
UNIVERSITY OF PADOVA

DEPARTMENT OF INFORMATION ENGINEERING
Ph.D. Course in Information Engineering

Information and Communication Science and Technologies Curriculum
XXXVI series

On the Role of Information in Distributed
Learning

Ph.D. Candidate Ph.D. Supervisor
Francesco Pase Professor Michele Zorzi

Ph.D. Coordinator
Professor Fabio Vandin

Academic Year
2022–2023

ii

To my Mum and Dad, ever-present support and solid home.

iv

“No matter if you’re an engineer, a scientist or an artist,
you’ll always have to couple the creative world of your mind

with the sharpness of your tools.”

v

vi

Abstract

Today, most data consumed by machine learning algorithms is generated by the enormous amount
of sensors and embedded devices like smartphones, cars, drones, which are geographically dis-
tributed and potentially concerned about privacy guarantees. In response to this, machine learn-
ing systems are expected to transition from centralized to more distributed solutions, in which
the training and/or the inference processes are brought closer to the source of the data. In such a
setup, the natural learning and inference loops must consider the communication aspect between
the involved entities which collaboratively train and run the learning models. In this regard, this
work explores the way the exchanged information can be compressed, represented and conveyed
through the communication networks; the impacts of unreliable and constrained communication
channels on the system outputs; and the fundamental trade-off between the amount of exchanged
information and the final performance. Specifically, the analyses first focus on standard federated
learning, which is a very popular distributed training technique, and then switch to multi-agent
reinforcement learning, in which the underlying learning problem is a decision process. In the
end, examples of applications to the optimization of wireless communications networks are also
provided.

vii

viii

Contents

Abstract vii

List of figures xii

List of tables xix

1 Introduction 1
1.1 Communication-Learning Co-Design . 4
1.2 Thesis Organization . 4

2 Information in Federated Learning 5
2.1 Related Work . 6
2.2 Federated Learning over Wireless Networks . 10

2.2.1 Introduction . 10
2.2.2 System Model . 11
2.2.3 Federated Learning Under Imperfect CSI:

The Proposed Solution . 12
2.2.4 Performance Results . 14
2.2.5 Conclusions and Future Works . 20

2.3 Sparse Random Networks for Communication-Efficient Federated Learning 20
2.3.1 Introduction . 20
2.3.2 Federated Probabilistic Mask Training (FedPM) 22
2.3.3 Privacy Considerations . 26
2.3.4 Experiments . 30
2.3.5 Conclusion . 37

2.4 Communication-Efficient Federated Learning through Importance Sampling 37
2.4.1 Introduction . 37
2.4.2 KL Divergence Minimization with Side Information (KLMS) 41
2.4.3 Examples of KL Minimization with Side Information (KLMS) Adaptated to

Well-Known Stochastic federated learning (FL) Frameworks 44
2.4.4 Experiments . 46
2.4.5 Discussion & Conclusion . 50

2.5 Semantic Communications for Learnable Concepts 50
2.5.1 Introduction and Motivation . 50
2.5.2 System Model . 51
2.5.3 The Rate-Distortion Characterization . 53

ix

2.6.1 Communicating the Data vs Communicating the Model 58
2.6.2 Conclusion . 59

2.7 Supplementary & Proofs . 60
2.7.1 Pseudocode . 60
2.7.2 Proofs . 68

3 Information in Distributed Decision Processes 79
3.1 Related Work . 80
3.2 The Rate-Constrained Remote Contextual Multi-Armed Bandit Problem 83

3.2.1 Introduction . 83
3.2.2 Problem Formulation . 85
3.2.3 Theoretical Limits . 87
3.2.4 Policy Compression . 90
3.2.5 Numerical results . 94
3.2.6 Conclusion . 98

3.3 Effective Communication in Distributed Reinforcement Learning 99
3.3.1 Introduction . 99
3.3.2 System Model . 100
3.3.3 Proposed Solution . 105
3.3.4 Simulation Settings and Results . 108
3.3.5 Conclusion . 118

3.4 Supplementary and Proofs . 119
3.4.1 Proofs . 119
3.4.2 Supplementary: The Information Bottleneck View 126

4 Applications of Distributed Learning 129
4.1 Distributed Resource Allocation for URLLC in IIoT Scenarios: A Multi-Armed

Bandit Approach . 129
4.1.1 Introduction . 129
4.1.2 Problem Formulation and System Model . 131
4.1.3 multi-armed bandit (MAB) Agents . 132
4.1.4 Performance Evaluation . 134
4.1.5 Conclusions and Future Work . 139

4.2 DISNETS: a DIStributed NEural linear Thompson Sampling framework to achieve
URLLC in IIoT . 139
4.2.1 Introduction . 140
4.2.2 System Model . 141
4.2.3 Problem Formulation . 145
4.2.4 Proposed Solution: the DIStributed combinatorial NEural linear Thompson

Sampling (DISNETS) Framework . 147
4.2.5 Numerical Results . 151

x

4.2.6 Conclusion . 159
4.3 Distributed Reinforcement Learning for Flexible and Efficient UAV Swarm Control 160

4.3.1 Introduction . 160
4.3.2 Related Work . 161
4.3.3 System Model . 163
4.3.4 Simulation settings . 171
4.3.5 Simulation results . 173
4.3.6 Conclusions and future work . 182

5 Conclusion 185
5.1 Final Considerations & Future Directions . 186

References 189

List of Publications 207

Acknowledgments 209

xi

xii

Listing of figures

1.1 General overview of the federated learning framework. 2

1.2 A multi-agent learning system. 3

2.1 Average minimum rate/Hz vs. number of participating clients for the SFL policy
in case of Rayleigh, Nakagami and Rician channels and for different values of the
quality factor A. 15

2.2 Min-to-max and average accuracy (over 5 simulations) during the training process
as a function of the time and the number of clients Ct involved in the rounds,
considering both SFL and FRFL methods. Rayleigh fading with A = 1 (first row)
and A = 10 (second row), and independent and identically distributed (i.i.d.) data
are considered. 16

2.3 Min-to-max and average accuracy (over 5 simulations) during the training process
as a function of the time and the number of clients Ct involved in the rounds,
considering both SFL and FRFL methods. Rayleigh fading with A = 1 (first row)
and A = 10 (second row), and non-i.i.d. data are considered. 16

2.4 Average time (and confidence intervals) to achieve 90% and 95% accuracy in Rayleigh
fading channels, as a function of the number of clients Ct involved in the rounds,
considering both SFL and FRFL methods. 18

2.5 Average time (and confidence intervals) to achieve 90% and 95% accuracy in Nak-
agami and Rician fading channels, as a function of the number of clients Ct involved
in the rounds, considering both SFL and FRFL methods. 18

2.6 Min-to-max and average accuracy (over 5 simulations) during the training process
as a function of the number of rounds with Rayleigh fading (A = 1), Ct = 20, and
non-i.i.d. data. 19

2.7 Extracting a randomly weighted sparse network using the trainable probability
mask θt in the forward-pass of round t (for clients and the server). In practice,
clients collaboratively train continuous scores s ∈ R

d, and then at inference time,
the clients (or the server) find θt = Sigmoid(st) ∈ [0, 1]d. We skip this step in the
figure for the sake of simplicity. 21

xiii

2.8 Communication-efficient estimation of the mean of the probability masks θ̄g,t. Each
client communicates a stochastic binary mask mk,t sampled from the local proba-
billity mask θk,t. We reduce the bitrate to less than 1 bit per parameter by using
arithmetic coding to encode mk,t. When the frequency of 1’s is far from 0.5 (which
is usually the case with Federated Probabilistic Mask Training (FedPM)), the num-
ber of bits per parameter to communicate mk,t is less than 1. See Figure 2.11 for
more details. 24

2.9 Distributed mean estimation scheme in FedPM, modified for differential privacy. . . 28

2.10 The effect of privacy amplification and bias correction in the privacy budget (ϵ)
vs. estimation error behavior. Comparing red and blue curves, we see that we can
reach small estimation errors without increasing ϵ thanks to the amplification (see
the vertical blue line at low estimation error.). While the red curve and blue curve
overlap for ϵ < d · rα(c) = 8.96, in that regime, we benefit from our bias correction
strategy to reach a lower error. 30

2.11 Accuracy and bitrate comparison of FedPM with SignSGD [44], TernGrad [262],
QSGD [24], DRIVE [246], EDEN [247], and FedMask [153], all performing in the
same bitrate regime. 32

2.12 Accuracy for different values of γ – the number of rounds before resetting the priors. 35

2.13 Accuracy and bitrate comparison of FedPM with baselines SignSGD [44], Tern-
Grad [262], QSGD [24], DRIVE [246], EDEN [247], and FedMask [153], with ResNet-
18 on CIFAR-10. 36

2.14 Accuracy and bitrate comparison of FedPM with baselines SignSGD [44], Tern-
Grad [262], QSGD [24], DRIVE [246], EDEN [247], and FedMask [153], with ResNet-
18 on CIFAR-100. 37

2.15 Average KL divergence between local post-data distributions of clients and the
global pre-data distribution, for different layers and rounds (FedPM [200] is used to
train CONV6 on CIFAR-10). 43

2.16 FedPM-KLMS, QSGD-KLMS, and SignSGD-KLMS against FedPM [200], QSGD [24], SignSGD [44],
TernGrad [262], DRIVE [246], EDEN [247], FedMask [153], and DP-REC [240] with i.i.d.
split and full client participation. The bottom row replicates the upper row zoomed
into lower bitrates. 47

2.17 FedPM-KLMS, QSGD-KLMS, and SignSGD-KLMS against FedPM [200], QSGD [24], DRIVE [246],
EDEN [247], and DP-REC [166] with non i.i.d. split and 20 out of 100 clients partici-
pating every round. 47

2.18 Comparison of FedPM-KLM, QSGD-KLM, and SignSGD-KLM with FedPM [200], QSGD [24],
DRIVE [246], EDEN [247], and DP-REC [166] with non i.i.d. split and 10 out of 100
clients participating every round. 48

xiv

2.19 (left) SGLD-KLMS against QLSD [253] using LeNet on i.i.d. MNIST dataset. (right)
FedPM-KLMS (fixed) against FedPM-KLMS (adaptive) on how well the number of
bits approaches the fundamental quantity, KL divergence – using CONV6 on i.i.d.
CIFAR-10. Both KL divergence and the number of bits are normalized by the num-
ber of parameters. The final accuracies that FedPM-KLMS (fixed) and FedPM-KLMS
(adaptive) reach differ by only 0.01%. 48

2.20 Estimation gap statistics for different values of r, as a function of the number of
participating clients N . (left) The empirical standard deviation of the estimation
gap, computed over 100 runs. (right) Estimation gap between µ and µ̂ averaged
over 100 runs. 49

2.21 Estimation gap statistics for different values of η, as a function of the number of
participating clients N . (left) The empirical standard deviation of the estimation
gap, computed over 100 runs. (right) Estimation gap between µ and µ̂ averaged
over 100 runs. 50

2.22 The problem of communicating concepts. 51

3.1 The rate-constrained contextual multi-armed bandit (CMAB) (RC-CMAB) prob-
lem formulation. 85

3.2 Rate Rπ needed to reliably transmit the policy π as a function of the system round j,
together with the imposed rate R (a); average state regret obtained by the different
algorithms as a function of the virtual round t (b). In this case, G = 8. Curves
indicates average rewards ± one standard deviation over 5 runs. 95

3.3 Rate Rπ needed to reliably transmit the policy π as a function of the system round j,
together with the imposed rate R (a); average state regret obtained by the different
algorithms as a function of the virtual round t (b). In this case, G = 2. Curves
indicates average rewards ± one standard deviation over 5 runs. 96

3.4 Rate Rπ needed to reliably transmit the policy π as a function of the system round
j, together with the imposed rate R (a); average state regret obtained by Perfect
and Cluster algorithms, as a function of the virtual round t (b). In this case, G = 1.
Curves indicates average rewards ± one standard deviation over 5 runs. 97

3.5 Dynamic feature compression architecture. 107
3.6 Example of the original and reconstructed observation. 108
3.7 Training of the Vector Quantized Variational Autoencoder (VQ-VAE) model with

Nζ = 6. 109
3.8 Performance of the communication schemes on the three levels of the remote Par-

tially Observable Markov Decision Process (POMDP). 112
3.9 Other performance metrics relative to the CartPole control problem. 113
3.10 Distribution of the selected compression levels. 113
3.11 Analysis of the transmission policy as a function of the pole angle and cart linear

velocity ẋ. 114

xv

3.12 Analysis of the transmission policy as a function of the pole angle and angular
velocity ψ̇. 115

3.13 Level C observer action distribution for different robot action entropy levels and
values of β. 116

3.14 Level A observer action distribution for different robot action entropy levels with
β = 1. 117

4.1 Transmission structure. 131
4.2 STX vs. the training time, for different MAB agents, with periodic and quasi-

periodic traffic, τ = 1.5, and N = 50. 135
4.3 STX ± one standard deviation vs. N for different MAB agents, after a training

time of 60 s, with τ = 1.5 ms, with periodic (wide bars) and quasi-periodic (narrow
bars) traffic. 136

4.4 STX ± one standard deviation vs. τ for different MAB agents, after a training time
of 60 s, with N = 100, with periodic (wide bars) and quasi-periodic (narrow bars)
traffic. 137

4.5 STX ± one standard deviation vs. PTX,UL for different MAB agents, after a training
time of 60 s, with N = 100 and τ = 1.5 ms, with periodic (wide bars) and quasi-
periodic (narrow bars) traffic. 137

4.6 STX vs. the training time and as a function of N (a) and τ (b), for TS-A with
periodic traffic, and τ = 1.5 ms. The curves report mean ± standard deviation over
the simulation runs. 138

4.7 Factory floor layout (with W = 2, M = 7, and N = 18) and traffic correlation.
Specifically, machines in each production line are correlated, and activate according
to a specific sequence on the production line, i.e., toward the right or the left. At
t1, W = 2 machines (i.e., one per production line) activate, and the corresponding
UEs onboard the active machines start sending data as periodic, aperiodic, or UE-
specific aperiodic traffic. At t2 = t1 + τa, these machines shut down and the next
activation begins. 144

4.8 Schematic representation of DISNETS. The framework consists of (i) the state/con-
text s, (ii) an Neural Linear Thompson Sampling (NLTS) module to provide the
non-linear representation of the context ϕω(s), (iii) an Linear Thompson Sampling
(LTS) module to choose a super-action θ ∈ K corresponding to the set of orthogonal
channels to use to transmit data, (iv) the reward r (incorporated within the FCI)
to update the NLTS and LTS parameters. 147

4.9 Overhead performance measured in terms of the size of the the Feedback Control
Information (FCI) (proposed) vs. the 3GPP NR Downlink Control Information
(DCI), as a function of the number of orthogonal channels (top) and UEs (bottom).
We consider two DCI formats, namely DCIm and DCIM , which require up to 10
and 37 additional bits, respectively, for resource allocation [185]. 155

xvi

4.10 Empirical CDF of the number of orthogonal channels used at each scheduling op-
portunity relative to the last 10 packets considering DISNETS vs. RandomK, as a
function of the number of UEs. 155

4.11 Average end-to-end (E2E) latency for DISNETS vs. RandomK, NLTS, SPS, and
GBS, as a function of the number of UEs and the type of traffic. 156

4.12 Empirical PDF (top) and CDF (bottom) of the E2E latency considering DISNETS
vs. RandomK as a function of the number of UEs. We consider uniformly aperiodic
traffic, with tmin = 2 ms and tmax = 6 ms. 158

4.13 Average E2E latency for DISNETS, RandomK, and GBS, as a function of tmin and
the type of traffic. We set tmax = 6 ms. 158

4.14 Average E2E latency for DISNETS, RandomK, and GBS, as a function of the
percentage of aperiodic UEs. For aperiodic traffic we set tmin = 2 ms and tmax = 6

ms, while for periodic traffic we set τ = 2 ms. 159
4.15 Two examples of the sparse (left) and cluster (right) target distributions. 165
4.16 Drone positions (left), known map (center), real map (right). Beginning (above)

and end (below) of an episode. 168
4.17 Architecture of the Deep Q-Network (DQN). 170
4.18 Success probability over the training phase in the cluster scenario with 2 UAVs. . . 174
4.19 Success probability over the training phase in the sparse scenario with 2 UAVs. . . 175
4.20 The bars indicate the probability mass distribution of the number of Unmanned

Aerial Vehicles (UAVs) that successfully accomplish their task (i.e., hover upon a
target) by the end of the episode, when varying the duration of the episode. Each
group of bars refers to the performance achieved by Distributed Deep Q-Learning
(DDQL) (with and without softmax) and by LA, in the Cluster (a) and Sparse (b)
scenarios, with a total of 4 targets and 2 UAVs. 176

4.21 Example of an episode where the second UAV is not able to reach the cluster . . . 176
4.22 CDF of the episode duration for different algorithms in the cluster (a) and sparse

(b) scenario with 2 UAVs. 176
4.23 CDF of the episode duration for different algorithms in the cluster (a) and sparse

(b) scenario with 3 UAVs. 178
4.24 Drone positions (left), known map (center), real map (right). Beginning (above)

and end (below) of an episode with obstacles. 179
4.25 CDF of the episode duration for different algorithms in the obstacle scenario. . . . 179
4.26 Success probability as a function of the map size and the number of clusters. . . . 179
4.27 Success probability as a function of the map size and the number of clusters with

obstacles. 180
4.28 Effect of imperfect communications on the performance of DDQL in a large map. . 181
4.29 Extraction of the map from building height data in a 500 m by 500 m area in the

downtown Chicago Loop neighborhood. 181
4.30 Performances on the real map of Chicago . 182

xvii

xviii

Listing of tables

2.1 Architectures for CONV-4, CONV-6, and CONV-10 models used in the experiments. . . 31
2.2 Average final accuracy ±σ in non-IID data split with cmax = 4 and 2, and client

participation ratios ρ = {0.1, 0.2, 0.5, 1}, for FedPM, FedMask, and the strongest
baselines in the IID experiments: EDEN, DRIVE, and QSGD. The training dura-
tion was set to tmax = 200 rounds. 33

2.3 Average bitrate ±σ over the whole training process in non-IID data split with
cmax = 4 and cmax = 2, and partial participation with ratios ρ = {0.1, 0.5, 1},
for FedPM, FedMask, and the strongest baselines in the IID experiments: EDEN,
DRIVE, and QSGD. The training duration was set to tmax = 200 rounds. 34

2.4 ResNet-18 architecture. 36
2.5 LeNet architecture for MNIST experiments. 46

3.1 Main notation and definitions. 101
3.2 Simulation Parameters. 110
3.3 Encoder-Decoder parameters. 111
3.4 Recurrent architectures. 111

4.1 Simulation parameters. 152
4.2 Structure of the DNN used in the DISNETS algorithm. 152
4.3 Size (in bits) of the FCI and DCI signals, vs. the number of active UEs (Na) and

the number of orthogonal channels (K), with N fixed to 500. 154
4.4 Notation definitions. 163
4.5 Simulation settings. 172

xix

xx

xxi

xxii

1
Introduction

The new millennium has witnessed a pervasive adoption of machine learning (ML) in many prod-
ucts and services. Specifically, Deep Learning (DL) is playing a pivotal role in the implementation
of many state-of-the-art algorithms: from producing and summarizing text with Large Language
Models (LLMs) [183, 239], predicting protein unfolding structures [129], detecting objects in im-
ages [63] and playing video games [251], to generating paintings [208], music [68], and many more.
Moreover, the prevision on future investments in artificial intelligence (AI) research and startups
suggests that the trend is still increasing 1.

Although DL represents a very powerful tool to build the software of the future, to successfully
implement such solutions there is the need to collect vast amounts of data, and to have a lot of
computational resources at disposal. Until now real-world AI systems have been designed following
a centralized approach: data are stored in the cloud where powerful computational infrastructures
have the capacity to train huge neural networks (NNs) yielding fully trained models, which are
generally run in the cloud also during the inference phase. However, today this type of approach
is becoming infeasible for several reasons. First, nowadays the data typically used to train these
models are naturally collected by embedded/mobile devices at the edge of the communications
network, e.g., sensors, cars, smartphones, drones, and continuously moving the acquired data to
the cloud would have a significant impact on the network’s resources, as well as on the device’s
battery. Second, centralized approaches cannot respect, by design, the users’ privacy. Third, if
inference is performed in the cloud, there will always be a constant and non-negligible delay from
the moment the input is acquired by the device to the moment the model produces its output.
Indeed, when the inference phase is done in the cloud, the time needed to send the input to the
cloud, process it, and send it back to the device cannot be eliminated. However, applications
like autonomous driving, virtual reality and remote control can not admit such a delay to safely

1https://www.goldmansachs.com/intelligence/pages/ai-investment-forecast-to-approach-200-billion-
globally-by-2025.html

1

https://www.goldmansachs.com/intelligence/pages/ai-investment-forecast-to-approach-200-billion-globally-by-2025.html
https://www.goldmansachs.com/intelligence/pages/ai-investment-forecast-to-approach-200-billion-globally-by-2025.html

Local
Dataset

Local
Dataset

User 1

User N

. . .

Local
Training

Local
Training

+

+

TWO-WAY FLOW

Figure 1.1: General overview of the federated learning framework.

run their operations. Fourth, multi-agent distributed systems, in which a multitude of entities
cooperate to share knowledge and to speed up data collection and model training by parallel
executions achieving overall better performance, are becoming not only attractive, but sometimes
necessary, as suggested by Prof. Geoffrey Hinton in a recent interview 2.

For these reasons, the past few years have experienced a transition from centralized to dis-
tributed ML systems, moving not only the inference, but also the training operations, from the
cloud to the end devices. Many approaches have been developed in the literature to sustain this
paradigm shift, among which federated learning (FL) is now playing a major role [171], and is
forseen to become a standard framework for distributed and privacy-preserving training. In short,
FL (which will be better defined later) consists in a distributed learning approach where a central
authority, i.e., a server or a base station (BS), coordinates the process of training a unique global
model among N users (defined also as clients, or in general devices), which are the ones collecting
the data (see Figure 1.1). In practice, it works in rounds, and each round consists of the following
operations:

1. The server samples a subset of K users (among the N users in the system), and shares with
them the global model;

2. Each user trains the received model using their local and potentially private datasets for a
number of epoch, i.e., optimization steps, by using some variant of the stochastic gradient
descent (SGD) algorithm [25];

3. Each user sends back to the server an updated version of the model;
2https://www.youtube.com/watch?v=qpoRO378qRY& ab_channel=CBSMornings

2

https://www.youtube.com/watch?v=qpoRO378qRY&t=568s&ab_channel=CBSMornings

Figure 1.2: A multi-agent learning system.

4. The server receives the updated models, aggregates them (e.g., by averaging) and outputs a
new model containing the knowledge of all the users;

5. The process goes back to step 1. and continues until training convergence.

This way, at the end of the process, it is possible to obtain a global model which contains the
knowledge of all the users, without having the data to physically leave the users’ devices.

Moving one step further, multi-agent distributed systems appear not only in the context of
unsupervised and supervised learning, for which FL was initially designed, but also in interactive
learning, in which agents need to learn from data how to optimize an underlying decision process
by interacting (i.e., taking actions) with the process itself. In this case, multi-armed bandit
(MAB) [226] and reinforcement learning (RL) [233] are the standard ways of formulating and
solving the problem. Even though there already are tentative approaches combining FL with
MAB [225, 119] and RL [128], the problem of cooperative learning in multi-agent systems is
complex and not so well investigated yet. Examples of applications can be found in the control of
wind farm turbines [250], Internet of Things (IoT) [206, 277], wireless networks optimization [186],
and many more.

In both types of multi-agent distributed learning systems, the recent literature has usually
placed more emphasis on analyzing the optimization, learning convergence, and cooperative chal-
langes of the frameworks [54, 132], sometimes overlooking the communication aspects, which are
instead an important part of the problem. The main contribution of this work is to investigate
the role of the data exchanged by the entities in distributed learning systems, with the goal of
minimizing the amount of information that needs to be communicated through the network to
perform distributed learning and inference, sometimes trading off information with performance.

3

1.1 Communication-Learning Co-Design
As briefly motivated in the previous paragraphs, when designing distributed learning systems it
is fundamental to better consider which type of information should be shared, when, and how,
in order not to waste communication and storage resources, which sometimes may be scarce. As
highlighted later in the manuscript, similar studies naturally lead to questioning the fundamental
aspect of information even in centralized settings: is there redundancy in the modern deep neural
networks (DNNs)? What is the role of information consumed by the model during training? Is it
possible to reduce the size of the models without dramatically decreasing the performance?

In general, when designing the distributed learning systems of the future, it is clear that the
network becomes an indivisible part of the system. Indeed, on the one hand the underlying
learning process has to consider possibly noisy and/or limited communications among the system’s
entities, and on the other hand the communication protocols and algorithms should be optimized
to consider the specific type of information running through the network, and designed with
the final learning goal in mind. Throughout this work we are going to analyze the problem
considering different learning tasks, and adopting different perspectives: from model compression
and coding [200, 197] to semantic communications [198, 234] and policy compression [187, 188],
with applications [194, 249].

1.2 Thesis Organization
The thesis is structured as follows: After this introduction, Chapter 2 focuses on federated
learning, with the aim of compressing and representing neural networks to make the framework
communication-efficient; Chapter 3 on the other hand considers the communication aspects in the
context of distributed decision processes, where the standard frameworks of multi-armed bandit
and reinforcement learning are extended by introducing multiple agents and communication chan-
nels; Chapter 4 explores applications of distributed learning to wireless network optimization, and
to the problem of controlling a swarm of drones; In the end, Chapter 5 summarizes the outcomes
of the thesis and draws some final considerations on the future of the field.

4

2
Information in Federated Learning

In this part of the thesis we are going to analyze the role of information in the specific context
of federated learning (FL). Specifically, the focus is on the uplink communication from the clients
to the server, in which model or gradient updates are communicated for central aggregation.
Consequently, in this context the messages exchanged through the network contain information
on the model updates (or even the new model itself). In order to reduce the communication
burden, to trade off performance for network resources, several solutions are possible.

First, the server can dynamically adjust the amount of information collected at each round
by adapting the number of sampled clients depending on the wireless channel conditions. This
is particularly useful when the participating clients are connected to the central authority, e.g.,
a base station (BS), using the same wireless medium, that is to be shared. In Section 2.2 the
impact of the wireless channel on the training convergence is empirically evaluated by running
experiments with different channel statistics and conditions, and a way to minimize the negative
effects is proposed, which trades off the amount of collected information at each round with its
duration.

Moving on, in Section 2.3 a new efficient FL method, called FedPM, is proposed. In this case
the wireless characteristics are not modeled, but the communication links are abstracted as simple
pipes with very limited bandwidth, and we study the performance imposing a communication rate
of ∼ 1 bit per parameter (bpp). The focus is on reducing the model size, and so on compressing
the deep neural networks (DNNs), in order to decrease the amount of necessary physical resources
to convey, store, and run the models. To tackle this problem, FedPM takes a radically different
approach to make the federation process very efficient. Instead of training the actual real-valued
coefficients of a neural network, FedPM initializes a network randomly (as usual), and then freezes
its weights. Then, instead of training the weights, FedPM trains a stochastic binary mask whose
components indicates which weights should be kept or removed from the original dense model.
This way, at the end of the training, an optimized binary mask is obtained, which suggests the

5

optimal topology of the original model which can better perform on a given problem. With
this change in the training perspective, FedPM is able to outperform the state-of-the-art baselines
operating at the same communication rate of ∼ 1 bpp.

The results obtained in Section 2.3 raise important questions: why are FedPM (and other base-
lines) still consuming resources when the model has already converged? Why is the rate close to
one in the beginning? (see Figure 2.11). Theoretically speaking these observations make sense but
in practice it seems we are missing something. Being a stochastic framework, to code the model
updates in FedPM clients adopt a standard strategy: they first take a sample of the model, and
they then code it by adopting arithmetic coding [69]. In the beginning, no knowledge implies high
uncertainty on the model distribution, and so high entropy which induces higher bpp. What is
missing in FedPM and in almost all the standard baselines are two main important facts: (i) many
training strategies and almost all compression methods are stochastic frameworks. The fact that
the model can be expressed as an optimized distribution, in place of a deterministic value, opens
the door to a radically new way of representing and communicating model updates in FL; (ii) the
side (or prior) information the server has on the model in the form of the global shared model
used to initialize each FL round is not typically used in the literature to reduce the rate needed
to code the local updates. In Section 2.4 we present KL Minimization with Side Information
(KLMS), which optimally exploits these two observations and dramatically reduces the bpp needed
to obtain a certain performance guarantee. Specifically, KLMS further optimizes the accuracy-rate
trade-off previously obtained by FedPM, pushing once again further the limits of the state of the
art.

This Chapter concludes with an attempt to generalize the ideas behind KLMS, proposing a
new way of thinking for the general problem of communicating learning models. Even though
the system model does not consider the typical FL setting, Section 2.5 provides an information-
theoretic perspective on the problem of communicating models, which is clearly of paramount
importance for FL, through the lens of semantic communications. The outcomes provide some
theoretical guidelines to build the fundamental blocks to design communication schemes which
are particularly tailored for running distributed learning algorithms.

2.1 Related Work
In this section, the literature on communication-efficient learning is discussed, covering aspects of
FL in wireless networks, model compression, subnetworks (or masks) training, importance sam-
pling as an efficient way to code random samples, and information-theoretic tools for distributed
learning.

FL over Wireless Networks. Implementing FL over wireless networks raises several concerns,
mainly due to the noisy nature of the wireless links connecting the end devices, as well as the limited
computation and communication resources available at each client. Along these lines, Yang et al.,
in [270], tried to optimize both wireless and computational resources to minimize the learning
training delay, even though considering the whole pool of clients at each round. In turn, FL

6

methods typically select only a subset of devices at each iteration, in order to alleviate the burden
of data transmission for distributing model updates. For example, the authors in [26] proposed a
method to identify the optimal resource allocation policy as a function of the number of clients
participating in the training process, while considering both channel conditions and the significance
of their local model updates. The results suggest that the number of clients to be considered at
each round should depend on how data are distributed on the local datasets: for independent
and identically distributed (i.i.d.) data, the best strategy is to sample just one client per round
whereas, for a non-i.i.d. scenario, the number of clients per iteration should be proportional to
how heterogeneously the data are distributed, to avoid fitting locally skewed datasets. Another
approach to reduce wireless resource occupancy during training is to compress and send sparse
local model updates to the server, rather than quantizing the global model itself [27]. Despite
these early results, however, it is still not clear, for non-i.i.d. data distributions, how to quantify
the trade-off between the number of clients involved in the training of the model and the number
of training iterations that are needed to achieve a certain level of accuracy [171].

Compression for FL. There has been extensive research in reducing the communication cost
of FL (i) by compressing the model updates through sparsification [20, 37, 159, 184, 256], quanti-
zation [174, 232, 253, 262], and low-rank factorization [39, 177, 252, 256]; or (ii) by training sparse
subnetworks instead of the full model [200, 154, 153, 166, 178, 243]. Among these approaches,
those based on stochastic updates have shown success over the deterministic ones in similar set-
tings. QSGD [24] is an effective stochastic quantization method which quantizes model updates into
a set of pre-defined and discrete quantization levels – outperforming most other schemes such as
SignSGD [44] and TernGrad [262] by large margins. Lastly, in the Bayesian FL setting, QLSD [253]
proposes a Bayesian counterpart of QSGD, and performs better than other baselines [59, 81, 203].

Pruning for FL. Since the introduction of the Lottery Ticket Hypothesis (LTH) [94], there
has been growing interest in finding sparse and trainable networks at initialization. The main
hypothesis in this line of work is that there exist sparse networks (lottery tickets) inside randomly
initialized dense networks such that those sparse networks can be trained to a surprisingly good
performance – sometimes comparable, if not higher, to the performance of the trained dense
network. In the original paper, the strategy for finding these lottery tickets is to iteratively
train the dense network until convergence, and so finding the lottery tickets is very expensive.
However, the FL papers that utilize the LTH [154, 126, 218] and pruning [157, 179, 273, 166,
127, 32, 75, 157, 46] still present major flaws: (i) These methods require training the weight
values, and thus cannot provide an efficient representation of the final model. (ii) Some of these
works require finding the lottery tickets prior to FL training [154]. While this could improve the
communication cost during the FL training since they communicate sparse networks, it increases
the computation cost significantly due to the burden of finding lottery tickets before the federation
process starts. (iii) Many of those literature proposals rely on pre-defined sparsity level, whereas
Federated Probabilistic Mask Training (FedPM) (see Section 2.3) learns with what probability a
particular weight should stay in the final model, i.e., the final sparsity level is also a learned

7

parameter optimized for the best performance.

Finding Subnetworks Inside a Random Network. Regarding mask training, works in [279,
207, 201, 21] find subnetworks (or supermasks) inside a dense network with random weights that
perform surprisingly well without ever training the weights, but in a centralized scenario. In
Section 2.3 we take advantage of the existence of such subnetworks and propose a way to reduce
the communication budget in FL to less than 1 bpp with faster convergence and higher accuracy
than the relevant baselines in the same bitrate regime, while further compressing the final model,
all simultaneously. Prior works [153, 243, 178] also consider finding subnetworks inside a dense
random network in a FL setting, but they differ from our approach on several levels. For instance,
they focus on different challenges in FL, such as personalization and poisoning attacks, which
limits their ability to improve over existing compression methods in accuracy-communication
bitrate tradeoff. One fundamental reason for this is their deterministic mask training strategy,
which involves hard thresholding or sign operations. On the other hand, the stochasticity in our
proposal allows us to (i) enjoy a better accuracy-communication cost tradeoff, (ii) have an unbiased
estimate of the true aggregate of the local masks with a provable upper bound on the error, (iii)
design an improved aggregation strategy with a Bayesian approach so that the previous masks at
the server are not hard replaced – a useful strategy specifically in unbalanced non-IID splits, and
(iv) gain privacy benefits via amplification in the Bernoulli sampling step. To demonstrate these
benefits over deterministic schemes, we compare our method against FedMask [153] by adapting it
slightly to mainly focus on communication efficiency, rather than personalization, and to improve
its accuracy-communication efficiency performance.

Importance Sampling Coding. More recently the research community has been looking into
the concept of communicating samples [236], which is a very efficient way of conveying some
stochastic value, in place of deterministic data (see Section 2.4 for the details). Specifically, in
Section 2.4 we present KLMS, which adopts the importance sampling algorithm studied in [58,
106, 236], and later applied for model compression [108], learned image compression [89, 90],
and compressing differentially private mechanisms [219, 240]. One relevant work is [108], which
applies the importance sampling strategy in [58] to compress Bayesian neural networks. Since the
model size is too large to be compressed at once, they compress fixed-size blocks of the model
parameters separately and independently. As we elaborate in Section 2.4.2, this can be done
much more efficiently by choosing the block size adaptively based on the information content of
each parameter. While this adaptive strategy could bring some extra communication overhead
when applied for model compression (to locate the adaptive-size blocks), we explain how to avoid
this overhead in the FL setting by exploiting temporal correlations. Another relevant work is
DP-REC [240], which again applies the importance sampling technique in [58] to compress the
model updates in FL, while also showing differential privacy implications. However, since their
training strategy is fully deterministic (no probabilistic learning or stochastic compression), the
choice of coding distributions is somewhat arbitrary. Instead, in our work, the goal is to exploit the
available side information at the server by choosing natural coding distributions – which improves

8

the communication efficiency over DP-REC significantly. Another factor in this improvement is
the adaptive bit allocation strategy mentioned above – which could actually be integrated into
DP-REC as well by avoiding the extra communication overhead as we do in our work (since DP-REC
works in an FL setting too). Section 2.4.2 extends also the theoretical guarantees of importance
sampling, which quantifies the required bitrate for a target discrepancy (due to compression), to
the distributed setting, where we can recover the existing results in [58] as a special case by setting
N = 1.

Rate-Distortion for Model Communication. In [108] the authors studied the single-shot
version of neural networks (NNs) communications, focusing on the design of a practical coding
scheme, which is called MIRACLE, to efficiently compress NNs. In [76], the authors study the
connections between compressibility and learnability in the context of probably approximately
correct (PAC) learning, and show that the two concepts are equivalent when zero/one loss is
considered, but not in the case of general loss functions. Another line of research investigates
the connections between the generalization capabilities of learning algorithms, and the mutual
information between the data and the model [266, 40, 230]. The logic behind these results is to
provide a bound on the generalization gap, i.e., the difference between the expected error and the
training one, given some information-theoretic properties of the learning algorithm. However, if
the environment imposes a constraint on such quantities, e.g., mutual information between the
input and output of the learning rule, for example by introducing a rate-limited communication
channel between the data and the final model, this influences not only the generalization gap, but
also the training error itself (the output of the learning rule is constrained by the environment now),
and so it is not clear how the gap between the best achievable test error changes as a function
of the mutual information. This is the scenario studied in Section 2.5, where the constraint
on the mutual information is not a property of the learning rule, but rather a physical limit
imposed by the system. In [187], a similar study is performed on the specific case of contextual
multi-armed bandits, where the fundamental quantity is the mutual information I(S;A) between
the system states and the action taken by the agents, which is a property of the specific policy
adopted. Section 2.5 generalizes that idea to the supervised learning framework, and considers the
effect of the communication rate R on the final performance. It is also interesting to highlight the
connections between this work and the study in [16], where the authors quantify the complexity of a
learning algorithm output Q with its Kullback–Leibler divergence from a prior model distribution
P , which, in our system model, represents the minimum achievable rate to convey Q, when
P is set as the coding distribution. Section 2.5 is partially built on top of the results in [71,
140, 105, 155, 235], which generalize the concept of rate-distortion theory [69] for standard data
communication to probability distributions, where the fidelity requirement at the receiver is not
to exactly reconstruct the input data, but rather to generate samples according to some input
distribution. Indeed, in the problem investigated in Section 2.5 there is a semantic aspect of
communication which is captured by the fact that there is no need to convey the exact data
sampled by the transmitter, but rather to represent with high fidelity the belief on the underlying
learning model, which is the post-data probability distribution over the class of feasible models.

9

2.2 Federated Learning over Wireless Networks

2.2.1 Introduction

Artificial intelligence (AI) will play a prominent role in the design and optimization of sixth
generation (6G) wireless networks [96]. As previously described, it is envisioned that the co-design
of communications systems and applications running on top of them will facilitate an efficient use
of wireless physical resources, thereby enabling future vertical services to fulfill very demanding
sets of requirements, and FL has gained a lot of interest as a promising and efficient tool to bring
intelligence to the edge, where devices collaborate to maintain fresh learning models rather than
uploading raw data to centralized servers [171]. However, the underlying unreliable nature of the
wireless channel, together with the possibly limited physical network resources available for the
federation process, make it sometimes very hard to successfully run FL over real wireless networks.
As briefly explained in Section 2.1, it is still not clear, for non-i.i.d. data distributions, how to
quantify the trade-off between the number of clients involved in the training of the model and the
number of training iterations that are needed to achieve a certain level of accuracy [171]. Moreover,
most methods assume perfect knowledge of the Channel State Information (CSI) at each round,
which is then leveraged to find the optimal power and resource allocation strategy to minimize
the training time. However, perfect CSI may be difficult to obtain in practice, especially in case
of fast fading channels. To the best of our knowledge, the only prior work attempting to analyze
the FL training process under channel uncertainty is [254], where CSI is inferred using a Gaussian
Process (GP) and radio resources are scheduled according to the estimated CSI. However, the
analysis does not investigate whether training times are affected by different channel statistics.

Based on this introduction, here we propose a novel FL training method, hereby referred to
as Fixed Rate Federated Learning (FRFL), working under imperfect CSI1, with frequency and
time constraints. More specifically, we analyze the convergence time as a function of different
channel models (i.e., Rayleigh, Nakagami, and Rician, to characterize different fading regimes),
data distributions (i.e., iid and non-iid), and the number of clients participating in the training of
the model.

Our contributions can be summarized as follows.

• We evaluate whether exploiting channel statistics, like the cumulative distribution function
(CDF) of the fading distribution, when perfect CSI is not available, can still help identify
the optimal resource scheduling approach to minimize the convergence time. To do so, we
investigate whether preventing clients that cannot sustain a minimum predefined transmis-
sion rate from sending model updates results in faster training. Numerical experiments show
that, in Rayleigh channels, it is possible to reduce the convergence time by around 80% with
90% accuracy if just half of the clients are able to successfully communicate, compared to a
baseline in which all clients adopt the maximum achievable rate to transmit model data.

1Unlike in other papers, where the expression imperfect CSI denotes the presence of noise or errors
in the channel estimation process, here we use it to mean that the only information available about the
channel state is its statistical distribution.

10

• We prove that, as expected, while admitting more clients at each round may not significantly
affect the convergence time to achieve a certain accuracy, it can dramatically increase the
probability of introducing stragglers into the loop. This effect is particularly remarkable in
case of Rayleigh fading, compared to Nakagami and Rician, thus demonstrating how channel
statistics should be considered as a bias to optimize scheduling policies for FL.

2.2.2 System Model
In FL, N wireless devices cooperatively build a global model g(ω), stored into a central BS, by
sharing learning model updates derived from their local datasets Dn, n = 1, . . . , N , which are
a partition of the global dataset D = ∪nDn. The global model parameter vector is randomly
initialized to ω0. The training phase is then organized in rounds, indexed by t. At the beginning
of each round, the BS broadcasts the global parameters ωt to the clients. Once received, each
client n can update its local model g(ωn), using a version of the stochastic gradient descent (SGD)
algorithm [171], by optimizing its local loss Fn(g(ω

t
n),Dn), which is a function of the local model

g(ωt
n) and its dataset Dn at round t. At the end of the local optimization phase, the BS selects

a pool of Ct clients, with Ct ≤ N , to collaboratively upload their local model updates, which are
then aggregated to generate a new global model that now exploits the knowledge acquired by the
clients. The process continues until convergence.

In this work we consider the situation in which the global model g(ω) must be trained within a
limited amount of time T , as described in [55]. For example, when a model is used to monitor/con-
trol a safety-critical process, e.g., in an Industrial Internet of Things (IIoT) scenario [217] or for
teleoperated driving [280], training data must be shared with low latency to guarantee that col-
laborative machines are synchronized. The problem can then be reformulated as follows. Assume
that N wireless devices are connected to the BS using wireless links in an Orthogonal Frequency
Division Multiplexing (OFDM) system. At each round, Ct clients are selected and exclusively
assigned an orthogonal channel of bandwidth Bk, k = 1, . . . ,K = Ct ≤ N [254, 62]. From now
on, we will refer to client k as the one associated to the k-th channel. Communication links are
modeled as slow fading channels. Unlike previous works, we consider the case in which the BS
does not have perfect CSI, but can estimate the CDF F (h) of the channel gain h. In principle,
the maximum rate at which client k can communicate its model parameters with arbitrarily low
error probability at round t is given by Shannon’s formula

Rt
k = Bk log2

(
1 + htk

ptkϕ
t
k

N0Bk

)
, ∀k ∈ {1, . . . ,K}, (2.1)

where htk is the channel gain, ptk is the power allocated for transmission, and ϕtk is the path loss
experienced by client k during iteration t, whereas N0 is the noise power spectral density. In
our analysis, we consider the case in which clients adapt their power ptk in such a way that the
path loss and the noise are scaled to reach a constant and target quality factor A, which defines
different SNR regimes, i.e.,

A =
ptkϕ

t
k

N0Bk
, ∀k ∈ {1, . . . ,K}. (2.2)

11

In standard synchronous FL, the BS has to wait until all Ct clients involved in the training process
at round t upload their local updates before proceeding to the next round, thus the round duration
depends on the time required by the slowest client to complete its local computations and update
the model. In this work, in turn, we will only consider communication heterogeneity in FL [116],
and impose that each client performs its local computations within a constant time.

2.2.3 Federated Learning Under Imperfect CSI:
The Proposed Solution

As discussed in Sec. 2.2.2, FL methods typically consider a fixed number of clients Ct to be
involved in the training phase at round t, and then allocate radio resources in such a way that
the time each client takes to upload its model updates within the round is minimized. Different
scheduling policies can be adopted depending on whether or not CSI is known a priori. On one
side, it is possible to reduce the number of rounds required for convergence by simply increasing
Ct. For example, the analysis in [171] shows that, even under non-iid data distribution, increasing
at each round the fraction of clients involved in the training process from 10% to 100% could
halve the number of training rounds. On the other side, given synchronous FL, the more clients
participating at each round, the longer the time required to complete it. Indeed, we can trade the
amount of information exchanged at each round, i.e., the client updates, with the total number
of rounds that can be completed within a given time T . Notably, if the BS knows the CDF
of the channel fading distribution, it is possible to quantify how many model updates from the
participating clients can be gathered in T seconds.

Synchronous Federated Learning (SFL) with Perfect CSI

In situations where fresh model updates must be distributed to the edge network with strict time
constraints, the BS should accept to complete one round even if some of the clients have yet
not shared their federated data, thus increasing the overall number of rounds. In a baseline
Synchronous Federated Learning (SFL) approach with perfect channel knowledge, each client k
during round t would select the optimal rate to communicate over the channel with arbitrarily
low error probability as

Rt
k = Bk log2(1 + htkA). (2.3)

Let Z be the size of the client’s local vector parameter ωk (which is equal to that of the global
model ω), expressed in bits. The time required by client k to reliably transmit the model updates
in one round is then given by T t

k = Z/Rt
k, which depends on the specific realization of the channel

gain htk, known a priori. With this consideration, we can see that, given the number of clients Ct

participating at round t, the round duration T t
round is equal to

T t
round = max

k=1,...,Ct

{
Z

Rt
k

}
. (2.4)

12

When Ct is large, T t
round can rapidly grow out of control. Therefore, in practical SFL applications,

we shall set T t
round ≤ Tths, so that T t

round never exceeds a predefined threshold Tths.
In this perspective, the rate that dominates the communication delay at round t is determined

by htm = mink{htk}
Ct

k=1, whose CDF and Probability Density Function (PDF) can be found, re-
spectively, as

Fmin(h
t
m) = 1−

[
1− F (htm)

]Ct

, (2.5)

fmin(h
t
m)=

∂Fmin(h
t
m)

∂htm
=Ct

[
1−F (htm)

](Ct−1)

f(htm), (2.6)

where F (htm) and f(htm) are, respectively, the CDF and the PDF of the channel gain h computed
in htm. The round duration is therefore constrained by the minimum rate Rt

min = mink{Rt
k}C

t

k=1,
i.e.,

T t
round =

Z

Rt
min

=
Z

Bk log2(1 + htmA)
. (2.7)

Fixed Rate Federated Learning (FRFL) with Imperfect CSI

In this section, we generalize the problem and assume that instantaneous channel information is
not available at the server. If CSI is unknown, it is not possible to find the absolute optimal
rate to minimize communication errors as in Eq. (2.3). We then propose a Fixed Rate Federated
Learning (FRFL) approach in which each client k involved in the training process adopts a constant
global rate Rt

k = R∗, ∀k ∈ {1, . . . ,K}, ∀t, in such a way that it can complete each training round
within T t

round = Tround = Z/R∗ ≤ Tths. From communication theory, it is well known that clients
can communicate with rate R∗ ≤ Bk log2(1 + htkA) with arbitrarily low error probability. On
the contrary, if the rate is such that R∗ > Bk log2(1 + htkA), e.g., due to near-far effects or in a
moving network, the packet error probability may rapidly grow to one, and the client participating
in the training may not be able to communicate its model updates successfully. This situation is
also known as deep fading condition [29]. In this case, the probability that the server loses the
model updates sent from client k at round t is given by

ϵ(R∗) = P[R∗ > Bk log2(1 + htkA)]

= P

[
htk <

(
2(R

∗/Bk) − 1

A

)]

= F

(
2(R

∗/Bk) − 1

A

)
.

(2.8)

By exploiting the channel statistics, i.e., the CDF F (h) of the fading distribution h, the average
number of clients Ĉ(R∗) successfully participating in each round t when global rate R∗ is adopted
can be quantified as

Ĉ(R∗)=Ct
[
1−ϵ(R∗)

]
=Ct

[
1−F

(
2(R

∗/Bk)−1
A

)]
, (2.9)

13

where Ct is the original pool of clients selected by the BS to communicate at round t. It appears
clear that the choice of the optimal rate R∗ dominates the overall training performance. Indeed,
R∗ can be adapted to include fewer or more clients in the training process, depending on the target
number of iterations that must be completed within time T , and the average duration of each round.
In FRFL, we adopt a heuristic approach. The BS first computes the expected minimum rate
E[Rt

min] experienced by the Ct participating clients, and then selects R∗ such that R∗ > E[Rt
min]

if the corresponding error ϵ(R∗) is below an arbitrary threshold that is deemed acceptably low
to allow proper accuracy in the training. By the convexity of the function ψ(Rt

min) = 1/Rt
min

and Jensen’s inequality, it results that E[T t
round] ≥ Z/E[Rt

min]: using a fixed rate R∗ = αE[Rt
min],

with α > 1, results in a reduction of the lower bound for the average round duration compared
to the baseline SFL method, as expressed in Eq. (2.7), by a factor α, as we will demonstrate in
Sec. 2.2.4. We do not preclude more sophisticated methods, e.g., based on mathematical analyses
or reinforcement learning, to be adopted for selecting R∗, even though this is out of the scope of
this work and will be part of our future work.

2.2.4 Performance Results

In this section, we describe our simulation settings, i.e., the channel models and parameters we
adopt, and present our numerical results.

Channel Models

Unlike most literature analyses, in this work we characterize the FL training performance as a
function of different channel models, so as to incorporate the effect of different fading regimes.2

Let F (h) be the CDF of the channel gain h, where in the rest of the analysis we omit indices k and
t to indicate the client and the round, respectively, under the assumption that channel realizations
are i.i.d. in frequency and time. The following channel models are considered [29].

Rayleigh channel The Rayleigh channel model represents a single diffuse component [79], and is
one of the most widely adopted channel models in wireless communications thanks to its simplicity
and mathematical tractability. Let σ2 denote the average squared channel gain, i.e., E[h2] = σ2;
the CDF F (h) of h is then computed as

F (h) = 1 − e−
h2

2σ2 , h ≥ 0 (2.10)

In our experiment, we consider the standard Rayleigh parameterization with σ2 = 1, as typically
considered in legacy communication systems.

2Notice that, while Rayleigh fading is generally assumed for transmissions in the legacy bands, 5G and
beyond communication systems may operate in new spectrum bands, e.g., the lower part of the millimeter
wave (mmWave) bands [209], where a Rician or Nakagami model would better characterize the effect of
multi path components, as expected at those frequencies [150].

14

Figure 2.1: Average minimum rate/Hz vs. number of participating clients for the SFL policy in
case of Rayleigh, Nakagami and Rician channels and for different values of the quality factor A.

Rician channel The Rician distribution is usually adopted to model an additional dominant,
specular, multi path component from the transmitter to the receiver [79]. The channel is param-
eterized by the factor K = ν2/(2σ2), where ν2 is the contribution of the multi path component
power, and σ2 is related to the diffuse component, as in the Rayleigh case. The CDF F (h) of h
is given by

F (h) = 1 − Q1

(
ν

σ
,
h

σ

)
, h ≥ 0 (2.11)

where Q1 is the Marcum Q-function. We parameterize the Rician model with K = 12 dB [215].

Nakagami channel The Nakagami distribution extends the Rayleigh model to incorporate
multiple clusters, and is parameterized by the shape parameter m, which represents the number
of i.i.d. diffuse components, each modeled as a Rayleigh distribution with mean diffuse power
σ2 [181]. The corresponding CDF F (h) of h is given by

F (h) =
γ(m, m

σ2h
2)

Γ(m)
, h ≥ 0 (2.12)

where γ(·, ·) is the lower incomplete Gamma function, and Γ(·) is the Gamma function. In this
analysis we set m = 3 [33].

In Fig. 2.1 we plot the average minimum rate E[Rt
min] for different channel distributions, as a

function of the quality factor A and the number of clients Ct that participate in a generic training
round t, when perfect CSI is available. We observe that E[Rt

min] decreases significantly as the
number of clients increases, especially when Rayleigh channels are considered. This is expected
as the Nakagami and Rician models present a smaller variance. For example, in the presence of

15

(a) Ct = 10 and A = 1. (b) Ct = 20 and A = 1. (c) Ct = 40 and A = 1.

(d) Ct = 10 and A = 10. (e) Ct = 20 and A = 10. (f) Ct = 40 and A = 10.

Figure 2.2: Min-to-max and average accuracy (over 5 simulations) during the training process as
a function of the time and the number of clients Ct involved in the rounds, considering both SFL
and FRFL methods. Rayleigh fading with A = 1 (first row) and A = 10 (second row), and i.i.d.
data are considered.

(a) Ct = 10 and A = 1. (b) Ct = 20 and A = 1. (c) Ct = 40 and A = 1.

(d) Ct = 10 and A = 10. (e) Ct = 20 and A = 10. (f) Ct = 40 and A = 10.

Figure 2.3: Min-to-max and average accuracy (over 5 simulations) during the training process
as a function of the time and the number of clients Ct involved in the rounds, considering both
SFL and FRFL methods. Rayleigh fading with A = 1 (first row) and A = 10 (second row), and
non-i.i.d. data are considered.

poor Rayleigh channel conditions, e.g., A = 1, the average minimum rate drops by more than
50%, resulting in more than twice the training delay, when only 10 clients are involved in each
round. The same effect is observed even in case of strong channels, i.e., A = 10, and if 40 clients
selected to participate.

16

Simulation Parameters and Setting

Based on the results in Fig. 2.1, in our simulations we consider N = 100 overall wireless clients,
while only Ct ∈ {10, 20, 40} of them are selected to participate in the model updates at generic
round t. Each participating client uses an orthogonal channel of 1 MHz of bandwidth in all
the investigated configurations. Two different values of A, i.e., 1 and 10, are considered in the
Rayleigh case, with iid and non-iid data distributions, whereas A = 1 is selected for Rician and
Nakagami channels. In our experiments we evaluate the performance of the FL training process,
specifically the convergence time, comparing two different scheduling strategies: a baseline SFL
approach with full channel information, and two different versions of the FRFL strategy working
under imperfect CSI, with ϵ(R∗) = 0.2 and 0.5. The two models assume that on average 20% and
50% of the clients, respectively, are not able to communicate their training updates due to bad
channel conditions at the selected global rate R∗. In both cases, ϵ(R∗) has been selected so that
R∗ > E[Rt

min] in all simulation scenarios. The training time is set to T = 30 seconds, which is
large enough to let the model be trained with an acceptable level of accuracy.

The simulations are conducted on the MNIST dataset [271], which contains 70 000 (60 000
for training and 10 000 for testing) handwritten digits, classified into one of 10 possible classes.
While, for i.i.d. data distribution, each client has 600 training samples, and classes are uniformly
distributed among the local datasets, in the non-iid setting a random number of training samples
and classes are distributed among the clients.

The learning model is a Convolutional Neural Network (CNN) with two 5 × 5 convolutional
layers (with 10 and 20 channels and a 2 × 2 max pooling operation after the first layer), followed
by one dense layer with 320 neurons and one output layer with 10 units. The activation function
for the inner layers is the ReLu function, whereas softmax is used for the output layer. The loss
is modeled by the cross-entropy function, which is a standard option in classification problems.
Training weights are aggregated at the BS according to the FedAvg aggregator function [171]: at
the end of round t, the new global vector parameter ωt+1 is computed as

ωt+1 =
1

Dt

Ct∑

k=1

Dt
kω

t
k, (2.13)

where Dt =
∑Ct

k=1D
t
k, with Dt

k being the size of the local dataset Dt
k, and the local parameter

vectors {ωt
k}C

t

k=1 are updated using the SGD algorithm with momentum equal to 0.5 and learning
rate set to 0.01. Notice that, in FRFL, some clients may not be able to share their local parameter
vectors. Therefore, if client k experiences a transmission error during round t, ωt

k is set to 0 at
the BS, and Dt

k = 0.

Numerical Results

In this section we validate the performance of the proposed FRFL method when imperfect CSI is
considered. Fig. 2.2 plots the average accuracy over time achieved on the test dataset during the
federated training process in Rayleigh channels, as a function of the number of clients Ct involved

17

(a) Chanel quality factor A = 1. (b) Chanel quality factor A = 10.

Figure 2.4: Average time (and confidence intervals) to achieve 90% and 95% accuracy in Rayleigh
fading channels, as a function of the number of clients Ct involved in the rounds, considering both
SFL and FRFL methods.

(a) Nakagami channel and A = 1. (b) Rician channel and A = 1.

Figure 2.5: Average time (and confidence intervals) to achieve 90% and 95% accuracy in Nakagami
and Rician fading channels, as a function of the number of clients Ct involved in the rounds,
considering both SFL and FRFL methods.

in the training and the channel condition A, and assuming i.i.d. data.
First, we observe that adding more clients per round does not impact the long-term accuracy

even with imperfect CSI, as acknowledged by prior analyses, e.g., in [26]. In fact, FRFL assumes
a fixed global rate R∗ for all participating clients, which does not affect the transmission delay.
On the contrary, in case CSI is available, SFL implies that the more clients involved in the
communications rounds, the longer, on average, the time it takes for the server to receive all
model updates, which results in slower convergence. For example, at 5 seconds, the accuracy
drops from around 95% to 85% when SFL is considered, for Ct = 10 and A = 1. Fig. 2.2a,
Fig. 2.2b, and Fig. 2.2c further demonstrate that considering a weaker channel, i.e., A = 1,
degrades the long–term accuracy performance of the training, as adding more clients slows down
the communications rounds. In case of more robust channels with A = 10 (Fig. 2.2d, Fig. 2.2e,
and Fig. 2.2f) this effect is mitigated, e.g., at 5 seconds, for Ct = 10, the SFL training accuracy
increases by around 13% compared to A = 1. In any case, FRFL always outperforms SFL, even
in the presence of perfect CSI.

In Fig. 2.3, the SFL vs. FRFL performance is evaluated with non-i.i.d. data. In this case,

18

Figure 2.6: Min-to-max and average accuracy (over 5 simulations) during the training process as
a function of the number of rounds with Rayleigh fading (A = 1), Ct = 20, and non-i.i.d. data.

gathering information from a smaller fraction of clients cannot generally sustain sufficiently high
levels of accuracy. For example, Fig. 2.3a presents an accuracy always lower than 95% for Ct = 10

in all investigated configurations. Increasing the number of clients may improve the accuracy
performance during the whole training time, even though this effect is mitigated in the SFL
strategy as the more participating clients imply also longer round durations. Moreover, it is
interesting to compare the results for the SFL policy with Ct = 20 (Fig. 2.3b) and the FRFL policy
with Ct = 40 and ϵ(R∗) = 0.5 (Fig. 2.3c). In both cases, the training involves 20 participating
clients, as FRFL implies that, on average, 50% of the clients do not successfully deliver their
model updates on time, i.e., Ĉ(R∗) = 20. Then, even though the FRFL approach achieves better
accuracy than SFL despite imperfect CSI (i.e., 95% vs. 90% at the end of the training when A = 1),
it requires 40 channels to be allocated to the Ct = 40 clients, thus consuming twice the frequency
resources. However, better performance against SFL can still be guaranteed with Ct = 20, that
in turn requires 20 orthogonal channels for both policies.

Fig. 2.4 compares the training time required to obtain 90% and 95% accuracy in Rayleigh
channels with A = 1 and A = 10, when either SFL or FRFL is considered, as a function of the
number of clients involved in the rounds. First, we observe that it is possible to converge faster
by trading the amount of information collected at each round with the round duration, which in
turn increases the total number of possible rounds within T = 30 s. For example, Fig. 2.4a shows
that, when A = 1 and Ct = 20, the training time to reach 90% accuracy can be reduced by almost
80% if the proposed FRFL training method is adopted. Moreover, when A = 1, the baseline SFL
configuration, which always tends to assign the largest possible rate to its participating clients,
is never able to reach 95% accuracy within the training time despite leveraging full CSI. In turn,
the FRFL policy with ϵ(R∗) = 0.5 and Ct = 40 succeeds in only 20 seconds, on average, with
small deviations. The same conclusions can be derived from Fig. 2.5, which investigates the

19

impact of different channel models, i.e., Nakagami (Fig. 2.5a) and Rician (Fig. 2.5b), on the
convergence time, for A = 1. First, we notice that, even though Rayleigh channels guarantee, on
average, higher gains in single-link communications, Nakagami and Rician channels can support
faster convergence for both SFL and FRFL policies: with Rician fading, for Ct = 10, SFL with
perfect CSI obtains 95% accuracy in less than 10 seconds, against the 16 seconds when Rayleigh is
adopted. This can be explained by the fact that both Nakagami and Rician fading exhibit lower
variance, and can admit more clients per round, without increasing the average delay considerably.
Nevertheless, the proposed FRFL policy always achieves faster convergence even with imperfect
CSI by configuring faster rounds. Finally, Fig. 2.6 depicts the training accuracy as a function
of the number of rounds, in case of Rayleigh fading with A = 1, Ct = 20, and non-iid data. It
is possible to see that, within the allocated time T = 30 s, the FRFL policy with ϵ(R∗) = 0.2

(ϵ(R∗) = 0.5) is able to operate though 32 (48) rounds, while in turn the SFL policy is limited
to 12 rounds, and never achieves 95% accuracy. As a consequence, our analysis demonstrates
that it may be convenient to neglect model updates from some participating clients, e.g., the
most channel-constrained devices, as per the FRFL strategy, in favor of more round opportunities
during training. The same trend is illustrated in Fig. 2.4a with Ct = 20.

2.2.5 Conclusions and Future Works
In this work we propose a novel federated learning method that decreases the convergence time by
assigning a global constant rate to all the clients participating in the training rounds. Notably, the
proposed approach does not require CSI availability, unlike most existing analyses. Our simulation
results, validated in different channel regimes, demonstrate that the proposed approach, despite
considering imperfect CSI, always achieves better training performance compared to a baseline
strategy in which the clients always adopt the maximum achievable rate to transmit model data.

2.3 Sparse Random Networks for Communication-Efficient
Federated Learning

2.3.1 Introduction
While being an appealing approach for enabling model training without the need to collect client
data at the server, uplink communication of local updates is a significant bottleneck in FL [132].
This has motivated research in communication-efficient FL strategies [171] and various gradient
compression schemes via sparsification [159, 256, 37, 184, 123], quantization [24, 262, 44, 174], and
low-rank approximation [138, 246, 247, 39], as introduced in Section 2.1. In this new proposal,
while aiming for communication efficiency in FL, we take a radically different approach from prior
work, and propose a strategy that does not require communication of weight updates. To be more
precise, instead of training the weights,

(1) the server initializes a dense random network with d weights, denoted by the weight vector
winit = (winit

1 , winit
2 , . . . , winit

d), using a random seed SEED, and broadcasts SEED to the clients

20

enabling them to reproduce the same winit locally,
(2) both the server and the clients keep the weights frozen at their initial values winit at all

times,
(3) clients collaboratively train a probability mask of d parameters θ = (θ1, θ2, . . . , θd) ∈ [0, 1]d,
(4) the server samples a binary mask from the trained probability mask and generates a sparse

network with random weights – or a subnetwork inside the initial dense random network as follows

wfinal = Bern(θ) ⊙ winit, (2.14)

where Bern(·) is the Bernoulli sampling operation and ⊙ the element-wise multiplication.
We call the proposed framework FedPM and summarize it in Figure 2.7. At first glance, it

may seem surprising that there exist subnetworks inside randomly initialized networks that could
perform well without ever modifying the weight values. This phenomenon has been explored
to some extent in prior work [279, 207, 201, 78, 21] with different strategies for finding the
subnetworks. However, how to find these subnetworks in a FL setting has not attracted much
attention so far. Some exceptions to this are works in [153, 243, 178], which provide improvements
in other FL challenges, such as personalization and poisoning attacks, while not being competitive
with existing (dense) compression methods such as QSGD [24], DRIVE [246], and SignSGD [44]
in terms of accuracy under the same communication budget. In this work, we propose a stochastic
way of finding such subnetworks while reaching higher accuracy at a reduced communication cost
– less than 1 bit per parameter (bpp).

Figure 2.7: Extracting a randomly weighted sparse network using the trainable probability mask
θt in the forward-pass of round t (for clients and the server). In practice, clients collaboratively
train continuous scores s ∈ R

d, and then at inference time, the clients (or the server) find θt =
Sigmoid(st) ∈ [0, 1]d. We skip this step in the figure for the sake of simplicity.

In addition to the accuracy and communication gains, our framework also provides an efficient
representation of the final model post-training by requiring less than 1 bpp to represent (i) the
random seed that generates the initial weights winit, and (ii) a sampled binary vector Bern(θ)
(computed with the trained θ). Therefore, the final model enjoys a memory-efficient deployment

21

– a crucial feature for machine learning at power-constrained edge devices. Another advantage
our framework brings is the privacy amplification under some settings, thanks to the stochastic
nature of our training strategy.

Our contributions can be summarized as follows:
(1) We propose a FL framework, in which the clients do not train the model weights, but instead

a stochastic binary mask to be used in sparsifying the dense network with random weights. This
differs from the standard training approaches in the literature.

(2) Our framework provides efficient communication from clients to the server by requiring (less
than) 1 bpp per client while yielding faster convergence and higher accuracy than the baselines.

(3) We propose a Bayesian aggregation strategy at the server side to better deal with partial
client participation and non-IID data splits.

(4) The final model (a sparse network with random weights) can be efficiently represented with
a random seed and a binary mask which requires (less than) 1 bpp – at least 32× more efficient
storage and communication of the final model with respect to standard FL strategies.

(5) We demonstrate the efficacy of our strategy on MNIST, EMNSIT, CIFAR-10, and CIFAR-
100 datasets under both IID and non-IID data splits; and show improvements in accuracy, bitrate,
convergence speed, and final model size over relevant baselines, under various system configura-
tions.

