMPC using the nominal and black-
box models on the real go-kart.
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Figure 9.16. Comparison of gg-diagram (longitudinal vs lateral accelerations) obtained by the
(Lb)NMPC using the nominal and black-box models on the real go-kart.
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Figure 9.17. Detail of the trajectory travelled by the LbNMPC controller, highlighting the
reduced bound on lateral error during the top left curve.

turn (at 160− 180m) with higher velocity, controlling a high sideslip, gaining speed over
the whole bottom straight. The two schemes obtain similar performance at the top-left
corner (120− 150m) and between the first and the second U turn (at 40− 60m), with
different strategies. In both cases, the black-box controller is cutting the curve more
than the nominal, travelling less distance but slightly lowering the speed at the curve
center. On the other hand, in the top-right corner (at 80− 100m) the center of the turn
is travelled at a lower velocity by the black box strategy, making the whole top straight
with a speed gap with respect to the nominal controller. This behaviour results in a lap
time of 29.3s for black-box, that is 3.75% slower than the nominal lap time, i.e. 28.2s.
Interestingly, both models resulted in similar behavior under sideslip conditions (Fig.
9.14), with the black-box model allowing to stabilize the vehicle after an oversteer with a
side slip of 15deg during the exit of the bottom-left curve, at 160− 180m. The actual
commands sent to the go-kart using the different modeling, shown in Fig. 9.15, are mostly
consistent, except for the counter-steering actions at 50m and 170m for the black-box
controller and at 90m for the nominal one. The maximum accelerations are similar for
both control strategies (Fig. 9.16), with peaks of ±1g for lateral and [+0.2,−0.6]g for
longitudinal (i.e. the longitudinal maximum accelerations given by motor and braking
system) respectively. In this framework, the nominal model is more precise on average
in predicting velocities with respect to the black-box one, i.e. velocity errors around
25% lower, as reported in table 9.4: indeed, the GP approximations needed to obtain a
real-time controller led to a relevant reduction in the prediction capabilities. However,
the obtained system representation is sufficiently informative to effectively complete the
driving task on the experimental go-kart. It is expected that, it could be further improved
by providing more computing resources.
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Figure 9.18. Detail of the lateral error value and its reduced bound during the top left curve.
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Figure 9.19. Detail of the slack variable value during the top left curve.
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Empirical Feasibility Validation

The expedients employed to empirically achieve recursive feasibility, i.e. avoiding hitting
track boundaries, of the NLP described in Sec. 9.2.1 have been validated to establish
their effectiveness. In particular, the effect of soft constraint on the lateral error can be
clearly observed in the top-left turn of the track. In Fig. 9.17-9.19 details of trajectory,
lateral error, and slack variable values are shown. While travelling the curve, the go-kart
is very close to the left bound of the track, and the slack variable is needed to ensure the
feasibility of the problem, while, at the same time, pushing the controller to move away
from the limit. In fact, once the reduced bound has been overcome, the slack variable is
activated, avoiding both the controller to fail and the go-kart to crash.
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10
Conclusions and Further

Development
The thesis discusses the implementation of Learning-based Nonlinear Model Predictive
Control methods for both two-wheel and four-wheel vehicles. The research focuses mainly
on the development of grey-box and black-box dynamics models for vehicle control, with
specific emphasis on meeting real-time constraints. Gaussian Process Regression has
been used to model the data-driven components of the dynamics due to the possibility
to employ dimensionality reduction techniques, both offline and online, while preserving
model characteristics, e.g. continuity and smoothness. Various reduction techniques were
explored, including feature selection procedures, sparse and local GP approximations.
Moreover, the tuning of a NMPC virtual rider through a genetic algorithm has been
accomplished, specifically considering the trade-off between performance and sensitivity
to parameter changes.

10.1 Conclusions

The results demonstrate the effectiveness of the previously mentioned methodologies in
the automotive framework. Indeed, GPs resulted suitable for defining control models for
both two-wheel and four-wheel vehicles, allowing real-time feasibility through tailored
feature selection procedures and offline and online sparse GP approximations. Moreover,
the tailored strategy for tuning a NMPC for a virtual motorcycle effectively revealed the
trade-off between high-performance and robust configurations of the controller, allowing
to exploit the most convenient tuning for the specific context.

