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Abstract: Oxidative burden plays a central role in Alzheimer’s disease (AD) pathology, fostering pro-
tein aggregation, inflammation, mitochondrial impairment, and cellular dysfunction that collectively
lead to neuronal injury. The role of exosomes in propagating the pathology of neurodegenerative
diseases including AD is now well established. However, recent studies have also shown that exo-
somes are crucial responders to oxidative stress in different tissues. Thus, this offers new insights and
mechanistic links within the complex pathogenesis of AD through the involvement of oxidative stress
and exosomes. Several studies have indicated that exosomes, acting as intracellular communicators,
disseminate oxidatively modified contents from one cell to another, propagating the pathology of
AD. Another emerging aspect is the exosome-mediated inhibition of ferroptosis in multiple tissues
under different conditions which may have a role in neurodegenerative diseases as well. Apart
from their involvement in the pathogenesis of AD, exosomes enter the bloodstream serving as novel
noninvasive biomarkers for AD; some of the exosome contents also reflect the cerebral oxidative
stress in this disease condition. This review highlights the intricate interplay between oxidative stress
and exosome dynamics and underscores the potential of exosomes as a novel tool in AD diagnosis.

Keywords: Alzheimer’s disease; amyloid beta; exosomes; miRNA; mitochondria; oxidative stress;
tau phosphorylation

1. Introduction

Alzheimer’s disease is the most prevalent form of dementia and a major neurode-
generative disorder. It presently impacts an estimated 50 million individuals globally.
However, projections indicate that the incidence will triple by 2050 as a result of the popu-
lation’s natural aging process, with low- and middle-income countries experiencing the
most substantial surge in incidence [1]. In addition, Alzheimer’s patients require costly
and specialized treatment; the global annual cost of treatment approaches one trillion US
dollars, and this figure is expected to increase substantially by 2030 [2]. Over the last few
decades, research has indicated that the pathogenesis of AD is influenced by a variety of
factors, which include biological elements (e.g., aging, gender and body weight), envi-
ronmental components (e.g., lifestyle, toxins and brain injury), and genetic components
(e.g., susceptibility genetic polymorphisms in sporadic cases and Amyloid beta precursor
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protein, presenilin 1, and presenilin 2 genetic mutations in familial AD) [3]. Although our
comprehension of AD has been significantly expanded by the accumulation of knowledge,
the underlying mechanism of AD pathogenesis remains confusing. Recent research has
shed light on the pivotal role played by oxidative stress in AD pathology, acting as a catalyst
for protein aggregation, inflammation, mitochondrial dysfunction, and overall cellular
impairment that collectively culminate in neuronal injury [4–7]. Workgroups convened
by the Alzheimer’s Association and the National Institute on Aging produced diagnostic
guidelines for the entire disease continuum in 2011 [8]. Additionally, in 2018, these groups
developed a research framework to advance the hypothesis of AD as a biological disease [9].
According to the Research Framework, AD is characterized by its fundamental pathological
processes, which may be seen with postmortem examination or through biomarkers while
the person is still alive. Biomarkers are categorized according to their association with
amyloid-beta (Aβ) deposition, pathologic Tau, and neurodegeneration (ATN). The ATN
classification system categorizes many biomarkers, including imaging and biofluids, based
on the specific pathological process that each biomarker assesses [9].

The utilization of current biomarkers often involves invasive procedures such as the
collection of cerebrospinal fluid (CSF) via a lumbar puncture or costly imaging techniques.
The imaging diagnostic modalities of AD, such as positron emission tomography (PET)
scan for amyloid deposition in the brain or cerebral 18F-2-deoxyglucose (FDG) uptake
via an FDG-PET scan, are expensive and not easily available [10]. Further, the existing
biomarkers may also fail to detect AD at an early stage before significant brain damage
occurs, which is crucial for the effective management of the disease and the identification of
neuroprotective drugs through clinical trials. Despite extensive research and costly clinical
trials, amyloid-targeted therapeutics have generally failed and many investigational pro-
grams were abandoned in the last decade. The latest drug lecanemab (accelerated approval
from the FDA) has also been shrouded in criticisms [11]. No effective disease-modifying
treatment for AD has emerged, and this may have failed due to late initiation, incorrect
target selection, and a lack of understanding of AD’s complex pathophysiology [12]. Thus,
newer avenues are to be searched which would lead to a better understanding of the
pathogenesis of AD and the identification of novel and simple early diagnostic markers.

Once considered to be nothing more than cellular debris, exosomes have recently been
recognized to play a significant role in the process of molecular communication both within
and between cells, playing an important role in the pathogenesis of multiple diseases [13].
The involvement of exosomes in the progression of disease pathology within the central
nervous system (CNS) in several neurodegenerative diseases including AD has also been
well established [14,15]. On the other hand, fascinating observations have been made on
exosomes in relation to oxidative stress. For instance, mesenchymal stem-cell-derived
exosomes have enhanced the antioxidant capacities and alleviated cellular damage induced
by oxidative stress [16]. There are other interactions of oxidative stress and exosomes
which we will discuss later in this review. Importantly, this offers fresh perspectives and
mechanistic connections within the complex pathogenesis of AD for the first time and
also indicates the possibility of detecting simpler exosome-based AD biomarkers in the
peripheral circulation. The current review is intended to delve into these aspects.

