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Abstract

Companies are often looking for strategies to achieve business goals in the most efficient way.
In their journey, they rely on systems and algorithms to support their decisions. One family of
algorithms, that helps companies in choosing which actions to take, is Recommender Systems
(RSs). RSs are a family of algorithms that generate suggestions of the item-user type. They
are widely used in social networks, e-commerce, news and advertising, and online streaming
applications. However, one area that has not yet been widely addressed in the literature is re-
lated to the business effects of recommendations. The business effect can be interpreted as the
generation of value for the company, which can take many shapes and involve many users. For
example, the business value may consist not only of a direct measure of companymetrics, such
as revenue or profit, but also of changing the sales distribution, increasing Clicks-Through
Rates for an advertisement, or even keeping a user’s interest in an item high.

This topic in the literature is called Value-Aware Recommender Systems (VARSs). VARSs
are a particular class of RSs that aim to maximize one or more business indicators to achieve
a well-established business objective. Through VARSs, a company can adopt strategies to in-
crease efficiency and answer business questions by driving the market dynamically. However,
end-users must understand a recommendation to get the best tradeoff between demand and re-
sponse. In the first part of this thesis, we explore the state-of-the-art of VARSs, collecting and
classifying all VARSs available in literature in a first-of-its-topic systematic review. Addition-
ally, we propose a more specific taxonomic categorization for the different models provided,
highlighting the model outcome and the economic perspective.

Furthermore, in order to improve the comprehension of the suggestions provided by these
algorithms, we focus on Explainable Artificial Intelligence (XAI) that aims to promote trans-
parency inRSs and thus incentivize user adoption. XAI focuses on different perspectives, such
as industrial, social, and end-user, giving explanations based on the context. In the second part
of the thesis, we suggest a novel, explainable, value-aware recommender system that aims to bal-
ance XAI and VARS perspectives. Applying XAI to VARSs is still exploratory and has several
potential evolutions and academic-industrial interests.

Scientific researchhas shown that there aremany advantages to complementing a recommen-
dation with a convincing explanation. For example, such explanations often lead to improved
user trust, which in turn improves the effectiveness of recommendations and system adoption.
In particular, for this reason,many researchworks are studying explainable recommendation al-
gorithms based on graphs, i.e., exploiting Knowledge Graph (KG) or GraphNeural Networks
(GNNs) methods. The use of graphs is very promising since algorithms can, in principle, com-
bine the benefits of personalization and graph reasoning, thus potentially improving the ef-
fectiveness of both recommendations and explanations. However, although graph-based al-
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gorithms have been repeatedly shown to bring improvements in terms of ranking quality, not
much literature has yet studied how to properly evaluate the quality of the corresponding expla-
nations. In the final part of this thesis, we discuss a problem that affects explainability features
applied on KG and GNN models, examining how they are currently assessed and suggesting
the direction for a future more quantitative and comparable evaluation.
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1
Introduction

In the contemporary landscape of information abundance, the pivotal role of recommender
systems has emerged as a key to society’s interaction with digital content and services. These
systems, driven by advanced algorithms and artificial intelligence, play a critical role in assisting
users to navigate the abundant volume of choices and enable efficient and tailored access to rel-
evant information, products, and experiences. This introductory chapter represents a prelude
to an in-depth exploration of recommender systems in the context of business applications,
delving into the growing user needs to comprehend better the suggestion of a model.

Over the past decade, recommender systems have gained significant attention due to their
transformative impact on modern user experiences. This increasing interest can be attributed
to the convergence of several factors, such as the proliferation of online platforms, the expo-
nential growth of data available and collected, and the advancement of machine learning tech-
niques. As a concrete example of this paradigm shift, consider the rise of streaming services.
These platforms leverage recommender systems to propose personalized playlists, exploiting
user preferences andbehaviors to create tailoredmusic (ormovies) recommendations. This not
only amplifies user engagement but also exemplifies the efficacy of these systems in delivering
highly relevant content. Moreover, the business world has demonstrated an increasing aware-
ness of the potential of recommender systems and this trend can be observed, for instance, in
the spreading of the e-commerce sector. E-commerce heavily relies on recommender systems to
enhance customer engagement and augment revenue. Enterprise clients, in turn, increasingly
seek the integration of these systems into their business strategies, recognizing their potential to
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drive sales, customer satisfaction, and brand loyalty. The complex interaction between cutting-
edge technologies and real-world profitability demonstrates the need to improve and advance
the recommendation system.

In an attempt to exploit the full potential of recommender systems, theneed for transparency
and comprehensibility in their decision-making processes is a key challenge. As these systems
evolve in complexity and sophistication, the resulting recommendations can often appear as
black box results to end users and stakeholders. This opacity prevents the creation of trust
and limits the overall usefulness of the system, generating a demand for tools to clarify the
underlying mechanisms of recommendation systems andmake their results understandable to
both users and companies.

This thesis includes an examination of the state of the art of recommender systems with the
aim of generating business value in enterprise applications. The overall objective is two-fold:
firstly, to survey and summarise existing advances in the field, and secondly, to develop explain-
ability strategies that improve the applicability of these systems to real-world business scenarios.
A focal point of investigation concerns the optimization of recommendation models with re-
spect to the delicate balance between their generated value and their explanatory capabilities.
The aspiration is to propose a direction in the debated context between the accuracy of recom-
mendations and their comprehensibility, ensuring that recommendations can be interpreted
within a business context and thus support actions and decisions.

Over the past few years, a variety of families of models have emerged in the recommenda-
tion system landscape, each with unique strengths and limitations. Value-aware recommender
systems stand out in this context because they take into account not only user preferences but
also the intrinsic value of the recommended items, thus allowing for more precise recommen-
dations tailored to the enterprise context. One of the most widely used approaches in this
scenario is calledmatrix factorization techniques. This methodology exploits the latent struc-
tures of user-object interaction matrices to reveal latent patterns for accurate predictions. In
contrast, a novel approach is the use of graph networks that natively present capabilities to
exploit intricate user-item relationships, infusing recommendations with rich contextual infor-
mation, even if not yet used concretely to generate business value and optimized explanations
to business stakeholders.

In this thesis, these families ofmodelswill bemeticulously explored and analyzed, evaluating
mechanisms, limitations, and trade-offs. Leveraging the insights gained from this analysis, the
research aspires to develop explainable recommendation strategies that contribute to business
users’ understanding of the results as an effective support for their daily work.
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1.1 ResearchMotivation and Contribution

This research was initiated with the desire to establish a collaboration between academia and
industry in order to bring the two worlds closer together and capture aspects that are still little
discussed. The initiative is promoted by an IT consulting company (Estilos srl) that has been
working for years to understand the needs of its customers and drive an AI-driven transition,
recognizing the value and unexpressed potential of corporate data. The pursuit of this research
aligns perfectly with the academic commitment to research and the company’s effort towards
innovation, realizing the theoretical advances that belong to the context of recommender sys-
tems. This thesis embarks on a rigorous journey through the realm of recommender systems
and explanation capabilities, beginning with an exploration of their economic significance and
culminating in a search for more effective and interpretable business-oriented models. The
following chapters delve into the complexities of these systems, assessing the mechanisms and
analyzing their impact on the business landscape, providing directions for future solutions and
challenges that characterize the domain of recommender systems applied to the contemporary
enterprise. Four distinct interrelated contributions have been developed to rationalize and ad-
vance the state of the art in this domain:

1. Analysis and taxonomy of Value-Aware Recommender Systems: the first contribu-
tion of this thesis consists of a comprehensive analysis of the state of the art of recom-
mender systems, focusing exclusively on the identification and categorization of the fam-
ily of systems designed to generate value for companies, known as Value-Aware Recom-
mender Systems (VARSs). Through a systematic literature review based on PRISMA
constraints, the various categories and technical approacheswithin this family are grouped
into a novel taxonomy to facilitate the adoption and understanding of existing studies.
Furthermore, the research investigates real-life applications of VARSs proposed in the
literature, analyzing the availability of different datasets that embed business value in-
formation. Finally, by rigorously examining the strengths, limitations, and implications
of these systems, this contribution aims to provide a holistic view of their applicability
in practical business scenarios;

2. Exploring the connection of explainability and business significance: the second
contribution explores the critical aspect of explainability in the realm of recommenda-
tion systems, particularly in a business context. Taking from industry experiences and
existing literature, this contribution explores the importance of assessing explainability
in decision-making processes. The industrial perspective exposes how a lack of explain-
ability can hinder the acceptance and adoption of recommender systems in real-world
business contexts. Combining practical insights and theoretical perspectives, this con-
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tribution emphasizes the need for recommendations that are not only accurate but also
understandable and transparent to stakeholders;

3. Bridging business value and explainability: the third contribution of this research
aims to establish a connection between the commercial value generated by recommen-
dation models and the demand for explainability. The search for a balance between the
accuracy of recommendations and the ability to interpret results is a central challenge in
the field of recommendation systems. This contribution focuses on the development of
a novel model that aims to balance business value and recommendation explainability,
investigating innovative approaches that reconcile these requirements. The objective is
to find a balance between the quantitative benefits and qualitative insights that recom-
mender systems bring to the business landscape;

4. Explainability features in graph networks, a novel challenge: the fourth contribu-
tion of this research concerns the emerging application of explainable graph networks
in recommendation systems. Graph networks, with their ability to capture complex re-
lationships between items and users, have been promised to improve the accuracy of
recommendations. This contribution takes this a step further by focusing on the evalua-
tion of explainability integrated into graph-based recommendations, aiming to improve
transparency and user acceptance of graph network-based recommendations. Through
an empirical investigation, this contribution studies the state-of-the-art of how Graph-
Based Explainable Recommender Systems (GxRSs) is proposed and how they are evalu-
ated, providing a direction and an improvement of recommendation outcomes in busi-
ness contexts.

In conclusion, this research explores the multifaceted landscape of business-applied recom-
mender systems, enhancing the comprehension, effectiveness, and transparency of these sys-
tems. Through rigorous analysis, empirical investigation, and a strategic fusion of theoretical
and practical perspectives, this thesis aims to guide the field of recommender systems toward a
business-oriented direction.

1.2 Structure of the thesis

This thesis is organized as follows: Chapter 2 delves into a systematic literature review of Value
Aware Recommender Systems (VARS), which constitute a main aspect of the research’s orig-
inal contributions. It explores categories and technical methodologies within the business-
oriented recommender system, culminating in the groping into VARS family. By examining
their real-world applications and limitations, this chapter aims to provide a comprehensive
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overview of VARS within a business context, and a novel proposed taxonomy that organizes
these systems for enhancing comprehension.

Subsequently, Chapter 3 explores the complex relationship between the explainability of rec-
ommender systems and their ability to deliver business value. Based on practical industrial ex-
perience and theoretical frameworks, it emphasizes the crucial need to make recommendation
outputs transparent and understandable. Furthermore, it examines the difficulty of balancing
the value-driven goals of these systems with the requirement for clear and feasible explanations.
Finally, in order to facilitate the development of more efficient and valuable enterprise recom-
mendationmodels, this study seeks to establish a clear link between the importance of business
and the ability to provide adequate explanations, providing a novel model that aims to evaluate
the trade-off between the explainability feature and the value generated.

Then, in Chapter 4, we explore the fast-growing field of graph networks, which are capa-
ble of improving the comprehensibility of recommender outcomes. Recognizing the inher-
ent challenges, we examine how explainability features can be incorporated into graph-based
recommendations. Furthermore, this chapter highlights a significant gap in the research: the
lack of a uniform evaluation method for comparing explainability-enhanced graph networks.
Finally, we aim to help establish a foundation for the evaluation and benchmarking of graph-
based recommender systems in the context of explainability by examining the advantages and
disadvantages of these new techniques.

Finally, in Chapter 5, we conclude with a discussion of the contributions of this thesis and
potential avenues for future research in both academic and industrial settings.

1.3 Publications

Part of the contribution of this thesis produced a systematic reviewunder PRISMAconstraints
[1] published in the journal Expert Systems with Applications, and a position paper on the qual-
ity evaluation of graph-based explainable recommendation systemspublished in the conference
CHItaly’23 and presented in the HCAI4U’23 workshop.

• A systematic review of value-aware recommender systems. [2]
Alvise De Biasio, Andrea Montagna, Fabio Aiolli, and Nicolò Navarin.
Expert Systems with Applications, September 2023.
ISSN 0957-4174
doi: 10.1016/j.eswa.2023.120131
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• Graph-based Explainable Recommendation Systems: Are We Rigorously Evaluat-
ing Explanations?. [3]
Andrea Montagna, Alvise De Biasio, Nicolò Navarin, and Fabio Aiolli.
Proceedings of the 15th Biannual Conference of the Italian SIGCHI Chapter.
CHItaly’23, September 2023.

1.4 Work in progress

The concepts, approaches, and model proposed in Chapter 3 are going to be formalized in a
paper and submitted to a conference or journal.

• XVMF: a recommender system designed to balance business profit and explainabil-
ity features.
Andrea Montagna, Alvise De Biasio, Nicolò Navarin, and Fabio Aiolli.
[Conference or journal for submission to be defined.]
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2
Value-Aware Recommender System

Recommender Systems (RSs) help users make daily decisions [4] and they are used in various
applications, including e-commerce systems [5], news [6] and online streaming [7] services,
and advertising platforms [8]. To alleviate the problem of information overload [9], RSs rec-
ommend items of greatest interest for users to focus their attention on. Indeed, traditional rec-
ommendation models are designed to provide personalized recommendations relevant to the
user [4]. In order to match customer preferences, an RS typically addresses a specific objective
[10], namely, minimizing the prediction error or maximizing the ranking quality.

However, although providing products and services to satisfy customers is a fundamental
requirement for the sustainability of any business, an organization often decides to adopt a
recommender to improve business performance [11, 12]. For these reasons, in the past few
years, there has been increased interest in Value-Aware Recommender Systems (VARSs) [13].
These systems are designed to optimize the economic value of recommendations by balancing
the interests of multiple stakeholders [14], i.e., consumers, providers, and organizations. Some
examples of VARS include recommenders designed to maximize profits [15], increase user en-
gagement [16], and improve customer lifetime value [17].

In this chapter, we present a systematic literature review on value-aware RSs based on the
PRISMA guidelines [1]. Most surveys in the RS field have investigated related domains, such
as multi-objective RS [18], multi-stakeholder RS [19], multi-criteria RS [20], context-aware
RS [21], and attribute-aware RS [22]. However, to the best of the authors’ knowledge, no
survey or review has focused specifically on VARSs. Therefore, we aim to help academic re-
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searchers and industry stakeholders understand how VARS can be used to optimize value, the
principal application domains, open challenges to be addressed, and future research directions.
Finally, this chapter represents a necessary step in the research because it provides an industrial
perspective that is enhanced in the following chapter 3 through the integration of explainabil-
ity capabilities into recommender systems and the proposal of a model that aims to balance
explainability performance with business value generation.

The main contributions of this chapter can be summarised as follows:

• we provide the first systematic literature review focused on Value-Aware Recommender
System, based on PRISMA guidelines, by discussing articles collected from different re-
search streams and industrial perspectives;

• we describe the main value categories that are traditionally optimized by VARS and the
technical approaches used in the design of these value-generation algorithms;

• we discuss the various application domains, themost commonly used datasets, themain
challenges, and possible future research directions.

2.1 Background and Concepts

In this section, we introduce the basic facts of RSs to provide background elements necessary
for better understanding the relatedwork section that reportsVARS similarities anddifferences
from other general recommender classes.

2.1.1 Recommendation Algorithms

RSs are algorithms designed to offer suggestions of items of interest for users [4]. Various
service providers have deployed RSs in different domains, including e-commerce [5], online
streaming [7] and news services [6]. Users interact with these systems through various online
sites whenever they are looking for a product to purchase, news to read, or a movie to watch.
RSs help users evaluate a large number of alternatives [9] by suggesting items that might be
of the greatest interest. These suggestions are offered to the user in the form of a ranking of
items [4]. The ranking is generated by algorithms that exploit information collected explicitly
(e.g., item ratings) or implicitly (e.g., browsing behaviour, product reviews) from the user’s
interaction with the platform hosting the service [4].
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The Recommendation Problem

The recommendation problem can be formulated primarily in two ways, i.e., determining the
degree of user interest in a particular item (prediction problem) or identifying a set of k items
of interest to the user (top-k recommendation problem) [10]. Formally, in both cases, given
a set U = {u1, . . . , um} of users and a set I = {i1, . . . , in} of items, a RS is designed to
predict a matrix of scores R̂ ∈ Rm×n from a matrix R ∈ Rm×n of ground-truth preferences
[4, 23]. Although it is always possible to order the predicted ratings to obtain a rank of k items
for the user, algorithms are developed specifically for the prediction problem (e.g., matrix fac-
torization [24]) or for the top-k recommendation problem (e.g., sparse linear method [25]).
There are two main modes by which recommender systems are evaluated [11, 12], i.e., online
A/B tests or offline evaluation. Online evaluation based on conversion rates (e.g., measuring
how often a user chooses a recommended item) is the most direct method for evaluating the
effectiveness of an RS [11, 12]. However, these types of studies are often difficult in practice
because they require access to existing systems with large user groups, where potentially risky
testing can be performed that could impact the economic performance of service providers.
Therefore, the evaluation of offline performance based on historical data is generally preferred
to online testing [11, 12]. For the prediction problem, where the algorithm tries to infer the
rating for a given user and item, performance is traditionally evaluated by calculating the predic-
tion error (e.g., mean absolute error and root mean square error) [26]. On the other hand, for
the top-k recommendation problem, since the algorithm outputs a list of k items for the user,
performance is typically evaluated using relevance or rankingmetrics (e.g., precision, recall, and
normalized discounted cumulative gain) [26]. Therefore, offline evaluation provides an indi-
rect performance measurement [11, 12], potentially correlated with online metrics, which is
used as a proxy for the latter.

Main Classes of Recommender Systems

To suggest the most relevant items, RSs personalize recommendations [4]. Different users re-
ceive different recommendations according to their interests. Based on the type of personal-
ization, recommender systems are often divided into different classes. One of the best-known
taxonomies of recommender systems [4] divides algorithms into content-based filtering (CB)
[27], collaborative filtering (CF) [28] and hybrid systems (HS) [29]. CB systems [27] suggest
items with characteristics similar to those with which the user interacted in the past. CF systems
[28] recommend items that other users with similar tastes have engaged with in the past. By
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contrast, HS systems [29] rely on a combination of the previous techniques. In addition, fur-
ther distinctions can be made within this taxonomy. CF systems are traditionally divided into
neighborhood [23] andmodel-based [30] approaches. The former [23] recommend new items
using user/item similarity criteria (e.g., user-based neighborhood, item-based neighborhood).
The latter [31, 32, 30] learn a predictive model from historical ratings tomake new recommen-
dations (e.g., rule-based collaborative filtering, latent factors models).