10.1.1 Two-wheel vehicles

On the learning dynamics side, the development of a grey-box model significantly enhances
the tracking performance of an NMPC controller for a virtual motorcycle. In particular,
a grey-box model obtained by offline Variational Free Energy (VFE model) reduction
with 20 points, and a grey-box model obtained by online Transduction Learning (TL
model) with 10 points have been compared with the nominal physics-based model. Both
the proposed models highly improve the closed-loop performance, while highlighting the
trade-off between computational burden and input consistency. Indeed, the TL model,
based on only 10 points, increases the solver time by 33% with respect to the nominal
model, while the VFE model, based on 20 points, needs 77% more time, but the control
inputs obtained with TL model exhibit significant high-frequency vibrations.
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On the learning design side, the application of an algorithmic tuning procedure for a
NMPC virtual rider demonstrates the effectiveness of the approach, finding configura-
tions that perform better than a previously published manual tuning. Furthermore, a
comparison on closed-loop performance of the fastest with respect to the most robust
configurations illustrates the regularization effect induced in the control aggressiveness
by the sensitivity requirements. Finally, an analysis carried on by varying the weights in
the neighborhood confirms the suitability of the sensitivity definition, highlighting the
robustness induced by the chosen configuration.

10.1.2 Four-wheel vehicles

Firstly, it has been verified that the integration of a learning-based component over the
physics-based dynamics in a grey-box characterization improves the efficacy of a nonlinear
model predictive contouring controller for lap-time minimization in a high-performance
virtual car. In particular, a thorough analysis has been conducted, evaluating the number
of inducing points in the sparse approximation, the kernel function, and the feature
selection, leading to the most suitable Gaussian Process characterization. The obtained
LbNMPC controller outperforms the nominal NMPC both in prediction capabilities and
closed-loop performance, maintaining the real-time property.

Secondly, the implementation of a LbNMPC approach using a black-box model for a
real go-kart demonstrates the strategy applicability in a challenging, purely data-driven
model scenario. In particular, the formulation exploits IMU and localization data collected
while a human is driving to obtain GP models of the dynamics, eliminating the need
for an a priori known dynamics model. The computational burden of this method has
been addressed by reducing the GP size, exploiting local approximations, and applying
fast NMPC solutions. The strategy achieved satisfactory results on a 180m long indoor
track, comparable to a NMPC based on a detailed nominal dynamic model, although
with slightly lower performances, limited by the needed approximations.

10.2 Further development

On one side, research inquiry in the LbNMPC domain for two-wheel vehicles has recently
commenced, thus offering substantial avenues for further exploration. For instance,
employing black-box modeling techniques for a LbNMPC virtual rider emerges as an
interesting perspective. This is particularly pertinent due to the inherent complexities
associated with developing precise motorcycle models, which pose considerable challenges.

On the other side, the LbNMPC research on four-wheel vehicles is extensive and
expanding, and further development could include analyses of different reduction methods
and local approximations, beyond the usage of models leveraging the online data acquired
while controlling the system. Moreover, the probabilistic models can be exploited to
quantify uncertainty and satisfy the constraints with a given probability by chance
constrained optimization. The latter is an emerging technique that is currently being
studied and gaining increasing scientific interest due to the possibility of ensuring safety
in unknown environments, and it is the privileged direction for further development.
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A
LbMATMPC toolbox

In this chapter, the toolbox LbMATMPC, that implements Learning-based Nonlinear Model
Predictive Control in the Lerning Dynamics framework, is presented. It is an extension
of a previous developed toolbox, i.e. MATMPC [117], that allows to implement NMPC
controllers. The open-source code is available at https://github.com/pi-cos/MATMPC/
tree/LbMATMPC.

A.1 Algorithm

MATMPC is an open source software built in MATLAB for implementing NMPC strategies.
It is designed to facilitate modelling, controller design and simulation for a wide class of
NMPC applications. MATMPC has a number of algorithmic modules, including automatic
differentiation, direct multiple shooting, condensing, linear quadratic program (QP) solver
and globalization.

In LbMATMPC, i.e. Learning-based MATMPC, the possibility to use grey- or black-box
GP-based models has been introduced. At every discrete time instant k of the control
task, a NLP is formulated by applying direct multiple shooting [60] to an Optimal Control
Problem (OCP) over the prediction horizon, which is divided into N shooting intervals
[t0|k, t1|k, . . . , tN |k], as expressed in Eq. (2.3). To include the discrete dynamics, the
continuity constraint (2.3c) and its QP approximation is modified as detailed in Sec.
2.4.2.