2. Oxidative Stress and Alzheimer’s Disease

Oxidative stress is a condition when the balance between the production of reactive
oxygen species (ROS) and their detoxification via the antioxidant defense system is lost in
favor of increased levels of ROS in the tissue. Under normal conditions of redox balance,
ROS are inactivated nearly completely by the cellular antioxidants leaving presumably
only a small amount of these reactive oxy-radicals capable of taking part in redox signaling
processes involved in cell growth, proliferation, differentiation and death [17,18]. The
major sources of intracellular ROS are the mitochondrial electron transport chain, the
NADPH oxidase (NOX) complex having membrane-bound and cytosolic components,
the cyclooxygenase and lipoxygenase catalyzed reactions, cytochrome P450 dependent
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reactions, xanthine oxidase reaction and peroxisomal fatty acid oxidation [17,19]. Con-
ventionally, the superoxide radicals (O2

−), H2O2, hydroxyl radicals (OH.) and singlet
oxygen are considered members of ROS, but the term has been expanded to include many
other reactive molecules or free radicals such as lipid-derived radicals, lipid and protein
hydroperoxides, peroxynitrite and many others [20]. The inter-conversions of different
ROS and their complex reactions with various biomolecules like phospholipids, proteins
and nucleic acids are catalyzed at multiple steps by transition metals. For example, Fe2+

can catalyze the decomposition of H2O2 via Fenton’s reactions or catalyze the formation of
alkoxyl and peroxyl radicals during lipid peroxidation chain reaction [21,22]. On the other
hand, the final inactivation of ROS occurs via different cellular antioxidants consisting of an
array of enzymes (superoxide dismutase, catalase, glutathione peroxidase, etc.) or proteins
(peroxiredoxins and thioredoxin) or nonprotein antioxidants (α-tocopherol, retinol, ascorbic
acid, bilirubin, melatonin and others) present in the tissue [21,22]. During oxidative stress,
as a result of redox imbalance, the excess ROS can cause direct oxidative damage to cellular
components (membranes, enzymes, ion channels, etc.), initiate aberrant redox signaling,
trigger a more regulated cell death pathway, such as ferroptosis, or aggravate an inflamma-
tory reaction [18,23–26]. This complex scenario is probably a part of the pathogenesis of
different diseases including neurodegenerative disorders.

The involvement of oxidative stress and redox imbalance in the pathogenesis of AD
is highlighted by the multiple lines of compelling evidence. For example, the evidence of
extensive oxidative damage was noticed in postmortem brains of individuals with AD with
a substantial buildup of oxidative damage markers of phospholipids, proteins and nucleic
acids, such as malondialdehyde, 4-hydroxynonenal, F2-isoprostane, protein carbonyls,
nitro-tyrosine, 8-hydroxydeoxyguanosine and others, respectively [27–32]. Additionally,
an elevation in the levels of transition metals, such as iron (Fe), has been documented in the
AD brain and some reports have indicated a deficiency of antioxidant enzymes especially
glutathione peroxidase and catalase [6,33–37]. The utilization of redox proteomics in the
analysis of postmortem AD brains further provided additional evidence of oxidative dam-
age to multiple enzymes and proteins implicated in energy metabolism, neurotransmission,
mitochondrial and synaptic functions and proteasomal functions [38,39]. In transgenic AD
mice, such evidence of oxidative damage has been reported along with the deposition of
Aβ [40,41]. However, it must be pointed out that some meta-analysis-based publications
have questioned the oxidative damage hypothesis of AD [42,43].

2.1. Accumulation of Amyloid Beta Due to Oxidative Stress

The reciprocal impact of Aβ and oxidative stress on each other has played a significant
role in the development of AD. The interaction between oxidative stress and Aβ proteinopa-
thy in AD is complex, impacting several phases of Aβ production and processing. This
encompasses the control of gene expression for the Aβ precursor protein (APP) gene, the
conversion of APP mRNA into protein and the subsequent breakdown and elimination
of both APP and Aβ peptides. Experimental studies have shown that transcription fac-
tors that respond to ROS, such as heat shock factor-1 (HSF-1) and nuclear factor-kappa B
(NF-kB), are involved in stimulating the expression of the APP gene by attaching to the
promoter regions of the gene. ROS can also participate in the modulation of the expression
of both β-secretase (BACE1) and γ-secretase. For instance, oxidative stress enhances BACE1
activity by affecting the process of protein synthesis, specifically through the activation of
double-stranded RNA-dependent protein kinase (PKR) and eukaryotic initiation factor-2
(eIF2) phosphorylation [44]. Accordingly, increased BACE1 activity has been detected in
the presence of oxidative-stress-inducing substances, such as 4-hydroxynonenal (4-HNE),
hydrogen peroxide (H2O2) and iron [45]. The γ-secretase enzyme complex, which plays
a crucial role in the release of Aβ42 from APP, is similarly affected by oxidative stress.
Specifically, presenilin 1 (PS1) levels, a component of the γ-secretase complex, increase
in the presence of oxidative stress conditions [46]. The production of APP is also regu-
lated at the post-transcriptional level, through the presence of an iron-responsive element
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(IRE) located in the 5’-untranslated region (UTR) of APP mRNA. The IRE-binding protein
(IREBP) controls the process of translation by inhibiting it through the binding with the
IRE sequence. However, when the levels of iron inside the cell become high, the IREBP de-
taches from the binding site, resulting in an increased translation. This connection between
oxidative stress, iron levels, and APP production in the brains of individuals with AD has
been well-established and characterized [47].

In addition to the production of Aβ, oxidative stress also affects the removal of Aβ

from the brain, by acting on specific receptors, such as the low-density lipoprotein receptor-
related protein 1 (LRP1) and the receptor for advanced glycation end products (RAGE),
which play a key role in mediating the transport of Aβ across the blood–brain barrier,
participating in its clearance [48]. In this frame, changes in the membrane-bound form of
LRP1 have been shown to impede the effective removal of Aβ from the brain. In addition,
the oxidation of the soluble form of LRP1 in the blood, which binds Aβ and acts as a
sort of sink, loses its ability to efficiently bind to circulating Aβ, which can enter the
brain again [48].

To summarize, the complex connection between oxidative stress and different aspects
of Aβ synthesis, processing and removal provides insight into the complicated processes
involved in the development of AD. These results greatly enhance our comprehension of
the many factors that contribute to neurodegeneration in AD caused by oxidative stress.