Typical Challenges in Recommender Systems

There are various advantages and disadvantages depending on the type of algorithm chosen
[4]. For example, RSs may suffer to a greater or lesser degree from the cold-start problem
[33], which occurs whenever the amount of information available is insufficient to produce
recommendations that effectively reflect the interests of new users and recommendations of
new items that have not yet been engaged with by users. In particular, [34] CB methods are
generally more robust to new item cold-start than are CF methods. However, CBs often pro-
duce recommendations of items that are highly similar to those engaged thus far, preventing
the user from discovering surprisingly relevant items. By contrast, HS methods can work well
in cold-start settings; however, the computational cost is often very high, and it is difficult to
produce an explanation of the rationale behind the recommendations.

2.2 RelatedWork

2.2.1 Value-Aware Recommender Systems

In this section, we introduce the economic concept of value. We also note the typical types of
business value generated by recommendations. Next, we provide a chronological overview of
value-aware recommender systems. These algorithms are designed to directly optimize various
types of business value of recommendations for organizations.

An Economic Perspective on the Concept of Value

From early academic definitions in the mid-1950s, the term value has had multiple meanings,
closely related to the application scenario considered. In early studies, Miles [35] defines the
concept of value by distinguishing use value, estimated value, cost, and exchange value. As
reported in the author’s research, use value is the ability to perform a certain function, i.e.,
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considering a mobile phone, its use value is the ability to make a phone call. On the other
hand, the estimated value is related to the sphere of attractiveness and desirability, e.g., amobile
phonewith a color display ismore desirable thanonewith ablack-and-white display. Cost value
is related to the economic quantity used to produce an item, e.g., the cost to produce every
component and assemble a mobile phone. Finally, exchange value is related to the increase in
value over time, i.e., the mobile phone after ten years.

On the basis of these theoretical concepts, authors have proposed alternative definitions that
focus on different factors. In some work [36, 37], the concept of the value of a product or
service is related to the expected benefit that the buyer receives as a function of the price paid.
For example, if the purchase of a product produces certain savings, the value lies precisely in
the delta between the savings and the price paid. On the other hand, other works [38, 39, 40]
define value according to customer perception. According to this interpretation, the value of
a product or service is highly dependent on factors related to the emotional and sensory sphere
of the customer. For two distinct customers, the same product might have a different value
depending on the emotions/feelings it generates.

As can easily be inferred from the above considerations, the definition of value is not unique
and may differ depending on the perspective considered. The value for the user/customer is
often related to the concepts of quality and personalization, experience and trust, features, and
benefits [41, 42]. Moreover, the value for the producer/business is often linked to the loy-
alty relationship established with the customer and the economic results of sales [43, 44, 45].
Therefore, when business value is referred to in the literature, it represents the impact on the
company’s economic indicators (e.g., revenues, costs, margins, profits, and losses).

On the Business Value of Recommendations

As discussed in the previous section, the concept of value has multiple definitions in the litera-
ture and is largely context dependent. In the field ofRSs, a recent study by Jannach andZanker
[11, 12] proposes a heterogeneous taxonomybased on five distinct definitions of business value
that recommendations may generate:

• Click-Through Rate (CTR): according to which the business value of recommendations
is defined according to the number of user clicks;

• Adoption and Conversion Rate: according to which the business value depends on the
degree of customer adoption of the system;
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• Sales andRevenue: where business value is defined as a functionof total sales of products
and services;

• Effects on Sales Distributions: according to which the value depends on the effects of
recommendations on the distribution of items sold;

• User Engagement and Behaviour: according to which the value depends on the cus-
tomer’s overall engagement with the platform.

As can easily be observed, the business value of recommendations depends on the applica-
tion context (e.g., product recommendation, news, ads) and the company’s business model
(e.g., direct sales, rental, subscription). As a result, the value of recommendations could differ
depending on, for example, whether the company sells physical products through e-commerce
or sells a subscription service by streaming video content.

Some studies [46, 47, 48, 49, 50] provide quantitative evidence by relating recommendations
to specific types of value (e.g., sales and revenue, effects on sales and distribution). For exam-
ple, in some research [46, 47, 49], the effect of recommendations on the diversity of products
sold is measured. According to the authors, a recommendation systemwould individually lead
the user to increase or decrease the diversity of items purchased. However, on average, recom-
mendations lead to an overall decrease in diversity in favour of the most popular items. On
the other hand, with regard to the effect of recommendations on the overall sales volume, in
the literature [48], it is found that depending on the type of design (i.e., collaborative filtering,
content-based), one algorithm could show higher performance than another. Furthermore, as
found inmore recent studies [50], these two factors, namely, diversity and sales volume, are cor-
related. In particular, greater diversity correlates with higher purchase rates, average purchase
amounts, and cross-purchase rates.

Introduction to Value-Aware Recommender Systems

Personalization has traditionally led RSs to focus on the user [4]. Indeed, if recommendations
were not able to meet user needs, they would not be as successful. However, in real-world
circumstances, in addition to suggesting items of interest, the reasons a service provider may
want to implement a recommendation system vary [11, 12]. As recently argued in research
onmultistakeholder recommender systems (MSRS) [14], RSs should consider the interests of
multiple parties, known as stakeholders, to generate recommendations. e.g., consumers who
receive the recommendations, providers who supply items behind the recommendations, and
organizations that manage the recommendation service. Depending on the perspective from
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which theMSRS is designed, recommendations will be generated to optimize the utility of one
or more stakeholders. Within the multi-stakeholder taxonomy, a particular class of algorithms
known as Value-Aware Recommender Systems (VARSs) can be distinguished. VARS are sys-
tems that aim to directly maximize the economic value of recommendations. These include
systems designed to increase sales, improve customer lifetime value, and optimize profitability.

The strategic goal of optimizing the value of recommendations emerged with the growth
of e-business. The first studies in the VARS field [51] date to 2007. These works propose
several methodologies to generate more profitable recommendations to increase the business
value of an organization. However, the first explicit reference to the term value-aware [52].
In their study, the authors introduce VARS as a future research direction for industrial appli-
cations. Research on VARS was subsequently brought to the attention of the academic com-
munity inWorkshop onValue-Aware andMulti-StakeholderRecommendation (VAMS2017)
[13]. The workshop encouraged researchers to formulate a common vision on this emerging
research area by inviting the submission of papers on various topics, including value-aware rec-
ommendations and multi-stakeholder recommendations. After VAMS 2017, there has been
an increase in the number of specialised articles on VARS. Some studies have investigated how
to design VARS using specific methodologies including post-processing approaches [53] and
reinforcement learning algorithms [15]. Other articles have proposed methodologies that aim
to optimisw value in certain application contexts, i.e., e-commerce [15], advertising [54], news
[16] and others. Furthermore, other studies [55, 56, 53] have investigated the main benefits
and risks of usingVARS in real-world circumstances, considering customer pricing preferences,
the trade-off between profitability and accuracy, and the short- and long-term consequences
for organizations.

2.2.2 OtherClassesofRecommenderSystemsandRelatedWorks

Research on VARS is an emerging topic. However, other RSs have been proposed in the liter-
ature to solve related problems. The latter include the following:

• Multi-Objective Recommender Systems [57]: in which the system aims to produce rec-
ommendations that optimize several objectives (e.g. accuracy, novelty, diversity) simul-
taneously;

• Multi-Criteria Recommender Systems [58]: in which the system exploits a user’s prefer-
ences on different item criteria (e.g., room cleanliness, location, safety) to provide better
suggestions;
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Figure 2.1: PRISMA flow diagram representing the systematic literature review process.

• Multi-Stakeholder Recommender Systems [59]: in which the system considers the in-
terests of multiple stakeholders (e.g., consumers, suppliers, organizations) to generate
recommendations;

• Context-Aware Recommender Systems [60]: in which the system uses contextual infor-
mation (e.g., location, time) to provide personalized recommendations to the user;

• Attribute-Aware Recommender Systems [22]: in which the system exploits additional
user (e.g., gender), item (e.g., category), and rating (e.g., time) information to provide
more personalized recommendations;

• Price-Aware Recommender Systems [61]: in which the system exploits the user’s price
preferences and sensitivity to increase the accuracy of recommendations.

There are various surveys and reviews on RSs since the research field has been studied in
the past several decades. Some of these works [62] approach the problem from a general per-
spective. Others specialise in certain topics, such as recommendations based on deep learning
[63, 64] or reinforcement learning [65]. Many surveys focus on different types of RSs, such as
multi-objective RS [18], multi-criteria [20], multi-stakeholder [19, 59], context-aware [21, 66],
attribute-aware [22] and fairness [67, 68]. As introduced earlier, VARS differ from the previ-
ouslymentioned categories since they aim todirectlymaximize economic value. To the authors’
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knowledge, although there is growing interest in the literature [12, 11] on the topic of RSs’
value creation for business stakeholders, no surveys or reviews based on PRISMA guidelines
[1] focused on VARS have been conducted.

2.3 Proposed Approach

To select studies for inclusion, we adopted the Preferred Reporting Items for Systematic Re-
views and Meta-Analyses (PRISMA) [1] guidelines. The rigor and coverage of the PRISMA
selection process is recognised throughout the scientific community as an indication of high
reliability and quality. Below, we report the research questions behind the study, the informa-
tion sources queried, the search strategy used to identify the articles, the eligibility criteria used
for selection, the overall selection process, and the limitations of the study.

2.3.1 ResearchQuestions

The systematic review aims to answer the following research questions (RQ):

• RQ1: What are the main value categories typically optimized in value-aware recom-
mender systems?

• RQ2: What are the main techniques used to design value-aware recommender systems?

• RQ3: What are the main applications of value-aware recommender systems?

• RQ4: What are the main datasets used in the literature of value-aware recommender
systems?

• RQ5: What are the main state-of-the-art challenges and future research directions?

2.3.2 Eligibility Criteria

Only articles that met the following eligibility criteria (EC) were included:

• EC1: Articles should focus on value-aware recommender systems.

• EC2: Articles must be in English and the full content of the article must be accessible
by the authors.
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Figure 2.2: Value‐aware recommender algorithm taxonomy

.

• EC3: Articles must be unique, and any duplicate copies of the same article are not in-
cluded.

• EC4: Articles must be peer-reviewed by journals or conferences.

• EC5: Graduate theses and doctoral dissertations are not included.

2.3.3 Search Strategy

We identified all articles in various online journal databases from 2006 to 2022 resulting from
the following search query (SQ):

• SQ: ((”recommender system”OR”recommendation system”)AND(”value”OR”revenue”
OR ”sales” OR ”click” OR ”profit” OR ”price” OR ”customer” OR ”product” OR ”opti-
mization” OR ”maximization” OR ”aware”)).

To stay below the maximum number of items that could be extracted from the various
databases, it was necessary to implement operational arrangements, i.e., breaking the search
query into different subqueries, each executed in a distinct time range.

2.3.4 Selection Process

As shown in the PRISMA flow diagram in Figure 2.1, a total of 2,277 articles from IEEE
Xplore, 14,566 articles from Elsevier Scopus, 7,146 articles from ACM Digital Library, and
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21,625 articles from Springer Link were identified in this first research phase. We identified
16,273 duplicate records, 180 non-English articles, and 680 records that exhibited formatting
problems in the title and metadata that were removed. In the screening stage, the titles and
abstracts of 28,481 articles were analysed, and 28,296 records were excluded because the topics
covered were not relevant to our study. A total of 185 articles were first sought for retrieval and
then assessed for eligibility. At this stage, 94 articles were excluded after reading the full text.
From this subset of eligible articles, an additional 123 articles were identified by searching for
references in their bibliography, then sought for retrieval and finally assessed for eligibility. In
this last stage, 105 records were excluded after reading the full text. At the end of this overall
process, a total of 109 studies were included in the review.

2.3.5 Study Limitations

The main limitations of the present study are as follows:

• Articles were selected primarily from IEEE Xplore, Elsevier Scopus, ACM Digital Li-
brary, and Springer Link and from reference searches in the bibliographies of articles
that passed the screening stage.

• Unpublished articles, non-English articles, articles whose content was not accessible,
graduate theses, doctoral dissertations, commercial products, and demos were not in-
cluded.

2.4 Results

In this section, we present the results of the systematic review. First, we classify and describe
VARS algorithms. Then, we review some of the work that has studied applications of VARS
in the past few years. Finally, we present the most commonly used datasets.

2.4.1 Value-Aware Recommender Algorithm Taxonomy

In this section, we introduce the main algorithms in the literature on VARS. These algorithms
leverage different technical approaches and, in some cases, depend on the nature of the recom-
mended content. Although other taxonomies based, for example, on business KPIs or value di-
mensions, are available in the literature (see Section 2.2.1), we provide a classification of VARS
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according to the technical approaches used to highlight the different mechanisms underlying
the various algorithms. As indicated in Figure 2.2, VARS algorithms can first be divided into
in-processing and post-processing based on the time at which value-driven optimization of rec-
ommendations occurs (although pre-processingmethodsmay also exist, none have been found
in the literature). Then, the approaches can be further divided into value objective, value re-
inforcement, value ranking, and value policy according to the specific technique used. In the
following, we introduce each of these approaches.

Value-Aware Post-Processing Algorithms

Post-processing algorithms can be applied to any recommendation algorithm (treated as a black
box) to optimize the value of recommendations

In traditional scenarios, a recommender system suggests to user u a rankY∗
u,k of k items that

maximizes the expected interest:

argmax
Yu,k

∑
i∈Yu,k

r̂u,i (2.1)

by sorting the predicted scores r̂u,i of the unrated items in descending order and selecting the
first k. Post-processing methods rely on predicted scores and other economic information to
rerank the output of the original algorithm.

Value Ranking

This class ofmethods extends the approach in Eq. (2.1) by incorporating economic value infor-
mation into the objective function to rerank the output of the original algorithm.

Given a value vi ∈ R associated with item i (e.g., product profit), a strategy commonly used
by these systems [51, 69, 70, 71, 72, 73, 55, 74, 75, 6, 53] is to recommend the setY∗

u,k of items
that maximize the weighted expected interest:

argmax
Yu,k

∑
i∈Yu,k

r̂u,i · vi (2.2)

selecting the first k items with the highest r̂u,i · vi. As noted in some studies [51, 69], in this
way, it is possible to provide more profitable recommendations overall than those generated
by a traditional RS at the cost of some reduction in accuracy. However, as noted in various
works [55, 75, 53], the interests of customers andorganizationsmust be balanced appropriately.
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Clients may feel dissatisfied with a system that recommends only high-profit, irrelevant items,
and the organization may risk losing loyal customers.

To mitigate this drawback, several studies [72, 74, 6, 53, 76, 77, 78] have proposed simple
extensions of Eq. (2.2) to account for the perspectives of different stakeholders and determine
the best trade-off between economic value for the organization and customer interests:

argmax
Yu,k

∑
i∈Yu,k

(1− α) · r̂u,i + α · vi (2.3)

using a regularization parameter α ∈ [0, 1] to control the equation. Some variants [70, 71, 75,
73] of the approach in Eq. (2.3) have also used constraints to match certain conditions such as
the user budget.

Value Policy

Advanced post-processing approaches that are more complex than simple value ranking have
also been proposed. We refer to these methods as value policies to indicate that they are based
on specific policies consisting of multiple steps to optimize the economic value derived from
the entire recommendation process.

Various studies [79, 80, 81] have proposed multiple-step process-based approaches to opti-
mize economic value. For example, one study [79] proposed an algorithm that recommends
relevant items to gain customer trust and then recommendsprofitable itemsonce trust is gained
to increase business value. More sophisticated models have also been studied [80] by incorpo-
rating various factors such as price, profitability, product competition, and saturation effects to
improve profitability over a finite time horizon. Recent work [81] has proposed a probabilistic
approach to optimize multiple strategic parameters (e.g., click-through rate, user engagement)
one at a time considering that optimizing one parameter could have positive effects on other
value indicators as well.

Other works [5, 82, 7, 83] have proposedmethodologies optimizing the value of recommen-
dations by integrating dynamic pricing algorithms. For example, some works [83] have pro-
posed to optimize the discount of recommended items by exploiting multi-armed bandits. By
contrast, a more recent work [7] has proposed personalizing the price of recommended prod-
ucts based on customer willingness to pay to simultaneously optimize service provider profit
and customer surplus.
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Application
Domain

Most Frequently
Used Technique

Typically opti-
mized Value

Details

Product Recom-
mendation

Value Objective Sales and Revenue Table 2.2

Advertising
Recommendation

Value Reinforce-
ment

Sales and Revenue Table 2.3

News Recommen-
dation

Value Reinforce-
ment

CTR, User
Engagement

Table 2.4

Media Recom-
mendation

Value Objective Distribution Table 2.5

Table 2.1: Application domains of value‐aware recommender systems.

Value-Aware In-Processing Algorithms

While the methods presented above optimize value after the learning process, in-processing al-
gorithms aim tomodify existing or to introduce new algorithms to generate recommendations
that optimize value without the need to perform subsequent operations.

Value Objective

This class of methods contains algorithms that integrate the objective function of known or
domain-specific algorithms to generate more valuable recommendations.

For example, somework [84, 85, 86, 87]hasproposedmodifying thewell-knownneighbourhood
recommender system [23]. The original algorithm computes the similarity between users (user-
based approach) or items (item-based approach) belonging to a given neighborhood to predict
the scores. A neighborhood refers to a set of users who share similar interests or a set of items
that have been engagedwith by similar users. For example, in the user-based approach, the algo-
rithm computes the similarity sim(u, v) between a user u ∈ U whodid not express a preference
for item i and a user v belonging to a set P(u, i) of users who expressed preferences similar to
u and rated i.

(2.4)

based on the ratings of the neighbours. Some value objective algorithms have been proposed by
partially modifying the function in Eq. (2.4) to optimize some types of economic value. For
example, some work [87] has proposed a neighbour selection algorithm to increase the over-
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all profitability of recommended products while maintaining accuracy under shilling attacks,
i.e., identifying malicious users who generate biased ratings to influence recommendations for
their own interests. Moreover, other studies [86] have proposed increasing sales diversity by
recommending users to items by reversing the original neighbour computation algorithm.