A.1.1 Learning-based features

In the following, peculiar features related to the GP modelling are described, while
specifics on the available standard NMPC features can be found in [117].

Within the toolbox, it is possible to perform the GPR through the gpr-pytorch library
in the MATLAB framework, given either model mismatch or input-output measurements.
The procedure automatically computes the information needed for the GP prediction
within the NMPC problem. At the current stage of development, it is possible to
set different regularization values to avoid numerical issues. We implemented this
feature allowing the possibility of setting a minimal value of σn. Moreover, we already
implemented two strategies to limit the computational burden, aimed at reducing the
number of samples. The first consists of dowsampling data with constant step. The
second, named Subset Of Data (SoD), reduces the data set discarding less informative
samples, according to a tunable relevance threshold. In the implementation, Squared
Exponential kernel is defined, and any custom kernel definition can be used within the
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NMPC once its analytical expression is given. Besides, the GP structure within the
NMPC allows to update the GP parameters online, without any re-compilation of the
code.

During the problem solution, all the involved quantities are accessible within the
NMPC structure, at the end of every SQP iteration, and those specifically dealing with
GP-based integration are:

• x_gp ∈ Rnx×(N+1), results of the integration from GP, i.e. ϕ̄(xj ,uj) ∀j ∈ [0, N ]

• x_ode ∈ Rnx×(N+1), results of the integration from ODE, i.e. ϕ̃(xj ,uj) ∀j ∈ [0, N ]

• A_gp ∈ Rnx×Nnx , state transition matrix for GP component, i.e. Aj,GP ∀j ∈
[0, N − 1]

• A_ode ∈ Rnx×Nnx , state transition matrix for ODE component, i.e. Aj,ODE ∀j ∈
[0, N − 1]

• B_gp ∈ Rnx×Nnu , control transition matrix for GP component, i.e. Bj,GP ∀j ∈
[0, N − 1]

• B_ode ∈ Rnx×Nnu , control transition matrix for ODE component, i.e. Bj,ODE ∀j ∈
[0, N − 1]

Finally, note that the LbNMPC formulation needs only the analytical definition of the
GP estimate function ϕ̄(x,u) that can be implemented by the user, and the GPR can
also be accomplished by any other chosen tool.

A.1.2 Computational burden

An important aspect within the NMPC strategy is the computational burden of the
NLP problem solution, as it has to be obtained at every control instant. For this reason,
the required time needed for computing each GP-related component of the problem
formulation for a generic GP model in the form described in Sec. 3.1 has been analyzed,
and the results are summarized in Tab. A.1. The computations, as expected, results to
be linear with respect to the no. of training points of the GP. Interestingly, the time
required is affine (constant + linear) w.r.t. the dimension of the GP training points. Note
that each of this computation has to be accomplished for every instant in the prediction
horizon, hence, e.g., having 400 5-dimensional training point with a prediction horizon
of N = 100 instants, the total time required for the GP-related computations is around
20ms on a PC with Intel Core i7-3770@3.50GHz CPU.

A.2 Experimental trial

In this section, experimental results using grey-box modeling within LbMATMPC on a real
Furuta Pendulum (depicted in Fig A.2) are presented.
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Table A.1. The time required for the computation of each GP-related component w.r.t. the
no. of training points for the GP (T ) on a PC with Intel Core i7@3.50GHz CPU in
microseconds.

T 10 20 50 75 100 150 200 300 400
GP evaluation 5.9 8.1 10.3 15.0 18.1 24.5 31.4 44.8 59.9
GP jacobian 7.2 9.4 13.2 18.8 23.2 31.8 41.9 60.8 79.1
GP adjoint sens 6.2 8.8 11.5 18.7 22.9 38.3 41.3 60.2 78.2
Total 19.3 26.2 35.0 52.9 64.3 94.7 114.7 165.7 217.3
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Figure A.1. The time required for the computation of each GP-related component w.r.t. the
no. of training points for the GP (T ) on a PC with Intel Core i7@3.50GHz CPU.