2.2. Induction of Oxidative Stress Mediated by Amyloid Beta

Numerous mechanisms have been described which contribute to the initiation of
oxidative damage in the AD brain, with a prominent role attributed to Aβ-induced ROS
generation, as extensively documented in various experimental studies [6,49–53]. Both
Aβ42 and Aβ40 possess the ability to bind transition metals in a redox-active form through
specific amino acid residues, including His6, His13, and His14. The resulting coordination
chemistry facilitates redox-cycling reactions that generate ROS, a process observed in ex-
perimental settings [54,55]. This is particularly noteworthy given the postmortem evidence
of elevated levels of redox-active transition metals, such as Fe in the AD brain, especially in
proximity to plaques [55]. However, it is worth mentioning that an alternative perspective
was earlier published where the possible antioxidative and protective functions of Aβ were
investigated [56]. This hypothesis is supported by scattered experimental evidence show-
ing an antioxidant and protective role of Aβ, which has been shown to scavenge reactive
radicals of lipid oxidation, prevent ROS formation by sequestering transition metals or
even block mitochondrial oxygen-free radical production [57]. Another study has shown
the pro-oxidative nature of Aβ oligomers and the antioxidative properties of monomers
and fibrils [58]. Various other in vitro studies that indicate an antioxidant and protective
role of Aβ have been summarized elsewhere [59].

Beyond the direct production of ROS by bound redox-active metals, Aβ may induce
intracellular ROS production leading to neuronal death through the involvement of Apop-
tosis signal-regulating kinase 1 (ASK1) [60]. Moreover, experimental studies indicate that
Aβ increases ROS production, potentially through the activation of NOX and enhanced
mitochondrial production of oxygen radicals. Notably, mitochondria-targeted antioxidants
can prevent this effect [61]. Other mechanisms of Aβ-induced ROS production involve
the stimulation of microglial cells by soluble or fibrillar forms of Aβ [62]. In primary
microglial cultures or cocultures with neurons, activated microglia can generate ROS and
proinflammatory cytokines such as interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-
alpha (TNF-α), thus triggering an inflammatory reaction [63]. In addition, fibrillar Aβ has
been described to interact and activate the scavenger receptor CD36 on microglial cells,
causing an increase in the formation of ROS, the release of cytokines and phagocytosis by
microglial cells [64]. Furthermore, recent research has shown that the macrophage antigen-1
(MAC-1) receptor and Phosphoinositide 3-kinases (PI3K) are involved in the process of
Aβ-induced microglial activation and ROS generation, leading to the activation of NOX.
The formation of ROS by microglia in response NOX oxidase [63,65].
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2.3. Role of Tau Phosphorylation in Oxidative Stress

One characteristic of the development of AD is the creation of neurofibrillary tangles
that occurs when there is an excessive buildup of hyperphosphorylated Tau protein within
the cells [66]. This process plays a substantial role in the deterioration of nerve fibers and
impaired communication between neurons, one of the pathological features of AD. The
protein Tau, which is linked with microtubules, possesses many potential phosphorylation
sites in its C-terminal and proline-rich regions [67]. Several kinases, namely Glycogen syn-
thase kinase 3β (GSK3β) and Cyclin Dependent Kinase 5 (CDK5), can phosphorylate Tau,
while phosphatases, such as Protein phosphatase 2A (PP2A), PP1 and PP2B, may remove
phosphate groups from it. Elevated activities of GSK3β and CDK5, together with dimin-
ished PP2A activity, seem to be responsible for the increased Tau phosphorylation seen
in AD [68,69]. Nevertheless, the factors behind these changes in kinase and phosphatase
activity in AD are still not well understood.

Experimental models have investigated the influence of oxidative stress on the process
of Tau phosphorylation. In this frame, glutathione depletion has been shown to increase
Tau phosphorylation in cultured M17 neuroblastoma cells [70,71], while the process may be
alleviated by the antioxidant trolox [45]. Accordingly, the phosphorylation of Tau appears
to increase in rat primary cortical neuronal culture when exposed to a mixture of Fe2+ and
H2O2 [67,72], but contradictory data also exist, suggesting that Tau phosphorylation de-
creases in many experimental models when exposed to oxidative stress [73]. In conclusion,
the precise connection between oxidative stress and Tau phosphorylation remains some-
what ambiguous, with the involvement of kinases (such as GSK3 or CDK5) or phosphatases
(such as PP1) influencing this intricate association.

2.4. Mitochondria Dysfunction, Oxidative Stress and AD

Mitochondrial dysfunction stands as a pivotal mechanism in AD pathogenesis, vali-
dated with studies involving postmortem AD brains and various experimental models [74,75].
Structural alterations in mitochondria, such as fragmentation with abnormal cristae, com-
promised bioenergetics, reduced enzyme activities, impaired ATP synthesis, mitochon-
drial membrane depolarization, increased ROS production and disturbed mitochondrial
biogenesis and dynamics have been observed [45]. Given that mitochondrial oxidative
phosphorylation is a major source of ROS, it is reasonable to infer that mitochondrial
dysfunction significantly contributes to oxidative stress in the AD brain [76,77].