2.3.2 Federated Probabilistic Mask Training (FedPM)
We first describe the simpler version of the FedPM framework, which provides an unbiased esti-
mation of the mean of the learned probability masks at the server with bounded error. Next, we
propose a modification in our aggregation strategy by exploiting the underlying Bernoulli mecha-
nism. This helps boosting the performance of FedPM in the case of partial client participation. We
then discuss the details of the distribution of the initial weights, and finally describe the privacy
benefits of FedPM. We use capital letters for random variables, small letters for their realization
and deterministic quantities, and bold letters for vectors. Moreover, we indicate with xu,t the
state of the local vector x (e.g., the local mask) at client u during round t, and with xu,ti its i-th
component. Global values are denoted with xg,t and xg,ti , and sets are indicated with calligraphic
fonts. We denote a neural network with weight vector p as fp.

FedPM

In this section, we present the general FedPM training pipeline. First, the server randomly initializes
a neural network fwinit , parameterized by the weight vector winit = (winit

1 , winit
2 , . . . , winit

d) ∈ R
d,

whose components are sampled IID according to a distribution Pw using a randomly generated seed
SEED. The random SEED value is then communicated to all the clients, which can locally sample
the same pseudo-random vector winit, which is kept fixed and never modified during training. The
goal for the clients is to collaboratively train a probability mask θ ∈ [0, 1]d, which indicates the
Bernoulli parameters for the global stochastic binary mask M ∼ Bern(θ) ∈ {0, 1}d, such that the
function fẆ maximizes its performance on a given task, where Ẇ = M ⊙ winit. Specifically,

22

FedPM learns the probabilities for the weights of being active, which are given by the probability
mask θ = (θ1, θ2, . . . , θd) ∈ [0, 1]d. To achieve this, at every round t, the server samples a set Kt of
|Kt| = K participants (out of the total N clients), which individually train their local probability
masks θk,t, k ∈ Kt, by using their local datasets Dk, each composed of Dk = |Dk| samples. These
local masks are then aggregated by the server in a communication-efficient way to estimate the
optimal θ. At test time, at the server, the initial random network fwinit is sparsified using the
global probability mask θg,t, following the stochastic approach in Figure 2.7. In the following
sections, we provide more details on each step of each round. We give the pseudocode for FedPM
in Appendix 2.7.1.

Local Training of Probability Masks

Upon receiving a global probability mask θg,t−1 from the server at the beginning of round t, the
client k performs local training and updates the mask via back-propagation. First, however, we
have to guarantee that the updated probability mask satisfies θk,t ∈ [0, 1]d. While this can be
achieved with a regularization term in the loss, this may require clipping θk,t ∈ [0, 1]d before taking
a Bernoulli sample, especially in the early training stages. Clipping would then make the estimate
at the server biased and hence lead to a slower convergence and lower accuracy. Therefore, similarly
to the work in [279], we introduce another mask, called score mask s = (s1, s2, . . . , sd) ∈ R

d, that
has unbounded support and can be used to generate the probability masks through the one-to-
one sigmoid function by setting θ = Sigmoid(s). Then, the procedure for local training of the
probability mask at round t is as follows (here, the steps from Step 2 to 4 describe one local
iteration, which is repeated a number τ of times as standard in FL [171]):

(1) The server sends the global probability mask θg,t−1 to K chosen clients, and the clients set
sk,t = Sigmoid−1(θg,t−1), where Sigmoid−1(·) is the inverse of the sigmoid function.

(2) Then, the clients generate a binary mask by first transforming back θk,t = Sigmoid(sk,t),
and then sampling a binary mask Mk,t from θk,t as shown in Figure 2.7: mk,t ∼ Bern(θk,t).

(3) The sampled binary mask then sparsifies the initial weight vector winit: ẇk,t = mk,t ⊙
winit.

(4) ẇk,t is then used for forward pass, and the loss L(fẇk,t ,Dk) on the local task is backprop-
agated to update the score mask as sk,t = sk,t − η∇L(fẇk,t ,Dk) (η is the local learning rate).

All the local operations from Step 2 to Step 4 are differentiable, except for the Bernoulli
sampling. We backpropagate the gradients through the Bernoulli sampling operation with a
straight-through estimator [43], using the first-order gradient of the Bernoulli function, which is
simply equal to the probability mask θk,t.

Communication Strategy

Once the local training at round t is completed, the server needs to distill the global probability
mask θg,t, by taking the empirical average of the local probability masks θ̄g,t = 1

K

∑
k∈Kt

θk,t

collected from the clients. However, since we aim for communication efficiency, the clients do not
send their local probability masks directly. Instead, they communicate a stochastic binary sample

23

...

...

Server Estimate True Mean

Figure 2.8: Communication-efficient estimation of the mean of the probability masks θ̄
g,t. Each

client communicates a stochastic binary mask mk,t sampled from the local probabillity mask θk,t.
We reduce the bitrate to less than 1 bit per parameter by using arithmetic coding to encode mk,t.
When the frequency of 1’s is far from 0.5 (which is usually the case with FedPM), the number of
bits per parameter to communicate mk,t is less than 1. See Figure 2.11 for more details.

Mk,t from their probability masks sampled as mk,t ∼ Bern(θk,t), and then the server estimates
the global aggregate θ̄g,t as θ̂̄

g,t
= 1

K

∑
k∈Kt

mk,t. This distributed mean estimation problem with

communication constraints is summarized in Figure 2.8. Our estimator θ̂̄
g,t

= 1
K

∑
k∈Kt

mk,t is
an unbiased estimate of the true aggregate, in that

EMk,t∼Bern(θk,t) ∀k∈Kt
[θ̂̄

g,t
] = EMk,t∼Bern(θk,t) ∀k∈Kt

[
1

K

∑

k∈Kt

Mk,t

]

=
1

K

∑

k∈Kt

EMk,t∼Bern(θk,t)[M
k,t]

=
1

K

∑

k∈Kt

θk,t

= θ̄g,t.

Moreover, the estimation error is upper bounded as (the proof is given in Appendix 2.7.2)

EMk,t∼Bern(θk,t) ∀k∈Kt

[
||θ̂̄

g,t
− θ̄

g,t||22
]
≤ d

4K
. (2.15)

Since each client communicates a stochastic binary mask Mk,t, 1 bpp is the worst-case bitrate
for FedPM. We can further reduce the bitrate to less than 1 by using arithmetic coding [211] or
universal coding [141, 38] to encode mk,t, and achieve the empirical entropy since d is large. This
gives us smaller bitrates whenever the frequency of 1’s in mk,t is far from 0.5 – which is usually the
case for our method (see Figure 2.11). We note that, with a deterministic mask training approach
as in FedMask [153], arithmetic coding of mk,ts does not provide any further gain in bitrate, as

24

we have empirically observed that the frequency of 1’s is always around 0.5 (see Figure 2.11 and
Table 2.3) – here we apply arithmetic coding for FedMask to improve our baseline although it was
not proposed in the original paper. Moreover, FedMask [153] and HideNSeek [243] do not enjoy
the guarantees we have as their estimator (i) is not unbiased and (ii) does not have an upper
bound on the estimation error due to hard thresholding [153] and sign operations [243]. This is
another benefit of our stochastic sampling approach.

FedPM with Bayesian Aggregation

Another important aspect that differentiates our work from existing masking methods such as
FedMask [153] and HideNSeek [243] is the Bayesian aggregation strategy, which exploits the un-
derlying stochastic mask to synthesize a global model, boosting the performance in scenarios where
only a fraction of the clients participate in each round. Given the probabilistic interpretation of
the FedPM mask’s values, at the server side we further model the probability mask θg,t with a
Beta distribution Beta(αg,t,βg,t), parameterized by the round-dependent parameters αg,t and
βg,t, which are initialized to αg,0 = βg,0 = λ0. At the beginning of the training process, there is
no prior knowledge indicating which network weight should be more important than the others,
and so each entry in the probability mask is uniformly distributed in [0, 1] – which is the prior
distribution. Consequently, the clients’ local binary masks Mk,ts are the data the server uses to
update its belief on each weight score, and so the aggregation strategy corresponds now to a pos-
terior update. Specifically, given the conjugate relation between the Beta-Bernoulli distributions,
the new posteriors are still Beta distributions with parameters

αg,t = αg,t−1 + Magg,t and βg,t = βg,t−1 + K · 1 −Magg,t ∀t ≥ 1, (2.16)

where Magg,t =
∑

k∈Kt
Mk,t, and 1 is the d-dimensional all-ones vector. Then, the server broad-

casts to the clients the mode of the Bernoulli distributions, as suggested by [88],

θg,t =
αg,t − 1

αg,t + βg,t − 2
, (2.17)

where the division operation is applied element-wise. However, to obtain the best performance out
of this method, the Beta parameters should be re-initialized to their original values λ0 with some
regularity. We present an ablation study to demonstrate the improvements gained by the Bayesian
aggregation strategy and the reasonable choices for the resetting frequency in Section 2.3.4. Notice
that if λ0 = 1, and if α and β are re-initialized at the beginning of each round, the method is
equivalent to the aggregation strategy detailed in Fig. 2.8.

Weight Distribution

The fixed weight vectorwinit is initialized by sampling from the distribution Pw using the randomly
generated SEED. We note that the choice of this distribution impacts two important aspects of
FedPM: (i) the values of winit highly influence the final accuracy achieved by the model, as they

25

represent the building blocks to extract a subnetwork fẇ (see Figure 2.7), which should be rich
enough to solve the learning task, and (ii) the size of the sample space of Pw affects the number
of bits needed to store the model during the inference process (this is different from the 1 bpp
model storage when the model is not in use). Regarding (i), as also proposed in [207], we sample
weights from a uniform distribution, whose domain is {−σ,+σ}, where σ is the standard deviation
of the Kaiming Normal distribution [112]. In this way, we control the variance of the neurons’
output to be ∼ 1, which avoids the vanishing or the explosion of activation values. Previous
experiments in [279, 207] also demonstrate the superior performance achieved by binary weights
distributions when compared to standard continuous counterparts, e.g., Gaussian. Regarding (ii),
even if knowing the value of SEED is enough to perfectly reconstruct the vector winit, one would
have to generate the entire vector at every inference step. Consequently, to achieve fast inference,
the actual values of the weights need to be stored in the memory of the devices during the inference
process. Fortunately, our initialization allows for efficient storage even during inference since (after
reconstructingwfinal using SEED andmfinal ∈ {0, 1}d) we only need to indicate whether the weight
values in wfinal are −σ, 0, or +σ, with a ternary representation that can be efficiently deployed
on hardware [23].

2.3.3 Privacy Considerations
Privacy is another challenge in FL as the model updates (in our case, Mk,ts) may leak information
about the client data. Specifically, Differential privacy (DP) guarantees that the probability of
an outcome of an algorithm that runs on client data does not change much by a single client’s
data. This is typically ensured via injecting noise to a function of the client data at a particular
step in the algorithm with some utility loss in the application. While there have been many DP
strategies developed for FL and deep learning [15, 172, 18, 28], these strategies typically suffer
from severe performance degradation due to noise injection. To make DP practical, researchers
have explored certain randomization mechanisms that amplify the privacy guarantee. When these
mechanisms are parts of the FL framework, such as sampling (data [35, 259] or device [36, 97, 107])
and shuffling [84, 87], the amplification comes for free. This is helpful because the overall process
can meet a stronger privacy guarantee without increasing the noise level. FedPM promises one
such amplification due to the stochastic Bernoulli sampling step. We first revisit the definitions of
differential privacy [80], Rényi divergence, and Rényi differential privacy [173]; and then present
the amplification result.

Definition 1. [Adjacent Datasets] Two datasets D,D′ ∈ D are called adjacent if they differ
in at most one data sample.

Definition 2. [(ϵ, δ)-DP] A randomized mechanism f : D → R offers (ϵ, δ)-differential privacy
if for any adjacent D,D′ ∈ D and S ⊂ R

Pr[f(D) ∈ S] ≤ eϵPr[f(D′ ∈ S)] + δ.

Definition 3. [Rényi Divergence] For two probability distributions P and Q defined over R,

26

the Rényi divergence of order α > 1 is

Dα(P ||Q) =
1

α − 1
logEx∼Q

(
P (x)

Q(x)

)α

.

Definition 4. [(α, ϵ)-RDP] A randomized mechanism f : D → R offers ϵ-Rényi differential pri-
vacy of order α (or in short (α, ϵ)-RDP) if for any adjacent D,D′ ∈ D, it holds that

Dα(f(D)||f(D′)) ≤ ϵ.

In particular, in [122] the authors have shown that when a sample M ∈ {0, 1}d from an already
privatized vector θ ∈ [c, 1 − c]d, where 0 < c < 0.5, is released to a third party (instead of θ itself),
the privacy is amplified under some conditions. More precisely, when there is an (α, ϵ)-Rényi Dif-
ferential Privacy mechanism [173] that privatizes θ ∈ [c, 1 − c]d, releasing a sample from Bern(θ)
yields an improved privacy budget (the smaller ϵ, the better the privacy): ϵamp ≤ min {ϵ, d · rα(c)}.
Here, rα(p) is the binary symmetric Rényi divergence function defined as

rα(p) =
1

α − 1
log
(
pα(1 − p)1−α + (1 − p)αp1−α

)
.

Notice that FedPM already involves this Bernoulli sampling step in the communication protocol
and in the forward pass mk,t ∼ Bern(θk,t). However, the d term in the upper bound limits the
amplification for large model sizes. We believe it is worth exploring a tighter upper bound on ϵamp

to enjoy privacy amplification in FedPM with practical models. Nonetheless we demonstrate the
impact of this amplification on a distributed mean estimation problem, described in Figure 2.8,
where the goal is to estimate the true mean of the probability masks θ̄ = 1

K

∑K
k=1 θ

k under
communication and privacy constraints. We also provide a bias correction mechanism specific
to our scheme in Figure 2.9, that mitigates the bias due to the DP mechanism and reduces the
estimation error.

Now, suppose that we have an (α, ϵ)-RDP algorithm f that outputs privatized θk ∈ [c, 1 − c]d

with 0 < c < 0.5, using local client data Dk. As summarized in Figure 2.9, we are interested in
what happens when instead of releasing θk = f(Dk), the client k releases a Bernoulli sample from
it: mk ∈ {0, 1}d ∼ Bern(θk). We already explained the advantages in terms of communication
bitrate, estimation error, unbiasedness throughout the manuscript; however, this approach also
amplifies the privacy guarantees, meaning that it makes the overall privacy budget smaller ϵamp ≤
ϵ. Quantitatively, [122] showed that after the Bernoulli sampling, the privacy budget of the overall
process is

ϵamp ≤ min {ϵ, drα(c)},

where rα(·) is the Rényi divergence of the binary symmetric function. More precisely, consider
P,Q random variables with support on {x1, x2} ⊂ Θ and let p = Pr[P = x1], 1 − p = Pr(Q = x1).
Then the Rényi divergence is defined as

27

rα(p) = Rα(P,Q) =
1

α − 1
log (pα(1 − p)1−α + (1 − p)αp1−α).

Notice that FedPM already involves this Bernoulli sampling step in the communication protocol
and in the forward pass mk,t ∼ Bern(θk,t). This implies that FedPM improves the privacy guar-
antee without changing the privacy mechanism – e.g. without increasing the injected noise level.
However, the d term in the upper bound limits the amplification for large model sizes. We believe
it is worth exploring a tighter upper bound on ϵamp to enjoy privacy amplification in FedPM with
practical models. Nonetheless, we demonstrate the impact of this amplification on a distributed
mean estimation problem, described in Figure 2.9, where the probability masks θk ∈ [c, 1 − c]d

are a function of client data Dk; and are first corrupted by Gaussian noise, and then clipped to the
range [c, 1 − c]d. Our goal is, as before, to estimate the true mean θ̄ = 1

K

∑
k∈Kt

θk by averaging
the sampled binary masks, i.e., θ̂̄ = 1

K

∑
k∈Kt

mk. Differently from our previous experiments, we
have privacy constraints now, meaning that we want to guarantee (ϵ, δ)-DP by injecting a Gaussian
noise with variance σ2 =

2 ln (1.25/δ)∆2
2

ϵ2 with a small ϵ, where δ ≈ 1
N2 and ∆2 is the ℓ2-sensitivity of

the probability masks (in our case ∆2 = (1 − 2c)
√
d). We transfer the above amplification results

in RDP to DP using the well-known relation:

Remark 1. In [173] it is shown that if f is an (α, ϵ)-RDP mechanism, it also satisfies (ϵ +
log 1/δ
α−1 , δ)-DP for any 0 < δ < 1.

...

Server Estimate True Mean

Figure 2.9: Distributed mean estimation scheme in FedPM, modified for differential privacy.

Since clipping after the noise addition step would lead to bias in the estimated mean, we
work out a bias correction mechanism. We denote with θ one general parameter at client k for
one parameter, with θ̃ its noisy version, and with θ̂ = clip(θ̃) its clipped version. Specifically, if

28

θ̃ = θ + η is the noisy version of the parameter, where η ∼ N(0, σ2), then

clip(θ̃) =





θ̃, if c ≤ θ + η ≤ 1 − c

1 − c, if θ + η > 1 − c

c, if θ + η < c.

(2.18)

We now compute E
[
M̂
]
, where M̂ ∼ Bern(θ̂), to analyze the bias E

[
M̂
]
− E [M] = E

[
M̂
]
−

θ, where M ∼ Bern(θ). First of all, notice that

E

[
M̂
]
=

∫ 1

0

E

[
M̂ |θ̂ = ρ

]
f(ρ)dρ =

∫ 1

0

ρf(ρ)dρ = E[θ̂].

And we now compute the mean of the clipped parameter

E

[
θ̂
]
=

∫ 1

0

ρf(ρ)dρ

=

∫ +∞

−∞

clip(θ + η)f(η)dη

=

∫ c−θ

−∞

c · f(η)dη +

∫ 1−c−θ

c−θ

(θ + η) · f(η)dη +

∫ +∞

1−c−θ

(1 − c) · f(η)dη

= cΦσ(c − θ) + θ

∫ 1−c−θ

c−θ

f(η)dη +

∫ 1−c−θ

c−θ

ηf(η)dη + (1 − c) (1 − Φσ (1 − c − θ))

= cΦσ(c − θ) + θ [Φσ(1 − c − θ) − Φσ(c − θ)] +
−σ√
2π

[
e

−(1−c−θ)2

2σ2 − e
−(c−θ)2

2σ2

]
+

+ (1 − c) (1 − Φσ (1 − c − θ))

= 1 − c + [θ − 1 + c]Φσ(1 − c − θ) + [c − θ]Φσ(c − θ) +
−σe

−(c−θ)2

2σ2

√
2π

[
e−2(c−θ)−1 − 1

]
,

where Φσ (·) is the cumulative distribution function of a Gaussian random variable with stan-
dard deviation σ, and zero mean. We use this relation to correct the bias in θ̂̄. In practice, to
adopt the bias-correction strategy, we sample the function E

[
θ̂
]
, which is a function of the true pa-

rameter θ, noise standard deviation σ, and clipping parameter c, at Q different points x1, . . . , xQ,
i.e., different values for the uncorrupted θ, and we store the values in a table. Indeed, the values
σ and c are set at the beginning of the training process, secretly shared among the participants,
and never modified. Then, once the server computes an estimate for θ̂, it corrects it by finding the
closest outputs of E

[
θ̂
]
in the stored table, and it inverts the map by choosing the corresponding

xi, i.e., the original θ.

To empirically assess the performance of the proposed solution, we conduct our experiments on
a toy example with N = 100 clients, each having independent probability masks with dimension
d = 5 and range [0.2, 0.8], i.e., θ ∈ [0.2, 0.8]5. Figure 2.10 shows the estimation error ||θ̂̄

g,t
− θ̄g,t||22

under no noise injection case (i.e. no DP) with the black line. Recall that we want to reach

29

a smaller estimation error and smaller ϵ (i.e., a stronger privacy guarantee). The red curve
corresponds to the ϵ vs. estimation error behavior if Bernoulli sampling did not amplify the
privacy. The blue curve shows the amplified ϵ (i.e. ϵamp ≤ ϵ) vs. estimation error behavior, and
it overlaps with the red curve for ϵ values smaller than d · rα(c) = 8.96, where there is no privacy
amplification, i.e., ϵamp = ϵ. However, notice that the blue line never reaches ϵ’s higher than this
value due to amplification, while enjoying smaller estimation errors that the red curve can only
achieve with very large ϵ. This shows the promise of FedPM in having a better privacy-accuracy
performance than most baselines that do not have amplification. Finally, the green curve shows
that bias correction improves this performance further even with ϵ < d · rα(c) = 8.96 by achieving
lower estimation errors with the same ϵ.

Figure 2.10: The effect of privacy amplification and bias correction in the privacy budget (ϵ)
vs. estimation error behavior. Comparing red and blue curves, we see that we can reach small
estimation errors without increasing ϵ thanks to the amplification (see the vertical blue line at low
estimation error.). While the red curve and blue curve overlap for ϵ < d · rα(c) = 8.96, in that
regime, we benefit from our bias correction strategy to reach a lower error.

2.3.4 Experiments
In this section, we empirically show the performance of FedPM in terms of accuracy, bitrate, con-
verge speed, and the final model size. We consider four datasets: CIFAR-10 with 10 classes,
CIFAR-100 [142] with 100 classes, MNIST [77] with 10 classes, and EMNIST [66] with 47 classes.
For CIFAR-100, we use a 10-layer convolutional network (CNN) CONV-10 and ResNet-18 [111]; for
CIFAR-10, a 6-layer CNN CONV-6 and ResNet-18 [111]; and for MNIST and EMNIST, a 4-layer
CNN CONV-4. A detailed description of the architectures can be found in Tab. 2.1. We first

30

compare FedPM with SignSGD [44], TernGrad [262], QSGD [24], DRIVE [246], EDEN [247], and
FedMask [153] on IID data split and full client participation. We then extend our experiments to
non-IID data splits and partial participation. Finally, we present a key ablation study to justify
why the Bayesian aggregation strategy is necessary for partial participation and to demonstrate
how the resetting frequency affects the convergence rate and the final accuracy. In all the exper-
iments, clients perform 3 local epochs with a batch size of 128 and a local learning rate of 0.1 in
all the experiments. Notice that there is no server learning rate in FedPM; instead, we tune the
prior resetting schedule in Bayesian aggregation in the case of non-IID data splits. We conducted
our experiments on NVIDIA Titan X GPUs on an internal cluster server, using 1 GPU per one
run. The code is publicly available. 3

Table 2.1: Architectures for CONV-4, CONV-6, and CONV-10 models used in the experiments.

Model CONV-4 CONV-6 CONV-10

Convolutional
Layers

64, 64, pool
128, 128, pool

64, 64, pool
128, 128, pool
256, 256, pool

64, 64, pool
128, 128, pool
256, 256, pool
512, 512, pool

1024, 1024, pool
Fully-Connected

Layers 256, 256, 10 256, 256, 10 256, 256, 100

IID Data Split and Full Participation (K = N)

In this section, we focus on IID data distribution and the case when all the clients participate in
the training at each round. We set the number of clients to N = K = 10. We report the estimated
bitrate for the arithmetic code that uses the empirical frequency of the symbols (for our method
FedPM, this corresponds to the frequency of 1’s in mk,t) – which is equal to the empirical entropy
for blocklength d as large as the model size. In Figure 2.11, we compare the accuracy, bitrate, and
convergence speed of FedPM with relevant baselines. As can be seen in the figure, FedPM converges
to the highest accuracy on all four datasets. DRIVE, EDEN, and QSGD (they mostly overlap
in the accuracy plots) seem to be the three baselines that perform the best after FedPM; however,
their convergence speed is significantly lower than FedPM. In terms of convergence speed, FedMask
is the fastest among the baselines – in fact, at the beginning of the training, FedMask is faster
than FedPM as well. However, its final accuracy is lower than the others. We also would like to
highlight that while some of our baselines, such as FedMask and TernGrad, have a visibly high
variance in accuracy, FedPM shows stable training behavior across all experiments.

In terms of bitrate, SignSGD and FedMask consistently spend 1 bpp, which is the default
number when a binary mask or sign mask is communicated. This means binary values (1’s and
0’s) are almost equally distributed in their masks, which prevents them from enjoying additional

3https://github.com/BerivanIsik/sparse-random-networks

31

0 50 100 150 200 250 300 350 400
Rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Server Test Accuracy (conv6-cifar10)

0 50 100 150 200 250 300 350 400
Rounds

0.0

0.1

0.2

0.3

0.4

Server Test Accuracy (conv10-cifar100)

0 20 40 60 80 100
Rounds

0.90

0.92

0.94

0.96

0.98

1.00
Server Test Accuracy (conv4-mnist)

0 50 100 150 200 250 300 350 400
Rounds

0.8

0.9

1.0

1.1

1.2

Bi
tra

te
 (b

its
 p

er
 p

ar
am

et
er

) Average Bitrate (conv6-cifar10)

0 50 100 150 200 250 300 350 400
Rounds

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Average Bitrate (conv10-cifar100)

0 20 40 60 80 100
Rounds

0.9

1.0

1.1

1.2

1.3

Average Bitrate (conv4-mnist)

Figure 2.11: Accuracy and bitrate comparison of FedPM with SignSGD [44], TernGrad [262],
QSGD [24], DRIVE [246], EDEN [247], and FedMask [153], all performing in the same bitrate
regime.

bitrate gains. Across all experiments, TernGrad has the highest bitrate. We would like to leave a
note about the bitrate of QSGD. Unlike other baselines, including our work, QSGD can go down to
very low bitrates by adjusting the number of levels in quantization. We have observed that in the
extreme quantization case, QSGD underperforms FedPM. Then, we have decided to increase the
number of quantization levels in QSGD to see if it improves the accuracy. However, as can be seen
from the plots, even with bitrate larger than 1, QSGD still underperforms FedPM. The only two
baselines that challenge FedPM in terms of bitrate are DRIVE and EDEN. While FedPM has lower
bitrates on CIFAR-10 and EMNIST; DRIVE and EDEN have better bitrates on CIFAR-100 and
MNIST. However, the accuracy of DRIVE and EDEN on these datasets (specifically CIFAR-100)
is significantly lower than that of FedPM, with slower convergence.

As for the final model size, FedPM needs only 0.8 bpp for the CONV-6 model trained on CIFAR-10,
0.85 bpp for the CONV-10 model trained on CIFAR-100, 0.96 bpp for the CONV-4 model trained
on MNIST, and 0.83 bpp for the CONV-4 model trained on EMNIST. On the other hand, other
baselines that train a dense model, namely SignSGD, TernGrad, QSGD, DRIVE, and EDEN,
would need to represent each weight with their full precision value, i.e., 32 bpp. This implies that
FedPM provides around 38.6× improvement in the storage or the communication of the final model.
Since FedMask also trains a sparse model, it enjoys a similar gain in the final model size requiring
1 bpp across all the models. Due to the stochastic masking procedure and uneven distribution
of 1’s and 0’s in the binary masks, FedPM has up to 0.17 bpp improvement over the deterministic
procedure in FedMask, which adds up to a large gain due to the huge model size.

We provide additional experimental results with ResNet-18 model on CIFAR-10 and CIFAR-100
datasets in Appendix 2.3.4; and observe similar improvements over the baselines.

Non-IID Data Split and Partial Participation (K < N)

This section considers more realistic scenarios, in which the local clients’ datasets are generated
from slightly different data distributions. We focus on CIFAR-10 with CONV-6, and we com-
pare FedPM against (i) the most promising baselines, which, based on the previous, are DRIVE,

32

Algorithm ρ = 1 ρ = 0.5 ρ = 0.2 ρ = 0.1

DRIVE [246] 0.739 ± 0.005 0.632 ± 0.010 0.563 ± 0.005 0.405 ± 0.018
EDEN [247] 0.717 ± 0.006 0.665 ± 0.012 0.565 ± 0.009 0.360 ± 0.016

cmax = 4 QSGD [24] 0.709 ± 0.006 0.644 ± 0.014 0.567 ± 0.010 0.399 ± 0.020
FedMask [153] 0.531 ± 0.044 0.435 ± 0.057 0.434 ± 0.036 0.362 ± 0.024
FedPM (Ours) 0.748 ± 0.003 0.720 ± 0.007 0.617 ± 0.021 0.496 ± 0.007

DRIVE [246] 0.434 ± 0.025 0.376 ± 0.014 0.375 ± 0.015 0.221 ± 0.003
EDEN [247] 0.535 ± 0.050 0.461 ± 0.016 0.380 ± 0.015 0.219 ± 0.005

cmax = 2 QSGD [24] 0.476 ± 0.033 0.464 ± 0.002 0.375 ± 0.026 0.243 ± 0.014
FedMask [153] 0.420 ± 0.028 0.387 ± 0.062 0.285 ± 0.040 0.197 ± 0.030
FedPM (Ours) 0.643 ± 0.016 0.556 ± 0.031 0.372 ± 0.004 0.277 ± 0.003

Table 2.2: Average final accuracy ±σ in non-IID data split with cmax = 4 and 2, and client
participation ratios ρ = {0.1, 0.2, 0.5, 1}, for FedPM, FedMask, and the strongest baselines in the
IID experiments: EDEN, DRIVE, and QSGD. The training duration was set to tmax = 200 rounds.

EDEN, and QSGD, and (ii) FedMask, as it is the only sparse baseline. To choose the size of
each dataset |Dn| = Dn, for each client n ∈ {1, . . . , N}, an integer jn is sampled uniformly from
{10, 11, . . . , 100}. Then, a coefficient pn = jn

∑

n jj
is computed, which represents the size of the

local dataset Dn as a fraction of the size of the full dataset, i.e., the training set of CIFAR-10.
In this way, highly unbalanced datasets can be generated from the central one. Moreover, since
the task is a classification problem, we impose a maximum number of different labels, or classes,
cmax, that one client can see. Consequently, clients need cooperation to learn the statistics of other
classes’ distributions, as the test dataset contains samples from all classes. In addition, partial par-
ticipation is also considered, meaning that at each round, the server uniformly samples a fraction
ρ = K

N of the clients to participate in the training round. This is motivated in real-world scenarios
by the scarcity of physical communication network resources, which may limit the availability of
part of the clients during one round. The maximum number of classes per local dataset is set to
cmax ∈ {2, 4}, and the participation ratio is set to ρ ∈ {0.1, 0.2, 0.5, 1}. For ρ = 1 and ρ = 0.5,
the total number of clients is set to N = 10 (and so K is equal to 10 and 5, respectively). For
ρ = 0.2, we set N = 100 (and so K = 20), and for ρ = 0.1, we set N = 50 (and so K = 5), which
is the worst scenario among all combinations, given the small amount of information the server
can collect at the end of each round. When ρ = 1, for the FedPM algorithm, we keep the same ag-
gregation strategy exposed in Figure 2.8; and we switch to the Bayesian aggregation method (see
Section 2.3.2) when there is partial participation, i.e., when ρ < 1. Indeed, applying the Bayesian
aggregation method is revealed to be crucial for achieving good accuracy when ρ < 1 and data are
non-IID, obtaining a large gain with respect to the simpler version in Figure 2.8, which resets the
Beta priors at each round (or takes the average of the samples, as explained in Section 2.3.2). We
elaborate more on this observation with an ablation study in the next section. We adopt a simple
heuristic schedule to reset the priors: Reset every 3 rounds when ρ = 0.5 and ρ = 0.2, and every
10 rounds when ρ = 0.1. As expected, the smaller the ratio ρ, the larger the number of rounds
we should wait before resetting the priors to collect more information from a much more diverse

33

Algorithm ρ = 1 ρ = 0.5 ρ = 0.2 ρ = 0.1

DRIVE [246] 0.885 ± 9 · 10−5 0.885 ± 1 · 10−4 0.885 ± 6 · 10−5 0.885 ± 1 · 10−4

EDEN [247] 0.885 ± 1 · 10−4 0.885 ± 1 · 10−4 0.885 ± 8 · 10−5 0.885 ± 1 · 10−4

cmax = 4 QSGD [24] 0.982 ± 0.027 0.923 ± 0.029 1.188 ± 0.034 0.910 ± 0.05
FedMask [153] 1.000 ± 3 · 10−6 1.000 ± 8 · 10−8 1.000 ± 2 · 10−6 1.000 ± 6 · 10−7

FedPM (Ours) 0.863 ± 0.077 0.912 ± 0.056 0.965 ± 1 · 0.01812 0.996 ± 0.003

DRIVE [246] 0.885 ± 7 · 10−5 0.885 ± 2 · 10−4 0.885 ± 7 · 10−5 0.885 ± 2 · 10−4

EDEN [247] 0.885 ± 1 · 10−4 0.885 ± 7 · 10−5 0.885 ± 6 · 10−5 0.885 ± 7 · 10−5

cmax = 2 QSGD [24] 1.230 ± 0.043 1.234 ± 0.038 1.100 ± 0.01 1.082 ± 0.01
FedMask [153] 1.000 ± 2 · 10−6 1.000 ± 2 · 10−6 1.000 ± 1 · 10−5 1.000 ± 2 · 10−7

FedPM (Ours) 0.868 ± 0.076 0.904 ± 0.063 0.980 ± 0.014 0.997 ± 0.01

Table 2.3: Average bitrate ±σ over the whole training process in non-IID data split with cmax = 4
and cmax = 2, and partial participation with ratios ρ = {0.1, 0.5, 1}, for FedPM, FedMask, and the
strongest baselines in the IID experiments: EDEN, DRIVE, and QSGD. The training duration
was set to tmax = 200 rounds.

pool of clients.
Table 2.2 reports the results with cmax = 4 and 2. FedPM seems to outperform all the baselines

in every configuration, as the Bayesian aggregation allows the server to collect more data before
resetting the priors, which is important when clients’ data distributions are non-IID, and only a
fraction of the clients participate in each round. This strategy can be seen as the FedPM counterpart
of decreasing the learning rate (which we applied in the other dense compression-based baselines,
like DRIVE, EDEN, and QSGD). It is seen from Table 2.2 that FedMask [153] is struggling in the
non-IID case, as applying a hard threshold on the scores to binarize the mask does not provide a
proper way to implement multiple-rounds aggregation, emphasizing the benefit of the stochastic
process in FedPM. It is interesting to notice that, especially when cmax = 4, the lower the value of
ρ, the larger the gap between FedPM and the baselines, corroborating the fact that the Bayesian
strategy can better deal with partial participation.

We now express some communication bitrate considerations on such experiments. Table 2.3
reports the average bitrate needed by different algorithms over the whole training process when
cmax = 4 and cmax = 2. By simply multiplying the obtained average bitrate by the total number
of rounds tmax = 200, we obtain the total number of bits one element in the global probability
mask needs to converge to its final value, indicating the total amount of information communicated
during the training process.

We first observe that both DRIVE and EDEN consume almost the same amount of bits no
matter the system configuration and round number (very small variance), and it is instead model
dependent (see Figure 2.11). On the contrary, FedPM and QSGD report higher bitrate variability,
as it depends on both the training phase and system setting. As already observed in Figure 2.11,
FedMask balances almost uniformly the binary updates, leading to a bitrate that is basically fixed
to 1. For both cmax = 4 and cmax = 2, FedPM yields the smallest bitrate when ρ = 1, whereas for
the other scenarios, EDEN and DRIVE are slightly more efficient. We argue that this is motivated
by the fact that, as the learning task becomes harder due to the high system heterogeneity, all the

34

models struggle to converge to good and stable solutions, which means that FedPM is still uncertain
about the weights’ importance probabilities θ, setting many of them close to 0.5. However, we think
that this may be a useful feature of FedPM to quantify its internal uncertainty, which we will further
analyze.

To conclude the analysis, we also report the FedPM bpp for the final model, which is an indication
of the average number of bits needed per one parameter of the model. In the case of cmax = 4,
the final model sizes are 0.79 bpp, 0.834 bpp, and 0.99 bpp, when ρ = {0.1, 0.5, 1}, respectively.
When cmax = 2, the final model sizes are 0.8 bpp, 0.817 bpp, and 0.992 bpp. Consequently, at the
end of the training process, FedPM remains the most efficient option.

Ablation Study on the Bayesian Aggregation Strategy

In this section, we try to answer two questions: (1) Is Bayesian aggregation really necessary? and
(2) What is the effect of resetting frequency on the convergence rate and the final accuracy? We
do this by analyzing the effect of different resetting frequencies of the Beta priors on the training
behavior of FedPM with non-IID data split and partial client participation; and report the results
in Figure 2.12. Hereafter, we denote with γ the number of aggregation rounds before resetting
the priors. For instance, γ = 1 corresponds to resetting the priors at every iteration, which is
equivalent to the aggregation method presented in Figure 2.8. On the other extreme, γ = 200

indicates that the priors are never reset. It is seen that γ = 1 curves fluctuate significantly and
never converge to the best accuracy in any setting, while γ = 200 curves look smoother but
converge to the lowest accuracy in all settings. This intuitively makes sense because, as already
mentioned in Section 2.3.2, by increasing the value of γ, we allow the server to consider the
information coming from multiple rounds while updating the global parameters. Indeed, with
partial participation and non-IID data, a single round’s updates may convey skewed information,
depending on the level of data heterogeneity cmax, and client participation ratio ρ. As a rule of
thumb for the resetting frequency value, we suggest tuning γ around the value 1

ρ . The rationale
behind this is that with uniform client sampling, at least 1

ρ rounds are needed to have the non-zero
probability to sample from each client once before resetting the prior. In practice, we do not need
to sample exactly from every client, as enough information is contained in the updates of the other
sampled ones.

Figure 2.12: Accuracy for different values of γ – the number of rounds before resetting the priors.

In the non-IID and partial participation experiments to distill the final model we may apply

35

both stochastic sampling, as during training, or a hard-threshold method, similar to the one
adopted in FedMask [153]. In the latter, a binary mask coefficient mi is set to 1 if θi > αths, and
0 otherwise. For all experiments but one, when αths ∈ [0.4, 0.6], the thresholding test accuracy is
always higher than the sampling method, and so we use the threshold method. However, in the
extreme case cmax = 2 and ρ = 0.1, the optimal values for αmax were in [0.2, 0.4] and [0.6, 0.8] in
all experiments, probably due to the high randomness given by the highly heterogeneous scenario.
Consequently, for the last experiment, we just adopt the stochastic sampling strategy to evaluate
the model, as further optimizing the αths means adapting to the test dataset, which may corrupt
the ability of the model to generalize.

Additional Experiments on ResNet Architectures

In this section, we provide additional experimental results with ResNet-18 [111] on CIFAR-10 and
CIFAR-100 datasets. For these experiments, we focus on IID data distribution and the case when
all the clients participate in the training at each round. We provide the details of the ResNet-18
architecture in Table 2.4 below.

Table 2.4: ResNet-18 architecture.

Name Component
conv1 3 × 3 conv, 64 filters. stride 1, BatchNorm

Residual Block 1
[
3 × 3 conv, 64 filters
3 × 3 conv, 64 filters

]
× 2

Residual Block 2
[
3 × 3 conv, 128 filters
3 × 3 conv, 128 filters

]
× 2

Residual Block 3
[
3 × 3 conv, 256 filters
3 × 3 conv, 256 filters

]
× 2

Residual Block 4
[
3 × 3 conv, 512 filters
3 × 3 conv, 512 filters

]
× 2

Output Layer 4 × 4 average pool stride 1, fully-connected, softmax

Figure 2.13: Accuracy and bitrate comparison of FedPM with baselines SignSGD [44], Tern-
Grad [262], QSGD [24], DRIVE [246], EDEN [247], and FedMask [153], with ResNet-18 on CIFAR-
10.

36

Figure 2.14: Accuracy and bitrate comparison of FedPM with baselines SignSGD [44], Tern-
Grad [262], QSGD [24], DRIVE [246], EDEN [247], and FedMask [153], with ResNet-18 on CIFAR-
100.

Figures 2.13 and 2.14 show the results on CIFAR-10 and CIFAR-100 datasets, respectively.
It is seen that FedPM outperforms all the baselines in terms of accuracy. Although DRIVE and
EDEN require approximately 0.1 smaller bitrates than FedPM, they also reach lower accuracy. In
summary, the advantages of FedPM discussed in the main manuscript carry over to ResNet-18
model as well.

2.3.5 Conclusion

In this work, we introduced Federated Probabilistic Mask Training (FedPM) – a communication-
efficient FL strategy. FedPM relies on the idea of finding a sparse network in a randomly initialized
dense network, which is then sparsified by a collaboratively trained stochastic binary mask. In
addition to reducing the communication cost to less than 1 bit per parameter (bpp), FedPM also
reaches higher accuracy with faster convergence than the relevant baselines, and can potentially
amplify privacy while additionally outputting a compressed final model with a size less than 1
bpp.

2.4 Communication-Efficient Federated Learning through
Importance Sampling

2.4.1 Introduction

In Section 2.1 and Section 2.3 we discussed some techniques, mainly based on model compres-
sion, to reduce the communication burden in FL. However, many of these strategies adopt a
stochastic approach that requires the client n to send a sample x(t,n) from a client-only distri-
bution qϕ(t,n) (which we call the post-data distribution), while the goal of the server is to esti-
mate EX(t,n)∼q

ϕ(t,n) ,∀n∈[N]

[
1
N

∑N
n=1X

(t,n)
]
by taking the average of the samples across clients

1
N

∑N
n=1 x

(t,n). Here, we denote by N the number of clients, by [N] the set {1, . . . , N}, and by

37

a
(t,n)
i the i-th parameter of a vector a at client n in round t. We show that in many stochastic FL

settings, the server also holds a distribution pθ(t) (which we call the pre-data distribution) that is
close to the post-data distribution qϕ(t,n) (which is unknown to the server) in KL divergence. The
proposed method, KL Minimization with Side Information (KLMS), exploits this closeness to re-
duce the cost of communicating samples x(t,n)[191]. We briefly summarize three of such stochastic
FL frameworks by pointing to the corresponding pre-data pθ(t) and post-data qϕ(t,n) distributions
as examples of three different setups: (i) learning probability distributions over subnetworks (or
masks), (ii) learning deterministic model parameters using stochastic compressors, and (iii) learn-
ing probability distributions over model parameters; and provide a more exhaustive summary in
Section 2.4.1 and Section 2.7.1. However, before that, we first give a rough outline of how KLMS

actually works.

Before describing the details of our proposal in Section 2.4.2, we now briefly provide the key idea
KLMS relies on: Instead of communicating the deterministic value of a sample x(t,n) ∼ qϕ(t,n) , client
n can communicate a sample y(t,n) from another distribution y(t,n) ∼ q̃π(t,n) , which is less costly
to communicate compared to x(t,n), and the discrepancy due to sampling from this distribution is
not significant. As shown in Algorithm 2.1, to construct q̃π, we use the pre-data distribution pθ(t)

(which is known by the server and the clients) and the importance sampling algorithm in [58].

Algorithm 2.1 KLMS Outline. (A more detailed description is given in Section 2.4.2 and Algo-
rithm 2.7.1.)
(1) The server and client n generate the same K samples from the pre-data distribution
{y(t,n)

[k] }Kk=1 ∼ pθ(t) (which is available to both the server and the clients) using a shared random
seed.
(2) Client n computes the importance weights α[k] =

q
ϕ(t,n) (y

(t,n)

[k]
)

p
θ(t)

(y
(t,n)

[k]
)

for k ∈ [K] with the local post-

data distribution qϕ(t,n) and normalizes it to get a distribution over [K] as π(t,n)(k) =
α[k]

∑

K
l=1 α[l]

.
(3) Client n takes a sample from this new distribution k(n)∗ ∼ π(t,n) and sends it to the server in
logK bits.
(4) The server receives k(n)∗ and recovers the k(n)∗-th sample y

(t,n)

[k(n)∗]
from the set of K samples

{y(t,n)
[k] }Kk=1 generated from pθ(t) in Step (1). Notice that y

(t,n)

[k(n)∗]
is actually a sample from the

underlying distribution over {y(t,n)
[k] }Kk=1 defined as q̃π(t,n)(y) =

∑K
k=1 π

(t,n)(k) · 1(y(t,n)
[k] = y).

We show that this procedure yields an arbitrarily small discrepancy in the estimation whenK ≃
exp

(
DKL(qϕ(n)∥pθ)

)
with theoretical and algorithmic improvements (specific to the FL setting)

over prior work [108, 240]. Clearly, to get the most communication gain out of KLMS, we need pre-
data pθ and post-data qϕ(n) distributions that are close in KL divergence. We show the existence
of such distributions in many stochastic FL frameworks by providing concrete examples in the
next section.

38

Setups

We now briefly summarize three examples of stochastic FL frameworks that KLMS can be integrated
into by highlighting the natural choices for pre-data pθ and post-data qϕ(n) distributions.

FedPM [200] freezes the parameters of a randomly initialized network and finds a subnetwork
inside it that performs well with the initial random parameters. To find the subnetwork, the
clients receive a global probability mask θ(t) ∈ [0, 1]d from the server that determines, for each
parameter, the probability of retaining it in the subnetwork; set this as their local probability mask
ϕ(t,n) ← θ(t); and train only this mask (not the frozen random parameters) during local training.
At inference, a sample x(t,n) ∈ {0, 1}d from the Bernoulli distribution Bern(·;ϕ(t,n)) is taken, and
multiplied element-wise with the frozen parameters of the network, obtaining a pruned random
subnetwork, which is then used to compute the model outputs. Communication consists of three
stages: (i) clients update their local probability masks ϕ(t,n) through local training; (ii) at the end
of local training, they send a sample x(t,n) ∼ Bern(·;ϕ(t,n)) to the server; (iii) the server aggregates
the samples 1

N

∑N
n=1 x

(t,n), updates the global probability mask θ(t+1), and broadcasts the new
mask to the clients for the next round. FedPM achieves state-of-the-art results in accuracy-bitrate
tradeoff with around 1 bit per parameter (bpp). As the model converges, the global probability
mask θ(t) and clients’ local probability masks ϕ(t,n) get closer to each other (see Figures 2.15
and 2.19 for the trend of DKL(qϕ(t,n) ||pθ(t)) over time). However, no matter how close they are,
FedPM employs approximately the same bitrate for communicating a sample from Bern(·;ϕ(t,n))
to the server that knows pθ(t) . We show that this strategy is suboptimal and applying KLMS

with the global probability distribution Bern(·; θ(t)) as the pre-data distribution pθ(t) , and the
local probability distribution Bern(·;ϕ(t,n)) as the post-data distribution qϕ(t,n) , provides up to 50

times gain in compression.
QSGD [24], different from the stochastic approach taken by FedPM to train a probabilistic

mask, is proposed to train a deterministic set of parameters. However, QSGD is itself a stochastic
quantization operation. More concretely, QSGD quantizes each coordinate v(t,n)

i using the following
probability distribution (which we call the QSGD distribution pQSGD(·)), where s is the number of
quantization levels:

pQSGD

(
v̂
(t,n)
i

)
=





s|v
(t,n)
i |

∥v(t,n)∥
−
⌊

s|v
(t,n)
i |

∥v(t,n)∥

⌋
if v̂(t,n)

i =
∥v(t,n)∥·sign(v(t,n)

i)

s

(⌊
s|v

(t,n)
i |

∥v(t,n)∥

⌋
+ 1

)

1 − s|v
(t,n)
i |

∥v(t,n)∥
+

⌊
s|v

(t,n)
i |

∥v(t,n)∥

⌋
if v̂(t,n)

i =
∥v(t,n)∥·sign(v(t,n)

i)

s

⌊
s|v

(t,n)
i |

∥v(t,n)∥

⌋ .

(2.19)

QSGD takes advantage of the empirical distribution of the quantized values (large quantized
values are less frequent) by using Elias coding to encode them – which is the preferred code when
the small values to encode are much more frequent than the larger values [83]. However, QSGD still
does not fully capture the distribution of the quantized values since Elias coding is not adaptive
to the data. We fix this mismatch by applying KLMS with the QSGD distribution pQSGD(·) as the
post-data distribution qϕ(t,n) , and the empirical distribution induced by the historical updates at

39

the server from the previous round as the pre-data distribution pθ(t) . These two distributions are
expected to be close to each other due to the temporal correlation across rounds, as previously
reported in [125, 184]. We demonstrate that KLMS exploits this closeness and outperforms vanilla
QSGD with a 12 times improvement in bitrate.

Federated SGLD [82] targets a Bayesian FL setup, where the goal is to learn a global pos-
terior distribution pθ over the model parameters from clients’ local posteriors qϕ(n) . A state-
of-the-art method proposed in [253] is the federated counterpart of the Stochastic Gradient
Langevin Dynamics (SGLD) [261], which uses a novel Markov Chain Monte Carlo (MCMC) al-
gorithm. In this setting, the global posterior distribution is assumed to be proportional to the
product pθ(t) ∼

∏N
n=1 e

−U(ϕ(t,n)) of N local unnormalized posteriors associated with each client,
expressed as potential functions {U(ϕ(t,n))}Nn=1. At the beginning of each local training round, the
local clients’ posteriors are initialized with the global posterior ϕ(n,t) ← θ(t), ∀n ∈ [N]. Then the
clients compute an unbiased estimate of their gradients H(ϕ(t,n)) = |D(n)|

|S(t,n)|

∑
j∈S(t,n) ∇Uj(ϕ

(t,n)),
where |D(n)| is the size of the local dataset of client n, and S(t,n) is the batch of data used to
estimate the gradient. They then communicate these estimates to the server, which aggregates
them by computing

θ(t+1) = θ(t) − γ

N∑

n=1

H(ϕ(t,n)) +
√

2γξ(t), (2.20)

where ξ(t) is a sequence of i.i.d. standard Gaussian random variables. As reported in [82, 253],
the sequence of global updates θ(t) converges to the posterior sampling. Notice that the clients
communicate their gradient vectors H(ϕ(t,n)) to the server at every round, which is as large as
the model itself. To reduce this communication cost, in [253], the authors propose a compression
algorithm called QLSD that stochastically quantizes the updates with essentially the Bayesian
counterpart of QSGD [24].

However, neither QLSD nor the other compression baselines in the Bayesian FL literature [59,
81, 203] take full advantage of the stochastic formulation of the Bayesian framework, where the
server and the clients share side information (the global posterior pθ(t)) that could be used to
improve the compression gains. Instead, they quantize the updates ignoring this side information.
This approach is suboptimal since (i) the precision is already degraded in the quantization step,
and (ii) the compression step does not account for the side information pθ(t) . We show that we
can exploit this inherent stochastic formulation of Bayesian FL by applying KLMS with the global
posterior distribution as the pre-data distribution pθ(t) , and the local posterior distribution as
the post-data distribution qϕ(t,n) . In addition to benefiting from the side information, KLMS does
not restrict the message domain to be discrete (as opposed to the baselines) and can reduce the
communication cost by 4 times, while also achieving higher accuracy than the baselines.

40

Contributions

We have listed three examples of stochastic communication-efficient FL frameworks, each of which
induces a post-data distribution qθ(t,n) that clients want to send a sample from, and a pre-data
distribution pθ(t) that is available to both the clients and the server – playing the role of side
information. In each case, these distributions are expected to become closer in KL divergence as
training progresses due to the convergence of the model parameters (FedPM or other probabilistic
mask learning methods), temporal correlation across rounds (QSGD or other deterministic model
training methods), or the stochastic formulation of the framework itself (Federated SGLD or other
Bayesian FL methods). We show that KLMS reduces the communication cost down to this fun-
damental quantity (KL divergence) in each scenario, resulting in up to 50 times improvement in
communication efficiency (sometimes with higher accuracies) over FedPM, QLSD, and QSGD among
other non-stochastic competitive baselines such as SignSGD [44], TernGrad [262], DRIVE [246],
EDEN [247], and FedMask [153]. To achieve this efficiency, we use an importance sampling algo-
rithm [58, 106] by improving and extending the previous theoretical guarantees to the distributed
setting. Different from prior work that used importance sampling in the centralized setting to
compress model parameters [108] or focused on differential privacy implications [219, 240], KLMS
selects more natural pre-data pθ(t) and post-data qϕ(t,n) distributions that are intrinsic to the FL
setting, and optimizes the bit allocation across both the training rounds and the model coordi-
nates in an adaptive way to achieve the optimal bitrate, while also eliminating a hyperparameter
required by prior work [108, 240]. Our contributions can be summarized as follows:

(1) We propose a road map to utilize various forms of side information available to both the
server and the clients to reduce the communication cost in FL. We give concrete examples of
how to code model updates under different setups, including probabilistic mask training (e.g.,
FedPM), deterministic model training with stochastic compressors (e.g., QSGD), and Bayesian FL
(e.g., Federated SGLD).

(2) We extend the importance sampling results to the distributed setting with theoretical
improvements.

(3) We propose an adaptive bit allocation strategy that eliminates a hyperparameter required
by prior work, and allows a better use of the communication budget across the model coordinates
and rounds.

(4) We demonstrate the efficacy of our strategy on MNIST, EMNIST, CIFAR-10, and CIFAR-
100 datasets, and show improvements in accuracy with up to 50 times gains in bitrate (with
sometimes higher accuracies) over relevant baselines such as FedPM [200], QLSD [253], QSGD [24],
SignSGD [44], TernGrad [262], DRIVE [246], EDEN [247], FedMask [153], and DP-REC [240].

2.4.2 KL Divergence Minimization with Side Information (KLMS)

We first describe our approach, KLMS, together with theoretical guarantees; then, we introduce
our adaptive bit allocation strategy to optimize the bitrate across training rounds and model
coordinates to reduce the compression rate; finally,we give four concrete examples where KLMS

improves the accuracy-bitrate tradeoff.

41

KLMS for Stochastic FL Frameworks

We first point out that our proposal is not a stand-alone FL framework to replace existing alterna-
tives, rather, it represents a general recipe that can be integrated into many existing (stochastic)
frameworks to improve their accuracy-bitrate performance significantly. The main idea behind
KLMS is grounded in three important observations:

(1) In many existing FL frameworks, the updates communicated from the clients to the server
are samples drawn from some optimized post-data distributions, e.g., QSGD [24] and FedPM [200].

(2) Sending a random sample from a distribution can be done much more efficiently than first
taking a sample from the same distribution, and then sending its deterministic value [236].

(3) The knowledge acquired from the historical updates, available both at the server and the
clients, can help reduce the communication cost drastically by playing the role of side information.

KLMS is designed to reduce the communication cost in FL by taking advantage of the above
observations. It relies on common randomness between the clients and the server in the form
of a random SEED (i.e., they can generate the same random samples from the same distribution)
and also on the side information available to the server and the clients. Without restricting
ourselves to any specific FL framework (we will do this in Section 2.4.3), suppose the server
and the clients share a pre-data distribution pθ(t) , and each client has a post-data distribution
qϕ(t,n) after the local training steps. As stated in Section 2.4.1, the goal of the server is to
compute EX(t,n)∼q

ϕ(t,n) ,∀n∈[N]

[
1
N

∑N
n=1X

(t,n)
]
after each round. While this can be done by simply

communicating samples x(t,n) ∼ qϕ(t,n) , we note that the communicated samples do not need to be
the exact same samples that are generated at the client’s side. Therefore, instead of communicating
a specific realization x(t,n) ∼ qϕ(t,n) , KLMS communicates a sample y(t,n) according to some other
distribution q̃π(t,n) such that (i) it is less costly to communicate a sample from q̃π(t,n) rather than
qϕ(t,n) , and (ii) the discrepancy

E =

∣∣∣∣∣EY (t,n)∼q̃
π(t,n) ,∀n∈[N]

[
1

N

N∑

n=1

Y (t,n)

]
− EX(t,n)∼q

ϕ(t,n) ,∀n∈[N]

[
1

N

N∑

n=1

X(t,n)

]∣∣∣∣∣ (2.21)

is sufficiently small. Motivated by this, each round of KLMS runs as described in Algorithm 2.1. In
Theorem 5, we show that the discrepancy in Eq. (2.21) is upper bounded whenK ≃ exp{(DKL(qϕ||pθ))}.
We actually prove it for a general measurable function f(·), for which the discrepancy in Eq. (2.21)
is a special case when f(·) is the identity. We note that the previous results on the single-user
scenario (N = 1) [58, 108] are special cases of our more general framework with N users.

Theorem 5. Let pθ and qϕ(n) for n = 1, . . . , N be probability distributions over set X equipped with
some sigma-algebra. Let X(n) be an X-valued random variable with law qϕ(n) . Let r ≥ 0 and q̃π(n)

for n = 1, . . . , N be discrete distributions each constructed by K(n) = exp
{(
DKL(qϕ(n) ||pθ) + r

)}

samples {y(n)
[k] }K

(n)

k=1 from pθ defining π(n)(k) =
q
ϕ(n) (y

(n)

[k]
)/pθ(y

(n)

[k]
)

∑

K(n)

l=1 q
ϕ(n) (y

(n)

[l]
)/pθ(y

(n)

[l]
)
. Furthermore, for mea-

surable function f(·), let ∥f∥qϕ
=
√
EX(n)∼q

ϕ(n) ,∀n∈[N][(
1
N

∑N
n=1 f(X

(n)))2] be its 2-norm under

42

qϕ = qϕ(1) , . . . , qϕ(N) and let

ϵ =


e−Nr/4 + 2

√√√√
N∏

n=1

P(log
(
qϕ(n)/pθ

)
> DKL(qϕ(n)∥pθ) + r/2)




1/2

. (2.22)

Defining q̃π(n) over {y(n)
[k] }K

(n)

k=1 as q̃π(n)(y) =
∑K(n)

k=1 π(n)(k) · 1(y(n)
[k] = y), it holds that

P

(∣∣∣∣∣ E
Y (n)∼q̃

π(n) ,∀n

[
1

N

N∑

n=1

f(Y (n))

]
− E

X(n)∼q
ϕ(n) ,∀n

[
1

N

N∑

n=1

f(X(n))

]∣∣∣∣∣ ≥
2∥f∥qϕ

ϵ

1 − ϵ

)
≤ 2ϵ, (2.23)

See Appendix 2.7.2 for the proof. This result implies that whenK(n) ≃ exp
(
DKL(qϕ(t,n)∥pθ(t))

)
,

the discrepancy in Eq. (2.21) is small. In practice, we work on blocks of parameters such that
DKL(qϕ(t,n)∥pθ(t)) for each block is the same for all clients n ∈ [N]. Hence, we omit the superscript
(n) from K(n) and denote the number of samples by K for each client. In Section 2.4.4, we
experiment on a toy model and observe that, for a fixed K, the discrepancy in Eq. (2.21) gets
smaller as the number of clients N increases, gaining from the participation of more clients in each
round.

Adaptive Block Selection for Optimal Bit Allocation

Figure 2.15: Average KL di-
vergence between local post-
data distributions of clients and
the global pre-data distribution,
for different layers and rounds
(FedPM [200] is used to train
CONV6 on CIFAR-10).

Prior works that have applied importance sampling for
Bayesian neural network compression [108], or for differentially
private communication in FL [240] split the model into several
fixed-size blocks of parameters, and compress each block sep-
arately and independently to avoid the high computational
cost – which exponentially increases with the number of pa-
rameters d. After splitting the model into fixed-size blocks
with S parameters each, the authors in [108, 240] choose a sin-
gle fixed K (number of samples generated from p

(t)
θ) for each

block no matter what the KL divergence is for different blocks.
This yields the same bitrate logK

S for every model parameter.
Furthermore, in [240] the same K throughout training is used
without considering the variation in KL divergence over rounds.
However, as illustrated in Figure 2.15, KL divergence changes
significantly across different layers of the model and across
rounds. Hence, spending the same bitrate logK

S for every pa-
rameter at every round is highly suboptimal since it breaks the
condition in Theorem 5.

To fix this, we propose an adaptive block selection mecha-
nism, where the block size is adjusted such that the KL divergence for each block is the same
and equal to a target value, Dtarget

KL . This way, the optimal K for each block is the same and

43

approximately equal to Dtarget
KL , and we do not need to set the block size S ourselves, which was

a hyperparameter to tune in [108, 240]. Different from the fixed-size block selection approach
in [108, 240], the adaptive approach requires describing the locations of the adaptive-size blocks,
which adds overhead to the communication cost. However, exploiting the temporal correlation
across rounds can make this overhead negligible. More specifically, we first let each client find
their adaptive-size blocks, each having KL divergence equal to Dtarget

KL , in the first round. Then
the clients communicate the locations of these blocks to the server, which are then aggregated by
the server to find the new global indices to be broadcast to the clients, i.e., federated aggregation
of block locations. At later rounds, the server checks if, on average, the new KL divergence of
the previous blocks is still sufficiently close to the target value Dtarget

KL . If so, the same adaptive-
size blocks are used in that round. Otherwise, the client constructs new blocks, each having KL
divergence equal to Dtarget

KL , and updates the server about the new locations. Our experiments
indicate that this update occurs only a few times during the whole training. Therefore, it adds
only a negligible overhead on the average communication cost across rounds. We provide the
pseudocodes for KLMS with both fixed- and adaptive-size blocks in Section 2.7.1.

2.4.3 Examples of KLMS Adaptated to Well-Known Stochastic FL Frame-
works

In this section, we provide four concrete examples illustrating how KLMS can be naturally integrated
into different FL frameworks with natural choices of pre-data and post-data distributions. Later,
we present experimental results showing the empirical improvements KLMS brings in all these cases.
The corresponding pseudocodes are given in Section 2.7.1.

FedPM-KLMS: As described in Section 2.4.1, in FedPM [200], the server holds a global proba-
bility mask, which parameterizes a probability distribution over the mask parameters – indicating
for each model parameter, with what probability it should remain in the subnetwork. Similarly,
each client obtains a local probability mask after local training – parameterizing their locally up-
dated probability assignment for each model parameter to remain in the subnetwork. Choosing
the global probability mask θ(t) as the parameters of the pre-data distribution pθ(t) and the local
probability mask ϕ(t,n) as the parameters of the post-data distribution qϕ(t,n) is only natural since
the goal in [200] is to send a sample from the local probability distribution Bern(·;ϕ(t,n)) with
as few bits as possible. This new framework, FedPM-KLMS, provides 50 times reduction in bitrate
over vanilla FedPM.

QSGD-KLMS: As explained in detail in Section 2.4.1, QSGD [24] is a stochastic quantization
method for FL frameworks that train deterministic model parameters, which outperforms many
other baselines in the same setting. Focusing on the most extreme case when the number of
quantization levels is s = 1, we can express the QSGD distribution follows:

44

pQSGD(v̂
(t,n)
i) =





max

{
−v

(t,n)
i

∥v(t,n)∥
, 0

}
if v̂

(t,n)
i = −∥v(t,n)∥

max

{
v
(t,n)
i

∥v(t,n)∥
, 0

}
if v̂

(t,n)
i = ∥v(t,n)∥

1 − max

{
−v

(t,n)
i

∥v(t,n)∥
,

v
(t,n)
i

∥v(t,n)∥
, 0

}
if v̂(t,n)

i = 0

, (2.24)

which is again a very natural choice of post-data distribution qϕ(t,n) since vanilla QSGD requires the
clients to take a sample from pQSGD(·) in Eq. (2.24) and communicate the deterministic value of
that sample to the server. As for the pre-data distribution, exploiting the temporal correlation in
FL, we use the empirical frequencies of the historical updates the server received in the previous
round. In other words, in every round t, the server records how many clients communicated a
negative value (corresponding to −∥v(t,n)∥), a positive value (corresponding to ∥v(t,n)∥), or 0 per
coordinate, and constructs the pre-data distribution pθ(t) from these empirical frequencies for the
next rounds. This new framework, QSGD-KLMS, yields 12 times reduction in bitrate over vanilla
QSGD.

SignSGD-KLMS: Since SignSGD [44] is not a stochastic quantizer, we first introduce some
stochasticity to the vanilla SignSGD algorithm and then integrate KLMS into it. Instead of mapping
the updates to their signs ±1 deterministically as in vanilla SignSGD, the stochastic version we
propose does this mapping by taking a sample from the following SignSGD distribution

pSignSGD(v̂
(t,n)
i) =




Sigmoid(v

(t,n)
i

M) if v̂
(t,n)
i = 1

1 − Sigmoid(v
(t,n)
i

M) if v̂
(t,n)
i = −1

, (2.25)

for some M > 0. Instead of taking a sample from pSignSGD(·) and sending the deterministic value
of the sample by spending 1 bpp, we can take advantage of the sign symmetry in the model
update (about half of the coordinates have positive/negative signs in the update) and reduce the
communication cost. For this, we choose pSignSGD(·) in Eq. (2.25) as the post-data distribution
qϕ(t,n) , and the uniform distribution U(0.5) from the support {−1, 1} as the pre-data distribution
pθ(t) . This new method, SignSGD-KLMS, achieves higher accuracy than vanilla SignSGD with 60

times smaller bitrate.
SGLD-KLMS: From the Bayesian FL family, we focus on the recent SGLD framework [253] as

an example since it provides state-of-the-art results. As explained in detail in Section 2.4.1, due to
the stochastic formulation of the Bayesian framework, it is natural to choose the local posterior dis-
tributions as the post-data distribution qϕ(t,n) , and the global posterior distribution at the server
as the pre-data distribution pθ(t) . While extending the existing SGLD algorithm (see Section 2.4.1)
with KLMS, we inject Gaussian noise locally at each client and scale it such that when all the
samples are averaged at the server, the aggregate noise sample ξ(t) (see Eq. (2.20)) is distributed
according to N(0, Id) (more details in Section 2.7.1). This new framework, SGLD-KLMS, provides
both accuracy and bitrate gains over QLSD [253] – the state-of-the-art compression method for

45

Federated SGLD.

2.4.4 Experiments

Table 2.5: LeNet architecture for MNIST experiments.