A.2.1 Nominal Dynamics

For the grey-box model, the nominal dynamics used within the NMPC is given by a
model of the Furuta pendulum with generalized coordinates

q = [α, θ]T , (A.1)

where α is the shaft angle and θ is the pendulum angle (as 0 when pointing upwards).
The equations of motion are

M(q) q̈ + C(q, q̇) +G(q) = Bτ, (A.2)

with

M =

[
m2L1 + Izz m2L1l2cos(θ)

m2L1l2cos(θ) m2l
2
2

]
, C =

[
−m2L1l2sin(θ)θ̇

2

−m2l2sin(θ)θ̇α̇

]
,

G =

[
0

−m2gl2sin(θ)

]
, B =

[
1

0

]
,

(A.3)
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Figure A.2. The Furuta pendulum used in the experiments.

Table A.2. The Furuta pendulum nominal quantities.
m2 L1 Izz l2 Nm kt Ra Rs ke

0.21kg 0.145m 0.0044kgm2 0.305m 70 7.68·10−3Nm
A 2.6Ω 0.5Ω 7.68·10−3 V s

rad

where L1 is the shaft length, m2 is the pendulum mass, l2 is the position of the pendulum
center of mass along its axis, Izz is the pendulum inertia, and g is the gravity acceleration.
The torque expressed on the shaft is described by

τ = Nm
kt

(Ra +Rs)
(udrv − ue), (A.4)

where v is the control input, udrv = kdrvv is the driver output voltage, ue = keNmα̇ is
the back electromotive force, Nm is the motor-shaft reduction ratio, ke, kt, kdrv, Rs, Ra
are motor constants and armature resistances.

A.2.2 Grey-box model

The dynamics of the real pendulum presents different unmodeled non-linear behaviours,
such as friction, motor electrical dynamics, control application delays, etc., that make
the NMPC predictions inaccurate.

The GPR procedure described in Ch. 3 has been employed setting the minimum
value of normalized σn to 0.05 and SoD active. The model-mismatch data have been
obtained applying the NMPC strategy with the nominal dynamics model, and exploiting
the computed one-step-ahead predictions. We derived a grey-box model in the form of
Eq. (2.16).

A.2.3 Controller Setup

The proposed strategy has been implemented to control the Furuta pendulum, where the
task is to track with the shaft a square wave of ±45deg while maintaining the pendulum

128



A.2 Experimental trial

0 5 10 15 20 25 30
-2

0

2

 [r
ad

]

Reference
Nominal model
Grey-box model

0 5 10 15 20 25 30
-0.1

0

0.1

 [r
ad

]

0 5 10 15 20 25 30
Time [s]

-5

0

5

v 
[V

]

Figure A.3. The shaft angle α, pendulum angle θ and the voltage input v of the Furuta
pendulum, with and without the GP modeling.

in the upright position. The control frequency is 20Hz, the GP has been trained with
T = 400 points and the prediction length has been set as N = 70. The mean and
maximum computational time required for solving the problem resulted in 20.27ms and
24.94ms, respectively, on PC with Intel Core i7-9700@3.0GHz CPU.

The NMPC model has been formulated in velocity form, i.e. defining the control input
u = v̇ and the state ξ = [α, θ, α̇, θ̇, v]T . MATMPC has been set to use HPIPM as QP sparse
solver [67] and Real-Time Iteration scheme [61]. The adopted cost function is

h(ξ, u) = [α, θ, α̇, θ̇, v, v̇]T , (A.5)

with weight matrix W = diag([5 ·101, 5 ·102, 10−3, 10−3, 10−6, 5 ·10−2]), and the constraint
function

r(ξ, u) = [α, v, v̇]T , (A.6)

with bounds r = [−π,−10,−200]T and r = [+π,+10,+200]T .

A.2.4 Results

The dynamics of the real pendulum presents different unmodeled non-linear behaviours,
such as friction, motor electrical dynamics, control application delays, etc., that make
the NMPC predictions inaccurate. Fig. A.3 shows how the introduction of the grey-box
model considerably enhance the control performance of the system, highly reducing the
overshoot in the shaft position. Moreover, the prediction error on the system velocities
has been significantly lowered, as depicted in Fig. A.4 and reported in Tab. A.3, where
Root-Mean Squared Error (RMSE) of one-step-ahead prediction errors are stated.
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Figure A.4. The one-step-ahead-prediction errors on the shaft α̇ and pendulum θ̇ angular
velocities, with and without the GP modeling.