The interrelation between mitochondrial dysfunction and proteotoxicity, mainly in-
volving Aβ, represents a subject of intense research. In transgenic AD models, progressive
Aβ accumulation in brain mitochondria correlates with diminished respiratory chain en-
zyme activities and decreased oxygen consumption rates [75]. Aβ has been shown to
bind to mitochondrial short-chain alcohol dehydrogenase, known as Aβ-binding alcohol
dehydrogenase (ABAD), as well as heat shock protein 60 (Hsp60), in the mitochondrial ma-
trix [78]. The accumulation of Aβ may also inhibit the mitochondrial peptidasome (PreP),
impacting the processing of mitochondrially targeted protein presequences and leading to
multiple functional mitochondrial anomalies [79]. In addition, soluble Aβ oligomers can
impair mitochondrial functions, possibly due to interactions with various mitochondrial
proteins, including adenine nucleotide translocase, components of the translocase of the
outer membrane (TOM) as well as inner membrane (TIM), and cyclophilin D [80]. Aβ

oligomers may also create membrane-spanning channels (amyloid pores), contributing to
toxic effects on mitochondria [81]. Another potential pathological mechanism could be
related to the blockage of mitochondrial protein import channels by APP, hindering the
entry of nuclear DNA-coded proteins, including respiratory chain complex subunits [82]. In
astrocytes, Aβ-induced mitochondrial dysfunction seems to involve cytosolic and calcium-
independent phospholipase A2, while the activation of NOX by Aβ has been described to
enhance ROS production, potentially causing mitochondrial dysfunction and glutathione
depletion in both neurons and astrocytes [83,84]. These findings underscore the interesting
relationship between mitochondrial dysfunction and Aβ-induced pathology in AD.
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2.5. Metal Ion Homeostasis and Oxidative Stress in AD

Transition metals, comprising copper (Cu) and iron (Fe), are indispensable for diverse
biological functions of brain activity including synapse regulation, myelination, synapto-
genesis and synaptic plasticity [27]. Predominantly, Fe and Cu remain bound to cellular
proteins, but a very minute amount remains in the labile or redox-active form to take part
in various ROS-mediated reactions, including Fenton’s reaction, to generate highly reactive
OH· radicals from H2O2. Thus, the delicate homeostasis of redox-active metal is crucial due
to this potential hazard of toxic free radicals instigating oxidative stress and consequent
alterations harmful to neuronal cells [85–87].

In the context of AD, perturbations in Fe homeostasis in the brain have already been
mentioned earlier. Such changes in Fe level could be region-specific in the AD brain and
may correlate with Aβ deposition, Tau accumulation or neurodegeneration [34,35,88].
Many other studies have established at the microscopic level that Fe was deposited within
amyloid plaques in AD patients and transgenic mouse models, intimating a link between
AD pathology and the interactions of Aβ with Fe [55,89,90]. Unlike Fe, multiple stud-
ies, however, failed to establish a clearly elevated level of Cu in the postmortem AD
brain [55,91,92]. Nevertheless, it is important to note that both Cu2+ and Fe3+ may bind
to Aβ in a redox-active form and can generate ROS [54,55]. Initially, the liganded metal
is reduced presumably by a methionine residue of Aβ or with the help of an endogenous
reducing compound; the reduced metal ion may then be oxidized via a reaction with
molecular oxygen generating O2

− or with H2O2 producing OH· radicals through Fenton’s
reaction [55]. Thus, a redox cycling of the Aβ liganded Fe3+ or Cu2+ could be an important
source of ROS in the AD brain. Importantly, the binding of Cu2+ to Aβ monomers induces
structural changes, amplifying peptide aggregation. This aberrant interaction may also
generate ROS, contributing to oxidative stress in Aβ-mediated neurotoxicity [55]. Further-
more, Fe/Cu homeostasis intertwines with APP generation and processing, influencing the
accumulation and the release of Aβ and affecting the production of free radicals [93,94].

Alterations at the levels of metal transporters might also exacerbate abnormal metal
homeostasis in AD. For instance, increased levels of the divalent metal transporter 1
(DMT1) in AD brains and APP transgenic mice have been shown to correlate with elevated
intracellular Fe levels, oxidative stress and cellular toxicity [95]. Overall, an elevated Fe
level in the AD brain may induce oxidative damage, initiate the process of ferroptotic death
of neurons and also affect the accumulation of Aβ and Tau.

2.6. Abnormal Glucose Metabolism, Oxidative Stress and AD

Recent studies have delved into the intricacies of glucose metabolism impairment
in AD and amnestic Mild Cognitive Impairment (MCI) brains, pinpointing the close as-
sociation between inefficient glucose utilization, oxidative damage and diminished ATP
production [96]. Oxidative modifications to crucial enzymes in glycolysis and the tricar-
boxylic acid (TCA) cycle, as well as mitochondrial dysfunction, collectively contribute to
the overall decrease in energy production. The identified oxidative modifications in the
AD brain include those to glycolytic enzymes like aldolase, triosephosphate isomerase
and glyceraldehyde-3-phosphate dehydrogenase, along with TCA cycle enzyme aconitase,
creatine kinase and ATP synthase in brain mitochondria [97]. Given the high energy de-
mand of the brain to sustain neuronal activity, a possible consequence of this decreased
ATP production could hinder the maintenance of ionic gradients and impede the produc-
tion and propagation of action potentials strongly affecting neuronal function [97]. The
ensuing synaptic dysfunction and eventual neuronal death can be further exacerbated by
the entry of extracellular Ca2+, creating ROS and leading to oxidative damage. Excessive
Ca2+ levels might also trigger apoptosis, synaptic dysfunction and cognitive decline [98,99].
Some interesting studies in cell-based models of AD-like neurodegeneration induced glu-
cose hypometabolic stress by inhibiting glycolysis by glyceraldehyde or cellular glucose
uptake using an inhibitor of glucose transporters (WZB117); under such conditions, the
increased ROS formation, mitochondrial dysfunctions, Ca2+ dysregulation, increased β-



Antioxidants 2024, 13, 316 7 of 21

secretase expression and enhanced Aβ production could be noticed with eventual neural
cell death [100,101]. Studies have also explored the role of mTOR activation in AD, linking
it to insulin resistance, impaired autophagy, oxidative damage and neuronal death [102].
Finally, glycation processes and the formation of advanced glycation end products (AGEs)
have been proven relevant to AD pathology, oxidative stress and vascular dysfunction [103].

