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Summary

The goal of the work is to propose a robust 3D constitutive model of concrete, based on ex-

isting plasticity and damage models, which are extended to include long-term effects and fatigue

behaviour. Specifically, the accumulation of plastic strains inside the complex heterogeneous struc-

ture of concrete materials, is considered as the main physical mechanism underlying the non-linear

creep behaviour and the fatigue degradation. Moreover, the proposed model must account for non-

linear characteristics of concrete materials, such as permanent deformations, stiffness degradation

and recovery, pressure dependency, and stress concentration effects in a unified manner.

To this aim, in a first step, plasticity and continuum damage mechanics are coupled altogether

with a creep model to account for long-term effects. Then the plastic-damage model is extended

to account for fatigue behaviour. In the coupled model, the fatigue failure is explained by the

progressive accumulation of inelastic strains and the evolution of micro-cracks, as the size of the

elastic domain decreases. In particular, the constitutive model allows for plastic flow and damage

accumulation, even for stress states initially below the yield surface.

The plastic-damage model considers the pressure dependent Ménétrey-Willam yield surface, ex-

tended to incorporate a scalar damage variable which is responsible for the reduction in size of the

yield surface as the material undergoes damage. In order to account for the different damage mech-

anisms in tension and compression, two different damage components are defined using exponential

laws as suggested by Mazars, for both tension and compression. A stiffness recovery function is

defined to catch the increase of stiffness due to the closure of cracks as the mechanical load re-

verses from tension to compression. The creep formulation of the model considers the B3 model
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of Bažant and Baweja, in which aging is incorporated through the solidification theory. In order

to account for fatigue degradation and accumulation, even for stress state initially below the yield

surface, a modified formulation of the Ménétrey-Willam yield surface is proposed in this work. The

proposed fatigue model considers an extension of the modified Ménétrey-Willam yield function, to

include a fatigue degradation function that represents the effects of the cumulative and irreversible

micro-structural degradation as the number of cycles increases. An appropriate internal variable

for fatigue is selected, in order to allow for strength degradation for stress states initially below the

yield surface.

The numerical implementation of each component of the model and their coupling are discussed.

In particular, the plastic-damage and fatigue component is implemented considering a two-step al-

gorithm, with an elastic-predictor step, followed by a plastic correction. On the other side, the creep

model is implemented by means of the exponential algorithm proposed by Bažant. The coupling is

done assuming a scenario in which the load increment is applied instantaneously at the beginning

of the time interval into consideration. Then, The derivation of the elasto-plastic consistent tangent

operator and, of the visco-elasto-plastic constitutive tangent operator are discussed. A ”return to

apex” procedure is described to account for situations in which the return-mapping vector does not

intersect the yield surface.

Each component of the model is calibrated and validated against experimental results. Specif-

ically, the plastic-damage model has been calibrated and validated against tri-axial compression

tests, considering different levels of confinement. The calibration and validation of the creep model

requires the determination of the number of Kelvin units for the basic and drying creep components

of the B3 model, for a more accurate reproduction of creep curves. With regards to the fatigue

model, the effects of the stress range and of the confinement level in multi-axial stress states were

assessed in the fatigue response of concrete materials, by considering relevant experimental tests

from the literature. The proposed model is able to catch non-linear features of the mechanical

behaviour of concrete such as the stiffness degradation and post-peak softening behaviour. Fur-

thermore, it can reproduce the experimental three-stage pattern of the fatigue curves, for concrete

specimen subjected to multi-axial stress conditions.
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Then experimental tests were performed at the meso-scale, in which the coarse aggregates and

the cement matrix are differentiated.Interestingly, a principal aspect of the proposed model is its

capability to account for local material deterioration at the meso-scale, even when the macro-

mechanical load is below the yield limit. In particular, by studying the interaction between the

aggregates and the cement matrix at the meso-scale, it comes out that the proposed model is able

to account for non-linear creep or tertiary stage creep, which is not included in the B3 model of

Bažant and Baweja, and without considering additional parameters related to creep. This can be

attributed to the growth and coalescence of plastic regions that develop at the interface between the

stiffer aggregates and the creeping mortar. The tests performed at the meso-scale of the coupled

model prove the soundness of the proposed model to reproduce the non-linear mechanical behaviour

of concrete subjected to generic 3D stress states under monotonic, creep and fatigue loadings.
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NOMENCLATURE

a = slope of the fatigue degradation function;

A,B = constant parameters of the plastic potential function;

Ac, Bc = calibration parameters in compression of the Mazars’ damage model;

At, Bt = calibration parameters in tension of the Mazars’ damage model;

C0(t, t
′), Cd(t, t

′, t0) = basic and drying creep terms, respectively, of the B3 model;

Dep = elasto-plastic tangent operator;

Dve = visco-elastic tangent operator;

Dvep = visco-elasto-plastic tangent operator;

E = stiffness modulus;

Eµ = stiffness modulus of the spring of the µ-th Kelvin unit;

e = material eccentricity;

f = yield surface;

fc = compression strength;

ft = tensile strength;

gp = plastic potential;

Gf = fracture energy;

h = spatial average of pore relative humidity;

I = identity tensor in Voigt notation: [1, 1, 1, 0, 0, 0]T ;

I1 = first invariant of the stress tensor;

J2, J3 = second and third invariants of the deviatoric stress tensor;

J(t, t
′
) = creep compliance function;

lc = characteristic length;

m = number of Kelvin units for basic creep;

md = number of Kelvin units for drying creep;

q = hardening/softening parameter q = qhqs;

q1, q2, q3, q4, q5 = constant parameters of the B3 creep model;

qh = hardening parameter;

qh0 = initial value of the hardening parameter;
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qf = fatigue degradation function;

qs = softening parameter;

Q(t, t
′
) = aging visco-elastic function of the B3 creep model;

r = elliptic function controlling the shape of the yield surface;

s0 = initial value of the stiffness recovery function;

sij = deviatoric stress tensor components;

t = current age of concrete;

t′ = loading age of concrete;

t0 = time at which drying of concrete starts;

ts = softening slope;

V e = volume of the finite element;

wc = crack band width;

εp = plastic strain tensor;

εve = visco-elastic strain tensor;

δ = Kronecker delta (δij = 1 if i = j; δij = 0 if i ̸= j) ;

ε = uniaxial strain;

εc = creep strain tensor;

εcreep = uniaxial creep strain;

εe = elastic strain tensor;

ηµ = viscosity of the dashpot of the µ-th Kelvin unit;

κ = equivalent plastic strain (volumetric plastic strain);

κc = equivalent plastic strain for compression damage;

κc0 = initial value of the equivalent plastic strain for compression damage;

κf = crack band equivalent plastic strain;

κt = equivalent plastic strain for tension damage;

κt0 = initial value of the equivalent plastic strain for tension damage;

κ1D = plastic volumetric strain at maximum compression load in uniaxial condition;

γf = internal variable foe fatigue evolution;

γt = threshold value of gammaf for fatigue activation;
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γ̇ = plastic multiplier;

σ = uniaxial stress;

σ = stress tensor;

σep = elasto-plastic stress tensor;

σij = stress tensor components;

σtr = trial stress tensor;

σtr
i = principal component of the trial stress tensor;

τµ = retardation time of the µ-th Kelvin unit;

ν = Poisson’s coefficient;

ω = scalar damage variable with stiffness recovery;

ω∗ = total scalar damage variable;

ωc = scalar damage variable in compression;

ωc,max = maximum value of damage in compression;

ωt = scalar damage variable in tension;

ωt,max = maximum value of damage in tension;

(ξ, ρ, θ) = Haigh-Westergaard coordinates;
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Chapter 1

Introduction

1.1 Motivation and background

Concrete structures such as bridges, highway pavements, or machine foundations, which are

subjected to cyclic loads, can fail at stress levels far below the ones observed during monotonic

loads. Therefore, understanding the mechanisms behind the fatigue failure of concrete structures

is relevant for a better prediction of the fatigue life of such structures. The study of the fatigue

behaviour of concrete has received increased attention during the last century [1]. However, there

is still no comprehensive model that could explain and predict the fatigue behaviour of concrete.

This could be ascribed to two main factors. The first factor is the complex heterogeneous structure

of concrete materials. In fact, the complex interaction between the different phases that compound

concrete materials lead to a remarkably non-linear behaviour under mechanical loading, such as

mechanical degradation, permanent deformations, creep, etc. The second factor regards the multiple

parameters that influence the fatigue behaviour of concrete such as stress levels, loading rate and

waveform, moisture, and temperature, just to mention a few. This enhances the high variability of

fatigue test results.

From experimental studies [2–7], concrete fatigue failure is related to the gradual and permanent

structural changes that occur inside the complex heterogeneous material. It may result in the
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24 CHAPTER 1. INTRODUCTION

nucleation and coalescence of micro-cracks, until meso- or even macro-cracks are formed. Depending

on the scale of the defects, one can distinguish between two main types of fatigue regime: Low-

Cycle Fatigue (LCF), and High-Cycle Fatigue (HCF). According to Lemaitre et al. [8], LCF occurs

under repeated high level cyclic loads, with a stable growth of meso-scale to macro-scale cracks

until failure. On the other side, HCF occurs under a large number of repeated cycles with stress

levels much lower than the LCF. HCF damage is driven by a progressive accumulation of defects

that initiate at a micro- or nano-scale, making such a fatigue failure difficult to study [8, 9]. The

transition number of cycle to failure between LCF and HCF is usually considered as 103 to 104,

especially for high strength concrete [1, 9, 10].

For many years, fatigue life of concrete has been modelled using lifetime-based approaches. They

are phenomenological approaches in which mechanical quantities such as the residual strength, the

maximum strain, or the modulus of deformation are expressed as a function of the number of cycles

performed [1, 11–17]. In this kind of approach, fatigue damage approximation is commonly based

on a linear accumulation of damage with the number of cycles, such as the Palmgren-Miner rule,

where the total damage is estimated as the sum of the ratio of the number of cycles to the estimated

fatigue life, for each stress level. Despite the simplicity of the linear damage accumulation rule,

experimental tests on concrete reported in the literature have shown that the fatigue damage of

concrete is actually non-linear. In particular, by evaluating the effect of loading sequence on fatigue

damage accumulation, Lei et al. [18] have shown that the concrete cumulative damage factor

obtained using the Palmgren-Miner rule can be lower than unity in high-to-low loading sequence and

greater than unity in low-to-high loading sequence. Hence, overly-conservative or non-conservative

predictions can be obtained using the Palmgren- Miner rule. Moreover, the experimental nature

of lifetime-based approaches makes it impossible to understand the complex mechanisms of fatigue

damage, and additional effects such as permanent deformations, thermal loads, aging, creep and

shrinkage cannot be coupled with such models in a unified formulation.

The development of the continuum damage mechanics (CDM) has proven to be a powerful tool

to study the damage of concrete materials. It postulates the material homogeneity over a suitable

representative volume element of concrete, which size is relevant compared to the micro-cracks size.
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Coupling between the classical plasticity theory and continuum damage mechanics can provide

a strong framework to simulate the non-linear behaviour of concrete under cyclic loads [19]. A

suitable yield condition, a flow rule, and a hardening/softening rule, are amongst the necessary

components required to build a plasticity model. For concrete-like materials, plasticity models are

based on pressure-sensitive yield surface and non-associated flow rule. The damage part is usually

formulated in the framework of isotropic scalar damage, and required the definition of a damage

loading function with the corresponding equivalent strain and its evolution law. Lee et al. [20]

have proposed a plastic-damage model in which the elasto-plastic response and the degradation

damage response are decoupled. The plastic formulation of the model uses a modified version of

the Lubliner’s yield function [21], and the damage formulation is based on the fracture energy.

The Lee and Fenves model has been extensively used in the literature to simulate tensile and

compressive cyclic loadings [22–24]. Grassl et al. [25] have proposed a coupled plasticity-damage

model of concrete suitable for predicting the mechanical behaviour in axial, bi-axial, tri-axial cyclic

compressions, and in uniaxial cyclic tension. The model uses an adapted version of the modified

Leon model [26] formulated in the Haigh-Westergaard effective stress space. The damage evolution

is controlled by the plastic strain and the evolution law for the scalar damage variable is assumed

to have an exponential form. In order to account for crack opening/closure effect during cyclic

loading, the previous model has been improved [27], by considering a decomposition of the total

damage variable into a compression and tension part.