Furthermore, other research [88, 89, 90, 91, 92] extends thewell-knownmatrix factorization
algorithm [24, 30] by incorporating value information into the objective function. In the tra-
ditional matrix factorization algorithm, the user-item interactionmatrixR is decomposed into
the product of two rectangular lower-dimensional latent space matrices representing users and
items. Decomposition is often performed using a dimensionality reduction algorithm known
as singular value decomposition [93].

r̂u,i = p⊺uqi (2.5)

by computing the dot product between the l-dimensional latent feature vector pu ∈ Rl of
user u and qi ∈ Rl of item i. Some value objective algorithms have been proposed by incor-
porating other factors into the calculation of predicted scores in Eq. (2.5) to optimize certain
types of economic value. For example, some works [88, 90, 91, 92] have used predicted scores
determined via matrix factorization and other economic information to improve the utility of
recommended products to the user.

Value Reinforcement

Recent studies have proposed value-aware recommendation algorithms by exploiting Rein-
forcement Learning (RL) [94] techniques, a learning approach that aims to automatically learn
an optimal policy based on the sequential interactions between an agent and the environment
through trial and error to maximize a reward. An RL environment can be formalised through
a Markov decision process (MDP) in the tuple (S,A,Ω,P, γ), where S is a set of possible
states, A is a set of possible actions, Ω is a reward function, P is the probability of transition
from one state to another following an action and γ ∈ [0, 1] is a discount factor. Typically, in
RL algorithms, an agent interacts with the environment to maximize the expected discounted
cumulative reward:

max E[Ω(τ)]

Ω(τ) =
τ∑

t=0

γt · ω(at, st)
(2.6)
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with ω(at, st) as the reward for taking action a ∈ A in state s ∈ S at time t. The objective of
the algorithm is to determine an optimal policy π(a|s) that involves taking an action in a given
state to maximize the reward.

Given the sequential nature of user interactionwith anRS,ReinforcementLearningRecom-
mender Systems (RLRS) [65] have emerged as alternative approaches based on RL techniques
to generate recommendations. Muchof the literature onVARS [95, 96, 16, 97, 17, 15, 98, 54, 8,
99, 100] exploits this methodology to maximize the long-term value of recommendations, im-
plementing the agent reward functionΩ(τ) in Eq. (2.6) to take into account the value v of the
recommended items. For example, in one study [95], an algorithm was designed to maximize
the customer lifetime value (CLV), i.e., the total value generated by the customer throughout
his or her history. By contrast, in another study [15], the reward function was modified via
the concept of click-conversion rate (CVR) to generate recommendations that maximize the
economic value from each user action (e.g., click, add-to-cart, pay).

2.4.2 Value-Aware Recommender Systems Applications

Recent years have witnessed growing interest in VARS. Since algorithms are often designed
based on domain-dependent characteristics, in this section, we review the literature on VARS
in various application domains. As indicated in Table 2.1, these include the recommendation
of products, advertising, news andmedia. This analysis is proposed because each type of appli-
cation has distinctive characteristics that lead to a preference for certainmethodologies and for
optimizing certain types of economic value. The following sections refer to the detailed tables
linked to the main table for a more in-depth discussion of individual research works.

Product Recommendation

Many VARS have been developed to optimize product sales. Below, we provide an overview of
the main topics addressed in the literature, including the accuracy-profitability trade-off, the
optimization of multiple objectives simultaneously from a multi-stakeholder perspective, the
usefulness of recommendations for the customer, the long-term implications of value-aware
recommendations, the influence of price on the willingness to pay, and real-world studies.

Table 2.2 summarises the literature on value-aware product recommendation systems.
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Accuracy-Profitability Trade-Off

Business interest in leveraging recommender systems to increase revenue or other key perfor-
mance indicators of global e-tailers existed since the 2000s. In early work, Chen et al. [51, 69]
proposed a methodology to weight the recommendations of a collaborative filtering algorithm
with product profitability factors (i.e., revenues minus costs). This approach allows the system
tomeet the customer’s needs and achieve higher profit margins for the organization. However,
as observed by the authors, focusing excessively on profitability could rapidly degrade the ac-
curacy of recommendations. While some techniques based on constrained optimization [70,
71, 101, 80, 102] or multi-objective algorithms [76, 78, 103, 87, 104, 105, 106, 107, 108, 109]
have beenproposed (see Section2.4.1 tobalance the potentially conflicting interests ofmultiple
stakeholders simultaneously, other studies [55, 53, 110, 108] have investigated the accuracy-
profitability trade-off through offline simulations. As argued by Jannach and Adomavicius
[55], the items that are most important for the user may not be those that produce the high-
est business value for the service provider. Biasing algorithms in the direction of higher prof-
itability could actually increase marginality while maintaining the relevance of recommended
products. However, above a certain threshold, the probability of purchase drops dramatically,
and the business value generated as a result is reduced. Taking this reasoning to its logical con-
sequence, Zhou and Zou [110] argue in a theoretical study that a profit-based recommender
system could influence a marketplace by leading sellers to strategically increase product prices
to compete in recommendations, leading to a decrease in overall profitability.

On the Usefulness of Customer Recommendations

In contrast to previous studies, a different research perspective [88, 111, 90, 91, 92] finds that
the usefulness of customer recommendations is directly proportional to the sales performance
of the recommendation system. In fact, according to leading economic theories, a rational cus-
tomer would choose products that maximize their utility. Based on this perspective,Wang and
Zhang [88] develop a recommendation algorithm that maximizes the net marginal utility of
recommended products for the customer by exploiting the economic principle of diminishing
marginal utility. Yang et al. [111] propose an adaptive association rule mining algorithm to rec-
ommend the highest utility products. By contrast, Zhang et al. [90] design a recommendation
system that jointly optimizes the interests of customers and sellers in an online marketplace.
The system optimizes customer surplus, defined as the amount of utility that a customer ob-
tains with respect to the price that he or she pays, and producer surplus, defined as the amount
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of revenue that a producer obtains after costs. Further developing previous approaches, Zhao
et al. [91] proposemaximizing the usefulness of recommendations based on the concept of the
marginal rate of substitution. The algorithm considers the complementarity and substitutabil-
ity of the products to be recommended to the customer compared to those already purchased.
Finally, Ge et al. [92] aim to optimize the utility of recommended products by maximizing the
marginal utility per dollar (MUD) under customer budget constraints.

Long-Term Implications of Value-Aware Recommendations

Thus far, the discussedworks have focusedmostly on optimizing short-term sales performance.
However, as argued by Jannach and Adomavicius [55] and Ghanem et al. [108], the perfor-
mance of an RS also depends to a large extent on the long-term effects of recommendations on
customers. Purely profit-oriented strategies are overly biased towards the organization’s short-
term interests and can lead to long-term customer churn. Instead, strategies that balance profit
with customer utility, and thus are more oriented to the customer’s perspective, would likely
lead to sustained profitability in the long run due to more stable levels of customer satisfac-
tion. Hosanagar et al. [79] considered this factor by arguing that a recommendation system
should first try to maintain a certain level of trust by proposing products that are relevant to
the customer before optimizing profitability. Additionalwork byLiu and Shih [120, 121, 119],
Shih and Liu [122] and Tabaei and Fathian [123] proposed methodologies based on customer
lifetime value (CLV), a popular metric in the marketing and management literature that mea-
sures the overall value that a customer generates for the organization throughout his or her
history. However, previous studies focused on the use of CLV to improve the quality of rec-
ommendations rather than to optimize the long-term value for the organization. More recent
works [114, 96, 15, 115, 100] have proposed directly optimizing the long-term performance of
recommender systems by exploiting probabilistic approaches [114] or reinforcement learning
[96, 15, 115, 100] algorithms (see Section 2.4.1). The latter have been used, for example, to
maximize the cumulative value obtained via all user actions (i.e., click, add-to-cart, pay) [15] or
to optimize customer lifetime value in cold-start scenarios [99].

Static vs. Dynamic Pricing

Themajority of research onVARS is based on algorithms that keep prices static. However, a pi-
oneering alternative approach is represented by systems that integrate recommendations with
dynamic pricing algorithms [83, 112, 5, 82, 106]. According to this philosophy, Kamishima
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Reference Technique Used optimized Value Dataset

[51] Value Ranking Sales and Revenue Foodmart
[69] Value Ranking Sales and Revenue Foodmart
[79] Value Policy Sales and Revenue N/A
[70] Value Ranking Sales and Revenue Self-collected
[71] Value Ranking Sales and Revenue N/A
[102] Value Objective Sales and Revenue N/A
[83] Value Policy Sales and Revenue MovieLens
[88] Value Objective User Engagement Self-collected
[112] Value Objective Sales and Revenue Self-collected
[106] Value Objective Sales and Revenue Foodmart
[101] Value Objective Sales and Revenue Self-collected
[80] Value Policy Sales and Revenue Self-collected
[5] Value Policy Sales and Revenue Self-collected
[113] Value Policy Sales and Revenue Self-collected
[82] Value Policy Sales and Revenue Self-collected
[56] Value Policy Sales and Revenue Self-collected
[90] Value Objective User Engagement Self-collected
[91] Value Objective User Engagement Self-collected
[55] Value Ranking Sales and Revenue MovieLens
[111] Value Objective User Engagement Foodmart, Chain-

Store, Amazon
Review

[96] Value Reinforcement Sales and Revenue Dunnhumby
[87] Value Objective Sales and Revenue Book-Crossing
[114] Value Objective Sales and Revenue MovieLens
[104] Value Objective Sales and Revenue Self-collected
[105] Value Objective Sales and Revenue SPMF/Retail
[92] Value Objective User Engagement Amazon Review
[15] Value Reinforcement Sales and Revenue REC-RL
[107] Value Ranking Sales and Revenue Self-collected
[78] Value Objective User Engagement EC-REC
[103] Value Objective User Engagement JD
[115] Value Reinforcement Sales and Revenue Self-collected
[53] Value Ranking Sales and Revenue Self-collected
[116] Value Policy Sales and Revenue Self-collected
[100] Value Reinforcement Sales and Revenue Self-collected
[99] Value Reinforcement User Engagement Self-collected
[109] Value Policy Sales and Revenue N/A
[117] Value Ranking CTR Self-Collected
[108] Value Ranking Sales and Revenue MovieLens
[118] Value Objective Sales and Revenue Self-Collected
[110] Value Policy Sales and Revenue N/A

Table 2.2: Product value‐aware recommender systems.
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and Akaho propose a system that strategically adjusts the price of items recommended to cus-
tomers through a discount based on the type of customer visiting the system. If the customer
would purchase the product at a discounted price, the system would propose a favourable
price to obtain additional revenue. A different approach was proposed by Jiang et al. [113],
who designed a system that recommends products and simultaneously optimizes associated
promotional discounts to maximize the total profit gain for the company. Instead, Jiang and
Liu [112] optimize the discount of promotional products to increase the overall profitability
of non-promotional products. The authors propose exploiting intra/cross-category effects of
products purchased at a discounted price to stimulate customers to purchase non-discounted
products. Additionally, regarding personalized promotions, Zhao et al., [5] propose customiz-
ing the discount of recommended products based on customer willingness to pay predictions,
while Beladev et al. [82] propose recommending product bundles by pricing them tomaximize
the organization’s revenue.

Real-World Studies

Some research has studied the performance of VARS in real-world environments. In particu-
lar, the model designed by Hosanagar et al. [79] has been used in many research works. The
algorithm was designed according to the following assumptions: when a customer trusts an
RS, the system biases the recommendations to increase profitability; when customer trust is
below a certain threshold, the system recommends the most relevant products to restore trust
at the expense of profitability. Some online studies [56, 116] used this algorithm to study the
sales performance of a profit-based recommender system. In particular, Panniello et al. [56],
in a randomised field experiment, showed that the Hosanagar et al. algorithm achieved higher
revenue than that of a content-based algorithmwithout affecting the customer’s trust in the or-
ganization. In another experiment, Basu [116] found that the relevance of recommendations
and customer trust in the organization were positively correlated with the revenue generated
from recommendations.

Similar resultswere reportedbyKompanet al. [53] in a studybasedona real-world e-commerce
dataset in the fashion domain. Integrating product profit factors and customer price prefer-
ences into the algorithms could actually increase the profitability and, in some cases, even the
accuracy of the recommendations. However, an excessive bias could lead to opposite effects.
Moreover, as argued by Cavenaghi et al. [117], the price and rank position of a recommended
product are two key factors that can influence CTR and other business value indicators.
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Reference Technique Used optimized Value Dataset

[95] Value Reinforce-
ment

User Engagement Self-collected

[74] Value Ranking Sales and Revenue Self-collected
[124] Value Policy Sales and Revenue Package, NBA
[75] Value Ranking Sales and Revenue Self-collected
[17] Value Reinforce-

ment
Sales and Revenue MovieLens

[54] Value Reinforce-
ment

User Engagement Self-collected

[8] Value Reinforce-
ment

Adoption Self-collected

[81] Value Policy All Values Amazon Review

Table 2.3: Advertising value‐aware recommender systems.

Advertising Recommendation

Several value-aware systems have been proposed to optimize the value of advertising. In the
following, we provide an overview of traditional systems in this field and recent perspectives
that aim to optimize customer lifetime value.

Table 2.3 summarises the literature on value-aware advertising recommendation systems.

Traditional Advertising Strategies

In advertising systems, sponsored space is traditionally sold through auctions, where different
advertisers compete for customers’ attention. The systems often work as follows [125, 126,
8]: the advertiser first defines a subset of potential target customers based on certain demo-
graphic and/or purchasing characteristics; subsequently, he or she selects an objective to opti-
mize through sponsored recommendations (e.g., number of clicks, add-to-carts or gross mer-
chandise volume); finally, the advertiser defines a bid price that he or she will pay when the
objective is reached. Therefore, a common strategy used by service providers to maximize sys-
tem revenues is to sort advertisers’ products into sponsored space by weighting the bid price
by click-through rate or click-conversion rate. As a result, much of the literature in the field
of computational advertising [127, 128, 129, 130, 125, 131, 126, 132] investigates algorithms
to predict the previous metrics as accurately as possible from the characteristics of the recom-
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mended items. Early work [127] by Microsoft proposed a Bayesian algorithm based on a pro-
bit regression model to predict CTR in a Microsoft Bing sponsored search. Subsequent work
describes the ad systems of Google [128], Facebook [130] and Yahoo [129], as well as the al-
gorithms used to estimate CTR.More recent approaches proposed by Etsy [125] and Alibaba
[131, 126, 132] leverage ensemble learning models and neural networks, respectively, to make
predictions by exploiting features associated with items (e.g., text and images), and customer
purchase behaviour.

Considering User Interest to Generate Higher Returns

Although conventional advertising strategies are widely adopted, alternative approaches have
been proposed to optimize other aspects of advertising, particularly considering users’ interests
[124, 74, 75]. Indiscriminately promoting high-profit items that do not match users’ interests
could pushusers away from the system. Thus, to consider both the interests of the organization
and the users, Zhang et al. [74] proposed amethodology to balance the revenue generated from
the ads of an app store and the overall quality of the recommendations. The system optimizes,
in the same objective function, the profit from downloading financially sponsored apps and
the number of downloads of non-sponsored apps relevant to the user. Adopting a similar per-
spective: Long et al. [124] developed an algorithm that optimizes the overall profitability of a
promotional campaign while maintaining a certain number of satisfied customers; Malthouse
et al. [75] proposed a multi-stakeholder advertising system that jointly optimizes ad revenue
and user utility. Considering the user’s interests in recommendations would increase customer
lifetime value and improve other drivers of business value. However, as noted byHe et al. [81],
maximizing multiple strategic parameters in the same objective function (e.g., click-through
rate, user engagement) could lead to suboptimal results in individual indicators. Instead, con-
sidering thatmany indicators are interrelated, by adopting aprobabilistic optimizationmethod-
ology, optimizing one parameter at a time could have positive effects on other business values
as well.

Maximizing Customer Lifetime Value and Advertiser Revenue

As previously observed, the interests ofmultiple stakeholders should be balanced appropriately
to maximize customer lifetime value. Trying to increase short-term profitability with overly
biased recommendations could negatively impact an organization’s reputation. If the trust re-
lationship is broken, some customers may decide to purchase from competitors, and the com-
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Reference Technique Used optimized Value Dataset

[133] Value Reinforce-
ment

CTR, User
Engagement

Self-collected

[134] Value Ranking CTR, User
Engagement

Self-collected

[16] Value Reinforce-
ment

User Engagement Self-collected

[97] Value Reinforce-
ment

CTR Self-collected

[135] Value Ranking User Engagement Self-Collected
[98] Value Reinforce-

ment
CTR, User
Engagement

Self-collected

[6] Value Ranking User Engagement Self-collected
[136] Value Ranking CTR, User

Engagement
Self-Collected

Table 2.4: News value‐aware recommender systems.

panymay lose valuable sources of revenue. To address this problem, someworks [95, 17, 54, 8]
have studied how tooptimize the performance of a long-term advertising system. Instead of rec-
ommending to customers ads that have the highest probability of being clicked, Theocharous
et al. [95] and Han et al. [17] proposed leveraging reinforcement learning techniques to opti-
mize customer lifetime value and, more generally, cumulative reward for the platform. Zhao
et al. [54] further adaptedd the approach in the case of sequential recommendations by propos-
ing an approach that maximizes cumulative user engagement by balancing longer browsing
sessions and the click-through rate.

Moreover, fromamulti-stakeholderperspective, in addition to the interests of serviceproviders
and customers, the system should consider the interests of advertisers. According to the latter
perspective, Guo et al. [8] proposed a system based onmulti-armed bandits to recommend the
best advertising strategy to advertisers. The system aims to encourage the adoption of the plat-
form by helping advertisers define customer targets and bid prices to improve the performance
of marketing campaigns by reducing the cost of trial and error.
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News Recommendation

Some value-aware recommenders have been proposed to optimize the value of news systems.
Below, we provide an overview of conventional news recommendation strategies, the existing
relationship between click-through rate and user engagement, and the optimization of long-
termmetrics to generate greater returns for the service provider.

Table 2.4 summarises the literature on value-aware news recommendation systems.

Conventional News Recommendation Strategies

The reputation of a news company is directly related to the impact of the information it pro-
vides on society (i.e., breaking news) [137]. The business model may be subscription-based,
advertising-based, or both. Conventionally the number of clicks or views a given news item
obtains during its overall lifespan is directly related to the organization’s returns. As a result,
traditionally, companieswhose core business is sharing information in the formof newsmay be
interested in generating higher profits by optimizing user interaction. Since the click-through
rate (CTR) is directly related to an organization’s revenue, a common goal is to maximize the
number of clicks. Therefore, traditional news RSs [138, 139] use CTR as a primary indicator
to feed probabilistic techniques to determine which articles most closely match the reader’s in-
terests. The systems generate news candidates with the highest probability of being clicked by
the users.