Name Component
conv1 [5 × 5 conv, 20 filters, stride 1], ReLU, 2 × 2 max pool
conv2 [5 × 5 conv, 50 filters, stride 1], ReLU, 2 × 2 max pool
Linear Linear 800 → 500, ReLU

Output Layer Linear 500 → 10

We empirically demonstrate the accuracy and bitrate improvements obtained with KLMS by
focusing on four KLMS adaptations we covered in Section 2.4.3. We consider four datasets: CIFAR-
10 [142], CIFAR-100 [142], MNIST [77], and EMNIST [66] (with 47 classes). For CIFAR-100,
we use ResNet-18 [111]; for CIFAR-10, a 6-layer CNN CONV6; for MNIST a 4-layer CNN CONV4
and LeNet; and for EMNIST, again CONV4. Specifically, details on the CNNs can be found in in
Table 2.1, while Table 2.4 and Table 2.5 summarize the architectures of ResNet-18 and LeNet,
respectively. We first compare FedPM-KLMS, QSGD-KLMS, and SignSGD-KLMS with FedPM [200],
QSGD [24], SignSGD [44], TernGrad [262], DRIVE [246], EDEN [247], FedMask [153], and DP-REC [240]
on non-Bayesian FL setting. We then provide a comparison of SGLD-KLMS with QLSD [253] on
the Bayesian FL scenario. Finally, we present a key ablation study to show how the adaptive
block selection strategy in Section 2.4.2 optimizes the bit allocation and helps achieve a smaller
bitrate. In the non-Bayesian experiments, clients performed three local epochs with a batch size of
128 and a local learning rate of 0.1; while in the Bayesian experiments, they performed one local
epoch. We conducted our experiments on NVIDIA Titan X GPUs on an internal cluster server,
using 1 GPU per one run. During non-i.i.d. data split, we choose the size of each client’s dataset
|D(n)| = Dn by first uniformly sampling an integer jn from {10, 11, . . . , 100}. Then, a coefficient

jn
∑

n jj
is computed, representing the size of the local dataset Dn as a fraction of the full training

dataset size. Moreover, we impose a maximum number of different labels, or classes, cmax, that
each client can see. This way, highly unbalanced local datasets are generated.

Non-Bayesian Federated Learning

i.i.d. Data Split: For the i.i.d. dataset experiments in Figure 2.16, we set the number of clients
to N = 10 and consider full client participation. As can be seen from Figure 2.16, FedPM-KLMS
and SignSGD-KLMS provide 50 times reduction in communication cost compared to FedPM and
SignSGD, respectively (together with the accuracy boost over vanilla SignSGD). QSGD-KLMS, on the
other hand, reduces the communication cost by 12 times over vanilla QSGD. Overall, among our
baselines, QSGD requires the smallest bitrate, and FedPM achieves the highest accuracy. Surpris-
ingly, FedPM-KLMS requires 10 times smaller bitrate than QSGD while achieving the same accuracy
as FedPM at the same time – consistently in all the experiments. The consistent and significant
improvements over DP-REC (in both bitrate and accuracy) justify the importance of (i) carefully

46

Figure 2.16: FedPM-KLMS, QSGD-KLMS, and SignSGD-KLMS against FedPM [200], QSGD [24],
SignSGD [44], TernGrad [262], DRIVE [246], EDEN [247], FedMask [153], and DP-REC [240] with
i.i.d. split and full client participation. The bottom row replicates the upper row zoomed into
lower bitrates.

choosing the pre-data and post-data distributions, and (ii) the adaptive block selection that opti-
mizes the bit allocation.

Non-i.i.d. Data Split: For the non-i.i.d. experiments in Figure 2.17, we only compare against
the best of our baselines from the i.i.d. results – namely FedPM, QSGD, DRIVE, EDEN, and DP-REC.
We set the number of clients to N = 100 and let randomly sampled 20 of them participate in each
round. In this scenario, local datasets contain at most cmax different classes, and their sizes are
highly skewed. In the experiments in Figure 2.17, we set cmax = 20 for CIFAR-100 and cmax = 4

for CIFAR-10. Figure 2.17 shows similar gains over the baselines as the i.i.d. experiments in
Figure 2.16; in that, KLMS adaptations provide up to 50 times reduction in the communication cost
compared to the baselines with final accuracy as high as the best baseline. This indicates that the
statistical heterogeneity level in the data split, while reducing the performance of the underlying
training schemes, does not affect the improvement brought by KLMS. We later corroborate this
observation with additional experiments.

Figure 2.17: FedPM-KLMS, QSGD-KLMS, and SignSGD-KLMS against FedPM [200], QSGD [24],
DRIVE [246], EDEN [247], and DP-REC [166] with non i.i.d. split and 20 out of 100 clients par-
ticipating every round.

In the end in Figure 2.18 we give the results on CONV6 and ResNet-18 on non-i.i.d. CIFAR-10
with cmax = 2 and CIFAR-100 with cmax = 20, respectively. In both experiments, 10 clients out
of 100 clients participate in each round. It is seen that similar accuracy and bitrate improvements
are observed to the non-i.i.d. results in Figure 2.17.

47

Figure 2.18: Comparison of FedPM-KLM, QSGD-KLM, and SignSGD-KLM with FedPM [200], QSGD [24],
DRIVE [246], EDEN [247], and DP-REC [166] with non i.i.d. split and 10 out of 100 clients participating
every round.

Bayesian Federated Learning

We present the comparison of SGLD-KLMS with QLSD [253] in Figure 2.19-(left). We consider i.i.d.
data split and full client participation with the number of clientsN = 10. It is seen that SGLD-KLMS
can reduce the communication cost by 5 times more than QLSD with higher accuracy on MNIST,
where in this case the accuracy is a Monte Carlo average obtained by posterior sampling after
convergence.

Figure 2.19: (left) SGLD-KLMS against QLSD [253] using LeNet on i.i.d. MNIST dataset. (right)
FedPM-KLMS (fixed) against FedPM-KLMS (adaptive) on how well the number of bits approaches
the fundamental quantity, KL divergence – using CONV6 on i.i.d. CIFAR-10. Both KL divergence
and the number of bits are normalized by the number of parameters. The final accuracies that
FedPM-KLMS (fixed) and FedPM-KLMS (adaptive) reach differ by only 0.01%.

Ablation Study: The Effect of the Adaptive Bit Allocation Strategy

We conduct an ablation study to answer the following question: Does adaptive bit allocation
strategy really help optimize the bit allocation and reduce # bits down to KL divergence? To answer
this question, in Figure 2.19-(right), we show how the average per-parameter KL divergence and
bits spent per parameter change over the rounds for FedPM-KLMS with fixed- and adaptive-size
blocks. We adjust the hyperparameters such that the final accuracies differ by only 0.01% on
CIFAR-10. For the fixed-size experiments, since we fix K (number of samples per block) and the
block size for the whole model and across rounds, # bits per parameter stays the same while the
KL divergence shows a decreasing trend. On the other hand, in the adaptive-size experiments,
the block size changes across the model parameters and the rounds to guarantee that each block
has the same KL divergence. Since all blocks have the same KL divergence, we spend the same

48

bits for each block as suggested by Theorem 5, which adaptively optimizes the bitrate towards
the KL divergence. This is indeed justified in Figure 2.19-(right) since the # bits curve quickly
approaches the KL divergence curve.

Additional Experimental Results

KLMS on a Toy Model We provide additional insights on KLMS employed in a distributed setup
similar to that of FL. Specifically, we design a set of experiments in which the server keeps a
pre-data distribution p = N(0, 1), and N clients need to communicate samples according to their
local post-data distributions {q(n)}Nn=1 = {N

(
µ(n), 1

)
}Nn=1, which are induced by a global and

unknown distribution q = N (µ, 1). Each client n applies KLMS (see Algorithm 2.1) to communicate
a sample x(n) from q(n) using as coding distribution the pre-data distribution p. The server then
computes µ̂ = 1

N

∑N
n=1 x

(n) to estimate µ. We study the effect of N , i.e., the number of clients
communicating their samples, on the estimation of µ in different scenarios by varying the rate
adopted by the clients and the complexity of the problem.

The effect of the overhead r In this example, we simulate an i.i.d. data split by providing all
the clients with the same local post-data distribution q(n) = N (0.8, 1) ∀n ∈ [N]. We analyze the
bias in the estimation of µ by computing a Monte Carlo average of the discrepancy in Eq. (2.21)
(see Figure 2.20-(right)), together with its empirical standard deviation (see Figure 2.20-(left)).
From Figure 2.20, we can observe that, as conjectured, the standard deviation of the gap decreases
when N increases, meaning that the estimation is more accurate around its mean value, which
is also better for larger values of N . Also, as expected, a larger value of the overhead r induces
better accuracy.

Figure 2.20: Estimation gap statistics for different values of r, as a function of the number of
participating clients N . (left) The empirical standard deviation of the estimation gap, computed
over 100 runs. (right) Estimation gap between µ and µ̂ averaged over 100 runs.

The effect of non-i.i.d. data split In this other set of experiments we simulate a non-i.i.d.
data split by inducing, starting from the same pre-data distribution p, different local post-data
distributions, simulating drifts in updates statistics due to data heterogeneity. Specifically, we

49

set again µ = 0.8, and then, ∀n ∈ [N], µ(n) = 0.8 + u(n), where u(n) ∼ Unif([−η, η]), for η ∈
{0.05, 0.1, 0.25, 0.4}. In all experiments, r = 6. As we can see from Figure 2.21, when N is very
small (∼ 1), then high level of heterogeneity in the update statistics can indeed lead to poor
estimation accuracy. However, for reasonable values of N , this effect is considerably mitigated,
suggesting that for real-world applications of FL, where the number of devices participating to
each round can be very large, KLMS can still improve state-of-the-art compression schemes by large
margin.

Figure 2.21: Estimation gap statistics for different values of η, as a function of the number of
participating clients N . (left) The empirical standard deviation of the estimation gap, computed
over 100 runs. (right) Estimation gap between µ and µ̂ averaged over 100 runs.

2.4.5 Discussion & Conclusion
We introduced KL Divergence Minimization with Side Information (KLMS) – a recipe for reducing
the communication cost in stochastic FL frameworks by exploiting the side information available
to the server and correlated with the local model updates. We highlighted the existence of highly
natural choices of pre-data distribution (side information at the server) and post-data distribution
(at the clients) in FL that we can take advantage of to reduce the communication cost significantly.
Moreover, we showed how to adaptively adjust the bitrate across the model parameters and
training rounds to achieve the fundamental communication cost – the KL divergence between
the pre-data and post-data distributions. While we showed four KLMS adaptations that reduce
the communication cost 50 times more than our baselines and still preserve (sometimes improve)
the accuracy, it can be adapted to many other stochastic FL frameworks and can provide similar
communication gains.

2.5 Semantic Communications for Learnable Concepts

2.5.1 Introduction and Motivation
With the growing number of mobile devices and sensors, massive amounts of data are collected
today at the edge of communication networks. On the one hand, this data is the fuel for training

50

Figure 2.22: The problem of communicating concepts.

large learning models like DNNs; on the other hand, these models need to be stored, compressed,
and communicated over bandwidth limited channels to the cloud, and protected against security
and privacy risks [267]. These issues are increasingly limiting the application of typical central-
ized training approaches. As we have seen throughout the chapter, various federated/distributed
learning paradigms have emerged as potential solutions to mitigate these limitations, which allow
the models to be locally trained, and then aggregated in a cloud or edge server without moving
local private data [171]. The main paradigm shift in distributed learning is to move the models,
rather than the data, throughout the network, providing better privacy guarantees and reducing
the communication load. However, today even the sizes of such learned models are becoming
a concern, as transmitting huge models back and forth for training or inference purposes can
easily congest wireless networks, specifically when considering that the edge devices like mobile
phones, cars, robots etc., are usually wirelessly connected to the network, and thus have limited
bandwidth [124].

Consequently, it is time to investigate, with the proper information-theoretic models and tools,
the fundamental limits of communicating models over rate-limited channels, and not just raw data.
To this end semantic communications, which concerns with the semantic aspect of the message,
maps naturally to the transmission of these learning models [100]. The communication fidelity of
these models can be judged by how close the behavior of the reconstructed model at the receiver is
to the desired one, rather than by the accuracy of the reconstruction in the parameter space [124].

2.5.2 System Model

Let E denote the environment, i.e., the source, that generates a sequence of n concepts, e.g., tasks,
{ci}ni=1, ci ∈ C, sampled with probability PC in an i.i.d. fashion. While PC is known by both
Alice and Bob, neither of them can observe the sampled concepts directly. Alice has access to a
sequence of m samples {zi,j}mj=1, where zi,j = (xi,j , yi,j) ∈ Z, sampled according to each of the

51

concept distributions pci(Y |X)pci(X), ∀i = 1, . . . , n. Alice and Bob agree on a hypothesis class,
i.e., the model class H, and on a pre-data coding probability distribution Ph, ∀h ∈ H. We call the
sequence {zi,j}mj=1 of samples the dataset si. Alice applies a learning algorithm A : Zm → Φ(H)

on si, which is a possibly stochastic function mapping a dataset to a probability distribution
Qh|si = A(si) over the set of modelsH, and so, over the subset of all possible probability mappings
h : X → Φ(Y), representing Alice’s concept belief. With Φ(X) we denote the set of all possible
probability distributions over the set X. Consequently, the models are functions used by Alice
and Bob to represent (or, more precisely, to approximate) the concepts’ relation among data. To
measure how well a model h approximates a concept c, a per-sample loss ℓc(h, z) : H × Z → [0, 1]

is defined, which compares the discrepancy between pc(y|x) and h(x). In this work, we assume a
bounded loss within [0, 1] for the sake of clarity of exposition. Then, ℓc(Q, z) : Φ(H) × Z → [0, 1]

is the performance of the model belief Q, which is defined as ℓc(Q, z) = Eh∼Q [ℓc(h, z)]. Upon
observing the data, Alice can compute her empirical performance by using the empirical loss on
her dataset S as

L̃C(Q,S) =
1

|S|
∑

z∈S

ℓC(Q, z), (2.26)

where Q = QH|S = A(S) is the post-data distribution inferred by Alice, given the data. We as-
sume that, for any sequences of datasets sn, s′n, Alice’s distribution can be factorized as Qn

hn|sn =∏n
i=1Qhi|si such that si = s′j ⇒ Qhi|si = Qhj |s′j

. However, to assess how well the belief Q repre-
sents the concept C, in machine learning we are usually interested in the true loss

LC(Q) = EZ∼C [ℓC(Q,Z)] , (2.27)

i.e., the expected performance on a new unseen sample. Given the realization of the datasets
{si}ni=1, the problem for Alice is then to convey a message to Bob through a constrained commu-
nication channel, which limits the maximum number of bits she can convey per model, so that
Bob can use the received information to reconstruct models {ĥi}ni=1 that can approximate the
concepts {ci}ni=1 by minimizing the loss on random samples {zi}ni=1 distributed according to the
sequence of concepts, i.e., the true loss in Equation Eq. (2.27). We can observe that the task for
Bob is not to exactly reconstruct the sequence {hi}ni=1 sampled by Alice, but rather to obtain
samples {ĥi}ni=1 whose probability distributions are close to the target ones, i.e., {Qhi|si}ni=1.

Remark. We now briefly discuss why we are interested in learning rules A(S) that output
model distributions, rather than single-point solutions:

• First of all, the case in which Alice finds a point-wise estimate of the best model h∗ is
included as a special case Qh|S = δh∗ .

• Alice may want to express her uncertainty around the best choice h∗, which may be intrinsic
in the learning algorithm A, through the distribution Qh|S .

• Usually, optimization algorithms used to train DNNs, like SGD, are stochastic algorithms.

52

• When H is the set of all DNNs hω with a specific architecture parameterized by the pa-
rameter vector ω, there exist many vectors ω performing in the same way. Moreover, small
perturbations to the parameters usually does not reduce the final performance. This means
that it is not required for Bob to reconstruct the exact value of the network parameters, but
rather a nearby or an equivalent solution, and this variability is represented by Qhω|S . More
importantly, Qhω|S can be exploited to reduce the rate needed to convey the models, thus
saving network resources [108]. This is the semantic aspect of communication captured by
our framework, as the meaning of a concept c, i.e., the real unknown mapping, is conveyed
through the model belief Qh|S , whose loss expressed in Equation Eq. (2.27) quantifies its
fidelity with respect to the real concept c.

2.5.3 The Rate-Distortion Characterization

In this section, we first characterize the limit of the problem when n = 1, i.e., one-shot concept
communication, and then generalize the problem to the n-sequence formulation. For the latter, two
kinds of performance metrics are defined: the first one provides average performance guarantees,
while the second one ensures the same performance guarantee for each sample ĥ. We will show
that the minimum achievable communication rate that can guarantee a certain distortion level
is the same in both cases, as long as sufficient common randomness between Alice and Bob is
available.

Single-Shot Problem

The single-shot version of the problem has been studied in [108], where the authors propose
MIRACLE, a neural network compression framework based on bits back coding [95], providing an
efficient single-shot model compression scheme showing empirically that, with enough common
randomness, it is possible to convey the model with an average of K ≃ DKL(Q||P) bits with very
good performance, where P is the pre-data coding model distribution, and Q is the optimized
post-data distribution, providing a belief over well-performing neural networks, or, equivalently,
over a set of parameter vectors, as explained in Section 2.5.2. However, from Lemma 1.5 in [105],
the average number of bits EC,S [K] needed to exactly code Q with P , when sufficient common
randomness is available, can be bounded by

R ≤ EC,S [K] ≤ R+2 log (R + 1) + O(1), (2.28)

where R = EC,S [DKL(Q||P)], while using exactly R bits may lead to samples which are distributed
according to Q̃, slightly different from the target Q [105]. More recent results [155] allow to find
even stronger guarantees (Corollary 3.4 in [235]) for this relationship:

EC,S [K] ≤ R + log (R + 1) + 4. (2.29)

53

n-Length Formulation

We now study the problem depicted in Figure 2.22, when we let Alice code a sequence of n
concept realizations, i.e., datasets, and study the information-theoretic limit of the system as
n → ∞. Specifically, we are interested in the trade-off between the rate R, which is defined as the
average number of bits consumed per model by Alice to convey the concept process to Bob, and
the performance, which is the true loss that can be obtained by Bob (see Eq. (2.27)). We start by
defining the proper quantities involved.

Definition 6 (Rate-Distortion Coding Scheme). A (2nR, n) coding scheme consists of an al-
phabet X, a reconstruction alphabet X̂, an encoding function fn : Xn → {1, 2, . . . , 2nR}, a de-
coding function gn : {1, 2, . . . , 2nR} → X̂

n
, and a distortion measure d : Xn × X̂

n → R
+, com-

paring the fidelity between xn and x̂n. Specifically, we are interested in the expected distortion
E [d(xn, x̂n)] =

∑
xn∈Xn p(xn)d(xn, gn(fn(x

n))).

Definition 7 (Rate-Distortion). A rate-distortion pair (R, ϵ) is said to be achievable for a source
p(x) and a distortion measure d, if there exists a sequence of (2nR, n) rate-distortion coding schemes
with

lim
n→∞

E [d(xn, gn(fn(x
n)))] < ϵ. (2.30)

However, as specified in the remark in Section 2.5.2, we are interested in conveying beliefs
Q ∈ Φ(H), i.e., samples drawn according to the probability Q, obtained from the datasets sn ∈ Sn,
where Sn = Zm. In our case, the coding function fn : Sn → {1, 2, . . . , 2nR} maps the sequence
sn = {si}ni=1 to a message fn(sn) from which Bob can obtain the models ĥ

n
= gn(fn(s

n)). Our
distortion then considers the difference between the ĥ

n
’s distribution Q̂n, and the one achievable

by Alice Qn = {A(si)}ni=1 by comparing their samples ĥ
n
and hn. Consequently, we define with

Q̂Sn,Ĥ
n (or simply Q̂

n) the joint distribution between the datasets and models induced by a
(2nR, n) coding scheme, whose marginals are Q̂Si,Ĥi

for i = 1, . . . , n.

Definition 8 (Concept Distortion). For the problem of communicating concepts, we define the
following distortion on the model beliefs Q and Q̂:

dsem(Q, Q̂) = EC,S

[
LC(Q̂) − LC(Q)

]
. (2.31)

The rationale behind this definition is that Q, which is the target distribution at the transmitter,
is optimized on a given dataset S without any constraint. Therefore, it is reasonable to assume
LC(Q̂) − LC(Q) to be always non-negative. We notice that dsem quantifies the gap between the
concept reconstruction at the receiver and the one at the transmitter, which is a semantic measure
on the unknown true loss L(Q).

Definition 9 (n-Sequence Concept Distortion). For the problem of communicating concepts, we

54

define the following distortion on the sequence of the model beliefs Qn and Q̂n:

davg(Q
n, Q̂

n
) =

1

n

n∑

i=1

dsem(Qi, Q̂i), (2.32)

and

dmax(Q
n, Q̂

n
) = max

i={1,...,n}
dsem(Qi, Q̂i). (2.33)

In practice, davg defines a constraint on the true loss achievable by Bob averaged over the
performance of the sequence ĥ

n ∼ Q̂
n, whereas dmax imposes a constraint on the loss of every

marginal ĥi ∼ Q̂
n

i , i ∈ {1, . . . , n}.
Remark. The distortion, easily defined for one-shot communications, can be generalized to a

sequence of n concepts in multiple ways. Specifically, if one is interested in a system-level loss, then
satisfying the constraint on davg could be enough. However, to provide a per-model guarantee on
the performance, then dmax is the distortion to use.

Definition 10 (Rate-Distortion Region). The rate-distortion region for a source is the closure of
the set of achievable rate-distortion pairs (R, ϵ).

Definition 11 (Rate-Distortion Function). The rate-distortion function R(ϵ) is the infimum of
rates R such that (R, ϵ) is in the rate-distortion region.

Average Distortion davg

We first analyze the problem with the average distortion davg, as defined in Equation Eq. (2.32).

Theorem 12 (Rate-Distortion Theorem for davg). For the problem of communicating concepts
with distortion davg, the rate-distortion function satisfies

R(ϵ) = min
Q̃H|S :

dsem(Q,Q̃)≤ϵ

I(S;H), (2.34)

where I(S;H) is the mutual information between the data S and the model H [69].

Proof. See Appendix 2.7.2

Maximum Distortion dmax

In this case the distortion function implies a constraint on the performance of each symbol, i.e.,
model realization. First of all, we just provide a simple scheme in which limn→∞ davg(Q

n, Q̂
n
) =

0 does not imply limn→∞ dmax(Q
n, Q̂

n
) = 0, meaning that in general a code that achieves 0

distortion on average, may not achieve 0 distortion model-wise, i.e., we cannot guarantee a single-
model performance.

55

Example 2.6. Let H = {h0, h1}, and performance ℓc(h0, z) = 0, ℓc(h1, z) = 1, ∀z ∈ Z, ∀ c ∈ C.
Let ∀ cn ∈ Cn, Alice’s distribution Qi(hj |S) = 1

2 , where j ∈ {0, 1}, and Qn =
∏n

i=1Qi, while
Bob’s distribution is deterministic Q̂2i(h0|S) = 1, Q̂2i+1(h1|S) = 1. Then

davg(Q
n, Q̂

n
) =





1
n

∑n
2
i=1

(
1 − 1

2 + 0 − 1
2

)
= 0, if n is even

1
n [
∑n−1

2
i=1

(
1 − 1

2 + 0 − 1
2

)
+ 1 − 1

2] =
1
2n , otherwise

Thus, limn→∞ davg(Q
n, Q̂

n
) = 0

but

dmax(Q
n, Q̂

n
) = max

{
1 − 1

2
, 0 − 1

2

}
=

1

2

=⇒ lim
n→∞

dmax(Q
n, Q̂

n
) ̸= 0.

The question now is what is needed to ensure the same distortion ϵ to the single-model per-
formance, i.e., to ensure dmax < ϵ, which is of particular interest in the semantic communication
of concepts like the one considered here. We now distinguish between the two ways in which Q̂n

can converge to a target Qn – empirical and strong. These two notions, introduced later, map
precisely onto the difference between convergence of davg and dmax. The focus is changed from
determining which distortion is achievable to what joint distributions of H and S are feasible
under some rate constraint.

First, we extend the encoding and decoding functions fn and gn in Definition 6 to accept
an additional common input ω ∈ Ω, which is generated by a source of common randomness
p(ω). We define a (2nR, 2nR0 , n) stochastic code consisting of functions fn : Sn × {1, . . . , 2nR0} →
{1, 2, . . . , 2nR} and gn : {1, 2, . . . , 2nR} × {1, . . . , 2nR0} → Ĥ

n
, which consumes on average R0

bits of common randomness per sample.

Definition 13. A desired distribution QS,H is achievable for empirical coordination with rate
pair (R,R0) if there exists a sequence of (2nR, 2nR0 , n) codes and a choice of common randomness
distribution p(ω) such that

TV
(
Q̂snĥ

n , QS,H

)
→ 0, (2.35)

where Q̂snĥ
n(s, ĥ) = 1

n

∑n
i=1 1(si,ĥi)=(s,ĥ), TV(Q̂,Q) indicates the total variation between distribu-

tions Q̂ and Q, and 1I = 1 if the condition I is true, and 0 otherwise.

In other words, the empirical coordination property requires that the joint empirical distribution
of the pairs (si, gn(fn(sn))i) converges, in total variation, to the desired distribution. Notice how,
in Example 2.6, the joint distributions Qn and Q̂n converge in their empirical distributions, while
differing letter-wise.

As already pointed out in [71], introducing common randomness does not improve the perfor-
mance of empirical coordination schemes, meaning that any distribution achievable for empirical

56

coordination by a (2nR, 2nR0 , n) coding scheme is also achievable with R0 = 0. Moreover, empiri-
cal coordination schemes can be used to construct rate-distortion schemes for davg [71]. However,
as observed in Example 2.6, they do not equate to the same per-symbol performance requirements.

Definition 14. A desired distribution QD,H is achievable for strong coordination with rate pair
(R,R0) if there exists a sequence of (2nR, 2nR0 , n) coordination codes and a choice of common
randomness distribution p(ω) such that

TV
(
Q̂snĥ

n ,

n∏

i=1

Qsi,hi

)
→ 0, (2.36)

where Q̂snĥ
n is the joint distribution induced by the stochastic coding scheme.

Lemma 15 (dmax Achievability). With sufficient common randomness, the rate-distortion region
(R, ϵ) for dmax is the same as the one for davg.

Proof. See Appendix 2.7.2.

Given a constraint on the distortion ϵ for davg achievable with minimum rate of Rϵ, if Alice
and Bob can use common randomness, then it is possible to satisfy, at the same rate Rϵ, the
same level of distortion ϵ for dmax. To translate it into machine learning parlance, we showed
that the communication rate needed to provide some performance guarantees on the expected
average system test error, and on the expected single-model performance, is the same, as long as
sufficient common randomness is available. In both cases, the characterization is over the expected
performance, thus for any one realization the k-th model might have higher than desired loss.

Coding Without the Marginal QH

We notice that all the previous achievability results assume knowledge of the exact marginal
QH =

∑
c∈C,s∈Zm QH|sPs|cPc to be used as pre-data coding model distribution (see Section 2.5.2),

which is usually not known and difficult to obtain. Consequently, we are interested in studying
the minimum achievable rate, when a generic coding distribution PH is used to code QH|S .

Theorem 16 (Achievability with General PH). For the problem of communicating concepts, the
minimum achievable rate for both davg and dmax with pre-data coding distribution PH is

R(ϵ) = min
Q̃H|S :

dsem(Q,Q̃)≤ϵ

EC,S

[
DKL

(
Q̃H|S∥PH

)]
, (2.37)

assuming sufficient common randomness.

Proof. See Appendix 2.7.2.

It is known that when PH = QH , i.e., using the marginal, Equation Eq. (2.37) is minimized, and
so when the marginal is not known we pay an additional penalty given by EC,S

[
DKL

(
QH|S∥PH

)]
−

I(S;H) = EC,S [DKL (QH∥PH)].

57

2.6.1 Communicating the Data vs Communicating the Model

To motivate our research problem, we comment on the advantages for Alice of first compressing
a trained model, and then sending it to Bob (scheme 1), versus a second framework (scheme 2),
in which Alice communicates a compressed version of the dataset Ŝ2

= ρ(S), using which Bob
trains his models. Given a quantity X, we indicate with Xi the same quantity in the i-th scheme.
First of all, we see that in scheme 1, the corresponding Markov chain is C → S

R−→ Ĥ
1, where

the R above the arrow indicates the information bottleneck between the two random variables.
However, the same chain for the second scheme reads C → S

R−→ Ŝ
2 → Ĥ

2. By the data processing
inequality [69], the rate constraint imposes I(S; Ĥ) ≤ R in both cases, limiting the set of all feasible
beliefs Q ∈ Φ(Ĥ).

Now, we reasonably assume that the optimal solution Q∗(S,H) constrained to I(S;H) ≤ R

lies on the boundary of the constraint, i.e., IQ∗(S;H) = R, where IQ∗(S;H) indicates that the
mutual information is computed using Q∗. In this case we can see that for scheme 1, I(S; Ĥ1

) =

R, whereas for scheme 2, I(S; (Ŝ2
, Ĥ

2
)) = R. Indeed, in the former scheme Alice conveys just

the random variable Ĥ1, i.e., the model, to Bob, whereas in the latter, the pair (Ŝ
2
, Ĥ

2
) is

communicated. However, the information bottleneck is the same. Consequently, we obtain

I(S; Ĥ
1
) = I(S; Ĥ

2
) + I(S; Ŝ

2|Ĥ2
). (2.38)

By non-negativity of the mutual information, we always have I(S; Ĥ1
) ≥ I(S; Ĥ

2
), meaning that

the rate constraint on the communication channel translates differently into a model constraint
for the two schemes, being stricter for the second one. In particular, the gap between the two
schemes is exactly I(S; Ŝ2|Ĥ2

). Consequently, for scheme 2 the optimal compression function ρ(S)
must achieve I(S; Ŝ2|Ĥ2

) = 0, and so the only way to match the performance of scheme 1 is to
account for the optimal distribution QĤ|S when computing Ŝ2.

Distortion Rate Bound

In this section, we bound the distortion-rate function for dmax, which is useful to translate the
rate constraint into a performance gap. We now define ∆R = R∗ − R to be the difference between
the rate R∗ of the optimal distribution and the rate R of the channel imposed by the problem.
In general, we assume R∗ ≥ R and EC,S [L(Q∗)] ≤ EC,S [L(Q)], where Q∗ is achievable with rate
R∗, and Q with rate R.

Lemma 17. Assuming that ℓC(z, h) is upper bounded by Lmax ∀h ∈ H, ∀z ∈ Z, ∀C ∈ C, and
that distortion dmax is considered, the distortion-rate function for the problem of communicating
concepts when using scheme 1 can be upper bounded by

ϵ1(∆R) ≤ Lmax · min
{√1

2
∆R,

√
1 − e−∆R

}
, (2.39)

58

and when using scheme 2 by

ϵ2(∆R) ≤ Lmax · min
{√1

2

(
∆R + I(S; Ŝ

2|Ĥ2
)
)
,

√
1 − e

−
(

∆R+I(S;Ŝ
2
|Ĥ

2
)
)}
.

(2.40)

Proof. See Appendix 2.7.2.

2.6.2 Conclusion
We introduce the problem of conveying concepts, where concepts naturally appear as sequences
of samples and can be approximated by learnable models, as in standard statistical learning. We
study the framework by applying information-theoretic tools to the problem of communicating
many models jointly. We characterize its rate-distortion function for two different notions of
system-level distortion, provide a bound for the distortion-rate function, and argue why jointly
learning, compressing, and communicating models should be preferred over compressing and send-
ing the datasets.

59

2.7 Supplementary & Proofs

2.7.1 Pseudocode

FedPM Algorithm

We provide the pseudocode for FedPM in Algorithms 2.2 and 2.3. In Algorithm 2.3, the prior
resetting scheduling policy is controlled by the procedure ResPrior(t), which may depend on
quantities other than the round number t, such as loss.

Algorithm 2.2 FedPM.
Hyperparameters: learning rate η, minibatch size B, number of local iterations τ .
Inputs: local datasets Di, i = 1, . . . , N
Output: random seed SEED and binary mask parameters mk,T

At the server, initialize a random network with weight vector winit ∈ R
d using a random seed

SEED, and broadcast it to the clients.
At the server, initialize the random score vector sg,0 ∈ R

d, and compute θg,0 ← Sigmoid(sg,0).
At the server, initialize Beta priors αg,0 = βg,0 = λ0.
for t = 1, . . . , T

Sample a subset Kt ⊂ {1, . . . , N} of |Kt| = K clients without replacement.
On Client Nodes:
for k ∈ Kt

Receive θg,t−1 from the server and set sk,t = Sigmoid−1(θg,t−1).
for l = 1, . . . , τ

θk,t ← Sigmoid(sk,t)
Sample binary mask mk,t ∼ Bern(θk,t).
ẇk,t ← mk,t ⊙ winit

gradsk,t ← 1
B

∑B
b=1∇ℓ(ẇk,t;Bk

j); {Bk
j }Bj=1 is uniformly chosen from Dk

sk,t ← sk,t − η · gradsk,t

end for

θk,t ← Sigmoid(sk,t)
Sample a binary mask mk,t ∼ Bern(θk,t).
Send the arithmetic coded binary mask mk,t to the server.

end for

On the Server Node:
Receive mk,t’s from K client nodes.
θg,t = BayesAgg({mk,t}k∈Kt

, t) // See Algorithm 2.3.
Broadcast θg,t to all client nodes.

end for

Sample the final binary mask mfinal ∼ Bern(θg,T).
Generate the final model: ẇfinal ← mfinal ⊙ winit.

60

Algorithm 2.3 BayesAgg.
Inputs: clients’ updates {mk,t}k∈Kt

, and round number t
Output: global probability mask θg,t

if ResPriors(t)
αg,t−1 = βg,t−1 = λ0

end if

Compute magg,t =
∑

k∈Kt
mk,t.

αg,t = αg,t−1 + magg,t

βg,t = βg,t−1 + K · 1 − magg,t

θg,t = αg,t−1
αg,t+βg,t−2

Return θg,t

KLMS Pseudocode

In this section, we provide pseudocodes for both versions of KLMS: Algorithm 2.4 with fixed-
sized blocks (Fixed-KLMS), and Algorithm 2.5 with adaptive-sized blocks (Adaptive-KLMS). The
algorithms are standalone coding modules that can be applied to different FL frameworks. In
the experiments in Section 2.4.4, we used Adaptive-KLMS and called it KLMS for simplicity. The
decoding approach at the server is outlined in Algorithm 2.7.

Algorithm 2.4 Fixed-KLMS.
Inputs: post-data qϕ(t,c) and pre-data pθ(t) distributions, block size S, number of per-block
samples K.
Output: selected indices for each block {k(c)∗[m] }Mm=1, where M = ⌈ dS ⌉ is the number of bloks.

Define {q
ϕ
(t,c)

[m]

}Mm=1 and {p
θ
(t,c)

[m]

}Mm=1 splitting qϕ(t,c) and pθ(t) into M distributions on S-size
parameters blocks.
for all m ∈ {1, . . . ,M}

I ← [(m − 1)S : mS].
Take K samples from the pre-data distribution: {y[k]}Kk=1 ∼ p

θ
(t)

[I]

.

α[k] ←
q
ϕ
(t,c)

[I]

(y[k])

p
θ
(t)

[I]

(y[k])
∀k ∈ {1, . . . ,K}.

π(k) ← α[k]
∑

K
k′=1

α[k′]
∀k ∈ {1, . . . ,K}.

Sample an index k(c)∗[m] ∼ π(k).
end for
Send the selected indices {k(c)∗[m] }Mm=1 with M · log2K bits overall for M blocks.

61

Algorithm 2.5 Adaptive-KLMS.
Inputs: post-data qϕ(t,c) and pre-data pθ(t) distributions, block locations M (a list of start
indices of each block), number of per-block samples K, target KL divergence Dtarget

KL , the flag
UPDATE indicating whether the block locations will be updated, the maximum block size allowed
MAX_BLOCK_SIZE.
Output: selected indices for each block {k(c)∗[m] }Mm=1, where the number of blocks M may vary
each round.

if UPDATE
Construct the sequence of per-coordinate KL-divergence of size d: D ←[

DKL(qϕ(t,c)
1
∥p

θ
(t)
1
), DKL(qϕ(t,c)

2
∥p

θ
(t)
2
), . . . , DKL(qϕ(t,c)

d

∥p
θ
(t)
d

)
]
.

Divide D into subsequences of {D[i1 = 1 : i2],D[i2 : i3], . . . ,D[iM : iM+1 = d]} such that
for all m = 1, . . . ,M ,

∑im+1

l=im
D[l] ≈ Dtarget

KL or im+1 − im = MAX_BLOCK_SIZE. Here M , i.e, the
number of blocks, may vary each round.

Construct new block locations: Im ← [im : im+1] for m = 1, . . . ,M .
else

Keep the old block locations I.
end if
Construct per-block post-data {q

ϕ
(t,c)

[Im]

}Mm=1 and pre-data {p
θ
(t)

[Im]

}Mm=1 distributions.
for all m ∈ {1, . . . ,M}

Sample {y[k]}Kk=1 ∼ p
θ
(t)

[Im]

.

α[k] ←
q
ϕ
(t,c)

[Im]

(y[k]).

p
θ
(t)

[Im]

(y[k])
∀k ∈ {1, . . . ,K}.

π(k) ← α[k]
∑

K
k′=1

α[k′]
∀k ∈ {1, . . . ,K}.

Sample k(c)∗[m] ∼ π(k).
end for
if UPDATE

Return the selected indices {k(c)∗[m] }Mm=1 and the new block locations I spending ≈ Dtarget
KL +

log2(MAX_BLOCK_SIZE) bits per block (block sizes are different for each block).
else

Return the selected indices {k(c)∗[m] }Mm=1 spending ≈ Dtarget
KL bits per block (block sizes are

different for each block).
end if

62

Algorithm 2.6 Aggregate-Block-Locations.
Inputs: client block locations {I(t,c)}c∈Ct

.
Output: new global block locations I(t).

Define empty I(t).
mmax ← maxc∈Ct

{
length(I(t,c))

}
.

for m ∈ {1, 2, . . . ,mmax}
ĩm ← 0.
l ← 0.
for c ∈ Ct

if length(I(t,c)) ≥ m

ĩm ← ĩm + I
(t,c)
im

.
l ← l + 1.

end if
end for
īm ← ⌈ĩm/l⌉.
Add īm to I(t).

end for
Return I(t).

Algorithm 2.7 KLMS-Decoder.
Inputs: pre-data pθ(t) distribution, block locations I of M blocks, number of per-block samples
K, selected indices for each block {k(c)∗[m] }Mm=1, where M = ⌈ dS ⌉ is the number of blocks.
Output: The selected samples {y∗

[m]}Mm=1 for each block.

Define {p
θ
(t)

[Im]

}Mm=1 splitting pθ(t) into M distributions with block locations in I.
for all m ∈ {1, . . . ,M}

Take K samples from the pre-data distribution: {y[k]}Kk=1 ∼ p
θ
(t)

[Im]

.
Recover y∗

[m] ← y
k
(c)

[m]

.
end for
Return the selected samples {y∗

[m]}Mm=1 for each block.

63

Pseudocode for Applications KLMS

Algorithm 2.8 FedPM-KLMS.
Hyperparameters: thresholds to update block locations D̄max

KL and D̄min
KL , maximum block size

MAX_BLOCK_SIZE.
Inputs: number of iterations T , initial block size S, number of samples K, initial number of
blocks M = ⌈ dS ⌉, target KL divergence Dtarget

KL .
Output: random SEED and binary mask parameters m(T).

At the server, initialize a random network with weight vector winit ∈ R
d using a random SEED,

and broadcast it to the clients; initialize the random score vector s(0,g) ∈ R
d, and compute

θ(0,g) ← Sigmoid(s(0,g)), Beta priors α(0) = β(0) = λ0; initialize UPDATE←TRUE and the block
locations I(t)i = [(i − 1)S : iS] for i = 1, . . . ,M and broadcast to the clients.
for t = 1, . . . , T

Sample a subset Ct ⊂ {1, . . . , N} of |Ct| = C clients without replacement.
On Client Nodes:
for c ∈ Ct

Compute ϕ(t,c) as in FedPM.
if UPDATE
{k∗[i]}Mi=1, I

(t,c) ← Adaptive-KLMS(Bern(θ(t,g)),Bern(ϕ(t,c)), I(t), Dtarget
KL) // Alg. 2.5.

M ← length(I(t,c)). // New number of blocks.
else
{k∗[i]}Mi=1 ← Adaptive-KLMS(Bern(θ(t,g)),Bern(ϕ(t,c)), I(t), Dtarget

KL) // Alg. 2.5.
end if
Send {k∗[i]}Mi=1 with K · M bits and the average KL divergence across blocks D̄(t,c)

KL ←
1
M

∑M
m=1DKL(Bern(ϕ(t,c)[Im])∥Bern(θ

(t,g)
[Im])) with 32 bits to the server.

if UPDATE
Send I(t,c) with M · log2(MAX_BLOCK_SIZE) bits.

end if
end for
On the Server Node:
Receive the selected indices {k∗[i]}Mi=1, and the average KL divergences {D̄(t,c)

KL }c∈Ct
.

Compute D̄(t)
KL = 1

C

∑
c∈Ct

D̄
(t,c)
KL .

if UPDATE
I(t) ← Aggregate-Block-Locations

(
{I(t,c)}c∈Ct

)
// See Algorithm 2.6.

UPDATE = False.
else

I(t,c) ← I(t) for all c ∈ Ct.
if D̄(t)

KL > D̄
max
KL or D̄(t)

KL < D̄
min
KL then UPDATE = True else UPDATE = False.

end if
for c ∈ Ct

{m̂(t,c)
[i] }Mi=1 ← KLMS-Decoder(Bern(θ(t)), I(t,c),K) // See Algorithm 2.7.

end for
θ(t) = BayesAgg

(
{m̂(t,c)}c∈Ct

, t
)
// See Algorithm 2.3.

Broadcast UPDATE, I(t) and θ(t) to the clients.
end for
Sample mfinal ∼ Bern(θ(T)) and return the final model ẇfinal ← mfinal ⊙ winit.

64

Algorithm 2.9 QSGD-KLMS.
Hyperparameters: server learning rate ηS , thresholds to update block locations D̄max

KL , D̄min
KL ,

maximum block size MAX_BLOCK_SIZE.
Inputs: number of iterations T , initial block size S, number of samples K, initial number of
blocks M = ⌈ dS ⌉, target KL divergence Dtarget

KL .
Output: Final model w(T).
At the server, initialize a random network parameters w(0) ∈ R

d and broadcast it to the clients;
initialize UPDATE←TRUE and the block locations I(t)i = [(i − 1)S : iS] for i = 1, . . . ,M and
broadcast to the clients.
for t = 1, . . . , T

Sample a subset Ct ⊂ {1, . . . , N} of |Ct| = C clients without replacement.
On Client Nodes:
for c ∈ Ct

Receive the empirical frequency from the previous round pθ(t) from the server.
Compute v(t,c) as in QSGD.
Compute the local post-data distribution qϕ(t,c) with v(t,c) using pQSGD(·) in Eq. (2.24).
if UPDATE
{k∗[i]}Mi=1, I

(t,c) ← Adaptive-KLMS(pθ(t) , qϕ(t,c) , I(t), D
target
KL) // See Algorithm 2.5.

M ← length(I(t,c)). // New number of blocks.
else
{k∗[i]}Mi=1 ← Adaptive-KLMS(pθ(t) , qϕ(t,c) , I(t), D

target
KL) // See Algorithm 2.5.

end if
Send {k∗[i]}Mi=1 with K · M bits and the average KL divergence across blocks D̄(t,c)

KL ←
1
M

∑M
m=1DKL(qϕ(t,c)

[Im]

∥p
θ
(t)

[Im]

)) with 32 bits to the server.
if UPDATE

Send I(c) with M · log2(MAX_BLOCK_SIZE) bits.
end if

end for
On the Server Node:
Receive the selected indices {k∗[i]}Mi=1, and the average KL divergences {D̄(t,c)

KL }c∈Ct
.

Compute D̄(t)
KL = 1

C

∑
c∈Ct

D̄
(t,c)
KL .

if UPDATE
I(t,c) ← Aggregate-Block-Locations

(
{I(t,c)}c∈Ct

)
// See Algorithm 2.6.

UPDATE = False.
else

I(t,c) ← I(t) for all c ∈ Ct.
if D̄(t)

KL > D̄
max
KL or D̄(t)

KL < D̄
min
KL then UPDATE = True else UPDATE = False.

end if
for c ∈ Ct

{v̂(t,c)
[i] }Mi=1 ← KLMS-Decoder(pθ(t) , I(t,c),K) // See Algorithm 2.7.

Construct the empirical frequency pθ(t+1) from {v̂(t,c)
[i] }Mi=1.

end for
Compute w(t) = w(t−1) − ηS

1
C

∑
c∈Ct

v̂(t,c).
Broadcast UPDATE, I(t), w(t), and pθ(t) to the clients.

end for

65

Algorithm 2.10 SignSGD-KLMS.
Hyperparameters: server learning rate ηS , thresholds to update block locations D̄max

KL , D̄min
KL ,

maximum block size MAX_BLOCK_SIZE.
Inputs: number of iterations T , initial block size S, number of samples K, initial number of
blocks M = ⌈ dS ⌉, target KL divergence Dtarget

KL .
Output: Final model w(T).

At the server, initialize a random network parameters w(0) ∈ R
d and broadcast it to the clients;

initialize UPDATE←TRUE and the block locations I(t)i = [(i − 1)S : iS] for i = 1, . . . ,M and
broadcast to the clients.
for t = 1, . . . , T

Sample a subset Ct ⊂ {1, . . . , N} of |Ct| = C clients without replacement.
On Client Nodes:
for c ∈ Ct

Compute v(t,c) as in other standard FL frameworks such as QSGD.
Compute the local post-data distribution qϕ(t,c) with v(t,c) using pSignSGD(·) in Eq. (2.25).
pθ(t) ← Unif(0.5) over {−1, 1}.
if UPDATE
{k∗[i]}Mi=1, I

(t,c) ← Adaptive-KLMS(pθ(t) , qϕ(t,c) , I(t), D
target
KL) // See Algorithm 2.5.

M ← length(I(t,c)). // New number of blocks.
else
{k∗[i]}Mi=1 ← Adaptive-KLMS(pθ(t) , qϕ(t,c) , I(t), D

target
KL) // See Algorithm 2.5.

end if
Send {k∗[i]}Mi=1 with K · M bits and the average KL divergence across blocks D̄(t,c)

KL ←
1
M

∑M
m=1DKL(qϕ(t,c)

[Im]

∥p
θ
(t,g)

[Im]

)) with 32 bits to the server.
if UPDATE

Send I(t,c) with M · log2(MAX_BLOCK_SIZE) bits.
end if

end for
On the Server Node:
Receive the selected indices {k∗[i]}Mi=1, and the average KL divergences {D̄(t,c)

KL }c∈Ct
.

Compute D̄(t)
KL = 1

C

∑
c∈Ct

D̄
(t,c)
KL .

if UPDATE
I(t) ← Aggregate-Block-Locations

(
{I(t,c)}c∈Ct

)
// See Algorithm 2.6.

UPDATE = False.
else

I(t,c) ← I(t) for all c ∈ Ct.
if D̄(t)

KL > D̄
max
KL or D̄(t)

KL < D̄
min
KL then UPDATE = True else UPDATE = False.

end if
for c ∈ Ct

{v̂(t,c)
[i] }Mi=1 ← KLMS-Decoder(pθ(t) , I(t,c),K) // See Algorithm 2.7.

end for
Compute w(t) = w(t−1) − ηS

1
C

∑
c∈Ct

v̂(t,c).
Broadcast UPDATE, I(t) and w(t) to the clients.

end for

66

Algorithm 2.11 SGLD-KLMS.
Hyper-parameters: server learning rate ηS , minibatch size B, thresholds to update block loca-
tions D̄max

KL , D̄min
KL , maximum block size MAX_BLOCK_SIZE.

Inputs: number of iterations T , initial block size S, number of samples K, initial number of
blocks M = ⌈ dS ⌉, target KL divergence Dtarget

KL .
Output: samples

{
θ(t)
}T
t=1

.
At the server, initialize a random network with weight vector θ(0) ∈ R

d and broadcast it to the
clients; initialize UPDATE←TRUE and the block locations I(t)i = [(i − 1)S : iS] for i = 1, . . . ,M
and broadcast to the clients.
for t = 1, . . . , T

Sample a subset Ct ⊂ {1, . . . , N} of |Ct| = C clients without replacement.
On Client Nodes:
for c ∈ Ct

Receive θ(t−1) from the server and set ϕ(t,c) ← θ(t−1).
Compute a stochastic gradient of the potential H(ϕ(t,c)) as in QLSD.
Set pθ(t) ← N

(
0,
√

2
γC2 Id

)
.

Set qϕ(t,c) ← N

(
H(ϕ(t,c)),

√
2

γC2 Id

)
.

if UPDATE
{k∗[i]}Mi=1, I

(t,c) ← Adaptive-KLMS(pθ(t) , qϕ(t,c) , I(t), D
target
KL) // See Algorithm 2.5.

M ← length(I(t,c)). // New number of blocks.
else
{k∗[i]}Mi=1 ← Adaptive-KLMS(pθ(t) , qϕ(t,c) , I(t), D

target
KL) // See Algorithm 2.5.

end if
Send {k∗[i]}Mi=1 with K · M bits and the average KL divergence across blocks D̄(t,c)

KL ←
1
M

∑M
m=1DKL(qϕ(t,c)

[Im]

∥p
θ
(t,g)

[Im]

)) with 32 bits to the server.
if UPDATE

Send I(t,c) with M · log2(MAX_BLOCK_SIZE) bits.
end if

end for

On the Server Node:
Receive the selected indices {k∗[i]}Mi=1, and the average KL divergences {D̄(t,c)

KL }c∈Ct
.

Compute D̄(t)
KL = 1

C

∑
c∈Ct

D̄
(t,c)
KL .

if UPDATE
I(t) ← Aggregate-Block-Locations

(
{I(t,c)}c∈Ct

)
// See Algorithm 2.6.

UPDATE = False.
else

I(t,c) ← I(t) for all c ∈ Ct.
if D̄(t)

KL > D̄
max
KL or D̄(t)

KL < D̄
min
KL then UPDATE = True else UPDATE = False.

end if
for c ∈ Ct

{Ĥ(ϕ
(t,c)
[i] }Mi=1 ← KLMS-Decoder(pθ(t) , I(t,c),K) // See Algorithm 2.7.

end for
Compute θ(t) = θ(t−1) − ηS

1
C

∑
c∈Ct

Ĥ(ϕ(t,c)).
Broadcast UPDATE, I(t) and θ(t) to the clients.

end for

67

2.7.2 Proofs

Proof of Eq. 2.15

We now provide proof of the upper bound on the estimation error in Eq. 2.15. Recall that our
true mean is θ̄g,t = 1

K

∑
k∈Kt

θk,t, whereas our estimate is θ̄g,t = 1
K

∑
k∈Kt

mk,t, where mk,t ∼
Bern(θk,t). Then we can compute the error as

EMk,t∼Bern(θk,t)∀k∈Kt

[
||θ̄̂

g,t

−θ̄g,t||22
]
=

d∑

i=1

EMk,t
i ∼Bern(θk,t

i) ∀k∈Kt

[(
θ̄̂
g,t

i − θ̄
g,t
i

)2
]

(2.41)

=

d∑

i=1

EMk,t
i ∼Bern(θk,t

i)∀k∈Kt



(

1

K

∑

k∈Kt

(Mk,t
i − θk,ti)

)2

 (2.42)

=
1

K2

d∑

i=1

EMk,t
i ∼Bern(θk,t

i)∀k∈Kt



(
∑

k∈Kt

(Mk,t
i − θk,ti)

)2

 (2.43)

=
1

K2

d∑

i=1

EMk,t
i ∼Bern(θk,t

i)∀k∈Kt

[
∑

k∈Kt

(
Mk,t

i − θk,ti

)2
]

(2.44)

=
1

K2

d∑

i=1

∑

k∈Kt

EMk,t
i ∼Bern(θk,t

i)

[
(Mk,t

i − θk,ti)2
]

(2.45)

=
1

K2

d∑

i=1

∑

k∈Kt

(
EMk,t

i ∼Bern(θk,t
i)[(M

k,t
i)2] − (θk,ti)2

)
(2.46)

=
1

K2

d∑

i=1

∑

k∈Kt

(
θk,ti − (θk,ti)2

)
(2.47)

≤ d

4K
. (2.48)

From (2.41) to (2.42), we use the definition of θ̄̂
g,t

i = 1
K

∑K
k=1m

k,t
i and θ̄

g,t
i = 1

K

∑K
k=1 θ

k,t
i .

From (2.43) to (2.44), we use the fact that EMk,t
i ∼Bern(θk,t

i) ∀k∈Kt
[Mk,t

i − θk,ti] = 0; and Mk,t
i −

θk,ti and M l,t
i − θl,ti are independent for l ̸= k ∈ [K]. Finally, the inequality in (2.48) follows from

θk,ti ∈ [0, 1] for all k ∈ [K].

Proof of Theorem 5

In this section, we provide the proof for Theorem 5. But before that, we first define the formal
problem statement, introduce some new notation, and give another theorem (Theorem 18) that
will be required for the proof of Theorem 5.

We consider a scenario where N distributed nodes and a centralized server share a prior distri-
bution pθ over a set X equipped with some sigma algebra. Each node n also holds a posterior distri-
bution qϕ(n) over the same set. The server wants to estimate EX(n)∼q

ϕ(n)∀n∈[N][
1
N

∑N
m=1 f(X

(m))],

68

where f(·) : X → R is a measurable function. In order to minimize the cost of communication
from the nodes to the centralized server, each node n and the centralized server take K(n) samples
from the prior distribution y

(n)
[1] , . . . ,y

(n)

[K(n)]
∼ pθ. Then client n performs the following steps:

1. Define a new probability distribution over the indices k = 1, . . . ,K(n):

π(n)(k) =
qϕ(n)(y

(n)
[k])/pθ(y

(n)
[k])

∑K(n)

l=1 qϕ(n)(y
(n)
[l])/pθ(y

(n)
[l])

(2.49)

and over the samples y(n)
[1] , . . . ,y

(n)

[K(n)]
:

q̃π(n)(y) =
K(n)∑

k=1

π(n)(k) · 1(y(n)
[k] = y). (2.50)

2. Sample k(n)∗ ∼ π(n).

3. Communicate k(n)∗ to the centralized server with logK(n) bits.

Then, the centralized server recovers the sample y
(n)

[k(n)∗]
that it generated in the beginning.

(Note that y
(n)

[k(n)∗]
is actually a sample from q̃π(n) .) Finally, the server aggregates these samples

1
N

∑N
n=1 f(y

(n)

k(n)∗) which is an estimate of

EY (n)∼q̃
π(n)∀n∈[N][

1

N

N∑

m=1

f(Y (m))]. (2.51)

We want to find a relation between the number of samples K(1), . . . ,K(N) (or the number of
bits logK(1), . . . , logK(N)) and the error in the estimate, |EY (n)∼q̃

π(n)∀n∈[N][
1
N

∑N
m=1 f(Y

(m))] −
EX(n)∼q

ϕ(n)∀n∈[N][
1
N

∑N
m=1 f(X

(m))]|. In our proofs, we closely follow the methodology in Theo-
rems 1.1. and 1.2. in [58]. In Theorem 18, we use the probability density of qϕ(n) with respect to
pθ for each node n and denote it by ρn =

dq
ϕ(n)

dpθ
. We refer to the following definitions often:

I(f) =

∫

x(1)

· · ·
∫

x(N)

(
1

N

N∑

n=1

f(x(n))

)
N∏

n=1

dqϕ(n)(x(n)), (2.52)

IK(f) =
1

∏N
n=1K

(n)

K(1)∑

k(1)=1

· · ·
K(N)∑

k(N)=1

(
1

N

N∑

n=1

f(y
(n)

[k(n)]
)

)
N∏

n=1

ρn(y
(n)

[k(n)]
), (2.53)

and

69

JK(f) =

K(1)∑

k(1)=1

· · ·
K(N)∑

k(N)=1

(
1

N

N∑

n=1

f(y
(n)

[k(n)]
)

)
N∏

n=1

qϕ(n)(y
(n)

[k(n)]
)/pθ(y

(n)

[k(n)]
)

∑K(n)

l=1 qϕ(n)(y
(n)
[l])/pθ(y

(n)
[l])

. (2.54)

Notice that I(f) corresponds to the target value the centralized server wants to estimate, JK(f)

is the estimate from the proposed approach, and IK(f) is a value that will be useful in the proof
and that satisfies E[IK(f)] = I(f).

Theorem 18. Let pθ and qϕ(n) for n = 1, . . . , N be probability distributions over a set X equipped
with some sigma-algebra. Let X(n) be an X-valued random variable with law qϕ(n) . Let r ≥ 0 and
q̃π(n) for n = 1, . . . , N be discrete distributions each constructed by K(n) = exp

{(
DKL(qϕ(n)∥pθ) + r

)}

samples {y(n)

[k(n)]
}K(n)

k(n)=1
from pθ defining q̃π(n)(y) =

∑K(n)

k=1

q
ϕ(n) (y

(n)

[k]
)/pθ(y

(n)

[k]
)

∑

K(n)

l=1 q
ϕ(n) (y

(n)

[l]
)/pθ(y

(n)

[l]
)
· 1(y(n)

[k] = y).

Furthermore, for f(·) defined above, let ||f ||qϕ
=
√
EX(n)∼q

ϕ(n)∀n∈[N][(
1
N

∑N
m=1 f(X

(m)))2] be its
2-norm under qϕ = qϕ(1) , . . . , qϕ(N) . Then,

E|IK(f) − I(f)| ≤ ||f ||qϕ


e−Nr/4 + 2

√√√√
N∏

n=1

P
(
log ρn(X(n)) > DKL(qϕ(n) ||pθ) + r/2

)

 .

(2.55)

Conversely, let 1 denote the function from X into R that is identically equal to 1. If for
n = 1, . . . , N , K(n) = exp

{(
DKL(qϕ(n) ||pθ) − r

)}
for some r ≥ 0, then for any δ ∈ (0, 1),

P(IK(1) ≥ 1 − δ) ≤ e−Nr/2 +

∏N
n=1 P

(
log ρn(X

(n)) ≤ DKL(qϕ(n) ||pθ) − r/2
)

1 − δ
. (2.56)

Proof. Let L(n) = DKL(qϕ(n) ||pθ), ∀n ∈ [N]. Suppose that K(n) = eL
(n)+r and a(n) = eL

(n)+r/2.
Let h(z) = f(z) if ρn(z) ≤ a(n) and 0 otherwise ∀n ∈ [N]. We first make the following assumption:

E[| 1
N

∑

n∈Q⊆[N]

f(X(n))|; ∀n ∈ Q ⊆ [N], ρn(X
(n)) > a(n)] ≤

E[| 1
N

∑

n∈[N]

f(X(n)|; ∀n ∈ [N], ρn(X
(n)) > a(n)].

(2.57)

This is indeed a reasonable assumption. To see this, following [58], we note that log ρn(Z)

is concentrated around its expected value, which is L(n) = DKL(qϕ(n) ||pθ), in many scenarios.
Therefore, for small t (and t is indeed negligibly small in our experiments), the events 1{∀n ∈
Q ⊆ [N], ρn(X

(n)) > a(n)} occur with the approximately same frequency for each set Q ⊆ [N]

since the likelihood of event 1{ρn(X(n)) > a(n)} is close to being uniform. Consider also that

70

| 1N
∑

n∈Q⊆[N] f(X
(n))| ≤ | 1N

∑
n∈[N] f(X

(n))| holds when f(Xn)’s have the same signs per coor-
dinate for each n = 1, . . . , N , which is a realistic assumption given that the clients are assumed to
be able to train a joint model and hence should not have opposite signs in the updates very often.
With these two observations, we argue that the assumption in Eq. (2.57) is indeed reasonable for
many scenarios, including FL.

Now, going back to the proof, from triangle inequality, we have,

|IK(f) − I(f)| ≤ |IK(f) − IK(h)| + |IK(h) − I(h)| + |I(h) − I(f)|. (2.58)

First, note that by Cauchy-Schwarz inequality and by the assumption in Eq. (2.57), we have

|I(h) − I(f)| =
∑

Q⊆[N]

E[| 1
N

∑

m∈Q

f(X(m))|; ∀n ∈ Q, ρn(X(n)) > a(n)]·

· P(∀n ∈ Q, ρn(X(n)) > a(n))

(2.59)

≤ E[| 1
N

∑

m∈[N]

f(X(m))|; ∀n ∈ [N], ρn(X
(n)) > a(n)]

∑

Q⊆[N]

P(∀n ∈ Q, ρn(X(n)) > a(n)) (2.60)

= E[| 1
N

∑

m∈[N]

f(X(m))|; ∀n ∈ [N], ρn(X
(n)) > a(n)] (2.61)

=

∫

x(1),...,x(N)

| 1
N

N∑

n=1

f(x(n))| · 1{∀n ∈ [N], ρn(x
(n)) > a(n)}

N∏

n=1

dqϕ(n)(x(n)) (2.62)

≤

√√√√
∫

x(1),...,x(N)

| 1
N

N∑

m=1

f(x(m))|2 ·
N∏

n=1

dqϕ(n)(x(n))·

·

√√√√
∫

x(1),...,x(N)

1{∀n ∈ [N], ρn(x(n)) > a(n)}
N∏

n=1

dqϕ(n)(x(n))

(2.63)

=

√√√√
EX(n)∼q

ϕ(n) ,∀n∈[N][(
1

N

N∑

m=1

f(X(m)))2] ·
√
P(∀n ∈ [N], ρn(X(n)) > a(n)) (2.64)

= ||f ||qϕ
·
√
P(∀n ∈ [N], ρn(X(n)) > a(n)). (2.65)

Similarly,

71

E|IK(f) − IK(h)| = E

∣∣∣∣∣∣
1

∏N
n=1K

(n)

K(1)∑

k(1)=1

· · ·
K(N)∑

k(N)=1

1

N
(

N∑

m=1

f(Y
(m)

[k(m)]
) − h(Y

(m)

[k(m)]
))

N∏

n=1

ρn(Y
(n)

[k(n)]
)

∣∣∣∣∣∣
(2.66)

≤ E

∣∣∣∣∣
1

N
(

N∑

m=1

f(Y
(m)

[k(m)]
) − h(Y

(m)

[k(m)]
))

N∏

n=1

ρn(X
(n))

∣∣∣∣∣ (2.67)

= E[| 1
N

N∑

m=1

f(X(m))|; ∀n ∈ [N], ρn(X
(n)) > a(n)] (2.68)

≤ ||f ||qϕ
·
√
P(∀n ∈ [N], ρn(X(n)) > a(n)). (2.69)

From Eq. (2.68) to Eq. (2.69), we follow the same steps in Eq. (2.61)-Eq. (2.65).
Finally, note that

E|IK(h) − I(h)| ≤
√
V ar(IK(h)) (2.70)

=

√√√√ 1
∏N

n=1K
(n)
V ar

(
1

N

N∑

m=1

h(Y
(m)
[1]) ·

N∏

n=1

ρn(Y
(n)
[1])

)
(2.71)

≤

√√√√ 1
∏N

n=1K
(n)

E

[
(
1

N

N∑

m=1

h(Y
(n)
[1]))2

N∏

n=1

(ρn(Y
(n)
[1]))2

]
(2.72)

≤

√√√√
∏N

n=1 a
(n)

∏N
n=1K

(n)
E

[
(
1

N

N∑

m=1

f(Y
(m)
[1]))2

N∏

n=1

ρn(Y
(n)
[1])

]
(2.73)

= ||f ||qϕ

N∏

n=1

(
a(n)

K(n)

)1/2

. (2.74)

Combining the upper bounds above, we get

E [|IK(f) − I(f)|] ≤ ||f ||qϕ




N∏

n=1

(
a(n)

K(n)

)1/2

+ 2

√√√√
N∏

n=1

P
(
log ρn(X(n)) > log a(n)

)

 (2.75)

= ||f ||qϕ


e−Nr/4 + 2

√√√√
N∏

n=1

P
(
log ρn(X(n)) > L(n) + r/2

)

 (2.76)

= ||f ||qϕ


e−Nr/4 + 2

√√√√
N∏

n=1

P
(
log ρn(X(n)) > DKL(qϕ(n) ||p) + r/2

)

 .

(2.77)

72

This completes the proof of the first part of the theorem.
For the converse part, suppose K(n) = eL

(n)−r and a(n) = eL
(n)−r/2 ∀n ∈ [N]. Then,

P(IK(1) ≥ 1 − δ) = P

(
1

∏N
n=1K

(n)

K1∑

k1=1

· · ·
KN∑

kN=1

N∏

n=1

ρn(Y
(n)

[k(n)]
) ≥ 1 − δ

)
(2.78)

≤P
(

max
1≤k≤K(n)

ρn(Y
(n)
[k]) > a(n), ∀n ∈ [N]

)

+ P


 1
∏N

n=1K
(n)

K(1)∑

k(1)=1

· · ·
K(N)∑

k(N)=1

N∏

n=1

ρn(Y
(n)

[k(n)]
)1{∀n ∈ [N], ρn(Y

(n)

[k(n)]
) ≤ a(n)} ≥ 1 − δ




(2.79)

≤
K(1)∑

k(1)=1

· · ·
K(N)∑

k(N)=1

P

(
ρn(Y

(n)

[k(n)]
) > a(n), ∀n ∈ [N]

)

+
1

1 − δ
E


 1
∏N

n=1K
(n)

K(1)∑

k(1)=1

· · ·
K(N)∑

k(N)=1

N∏

n=1

ρn(Y
(n)

[k(n)]
)1{∀n ∈ [N], ρn(Y

(n)

[k(n)]
) ≤ a(n)}




(2.80)

≤ 1
∏N

n=1 a
(n)

K(1)∑

k(1)=1

· · ·
K(N)∑

k(N)=1

N∏

n=1

E

[
ρn(Y

(n)

[k(n)]
)
]
+

1 − ∏N
n=1 P

(
ρn(Z) ≥ a(n)

)

1 − δ
(2.81)

=

N∏

n=1

K(n)

a(n)
+

∏N
n=1 P

(
ρn(Z) ≤ a(n)

)

1 − δ
(2.82)

= e−Nr/2 +

∏N
n=1 P

(
log ρn(X

(n)) ≤ DKL(qϕ(n) ||pθ) − r/2
)

1 − δ
, (2.83)

where from (2.78) to (2.80) and (2.79) to (2.80), we use Markov’s inequality. This completes
the proof of the second inequality in the theorem statement.