Many other researchers have coupled plasticity and continuum damage mechanics in order to

model the cyclic behaviour of concrete [19, 28–33]. However, these models present some limitations

for the fatigue modeling of concrete, especially when the comparison is made between HCF and

LCF. In fact, the stress level to reach failure in HCF are much lower than the one in LCF, as the

fatigue behaviour is driven by a progressive accumulation of microscopic defects. The fatigue failure

in HCF can occur for stress levels below the yield surface. As a consequence, constitutive models for

HCF must allow for plastic flow or damage accumulation, for stress states inside the yield surface.

The previous coupled plastic-damage models could be suitable for capturing the fatigue failure of

concrete in the LCF, where the stress levels during cyclic loading lie outside of the elastic domain,
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but they need to be extended for a proper modelling of HCF [9, 34].

In order to reproduce the mechanical behaviour that brittle materials exhibit during HCF,

Lemaitre et al. [8] have proposed a two-scale model. The model is grounded on the physical

observation that, even though the stress at the level of the representative volume element (meso-

scale) is inside the elastic domain during HCF, the local stress (micro-scale) can lie outside the

elastic domain, due to local heterogeneities. In order to catch this scale effect, the two-scale model

considers a ”weak” inclusion that represents the micro-defect inside the representative volume

element at the meso-scale. The overall elasto-plastic behaviour is the same at both scales, but only

the weak inclusion is allowed to damage, while the matrix surrounding it can remain elastic. The

coupling between the two scales is done by relating the plastic strains at the micro-scale to the

strains at the meso-scale level through an appropriate localisation law. Although this model can

predict fatigue failure, its extension to the micro-scale requires to determine additional material

parameters, and to solve further equations.

Marigo [35] has proposed a fatigue damage model that can describe realistically LCF and HCF

failures. In this formulation, the yield concept is replaced by an irreversible loading-unloading

condition, and the model allows for damage growth for stress states below the damage surface.

The damage equivalent strain is usually defined so that damage increases during the loading phases

and no further damage occurs during the unloading phases of the cyclic load. The model usually

required the definition of a gauge function taking values between 0 and 1, that is an alternative

to the yield function, and of a continuous and increasing function evaluated at the gauge function,

that allows for damage below the damage surface. Recently, many scholars have used the Marigo’s

formulation to simulate the fatigue behaviour of brittle materials [31, 34, 36, 37]. Although these

models can fairly well simulate the HCF behaviour of concrete, none of them take into account the

creep behaviour of concrete. In fact, Experimental results [38–40] corroborate the idea that it exists

an evident correlation between creep and damage of concrete, especially with regards to concrete

structures subjected to long-term loads. Physically, the strain mismatch between the creeping

cement matrix and the stiffer aggregates can generate local stresses in the matrix higher than the

macro-scale stresses, leading to damage [41]. This aspect is relevant for HCF, in which fatigue failure
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can occurs after several cycles. In the literature, some researchers have used phenomenological creep

models combined with damage to simulate the behaviour of concrete materials [41–45]. However,

none of these models is able to simulate the plastic, creep and damage behaviour of concrete,

including multi-axial stress states and local confinement effect in a comprehensive manner.

More recently, Oneschkow et al. [6] have proposed a finite element approach with a gradient-

enhanced equivalent strain-based damage model combined with a fatigue model in order to simulate

the fatigue behaviour of concrete. The model uses a gradient-enhanced equivalent strain measure in

order to overcome mesh-dependency issues. The fatigue model is obtained, extending the classical

damage criterion by including a strength reduction function that is suitable to describe the initial

damage processes, but also the stable damage-growth phase of fatigue. As the number of cycles

increases, the threshold for which static damage occurs gradually decreases, and damage can occur

even for stress levels below the damage surface.

Another challenging aspect that characterizes concrete modeling is related to the material het-

erogeneity, and the interaction between its different phases. In fact, a homogeneous or macro-scale

modeling of concrete is rather a coarse representation of its structural geometry, and it does not

allow to distinguish the different behaviours of the internal constituents, nor to bring light to the

complex interaction between them, such as local confinement effects due to compressive loads [46].

On the other hand, a micro-scale modeling of the heterogeneous internal constituents of concrete

leads to very complex constitutive models, with numerous material parameters, often without a

physical meaning [47]. A good compromise between the two above-mentioned modelling scale is

the meso-scale modelling, in which concrete is modeled as a three-phase material, made of aggre-

gates, the cement matrix and the Interfacial Transition Zone (ITZ) in between. Simpler meso-scale

models consider only two phases, made of coarse aggregates and the cement matrix. This meso-scale

modeling, especially for a 3D geometry, allows for a more comprehensive simulation of concrete be-

haviour, with moderate computational costs. Furthermore, the meso-scale modeling can be useful to

describe some macro-scopic behaviour of concrete, by having a deeper insight at the local material

deterioration that occurs at the interface between the aggregates and the cement matrix[48–50].

Despite the ongoing research on the development of constitutive models in order to reproduce
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the mechanical behaviour of concrete under fatigue and cyclic loading, there is still the need of

a comprehensive model grounded on a physical basis, and able to capture the main non-linear

characteristics that concrete materials exhibit during complex fatigue loads. In this work, a robust

3D visco-elasto-plastic damage model is presented, in order to reproduce the non-linear mechanical

behaviour of concrete subjected to creep and fatigue loads in multi-axial stress states. The visco-

plastic formulation of the model considers the pressure-dependent Ménétrey-Willam yield function

[51], extended to include strength degradation due to static damage. The stiffness degradation and

crack-closure effects are accounted for, by a differentiation between tensile and compressive damage

with the scalar and isotropic Mazars damage model [52]. The creep formulation considers the B3

model of Bažant and Baweja [53] and a strain additivity hypothesis serves as the foundation for

the coupled model. In the proposed fatigue model, the physical micro-structural degradation due

to fatigue is interpreted as a gradual reduction of size of the elastic domain as the number of cycles

increases. This is achieved by considering an extension of the modified Ménétrey- Willam yield

function to include a fatigue softening function that represents the effects of the cumulative and

irreversible micro-structural degradation as the number of cycles increases. The fatigue behaviour

is driven by an internal variable based on the amount of extension experienced by the material.

Numerical tests are performed at the macro- and meso-scales to evaluate the capabilities of the

proposed model. Interestingly, the performance of the coupled model is more relevant at the meso-

scale, in which local effects can be observed. The study of the bi-phase mesoscale model suggests

that, the non-linear creep behaviour of concrete can be attributed to the growth and coalescence of

plastic regions that develop at the interface between the stiffer aggregates and the creeping mortar.

This non-linear behaviour is not included in the B3 model of Bažant and Baweja. The fatigue tests

performed at the meso-scale of the coupled model show premises of the capabilities of the proposed

model to reproduce the non-linear mechanical behaviour of concrete subjected to generic 3D stress

states under cyclic loadings.

A preliminary step to the development of such a model is the understanding of the micro-

mechanical damage processes related to fatigue, that occur inside the complex heterogeneous ma-

terial structure. Then. a review on the relevant aspects that can affect the fatigue performance of
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concrete materials will be performed.

1.2 Fatigue damage processes in the concrete micro-structure

Despite the extensive and ongoing research on the fatigue damage of concrete, the mechanisms

behind the fatigue failure and the exact point at which it occurs are still subject of discussion.

This could be explained by the complexity of the material structure [10] and the many factors

that can influence the fatigue behaviour such as the amplitude, rate and frequency of loading,

the minimum and maximum stress levels, the waveform, the moisture and temperature, material

strength, just to mention a few [1, 15, 54–57]. However, some fatigue properties of concrete are

still widely acknowledged by researchers. Fatigue damage of concrete materials can be described

as the gradual and irreversible degradation which occurs due to the nucleation of cracks at the

microscopic scale at the cement matrix/aggregates interface, and inside the matrix itself [58–60].

These cracks can grow and coalesce inside the complex heterogeneous structure of concrete, until

failure. Experimental evidences with the aid of high resolution techniques [61, 62] have shown that

the distribution of cracking that occurs in concrete-like materials subjected to cyclic loading is more

complex and extensive with respect to monotonic loading, as shown in Fig. 1.1.

Yang et al. [62] have obtained similar crack distribution by using Micro X-ray Computed

Tomography (CT) to rock specimens subjected to monotonic and tri-axial cyclic loadings at failure,

as shown in Fig. 1.2. This difference between the monotonic and cyclic crack patterns indicates

that, the crack distribution is more diffuse at the macro-scale level in the case of cyclic loads. This

micro-cracks can then grow and coalesce, until meso- or even macro-cracks are formed.

Although concrete does not exhibit a fracture pattern with distinguishable properties, Otto er

al. [63] have found using a microscope, that the fracture surface of fatigue is remarkably smoother

than monotonic loading, and some abrasion can be observed, as shown in Fig. 1.3. However, the

extremely small scale at which the physical mechanisms related to fatigue damage occur makes

it difficult to investigate the damage process correctly. The resolutions of commercially available

instruments are often not sufficient and require the use of specimens of limited size, allowing only
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Figure 1.1: Comparison of crack distribution for cyclic (left) and monotonic (right) loadings [61].

for detection of relatively large cracks [59].

Macroscopic damage indicators that can be measured experimentally such as strain, remnant

strength or stiffness, can be investigated to understand the micro-mechanical fatigue damage pro-

cesses. With reference to strain, the total strain can be subdivided into an elastic part and a

plastic part. The elastic part can be recovered during the unloading phase. However, the plastic

part is irreversible and consequently, will accumulate as the number of cycles of loading increases.

Therefore, the accumulated plastic strain can be interpreted as a macroscopic damage indicator

intrinsically linked to the permanent micro-structural changes that occur in the material structure

[1, 7, 57, 59, 64]. From experimental evidences, the plot of the total accumulated strain with the

number of cycles has a typical inverted S-shape that can be subdivided into three stages as shown

in Fig. 1.4 [7, 31, 59, 65].

The first stage, also called decay stage, is characterized by a rapid increase of the cumulative

inelastic strain with decreasing rate, and last about 10 to 20% of the fatigue life. The second stage,

also called steady stage, is characterized by a constant rate of cumulative strain, and corresponds
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(a) Crack distribution for monotonic loading (left)
and tri-axial cyclic loading (right);

(b) Crack distribution for monotonic loading (left)
and tri-axial cyclic loading (right);

Figure 1.2: Micro X-ray CT of horizontal (a), and vertical (b) cross-sections of rock specimens at
failure subjected to monotonic and tri-axial cyclic loading [62].

to a steady damage growth. It can last about 60 to 80 % of the fatigue life. Finally, the last stage,

also called accelerated stage, is described by an accelerated increasing rate of strain accumulation,

corresponding to an abrupt increase of damage, leading to failure. It can last about 10 to 20% of

the fatigue life. The transition phases between the different stages is dependent on the maximum

stress level and the concrete strength. If the stress level is very high, the second stage could become

very short, or even disappear, and we observe the failure of material after a few number cycles

due to the rapid and excessive accumulation of inelastic strains [7]. This kind of failure usually

corresponds to LCF. On the contrary, whenever the maximum stress level is relatively small, the

third stage could not be observed, even after a high number of cycles. This corresponds to HCF,

during which the inelastic strains accumulate very slowly [7].
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Figure 1.3: Fracture topography for monotonic (left) and cyclic (right) loading [63].

The fatigue failure regime according to the number of cycles to failure is reported in Fig. 1.5,

where a super-high-cycle fatigue is shown, although it is considered by many scholars as a special

case of HCF [1, 14]. High strength concrete which has a more brittle behaviour with respect to

normal strength concrete, exhibits shorter duration for stages 1 and 3, of about 5% [56].