3. Exosome Dynamics and Functional Significance
3.1. Biogenesis, Release and Transport of Exosomes

Exosomes are small extracellular vesicles that are secreted by various cells in the
body, including immune cells, stem cells and cancer cells. They are approximately 100 nm
(average) in diameter and are composed of a lipid bilayer that encapsulates a variety of
biomolecules, including proteins, lipids and nucleic acids [104]. Exosomes have emerged as
an important area of research in recent years, due to their diverse functions in intercellular
communication and potential use as biomarkers for various diseases [105]. Exosomes
are formed through the endosomal pathway, which begins with the invagination of the
plasma membrane to form early endosomes. These early endosomes then mature into
late endosomes, which contain intraluminal vesicles (ILVs) that are formed through the
inward budding of the endosomal membrane. The ILVs can then be released from the
late endosome as exosomes, through the fusion of the late endosome with the plasma
membrane [106]. The composition of exosomes can vary depending on the cell of origin
and the cellular and environmental conditions. However, exosomes typically contain a
variety of proteins, including tetraspanins, heat shock proteins and endosomal sorting
complexes required for transport (ESCRT) proteins [107]. Exosomes also contain lipids,
including cholesterol, sphingomyelin and ceramide, which are important for the stability
and function of the exosome membrane. Additionally, exosomes contain various nucleic
acids, including microRNAs (miRNAs), mRNAs and other noncoding RNAs [108].

There is substantial evidence indicating that exosomes are largely transported over the
blood–brain barrier via transcytosis, a process similar to how immune cells and infectious
pathogens are transported [109]. Exosomes traverse the intracellular compartment via
transcytosis, unlike paracellular routes that brain cells use to cross the extracellular region.
Studies suggest two potential ways exosomes might enter the brain: either by passing
completely past the endothelial cell barrier or by being trapped within the brain endothelial
cells. Exosomes influence the whole brain, whereas sequestration impacts brain endothelial
cells, leading to controlled and particular transport processes [109–111]. Exosomes have
been shown to play diverse roles in intercellular communication and cellular signaling.
One major function of exosomes is the transfer of molecules between cells, which can
influence cell growth, differentiation and survival [104]. For example, exosomes secreted
by stem cells have been shown to promote tissue repair and regeneration by delivering
growth factors and other bioactive molecules to damaged cells. Exosomes are also involved
in immune regulation and response [112,113]. Immune cells can secrete exosomes that
contain cytokines, chemokines and other signaling molecules that can stimulate or suppress
immune responses [114]. Additionally, exosomes can act as carriers for antigen presentation,
which can activate immune responses against infectious agents or cancer cells [115].

Recent studies have also suggested that exosomes may play a role in neurodegen-
erative diseases, including AD [116]. Neuronal exosomes have been shown to contain
neurotransmitters, neuromodulators and synaptic proteins, which may play a role in synap-
tic plasticity and communication between neurons [117,118]. Exosomes secreted by neurons
and glial cells have also been shown to contain Aβ peptides and Tau protein [119,120] and
may contribute to the spread of AD pathology throughout the brain.

3.2. Oxidative Stress Induces Changes in Exosomes

Exosomes act as dynamic responders to oxidative challenges by contributing both to
cellular defense mechanisms and the propagation of oxidative damage. ROS imbalance
modifies the process of biogenesis and the release of exosomes. Prolonged or severe
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oxidative stress can also alter their composition. Exosomes released under oxidative
stress carry bioactive molecules that may influence the modulation of stressed cells and
neighboring cells [121–124]. This bidirectional communication is crucial for maintaining
cellular homeostasis under conditions of oxidative challenge.

Changes in redox status prompt an elevation in the amount of exosomes, achieved
through either augmented secretion or diminished degradation. In fact, enhanced au-
tophagy conditions steer multivesicular bodies (MVBs) towards lysosomes instead of the
plasma membrane, hindering the release of exosomes [125,126], while the inhibition of
autophagic trafficking promotes exosome release [127]. Accordingly, enhanced secretion of
exosomes has been shown under oxidative stress in different cultured cell lines [128–131].
Moreover, oxidative stress induced by nanoparticles, mechanical injury or chemicals like
tBHP, has been described to increase the amount of exosomes, which is sometimes associ-
ated with morphological changes as well [131]. The impact of oxidative stress on exosomes
biogenesis and release is summarized in Figure 1.

Antioxidants 2024, 13, x FOR PEER REVIEW 8 of 22 
 

exosomes that contain cytokines, chemokines and other signaling molecules that can stim-
ulate or suppress immune responses [114]. Additionally, exosomes can act as carriers for 
antigen presentation, which can activate immune responses against infectious agents or 
cancer cells [115]. 

Recent studies have also suggested that exosomes may play a role in neurodegener-
ative diseases, including AD [116]. Neuronal exosomes have been shown to contain neu-
rotransmitters, neuromodulators and synaptic proteins, which may play a role in synaptic 
plasticity and communication between neurons [117,118]. Exosomes secreted by neurons 
and glial cells have also been shown to contain Aβ peptides and Tau protein [119,120] and 
may contribute to the spread of AD pathology throughout the brain. 

3.2. Oxidative Stress Induces Changes in Exosomes 
Exosomes act as dynamic responders to oxidative challenges by contributing both to 

cellular defense mechanisms and the propagation of oxidative damage. ROS imbalance 
modifies the process of biogenesis and the release of exosomes. Prolonged or severe oxi-
dative stress can also alter their composition. Exosomes released under oxidative stress 
carry bioactive molecules that may influence the modulation of stressed cells and neigh-
boring cells [121–124]. This bidirectional communication is crucial for maintaining cellular 
homeostasis under conditions of oxidative challenge. 