Now, we restate Theorem 5 below and provide the proof afterward.

Theorem 19 (Theorem 5). Let all notations be as in Theorem 18 and let JK(f) be the estimate
defined in (2.54). Suppose that K(n) = exp

{(
L(n) + r

)}
for some r ≥ 0. Let

ϵ =


e−Nr/4 + 2

√√√√
N∏

n=1

P(log ρn(X(n)) > L(n) + r/2)




1/2

. (2.84)

Then

P

(
|JK(f) − I(f)| ≥ 2||f ||qϕ

ϵ

1 − ϵ

)
≤ 2ϵ. (2.85)

73

Proof. Suppose that K(n) = eL
(n)+r and a(n) = eL

(n)+r/2 ∀n ∈ [N]. Let

b =

√√√√
N∏

n=1

a(n)

K(n)
+ 2

√√√√
N∏

n=1

P
(
ρn(X(n)) > a(n)

)
. (2.86)

Then, by Theorem 18, for any ϵ, δ ∈ (0, 1),

P (|IK(1) − 1| ≥ ϵ) ≤ b

ϵ
(2.87)

and

P (|IK(f) − I(f)| ≥ δ) ≤ ||f ||qϕ
b

δ
. (2.88)

Now, if |IK(f) − I(f)| < δ and |IK(1) − 1| < ϵ, then

|JK(f) − I(f)| =
∣∣∣∣
IK(f)

IK(1)
− I(f)

∣∣∣∣ (2.89)

≤ |IK(f) − I(f)| + |I(f)||1 − IK(1)|
IK(1)

(2.90)

<
δ + |I(f)|ϵ

1 − ϵ
. (2.91)

Taking ϵ =
√
b and δ = ||f ||qϕ

ϵ completes the proof of the first inequality in the theorem state-
ment. Note that if ϵ is bigger than 1, the bound is true anyway.

This completes the proof of the theorem.

74

Proof of Theorem 12

To prove Theorem 12, we need to show that we can translate the average distortion davg require-
ment into a constraint on the empirical distribution Q̂snĥ

n(d, h) = 1
n

∑n
i=1 1(si,hi)=(s,h), where

1I = 1 if the condition I is true, and 0 otherwise. We can write

davg(Q
n, Q̂

n
) =

1

n

n∑

i=1

d(Qi, Q̂i)

= EC,S

[
1

n

n∑

i=1

LC(Q̂i) − LC(Qi)

]

(a)
= EC,S

[
1

n

n∑

i=1

∑

h∈H

LC(h)(1(S,ĥi)=(S,h) − Qh|S)

]

(b)
= EC,S

[
∑

h∈H

LC(h)

(
1

n

n∑

i=1

1(S,ĥi)=(S,h) − Qh|S

)]

= EC,S

[
∑

h∈H

LC(h)
(
Q̂

sn′ ĥ
n′ (d, h) − Qh|S

)]

= EC,S

[
L(Q̂sn′hn′) − L(Q)

]

= dsem(Q, Q̂
sn′ ĥ

n′),

where the indicator function in (a) depends on the chosen (2nR, n) coding scheme, and (b) comes
from the fact that Alice’s sampling scheme does not depend on the model index i. We then
showed that the average distortion requirement translates into a distortion between the empirical
distribution Q̂snĥ

n , and the target Q. Given this, Theorem 1 in [140] applies, and our Theorem 12
follows.

Proof of Lemma 15

Proof. Theorem 12 provides the minimum achievable rate to satisfy davg ≤ ϵ, which is provided
by an optimized distribution Q∗

S,H that minimizes the mutual information I(S;H), and satisfies
davg ≤ ϵ. Now, we impose strong coordination between Alice and Bob, by using as target joint
distribution Q∗

Sn,Hn =
∏n

i=1Q
∗
S,H , and by Theorem 10 of [71] the same rate I(S;H) of empirical

coordination can be achieved, as long as enough common randomness is available. Now, given that
Bob’s distribution Q̂Sn,Ĥ

n converges in total variation to Q∗
Sn,Hn , so it happens for the marginal,

i.e., Q̂Sn,Ĥ
n(si, ĥi)

TV−−→ Q∗
S,H . However, by construction, Q∗

S,H satisfies the distortion constraint
symbol-wise, and so satisfies dmax.

Proof of Theorem 16

To prove Theorem 16, we observe that Alice now needs to convey her probability distribution
Qn

Hn|Sn to Bob using Pn
H = (PHn)n to code it. If we indicate with EC,S [K] the average number

75

of bits spent to convey model belief Q using distribution P , Corollary 3.4 in [235] provides the
single-shot bounds

R(Q,P) ≤ EC,S [K] ≤ R(Q,P) + log (R(Q,P) + 1) + 4,

where R(Q,P) = EC,S [DKL(Q||P)].

We now translate the results to the n-length sequence, and compute its limit as n grows
indefinitely.

R(Qn, Pn) = ECn,Sn [DKL(Q
n||Pn)]

= ECn

[
ESn|Cn

[
EHn|Sn log

Qn
Hn|Sn

Pn
Hn

]]

(a)
= ECn

[
ESn|Cn

[
EHn|Sn log

∏n
i=1QH|Si

(PH)n

]]

(b)
= ECn

[
ESn|Cn

[
EHn|Sn log

(QH|S)
n

(PH)n

]]

= nR(Q,P),

where (a) is because samples are independent given the nature of the problem, and (b) is because,
given the dataset realization, they are also identically distributed by our assumption. Conse-
quently, we can upper bound the total number of bits with

EC,S [K] ≤ nR(Q,P) + log (nR(Q,P) + 1) + 4,

obtaining an average rate of

lim
n→∞

EC,S [K]

n
→ R(Q,P).

Proof of Lemma 17

We now prove the result in Lemma 17. Let Q be the distribution at the sender, and Q̂ the one at
the receiver, i.e., the distribution Q̂ = Q∗

S,H in the proof of Lemma 15. We first bound, for each

76

C ∈ C, dmax by noticing that, for each i ∈ {1, . . . , n}, the following holds

dsem(Qn
i , Q̂

n

i) =

(a)
= EC,S

[
LC(Q̂) − LC(Q)

]

= EC,S

[
∑

h∈H

Ez∼C [ℓ(h, z)]
(
Q̂ĥ|S − Qh|S

)]

≤ Lmax · EC,S

[
∑

h∈H

Q̂ĥ|S − Qh|S

]

≤ Lmax · EC,S

[
TV(Q̂,Q)

]

(b)

≤ Lmax · EC,S

[
min

{√1

2
DKL(Q̂∥Q),

√
1 − e−DKL(Q̂∥Q)

}]

(c)

≤ Lmax · min
{√1

2
EC,S

[
DKL(Q̂∥Q)

]
,

√
1 − e−EC,S[DKL(Q̂∥Q)]

}

where (a) is given by strong coordination, (b) is by the combination of the inequalities due
to Pinsker and Breatgnolle-Huber, and (c) is Jensen’s inequality. We now proceed to bound
EC,S

[
DKL(Q∥Q̂)

]
by observing that the average distortion between Q and Q̂ is a linear function

of the probabilities Q̂, and the set Q̂ = {Q̂ ∈ Φ(H) : dsem(Q, Q̂) ≤ ϵ} satisfying the constraint is
convex, and that by the definition of Distortion-Rate function, Q̂ is the distribution in Q̂ mini-
mizing EC,S

[
DKL(Q̂∥P)

]
, where P is the pre-data coding distribution (see Theorem 16). Then,

Theorem 11.6.1 in [69], also known as the Pythagorean Theorem for the Kullback-Leibler diver-
gence, applies, and we can bound

EC,S

[
DKL(Q∥Q̂)

]
≤ EC,S [DKL(Q∥P)] − EC,S

[
DKL(Q̂∥P)

]

(a)
= R∗ − R

= ∆R,

where (a) is given by Theorem 16. Combined together, the two inequalities provide Equa-
tion Eq. (2.39). Regarding Scheme 2, it is sufficient to notice that R = I(S; Ĥ

2
) + I(S; Ŝ

2|Ĥ2
),

from which Equation Eq. (2.40) follows.
We notice that this does not directly apply to davg, as the distribution Q∗ solving Equa-

tion Eq. (2.34) and providing the rate is not, in general, the one used by Bob to sample actions.
This is true for the scheme for dmax, in which common randomness is introduced.

77

78

3
Information in Distributed Decision Processes

In this second part of the thesis we are going to analyze the role of information in the different
context of multi-agent and distributed decision processes. Specifically, in this learning framework
we assume that there exists an underlying system that can be observed in discrete-time steps
through a context, which can be used to infer the real state s of the system. In the single-agent
formulation, based on the context (also referred to as state if there is no uncertainty in the
observation), the agent interacts with the system taking a decision, or action a. Then, given the
state and the taken action, the agent receives a signal, usually denoted as reward, which is sampled
according to some underlying and unknown distribution. In the next step, the system moves to a
new state s′ according to a probability law which depends on the modeling assumption, and the
process continues. Specifically, the new state s′ can be sampled independently to s according to
some identical distribution, i.e., each state is sampled in an independent and identically distributed
(i.i.d.) fashion; or, there could be an unknown transition kernel P (s′|s, a) expressing the probability
of ending up in state s′ when taking action a in state s. The goal for the agent is to find a policy
π which is a possibly stochastic map indicating, in each state, which is the best action to choose
in order to maximize the expected sum of the present plus future rewards. We’ll refer to the first
type of process as a contextual multi-armed bandit (CMAB) problem, in which actions are also
referred to as arms, and we recognize that the second one is indeed a Markov decision process
(MDP) [42]. We notice that such formulation can be utilized to model many real-world systems
with a plethora of useful applications [129, 251, 135, 99].

The learning tasks considered in this chapter have the goal of producing an optimal policy π∗,
which can indeed maximize the expected rewards for the agent, while interacting with the system.
To this end the agent has to play with the system first to explore the effects its actions have on
the underlying process (exploration phase), and then to optimize the decisions according to the
acquired knowledge (exploitation phase). Now, depending on the underlying modeling assumption,
many techniques have been proposed in the literature to find π∗. Specifically, when the problem is

79

formulated using the multi-armed bandit (MAB) framework, optimal algorithms have been well-
studied and investigated [226]. In the case of MDP the problem is more complex as the actions
taken by the agent influence not only the immediate reward, but also the states trajectories of the
system, affecting indirectly the future rewards. Consequently, optimizing only for the best one-
step reward may not be the optimal choice, as the action with highest expected reward in state s
may lead to poor future states, and so to sub-optimal future performance. Reinforcement learning
(RL) [233] is the tool that formulates the proper learning problem to solve the MDP, whose
literature is vast and offers many solutions. Lately classical RL algorithms have been enhanced
using Deep Learning (DL) leading to Deep Reinforcement Learning (DRL) [175], which is able to
handle many complex problems by processing the state with deep neural networks (DNNs).

The problems analyzed in this chapter extend the formulation described in the previous para-
graphs by considering scenarios in which the process of observing the system’s state is physically
separated from the action of interacting with the environment. Specifically, in Section 3.2 we
defined the new rate-constrained CMAB (RC-CMAB) problem in which a decision-maker can
observe the state of the system and has the computing capacity to optimize the policy π, while it
has to communicate the actions to a set of agents through a rate-limited communication channel.
The agents can then physically interact with the environment by taking the communicated actions
affecting the underlying system. In this case the problem has been analytically solved and the
theoretical limits reported. In Section 3.3 we then define the remote Partially Observable Markov
Decision Process (POMDP), which is the MDP counterpart of the RC-CMAB problem. In both
situations the fundamental research question is to understand what is the relation between the
observations and the optimal decisions. To this end, we will see that information-theoretic quanti-
ties will play a critical role in defining the limits of the problem, whose practical goal is to reduce
as much as possible the information sent from the decision-maker to the agents in order to save
network resources without damaging the final performance.

3.1 Related Work
We start by covering the literature which is mostly related to the problem. As the data exchanged
in the communication network is strongly correlated with some training process, new data com-
pression and representation methods should be considered to intelligently utilize network resources.
The limits of lossy compression have been defined by rate-distortion theory [69], which provides the
minimum number of bits needed to represent information given a target value for the maximum
tolerable distortion between the original data, and the data reconstructed from the compressed
version. However, in distributed machine learning (ML), the goal at the receiver is not to perfectly
reconstruct the input data, but to perform some inference or training task based on it.

Communication in Multi-Agent Decision Processes. This chapter focuses on multi-agent
distributed decision processes, where the goal is not to learn a function through supervised learn-
ing, but rather to optimize a policy, i.e., a map that, given an observation, provides a probability
distribution over a set of feasible actions. However, the processes of collecting observations, train-

80

ing the policy and taking the actions are implemented by physically distributed entities [52], which
require the design of compression and communication strategies to coordinate the training pro-
cess. Similar configurations appear in the parallel training of a single logical agent, with the
aim of accelerating the training process [176, 31, 65, 249, 226]. To this end, an important line
of research is the study of the most valuable data to be shared among the agents in order to
achieve cooperation, and thus convergence to better policies. Frameworks in [92, 231, 109, 149]
admit cooperation in multi-agent reinforcement learning (MARL) among the agents through the
transmission of signals, whose effects on the common task are differentiable with respect to the
signal transmission decisions. In this case, the emergence of languages and cooperative messages is
analyzed, with perfect communications links. The authors in [241] consider noisy communications,
and propose a scheme to jointly learn good policies and optimal ways to code and transmit the
actions over the communications channels. Other research efforts consider deep RL agents, and
focus on compression schemes of neural networks (NNs), which are generally used to approximate
value functions and target policies. For example, the authors in [276] adopt a knowledge distil-
lation technique to reduce the complexity of a behavioral policy, while training a more complex
target policy that serves as a teacher, in the context of parallel training [65]. In [167] and [30], the
authors achieve model compression adopting pruning techniques [47, 123, 103] to reduce the size of
an agent’s NN-based policy. Both papers provide empirical studies of the performance of a single
agent when trained with different pruning levels. In [167], an iterative process is used to prune
the model, which is reduced after training the original (full size) NN. In our framework, training
is performed over rate-limited communications channels, and there could be no opportunity to
transmit the full information. The authors in [30] consider performing pruning exploiting an initial
offline dataset, that is not present in our case. Moreover the pruning level, and so the needed rate
to transmit the models, has to be fixed at the beginning of the training process. Our framework
is similar to that of [104], where a server communicates actions to a pool of agents. However,
in this case the analyzed link is the one between the agents and the server, and is used to send
back the observed rewards. Moreover, no context (or state) is considered. In [17], the same MAB
problem is solved cooperatively by a set of agents that can share some information about the best
estimated actions. In this case communication is peer-to-peer with a deterministic rate, and again
there is no contextual information. A related formulation to the problem in Section 3.2 has been
proposed in [134], where the Batched Thompson Sampling algorithm is introduced. In this case
the goal is to reduce the number of policy updates, thus reducing the computational complexity
of the algorithm. Rounds, i.e., single time steps, are grouped into batches, and within one batch
arms are pulled without updating the sampling policy. Similarly, in the RC-CMAB formulation
one round can be considered as a batch, given that the N agents operate in parallel. However,
in [134], the batch size, i.e., the number of samples without policy updates, can be optimized by
the algorithm and is not fixed during the training, i.e., different batches may have different sizes.
On the contrary, in our case the batch size is fixed to N , and is given by the environment. More-
over, in [134] the authors do not consider the contextual case, and there are no communications
constraints when pulling arms.

81

Communications in Remote Control. The specific requirements of distributed and remotely
controlled systems have focused the research community’s attention towards communication sys-
tems which must provide updated information to enable real-time high-level tasks such as inference,
tracking or control. Although metrics such as Age of Information (AoI) [272] represent a major
improvement with respect to latency and packet loss, they are still limited, as they assume that
the quality of the information available at the receiver degrades deterministically with time, most
commonly (but not necessarily [139]) in a linear fashion. However, more sophisticated systems
can also take into consideration the current state of the system in order to decide whether and
when to update the status of the receiver. Metrics such as Urgency of Information (UoI) [278]
and Value of Information (VoI) [260] incorporate state information in their definition and are thus
aware of the intrinsic value of potential updates. Other context-aware indices to measure the non-
linear time-varying importance and the non-uniform context-dependence of the status information
have also been proposed [278]. The authors of [93] considered a system in which a transmitter
monitors the status of a system and updates the controller, providing status information. Then a
constrained MDP is formulated to minimize the cost of actuation and simultaneously guarantee
a target communication rate. Both works show significant improvements with respect to other
metrics such as AoI.

The Levels of Communications. The main goal of classical communication theory is to build
reliable systems for the accurate and efficient transmission of data. However, in the preface to
Shannon’s seminal work [222], Warren Weaver already envisioned two more complex levels of com-
munication beyond the simple transmission of bits. Classical communications are then included in
Level A, or the technical problem, which concerns itself with the accurate and efficient transmission
of arbitrary raw data. Level B, or the semantic problem, is to find the most effective way to convey
the meaning of the message, even when irrelevant details are lost or misunderstood, while Level
C, also called the effectiveness problem, deals with the resulting behavior of the receiver: as long
as the receiver takes the optimal decision, the effectiveness problem is solved, regardless of the
quality of the received information. While the Level B and C problems attracted limited attention
for decades, the explosion of Industrial Internet of Things (IIoT) systems has drawn the research
and industrial communities toward semantic and effective communication [205], optimizing remote
control processes under severe communication constraints beyond Shannon’s limits on Level A per-
formance [100]. In particular, the effectiveness problem is highly relevant to robotic applications,
in which independent mobile robots, such as drones or rovers, must operate based on information
from remote sensors. In this case the sensors and the cameras act as the transmitter in a com-
munication problem, while the robot is the receiver: by solving the Level C problem, the sensors
can transmit the information that best directs the robot’s actions toward the optimal policy [229].
We can also consider a case in which the robot is the transmitter, while the receiver is a remote
controller, which must get the most relevant information to decide the control policy [255]. At the
same time, the development of learning-based coding schemes has allowed communication system
designers to move beyond packet error as the key coding performance metric, exploiting semantic
considerations. Joint source-channel coding for wireless image transmission is implemented in [50,

82

265], and the encoder-decoder pair is parameterized by a NN, whose architecture may vary. This
approach can be used to maintain the semantic information contained in the transmitted data,
while improving compression performance. Semantic information at the receiver can be used to
solve different tasks. Effective communication [241] can be seen as an extension of this, in which
the task involves the receiver taking actions and possibly altering the information that the trans-
mitter is communicating. Effective communication differs from semantic communication mostly
because the “semantic” content which has to be preserved in the communicated messages is not
explicit. Moreover, control tasks have a temporal component that must be taken into account, as
investigated in [241]. The scenario considered in Section 3.3 is a two-agent POMDP in which one
agent communicates and the other agent interacts with the environment, using DRL to solve the
joint problem and encoding the information. A distributed perception scenario, in which multiple
sensors communicate to a single robot, is considered in [170] and solved using MARL, showing
that joint training improves the performance of the system, particularly when communication is
severely constrained. While past works aimed at specific scenarios and objectives, the solution
proposed in Section 3.3 proposes a novel DRL approach that combines status updates with an
adaptive coding scheme and can be easily adapted to operate on any levels of communication (A,
B and C).

Connections with Psychology. Interestingly, the authors of [146] study similar frameworks
to justify the concept of information bottleneck in RL [86, 121] from a psychological perspective.
In this work, the rate-constrained channel is compared to resource-limited policy storing systems,
e.g., the brain and noisy storage devices, commenting on the trade-off between policy complexity,
i.e., level of correlation between states and actions, and policy performance, i.e., obtained reward.
In these studies the single-agent case is considered, and the formulation is somewhat generic
with qualitative and empirical considerations, without properly framing the underlying learning
problem. In this older study [67], the authors performed a set of behavioral experiments that
resemble the CMAB problem, recording correlations between performance variance, i.e., action
stochasticity, and model capacity, i.e., work memory, in humans.

3.2 The Rate-Constrained Remote Contextual Multi-Armed
Bandit Problem

With this work, the aim is to study this relation within the proper information-theoretic setting,
relating it to the learning task of CMAB, and highlighting the theoretical trade-off between channel
rate and learning performance. Moreover, we study practical ways to compress policies having
limited impact in the training process.

3.2.1 Introduction
The past decade has seen a transition from centralized computing solutions, based on the cloud,
to more distributed systems, also known as multi-access edge computing [216], mainly in response

83

to the emerging paradigm of Internet of everything, where data is generated, processed and con-
sumed by a network of connected nodes with diverse storage and computing capabilities. Another
paradigm shift involves the adoption of ML as a core technology for future services. ML techniques,
mainly driven by deep NNs, achieve state-of-the-art performance in many practical applications
such as computer vision, speech recognition, and automatic control [60].

The focus of this work is to study the information-theoretic limits of distributed learning in the
specific context of multi-agent contextual multi-armed bandits (CMABs). CMABs model decision-
making problems in which an agent interacts with an environment in sequential rounds. At each
round, the agent observes a context, which contains side information on the environment, and
has to pull one out of K arms. Based on the observed context and pulled arm, the environment
returns a reward, which is sampled according to an unknown distribution. The goal of the agent
is to optimize an arm selection strategy to maximize the average sum of obtained rewards. In this
scenario, the contexts of N agents are available to a central decision-maker that has to inform
a remote entity, called the controller, on the arms the agents should pull. Depending on the
scenario, the controller either directly pulls the arms, or provides the indices of the suggested
arms to the agents, that can physically interact with the environment. However, we assume
that there is a rate-limited communication channel between the decision-maker and the controller,
which limits the number of bits the decision-maker can use to convey the intended arms at each
round. This framework can model standard recommendation systems, where a content owner
observes some client-dependent features on one side, and must communicate the recommendations
to a separate entity, which in turn proposes the recommended items to the clients. Another
related engineering problem is that of distributed training of RL policies. Particularly in deep
RL, complex policies are usually trained exploiting parallel simulations involving many agents,
which can simultaneously collect data to speed up the policy training convergence, running at
the central server. Consequently, the communication link between the decision-maker and the
controller, over which potentially high-dimensional data, i.e., the policy/observation/actions, must
be conveyed, may represent the bottleneck of the system. Further analysis may also consider
limited communication budget in the feedback link, over which the rewards are transmitted. The
purpose of this work is to formulate the novel RC-CMAB framework, and to study the theoretical
limits, i.e., in the regime of infinite agents, of this communication problem when the available
rate is below what would be required to perfectly convey the decision-maker’s policy at each
iteration. Then, we provide practical lossy policy compression schemes, that take into account
the learning objective when specifying the distortion metric to be used, and can be applied in the
more practical scenario with a finite number of agents. We then draw connections between our
framework and the information bottleneck [238, 98] and maximum entropy reinforcement learning
[152, 101] approaches. Finally, we report numerical results in support of our analyses.

84

Figure 3.1: The RC-CMAB problem formulation.

3.2.2 Problem Formulation

The Contextual Multi-Armed Bandit (CMAB) Problem

The standard single-agent CMAB problem considers an agent interacting with the environment by
pulling arms upon the observation of some contextual information, and receiving a reward based
on the observed context and pulled arm. Specifically, at each round t = 1, . . . , T , the environment
samples a context st ∈ S following distribution PS , where S is a finite set containing all possible
contexts. We assume that all contexts are observable, i.e., ∀s ∈ S, PS(s) > 0. When observing st,
the agent chooses an arm at ∈ A = {1, . . . ,K}, with probability πt(at|st). Given the pair (st, at),
the environment returns a stochastic reward R(st, at) sampled according to PR(r|st, ar), which
is an unknown and stationary distribution that characterizes the reward statistics, and depends
on the sampled context and the arm pulled by the agent. We then define µ(s, a) = EPR

[R(s, a)],
and further assume that R(s, a) ∈ [0, 1] , ∀s ∈ S and ∀a ∈ A. Moreover, we assume that the
reward distributions belong to the exponential family1, as also detailed in [202], Assumption 1.
The policy πt(at|st) employed by the agent is a map πt : H

t−1 × S → ∆K , where ∆K denotes
the (K − 1)-simplex, containing all possible distributions over the set of K arms, and Ht−1 is the
history, containing all possible observations, arms and rewards collected until round t − 1, i.e., the
element H(t − 1) ∈ Ht−1 is H(t − 1) = {s1, a1, r1, . . . , st−1, at−1, rt−1}. The goal for the agent is
to optimize the policy πt in order to maximize the average sum of received rewards or, equivalently,
to minimize the Bayesian regret

BR(π, T) = E

[
T∑

t=1

µ(st, a
∗(st)) − µ(st, At)

]
, (3.1)

where At is the arm pulled by the agent in round t sampled according to πt(a|st), and a∗(st) =
argmaxa∈A µ(st, a) is the optimal arm in round t, i.e., the one that maximizes the average reward
in context st. If a∗(s) is not unique, it represents an arbitrarily chosen arm among the optimal ones.
Here the expectation is taken with respect to the state, action and problem instance distributions.

1If θ = (s, a), we can write PR(r|θ) = b(r) exp(η(θ)T (r) − A(θ)), where b, T , and A are known func-
tions, and A(θ) is assumed to be twice differentiable.

85

Rate-Constrained CMAB

We consider a system in which N agents have to solve the same realization of a CMAB problem,
where each agent observes an independent context, distributed according to PS , and depicted in
Fig. 3.1. The agents can only interact with the environment pulling arms, whereas the contexts
are observed by a remote decision-maker. The decision-maker communicates with the agents
through a controller, that is in charge of receiving instructions from the decision-maker, and
informing the agents accordingly. However, the decision-maker can transmit information to the
controller through a rate-constrained channel, which imposes a constraint on the number of bits
per agent the decision-maker can transit to the controller. Consequently, at each system round,
the environment samples N contexts {sj,n}Nn=1, i.e., one per agent, which are observed by the
decision-maker, which, in turn, needs to decide and communicate to the controller the N arms
{aj,n}Nn=1 to be pulled by the agents.

Then, the decision-maker exploits the knowledge accumulated until system round j, and en-
coded in the variableH(j − 1) =

{
{s1,n, a1,n, r1,n}Nn=1 , . . . , {sj−1,n, aj−1,n, rj−1,n}Nn=1

}
∈ H(j−1)

to optimize its policy πj . However, in our setting, the decision-maker can interact with the con-
troller only through a rate-constrained communication channel, which may not allow to transmit
all the intended arms to the agents. Consequently, the problem is to communicate the arm dis-
tribution, i.e., the policy πj(a|s), which depends on the specific context realizations observed in
round j, to the controller within the available communication resources while inducing the minimal
impact on the performance of the learning algorithm. To this end, the decision-maker employs a
function f (N)

j : H(j−1) × SN → {1, 2, . . . , B} mapping the knowledge acquired up to round j − 1,
together with the agents’ contexts, to a message index to be transmitted over the channel. At the
receiver, the controller adopts a function g(N)

j : {1, 2, . . . , B} → AN to decode from the received
message the N arms to be pulled by the agents. In general, both functions f (N)

t and g(N)
t can be

stochastic. We then define the Bayesian system regret as

BR
(
J,
{
f
(N)
j , g

(N)
j

})
= E




J∑

j=1

∑

n∈N

r(sj,n, a
∗(sj,n) − r(sj,n, gj,n(mj))


 , (3.2)

where gj,n(mj) is the arm pulled by agent n during round j decoded from the message mj =

f
(N)
j

(
H(j − 1), sNj

)
, and sNj ∈ SN is the vector containing the contextual information in round

j for all the N agents. The goal is to specify the encoding and decoding functions, f (N)
j and g(N)

j ,
to minimize the Bayesian system regret in Eq. (3.2). More specifically, the goal is to obtain a
regret which is sub-linear in J , possibly achieving the same performances obtained by standard
CMAB solutions [148]. For a problem with N agents, a rate R is said to be achievable if there
exist functions

{
f
(N)
j , g

(N)
j

}J

j=1
with rate 1

N log2B ≤ R, and Bayesian system regret

lim
J→∞

BR
(
J,
{
f
(N)
j , g

(N)
j

})

J
= 0. (3.3)

Note that when there is no communication channel from the decision-maker to the controller,

86

i.e., B = 0, sub-linear regret is not possible, since the agents cannot learn on their own with-
out observing the contexts and rewards. On the other hand, when B is sufficiently large, i.e.,
B ≥ N log2K, any desired arm sequence can be conveyed to the controller, and the problem
becomes a distributed CMAB problem with N parallel agents. Our goal is to identify the mini-
mal communication needed from the decision-maker to the controller that makes sub-linear regret
feasible. We would like to emphasize that the introduced RC-CMAB problem differs from the
standard CMAB formulation in two aspects: First, at each round j, the decision-maker pulls N
parallel arms through the agents exploiting πj , which is updated at the end of each round. This
is similar to the batch MAB formulation presented in [134], in which the policy can be updated
only every N arm pulls. Second, given the available rate R, the decision-maker may not be able
to convey the exact sequence of arms {aj,n}Nn=1 sampled from πj , and instead must send a com-
pressed version, which may result in some agents to pull sub-optimal arms. We highlight that this
is a lossy compression problem; however, unlike classical lossy source coding problems, the goal is
not to send a sequence of arms with highest average fidelity, but to enable the agents to pull the
arms that would result in a sub-linear regret.

3.2.3 Theoretical Limits

In this section, we provide a theoretical analysis of the regret bound achievable by the Thompson
Sampling (TS) strategy, and the minimum rate required to achieve sub-linear regret.

TS Performance

We first provide the regret performance of the TS algorithm, when there is no constraint on the
available rate to transmit the intended arms. In this work, we analyze the general case in which
no prior structure is assumed between the optimal policies and the different contexts, and so we
consider the simplest implementation of one MAB agent for each context s ∈ S. The TS algorithm
adopts a Bayesian strategy, estimating the distribution ps,a(µ) of the reward mean µ(s, a) ∈ [0, 1]

in each round j with ps,aj (µ). When observing the context sj , it samples µ̂j(sj , a) ∼ ps,aj (µ),
∀a ∈ A, and pulls the arm aj = argmaxa∈A{µ̂j(sj , a)}. In RC-CMAB the decision-maker adopts
the described sampling strategy for each agent n ∈ {1, . . . , N}. After receiving all the rewards
{rt,n}Nn=1, the decision-maker updates its belief on µ(s, a) optimizing the posteriors ps,aj (µ). The
variance of the posterior distributions is exploited to perform exploration. This algorithm is well
studied, and is known under the name of Thompson Sampling (TS) [237]. The TS algorithm
implicitly induces a probability distribution πj(a|s) over the arms that can be computed as

πj(a|s) =
∫

R

ps,aj (µ)

K∏

k=1,k ̸=a

P s,k
j (µ)dµ,

where P s,k
j (µ) is the cumulative distribution function (CDF) of µ(s, k), and the random variables

µ(s, a) are independently distributed. We will call πj(a|s) the target policy, i.e., the one that the
decision-maker would like to convey to the controller. However, in RC-CMAB the constraint on

87

the rate of the communication channel may not allow to sample the arms according to πj(a|s), as
explained in Sec. 3.2.2. In this case, the problem is that the decision-maker updates the posteriors
ps,aj , and so πj(a|s), using the TS algorithm, but can only sample with an approximate policy
Qj(a|s), whenever the available rate is not sufficient to convey πj(a|s).

Regret Bounds

We now report the performance of the TS algorithm, when the available rate is sufficient to
perfectly convey the arms from the decision-maker to the controller in each round j = 1, . . . , J .
To this end, we align the parallel interactions between the agents and the environment in time,
and consider virtual rounds t ∈ {1, . . . , J · N} = T, as if a single agent, i.e., the decision-maker,
were playing a sequential CMAB game, with the constraint that the policy can be updated only
every N steps, i.e., at the end of each round. We observe that the order used to align the agent
interactions does not affect the analysis, as the agents all play the same policy, and interact
with i.i.d. replicas of the same environment, leading the two formulations to be mathematically
equivalent. Consequently, by providing the results as a function of the virtual rounds t, we consider
the total number of interactions the agents have with the environment, which is consistent with
the usual MAB notation.

Theorem 20 (TS Bayesian System Regret). The finite-time Bayesian system regret of TS is
upper bounded by

BR(πTS , T) ≤ 2SKN + 4
√
(2 + 6 log T)SKNT, (3.4)

and the asymptotic regret is

BR(πTS , T) ∈ O

(√
KST log T

)
. (3.5)

Proof. See Appendix 3.4.1.

We observe that, in the finite-time analysis, an additional term
√
N appears, with respect to

the standard single-agent performance [148]. This is a consequence of the fact that, in one round j,
N arms are pulled in parallel, without updating the policy. This effect has highest impact during
the first rounds, as the policy has not converged yet, and so sub-optimal arms are pulled in parallel.
In the long term, the effect vanishes. This result is consistent with the analysis in [134], with the
difference that what the authors called batch, in our scenario is the parallel execution of the N
agents, and so in our case the batch size is fixed to N and can not be optimized. Consequently, in
the finite-time upper bound we obtain a factor

√
N , that replaces the factor

√
α obtained in [134],

where α is the so-called batch growing factor [134]. The factor S is introduced as we consider the
CMAB problem.

Rate-Distortion Function for Communicating Policies

We now present the minimum rate needed to transmit a policy, i.e., the arms aNj = (aj,1, . . . , aj,N)

to be sampled for each agent according to πj(a|s), and conditioned on the observed context vec-

88

tor sNj = (sj,1, . . . , sj,N), when a specific distortion function is adopted to measure the discrep-
ancy between the seeking sequence zNj = ((sj,1, aj,1), . . . , (sj,N , aj,N)), and the sequence ẑNj =

((sj,1, âj,1), . . . , (sj,N , âj,N)), where â indicates the arms decoded by the controller based on the
received message mj , as indicated in Sec. 3.2.2. In short, âNj is the vector containing the arms
actually pulled by the agents. Given the underlying learning problem, the quality metric for the
vector âNj should not be based on a per-symbol distance, but rather on the sampling probability
distributions. Indeed, to obtain sub-linear regret, what interests us is the probability of sampling
specific sequences. Consequently, the distortion function d(Q̂ẑN , PSA) compares the empirical
distribution Q̂ẑN of ẑN with PSA, which is the joint distribution PSA = PS(S) · π(A|S). In the
sequel, we omit to explicitly write the round index j, as the analysis does not depend on it. We
consider the particular case in which the distortion measure d(Q̂ẑN , PSA) respects the following
properties: it is 1) nonnegative; 2) upper bounded by a constant Dmax; 3) continuous in PSA at
Q̂ẑN ; 4) convex in PSA, and such that 5) d(Q̂ẑN , PSA) = 0 ⇐⇒ Q̂ẑN = PSA. Given the assump-
tions above, the authors of [140] provide the rate-distortion function R(D), i.e., the minimum
rate R = log2 B

N bits per symbol such that EQSA
[d(Q̂ẑN , PSA)] ≤ D, in the limit when N is arbi-

trarily large. Here the expectation is taken with respect to the distribution QSA = PS(S)Q(A|S),
where Q(A|S) is the sampling policy decoded by the controller from the message sent by the
decision-maker. The solution is given by

R(D) = min
QA|S :d(QSA,PSA)≤D

I(S;A). (3.6)

As we can see, in the asymptotic limit whenN → ∞, the problem admits a single-letter solution,
which also serves as a lower bound for the finite agent scenario. Let Rπj

denote the rate required
to perfectly convey the policy πj , i.e., with zero distortion. From Eq. (3.6), we can see that
Rπj

= I(S;A), where the mutual information is computed under PSA dictated by the policy.

Achievable Rate

We now state the rate condition under which it is possible to achieve sub-linear regret. In the
analysis, the available rate R is considered fixed in each round j. First of all, we denote with
H(A∗) the entropy of the arms under the marginal distribution π∗(a) =

∑
s PS(s)π

∗(a|s), where
π∗ is the optimal policy, i.e., the one that selects, ∀s ∈ S, the arm a∗ = argmaxa∈A µ(s, a). We
start by stating the following Lemma, which provides a rate limit below which it is not possible
to achieve sub-linear regret.

Lemma 21. If R < H(A∗), it is not possible to achieve sub-linear Bayesian system regret.

Proof. See Appendix 3.4.1.

The following Lemma provides the achievability part.

Lemma 22. If R > H(A∗), then it is possible to achieve sub-linear Bayesian system regret in the
limit N → ∞.

89

Proof. See Appendix 3.4.1.

We can see that, due to Lemma 22, even if for some round j, Rπj
> R, as long as R > H(A∗),

it is still possible to achieve sub-linear regret. According to the definition in Eq. (3.3), this implies
that, as N → ∞, any rate R > H(A∗) is achievable, while any rate R < H(A∗) is not achievable.
The entropy of the marginal π∗(a) is thus the fundamental information-theoretic limit of the
problem to achieve sub-linear regret.

3.2.4 Policy Compression

We are now ready to study compression strategies to deal with the case in which it is not always
possible to convey the policy with zero distortion, i.e., ∃ j s.t. Rπj

> R. In such cases, it is
not clear which is the message mj the decision-maker should transmit to the controller. As a
consequence of Eq. (3.6), when Rπj

> R, the sampling policy Qj adopted by the controller may
differ from πj . In [202], the authors provide some theoretical guidelines to construct approximate
sampling policies to make the posteriors, i.e., π(a|s), converge to the optimal one achieving sub-
linear regret, even when an agent is sampling with a different policy Q(a|s). In particular, they
studied the case in which the sampling distribution Q differs from the target posterior π, using
the α-divergence Dα(π,Q) as distortion measure, which is defined as

Dα(π,Q) =
1 −

∫
π(x)αQ(x)1−αdx

α(1 − α)
. (3.7)

We now provide two theoretical compression schemes that adopt the forward KL divergence
Dα→0(π,Q) = DKL(π||Q), and the reverse KL divergence Dα→1(π,Q) = DKL(Q||π), as distor-
tion functions, which are the two cases considered also in [202]. We remember that, for two discrete
distributions p and q such that p is absolutely continuous with respect to q, i.e., if x ∈ X is such
that q(x) = 0 implies p(x) = 0, the KL divergence is defined as DKL(p||q) =

∑
x∈X

p(x) log p(x)
q(x) .

Another reason to adopt these two metrics is related to the fact that it is possible to bound, in
each round j, the gap between the expected reward of the target policy πj , and that obtained by
using the approximate policy Qj . To this end, we denote by µπ(s, a) the average reward obtained
in context s when using policy π, i.e., µπ(s, a) = Eπ(a|s) [µ(s, a)], and find

EPS

[∣∣µπj (S,A) − µQj (S,A)
∣∣] =

∑

s∈S

PS(s)
∑

a∈A

µ(s, a)|πj(a|s) − Qj(a|s)| (3.8)

(a)

≤
∑

s∈S

PS(s)
∑

a∈A

|πj(a|s) − Qj(a|s)| (3.9)

=
∑

s∈S

PS(s)||πj(·|s) − Qj(·|s)||1 (3.10)

(b)

≤ C · EPS

[√
DKL (πj(·|S)||Qj(·|S))

]
, (3.11)

where (a) holds because µ(s, a) ∈ [0, 1] by assumption, (b) is the Pinsker’s inequality, and C is

90

a constant that depends on the base of the logarithm in the divergence, e.g., C =
√

1
2 ln 2 if in

base 2. We notice that, by swapping the roles of the two distributions in the last inequality, it is
possible to obtain the version with the reverse KL divergence.

Observation. It is known that by minimizing the forward KL divergence DKL(π||Q), we
obtain a more ”spread” solution Q, that tends to cover the whole domain of π. Indeed, ∀x ∈
X s.t. π(x) > 0, a penalty is added whenever the two distributions differ, i.e., the function
log π(x)

Q(x) is weighed by π(x). On the other hand, in the reverse KL divergence, the log function
is weighed by distribution Q. This means that, if Q(x) = 0, there is no incurred penalty for not
approximating the policy π(x) in x, leading to a solution that puts mass around the peaks of π.
Consequently, the exploration-exploitation trade-off is usually biased towards a more exploration-
seeking solution when minimizing DKL(π||Q), and to a more exploitation-seeking solution when
minimizing DKL(Q||π).

Reverse KL Divergence

In this case, the adopted distortion function is d(QSA, πSA) = EPS
[DKL(Q(·|S)||π(·|S))]. In the

following lemma, we provide the shape of the policy Q(a|s) that can achieve the minimum in
Eq. (3.6), i.e., the policy that minimizes the required rate while meeting the constraint on the
reverse KL divergence.

Lemma 23. Given the constraint on the reverse KL divergence DKL (Q||π) ≤ δ, the policy that
achieves the minimum in Eq. (3.6) is

Qλ(a|s) =
Q̃(a)λπ(a|s)1−λ

Z
, (3.12)

where λ ∈ [0, 1] is such that DKL (Qλ||π) = δ, Q̃(a) is the marginal, i.e., Q̃(a) =
∑

s∈S
PS(s)Qλ(a|s),

and Z is the normalization factor.

Proof. See Appendix 3.4.1.

We can see that, when λ = 0, we have Q(a|s) = π(a|s), and so RQ = Rπ = I(S;A), where
the mutual information is computed with respect to PSA. As λ increases from 0 to 1, the policy
Q tends to be more similar to the marginal π(a) =

∑
s∈S

PS(s)π(a|s), which requires zero rate.
Indeed, when λ = 1, the marginal π(a) does not require context information, and so the agents
would sample arms regardless of the contexts sj,n.

Forward KL Divergence

We consider d(QSA, πSA) = EPS
[DKL(π(·|S)||Q(·|S))]. As for the reverse case, we report the

shape of the optimal compressed policy.

91

Lemma 24. Given the constraint on the forward KL divergence DKL (π||Q) ≤ δ, the policy that
achieves the minimum in Eq. (3.6) is

Qλ(a|s) =
λπ(a|s) W0

(
λπ(a|s)

Q̃

)

Z
(3.13)

where λ is such that the maximum distortion is achieved with equality DKL (π||Qλ) = δ, W0(·)
is the Lambert function [147], Q̃(a) is the marginal, i.e., Q̃(a) =

∑
s∈S

PS(s)Qλ(a|s), and Z the
normalization factor.

Proof. See Appendix 3.4.1.

We observe that the above compressed policies can achieve the minimum in Eq. (3.6) asN → ∞,
characterizing the information-theoretic limit and serving as a lower bound for more practical
schemes that can work for finite N .

Remark. We notice that, in general, DKL(p||q) always satisfies conditions 1) and 3) − 5)

defined in Section (3.2.3), but not condition 2), i.e., it may be unbounded. We now define σq :=

minx∈X:q(x)>0 q(x). If p is absolutely continuous with respect to q, by the inverse Pinsker’s
inequality we have

DKL(p||q) ≤
2TV(p, q)2

σq
≤ 8

σq
= Dmax,

where TV(p, q) indicates the total variation distance between the distributions p and q. To meet
this requirement, we further assume ∃ϵ > 0 : π(a|s) ≥ ϵ, ∀s ∈ S and a ∈ A, whenever the com-
pression scheme has to be applied. This additional assumption is reasonable in our context, as the
target policy πj needs exploration during training. Once πj has converged to the optimal policy
(see Appendix 3.4.1), further compression would lead to sub-linear regret.

Practical Coding Scheme

To find practical coding schemes, we propose a solution that is based on the idea of context reduc-
tion, and computes compact context representations. In essence, the decision-maker constructs a
message containing the new context representations ŝ(s) ∈ Ŝ of s, one for each agent, and sends it
over the channel. Once the agents have received the message, they can sample the arms according
to a common policy Qŝ(a|ŝ), which is defined on the compressed context space Ŝ. If the rate
constraint imposes B bits per agent, it means that it is possible to transmit at most 2B different
contexts to each agent. The idea is to group the contexts into 2B = M clusters ŝ1, . . . , ŝM , min-
imizing d(QŜA, PSA), where QŜA is the new policy defined on the compressed contexts ŝ(s) ∈ Ŝ.
Again, we avoid to explicitly write the round index j, as the scheme does not depend on it.

To find the clusters and relative policies we employ the well-known Lloyd algorithm [168],
which is an iterative process to group states into clusters. First of all, knowing the policy π,
the decision-maker maps each state s ∈ S into a K-dimensional point αp = π(·|s) ∈ ∆K , finding

92

|S| = S different points α1, . . . ,αS . Then, it generates 2B = M random points µ1, . . . ,µM ∈ ∆K

as initial centroids, i.e., representative policies, and iterates over the following two steps:

1. Assign to each point αp the class c∗ ∈ {1, . . . ,M} such that c∗ = argminc EPS
[Dα(µ

c,αp)],
i.e., minimizing the average α-divergence between the representative µc∗ and the original
policy, which is the point αp. For each cluster c, we now denote by Sc the set containing
the contexts associated to the policies in that cluster.

2. Update µ1, . . . ,µM such that µc = argminµ∈∆K

∑
s∈Sc

P (s)Dα(µ, π(·|s)), which is still a
convex optimization problem when using α = 0 or α = 1, and can be solved applying the
Lagrangian multipliers. The solution is

µc =

∏
s∈Sc

π(·|s)
P (s)
A(Sc)

Z
, (3.14)

when using Dα→0(µ
c, π(·|s)) = DKL(µ

c||π(·|s)), and

µc =

∑
s∈Sc

P (s)π(·|s)
Z

, (3.15)

when using Dα→1(µ
c, π(·|s)) = DKL(π(·|s)||µc). Here, the product is to be considered

element-wise, A (Sc) is the sum of the contexts probabilities in Sc, i.e., A (Sc) =
∑

s∈Sc
P (s),

and Z is the normalizing factor. After computing the new centroids, we go back to step
1). The derivations of Eq. (3.14) and Eq. (3.15) are provided in Appendix 3.4.1 and Ap-
pendix 3.4.1, respectively.

The process continues until the new solution does not decrease the average distortion between
the cluster policies and the target ones.

Observation. Note that the controller is assumed to know the M policies from which it
samples the arms of the agents. This can be transmitted at the beginning of each round. In
this case, the scheme is efficient as long as N log2K ≫ BP log2K, where P is the number of bits
used to represent the values of the Probability Mass Function (PMF) Qŝ(·|ŝ). For this reason, we
provide a scheme where the new policy is updated not at every transmission, but only when the
new target π has changed considerably. In particular, if we denote with πcls the policy defined
over the compressed context representation, with πlast the last policy used to compute πcls, and
with π the updated target policy, we compute and transmit πcls every time Dα(π

last, π) exceeds
a threshold ζ.

Algorithm Complexity. The complexity of the algorithm is related to solving the k-means
problem, which is known to be NP-hard. Consequently, the solution relies on state-of-the-art
heuristic clustering schemes, which have complexity O(SKMI) [228], where S is the number of
states, K is the number of total actions, M is the number of clusters, which in turn depends on
the available rate, and I is the total number of iterations needed to converge to an acceptable
solution, i.e., when the performance of two consecutive solutions is within a sensitivity threshold ϵ.
Specifically, for our simulations reported in Sec. 3.2.5, we chose the Lloyd’s algorithm [168], and
we notice that ϵ sensitivity target is always achieved within 10 iterations, i.e., I < 10.

93

Policy Compression, Information Bottleneck and Maximum Entropy Reinforcement
Learning

We discuss here the connection of the compression schemes presented above with two popular
training strategies in RL: the information bottleneck (IB) approach [238], and maximum entropy
reinforcement learning (MERL) [101].

The IB method is a popular way to train an RL agent to maximize a target cumulative reward,
with an additional regularization term which accounts for mutual information I(S;A) between
the states and actions. As done in [98, 121, 86], the target function J(π) to be maximized with
respect to policy π is

JIB(π) = E [Rπ] − βI(S;A) = E [Rπ] − βH(A) + βH(A|S), (3.16)

inducing the policy π to forget task-independent state information, achieving a better generaliza-
tion performance. A different but similar concept is that of MERL, in which the RL agent is
trained to maximize the reward, together with a regularization term that is the entropy of the
conditional policy given the state [101, 152], i.e.,

JMERL(π) = E [Rπ] + βH(A|S), (3.17)

inducing the policy π to more exploration. As proved in [152], MERL naturally appears in the
Control as Inference framework, in which a probabilistic view of the RL problem is adopted. Specif-
ically, when using a uniform prior distribution over the actions, inferring the optimal posteriors
leads to the optimization object in Eq. (3.17). If we now write the distortion-rate function of the
RC-CMAB problem, and solve it using the Lagrangian multiplier method, we end up minimizing
the objective

LRC−CMAB(Q) = d(QSA, πSA) + λI(S;A), (3.18)

where the term d(QSA, πSA) plays the role of E [Rπ], i.e., it is related to reward maximization
by playing according to the optimized posterior, and λI(S;A) is implied by the constraint on
the rate. However the difference is that, in our analysis, the parameter λ is optimized to meet
the rate constraint in each round, and so it is determined by the problem, rather than being a
hyper-parameter to be fine tuned as in the other two formulations. Moreover, in Section 3.2.3
we proved that, if λ is such that RQλ

= IQλ
(S;A) < Rπ∗ = H(A∗), then the learning algorithm

cannot achieve sub-linear regret. Consequently, it is important to carefully tune the coefficient
β when optimizing the policy with the IB and MERL methods. This connection will be also
highlighted by the results of the experiments in Section 3.2.5.

3.2.5 Numerical results

We now analyze the RC-CMAB problem presented in Sec. 3.2.2, and apply both the theoretical
and practical policy compression schemes to solve it. In particular, we compare the performance

94

0 50 100 150 200 250 300 350 400
System round

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ra
te

 [B
its

]

Available
Perfect

(a)

0 200 400 600 800 1000 1200
Virtual Round [t]

0

20

40

60

80

100

120

140

160

Ba
ye

sia
n

sy
st

em
 re

gr
et

Perfect
Comm R-KL
Cluster R-KL
CLuster F-KL
Comm F-KL

(b)

Figure 3.2: Rate Rπ needed to reliably transmit the policy π as a function of the system round
j, together with the imposed rate R (a); average state regret obtained by the different algorithms
as a function of the virtual round t (b). In this case, G = 8. Curves indicates average rewards ±
one standard deviation over 5 runs.

of the Perfect agent, which applies TS without any rate constraint, and thus admits samples
from the true posterior π, with the performance of the rate-constrained algorithms Comm R-KL,
Comm F-KL, Cluster R-KL, and the Cluster F-KL agents. The rate-constrained agents adopt
TS at the decision-maker and, when the rate is not sufficient, transmit a compressed policy Q

with the different schemes. Specifically, the Comm R-KL agent uses the optimal scheme with
reverse KL divergence, and the Comm F-KL agent uses the forward KL divergence, as explained
in Sec. 3.2.4; the Cluster R-KL and Cluster F-KL agents implement the practical coding scheme
also provided in Section 3.2.4. In every experiment, the context distribution PS is uniform over
the S = 16 contexts, and there are K = 16 feasible arms, N = 50 agents, and the total number of
system rounds is J = 400. In all the experiments the environment is such that, for each context
s ∈ S = {0, . . . , 15}, the best average reward is given by the arm a ∈ A = {0, . . . , 15} such that
a = ⌊ sG⌋, where G is an experiment parameter. In particular, the reward behind arm a with
context s is a Bernoulli random variable with parameter µ(s, a) = 0.8 if a = ⌊ sG⌋, and µ(s, a) is
sampled uniformly in [0, 0.65] otherwise. The average rewards for sub-optimal arms are randomly
generated at the beginning of each experiment’s run. This set of parameters allows us to study
the performance of the different compression schemes, as the degree of correlation between the
optimal action distributions and contexts varies. We do not expect notable changes by varying
the number of arms, states, and/or reward distributions. For example, increasing the number
of arms, or decreasing the gaps between optimal and sub-optimal arms’ average rewards, would
lead to longer training processes for any algorithms [148], without affecting the performance of
compressed policies in comparison to the uncompressed ones. The code to reproduce all the
experiments is publicly available on GitHub.2

95

0 50 100 150 200 250 300 350 400
System round

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ra
te

 [B
its

]

Available
Perfect

(a)

0 200 400 600 800 1000 1200
Virtual Round [t]

0

50

100

150

200

250

Ba
ye

sia
n

sy
st

em
 re

gr
et

Perfect
Comm R-KL
Cluster R-KL
CLuster F-KL
Comm F-KL

(b)

Figure 3.3: Rate Rπ needed to reliably transmit the policy π as a function of the system round
j, together with the imposed rate R (a); average state regret obtained by the different algorithms
as a function of the virtual round t (b). In this case, G = 2. Curves indicates average rewards ±
one standard deviation over 5 runs.

Optimal Rate Constraint

In the first experiment, we set G = 8, meaning that the arm with the highest expected reward
is a = 0 in the first 8 contexts, and a = 1 with s ∈ {8, . . . , 15}. Consequently, the rate of the
optimal policy is Rπ∗ = H(A∗) = 1 bit, given that PS is uniform. The maximum available rate
R is set to 1 bit for all the agents but the Perfect one. Specifically, the agents Comm R-KL and
Comm F-KL adopt a rate RComm = min {1, Rπ}. Whenever Rπ > 1, the compression schemes
explained in Sec. 3.2.4 are adopted. The cluster agents use 1 bit in all the rounds, whereas the
Perfect agent can always use Rπ. The results are presented in Fig. 3.2.

As we can see from Fig. 3.2a, as the learning process goes on, the required rate to transmit the
TS policy increases, as the mutual information between S and A increases. Moreover, the rate Rπ

converges to 1. However, it is interesting to observe Fig. 3.2b, that reports the average state regret
as a function of the virtual round index t = 1, . . . , JN . The agents Comm R-KL, Comm F-KL
and Perfect all achieve similar performance. However, agent Cluster F-KL is not able to converge
to the optimal policy. Surprisingly, the best performing agent is the more practical Cluster R-KL.
We argue that this is because it is the agent that makes better use of the IB trick, as 16 different
policies are not necessary to represent the optimal responses, given that 2 different distributions
are sufficient. We show thus that, when the hyper-parameter β in Eq. (3.16) is optimally tuned, i.e.,
such that I(S;A) = H(A∗), it is possible to gain in performance when adding the regularization
term.

Training with Rate Constraint

In this second experiment, we set G = 2, and R = 2 for the first 200 system rounds, and R = 3

for the remaining 200 rounds. Given G = 2, we now have Rπ∗ = 3 bits, and so the constraint
can potentially damage the training process of the rate-constrained agents. As we can see from

2https://github.com/FrancescoPase/rccmab

96

0 50 100 150 200 250 300 350 400
System round

0

1

2

3

4

Ra
te

 [B
its

]

Cluster
Perfect

(a)

0 200 400 600 800 1000 1200
Virtual Round [t]

0

20

40

60

80

100

120

Ba
ye

sia
n

sy
st

em
 re

gr
et

Perfect
Cluster R-KL
CLuster F-KL

(b)

Figure 3.4: Rate Rπ needed to reliably transmit the policy π as a function of the system round
j, together with the imposed rate R (a); average state regret obtained by Perfect and Cluster
algorithms, as a function of the virtual round t (b). In this case, G = 1. Curves indicates average
rewards ± one standard deviation over 5 runs.

Fig. 3.3b, the Perfect agent can easily converge obtaining sub-linear regret. The regret of the
rate-constrained agents grows linearly as their rate is imposed to R = 1. However, we can see that
the two agents that theoretically-optimally trade rate with policy distortion, present the smallest
slope in the regret curve. Again, the Cluster R-KL agent outperforms Cluster F-KL, and achieves
almost zero per-round regret as soon as R jumps to 3, meaning that the posteriors converged
to the optimal ones even when sampling with R = 1. This is not true for Cluster F-KL, as it
presents larger slope in the regret curve, and the regret keeps growing even when R = 3. These
observations are consistent with the analysis in [202].

Practical Coding Scheme

This last experiment presents the effectiveness of the practical coding schemes described in Sec. 3.2.4,
in the most complex case G = 1, i.e., the association between context and optimal arm is a one-
to-one map, and the optimal policy π∗ needs Rπ∗ = 4, which is also equal to the context entropy.
Consequently, in this case the maximum-complexity policy, i.e., a different arm distribution for
each context, is needed [146], and so the IB should be carefully used, and β = 0 in the end is
needed, as no compression scheme can achieve sub-linear regret with R < 4 bits. In this case, the
number of bits the Cluster agents can use is set to RCluster = ⌈Rπ⌉. What is interesting to notice
here is that, in the long run, the Cluster F-KL agent outperforms Cluster R-KL, as it is able to
converge to the optimal scheme by introducing more exploration. Indeed, even if in the first 400
virtual rounds the Cluster R-KL regret curve is below that for Cluster F-KL, from t ∼ 600 the
Cluster F-KL agent presents better performance. The reason is that, in this case, more exploration
should be encouraged in the first steps to discover optimal policies, as done in MERL, by sampling
sub-optimal arms more frequently.

97

3.2.6 Conclusion
In this work, we have proposed and studied a novel rate-constrained remote RL problem, called
RC-CMAB. We first proved the performance of the TS strategy when no constraint on the rate is
imposed, and the information-theoretic limit for the rate needed to achieve sub-linear regret. We
then studied schemes to compress the decision-maker’s policy whenever the available rate is not
sufficient to reliably transmit the intended actions to the controller. We considered α-divergence
as the distortion metric in the rate-distortion problem, and provided the shape of the policies
that theoretically optimize the rate-distortion trade-off in close-form, in the cases α → 0, and
α → 1, which lead to the reverse and forward KL divergences, respectively. We further proposed
a practical compression scheme that relies on the idea of context clustering, and can be adopted to
minimize the two analyzed divergence functions. The numerical results confirmed the limit on the
achievable rate, and the performance gain that can be achieved when using proper compression
strategies in the rate-constrained cases. We further connected and discussed with experiments the
relation between our policy compression schemes and the information bottleneck approach in RL.

Future steps include the adoption of more advanced practical compression algorithms that
reduce the gap between the cluster and optimal schemes. Moreover, the extension of the problem
in the context of more general remote RL problems, where the next state depends on the current
state and the action taken, is an interesting and challenging direction, as modern algorithms
involve the parallelization of the training process exploiting a multitude of agents interacting with
many replicas of the same environment.

98

3.3 Effective Communication in Distributed Reinforcement
Learning

Having solved the rate-constrained contextual multi-armed bandit (RC-CMAB) problem, we now
move to investigate the role of information in the newly defined remote Partially Observable
Markov Decision Process (POMDP), in which Deep Reinforcement Learning (DRL) is used to
solve a more complex decision process. To this end, we propose a more practical scheme to
compress complex observations and communicate them through the network taking from concepts
in the semantic communications literature.

3.3.1 Introduction
The rise of communication metrics that take the content of the message into account, such as
the Value of Information (VoI) [272], represents an attempt to approach the problem in practical
scenarios, and analytical studies have exploited information theory to define a semantic accuracy
metric and minimize distortion [224]. In particular, information bottleneck theory [41] has been
widely used to characterize Level B optimization [223]. However, translating a practical system
model into a semantic space is a non-trivial issue, and the semantic problem is a subject of active
research [242, 198]. The effectiveness problem is even more complex, as it implicitly depends on
estimating the effect of communication distortion on the control policy and, consequently, on its
performance [241]. While the effect of simple scheduling policies is relatively easy to compute [136],
and linear control systems can be optimized explicitly [278], realistic control tasks are highly com-
plex, complicating an analytical approach to the Level C problem. Pure learning-based solutions
that consider communication as an action in a multi-agent DRL problem, such as emergent com-
munication, also have limitations [91], as they can only deal with very simple scenarios due to
significant convergence and training issues. In some cases, the information bottleneck approach
can also be exploited to determine state importance [98], but the existing literature on optimizing
Level C communication is very sparse, and limited to simpler scenarios [187].

In this work, we consider a dual model which combines concepts from DRL and semantic
source coding: we consider an ensemble of Vector Quantized Variational Autoencoder (VQ-VAE)
models [244], each of which learns to represent observations using a different codebook. A DRL
agent can then select the codebook to be used for each transmission, controlling the trade-off
between accuracy and compression. Depending on the task of the receiver, the reward to the
DRL agent can be tuned to solve the Level A, B, and C problems, optimizing the performance
for each specific task. In order to test the performance of the proposed framework, we consider
the well-known CartPole problem, whose state can be easily converted into a semantic one, as its
dynamics depend on a limited set of physical quantities. The main contributions of this work are
then given by the following:

• We model a remote-control system as a remote POMDP problem and present an efficient
solution for learning effective communication through the dynamic compression of learnable
features;

99

• We show that dynamic codebook selection outperforms static strategies for all three levels,
and that considering the Level C task can significantly improve the control performance
without increasing the bitrate;

• We adopt an explainability framework to understand the choices of the agent in this simple
problem, and verify that the Level C dynamic compression captures the receiver’s uncertainty
in the state estimation and its impact on the expected reward, transmitting only when
necessary.

The results and policy analysis lead to significant insights for the design of communication strate-
gies for remote control.

3.3.2 System Model

The recent interest in semantic and effective communications from the research community has
driven the development of a wide array of models and conceptualizations, as highlighted in the
previous section. At the highest level of abstraction, our purpose is to define a model in which
effective communication is meaningful, and the differences between the three problems in Weaver’s
formulation become clear.

Let us then consider a simple example: we have a remote actuator performing a control task,
while a camera observes the results and transmits its observation through a wireless channel. The
actuator might have its own sensors, but it relies on the video feed to improve its performance and
maintain stable and efficient control. The classical, Level A approach to the problem would be
to compress the video as efficiently as possible, minimizing the reconstruction error on frames by
using an appropriate codec.The difference between Level A and Level B solutions is then obvious:
the former encodes new frames so that the reconstruction fidelity is preserved, while the latter
maps elements in the frame to their importance when estimating the physical state of the system.
In some control applications, the state can be defined trivially, while in others it may be more
complex, but in general, the translation of the video to the state space is unaffected by irrelevant
information (such as, e.g., movements in the background).

If we consider Level C, we target control performance directly, and thus further restrict the
definition of relevant information: while Level B concerns itself with estimating the system state
correctly, a Level C solution only considers errors in the state estimation when they cause perfor-
mance drops. If the control action is the same over a wide set of states, accuracy then becomes
unnecessary, as the actuator only needs a rough estimate of the state to decide what to do; the
same happens if there are multiple actions with almost equivalent performance, i.e., if the opti-
mality gap caused by imperfect information remains small.

These natural observations represent the core concepts of effective communication, but imple-
menting them in practical systems is often complex as actions have long-term consequences, and
state estimates are based on a history of observations, so that transmitting a message may affect
future performance in complex ways. In the following, we provide an analytical framework using
the remote POMDP approach to objectively evaluate these choices and implement a solution for ef-

100

Table 3.1: Main notation and definitions.

Symbol Definition
S Set of system states
A Set of feasible actions
O Set of observations
P State transition probability function
ω Observation function
R Reward function
γ Discount factor
h History of stochastic observations
h(r) History of received messages at the robot
π Policy
G Expected cumulative discounted reward
Φ(·) Space of probability distributions over a set
ξ Belief distribution over the states space S

ξ(o) Belief distribution at the observer
ξpri,(r) Prior belief distribution at the robot
ξ(r) Belief distribution at the robot
M Set of messages
Λ Encoding function
m Message communicated
ℓ(m) Length of message m
ζ Vector quantizer
P Picture space
β Communication cost

fective communication in cyber-physical systems. In Section 3.4.2 we also provide an information
bottleneck perspective of the problem.

We will denote random variables with capital letters, their possible values with lower-case letters,
and sets with calligraphic or Greek capitals. Table 3.1 reports the main symbols we introduce in
the following sections for the reader’s convenience.

POMDP Definition and Solution

In the standard POMDP formulation [131], one agent needs to optimally control a stochastic
process defined by a tuple ⟨S,A,O, P, ω,R, γ⟩, where S represents the set of system states, A is the
set of feasible actions, and O is the observation set. The function P : S × A → Φ(S), where Φ(·)
represents the space of probability distributions over a set, gives the state transition probability
function. We denote the conditional probability distribution of the next state, given the current
state and the selected action, as P (s′|s, a) = Pr [St+1 = s′|St = s,At = a]. Then, ω : S → Φ(O) is
an observation function, which provides the conditional probabilities ω(o|s) = Pr [Ot = o|St = s],
i.e., the probability of receiving observation o, given that the system is in state s. Finally, function
R : S × A → R provides the expected reward received by the agent when taking action a in state
s, denoted as R(s, a), and the scalar γ ∈ [0, 1) is a discount factor used to compute the long-term

101

reward. We notice that functions P , R, and ω do not depend on the time instant t, thus focusing
on homogeneous Markov processes.

The POMDP proceeds in discrete steps indexed by t: at each step t, the agent can infer the
system state st only from the partial information given by the history of stochastic observations
ht = (ot, ot−1, . . . , o1) ∈ Ot. Based on these observations, and on its policy π : Ot → Φ(A), which
outputs a probability distribution over the action space for each possible observation history, the
agent interacts with the system by selecting an action At ∼ π(ht). The sampled action at is
then performed in the real environment, whose hidden state st is unknown to the agent, which
then receives a feedback from the environment in the form of a (potentially stochastic) reward
rt, with expected value Rt = R(st, at).3 The goal for the agent is then to optimize its policy π
to maximize the expected cumulative discounted reward G = E

[∑
t γ

tRt

]
. Having an optimal

policy is equivalent to knowing the optimal state-action values, also known as Q-values, and taking
action

at = π(ht) = argmax
a∈A

Q(ht, a),

where Q(ht, at) = E
∑∞

τ=t γ
τ−tRτ |ht, at is the expected cumulative reward starting from (ht, at).

However, considering the full history of observations makes the solution highly complex, as the
length of ht is potentially unbounded. We then define an estimator ξ : Ot → Φ(S), which outputs
the a posteriori belief distribution over the state space. We can then recast the original POMDP
as a standard Markov decision process (MDP), whose state space is S′ = Φ(S), i.e., the space of
possible belief distributions. Solving the POMDP in this modified belief space has been proved
to be optimal in [227].