Strain-independent information about the damage mechanisms of concrete subjected to fatigue

loading can be obtained using non-destructive techniques such as acoustic emission hits and ul-

trasonic pulse velocity technique. The first technique is based on the use of acoustic methods to

record the vibrations due to the energy release as a consequence of crack formation. The quantita-

tive distribution of the relevant parameters such as the amplitude or the frequency of the acoustic

emission hits are used to provide qualitative information on damage propagation [59, 66–68]. The

ultrasonic pulse velocity method measures the transit time of ultrasonic pulses through the speci-

men, which depends on the density and the elastic properties of the material tested. This transit

time is affected by the crack opening [69]. Both methods exhibit the same qualitative behaviour as

the strain development, that is, the three stages of crack development can be observed, as shown

in Fig. 1.6.

By means of fluorescence microscopy with polished sections, and scanning electron microscopy,

Thiele et al. [71] have studied the crack development during the three stages of the strain curve. He

found that, while the mean crack widths can increase slightly during the transition from the decay
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Figure 1.4: Typical three-stage strain accumulation curve for concrete subjected to cyclic loading.

stage to the steady stage, the crack length might decrease during the decay stage, and remain

unchanged or increase slowly during the steady phase. However, almost no variation in crack

pattern could be detected during the decay and the steady stages, probably due to the extremely

small scale on which structural changes occur during these stages. The cracks were oriented in the

loading direction during the acceleration stage, with mean values of width in the range of 5.0 µm

to 12.5 µm.

The crack growth in concrete due to fatigue is strongly influenced by the interaction between

the coarse aggregates and the cement paste. By studying the stress distribution in the concrete

micro-structure subjected to monotonically increasing and cyclic compressive loads, Mehmel et al.

[72] have shown that the large difference in stiffness between the aggregates and the cement matrix

leads to a non homogeneous stress distribution with areas of peak stresses in the cement matrix.

The local peak stresses can be much higher that the external stresses imposed and depend on

the size and the amount of aggregates, or the ratio of the stiffness of the aggregates and cement

matrix. According to [72], the areas of internal peak stresses, located at the interface between

the aggregates and the cement matrix, lead to further damage within the cement matrix. This

result was confirmed by Oneschkow [6], who has shown experimentally that the coarse aggregates

have a detrimental effect on the concrete fatigue behaviour with a higher stiffness degradation,
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Figure 1.5: Fatigue regime thresholds and corresponding loads/structures [14].

compared to that of the mortar. Despite that, the number of cycles to failure at high level stress

between the concrete and mortar specimens where similar. However, he also observed that, for low

stress levels, stress redistribution can occur between the stiffer aggregates and the cement matrix,

relieving significantly the fatigue sensitive cement matrix. As consequence, concrete specimens have

exhibited higher fatigue life than mortar specimens.

1.3 Loading parameters affecting the fatigue behaviour of

concrete

Several parameters can influence the fatigue life and behaviour of concrete. Amongst them, are

the maximum stress level, the loading amplitude and frequency, the multi-axial stress state, the

moisture, and the temperature, just to name a few. In the literature, some authors have studied

the effects of these parameters on the fatigue response of concrete, mainly via experimental tests.

However, due to the fact that these parameters can interact together, the results are sometimes

contradictory, or difficult to interpret [1]. As loading is one of the main factors related to fatigue,

this section gives a brief review of the effects of parameters associated to loading, that can influence

the fatigue performance of concrete.
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Figure 1.6: Comparison of the fatigue degradation obtained using longitudinal strain
measurement, acoustic emission method, and ultrasonic pulse velocity method [70].

1.3.1 Maximum stress level

With regards to the effect of the maximum stress level, several empirical formulae have been

developed between the maximum stress level and the logarithmic number of cycles. Most are

approximated by a linear relationship, with various levels of accuracy [2–4, 73], and are often used in

design codes [74, 75]. Holmen et al. [70] have proposed a non-linear relationship between the stress

level and the logarithmic number of cycles, in order to account for the increased standard deviation

of regression formulae at low stress levels. In order to account for the different fatigue behaviour

in Low-Cycle and High-Cycle regimes, Hsu et al. [76] have proposed different linear approximation

formulae for each regime. More recently, Zhang et al. [77] have investigated the effect of the stress

level on the fatigue performance of plain concrete based on the energy dissipation method. He found

that, the development of strain, stiffness degradation, and fatigue damage, exhibit a three-stage

pattern, similar to the one described in Section 1.2. Furthermore, in the secondary stage, the value
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of strain rate remains approximately constant, independently of the stress level.

1.3.2 Loading frequency

With regards to the loading frequency there is still no consensus on its influence on the fatigue

performance of concrete [1]. This could be ascribed to the combined effects with temperature and

stress range [1]. In the past, some experimental investigations have shown little to no effect on the

fatigue response, according to the maximum stress level. Works by Mehmel et al. [78], who has

considered fatigue tests with frequency range of 0.5 to 1 Hz, and Graf et al. [79], who has considered

frequency range of 4.55 to 7 Hz, have shown no effect of loading frequency on fatigue performance,

provided that the ratio between the maximum stress level and the static strength was less than 75

%. This observation is supported by the work of Raithby et al. [54], who has found no frequency

effect on fully saturated beams, when considering two different sinusoidal load frequencies of 4 and

20 Hz. However, for higher stress levels (from 80 to 95 % of the static strength), Awad et al. [80]

have found a reduction of fatigue performance with decreasing rate of loading. In particular, by

plotting the rate of loading versus the logarithmic number of cycles, it was found that a reduction

of the rate of loading by one order of magnitude can lead to a reduction of the fatigue life by

almost one order of magnitude. These observations are consistent with more recent research[15,

56]. Despite the lack of consensus about the effect of frequency on fatigue life of concrete, efforts

have been made to develop correlation between the stress level and the number of cycle to failure,

including a loading frequency parameter [73, 81].

1.3.3 Lateral confinement

Multi-axial stress states can have a significant effect on the response of concrete materials

subjected to repeated loadings. From experimental evidences, it comes out that a confining stress

has a beneficial effect on the fatigue performance, especially under compressive cyclic loads [82–85].

Similarly to the monotonic case, Buyukozturk et al. [84] have shown that the failure strains under

cyclic loading increase with the confinement level. Taliercio et al. [86] have performed experimental

tests on rectangular specimens, considering cyclic confinement pressure in opposition or in phase
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with the axial stress. It was found that, specimens in which the axial stress vary in phase with

the confining pressure exhibit higher fatigue life, than specimens in which they vary in opposition

of phase. Hooi et al. [85], have extended the fatigue life formulation of Aas et al. [2] to include a

parameter accounting for the confinement effects. They have shown that the confinement parameter

has a similar trend, for monotonic and fatigue tests. This is consistent with the observations from

literature [82, 83], that confinement has similar effects on monotonic and cyclic strengths. However,

other studies has demonstrated that, when the specimen is subjected to cyclic tensile loads or

alternated tensile-compressive loads, the lateral confinement can have detrimental effects on the

fatigue strength. By studying tri-axial compression-tension cyclic loadings on tapered prismatic

concrete specimens, Song et al. [87] have found out that, the fatigue life and strength under tri-

axial loads are both lower that the ones in uni-axial load. In addition, their values decrease, with

increasing lateral confinement pressure. Similar observations were made by Wang et al. [88] in the

case of pure tension. Overall, the effects of the lateral confinement pressure depend on the nature

(compression or tension) of the applied load.

1.3.4 Other parameters associated with loading

Factors related to loading such as loading waveform, rest periods, and multiple stage loading can

affect the fatigue response of concrete materials. Tepfers et al. [89] have investigated the response of

prismatic specimens of concrete to cyclic compression, considering three different types of waveform:

rectangular, triangular, and sinusoidal. As expected, they observed that the fatigue damage occurs

faster in the case of rectangular waveform, due to the fact that, the specimen sustains the peak load

for a longer period. In addition, the final strain and the number of cycles to failure were higher

for the triangular waveform. Similar results were found by a more recent research from Oneschkow

et al. [57]. By comparing sinusoidal to triangular loads, they concluded that the waveform can

affect both the fatigue life and strain at failure. With regards to rest periods, early investigations

[90] have shown that rest periods have beneficial effects on the fatigue performance of concrete

materials. Hilsdorf et al. [12] have studied the effect of rest periods on fatigue flexural tests. It

came out that, rest periods up to 5 minutes resulted in an increase of fatigue strength, compared
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to continuous loading. However, it was observed that, rest periods bigger than 5 minutes have no

effects on the fatigue performance, and that the frequency of the rest periods have more effects on

the fatigue performance than their duration. The effects of the loading sequence have been studied

via fatigue tests with multiple stage loading by Hilsdorf et al. [12], and more recently by Baktheer

et al. [91]. They agree that, the sequence of loading affects the fatigue response, and that the linear

accumulation of damage of Palmgren-Miner does not fit with experimental results. In order to tackle

this issue, Lei et al. [18] have proposed a non-linear rule for damage accumulation during cyclic

tests, considering multi-stage loading. A better fitting was found between experimental results and

numerical results from the non-linear rule for damage accumulation, with respect to the Miner’s

rule.

1.4 Research scope and objectives

The present work aims to develop a robust constitutive model for concrete, able to reproduce

its mechanical behaviour under long-term and fatigue loads. The proposed model is motivated

by the analysis of physical mechanisms underlying the fatigue failure of concrete materials. In

particular, the physical micro-structural degradation due to fatigue is interpreted at the progressive

accumulation of the irreversible plastic strains observed at the macro-scale. Furthermore, the creep

failure is accounted for, by an excessive acculation of plastic strains.

The constitutive model presented herein, combines the plasticity theory, with the continuum

damage mechanics, in order to describe the plastic strain evolution inside the material. The plastic

formulation of the model considers the pressure-dependent Ménétrey-Willam yield function [46, 51,

92], extended to include strength degradation effect due to static damage. The stiffness degradation

is accounted for, by a differentiation between tensile and compressive damages, with the scalar

and isotropic damage model of Mazars [52, 93]. In order to catch the increase of stiffness due

to the closure of cracks as the mechanical load changes from tension to compression, a stiffness

recovery function is included in the formulation of the scalar damage variable. The creep formulation

considers the B3 model of Bažant and Baweja [53] and a strain additivity hypothesis serves as the
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foundation for the combined model. The fatigue damage is considered by an extension of the

modified Ménétrey- Willam yield function to include a fatigue softening function that represents

the effects of the cumulative and irreversible micro-structural degradation as the number of cycles

increases. The model is able to simulate LCF and HCF, allowing for plastic flow and damage

accumulation for maximum stress levels below the initial yielding point. In addition, it is able to

account for fatigue relevant parameters, such as loading amplitude, maximum stress levels, and

simultaneously takes into account permanent and creep deformations, pressure-dependent effects

under multi-axial stress states in a unified manner.

Moreover, the model aims at studying the physical interaction between the different phases that

constitute concrete materials, namely, the aggregates and the cement mortar. This is achieved by

a meso-scale modelling, in which only coarse aggregates (with nominal size bigger than 5 mm) are

considered, for computational cost issues.

1.5 Outline of the dissertation

The remaining part present work is organised as follows.

In Chapter 2, a literature review on constitutive models for concrete, that combine plasticity

theories with damage mechanics is provided. A particular attention is made with regards to models

capable of simulating cyclic loads. Then a comprehensive review on the constitutive models that

incorporate a fatigue damage behaviour is included.

In Chapter 3, the different components of the combined model are described, and the mathe-

matical formulations are provided.

The numerical implementation of each component of the constitutive model is described in

Chapter 4, and some relevant aspects regarding the numerical implementation are discussed.

Finally, the numerical results are presented and their juxtaposition with experimental results

are discussed in Chapter 5. The extension of the simulation at the meso-scale is considered, for

a better insight on the physical interaction between the aggregates and the cement matrix, that

constitute the material.
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Chapter 2

Literature review

2.1 Motivation and background

For many years, the fatigue behaviour of concrete has been modelled using lifetime-based ap-

proaches [1]. They are based on Wöhler curves or S-N curves which are semi-logarithmic curves

depicting the life time of the concrete structure expressed in terms of number of cycle of loads

prior to failure, as a function of the stress amplitude. These curves were first developed by Wöhler

between 1852 and 1870, during the assessment of the fatigue behaviour of railroad steel structures

[94, 95]. The early models for concrete where developed by Knut Aas-Jacobsen in 1970 [2] and later

improved by Tepfers [73] to account for the influence of the mean stress. He proposed the following

expression:

Smax =
σmax

fc
= 1− 1

Cc
(1−R) logN (2.1)

where

Smax = σmax

fc
is the ratio of the maximum concrete stress to the concrete strength;

R = σmin

σmax
is the ration between the minimum and maximum concrete stresses, and N is the number

of load cycles.