On the CTR-Engagement Relationship

As for advertising, although the CTRmeasures the probability of clicks in the current step, it
does not capture the engagement that may occur due to the action itself. In fact, even if a user
clicks on an article simply for curiosity, he or she might not necessarily be interested in read-
ing it. Consequently, a growing body of work [134, 135, 6] has considered the relationship
between CTR and user engagement by proposing to optimize the latter. Besbes et al. [134]
formulated a heuristic methodology that examines the probability of clicking on a news item
and the engagement effect that it triggers. Specifically, they express the relationship between
clicks (the likelihood of clicking on an article when recommended) and engagement (the prob-
ability of clicking on an article when it hosts a recommendation). Through this formulation,
the news is proposed also considering the future navigation paths of the contents. Instead, Zi-
hayat et al. [135] proposed a probabilistic methodology that simultaneously considers an arti-
cle’s recentness and user-article interaction (i.e., dwell time) to recommend news based on user
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Reference Technique Used optimized Value Dataset

[140] Value Objective Sales and Revenue Self-collected
[141] Value Objective Sales and Revenue Self-collected
[84] Value Objective Distribution MovieLens
[72] Value Ranking Sales and Revenue Self-collected
[85] Value Objective Distribution MovieLens, Book-

Crossing
[89] Value Objective Distribution MovieLens
[86] Value Objective Distribution Netflix Prize, Mil-

lion Song
[142] Value Ranking Distribution MovieLens, Net-

flix Prize, Jester
[143] Value Ranking Distribution MovieLens,

Netflix Prize
[144] Value Ranking Distribution MovieLens,

Netflix Prize
[7] Value Policy Sales and Revenue Self-collected
[145] Value Policy Sales and Revenue Self-collected

Table 2.5: Media value‐aware recommender systems.

utility criteria. Moreover, as observed by Lu et al. [6] and Spyridou et al. [136], news recom-
mendation differs from many traditional recommendation domains, such as e-commerce or
entertainment, in that news organizations have a clear responsibility to society to provide high-
quality information. Algorithms should first and foremost consider the civic role of journalism
for an informed citizenry and optimize the editorial value of news (i.e., a mix of serendipity, dy-
namism, diversity, and coverage) rather than looking solely at CTR.

Optimizing Long-TermMetrics

As with other value-aware systems, the relationship between value and time should not be un-
derestimated. In some cases optimizing exclusively for short-term CTR may prove counter-
productive if the news provided is not of interest to the user. Taking this into consideration,
several works [16, 133, 97, 98] have proposed methodologies to optimize long-term metrics.
For example,Wu et al. [16] propose optimizing long-term user engagement bymaximizing the
total number of clicks per period using a multi-armed bandit system. The model also consid-
ers that, in some cases, the user may abandon the system due to incorrect recommendations,
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A similar approach based on contextual bandits was originally proposed by Li et al. [133] to
maximize the total number of user clicks. More advanced approaches based on reinforcement
learning have been proposed by Zheng et al. and Zou et al. [97, 98] to optimize both CTR
and long-term user engagement while considering the user’s return pattern on the platform in
addition to click information.

Media Recommendation

Some value-aware recommender systems have been designed to optimize the value of multime-
dia services. Below, we provide an overview of the main topics in the literature concerning the
optimization of user engagement, the effects on the distribution of items with which the user
interacts, and the resulting increase in sales.

Table 2.5 summarises the literature on value-aware media recommendation systems.

On The Effects of Optimizing User Engagement on ItemDistribution

In contrast to ordinary goods (e.g., physical products), movies, music, and other digital goods
are referred to as information goods because their production and distribution costs are negli-
gible and they can be copied, shared, rented or resold easily [7]. Aswith news systems, themain
business models of companies providing multimedia services are based on either subscriptions
or advertising. Thus, especially for companies in the entertainment industry, user engagement
is directly related to profits; as a result, RSs are traditionally designedwith the goal of providing
the user with the content of greatest interest [146].

However, given the considerably large amount of content available, RSs tend to recommend
themost popular items, riskingboring theuserswithpoorly-tailored recommendations [47, 48,
49]. To keep users engaged, one of the main techniques is to optimize the distribution of rec-
ommended items (recall effects on distribution are part of the value taxonomy in Section 2.2.1)
with the goal of helping the user discover surprisingly new and relevant items. This canbe done,
for example, by increasing the diversity [147] of recommendations [86, 143, 144] or promoting
long-tail items [84, 85, 89] that tend to be proposed less by RSs because of popularity bias.

Optimizing Sales Revenue According to the BusinessModel

In addition to user engagement, research on media VARSs propose approaches to optimize
other value indicators. Some works [72, 140, 141] have proposed domain-specific approaches
to recommendfilms that have thehighest probability ofmaximizing systemsales revenue. Azaria
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et al. and Iwata et al. proposed two different variants of their approach depending on whether
the customer pays a subscription (subscription-based business model) to have the opportunity
to watch several movies in a given time frame [140, 72] or a fixed price (on-demand business
model) for individual movies [141, 72].

The importance of the value-aware approach on the overall revenues of a movie provider
based on an on-demand business model has also been studied in detail in two recent papers
[145, 7]. Inparticular, according toZhang et al. [145], recommendation systems that aim solely
at profit optimization could produce negative effects on customer surplus (i.e., the price paid
by the customer minus willingness to pay) and risk driving customers away from the company.
Instead, according to Najafabadi et al. [7], personalizing pricing would allow the offer to be
more tailored to the customer’s willingness to pay and simultaneously create more profit for
the sellers and surplus for the customers.

2.4.3 Datasets

In many studies, VARS have been trained and evaluated on public datasets. Unlike traditional
datasets, the majority of the latter contain economic value information. Below, we present the
main datasets used in the literature.

As shown in Table 2.6, most datasets are used to design product or media value-aware rec-
ommender systems. Some studies that proposed product VARS [51, 69, 111] have exploited
the FoodMart dataset [148]. This is a Microsoft SQL Server 2000 sample database of a super-
market. The dataset contains 5,581 customers, 1,559 products, and 20,522 purchase transac-
tions. In addition, master data about customers (e.g., country) and products (e.g., brand) are
presented together with sales data (e.g., price, cost, profitability). Other studies on product
VARS [80, 87, 111, 81] have exploited different datasets crawled from Amazon [159, 149]
and Epinions [153]. These datasets are primarily based on product review data from vari-
ous product categories and contain customer ratings, text reviews, and product metadata (e.g.,
brand, category, price). Furthermore, other works [96, 105, 111] have leveraged supermarket
transaction datasets such as Dunnhumby [150], SPMF/Retail [151], and Chainstore [152],
which contain customer, product, and purchase transaction information. Finally, other works
[15, 78, 76, 103, 98] used e-commerce datasets such as EC-REC [78], REC-RL [15] and JD
[103] that, together with customer, product, and pricing information, contain user-item inter-
action data (e.g., click, add-to-cart).

Other studies that investigated media VARS [55, 114, 81, 84, 85, 89, 142, 143, 144, 17] re-
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Dataset Domain Content Availability

FoodMart
[148]

Product Contains transaction data, product
metadata and customer demograph-
ics of a supermarket chain

https : / / github .
com / julianhyde /
foodmart-data-hsqldb

Amazon
Review [149]

Product Contains product review data and
metadata crawled from Amazon e-
commerce site

https : / / nijianmo . github .
io/amazon/index.html

JD [103] Product Contains data collected from the rec-
ommender systems logs of the JDChi-
nese e-commerce site

https : / / github . com /
guyulongcs/CIKM2020_DMT

Dunnhumby
[150]

Product Contains transaction data from a sub-
set of households that make frequent
purchases from a retailer

https : / / www . dunnhumby .
com/sourcefiles

SPMF/Retail
[151]

Product Contains customer transaction data
from a Belgian retail store

https : / / www .
philippe-fournier-viger .
com/spmf/index.php?link=
datasets.php

ChainStore
[152]

Product Contains transaction data and prod-
uct metadata from a supermarket
chain in California

http : / / cucis . ece .
northwestern . edu /
projects / DMS / MineBench .
html

EC-REC [78] Product Contains records of impressions,
clicks and purchases from a large-
scale e-commerce platform

https : / / drive . google .
com / open ? id = 1rbidQksa _
mLQz-V1d2X43WuUQQVa7P8H

REC-RL [15] Product Contains user interaction data col-
lected from a real-world e-commerce
platform

https : / / github . com /
rec-agent/rec-rl

Epinions [153] Product Contains who-trust-whom online so-
cial network data from the Epinions
consumer review site

https : / / snap . stanford .
edu / data / soc-Epinions1 .
html

MovieLens
[154]

Media Contains movie ratings collected over
various time periods from the Movie-
Lens web site

https : / / grouplens . org /
datasets/movielens/

Netflix Prize
[155]

Media Contains anonymous movie ratings
from subscribers to the Netflix online
movie rental service

https : / / www . kaggle . com /
datasets / netflix-inc /
netflix-prize-data

Book-
Crossing
[156]

Media Contains anonymised data of im-
plicit/explicit book ratings from the
Book-Crossing community

http : / / www2 . informatik .
uni-freiburg . de /
~cziegler/BX/

Million Song
[157]

Media Contains audio features andmetadata
for over a million contemporary pop-
ular music tracks

http://millionsongdataset.
com/

Jester [158] Media Contains anonymous ratings of jokes
by users of the Jester Joke Recom-
mender System

https : / / eigentaste .
berkeley.edu/dataset/

Table 2.6: Datasets used in VARS literature.
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lied on the well-known MovieLens dataset [154]. This is a very popular dataset that is used
extensively in research on RSs. The dataset exists in several versions and contains movie rating
data from the homonymous website. The largest version is MovieLens 25 M which contains
162,000 users, 62,000movies, and 25million ratings. Unlike the previous datasets,MovieLens
does not explicitly contain product pricing data. Therefore, in several studies [55, 114, 81, 17],
some methodologies based on probability calculations have been proposed to add this infor-
mation to design VARS. Furthermore, other studies [84, 85, 89, 142, 143, 144] have used the
dataset to design algorithms capable of optimizing product distributions without the need to
add pricing information. Different research works onmedia VARS [84, 85, 86, 142, 143, 144]
have adopted a similar philosophy and are based on famous datasets that do not contain pricing
information, such as Netflix Prize [155], Book-Crossing [156], Million Song [157], and Jester
[158].

2.5 Discussion

Value-aware recommendation systems offer many business benefits over traditional systems.
However, optimizing value brings new challenges. In this section, we discuss some of these
challenges to guide future research directions.

2.5.1 Balancing Accuracy and Profitability

Early studies in the literature [51, 69] focused on optimizing a particular value driver of interest
(e.g., CTR, sales, conversion rate). However, although biasing recommendations can in many
cases improve some key business indicators, a system that always recommends irrelevant high-
profit items could hurt the company’s reputation by driving customers away [55, 53, 110]. To
address this issue, many studies [79, 70, 71, 80, 134, 74, 124, 87, 75, 104, 105, 108] propose
algorithms to determine the best trade-off between recommendation accuracy and value maxi-
mization. In fact, to avoid losing valuable sources of revenue for the organization, the RSmust
appropriately balance the interests of all key stakeholder groups. Although several studies have
addressed this issue, the proposed algorithms are often based on assumptions about a particular
type of industry (e.g., retail, entertainment, insurance) [7, 100] or business model (e.g., direct
sales, subscriptions) [140, 141], and the methodologies are not always applicable in different
contexts. Future research should study this problem inmore detail by generalizingmethodolo-
gies to propose algorithms suitable for each application context. Furthermore, optimizing a
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certain type of value (e.g., click-through rate) often affects other related indicators (e.g., sales)
[81]. Studying more in-depth the correlations between the various indicators and their rela-
tionships with other business KPIs such as cash flows or inventory levels [73, 160], to optimize
other types of value for organizations as well (e.g., reducing logistics delays, cost-to-serve or
interest rates), could be another interesting research direction for the future.

2.5.2 On the Long-Term Perspective of Value Creation

To balance the interests of different parties, many algorithms have been proposed based on con-
strained optimization techniques. However, these algorithms often perform post-processing
operations to optimize short-term performance without considering the long-term effects of
recommendations [79, 55, 108]. Although widely used in the literature, this approach is risky
because if a potential client notices that the recommendations are biased, they may lose trust
in the organization and decide to purchase from competitors. To address this issue, reinforce-
ment learning techniques have recently beenproposed [95, 96, 16, 97, 17, 15, 98, 54, 8, 99, 100].
In this way, the recommendation can be modeled as a sequential decision problem in which
an agent interacts with customers to maximize a cumulative reward for the organization. In
general, we think that the use of reinforcement learning algorithms to optimize long-term rec-
ommendation performance will be highly valued in the next generation of VARS.

2.5.3 Dynamic Pricing for Value Optimization

Another important point to consider is the variability of certain information (e.g., price) that,
together with recommendations, helps influence a customer’s decision to purchase from an
online service. To date, the literature on VARS has primarily studied how to optimize recom-
mendations while keeping prices stable. Some specializedworks [83, 112, 5, 82, 7, 117] have in-
stead proposed further optimizing the sales process by integrating dynamic pricing algorithms
into recommendations. In fact, the price of a product is one of the most important purchase
drivers for a customer [117, 161]. Therefore, it is possible to act on this information as well to
increase revenue and overall profitability for the organization. The study of the integration of
dynamic pricing algorithms in value-aware systems is currently still in its infancy but could be
a valuable future research direction.
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2.5.4 Value-Aware Performance Evaluation

To evaluate the performance of VARS [12, 11, 162], some studies [56, 116] have performed on-
line A/B tests. Specifically, given the non-deterministic nature of customer purchase choices,
randomised controlled field tests are typically considered one of the few reliable performance
evaluationmethods. However, performing these tests is costly in termsof both time andmoney
on the part of organizations: often, an A/B test can last several months if long-term aspects are
to be evaluated and unexpected effects can sometimes occur, for example, due to particular
world events that affect the results, making it necessary to rerun the test. In addition, a poorly
performing recommendation system could cause significant financial damage to the organi-
zation by making performance evaluation very risky. Thus, given the complexity and cost of
conducting field tests to evaluate performance, most studies on VARS [51, 69, 80, 76, 55, 111,
131, 87, 114, 78, 105, 15, 81] exploit offline approaches based on public datasets. However, the
most popular public datasets [155, 154] often donot contain business information (e.g., prices,
profits), making it difficult to measure the potential value generated by the recommender. An-
other important limitation is that it is often unclear under what circumstances the data were
sampled. The results obtained by the algorithms could therefore be affected by bias, e.g., due to
a particular promotion or certain population characteristics leading to erroneous conclusions.
In addition, the results of studies in the literature are often not comparable because the authors
measure offline value using ad hoc metrics or simulation systems that attempt to emulate the
user’s purchase choice. As a result, future research should address this issue to provide more
reliable and sustainable performance evaluation methods.

2.5.5 Trustworthy Value-Aware Recommender Systems

Finally, like other AI-based systems, value-aware recommenders should be designed to respect
important principles of AI trustworthiness [163], including alignment with human values, ro-
bustness and safety, privacy preservation, fairness [68], explainability [164] and transparency,
reproducibility, and accountability. Studying each of these aspects in detail could be a prof-
itable research direction. Investigating how to explain VARS recommendations without de-
grading business value or studying the reproducibility of major algorithms in the literature
could provide interesting hints for future contributions.
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2.6 Contribution

This chapter presented a systematic review of the latest developments in Value-Aware Recom-
mender Systems. These systems have been strategically designed for seamless integration into
commercial applications, aiming to enhance the economic value derived from recommenda-
tions. Value-Aware Recommender Systems find applications in diverse domains, including
e-commerce for profit optimization, advertising platforms to enhance customer lifetime value,
and online news services to maximize user engagement. The main algorithms within the lit-
erature of value-aware systems are based on post-processing techniques, the incorporation of
objective functions from established recommendation algorithms, and the application of rein-
forcement learning methodologies.

However, if on the one hand, these systems provide key benefits for companies, on the other
hand, they introduce new challenges such as appropriately balancing at the same time the in-
terests of consumers, producers, and organizations while maintaining high recommendation
performance in the short and long term. More in-depth, research is required to design higher-
performing systems following recent trustworthy AI principles, effectively manage pricing in-
formation to optimize value, and improve offline and online performance evaluation method-
ologies.

However, while these systems offer substantial advantages to enterprises, they also introduce
new challenges, such as appropriately balancing at the same time the interests of consumers,
producers, and organizations while maintaining high recommendation performance in the
short and long term. Furthermore, research is required to design higher-performing systems
following recent trustworthyAI principles, effectivelymanage pricing information to optimize
value, and improve offline and online performance evaluation methodologies.

Finally, these systems could be enhanced with the integration of explainability features that
provide users insights into the suggestions of themodels tomake better and informeddecisions.
In the next chapter, we present explainability concepts and applications, proposing a novel RS
model that aims to suggest items to business users, providing a balancing of value generated
and explainability indices.
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3
Explainable Recommender Systems and

Business Value

A Recommender System (RS) is a type of information filtering algorithm that provides sug-
gestions for objects related to a particular user. However, not all recommendation systems are
transparent about how to generate their recommendations, which can affect multiple user cri-
teria, such as trust and satisfaction. To address this problem, during the last decade researchers
have defined a novel branch of study named Explainable Artificial Intelligence (XAI), in par-
ticular, they aim to address the problem of user comprehension. Explanations applied to RSs
aim to address this problem by providing the reason, criteria, or evidence behind the model re-
sults. These explanations can help users understand, assess, and accept recommendations and
improve decision-making processes.

From an industrial perspective, the potential for explanation is increasingly in demand, help-
ing companies understand howAImodels provide information and providingmore insight to
make decisions. The knowledge of the system that suggests which actions you should take is es-
sential for the buildup of trust between clients, employees, and regulators. Indeed, companies
that adopt best practices to allow explanation could understand the results and lead the profits,
and it can also increase productivity by quickly revealing errors and areas for improvement.

Although the potential impact of these complex systems is challenging for enterprises, it
has been affected by some limitations. One of the limitations that emerges from the current
state-of-the-art is that the more complex an AI system becomes, the harder it is to precisely
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know how it obtained a particular insight, especially if the model aims to provide explanations
targeted to specific users. In particular, when different kinds of users (consumers, business
clients, modelers) interact with these models, they expect to solve a specific problem based on
multiple explanation requirements. For example, a consumer rejected by a bank for amortgage
would probably want to understand the reason for this decision. Or, amarketing user wants to
be assisted by an Explainable Recommender Systemwhile preparing amarketing campaign for
a specific business target, motivating why he makes these decisions (i.e., compose the proper
marketing proposal for a campaign). Due to the significant potential of these models, the bal-
ancing between business value and explainabilitywill lead to future industrial research, helping
companies for their target. To the best of our knowledge, no studies try to apply explanations
to Value-Aware Recommender System (VARS).

