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List of key features
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Brachytelephalangia

Introduction
Conductive and mixed hearing loss is described as a clin-
ical symptom common to more than 70 different genetic 
syndromes, among which congenital stapes ankylosis is 
present in a non-negligible portion (Toriello and Smith 
2013). Even if these conditions are rare, they should be 
recognized and differentiated from other similar patho-
logic conditions, to achieve a precise diagnosis, which 
might have relevant implications for surgical intervention 
and clinical prognosis (Thomeer et al., 2012).

The present article describes the case of a boy and his 
mother with conductive hearing loss due to stapes anky-
losis, for which clinical genetic evaluations revealed mild 
skeletal anomalies leading to an unexpected diagnosis.

All signs and symptoms suggested Teunissen-Cremers syn-
drome (TCS) or stapes ankylosis with broad thumb and toes 
(SABTT) as a diagnosis, two very similar and allelic syndro-
mic entities. Sequence analysis of the NOG gene detected 
a single nucleotide heterozygous deletion at position 280 
(c.280del). To our knowledge, this frameshift variant was not 
previously described, but it is predicted to lead to a prema-
ture stop codon p.(Ala94Glnfs*28) and prevents the normal 
translation of Noggin protein.

Materials and methods
Subjects
The probands, an 8-year-old child, and his 48-year-old 
mother, were referred to our Clinical Genetic Service for 
a genetic evaluation of a congenital bilateral conductive 
hearing loss. The mother underwent surgical interven-
tion for conductive hearing loss with suspected otoscle-
rotic-like stapes fixation.

Their family history did not show members affected by 
hearing loss or skeletal anomalies, or specific genetic 

conditions. In particular, the mother’s sister and their par-
ents are reported having normal audiological functions. 
The child has two healthy older sisters.

Clinical, physical and audiological examinations were 
performed by an otorhinolaryngologist and by a clinical 
geneticist on both mother and son.

X-rays of hands, feet, skull and spine were obtained for 
both patients. Also, we asked and obtained specific writ-
ten consent forms, for genetic testing and for picture 
taking.

Genetic analysis
Genomic DNA was extracted from peripheral blood lym-
phocytes using the automated QIAsymphony Platform 
(Qiagen). A sequence analysis of the NOG gene was per-
formed using the ABI PRISM_3130xl DNA sequencer 
(manufactured by Applied Biosystems, Foster City, 
California, USA). The full coding region of the gene was 
sequenced and primers are available upon request.

Results
The two individuals did not have dysmorphic facial char-
acteristics (hypoplastic alae nasi and hemicylindrical nose 
were noticed) and had normal tooth shape and enamel. 
They had brachytelephalangy of the hands with broad 
terminal phalanges (Fig. 1a,b). Fifth finger clinodactyly 
is evident in the boy (Fig. 1a). Flexion at the proximal 
interphalangeal joints is limited, especially in the boy. 
Symphalangism (i.e. the ankylosis of the interphalan-
geal joints) was not radiologically evident. X-rays of the 
patients’ hands confirmed the presence of brachytel-
ephalangia, clinodactyly of the V finger (in the boy) and 
a short first metacarpal bone (Fig. 1c,d). The feet’s radi-
ographies of both persons (Fig. 1e,f) show short hallux, 
more evident in the mother (Fig. 1f), whereas cutaneous 
syndactyly of the second and third fingers is present only 
in the son.

No bone anomalies were detected through X-rays of the 
skull and spine in both individuals.
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Fig. 1