Cc = 14, 6 is the value of logN when R = Smax = 0.

41
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Damage approximation in lifetime-based models are commonly based on a linear accumulation

of damage with the number of cycles, such as the Palmgren-Miner rule [96, 97]. It states that the

energy dissipation of each fatigue cycle is the same under the same stress level, and that fatigue

damage is independent of the loading sequence. The total damage is estimated as the sum of the

ratio of the number of cycles to the estimated fatigue life, for each stress level. Therefore, the failure

criterion is specified as
k∑

i=1

ni
Ni

= 1, (2.2)

where ni is the number of cycles for the i − th stress level, Ni represents the number of cycles to

failure for the i− th stress level, and k is the total number of stress levels. Many researchers have

used the linear damage accumulation theory to describe the fatigue of concrete [98, 99].

Despite the simplicity of linear damage accumulation rule, experimental tests on concrete re-

ported in the literature have shown that the fatigue damage of concrete is actually non-linear.

In particular, by evaluating the effect of the loading sequence on the fatigue damage accumula-

tion, Lei et al. [18] have shown that the concrete cumulative damage factor obtained using the

Palmgren-Miner rule can be lower than unity in high-to-low loading sequence and greater than

unity in low-to-high loading sequence. Hence, overly-conservative or non-conservative predictions

can be obtained using the Palmgren- Miner rule [18, 86, 100, 101]. Although non-linear damage

theories have been developed to tackle the issues of linear damage accumulation [102–107], their

experimental nature makes it impossible to understand the complex mechanisms happening under

the hood as concrete damages due to fatigue. Furthermore, additional effects such as permanent

deformations, thermal loads, aging, creep and shrinkage can not be coupled with such models in a

unified formulation. Therefore, there is the need of more sophisticated models, accounting for the

above-mentioned effects.

In the following sections, a literature review on plastic damage models accounting for cyclic

loadings is presented, with a focus on isotropic damage models, which is the damage formulation

adopted in this work. Usually, these models cannot reproduce the behaviour of concrete under cyclic

loads of constant amplitude, or under repeated loads in the HCF regime. Next, a comprehensive
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review of fatigue models of concrete, accounting for the above-mentioned effect is presented.

2.2 Plasticity models coupled with Continuum Damage Me-

chanics for cyclic loads

The development of the Continuum Damage Mechanics (CDM) has proven to be a powerful tool

to study the damage of concrete materials. It postulates the material homogeneity over a suitable

representative volume element of concrete, which size is relevant compared to the micro-cracks size.

In the classical approach of CDM, an internal variable is used as a progressive measure of damage.

A damage loading surface is defined, and damage starts as soon as the stress state lies on the

damage/yield surface. The macroscopic effects of the nucleation and propagation of micro-cracks

are the softening of the material which can be modelled by classical plasticity [51, 108–112], and

the alteration of the elastic modulus of the material, which can be modeled using the effective stress

concept in the CDM [113–116]. Therefore, coupling the plasticity theory and continuum damage

mechanics provides a strong framework to simulate the cyclic and non-linear behaviour of concrete

[19]. In the literature, many scholars have studied the cyclic behaviour of concrete by means of the

CDM. Attempts have been made to couple damage mechanics with other theories of concrete such

as plasticity and creep, in order to reproduce holistically the main non-linear features of concrete

under mechanical loads. The proposed constitutive models mainly differ by the nature of the

damage driving variable and its evolution law, and the shape of the damage/plasticity surface. A

well known plastic-damage model of concrete which has been used to simulate the cyclic behaviour

of concrete is the one proposed by Lee et al. [20], that has been widely used by researchers [19, 24,

117]. This model combines the classical plasticity theory and isotropic damage theory of Kachanov

in a consistent thermodynamical formulation. The attractiveness of the Lee and Fenves model relies

on the decoupling between the elasto-plastic response and the degradation damage response, which

provides more stability for its numerical implementation [19]. The plastic formulation of the model

is based on the yield function proposed by Lubliner et al. [21], modified by Lee and Fenves to

account for different strength evolution during cyclic loading under tension and compression. This
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is achieved by defining two cohesion variables, a tensile one and a compressive one, as shown in Eq.

2.3

F (σ̄,κ) =
1

1− α

[
αĪ1 +

√
3.J̄2 + β(κ)

〈
ˆ̄σmax

〉]
− cc(κ), (2.3)

where

β(κ) =
cc (κc)

ct (κt)
(1− α)− (1 + α). (2.4)

In Eq. 2.3, cc and ct are the tension and compression cohesions respectively; α is a dimensionless

constants; Ī1 is the first invariant of the effective or undamaged stress tensor; J̄2 is the second

invariant of the effective deviatoric stress tensor and ˆ̄σmax is the largest effective principal stress.

κ = (κc, κt) is the internal variable vector representing the damage states, as described further on.

A linear Drucker-Parager type function has been used as the plastic potential function, and a non-

associative rule has been used to describe the plastic strain evolution. For the damage formulation

of the model,a fracture-energy-based scalar damage variable has been used. In order to account for

the different damage behaviours in tension and compression, two damage driving variables, κc and

κt are defined for compression and tension damages respectively. Their evolution law is given as

κ̇ℵ =
1

gℵ
fℵ (κℵ) ε̇

p, (2.5)

where

gℵ =

∫ ∞

0

σℵdε
p (2.6)

represents the specific fracture energy, defined as the ratio between the fracture energy and the

characteristic length; ℵ ∈ {t, c} is a state variable representing the uniaxial tensile and compressive

states; fℵ represents the effective stress response in the uniaxial case. Two damage variables, one in

tension ωt = ωt (κt) and one in compression ωc = ωc (κc), have been defined as increasing functions

of the corresponding internal driving variables in tension and compression respectively [20]. They

can take values between zero and unity. A total scalar damage variable have been defined to account

for both tensile and compressive damages



2.2. PLASTICITYMODELS COUPLEDWITH CONTINUUMDAMAGEMECHANICS FOR CYCLIC LOADS45

ω = 1− (1− ωc (κc)) (1− ωt (κt)) . (2.7)

An important feature that concrete materials under cyclic loads exhibit, especially when it

ranges from tension to compression, is the degraded stiffness recovery effect [118]. In fact, when

the mechanical load changes from tension to compression, the cracks that were opened during the

tensile phase, become closed during the compressive phase. This leads to smaller damaged area,

and therefore and increase of stiffness of the material during the transition. In order to account

for the crack opening/closure effect during cyclic loads, Lee and Fenves have modified the total

damage variable in Eq. 2.7 using a parameter s which values range between zero and unity. The

new expression of the total damage variable ω takes the form

ω = 1− (1− ωc) (1− s(σ̄)ωt) , (2.8)

where

s(σ̄) = s0 + (1− s0) r(ˆ̄σ) (2.9)

is the stiffness recovery parameter; 0 ≤ s0 ≤ 1 is the minimum value of the stiffness recovery

parameter; The function r(σ̂) is defined such that

r(ˆ̄σ) =

(
3∑

i=1

〈
ˆ̄σi
〉)

/

(
3∑

i=1

∣∣ˆ̄σi∣∣) , (2.10)

where ˆ̄σi is the i-th eigenvalue of the effective stress tensor; ⟨x⟩ = (x + |x|)/2 denotes the ramp

function and |x| is the absolute value of x.

The total stress has been defined using the effective stress concept, and taking into account

permanent deformations obtained from the plastic model. Therefore the constitutive relationship

has the following form, where the degradation damage and effective elasto-plastic stress responses

can be factored

σ = (1− ωc(κ)) (1− sωt(κ))D : (ε− εp) . (2.11)



46 CHAPTER 2. LITERATURE REVIEW

It is important to note that, in this model, the plasticity formulation is based on the effective

or undamaged stress space, offering a greater stability to the numerical algorithm of the coupled

plastic-damage model.

By comparing 2-D numerical simulation results with experimental results from [23] for uni-axial

cyclic tensile loading and from [22] for uni-axial compressive loading, the Lee and Fenves damage

model was able to catch fairly well the softening response of concrete and has shown a good control

of dilatancy. Moreover, it was able to describe the stiffness degradation observed experimentally

during the cyclic loading in compression and tension. However, the model is unable to catch the

experimental closed loops that concrete exhibits when it is subjected to uni-axial cyclic compression

or tension loads, during the unloading and the reloading phases. Another comparison between

experimental results from cyclic tensile-compressive loading [118] and 2-D numerical numerical

simulation results has shown that the model was able to catch with a good precision, the increase

in stiffness as the mehanical loading changes from tension to compression.

Omidi et al. [19] have used the Lee and Fenves plastic-damage model to develop a 3-D algorithm

for numerical simulations, instead of a 2-D one as in the original formulation of Lee and Fenves. A

reformulation of the return-mapping process was necessary to overcome the issue of the singularity

at the apex. Therefore, they have used the Drucker-Prager hyperbolic function instead of the linear

one of the original model, for the treatment of the apex singularity. The proposed algorithm was

able to reproduce well the post-peak behaviour of concrete under cyclic loads.

Another plastic-damage model for cyclic behaviour simulation was proposed by Grassl et al. [25].

As the Lee and Fenves model, the plastic part of the model is formulated in the effective stress space

and not in the nominal or damaged stress space. With regards to this aspect, they have shown that

for effective stress-based plasticity models, the combination of plasticity and damage does not result

in further restriction on the model parameters, because the local uniqueness condition is always

satisfied, provided that the softening modulus does not drop below a critical value. However,

for nominal stress-based plasticity models, the plastic part must show strong hardening to be

in agreement with the local uniqueness conditions. Therefore, they are inappropriate to model

softening or low-confined compression of concrete. An adapted version of the modified Leon model
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[26] formulated in the Haigh-Westergaard effective stress space has been used as the yield surface.

A non associative flow rule with a quadratic form plastic potential has been used to describe the

evolution of the plastic strains. The rate of the hardening variable, that controls the evolution of

the yield surface is defined as the norm of the plastic strain rate, scaled by a hardening ductility

measure. A scalar isotropic damage model is used, in which the damage loading function is given

by

fd (ε
p, κd) = ε̃ (εp)− κd. (2.12)

In contrast to pure damage models where the damage evolution is controlled by the total strain,

in this case, it is controlled by the plastic strain εp. The equivalent strain ε̃ is defined using a rate

equation

˙̃ε =


0 if κp < 1

ε̇pV/xs (σ̄V) if κp ≥ 1

, (2.13)

where ε̇pV represents the volumetric plastic strain rate and xs is a softening ductility measure. The

evolution law for the damage variable ω is assumed to have the exponential form

ω = 1− exp (−κd/εf) , (2.14)

where εf is a parameter that controls the slope of the softening curve. The superposition between

numerical and experimental loading results from [22, 23] has shown that the plastic-damage model

was suitable for predicting the failure of concrete in axial, bi-axial and tri-axial cyclic compression,

and in uniaxial cyclic tension . Moreover, it was able to describe the stiffness degradation observed

experimentally during the cyclic loading in compression and tension. However, as the Lee and

Fenves model, it does not capture the experimental closed loops that concrete exhibits under uni-

axial cyclic compression or tension loads. Moreover, this model is not able to describe the stiffness

recovery effect. In order to include the stiffness recovery effect, Grassl et al. [27] have later improve

this model by considering a decomposition of the total damage variable into a compression and a
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tension one.

Many other researchers have coupled plasticity and CDM in order to model the cyclic behaviour

of concrete [28–33]. However, these models present some limitations for the fatigue modeling of

concrete. First of all, they do not take into account the creep behaviour of concrete. In fact,

Experimental results [38–40] corroborate the idea that it exists an evident correlation between

creep and damage of concrete, especially with regards to HCF for which failure can occurs after

several years. In the literature, the most part of concrete models in which the creep behaviour of

concrete has been modeled considers a combination between creep and damage only [41, 119, 120].