Changes in redox status prompt an elevation in the amount of exosomes, achieved 
through either augmented secretion or diminished degradation. In fact, enhanced autoph-
agy conditions steer multivesicular bodies (MVBs) towards lysosomes instead of the 
plasma membrane, hindering the release of exosomes [125,126], while the inhibition of 
autophagic trafficking promotes exosome release [127]. Accordingly, enhanced secretion 
of exosomes has been shown under oxidative stress in different cultured cell lines [128–
131]. Moreover, oxidative stress induced by nanoparticles, mechanical injury or chemicals 
like tBHP, has been described to increase the amount of exosomes, which is sometimes 
associated with morphological changes as well [131]. The impact of oxidative stress on 
exosomes biogenesis and release is summarized in Figure 1. 

 
Figure 1. Oxidative stress impact on exosomes. ROS imbalance modifies the process of biogenesis 
and the release of exosomes. Prolonged or severe oxidative stress can also alter their composition. 

  

Figure 1. Oxidative stress impact on exosomes. ROS imbalance modifies the process of biogenesis
and the release of exosomes. Prolonged or severe oxidative stress can also alter their composition.

Alterations in the intracellular redox state can also modulate exosome release with al-
terations in exosomal content. For instance, endogenous ROS induced by homocysteine has
been shown to enhance the release of exosomes containing inflammatory cytokines [132].

Moreover, exosomes isolated from oxidatively challenged cells showed decreased
content of prosurvival proteins and upregulated proapoptotic proteins, consistent with
reported oxidative-stress-mediated alterations in the phosphorylation status of proteins
governing cell proliferation, survival and energy metabolism [133]. Finally, ROS imbalance
has been described as altering the lipid composition of exosomes, particularly the levels of
oxidized lipids, and their propagation from cell to cell. Through the expression or transport
of oxidatively modified lipids, exosomes were shown to impart both proinflammatory and
anti-inflammatory effects over neighboring cells [134].

4. Exosomes in AD

Recent advances in the isolation and characterization of brain-derived exosomes
(BDEs) from AD samples have revealed a significant potential of the exosomal cargo
in bridging the knowledge gap between peripheral biomarkers and CNS pathology in
AD. This suggests that BDEs have the potential to be used as diagnostic and prognostic
biomarkers for AD.
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4.1. Proteins of Exosomal Cargo in AD

The quality and quantity of CNS-specific exosomes and their contents are highly
correlated with the progression of AD. Thus, they may aid in the development of more
precise and early diagnosis of AD. In fact, the brain-derived exosomal cargo could aid in
the diagnosis of AD even before the emergence of cognitive losses [135]. In this frame, it
has been shown that exosome-bound Aβ levels could exhibit a stronger correlation with
PET imaging of brain amyloid plaques and can be used to discriminate between distinct
clinical stages of dementia more effectively than unbound or total circulating Aβ [136].
Similarly, the levels of Aβ1–42, total Tau and phosphorylated Tau at S181 (p-S181-Tau) or
S396 (p-S396-Tau) in exosomes could differentiate patients with AD from those with MCI
and/or controls [137,138]. Importantly, proteins like p-S181-Tau and p-S396-Tau in BDEs
have shown greater efficiency than that of plasma-derived exosomes in distinguishing AD
from controls [138,139].

Aβ peptide is made from APP via sequential proteolytic cleavages and a variety of
post-translational modifications. Numerous reports have demonstrated the presence of
full-length APP and its derivatives, including APP C-terminal fragments and the APP
intracellular domain, within exosomes of different in vivo and in vitro AD models and in
exosomes derived from neurons of AD patients [140–142]. Enzymes like BACE1, PS1 and
PS2, relevant in amyloid processing, were also reported to be present in exosomes [15].
Following Aβ trafficking to MVBs, a small fraction of Aβ peptides is secreted from the
cells in conjunction with exosomes. Interestingly, BACE1 was identified in released ex-
osomes as well as its colocalization with early exosome markers in transgenic neuronal
cell lines [143]. Notably, the presence of the exosome marker protein Alix in plaques of
post-mortem AD brains provides support to the idea that the release of exosomes carrying
Aβ might play a role in plaque development and the advancement of the disease [144].
Consistent with this notion, another study demonstrated the cytotoxic properties of exo-
somes isolated from postmortem AD brains [145]. The Aβ oligomer-containing exosomes
were uptaken by neurons and then exosomal content was further propagated and released
to neighboring cells [145].

The propagation of intracellular toxic Tau proteins to neighboring cells through extra-
cellular seeds is considered an important mechanism for spreading AD pathology in differ-
ent brain regions. Exosomes could play an important role in disseminating Tau-mediated
neuronal damage. Pathological Tau seeds transported by exosomes have been shown
in different transgenic mice models to cause misfolding and aggregation of monomeric
Tau in recipient cells [146,147]. Similarly, the propagation of Tau inclusions and massive
neurodegenerations in wild-type mouse brains have been observed following the injection
of exosome suspensions derived from neuronally differentiated, human-derived induced
pluripotent stem cells enriched in Tau P301L and V337M mutations [148]. Microglia seem to
play a crucial role in the exosome-mediated transmission of Tau pathology by internalizing
and secreting Tau-containing exosomes [149]. Microglial exosome production can also be
influenced by genes associated with AD which can lead to the dissemination of exosomal
Tau [150,151]. Studies have shown that Aβ42, t-tau, p-tau181 and other proteins isolated
from peripheral exosomes derived from neurons may differentiate between people with
AD or MCI and healthy persons [152–154]. The neuronal-derived peripheral exosomes
were reported to contain significantly lower levels of synaptic proteins like synaptophysin,
synaptotagmin, growth-associated protein 43 and synapsin-1 in AD than other neurode-
generative diseases like frontotemporal dementia [155]. Furthermore, altered levels of
proteins related to lysosomes and autophagy in neuronally derived exosomes in peripheral
circulation were demonstrated in preclinical AD in a longitudinal study [156]. It is tempt-
ing to speculate in this context, and given the bidirectional movement of exosomes, that
peripheral exosomes carrying entrapped molecules such as proinflammatory cytokines or
metabolites from gut microbiota or other bioactive molecules may enter the brain during
the preclinical course of AD and may play a role in inducing neuroinflammation or neu-
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rodegenerative process in the CNS. The role played by exosomes in propagating Aβ and
Tau pathology is summarized in Figure 2.
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Besides Aβ and Tau proteins, several other exosomal proteins have been shown to
correlate with AD pathology. Among them, synaptic proteins like synaptophysin, synap-
totagmins, synaptobrevin, synaptopodin, Ras-related protein Rab3A, Growth-associated
protein-43 (GAP 43) and neurogranin were shown to be present in reduced quantity in the
exosomal cargo in AD patients [156,157]. Altered levels of cathepsin D, lysosome-associated
membrane protein 1 (LAMP1), ubiquitinylated proteins and heat-shock protein 70 were
also observed in exosomes isolated from AD patients in comparison to controls [156]. In
another study, reduced levels of low-density lipoprotein-receptor-related protein 6, heat-
shock factor-1 and repressor element 1-silencing transcription factor, which are all involved
in neuronal defenses against diverse stresses, were quantified in exosomes from AD pa-
tients with respect to healthy individuals [155]. Interestingly, also the level of different
proteins somehow correlated to the antioxidant response was found altered in exosomes
derived from AD brains. More specifically, increased levels of heat shock protein family A
member 1A (HSPA1A), aminopeptidase Puromycin Sensitive (NPEPPS) and Prostaglandin
F2 Receptor Inhibitor (PTGFRN) were found in the cerebrospinal fluid of AD patients and
could represent useful markers to monitor the progression of the disease [158,159]. The
increased expression of HSPA1A, which negatively regulated APP processing and Aβ