Pictures of the boy’s hands (a) showing brachytelephalangia with broad terminal phalanges and V finger clynodactyly. Pictures of the mother’s 
hands (b) showing brachytelephalangia with broad terminal phalanges and V finger clynodactyly. X-rays of the patients’s hands (c: boy and 
d: mother) confirmed the presence of brachytelephalangia, clinodactyly of the V finger (in the boy) and a short first metacarpal bone. The feet 
radiographies of both patients show short hallux (more evident in the mother; e), while only the son presents cutaneous syndactyly of the second 
and third fingers (f). (g) Pure tone audiometry of the boy showing bilateral pure conductive hearing loss. (h) Pure tone audiometry of the mother 
showing a moderate conductive hearing loss on the left side, and a profound mixed hearing loss on the right side due to a complication of previous 
surgery.
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Pure tone audiometry of the probands showed bilateral 
moderate hearing loss in the boy (Fig. 1g), whereas the 
mother presented a moderate conductive hearing loss on 
the left side and a profound mixed hearing loss on the 
right side, which was treated with surgery for stapes fix-
ation (Fig. 1h).

The ophthalmic examination of the boy was normal, rul-
ing out hypermetropia and showing a normal length in 
the eye axis. For the mother, an ophthalmic examination 
was not available.

A sequence analysis of the NOG gene (NM_005450 
accession number) detected a single nucleotide hete-
rozygous deletion at position 280 (c.280del), both in the 
son and in the mother, while the same was not available 
for the two healthy sisters. This frameshift variant of the 
gene, with only one exon and without expected non-
sense-mediated decay, is expected to cause a premature 
stop codon p.(Ala94Glnfs*28) and a truncated, nonfunc-
tional Noggin protein.

Discussion
Conductive hearing loss in children is most frequently 
due to ear infections. Only rarely this type of auditory 
impairment is congenital (Esteves et al., 2014). These 
congenital types, however, are often due to ear malforma-
tions ranging from deformities of the external and mid-
dle ear to isolated malformations of the ossicular chain. 
Moreover, congenital stapes ankylosis is an extremely 
rare condition.

Ossicular chain malformations are often a sporadic condi-
tion, but about 25% of cases show monogenic syndromes 
with a conductive or mixed hearing impairment, such as 
Crouzon syndrome, Pfeiffer syndrome, Klippel-Feil syn-
drome or Branchiootorenal syndrome (Thomeer et al., 
2012). Congenital stapes ankylosis is described in differ-
ent syndromic conditions, including Mayer-Rokitansky-
Küster-Hauser syndrome (Ledig and Wieacker 2018), 
Stickler syndrome (Baijens et al., 2004), Saethre-Chotzen 
syndrome, Osteogenesis Imperfecta (Pedersen 1984), 
Multiple epiphyseal dysplasia (Beighton et al., 1978) and 
X-linked Stapes Ankylosis with Perilymphatic Gusher 
(de Kok et al., 1995). Consequently, the detection of 
familial cases of congenital conductive hearing loss 

should be considered a red flag for possible syndromic 
conditions and should call for genetic counseling and 
eventual testing.

We have described a family where the presence of a very 
similar audiological pattern between mother and son led 
to an in-depth evaluation of the subjects. Their pheno-
types were strongly suggestive of TCS/SABTT because 
of the association of stapes ankylosis and skeletal specific 
findings, however, subtle. This prompted us to perform 
a targeted investigation of the NOG gene, resulting in 
the detection of a loss-of-function variant in both mother 
and son, consisting of a frameshift in the 94th codon and 
leading to the expected early termination of an anoma-
lous protein: p.(Ala94Glnfs*28). Another frameshift var-
iant near this codon, associated with the TCS/SABTT 
phenotype [NOG, c.304del (p.Ala102fs)], was reported 
(Thomeer et al., 2011) along with two heterozygous non-
sense variants at codons 110 and 129 (Brown et al., 2002; 
Takahashi et al.; 2001). Clinical data for these are con-
sistent with the same phenotypic spectrum. Moreover, it 
was reported (Laurell et al., 2013) that signs of the TCS/
SABTT spectrum are present in subjects with gross dele-
tion of NOG in 17q22, supporting the haploinsufficiency 
of NOG as a cause for the condition.

Considering the specificity of the phenotype, its verti-
cal transmission, the type of variant found in NOG, the 
cosegregation of the variant, its absence in population 
databases and the presence in pathological mutation 
databases of similar variations nearby, we believe that 
this variant can be considered pathogenic for TCS/SBTT, 
according to American College of Medical Genetics and 
Genomics guidelines (Richards et al., 2015).