The policy over this modified MDP is then π : S′ → A, which can be optimized using standard
tools [233]. We can also compute the new transition probability and expected reward as in [227].
Given ξt(s) = Pr (St = s | ht) and At = a, we define the a priori belief of the state at time t + 1

as
ξpri
t+1 (s|ξt, a) =Pr [St+1 = s | ξt, At = a]

=
∑

s′∈S

ξt(s
′)P (s|s′, a).

The a posteriori belief ξt+1 can then be obtained by performing a Bayesian update, using the new
observation ot+1 and applying Bayes’ theorem using the a priori belief as a prior:

ξt+1

(
s|ξpri

t+1, o
)
=Pr [St+1 = s | ξt, At = a,Ot+1 = o]

=
ω(o|s)ξpri

t+1(s)∑
s′∈S

ξpri
t+1(s

′)ω(o|s′)
.

(3.19)

These update equations allow us to compute the modified transition probability matrix P ′ for the
belief MDP, which is then defined by the tuple ⟨Φ(S),A, P ′, R, γ⟩.

3As the reward signal is only provided during training, it cannot be used to infer the value of st.

102

The Remote POMDP

We consider a variant of the POMDP that we define remote POMDP, in which two agents are
involved in the process. The first agent, i.e., the observer, receives observation Ot ∈ O, and needs
to convey such information to a second agent, i.e., the robot, through a constrained communication
channel, which limits the number of bits the observer can send. Consequently, the amount of
information the observer can send to the robot is limited. The robot then chooses and takes
an action in the physical environment. This system can formalize many control problems in
future Industrial Internet of Things (IIoT) systems, as sensors and actuators may potentially be
geographically distributed, and the amount of information they can exchange to accomplish a task
is limited by the shared wireless medium, which has to be allocated to the many devices installed
in the factory, as well as by the energy limitations on the sensors. Similar systems have been
analyzed in [241, 93]. We will now analyze the problems for the two agents, considering a case
in which communication and control are designed separately. Joint control and communication
approaches [170] can outperform separate approaches by tuning the two agents’ policies to each
other, but they introduce additional training complexity, and will not be considered in this work.
In the following, we will refer to variable x related to the robot as x(r), while the corresponding
variable on the observer side will be denoted by x(o).

The Robot-Side POMDP

We denote the message communicated to the robot at time step t as mt ∈ M. The set of possible
messages M forms the set of observations that are available to the robot, and the history of these
observations is given by h(r)t = {mt, . . . ,m1}, which is the sequence of messages received up to
time t. We can then see the robot as an agent with its own POMDP, in which the observations are
filtered by both the partial knowledge of the observer and the further distortion produced by the
fact that these observations are encoded and communicated through a constrained channel. The
robot-side POMDP is then defined by the tuple

〈
S,A,M, P, π(o), R, γ

〉
, as observations depend on

the observer’s policy.
The message transmitted from the observer to the robot modifies the belief distribution over

the next state as a Bayesian update. Let us define the distribution over the current state, given
that the message mt has been received, as ξ(r)t . For example, if the communicated message mt

contains the correct state St = s, the belief distribution becomes deterministic, i.e., ξ(s′ | mt) =

δs,s′ , where δm,n is the Kronecker delta function, equal to 1 if the two arguments are the same
and 0 otherwise. Ideally, an intelligent observer will allocate more communication resources and
thus provide more precise messages if the a priori distribution of the robot is far from the one
estimated by the observer. The modified MDP is then defined by the tuple

〈
Φ(S),A, P (r), R, γ

〉
,

where P (r) represents the Bayesian update function. According to the previous notation, we can
express the optimal action at time t + 1 as

at+1 = argmax
a∈A

Q
(
ξ
(r)
t , a

)
,

103

where ξ(r)t is the current belief at the robot side (after message mt is received). The robot’s
reward is simply given as the reward of the original POMDP, i.e., the control performance in the
environment. The optimal policy can be reached by using standard DRL tools.

The Observer-Side POMDP

On the other side, the observer needs to encode its belief ξ(o)t in a message mt ∈ M and transmit
it. We can then consider the observer-side POMDP, in which the action set corresponds to the
set of messages M and the state space is represented by the belief from the observed results. The
tuple defining this POMDP is

〈
S,M,O, P, ω,R(o), γ

〉
. We assume that the observer knows the

robot’s policy, i.e., it can know the actions that the robot takes in the environment and use them
to improve its estimate of the state. This can also be accomplished if the robot transmits the
actions it takes as feedback to the observer. As described above for the robot-side problem, we can
transform this POMDP into the belief MDP given by

〈
Φ(S) × Φ(S),M, P (o), R(o), γ

〉
, where P (o)

is the Bayesian update given in (3.19). We highlight that the observer needs to keep track of both
its own and the robot’s belief, as the effectiveness of communication depends on the difference
between the two, and the state of the observer is given by

〈
ξ
(o)
t , ξ

pri,(r)
t

〉
.

The objective of the observer is to minimize channel usage, i.e., communicate as few bits as
possible, while maintaining the highest possible performance in the control task: the expected
reward R(o) depends on both components. If it transmits message m, whose length in bits is ℓ(m),
the observer then gets a penalty βℓ(m), where β ∈ R

+ is a cost parameter. In order to optimize
its policy, the observer also needs to have a way to gauge the value of information, which is a
complex problem: information theory, and in particular rate-distortion theory, have provided the
fundamental limits when optimizing for the technical problem, i.e., Level A, where the goal is to
reconstruct the source signals with the highest fidelity [69]. We will discuss the definition of VoI
in the following sections.

As the complexity of the problem is massive, we restrict ourselves to a smaller action space
by making a simplifying assumption, which allows us to separate the problem: the observer does
not transmit the entire belief distribution, which may be implicit, but rather the observation
Ot. We then consider the encoding function Λ : O × Φ(S) → M, which will generate a message
Mt = Λ

(
Ot | ξ(o)t

)
to be sent to the robot at each step t.

Observer Reward in Remote POMDPs

The first and simplest way to solve the remote POMDP problem is to blindly apply standard
Level A rate-distortion metrics to compress the sensor observations into messages to be sent to
the agent. As an example, in the CartPole problem analyzed in this work (see Sec. 4.3.5), one
sensor observation is given by two consecutive 2D camera acquisitions. The observer’s policy
is then independent of the robot’s task, and can be computed separately. The Level A reward
function R(o)

A is then given as follows:

R
(o)
A

(〈
ξ
(o)
t , ξ

pri,(r)
t

〉
,m
)
= −dA(ot, ôt) − βℓ(m). (3.20)

104

In the CartPole case, a natural distortion metric is the image Peak Signal to Noise Ratio (PSNR),
an image quality metric proportional to the logarithm of the normalized Mean Square Error (MSE)
between the images. Naturally, encoding the observation with a higher precision will require more
bits, as the set of messages needs to be bigger.

The Level B problem considers the projection of the raw observations into a significantly smaller
semantic space, over which we measure distortion using function dB , explicitly capturing the error
over the needed physical system information, e.g., the angular position and velocity of the pole in
the CartPole problem. The Level B reward function R(o)

B is then given as follows:

R
(o)
B

(〈
ξ
(o)
t , ξ

pri,(r)
t

〉
,m
)
= −dB

(
ξ
(o)
t , ξ

(r)
t

)
− βℓ(m). (3.21)

In our CartPole case, this may be simply represented by the MSE between the best estimate of
the state at the transmitter and receiver.

Finally, we can consider the Level C system. In this case, the distortion metric is not needed,
as the control performance can be used directly, and the reward R(o)

C is:

R
(o)
C

(〈
ξ
(o)
t , ξ

pri,(r)
t

〉
,m
)
= R

(
ξ
(r)
t , π(r)

(
ξ
(r)
t

))
− βℓ(m). (3.22)

The VoI of message m, V
(
ξ

pri,(r)
t ,m

)
, can then be given by the difference between the expected

performance of the robot with this information and without it:

V
(
ξ

pri,(r)
t ,m

)
=Q

(
ξ
(r)
t , π(r)

(
ξ
(r)
t

))
− Q

(
ξ

pri,(r)
t , π(r)

(
ξ

pri,(r)
t

))
. (3.23)

Thus, the optimal Level C observer policy π(o)
C will balance the trade-off between the performance

at the receiver and the communication cost not only in the current time step but also in the
long term. This foresighted behavior is essential when considering that the belief distributions
incorporate the memory of previously received messages. Providing information that does not
improve the expected reward in the next step might still be worth the cost if it allows the robot
to improve its estimate, reducing the need for future communication.

3.3.3 Proposed Solution

In this section, we introduce the architecture we used to represent Λ, the VQ-VAE, and discuss the
remote POMDP solution. As the VQ-VAE model is not adaptive, we consider an ensemble model
with different quantization levels, limiting the choice of the observer to which VQ-VAE model to
use in the transmission. As we mentioned, directly learning the encoding is highly complex, with
a vast action space, and techniques such as emergent communication that learn it explicitly are
limited to scenarios with very simple tasks and immediate rewards. By restricting the problem
to a smaller action space, we may find a slightly suboptimal solution, but we can deal with much
more complex problems.

105

Deep VQ-VAE Encoding

In order to represent the encoding function Λ, and to restrict the observer-side POMDP to a more
manageable action space, the observer exploits the VQ-VAE architecture introduced in [244]. The
VQ-VAE is built on top of the more common Variational Autoencoder (VAE) model, with the
additional feature of finding an optimal discrete representation of the latent space. The VAE is
used to reduce the dimensionality of an input vectorX ∈ R

I , by mapping it into a stochastic latent
representation Z ∈ R

L ∼ qν(Z|X), where L < I. The stochastic encoding function qν(Z|X) is a
parameterized probability distribution represented by a neural network with parameter vector ν.
To find optimal latent representations Z, the VAE jointly optimizes a decoding function pθ(X̂|Z)
that aims to reconstruct X from a sample X̂ ∼ pθ(X̂|Z). This way, the parameter vectors ν
and θ are usually jointly optimized to minimize the distortion d(X, X̂) between the input and its
reconstruction, given the constraint on Z, while reducing the distance between qν(Z|X), and some
prior q(Z) [137] used to impose some structure or complexity budget.

However, in practical scenarios, one needs to digitally encode the input X into a discrete latent
representation. To do this, the VQ-VAE quantizes the latent space by using N K-dimensional
codewords z1, . . . , zN ∈ R

K , forming a dictionary withN entries. Moreover, to better represent 3D
inputs, the VQ-VAE quantizes the latent representation Z using a set of F blocks, each quantizing
one feature f(X) of the input, and chosen from a set of N possible codewords. We denote the
set containing all the NF possible concatenated blocks with M(N), as it represents the set of all
possible messages the observer can use to convey to the robot the information on the observation
O, by using F discrete N -dimensional features. The peculiarity of the VQ-VAE architecture
is that it jointly optimizes the codewords in M(N) together with the stochastic encoding and
decoding functions qν and pθ, instead of simply applying fixed vector quantization on top of
learned continuous latent variables Z. When the communication budget is fixed, i.e., the value
of L is constant, the protocol to solve the remote POMDP is rather simple: first, the observer
trains the VQ-VAE with N = 2F

−1L to minimize the technical, semantic, or effective distortion
dα, depending on the problem; then, at each step t, the observer computes m̂ ∼ qν(·|ot), and finds
mt = argminm∈M(N) ∥m − m̂∥2. The message mt is sent to the robot, which can optimize its
decision accordingly.

Dynamic Feature Compression

We can then consider the architecture shown in Fig. 3.5, consisting of a set of VQ-VAEs V =

{ζ∅, ζ1, . . . , ζV }, where each VQ-VAE ζv compresses each feature using v bits. We also include a
null action ζ∅, which corresponds to not transmitting anything. As we only consider the commu-
nication side of the problem, the robot is trained beforehand using the messages with the finest-
grained quantization, which are compressed with the VQ-VAE ζV with the largest codebook. The
robot can then perform three different tasks, corresponding to the three communication problems:
it can decode the observation (Level A) with the highest possible accuracy, using the decoder
part of the VQ-VAE architecture; it can estimate the hidden state (Level B) using a supervised
learning solution; or it can perform a control action based on the received information and observe

106

Observation

DRL
agent

Ensemble
VQ-VAE

Ψ∅

Ψ1

. . .

ΨV

Observer

ot

at

Decoder

Semantic
estimate

DRL
agent

Actor

mt

ôt

ŝt

rt

Figure 3.5: Dynamic feature compression architecture.

its effects (Level C).
In all three cases, the dynamic compression is performed by the observer, based on the feedback

from the robot. The observer side of the remote POMDP, whose reward is given in (3.20)-(3.22),
is restricted to the choice of ζv, i.e., to selecting one of the possible codebooks learned by each
VQ-VAE in the ensemble model, or to avoid any transmission. As we described in the previous
section, the type of reward depends on the communication problem that the observer is trying
to solve: at Levels A and B, the observer aims at minimizing distortion in the observation and
semantic space, respectively. At Level C, the objective is to maximize the robot’s reward.

In all three cases, memory is important: representing snapshots of the physical system in
consecutive instants, subsequent observations have high correlations, and the robot can glean a
significant amount of information from past messages. This is an important advantage of dynamic
compression, as it can adapt messages to the estimated knowledge at the receiver side.

While the observer is adapting its transmissions to the robot’s task, the robot’s algorithms
are fixed. They could themselves be adapted to the dynamic compression strategy, but this joint
training is significantly more complex, and we consider it as a possible extension of this work.

RL implementation

There are two policies in the considered system, one for the observer and one for the robot and
in both cases the policies are learned through the Actor Critic algorithm. This means that an
agent learns a parametric policy πλ and a Q-values estimator. Both the policy and the Q-values
are neural networks. In order to take into account the past observations the two networks share
a Long Short-Term Memory (LSTM) layer which estimates a latent state which is then given as
input to both the policy and the values estimator. This architecture avoids explicitly modeling the
belief distribution which may be complicated to treat in continuous settings like the one considered
in this work. This practical choice is also useful to avoid decoding the latent features discovered
by the VQ-VAE back in the observation space O or in the physical state space S, increasing the
potential for errors. Indeed, the quantized features communicated with the message mt contain a

107

Figure 3.6: Example of the original and reconstructed observation.

structured representation of the observation space which can be used effectively by an LSTM to
estimate the true state. The training algorithm is the standard Advantage Actor Critic (A2C), but
the replay buffer is appropriately modified to take into account the history of previously received
messages.

3.3.4 Simulation Settings and Results

The underlying use case analyzed in this work is the well-known CartPole problem, as implemented
in the OpenAI Gym library.4 In this problem, a pole is installed on a cart, and the task is to
control the cart position and velocity to keep the pole in equilibrium. The physical state of the
system is fully described by the cart position xt and velocity ẋt, and the pole angle ψt and angular
velocity ψ̇t. Consequently, the true state of the system is st = (xt, ẋt, ψt, ψ̇t), and the semantic
state space is S ⊂ R

4 (because of physical constraints, the range of each value does not actually
span the whole real line).

At each step t, the observer senses the system by taking a black and white picture of the
scene, which is in a space P = {0, . . . , 255}180×360. To take the temporal element into account,
an observation Ot includes two subsequent pictures, at times t − 1 and t, so that the observation
space is O = P × P. An example of the transmission process is given in Fig. 3.6, which shows
the original version sensed by the observer (above) and the reconstructed version at the receiver
(below) when using a trained VQ-VAE with Nζ = 6.

In the CartPole problem, the action space A contains just two actions Left and Right, which
push the cart to the left or to the right, respectively. At the end of each step, depending on
the true state st, and on the taken action at, the environment will return a deterministic reward
Rt = −x−1

max|xt| − ψ−1
max|ψt|, ∀t, where xmax = 4.8 m and ψmax = 2π

15 rad (equivalent to 24◦) are
the maximum values for the two quantities. If the angle or cart position go outside the boundaries,
the episode is over, and the agents do not accumulate any more reward. The goal for the two

4https://www.gymlibrary.dev/environments/classic_control/cart_pole/

108

https://www.gymlibrary.dev/environments/classic_control/cart_pole/

0 20 40 60
15

20

25

30

Epoch

PS
N

R
[d

B
]

(a) PSNR.

0 20 40 60
0

20

40

60

Epoch

Pe
rp

le
xi

ty

Training perplexity

Maximum perplexity

(b) Perplexity.

Figure 3.7: Training of the VQ-VAE model with Nζ = 6.

agents is thus to maximize the cumulative discounted sum of the reward Rt, while limiting the
communication cost.

The Coding and Decoding Functions

As mentioned in Sec. 3.3.2, the observer can optimize its coding function Λ according to differ-
ent criteria depending on the considered communication problem. However, as we explained in
Sec. 3.3.3, optimizing Λ without any parameters is usually not feasible due to the curse of dimen-
sionality on the action space. Consequently, we rely on a pre-trained set V of VQ-VAE models,
whose codebooks are optimized to solve the technical problem, i.e., minimizing the distortion on
the observation measured using the MSE: dA(o, ô) = MSE(o, ô). The training performance of the
VQ-VAE with Nζ = 6 is shown in Fig. 3.7: the encoder converges to a good reconstruction perfor-
mance, which can be measured by its perplexity. The perplexity is simply 2H(p), where H(p) is the
entropy of the codeword selection frequency, and a perplexity equal to the number of codewords is
the theoretical limit, which is only reached if all codewords are selected with the same probability.
The perplexity at convergence is 54.97, which is close to the theoretical limit for a real application.

The observer then uses DRL to foresightedly optimize the quantization level Nζ(t) at each time
step, maximizing the expected long-term reward for each communication problem. We train the
observer to solve the level-specific coding problem by designing three different rewards, depending
on the considered communication level:

1. Level A (technical problem): The distortion metric for the observer is dA(ot, ôt) = PSNR(ot, ot̂) −
βℓ(mt), as part of the reward definition from (3.20). The PSNR is an image fidelity measure
proportional to the logarithm of the normalized MSE between the original and reconstructed
image;

2. Level B (semantic problem): The distortion metric is dB(ŝ(o)t , ŝ
(r)
t) = −MSE(ŝ(o)t , ŝ

(r)
t), as

part of the reward defined in (3.21), and the decoder needs to estimate the underlying
physical state st by minimizing the MSE, i.e., the distance between ŝ

(o)
t and ŝ

(r)
t in the

109

Table 3.2: Simulation Parameters.

Parameter Value Description
H × W 160 × 360 Image size

V 7 Number of quantizers
F 8 Number of latent features

Demb 8 Embedding dimension of features
B 256 Batch size
γ 0.95 Discount factor
T 500 Maximum number of steps for an episode
αenc 10−3 VQ-VAE learning rate
αReg 10−4 Regressor learning rate
αA2C 10−4 A2C learning rate
D 5 × 104 Size of the VQ-VAE training dataset
Nenc 100 Encoder training epochs
Nrob 2 × 104 Robot policy training episodes
Nobs 1 × 105 Observer policy training episodes
Ntest 1000 Number of test episodes

semantic space. In our case, the estimator used to obtain the estimates is a pre-trained
supervised LSTM neural network;

3. Level C (effective problem): In this case, there is no direct distortion metric, and the control
performance is used directly as in (3.22). The policy π(r) is given by an actor-critic agent im-
plementing an LSTM architecture, pre-trained using data with the highest available message
quality (6 bits per feature).

We observe that, in this case, i(s) = s, i.e., the task depends on all the semantic features contained
in St. However, the 4 components of the state do not carry the same amount of information to
the robot: depending on the system conditions, i.e., the state St, some pieces of information are
more relevant than others.

Neural Network Architecture and Training

The VQ-VAE architecture is made with Convolutional Neural Network (CNN) layers to extract
latent features and it is trained separately before the training of the control policy. To this
end, a dataset of observations is collected through a random policy. After that, we train an
encoding network, the vector quantization layer and the decoder jointly as in the standard VQ-
VAE [244]. The first vector quantization layer learned contains the highest number of codewords.
After that, we fix the encoder and the decoder and just train the other vector quantization layers,
obtaining multiple quantizers over the same latent space discovered by a common encoder. The
hyperparameters used to train the VQ-VAE are reported in Table 3.2. After obtaining the V
quantizers, we train the policy using the standard A2C algorithm. Table 3.3 shows the Encoder-
Decoder layers of the VQ-VAE. In Table 3.4, the layers of the implemented Regressor and the
Actor-critic neural networks are reported. All the neural network (NN)s are implemented through

110

Table 3.3: Encoder-Decoder parameters.

Layer type Size Kernel size Stride
Encoder

Conv2d + ReLU 64 10 × 11 8 × 9
Conv2d + ReLU 64 12 × 12 10 × 10
Conv2d + ReLU 128 3 × 3 1 × 1
ResidualStack 2 3 × 3 1 × 1

Conv2d 8 3 × 3 1 × 1

Decoder
ResidualStack 2 3 × 3 1 × 1
Conv2d + ReLU 128 3 × 3 1 × 1
Conv2d + ReLU 64 12 × 12 10 × 10

Conv2d 64 10 × 11 8 × 9

Table 3.4: Recurrent architectures.

Layer type Inputs Outputs Description
Regressor

LSTM + ReLU 64 64 Single recurrent layer
Linear + ReLU 64 128 Hidden layer

Linear 128 1 Output layer
Actor-critic

LSTM + ReLU 64 64 Single recurrent layer
Linear + ReLU 64 128 Hidden layer

Linear 128 1 Output layer (Value)
Linear + softmax 128 |A| Output layer (Policy)

the Pytorch labrary. Once the robot policy has been obtained, we can train the observer policy.
The observer learns a policy through the same A2C algorithm, but in this case the input to the
policy are the features before quantization. A unique observer policy is trained for different values
of the trade-off parameter β and for different communication levels. For further details on the
implementation, training and testing process, we refer to the publicly available simulation code.5

Results

We assess the performance of the three different tasks in the CartPole scenario by simulation,
measuring the results over 1000 episodes after convergence. Fig. 3.8 shows the performance of
the various schemes over the three problems, compared with a static VQ-VAE solution with a
constant compression level. In the Level C evaluation, we also consider a static VQ-VAE solution
in which the robot is not retrained for each Nζ , but is only trained for Nζ = 6 (i.e., 48 bits
per message) as for the dynamic scheme. We trained the dynamic schemes with different levels

5https://www.github.com/pietro-talli/tmlcn_code

111

https://www.github.com/pietro-talli/tmlcn_code

Level A Level B Level C

VQ-VAE VQ-VAE (without retraining)

1 2 3 4 5 6

20

25

30

35

Average message length ℓ̄ [B]

O
b

s.
P

S
N

R
[d

B
]

(a) Technical problem.

1 2 3 4 5 6

0

0.05

0.1

0.15

0.2

Average message length ℓ̄ [B]

S
ta

te
M

S
E

(b) Semantic problem.

1 2 3 4 5 6

0

200

400

Average message length ℓ̄ [B]

E
p

is
o

d
e

le
n

g
th

[s
te

p
s]

(c) Effective problem.

Figure 3.8: Performance of the communication schemes on the three levels of the remote POMDP.

of the communication cost β, so as to provide a full picture of the adaptation to the trade-off
between performance and compression. We also introduce the notion of Pareto dominance: an
n-dimensional tuple η = (η1, . . . , ηn) Pareto dominates η′ (which we denote as η ≻ η′) if:

η ≻ η′ ⇐⇒ ∃i : ηi > η′i ∧ ηj ≥ η′j ∀j. (3.24)

We can extend this to schemes with multiple possible configurations. The definition of Pareto
dominance for schemes x and y is: x ≻ y ⇐⇒ ∃ηx ≻ ηy ∀ηy, i.e., for each configuration of scheme
y, there is a setting of x that Pareto dominates it. In other words, we can always tune scheme x
so that it outperforms any configuration of scheme y on all metrics.

We first consider the technical problem performance, shown in Fig. 3.8a: as expected, the Level
A dynamic compression outperforms all other solutions, and its performance is Pareto dominant
with respect to static compression. Interestingly, the Level B and Level C solutions perform worse
than static compression: by concentrating on features in the semantic space or the task space,
these solutions remove information that could be useful to reconstruct the full observation, but is
meaningless for the specified task.

In the semantic problem, shown in Fig. 3.8b, a lower MSE on the reconstructed state is better,
and the Level B solution is Pareto dominant with respect to all others. The Level A solution also
Pareto dominates static compression, while the Level C solution only outperforms it for higher
compression levels, i.e., on the left side of the graph.

Finally, Fig. 3.8c shows the performance at the effectiveness level, summarized by how long the
CartPole system manages to remain within the position and angle limits. The Level C solution
significantly outperforms all others, but is not strictly Pareto dominant: when the communication

112

Level A Level B Level C

VQ-VAE VQ-VAE (without retraining)

1 2 3 4 5 6

0

0.01π

0.02π

0.03π

0.04π

Average message length ℓ̄ [B]

R
M

S
D

(ϕ
)[

ra
d
]

(a) Angular RMSD from the central position.

1 2 3 4 5 6

0

2

4

Average message length ℓ̄ [B]

R
M

S
D

(x
)

[m
]

(b) Position RMSD from the central position.

Figure 3.9: Other performance metrics relative to the CartPole control problem.

Figure 3.10: Distribution of the selected compression levels.

constraint is very tight, setting a static compression and retraining the robot to deal with the
specific VQ-VAE used may provide a slight performance advantage. In general, almost perfect
control can be achieved with less than half of the average bitrate of the static compressor, which
can only reach similar levels of performance at a much higher communication cost. We also note
that, in this case, the Level B solution performs worst: choosing the solution that minimizes the
semantic distortion might not be matched to the task, as the state variables have equal weight,
while a higher precision might be required when the quantization error might change the robot’s
action.

Another analysis is conducted on the way the CartPole is controlled with the different commu-
nication policies. Fig. 3.9 shows the Angular Root Mean Squared Deviation (RMSD) (Fig. 3.9a)

113

Figure 3.11: Analysis of the transmission policy as a function of the pole angle and cart linear
velocity ẋ.

and the Position RMSD (Fig. 3.9b), defined as:

RMSD(x) =

√√√√ 1

N

N∑

i=1

(xi − xtarget)2,

where xtarget is the desired value of the controlled process and xi is the recorded process at time
step i. Both RMSD are computed with respect to the central and vertical position of the CartPole:
xtarget = 0 and ϕtarget = 0. These results help to evaluate how well the control dynamics keep
the CartPole near the optimal central position and to assess the smoothness of the resulting pole
oscillations. It is possible to see that in general, a higher rate allows to keep the angular RMSD
smaller. In particular, in the Level C system, the values are the smallest. However, this comes at
the cost of deviating more from the central position, as shown in the figure. The policy prioritizes
the stabilization of the pole oscillations, though this requires deviating from the central position.
This is because swings in the pole’s angle are harder to control due to the instability of inverted
pendulum, and there is a significant risk that the pole might go out of the acceptable range, ending
the episode.

Analysis of the communication policy

We can then use an explainability approach to gain further insights on how effective communication
operates. Fig. 3.10 shows the distribution of the quantization level selected by an observer trained
for the three different communication levels. We note that the scale of β is different, as the reward
process takes values in different ranges (e.g., the PSNR is in dB while the reward of the MDP
is between −1 and 1), but the resulting bitrates are similar. The similarity in the compression
level distributions at the three levels are striking. For lower values of β, the observer uses the
action Φ∅, which corresponds to no transmission, more often. As β decreases, the communication
cost becomes lower, and thus the observer chooses longer messages more often. Another common
feature is that quantizing features using 1, 2 or 3 bits is a rare choice. This shows that the memory

114

Figure 3.12: Analysis of the transmission policy as a function of the pole angle and angular velocity
ψ̇.

implemented implicitly in the system through the LSTM is powerful enough to obtain adequate
beliefs based on past messages, so that the observer can rely on it and not send anything, avoiding
the cost of transmitting even a roughly quantized update and rather transmitting intermittent
updates at a higher quality.

However, the real difference between the three policies is given by when they decide not to
transmit. Therefore, we propose an analysis based on the visualization of the observer policy
and the receiver policy. In Fig. 3.11, four colormaps show different policies projected in the same
domain: the pole angle on the x-axis and the cart velocity on the y-axis. More specifically, we
quantize the projected state into cells and show the policy of the robot and the observer in each
cell. Fig. 3.11 (a) shows the robot actions, averaged among 106 samples. Since in the CartPole
problem the actions are binary, we represent the probability of choosing action Right in a range
between 0 and 1. Fig. 3.11 (b) depicts the entropy of the robot policy. We considered the action
probability in the previous figure and compute the action entropy as follows:

H(a) = −
∑

a∈{0,1}

p(a) log2 (p(a)) ,

where p(a) is empirically estimated by counting the number of times each action is chosen when
the state is in the projected cell. Fig. 3.11 (c) and Fig. 3.11 (d) show the average number of bits
transmitted in each cell when optimizing for level A and C, respectively. This can be seen as the
average number of bits that the transmitter allocates for each projected slice of the state space.
Fig. 3.12 shows the same results but for a different physical state projection, mapping the angle
ϕ on the x-axis and the pole angular velocity ϕ̇ on the y-axis.

In both figures, there is a strong correspondence between the states where the robot entropy
is higher and the states where the level C policy allocates a higher number of bits. This confirms
that an effective observer policy manages to discriminate the uncertainty at the robot side. In
regions of the state space where it is more difficult to retrieve the correct action, i.e., the action
entropy is higher, the observer will provide the robot with more precise information by sending

115

Figure 3.13: Level C observer action distribution for different robot action entropy levels and
values of β.

longer messages. There are regions where the robot action is always the same, e.g., whenever the
cart is moving fast and the tip of the pole is pointing to the same side the cart is moving towards.
In these cases, the entropy is extremely low, and the transmitter can avoid sending new updates to
the robot. This is due to the fact that, even if the estimated state at the receiver differs from the
observed one, the action to perform remains the same and will be to push further the cart to try
to get the pole more vertical. Recalling (3.23), we note that if Q

(
ξ
(r)
t , π(r)

(
ξ
(r)
t

))
is very sensitive

to small variations in ξ(r)t , then the gap in (3.23) is going to be significant, leading the observer to
choose to send precise information. In principle, a level C transmitter could reduce the message
length or even avoid transmission as long as the robot is able to choose the correct actions, even
though its belief is incorrect. An optimal communication scheme approximately follows

ℓt ∝ V
(
ξ

pri,(r)
t ,m

)
,

which means that the message length is roughly proportional to VoI. This concept might be used
when defining a heuristic policy, which behaves similarly to the effective communication policy but
is much simpler to design and implement. Note that this condition includes two separate cases
in which a level C observer chooses not to transmit, while level A and B transmitters would send
precise data:

• The action corresponding to the prior belief is the same as the one after the updating message.
In this case, the VoI of the communicated message is low and thus we can lower ℓt;

• The action is different after the communicated message, but the long-term rewards are close
enough that the robot is not going to benefit too much from choosing the other action.

116

0 0.20.40.60.8 1
0

2

4

6

H(at)

ℓ t
di
st
rib

ut
io
n

(a) Age of Information
(AoI)=0.

0 0.20.40.60.8 1
0

2

4

6

H(at)

(b) AoI=1.

0 0.20.40.60.8 1
0

2

4

6

H(at)

(c) AoI=2.

0 0.20.40.60.8 1
0

2

4

6

H(at)

(d) AoI=3.

0 0.20.40.60.8 1
0

2

4

6

H(at)

0

0.2

0.4

0.6

0.8

1

(e) AoI=4.

Figure 3.14: Level A observer action distribution for different robot action entropy levels with
β = 1.

Even in this case, sending less information is not going to affect the control performance
significantly.

These cases cannot be taken into account in level A and B. Indeed, the level A policy shown in
Fig. 3.11 (c) tends to allocate communication resources in the states where the picture is changing
more rapidly, so that the memory available to the robot is less useful to estimate the current
observation, regardless of the correct action. As the cart speed ẋ increases along the y-axis, the
number of bits increases too. The same reasoning can be applied to the results in Fig. 3.12.

Another general principle that we can deduce for an effective policy is that it should be aware of
variations of the value function with respect to the belief. If the value function is strongly affected
by small perturbations of the belief, then the effective policy should communicate more informa-
tion in order to reduce the discrepancy between ξ(o)t and ξ(r)t . This reasoning can be intuitively
understood by looking at the differential of the robot’s value function Q

(
ξ
(r)
t , π(r)

(
ξ
(r)
t

))
with

respect to changes in its belief distribution ξ(r)t . When this value is big, an inaccurate estimation
of the state would cause a poor estimation of the value function, which may in turn cause the
robot to choose a low-quality action.

In Fig. 3.13, we provide an analysis of the communication strategy with respect to different
AoI values. This allows to show how the memory of the robot and of the observer plays a crucial
role on the communication decisions. In particular, we consider five values of the AoI: AoI = 0

indicates that a message of any length was transmitted in the previous time step. AoI = N with
N ∈ {1, 2, 3, 4} means that no messages have been received by the observer for N time steps since
the last received message. This is a measure of how up to date the memory of the robot is, allowing
us to evaluate the next choice of the observer for a given age. We then consider the distribution of
the observer actions (y-axis) with respect to different ranges of the robot actions entropy (x-axis).
This means that, for each entropy interval, we count the number of times each action is performed,
in order to obtain an empirical distribution. The columns are normalized so that each cell shows
the probability that the observer chooses a specific ℓt whenever the robot action entropy falls
within the corresponding interval, for different values of the AoI.

Fig. 3.13 clearly shows that, if there was a transmission in the previous time step (AoI = 0), it

117

is very unlikely that the system is going to be updated again in the current time step. Conversely,
the observer chooses to communicate if the AoI = 1, with an exception if the system is in a very
low entropy state, in which case the probability of communicating using Φ4 is similar to the one
corresponding to action Φ∅. If we look at the behavior for higher values of the AoI, we can notice
a general trend: communication is more likely to happen in higher entropy states than in lower
entropy ones. This shows that the observer policy understands the cases where the state has to
be precisely estimated by the robot to choose its action correctly. Fig. 3.14 shows that the level A
policy allocates communication resources without considering the entropy of the control actions.
The value of β for this was chosen to get a similar overall bitrate (and, as we discussed, a similar
overall action distribution) to the Level C case with β = 0.15. However, we can see that the trend
holds for different values of β by looking at the Fig. 3.13: if we decrease the value of β, the observer
tends to transmit more often, and use higher message lengths when it transmits, but the general
tendency to transmit more whenever the robot action entropy is high clearly holds. This final
analysis allows us to get an easy heuristic for effective communication when the value function is
not available or cannot be learned.

3.3.5 Conclusion
In this work, we presented a dynamic feature compression scheme that can exploit an ensemble
VQ-VAE to solve the semantic and effective communication problems. The dynamic scheme
outperforms fixed quantization, and can be trained automatically with limited feedback, unlike
emergent communication models that are unable to deal with complex tasks. The choices made
by the observer are clearly tied to the control policy of the robot it aims to help, significantly
outperforming a simpler optimization that does not take into account the semantic and effective
problems. We also analyzed the optimal policies to draw insights on their decisions, showing that
the Level C optimization indeed considers the robot’s policy.

A natural extension of this model is to consider more complex tasks and wider communication
channels, corresponding to realistic control scenarios, or scenarios with multiple transmitters with
partial information about each other and the robot. Another interesting direction for future
work is to consider joint training of the robot and the observer, or cases with partial information
available at both transmitter and receiver.

118

3.4 Supplementary and Proofs

3.4.1 Proofs

Regret Analysis - Theorem 20

In this section we prove Theorem 20. As explained Sec. 3.2.3, we align the interactions between
agents and environment in time, and consider virtual rounds t ∈ {1, . . . , J · N} = T, and rewrite
the Bayesian system regret as follows

BR(πTS , J) = E


∑

n∈N

J∑

j=1

µ(sj,n, a
∗(snj,n)) − µ (sj,n, Aj,n)




= E

[
NJ∑

t=1

µ(st, a
∗(st)) − µ (st, At)

]

= E

[
∑

s∈S

∑

ts∈Ts

µ(sts , a
∗(sts)) − µ (sts , Ats)

]

where Ts = {t ∈ T : st = s}, i.e., all time-steps where context s was sampled, and |Ts| = Ts. We
now define the upper and lower bounds for the reward average µ(s, a), which hold with high
probability, and are used to bound the average per-round regret

Ut(s, a) = µ̂t−1(s, a) +

√
2 + 6 log Ts
ϕt−1(s, a)

(3.25)

Lt(s, a) = µ̂t−1(s, a) −
√

2 + 6 log Ts
ϕt−1(s, a))

(3.26)

where µ̂t(s, a) is the empirical average return of a with context s at time t, and ϕt(s, a) is related
to the number of times arm a has been pulled until time t with context s, and will be better
explained later. We now use Proposition 1 from [214], which allows us to write

BR(πTS , T) = E

[
∑

t∈T

Ut (st, At) − µ (st, At)

]
+ E

[
∑

t∈T

µ (st, a
∗(st)) − Ut (st, a

∗(st))

]
, (3.27)

and apply Proposition 2 in [214] obtaining, whenever T > SKN ,

BR(πTS , T) ≤
∑

s∈S

∑

ts∈Ts

E [Uts (s,Ats) − Lts (s,Ats)] + SKN. (3.28)

119

We now consider the single context regret. For every s ∈ S, we define Ta
s = {ts ∈ Ts : Ats = a}

and |Ta
s | = T a

s , bounding the quantity
∑

ts∈Ts

Uts (s,Ats) − Lts (s,Ats) =
∑

a∈A

∑

tas∈Ta
s

Utas (s, a) − Ltas (s, a)

(a)

≤
∑

a∈A


1 + 2

√
2 + 6 log Ts

∑

tas∈Ta
s

(1 + ϕtas−1(s, a))
− 1

2




Here (a) is a consequence of the bounds defined in Eq. (3.25). In standard multi-armed bandit
(MAB) analysis, as in [214], ϕt(s, a) is basically the number of times arm a has been sampled
up to time t with context s, that we denote with Ct(s, a). This quantity is critical to bound the
intervals Ut (s, a) − Lt (s, a). However, in our formulation, we define ϕt(s, a) = Cj(t)(s, a), where

j(t) = ⌊t/N⌋ · N

is the last time the policy has been updated, i.e., at the end of the previous round. Now, ϕt(s, a) ≥
Ct(s, a) − N , since it is not possible to sample more than N times the same arm in one round,
given that the number of agents is N . However, the quantity (1 + Ct(s, a) − N)−

1
2 is not defined

for Ct(s, a) < N . If Ct(s, a) < N , we can always write ϕt(s, a) ≥ Ct(s,a)
N + 1.

Finite-Time Analysis With the observations above, we can now prove an upper bound for the
finite-time regret. We first notice that

∑

tas∈Ta
s

(1 + ϕtas−1(s, a))
− 1

2 ≤
∑

tas∈Ta
s

(
2 +

Ctas−1(s, a)

N

)− 1
2

=

Ta
s −1∑

j=0

(
2 +

j

N

)− 1
2

≤
Ta
s −1∑

j=0

(
j + 1

N

)− 1
2

=

Ta
s∑

j=1

(
j

N

)− 1
2

.

We can now use the integral bound to find

Ta
s∑

j=1

(
j

N

)− 1
2

≤
√
N

∫ Ta
s

τ=0

τ−
1
2 dτ = 2

√
N
√
T a
s

120

If we put all together, we obtain

BR(π, T) ≤
∑

s∈S

∑

a∈A

1 + 4
√

2 + 6 log Ts
√
N
√
T a
s

≤
∑

s∈S

K + 4
√
2 + 6 log Ts

√
N
∑

a∈A

√
T a
s

(a)

≤
∑

s∈S

K + 4

√
(2 + 6 log Ts)NK

∑

a∈A

T a
s

= KS +
∑

s∈S

4
√
(2 + 6 log Ts)KNTs

≤ KS + 4
√

(2 + 6 log T)KN
∑

s∈S

√
Ts

(b)

≤ 2KS + 4
√
(2 + 6 log T)KNST.

The equalities (a) and (b) come from the Cauchy-Shwartz inequality, and the definitions of T a
s ,

Ts, and T .

Asymptotic Regret Analysis However, in the asymptotic case N → ∞, we get rid of the
first constant terms when arms are pulled less than N times. Consequently, we can use the bound
ϕt(s, a) ≥ Ct(s, a) − N , and follow the same analysis for the finite-time case. We can see that the
factor T does not scale with N , obtaining

BR(π, T) ∈ O

(√
KTS log T

)
.

Achievable Rate - Lemma 21 and Lemma 22

In this section we provide the detailed proofs of Lemma 21 and Lemma 22. To this end, we
denote by Hq(X) and Iq(X;Y) the entropy and the mutual information computed with respect
to the probability distribution q. We recall that H(A∗) is the entropy of the optimal actions,
i.e., computed with respect to π∗(a) =

∑
s∈S

P (s)π(a∗|s), where π∗(a|s) is the optimal policy in
context s.

We start by proving the following lemma.

Lemma 25. Assuming that Thompson Sampling policy πj(a|s) achieves sub-linear Bayesian sys-
tem regret, then limj→∞ Iπj

(S;A) = limj→∞Hπj
(A) = H(A∗).

Proof. First of all we notice that, in order to achieve sub-linear Bayesian system regret, it is neces-
sary to achieve sub-linear regret in all contexts s ∈ S, given the assumption that ∀s ∈ S PS(s) > 0.
We then write Iπj

(S;A) = Hπj
(A) − Hπj

(A|S). Following Theorem 2 from [133], if πj(a|s)

121

achieves sub-linear regret, then ∀s ∈ S

lim
j→∞

πj(a = a∗|s) = 1 when a∗ is the optimal arm,

lim
j→∞

πj(a = a′|s) = 0 when a′ ̸= a∗.

Consequently, in the limit, πj(a|s) is a deterministic function, thus

lim
t→∞

Hπt
(A∗|S) = 0,

which concludes our proof.

We start by proving Lemma 22, which we repeat below.
Lemma 22 If R > H(A∗), then it is possible to achieve sub-linear Bayesian system regret, in

the limit N → ∞.

Proof. We denote with Rπj
the rate needed to perfectly convey the Thompson Sampling (TS)

policy to the controller at round j, and let ϵ > 0 s.t. R = H(A∗) + ϵ, where R is the available
communication rate. We now provide a scheme that guarantees sub-linear regret.

If the policy πj generated from TS has Rπj
≤ H(A∗) ∀j = 1, . . . , J , then Theorem 20 ensures

sub-linear Bayesian system regret if sampling with πj . If ∃j such that Rπj
> R, generate pa-

rameters ρj such that ρj ∈ o(1) and
∑∞

j=1 ρj = ∞, as explained in [202], Theorem 3. Then,
with probability ρt play a uniformly at random, and with probability 1 − ρt, play according to a
policy Qj(a|s), which satisfies the rate-distortion constraint IQ(a|s)(S;A) ≤ R, which can be trans-
mitted to the controller, using as distortion measure the reverse KL divergence d(QSA, πSA) =

EPS
[DKL(Q(·||S)||π(·||S))]. Following Lemma 14 in [213], with this strategy enough exploration

is guaranteed for the posterior policy, i.e., the one stored by the decision-maker, to concentrate.
Consequently, by Lemma 25, there exists a finite j0 s.t. ∀j > j0, Rπj

< H(A∗) + ϵ, in the limit
N → ∞. This means that, for the first j0 rounds, both the target and the approximating policies
would play sub-optimal arms with non-zero probabilities. Then, ∀j > j0, it is possible to play the
exact TS policy, leading to the optimal decisions for all future steps, and hence, to a sub-linear
regret. The above procedure holds ∀ϵ > 0, and so ∀R > H(A∗).

As we can see, the strategy that achieves sub-linear regret consists in using TS at the decision-
maker, which updates the posteriors according to the Bayes rule, and from which a target policy
π∗ is computed. Then, the decision-maker computes an approximate policy Qj(a|s) as indicated
in the proof, and it samples the arms according to Qj(a|s). We further notice that the limit H(A∗)

serves as a lower bound for practical schemes, as to achieve it we need N → ∞.
We observe that Theorem 2 in [133] states that, if the TS strategy achieves sub-linear regret,

then the policy converges to the deterministic policy selecting with probability one the optimal
action. However, the converse is not always true in general, i.e., there could exist policies that
play sub-optimal arms infinitely many times as j → ∞, and still achieve sub-linear regret. The
point is that such policies must play the optimal arms for most of the rounds, and could pull

122

sub-optimal arms for a sub-linear amount of rounds. However, to play optimally in one round,
the decision-maker needs R ≥ Rπ∗ = H(A∗). We are now ready to prove Lemma 21.

Lemma 26. If R < H(A∗), it is not possible to achieve sub-linear Bayesian system regret.

Proof. As explained above, to play optimally in one round, the decision-maker needs R ≥ Rπ∗ =

H(A∗), in the limit N → ∞. If R < H(A∗), as a consequence of Eq. (3.6), the policy Q(a|s)
conveyed to the controller has non-zero distortion d(QSA, π

∗
SA) = D > 0. If we take the L1 norm

as distortion measure, Q(a|s) would sample a sub-optimal arm with constant probability of at
least D in every round j = 1, . . . , J . Consequently, sub-linear regret cannot be achieved.

Policy Compression Schemes

To compute the optimal policy that solves Eq. (3.6) with a specific distortion function, we ap-
plied the well known Blahut-Arimoto iterative algorithm [69] that, given the considered distortion
functions, is guaranteed to converge to the solution [70].

We rewrite the optimization objective of Eq. (3.6) as a double minimization problem (Sec. 10.8,
[69])

R(D) = min
Q̃(a)

min
QA|S :d(QSA,PSA)≤D

∑

s,a

PS(s)Q(a|s) log2
Q(a|s)
Q̃(a)

. (3.29)

Following (Lemma 10.8.1, [69]), the marginal Q̃(y) =
∑

x P (x)Q(y|x) has the property

Q̃(y) = argmin
Q(y)

DKL(P (x)Q(y|x)||P (x)Q(y)), (3.30)

that is, it minimizes the KL-divergence between the joint and the product P (x)Q(y). This means
that Q̃(a) obtained by solving Eq. (3.29) is indeed the marginal over the arms induced by Q(a|s).
Exploiting this formulation, it is possible to apply the iterative Blahut-Arimoto algorithm to solve
the problem and find the solution [69]. The process is initialized by setting a random Q̃0(a), which
is used as a fixed point to compute

Q∗
1(a|s) = argminQA|S :d(QSA,PSA)≤D

∑

s

P (s)
∑

a

Q(a|s) log2
Q(a|s)
Q̃0(a)

. (3.31)

From Q∗
1(a|s), we compute the optimal Q̃1(a) by solving Eq. (3.30), which is simply the marginal

Q̃1(a) =
∑

s P (s)Q
∗
1(a|s). The process is iterated until convergence. We now solve the inner

minimization problem, i.e., Eq. (3.31) with fixed Q̃(a) and distortion EPS
[Dα(Q, π)], for α → 1,

and α → 0.

123

Reverse KL Divergence (α → 0) To solve this problem, we solve the related Lagrangian

L(Q(a|s), λ, µ) =
∑

s

P (s)
∑

a

Q(a|s) log Q(a|s)
Q̃a

+ λ

(
∑

s

P (s)
∑

a

Q(a|s) log Q(a|s)
π(a|s) − D

)
+

+ µ

(
∑

s

P (s)
∑

a

Q(a|s) − 1

)

where the Lagrangian multiplier λ has to be optimized to meet the constraints on the divergence,
whereas µ ensures that the solution is a probability distribution, i.e., the elements sum to one.
The positivity constraints on the terms are already satisfied by the fact that the solution has an
exponential shape. We first take the derivative of the Lagrangian w.r.t. to the terms Q(a|s) and
set it to zero

∂L(Q(a|s), λ, µ)
∂Q(a|s) = P (s) log

Q(a|s)
Q̃(a)

+ P (s) −
∑

s′

P (s′)Q(a|s′)P (s)
Q̃(a)

+

+ λP (s)

(
log

Q(a|s)
π(a|s) + 1

)
+ µP (s) = 0

finding

log
Q(a|s)1+λ

Q̃(a)π(a|s)λ
= −(λ + µ)

Q(a|s)1+λ = e−(µ+λ)Q̃(a)π(a|s)λ

Q(a|s) = e
−(µ+λ)

1+λ Q̃(a)
1

1+λπ(a|s) λ
1+λ .

We now define γ := 1
1+λ , γ ∈ [0, 1], and obtain the distribution

Qγ(a|s) =
Q̃(a)γπ(a|s)1−γ

∑
a′∈A

Q̃(a′)γπ(a′|s)1−γ
, ∀s ∈ S, a ∈ A. (3.32)

By the convexity of KL-Divergence and its triangular inequality, we know the solution lies on the
boundary of the constraints, i.e., when EPS

[DKL(Qγ ||π)] = δ.

Forward KL Divergence (α → 1) The derivative of the Lagrangian is (here the normalization
factor is added in the end)

∂L(Q(a|s), λ)
∂Q(a|s) = P (s) log

Q(a|s)
Q̃(a)

− λP (s)
π(a|s)
Q(a|s)

124

and setting it to zero leads to

∂L (Q(a|s), λ)
∂Q(a|s) = 0

log
Q(a|s)
Q̃(a)

− λ
π(a|s)
Q(a|s) = 0

log
Q̃(a)

Q(a|s) + λ
π(a|s)
Q(a|s) = 0.

We now we define x := 1
Q(a|s) , α := λπ(a|s), β := 1, and γ := log Q̃(a), obtaining

αx + β log x + γ = 0

αx + logαx + γ − logα = 0

eαxαx = αe−γ

x =
1

α
W0

(
αe−γ

)

where W0(·) is the Lambert function [147]. We can now replace the introduced variables with the
original terms and normalize, obtaining

Qλ(a|s) =
λπ(a|s)W0

(
λπ(a|s)

Q̃(a)

)

∑
a′∈A

λπ(a′|s)W0

(
λπ(a′|s)

Q̃(a′)

) ,

with λ such that EPS
[DKL(π||Qλ)] = δ.

Clustering Compression Schemes

Reverse KL Divergence Again, we compute the optimal centroids by solving the Lagrangian

L(µc
a, λ) =

∑

s∈Sc

P (s)
∑

a∈A

µc
a log

µc
a

π(a|s) + λ

(
∑

a∈A

µc
a − 1

)

taking its derivative and solving the equality

∂L(µc
a, λ)

∂µc
a

=
∑

s∈Sc

P (s)

(
log

µc
a

π(a|s) + 1

)
+ λ = 0

125

finding

log µc
aA (Sc) =

∑

s∈Sc

P (s) log π(a|s) + A (Sc) + λ

log µc
a =

∑

s∈Sc

P (s)

A (Sc)
log π(a|s) + 1 +

λ

A (Sc)

µc =

∏
s∈Sc

π(a|s)
P (s)
A(Sc)

Z
,

where Z is the normalizing factor, obtaining the shape expressed in Eq. (3.15).

Forward KL Divergence In this case, the Lagrangian is

L(µc
a, λ) =

∑

s∈Sc

P (s)
∑

a∈A

π(a|s) log π(a|s)
µc
a

+ λ

(
∑

a∈A

µc
a − 1

)
.

We take the derivative, and set it equal to zero

∂L(µc
a, λ)

∂µc
a

=
∑

s∈Sc

P (s)

(
−π(a|s)

µc
a

)
+ λ = 0

finding

µc
a =

∑
s∈Sc

PS(s)π(a|s)
Z

where Z is the normalizing factor.

3.4.2 Supplementary: The Information Bottleneck View

We can also consider another perspective on the observer’s choices, using information bottleneck
theory. We define a sufficient statistic i(s) of any given state s ∈ S, which is enough to deter-
mine the robot’s performance in that state. Denoting the number of bits required to represent a
realization of random variable X as b(X), we consider a case in which:

b(i(S)) < b(S) < b(O).

Indeed, the observation may contain much more information than needed to estimate the state [69],
and lossily compressing the message to preserve the relevant information, removing redundant or
irrelevant details, can ease communication requirements without losing performance. We can also
observe that i(S) → S → O is a Markov chain. The random quantity i(S) represents the minimal
description of the system with respect to the robot’s task, i.e., no additional data computed from
S adds meaningful information for the robot’s policy. The state S may also include task-irrelevant
physical information on the system. However, both S and i(S) are unknown quantities, as the

126

observer only receives a noisy and high-dimensional representation of S through O. This is a
well-known issue in DRL: in the original paper presenting the Deep Q-Network (DQN) architec-
ture [175], the agent could only observe the screen while playing classic arcade videogames, and
did not have access to the much more compact and precise internal state representation of the
game. Introducing communication and dynamic encoding adds another layer of complexity.

We can then consider the case in which communication is limited to a maximum length of L bits,
i.e., to 2L+1 − 1 messages, considering all possible lengths lower than or equal to L, including no
communication. The channel is ideal, i.e., instantaneous and error-free, but it includes a constant
cost per bit β, as in the observer reward we gave in the previous section. Consequently, the
problem introduces an information bottleneck between the observation Ot and the estimate ôt
that the robot can make, based on the message Mt conveyed through the channel. If we define
a distortion measure over the observation space dA : O2 → R

+, any communication introduces
a non-zero distortion dA(o, ô) whenever b(o) > L, whose theoretical asymptotic limits are given
by rate-distortion theory [69]. If we also consider memory, i.e., the use of past messages in the
estimation of ô, the mutual information between o and the previous messages can be used to
reduce the distortion, improving the quality of the estimate.

In the semantic problem, the aim is to extrapolate the real physical state of the system St

from the compressed observation Mt, which can be a complex stochastic function. In general, the
real state lies in a low-dimensional semantic space S. The term semantic is motivated by fact
that, in this case, the observer is not just transmitting pure sensory data, but some meaningful
piece of physical information about the system. Consequently, the distortion to be considered
in this case can be represented by a measure dB : S2 → R over the semantic space, so that the
distortion dB(ŝ(o)t , ŝ

(r)
t) is computed between the observer’s best estimate of the state and the one

performed by the robot based on Mt, and on its memory of past messages. Finally, to be even
more efficient and specific with respect to the task, the observer may optimize the message Mt to
minimize a distortion measure dC

(
i
(
ξ
(o)
t

)
, i
(
ξ
(r)
t

))
between the effective representation of the

observer’s belief on the state, which contains only the task-specific information, and the knowledge
available to the robot. Naturally, any message instance mt ∈ M must be at most L bits long, in
order to respect the constraint. However, defining the sufficient statistic i

(
ξ
(o)
t

)
may be highly

complex and problem-dependent, and using the robot’s reward as a direct performance measure
is significantly more direct, with the same guarantees.

127

128

4
Applications of Distributed Learning

If in the first two chapters the main focus was to analyze and optimize distributed learning
algorithms, in this final part of the thesis some applications of distributed learning are studied.

In Section 4.1 and Section 4.2 the problem of distributed resource allocation in wireless networks
is analyzed. In particular, the goal is to provide Ultra-Reliable and Low-Latency Communications
(URLLC) in Industrial Internet of Things (IIoT) networks, for which standard 5G protocol are
not sufficient. The problem is formulated using the multi-agent contextual multi-armed bandit
(CMAB) framework, for which a novel algorithm is introduced in Section 4.2. By adopting a
distributed and data-driven approach, we demonstrate that better communication latency perfor-
mance can be obtained, with respect to those of actual standards implemented by 5G protocols,
suggesting the adoption of machine learning (ML) techniques in the design of 6G networks.

In the end, we explore the application of multi-agent reinforcement learning (MARL) to control
a swarm of drones surveiling a 2-D area with some sparse hot targets to be monitored. In this
case the task is to learn a policy to control the trajectories of the drones considering noisy commu-
nications among them, as well as obstacles in the map. We show through empirical simulations
that it is indeed possible to accomplish the task of reaching the targets faster than competitive
baselines.

4.1 Distributed Resource Allocation for URLLC in IIoT
Scenarios: A Multi-Armed Bandit Approach

4.1.1 Introduction

With early 5th generation (5G) deployments already rolled out, the research community is dis-
cussing use cases, requirements, and enabling technologies towards sixth generation (6G) sys-

129

tems [96]. Among other services, 6G will introduce new communication interfaces and innovative
architectures to support the Industrial Internet of Things (IIoT) in 2030 and beyond, where the 6G
network connects sensors and machines in factories, plants, mines, to enable analytics, diagnostics,
monitoring, asset tracking, as well as process, regulatory, supervisory, and safety control [151]. In
this context, the need for robots to complete cooperative operations that require high precision
and coordination in real time comes with its own set of requirements, e.g., in terms of reliabil-
ity (up to 99.99999%) and latency (below 1 ms, or even 0.1 ms, in the radio part), making it
crucial to support Ultra-Reliable and Low-Latency Communications (URLLC) in the industrial
domain [263]. The factory of the future will further operate to support high-density deployments
of machines and end users.

In this context, the time introduced by the Radio Access Network (RAN) operations, from
routing and scheduling to resource allocation and modulation, represents one of the most impactful
latency components. Specifically, a centralized pre-configured scheduling protocol usually requires
the prior exchange of scheduling requests (grants) to (from) the Next Generation Node B (gNB),
which is not compatible with URLLC in IIoT scenarios [74, 269]. To partially address this issue,
3GPP NR supports semi-persistent and grant-free communication in the uplink (UL) [5], in which
the network pre-allocates radio resources, thereby eliminating the need for User Equipments (UEs)
to wait for network grants before transmission. However, reserving resources to dedicated UEs
can be inefficient if traffic demands are aperiodic [169], and it is not possible to anticipate when
resources will be needed [48].

Another solution is to design a user-centric architecture (as foreseen in 6G [257]) in which end
machines make autonomous decisions, “disaggregated” from the network [186]. Along these lines,
in this work we explore the feasibility of a decentralized/distributed scheduling algorithm that,
exploiting machine learning (ML) technologies, allows UEs to optimize their UL transmission
strategies by autonomously selecting the available physical resources. This framework is able to
learn from the application, and could work well even considering architectures for IIoT scenarios
in which communication is on the sidelink, with no or limited support from the gNB [12].

Despite this potential, however, distributed scheduling may create collisions during communi-
cation, raising the question of whether this approach is compatible with URLLC applications. To
this aim, we apply the multi-armed bandit (MAB) theory [226] to evaluate how autonomous ma-
chines should select transmission resources based on previous scheduling decisions and the effect
they produced on the network in terms of reliability. While the MAB approach is well known,
most related work focused on Deep Learning (DL) [160], cellular [102], or IoT [120] networks. In
turn, we consider a UL scenario modeled according to the “Motion Control” 5G-ACIA geometry
(in which a remote server sends commands to control the moving parts of machines), thus ensuring
that our results are representative of a typical IIoT environment. Other notable papers consider
vehicular scenarios [268, 156], where the target is to enable URLLC for vehicle-to-vehicle commu-
nications via Deep Reinforcement Learning (DRL). However, we argue that for IIoT use cases,
state-of-the-art MAB algorithms may better exploit the strong correlation typical of the industrial
environment while, at the same time, reducing the computational complexity and training time
to converge to optimal solutions, compared to more sophisticated DRL alternatives.

130

subframe

0 1 2 3 4 5 6 scheduling
unit (SU)

OFDM symbol

K
ch

an
ne

ls

35.675 µs (numerology 1)
17.84 µs (numerology 2)

arrivals

decision

UE

context

Figure 4.1: Transmission structure.

We perform simulations with both periodic and aperiodic traffic, and as a function of the UEs’
density and spatial distribution, the traffic periodicity (thereby modeling aggressive or conservative
applications), and the transmit power, thus considering a low-power performance regime. From
our results, we conclude that the Thompson Sampling agent [214] is a promising candidate method
to minimize the collision probability even in the presence of unscheduled transmissions.

4.1.2 Problem Formulation and System Model
We consider an Orthogonal Frequency Division Multiplexing (OFDM) system in which devices,
also denoted as agents in machine learning parlance, are located in a factory environment, and
have to autonomously choose the orthogonal channel to be used for UL transmissions. The time
domain is discretized into intervals of duration equal to the OFDM symbol (with a Scheduling Unit
(SU) consisting of 7 OFDM symbols), whose duration depends on the adopted NR numerology.
The frequency domain is also discretized into K orthogonal channels, whose size depends on the
available bandwidth B and the subcarrier spacing ∆f .

At the beginning of each SU, the agents make their scheduling decisions, that is the channel
to be used for transmission, as shown in Fig. 4.1. Unlike in a centralized pre-configured resource
allocation approach, in which radio resources are scheduled by the gNB via scheduling grants, we
study the feasibility of a decentralized algorithm based on ML in which each agent autonomously
optimizes its channel selection policy relying only on the gNB feedback, without prior ad hoc mes-
sage exchange with the gNB itself. The rationale behind this scheme is to exploit the underlying
correlations typical of the IIoT traffic to avoid the transmission of centralized scheduling grants,
thus reducing the end-to-end latency and promoting URLLC.

If multiple agents use the same physical channel during a specific SU, we assume that their
packets are lost due to a collision event. At the end of each SU, the gNB broadcasts a mes-

131

sage indicating in which channel(s) data were successfully received. This message is used by the
pool of agents to optimize their subsequent decision strategies, and achieve coordination without
communication.

We formalize the problem using the MAB framework, which is used to model many sequen-
tial decision processes in computer science and engineering [226]. In this particular multi-agent
scenario, there are N agents, i.e., the N UEs, interacting with the same environment. When-
ever an agent n ∈ {1, . . . , N} generates a new packet during SU t, it schedules its transmis-
sion at the beginning of SU t + 1, choosing one among the K available channels, which will
be used for transmission for the whole SU duration. According to the MAB notation, we refer
to the action of using channel k ∈ K = {1, . . . ,K} as “playing the arm” k. At the end of SU
t + 1, the message received from the gNB is converted into a reward rn,t, indicating whether
or not the transmission was successful, i.e., rn,t = 1 or rn,t = 0, respectively: maximizing the
reward implies transmitting the data successfully in low latency, as there is no need to exchange
scheduling grants between the UEs and the gNB, leading to the URLLC objective. In our model,
we assume that the reward behind each action is sampled from a Bernoulli distribution with
unknown parameter µn(kn,t), which depends on the action taken by the agent, and captures
the probability of the other agents transmitting at the same time. Thus, in each SU t, agent
n samples an action k ∈ K according to its policy πn : Ht−1 → ∆K , which is, in general, a
map from history Hn(t − 1) = {(k1,n, r1,n) , . . . , (kt−1,n, rt−1,n)} ∈ Ht−1 to a probability distri-
bution over the action set K, where ∆K denotes the K-simplex. The history vector Hn(t − 1) is
used by the agent to optimize its policy πn, so as to maximize the expected cumulative reward
R(πn, T) = Eπn

[∑T
t=1 µn (kn,t)

]
.

4.1.3 multi-armed bandit (MAB) Agents

To solve the problem in Section 4.1.2 and maximize the reward, many algorithms have been
proposed in the literature over the past years [226]. In this work, we study the performance
of different MAB agents to solve the problem of distributed resource allocation, in the specific
context of URLLC for IIoT.

Random Agent (RA) It implements the simplest decision scheme, and is used as a lower
bound. Nonetheless, it represents well the case of 5G NR grant-free scheduling, where the access
decision is random, and re-transmissions are optimized to achieve reliability [185]. In particular,
in each SU, the RA selects uniformly, at random, one of the K arms, and no learning is involved.

UCB Agent (UCB-A) It implements the upper confidence bound (UCB) algorithm [148], i.e.,
the agent plays, in each SU t, the arm kt such that

kt = argmaxk∈K

[
Qt(k) + c

√
log t

nt(k)

]
, (4.1)

132

where Qt(k) is the empirical average at step t of the experienced rewards for arm k, nt(k) is
the number of times arm k has been played until time step t, and c is an exploration parameter
to be optimized. In Eq. (4.1), Qt(k) represents the exploitation part, as it is related to the
past experience, while

√
log t/nt(k) quantifies the uncertainty around the empirical average, and

decreases as we collect more samples, i.e., as nt(k) increases. The larger this second term for an
action k, i.e., the uncertainty of its performance, the higher the probability of choosing that arm,
meaning that we need more samples to have a good estimate of its related reward. This principle
is also known as “optimism in the face of uncertainty.”

Thompson Sampling Agent (TS-A) The agent adopts a Bayesian inference approach to
identify the most promising arms. In particular, TS-A builds a distribution for each reward, thus
modeling not only its mean, but the whole statistics [214]. Given that our problem includes a
binary reward {0, 1} behind each arm, it is quite natural to model the rewards according to a
Bernoulli distribution, which is parameterized by the success probability vector µ = (µ1, . . . , µK),
where µk represents the average unknown reward behind arm k ∈ K. Following the Bayesian
framework, parameter µk of arm k is modeled as a Beta(αk, βk) random variable, where αk counts
the number of successful transmissions after playing arm k, and βk represents the number of
collisions. Therefore, the mean of µk is equal to αk/(αk + βk). The Beta distribution parameters
are initialized to {αk = 1, βk = 1} for all k ∈ {1, . . . ,K}.

As the TS-A collects more data, αk and βk are updated accordingly, inducing biased proba-
bilities for the different arms. These informed distributions are also called posterior probabilities,
in Bayesian parlance. Whenever the agent makes a decision, i.e., it chooses a physical channel
based on the probability of that channel not being accessed by other agents in that time interval,
it samples a vector µ = (µ1, . . . , µK), and plays the arm k∗ such that k∗ = argmaxk{µk}. This
algorithm is known as the Thompson Sampling (TS) algorithm [214]

Neural Agent (NA) The NA is equipped with a small-size neural network (NN) used to
represent its decision policy. In particular, the agent receives, as an input, context information
st ∈ S from the environment, thus the problem is formulated as a contextual MAB, i.e., the average
reward depends on the played arm kn,t, and on the state sn,t [148]. The NN input represents the
feedback on the results of the last transmission attempt, broadcast by the gNB. As such, the input
data is a vector of K + 1 entries: the first K values are the results of the transmission attempts in
the K orthogonal channels, whereas the last value indicates whether it is a first-time transmission
or a re-transmission. Again, the 0/1 reward given to failed/successful transmission, respectively,
is used by the NA to optimize the NN parameters, and maximize the given rewards. The model
is an adaptation of that in [51].