In this chapter, we introduce the concept of the Explainable Recommender System (xRS),
review the main techniques for creating and evaluating explanations, and present literature
examples of applications for explaining recommendations (see section 3.1 and 3.2). Finally, we
propose a novel model called Explainable Value-aware Matrix Factorization (XVMF) that is,
to the best of our knowledge, the first tentative to create a model targeted to define a balance
between explainability performance and business value generation, applying XAI concepts to
VARSs.

3.1 Background and Concepts

Recommender Systems requires a proper evaluation analysis to be comparable and acceptable,
defining metrics to facilitate the selection by stakeholders [165]. To enhance the motivations
provided during the best-model selectionphase, explainability can provide someuseful insights
and perspectives, simplifying the comprehension of the results and the acceptance from users.
In this section, we report the main concepts that describe RSs evaluation metrics and, in par-
ticular, the explainability models state-of-the-art, focusing on techniques, performance indica-
tors, and human aspects. This information represents the basis for the comprehension of the
approach proposed in the chapter, and it extends the knowledge reported in the chapter 2.

3.1.1 Recommendation EvaluationMetrics

Recommender Systems operate in various contexts, ranging from e-commerce platforms to
content recommendations in media streaming services. Each domain introduces distinct chal-
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lenges and requirements. The evaluation of recommender system models is a critical aspect
in assessing their effectiveness and suitability for diverse applications [166]. Due to the dif-
ferent nature of recommendation algorithms and the requirements of the specific domain of
applications, an exhaustive evaluation process is essential to accurately determine the model’s
performance and empower stakeholders to make informed decisions, thus favoring the contin-
uous advancement of recommendation system techniques. Hence, the choice of evaluation
metrics becomes pivotal in reflecting the system’s performance within its specific application.
An evaluation process tailored to the application domain ensures that the recommender sys-
tem aligns with user expectations, business goals, and the underlying data distribution. The
comprehension of what metrics evaluate is crucial to understand better the need for a proper
evaluation of the model developed, distinguishing between measuring both recommendation
results and explainability performance [167].

Properties of Recommendation System

According toHerlocker et al. [168] andGunawardana andShani [169], several properties could
define a recommender system model. These important characteristics are crucial during the
selection of a solution to be implemented in an application or in a productive system. In the
last decade, most of the researchers’ effort has been on creating models that improve one or
more properties at the same time, trying to find the best trade-off and avoiding degradation
of the system performance. Variations of application, experiments (online and offline), dataset
improvement, and user feedback, are some of the solutions provided by a lot of scientific works
to overcome numerous challenges. In every implementation, the developers use metrics to
compare the new models to the baseline. In table 3.1, we report the most used performance
metrics among recommendation systemmodels.

Accuracy Prediction accuracy is a fundamental aspect of recommender systems that has
garnered significant attention within the recommendation system literature. Indeed, most rec-
ommender systems rely on a prediction engine responsible for forecasting user preferences or
usage probabilities over items. The underlying assumption is that users will favour systems that
provide more accurate predictions. This property comprises three primary categories: the ac-
curacy of rating predictions, the accuracy of usage predictions, and the accuracy of rankings of
items.

Evaluating the accuracy of rating prediction is the main objective in scenarios interested in
user ratings (i.e., movie ratings). Themainmetrics used in this context are RootMean Squared
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Property Focus Metric Formula

Accuracy

Rating RMSE RMSE =
√

1
N
∑m,n

u,i |ŷui − yui|2

MAE MAE = 1
N
∑m,n

u,i |ŷui − yui|

Usage
Precision Precision = TP

TP+FP
Recall Recall = TP

TP+FN
F-measure F-measure= 2(Precision∗Recall

Precision+Recall

Ranking

NDCG NDCG =

∑n
i=1

2reli−1
log2(i+1)∑nmax

i=1
2reli−1

log2(i+1)

Spearman’s Correlation ρ = 1− 6
∑

d2i
n(n2−1)

NDPM NDPM = DP
IDP

Pearson Correlation ρ(x, y) = E[x,y]
σxσy

Coverage Item space Gini Index G = 1− 2
n(n−1)

∑n
i=1(n− i) · Ri

Shannon Entropy H = −
∑n

i=1 pi log2(pi)

Table 3.1: Most used evaluation metrics for Recommender Systems.

Error (RMSE) andMeanAbsoluteError (MAE)[168]. RMSEquantifies the square root of the
average squared difference between predicted and actual ratings, while MAE calculates the av-
erage absolute difference. Additionally, twometrics namedNormalizedRMSE (NRMSE) and
Normalized MAE (NMAE) are the normalization version of, respectively, RMSE and MAE
by the range of ratings.

On the contrary, scenarios where is important to predict usage behavior (i.e., item selection
by user) are supported by metrics like Precision, Recall, and F-measure [169]. These metrics
help the evaluation of the accuracy of predicting interactions in recommender systems. In par-
ticular, precision assesses the proportion of correctly predicted selections among all predicted
ones, while Recall measures the proportion of correctly predicted selections among all actual
ones. In order to summarize the performance of the two measures, F-measure can be used to
evaluate the balance between precision and recall providing a single score.

Recommendation system output is commonly presented as a list of items in a ranked or-
der that must be evaluated by their position to asses the final accuracy of the model. Ranking
metrics include metrics like Normalized Cumulative Discounted Gain (NDCG), Normalized
Distance-based PerformanceMeasure (NDPM), Spearman’s correlation, and Pearson Correla-
tion [169]. NDCG evaluates ranking by assessing the cumulative discounted gain of the rec-
ommended items compared to an ideal ranking. It is calculated using Discounted Cumulative
Gain (DCG) normalized by the ideal DCG. On the other hand, NDPM quantifies the perfor-
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mance of ranking items by considering pairs of items and their ranking orders.

Coverage Coverage focuses on the proportion of the items that the system can analyze and
produce a recommendation, giving the stakeholders insights into the diversity and complete-
ness of the results [4, 170]. A high coverage value indicates that the system can suggest the
majority of the items, covers multiple user preferences, and prevents the risk of underestimat-
ing the real user behavior avoiding limitation on the subset of items considered. At the same
time, keeping attention to the coverage level could introduce users to novel and undiscovered
content.

For evaluating coverage the two main metrics, Gini Index and Shannon Entropy, offer dif-
ferent perspectives to quantify the distribution of recommendations across items [169]. The
Gini Index, commonly employed in the economic domain tomeasure wealth distribution, can
also be applied to recommender systems to quantify the distribution of recommended items. A
low Gini Index means a more equally distributed set of recommendations, and it corresponds
to a higher coverage score. On the contrary, Shannon Entropy is a metric borrowed from infor-
mation theory and it assesses an uncertainty or unpredictability distribution in the recommen-
dationmodel, where a higher value of Shannon Entropy indicates amore diverse recommenda-
tion (better coverage). Bothmetrics help assess the diversity and distribution of recommended
elements, ensuring that a wide range of options is presented to users, and allowing evaluators
to evaluate the system’s ability to introduce users to a wide range of options.

Finally, coverage evaluation guarantees not only to respect the diversity during the recom-
mendation process but also to ensure the discovery capabilities of the system which is essential
in real-world scenarios, especially in enterprise strategies [101].

Others Properties In addition to the previous main properties of accuracy and cover-
age, the evaluation of recommender systems is based on a range of other dimensions that are
equally useful in shaping the user experience and enhancing the utility of the recommendations
provided. These properties provide valuable performance insights across various perspectives,
enabling researchers and stakeholders to make informed decisions and improvements. In the
following list, we report the properties that complete the evaluation framework for designing
and optimizing recommender systems [168]:

• Confidence concerns the system’s ability to quantify the certainty of predictions, offering
insight into the reliability of its recommendations;
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• Trust involves the user’s perspective in the recommendations, ensuring that users feel
secure and informed in their decision-making phase;

• Novelty and Serendipity emphasize the system’s capability to introduce users to unex-
plored and unexpected content, enriching their experience of discovering novel prod-
ucts;

• Diversitymeasures the system’s ability to suggest a diverse range of items, responding to
various user preferences and avoiding emphasizing the most popular items;

• Utility scores the relevance and value of recommendations according to users’ needs and
preferences, enhancing user satisfaction and engagement;

• Risk assesses the potential drawbacks and consequences of recommendations, ensuring
that system suggestions do not inadvertently expose users to undesirable results;

• Robustness examines the system’s stability and performance under multiple conditions,
maintaining its reliability across different scenarios;

• Privacy aims to assess the safeguarding of user information while allowing for personal-
ized recommendations and without compromising user confidentiality;

• Adaptivity focuses on the system’s capability to evolve and adjust recommendations,
based on user interactions and ensure the relevance of suggestions over time;

• Scalability targets to the system’s efficiency and capability to handle complexity (larger
datasets and user bases). This property is essential in enterprise adoption of AI strategies
where the amount of data constantly increases.

3.1.2 Explainability on RS

Explainable Recommender Systems (xRSs) have become an important area of research in re-
cent years due to their potential to improve user trust and satisfaction with recommendation
systems [171], facilitate system designers for better system debugging [166], and helps users
facilitate the access to resources or relevant items in an information-overloaded environment
[172]. There are several approaches to improving explainability in recommender systems. One
approach is to use post-hoc explainabilitymethods that provide explanations after a recommen-
dation has been made. Another approach is to use model-based explainability methods that
provide explanations based on the internal working methods of the recommendation model
[166].
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xRSs attempts to developmodels that generate high-quality recommendations and intuitive
explanations. The explanations may either be post-hoc or directly come from an explainable
model (also called interpretable or transparent model in some contexts) [166]. There are sev-
eral types ofmodels used in explainable recommendations. Onemain type is rule-basedmodels,
which use a set of rules to make recommendations and provide explanations based on those
rules. Another most-used family ismatrix factorization models, which use techniques to learn
latent factors representing user preferences and item attributes. These models can provide ex-
planations based on the learned factors [173]. Another type of model is the decision tree-based
model, which uses decision trees tomake recommendations and provide explanations based on
the decision paths taken by the tree. These models can be used for both classification and re-
gression tasks [174]. Finally, there are neural network-basedmodels, which use neural networks
to learn representations of users and items and can provide explanations based on these learned
entities [175].

With the diffusion of the explainable model, it was fundamental to define a way to make
them comparable and based on similar evaluation criteria. One of the most significant works
aimed to solve this need is from Tintarev andMasthoff [165], where the authors formalize the
guideline that every Explainable Recommender System should be based on. In the work, the
first guideline concerns the requirement of the target definition for the xRS, choosing from
transparency, scrutability, trust, effectiveness, persuasiveness, efficiency, or satisfaction. The
authors continue reminding developers and modelers not to confuse the evaluation methods
of the explainability with those of RS, which are close but different (this is the focal point
of the chapter 4 in this thesis). In addition, presentation and interaction with explanations are
factors that affect the achievement degree of the goal. Finally, explanation styles classify how the
explanations are generated andwhether they are useful for achieving themodel goal despite the
presence or absence of a recommendation model under the hood.

Numerous other works have refined these concepts by highlighting perspectives and appli-
cations: for instance, Mohseni et al. [176], Adadi and Berrada [177] released surveys that col-
lect evaluation methods for other algorithms family of intelligent systems, but not for RSs.
Moreover, Zhang and Chen [166] collects and summarizes all state-of-the-art applications of
Explainable Recommender Systems. Finally, Vultureanu-Albişi and Bădică [178], Chen et al.
[172] provided novel and updated perspective through their surveys on xRS, specializing the
primary work of Tintarev andMasthoff [165].
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Style Example
User Customers who bought item A also bought items B, C.

Item Item A is recommended because you highly rated or bought
item B, C.

Feature Youmight be interested in this item because you are looking for
feature A (word based).

Popularity We suggest itemsA,B, since they are very popular amongpeople
similar to you.

Social A and B also like the item C.
Pairwise personal-
ized

We guess you would like item A more than B because you may
prefer C over D.

Visual Explanation provided by an image

Table 3.2: List of the explanation styles

Explanation styles One of the aspects concerning the implementation of an explainable
model regards the presentation of the results. Explanations could be shown using different
styles to maximize the desired effect. In the literature, several styles are proposed in order to
define and enhance a specific perspective. Tintarev and Masthoff [165], for instance, collect
and define six types of style: case-based, collaborative-based [179], content-based [180], con-
versational [181], demographic-based, and knowledge-based [182].

Another perspective that aims to improve these style categories was provided by Papadim-
itriou et al. [183] and summarized by Zhang and Chen [166]. Different from the Tintarev
and Masthoff approach that distinguishes between styles and evaluation goals, the proposal
from Papadimitriou et al. could give a second perspective on the styles used for an explanation.
The authors create an entity-relation classification that suggests eight kinds of groups: user,
item, feature, popularity, social, pairwise personalized, sentence-level, and visual (see table 3.2).
The user-basedmodel provides explanations based on the user’s preferences and interests, and
it is useful for building personalized explanations that are tailored to the consumer’s needs.
Item-based approach, on the contrary, gives explanations based on the attributes of the rec-
ommended item, focusing on the item’s features and characteristics. The third main style is
feature-based, which focuses on how themodel internally works andwhy it suggests an item to
a user, exposing internal features of the recommendation model. Finally, hybrid explanations
aim to combine two or more styles to provide more comprehensive and informative explana-
tions.
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Presentation, Display Incorporating presentation consideration when an explanation
model provides insight to users is essential to enhance the reader experience and ensure the
effectiveness of the suggestions. Moreover, there are two approaches that model developers
could follow to influence user comprehension and acceptance: defining the appearance and
the presentation structure.

Firstly, considering the appearance of explanations is essential as it directly impacts howusers
perceive the information. It could be performed as natural language text (a recent promising
research branch), graphical visualization [179], or based on a presentation template [184] such
as a structured form to be filled with the information.

Moreover, the design of the structure is followedby companieswith primary interest because
business users should interact with the explanations during the productive phase, leaving im-
portant feedback (implicit or explicit) in the system. It regards the design of a user interface
and user experience that aims for consistency and empowers users to seek clarification or ex-
plore alternatives based on preferences. The implementation of a user interface represents the
solution to integrate the results of these AI models into the selection process, especially in the
enterprise context where insights lead to better decisions for the business.

Personalization Personalization of explanations defines who is the target user. When a
recommendation proposes an item to a different user, it could be explained in different ways.
Herlocker et al. [179] affirm that non-personalized ratings are more persuasive than personal-
ized from users’ neighbors in preference space. On the contrary, Vig et al. [180] design tag-
based explanations to improve the personalized user experience but imply a negative effect on
different designs. In addition, Guesmi et al. [185]with his work developed a transparentmodel
called Recommendation and Interest Modeling Application (RIMA) that aims to personalize
explanations with different detail levels targeting the results on specific kinds of end-users. Fi-
nally, Tintarev andMasthoff [184] assert that the positive or negative effects of an explanation
depend on the design chosen for the model.

Explanationfocus Explanations can also be classifiedbased on the part of the recommen-
dation process they are trying to explain: recommendation input, recommendation process,
recommendation output [186, 187]. Explanations applied to the input part of the recommen-
dation system expose the system’s hypothesis about the user’s interests, preferences, or needs,
analyzing the input information to drive awareness of personal tastes or detect misunderstand-
ings made by the system. Conversely, focusing on output explanations provides a justifica-
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tion for a particular recommendation without revealing internal elements and logic (black-box
mode). Finally, the most challenging approach is to understand better what internal processes
ensure the production of a specific suggestion by the recommendationmodel. The explainabil-
ity applied to the internal logic provides the decisions the algorithmmade to produce a specific
item list. However, due to the complexity of the algorithm, motivating the internal process is
a challenging task.

3.1.3 Explainability Evaluation Process

Evaluating the explanations produced by a model is one of the main challenges in the litera-
ture. An explanation model must first address the task of evaluating the results obtained, not
only as recommendation items but also by assessing the intrinsic explanatory capacity of the
model[165]. Although some studies aim at objectivity, the evaluation must recognize the in-
trinsic relationship between articles and users, Measuring an explainability model, especially
an xRS model, numerically, requires time, assumptions, and applications. Evaluation of rec-
ommendation explanations is particularly challenging, according to Chen et al. [172] because
obtaining a ground truth is difficult, and it is complex to incorporate objective human emo-
tions into a measurement algorithm.

The evaluation aims to define quantitative metrics that quantify the system performance
[188], such as accuracy or coverage. Basically, it uses the same measures for evaluating conven-
tionalRS adapting the definition of the relativemetric to the new context. Based on the type of
experiment chosen, the evaluation could be grouped into three sets: user studies, online evalua-
tions, and offline evaluations. User studies require explicit feedback on the explanation quality
but it is difficult to gather due to the large amount of users and their specific differences. In
this scenario, users are conscious of the study they are subjected to. On the contrary, online
evaluation helps the model to understand the implicit feedback that users give during the gath-
ering phase. Realistically, it should be implemented in a system with a large number of users
(registered to the system). An example of this kind of evaluation could use the Click-through
rate (CTR) to collect user feedback. Finally, the offline evaluation doesn’t require direct in-
teraction with the users and provides a score of the number of recommendations that could
be explained by the model (regardless of the quality of the recommendation). Although this
method lacks direct user feedback, it has the advantage that the model could directly evaluate
the quality of the outcome results, depending on the format and type, and could be compared
to other models.
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The idea based on the role of humans in the explanations evaluation is argued by Ehsan and
Riedl [189] defining the concept of Human-Centered XAI, such as a mixture of human in-
teraction, cognitive psychology, and interpretable outcome, offered by the intelligent system.
Furthermore, the quality of the outcome can only be interpreted by users involving usability
studies on human subjects [188]. To perform a proper user evaluation and prepare the in-
teraction between humans and systems, some stakeholders should participate in the primary
definition phase of the model as end-users (humans that are AI and data novices), and experts
(humans that are aware of data andAI) [190]. The feedback collected has the same importance
value as the rating for the traditional RS [191].

The work of Mohseni et al. [176] expands the Human-Centered evaluation perspective, ex-
ploring how they are perceived by users by cognition, interaction, satisfaction, and trust. They
examine the cognitive aspects of the explainability model, describing how users comprehend
the system’s capabilities and interact with the model results via output and failure prediction
ratings from a cognitive psychology perspective. Moreover, Tsai and Brusilovsky [192] con-
tribute with a work about the extraction of the feedback from the text provided by users dur-
ing the approval of the recommendation. In addition, Dominguez et al. [193] consider the
RS interactivity to better suit users’ needs. Furthermore, Purificato et al. [194] combine differ-
ent explainable interfaces to provide proper explanations to users during the interaction phase,
aiming to asses different displaying results in the most comprehensible structure. Most of the
studies focus on user satisfaction, extracting the level of understandability, fairness, usefulness,
and sufficiency of details through interviews, self-reports, and questionnaires [195, 196, 197].
Finally, trust is an attribute that influences the system in a positive or negative way, and it re-
quires time to be gained by continuous interaction with users. It is measured by asking users’
opinions through interviews or questionnaires, and it could observed indirectly by examining
personality traits [198].