Table A.3. RMSE of the NMPC predictions for the furuta pendulum.
nominal grey-box

|∆α̇| [rad/s] 1.6 · 10−1 0.4 · 10−1

|∆θ̇| [rad/s] 7.9 · 10−2 4.5 · 10−2

A.3 Simulative trials

We applied LbMATMPC on a simulated inverted cart-pole system. To consider the effects
of model mismatch, in the nominal model the length of the pendulum is incorrect
(ltrue = 0.5m vs lnom = 0.8m). Moreover, a Monte Carlo analysis of the control
performance with different number of training points and different modeling is presented.

The model of the system is described in [118] and depicted in Fig. A.5. The state is

ξ = [q, q̇]T = [p, θ, v, ω]T , (A.7)

where p is the cart position, θ is the pendulum angle (0 in the upright position), and v
and ω are the respective velocities, while the input u is the force applied to the cart F .

A.3.1 Controller setup

The NMPC tool MATMPC has been set to use HPIPM as QP sparse solver [67] and RTI
scheme [61] with control frequency fc = 40Hz and prediction horizon N = 80. The cost
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Figure A.5. Model of the inverted cart-pole system.

Table A.4. RMSE of the NMPC predictions in the swing-up meaneuver.
nominal grey-box black-box correct

|∆v| [m/s] 4.0 · 10−3 1.8 · 10−3 4.0 · 10−3 1.1 · 10−3

|∆ω| [rad/s] 11.1 · 10−2 2.8 · 10−2 2.2 · 10−2 1.7 · 10−2

function has been defined as

h(ξ, u) = [p, θ, v, ω, F ]T , (A.8)

with weight matrix W = diag([10, 10, 0.1, 0.1, 0.01]).

A.3.2 Single swing up maneuver

A comparison on the controller performance during the swing up maneuvers has been
performed with four different model definitions: (i) nominal model, (ii) grey-box model,
(iii) black-box model, (iv) correct analytical model. For the grey-box model, the GP has
been trained on the one-step-ahead prediction errors q̇k− ˆ̇qk of the nominal model NMPC,
while the black-box model has been obtained training the GP on the velocity increments
q̇k+1 − q̇k, both using 200 training points and the minimum value of normalized σn as
0.01. The systems have been then formulated in the form (2.16).

Fig. A.6 shows the capability of both the grey-box and the black-box model NMPC
to complete the task with performance very close to the correct analytical model, both
in terms of control effectiveness and input usage. Moreover, the prediction error is
highly reduced in both cases, comparable with the correct analytical model (where only
linearization error is present), as shown in Fig. A.7 and reported in Tab. A.4.

A.3.3 Monte Carlo analysis

A more comprehensive evaluation of the control performance has been carried out by
choosing 100 random configurations of training points with incremental dimensions
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Figure A.6. Swing up of the inverted pendulum using nominal parameters for MPC model,
grey-box GP model, black-box model and correct parameters for MPC model.

(between 20 to 199 training points). The following performance index has been defined

c =
∑
k

[
1− exp

(
−
(
(
θk
lθ
)2 + (

pk
lp
)2
))]

, (A.9)

with lθ = π, lp = 1, that accounts for the total displacement from the target both in
pendulum angle and in cart position. The results have been depicted in Fig. A.8, where
only the completed1 task in a confidence interval of [10, 90]% have been considered, while
percentage of the task completion have been reported in Fig. A.9. The grey-box model
performs remarkably better for a low number of training points, where, in addition, the
black-box model completes the task in only 10% of the trials. For higher number of
training points, the difference between grey-box and black-box models gets less evident,
and with 199 points both reach a performance index very close to the correct analytical
model. Note that the whole controller configuration has been maintained the same in all
the trials, and, in particular, the minimum value of normalized σn, i.e. the regularization
parameter, has been set the same for both grey-box and black-box models. This parameter
can affect significantly the predictions capabilities of the model, and, in case there is no
measurement noise, a black-box model could possibly obtain better performances with
lower σn.