Usually, combined models including time-dependent effects, damage, and plasticity, are such that,

the viscous behaviour of concrete is modelled using rate-dependent plasticity or damage [121–127].

But these models are mere viscous regularization of plastic or damage models in order to optimize

the stabilization scheme, rather than creep models based on phenomenological or experimental

tests. In the literature, some researchers have used phenomenological creep models combined with

damage to simulate the behaviour of concrete materials [41–45]. However, these models are not

able to simulate the plastic, creep and damage behaviour effects, including multi-axial stress states

and local confinement effect at the same time.

Moreover, the classical plasticity theory, coupled with the Continuum Damage Mechanics, is

not sufficient to describe the damage response of brittle material such as concrete, when subjected

to loads of low amplitude. In fact, even though such models accurately reproduce the mechanical

behavior of concrete under static tension and compression, and cyclic loads of increasing amplitude,

they do not predict deterioration during repeating loading–unloading cycles to constant amplitude,

when the applied maximum stress lies below the yield/damage surface [34, 36]. It is thus necessary

to modify the classical approach of the yield concept, in order to allow for plastic flow or damage

accumulation, even for stress states below the yield/damage surface.
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2.3 Fatigue damage models of concrete

Several phenomenological and mathematical models have been developed for the numerical

simulation of concrete fatigue behaviour and fatigue life prediction. Despite the significant efforts

that have been made, the numerical simulation of concrete remains challenging due to its strong

heterogeneity and micro-structural complexity. Commonly used models for the fatigue simulation

of concrete can be subdivided into four main groups: models based on the lifetime curves, models

based Fracture Mechanics, models based on Continuum Damage Mechanics (CDM), and models

based on Discrete Element Method (DEM). In the following sections, each group will be described,

with a particular attention to models based on CDM, as the framework of the constitutive model

presented in this work falls into this category.

2.3.1 Models based on lifetime approach

Models based of lifetime approach are phenomenological models in which analytical and empir-

ical formulae are derived to approximate the strain development [15–17, 128–131], or the damage

development[132–134], as functions of the number of cycle of load performed and the number of

cycle to failure based on experimental data. The failure criterion is based on the Miner hypothesis

of cumulative damage, that assumes the linear accumulation of damage with the cycles of load. For

a given stress amplitude, the damage is evaluated as the number of cycles of load performed over

the number of cycles of load to failure for the given stress amplitude. The total damage due to a

combination of fatigue loads with various stress amplitudes is evaluated as the sum of the partial

damages corresponding to each stress amplitude. The failure is reached when the total damage is

equal to one [97]. This approach has two main drawbacks. First, experimental evidences show that

the damage accumulation in concrete specimen due to fatigue is actually non-linear. Indeed, the

miner rule cannot account for the effects of loading sequence, leading to overly-conservative or non-

conservative fatigue life prediction [18]. Second, the experimental-based nature of this approach

does not allow for a deeper insight in the physical mechanisms behind the fatigue failure of concrete

materials and cannot be coupled with additional effects such as creep, shrinkage, strain rate effects,
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just to name a few [34].

2.3.2 Models based on Fracture Mechanics

The second group of models consider non-linear fracture mechanics to study the crack prop-

agation in solid bodies. The non-linearity is usually represented at the crack tip where stress

concentrations are observed. Models based on Paris law [34] that gives the stable crack growth

equation by relating the rate of crack length per cycle to the stress intensity factor, have been

widely used to predict the crack propagation in concrete materials [135–138]. However, these mod-

els usually study the evolution of a predefined crack of relatively large size, which is incompatible

with the heterogeneous nature of concrete in which several micro-crack of various lengths and ori-

entations emerge and grow gradually, until coalescing into a meso- or macro-crack. Therefore, the

Paris law was extended to account for size-effect by introducing new model parameters such as the

fracture toughness and the brittleness number [139, 140]. Later, Kirane et al. [141] have refined

the size-effect for quasi brittle materials through the microplane model, leading to fatigue transi-

tional size values more consistent with the cyclic fracture process zone size. Despite the significant

efforts made to simulate the fatigue behaviour of concrete materials through the non-linear frac-

ture mechanics, the localized nature of the crack considered in these models makes this approach

non-realistic for concrete like materials [142].

2.3.3 Models based on Continuum Damage Mechanics

In order to overcome the issues related to fracture mechanics, many researchers have used

approaches based on continuum damage mechanics to simulate the fatigue behaviour of concrete.

It assumes material homogeneity over a representative volume element (RVE), with micro-structural

defects which sizes are much smaller than the RVE. The key point of this approach is based on the

effect that the micro-defects have on macroscopic physical quantities such as the stiffness, that can

be observed on an experimental basis. The extensive employment of this technique to reproduce

numerically the concrete fatigue and damage behaviour can be explained by three points. First of

all, it is suitable to model materials which contain a lot of micro-defects whose orientation, size
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and distribution are a priori unknown, as in concrete. Second, it is particularly useful to model

the damage accumulation prior to the formation of macro-cracks. This is especially true for high

cycle fatigue of concrete, for which almost no change in the crack pattern during fatigue loading

could be detected during the decay and steady stages that account for 90-95 % of the concrete

fatigue life. Finally it can be easily coupled with the plasticity theory to account for permanent

deformations. Many researchers have combined the theory of plasticity with continuum damage

mechanics to reproduce the behaviour of concrete subjected to cyclic loads. Some of them have been

described in Section 2.2 [19, 20, 24, 25, 27–33, 50, 93, 117]. In these models, damage accumulates

as soon as the stress state lies on the damage or yield surface in the principal stress space. Such

models can describe adequately the damage accumulation or permanent strain growth of concrete

materials subjected to static compression or tension, or to cyclic loads with increasing amplitude.

However, they are unable to predict accurately the damage or plastic strain accumulation of concrete

under repeated loading-unloading cycles with constant amplitude. In the case of LCF, in which

the maximum applied maximum stress could lie outside the yield/damage surface, the damage or

plastic strain would accumulate and saturate only after the first cycle of load. In the case of HCF in

which the maximum applied stress lies below the yield/damage surface, neither damage nor plastic

strain accumulation will be observed. Therefore, the classical theory of plasticity or damage need

to be extended for an accurate prediction of fatigue degradation of concrete material subjected

to cyclic loads of constant amplitude. Several approaches have been proposed in literature for

the numerical simulation of fatigue damage of concrete materials in the framework of continuum

damage mechanics. Some of them are described in the following sections.

2.3.3.1 Marigo’s formulation of fatigue damage.

Marigo [35] has proposed a strain-based damage model to accurately described the damage accu-

mulation under repeated loads with a constant stress amplitude below the yield or damage surface.

To this aim, the classical yield concept has been replaced by the loading-unloading irreversibility

concept. A classical static damage model is described by the damage loading function, the damage
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variable evolution law, and the loading-unloading conditions according to the Kuhn-Tucker relations

fd(ε, κd) = ε̃(ε)− κd,

ω = gd(κd),

fd ⩽ 0, κ̇d ⩾ 0, κ̇dfd = 0,

(2.15)

where fd is the damage loading function, ε̃ is an equivalent strain measure, κd is the internal

variable controlling the damage evolution. ω and gd are the damage variable and damage function,

respectively. The damage loading function can be normalized by defining an equivalent gauge

function f̃d, such that

0 ⩽ f̃d(ε, κd) ⩽ 1. (2.16)

If 0 ⩽ f̃d(ε, κd) < 1, the state (ε, κd) is below the damage surface and no damage occurs. However,

if f̃d(ε, κd) = 1, then the state (ε, κd) is on the damage surface. If further damage takes place, the

consistency condition can be written as
˙̃
fd(ε, κd) = 0. Combining the consistency conditions with

the Kuhn-Tucker relations yield

κ̇d =


0 if 0 ⩽ f̃d(ε, κd) < 1

⟨∂ε̃(ε,κd)
∂ε : ε̇⟩+ if f̃d(ε, κd) = 1,

(2.17)

where ⟨x⟩+ represents the positive part of the quantity x, which is equal to zero if x < 0 and x

if x ⩾ 0. The static damage model described till now is unable to predict damage accumulation

under cyclic loading of constant amplitude and stress level below the yield surface. In order to

extend it to a fatigue damage model, Marigo have proposed to replace the yield concept with a

loading-unloading irreversibility concept. Therefore, the constrained damage flow rule reported in

Eq. 2.17 is replaced by the unconstrained damage evolution reported here-below

κ̇d = H(f̃d(ε, κd))⟨
∂ε̃(ε, κd)

∂ε
: ε̇⟩+, (2.18)
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where H(f̃d(ε, κd)), called herein the fatigue function, is any continuous and increasing function

of the gauge function, such that H(0) = 0 and H(1) = 1. It is important to mention that, the

quantity
∂ε̃(ε,κd)

∂ε : ε̇ is interpreted as the loading-unloading criterion. In fact, damage evolves when

the later is positive and does not accumulate when it is negative. Many choices are possible for the

function H. Marigo has proposed a power law for H

H(f̃d) = (f̃d)
n, (2.19)

where n is a material parameter. In the special case if which H(f̃d) = ⟨f̃d−1⟩+, the fatigue damage

evolution reported in Eq. 2.18 become equivalent to the static damage formulation reported in Eq.

2.17. It is worth to mention that any local static damage model based on a yield concept can be

extended to a fatigue damage model, by means of the Marigo’s formulation. Many scholars have

used the Marigo’s formulation for the damage fatigue modeling of concrete [31, 34, 36, 37, 100, 143].

In the works of [37], the damage criterion is formulated in the strain space and the equivalent strain

is based on the volumetric energy norm. By using the Marigo’s appraoch, the function H(f̃d) have

been defined using a bi-power law, requiring a total of 3 additional material parameters, n1 > 0,

n2 > 0, and 0 < α ⩽ 1

H(f̃d) =


αn1

(
f̃d
α

)n2

if 0 ⩽ f̃d ⩽ α,

(f̃d)
n1 if α ⩽ f̃d ⩽ 1.

(2.20)

In this manner, a greater flexibility in catching the experimental results can be achieved. Despite

the fairly well superposition with experimental results, especially with the number of cycles to

failure, this model fails to catch the accumulation of permanent strains in the three-stage pattern

observed experimentally.

Most recently, Liang et al. [31] has proposed a double-scalar elasto-plastic constitutive model of

concrete, able to account for permanent deformations and for damage accumulation even for cyclic

loads of constant amplitude with maximum stress below the yield surface. The plastic formulation

of the model is based on an empirical plastic flow parameter [144], in which plastic strains are

proportional to the effective stress. In this way, the low computational efficiency usually observed
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in the classical theory of plasticity due to the large number of iterations can be avoided. On the

other hand, the damage formulation of the model is developed in the framework of irreversible

thermodynamics, where the damage energy release rate is used as the driving force for the internal

damage variable. The extension to the fatigue damage is done using the Marigo’s formulation, in

which the fatigue function has a power-law. The three-stage pattern of the plastic strain devel-

opment observed during fatigue degradation is explained by the competition between the damage

driving effect and the damage healing effect, due to the growth, and closure of micro-defects, re-

spectively. The model is able to describe fairly well the concrete tensile and shear fatigue behaviour

under complex fatigue loads, and can accurately predict the three-stage pattern of permanent strain

accumulation.

2.3.3.2 The two-scale model for fatigue damage.

Lemaitre et al. [8] have proposed a two-scale model for damage at the microscale, for the

numerical simulation of quasi-brittle failure or high-cycle fatigue. The model is based on the physical

observation that, even if the load at the classical scale of the continuum mechanics (mesoscale) is

below the conventional yield stress, plasticity and damage can occur at a smaller scale (microscale).

The proposed two-scale model is able to account for this scale effect by considering a ”weak”

inclusion at the microscale, inside the RVE at the mesoscale, as shown in Fig. 2.1.