3.1.4 Human aspects on the importance of explanations

The concept of explainability can be analyzed under different motivations, as proposed by
Adadi and Berrada [177] in a recent study. In their study, the authors explore the motivations
behind the study of Explainable Artificial Intelligence by defining four different needs: to jus-
tify, to control, to improve, and to discover. When users need an explanation of the model’s
results to make an informed decision, the system should be capable of justifying how a particu-
lar result was achieved rather thanmerely demonstrating the methods or reasoning steps taken
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to complete the process. Users of an explanation-capable recommendation system desire to
receive a justification of the suggested proposal with regard to the process that led to its devel-
opment. Providing explanations of this nature not only enhances the user’s confidence in the
system but also improves the system’s reliability. This enables the user to acquire a more pro-
found understanding of the system. Control is particularly useful for developers because they
can easily identify and solve errors, gainmore visibility into unknown vulnerabilities and prob-
lems, and learn more about system behavior. RSs assist in more effective interaction between
users and systems by enabling better future action selection based on recommendations and
influencing user behavior and system outcomes. The explanations have both the objective of
orienting the administrationof systembehavior aswell as informing theuser. The improvement
of intelligent systems is constantly sought, and the need to constantly improve recommenda-
tion systems is one of the reasons why, in this thesis, we study the integration of explainability.
If users understand why certain recommendations were made, they will be able to make better
decisions. Even if people cannot explain their decisions, the systemmust be able to support the
new information it has provided to those affected. According to this understanding, explana-
tion becomes a useful tool for discovering new elements provided by AI.

In addition, Miller [199] discusses the social significance of Explainable Artificial Intelli-
gence and identifies the sender and receiver as the two main profiles in the explanation inter-
action. Despite lacking agreement on the definitions and explanations in scientific research,
Miller presents three processes involved in explanation scenarios: cognitive, product, and so-
cial. The first process aims to identify a possible cause of an event and subsequently provide
an explanation based on it. The last focuses on the human context required to interpret the
explanation in terms of expectations, skills, and tasks, aiming to transmit the least amount of
information from the explainer to the explained.

Furthermore, van Engers and de Vries [200] propose a framework to evaluate the explana-
tion produced by a XAImodel based on six quality criteria: external coherence (the probability
of acceptance of the decision increases when explanations are compatible with the user knowl-
edge of a particular context), internal coherence (sentences must be logically connected to im-
prove the explanation and the understanding), simplicity (few and simple causes are easier to
understand rather than complex sentences), articulation (quality of explanations is influenced
by the length or words number contained in a statement), contrastiveness (a property that ex-
presses the clarity provided by two consecutive events or in certain conditions), and interaction
(related to human-computer interaction concepts, it expresses how an explanation could be
customized interactively by the user).
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Moreover, Sovrano et al. [201] propose SAGE model as a discovery criteria to determine
a good path in the explanatory space. It is based on the principles of sourced (the references
that lead the explanation are the input of the system), adaptation (the ability to create an argu-
mentative framework during the exploration), grounding (showing the source in the original
format, used for counterfactuals), and expansion (improving the explanation with the proper
information retrieved).

Finally, Barredo Arrieta et al. [202] aims to clarify the relationship between interpretability
(oriented to generate meaning for human beings) and explainability, in terms of an interface
between people and the decision-maker. Explanations are classified as global or local, where
global offers complete transparent explanations and local explains aspects of the reasoning pro-
cess [203, 204].

3.2 RelatedWork

The idea of explaining a model is powerful, but it leads to a complexity that numerous re-
searchers solved by providing different approaches and models. In this section, we report the
criteria, themethods, and the limitations regarding the evaluationofExplainableRecommender
Systems. Since explainability is important for the business in order to give the best solutions as
an answer to a specific business requirement, we refer to chapter 2 for business value concepts
applied to RSs.

3.2.1 Criteria for Explainable RSs evaluation

Among the literature, multiple approaches are proposed to evaluate the explainability of a sys-
tem. The evaluation elements can be found under different titles as evaluation characteristics,
benefits, goals, metrics, or perspective [184, 172]. However, according to the guidelines pro-
posed by Tintarev and Masthoff [165], the evaluation could be properly defined as a set of
criteria and targeted one or more stakeholders (model designers, users, and providers). These
criteria aim to standardize the method based on the objective of the algorithms: transparency,
scrutability, trust, effectiveness, persuasiveness, efficiency, and satisfaction.

• Transparency is one of the most significant goals for an Explainable Recommender
System, which directly affects some related aspects of user satisfaction: accessibility, us-
ability, information, understanding, and auditability. Since the lack of comprehension
could cause amajormisunderstanding forusers regarding theobjectives of recommender
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systems [205], a model should provide transparent explanations to reveal the main ad-
vantages and disadvantages provided by the systems (embedding explanations) [206].
Model designers are the target stakeholders since explanations can reveal the internal
working principles of the recommender models.

• Scrutability is closely linked to transparency. Although transparency pays more atten-
tion to details inside the model in order to reveal the working mechanisms, on the other
hand, scrutability is more interested in the relationship between explanations and out-
puts, and it can be applied properly to an agnostic model. Moreover, explanations based
on scrutability criteria can support both the user’s accurate argumentation and make
the system valid. Indeed, in a scrutable system (enabled by explanations), users can com-
prehend the motivation on the basis of algorithmic results, and then they can control
the generated recommendation results by correcting the system’s assumptions. Finally,
the target of scrutability criteria ismodel designers.

• Trust increases the user confidence in the system and is rigidly related to transparency.
If users understand why a particular recommendation was made, they will have more
confidence in the recommendation system. Users are the criteria target.

• Effectiveness targets the users helping them to make quality decisions. Effective expla-
nations will allow the user to assess the quality of the proposed items more accurately
on the basis of their preferences. Tintarev and Masthoff [184] provide an overview of
evaluating the effectiveness and the metrics used in particular in the recommendation
domain.

• Persuasiveness aims to convince users to buy or try one or more items. In order to
persuade users to buy more goods (i.e., to convince them), the explanations cannot ac-
curately reveal the operational mechanism of the model (i.e., transparency), but must
highlight the features that can promote sales. The final objective is to gain benefits for
the system rather than for the user. Explanations may increase the user acceptance of
the system, as well as of the provided recommendations. The target of this criteria is the
provider of the system that receives an improvement from the application of the model.

• Finally, there are two more criteria, both targeted to users. Efficiency helps the user
to decide faster, giving them the most suitable suggestions for the item recommended.
Moreover, the explanation can improve user satisfaction and make the use of the rec-
ommendation systemmore pleasant. When assessing the satisfaction of explanations, it
is important to distinguish between the satisfaction of the recommendation process and
the satisfaction of the recommended items.
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3.2.2 Methods for Explainable RSs evaluation

After the definition of criteria that Explainable Recommender Systems should be targeted to,
we need to define how to evaluate the system and the objective to measure. These evaluation
methods are grouped into four chunks: qualitative, quantitative, crowdsourcing, and online
experiments.
Qualitative evaluations consist of case studies designed by model designers and provide

comprehension of intuitive aspects. Although the objective is improving effectiveness and
transparency criteria, they are affected by bias and by the absence of not comparable features
[172]. We discuss this limitation deeply in chapter 4, providing symptoms ofmost of the actual
Graph-Based Explainable Recommender System, and possible solutions.
Quantitative evaluations aim to evaluate offlinemodels through the use of specificmetrics,

ensuring effectiveness and scrutability criteria [172]. Usingmetrics as a source of evaluation of-
fers model developers advantages during the phase of comparing the developed solution with
those belonging to the state-of-the-art. At the same time, the use of objectivemetrics facilitates
the selection phase by corporate suppliers interested in implementing these solutions in a pro-
duction environment. The advantages of these methods are efficiency at the comparison stage
(i.e., ensuring that model performance is above a threshold), quantitative aspects, and ease of
benchmarking. In contrast, measuring explanationswithout appropriatemetrics (i.e., using an
unsuitable metric proposed to solve a non-similar application) could deviate from the primary
goals of the explanation and produce less effective results due to approximation. We collect the
numerous metrics defined in the state-of-the-art in table 3.3 (see section 3.2.3).

Different from qualitative evaluation based on the use cases, crowdsourcing implies the ac-
tive presence of a heterogeneous study population that extracts real human feeling. Since this
method would put the right attention to the user interaction with the system, studying deeply
causes and effects on humans, it demands a significant cost for the experimentation set. The
issue of cost is significant in an industrial environment, where the difference between accepting
or rejecting a project lies precisely in the time and cost involved versus the return on investment
that can be achieved. The criteria addressed are effectiveness and scrutability (as in quantitative
evaluation), transparency (as in qualitative evaluation), and persuasiveness. It can also be per-
formed on public datasets, constructed datasets or annotation injections into public datasets
[172].

Similarly to crowdsourcing, online experiments aim to collect user feedback in real-time,
producing a highly reliable result at a significant cost of the experiment, although the crite-
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Metrics Evaluation Objective References
BLEU user review words [209]

ROUGE user review words [210]
Unique Sentence Ratio (USR) user review diversity [211]
Feature Coverage Ratio (FCR) user review diversity [211]

Feature Diversity (FD) user review diversity [211]
PN, PS necessity, sufficiency of a feature [208]

MEP, MER, EP user-item explainability [173]
Model Fidelity user-item explainability [212]
E-NDCG user-item explainability [213]
NR2 user-item explainability [214]

LIR, LID, SEP, SED, PTD, PTC recency, diversity, popularity [215, 216]

Table 3.3: Most significant quantitative metrics to evaluate the quality of explanations.

ria aim to enhance effectiveness and persuasiveness. The explorations of the user acceptance
affected by the explanations (i.e., using A/B tests, evaluating the Click-through rate and the
conversion rate), are explored by Zhang et al. [207].

3.2.3 Metrics for Explainable RSs evaluation

In literature, someworks proposedmetrics to evaluate different quantitative perspectives of the
model’s explainability capabilities. One point to consider is distinguishing between assessing
the model-generated explanation performance and the recommendation outcomes (see chap-
ter 4). Regarding explainable evaluation, authors defined metrics to count words (i.e., BLEU
and ROUGE index evaluate natural language explanations comparing the results with user
reviews), to evaluate diversity (i.e., Unique Sentence Ratio (USR), Feature Coverage Ratio
(FCR), Feature Diversity (FD)), and to predict features (i.e., Feature-level Precision (FP), Re-
call (FR), and F1 score (FF)). Furthermore, Tan et al. [208] suggest two indexes named Prob-
ability of Necessity (PN) and Probability of Sufficiency (PS), that estimate the necessity and
sufficiency of a feature if the item is, respectively, removed or still in the suggestions list.

Explainable Matrix Factorization Researchers studied different recommendation
system algorithm classes (i.e., Content-Based, Collaborative Filtering, Knowledge-Based, Hy-
brid, and Neural), identifying and studying advantages, methods, and challenges. Alongside
the classic approaches built on the decision tree, rule-based, or Bayesian algorithms,Matrix Fac-
torization (MF) is a family of model-based methods applied to collaborative filtering RS that
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primarily has the advantage of producing latent features that discern the connection between
article entities and users.

One of the most interesting works that aims to embed explainable capabilities into a matrix
factorization-based recommender system is proposed by Abdollahi andNasraoui [173], where
the authors optimize the performance of themodels from two perspectives: recommendations
system results and the explainable capabilities to the users. Indeed, Abdollahi and Nasraoui
propose to measure the performance of the explanations generated by the algorithm using a
quantitative approach, enhancing the evaluation of the RS model with a new user-centric per-
spective. The two proposed indices, Mean Explainability Precision (MEP) andMean Explain-
ability Recall (MER), are based on the capability of the system to explain a suggestion using
the neighborhood of a user (under specific constraints). Both measures are the mean across all
testing users, respectively, of Explainability Precision (EP) and Explainability Recall (ER).

The precision EP is calculated as the ratio between the number of explainable items in the
top-n recommendation list and the total recommended items for each user:

MEP =
1
|U|

∑
u∈U

|{i : i ∈ Lu,Eui > 0}|
N

(3.1)

where U is the set of all users, i is an item of the recommendation list Lu (provided to user u),
andN is the number of recommended items.

Additionally, to calculate ER, it takes the ratio between the number of explainable items in
the top-n recommendation list and the total number of explainable items for given users [173]:

MER =
1
|U|

∑
u∈U

|{i : i ∈ Lu,Eui > 0}|
W

(3.2)

where U is the set of all users, i is an item of the recommendation list Lu (provided to user u),
andW is the number of explainable items.

To implement this concept into the basic matrix factorization objective function, the au-
thors add an additional regularization termnamedExplainability PowerEij as ameasure of how
many nearest neighbors for a user (with a similar profile) highly rated an item, constructing a
matrix E that expose the explainability power calculated with the following formula:

Eu,i =
∑

∀r∈R,r≥Pτ

r× |NNk(u)i,r| (3.3)
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where i is an item for a specific user u, r is the rating given by user u to item i, andNNk(u)i,r is
the k entity nearest neighbours of user u [213].

Moreover, the standard matrix factorization objective function is enhanced with the new
regularization term, as formulated in:

Gexpl =
∑
u,i∈R

(rui − aubTi )2 +
β
2
(∥au∥2 + ∥bi∥2) + λ∥au − bi∥2Eui (3.4)

where i is the item rated by user u, R is the set of ratings rui, au and bi are the two terms to
regularize the contribution of user u and item i to the objective function, and Eij contains the
information of the nearest neighbors (with similar profile) for a user u.
Then, to minimize the objective functionGexpl (see Eq.3.4), authors used the stochastic gra-

dient descent approach applied to the two following rules:

a′u = au + η
(
2(rui − aubTi )bi − βau − λ(au − bi)Eui

)
(3.5)

b′i = bi + η
(
2(rui − aubTi )au − βbi + λ(au − bi)Eui

)
(3.6)

where η is the learning rate retrieved from the minimization computation of the gradient de-
scendant, β controls the magnitude of the latent vectors (user and item), and λ aims to control
the explanation matrix impact.

Finally, the model proposed by Abdollahi andNasraoui was generalized by Peake andWang
[212] proposing the model Fidelity score as the percentage of explainable items in the recom-
mendation list.

Explainable-NDCG Relying on the work by Abdollahi and Nasraoui, Coba et al. [213]
introduce an enhanced model named Novel EMF (NEMF) that aims to find the trade-off be-
tween the novelty of an item and the explainability capability. In addition, they noticed that
the MEP metric assigns inaccurate ranking positions of the explainable and recommendation
items, proposing a new metric named Explainable Normalized Discounted Cumulative Gain
(E-NDCG), based on NDCG and able to precisely identify explainable items.

Starting fromtheNDCGformula 3.7, the authors consider thepositionof the recommended
item Lu (see Eq. 3.1) during the evaluation of the explainability power for user u and item i.

If NDCG is formalized with:

NDCG =
DCGu

IDCG
(3.7)
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the novel E-NDCG proposed by Coba et al. is defined by:

E–NDCG =
E–DCGu

E–IDCG
(3.8)

The two terms of the ratio are defined by the following equations:

E–DCGu = Eu,l1 +
N∑
i=1

Eu,li

log2(i)
(3.9)

E–IDCG = Emax +
N∑
i=1

Emax

log2(i)
(3.10)

where l is an item of the list Lu, and Eu,l is the explainability power, while Emax is the explain-
ability power considering all recommended items in the list Lu.

Considering the two distinct objective functions aimed to maximize explanation and novel:

Gexpl =
∑
u,i∈R

(rui − aubTi )2 +
β
2
(∥au∥2 + ∥bi∥2) + λ∥au − bi∥Eui (3.11)

Gnovel =
∑
u,i∈R

(rui − aubTi )2 +
β
2
(∥au∥2 + ∥bi∥2) + θ∥au − bi∥Nui (3.12)

Coba et al. formalized the objective function that describes the Novel Explainable Matrix
Factorization (NEMF) model as follows:

Gexpl&novel =
∑
u,i∈R

(rui − aubTi )2 +
β
2
(∥au∥2 + ∥bi∥2) + ∥au − bi∥(λEui + θNui) (3.13)

where the final results depend on both explainable and novel elements traded off of the two
hyperparameters (λ and θ), and au and bi components are formulated as:

a′u = au + η
(
2(rui − aubTi )bi − βau − sgn(au − bi)(λEui + θNui)

)
(3.14)

b′i = bi + η
(
2(rui − aubTi )au − βbi + sgn(au − bi)(λEui + θNui)

)
(3.15)
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3.3 Proposed Approach

Companies increasingly rely onAI tools to support their decisions andmaximise business value
(see Chapter 2,). However, understanding by non-expert users is a limitation and a current
challenge in order to enhance the adoption of these systems. In particular, with our work, we
want to support this business phase through the creation of a model that, to the best of our
knowledge, is the first to simultaneously consider business value and model explanation capa-
bilities. This section presents our model XVMF that aims to define a quantitative, evaluated,
explainable, and value-aware recommender system.

In analogy with the approach of NEMF [213], we study how properly integrate a novel
value regularization term to the original object function of EMF proposed by Abdollahi and
Nasraoui [173] (see Eq. 3.4) to control the business value of the generated recommendations.
In particular, for the value-aware term, we define vi as the business value of the item i. As
asserted in chapter 2, the business value of an item is most considered equal for all users and
it represents the control key for the enterprise user to answer business questions and adopt an
AI-based strategy in the decision-making phase.

The following equation formalizes the objective function of XVMF:

L =
∑

(u,i)∈S

(ru,i − pu · qTi )2 +
β
2
(∥pu∥2 + ∥qi∥2) + + ∥pu − qi∥2(λWu,i + δvi) (3.16)

where,

• L is the loss function;

• u is a single user from the set U = {1, . . . ,m} of allm users;

• i is a single item from the set I = {1, . . . , n} of all n items

• S is the set of combinations (user, item)

• ru,i ∈ R is the rating for item i by user u in value range [1, 5]

• pu ∈ R1×f is the latent factor f-dimensional of user u (where f is the embedding dimen-
sion, hyper-parameter of the algorithm)

• qi ∈ Rf×1 is the latent factor f-dimensional of item i (where f is the embedding dimen-
sion, hyper-parameter of the algorithm)

• β represents the loss hyper-parameter that controls the bias (∥pu∥2 + ∥qi∥2)
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• λ represents the loss hyper-parameter that controls the recommendation explainability

• W ∈ Rm×n is the explainability power weighted matrix

• δ represents the loss hyper-parameter that controls the business value

• vi is the business value related to item i

As can be shown by Eq. 3.16, we set a trade-off between the explainability and the value-
aware component, respectively, through the use of the two hyperparameters λ and δ on the
following rules:

p′u = pu + η
(
2(rui − puqTi )qi − βpu − sgn(pu − qi)(λWui + δvi)

)
(3.17)

q′i = qi + η
(
2(rui − puqTi )pu − βqi + sgn(pu − qi)(λWui + δvi)

)
(3.18)

where η is the learning rate.