1the task has been considered completed if no numerical issues during the NMPC solution arised, and,
in the last second of the simulation, the pendulum angle was in the range θ ∈ [−10,+10]deg.
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Figure A.7. The one-step-ahed prediction error using nominal parameters for MPC model,
grey-box GP model, black-box model and correct parameters for MPC model.

Figure A.8. The cumulative cost using nominal parameters for MPC model, grey-box GP model,
black-box model and correct parameters for MPC model. Solid line indicates the
mean of the cost obtained using the model, while the coloured area represents the
[10, 90]% percentiles.
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Figure A.9. Percentage of task completion for grey-box and black-box models w.r.t the number
of training points T .
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B
Comparison of Learning-based

Continuous vs Discrete Dynamics
The learning-based continuous dynamics presented in Sec. 2.4 has been validated in an
experimental scenario, and compared with the learning-based discrete dynamics usually
employed in this framework [46].

In the following, the controller setup is described and the GPR procedure and data
gathering are illustrated. A specific comparison between continuous and discrete GP
modeling is obtained and the possibility to use the learned continuous model to implement
different sampling times and integration grids is exhibited.

For the grey-box model, the nominal dynamics used within the NMPC is given by a
model of the Furuta pendulum as described in A.2.1.

B.1 Controller Setup

In order to fairly compare different methods, the same setup for the NMPC controller
has been maintained. The task is to hold the Furuta pendulum in the upright position,
while tracking with the shaft a square wave of ±45deg.

The NMPC model has been formulated in velocity form, i.e. defining the state
ξ = [α, θ, α̇, θ̇, v]T and the control input u = v̇. HPIPM has been used within MATMPC
as QP sparse solver [67] and RTI scheme [69] has been adopted. Moreover, a slack
variable s has been used to define a soft constraint on the shaft angle α.

The constraint function has been defined as

r(ξ, u) = [α+ s, v, v̇, s]T , (B.1)

with bounds

r = [−π,−10,−200,−π]T , (B.2)

r = [+π,+10,+200,+π]T . (B.3)

The adopted cost function is

h(ξ, u) = [α, θ, α̇, θ̇, v, v̇, s]T , (B.4)

with weight matrix W = diag([5 ·100, 101, 10−3, 10−3, 10−6, 5 ·10−3, 101]). At the terminal
stage, rN (ξN ), h(ξN ) and WN are set as before, excluding the inputs releted terms.
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Figure B.1. The real and nominal accelerations data gathered during the nominal NMPC run.

B.2 Data Acquisition and Gaussian Process Regression

Firstly, the task using NMPC with nominal dynamics at 20Hz has been accomplished.
Starting from αk, θk, α̇k, θ̇k, vk measurements, the nominal accelerations ˜̈q have been
computed inverting the nominal dynamics model presented in Eq. (A.2), i.e.

˜̈q =M(q)−1 [Bτ − C(q, q̇)−G(q)] . (B.5)

Moreover, real accelerations α̈, θ̈ of the system have been computed by central difference
as

q̈k =
q̇k+1 − q̇k−1

2 · Ts
. (B.6)

Due to the absence of frictions, control application delays, electrical dynamics, etc., in
the nominal model, the computed accelerations are inaccurate, as shown in Fig. B.1. The
difference between real and nominal accelerations q̈ − ˜̈q have been used as target for the
GP yGP . The GP has been trained with T = 600 points and setting the minimum value
of normalized σn to 0.1. The GPR procedure described in Sec. 2.4 has been employed,
exploiting Subset of Data (SoD) method [85], to derive a model of the acceleration errors
(shown in Fig. B.2), which resulted to have 49 inducing points. Using the obtained GP,
a model in the form (2.21) has been defined.
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Figure B.2. The acceleration difference yGP = q̈ − ˜̈q for the data gathered during the nominal
NMPC run and their GP estimation ψq̈.