The reported boy and his mother show the association of 
conductive hearing loss due to stapes ankylosis with only 
a few, not severe, additional skeletal and joint anomalies 
(brachytelephalangia, II-III toe syndactyly, V finger clinod-
actyly, short broad hallux and joint limitation of finger move-
ment). These are typical signs of SABTT/TCS (Teunissen 
and Cremers 1990; Weekamp et al., 2005) and some of them 
are shared with other NOG-symphalangism spectrum disor-
der (SSD) syndromes, such as SYNS1 and SYM1.

However, SABTT/TCS differs from SYM1, SYNS1 and 
Brachydactyly type B2 for hyperopia. This, in fact, is 

Table 1  Prevalent signs/symptoms of SSD and of the reported family

 SYNS1 SYM1 TCC SABTT/TCS Our family 

Stapes ankylosis + + − + +
Typical face +/− − − + +
Hyperopia −/+ − − + −
Vertebral/limbs anomalies + − + −/+ −
Symphalangism + + + − −
Brachytelephalangia with broad terminal phalanges + − +/− + +
Limited flexibility of hand proximal interphalangeal joints + + −/+ + +
Fusion of carpal and tarsal bones + +/− + − −
Broad thumbs/halluces − − − + +/−

SABTT, stapes ankylosis with broad thumb and toes; SYM1, symphalangism; SYNS1, multiple synostosis syndrome; TCC, tarsal-carpal coalition syndrome; TCS, Teunis-
sen-Cremers syndrome.



Copyright © 2022 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

4  Clinical Dysmorphology  XXX, Vol XXX No 00

almost constant in the first two conditions, but rare in the 
others, and differs from Tarsal-Carpal coalition syndrome 
because of the lack of fusions in carpals or tarsals.

Both our individuals lack the proximal symphalangism 
and the ocular hyperopia or other visual defects that are 
usually present in Teunissen-Cremers patients [only one 
case without these signs is indeed described in the litera-
ture (Brown et al.,2002)]. However, in our subjects, finger 
motility was found to be impaired.

Pathogenic variants in the NOG gene produce different 
rare syndromes, some of them with stapes ankylosis char-
acterized by specific phenotypic defects but also with 
overlapping ones, that could make a differential diagnosis 
difficult (Table 1).

For this reason, the unifying term NOG-related SSD 
(NOG-SSD) was proposed (Potti et al., 2011). These syn-
dromes are Brachydactyly type B2 (BDB2: MIM# 611377 
(Lehmann et al., 2007), Multiple synostoses syndrome 1 
(SYNS1: MIM#186500) (Gong et al., 1999; Dixon et al., 
2001; Declau et al., 2005; Van den Ende et al., 2005; Lee et 
al., 2014), Stapes ankylosis with broad thumb and toes or 
Teunissen-Cremers syndrome (SABTT: MIM#184460) 
(Teunissen et al.,1990; Weekamp et al., 2005; Hirshoren 
et al., 2008), Symphalangism, proximal 1A (SYM1: MIM 
#185800) (Ensink et al.,1999; Gong et al., 1999; Potti et al., 
2011; Yuan et al., 2020), Tarsal-carpal coalition syndrome 
(TCC: MIM#186570) (Dixon et al., 2001). All these condi-
tions are transmitted as autosomal dominant traits, they are 
completely penetrant, and most of them share the presence 
of proximal symphalangism defined as the abnormal fusion 
of the proximal interphalangeal joints of hands and feet.