3.4 Experiments and Results

In the following section, we experimentally compare our approach with other explainable rec-
ommendationmodels. WecompareournovelmodelXVMFwithMatrixFactorization (MF)[217]
and Explainable Matrix Factorization (EMF)[173]. Since in our model we evaluate both busi-
ness value and explainability capabilities, the calculation of the explainability matrix is based
on the code by Coba et al., while the value is originally assigned to each item in the selected
datasets.

3.4.1 Dataset

To test our approach, the experiment is prepared with two different datasets Yelp 1 and Ama-
zon Tools and Home Improvement2 [218] (see table 3.4 for numerical information about the
datasets). In both datasets, the rating dimension is scored in the range [1,5], where 1 is the
lowest user rate while 5 is the highest one. The item business value is native in the datasets
selected, user-independent, and shows the enterprise return generated by purchasing a specific
item (profit).

1https://www.yelp.com/dataset/challenge/
2https://jmcauley.ucsd.edu/data/amazon_v2/index.html

59



Property Yelp Amazon
User number 589379 4699605
Item number 15290 559628
Interaction number 1191794 9437704

Filter on user interaction 20 25
Filter on item interaction 0 25
User filtered number 3876 5252
Item filtered number 11893 26927
Interaction filtered number 124999 134323

Table 3.4: Information about datasets used in the experiment and filter applied to avoid cold start issue.

Since in the literature the number of available datasets that expose the business value for
an item is limited, the selection of these datasets (Yelp and Amazon) is based on the informa-
tion they present in the form of user ratings for an item, and the corresponding business value.
Although it is possible to generate synthetically the value for an item by using specific method-
ologies, we discourage this approach that could be affected by bias and generates results that
do not represent by definition the real-world behaviors (where value could be assigned due to
specific business requirements).

From the original datasets, a data refinement was applied to avoid cold start problems [154,
219, 52, 220]. In particular, for the Yelp dataset, we experimentally selected the threshold of 20
as the minimum number of interactions per user. Finally, to be compliant with the original in-
formation source, we verified that the correlation and distribution of the data weremaintained
after the filtering operation. The same approach was applied to the Amazon dataset but in this
case, to avoid memory overflow on GPU, we applied a user interaction threshold of 25 and
in addition an item interaction threshold of 25, ensuring the compliance of correlation and
distribution to the original dataset.

3.4.2 Experimental Setup

The experiment consists of generating item recommendations for users evaluating the perfor-
mance of explainability and business value capabilities of the model. All experiments are per-
formed with a train-validation-test split of 60%-20%-20%. We consider the first 20 elements
recommended by the algorithms for each user.

Regarding the assessment phase, to evaluate the accuracy of themodelweuseNDCGmetric.
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To evaluate explainability, instead of usingMEPmetric, suggested by Abdollahi andNasraoui,
we adopt E-NDCGcalculation, as argued byCoba et al. [213]. Finally, to evaluate the business
impact, we define a novel evaluation metric named the Normalized Discounted Cumulative
Value (NDCV).NDCV is ametric that combines consumer relevance andorganizational value.
The idea underlying this metric is taken from a recent paper that measures performance using
the Price-BasedNDCG@k [104], i.e., a variant of the previously definedNDCG@kwhere the
gain is given by the item’s price. In our context, instead of explicitly considering the price, we
consider a generic business value (e.g., short-termprofit) that the companymay aim tooptimize
in accordance with the purposes of value-aware RSs.

We systematically assess the performance MF, EMF, and XVMF. Our evaluation method-
ology involves the manipulation of explainability and value regularization parameters while
holding all other variables constant at specified values. For the Yelp dataset, the fixed parame-
ters include a latent factor count of 128, a learning rate η set at 0.001, and a threshold of 20users
to provide explanations for each recommendation. Moreover, referring to the Amazon dataset,
we maintain parameter uniformity with 128 latent factors, an η value of 0.001, and the same
20-user threshold for explanation provision. In addition, all the experiments are conducted
with an upper bound of 1000 epochs of learning, also implementing a control that early-stops
the learning when the validation error starts to increase or stops improving.

Finally, the experiments were conducted on a Ubuntu 22.04 machine with AMDRyzenTM

5 2600X processor, 16GBDDR4 3000MHz ram, Nvidia GeForce RTX 2080 Ti graphic card.

3.4.3 Results

In this sections, we discuss the results of our proposedmodel when we set variation on the two
hyperparameters λ and δ, respectively the explainability and value regularization terms.
We report the variation of the three considered evaluation metrics in two different charts,

repeating the procedure for the two datasets. In the charts, we aim to show the trend of curves
whenwe vary the regularization term and calculate theNDCG,NDCV, andE-NDCG indexes.

Performance evidence on the Yelp dataset

In chart 3.1a, we report the trend of E-NDCG compared to the NDCG value, increasing the
explainability term while fixing the δ at 0.001. The curves show a similar trend with a higher
level of E-NDCG for λ less than or equal to 0.05, keeping the peak at 0.001. On the other
hand, 3.1b exposes the results for NDCG and NDCV calculation at λ = 0.001 while the
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Figure 3.1: Performance analysis for Yelp dataset: metrics calculation for the individual variation of each regularisation
term.

model varies the value regularization term. The two curves design a similar path that degrades
at δ >= 0.005.

Considering, instead, the simultaneous variation of both explainability and value regulariza-
tion term, we can notice how the NDCG, NDCV, and E-NDCG change. We represent the
evaluation of the three metrics using three different heatmaps (see Figure 3.2), where each cell
represents the metric score for the considered couple of regularization terms. The higher the
value of the metric is, the darker blue the cell is colored. Evaluating the obtained charts, they
show an existing value interval for both of the regularization terms where we can calculate the
maximum value for each metric. These intervals overlap approximately for each heatmap, and
eachmetric value degrades quickly by increasing the regularisers above a certain threshold (0.01
for both explainability and value regularization term).

Performance evidence on the Amazon dataset

Considering the Amazon dataset, in the chart 3.3a we could highlight the E-NDCG compared
to the NDCG, while increasing the explainability term and keeping the hyperparameter for
value at δ = 0.01. We obtain the best explainability result for λ = 0.01 and simultaneously
a decrease of NDCG, while on other values the explainability performance degrades to the
benefit ofNDCG.On the other hand, 3.3b exposes a similar trend for theNDCGandNDCV
curves, varying the value regularization term and keeping the best λ value at 0.01.
In Figure 3.4, we integrate a simultaneous variation in the weight of the two regularization

terms and show the relative metric value in each cell (darker blue color for higher metric score,
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Figure 3.2: Performance analysis for Yelp dataset: metrics calculation for simultaneous variation of both regularization
terms.
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Figure 3.3: Performance analysis for Amazon dataset: metrics calculation for the individual variation of each regularisation
term.

63



0.
0

0.
00

01

0.
00

05

0.
00

1

0.
00

5

0.
01

0.
05

0.
08

Value Regularization Term

0.0

0.001

0.005

0.01

0.05

0.1

0.5

0.8

Ex
pl

ai
na

bi
lit

y 
Re

gu
la

riz
at

io
n 

Te
rm

NDCG

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

(a)

0.
0

0.
00

01

0.
00

05

0.
00

1

0.
00

5

0.
01

0.
05

0.
08

Value Regularization Term

0.0

0.001

0.005

0.01

0.05

0.1

0.5

0.8

Ex
pl

ai
na

bi
lit

y 
Re

gu
la

riz
at

io
n 

Te
rm

NDCV

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

(b)

0.
0

0.
00

01

0.
00

05

0.
00

1

0.
00

5

0.
01

0.
05

0.
08

Value Regularization Term

0.0

0.001

0.005

0.01

0.05

0.1

0.5

0.8

Ex
pl

ai
na

bi
lit

y 
Re

gu
la

riz
at

io
n 

Te
rm

E-NDCG

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

(c)

Figure 3.4: Performance analysis for Amazon dataset: metrics calculation for simultaneous variation of both regularization
terms.

lighter green color for lower one). We can point out that in 3.4a and 3.4b, the NDCG and
NDCV values follow a similar behavior with a good approximation, while the degradation
of the metrics is present but not defined by a precise threshold, presenting a wider area with
low-level score for higher value of explainability and value terms. Conversely, the behavior of E-
NDCGmetric exposes a tradeoff under a threshold for both the regularization term (λ = 0.05
and δ = 0.005). Over these values, the explainability metric degrades.

3.4.4 Comparisonwith other methods

Our model XVMF is matrix factorization-based, and for the comparison experimentation, we
adopt MF as the baseline, and EMF [173] to compare the performance with an explainabile
model. Finally, InTable 3.5 and 3.6 are reported the results of the comparison analysis between
the models selected, respectively for the outcome obtained with Yelp and Amazon datasets.
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Since the balance obtained with the variation of the hyperparameters in XVMF could shift the
performance of the results, we report:

• XVMF-e as thebest solution for explainability score considering themaximumE-NDCG
obtained;

• XVMF-v as the best solution for business value considering the maximum NDCV ob-
tained;

• XVMF-ev as the best solution at the intersection of the previous two and considering
both of the previous indexes simultaneously.

Considering the results of the Yelp dataset (see Table 3.5), our model XVMF has the high-
est score for all metrics, and the solution that maximizes the explainability and business value
perspective, alone or simultaneously, is the same. Conversely, considering the Amazon dataset,
theXVMF-ev is not the top model in terms of NDCV and E-NDCG, but, the solutions that
consider individual value and explainability get the highest score.

Algorithm NDCG NDCV E-NDCG
MF 0.1281% 0.2069% 0.8799%

EMF 0.1003% 0.2067% 0.8101%

XVMF-e 0.2493% 0.5042% 1.9954%
XVMF-v 0.2493% 0.5042% 1.9954%
XVMF-ev 0.2493% 0.5042% 1.9954%

Table 3.5: Evaluation metrics MF, EMF and XVMF for Yelp dataset. The highest value per index is indicated in bold.

Algorithm NDCG NDCV E-NDCG
MF 0.0525% 0.0792% 0.0836%

EMF 0.0121% 0.0253% 0.0000%

XVMF-e 0.0125% 0.0275% 0.1723%
XVMF-v 0.0514% 0.1154% 0.0123%
XVMF-ev 0.0365% 0.1117% 0.0184%

Table 3.6: Evaluation metrics MF, EMF and XVMF for Amazon dataset. The highest value per index is indicated in bold.
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3.5 Discussion

Upon analyzing the preceding section’s outcomes, it is evident that depending on the nature of
the interaction saved into the database, we can find slightly different behaviors that the mathe-
maticalmodel tries to learn. Overall, based on themetrics presented inTables 3.5 and 3.6, it can
be noticed that, although the values are low, they are promising since they generally exceed the
baselines used, particularly for the Yelp dataset. Moreover, the experiments show that the bal-
ance between the two regularization terms is achieved for low value, and performance degrades
quickly after a certain threshold range that is dependent on the application context. The ex-
perimental model could be enhanced in the future by considering alternative perspectives or
evaluation metrics, either previously existing in the literature or newly proposed. Adopting
qualitative measurement indicators, already present in the state-of-the-art, is desirable to en-
hance this new field of research with more comparable models. Finally, we used the profit as
business value, but other companies could integrate another kind of value (see chapter 2) ac-
cording to the business strategy. Different kinds of values could require variation on themodel
to adapt the mathematical interpretation of the problem to the real context.

The model is focused on the definition of a way to balance the explainability term and the
business value. We had to deal with the classic recommendation problems (i.e., cold start, long
tail) while creating amodel that introduced new complexity to handle and respond to a specific
requirement of enterprises. Indeed, one of the problems that this model aims to solve is en-
abling the company to understand better their internal processes enhanced by AI instruments.
In particular, integrating a black-boxAImodel into a decision process can lead to unpleasant ef-
fects in the adoptionof system results (i.e., lack of trust andunderstanding). Balancingbusiness
value and enhancing the recommendations with a quantitative score of explainability could re-
duce the distance between the user and the model, enabling the adoption and leading the use.

In future works, the research on this topic could be directed to improve XVMF or create a
new model, considering other perspectives or using different metrics and datasets. Industries
need to lead and understand the complexity beyond their process, yet with the support of these
kinds of systems. Another future direction that we could suggest is the development of an in-
teractive user interface to handle the balance between the two perspectives and collect feedback
from the users, which is essential for empowering the models.

66



3.5.1 RealWorld utility

Explainability and value awareness are two pivotal aspects in the implementation of recom-
mender systems for business decisions. Explainability addresses the need for transparency and
comprehension in the recommendations provided to users and stakeholders. In a business con-
text, understanding the rationale behind recommendations is paramount, as it instills trust
and confidence in the system’s suggestions. Explainable recommender systems allow users and
decision-makers to grasp not only what is recommended, but also why it is recommended, en-
abling them to make informed choices aligned with their preferences and needs.

On the other hand, value-awareness adds a strategic dimension to recommender systems by
focusing on the generation of tangible business value. Traditional recommender systemsmight
solely emphasize user preferences, but in a business setting, it is crucial to align recommenda-
tions with organizational objectives. Value-aware recommender systems take into account not
only user preferences but also the potential impact on key business metrics, such as sales, cus-
tomer retention, or engagement. By optimizing recommendations to simultaneously satisfy
user preferences and drive business outcomes, value awareness becomes a key tool for enhanc-
ing the overall efficiency and effectiveness of a company’s decision-making processes.

Incorporating explainability and value-awareness into recommender systems can thus em-
power businesses to create a harmonious balance between user satisfaction and organizational
success. It not only enhances user experiences but also positions the organization for improved
competitiveness and growth through recommendations that are not only accurate but also un-
derstandable and aligned with strategic goals. Real-world datasets describe different contexts
of application and the adaptation of themodel proposed should be taken into account. In addi-
tion, by providing an interface to business decision-makers, it could create an interactiveway to
access the information provided by the model proposed, guiding the system to produce more
refined explanations ormore valuable outputs, depending on the preferred level of balance and
business goals.

3.6 Contribution

In this chapter, we provided the novel recommendation model XVMF, which is, to the best
of our knowledge, the first model to balance explainability capabilities with the business value
generated. Evaluating three different metrics, NDCG, NDCV, and E-NDCG, we aimed to
understand how the model affects the different perspective of explainability and value busi-
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ness. Finally, changing the hyperparameters simultaneously, we derived the cross-dependence
performance of the model.

Although the benefits of the system could be different for the companies, it appears chal-
lenging to create a general system that could be applied to multiple sources (i.e., datasets of
multiple companies) keeping a high and accurate level of performance. The application of the
model in a real-world scenario must require a refinement of the parameters trained and a deep
understanding of the business decision process to encapsulate the right enterprise dynamics
within the system. Measuringmodel performance in the right way is essential for enterprises in
the design and evaluation phase because it provides a comparableway to assessmultiplemodels,
selecting the best one.

Moreover, we discussed how explainability affects the RSs field, focusing on the importance
of the evaluation phase. Among the evaluationmetrics reported, we selected themost used and
promising ones to evaluate our model.

In the next chapter of this thesis, we conclude our research journey with an analysis of a
promising recommender systems family based on graphs. In particular, we focus on the reason
for the importance of defining common evaluation criteria for explainability, highlighting a
common symptom that affects the Graph-Based Explainable Recommender Systems, and sug-
gesting a direction for future researchworks in this field to support the enterprisemodel design
process.
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4
Explainability applied on Graph-based

Recommendation Systems

In recent years, we have registered an increase in the amount of published research in the field of
Explainable Recommender Systems. As reported in the chapter 3, these systems are designed
to help users find the items of the most interest by providing not only suggestions but also the
reasons behind those recommendations. Research has shown that there are many advantages
to complementing a recommendation with a convincing explanation. For example, such an
explanation can often lead to an increase in user trust, which in turn can improve recommen-
dation effectiveness and system adoption. In particular, many research works focus on explain-
able recommendation algorithms based on graphs due to the natural graph structure presenta-
tion capabilities (i.e., exploiting knowledge graphs or graph neural networks-based methods).
The use of graphs is very promising since algorithms can, in principle, combine the benefits
of personalization and graph reasoning, thus potentially improving the effectiveness of both
recommendations and explanations. However, although graph-based algorithms have been re-
peatedly shown to bring improvements in terms of ranking quality, notmuch literature has yet
studied how to properly evaluate the quality of the corresponding explanations. As reported
in chapter 2 and 3, from an industrial perspective is essential for a model to be comparable and
quantitative evaluable, not only in the selection phase of the best performer but also during
project setup, establishing expectations and return on investment. In this chapter, we focus on
this problem, examining in detail how the explainable recommender systems based on graphs
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are currently evaluated, discussing how they could be improved, and suggesting a future direc-
tion in a more quantitative and comparable way.

As users have increasingly demanded explanations for recommendations in recent years, it
becomes crucial for model developers to provide insights into how and why those recommen-
dations are made. Unlike traditional recommender systems, this kind of approach allows any
recommendation to be generated by simultaneously integrating it with a corresponding expla-
nation. The explanations provided can be very persuasive [221, 222, 223] in that they often ex-
ploit graph reasoning logic that allows the explanation to be represented as a path on the graph.
For example, an explanation for a “Back to the Future” recommendation, may be intuitively
representedwith thepath “user watched−−−−→ Forrest Gump

directed by−−−−−→ Robert Zemeckis that also directed−−−−−−−→
Back to the Future” [224]. However, although graph-basedmethods have repeatedly shown re-
markable performance in modeling complex user-item relational dependencies and generating
relevant recommendations, the transparency and interpretability of the underlying reasoning
process still remain a significant concern. In particular, the main problem lies in establishing a
clear understanding ofwhat aGraph-Based ExplainableRecommender System (GxRS) should
provide as an explanation, how it could be useful for the final users, and especially how accurate
the outcome is.