Remark. The UCB and TS algorithms exhibit good theoretical properties in terms of conver-
gence time to optimal strategies, as long as some critical assumptions are satisfied [148]:

1. The rewards behind each action need to exhibit a sub-Gaussian distribution. Any distribu-
tion with limited support has this property, which is also verified in our setting.

133

2. The reward samples after playing action k are i.i.d. This assumption is more critical in real
scenarios, and in particular in our problem. In fact, each agent interacts with many other
devices, and so the rewards depend on the actions of the other agents, which are contin-
uously learning and changing their decision schemes. This leads to highly non-stationary
environments, meaning that the reward distribution may change over time. However, em-
pirical results show that state-of-the-art MAB algorithms can still be applied even though
the stationarity assumption for the rewards is not satisfied [49].

In Section 4.1.4 we compare the performance of the MAB agents presented above, and provide
guidelines towards the best schemes to satisfy URLLC requirements for IIoT.

4.1.4 Performance Evaluation

In this section, after introducing our simulation setup, we evaluate the performance of the pro-
posed distributed resource allocation scheme implementing one of the MAB agents described in
Section 4.1.3, in different IIoT scenarios.

Simulation Setup

End machines transmit at frequency fc = 3.5 GHz and with a bandwidth of B = 20 MHz. The
subcarrier spacing is set to ∆f = 30 KHz (i.e., 3GPP NR numerology 1), which results in K = 55

orthogonal channels, and an OFDM symbols duration of TOFDM ≃ 35.675µs [204]. With an SU
of 7 OFDM symbols, we get an SU duration of TSU ≃ 0.25 ms. We assume that, whenever a
packet is to be sent, it can be transmitted within one SU. If two or more UEs select the same UL
channel for transmission in the same SU, we consider those packets to be lost (due to a collision
event). Assuming that the gNB feedback (informing about the collision) is received within the
current SU, the retransmission can be scheduled in the subsequent SU.

The factory floor is characterized according to the 5G-ACIA “Motion Control” scenario, as
described in [12]. Hence, the geometry is modeled as a parallelepiped of length ℓ = 15 m, width
w = 15 m, and height h = 3 m, and machines are randomly and uniformly distributed inside
the factory. The gNB is located at the center of the ceiling, and communicates with power
PTX,DL = 30 dBm. The transmit power of the UEs is set to PTX,UL ∈ {8, 10, 23} dBm. Also, we
consider omnidirectional transmissions, therefore the antenna gain is fixed to G = 1 for both the
UEs and the gNB. The channel model is based on the 3GPP Indoor Factory (InF) scenario [8],
where UEs are assumed to communicate in Non-Line-of-Sight (NLOS) if the joining line between
the UE’s and the gNB’s centers intersects one or more machines.

In our simulations, the traffic can be either periodic or quasi-periodic. In the first case, packets
are generated at constant periodicity τ . In the second case, the application still generates packets
with periodicity τ , upon which a random component toff of {−2,−1, 0,+1,+2} OFDM symbols
is added.

The performance of the different MAB agents’ policies is assessed in terms of successful trans-
mission rate STX , which indicates the ratio between the successfully received packets and the

134

(a) Periodic traffic. (b) Quasi-periodic traffic

Figure 4.2: STX vs. the training time, for different MAB agents, with periodic and quasi-periodic
traffic, τ = 1.5, and N = 50.

total number of attempts within one SU, averaged over 1 000 steps, as a function of the traf-
fic periodicity τ , the number of UEs N , and the UL transmission power PTX,UL. Notice that
STX is inversely proportional to the number of re-transmissions and, as such, represents well the
theoretical rewards rn,t of the MAB agents.

Numerical Results

Impact of the training. In Fig. 4.2 we analyzed the training curve of the agents with periodic
and quasi-periodic traffic, with a periodicity τ = 1.5 ms, and considering N = 50 UEs in the
system, for a total training time of T = 240 s. For the periodic case, we observe from Fig. 4.2a
that TS-A is the best performing agent. In particular, the TS agents are able to learn their optimal
strategy, achieving zero collisions (i.e., STX = 1, our target for URLLC) in a very short training
time (< 10 s). NA achieves a similar performance to that of TS-A, though after a longer training
process. This is due to the fact that NA needs more interactions with the system to optimize the
network parameters, thus slowing down the training phase. For UCB-A, the exploration parameter
c in Eq. (4.1) was set to 2, as it showed the most stable configurations in our experiments. Still,
it results in an even slower convergence compared to NA, due to the fact that it struggles to
achieve coordination. Also, UCB-A presents significant oscillations over time, due to the impact
of collisions and retransmissions. As expected, RA (our baseline) performs poorly, and there is
no improvement over time, as feedback signals are not exploited by the algorithm to adjust the
access scheme.

For the quasi-periodic case, we observe from Fig. 4.2b that TS-A presents again the best
performance despite the more complex scenario, converging to zero collisions within 15 s. Now,
NA no longer achieves perfect convergence within the training time, suggesting that it cannot
work well in non-stationary multi-agent scenarios, or deal with non-deterministic traffic requests.
However, we believe that, with a better tuned training process, and with more relevant context
information as input, the final performance would reasonably improve. Finally, UCB-A and RA
perform similarly to the case of periodic traffic.

Impact of the number of users. In Fig. 4.3 we evaluate the performance of the MAB agents
as a function of N ∈ {25, 50, 75, 100}. In particular, we studied the statistics of the successful

135

Figure 4.3: STX ± one standard deviation vs. N for different MAB agents, after a training time
of 60 s, with τ = 1.5 ms, with periodic (wide bars) and quasi-periodic (narrow bars) traffic.

transmission rate STX after 60 s of training, where again the total training time is set to T = 240

s. First, we observe that TS-A converges to the optimal scheme (i.e., STX = 1) within 60 s in
all configurations, thus achieving coordination without communication even in dense (N = 100)
networks. Second, NA outperforms UCB-A with periodic traffic, but suffers with quasi-periodic
traffic: notably, STX decreases by 10% in the quasi-periodic case, for N = 100. This is due to the
fact that NA implements and exploits an NN to optimize its decisions, thus the learning phase
can take more time in the most complex scenarios. Interestingly, compared to other agents, UCB-
A’s performance is less sensitive to N , and eventually outperforms NA’s approach in the most
crowded scenarios. On the downside, it exhibits wider oscillations, i.e., higher standard deviation
in Fig. 4.3, an indication of a less stable behavior of the agent in non-stationary environments.

Impact of the traffic periodicity. Fig. 4.4 explores the effect of the traffic periodicity τ

on the successful transmission rate STX . As expected, the more aggressive the traffic, the more
difficult for the agents to achieve convergence, which is also highlighted by the increased standard
deviation in all MAB configurations. Again, TS-A is the best agent, and can converge to the
optimal scheme regardless of the value of τ . Eventually, NA is also able to achieve zero collisions
(i.e., STX = 1) when τ = 5 ms in case of periodic traffic. Even the RA approach (our baseline)
achieves a successful transmission rate of around 0.9 as τ grows, i.e., considering less bandwidth-
hungry applications, thanks to the lower collision probability as the contention on the channel
becomes less intense. Notably, UCB-A is the only method that improves the average accuracy as
τ decreases: the shorter traffic periodicity implies more transmission attempts within the training
time, which in turn provides more data to the agent to optimize its decisions. However, oscillations
become significant when τ = 1.5 ms.

Impact of the UL transmission power. IIoT devices, such as industrial sensors, may
be subject to battery lifetime constraints. In light of this, we studied the impact of the UL

136

Figure 4.4: STX ± one standard deviation vs. τ for different MAB agents, after a training time
of 60 s, with N = 100, with periodic (wide bars) and quasi-periodic (narrow bars) traffic.

Figure 4.5: STX ± one standard deviation vs. PTX,UL for different MAB agents, after a training
time of 60 s, with N = 100 and τ = 1.5 ms, with periodic (wide bars) and quasi-periodic (narrow
bars) traffic.

transmission power PTX,UL ∈ {8, 10, 23} dBm on the MAB convergence. While decreasing PTX,UL

promotes energy savings and mitigates interference, it may also lead to communication outage
when the Signal to Interference plus Noise Ratio (SINR) goes below a pre-defined sensitivity
threshold, set to −5 dB in our simulations. In Fig. 4.5, with PTX,UL = 23 dBm, the outage
probability is very small, leading to STX ≈ 1 in most configurations (if convergence is achieved).
As PTX,UL starts decreasing, outage events, besides collisions, lead to additional packet losses, and
to a more complex environment. Unlike TS-A and NA, UCB-A is less sensitive to this effect. The

137

(a) (b)

Figure 4.6: STX vs. the training time and as a function of N (a) and τ (b), for TS-A with periodic
traffic, and τ = 1.5 ms. The curves report mean ± standard deviation over the simulation runs.

reasons are twofold. On one side, NA converges slowly, and is more exposed to retransmissions. At
the same time, TS-A converges quickly to a specific solution, meaning that unpredictable outage
events may break the environment statistics underlying the TS algorithm, and lead to unexpected
negative feedback from the gNB. On the contrary, UCB-A initially explores more, and can better
adapt to new configurations in more dynamic scenarios. When PTX,UL = 8 dBm, UCB-A is the
best performing agent, and achieves +16% STX compared to TS-A.

TS-A performance. In view of the above results, we further analyzed TS-A’s convergence
time to the optimal solution (where no collisions are experienced) as a function of (i) the number
of users N , and (ii) the traffic periodicity τ . In Fig. 4.6a, we observe that, as N increases, the TS
algorithm takes more time to converge to the best solution, as expected. Notably, the curve with
N = 100 presents the highest variance, due to the fact that many users are learning an individual
policy, leading to a highly non-stationary environment.

In Fig. 4.6b, we see that when τ decreases the convergence time grows accordingly, even though
the gap among different configurations is relatively small (convergence is achieved after ∼ 8 s).
This is due to the fact that, on the one hand, when the traffic periodicity is short, the problem
becomes more complex, as more packets have to be allocated. On the other hand, the agents
receive more feedback signals within the same time interval, thus leveraging more data for the
training.

Final remarks

Our initial experiments confirm that there exists a MAB configuration for which distributed
resource allocation can achieve zero collisions in low latency, i.e., without gNB scheduling grants,
thus supporting URLLC.

In particular, TS-A is the best performing approach in case of both dense systems and ag-
gressive aperiodic traffic (where conventional semi-persistent/grant-free NR schedulers may fail).
Consequently, our experiments suggest that the Bayesian formulation, together with the explo-
ration strategy of TS, are good starting points to build distributed resource allocation in real IIoT
environments, reducing the latency introduced by centralized protocols. Interestingly, UCB-A

138

works well in complex scenarios, or when UEs communicate with limited power, thus supporting
energy efficiency at the expense of some collisions. Moreover, the superior performance in terms of
STX of the MAB schemes against RA shows that machine learning can dramatically reduce, if not
completely eliminate, the burden of re-transmissions introduced by 5G-NR-like grant-free access
scheduling schemes [185]. However, distributed resource allocation requires longer training time
before convergence, which in real IIoT systems may not be negligible. Still, the training could
be run offline, which does not affect the real-time performance of the system (it can be executed
when the machine is turned off, e.g., during the calibration of the electro-mechanical processes, or
before the service is activated); once active, the service can run rapidly and without significant
computational overhead.

Moreover, our analysis evaluates the training time when the system starts the optimization
process from scratch: faster adaptation can be achieved if the system faces limited changes with
respect to the initial training scenario, e.g., some components join or leave the system. Neverthe-
less, the trained model still requires retraining when data distributions have deviated significantly
from those of the original training set, which involves additional overhead [144]. This motivates
further explorations in the case of more dynamic systems, that will be carried out as part of our
future work.

4.1.5 Conclusions and Future Work

We studied the design of user-centric (rather than gNB-centric) distributed (rather than central-
ized) resource allocation in IIoT scenarios. This approach does not involve scheduling grants to
be disseminated before UL transmissions, and is thus positioned to better support URLLC com-
pared to conventional scheduling methods. We explored different state-of-the-art MAB agents,
for the first time applied to the context of URLLC for IIoT, and identified TS-A as the best
performing implementation, achieving zero collisions in our experiments. TS-A scales well with
the number of users in the system compared to other MAB methods, and still achieves perfect
accuracy even considering aperiodic traffic. Notably, UCB-A showed superior performance when
the UEs communicate with low power, despite some collision events.

4.2 DISNETS: a DIStributed NEural linear Thompson Sam-
pling framework to achieve URLLC in IIoT

In the previous section we’ve seen a preliminary analysis on the application of state-of-the-art
MAB algorithms to the distributed resources allocation problems in wireless networks, with the
aim of reducing the latency needed to transmit data in an IIoT environment. This work extends
the analyses by considering a more complex but accurate system model, and by proposing a novel
proposal which augments the linear TS with the adoption of a deep neural network (DNN)[190].

139

4.2.1 Introduction

As we have seen in Section 4.1, IIoT poses strict communication requirements to achieve almost
real-time coordination, control, and sensing [151]. Specifically, these requirements translate into
latency (less than 1 ms in the radio part) and reliability (up to 99.99999%) constraints, thus
calling for Ultra-Reliable and Low-Latency Communications (URLLC) [10, 7]. However, the 5th
generation (5G) standard is unlikely to provide resource allocation in short time, mainly due to
the intrinsic limitations of current channel access schemes [156, 74]. Notably, the 3rd Generation
Partnership Project (3GPP) New Radio (NR) specifications for 5G networks [4] support three
options to allocate uplink (UL) resources: grant-based scheduling (GBS), semi-persistent schedul-
ing (SPS), and grant-free scheduling (GFS) [158]. GBS [1] is fully centralized, and requires: (i)
the User Equipments (UEs) to use the Physical Uplink Control Channel (PUCCH) to ask the
uplink scheduler for being scheduled; (ii) the gNB to communicate via the Physical Downlink
Control Channel (PDCCH) to the UEs which resources can be used for transmission; (iii) the UEs
to transmit their data blocks through the Physical Uplink Shared Channel (PUSCH); and (iv)
the gNB to provide the communication acknowledgment via Hybrid Automatic Repeat reQuest
(HARQ). This procedure requires at least two Round Trip Times (RTTs) from when data arrives
in the buffer until it can be properly scheduled, which may prohibitively increase the communica-
tion delay. SPS [6] is also fully centralized, but permits the Next Generation Node B (gNB) to
pre-allocate radio resources without explicit scheduling requests and grants from/to the UEs, thus
reducing the latency. However, SPS works under the assumption of periodic/predictable traffic,
which is not always verified in the Industrial Internet of Things (IIoT) scenario, and may cause
large and systematic delays in case of errors in those predictions. On the other extreme, GFS [165]
is fully distributed, and the UEs autonomously choose radio resources to be used for transmission,
thereby eliminating the need to wait for scheduling grants. On the downside, uncoordinated re-
source allocation may lead to potentially many collisions, and trigger re-transmissions accordingly,
which again poses additional latency concerns.

In this context, machine learning (ML) has emerged as a promising tool to optimize network
performance, including minimizing latency during resource allocation. Still, most of the literature
focuses on centralized and downlink algorithms, e.g., in [135], which however are not scalable
as the density of the network increases. In the area of distributed learning, multi-armed bandit
(MAB) algorithms [226], and especially Linear Thompson Sampling (LTS) [212], gained popularity
to address the problem of resource allocation. However, these schemes are often too easy to model
complex network dynamics, and work with the assumption of linear dependency of data [194].
A promising attempt to overcome this limitation was made with the Neural Linear Thompson
Sampling (NLTS) algorithm [210], which still assumes that the ML agent can only play single
actions, i.e., UEs transmit through one single orthogonal channel, which may increase the latency
beyond URLLC requirements.

To solve these issues, in this work we propose a new distributed framework for resource allo-
cation called DIStributed combinatorial NEural linear Thompson Sampling (DISNETS), which is
built upon two cardinal principles. First, it consists of a UE-centric architecture in which resource

140

allocation decisions are made by the local UEs, “disaggregated” from the network, and without
pre-defined scheduling requests and/or grants. Second, UEs rely on ML to optimize resource allo-
cation accordingly, which allows to minimize the probability of collisions and reduce the latency
due to re-transmissions. To this aim, our contributions are the following:

• We formalize the problem of distributed resource allocation as a Multi-Agent Contextual
Combinatorial Multi-Armed Bandit (MA-CC-MAB) problem, where UEs autonomously
choose the physical resources to use for transmission. The problem is solved using DIS-
NETS, built on top of the NLTS algorithm [210], which combines deep neural network
(DNN) and LTS to optimize network operations. Specifically, the original NLTS implemen-
tation is extended into the proposed DISNETS solution by allowing agents to take more
than one action at each scheduling opportunity, i.e., using multiple orthogonal channels in
parallel in the same scheduling opportunity, which is important to provide URLLC.

• We propose the design and structure of a new control signaling scheme, referred to as Feed-
back Control Information (FCI), and used by the UEs to train and learn how to allocate
resources using DISNETS. The structure of the FCI is similar to that of the Downlink
Control Information (DCI) signal, which is currently used in 5G NR to enable centralized
scheduling [185].

• We apply DISNETS to the context of URLLC in IIoT environments. As such, we propose
a new ad-hoc traffic model in which industrial machines and users in a production line
activate and generate traffic, respectively, based on some temporal and spatial correlations.
This approach promotes more realistic, IIoT-specific simulations.

• We validate DISNETS through end-to-end (E2E) simulations in terms of latency and reli-
ability, against 5G NR GBS ans SPS baselines for resource allocation, and GFS based on
random access. Simulation results are as a function of the number of UEs in the network,
the traffic configuration, and some other IIoT-specific system parameters. We show that
DISNETS achieves faster and more accurate resource allocation than its competitors, also
considering aperiodic and unpredictable traffic.

4.2.2 System Model
In this section we present our system model. Specifically, we describe our factory layout and
scenario, the channel model, the traffic model to characterize IIoT-specific interactions between
machines, end users, and the underlying factory geometry and functionalitie. In the end, we
provide the E2E latency and reliability models.

Scenario

Factory floor We consider a limited geographical area within an indoor factory floor, modeled
as a parallelepiped of length l, width w, and height h, as reported in [14]. Then, M industrial
machines are grouped into W different production lines (each of which models an underlying

141

industrial process), and are connected to a Standalone Non-Public Network (SNPN), i.e., a 5G
remote and private network with a reserved Radio Access Network (RAN) and 5G Core (5GC) [11].
For example, Fig. 4.7 illustrates an example with W = 2 production lines and M = 7 machines.
Machines are modeled as cubes of size S, and deployed across the factory floor according to
a uniform distribution, ensuring a given inter-machine distance D (relative to the centers of
machines) and a minimum number of machines Mmin.

Onboard the machines, N UEs are distributed following the same method, at a maximum
height S, and generate traffic according to pre-defined patterns (more on this later). Moreover,
obstacles act as obstructions between the UEs and the gNB.

Resource allocation We consider uplink communication, i.e., from the N UEs to the Con-
troller/Master (C/M), that is a remote entity monitoring and controlling the machines from the
5GC through a gNB. The total available bandwidth B is split into K orthogonal channels where,
according to the 3GPP nomenclature, an orthogonal channel consists of 12 Orthogonal Frequency
Division Multiplexing (OFDM) subcarriers. Time is also discretized into Scheduling Units (SUs)
whose duration is of 7 OFDM symbols. Then, a Resource Block (RB) is defined as the minimum
physical resource unit that can be allocated for data transmission, and consists of one orthogonal
channel in frequency, and one SU in time. Within one SU, the first 4 OFDM symbols are dedi-
cated to the PUSCH, used by the UEs to transmit data, and the last 2 OFDM symbols are used
by the gNB to convey the FCI, as described in Section 4.2.3.

Data transmission Whenever a UE has new data packets to send, it can use multiple RBs
choosing different orthogonal channels within the same SU. The assumption in our system model
is that, whenever two or more UEs use the same orthogonal channels in the same SU, i.e., the
same set of RBs, they create collision, and we assume data packets to be lost, i.e., they cannot be
detected by the gNB.

Channel Model

The channel is characterized based on the Indoor Factory (InF) model for IIoT networks [8,
Table 7.2-4]. Specifically, the 3GPP identifies several InF scenarios depending on the density of
obstacles and the location of the UEs with respect to the gNB. Among these, in this work we
selected the most representative 3GPP InF scenario based on the 5G-ACIA factory layout and
geometry described in [11].

The path loss depends on the Line-of-Sight (LOS) or Non-Line-of-Sight (NLOS) condition of the
channel. In this regard, the 3GPP provides an expression for the LOS probability in [8]. However,
we do not adopt a statistical model to discriminate between LOS and NLOS propagation. On the
contrary, we implement a geometry-based approach that checks whether the joining line between
the UE’s and the gNB’s centers intersects one or more obstacles. If so, the UE is considered in
NLOS, otherwise it is in LOS. Then, the quality of the received signal is assessed in terms of the

142

Signal to Noise Ratio (SNR), which is defined as

SNR =
PTX · GUE · GgNB

PL · PN
, (4.2)

where PTX is the transmit power, GUE and GgNB are the antenna gains at the UE and the gNB,
respectively, PL is the path loss, and PN is the Additive White Gaussian Noise (AWGN) noise
power. The latter is computed as kB · T · B, where kB is the Boltzmann constant, TB is the
system noise temperature (in K), and B is the total bandwidth (in Hz) at the gNB. The SNR is
used to check whether a data block is correctly decoded, i.e., if the SNR is above a given threshold
SNRth, and to determine the modulation order to be used for data transmission according to [3].

The Spatio-Temporal Correlated Traffic Model

In most literature work, uplink traffic is assumed either periodic (i.e., UEs generate data at
predefined time intervals) or totally aperiodic (i.e., UEs generate data with a variable periodicity),
and machines in the factory floor can generate packets simultaneously. In this work, we propose
an alternative traffic model where data packets are generated according to pre-defined statistics,
to better characterize IIoT interactions. In this model, machines within a production line are
sequentially activated, emulating the workflow of the corresponding industrial process. Then,
UEs onboard active machines produce data traffic (either periodic or aperiodic [13]) for an entire
“activation period” of duration τa, after which another machine in the current production line will
activate.

As such, the traffic model accounts for both spatial and temporal correlation, as illustrated in
Fig. 4.7. Notably, it is possible to identify two different types of correlation.

Inter-machine correlation It refers to the way the machines activate. Specifically, when an
event occurs, one machine per production line is activated. Then, after the activation period, the
next machine activates following the flow of the production line, at a sequence that depends on
the factory geometry and the number of machines and lines.

Intra-machine correlation It refers to the way UEs onboard the active machines generate
packets. After one machine per line is activated, the UEs associated with those machines activate
too. Then, active UEs generate a flow of packets according to some statistics, e.g., in terms of
the inter-packet interval and/or the packet size, until some new machines in the production line
activate. We consider:

• Periodic traffic, if packets are generated at constant periodicity τ [13]. For example, UEs
periodically measure and report physical parameters (e.g., temperature, pressure, radiation)
from the production process.

• Uniformly aperiodic traffic, if the inter-packet interval τ is modeled as a uniform random
variable in [tmin, tmax], ∀n ∈ N, where N is the set of UEs [13]. For example, UEs make
unscheduled aperiodic transmissions in case abnormal measurements are detected.

143

t2 t3 t4t1

<latexit sha1_base64="K0765j1u4BsxdVYoUnYZjYIcYqw=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Rj04jGCeUCyhNnJbDJmdmaZ6RVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqRQWff/bW1ldW9/YLGwVt3d29/ZLB4cNqzPDeJ1pqU0ropZLoXgdBUreSg2nSSR5MxreTv3mEzdWaPWAo5SHCe0rEQtG0UmNDtKsS7ulsl/xZyDLJMhJGXLUuqWvTk+zLOEKmaTWtgM/xXBMDQom+aTYySxPKRvSPm87qmjCbTieXTshp07pkVgbVwrJTP09MaaJtaMkcp0JxYFd9Kbif147w/g6HAuVZsgVmy+KM0lQk+nrpCcMZyhHjlBmhLuVsAE1lKELqOhCCBZfXiaN80pwWQnuL8rVmzyOAhzDCZxBAFdQhTuoQR0YPMIzvMKbp70X7937mLeuePnMEfyB9/kDk7WPIg==</latexit>

τa

periodic traffic
aperiodic traffic
UE-specific aperiodic traffic

UE machine production line

Figure 4.7: Factory floor layout (withW = 2,M = 7, and N = 18) and traffic correlation. Specifi-
cally, machines in each production line are correlated, and activate according to a specific sequence
on the production line, i.e., toward the right or the left. At t1, W = 2 machines (i.e., one per
production line) activate, and the corresponding UEs onboard the active machines start sending
data as periodic, aperiodic, or UE-specific aperiodic traffic. At t2 = t1 + τa, these machines shut
down and the next activation begins.

• UE-specific aperiodic traffic, in which the extreme values tmin and tmax are UE-dependent
parameters. Specifically, we now assume that UEn, ∀n ∈ N, generates with probability one
another packet in the interval [tnmin, t

n
max], with tnmin and tnmax modeled as uniform random

variables within the intervals [tmin, tmax] and [tnmin, tmax], respectively. Notably, we now
have tmin ≤ tnmin ≤ tnmax ≤ tmax. The rationale behind this new traffic model is that, in
real-world factories, some sensors/UEs may control different parts or mechanisms of the
same inter-machine process, thus activating with statistics that depend on their roles or
position, and so are UE-specific.

Latency and Reliability Models

Latency We require our system to minimize the E2E latency in uplink, which is defined as
the time from when one packet is generated at the UE’s application to when the same packet is
successfully received by the C/M. Specifically, the E2E latency L of a packet is computed as:

L = TP + TRAN + TTX + τP + TDAS + τF + TgNB + TCN, (4.3)

144

where, based on the analysis in [74]:

• TP is the time for the UE to create the data packet, i.e., to add headers across the 5G
protocol stack;

• TRAN is the time between the generation of the data packet at the Physical (PHY) layer and
the packet transmission, which depends on the scheduling algorithm;

• TTX is the transmission time;

• τP is the propagation time from the UE to the fronthaul of the gNB, i.e., the Distributed
Antenna System (DAS);

• TDAS is the time for the DAS to process the received data packet, and to send it to the gNB;

• τF is the time for the signal to travel from the DAS to the gNB, generally through a high-
capacity optical fiber;

• TgNB is the time for the gNB to process the received data block, and to send it to the C/M;

• TCN is the delay introduced by the 5GC, that is the time for the message to reach the C/M
from the gNB.

Finally, we denote as L̄ the average E2E latency, averaged over the data packets generated by
the UEs within the simulation time TS , and over the number of UEs.

Reliability We also require our system to operate with high reliability. In this sense, we define
a reliability metric ηt(Lth) as the empirical probability that the E2E latency of a packet is below
a pre-defined threshold Lth during SUt, and η̄t(Lth) is the empirical average of ηt(Lth) within the
simulation time TS .

4.2.3 Problem Formulation

The aim of our work is to minimize TRAN in Eq. (4.3), which dominates the E2E latency, and
depends on the underlying resource allocation procedure. As mentioned in Section 4.2.1, standard
5G NR protocols mainly adopt either centralized scheduling at the gNB (i.e., GBS and SPS),
which introduces delays due to the rigidity of the resource allocation scheme with respect to the
traffic generation process, or distributed scheduling (i.e., GFS), which may result in collisions. In
turn, we propose DISNETS, a new scheduling framework that combines the benefits of the two: on
one side, resource allocation is decentralized, in the sense that UEs autonomously decide how to
allocate resources without significant interactions with the gNB, which eliminates the waiting time
to receive scheduling grants; at the same time, UEs exploit ML to optimze scheduling decisions
based on traffic correlations, which may reduce the probability of collision. Our research problem
is formulated as a MA-CC-MAB problem, as described below.

145

The CC-MAB Problem

The problem formulation is built on top of the Contextual Combinatorial Multi-Armed Bandit
(CC-MAB) framework [61]. Specifically, every time UEn ∈ N, i.e., an agent, has data to send in
SUt, it will autonomously choose the physical resources to be used for transmission. The total
available bandwidth is split into K orthogonal channels, and we denote with K = {1, 2, . . . ,K}
the set of channels. In CC-MAB parlance, the K orthogonal channels are the K feasible actions
that can be chosen by the agent. To take an action, each agent can rely on side information,
i.e., the context st ∈ S, that describes the state of the environment, i.e., the wireless network,
in SUt, which we model as a random variable sampled according to the system’s probability PS .
Given the context st and the action kt chosen by the agent in SUt, the environment returns
a reward rt ∈ [−1, 1] according to the probability PR(st, kt), which reflects the probability that
data transmission using channel kt in context st was successful. Specifically, rt = −1 if collisions
happen, otherwise it is proportional to the number of transmitted bits if the transmission is
successful (see Eq. (4.10) for further details). Then, µ(s, k) is the average reward with respect to
the distribution PR(s, k) ∀s ∈ S, ∀k ∈ K.

In our framework, the CC-MAB problem is extended by allowing agents to take more than one
action in each SU, i.e., using multiple orthogonal channels in parallel in the same SU, which is
important to provide URLLC. Therefore, we define a super-action θt ⊂ K as a set of actions in
SUt, so θt is an element of the super-set Θ of K, i.e., the set of all possible subsets of K. The
reward rt is then sampled according to PR(st, θt). Interestingly, we can exploit the structure of
the environment to assume that

µ(s, θ) ∼
∑

k∈θ

µ(s, k), ∀s ∈ S, ∀k ∈ K, (4.4)

i.e., the average reward relative to super-action θ is proportional to the sum of the average rewards
of the single actions.

To choose the super-action in SUt, the agent employs a policy πt : Ht−1 × S → Φ(Θ), which
is a map from the history Ht = {(s1, θ1, r1), . . . , (st−1, θt−1, rt−1)} ∈ Ht−1 of previous contexts,
actions, and rewards, to a probability distribution over the set of feasible super-actions Θ. Given
an horizon T , the goal of the agent is to find the policy π∗ that maximizes the expected sum of
rewards over time, i.e.,

π∗ = argmax
π

E

[
T∑

t=1

µ(st, θt)

]
, (4.5)

where the expectation is taken with respect to the distributions of the environments PR and PS ,
and the agent’s policy πt, used to sample super-actions according to θt ∼ πt(st).

146

state

<latexit sha1_base64="9dZ0tCEJD3QwsBDdz2K12bGqkgA=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRahXsquiHosevFYwX5Au5Rsmm1Ds0lIskJZ+iO8eFDEq7/Hm//GtN2Dtj4YeLw3w8y8SHFmrO9/e4W19Y3NreJ2aWd3b/+gfHjUMjLVhDaJ5FJ3ImwoZ4I2LbOcdpSmOIk4bUfju5nffqLaMCke7UTRMMFDwWJGsHVSu6dGrGrO++WKX/PnQKskyEkFcjT65a/eQJI0ocISjo3pBr6yYYa1ZYTTaamXGqowGeMh7ToqcEJNmM3PnaIzpwxQLLUrYdFc/T2R4cSYSRK5zgTbkVn2ZuJ/Xje18U2YMaFSSwVZLIpTjqxEs9/RgGlKLJ84golm7lZERlhjYl1CJRdCsPzyKmld1IKrWvBwWanf5nEU4QROoQoBXEMd7qEBTSAwhmd4hTdPeS/eu/exaC14+cwx/IH3+QOy/Y8n</latexit>

φ(s)

state
representation

LTS
<latexit sha1_base64="YzkBaHoFFgA9Ezjpdv4zeHlVYLs=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Rj04jGCeUCyhNnJbDJmdmaZ6RVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqRQWff/bW1ldW9/YLGwVt3d29/ZLB4cNqzPDeJ1pqU0ropZLoXgdBUreSg2nSSR5MxreTv3mEzdWaPWAo5SHCe0rEQtG0UmNDg440m6p7Ff8GcgyCXJShhy1bumr09MsS7hCJqm17cBPMRxTg4JJPil2MstTyoa0z9uOKppwG45n107IqVN6JNbGlUIyU39PjGli7SiJXGdCcWAXvan4n9fOML4Ox0KlGXLF5oviTBLUZPo66QnDGcqRI5QZ4W4lbEANZegCKroQgsWXl0njvBJcVoL7i3L1Jo+jAMdwAmcQwBVU4Q5qUAcGj/AMr/Dmae/Fe/c+5q0rXj5zBH/gff4Ape+PLg==</latexit>

θ

super-action

reward

reward

<latexit sha1_base64="vsDpfYbw0s5cDF7qjMYBdSqobT4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzU0P1yxa26c5BV4uWkAjnq/fJXbxCzNEJpmKBadz03MX5GleFM4LTUSzUmlI3pELuWShqh9rP5oVNyZpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjjZ1wmqUHJFovCVBATk9nXZMAVMiMmllCmuL2VsBFVlBmbTcmG4C2/vEpaF1Xvquo1Liu12zyOIpzAKZyDB9dQg3uoQxMYIDzDK7w5j86L8+58LFoLTj5zDH/gfP4A4J2M/Q==</latexit>

s

0 N 1 0 . . . 2 −1

3 1 −1 0 . . . 4 3

2 2 1 −2 . . . 0 1

. N 3

0 1 −2 2 . . . N 0

<latexit sha1_base64="diByFINlx451dAbm7UwUfQbZByw=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4sSQi6rHopceK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGd1O/9cS1EbF6xHHC/YgOlAgFo2ilBzyv9Uplt+LOQJaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzySbGbGp5QNqID3rFU0YgbP5udOiGnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8MbPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2naEPwFl9eJs2LindV8e4vy9XbPI4CHMMJnIEH11CFGtShAQwG8Ayv8OZI58V5dz7mrStOPnMEf+B8/gDeY42H</latexit>

t−H
<latexit sha1_base64="+wnpR2cY/R/86zLTDT748/nE9fs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBiyURUY9FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WV1bX1jeJmaWt7Z3evvH/QNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbqd+64lrI2L1iOOE+xEdKBEKRtFKD3jm9coVt+rOQJaJl5MK5Kj3yl/dfszSiCtkkhrT8dwE/YxqFEzySambGp5QNqID3rFU0YgbP5udOiEnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8NrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2nZEPwFl9eJs3zqndZ9e4vKrWbPI4iHMExnIIHV1CDO6hDAxgM4Ble4c2Rzovz7nzMWwtOPnMIf+B8/gC7h41w</latexit>

t− 1

fr
eq

ue
nc

y
time

reward

DIStributed NEural linear Thompson Sampling (DISNETS)SU

NLTS

: successful data transmission for UE
: channel outage
: collision
: channel not used

<latexit sha1_base64="3f8Kq6KACwakEDL0A9Xysy4QEnQ=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBRSmJiLosunElFewDmlAm00k7dDIJMxOlxH6KGxeKuPVL3Pk3TtsstPXAwOGce7h3TpBwprTjfFuFldW19Y3iZmlre2d3zy7vt1ScSkKbJOax7ARYUc4EbWqmOe0kkuIo4LQdjK6nfvuBSsVica/HCfUjPBAsZARrI/XsMvOY8DK36vVjraq33qRnV5yaMwNaJm5OKpCj0bO/TJakERWacKxU13US7WdYakY4nZS8VNEEkxEe0K6hAkdU+dns9Ak6NkofhbE0T2g0U38nMhwpNY4CMxlhPVSL3lT8z+umOrz0MyaSVFNB5ovClCMdo2kPqM8kJZqPDcFEMnMrIkMsMdGmrZIpwV388jJpndbc85p7d1apX+V1FOEQjuAEXLiAOtxAA5pA4BGe4RXerCfrxXq3PuajBSvPHMAfWJ8/mqWTlA==</latexit>

i 2 {1, . . . , N}
<latexit sha1_base64="PBY966hDOsEIvQ2gLkwz3z6K9rQ=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyURUY9FLx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7dRvPaHSPJaPZpygH9GB5CFn1Fjp4czrlStu1Z2BLBMvJxXIUe+Vv7r9mKURSsME1brjuYnxM6oMZwInpW6qMaFsRAfYsVTSCLWfzS6dkBOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCaz/jMkkNSjZfFKaCmJhM3yZ9rpAZMbaEMsXtrYQNqaLM2HBKNgRv8eVl0jyvepdV7/6iUrvJ4yjCERzDKXhwBTW4gzo0gEEIz/AKb87IeXHenY95a8HJZw7hD5zPH+XajPI=</latexit>

−1
<latexit sha1_base64="hdFrA3ozaT+abVFBHqgEpT0Hmg4=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4sSRF1GPRi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hoduq3nlBpHstHM07Qj+hA8pAzaqz0cF7tlcpuxZ2BLBMvJ2XIUe+Vvrr9mKURSsME1brjuYnxM6oMZwInxW6qMaFsRAfYsVTSCLWfzS6dkFOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCaz/jMkkNSjZfFKaCmJhM3yZ9rpAZMbaEMsXtrYQNqaLM2HCKNgRv8eVl0qxWvMuKd39Rrt3kcRTgGE7gDDy4ghrcQR0awCCEZ3iFN2fkvDjvzse8dcXJZ47gD5zPH+dejPM=</latexit>

−2
<latexit sha1_base64="Nh7TLHkIWAHD9QsOwjc+3htkUJM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUcPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBexGMug==</latexit>

0

<latexit sha1_base64="3f8Kq6KACwakEDL0A9Xysy4QEnQ=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBRSmJiLosunElFewDmlAm00k7dDIJMxOlxH6KGxeKuPVL3Pk3TtsstPXAwOGce7h3TpBwprTjfFuFldW19Y3iZmlre2d3zy7vt1ScSkKbJOax7ARYUc4EbWqmOe0kkuIo4LQdjK6nfvuBSsVica/HCfUjPBAsZARrI/XsMvOY8DK36vVjraq33qRnV5yaMwNaJm5OKpCj0bO/TJakERWacKxU13US7WdYakY4nZS8VNEEkxEe0K6hAkdU+dns9Ak6NkofhbE0T2g0U38nMhwpNY4CMxlhPVSL3lT8z+umOrz0MyaSVFNB5ovClCMdo2kPqM8kJZqPDcFEMnMrIkMsMdGmrZIpwV388jJpndbc85p7d1apX+V1FOEQjuAEXLiAOtxAA5pA4BGe4RXerCfrxXq3PuajBSvPHMAfWJ8/mqWTlA==</latexit>

i

<latexit sha1_base64="T2PvXihe8MFxw6QKr/VXuAQTUSg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUUP1yxa26c5BV4uWkAjnq/fJXbxCzNEJpmKBadz03MX5GleFM4LTUSzUmlI3pELuWShqh9rP5oVNyZpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjjZ1wmqUHJFovCVBATk9nXZMAVMiMmllCmuL2VsBFVlBmbTcmG4C2/vEpaF1Xvquo1Liu12zyOIpzAKZyDB9dQg3uoQxMYIDzDK7w5j86L8+58LFoLTj5zDH/gfP4A3xmM/A==</latexit>

r

Figure 4.8: Schematic representation of DISNETS. The framework consists of (i) the state/context
s, (ii) an NLTS module to provide the non-linear representation of the context ϕω(s), (iii) an LTS
module to choose a super-action θ ∈ K corresponding to the set of orthogonal channels to use
to transmit data, (iv) the reward r (incorporated within the FCI) to update the NLTS and LTS
parameters.

The MA-CC-MAB Problem

In our work we further extend the CC-MAB problem, and formulate a new MA-CC-MAB problem
where the reward depends on the other agents’ actions in SUt. Therefore, the reward rn,t, the
context sn,t ∈ S, and the policy πn,t are now a function of n. This is critical to support more
accurate resource allocation in a distributed scenario, where there is no or little interaction among
the UEs.

A collision event is expressed by the random variable χt(s, k) ∈ {0, 1}, which is equal to 1 when
collision(s) happen in the orthogonal channel k in SUt, and 0 otherwise. As such, it is modeled
as a Bernoulli random variable of parameter φt(sn,θt), where θt = (θ1,t, . . . , θN,t) is the vector
of super-actions of all the N agents.1 By model assumption, whenever two agents n and n′ play
super-actions θn,t and θn′,t, respectively, we have that χt(s, k) = 1, ∀s ∈ S, ∀k ∈ θn,t ∩ θn′,t, as
collisions occur. Notice that agents make decisions based only on local data, so the structure of
vector θt is unknown a priori. As such, agents can just rely on the local context sn,t, and the
statistical knowledge acquired through history Hn,t.

4.2.4 Proposed Solution: the DISNETS Framework

In this section we present the proposed solution to the MA-CC-MAB problem. The proposed
framework implements (i) a new control signal called FCI, which conveys the information to

1Notice that χt(s, k) does not explicitly depend on n but has the same value for all the agents. However,
the local context sn,t does, which makes χt(s, k) agent-dependent.

147

compute the reward rn,t and is used to generate the context sn,t, and (ii) the DISNETS algorithm,
which combines DNN and LTS to solve Eq. (4.5), and allows end users to autonomously allocate
resources for uplink transmissions.

Context and FCI Implementation

As introduced in Section 4.2.3, the agents optimize policies πn,t based on the rewards rn,t, ∀n ∈ N.
In our framework, the reward is based on the new FCI signal depicted in Fig. 4.8, which has a
similar structure than the 5G NR DCI signal. The FCI, sent from the gNB to the UEs, is located
in the last 2 OFDM symbols of each SU, and includes the transmission outcomes in that SU
relative to each orthogonal channel. Based on the received power on each orthogonal channel,
the gNB can distinguish among four outcomes, namely successful transmission for UEi (FCI = i,
i ∈ {1, . . . , N}), outage (FCI = −1), collision (FCI = −2), or channel not used (FCI = 0).

Based on the FCI, the UEs can compute their local contexts sn,t, ∀n ∈ N, which are used to
statistically describe the state of the system in SUt. Specifically, the context sn,t aggregates the
outcomes from H previous FCI signals, which provides a history of previous resource allocation
decisions.

DISNETS Implementation

In this section we describe our DISNETS framework, represented in Fig. 4.8, to solve the MA-CC-
MAB and support distributed resource allocation. DISNETS extends the NLTS algorithm, which
is in turn based on the LTS algorithm.

Notation. For simplicity, we drop subscript n, with n ∈ {1, . . . , N}, to represent the index of
the agent/UE.

Linear Thompson Sampling (LTS) DISNETS is built on top of the LTS algorithm [19] to
choose an action k ∈ K, which returns the orthogonal channel that the UE can use to transmit
data. LTS assumes that the average reward behind each action k ∈ K is a linear function of the
context st ∈ S, and of an unknown action parameter vector βk, i.e., µ(s, k) = ⟨s, βk⟩. In this
case, estimating the most accurate vector βk, ∀k ∈ K, turns out to be an online linear regression
problem. The problem is online because the target values, i.e., the rewards associated to the
pair (s, βk), are observed by the agent as it interacts with the environment and takes actions,
respectively, and are not available at the beginning of the training process, like in supervised
learning.

To solve this online problem, LTS assumes that the rewards, given the context s and action
k, are modeled as a Gaussian random variable R(s, k),2 i.e., R(s, k) ∼ N

(
sTβk, ν

2
k

)
. The LTS

algorithm maintains a distribution of the parameter vector of each action k at time t, i.e., βk(t).

2According to [19], the rewards are not required to be Gaussian to converge to the optimal actions, but
their domains need to be bounded.

148

Therefore P (βk(t)) ∝ N

(
β̂k(t), ν

2
k (Φk(0) + Φk(t))

−1
)
, where

Φk(0) = λ · Id; (4.6)

Φk(t) =

t−1∑

τ=1

sτs
T
τ · 1kt=k; (4.7)

β̂k(t) = (Φk(0) + Φk(t))
−1

t−1∑

τ=1

sτrτ · 1kt=a. (4.8)

and λ is a hyper-parameter governing the initial exploration. After observing context st and
taking action kt, the agent receives a reward rt based on the FCI (described above), and updates
the distribution of the parameter vector at time t + 1 as

P (βk(t + 1)|st, rt)
∝ P (rt|st, βk(t + 1)) · P (βk(t + 1))

∝ N

(
β̂k(t + 1), ν2k(Φk(0) + Φk(t + 1))−1

)
.

(4.9)

Based on the posterior update rule in Eq. (4.9), the agent samplesK vectors β̂k, ∀k ∈ K, and plays
action kt = argmaxk∈K⟨st, β̂k⟩. The interesting property of LTS is that it automatically balances
exploration, i.e., sampling random actions to explore their reward statistics, and exploitation, i.e.,
exploiting the knowledge collected in previous time slots to optimize future network decisions, and
presents good empirical performance [194].

Neural Linear Thompson Sampling (NLTS) As discussed in the previous paragraph, LTS
assumes a linear relation between the context and the average reward obtained by playing one
specific action. However, linear relations are not complex enough to model real-world scenarios.
This problem is usually solved using Deep Reinforcement Learning (DRL), which requires a long
training phase. On the other hand, DNNs are potentially good candidates to model the many
different relations between contexts and actions. On the downside, when using DNNs there are
no closed form solutions for the posterior updates, like the one in Eq. (4.9). As such, different
approximate solutions have been proposed in the literature.

In particular, the authors in [210] introduced a new algorithm, called NLTS, that models the
non-linearity between contexts and rewards by assuming that the average reward µ(s, k) is equal
to a linear combination of the action parameter vector βk and a non-linear representation of
the context ϕ(s), i.e., µ(s, k) = ⟨ϕ(s), βk⟩. To do so, a DNN fω(s): S → RK , parameterized by
the weights vector ω ∈ Ω, is trained to estimate the average reward for each action, where R

is the range of the actions’ reward, assumed to be the same for all the actions. The non-linear
representation of the context ϕ(s), or ϕω(s) to illustrate the dependency from ω, is the output of
the last hidden layer of the DNN, i.e., the input of the last layer, whose output is fω(s). Then,
NLTS uses LTS to choose the orthogonal channel for the UEs to transmit data, working on the
state representation ϕω(s) in place of s.

149

Algorithm 4.1 Neural Linear Thompson Sampling
Initialize Φk(0) = Id, β̂k(0) = βk(0) = 0, ψk = 0

for t ∈ 1, . . . , T
Observe st and compute zt = ϕω(st)
Sample νk(t), ∀k ∈ K, from IG(ak(t), bk(t))

Sample βk, ∀k ∈ K, from N(β̂k(t), ν
2
k (Φk(0) + Φk(t))

−1
)

Play kt = argmaxk∈K zTt βk
Observe rt and store (st, kt, rt) in the buffer
Update action posterior (Eq. (4.9)), using context zt
Update noise posterior

if t % O = 0
Train fω with SGD using samples in the buffer
Compute new zt, and update LTS

end if
end for

We highlight that the posteriors of LTS are updated based on Eq. (4.9) every time the agent
makes a decision, while the parameters ω of the DNN are updated at fixed intervals of O steps.3

Another feature introduced by NLTS is that the distribution of the noise variance of the reward νk
is modeled using the Inverse Gamma distribution, i.e., νk(t) ∼ IG(ak(t), bk(t)). The pseudocode
of NLTS is reported in Algorithm 4.1.

DISNETS (Proposed) As mentioned, we now enhance the NLTS algorithm to allow each agent
to choose multiple actions, i.e., to use multiple orthogonal channels in the same SU as expected in
real systems, which poses the MA-CC-MAB problem in Section 4.2.3. Intuitively, there are two
main issues when applying basic NLTS to MA-CC-MAB: first, the super-action θ that maximizes
the expected reward µ(s, θ) is unknown a priori, as the effects of single actions can be combined
in different ways to obtain the super-action’s reward [258]; second, the complexity of combining
super-actions increases exponentially with the number of single actions, which is not tractable.

We design the reward for a single action k ∈ K in SUt as

rt =




ρ̄k(t) if χt(s, k) = 0;

−1 if χt(s, k) = 1,
(4.10)

where ρ̄k(t) ∈ [0, 1] represents the total number of bytes that can be sent during SUt using chan-
nel k, normalized by the maximum number of bytes that can be sent when using the maximum
modulation order, and χt(s, k) ∈ {0, 1} indicates whether a collision happens using channel k dur-
ing SUt. As such, the reward in Eq. (4.10) is a function of both the channel and the resource

3It is important to properly balance the optimization steps of the LTS module (performed at each
interaction with the environment) and that of the NLTS module (performed every O interactions with
the environment) of DISNETS to avoid training instabilities, as one module depends on the other).

150

allocation policies of all the agents.
Furthermore, based on the assumption in Eq. (4.4), we have that the average reward of super-

action θ is the sum of the single average rewards, i.e.,

µ(s, θ) =
∑

k∈θ

⟨ϕω∗(s), βk⟩, ∀s ∈ S, ∀θ ∈ Θ, (4.11)

where we assume there exists a DNN ω∗ ∈ Ω that provides the exact non-linear representation of
the context s, ∀s ∈ S. The reward in Eq. (4.11) gets to a particular case of MA-CC-MAB referred
to as matroid bandits [145]. In this case, it is possible to estimate the average reward obtained by
super-action θ as the sum of the estimated average rewards of all its base actions.

Based on the above introduction, we extend NLTS into the proposed DISNETS algorithm so
that the agent can play super-action θt in SUt based on the following criteria:

1. Sample K vectors {β̂k}Kk=1 as described above;

2. Compute the non-linear representation of the context, i.e., ϕω(st), based on the context st
at SUt;

3. Take super-action θt = {k ∈ K : ϕω(st)
Tβk > ϵ}, i.e., the agent transmits using all the

orthogonal channels whose estimated reward (which is an indication of the transmission
data rate) is larger than ϵ.

Consequently, the average number of orthogonal channels that an agent can use is not constant,
but rather learned and adjusted via DISNETS given the reward history and the context at time t.
In addition, we further introduced a variance decaying factor γ to scale the sampling variance of
the reward νk(t) by γ, in order to force DISNETS to become more deterministic as the training
progresses.

4.2.5 Numerical Results
We now provide our simulation parameters, show the convergence performance of DISNETS,
and we then evaluate the performance of DISNETS against some other benchmarks in terms of
overhead, latency, and reliability.

Simulation Parameters

Simulation parameters are reported in Table 4.1.

System parameters The system operates with a carrier frequency of fc = 3.5 GHz and a band-
width of B = 60MHz. We set 3GPP NR numerology 2 (i.e., a subcarrier spacing of∆f = 60 KHz),
which leads to 84 RBs [2]. For the latency in Eq. (4.3), according to the 5G standard specifications
we assume that (i) the processing times TP and TgNB at the UEs and the gNB, respectively, are
both equal to 7 OFDM symbols, (i.e., 116.9 µs for numerology 2), (ii) the propagation time τP
is neglected because it can be compensated with an accurate timing advance technique (see [9]),
and (iii) τF is also neglected due to its minor impact on L.

151

Table 4.1: Simulation parameters.

Parameter Value
Carrier frequency (fc) 3.5 GHz
Overall system bandwidth (B) 60 MHz
5G protocol stack header (H) 72 bytes [85]
Subcarrier spacing (∆f) 60 kHz
SNR threshold (SNRth) −5 dB
Latency threshold (Lth) 1 ms
Noise temperature (TB) 290 K
Antenna gain (GUE = GgNB) 0 dB
UE (UL) transmit power (PTX,UL) 23 dBm
gNB (DL) transmit power (PTX,DL) 30 dBm
Processing time at the UE (TP) 7 OFDM symbols
Processing time at the UE (TgNB) 7 OFDM symbols
5GC delay (TCN) 0.1 ms
DAS delay (TDAS) 0.05 ms
Length of the factory floor (l) 20 m [13]
Width of the factory floor (w) 20 m
Height of the factory floor (h) 4 m
Inter-machine distance (D) 5 m
Side of the machine (S) 3 m
Number of production lines (W) 4
Number of machines (M) 4/line
Inter-machine activation period τa 8 ms
Packet size (Zp) 616 Bytes
Simulation time (TS) 7 s

Table 4.2: Structure of the DNN used in the DISNETS algorithm.

Type Size Max Pool Activation
Layer 1 Conv. (10, 4, 4) (3, 3) Leaky ReLu
Layer 2 Conv. (10, 3, 3) (3, 3) Leaky ReLu
Latent Layer Linear 10 · Leaky ReLu
Output Layer Linear K · Identity

Variance decaying factor (γ) 0.9999

Number of optimization steps (O) 100

DISNETS parameters The configuration of the DNN used in DISNETS to compute the non-
linear context representation is reported in Table 4.2. Specifically, we consider two convolutional
layers of size (ξ1, ξ2, ξ3), where ξ1 is the number of channels, and ξ2 and ξ3 are the kernel width
and height, respectively, while the Max Pool field represents the size of the max pooling window.
The dimension of the Latent Layer is set to 10. The size of the Output Layer is equal to the
number of feasible single actions, i.e., orthogonal channels, K. The variance decaying factor is
γ = 0.9999, and number of steps between two network updates (see Algorithm 4.1, line 10) is
equal to O = 100. DISNETS’ DNN implements the Leaky Rectified Linear Unit (Leaky ReLu)

152

activation function.

Performance metrics Numerical results are given in terms of the overhead (measured as the
impact of FCI transmissions on the control plane), and the E2E latency and reliability defined in
Section 4.2.2, as a function of the number of UEs and the type of traffic.

Benchmarks The performance of DISNETS is compared against the following baselines:

• GBS: it implements the standard centralized 5G NR GBS [1], which requires UEs and
the gNB to exchanges scheduling requests (via the PUCCH) and grants (via the PDCCH),
respectively, before transmitting data. In this case resource allocation is based on the number
and size of packets that the UEs have in their queues when transmitting scheduling requests
via the PUCCH.

• SPS: it implements the standard centralized 5G NR SPS [6], in which the gNB allocates
(part of) the resources to the UEs semi-statically over a certain time interval. This approach
promotes lower latency as resources are assigned only when UEs generate packets, and
without additional message exchange during transmission.

• NLTS: it implements distributed resource allocation based on the NLTS algorithm proposed
in [210] and described in Section 4.2.4, thus with the assumption that UEs can transmit
through one single orthogonal channel.

• RandomK: it implements distributed resource allocation in which UEs use exactly K∗ or-
thogonal channels for transmission, and K∗ is optimized through exhaustive search.

Training Convergence

First, we study the training performance of the proposed DISNETS framework considering uni-
formly aperiodic traffic, with tmin = 2 ms, tmax = 6 ms, and N = 60 UEs. Fig. 4.2 (top) plots
the average and standard deviation of the training loss of the NLTS module of DISNETS (specif-
ically, the DNN), which is used to learn the non-linear representation of the context ϕω(s). The
loss decreases quite quickly, and becomes stable after around 0.5 s, which is an indication of the
accuracy of the DISNETS implementation. In fact, as the training progresses, UEs are learning
to allocate resources more accurately.

In Fig. 4.2 (center) we plot the statistics of the reward obtained by the agents as a function
of the total number of interactions with the environment. We can see that, at the beginning, the
reward is close to −1 given that all UEs start making random decisions in terms of the orthogonal
channels to use at each SU. Then, the average reward is an increasing function of the number
of steps, meaning that the UEs are learning to make more accurate allocations as the training
progresses. Interestingly, we can recognize two training phases. At first the UEs are learning fast,
at the rate of convergence of the DNN: in this phase, the average reward increases steeply. This
is motivated by the fact that, at the beginning of the training phase, many collisions occur, which

153

gives the DISNETS more chances to optimize based on the relative rewards. Then, DISNETS
takes more time to achieve better cooperation, and the framework optimizes more slowly.

In Fig. 4.2 (bottom) we plot the statistics of the E2E latency experienced by the UEs as a
function of the packet ID. Again, it is possible to separate the two training regimes. At first,
DISNETS can estimate the number of orthogonal channels to use to minimize collisions starting
from a random guess, and achieves an average latency of around 1 ms. Then, DISNETS is used to
further optimize resource allocation reducing the latency to around 0.7 ms, though taking more
time to converge.

Overhead

As described in Section 4.2.4, DISNETS requires periodic FCI transmissions, which include the
transmission outcomes (successful transmission, collision, or outage) relative to every UE on each
orthogonal channel, and is used to generate the context and the reward. Therefore, the size of the
FCI (in bits) can be computed as K · log2(N + 3) (see Table 4.3).

The structure of the FCI is similar to that of the 5G NR DCI signal [185], which is used
to handle downlink transmissions. The size of the DCI depends on the number of orthogonal
channels. Moreover, while the FCI embeds information for all the UEs, the DCI requires UE-
specific transmissions, so the overall size (in bits) goes as Na · log2(K). Furthermore, the DCI
requires an additional (variable) number of bits to carry information for, e.g., carrier aggregation,
Hybrid-ARQ, frequency allocation, channel access [185, Section 10.1.4]. 3GPP NR defines 10+
different DCI formats. For simplicity, in this work we consider two representative DCI formats,
referred to as DCIm and DCIM , which require 10 and 37 additional bits, respectively, and the
relative DCI size is reported in Table 4.3.

Based on the above introduction, in Fig. 4.9 we plot the size of the FCI, DCIm, and DCIM
signals, which is directly proportional to the overhead. Specifically, we see that the size of the
FCI scales linearly with the number of orthogonal channels (Fig. 4.9a) and logarithmically with
the number of UEs (Fig. 4.9b), while for the DCI it is almost the opposite. As such, DISNETS
achieves comparable or lower overhead than other solutions based on the DCI (e.g., 5G NR GBS)
in many reasonable configurations. Notice that the results in Fig. 4.9 do not account for the
additional overhead introduced to send (receive) scheduling requests (grants) in GBS, which is
not required in DISNETS since resource allocation is distributed.

As another measure of overhead, in Fig. 4.10 we plot the empirical cumulative distribution
function (CDF) of the number of orthogonal channels used by the UEs at each scheduling oppor-
tunity for DISNETS vs. RandomK, which is an indication of the channel occupancy. Statistics are

Table 4.3: Size (in bits) of the FCI and DCI signals, vs. the number of active UEs (Na) and the
number of orthogonal channels (K), with N fixed to 500.

FCI DCI
DCIm DCIM

K · log2(N + 2) N · log2K + 10 N · log2K + 37

154

(a) Impact of the number of orthogonal channels.
We set Na = 60 and N = 500.

(b) Impact of the number of UEs. We set K =
100 and N = 500.

Figure 4.9: Overhead performance measured in terms of the size of the the FCI (proposed) vs.
the 3GPP NR DCI, as a function of the number of orthogonal channels (top) and UEs (bottom).
We consider two DCI formats, namely DCIm and DCIM , which require up to 10 and 37 additional
bits, respectively, for resource allocation [185].

(a) 40 UEs. (b) 100 UEs.

Figure 4.10: Empirical CDF of the number of orthogonal channels used at each scheduling oppor-
tunity relative to the last 10 packets considering DISNETS vs. RandomK, as a function of the
number of UEs.

referred to the last 10 packets, i.e., after the convergence of DISNETS. We observe that RandomK
uses a constant (though optimized) number of channels equal to K∗ = {5, 2} for N = {40, 100}
respectively, so K∗ is a decreasing function of N . This is due to the fact that, as the number of
UEs increases, the number of collisions also increases: in these conditions, the system is encour-
aged to reduce the number of channels to use to reduce the congestion. On the other hand, the
adaptability and flexibility features of DISNETS make the number of channels to use for trans-
mission vary significantly; as such, UEs are free to optimize the number of resources as a function
of N .

Performance Evaluation

Impact of the number of UEs and the resource allocation strategy We now compare
the performance of DISNETS against the RandomK, NLTS, GBS, and SPS baselines as a function

155

(a) Uniformly aperiodic traffic, with tmin = 2 ms and tmax = 6 ms.

(b) UE-specific aperiodic traffic.

Figure 4.11: Average E2E latency for DISNETS vs. RandomK, NLTS, SPS, and GBS, as a
function of the number of UEs and the type of traffic.

of the number of UEs in the system (N). Fig. 4.11a reports the E2E latency considering uniformly
aperiodic traffic. As expected, the E2E latency increases as N increases given that the network is
more congested, which increases the probability of collision and re-transmissions. Also, we can see
that DISNETS always outperforms all the benchmarks. In particular, centralized GBS is not able
to satisfy the Lth = 1 ms requirement of URLLC due to the additional delays introduced to send
(receive) scheduling requests (grants), especially when the number of UEs increases. Interestingly,
SPS underperforms GBS in most configurations. In fact, SPS is designed to work well as long as
the traffic is periodic [74]: in this case, SPS can pre-allocate resources based on the actual traffic
periodicity by the Radio Resource Control (RRC), and does not require the UEs and the gNB
to exchange additional messages. However, for aperiodic traffic as in Fig. 4.11, SPS may not be
able to react to possible (unpredictable) changes in the traffic patterns and requests, with respect
to how resources were originally pre-assigned, which implies that the system may operate in a
sub-optimal configuration [56]. As such, unscheduled UEs will keep data packets in the queue,
thus accumulating delays, at least until SPS is re-configured by another RRC interaction.

Compared to another distributed benchmark such as RandomK, DISNETS can reduce the
E2E latency by up to 20%. In fact, DISNETS exploits coordination, and is designed to optimize

156

resource allocation depending on the type of traffic and the relative load of machines (for example
allocating more resources to machines with more UEs). In the end, the latency for NLTS is up
to 1.71× and 2× higher than DISNETS and RandomK, respectively, given that UEs can use only
one orthogonal channel. While this approach brings the probability of collision to almost zero, it
leaves the network underutilized. In comparison, RandomK uses K∗ channels, while DISNETS
can dynamically adapt the number of channels to optimize the trade-off between latency and
collision.

Moreover, in Fig. 4.11b we consider the case of UE-specific aperiodic traffic. We observe that
DISNETS and GBS can exploit the additional degrees of correlation introduced in the traffic
to improve the latency compared to Fig. 4.11a. This is particularly true for N ≤ 80, after which
performance degrades quickly due to congestion. Still, DISNETS is the only scheme able to satisfy
the Lth = 1 ms latency requirement in all configurations as it learns more from the correlation in
the packet generation process. Notice that the latency for RandomK and SPS is slightly higher
than in the scenario in Fig. 4.11a due to the fact that the extra packets generated in the interval
[tmin, tmax] may create more collisions. A similar observation holds for the NLTS baseline.

We recall that URLLC requires both low latency and high reliability. In Section 4.2.2 we
defined reliability ηt(Lth) as the probability that the E2E latency associated with a packet is
below a pre-defined requirement (here set to Lth = 1 ms). To capture this trend, in Fig. 4.12
we plot the Probability Density Function (PDF) (top) and CDF (bottom) of the E2E latency for
DISNETS vs. RandomK (the two best solutions for resource allocation based on the previous
results). We can see that the latency distributions for DISNETS are strongly shifted towards the
left compared to RandomK (an indication of a smaller E2E latency), and the gap increases as
N increases. For example, while for Na = 40 both systems achieve comparable performance, for
Na = 100 (see Fig. 4.12) we have that only 46% of the UEs experience an E2E lower than Lth = 1

ms using RandomK, vs. 80% for DISNETS.

Impact of the type of traffic From the previous paragraphs we concluded that SPS and NLTS
are not compatible with URLLC. So, in this set of experiments we focus on DISNETS, RandomK,
and GBS as a function of the type of traffic. First, in Fig. 4.13 we change the value of tmin, which
is inversely proportional to the traffic load, considering both uniformly aperiodic (Fig. 4.13b) and
UE-specific aperiodic traffic (Fig. 4.13c). We can see that DISNETS is better than any other
benchmark, and the latency is consistently below 1 ms in all configurations. Notice that for GBS
the E2E latency increases as tmin decreases because the traffic is more intense and the system is
more congested. On the contrary, for RandomK and DISNETS we have the opposite trend, i.e.,
the E2E latency increases as tmin increases. This is motivated by the fact that, as tmin approaches
tmax = 6 ms, the traffic becomes quasi-deterministic and the UEs tend to generate packets almost
simultaneously, which may increase the number of collisions. Consequently, achieving coordination
becomes harder. Still, for DISNETS the latency grows by as little as 7%, from 0.7 for tmin = 1

ms to 0.75 ms for tmin = 5 ms. In turn, the performance of RandomK deteriorates significantly
as tmin increases, and almost achieves the same performance as GBS in the long term.

Finally, in Fig. 4.14 we study the E2E latency as a function of the percentage of aperiodic UEs

157

Figure 4.12: Empirical PDF (top) and CDF (bottom) of the E2E latency considering DISNETS
vs. RandomK as a function of the number of UEs. We consider uniformly aperiodic traffic, with
tmin = 2 ms and tmax = 6 ms.

(a) Uniformly aperiodic traffic.

(b) Uniformly aperiodic traffic. (c) UE-specific aperiodic traffic.

Figure 4.13: Average E2E latency for DISNETS, RandomK, and GBS, as a function of tmin and
the type of traffic. We set tmax = 6 ms.

in the network. Specifically, for the fraction of aperiodic UEs we set tmin = 2 ms and tmax = 6

ms, whereas for the periodic UEs we set a periodicity τ = 2 ms. As such, the average inter-packet
interval for aperiodic UEs is equal to 4 ms vs. τ = 2 ms for periodic UEs, which means that the
latter generates more traffic. Again, we see that DISNETS outperforms the other benchmarks,
and is therefore able to work well in both periodic and mixed, i.e., periodic and aperiodic, traffic

158

Figure 4.14: Average E2E latency for DISNETS, RandomK, and GBS, as a function of the per-
centage of aperiodic UEs. For aperiodic traffic we set tmin = 2 ms and tmax = 6 ms, while for
periodic traffic we set τ = 2 ms.

conditions. Notably, the performance of GBS decreases as the traffic becomes more aperiodic.
This is expected, and we proved in [74, 56] that GBS, and SPS do not work well for unpredictable
aperiodic traffic. On the other hand, as mentioned in Fig. 4.13, DISNETS and RandomK have
the opposite trend, and suffer more when the traffic becomes periodic. Still, DISNETS is able to
converge to good and stable results, and decrease the latency by up to 86% and 50% compared to
GBS and RandomK, respectively.