production, has been suggested to be related to the rebound antioxidant response caused
by ROS-mediated intracellular stress [160,161]. Instead, the involvement of NPEPPS in
acting on neurotoxic Tau protein and protecting against Tau-induced neurodegeneration
could represent a plausible explanation for the altered expression of NPEPPS [162].
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4.2. Exosomal miRNAs and AD

Various studies have explored the potential of exosomal microRNAs as diagnos-
tic biomarkers for AD, revealing distinctive expression patterns in plasma, serum and
CSF. More specifically, the potential of circulating exosomal miRNA profiling via next-
generation sequencing analysis has been suggested for AD [163]. However, inconsistencies
in results from various studies are quite apparent. Nevertheless, several miRNAs re-
lated to APP processing, Aβ degradation, Aβ aggregation and Tau phosphorylation have
shown significantly altered levels. The miRNAs like miR-15a-5p, miR-18b-5p, miR-20a-5p,
miR-30e-5p, miR-93-5p, miR-101-3p, miR-106a-5p and miR-143-3p were increased while
miR-15b-3p, miR-342-3p and miR-1306-5p were decreased in circulating peripheral exo-
somes [163,164]. In another study, altered expression levels of miR-23b-3p, miR-24-3p,
miR-29b-3p, miR-125b-5p, miR-138-5p, miR-139-5p, miR-141-3p, miR-150-5p, miR-185-5p,
miR-338-3p, miR-342-3p, miR-342-5p, miR-548at-5p, miR-3613-3p, miR-3916 and miR-4772-
3p were detected in plasma derived exosomes from patients clinically diagnosed with AD
dementia [165]. Similarly, multiple studies have highlighted the differential expression of
exosomal miRNAs in CSF samples of AD patients. For instance, the altered expression of
miR-29c, miR-136-3p, miR-16-2, miR-331-5p, miR-132-5p and miR-485-5p in AD patients
compared to healthy controls was observed using a TaqMan miRNA array [166]. Accord-
ingly, in a study based on young-onset AD patients, a decrease in miR-16-5p, miR-451a and
miR-605-5p levels, and an enhanced amount of miR-125b-5p, was detected [167]. More-
over, another study involving comparative miRNA profiling analysis in whole CSF and in
the CSF exosome-enriched fraction from AD patients and healthy controls identified 14
differentially expressed miRNA [168]. Likewise, differential expression profiles of several
exosomal miRNAs can distinguish AD from other types of neurodegenerative diseases
like Parkinson’s disease (PD) or dementia with Lewy bodies (DLB) [169,170]. Among the
different miRNAs evaluated, miR-193b is one of the most characterized. Its levels were
demonstrated to be downregulated both in CSF and plasma-derived exosomes in AD
patients in comparison to control individuals, and a negative correlation between exoso-
mal levels of miR-193b and Aβ1-42 levels emerged. Moreover, a bioinformatic analysis
suggested the potential regulatory effect of miR-193b in APP expression [171]. Another
miRNA, miR-342-3p, has also proven to be crucial for learning and memory function by
modulating the APP and Tau processing [172,173].

Noteworthy for the use of miRNAs as biomarkers of AD, exosomes derived from both
serum and plasma have shown promising association in AD patients along with correlation
to the Mini-Mental State Examination score [163,165,174].

Experimental evidence indicates that astrocyte-derived small extracellular vesicles
(sEVs) accumulate Aβ more in female transgenic mice. Additionally, these astrocyte-derived
sEVs increase the toxicity of Aβ when absorbed by neurons [175,176]. The potential of
sexual dimorphism in exosomal contents in AD pathology needs further in-depth analysis.

5. The Crosstalk between Exosomal miRNAs and Oxidative Stress in AD

The interdependent connections between oxidative stress and microRNAs reveal a
complex network of interactions with implications for AD pathogenesis [177]. Oxidative
stress has a significant effect on the complex regulation of miRNA expression, affecting
several molecular components. In contrast, miRNAs exert their regulatory influence
across a wide range of genes that are intimately engaged in the physiological response to
oxidative stress.