To clarify the challenges mentioned above, the remainder of the chapter is organized as fol-
lows. In Section 4.1 we offer a general introduction to recent graph-based explainable recom-
mendation algorithms. Subsequently, in Section 4.2 we focus on the current methodologies
used in the literature to evaluate these algorithms. Then, in Section 4.3 we bring to the com-
munity’s attention the importance of the integration of quantitative explainable performance
evaluation, while also discussing potential ways to use these guidelines in future researchworks.

4.1 Background and concepts

Graph-based algorithms have attracted the interest of many researchers because of the capa-
bilities they offer to represent the world of interactions, particularly those related to humans.
They are a promising area because the learning process can be based directly on graphs that
not only represent user-object interactions but can also include contextual information such
as user demographics, product categories, and other attributes. In particular with the objec-
tive of capturing these connections and exploiting these potentials through user suggestions,
Knowledge Graphs (KGs) and Graph Neural Networks (GNNs) have gained significant at-
tention in recent years, especially in the Recommender Systems (RSs) field to ensure fairness
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Table 4.1: Graph‐Based Explainable Recommender Systems surveyed from literature, and grouped by algorithmic method
and explainability evaluation approach.

Algorithmic
Method

No Explainability
Evaluation

Qualitative Ex-
plainability
Evaluation

Quantitative
Explainability
Evaluation

Embedding-
based

[225, 226, 227, 228,
229] [230, 231, 232]

Path-based

[233, 234, 235, 236,
237, 238, 239, 224,
240, 241, 242, 243,
244]

[245, 246, 247, 214,
248, 249]

[250], improve business value [2], or generate relevant, yet explainable, recommendations to
users from graphs [251, 194].

Analyzing the most recent surveys [252, 253, 254, 255, 256, 257] in the field of GNN- and
KG-based recommender systems, from2018 to 2023 (seeTable 4.1), what emerges is thatmany
existing studies have focused on the use of graphs to improve the performance of recommender
systems in terms of recommendation quality, diversity, and other conventionalmeasures, while
less rigorously assessing the quality of the corresponding explanations. Studies often offer only
qualitative case-based examples where a particular explanation is represented graphically as a
path on the graph. However, what is generally lacking is a quantitative and comparable eval-
uation of the quality of explanations according to the widely known guidelines of explainable
recommendation systems [165]. While graphical explanations are useful for getting an intuitive
idea of the underlying reasoning process, they also severely limit the comparison of algorithms
and, more generally, the progress in this particular field. Instead, it may be beneficial for re-
search to focus more in the future on the evaluation aspects by designing metrics to provide
quantitative insights into the complete decision-making process to ensure that the algorithms’
explanations are useful in practice from a human perspective.

In the literature, a number of different studies proposed the use of GNN- or KG-based algo-
rithms to generate relevant, yet explainable recommendations from graphs. These graphs often
provide additional information in addition to themost commonly used user-item interactions,
including demographic characteristics of the user (e.g., age, gender), various attributes of the
item (e.g., product category, price range), and contextual features (e.g., time, location) inter-
connected in a graph. A graph can be classified into homogeneous (if the edge connects only
two nodes and there is only one type of nodes and edges), heterogeneous (if the edge connects
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only two nodes and there are multiple types of nodes and edges), or hypergraph (where each
edge joins more than two nodes). While edges represent a relation (interaction or property) of
the node, each node represents an entity of the dataset that could have one or more associated
properties and could interact with other entities. There are various techniques for using such
graph-based information for recommendations and/or explanation purposes.

Depending on how the graph is handled in the learning process, we can distinguish different
graph-based explainable recommendation techniques in the literature. For example, in certain
cases, neural networks can be exploited to decompose the graph in the form of embeddings
or paths (see Table 4.1). In particular, embedding-based methods typically aim to learn em-
bedding representations of users, items, and other entities from the graph that can be used
to generate recommendations or explanations. However, embedding-based methods generally
lack the ability to discover multi-hop relational paths from the graph to generate explanations.
Therefore, the explanations provided are generated by exploiting empirical criteria of similarity
matching among the various embeddings in the graph tomotivate post-hoc a given recommen-
dation (weak explainability). Instead, path-based methods first identify connectivity paths be-
tween users and items and then feed those paths into the recommendation algorithms to gen-
erate recommendations and explanations. However, although the explanations provided by
these models often appear quite convincing, as they are based on complex multi-hop reason-
ing, considering all possible paths between a given user-item pair may involve irrelevant ones
that can lead to mismatches with real user preferences (error propagation). Given the current
limitations of pure path-based and embedding-based algorithms, other hybrid [224, 240, 241]
algorithms have also been studied in the literature. These methodologies should, in principle,
improve recommendations and explanations by alleviating the weak explainability and error
propagation problems. However, as we discuss in the next section, explanations are not always
rigorously evaluated.

4.2 Evaluating the graph-based explainable recom-
menders

In this section, we explore the evolution of the explainability applied on Graph-Based Explain-
able Recommender Systems. For details on the explainability evaluation process, metrics, cri-
teria, and limitations (on RSs in general), see sections 3.1 and 3.2.

In the above literature, a variety of methods and metrics are used for evaluation purposes.
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In particular, all the surveyed studies employ well-known offline metrics (e.g., Precision, Re-
call, NDCG, AUC) from the RSs literature to evaluate the relevance of recommendations1.
These metrics are typically used to evaluate the performance of a RS in recommending items
of most interest to users. Proposed graph-based algorithms are often able to beat baselines in
terms of relevance or other well-known quality factors such as diversity and coverage because,
since graphs are often used as additional contextual information to the user-item interaction
matrix, they allow, in principle, more accurate recommendations to be generated. However,
especially for an Explainable Recommender Systems, while it is important to assess the rele-
vance of recommendations, it should also be equally important to assess the quality of the cor-
responding explanations. Indeed, the recommendation algorithm could, in principle, produce
good-quality recommendations but weak explanations.

Unfortunately, when analyzing the above literature in detail, it emerges that only a fewworks
[245, 246, 247, 214, 248, 249] have evaluated the quality of explanations as rigorously as they
have assessed recommendations relevance. Indeed, in terms of explanation quality, almost all
studies (see Table 4.1) provide some qualitative case-based analysis to intuitively evaluate the
quality of the algorithmic reasoning process. Typically, a specific recommendation of a certain
item is selected for a given user, and a graphical representation of the explanation provided by
the algorithm is proposed. Supplementing the graphical representation, some empirical obser-
vations are often provided to state that, at least intuitively, the considered explanation seems
realistic. However, what is generallymissing is a quantitative and comparable assessment of the
quality of the system’s overall explanations, i.e., a goal-oriented evaluation based on different
factors of the explanations that the system should provide for each recommendation to every
user, as is typically done instead when assessing recommendations relevance.

4.2.1 Current evaluation of explanations in graph-based rec-
ommender systems

Besides the typically employed qualitative case analyses, only a few articles, among the ones
listed in Table 4.1, proposed to evaluate the explanations of the proposed Explainable Recom-
mender Systems in a more quantitative way. For example, Lyu et al. [247] used ROUGE to
evaluate explanations offline. Themetric is typically used for the evaluation of text summariza-
tion tasks and measures the number of overlapping words between the generated text and the

1We refer readers to some recent surveys [170, 258] for further insights on well-known offline evaluation met-
rics that are widely used in the RSs literature to assess the relevance of recommendations.
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ground truth. Since in the work, the explanations generated by the algorithm are expressed in
natural language, the authors can use the metric to assess how close these explanations are to
the ground truth user reviews. However, the metric can only be used to evaluate the natural
language-based explanation style, which is a recent area of research in the literature. Therefore,
the proposed evaluation is not suitable for evaluating the more widely adopted path-based ex-
planation style, i.e., where the logical reasoning of the algorithm is represented as a path on
the graph. To overcome this limitation, a similar methodology recently employed by Tai et al.
[248] and Zhao et al. [249] consists of evaluating the ability of an algorithm to provide expla-
nation paths that contain entities also present in the form of words in user reviews, exploiting
well-known relevance-based metrics such as NDCG and Recall. However, as in the previous
case, if user reviews are not present, this kind of evaluation methodology is not applicable. Ex-
ploiting a different methodology, Ma et al. [246] proposed to evaluate the quality of the ex-
planations (in terms of relevance and diversity) from a human perspective. In particular, the
authors randomly selected 100 user-item recommendation pairs and the corresponding path-
based explanations generated by the recommender system. Then they selected 10 human raters
who have machine learning experience to manually evaluate the quality of explanations. How-
ever, as is also known in other areas in the field of recommender systems, this particular online
evaluation methodology can be very expensive to perform on a large scale and subject to user
bias. Hence, the overall validity of the final resultsmay be compromised if the human raters are
not carefully selected. Another methodology has been proposed recently byWang et al. [245].
In particular, given a certain explanation for a user recommendation, proposed to evaluate the
degree to which the explanation path conforms to the particular user profile. Specifically, for a
given user, the authors first construct the user profile containing his/her interactions with the
entities of the graph. Then they measured the number of entities in the explanation path that
are also present in the user profile. Moreover, since an explanation path can be based on mul-
tiple hops between different graph entities, very long reasoning paths would be able to match
more user profile entities. Correspondingly, the authors’ proposed evaluation is based on a
hyper-parameter that considers only a certain number of entities in the explanation path for
evaluation purposes. However, as noted by the authors, this evaluation methodology is very
inefficient. Hence, they sampled only 100 test set users and evaluated the explanations of the
top 20 recommendations for each of them. Finally, in another recent work byGeng et al. [214]
it has been proposed to measure through the New Reach Ratio (NR2) metric in which terms
a graph-based explainable model is able to mitigate the recall bias.

74



4.3 Towards a more standardized evaluation

In the previous section, we highlighted that most of the works in the GxRS literature used a
qualitative case-based analysis rather than a quantitative approach to intuitively evaluate the
explanations provided by themodel. Unfortunately, the lack of adoption of a quantitative and
comparable framework for styling, presenting, personalizing, and evaluating such explanations,
does not allow to compare the differentmodels in terms of explainability results. The adoption
of shared guidelines that employ quantitative metrics would allow this issue to be solved.

In 2015 Tintarev and Masthoff [165], and more recently Chen et al. [172] and Mohseni
et al. [176] released well-known guidelines to create a common evaluation framework for Ex-
plainable Recommender Systems (of which GxRS are part). The guidelines provide a formal
process for assessing the explainability of a model (see section 3.1). Following this process, the
developer can define the goal of the model, the target user, and the evaluation metrics to deter-
mine howmuch themodel performs in terms of explainability, considering style, presentation,
personalization, and evaluation aspects. For example, in terms of presentation, the recommen-
dations providermay desire to give explanations that are structured in a certain way. Currently,
most of the explanations are provided to users by using a template-based structure (e.g., indicat-
ing howmany similar users have the same tastes of the current user), a graphical representation
(e.g., considering a path on a graph) or natural language [259, 260]. Instead, in terms of evalu-
ation, the quality of explanations is typically assessed considering certain goals, as transparency,
scrutability, trust, effectiveness, persuasiveness, efficiency, and satisfaction. The ability of ex-
planations to achieve such goals can be evaluated by calculating certain metrics, considering
specific case studies (e.g., for a qualitative assessment), or through online experiments (e.g., user
studies, A/B tests) [172]. Each of these methods has certain advantages and disadvantages. For
example, qualitative case-based analyses can be used to intuitively assess whether explanations
are realistic or not. However, the evaluationmay be affected by bias, and the outcome of differ-
ent models is not comparable. Instead, analyses based on quantitative metrics (e.g., Probability
of Necessity,Mean Explainability Precision) [208, 173] could be less intuitive, but they are easy
to benchmark, comparable, and more efficient.

For example, future works may exploit existing metrics proposed in the literature to evalu-
ate the explanations quality (e.g.,MeanExplainability Precision [173], orExplainability Power
[213]). A representative list of explainability metrics from the literature [172, 256, 166, 261] is
presented inTable 3.3. Inparticular, researchers could focusonbalancingmultiple perspectives
at the same time, such as fairness and explainability measuring the Path and Diversity Scores
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proposed by Fu et al. [262]. Moreover, in the future, it could be worth to investigate the rela-
tion between the recommendation list and the explanation properties as proposed by Balloccu
et al.. In particular, in recent works, e.g., [215, 216], Balloccu et al. propose six novel metrics
to evaluate the quality of explanations, i.e., Linking Interaction Recency (LIR), Linking In-
teraction Diversity(LID), Shared Entity Popularity (SEP), Shared Entity Diversity (SED), Ex-
planation Path Type Diversity (PTD), and Explanation Path Type Concentration (PTC). The
use of such quantitative evaluation metrics can enhance the interpretability and transparency
of recommendations, empowering users tomake informed decisions based on comprehensible
explanations. Overall the integrationof such aquantitative evaluation frameworkmaynot only
provide concrete evidence ofmodel effectiveness but itmay also contribute to the advancement
and adoption of explainable recommender systems in real-world applications.

Besides exploiting existing metrics, other research directions may also be interesting for the
future. In particular, while existing metrics can be used to measure certain aspects of explana-
tions, future research may study other quantitative and comparable methods that can be used
to evaluate the quality of explanations in compliance with the explainability guidelines, e.g.,
assessing explanations in terms of style, personalization and presentation aspects. Moreover,
given the limitations of available datasets in reflecting real user preferences in terms of the ex-
planations provided by the models, further research may focus on collecting datasets that have
such information. Furthermore, another important aspect to consider for the future may be
the inclusion of human-centered evaluationmethods. Indeed, evaluating the performance and
effectiveness of explainability from a human perspective is essential to gain valuable insights
into the usability and impact of the explanations provided by an algorithm [188]. Finally, an-
other effective enhancement for evaluating explanations could be providing explanations to
users through an interface designed to facilitate access, increase comprehension, and collect
users’ feedback during the usage experience. Through this interface, providers could measure
the adoption of a system that may seek to achieve one or more objectives at the same time, e.g.,
considering effectiveness [194], persuasiveness, scrutability aspects.

4.4 Contribution and future direction

In this chapter, we discussed how the explanations provided by graph-based explainable recom-
mendation systems are currently evaluated, pointing out open challenges and future research
directions in this area concerning evaluation methods. What emerges from our analysis is that
most papers evaluated the quality of explanations throughqualitative case-based analysis, while
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only a few articles proposed metrics for a more quantitative evaluation. Moreover, the current
metrics are not sufficient to comprehensively evaluate all the different types of explanations and
are only partially compliant with the well-known explainable recommender system guidelines.
Future researchwill need to address current limitations by providing newguidelines-compliant
evaluationmethodologies. With this chapter, we encourage researchers to adopt amore quanti-
tative and comparable approachwhen evaluating the quality of the explanations. We hope that
our efforts will inspire further research in this field and lead to the creation ofmore comprehen-
sive and guideline-compliant methods for assessing and comparing the quality of explanations
of graph-based explainable recommendation algorithms.
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5
Conclusion and future works

5.1 Conclusion

Approaching the research world with an enterprise perspective is the widest objective of the
industrial doctoral program at the basis of this thesis. Companies must operate under most
constraints, i.e., regarding cost, time, manpower, and expertise, and most of the time they fol-
low only one path in themultitude of solutions offered by the academicworld. While they find
a concrete application scenario of the model available in the literature, the researchers should
enhance the proposed model with explanations of what the black-box system generates as out-
put to the non-expert users. This type of approach is doubly effective. While, on the one hand,
business users understand theAI system and increase its adoption, on the other hand, academia
is forced to express the results of themodel not only in terms of how accurate it is but also what
degree of understanding provides the system.

In this context, we prepared our journey path by collecting numerous contributions from
the literature, developed our research based on industrial experience, and summarized the find-
ings on how the AI models, in particular the Recommender Systems, can support enterprise
strategies of selling a product or proposing an item. Firstly, we identified the different kinds of
business values defined in the literature and proposed a taxonomy that aims to simplify com-
prehension and lead to adoption. Secondly, we analyzed how explainability approaches can be
implemented in recommender systems from an industrial point and we proposed amodel that
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aims to balance explainability and business value. Finally, we argued a symptom that affects
many recent works in the literature of Graph-Based Explainable Recommender Systems, sug-
gesting the implementation of quantitative metrics and the adoption of definition guidelines
to create comparable models and, thus, facilitating the use by enterprises.

The main contribution of this thesis is the proposal of a model that aims to simultaneously
analyze both the explainability and the business value, mathematically finding a tradeoff be-
tween two perspectives that are studied separately in the literature. In designing the model
XVMF, we deal with some challenges. Primarily, we decided which family of algorithms we
should use, and matrix factorization optimally supported our perspective. Then, we reviewed
the literature to choose the used and promising metrics to evaluate the model created. More-
over, we decided on the datasets for the experiment based on the fundamental characteristics
we wanted to study, such as the presence of a dimension representing business value. Finally,
we defined the experiment with themathematical model concepts and set the hyperparameters
for the simulation execution.

On the other hand, we have also systematically investigated the state-of-the-art of Value-
Aware Recommender Systems to collect all the resources published regarding this topic, an-
alyzing the different approaches proposed and suggesting a proper taxonomy and datasets for
future models. This contribution became the first systematic literature review on VARSs, cre-
ating a baseline for researchers who are interested in this topic.

Finally, due to the increased companies’ interest inGraph-Based Explainable Recommender
Systems (GxRSs), we decided to point out how thesemodels could be beneficial for enterprises
from an explainability perspective. In particular, since they are able to simplify the complexity
of the information stored in enterprise datasets, we focused on the evaluation phase which is
essential for a company. Indeed, during the decision phase, decision-makers strategically man-
age a wide number of information at the same time and require a solution to comprehend this
process. Moreover, after highlighting the absence of quantitative evaluation metrics for the
proposed explainable graph model, we suggested the adoption of a standard way to evaluate
the explainability through the adoption of existing quantitative metrics and the definition of
the property of the model based on released guidelines that aim to classify the model in terms
of style, personalization, presentation, and evaluation.
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5.2 Future works

After examining the limitations and promising areas of expansion within this thesis, we can
highlight potential avenues for future research:

• improve explainable recommender systemswith enhanced explainability capabilities through
the integration of model definition, proper evaluation metrics, and adoption of guide-
lines;

• focus on the development of an explainable model targeted to business, using a proper
dataset and developing an effective approach to solving real-world problems, such as
profit or revenue maximizing;

• define newmetrics that are designed to explain the black-boxmodel to non-expert stake-
holders to enhance the decision phase;

• design and integrate more Human-Centered interfaces able to present the information
properly (already existing approaches are available; maybe it would be beneficial to focus
on the industrial user), and that are able to collect user feedback, balancing the explain-
ability engine to human business questions.

We hope that our work could add an additional element in a still unexplored area, due to
the distance between the academic and enterprise world, but with a high level of interest and
potential improvement.
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