B.3 Results

A test of continuous vs discrete grey-box modeling is presented, using both control
frequencies 20Hz and 50Hz. The nominal NMPC is also employed for comparison. The
discrete modeling is obtained as described in [53] and Ch. A, for the two different control
frequencies. In particular, a GP ϕ̄Dq̇ (ξk,uk) has been trained on the velocity prediction
errors and the resulting grey-box model is

ξk+1 = ϕ̃(ξk,uk) + ϕ̄
D(ξk,uk), (B.7)

where ϕ̃ is the integration of the nominal dynamics and ϕ̄D =
[
ϕ̄Tq̇ · Ts2 , ϕ̄

T
q̇

]T
and ϕ̄q̇ is

the GP-based estimation of the velocity increment error. Notably, in the discrete case the
GP had to be trained differently when changing the control frequency, while the learned

Table B.1. RMSE of the NMPC one-step-ahead-predictions on the velocities.
|∆α̇| [rad/s] |∆θ̇| [rad/s]

20Hz

nominal 19.1 · 10−2 8.4 · 10−2

continuous 7.1 · 10−2 4.4 · 10−2

discrete 8.6 · 10−2 5.4 · 10−2

continuous NUG 7.3 · 10−2 4.5 · 10−2

50Hz
nominal 9.5 · 10−2 6.5 · 10−2

continuous 5.3 · 10−2 5.3 · 10−2

discrete 5.4 · 10−1 5.1 · 10−2
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Table B.2. RMS of the NMPC tracking error on the angles.
|α− αref | [rad] |θ| [rad]

20Hz

nominal 24.5 · 10−2 2.6 · 10−2

continuous 12.8 · 10−2 1.9 · 10−2

discrete 13.7 · 10−2 1.6 · 10−2

continuous NUG 14.2 · 10−2 2.0 · 10−2

50Hz
nominal 24.0 · 10−2 2.3 · 10−2

continuous 13.0 · 10−2 1.8 · 10−2

discrete 12.4 · 10−1 1.5 · 10−2

model for the continuous case has been maintained the same as described in Sec. B.2,
since the change in integration frequency does not require a new training.

Very similar results have been obtained applying continuous and discrete modeling.
Fig. B.3a and B.3b shows how both the learning-based models at both the control
frequencies considerably overcome the control performance of the nominal NMPC, highly
reducing the low-frequency oscillation in the shaft position, reflected in a lower usage of
the control input. Moreover, the prediction error on the system velocities is significantly
lowered, as depicted in Fig. B.4a, B.4b and reported in Tab. B.1. Also, the tracking
errors on both shaft angle α and pendulum angle θ are effectively reduced, as reported
in B.2. The mean time required for the nominal MPC, the continuous with GP using
49 points and the discrete using 101 points are 0.98ms, 8.49ms and 3.8ms, respectively.
Note that, in this case, the discrete modelling required more inducing points with the
same SoD threshold.

B.3.1 Comparison with Non-Uniform Grid

A peculiar feature of the continuous model definition is that, once it is trained, it is
suitable for any integration frequency. In particular, the formulation allows to use Non-
Uniform Grid (NUG) integration, and an implementation using a grid of r = 14 points
distributed as G = [1, 2, 5:7:61, 66:2:70], where a:b:c is a vector from a to c at step b, has
been accomplished. This approach allows to maintain the prediction horizon length while
highly reducing the computational time. Since the objective function definition changes
its meaning while using NUG, different weights for the shaft position and velocities have
been used, i.e. W = diag([10,101, 5 · 10−3, 10−3, 10−6, 5 · 10−3, 101]). Results in terms of
positions and control input are provided in Fig. B.5a, while prediction errors are shown
in Fig. B.5b. Notably, the system behaviour, control input and prediction errors are very
close to the Uniform Grid, while mean time required to solve the problem resulted 1.8ms,
comparable to the nominal NMPC one.
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(a) Positions and input with control frequency fc = 20Hz.
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(b) Positions and input with control frequency fc = 50Hz.
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(a) One-step-ahead prediction errors with fc = 20Hz.
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(b) One-step-ahead prediction errors with fc = 50Hz.

Figure B.4. Continuous-time versus discrete-time comparison: (a-b) shaft angle α, pendulum
angle θ and the voltage input v of the Furuta pendulum; (c-d) one-step-ahead-
prediction errors on the shaft α̇ and pendulum θ̇ angular velocities.
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(a) Shaft α and pendulum θ angle and input v of the pendulum.

0 5 10 15 20 25 30
0

0.5

1
nominal
continuous
continuous NUG

0 5 10 15 20 25 30
Time [s]

0

0.1

0.2

0.3

0.4

(b) One-step-ahead-prediction errors on angular velocities.

Figure B.5. Comparison nominal, continuous with Uniform Grid and continuous with Non
Uniform Grid integration at 50Hz.
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