The NOG gene encodes the Noggin protein which, in 
dimeric structure, binds to the bone morphogenetic pro-
teins signaling of the transforming growth factor-b super-
family (Smith and Harland, 1992; Zimmerman et al., 1996; 
Beck et al., 2001; Seemann et al., 2009; Song et al., 2010), 
inhibiting their activities. Therefore, the NOG gene has 
an important role in cartilage morphogenesis and joint 
formation (Brunet et al., 1998). Pathogenic variants of the 
gene reduce the secretion of functional Noggin with an 
excess of bone morphogenetic proteins activity, resulting 
in a cartilage excess and in failure to start normal joint 
formation. To date, the literature reports more than 65 
human pathological variations of NOG (Usami et al., 2012; 
Ishino et al., 2015; Takano et al., 2016; Ma et al., 2019; Yuan 
et al., 2020).

In a subject diagnosed as SABTT, no pathogenic vari-
ant was found in the NOG gene, (nor in other possibly 
interested genes, such as GDF5 or FGF9) suggesting the 
possibility of genetic heterogeneity (Ganaha et al., 2015).

In general, no strict correlation between pathological var-
iants and specific phenotypes was found. Several reports 
underline that the same NOG sequence pathogenic 

variation can produce different inter or intrafamilial phe-
notypes, in particular concerning the degree of joint or 
bone deformities (Hirshoren et al., 2008; Masuda et al., 
2014; Ganaha et al., 2015; Ishino et al., 2015; Takano et al., 
2016; Shu et al., 2019, Yu et al., 2020). No definite corre-
lation was found between the protein position in differ-
ent domains and the phenotype, even if it was pointed 
out that in cases with stapes ankylosis without SYM1 the 
cysteine-rich C-terminal domain is primarily disrupted 
(Dixon et al., 2001; Usami et al., 2012; Lee et al., 2014; 
Ganaha et al., 2015; Ma et al., 2019).

Finally, the disease expression does not seem connected 
to the type of NOG variant (Ma et al., 2019). The same 
clinical picture produced by missense variants (the most 
frequently found ones) can also be due to completely 
inactivating sequence variations. In summary, it seems 
likely that other factors (disease-modifying genes, epige-
netic variations or environmental influences) can modu-
late the clinical expression of NOG variants, determining 
variable phenotypes.

Even if familial stapes ankylosis detected in adulthood 
is more commonly due to nonsyndromic otosclerosis, it is 
important to collect a detailed audiological and medical 
history of subjects and their families, and to perform a 
careful physical examination looking for associated dys-
morphic features. Particular attention should be paid, 
for instance, to the presence of even mild and not easily 
recognizable bony abnormalities of hands, feet and spine, 
in order not to miss syndromic conditions.

In subjects with stapes ankylosis with even minor skele-
tal anomalies, the analysis of the NOG gene is particularly 
useful for diagnosis purposes, whereas the examination 
of first-degree relatives is crucial. Moreover, the NOG 
gene analysis could be useful even to differentiate NOG-
SSD from other syndromes (for instance Osteogenesis 
Imperfecta) where stapes ankylosis could be present 
(Usami et al., 2012).

Although bone conduction hearing aids provide efficient 
rehabilitation for conductive hearing loss, it is important 
to remember that conductive hearing loss due to NOG 
variants generally benefits greatly from stapes surgery 
(Vincent et al., 2016; Westergaard et al., 2018). The sur-
gical skills of the operator and the choice of appropriate 
prosthesis that can adapt to the potential anatomic anom-
alies of the ossicular chain present in Teunissen-Cremers 
syndrome/SABTT are crucial (Coombs and Bird 2016). 
However, the possible risks of a surgical procedure are 
still present, as well as the risk of bony reclosure of the 
oval window after surgery, and may have a major impact 
on the audiological outcome of the procedure.

Conclusion
This report adds a novel pathogenic variant of NOG, 
causing a TCS/SABTT phenotype, and provides further 
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data about NOG-associated phenotypes and intrafamilial 
variability.

In case of familial history of congenital conductive hear-
ing loss, radiologic imaging is required to evaluate the 
possible presence of middle ear anomalies and stapes fix-
ation signs. This is crucial for surgical planning, and it is 
useful for a following genetic evaluation that should be 
recommended for the non-negligible risk of underlying 
syndromic conditions.
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