4.2.6 Conclusion

In this work we shed light on the issue of enabling URLLC in IIoT networks. Specifically, we
focused on the impact of resource allocation on the E2E latency. While the two main 5G NR
centralized schedulers, namely GBS and SPS, have been proven to fail when considering aperiodic
(unpredictable) traffic, we proposed the implementation of a new distributed scheduling framework
called DISNETS, that combines DNN and LTS to allow end users to autonomously optimize their
uplink transmissions, disaggregated from the network. Specifically, we described the problem in
the form of a MA-CC-MAB, and described the DISNETS as our proposed solution. Specifically,
DISNETS introduces new functionalities, including (i) a new control signaling scheme called FCI
to train the DISNETS framework, and (ii) a new protocol procedure for autonomously selecting
multiple radio resources to reduce the probability of collision. We showed via simulations that
DISNETS is compatible with URLLC even for aperiodic traffic and considering IIoT-specific

159

correlations, and outperforms state-of-the-art centralized and decentralized benchmarks.

4.3 Distributed Reinforcement Learning for Flexible and Ef-
ficient UAV Swarm Control

4.3.1 Introduction

The high data rate achievable with modern wireless communications and the increasing computa-
tional power of embedded systems, along with the sharp price reduction of commercial Unmanned
Aerial Vehicles (UAVs), have enabled the use of swarms of drones for Smart City services [115].
Thanks to their size, flexibility and flight ability, these swarms represent a new solution for a
plethora of different applications, such as remote surveillance, distributed sensing, wireless cover-
age extension and object tracking [221].

Over the past few years, researchers have proposed several UAV-based systems [220], but achiev-
ing an efficient distributed control is a complex problem, whose solution is often task-dependent.
In this context, it is important to properly define the different sub-tasks of surveillance, moni-
toring, mapping and tracking [64]. In this work, we assume that targets are static, but occupy
random positions in the monitored area. Moving UAVs are equipped with sensors that can detect
targets within a limited sensing range, and a radio interface that makes it possible to share posi-
tion information and sensing data. The UAVs need to coordinate to explore the area and find the
targets without colliding with each other or with obstacles.

The problem of identifying fixed targets arises in several practical situations, ranging from the
generation of real-time flood maps [34] to the detailed tracking of weeds in agriculture [22], but an
efficient initial exploration is of interest even for larger classes of problems, e.g., considering moving
targets. One such example is wildfire monitoring in dry regions [130], which can be effective as
long as the UAVs move faster than the spread of the fires.

The dynamic nature of these problems, in which actions can have long-term consequences and
affect the future evolution of the environment in complex ways, makes them a natural application
area for reinforcement learning (RL) techniques [233]. However, due to the curse of dimensionality,
a centralized approach to the problem (i.e., using a single controller) is feasible only for very
small swarms. In order to design a scalable system, multi-agent reinforcement learning (MARL)
techniques need to be used, but the non-stationarity of the environment [114] complicates the
system design and the agent training. This additional complexity makes MARL an open research
field, and the different degrees of centralization and communication between agents make the
configuration of the learning system an interesting problem to investigate.

In this work, we consider a MARL framework for exploration and surveillance. Our aim is
to find a flexible machine learning (ML) strategy to explore and monitor a certain area with a
swarm of UAVs that can exchange information within a certain coverage range. Performance is
determined by the ability of the drones to find and reach the targets, which are located in unknown
positions.

160

In our framework, the observations of other agents are shared through a radio channel and
used to make decisions and to avoid collisions, thus encouraging cooperation. We define a Deep Q-
Network (DQN) algorithm and demonstrate its efficiency with limited training, comparing it to a
benchmark look-ahead heuristic and showing that our approach can better explore the environment
and reach the targets faster. We also perform a transfer learning experiment, showing that agents
trained on a certain map can learn to adapt to a completely new scenario much faster than
restarting the training from scratch.

We adopted a general model, using a grid-world representation and making a limited number of
assumptions on the nature of the task. Nonetheless, we show that our system can be implemented
in several different scenarios. In particular, the map is not entirely visible to the UAVs, there are
obstacles, and targets are in unknown positions (often clustered together, making clusters rarer
and thus harder to find). These features make MARL highly complex, especially when considering
limited communication capabilities: to the best of our knowledge, our work is the first to apply it
in such challenging conditions.

Our approach to solve the problem is to model the state as a series of correlated maps, which
contain different information on the environment, making the learning framework extendable to
even more complicated scenarios.

The contributions of this work can be summarized as follows:

• We formulate a Networked Distributed Partially Observable Markov Decision Process (ND-
POMDP) framework for swarm management in a complex environment and propose a MARL
architecture to address such a problem;

• We show that the proposed system can outperform computationally heavy heuristics and
transfer its knowledge to different scenarios with limited retraining;

• We analyze the effect of bigger changes in the environment, such as changing the size of the
map or the number of drones, and show that transfer learning is still effective;

• We show that the system is robust to channel impairments, and can perform very well even
in realistic scenarios that differ from the more abstract models used in the training phase.

A preliminary version of this analysis was also presented at ACM DroNet 2020 [249]; this
version has a significantly updated system model, considering different map sizes and the presence
of obstacles as well as a different MARL solution, and more extensive results on the performance of
our approach. Moreover, we have added the analysis of the impact of the communication channel
on the system’s performance, and tested the proposed solution in a map obtained from real data.

4.3.2 Related Work
An extensive taxonomy of multi-agent solutions was presented in [53]. The general approaches
adopted to solve the MARL problem can be cast into one of these four frameworks: (1) a single
agent architecture that interacts with multiple copies of itself, generating emergent behaviors; (2)
communication between agents of the same type with improved coordination; (3) cooperation

161

between agents with different specialized goals achieving coordinated behavior; and (4) modeling
other agents’ behaviors and planning a response [113].

The authors in [274] study the first of these four approaches and use the tabular Q-learning
algorithm to guide drones to survey an unknown area, showing that even the simplest MARL
algorithm can improve the overall system rewards. Similarly, in [73] and [72] the MARL framework
is applied to a more complex problem in which a UAV network is adopted to provide flexible
wireless communication. However, in these works the MARL algorithm is used to optimize resource
allocation instead of guiding drones, so that a coordinated exploration strategy is missing.

An interesting research direction for MARL is pioneered in [92], which uses deep neural networks
(DNNs) to represent and learn more complex Q-functions [175]. At first, the authors study the
performance of one network trained for all agents, which then share the same parameters during
the execution phase (this is also our approach). A second proposed system uses the Differentiable
Inter-Agent Learning (DIAL) framework, in which agents learn meaningful real-valued messages
to be exchanged in order to improve cooperation: this allows for faster training, but the model is
limited to a very small number of agents.

Other works use RL in the practical scenarios discussed above: in [34], the authors adopt a
MARL approach to control a flood-finding swarm of UAVs. However, the model only considers
a swarm with a fixed number of drones, and the experimental results are not compared to state-
of-the-art heuristics. In [22], a reinforced random walk model is exploited to map weeds in an
agricultural setting, taking noisy acquisition into account and solving the issue with collective
observations. Random walks are then biased based on the positions of the already discovered
targets, which have to be properly mapped, along with the distances from other drones in the
network. In this case, the authors considered swarms of variable sizes, but the random walk
needs to be manually tuned for each setting. Another recent study [130] considers wildfire spread
monitoring, checking how the fire evolves and spreads in the map from a known starting point.
The authors define the problem as a Decentralized Partially Observable Markov Decision Process
(Dec-POMDP) [182] and carry out several experiments, as well as comparisons against a greedy
heuristic (similar to the look-head method we studied in this work). A target-tracking application
for disaster scenarios, with a model similar to our own but applied to a single drone, is described
in [264]. Finally, [117] considers a MARL system with realistic communication, where a swarm of
drones needs to get data from an Internet of Things (IoT) sensor network. This is a much simpler
problem, as the position of the targets is known in advance, and the MARL framework only needs
to optimize the trajectories.

The MARL approaches can also fit models in which UAV connectivity is important: in [57],
a framework including RL and game theory is used to plan the path of two drones that need
to save energy and minimize the interference to the ground network while maintaining a cellular
connection. Furthermore, in [161] the authors design a centralized RL system to maximize coverage
for a swarm of aerial base stations serving mobile users on the ground. A similar approach is taken
in [164], which redefines the problem in terms of Quality of Experience (QoE) maximization for
the users. For a fuller communication-oriented perspective on the use of RL for UAV networks,
we refer the reader to [118].

162

Symbol Description Symbol Description
M Coordinate set O Observation space of the system ND-POMDP
M Map grid size Φ Matrix of cell values
K Number of targets X Matrix of UAV positions
zk Coordinates of the k-th target Ω Matrix of obstacle positions
σ Standard dev. of the target Gaussian functions Φ̂ Observed cell value matrix
ϕ(·) Cell value function Ω̂ Observed obstacle position matrix
U Set of UAVs Xu Observed UAV position matrix for u
U Number of UAVs (cardinality of U) F Observation window size (in number of cells)

dsparse Minimum target distance in the sparse scenario ψ Penalty for collisions
ω(·) Obstacle location function θ Penalty for moving to forbidden areas
η Fraction of the map occupied by obstacles ρ Obstacle value
ζ Field of View of each UAV νu(xu,au) Invalid move indicator function for UAV u

hmin Minimum obstacle size (in number of cells) χu(X,A) Collision indicator function for UAV u
hmax Maximum obstacle size (in number of cells) ru(s,a) Reward for UAV u
ℓi Lower left corner coordinates of the i-th obstacle π Observation-action policy
Hi Set of cells occupied by the i-th obstacle Ru,t(π) Long-term reward for u using policy π
hi Size of the i-th obstacle γ Exponential discount factor
N Episode duration (steps) et Experience sample
S State space of the system ND-POMDP α Learning rate

V(s) Valid move space for state s Bsize Size of a learning batch
A Action set Q(ou, au) Q-value estimate of R
au Action for UAV u nq Model update period steps)

Table 4.4: Notation definitions.

These works have similar objectives to our own, but either go back to the single-agent setting or
have restrictive assumptions: as an example, [130] considers well-known fire patterns, which can
be extensively learned, with a known starting point. In our case, the initial positions of the targets
and of the UAVs are not the same across different episodes, making the model more general and
complicating the learning task. Furthermore, unlike previous efforts in the literature, we exploit
the transfer learning paradigm, showing how our model can easily adapt to scenarios with obstacles,
realistic maps, and different swarm sizes. To the best of our knowledge, our work presents the
most complex environment to date, in which a single architecture can deal with different map and
swarm sizes, different numbers of targets to track, and the presence of obstacles.

4.3.3 System Model

In the following, we first present the environment in which the UAVs operate. We give a full list
of the notation used in Table 4.4 as a reference to the reader.

Environment

The system environment consists of a square grid of size M × M . Each cell of the grid (we will
refer to a cell or a location interchangeably in the following) is identified by its coordinates m ∈ M,
where M = X × Y, and X = Y = {0, ...,M − 1}. We place a set of K targets on the map, which
represent the objectives of the UAV surveillance application. The position of the k-th target is
denoted as zk = (xk, yk).

We then generate a set of K bivariate Gaussian functions over the grid, which represent the
visibility of a target to the UAVs, with the same covariance matrix Σ =

(
σ2 0
0 σ2

)
. The mean

163

zk = (zk,1, zk,2) corresponds to the coordinates of the target. Note that the Gaussian functions
do not represent actual distributions, but rather the full view of the UAVs, which can see a target
from afar. The value of σ can be interpreted as the distance at which a target can be identified,
as larger values of σ mean that the target is visible from further away.

Each cell can then be associated with a weight ϕ(m), which represents the value of the location,
which increases with the proximity to a target, and is given by the maximum of the Gaussian
functions in that point, normalized in such a way that the target locations have values equal to 1:

ϕ(m) = max
k∈{0,...,K−1}

e−
1
2 ((m−zk)

TΣ(m−zk)). (4.12)

If ϕ(m) is smaller than 0.01, it is set to 0, as the UAVs cannot see any target from that location.
Under these conditions, the most valuable cells coincide with the center of each Gaussian function,
which represents one of the targets in the considered scenario. While the environment is static,
the UAVs move within the map with the aim of positioning themselves over the targets as fast as
possible. We denote the set of UAVs by U, and by U its cardinality.

In this work, we consider two different distributions for the targets, named sparse and cluster,
which are characterized by different correlations among the target positions. In both cases, the
first target is randomly placed on the grid following a 2D uniform distribution: z0 can take any
value in M with equal probability. The other targets are then placed sequentially, according to
the following rules. In the sparse scenario, the position zi of the i-th target is randomly chosen in
the set Msparse

i = {m ∈ M : ||m − zj ||2 > dsparse, ∀j < i}, with probability mass distribution

Psparse(zi = m) =
||m − z0||2
κsparse
i

. (4.13)

where κsparse
i =

∑
m∈M

sparse
i

||m − z0||2 is a normalization factor. Hence, the other targets tend
to be distributed far from the first, with a minimum distance dsparse between each other.

In the cluster scenario, instead, the i-th target can take any position in the set Mcluster
i = {m ∈

M : ||m − zj ||2 > 1, ∀j < i} with probability mass distribution

Pcluster(zi = m) =
1

(1 + ||m − z0||2)κcluster
i

. (4.14)

where κcluster
i =

∑
m∈Mcluster

i

1
(1+||m−z0||2)

is the normalization factor. In this case, the targets
tend to cluster around the first one, but cannot occupy adjacent cells, since the minimum distance
must be greater than 1.

An example of the two target placements is shown in Fig. 4.15. These two distributions represent
two plausible configurations of targets in tracking applications: in wildlife monitoring, some species
of animals might tend to herd together, while more territorial ones will have a sparser distribution
on the map. The same goes for a battlefield scenario, in which groups of soldiers might act together
as a tight formation, while guerrilla-style fighting will involve a much sparser distribution of forces.

In a more complex version of the scenario, the map does not just have targets that the UAVs
need to find and reach, but obstacles as well: in an urban scenario, these might be tall buildings

164

0 5 10 15
0

5

10

15

0 5 10 15
0

5

10

15

Figure 4.15: Two examples of the sparse (left) and cluster (right) target distributions.

or designated no-fly zones, while in a natural scenario they might correspond to natural obstacles
such as boulders or tall trees. We define a function ω(m), which is equal to 1 if the cell corresponds
to an obstacle and 0 otherwise. Then, we denote by η the portion of the map occupied by obstacles:

η =
∑

m∈M

ω(m)

M2
. (4.15)

Cells inside an obstacle are considered impassable, like the map borders, and the UAVs that try
to move on an obstacle will remain in the same cell.

For the training of our algorithm, we assumed that obstacles are rectangular and randomly
scattered in the area. The i-th obstacle is determined by its dimensions hi and by the position of
its lower left corner ℓi. We formally define the obstacle as the set Hi:

Hi =
{
m = (m1,m2) ∈ M :

m1 ∈ {ℓi,1, . . . , ℓi,1 + hi,1 − 1},
m2 ∈ {ℓi,2, . . . , ℓi,2 + hi,2 − 1}

}
.

(4.16)

Obstacles are generated sequentially, like the targets, and for each obstacle i the dimensions hi

are drawn uniformly from the set {hmin, hmax} × {hmin, hmax}. The lower left corner position ℓi

is then drawn from a uniform distribution in the set Mobs
i , the subset of the map defined as:

Mobs
i =

{
ℓ ∈ M : Hi ⊂ M, ||n, zk||2 > 1,

∀n ∈ Hi, k ∈ {0, . . . ,K − 1},
d(Hi,Hj) ≥ 2, ∀j < i

}
,

(4.17)

where d(Hi,Hj) = minmi∈Hi,mj∈Hj
||mi − mj ||2 is the distance between the obstacles i and j.

The three constraints force the obstacle to be entirely inside the map, not to be directly adjacent to
any of the targets, and not to touch other obstacles. The choice of these constraints was motivated
by the necessity to guarantee the existence of a clear path to the targets from any point in the

165

map.
We consider multiple episodes of N steps: in each episode, the targets, UAVs, and obstacles

are redistributed in the map, and the swarm must locate the targets in as few steps as possible.
We consider discrete time slots, so that each drone can move by a single cell at each time step.
Furthermore, we assume that a UAV has a limited Field of View (FoV), i.e., it can only know
the value of the cells within a radius ζ. This framework allows us to represent many different
applications and scenarios by changing the size of the grid, the number of drones, targets and
obstacles, the FoV range ζ and the target visibility parameter σ. It can also be easily extended
to dynamic targets.

At the beginning of each episode, each UAV only knows the values of the cells within the
swarm’s FoV. The drones assume that all unexplored points of the map are associated with the
maximum ϕ(m). Then, each UAV moves independently at each time step n: as the swarm explores
the environment, each drone discovers the values of the map locations that it has covered, and
updates its information according to ϕ(m). We highlight that the knowledge about the map is
instantly shared, which means that each drone receives the observations that all the other drones
have acquired. This is always true during training, whereas in some testing episodes we also
experiment the scenarios in which unreliable communications affect the shared messages. The
objective of the swarm for each episode is to position each of its UAVs above a target as quickly
as possible.

Communication model

We consider the swarm to only have partial observations: as the size of the map might be too large
for the swarm to effectively coordinate over it, we consider each UAV to have up-to-date knowledge
only inside the F × F square with it at the center, with F ≤ M . If the distance between the
UAV and the edge of the map is lower than F , the square will consider the edge of the map as the
edge of the visible region, and the UAV will no longer be at its center, in order to avoid modeling
the area outside the map. This assumption allows us to model communication constraints in the
problem, as UAVs need to share the observed parts of the map with the other components of the
swarm; however, F should not be confused with the FoV ζ, as the former represents the size of
the portion of the map that each UAV considers when deciding its next action, while the latter
represents the size of the portion of the map that the UAV can sense directly at each moment. In
our case, we always have F ≥ ζ.

ND-POMDP formulation

The described scenario is modeled as an ND-POMDP [180], i.e., a Markov decision process (MDP)
where the system state in not directly observable and is influenced by the actions of multiple agents,
whose behavior is not centrally coordinated. Indeed, the swarm only has limited knowledge of the
map, and the UAVs can take actions independently and have independent rewards. We observe
that ND-POMDP is a particular class of Decentralized POMPD (Dec-POMDP) for which not
all agents interact with each other [143]. Convergence to the optimal solution for this kind of

166

problem has been proven for classical reinforcement methods [275], although not for deep models:
as most works in the literature, we will use a benchmark to evaluate the performance of our scheme.
Formally, an ND-POMDP is identified by a 5-tuple, composed of a state space S, an agent space
U, a joint action space A, an observation space O, and a reward map r : S × A → R

U , where
U = |U|.

The complete system state s is given by five matrices: a matrix for the current position of
the UAVs, one matrix each for the map of the already discovered targets and obstacles, and one
matrix each for the full map of targets and obstacles. The positions of the UAVs are contained in
the 2 × U matrix X, while the features of the map are represented by the twoM × M matrices Φ
and Ω, which contain the value ϕ(m) of each cell and the function ω(m) representing the location
of the obstacles. Clearly, the maps with the full view of targets and obstacles are not initially
known by the UAVs, which will then need to explore the area.

Furthermore, the UAVs do not know the features of cells that have not been explored: the
observed features of the map are contained in the F × F observed value matrix Φ̂, whose elements
are equal to ϕ(m) if the cell has been explored and 1 otherwise, and the F × F observed obstacle
matrix Ω̂, whose elements are equal to ω(m) if the cell has been explored and 0 otherwise. The
observation ou ∈ O that is available to drone u is then given by Xu, Φ̂u, and Ω̂u, defined as the
F × F subsets of X, Φ̂ and Ω̂ centered in xu.

In our case, each UAV can either stay over the same cell or move to one of the four adjacent
cells. However, obstacles are impassable in our environment definition, and the UAVs cannot move
outside the map, so UAVs will simply stand in place if they attempt an action that violates the
constraints. We define the action space A = {(0, 0), (0, 1), (1, 0), (0,−1), (−1, 0)}U . An action
for the swarm is then a vector a ∈ A, which contains the individual UAVs’ actions, denoted as au
for drone u. We first define function ν(xu,au), which is 1 if the action is valid, i.e., it does not
lead the UAV to fly outside the map or into an obstacle, and zero otherwise:

ν(xu,au) =




1, if xu + au ∈ M ∧ ω(xu + au) = 0;

0, otherwise.
(4.18)

The position of each drone is then updated in the following way:

xu(t + 1) = xu(t) + au(t)ν(xu(t),au(t)). (4.19)

Fig. 4.16 shows an example of the system state at the beginning and in an advanced stage of an
episode, with two drones and four targets located in a 20 × 20 map with no obstacles (in this case,
we set F = M = 20). In particular, the drones’ positions are shown on the left (in yellow), the
observed value map is in the center, and the real value map is on the right. In the figure, darker
cells are associated with lower values and brighter cells are associated with higher values. In the
figure, if the communication range equals or exceeds the map side, i.e., F ≥ M , the observed state
o for all UAVs would correspond to the maps on the left and in the center. On the contrary, if
F < M , the observation for each UAV would include a different portion of the map. It is easy to

167

0 5 10 15
0

5

10

15

0 5 10 15
0

5

10

15

0 5 10 15
0

5

10

15

0 5 10 15
0

5

10

15

0 5 10 15
0

5

10

15

0 5 10 15
0

5

10

15

Figure 4.16: Drone positions (left), known map (center), real map (right). Beginning (above) and
end (below) of an episode.

see how the swarm gains knowledge during the episode, as the drones explore the map and look
for targets. In this case, the UAVs found two targets relatively quickly, and a significant portion
of the grid remained unexplored.

We give reward 1 to a UAV if it is directly above a target, reward −θ if it tries to go outside
the map or to position itself over an obstacle, reward −ψ if it is in the same cell as another drone,
and reward 0 in any other case. The UAVs will quickly learn to avoid actions that would take
them outside the map or make them crash into obstacles, so the exact value of θ does not affect
the final performance, but the value of ψ affects the distance that the drones try to keep from each
other: if ψ is low, the drones will get close to each other if the targets are very close. Naturally, if
there is a collision risk when the drones are in the same cell, the value of ψ should be high. The
reward depends on X, as well as on the action vector a.

Indicating with xu and au the position and action of drone u, we now define the collision
variable χu(X,A) as

χu(X,A) = max
v∈(U\u)

δ
(
xu + au(t)ν(xu,au)

− xv − av(t)ν(xv,av)
)
.

(4.20)

where δ(x) denotes a function that takes value 1 if the vector x = 0, and zero otherwise. In short,
χu(X,A) has value 1 if one or more drones move to the same cell as drone u, and 0 otherwise.
The collision variable depends on the moves of other agents, so the problem is distributed. The
reward function for UAV u in state s if the swarm takes the joint action vector A, denoted as

168

ru(s,A), is given by:

ru(s,A) = − θ(1 − ν(xu,au)) − ψχu(X,A)

+ (1 − χu(X,A))

K−1∑

k=0

δ(xu + au − zk).
(4.21)

In our model, the state transitions and the system observations are both deterministic; therefore,
both the state evolution and the observation are not affected by random events, but only by
the agents’ decisions. We define a policy π(au|ou) as the conditioned probability for user u to
take action au given an observation ou ∈ O. Under these assumptions, the goal of each drone
u is to find the policy π∗ that maximizes the cumulative expected future discounted reward
Ru(π) = E

[∑+∞
τ=0 γ

τru,τ |ou, π
]
, where γ ∈ [0, 1) is a discount factor.

Distributed Deep Q-Learning

In this subsection, we will describe our Distributed Deep Q-Learning (DDQL) approach to solve
the problem defined above. For the sake of readability, in the following we omit the u subscript to
indicate the agent whenever possible. Each agent leverages a DQN, i.e., a neural network (NN)
that takes as input the last observation ot and returns the Q-values of the possible actions that
can be taken, i.e., Q(ot,a), ∀a ∈ A. In Q-learning, the function Q(o, a) is an estimate of the
expected long-term reward R that will be achieved by choosing a as the next action and then
following the learned policy. In our case, we maintain a single DQN during the training phase,
whose values are shared by all the agents. In this work, we follow the approach from [175] and
leverage a replay memory to store the agent experience et = (ot, at, rt, ot+1). Whenever the agent
carries out a training step, a batch of Bsize elements is picked from the replay memory, allowing
to separate the algorithm training from the experience acquisition. The replay memory is shared
between the agents during a training phase, and a new batch is used to train the agent at every
step. We highlight that, in our system, all agents are the same (single DQN), and they need to
generalize the problem from a limited number of states. As it would be impossible for a single UAV
to experience even just a non-negligible fraction of possible states in the training, shared replay
is a critical factor in the network’s generalization ability. In particular, the experience replay is
extremely valuable since it allows the system to improve the variety of the training samples by
getting experience from the states seen by different agents. In other scenarios, it may not be
convenient to exploit a shared memory, especially when the agents have to learn different tasks.

Following the DQN example from [175], we exploit the double Q-learning technique to remove
biases from the Q-value estimation and speed up the algorithm’s convergence [245]. This means
that, during the training, we maintain a target network, whose output Qt(o, a) is used to evaluate
actions, and an update network, whose output Qu(o, a) is used to select the policy. In particular,
the bootstrap Q-value is computed as

Qnew(ot, at) = rt + γmax
a

Qt(ot+1, a). (4.22)

169

Figure 4.17: Architecture of the DQN.

The value Qnew(ot, at) is then used to perform backpropagation on the update network with a
learning rate set automatically by the Rectified Adam (RAdam) optimizer [162], and every nq

training steps the update network parameters are copied to the target network.
In our model, the observed state of the system for each agent can be represented by four F × F

matrices, representing the agent position, the locations of the other agents, the value of explored
cells, and the position of known obstacles. To simplify the state space, we consider matrices Φ̂

and Ω̂ jointly, by feeding the NN with the matrix Φ̂ − ρΩ̂, where ρ is a scalar parameter used to
facilitate learning. Therefore, our system approximates the function Q(o, a) by a Convolutional
Neural Network (CNN), whose architecture is described in Fig. 4.17. In particular, we consider a
CNN exploiting three convolutional layers followed by two fully-connected layers. The dimension
of the last layer is identical to the number of actions, so that each output element can be associated
to a different action a ∈ A.

Hence, each agent provides training samples for the shared replay memory, which are then used
in (4.22), so that the CNN output can converge to the Q-values Q(o, a), ∀ a ∈ A. We implement
the well-known ε-greedy and softmax policies to allow the agents to explore the action space during
the training phase, which is carried out by simulating a sequence of episodes.

Computational complexity

We now discuss the computational complexity to perform one inference procedure with the neural
network. We first analyze the complexity of fully-connected layers. We denote by Nk the number
of neurons in the general k-th layer. To go from layer i to layer i + 1, we need to compute the
value of Ni+1 nodes, each of which takes Ni multiplications followed by Ni additions and one non
linear function, thus involving Ni+1(2Ni + 1) operations.

We can then compute the complexity of one convolutional layer, as done in [110], when neither

170

batch normalization nor pooling layers are present. We denote with (Iw, Ih, Id) the shape of the
input block. At layer i, we then have Ki filters with kernels dimension (Wi,Hi), stride Si (we use
the same value along the two axes), and padding Pi. The shape of the resulting output block will
be (Iw+2Pi−Wi

Si
+ 1, Ih+2Pi−Hi

Si
+ 1,Ki). The computation of each block’s neuron here involves

Wi × Hi × Id multiplications followed by the same number of additions (sum all elements plus
the bias) and one non-linearity. The total number of calculations is then (Iw+2Pi−Wi

Si
+ 1) ×

(Ih+2Pi−Hi

Si
+ 1) × Ki × (2WiHiId + 1).

If we consider the specific architecture of our NN reported in Fig. 4.17, the actual number
of basic computations (multiplications, additions and non-linearities) are, respectively, 440 000,
3 704 980 and 628 180 for the three convolutional layers. The following fully-connected layers
require 125 504 and 645 computations, thus the total number of operations for one decision is
4 899 309.

This computational complexity allows UAVs to take decisions in real time, as even embedded
processors can deal with much more complex architectures in less than 100 ms [45]. As the physical
speed of the UAVs and the much more complex vision algorithms required to identify targets are
the main limiting factors for the swarm, the ND-POMDP will be performed at a relatively slow
pace, with timesteps in the order of several seconds.

4.3.4 Simulation settings

In this section, we describe the simulations by which we evaluated the performance of the designed
system. All the results are derived through a Monte Carlo approach, where multiple independent
simulations are carried out to obtain reliable statistical data. In particular, the algorithms’ training
is executed by carrying out a total of Ne episodes for each studied scenario (sparse or cluster),
where each episode is given by N t

s steps. Training episodes are far longer than test episodes, which
have length Np

s , since the agents need to explore the map fully.
Before training, we initialize the replay memory by executing Nm

e = 1000 episodes of N t
s steps

each, to allow agents to immediately start the learning procedure. If the episodes are too long, a
lot of samples in which large portions of the map are already explored are added to the memory
replay, and the agents will not learn properly how to move at the beginning of the episode, when
the map is not explored. On the other hand, short episodes have the opposite problem, as the
UAVs never learn to behave in the final parts of the episodes. A prioritized memory replay can
solve this problem, but requires additional parameters. We then opted for adapting the episode
length in the training phase. The even training episodes have 50 steps each, while the odd episodes
have 150 steps. This alternating size prevents the replay memory from being too skewed towards
situations in which the map is almost completely explored or unexplored.

Moreover, we apply transfer learning to allow the agents trained in the sparse environment to
quickly adapt to the cluster scenarios (or vice-versa); to this goal, additional Nt training episodes
are carried out. Finally, the performance of the proposed strategy is tested in a total of Np = 500

episodes for the DDQL system. The exploration rate ε follows 2 different approaches, namely,
ε-greedy and softmax. In the former, a random action is chosen with probability ε, while the best

171

Parameter Value Description
M {20, 24, 30, 40, 50} Map size
F 20 Observed map size
U {2, 3} Number of UAVs
K 4 Number of targets
σ2 1 Targets variance
ζ 3 Field of View
η {0,0.1} Obstacle frequency

dsparse 8 Minimum target distance (sparse scenario)
θ 1 Obstacle/outside penalty
ψ 0.8 Collision penalty
ρ 0.2 Obstacle value
γ 0.9 Discount factor
α Chosen by RAdam Learning rate
Ne {250, 750, 1000, 3000} Training episodes
N t

s {50, 150} Steps per training episode
Np

s 40 Steps per test episode
Nt {125, 250, 375, 750} Transfer learning episodes
Np 100 (LA), 500 (DDQL) Test episodes
Ptx 20 dBm Communication power
N0 -76 dBm Noise floor
h 40 m UAV height
Rc 2/3 Coding rate

Table 4.5: Simulation settings.

action, i.e., the action with the highest Q-value, is chosen with probability 1-ε. The value of ε
decreases to 0 at the end of the training, since no more exploration is needed. In the latter, at
each time step the probability of each action pi is computed as the output of a softmax density
function taking the Q-values as input. In this case, the temperature T decreases during the
training, reducing the randomness during the selection of the actions:

pi =
e

qi
T

∑A
j=1 e

qj
T

, (4.23)

where A = 5 is the number of actions that each drone can take. The training and testing processes
are independently performed 5 times to verify the robustness of the DDQL scheme. The complete
simulation settings are reported in Tab 4.5.

To assess the performance of our DDQL scheme, we compare it with a heuristic strategy inspired
by Model Predictive Control (MPC), by which drones can explore the map and reach the targets.
Such a strategy is named look-ahead and is used as a benchmark for our analysis. The look-ahead
strategy tries all possible combinations of future actions and looks at the possible future rewards,
as its name suggests. In order to define it, we first define the look-ahead reward r(ℓ)u (X,a) as:

r(ℓ)u (X,a) =





ϕ̂(xu+au)
ξ(xu+au)

if ν(xu,au) = 1;

−∞ otherwise,
(4.24)

where ξ(x) is the number of UAVs located in x. The look-ahead strategy never goes outside

172

the map or on obstacles. To decide its next action, each drone u tries to maximize its expected
cumulative reward over the following nℓ steps, assuming that none of the other drones move. In
practice, the look-ahead strategy makes each drone select the action a∗ that maximizes

max
A∈Ã

nℓ

nℓ−1∑

i=0

r(ℓ)u


X +

i−1∑

j=0

Aj ,ai


 , (4.25)

where Ã
nℓ is the set of ordered sequences A of action vectors A0, A1, ..., Anℓ−1, so that â0u = a∗

and aiv = (0, 0), ∀ i ∈ {0, ..., n − 1}, v ̸= u, i.e., the set of possible move sequences of u while the
other UAVs are static. If several action sequences have the same expected reward, the look-ahead
strategy will choose one of them randomly. At the beginning of an episode, each drone u assumes
that all the map values ϕ(m) outside its FoV are equal to 1; therefore, look-ahead forces u to
continuously explore the map. However, as soon as it finds a target, u will hover over the target
center. The target is then eliminated from the other agents’ value maps, as it is already covered by
a UAV. We highlight that the performance of look-ahead mainly depends on the nℓ parameter: as
it increases, drones can make more foresighted decisions, but at a greater computational cost. In
addition, the number of targets in the map also plays a key role in determining the computational
performance: when more targets are present, we have to check whether other agents are on a
target more often, in order to remove it from the map of available targets. As the look-ahead
strategy is computationally expensive, Np for it was set to 100.

Finally, we also consider a scenario with a realistic communication model, in which the broadcast
messages sent by each UAV at every step might be lost due to the wireless channel impairments.
We used the path loss and shadowing model from [163], based on actual measurements from air-
to-air communications, and considering a Rayleigh fading model with an error correction code
with rate 2/3. As the simulation results will show, the physical size of the cells in the map
is a critical parameter when UAVs communicate directly with each other (and not through the
network infrastructure on the ground). In particular, increasing the size of the cells will impair
the performance because of communication range issues: the model has an error probability of
50% at approximately 110 m, corresponding to 11 cells if a cell side is 10 m and 5 cells if the side
is 20 m.

4.3.5 Simulation results
In what follows, we evaluate the performance of our approach in various scenarios with different
characteristics.

Training analysis

We first consider a scenario with 2 UAVs and 4 targets in a 20 × 20 map. In particular, we
perform multiple training phases of different duration; the longer training includes 3000 episodes,
for a total of 300,000 training samples, which ensures that all our algorithms achieve convergence.
The look-ahead approach is abbreviated as LA(4), as we set nℓ = 4. This already had a significant

173

0 300 600 900 1200 1500 1800 2100 2400 2700 3000
0

20

40

60

80

100

ε-greedy Softmax LA(4)

Training episodes

S
u

cc
e

ss
fu

l
e

p
is

o
d

e
s

[%
]

Figure 4.18: Success probability over the training phase in the cluster scenario with 2 UAVs.

computational cost, and in our simulation each look-ahead decision takes approximately 15 times
longer than running a trained DDQL agent. We do not consider nℓ > 4, since the computational
cost of such a technique becomes excessive with limited performance gains: without coordination
among the UAVs, which requires a prediction of the movements of other drones in the swarm,
there is a limit on the performance of the swarm even with an infinite horizon. In some brief
tests (which had to be on maps of a limited size due to the computational complexity of LA
with a longer horizon), we noticed that LA(8) and even LA(12) show limited gains over LA(4),
as the biggest factor in determining the speed at which the UAVs find the target becomes the
coordination of the swarm once the horizon reaches 3 or 4 steps.

Fig. 4.18 shows the success probability in the cluster scenario as a function of the training set
size and of the considered exploration profile and approach. DDQL combined with the softmax
approach catches up with LA(4) in less than 900 training episodes, converging to a success prob-
ability between 0.65 and 0.7. The ε-greedy approach has a lower final performance and requires
more time to converge with respect to the softmax profile. The error bars show the best and
worst results over 5 test phases, showing that the performance improves as the UAVs gain more
experience. The performance boost over the look-ahead approach is due to the DDQL scheme’s
ability to exploit the correlation among the target positions, quickly finding the other targets after
the first one has been spotted. Instead, in the sparse scenario, the final performance of DDQL is
similar to that of LA(4), as Fig. 4.19 shows. In general, both DDQL and LA(4) have more success
than in the cluster scenario, as finding the scattered targets is easier than finding clusters in the
limited duration of an episode.

Success rate over time

The next set of results refer to the performance of the strategy learned by the proposed framework.
Fig. 4.20 reports the probability of one or both drones reaching the target as a function of the

174

0 300 600 900 1200 1500 1800 2100 2400 2700 3000
0

20

40

60

80

100

ε-greedy Softmax LA(4)

Training episodes

S
u

cc
e

ss
fu

l
e

p
is

o
d

e
s

[%
]

Figure 4.19: Success probability over the training phase in the sparse scenario with 2 UAVs.

number of steps. Therefore, the figure shows the trade-off between the time needed by UAVs to
accomplishing their task and the success rate. In the cluster scenario (Fig. 4.20a), DDQL is much
faster than LA, but its performance peaks out, and after 40 steps the probability of the UAVs
reaching their targets does not change significantly. Indeed, we observed that, in certain cases,
when a drone reaches the target, but the other one is far from any feature of the map, the latter
can end up staying in place, as its Q-values for that scenario are not precise and all actions have
a similar (low) value. This almost never happens before the first UAV reaches its target, since
the change in the system state due to the movement of one UAV is generally enough to make
the other UAV move. This is not a problem for LA, whose success rate keeps increasing with
time; in the sparse scenario (Fig. 4.20b), LA even ends up reaching more targets than DDQL
after 50 steps. The solution we found to avoid this roadblock is simply to maintain a low softmax
temperature τ = 0.1 even during the test phase: the bar chart shows that the DDQL Soft system
is slightly slower than the greedy DDQL at the beginning, but it can avoid getting stuck. This
randomization allows the agent to get out of loops, as sometimes a random sub-optimal action
will change the state and allow it to reconsider, while the greedy system will keep performing the
same action and remain in the same state. LA essentially does the same, randomizing its action
when it is unsure which one is the best.

Fig. 4.21 shows one such situation: as one UAV has reached its target, while the other is far
from any identified target, its Q-values will be very similar to each other, and some of the time it
will stay motionless or move in small loops, as its state never changes. The fact that most of the
map is still unexplored increases the probability of the UAV getting stuck, as it will have limited
information and its Q-values will be very similar. In the following, all the results are referred to
the DDQL Soft system with τ = 0.1 unless otherwise stated.

175

10 20 30 40 50 60
Number of steps

0

20

40

60

80

100
Fr

eq
ue

nc
y

[%
]

DDQL (2)
DDQL (1)
DDQL (0)

DDQL Soft (2)
DDQL Soft (1)
DDQL Soft (0)

LA (2)
LA (1)
LA (0)

(a) Cluster scenario
10 20 30 40 50 60

Number of steps
0

20

40

60

80

100

Fr
eq

ue
nc

y
[%

]

DDQL (2)
DDQL (1)
DDQL (0)

DDQL Soft (2)
DDQL Soft (1)
DDQL Soft (0)

LA (2)
LA (1)
LA (0)

(b) Sparse scenario

Figure 4.20: The bars indicate the probability mass distribution of the number of UAVs that
successfully accomplish their task (i.e., hover upon a target) by the end of the episode, when
varying the duration of the episode. Each group of bars refers to the performance achieved by
DDQL (with and without softmax) and by LA, in the Cluster (a) and Sparse (b) scenarios, with
a total of 4 targets and 2 UAVs.

0 5 10 15
0

5

10

15

0 5 10 15
0

5

10

15

0 5 10 15
0

5

10

15

Figure 4.21: Example of an episode where the second UAV is not able to reach the cluster

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

DDQL (Cluster 750) DDQL (Sparse+TL375)

DDQL (Sparse+TL750) DDQL (Cluster 3000)

DDQL (Sparse 3000) LA(4)

Number of steps

P
ro

b
a

b
il
it

y

(a)

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

DDQL (Cluster 3000) DDQL (Cluster+TL375)

DDQL (Cluster+TL750) DDQL (Sparse 750)

DDQL (Sparse 3000) LA(4)

Number of steps

C
D

F

(b)

Figure 4.22: CDF of the episode duration for different algorithms in the cluster (a) and sparse (b)
scenario with 2 UAVs.

176

Adaptability and transfer learning

Here we investigate the adaptability of the proposed DDQL scheme, and the potential of the
transfer learning paradigm. The latter involves the execution of an additional training phase in a
different scenario than the one seen during the initial training. To this end, we consider a common
target scenario, i.e., cluster (or sparse), and compare the results achieved when using strategies
learned in the other domain, i.e., sparse (or cluster). More specifically, we consider the following
cases:

• ”Cluster Ne”: training on Ne episodes in the cluster scenario;

• ”Sparse Ne ”: training on Ne episodes in the sparse scenario;

• ”Cluster+TL Nt”: pre-training on Ne = 3000 episodes in the cluster scenario, followed by
an additional training of Nt episodes in the target scenario.

• ”Sparse+TL Nt”: pre-training on Ne = 3000 episodes in the sparse scenario, followed by an
additional training of Nt episodes in the target scenario.

Fig. 4.22a shows the cumulative distribution function (CDF) of the episode duration, defined
as the time until all the drones reach targets or the testing episode limit (here fixed to 60 steps)
is reached. We also report the results for LA with four steps, LA(4), as a benchmark. Each point
is hence the probability that all drones have accomplished their task by a given number of steps.

We observe that, as expected, the Cluster strategy achieves the highest success probability
with a limited number of steps. LA(4) can equal its performance only when the episode duration
reaches the limit of 60 steps (i.e., in less than 30% of the cases). Instead, 750 episodes of training
in the cluster scenario are not sufficient to outperform LA(4), but actually enough to outperform
a model trained in the sparse scenario. However, a short retraining of such model in the correct
(cluster) scenario allows the algorithm to get a significant performance boost, outperforming LA(4)
and getting very close to the performance of the Cluster 3000 model, which is fully trained in the
correct scenario and with more than twice the number of episodes.

We repeated the experiment by swapping the role of the sparse and cluster scenarios, and
changing the number of episodes during the training phase, as reflected in the legend of Fig.
4.22b, which reports the results. As in the previous case, LA(4) meets the performance of DDQL
only for episodes of 60 steps, i.e., in less than 15% of the cases. Transfer learning is again very
effective, as a 750 episode re-training significantly boosts the baseline performance compared to
starting from scratch. We highlight that, in general, the number of steps necessary to reach the
targets is comparatively lower than in the previous scenario since, as already discussed, it is easier
for UAVs to find targets in the sparse scenario.

Fig. 4.23a and Fig. 4.23b show the results for a scenario with 3 UAVs: in both cases, transfer
learning is effective, but the performance is lower in the sparse scenario than in the cluster one. In
this case, the risk of getting stuck is increased and the algorithm needs more training to perform
effectively in all maps.

177

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

DDQL (Cluster 750) DDQL (Sparse+TL375)
DDQL (Sparse+TL750) DDQL (Cluster 3000)
DDQL (Sparse 3000) LA(4)

Number of steps

Pr
ob

ab
ili

ty

(a)

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

DDQL (Sparse 750) DDQL (Sparse 3000)

DDQL (Cluster 3000) DDQL (Cluster + TL375)

DDQL (Cluster + TL750) LA(4)

Number of steps

P
ro

b
a

b
il
it

y

(b)

Figure 4.23: CDF of the episode duration for different algorithms in the cluster (a) and sparse (b)
scenario with 3 UAVs.

Obstacles

In what follows, we consider a modified version of the cluster scenario, where some obstacles
are added to the map. In particular, we empirically set the percentage of the map occupied by
obstacles to 10%, searching for a balance between increased system complexity and the realism of
the scenario. An example of the system state representation with obstacles is shown in Fig. 4.24
at the beginning and at the end of an episode. The obstacles are marked in green.

Fig. 4.25a shows the performance of the LA approach and DDQL in the case of 2 UAVs and 4
targets. The DDQL solution has been trained for scenarios with 2, 3 and 4 UAVs (labeled in the
plots as 2D, 3D, and 4D, respectively), and then tested in the scenario with 2 and 3 UAVs, with
and without the use of the softmax approach in the testing phase. In both cases, it is clear that the
models trained with more UAVs are able to outperform those with fewer UAVs in both considered
scenarios. Furthermore, as for the case without obstacles, the use of the softmax policy during the
testing phase increases the performance, especially when the episodes are longer, as it keeps the
UAVs from getting stuck. In the scenario with 3 UAVs in Fig. 4.25b, the performance is generally
lower, meaning that the swarm needs more training. However, DDQL is able to outperform the
LA approach in both cases, reaching targets significantly faster in the scenario with 3 drones.

Transfer learning on bigger maps with larger swarms and communication impairments

We then show how well DDQL is able to generalize to bigger maps in the testing phase. For this
reason, the algorithm has been trained on a map with M = 24, maintaining F = 20, and the
testing phase included bigger maps and different numbers of clusters. All the results shown in
the following figures are obtained with 100-step episodes: the longer duration is needed to allow
the agents to reach the targets even in bigger maps. For similar reasons, the scenarios with more
clusters are studied to maintain a similar proportion of surface occupied by targets even in the
bigger maps. Fig. 4.26a and Fig. 4.26b show how the performance varies as a function of the

178

0 5 10 15
0

5

10

15

0 5 10 15
0

5

10

15

0 5 10 15
0

5

10

15

0 5 10 15
0

5

10

15

0 5 10 15
0

5

10

15

0 5 10 15
0

5

10

15

Figure 4.24: Drone positions (left), known map (center), real map (right). Beginning (above) and
end (below) of an episode with obstacles.

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

LA (4) Obstacle 4D
Obstacle 3D Obstacle 2D
Obstacle 2D soft Obstacle 3D soft
Obstacle 4D soft

Number of steps

Pr
ob

ab
ili

ty

(a) 2 UAVs.

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

LA (4) Obstacle 2D
Obstacle 3D Obstacle 4D
Obstacle 2D soft Obstacle 3D soft
Obstacle 4D soft

Number of steps

Pr
ob

ab
ili

ty

(b) 3 UAVs.

Figure 4.25: CDF of the episode duration for different algorithms in the obstacle scenario.

20 25 30 35 40 45 50 55
0

0.2

0.4

0.6

0.8

1

DDQL 1 cluster LA 1 cluster

DDQL 2 clusters LA 2 clusters

DDQL 3 clusters LA 3 clusters

DDQL 4 clusters LA 4 clusters

Size of the map

S
u

cc
e

ss
 p

ro
b

a
b

il
it

y

(a) 2 UAVs.

20 25 30 35 40 45 50 55
0

0.2

0.4

0.6

0.8

1

DDQL 1 cluster LA 1 cluster
DDQL 2 clusters LA 2 clusters
DDQL 3 clusters LA 3 clusters
DDQL 4 clusters LA 4 clusters

Size of the map

Su
cc

es
 p

ro
ba

bi
lit

y

(b) 3 UAVs.

Figure 4.26: Success probability as a function of the map size and the number of clusters.

179

20 25 30 35 40 45 50 55
0

0.2

0.4

0.6

0.8

1

DDQL 1 cluster LA 1 cluster
DDQL 2 clusters LA 2 clusters
DDQL 3 clusters LA 3 clusters
DDQL 4 clusters LA 4 clusters

Size of the map

Su
cc

es
s

pr
ob

ab
ili

ty

(a) 2 UAVs.

20 25 30 35 40 45 50 55
0

0.2

0.4

0.6

0.8

1

DDQL 1 cluster LA 1 cluster
DDQL 2 clusters LA 2 clusters
DDQL 3 clusters LA 3 clusters
DDQL 4 clusters LA 4 clusters

Size of the map

Su
cc

es
s

pr
ob

ab
ili

ty

(b) 3 UAVs.

Figure 4.27: Success probability as a function of the map size and the number of clusters with
obstacles.

size of the environment and the number of clusters present in the map. In both cases, DDQL
shows a good adaptability, getting better performance than LA in all cases, with a bigger gain
in bigger maps. In Fig. 4.27a and Fig. 4.27b, the same scenarios are studied with the addition
of the obstacles in the map, covering about 10% of the size of the map. In this case, DDQL will
need some retraining to reach LA’s performance on smaller maps, while the performance is similar
when the map is bigger. However, we recall that DDQL also has a significant advantage in terms
of computational cost, so it is preferable if performance is similar.

It is also interesting to test the transfer capabilities of the algorithms in more complex scenarios,
including far larger swarms and imperfect communications: as DDQL relies on information from
other UAVs to find targets and avoid collisions, a limited communication range can impair its
performance significantly. As Fig. 4.28a shows, 10 drones moving in a large map with obstacles
(with 16 targets in 4 clusters, as above) can coordinate effectively with no retraining, outperforming
the LA approach. Performance loss is limited even with communication restrictions if each cell
is a square with a 10 m side, corresponding to a maximum range of about 11 cells with 50%
packet loss at the boundary of the coverage area. Performance loss with respect to the perfect
communication scenario is limited, confirming the intuitive idea that information from neighbors
inside the visible area is the most critical to find and reach the targets. If the cell side is doubled,
effectively halving the communication range and introducing significant errors even for packets
between immediate neighbors, the performance drops significantly, and becomes even worse if
there is no communication at all between the UAVs. This would be true for any cooperative
algorithm, as information from other agents can be used to optimize the exploration of the map,
but we highlight that DDQL has always been trained assuming ideal communication, and the
communication impairments have been considered only in the test phase. Therefore, the UAVs
might be confused by the lack of information, and a partial retraining might yield better results
as the agents transfer their experience and learn to deal with the more limited feedback. On the
other hand, the algorithm scales extremely well to larger swarms, slightly outperforming LA even
with no retraining in the new scenario. The same pattern holds for the case with 12 drones, which
is shown in Fig. 4.28b.

180

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

10 drones (ideal comms) 10 drones (10 m cells)
10 drones (20 m cells) 10 drones (no comms)
LA 10 drones

Number of steps

Fr
ac

tio
n

of
 d

ro
ne

s
on

 a
 ta

rg
et

(a) Performance of a swarm of 10 UAVs.

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

12 drones (ideal comms) 12 drones (10 m cells)
12 drones (20 m cells) 12 drones (no comms)
LA 12 drones

Number of steps

Fr
ac

tio
n

of
 d

ro
ne

s
on

 a
 ta

rg
et

(b) Performance of a swarm of 12 UAVs.

Figure 4.28: Effect of imperfect communications on the performance of DDQL in a large map.

Figure 4.29: Extraction of the map from building height data in a 500 m by 500 m area in the
downtown Chicago Loop neighborhood.

Finally, we tested an extreme transfer learning scenario, not only increasing the size of the map
and the number of UAVs, but also switching from the synthetic obstacle distribution on the map
to one derived from a real map. The map of obstacles was obtained from a city map of the area
just east of LaSalle Street Station in downtown Chicago, in the central Loop neighborhood. As
shown in Fig. 4.29, we obtained the height profiles of the buildings in the area, considering as

181

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

LA 12 drones 12 drones LA 10 drones
10 drones

Number of steps

Fr
ac

tio
n

of
 d

ro
ne

s
on

 a
 ta

rg
et

Figure 4.30: Performances on the real map of Chicago

obstacles their parts with a height of over 10 stories (i.e., approximately 40 m, the minimum legal
hovering altitude for UAVs). The 500 m by 500 m area was then divided into 2500 square cells
with 10 m sides, converting the height profile to an obstacle map in the grid. 11% of the map was
occupied by obstacles, so the map was approximately as full as the one used in the training, which
had 10% obstacle cover, but the individual obstacles were larger and concentrated along South
Wabash Avenue and South Dearborn Street. This is an additional hurdle for DDQL, which was not
trained to deal with obstacles concentrated along streets, which make it more difficult to find an
appropriate path. However, as Fig. 4.30 shows, the DDQL system can find targets approximately
as fast as LA, underperforming a little only on higher percentiles. With a modicum of retraining,
DDQL should be able to adapt to the different structure, exploiting the regularities in city blocks
to avoid obstacles and find targets even more quickly.

In conclusion, we have shown that DDQL is able to find efficient strategies for the UAVs to
reach targets faster than look-ahead solutions in complex environments. The algorithm is scalable
to larger maps, larger swarms, and limited communications without any retraining, and can deal
with obstacles and very different target distributions with a limited amount of retraining. This
shows that the solution is powerful and versatile, adapting easily to new conditions. However,
there is still some margin for improvement, particularly in scenarios in which almost all the UAVs
in the swarm have already reached a target, while the last stragglers are far from any feature in
the map. This case represents most of the residual failures of the algorithm, and solving it is an
important future objective.

4.3.6 Conclusions and future work

In this work, we studied the problem of area monitoring and surveillance with a swarm of drones.
We modeled the environment with a 2D grid and cast the problem into the theoretical framework
of ND-POMDP. We have examined various scenarios, including obstacles and maps of different

182

sizes, and the proposed algorithm outperformed a computationally intensive look-ahead approach
in almost all scenarios.

Important research directions include the introduction of dynamic targets, which would be an
important step to increase the scenario’s realism, as well as different roles for the drones, which
can be assigned dynamically and would allow us to examine another interesting aspect of the
MARL problem, increasing the difficulty of coordinating the UAVs’ actions.

183

184

5
Conclusion

With the always increasing number of machine learning applications and the exponential growth
of the size of modern neural networks, orchestrating distributed training and inference is becom-
ing very demanding from an infrastructure standpoint. Specifically, the substrate of distributed
learning is represented by the underlying communication network, which moves data and models
from one point to the other. It is indeed envisioned that, in the near future, learning-oriented data
will flood the networks, producing a substantial portion of the data traffic. Consequently, it is of
paramount importance that the networks of tomorrow, which will be an integral part of the learn-
ing systems, will be designed with these objectives in mind, and that learning and communication
protocols will be jointly optimized to better cooperate and utilize the physical resources.

To this end, this thesis is one of the very first attempts that tries to investigate the role that
the information has in different distributed learning scenarios, exploiting the inherent redundancy
to minimize the need for network resources, without substantially damaging the performance.

Specifically, in this thesis we first focused on the setting of federated learning (FL), which is
becoming the standard to perform privacy-preserving distributed learning, where by design the
only information exchanged in the network is represented by model and gradient updates, and
not by raw data. The impact of the wireless channel condition on the training convergence was
empirically evaluated, and a way to trade off the amount of information for convergence speed
is proposed [186]. We then described FedPM [200], which is a novel proposal that reduces the
communication requirements by training only the neural networks’ topology, without changing
the specific values of the coefficients. Following on this, with KLMS [197] we designed a new way
to compress and code model updates in FL, which is inspired by relative entropy coding and the
importance sampling algorithm, and that dramatically outperforms state-of-the-art baselines in
the rate-accuracy curve. In the end, we tried to generalize the idea and provided a theoretical
formulation for the problem of communicating learning models, like neural networks, and analyzed
some fundamental limits through the lens of information theory [198].

185

The focus was then moved to the analysis of distributed decision processes, where standard
formulation of multi-armed bandit (MAB) and reinforcement learning (RL) have been extended
to account for multiple agents and noisy/constrained communication channels. In particular,
we physically separated the state observation process from that of taking actions, introducing a
communication channel in between, which demands to carefully analyze how much of the state
information is required to optimally interact with the environment. For the more tractable set-
ting of contextual multi-armed bandit (CMAB) we provided the theoretical limits of the problem,
identifying the minimum rate needed to solve the learning task [189, 187]. Also, we designed both
theoretical and practical policy compression schemes which optimally trade off rate for perfor-
mance. The same extension is then investigated in the more complex scenario of Deep Reinforce-
ment Learning (DRL), for which a practical but very general and powerful coding scheme based
on Vector Quantized Variational Autoencoder (VQ-VAE) was proposed and analyzed [234].

The last part of the thesis was then application-oriented, and some examples on how distributed
learning algorithms can be used in real-world cases were reported. In the first two use cases,
which were part of a joint collaboration with the University of Bologna and Huawei Research
Center in Munich, particular variants of the multi-agent CMAB were proposed and solved to
optimize distributed resource allocation schemes in Industrial Internet of Things (IIoT), with the
aim of providing Ultra-Reliable and Low-Latency Communications (URLLC) [194]. Thanks to the
proposed learning solutions, the User Equipments (UEs) in the system were able to cooperate while
sharing the same wireless resources for uplink communications without incurring collisions. Then,
a multi-agent reinforcement learning (MARL) framework was developed to design a control policy
for a swarm of drones that need to collaboratively monitor an area with targets of interest [249].
Again, drones equipped with a DRL-based policy outperformed those with standard heuristic
approaches in the evaluated metrics.

5.1 Final Considerations & Future Directions
On a broader perspective, the goal of this thesis was to push to the limit the performance of dis-
tributed learning while minimizing the utilization of network resources. The main findings, both
theoretical and empirical, suggest that the state-of-the-art algorithms that are usually adopted to-
day do not optimally exploit the fundamental trade-off between communication rate and achieved
performance, leaving room for improvements and research.

For example, when designing FedPM (see Section 2.3), the idea was not to consider vanilla FL
and then to apply some compression methods on top of it, but rather to come up with a radically
new training pipeline, i.e., optimize only the topology of a random network, which is efficient
by first principles. This way, even though FedPM will not achieve the best overall performance
when considering limitless bandwidth, it does in the ∼ 1 bit per parameter (bpp) regime, as no
compression has to be performed on its updates, which contain by design less information than
standard real-valued coefficients. This is also true for KLMS (see Section 2.4), which combines
recent information-theoretic results and the side information known (for free) by the server to
further increase by one order of magnitude the gain already provided by FedPM. Also, the analysis

186

performed in Section 3.2 shows that the information redundancy during the training stage of MAB
agents is not always necessary to optimize for the best policy. All these improvements were made
possible because the distributed training schemes account for the communication perspective in
the first principles.

To conclude, there is still a lot of work to do in the field of distributed and efficient machine
learning, where not only communication but also privacy, security, computational and storage
constraints will come into play. Even though it is hard to envision a fully distributed and edge
machine learning world, the winning scheme will probably be a hybrid approach, as recently
reported by Qualcomm 1, a pioneer in this field. Indeed, if huge and complex foundation models
will still run in the cloud, edge AI and distributed training must be there to sustain on-device
applications and exploit the amount of data collectively acquired by the end users. To this end,
the research community should provide the necessary tools to the industry to understand when
a specific task can be fully accomplished at the edge, or needs help from a more powerful cloud
infrastructure in terms of data and/or computational capacity; then, once this is solved, it has
to provide the necessary algorithms that can squeeze data and models to obtain the maximum
performance with the minimum requirements, distilling cloud knowledge to the edge devices, when
the specific task admits such approximation.

1https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/Whitepaper-The-
future-of-AI-is-hybrid-Part-1-Unlocking-the-generative-AI-future-with-on-device-and-hybrid-AI.pdf

187

https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/Whitepaper-The-future-of-AI-is-hybrid-Part-1-Unlocking-the-generative-AI-future-with-on-device-and-hybrid-AI.pdf
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/Whitepaper-The-future-of-AI-is-hybrid-Part-1-Unlocking-the-generative-AI-future-with-on-device-and-hybrid-AI.pdf

188

References

[1] 3GPP. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures”.
In: TS 36.213 (2021).

[2] 3GPP. “NR - Physical channels and modulation (Release 15)”. In: TS 38.211 (2018).
[3] 3GPP. “NR - Physical layer procedures for data (Release 15)”. In: TS 38.214 (2018).
[4] 3GPP. “NR and NG-RAN Overall Description (Release 15)”. In: TS 38.300 (2018).
[5] 3GPP. NR; Medium Access Control (MAC) protocol specification – Release 15. Technical

Specification (TS) 38.321. 3GPP, 2019.
[6] 3GPP. “Semi-Persistent Scheduling for 5G New Radio URLLC”. In: R1-167309 (2016).
[7] 3GPP. “Service requirements for cyber-physical control applications in vertical domains;

Stage 1 (Release 18)”. In: TS 22.104 (2021).
[8] 3GPP. “Study on channel model for frequencies from 0.5 to 100 GHz (Release 16)”. In: TR

38.901 (2019).
[9] 3GPP. “Study on NR Industrial Internet of Things (IoT) (Release 16)”. In: TS 38.825

(2019).
[10] 5G-ACIA. “5G for Automation in Industry: Primary use cases, functions and service re-

quirements”. In: White Paper (2019).
[11] 5G-ACIA. “5G for Connected Industries and Automation”. In: Verband der Elektro- und

Digitalindustrie (ZVEI) White Paper (Feb. 2019).
[12] 5G-ACIA. “5G for Industrial Internet of Things (IIoT): Capabilities, Features, and Poten-

tial”. In: ZVEI (Nov. 2021).
[13] 5G-ACIA. “Integration of Industrial Ethernet Networks with 5G networks”. In: Verband

der Elektro- und Digitalindustrie (ZVEI) White Paper (Nov. 2019).
[14] 5G-Clarity. “Use Case Specifications and Requirements”. In: Verband der Elektro- und

Digitalindustrie (ZVEI) White Paper (Mar. 2020).
[15] Martin Abadi et al. “Deep learning with differential privacy”. In: Proceedings of the ACM

SIGSAC conference on computer and communications security. 2016, pp. 308–318.
[16] Alessandro Achille et al. “The information complexity of learning tasks, their structure

and their distance”. In: Information and Inference: A Journal of the IMA 10.1 (Jan. 2021),
pp. 51–72.

[17] Mridul Agarwal, Vaneet Aggarwal, and Kamyar Azizzadenesheli. “Multi-Agent Multi-Armed
Bandits with Limited Communication”. In: arXiv:2102.08462 [cs]. 2021.

[18] Naman Agarwal, Peter Kairouz, and Ziyu Liu. “The skellam mechanism for differentially
private federated learning”. In: Advances in Neural Information Processing Systems 34
(2021), pp. 5052–5064.

[19] Shipra Agrawal and Navin Goyal. “Thompson sampling for contextual bandits with linear
payoffs”. In: International Conference on Machine Learning (ICML) (2013).

189

[20] Alham Aji and Kenneth Heafield. “Sparse Communication for Distributed Gradient De-
scent”. In: EMNLP 2017: Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics (ACL). 2017.

[21] Maxwell M Aladago and Lorenzo Torresani. “Slot machines: Discovering winning combi-
nations of random weights in neural networks”. In: International Conference on Machine
Learning. PMLR. 2021, pp. 163–174.

[22] Dario Albani, Daniele Nardi, and Vito Trianni. “Field coverage and weed mapping by UAV
swarms”. In: International Conference on Intelligent Robots and Systems. IEEE. Sept. 2017,
pp. 4319–4325.

[23] Hande Alemdar et al. “Ternary neural networks for resource-efficient AI applications”. In:
International Joint conference on Neural Networks (IJCNN). 2017, pp. 2547–2554.

[24] Dan Alistarh et al. “QSGD: Communication-efficient SGD via gradient quantization and
encoding”. In: Advances in Neural Information Processing Systems (2017).

[25] Shun-ichi Amari. “Backpropagation and Stochastic Gradient Descent Method”. In: Neuro-
computing (1993), pp. 185–196.

[26] M. M. Amiri et al. “Convergence of Update Aware Device Scheduling for Federated Learning
at the Wireless Edge”. In: IEEE Transactions on Wireless Communications [Early Access]
(2021).

[27] Mohammad Mohammadi Amiri et al. “Federated Learning With Quantized Global Model
Updates”. In: arXiv preprint arXiv:2006.10672v2 (2020).

[28] Galen Andrew et al. “Differentially private learning with adaptive clipping”. In: Advances
in Neural Information Processing Systems 34 (2021), pp. 17455–17466.

[29] Marko Angjelichinoski, Floe Trillingsgaard, and Petar Popovski. “A statistical learning
approach to ultra-reliable low latency communication”. In: IEEE Transactions on Commu-
nications 67.7 (Mar. 2019), pp. 5153–5166. doi: 10.1109/TCOMM.2019.2907241.

[30] Samin Yeasar Arnob et al. “Single-Shot Pruning for Offline Reinforcement Learning”. In:
Neural Information Processing Systems Workshop in Offline Reinforcement Learning (2021).

[31] Mohammad Babaeizadeh et al. “GA3C: GPU-based A3C for Deep Reinforcement Learning”.
In: Neural Information Processing Systems Workshop (2016).

[32] Sara Babakniya et al. “Federated Sparse Training: Lottery Aware Model Compression for
Resource Constrained Edge”. In: arXiv preprint arXiv:2208.13092 (2022).

[33] T. Bai and R. W. Heath. “Coverage and Rate Analysis for Millimeter-Wave Cellular Net-
works”. In: IEEE Transactions on Wireless Communications 14.2 (Oct. 2015), pp. 1100–
1114. doi: 10.1109/TWC.2014.2364267.

[34] David Baldazo, Juan Parras, and Santiago Zazo. “Decentralized multi-agent deep reinforce-
ment learning in swarms of drones for flood monitoring”. In: European Signal Processing
Conference (EUSIPCO). EURASIP. Sept. 2019. isbn: 9789082797039.

[35] B. Balle, G Barthe, and M. Gaboardi. “Privacy amplification by subsampling: tight analy-
ses via couplings and divergences”. In: Advances in neural information processing systems
(2018).

[36] Borja Balle et al. “Privacy Amplification via Random Check-Ins”. In: Advances in Neural
Information Processing Systems. 2020.

[37] Leighton Pate Barnes et al. “rTop-k: A statistical estimation approach to distributed SGD”.
In: IEEE Journal on Selected Areas in Information Theory 1.3 (Nov. 2020), pp. 897–907.

190

https://doi.org/10.1109/TCOMM.2019.2907241
https://doi.org/10.1109/TWC.2014.2364267

[38] Andrew Barron, Jorma Rissanen, and Bin Yu. “The minimum description length principle
in coding and modeling”. In: IEEE transactions on information theory 44.6 (1998), pp. 2743–
2760.

[39] Ran Ben Basat et al. “QUICK-FL: Quick Unbiased Compression for Federated Learning”.
In: arXiv preprint arXiv:2205.13341 (2022).

[40] Raef Bassily et al. “Learners that Use Little Information”. In: Proceedings of Algorithmic
Learning Theory. Vol. 83. Apr. 2018, pp. 25–55.