Figure 2.1: Schematic representation of the two-scale damage model.
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On the mesoscale, in a general case, a full elasto-visco-plastic model could be considered, while in

the specific cases of quasi-brittle failure or high cycle fatigue, only elasticity is considered. However,

on the microscale, the ”weak” inclusion is modelled with a plastic-damage model and it is the only

part on the material for which damage is allowed. In the original formulation of the two-scale model,

the asymptotic fatigue limit σ∞
f is considered as the limit criterion for damage initiation and growth.

The damage loading function can consider both isotropic and linear kinematic hardening. In the

simplified case in which only kinematic hardening is assumed at the microscale, the following yield

criterion has been used

fµ =

(
σµ

1− ω
−Xµ

)
eq

− σ∞
f , (2.21)

where the superscript µ is used to denote the quantities computed at the microscale. The quantities

σµ and Xµ represent the total stress and the microscale back-stress respectively, while ω is the

scalar damage variable. The Von-Mises norm is used for the calculation of the equivalent stress for

the yield criterion. The microscopic damage growth is governed by the plastic strain rate ε̇p, and

considers the elastic energy density denoted here by Y . It takes the following expression in the rate

form

ω̇ =

(
Y

S

)s

ε̇p, (2.22)

where S and s are the damage material parameters at the microscale. The transition from the

mesoscale to the microscale is achieved by means of the d Eshelby–Kröner localization law [145],

which relates the total and plastic strains at the mesoscale to the ones at the microscale.

A more suitable formulation of the two-scale fatigue damage for quasi-brittle material has been

proposed by Desmorat et al. [146], to account for the fact that a damage growth governed by the

plastic strain rate is not always representative of such materials. To tackle this issue, they have

proposed for the microscopic formulation of the damage, an evolution law based on the equivalent

strain rate or on the generalized Lemaitre’s approach of a damage, in which by the main dissipative

mechanism is the internal friction encountered in these materials.

Later, Desmorat et al. [147], has extended the two-scale damage model to account for anisother-

mal effects, and then for thermo-mechanical fatigue. This is a relevant aspect for fatigue modelling
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of concrete, since experimental evidences show that, several factors can affect the temperature rise

on concrete specimens during cyclic test, especially for HCF testing [148].

The two-scale fatigue damage model of Lemâıtre and Desmorat model turns out to describe

fairly well many non-linear characteristics that concrete materials exhibit under high-cycle fatigue

loads such as the mean stress effect, the nonlinear accumulation of damage, initial strain hardening

or damage effect and the non-proportional loading effect for bi-axial fatigue.

2.3.3.3 Fatigue models based on bounding surfaces.

The concept of bounding surface has been developed by Dafalias et al. [149] for metals, in

order to overcome the inadequacy of classical plasticity models to describe realistically the material

response under complex loading paths including cyclic loading. In contrast to classical plasticity

models, models based on bounding surface can simulate stress histories with loading-unloading

cycles of constant amplitude, because they allow for damage of plastic evolution for stress states

below a limit surface, called bounding surface. Furthermore, they have the advantage to capture

very well the hysteretic behaviour of material, by allowing for a smoother transition from the elastic

range to the elasto-plastic range.

The salient features of bounding surfaces models can be summarized as follows:

1. A yield surface may exists, which encloses the purely elastic domain, similarly to the concept

of yield surface in the classical plasticity approach.

2. A bounding surface exists, which is no longer the boundary between elastic and plastic defor-

mations as in the classical plasticity theory, but it encloses the yield surface, which can moves

in the stress space, but within the bounding surface. The bounding surface can translate in

the stress space, and possibly deform.

3. Any stress state between the yield and the bounding surface is described by a loading surface

which can translate, and possibly deform is the stress space according to a selected hardening

rule. The hardening rule is usually a function of the plastic modulus Hp. Non-zero strains

are allowed inside the bounding surface, by defining the plastic modulus and other material
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properties as function of the distances d and dmax. d represents the distance between the

current stress point on the loading surface and an arbitrarily defined image stress point on

the bounding surface, while dmax is the distance between the stress point at the initiation of

yielding and the image on the bounding surface

Hp = Ĥp(d, dmax). (2.23)

From Eq. 2.23, Hp
0 = Ĥp(0, dmax) represents the plastic modulus when the intersection between

the loading surface and the bounding surface occur; Ĥp(dmax, dmax) is the value of the plastic

modulus at the initiation of yielding, equal to ∞, for a smooth transition from the elastic to the

elasto-plastic region. The function Ĥp(d, dmax) is an absolutely increasing function of d. In order

to get the image stress point on the bounding surface, a proper mapping rule must be defined.

Amongst them, the radial mapping method, proposed by Yang et al. [150], in which the image

stress point is determined by the intersection of the vector linking the origin of the stress space to

the current stress, with the bounding surface. Another mapping rule consists of considering the

intersection point of the normal at the current stress on the loading surface, with the bounding

surface [151]. If the yield and the bounding surfaces are circular or elliptical in shape, the image

point can be obtained by the intersection between the vector linking the center of the yield surface

and the current stress point, with the bounding surface [151]. A schematic representation of the

radial mapping method is reported in Fig. 2.2.

Many models based on the bounding surface concept have been employed to describe the fa-

tigue behaviour of concrete-like materials [150, 152–159]. They differ in terms of the bounding

surface equation, the mapping rule for the image stress point, and the evolution law of constitutive

parameters.

The concept of bounding surface was first applied to concrete by Fardis et al. [152]. A bounding

surface plasticity model has been developed, in which the bounding surface has a quadratic expres-

sion, and shrinks in size once the maximum strain experienced by the material exceeds a predefined
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Figure 2.2: Schematic representation of the radial mapping method.

value. The proposed bounding surface takes the following expression

F =

[
I1
fc

+

(
a

3
+

b√
3
− 1

)]
g(εmax)∓

[
a

(√
J2
fc

)2

+ b

√
J2
fc

]
= 0, (2.24)

where I1 and J2 are the first and the second deviatoric stress invariant, respectively. a and b are

material parameters and fc is the compressive strength of concrete. The function g(εmax) controls

the reduction in size of the bounding surface. In Eq. 2.24, the plus sign applies to compression

tests, while the minus sign applies to tension tests. The distance d between the current stress

state and the stress point image on the bounding surface is computed considering the direction of

the instantaneous stress increment. The constitutive parameters are provided as a function of the

ratio d/dmax, for virgin loading, unloading, and reloading. Pandolfi et al. [157] have assessed the

potentiality for four fatigue damage models of concrete based on the bounding surface concept,

including the Fardis et al.’s model [154]. It came out that, the model was able to predict quite well

the increase in fatigue life with decreasing cycle amplitude and maximum stress. However, it was

unable to describe the hysteresis loops only for sufficiently large cycle amplitude, for uniaxial cyclic

tests with equal maximum stress. Furthermore, an underestimation of the experimental fatigue

life was observed, due to the rate-independent nature of the model, as explained by Pandolfi et al.

[157].
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More recently, Lu et al. [158], has proposed a damage constitutive model for concrete subjected

to uniaxial alternate tension–compression fatigue loading. The model require the definition of an

initial damage surface, a loading surface and a bounding surface. They have a spherical shape in the

strain-release energy space, and have expressions similar to the bounding surface model proposed

by Suaris et al. [155]. The initial damage surface f0, the loading surface f , and the bounding

surface F have the following expressions

f0 = (RiRi)
1/2 −R0 = 0

f = (RiRi)
1/2 −Rl/b = 0

F =
(
R̄iR̄i

)1/2 −Rl = 0,

(2.25)

where Ri is the thermodynamic-force conjugate, and R̄i = bRi, the image point of the bounding

surface. The radial mapping rule is used, and the mapping parameter b ranges from an initial value

of ∞ to 1. R0 is the value of the thermodynamic-force conjugate at the initiation of damage. In

the Lu et al.’s fatigue damage model, the damage depends on a damage modulus H, expressed

as a function of the distance d between the loading and the bounding surfaces, and the distance

dmax between the initial damage and the bounding surfaces. The good juxtaposition between the

numerical and experimental results indicates the capability of the model to predict the stress-strain

response of concrete subjected to stress reversal.

Wen et al. [160] has proposed a unified approach to model the anisotropic and biaxial fatigue

damage of woven composites by utilizing a simplified version of the bounding surface approach.

It is an intuitive extension of the non-linear quasi-static damage mechanics to fatigue modeling.

The simplified bounding surface approach considers a limit surface called ”LS”, which represents

the strength envelope of the material in a non-fatigue or quasi-static environment. As the number

of cycles of loading increase in a fatigue environment, the strength envelope collapse inwards to

account for the decrease in the ultimate strength of the material due the growth and coalescence of

inherent micro-defects (Fig. 2.3).

The new surfaces obtained after the material has undergone fatigue damage are called residual

surface (”RS”). Therefore, the simplified bounding surface approach aims at utilizing the damage
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Figure 2.3: 2D schematic representation of the bounding surfaces in the stress plane.

mechanics framework to develop a realistic equation of the limit surface and to propose a evolu-

tionary equation for the residual strength surfaces. Starting from the he standard thermodynamics

framework, the potential damage function ψ for quasi-static damage is written in the bi-axial stress

space as

ψ(σ, k) =
1

2
(1 + α+ 2β)σ : σ − 1

2
α[Tr(σ)]2 − 1

2

[
σ : S

Tr(σ)
q(k)

]2
= 0, (2.26)

where Tr(σ) represents the trace of the stress tensor. The scalars α and β are material parameters,

and q(k) can be interpreted as the shape function of the damage function, with a maximum value

equal to one. S is a strength tensor defined as a function of the material strength in each direction,

and k is the damage parameter. Eq. 2.26 represents the limit surface in a quasi-static environment.

In order to account for fatigue, a softening function F has been introduced, as a function of the

number of cycles of load n, in the expression of the damage function

ψ(σ, k) =
1

2
(1 + α+ 2β)σ : σ − 1

2
α[Tr(σ)]2 − 1

2

[
σ : S

Tr(σ)
F (n)q(k)

]2
= 0. (2.27)

As the number of cycles of load increases, F (n) gradually decreases, from the value 1 that rep-
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resents the limit surface, to smaller values, representing the residual strength surfaces. Based on

experimental fatigue life curves, a power function has been used for the softening function F

F (n) = nA, (2.28)

where A is a material parameter. Finally, the damage parameter k is defined in the rate form as

dk

dn
=

1

E0(1 + β)
(−A)

(
n−A−1

)
, (2.29)

where E0 is the undamaged Young’s modulus.

Yadav et al. [161] have proposed a similar model based on the continuum damage mechanics

theory to model the fatigue behaviour of concrete. The main difference with the model of Wen et

al. is that, the proposed model uses a strain-based approach. In this case, the residual surfaces

do not reduce in size as in the Wen’s model, but continuously expand until the failure surface is

reached (Fig. 2.4)

Figure 2.4: 2D schematic representation of the bounding surfaces in the strain plane.

The damage function is the strain space, and in a quasi-static environment is expressed as
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pstatic(ε, k) =
(
εc
√
1 + 2αv2

)
ln

(
E0

E0 − k

)
= ε0 ln

(
E0

E0 − k

)
, (2.30)

where εc, E0, ε0, and v0, are the ultimate strain corresponding to peak stress, initial Young’s

Modulus of elasticity, referential strain, initial Poisson’s ratio of the concrete material respectively.

The function ln represents the natural logarithm. The scalar k represented the accumulated damage

variable.

In a fatigue environment, the damage surface from Eq. 2.30 is modified by a hardening function,

which causes it to expand from the limit surface corresponding to a number of cycles of load equal

to one, to the failure surface, corresponding to the number of cycles to failure . The extended

damage function takes the following expression

pfatigue(ε, k,n, r) = G(n, r) · pstatic(ε, k), (2.31)

where G(n, r) = nλ(1−r) represents the hardening function, λ is a material parameter and r is the

stress ratio. The scalar cumulative damage variable k is defined in its rate form as

k̇ = A

(√
ε− : ε−

ε0

)B(1−r)

nC, (2.32)

where A, B and C are material parameters, and ε− is the negative cone of the strain tensor.