Among these oxidative-stress-related miRNAs, miR-34a, known to suppress tumor
progression, was suggested to be very relevant in AD pathology [177–179]. Different stud-
ies have also indicated a significantly increased level of miR-34a in the brain and peripheral
blood mononuclear cells of AD patients and in animal models [180,181]. At the experi-
mental level, overexpression of miR-34a in a mice model demonstrated cognitive deficits
associated with altered APP processing, increased Aβ production and increased Tau phos-
phorylation [182,183]. Conversely, the miR-34a knockout-mouse model showed cognitive
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improvement via inhibition of the amyloidogenic processing of APP through attenuation
of γ-secretase activity [184]. Further, the upregulation of miR-34a was also associated
with the simultaneous downregulation of its target genes, impacting synaptic plasticity
and decreasing ATP generation through the inhibition of oxidative phosphorylation and
glycolysis [182]. The autophagic impairment, mitochondrial dysfunction and oxidative
stress as a consequence of miR-34a expression observed in experimental models have
been suggested as a potential route to influence the course of AD [185]. Another possible
mechanism of miR-34a-mediated redox imbalance could be the downregulation of SIRT1
expression [186]. It is also interesting to note that exosomal release of miR-34a was demon-
strated in cultured primary neurons overexpressing miR-34a, implying a neuron-to-neuron
transfer of AD pathogenic mechanisms [182]. Despite the importance of miR-34a in AD
pathogenesis in model systems as described here, an increased level of exosomal miR-34a in
AD patients has not been established. Instead, a study demonstrated a decrease in plasma
and CSF miR-34a in AD subjects [187]. The upregulation of another miRNA potentially
related to the redox state, miR-125b-5p, emerged from a comparative analysis of CSF of
AD patients and healthy volunteers [188]. Notably, increased miR-125b-5p levels could
induce Tau hyperphosphorylation, neuronal apoptosis, oxidative stress and inflammation
in experimental models which are key events associated with AD progression [188,189].
Furthermore, decreased miR-125b-5p levels effectively exhibited neuroprotective properties
by lowering ROS levels [190], and a miR-125b-5p-mediated rescue from oxidative stress
via downregulation of BACE1 has also been proposed [188,191,192]. The involvement
of another miRNA, miR-141-3p, in mediating redox imbalance through the induction of
mitochondrial dysfunction has been suggested; miR-141-3p has also been shown to mediate
oxidative-stress-induced apoptosis in cardiac myocytes [192,193]. Thus, both miR-125b-5p
and miR-141-3p may have some implications in AD pathogenesis especially in the context
of oxidative stress. Surprisingly, however, exosomal levels of miR-141-3p and miR-125b-5p
have been reported to be decreased in AD patients [165].

6. Exosomes as a Therapeutic Cargo against Oxidative Stress in AD

Several studies have emphasized the potential protective effects mediated by exosomes
against oxidative conditions in different experimental models. For instance, exosomes
derived from human cardiac resident mesenchymal progenitor cells were demonstrated to
be enriched in superoxide dismutase, effectively reducing the levels of ROS and mitigating
oxidative damage when administered in rat ventricular myocytes [194]. Similarly, exo-
somes obtained from primary fibroblasts of young human donors were able to ameliorate
senescence-related tissue damage in fibroblasts from old individuals due to the intrinsic
presence of glutathione-S-transferase, which was able to enhance the levels of reduced
glutathione and minimize oxidative stress and lipid peroxidation [195].

As aforementioned, the participation of miRNAs enclosed inside exosomes is recog-
nized as a key mechanism for their antioxidant properties. In this frame, miR-155-5p demon-
strated distinct regulatory functions by suppressing genes associated with oxidative stress
and reducing the expression of angiotensin-converting enzyme, therefore alleviating oxida-
tive damage [196]. Further highlighting the influence of exosomal miRNAs on oxidative
stress, exosomal miR-320a and miR-214 have important functions in decreasing the produc-
tion of sirtuin 4 and suppressing the expression of calcium/calmodulin-dependent protein
kinase II, respectively. These effects led to a reduction in the formation of ROS [197,198].
In another study, the beneficial effects of miR132-3p-enriched mesenchymal-stromal-cell-
derived exosomes on oxidative stress, apoptosis, barrier disruption and cerebral injury
were demonstrated in hypoxia/reoxygenated-injured endothelial cells and a mouse model
of ischemic stroke. The miR132-3p-mediated protection was attributed to the ability of the
miRNA to activate the PI3K/Akt/eNOS pathway [199].

Importantly, the protective effects of exosomes against oxidative stress were also
observed in AD-related models. In neuron primary cultures from an AD mouse model,
exosomes produced from human amniotic fluid stem cells (AFSC-exos) were shown to play



Antioxidants 2024, 13, 316 13 of 21

a protective function by raising the expression of antioxidant enzymes. This rise led to a
decrease in ROS levels, addressing a major element of oxidative stress in AD. The activation
of the PI3K/Akt signaling pathway along with the suppression of NOX4 (gene encoding
NADPH oxidase 4) was then identified as a contributing component to the antioxidant
activity of AFSC-exos [200]. Furthermore, exosomes obtained from mesenchymal stem cells
showed the capability to protect hippocampal neurons from oxidative stress and synapse
damage induced by Aβ oligomers. Protection was described as depending on the presence
of catalase inside exosomes [201].

7. Conclusions

The challenges in diagnosing AD underscore the need for novel early biomarkers. The
cascade of events triggered by oxidative stress is a fundamental aspect of the development
of AD. Concurrently, the crucial role of oxidative stress in altering the biogenesis, content,
and quality of exosomes has obscured the focus on BDEs as diagnostic indicators of AD.
Furthermore, elucidating the interplay between exosomal miRNAs and oxidative stress
may provide new clues to our understanding of the complex molecular mechanisms of AD.
The idea of using exosomes as indicators to address oxidative stress in AD shows promise
as a possible therapeutic approach, opening up possibilities for future therapies. However,
it is worth mentioning that this topic is an emerging one, and there are multiple lacunae in
our understanding of the significance of exosomes vis a vis the oxidative stress mechanism
of AD pathogenesis.
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