[41] Edgar Beck, Carsten Bockelmann, and Armin Dekorsy. “Semantic Communication: An
Information Bottleneck View”. In: arXiv:2204.13366 (Apr. 2022).

[42] Richard Bellman. “A Markovian Decision Process”. In: Journal of Mathematics and Me-
chanics 6.5 (1957), pp. 679–684.

[43] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. “Estimating or propagating gradi-
ents through stochastic neurons for conditional computation”. In: arXiv preprint arXiv:1308.3432
(2013).

[44] Jeremy Bernstein et al. “signSGD: Compressed optimisation for non-convex problems”. In:
International Conference on Machine Learning. PMLR. 2018, pp. 560–569.

[45] Simone Bianco et al. “Benchmark analysis of representative deep neural network architec-
tures”. In: IEEE Access 6 (2018), pp. 64270–64277.

[46] Sameer Bibikar et al. “Federated dynamic sparse training: Computing less, communicating
less, yet learning better”. In: Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 36. 6. 2022, pp. 6080–6088.

[47] Davis Blalock et al. “What Is The State Of Neural Network Pruning?” In: Proceedings of
the 3rd MLSys Conference (2021).

[48] Mate Boban, Marco Giordani, and Michele Zorzi. “Predictive Quality of Service (PQoS):
The Next Frontier for Fully Autonomous Systems”. In: IEEE Network 35.6 (Nov. 2021),
pp. 104–110.

[49] Rémi Bonnefoi et al. “Multi-Armed Bandit Learning in IoT Networks: Learning Helps
Even in Non-stationary Settings”. In: Cognitive Radio Oriented Wireless Networks. 2018,
pp. 173–185.

[50] Eirina Bourtsoulatze, David Burth Kurka, and Deniz Gündüz. “Deep Joint Source-Channel
Coding for Wireless Image Transmission”. In: IEEE T. Cognitive Commun. Networking 5.3
(May 2019), pp. 567–579.

[51] Craig Boutilier et al. “Differentiable Meta-Learning of Bandit Policies”. In: Advances in
Neural Information Processing Systems. 2020.

[52] Lucian Busoniu, Robert Babuska, and Bart De Schutter. “A Comprehensive Survey of Mul-
tiagent Reinforcement Learning”. In: IEEE Transactions on Systems, Man, and Cybernetics
38.2 (Mar. 2008), pp. 156–172. doi: 10.1109/TSMCC.2007.913919.

[53] Lucian Busoniu, Robert Babuška, and Bart De Schutter. “Multi-agent Reinforcement Learn-
ing: An Overview”. In: Innovations in Multi-Agent Systems and Applications 310 (Nov.
2010), pp. 113–147.

[54] Lucian Buşoniu, Robert Babuška, and Bart De Schutter. “Multi-agent Reinforcement Learn-
ing: An Overview”. In: Innovations in Multi-Agent Systems and Applications (2010), pp. 183–
221.

191

https://doi.org/10.1109/TSMCC.2007.913919

[55] Baturalp Buyukates and Sennur Ulukus. “Timely Communication in Federated Learning”.
In: arXiv preprint arXiv:2012.15831 (2020).

[56] S. Cavallero et al. “A New Scheduler for URLLC in 5G NR IIoT Networks with Spatio-
Temporal Traffic Correlations”. In: IEEE International Conference on Communications
(ICC). 2023.

[57] Ursula Challita, Walid Saad, and Christian Bettstetter. “Deep reinforcement learning for
interference-aware path planning of cellular-connected UAVs”. In: International Conference
on Communications (ICC). IEEE. May 2018.

[58] Sourav Chatterjee and Persi Diaconis. “The sample size required in importance sampling”.
In: The Annals of Applied Probability 28.2 (2018), pp. 1099–1135.

[59] Hong-You Chen and Wei-Lun Chao. “Fed{BE}: Making Bayesian Model Ensemble Appli-
cable to Federated Learning”. In: International Conference on Learning Representations.
2021. url: https://openreview.net/forum?id=dgtpE6gKjHn.

[60] Jiasi Chen and Xukan Ran. “Deep Learning With Edge Computing: A Review”. In: Proceed-
ings of the IEEE 107.8 (July 2019), pp. 1655–1674. doi: 10.1109/JPROC.2019.2921977.

[61] Lixing Chen, Jie Xu, and Zhuo Lu. “Contextual Combinatorial Multi-armed Bandits with
Volatile Arms and Submodular Reward”. In: Advances in Neural Information Processing
Systems (NeurIPS). 2018.

[62] M. Chen et al. “Convergence Time Optimization of Federated Learning over Wireless Net-
works”. In: IEEE Transactions on Wireless Communications [Early Access] (2020). doi:
10.1109/TWC.2020.3042530.

[63] Chien-Yao Wang and Alexey Bochkovskiy and Hong-Yuan Mark Liao. “YOLOv7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors”. In: IEEE / CVF
Computer Vision and Pattern Recognition Conference (CVPR) (2023).

[64] Soon Jo Chung et al. “A Survey on Aerial Swarm Robotics”. In: IEEE Transactions on
Robotics 34.4 (Aug. 2018), pp. 837–855. issn: 15523098.

[65] A. V. Clemente, H. N. Castejón, and A. Chandra. “Efficient Parallel Methods for Deep
Reinforcement Learning”. In: ArXiv e-prints (May 2017). arXiv: 1705.04862 [cs.LG].

[66] Gregory Cohen et al. “EMNIST: Extending MNIST to handwritten letters”. In: Interna-
tional Joint Conference on Neural Networks (IJCNN). 2017, pp. 2921–2926.

[67] Anne G. E. Collins and Michael J. Frank. “How much of reinforcement learning is work-
ing memory, not reinforcement learning? A behavioral, computational, and neurogenetic
analysis”. In: European Journal of Neuroscience 35.7 (Apr. 2012), pp. 1024–1035.

[68] Jade Copet et al. “Simple and Controllable Music Generation”. In: arXiv preprint arXiv:2306.05284
(2023).

[69] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory (Wiley Series in
Telecommunications and Signal Processing). USA: Wiley-Interscience, 2006.

[70] Imre Csiszár and Gabor Tusnády. “Information Geometry and Alternating Minimization
Procedures”. In: Statistics and Decisions, Supplement Issue (Jan. 1984), pp. 205–237.

[71] Paul Warner Cuff, Haim H. Permuter, and Thomas M. Cover. “Coordination Capacity”.
In: IEEE Transactions on Information Theory 56.9 (Sept. 2010), pp. 4181–4206. doi: 10.
1109/TIT.2010.2054651.

192

https://openreview.net/forum?id=dgtpE6gKjHn
https://doi.org/10.1109/JPROC.2019.2921977
https://doi.org/10.1109/TWC.2020.3042530
https://arxiv.org/abs/1705.04862
https://doi.org/10.1109/TIT.2010.2054651
https://doi.org/10.1109/TIT.2010.2054651

[72] Jingjing Cui, Yuanwei Liu, and Arumugam Nallanathan. “Multi-Agent Reinforcement
Learning-Based Resource Allocation for UAV Networks”. In: IEEE Transactions on Wire-
less Communications 19.2 (Feb. 2020), pp. 729–743. issn: 15582248.

[73] Jingjing Cui, Yuanwei Liu, and Arumugam Nallanathan. “The application of multi-agent
reinforcement learning in UAV networks”. In: International Conference on Communications
Workshops (ICC). IEEE. May 2019. isbn: 9781728123738.

[74] G. Cuozzo et al. “Enabling URLLC in 5G NR IIoT Networks: A Full-Stack End-to-End
Analysis”. In: Joint European Conference on Networks and Communications & 6G Summit
(EuCNC/6G Summit). 2022.

[75] Rong Dai et al. “DisPFL: Towards Communication-Efficient Personalized Federated Learn-
ing via Decentralized Sparse Training”. In: arXiv preprint arXiv:2206.00187 (2022).

[76] Ofir David, Shay Moran, and Amir Yehudayoff. “On Statistical Learning via the Lens of
Compression”. In: Proceedings of the 30th International Conference on Neural Information
Processing Systems. Barcelona, Spain: Curran Associates Inc., 2016, pp. 2792–2800. isbn:
9781510838819.

[77] Li Deng. “The MNIST database of handwritten digit images for machine learning research”.
In: IEEE Signal Processing Magazine 29.6 (2012), pp. 141–142.

[78] James Diffenderfer and Bhavya Kailkhura. “Multi-Prize Lottery Ticket Hypothesis: Find-
ing Accurate Binary Neural Networks by Pruning A Randomly Weighted Network”. In:
International Conference on Learning Representations. 2020.

[79] G. D. Durgin, T. S. Rappaport, and D. A. de Wolf. “New analytical models and proba-
bility density functions for fading in wireless communications”. In: IEEE Transactions on
Communications 50.6 (Aug. 2002), pp. 1005–1015. doi: 10.1109/TCOMM.2002.1010620.

[80] Cynthia Dwork et al. “Calibrating noise to sensitivity in private data analysis”. In: Theory
of cryptography conference. Springer. 2006, pp. 265–284.

[81] Khaoula El Mekkaoui et al. “Distributed stochastic gradient MCMC for federated learning”.
In: arXiv preprint arXiv:2004.11231 (2020).

[82] Khaoula El Mekkaoui et al. “Federated Stochastic Gradient Langevin Dynamics”. In: Pro-
ceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence. PMLR.
2021, pp. 1703–1712.

[83] Peter Elias. “Universal codeword sets and representations of the integers”. In: IEEE Trans-
actions on Information Theory 21.2 (Mar. 1975), pp. 194–203.

[84] Úlfar Erlingsson et al. “Amplification by Shuffling: From Local to Central Differential
Privacy via Anonymity”. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms. 2019, pp. 2468–2479.

[85] ETSI. “Study on 5G NR User Equipment (UE) application layer data throughput perfor-
mance”. In: TR 137 901-5 (2020).

[86] Marco Federici et al. “Learning Robust Representations via Multi-View Information Bot-
tleneck”. In: International Conference on Learning Representations abs/2002.07017 (2020).

[87] Vitaly Feldman, Audra McMillan, and Kunal Talwar. “Hiding Among the Clones: A Simple
and Nearly Optimal Analysis of Privacy Amplification by Shuffling”. In: 2021 IEEE 62nd
Annual Symposium on Foundations of Computer Science (FOCS). 2022, pp. 954–964. doi:
10.1109/FOCS52979.2021.00096.

193

https://doi.org/10.1109/TCOMM.2002.1010620
https://doi.org/10.1109/FOCS52979.2021.00096

[88] Paulo Abelha Ferreira et al. “Bayesian SignSGD Optimizer for Federated Learning”. In:
Advances in Neural Information Processing Systems 34 (2021).

[89] Gergely Flamich, Marton Havasi, and José Miguel Hernández-Lobato. “Compressing images
by encoding their latent representations with relative entropy coding”. In: Advances in
Neural Information Processing Systems 33 (2020), pp. 16131–16141.

[90] Gergely Flamich, Stratis Markou, and José Miguel Hernández-Lobato. “Fast relative en-
tropy coding with a* coding”. In: International Conference on Machine Learning. PMLR.
2022, pp. 6548–6577.

[91] Jakob N Foerster et al. “Learning to communicate with Deep multi-agent reinforcement
learning”. In: 30th Int. Conf. Neural Inf. Proc. Sys. (NeurIPS). Dec. 2016.

[92] Jakob N. Foerster et al. “Learning to Communicate with Deep Multi-Agent Reinforcement
Learning”. In: arXiv:1605.06676 [cs] (May 2016). arXiv: 1605.06676.

[93] Emmanouil Fountoulakis, Nikolaos Pappas, and Marios Kountouris. “Goal-oriented poli-
cies for cost of actuation error minimization in wireless autonomous systems”. In: IEEE
Commun. Lett. (Early Access) (June 2023).

[94] Jonathan Frankle and Michael Carbin. “The Lottery Ticket Hypothesis: Finding Sparse,
Trainable Neural Networks”. In: International Conference on Learning Representations.
2018.

[95] B. J. Frey and G. E. Hinton. “Efficient Stochastic Source Coding and an Application to a
Bayesian Network Source Model”. In: The Computer Journal 40 (Jan. 1997), pp. 157–165.

[96] Marco Giordani et al. “Toward 6G Networks: Use Cases and Technologies”. In: IEEE Com-
munications Magazine 58.3 (Mar. 2020), pp. 55–61.

[97] Antonious M. Girgis, Deepesh Data, and Suhas Diggavi. “Differentially Private Federated
Learning with Shuffling and Client Self-Sampling”. In: 2021 IEEE International Sympo-
sium on Information Theory (ISIT). 2021, pp. 338–343. doi: 10.1109/ISIT45174.2021.
9517906.

[98] Anirudh Goyal et al. “Transfer and Exploration via the Information Bottleneck”. In: Inter-
national Conference on Learning Representations. 2019.

[99] Zhouyou Gu et al. “Knowledge-Assisted Deep Reinforcement Learning in 5G Scheduler
Design: From Theoretical Framework to Implementation”. In: IEEE Journal on Selected
Areas in Communications 39.7 (May 2021), pp. 2014–2028. doi: 10.1109/JSAC.2021.
3078498.

[100] Deniz Gündüz et al. “Beyond Transmitting Bits: Context, Semantics, and Task-Oriented
Communications”. In: IEEE Journal on Selected Areas in Communications 41.1 (Nov. 2023),
pp. 5–41. doi: 10.1109/JSAC.2022.3223408.

[101] Tuomas Haarnoja et al. “Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforce-
ment Learning with a Stochastic Actor”. In: International Conference on Machine Learning
(ICML) (2018).

[102] Hassan Halabian. “Distributed resource allocation optimization in 5G virtualized networks”.
In: IEEE Journal on Selected Areas in Communications 37.3 (Feb. 2019), pp. 627–642.

[103] Song Han, Huizi Mao, and William J. Dally. “Deep compression: Compressing deep neu-
ral networks with pruning, trained quantization and Huffman coding”. In: International
Conference on Learning Representations ICLR (2016).

194

https://doi.org/10.1109/ISIT45174.2021.9517906
https://doi.org/10.1109/ISIT45174.2021.9517906
https://doi.org/10.1109/JSAC.2021.3078498
https://doi.org/10.1109/JSAC.2021.3078498
https://doi.org/10.1109/JSAC.2022.3223408

[104] Osama A. Hanna, Lin F. Yang, and Christina Fragouli. “Solving Multi-Arm Bandit Using
a Few Bits of Communication”. In: 38 th International Conference on Machine Learning.
2021.

[105] Prahladh Harsha et al. “The Communication Complexity of Correlation”. In: IEEE Trans-
actions on Information Theory 56.1 (Jan. 2010), pp. 438–449. doi: 10.1109/TIT.2009.
2034824.

[106] Prahladh Harsha et al. “The communication complexity of correlation”. In: Twenty-Second
Annual IEEE Conference on Computational Complexity (CCC’07). IEEE. 2007, pp. 10–23.

[107] Burak Hasircioglu and Deniz Gunduz. “Privacy Amplification via Random Participation
in Federated Learning”. In: (2022). doi: 10 . 48550 / ARXIV . 2205 . 01556. url: https :
//arxiv.org/abs/2205.01556.

[108] Marton Havasi, Robert Peharz, and José Miguel Hernández-Lobato. “Minimal Random
Code Learning: Getting Bits Back from Compressed Model Parameters”. In: International
Conference on Learning Representations. 2019. url: https://openreview.net/forum?
id=r1f0YiCctm.

[109] Serhii Havrylov and Ivan Titov. “Emergence of Language with Multi-agent Games: Learn-
ing to Communicate with Sequences of Symbols”. en. In: Neural Information Processing
Systems (NIPS) (2017).

[110] K. He and J. Sun. “Convolutional neural networks at constrained time cost”. In: 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (June 2015), pp. 5353–
5360. doi: 10.1109/CVPR.2015.7299173.

[111] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2016, pp. 770–778.

[112] Kaiming He et al. “Delving Deep into Rectifiers: Surpassing Human-Level Performance on
ImageNet Classification”. In: IEEE International Conference on Computer Vision (ICCV).
2015, pp. 1026–1034. doi: 10.1109/ICCV.2015.123.

[113] Pablo Hernandez-Leal, Bilal Kartal, and Matthew E. Taylor. “A survey and critique of
multiagent deep reinforcement learning”. In: Autonomous Agents and Multi-Agent Systems
33.6 (Nov. 2019), pp. 750–797. issn: 15737454.

[114] Pablo Hernandez-Leal et al. “A Survey of Learning in Multiagent Environments: Dealing
with Non-Stationarity”. In: 3rd International Workshop on Conflict Resolution in Decision
Making (COREDEMA). July 2017.

[115] Naser Hossein Motlagh, Tarik Taleb, and Osama Arouk. “Low-Altitude Unmanned Aerial
Vehicles-Based Internet of Things Services: Comprehensive Survey and Future Perspec-
tives”. In: IEEE Internet of Things Journal 3.6 (Sept. 2016), pp. 899–922. issn: 23274662.

[116] Seyyedali Hosseinalipour et al. “From federated learning to fog learning: Towards large-
scale distributed machine learning in heterogeneous wireless networks”. In: arXiv preprint
arXiv:2006.03594 (2020).

[117] Yu-Hsin Hsu and Rung-Hung Gau. “Reinforcement Learning-based Collision Avoidance and
Optimal Trajectory Planning in UAV Communication Networks”. In: IEEE Transactions
on Mobile Computing (June 2020).

[118] Jingzhi Hu et al. “Reinforcement learning for a cellular internet of UAVs: protocol design,
trajectory control, and resource management”. In: IEEE Wireless Communications 27.1
(Feb. 2020), pp. 116–123.

195

https://doi.org/10.1109/TIT.2009.2034824
https://doi.org/10.1109/TIT.2009.2034824
https://doi.org/10.48550/ARXIV.2205.01556
https://arxiv.org/abs/2205.01556
https://arxiv.org/abs/2205.01556
https://openreview.net/forum?id=r1f0YiCctm
https://openreview.net/forum?id=r1f0YiCctm
https://doi.org/10.1109/CVPR.2015.7299173
https://doi.org/10.1109/ICCV.2015.123

[119] Ruiquan Huang et al. “Federated Linear Contextual Bandits”. In: 35th Conference on
Neural Information Processing Systems (NeurIPS) (2021).

[120] Fatima Hussain et al. “Machine learning for resource management in cellular and IoT
networks: Potentials, current solutions, and open challenges”. In: IEEE Communications
Surveys & Tutorials 22.2 (Jan. 2020), pp. 1251–1275.

[121] Maximilian Igl et al. “Generalization in Reinforcement Learning with Selective Noise Injec-
tion and Information Bottleneck”. In: Advances in Neural Information Processing Systems.
Vol. 32. 2019, pp. 13956–13968.

[122] Jacob Imola and Kamalika Chaudhuri. “Privacy amplification via bernoulli sampling”. In:
arXiv preprint arXiv:2105.10594 (2021).

[123] Berivan Isik, Tsachy Weissman, and Albert No. “An information-theoretic justification
for model pruning”. In: International Conference on Artificial Intelligence and Statistics.
PMLR. 2022, pp. 3821–3846.

[124] Mikolaj Jankowski, Deniz Gündüz, and Krystian Mikolajczyk. “AirNet: Neural Network
Transmission over the Air”. In: IEEE International Symposium on Information Theory
(ISIT). 2022, pp. 2451–2456. doi: 10.1109/ISIT50566.2022.9834372.

[125] Divyansh Jhunjhunwala et al. “Leveraging spatial and temporal correlations in sparsi-
fied mean estimation”. In: Advances in Neural Information Processing Systems 34 (2021),
pp. 14280–14292.

[126] Shaoxiong Ji et al. “Dynamic sampling and selective masking for communication-efficient
federated learning”. In: arXiv preprint arXiv:2003.09603 (2020).

[127] Yuang Jiang et al. “Model pruning enables efficient federated learning on edge devices”. In:
IEEE Transactions on Neural Networks and Learning Systems (Apr. 2022).

[128] Hao Jin et al. “Federated Reinforcement Learning with Environment Heterogeneity”. In:
Proceedings of The 25th International Conference on Artificial Intelligence and Statistics.
Ed. by Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera. Vol. 151. Proceedings
of Machine Learning Research. PMLR, 28–30 Mar 2022, pp. 18–37.

[129] JOhn Jumper et al. “Highly accurate protein structure prediction with AlphaFold”. In:
Nature (2021), pp. 583–589.

[130] Kyle D. Julian and Mykel J. Kochenderfer. “Distributed wildfire surveillance with au-
tonomous aircraft using deep reinforcement learning”. In: Journal of Guidance, Control,
and Dynamics 42.8 (Aug. 2019), pp. 1768–1778. issn: 07315090.

[131] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. “Planning and
acting in partially observable stochastic domains”. In: Artif. Intell. 101.1 (May 1998), pp. 99–
134. issn: 0004-3702. doi: https://doi.org/10.1016/S0004-3702(98)00023-X.

[132] Peter Kairouz et al. “Advances and open problems in federated learning”. In: Foundations
and Trends® in Machine Learning 14.1–2 (2021), pp. 1–210.

[133] Cem Kalkanli and Ayfer Ozgur. “Asymptotic Convergence of Thompson Sampling”. In:
arXiv:2011.03917v1. 2020.

[134] Cem Kalkanli and Ayfer Ozgur. “Batched Thompson Sampling”. In: Advances in Neural
Information Processing Systems. Ed. by M. Ranzato et al. Vol. 34. Curran Associates, Inc.,
2021, pp. 29984–29994. url: https://proceedings.neurips.cc/paper/2021/file/
fb647ca6672b0930e9d00dc384d8b16f-Paper.pdf.

196

https://doi.org/10.1109/ISIT50566.2022.9834372
https://doi.org/https://doi.org/10.1016/S0004-3702(98)00023-X
https://proceedings.neurips.cc/paper/2021/file/fb647ca6672b0930e9d00dc384d8b16f-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/fb647ca6672b0930e9d00dc384d8b16f-Paper.pdf

[135] Ali Taleb Zadeh Kasgari and Walid Saad. “Model-Free Ultra Reliable Low Latency Commu-
nication (URLLC): A Deep Reinforcement Learning Framework”. In: IEEE International
Conference on Communications (ICC). 2019.

[136] Daewoo Kim et al. “Learning to schedule communication in multi-agent reinforcement
learning”. In: 7th Int. Conf. Learning Repr. (ICLR). May 2019.

[137] Diederik P Kingma and Max Welling. “Auto-Encoding Variational Bayes”. In: 2nd Int.
Conf. Learning Repr. (ICLR). May 2014.

[138] Jakub Konečnỳ et al. “Federated learning: Strategies for improving communication effi-
ciency”. In: arXiv preprint arXiv:1610.05492 (2016).

[139] Antzela Kosta et al. “The age of information in a discrete time queue: Stationary distribu-
tion and non-linear age mean analysis”. In: IEEE J. Sel. Areas Commun. 39.5 (May 2021),
pp. 1352–1364.

[140] Gerhard Kramer and Serap A. Savari. “Communicating Probability Distributions”. In:
IEEE Transactions on Information Theory 53.2 (Jan. 2007), pp. 518–525. doi: 10.1109/
TIT.2006.889015.

[141] Raphail Krichevsky and Victor Trofimov. “The performance of universal encoding”. In:
IEEE Transactions on Information Theory 27.2 (1981), pp. 199–207.

[142] Alex Krizhevsky, Geoffrey Hinton, et al. “Learning multiple layers of features from tiny
images”. In: (2009).

[143] Akshat Kumar, Shlomo Zilberstein, and Marc Toussaint. “Scalable Multiagent Planning
using Probabilistic Inference”. In: International Joint Conference on Artificial Intelligence
(IJCAI). Citeseer. 2011, pp. 2140–2146.

[144] Sampo Kuutti et al. “A survey of deep learning applications to autonomous vehicle control”.
In: IEEE Transactions on Intelligent Transportation Systems 22.2 (Jan. 2020), pp. 712–733.

[145] Branislav Kveton et al. “Matroid bandits: Fast combinatorial optimization with learning”.
In: 30th Conference Uncertainty in Artificial Intelligence (UAI) (2014).

[146] Lucy Lai and Samuel J. Gershman. Policy compression: An information bottleneck in action
selection. Vol. 74. Elsevier Inc., May 2021, pp. 195–232. doi: 10.1016/bs.plm.2021.02.
004.

[147] J.H. Lambert. “Observations Analytiques”. In: Nouveaux m´emoires de l’Acad´emie royale
des sciences et belles-lettres 1 (1770).

[148] Tor Lattimore and Csaba Szepesvári. Bandit Algorithms. Cambridge University Press, 2020.
doi: 10.1017/9781108571401.

[149] Angeliki Lazaridou, Alexander Peysakhovich, and Marco Baroni. “Multi-Agent Coopera-
tion and the Emergence of (Natural) Language”. In: arXiv:1612.07182 [cs] (Mar. 2017).
arXiv: 1612.07182.

[150] M. Lecci et al. “Simplified Ray Tracing for the Millimeter Wave Channel: A Performance
Evaluation”. In: Information Theory and Applications Workshop (ITA). 2020. doi: 10 .
1109/ITA50056.2020.9244950.

[151] Jay Lee, Behrad Bagheri, and Hung-An Kao. “A Cyber-Physical Systems architecture
for Industry 4.0-based manufacturing systems”. In: Manufacturing Letters 3 (Jan. 2015),
pp. 18–23. issn: 2213-8463. doi: https://doi.org/10.1016/j.mfglet.2014.12.001.

197

https://doi.org/10.1109/TIT.2006.889015
https://doi.org/10.1109/TIT.2006.889015
https://doi.org/10.1016/bs.plm.2021.02.004
https://doi.org/10.1016/bs.plm.2021.02.004
https://doi.org/10.1017/9781108571401
https://doi.org/10.1109/ITA50056.2020.9244950
https://doi.org/10.1109/ITA50056.2020.9244950
https://doi.org/https://doi.org/10.1016/j.mfglet.2014.12.001

[152] Sergey Levine and U C Berkeley. “Reinforcement Learning and Control as Probabilistic
Inference: Tutorial and Review”. In: (). arXiv: arXiv:1805.00909v3. url: https://arxiv.
org/abs/1805.00909.

[153] Ang Li et al. “Fedmask: Joint computation and communication-efficient personalized fed-
erated learning via heterogeneous masking”. In: Proceedings of the 19th ACM Conference
on Embedded Networked Sensor Systems. 2021, pp. 42–55.

[154] Ang Li et al. “Lotteryfl: Personalized and communication-efficient federated learning with
lottery ticket hypothesis on non-iid datasets”. In: arXiv preprint arXiv:2008.03371 (2020).

[155] Cheuk Ting Li and Abbas El Gamal. “Strong Functional Representation Lemma and Ap-
plications to Coding Theorems”. In: IEEE Transactions on Information Theory 64.11 (Nov.
2018), pp. 6967–6978. doi: 10.1109/TIT.2018.2865570.

[156] Le Liang, Hao Ye, and Geoffrey Ye Li. “Spectrum Sharing in Vehicular Networks Based
on Multi-Agent Reinforcement Learning”. In: IEEE Journal on Selected Areas in Commu-
nications 37.10 (Aug. 2019), pp. 2282–2292. doi: 10.1109/JSAC.2019.2933962.

[157] Sheng Lin et al. “Esmfl: Efficient and secure models for federated learning”. In: arXiv
preprint arXiv:2009.01867 (2020).

[158] Xingqin Lin et al. “5G new radio: Unveiling the essentials of the next generation wireless
access technology”. In: IEEE Communications Standards Magazine 3.3 (Sept. 2019), pp. 30–
37.

[159] Yujun Lin et al. “Deep Gradient Compression: Reducing the Communication Bandwidth
for Distributed Training”. In: International Conference on Learning Representations. 2018.

[160] Chen-Feng Liu and Mehdi Bennis. “Data-driven predictive scheduling in ultra-reliable low-
latency industrial IoT: A generative adversarial network approach”. In: IEEE 21st Inter-
national Workshop on Signal Processing Advances in Wireless Communications (SPAWC).
2020.

[161] Chi Harold Liu et al. “Energy-efficient UAV control for effective and fair communication
coverage: A deep reinforcement learning approach”. In: IEEE Journal on Selected Areas in
Communications 36.9 (Aug. 2018), pp. 2059–2070.

[162] Liyuan Liu et al. “On the variance of the adaptive learning rate and beyond”. In: arXiv
preprint arXiv:1908.03265 (Aug. 2019).

[163] Tianyu Liu et al. “Measurement-Based Characterization and Modeling for Low-Altitude
UAV Air-to-Air Channels”. In: IEEE Access 7 (2019), pp. 98832–98840.

[164] Xiao Liu, Yuanwei Liu, and Yue Chen. “Reinforcement learning in multiple-UAV networks:
Deployment and movement design”. In: IEEE Transactions on Vehicular Technology 68.8
(June 2019), pp. 8036–8049.

[165] Yan Liu et al. “Analyzing grant-free access for URLLC service”. In: IEEE Journal on
Selected Areas in Communications 39.3 (Mar. 2020), pp. 741–755.

[166] Yang Liu et al. “FedPrune: Personalized and Communication-Efficient Federated Learning
on Non-IID Data”. In: International Conference on Neural Information Processing. Springer.
2021, pp. 430–437.

[167] Dor Livne and Kobi Cohen. “PoPS: Policy Pruning and Shrinking for Deep Reinforcement
Learning”. In: IEEE Journal of Selected Topics in Signal Processing 14.4 (May 2020),
pp. 789–801. doi: 10.1109/JSTSP.2020.2967566.

198

https://arxiv.org/abs/arXiv:1805.00909v3
https://arxiv.org/abs/1805.00909
https://arxiv.org/abs/1805.00909
https://doi.org/10.1109/TIT.2018.2865570
https://doi.org/10.1109/JSAC.2019.2933962
https://doi.org/10.1109/JSTSP.2020.2967566

[168] S. Lloyd. “Least squares quantization in PCM”. In: IEEE Transactions on Information
Theory 28.2 (Mar. 1982), pp. 129–137. doi: 10.1109/TIT.1982.1056489.

[169] M Carmen Lucas-Estañ, Javier Gozalvez, and Miguel Sepulcre. “On the capacity of 5G NR
grant-free scheduling with shared radio resources to support ultra-reliable and low-latency
communications”. In: Sensors 19.16 (Aug. 2019), p. 3575.

[170] Federico Mason et al. “Multi-Agent Reinforcement Learning for Pragmatic Communication
and Control”. In: arXiv:2302.14399 (Feb. 2023).

[171] Brendan McMahan et al. “Communication-efficient learning of deep networks from decen-
tralized data”. In: Artificial intelligence and statistics. PMLR. 2017, pp. 1273–1282.

[172] H Brendan McMahan et al. “Learning differentially private recurrent language models”. In:
arXiv preprint arXiv:1710.06963 (2017).

[173] Ilya Mironov. “Rényi differential privacy”. In: IEEE 30th computer security foundations
symposium (CSF). IEEE. 2017, pp. 263–275.

[174] Nicole Mitchell et al. “Optimizing the communication-accuracy trade-off in federated learn-
ing with rate-distortion theory”. In: arXiv preprint arXiv:2201.02664 (2022).

[175] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, et al. “Human-level control through
deep reinforcement learning”. In: Nature 518.7540 (Feb. 2015), pp. 529–533.

[176] Volodymyr Mnih et al. “Asynchronous Methods for Deep Reinforcement Learning”. In:
Proceedings of The 33rd International Conference on Machine Learning. Vol. 48. June
2016, pp. 1928–1937.

[177] Amirkeivan Mohtashami, Martin Jaggi, and Sebastian Stich. “Masked Training of Neural
Networks with Partial Gradients”. In: International Conference on Artificial Intelligence
and Statistics. PMLR. 2022, pp. 5876–5890.

[178] Hamid Mozaffari, Virat Shejwalkar, and Amir Houmansadr. “FRL: Federated Rank Learn-
ing”. In: arXiv preprint arXiv:2110.04350 (2021).

[179] Muhammad Tahir Munir et al. “FedPrune: Towards Inclusive Federated Learning”. In:
arXiv preprint arXiv:2110.14205 (2021).

[180] Ranjit Nair et al. “Networked distributed POMDPs: A synthesis of distributed constraint
optimization and POMDPs”. In: 19th Conference on Artificial Intelligence. Vol. 5. AAAI.
July 2005, pp. 133–139.

[181] Minoru Nakagami. “The m-Distribution–A General Formula of Intensity Distribution of
Rapid Fading”. In: Statistical Methods in Radio Wave Propagation (1960). Ed. by W.C.
HOFFMAN, pp. 3–36.

[182] Frans A Oliehoek, Christopher Amato, et al. A concise introduction to decentralized POMDPs.
Springer, Apr. 2016.

[183] OpenAI. “GPT-4 Technical Report”. In: arXiv:2303.08774 (2023).
[184] Emre Ozfatura, Kerem Ozfatura, and Deniz Gündüz. “Time-correlated sparsification for

communication-efficient federated learning”. In: IEEE International Symposium on Infor-
mation Theory (ISIT). IEEE. 2021, pp. 461–466.

[185] Stefan Parkvall, Erik Dahlman, and Johan Sköld. 5G NR: The Next Generation Wireless
Access Technology. Academic Press, 2018.

[186] Francesco Pase, Marco Giordani, and Michele Zorzi. “On the Convergence Time of Fed-
erated Learning Over Wireless Networks Under Imperfect CSI”. In: IEEE International
Conference on Communications Workshops (ICC). 2020.

199

https://doi.org/10.1109/TIT.1982.1056489

[187] Francesco Pase, Deniz Gündüz, and Michele Zorzi. “Rate-Constrained Remote Contextual
Bandits”. In: IEEE Journal on Selected Areas in Information Theory (Dec. 2022).

[188] Francesco Pase, Deniz Gündüz, and Michele Zorzi. “Remote Contextual Bandits”. In: IEEE
International Symposium on Information Theory (ISIT) (2022).

[189] Francesco Pase, Deniz Gündüz, and Michele Zorzi. “Remote Contextual Bandits”. In: 2022
IEEE International Symposium on Information Theory (ISIT). 2022.

[190] Francesco Pase et al. “A Distributed Neural Linear Thompson Sampling Framework to
Achieve URLLC in Industrial IoT”. In: under review for the IEEE Transaction on Wire-
less Communications (2024).

[191] Francesco Pase et al. “Adaptive Compression in Federated Learning via Side Information”.
In: under review for the 27th International Conference on Artificial Intelligence and
Statistics (AISTATS). 2024.

[194] Francesco Pase et al. “Distributed Resource Allocation for URLLC in IIoT Scenarios: A
Multi-Armed Bandit Approach”. In: IEEE GLOBECOM Workshops (GC Wkshps) (2022).

[197] Francesco Pase et al. “Leveraging Side Information for Communication-Efficient Federated
Learning”. In: International Conference on Learning Representation (ICML): Workshop
on Federated Learning and Analytics in Practice: Algorithms, Systems, Applications, and
Opportunities (2023).

[198] Francesco Pase et al. “Semantic Communication of Learnable Concepts”. In: IEEE Inter-
national Symposium on Information Theory (2023).

[200] Francesco Pase et al. “Sparse Random Networks for Communication-Efficient Federated
Learning”. In: The Eleventh International Conference on Learning Representations. 2023.

[201] Ankit Pensia et al. “Optimal lottery tickets via subset sum: Logarithmic over-parameterization
is sufficient”. In: Advances in Neural Information Processing Systems 33 (2020), pp. 2599–
2610.

[202] My Phan, Yasin Abbasi Yadkori, and Justin Domke. “Thompson Sampling and Approxi-
mate Inference”. In: Advances in Neural Information Processing Systems. 2019.

[203] Vincent Plassier et al. “DG-LMC: a turn-key and scalable synchronous distributed MCMC
algorithm via Langevin Monte Carlo within Gibbs”. In: International Conference on Ma-
chine Learning. PMLR. 2021, pp. 8577–8587.

[204] M. Polese, M. Giordani, and M. Zorzi. “3GPP NR: the cellular standard for 5G networks”.
In: 5G-ITALY White Book (2019).

[205] Petar Popovski et al. “Semantic-effectiveness filtering and control for post-5G wireless
connectivity”. In: J. Indian Inst. Sci. 100.2 (Apr. 2020), pp. 435–443.

[206] Zeyu Qin et al. “Multi-Agent Reinforcement Learning Aided Computation Offloading in
Aerial Computing for the Internet-of-Things”. In: IEEE Transactions on Services Comput-
ing 16.3 (2023), pp. 1976–1986. doi: 10.1109/TSC.2022.3190562.

[207] Vivek Ramanujan et al. “What’s hidden in a randomly weighted neural network?” In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2020, pp. 11893–11902.

[208] Aditya Ramesh et al. “Zero-Shot Text-to-Image Generation”. In: Proceedings of the 38th
International Conference on Machine Learning. Ed. by Marina Meila and Tong Zhang.
Vol. 139. Proceedings of Machine Learning Research. PMLR, 18–24 Jul 2021, pp. 8821–
8831. url: https://proceedings.mlr.press/v139/ramesh21a.html.

200

https://doi.org/10.1109/TSC.2022.3190562
https://proceedings.mlr.press/v139/ramesh21a.html

[209] T. S. Rappaport et al. “Millimeter Wave Mobile Communications for 5G Cellular: It Will
Work!” In: IEEE Access 1 (2013), pp. 335–349. doi: 10.1109/ACCESS.2013.2260813.

[210] Carlos Riquelme, George Tucker, and Jasper Snoek. “Deep Bayesian Bandits Showdown”.
In: International Conference on Learning Representations (ICLR) (2018).

[211] Jorma Rissanen and Glen G Langdon. “Arithmetic coding”. In: IBM Journal of research
and development 23.2 (1979), pp. 149–162.

[212] D. J. Russo et al. In: Found. Trends Mach. Learn. 11.1 (2018). issn: 1935-8237.
[213] Daniel Russo. “Simple Bayesian Algorithms for Best Arm Identification”. In: 29th Annual

Conference on Learning Theory. Ed. by Vitaly Feldman, Alexander Rakhlin, and Ohad
Shamir. Vol. 49. Proceedings of Machine Learning Research. Columbia University, New
York, New York, USA: PMLR, 23–26 Jun 2016, pp. 1417–1418. url: https://proceedings.
mlr.press/v49/russo16.html.

[214] Daniel Russo and Benjamin Van Roy. “Learning to optimize via posterior sampling”. In:
Mathematics of Operations Research 39.4 (Apr. 2014), pp. 1221–1243. doi: 10.1287/moor.
2014.0650.

[215] M. K. Samimi et al. “28 GHz Millimeter-Wave Ultrawideband Small-Scale Fading Models
in Wireless Channels”. In: IEEE 83rd Vehicular Technology Conference (2016). doi: 10.
1109/VTCSpring.2016.7503970.

[216] Mahadev Satyanarayanan. “The Emergence of Edge Computing”. In: Computer 50.1 (Jan.
2017), pp. 30–39. doi: 10.1109/MC.2017.9.

[217] Stefano Savazzi et al. “Opportunities of Federated Learning in Connected, Cooperative and
Automated Industrial Systems”. In: arXiv preprint arXiv:2101.03367 (2021).

[218] Sejin Seo et al. “Communication-efficient and personalized federated lottery ticket learn-
ing”. In: IEEE 22nd International Workshop on Signal Processing Advances in Wireless
Communications (SPAWC). IEEE. 2021, pp. 581–585.

[219] Abhin Shah et al. “Optimal compression of locally differentially private mechanisms”. In:
International Conference on Artificial Intelligence and Statistics. PMLR. 2022, pp. 7680–
7723.

[220] Reza Shakeri et al. “Design Challenges of Multi-UAV Systems in Cyber-Physical Applica-
tions: A Comprehensive Survey and Future Directions”. In: IEEE Communications Surveys
and Tutorials 21.4 (Apr. 2019), pp. 3340–3385. issn: 1553877X.

[221] Hazim Shakhatreh et al. “Unmanned Aerial Vehicles (UAVs): A Survey on Civil Appli-
cations and Key Research Challenges”. In: IEEE Access 7 (2019), pp. 48572–48634. issn:
21693536.

[222] Claude E. Shannon and Warren Weaver. “The Mathematical Theory of Communication.”
In: University of Illinois Press (1949).

[223] Jiawei Shao, Yuyi Mao, and Jun Zhang. “Learning task-oriented communication for edge
inference: An information bottleneck approach”. In: IEEE J. Sel. Areas Commun. 40.1 (Jan.
2022), pp. 197–211.

[224] Yulin Shao, Qi Cao, and Deniz Gündüz. “A Theory of Semantic Communication”. In:
arXiv:2212.01485 (Dec. 2022).

[225] Chengshuai Shi and Cong Shen. “Federated Multi-Armed Bandits”. In: The Thirty-Fifth
AAAI Conference on Artificial Intelligence (AAAI) (2021).

201

https://doi.org/10.1109/ACCESS.2013.2260813
https://proceedings.mlr.press/v49/russo16.html
https://proceedings.mlr.press/v49/russo16.html
https://doi.org/10.1287/moor.2014.0650
https://doi.org/10.1287/moor.2014.0650
https://doi.org/10.1109/VTCSpring.2016.7503970
https://doi.org/10.1109/VTCSpring.2016.7503970
https://doi.org/10.1109/MC.2017.9

[226] Aleksandrs Slivkins. “Introduction to Multi-Armed Bandits”. In: Foundations and Trends®
in Machine Learning 12 (2019). url: http://dx.doi.org/10.1561/2200000068.

[227] Edward J Sondik. “The optimal control of partially observable Markov processes over the
infinite horizon: Discounted costs”. In: Oper. Res. 26.2 (Apr. 1978), pp. 282–304.

[228] Mingjun Song and Sanguthevar Rajasekaran. “Fast k-Means Algorithms with Constant Ap-
proximation”. In: Algorithms and Computation. Springer Berlin Heidelberg, 2005, pp. 1029–
1038.

[229] Photios A Stavrou and Marios Kountouris. “A rate distortion approach to goal-oriented
communication”. In: Int. Symp. Inform. Theory (ISIT). IEEE. June 2022, pp. 590–595.

[230] Thomas Steinke and Lydia Zakynthinou. “Reasoning About Generalization via Conditional
Mutual Information”. In: Proceedings of Thirty Third Conference on Learning Theory.
Vol. 125. PMLR, July 2020, pp. 3437–3452.

[231] Sainbayar Sukhbaatar, Arthur Szlam, and Rob Fergus. “Learning multiagent communi-
cation with backpropagation”. In: Proc. of 30th Int’l Conf. on Neural Information Proc.
Systems. NIPS’16. Red Hook, NY, 2016, pp. 2252–2260.

[232] Ananda Theertha Suresh et al. “Distributed mean estimation with limited communication”.
In: International Conference on Machine Learning. PMLR. 2017, pp. 3329–3337.

[233] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press, Nov. 2018.

[234] Pietro Talli et al. “Semantic and Effective Communication for Remote Control Tasks with
Dynamic Feature Compression”. In: 16th Int. Worksh. Wireless Sensing Actuating Rob.
Networks (INFOCOM WiSARN). IEEE. May 2023.

[235] Lucas Theis and Noureldin Y Ahmed. “Algorithms for the Communication of Samples”. In:
Proceedings of the 39th International Conference on Machine Learning. Vol. 162. PMLR,
July 2022, pp. 21308–21328.

[236] Lucas Theis and Noureldin Y Ahmed. “Algorithms for the communication of samples”. In:
International Conference on Machine Learning. PMLR. 2022, pp. 21308–21328.

[237] William R. Thompson. “On the Theory of Apportionment”. In: American Journal of Math-
ematics 57.2 (Apr. 1935), pp. 450–456.

[238] Naftali Tishby, Fernando C. Pereira, and William Bialek. The information bottleneck
method. 2000. doi: 10 . 48550 / ARXIV . PHYSICS / 0004057. url: https : / / arxiv . org /
abs/physics/0004057.

[239] Hugo Touvron et al. “LLaMA: Open and Efficient Foundation Language Models”. In:
arXiv:2302.13971 (2023).

[240] Aleksei Triastcyn, Matthias Reisser, and Christos Louizos. “DP-REC: Private & communication-
efficient federated learning”. In: arXiv preprint arXiv:2111.05454 (2021).

[241] Tze-Yang Tung et al. “Effective Communications: A Joint Learning and Communication
Framework for Multi-Agent Reinforcement Learning Over Noisy Channels”. In: IEEE Jour-
nal on Selected Areas in Communications 39.8 (June 2021), pp. 2590–2603. doi: 10.1109/
JSAC.2021.3087248.

[242] Elif Uysal et al. “Semantic communications in networked systems: A data significance
perspective”. In: IEEE Network 36.4 (Oct. 2022), pp. 233–240.

[243] Anish K Vallapuram et al. “HideNseek: Federated Lottery Ticket via Server-side Pruning
and Sign Supermask”. In: arXiv preprint arXiv:2206.04385 (2022).

202

http://dx.doi.org/10.1561/2200000068
https://doi.org/10.48550/ARXIV.PHYSICS/0004057
https://arxiv.org/abs/physics/0004057
https://arxiv.org/abs/physics/0004057
https://doi.org/10.1109/JSAC.2021.3087248
https://doi.org/10.1109/JSAC.2021.3087248

[244] Aaron Van Den Oord, Oriol Vinyals, et al. “Neural discrete representation learning”. In:
31st Int. Conf. Neural Inf. Proc. Sys. (NeurIPS). Dec. 2017.

[245] Hado Van Hasselt, Arthur Guez, and David Silver. “Deep reinforcement learning with
Double Q-learning”. In: 30th Conference on Artificial Intelligence. AAAI. Mar. 2016.

[246] Shay Vargaftik et al. “DRIVE: one-bit distributed mean estimation”. In: Advances in Neural
Information Processing Systems 34 (2021), pp. 362–377.

[247] Shay Vargaftik et al. “Eden: Communication-efficient and robust distributed mean estima-
tion for federated learning”. In: International Conference on Machine Learning. PMLR.
2022, pp. 21984–22014.

[249] Federico Venturini et al. “Distributed Reinforcement Learning for Flexible UAV Swarm
Control with Transfer Learning Capabilities”. In: Proceedings of the 6th ACM Workshop on
Micro Aerial Vehicle Networks, Systems, and Applications (DroNet). 2020.

[250] Timothy Verstraeten, Eugenio Bargiacchi, and Pieter .J.K. et al. Libin. “Multi-Agent
Thompson Sampling for Bandit Applications with Sparse Neighbourhood Structures”. In:
35th Conference on Neural Information Processing Systems (NeurIPS) (2020).

[251] Oriol Vinyals et al. “AlphaStar: Mastering the Real-Time Strategy Game StarCraft II”. In:
https://www.deepmind.com/blog/alphastar-mastering-the-real-time-strategy-
game-starcraft-ii (2019).

[252] Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. “PowerSGD: Practical low-rank
gradient compression for distributed optimization”. In: Advances in Neural Information
Processing Systems 32 (2019).

[253] Maxime Vono et al. “QLSD: Quantised Langevin stochastic dynamics for Bayesian feder-
ated learning”. In: International Conference on Artificial Intelligence and Statistics. PMLR.
2022, pp. 6459–6500.

[254] M. Wadu, S. Samarakoon, and M. Bennis. “Federated Learning under Channel Uncertainty:
Joint Client Scheduling and Resource Allocation”. In: IEEE Wireless Communications and
Networking Conference. 2020. doi: 10.1109/WCNC45663.2020.9120649.

[255] Shaohua Wan, Zonghua Gu, and Qiang Ni. “Cognitive computing and wireless communi-
cations on the edge for healthcare service robots”. In: Comput. Commun. 149 (Jan. 2020),
pp. 99–106.

[256] Hongyi Wang et al. “Atomo: Communication-efficient learning via atomic sparsification”.
In: Advances in Neural Information Processing Systems 31 (2018).

[257] Mowei Wang et al. “Machine learning for networking: Workflow, advances and opportuni-
ties”. In: IEEE Network 32.2 (Mar. 2017), pp. 92–99.

[258] Siwei Wang and Wei Chen. “Thompson sampling for combinatorial semi-bandits”. In: In-
ternational Conference on Machine Learning (ICML) (2018).

[259] Yu-Xiang Wang, Borja Balle, and Shiva Prasad Kasiviswanathan. “Subsampled Renyi Dif-
ferential Privacy and Analytical Moments Accountant”. In: Proceedings of the Twenty-
Second International Conference on Artificial Intelligence and Statistics. Ed. by Kamalika
Chaudhuri and Masashi Sugiyama. Vol. 89. Proceedings of Machine Learning Research.
PMLR, 16–18 Apr 2019, pp. 1226–1235.

[260] Zijing Wang, Mihai-Alin Badiu, and Justin P Coon. “A framework for characterizing the
value of information in hidden Markov models”. In: IEEE T. Inform. Theory 68.8 (Aug.
2022), pp. 5203–5216.

203

https://www.deepmind.com/blog/alphastar-mastering-the-real-time-strategy-game-starcraft-ii
https://www.deepmind.com/blog/alphastar-mastering-the-real-time-strategy-game-starcraft-ii
https://doi.org/10.1109/WCNC45663.2020.9120649

[261] Max Welling and Yee W Teh. “Bayesian learning via stochastic gradient Langevin dynam-
ics”. In: Proceedings of the 28th International Conference on Machine Learning (ICML-11).
2011, pp. 681–688.

[262] Wei Wen et al. “Terngrad: Ternary gradients to reduce communication in distributed deep
learning”. In: Advances in Neural Information Processing Systems 30 (2017).

[263] Martin Wollschlaeger, Thilo Sauter, and Juergen Jasperneite. “The future of industrial
communication: Automation networks in the era of the internet of things and industry 4.0”.
In: IEEE Industrial Electronics Magazine 11.1 (Mar. 2017), pp. 17–27.

[264] Chunxue Wu et al. “UAV autonomous target search based on deep reinforcement learning
in complex disaster scene”. In: IEEE Access 7 (2019), pp. 117227–117245.

[265] Huiqiang Xie et al. “Deep Learning Enabled Semantic Communication Systems”. In: IEEE
T. Signal Proc. 69 (Apr. 2021), pp. 2663–2675.

[266] Aolin Xu and Maxim Raginsky. “Information-theoretic analysis of generalization capability
of learning algorithms”. In: Proceedings of the 31th International Conference on Neural
Information Processing Systems. Long Beach, CA, USA, 2017.

[267] Lei Xu et al. “Information Security in Big Data: Privacy and Data Mining”. In: IEEE
Access 2 (Oct. 2014), pp. 1149–1176. doi: 10.1109/ACCESS.2014.2362522.

[268] Helin Yang, Xianzhong Xie, and Michel Kadoch. “Intelligent Resource Management Based
on Reinforcement Learning for Ultra-Reliable and Low-Latency IoV Communication Net-
works”. In: IEEE Transactions on Vehicular Technology 68.5 (Jan. 2019), pp. 4157–4169.
doi: 10.1109/TVT.2018.2890686.

[269] Peihao Yang, Linghe Kong, and Guihai Chen. “Spectrum Sharing for 5G/6G URLLC:
Research Frontiers and Standards”. In: IEEE Communications Standards Magazine 5.2
(Apr. 2021), pp. 120–125. doi: 10.1109/MCOMSTD.001.2000054.

[270] Zhaohui Yang et al. “Delay Minimization for Federated Learning over Wireless Communi-
cation Networks”. In: 37 th International Conference on Machine Learning (2020).

[271] LeCun Yann and Cortes Corinna. “MNIST handwritten digit database”. In: (2010). url:
http://yann.lecun.com/exdb/mnist/.

[272] R. D. Yates et al. “Age of Information: An Introduction and Survey”. In: IEEE J. Sel.
Areas Commun. 39.5 (Mar. 2021), pp. 1183–1210.

[273] Sixing Yu et al. “Adaptive dynamic pruning for non-iid federated learning”. In: arXiv
preprint arXiv:2106.06921 (2021).

[274] Riccardo Zanol, Federico Chiariotti, and Andrea Zanella. “Drone mapping through multi-
agent reinforcement learning”. In: Wireless Communications and Networking Conference
(WCNC). IEEE, Apr. 2019, pp. 1–7. isbn: 9781538676462.

[275] Chongjie Zhang and Victor R Lesser. “Coordinated Multi-Agent Reinforcement Learning
in Networked Distributed POMDPs”. In: AAAI. Aug. 2011.

[276] Hongjie Zhang, Zhuocheng He, and Jing Li. “Accelerating the Deep Reinforcement Learning
with Neural Network Compression”. In: 2019 International Joint Conference on Neural
Networks (IJCNN) (2019). doi: 10.1109/IJCNN.2019.8852451.

[277] Senbai Zhang et al. “Multi-agent Reinforcement Learning-Based Orbital Edge Offloading
in SAGIN Supporting Internet of Remote Things”. In: IEEE Internet of Things Journal
(2023), pp. 1–1. doi: 10.1109/JIOT.2023.3287737.

204

https://doi.org/10.1109/ACCESS.2014.2362522
https://doi.org/10.1109/TVT.2018.2890686
https://doi.org/10.1109/MCOMSTD.001.2000054
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1109/IJCNN.2019.8852451
https://doi.org/10.1109/JIOT.2023.3287737

[278] Xi Zheng, Sheng Zhou, and Zhisheng Niu. “Urgency of Information for Context-Aware
Timely Status Updates in Remote Control Systems”. In: IEEE T. Wireless Commun. 19.11
(July 2020), pp. 7237–7250.

[279] Hattie Zhou et al. “Deconstructing lottery tickets: Zeros, signs, and the supermask”. In:
Advances in neural information processing systems 32 (2019).

[280] T. Zugno et al. “Toward Standardization of Millimeter-Wave Vehicle-to-Vehicle Networks:
Open Challenges and Performance Evaluation”. In: IEEE Communications Magazine 58.9
(Sept. 2020), pp. 79–85. doi: 10.1109/MCOM.001.2000041.

205

https://doi.org/10.1109/MCOM.001.2000041

206

List of publications

Journals

[187] Francesco Pase, Deniz Gündüz, and Michele Zorzi. “Rate-Constrained Remote Contextual
Bandits”. In: IEEE Journal on Selected Areas in Information Theory (Dec. 2022).

[190] Francesco Pase et al. “A Distributed Neural Linear Thompson Sampling Framework to
Achieve URLLC in Industrial IoT”. In: under review for the IEEE Transaction on Wire-
less Communications (2024).

[248] Federico Venturini et al. “Distributed Reinforcement Learning for Flexible and Efficient
UAV Swarm Control”. In: IEEE Transactions on Cognitive Communications and Network-
ing 7.3 (2021), pp. 955–969. doi: 10.1109/TCCN.2021.3063170.

Conferences

[56] S. Cavallero et al. “A New Scheduler for URLLC in 5G NR IIoT Networks with Spatio-
Temporal Traffic Correlations”. In: IEEE International Conference on Communications
(ICC). 2023.

[74] G. Cuozzo et al. “Enabling URLLC in 5G NR IIoT Networks: A Full-Stack End-to-End
Analysis”. In: Joint European Conference on Networks and Communications & 6G Summit
(EuCNC/6G Summit). 2022.

[186] Francesco Pase, Marco Giordani, and Michele Zorzi. “On the Convergence Time of Fed-
erated Learning Over Wireless Networks Under Imperfect CSI”. In: IEEE International
Conference on Communications Workshops (ICC). 2020.

[188] Francesco Pase, Deniz Gündüz, and Michele Zorzi. “Remote Contextual Bandits”. In: IEEE
International Symposium on Information Theory (ISIT) (2022).

[191] Francesco Pase et al. “Adaptive Compression in Federated Learning via Side Information”.
In: under review for the 27th International Conference on Artificial Intelligence and
Statistics (AISTATS). 2024.

[194] Francesco Pase et al. “Distributed Resource Allocation for URLLC in IIoT Scenarios: A
Multi-Armed Bandit Approach”. In: IEEE GLOBECOM Workshops (GC Wkshps) (2022).

[195] Francesco Pase et al. “Efficient Federated Random Subnetwork Training”. In: Workshop on
Federated Learning: Recent Advances and New Challenges (in Conjunction with NeurIPS
2022). 2022.

[197] Francesco Pase et al. “Leveraging Side Information for Communication-Efficient Federated
Learning”. In: International Conference on Learning Representation (ICML): Workshop
on Federated Learning and Analytics in Practice: Algorithms, Systems, Applications, and
Opportunities (2023).

[198] Francesco Pase et al. “Semantic Communication of Learnable Concepts”. In: IEEE Inter-
national Symposium on Information Theory (2023).

[200] Francesco Pase et al. “Sparse Random Networks for Communication-Efficient Federated
Learning”. In: The Eleventh International Conference on Learning Representations. 2023.

207

https://doi.org/10.1109/TCCN.2021.3063170

[234] Pietro Talli et al. “Semantic and Effective Communication for Remote Control Tasks with
Dynamic Feature Compression”. In: 16th Int. Worksh. Wireless Sensing Actuating Rob.
Networks (INFOCOM WiSARN). IEEE. May 2023.

[249] Federico Venturini et al. “Distributed Reinforcement Learning for Flexible UAV Swarm
Control with Transfer Learning Capabilities”. In: Proceedings of the 6th ACM Workshop on
Micro Aerial Vehicle Networks, Systems, and Applications (DroNet). 2020.

Patents

[192] Francesco Pase et al. Data Hetereougenity in Federated Learning. Under filing with Nokia
Bell Labs.

[193] Francesco Pase et al. Devices and methods for AI-assisted URLLC. Filed with Huawei
Technology.

[196] Francesco Pase et al. Improving Foundation Model Training Through Parameter-Efficient
Federated Learning. Under filing with Nokia Bell Labs.

Book Chapter

[199] Francesco Pase et al. Smart Data Gathering for Network Optimization. CNIT Technical
Report-07, 2001.

208

Acknowledgments

This manuscript enclosed the research journey of my PhD, which has been a tremendously
beautiful, inspiring and vibrant experience, and has provided to me the necessary tools to address
new research questions. These years have not been always easy, ups and downs were present in
almost every week, specially when things on which I spent many hours did not work out initially,
and when I started questioning my future plans. However the experience I have accumulated, both
on the personal and working sphere, is now helping me realizing how to steer my years ahead, and
it is probably one of the things I’m mostly proud of. Needless to say, all my achievements were not
possible without the people I shared my life with, who I’m going to thank in what will probably
be the most read section of this dissertation.

As anticipated, this thesis goes to my parents, Gianmaria and Carla, who always supported
me in all my adventures, and whose sacrifices allowed me to pursue my passions. This special
mention is also enlarged to my older brothers, Giovanni and Alessandro, from whom I learned a
lot during my life. Thank you all.

First and foremost, I want to thank my supervisor, Michele Zorzi. You have always believed
in my ideas and plans, even after I dropped out from the first PhD in Lausanne, welcoming me
in your group. You made my entire PhD experience smooth, providing me all the necessary to
pursue my research. Even though due to the pandemic restrictions and our commitments we did
not spend so much time in the lab together, the always stimulating conversations we had in your
office or on a phone call shaped my thinking, your points have always been precious fruits for my
research, and I’m extremely thankful for that. I’m very grateful to Deniz Gunduz, who introduced
my into the complex but incredibly fascinating world of information theory, and invited me to
spend part of my journey at the Imperial College London, which revealed to be one of the most
beautiful periods in my entire life. It has been a real honor to do research with you, and I really
hope it will happen again in the future. To my other amazing mentors Dimitrios, Mohammad and
Soumayajit, who made my internship at Nokia Bell Labs a truly inspiring experience thanks to
their patience, suggestions, and valuable insights, it has been a real pleasure to share my summer
in Cambridge with you (sorry Sumo if Samsung already patented everything). To Fahim Kawsar,
for making my internship possible, and for believing in me to participate to the successful student
competition: discussing my internship project and preparing the final presentation with you has
been profoundly helpful.

To the SIGNET guys, who have been like a family during the whole PhD: Jacopo, Federico
M., Paolo, Mattia, Matteo, Tommaso, Andrea, Sara, Matteo P., Alessandro T., Francesca, Enver,
Martina, Anay, Salman, Roberto, Filippo, Giovanni, Riccardo, Silvia, Marco C., Pietro T., Alberto
Z., Zaman. A special gratitude to Marco Giordani and Federico Chiariotti, the seniors who gave
me important lessons for my research, and to the fabulous Lab 219, Alberto, Laura, Francesco,
Amir, Neda, Aria, Ahmed and Leonardo, I’ll never forget the days spent in the lab with you

209

(and thanks for bearing my strange working habits). To the other professors of the Lab: Andrea
Zanella, Michele Rossi, Leonardo Badia, Federica Battisti and Lorenzo Vangelista, for considering
every one of us as a peer, and for your valuable lectures during my undergraduate and graduate
classes. To the rest of the floor Daniele, Matteo C., Federico L., Francesco B., Adriano, Marco T.,
Giulia, Donald, Elena. A special thank to Umberto and Mattia, for teaching me the fundamental
PhD tricks, those days in the islands were unforgettable. A special thank goes also to my dear
and closest University’s friends Andrea, Luca, Francesco, Alessandro, Laura, Giulia and Alice.

To the Imperial College friends, it was such a pleasure being part of your group. A special men-
tion goes to Roy, Szymon, Mohammad, Ece and Rui, who beacame more than Lab mates. Thanks
Roy for your wise insights (specially regarding TV series), and for the post-work conversations
with a beer at the Union; and Szymon, for our crazy research discussions walking to the Starbucks
during the afternoons, and for our clubbing experience in Taipei, that was missing. To my col-
leagues at Nokia Bell Labs Simon, Aashish, Julia, Irtaza, Talia, Ila, Haerang, Arthur, Adiba, it
was inspiring to know each of you, and to hear the stories such interesting and stimulating people
coming from all over the world. To the amazing team at Bell Labs, I was admired by the things
your were able to achieve working as a team, and by how you welcomed us to be part of your days
as in a real family. A special note for Andrea, together with whom I was unbeatable at table foot-
ball, and to the other amazing finalists Ryo and Alessandro. To Mirco, my flatmate in Cambridge,
who is now a friend. We shared together our temporary polish family Pawel and Justyna, who I
also want to thank for their warm hospitality. To my friend Matteo C., who welcomed me with
the best Amatriciana in the city. To my wonderful collaborator Berivan, thanks for all the hard
work we did together, for the stimulating research discussions, and for the time we spent together
at the conferences. To her supervisor Tsachy Weissman, for his precious feedback on our work.

To my second family Marco P., Alberto, Marco O., Michele, Tobia, Ruben, for all your support,
and because you’re one of the reasons why it’s always a joy to come back home. To my other
home’s friends, who quickly became special life mates Riccardo, Alessandro, Matteo, Marco P.,
Daniele, Francesca, Camilla, Yasmine, Greta, Valentina, Giorgia. To my high school friends,
specially those who I cannot stop spending time with like Giulio, Tobia, Marco, Giulia, Matteo.
To my amazing mates Gianmarco, Cristiana, and closest friends in Padova Sabrina, Christian,
Valentina, Andrea, Alissa, Simone. A special thank to Francesco, who believed in me offering my
next adventure at NEWTWEN, it’s a honor to be part of such an amazing team, and I’m very
excited by what we can do next. To Tito & Dani, lifetime and very important friends, for their
never-missing support, and for having fed in me the passion for technology.

To my friends Edoardo (because one is not just a number), Giacomo P.(my clubbing mate)
and the rest of the italian London’s crew Giacomo T., Ruggero, Filippo, Stefano, Amedeo and
Giovanni, who contributed making my London’s time unforgettable. Special gratitude goes also
to all the other people who enriched my time over the past 3 years, Bianca, Reza, Sara, Saket,
Ettore, Tommy, Lodovica, Giada, Stefano, Veronica, Nitish, Mine, Selim, Mikolaj.

Thank you all for contributing to my proudest achievement.

210

	Abstract
	List of figures
	List of tables
	Introduction
	Communication-Learning Co-Design
	Thesis Organization

	Information in Federated Learning
	Related Work
	Federated Learning over Wireless Networks
	Introduction
	System Model
	Federated Learning Under Imperfect CSI: The Proposed Solution
	Performance Results
	Conclusions and Future Works

	Sparse Random Networks for Communication-Efficient Federated Learning
	Introduction
	Federated Probabilistic Mask Training (FedPM)
	Privacy Considerations
	Experiments
	Conclusion

	Communication-Efficient Federated Learning through Importance Sampling
	Introduction
	KL Divergence Minimization with Side Information (KLMS)
	Examples of klm Adaptated to Well-Known Stochastic fl Frameworks
	Experiments
	Discussion & Conclusion

	Semantic Communications for Learnable Concepts
	Introduction and Motivation
	System Model
	The Rate-Distortion Characterization
	Communicating the Data vs Communicating the Model
	Conclusion

	Supplementary & Proofs
	Pseudocode
	Proofs

	Information in Distributed Decision Processes
	Related Work
	The Rate-Constrained Remote Contextual Multi-Armed Bandit Problem
	Introduction
	Problem Formulation
	Theoretical Limits
	Policy Compression
	Numerical results
	Conclusion

	Effective Communication in Distributed Reinforcement Learning
	Introduction
	System Model
	Proposed Solution
	Simulation Settings and Results
	Conclusion

	Supplementary and Proofs
	Proofs
	Supplementary: The Information Bottleneck View

	Applications of Distributed Learning
	Distributed Resource Allocation for URLLC in IIoT Scenarios: A Multi-Armed Bandit Approach
	Introduction
	Problem Formulation and System Model
	mab Agents
	Performance Evaluation
	Conclusions and Future Work

	DISNETS: a DIStributed NEural linear Thompson Sampling framework to achieve URLLC in IIoT
	Introduction
	System Model
	Problem Formulation
	Proposed Solution: the disnets Framework
	Numerical Results
	Conclusion

	Distributed Reinforcement Learning for Flexible and Efficient UAV Swarm Control
	Introduction
	Related Work
	System Model
	Simulation settings
	Simulation results
	Conclusions and future work

	Conclusion
	Final Considerations & Future Directions

	References
	List of Publications
	Acknowledgments