2.3.3.4 Microplane models

Microplane models were conceived originally by Bažant [162]. Inspired by the works of Taylor

et al. [163] on plasticity of polycrystalline metals, the microplane models consider concrete as a

material lattice at the mesoscale, with the cement and the aggregates having a crystal structure.

The constitutive relationship between the stress and the strain components are defined on hypo-

thetical planes surrounding the material point, called microplanes. Therefore, an additional level of

representation (microscale) is introduced below the scale of the material point (macroscale). The

advantage of the microplane model is that it can capture the oriented nature of damage and the
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anisotropy of materials over the different microplanes.

Figure 2.5: schematic representation of the microplane model [164].

Figure 2.5 depicts a material point surrounded by microplanes. Each microplane is identified

by distinct orientation, defined by a unit normal vector n. Two orthogonal directions, m and l

are defined parallel to each microplane. The transition from the macroscale strain tensor to the

microscale strain vector is obtained by projections of the strain tensor along the directions n, m,

and l, according to the following expressions

εN = Nijεij , εM =Mijεij , εL = Lijεij , (2.33)

where the subscripts i, j = 1, 2, 3 represents the cartesian directions on the global reference system,

and Nij = ninj ,Mij = (minj +mjni)/2, Lij = (linj + ljni)/2 are the normal and the tangential

mutually orthogonal vectors, obtained by the projections of the unit vectors n, m, and l, respec-

tively, on the global cartesian directions. The relationship between the microscopic stress vector
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components σN , σM , σL along the directions n, m, and l respectively, and the macroscopic stress

σ at the material point, is obtained approximately, by ensuring equilibrium through the principle

of virtual work [162]

σij =
3

2π

∫
Ω

sijdΩ ≈ 6

Nm∑
µ=1

wµs
(µ)
ij , (2.34)

with sij = σNNij + σLLij + σMMij . Ω is the surface of a unit hemisphere, having center at

the material point, and volume equal to 2π/3. The sum at the right hand-side of Eq. 2.34 is an

approximation of the integral, based on an optimal Gaussian integration for a spherical surface, with

weights wµ, µ = 1, 2, ..., Nm. Numerical experimentation by Bažant et al. [165] have shown that at

least 21 microplanes are needed for a proper capturing of the post-peak softening behaviour. The

inelastic or damage behavior is enforced at the microplane stress level, by subjecting the microplane

stresses σN , σM , σL to strain-dependent strength limits called stress-strain boundaries, similar to

the yield surface in the classical plasticity approach. Usually, four yield limits are identified: the

volumetric boundary to capture phenomenon such concrete crushing under extreme compressive

pressures; the deviatoric boundary to capture softening in compression; the normal boundary to

capture tensile fracturing, and finally the shear boundary to capture friction. Examples of yield

limits are reported in Fig. 2.6, from the works of Carner et al. [164]. Similarly to classical yield

surface, the strain increment is assumed to be fully elastic at the beginning of the time internal into

consideration, and the different stress components are evaluated accordingly. If the boundary of

any of the above-mentioned strain-dependent strength surfaces is exceeded, the stress is corrected,

by bringing it back to the boundary of the yield surface, at a constant strain.

A series of microplane models labeled M0, M1, M2, ..., M6 [162, 164, 166–170] have been

developed for concrete material. Each model is an improvement of the previous version. In a

similar way to the classical theory of plasticity, the model M0 [162] considers simultaneously the

normal and shear strain components for the definition of the loading surface. This was found to

be unnecessary, and improved in the model M1 [166], which was accounting for strain softening

behaviour and focusing on uniaxial tensile behaviour. The model M2-M6 where able to model

the compressive behaviour of concrete, considering the confinement effects. In order to avoid the
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Figure 2.6: Microplane stress-strain boundaries used in model M7: (a) normal boundary; (b)
deviatoric boundary; (c) volumetric boundary; (d) plastic-frictional boundary [164].

excessive lateral expansion and the axial stress locking observed in the previous models, the more

recent M7 model [164], was developed by considering the volumetric-deviatoric split only for the

compressive normal and deviatoric strain-dependent strength surfaces.

A common issue with the microplane models is related to the fact that they use a large number of

phenomenological material parameters, and are therefore difficult to calibrate. To prevent unstable

strain localization and pathological mesh sensitivity of microplane models, they have been used in

combination with some non-local continuum formulation [171–173].

2.3.4 Mesoscale discrete models

Recently, the Discrete Element Method (DEM) has proven to be a powerful tool for the numerical

simulation of the mechanical behaviour of cementitious materials. In the Discrete Element Method,

the material is modelled as a packing of single particles, with defined physical properties and
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kinematically independent equations of motion. The interaction between the particles is governed by

contact models. In contrast to continuum models, the discontinuity represents an intrinsic property

of the Discrete Element Method, making it suitable to model the complex heterogeneous structure of

cementitious materials. Furthermore, the capabilities of the model to simulate large displacements,

and the fact that the particles can detach from one to another, allow for a direct simulation of

crack initiation and propagation. This is a relevant advantage with respect to continuum models,

which require ad-hoc treatments in order to account for localized effects [174]. In order to reduce

the computational cost of the Discrete Element Method, the particles shapes are usually simplified

using spheres. Two main categories can be identified in the Discrete Element Method: soft sphere

models, in which penetration is allowed at the contacts between particles, and hard sphere models,

in which neither penetration, nor deformation of the particles are allowed.

During the last decades, the Discrete Element Method, has found many applications for the

simulation of the mechanical behaviour of concrete and the reproduction of experimental results,

especially with regards to compressive tests [175–177], flexural tests [178–180], and impact loads

[181, 182]. However, only little contributions are found with regards to the response of cementitiuos

materials to fatigue and cyclic loads[1, 174, 183]. Sinaie et al. [183] has developed a Discrete

Element Model for the simulation of cyclic loading for concrete materials. A multi-phase modelling

is considered, in which aggregates and mortar are differentiated. Furthermore, different cohesive

parameters are used for the mortar-mortar bonds and for the aggregate-mortar bonds, allowing

for the ”weak” Interfacial Transition Zone (ITZ) to be taken into account. A micro-mechanical

damage model including stress reversals is taken into account by a progressive degradation of the

cohesive bonds and thus, of the strength, when the normal and shear cohesive forces reach their

limits. More recently, Nguyen et al. [174] has coupled the plasticity theory and damage mechanics,

including a fatigue damage evolution law, to describe the fatigue behaviour of concrete materials

at the grain scale. Interestingly, the fatigue formulation allows for damage accumulation for stress

states below the yield surface. The plasticity-damage model is based on the general framework of

thermodynamics for dissipative materials [184], while the evolution of fatigue damage is described by

the Paris’s law. The coupled model has demonstrated good capabilities in capturing the variations
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of stress-strain results, fatigue life, and crack patterns.

Another robust discrete numerical model that has been used to describe the behaviour of con-

crete under cyclic loading is Lattice Discrete Particle Model (LDPM) formulated at the mesoscale

by Cusatis et al. [185]. In this model, the coarse aggregate particles are explicitly represented as

rigid spheres within polyhedral cells, obtained after a Delaunay tetrahedralization on the centers of

the spherical particles to generate a lattice system, and a dual domain tessellation. Each polyhedral

cell contains an aggregate particle with surrounding matrix. The material behaviour is developed

by means of rigid body kinematics. The robustness of the LDPM relies on its ability to produce

realistic failure patterns thanks to its ability to represent individually each coarse aggregate [186].

In order to catch the mechanical behaviour of concrete under tri-axial cyclic loading, Zhu et al. [187]

have recently proposed a modified set of constitutive equations for LPDM. The proposed model

considers a modified volumetric–deviatoric compression law, and a modified frictional law under

compression. Furthermore, the constitutive relationships related to the tension and shear stresses

are established separately to ensure a smooth stress transition from tension to compression state.

The model has been used to simulate the mechanical behavior and failure mode of concrete under

tension–compression cycling and hydrostatic pressure, and under different levels of confinement.

The superposition between numerical and experimental results has shown that the constitutive

model is able to simulate the cyclic behaviour of concrete under different confinement pressures,

and to catch the experimental failure patterns. Gan et al.[188] have proposed a 2D numerical model

using lattice network in order to investigate the behaviour of the cement paste under fatigue load-

ing. The lattice model is generated by means of X-ray Computed Tomography (XCT), in which

the cement paste is discretized as a set of Timoshenko beam elements having linear elastic brittle

behaviour. Fatigue degradation is taken into account by means of the phenomenological S-N curves,

and fatigue accumulation is considered by means of the Miner’s law. By comparison with exper-

imental results, the proposed model was able to reproduce well the flexural fatigue experimental

results, in terms of S-N curve, including stiffness degradation and permanent deformation.

Although the models described above have shown a good predictability of the non-linear be-

haviour of concrete, only few of them can simulate the behaviour of concrete under the simultaneous
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effects of creep and fatigue. Moreover, there is a need of more comprehensive models able to re-

produce the mechanical behavior of concrete materials subjected to fatigue loading in multi-axial

stress conditions. The plastic damage formulation described herein uses a similar framework of the

plastic damage models described above [20, 46, 111]. It is coupled with a phenomenological creep

model to account for long-term loads. Moreover, the plastic damage model is extended to include

a fatigue behaviour, by including a fatigue degradation function [59, 189] inside the formulation of

the yield surface.



Chapter 3

Description of the proposed

constitutive model

3.1 The plastic formulation of the model

The plasticity theory is used to treat the irreversible and permanent deformations induced by

micro-cracking and slip within the concrete structure. A plastic model for concrete must include

properties such as pressure sensitivity, path sensitivity, strain hardening, and brittle tensile be-

haviour. Three basic assumptions are required for the definition of a plasticity model:

• an initial yield surface, which encloses the initial elastic domain;

• a hardening/softening rule;

• and a flow rule.

3.1.1 The yield surface

The yield surface is described in terms of stress-invariants, using the Haigh–Westergaard (HW)

coordinates (ξ, ρ, θ),

69
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ξ =
I1√
3
, I1 = δijσij

ρ =
√

2J2, J2 =
1

2
sijsij , sij = σij −

1

3
δijσkk

cos(3θ) =
3
√
3

2

J3

J
3/2
2

, J3 =
1

3
sijsjkski,

(3.1)

where: I1 is the first invariant of the stress tensor; J2 and J3 are the second and third invariants of

the deviatoric stress tensor; δij is the Kronecker delta (δij = 1 if i = j, and δij = 0 if i ̸= j). The

geometrical interpretation of the HW coordinates in reported is Fig. 3.1.

The yield surface considered herein is expressed in agreement with the Ménétrey-Willam plastic

surface [51]

f = 1.5

[
ρ

(1− ω∗)fc

]2
+

qh(κ)m

(1− ω∗)fc

[
ρ√
6
r(θ, e) +

ξ√
3

]
− qh(κ)qs(κ) = 0, (3.2)

where the elliptic function r is expressed as a function of the Lode angle θ, and the eccentricity

parameter e

r(θ, e) =
4
(
1− e2

)
cos2(θ) + (2e− 1)2

2(1− e2) cos(θ) + (2e− 1)
√
4 (1− e2) cos2(θ) + 5e2 − 4e

. (3.3)

The friction parameter m in Eq. 3.2 is expressed as a function of the uniaxial compressive strength

(fc) and tensile strength (ft) of concrete as

m = 3
f2c − f2t
fcft

(
e

e+ 1

)
. (3.4)

The shape of the yield function in the deviatoric plane can change, using the eccentricity pa-

rameter e = [0.5, 1] as reported in Fig. 3.2.
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Figure 3.1: Haigh–Westergaard stress space.

Figure 3.2: Shape of the deviatoric sections of the Ménétrey-Willam yield surface for e = 0.55
and e = 1.
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A qualitative representation of the Ménétrey-Willam yield surface is reported in Fig. 3.3.

(a) (b) (c)

Figure 3.3: Qualitative representation of the Menétrey-Willam failure surface in the space of
principal stresses (a); view in the deviatoric plane (b); view in the ρ-ξ plane (c).

3.1.2 The hardening/softening function

An isotropic hardening is considered in Eq. 3.2, through the functions qh(κ) and qs(κ), which

are the hardening and softening laws, respectively. They are functions of the equivalent plastic

strain κ, which is the internal variable that controls the plastic evolution, and is defined in the rate

form as the absolute value of the volumetric component of the plastic strain tensor rate.

κ̇(εp) = |Tr(ε̇p)|. (3.5)

Both functions control the parabolic shape and the size of the meridians of the yield surface

(sections in the ρ-ξ plane), as shown in Fig. 3.4.
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(a)

(b)

Figure 3.4: Evolution of the compressive meridians and tensile meridians of the yield surface in
hardening (a), and softening (b).

In the present work, the hardening and softening functions are inspired from [190], and assume

the following expressions

qh(κ) = qh0 + (1− qh0)

√
1−

(
κ1D − κ

κ1D

)2

; (3.6)



74 CHAPTER 3. DESCRIPTION OF THE PROPOSED CONSTITUTIVE MODEL

qs(κ) =

[
1 +

(
n1 − 1

n2 − 1

)2
]−2

; n1 =
κ

κ1D
; n2 =

(κ1D + ts)

κ1D
. (3.7)

Fig. 3.5 depicts a qualitative plot of the hardening and softening functions. It can be observed that

the hardening function can increase from a minimum value qh0 that defines the onset of plasticity, to

a maximum value of one, corresponding to a value of the equivalent plastic strain equal to κ1D, that

defines the onset of softening. From that point, the hardening function keeps a constant unitary

value and the material enters into the softening regime controlled by the softening function. It can

assume a maximum value of one (during the hardening process) and gradually decreases during the

softening process.

Figure 3.5: Qualitative plots of the hardening and softening functions.

3.1.3 The flow rule

A non-associated flow rule

ε̇p = γ̇
∂gp
∂σ

(σ, κ) (3.8)
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is considered, where ε̇p is the rate of the plastic strain vector, and γ̇ > 0 is the plastic multiplier.

The function gp represents the plastic potential. The later has a quadratic form and takes the

following expression in function of the HW coordinates [111]

gp = −A

fc

(
ρ√
q(κ)

)2

−B

(
ρ√
q(κ)

)
+

ξ√
q(κ)

= 0, (3.9)

where A and B are experimentally determined coefficients. In Eq. 3.9, q(κ) is the harden-

ing/softening law, defined as q(κ) = qh(κ)qs(κ).

The plastic potential has a circular shape in the deviatoric plane, which is different from that

of the yield surface, as shown in Fig. 3.6.

Figure 3.6: Qualitative plots of the yield surface and plastic potential in the deviatoric plane.

3.2 The damage formulation of the model

Damage in concrete is caused by the growth and coalescence of micro-cracks. In the framework

of Continuum Damage Mechanics, the microscopic effects of damage is interpreted at the macro-

scale by a degradation of the material stiffness. As shown by experimental data reported in Fig.

3.7 and Fig. 3.8, the stiffness degradation during tensile loading is less than in compressive loading.
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Therefore, it is convenient to expect different damage mechanisms in tension and compression [114,

191].

Two different global damage variables are incorporated in this model. The first one, ω∗, is used

in the formulation of the yield surface (Eq. 3.2) to control the reduction in size of the elastic domain

as damage grows. The second one, denoted by ω, is used in the constitutive relationship to account

for stiffness degradation effects due to damage. A partial recovery of ω is possible, to account for

crack closure effects under stress reversals.

Figure 3.7: Concrete response to cyclic tensile loading from [118]
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Figure 3.8: Concrete response to monotonic and cyclic compressive loading from [192].

3.2.1 The isotropic damage model

In order to account for different failure mechanisms in tension and compression, two damage

components, one in compression ωc, and one in tension ωt, are defined as increasing functions of the

equivalent plastic strains in compression and tension, respectively. They are based on the amount

of extension that the material is experiencing during loading, and they assume a value equal to zero

when the material is not damaged, or equal to unit when it is fully damaged.

The scalar damage components ωc and ωt are defined by using exponential functions, as sug-

gested in [52]

ωc =


0 if κc ≤ κc0

1− (1−Ac)
κc0

κc
−Ac exp [−Bc (κc − κc0)] if κc > κc0

(3.10)

ωt =


0 if κt ≤ κt0

1− (1−At)
κt0

κt
−At exp

[
−Bt

(
κt−κt0

κf−κt0

)]
if κt > κt0

, (3.11)
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where Ac, At, Bc and Bt are experimentally determined parameters in compression and tension.

The internal variables κc and κt are used to describe the damage evolution in compression and

tension, respectively. Their evolution laws are defined as

κ̇c =
3∑

i=1

− ε̇pi − |ε̇pi |
2

κ̇t =
3∑

i=1

|ε̇pi |+ ε̇pi
2

,

(3.12)

where εpi represents the eigenvalues of the plastic strain tensor. The quantities κc0 and κt0 are

the initial values of κc and κt, respectively, at which damage starts. In order to reduce the mesh-

dependency of the solution, the crack band formulation [193, 194] is used in the definition of κt

through the crack-band equivalent plastic strain κf , which is defined as

κf =
1

2
κt0 +

Gf

ft · lc
, (3.13)

where Gf is the fracture energy, and lc is the element characteristic length. An acceptable estimate

is lc =
3
√
V e, where V e is the volume of the finite element.

The total damage variable ω∗ used for the definition of the yield surface in Eq. 3.2 is defined

as a combination of the compressive and tensile damage components

ω∗ = 1− [1− ωc (κc)] [1− ωt (κt)] . (3.14)

3.2.2 Stiffness recovery under stress reversals

In order to account for the crack closure effect during the transition from tensile to compressive

load, a stiffness recovery function is adopted to define a new damage variable ω. This stress

dependent damage variable takes into account the increase of stiffness due to the closure of cracks

when the mechanical loading changes from tension to compression [27, 195]. The stiffness recovery

function is defined as

s
(
σe,tr

)
= 1− s0

(
1−

∑3
i=1

∣∣σe,tr
i

∣∣− σtr
i

2
∑3

i=1

∣∣σe,tr
i

∣∣
)
, (3.15)
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where s0 is the maximum value of the stiffness recovery function, and σe,tr
i are the principal values

of the elastic trial stress during the return mapping algorithm, as explained in Section 4.2.

The stress-dependent damage variable is a function of the stiffness recovery function s

ω = 1− [1− ωc (κc)]
[
1− s

(
σe,tr

)
ωt (κt)

]
. (3.16)

It is worth mentioning that, while the damage variable ω∗ can only increase, the stress-dependent

damage variable ω can decrease or increase, according to the sign of the stress variation.

In order to illustrate the crack closure effect, the constitutive response of the plasto-damage

model to a reversal of the mechanical loading is shown in Figure 3.9. An axial tensile strain is

imposed to the concrete sample (point 1 to 2), and then the strain is reversed, until the material

undergoes full compression (Figure 3.9a). The constitutive response reported in Figure 3.9b shows

that, when the mechanical loading changes from tension to compression (point 3), there is an

increase in stiffness, due to the closure of cracks that opened during the tensile loading.

(a) (b)

Figure 3.9: Quasi-static imposed strain (a), and corresponding constitutive response with stiffness
recovery (b).

A numerical test is performed to appreciate the capabilities of the plastic-damage model to

reproduce the mechanical behaviour of concrete. To this aim, a quasi-static monotonic and cyclic

imposed load, under strain control is considered. The loading patterns for monotonic and cyclic
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loading are represented in Figure 3.10a and the comparison between the mechanical responses

are shown in Figure 3.10b. Two main features of concrete behaviour can be observed from the

constitutive response in Figure 3.10b. First, a characteristic closed loop is evidenced whose shape

must depend on damage and stiffness recovery. Further, during the reloading phase (point 4 to

6), the constitutive curve does not return to the point where the unloading started (point 3), but

it follows a different path (from point 4 to 6, through 5). Interestingly, the constitutive curve at

reloading reaches the same softening curve that would be proper of the monotonic loading. These

observations are coherent with experimental evidences.

(a) (b)

Figure 3.10: Quasi-static monotonic and cyclic imposed strain (a), and constitutive response (b).

3.3 The creep model

Concrete creep is characterized by a gradual strain growth with time under a unit sustained

stress. The creep behaviour of concrete is usually described by means of creep curves. These curves

depict the vertical deformation of a concrete specimen subjected to a constant compressive load

versus time. Creep curves of concrete are commonly subdivided into three stages [120], as shown

in Fig. 3.11. A first stage, called primary creep or transitional creep, is characterized by a rapid

increase in the creep strain, and a steady decrease in the creep rate. The second stage is called

secondary creep, or steady-state creep, in which a constant creep rate is observed, and finally the

last stage, called tertiary creep, which is characterized by a rapid increase of the creep rate and
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subsequent failure. From experimental evidence [41], there exists a relationship between the creep

behaviour and the loading level. When the loading level is lower than the linear creep threshold,

which is approximately equal to 40% of concrete strength, the relationship between creep strain and

stress is linear. Increasing the loading level between 40% to 70% of the concrete strength accounts

for non-linear creep. For the aforementioned loading levels, the creep curve will not usually step

into the tertiary stage. This stage is typically envisaged for loading levels above 70% of concrete

strength [196].

Figure 3.11: Typical three-stage pattern of concrete creep curves.

Various concrete creep models exist, including CEB-FIP model [74], ACI model [197], fib model

[198], B3 model [53], and B4 model [199].

The creep model used herein is the B3 model. It is an aging linear visco-elastic model grounded

on the solidification theory (Fig. 3.12). In line with this formulation, it is assumed that the aging

is a consequence of volume growth of the load-bearing solidified matter (considered as the C-S-H

for Calcium Silicate Hydrate), whose properties are non-aging, and are described by a Kelvin chain

with age-independent moduli and viscosities. In this way aging can be better justified physically,

and agrees well with test results [196].
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Figure 3.12: Solidification model for creep [196].

The compliance function of the B3 creep model is expressed in MPa−1 as

J(t, t′) = q1 + C0(t, t
′) + Cd(t, t

′, t0), (3.17)

where q1 is the instantaneous strain due to unit stress in MPa−1, expressed as a function of the

mean elastic modulus at 28 days Ecm,28 in Mpa as

q1 = 0.6/Ecm28; (3.18)

t and t
′
represent the current age and loading age in days, respectively.

C0(t, t
′) is the basic creep compliance function of the B3 model, expressed as [53]

C0(t, t
′) = q2Q(t, t′) + q3 ln[1 + (t− t′)0.1] + q4 ln

(
t

t′

)
, (3.19)

The term q2Q(t, t′) represents the aging visco-elastic part of the compliance function. The

parameter q2 takes the following expression in MPa−1
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q2 = 185.4× 10−6c0.5f−0.9
cm28, (3.20)

where c is the cement content in kg/m3, and fcm is the mean compressive strength of concrete at

28 days in MPa. Q(t, t′) is an approximate binomial integral and is expressed as

Q (t, t′) = Qf (t
′)

[
1 +

(
Qf (t

′)

Z (t, t′)

)r(t′)
]−1/r(t′)

Qf (t
′) =

[
0.086 (t′)

2/9
+ 1.21 (t′)

4/9
]−1

Z (t, t′) = (t′)
−0.5 · In

[
1 + (t− t′)

0.1
]

r (t′) = 1.7 (t′)
0.12

+ 8.

(3.21)

The second term of Eq. 3.19 includes a log-power function, and it represents the non-aging

visco-elastic part; The parameter q3 assumes the following expression in MPa−1

q3 = 0.29(w/c)4q2, (3.22)

where w/c is the water to cement ratio.

The third term of Eq. 3.19 accounts for the viscous flow part of the compliance function, where

the parameter q4 is expressed as the following in MPa−1

q4 = 20.3× 10−6(a/c)−0.7. (3.23)

The term Cd(t, t
′, t0) represents the drying creep compliance function of the B3 model that takes

into account the Pickett effect [200]. It occurs when there is an exchange of moisture between the

concrete specimen and the environment, or when there is a non uniform distribution of moisture

across the specimen. Therefore, it is a function of the spatial average of the pore relative humidity

h, via the function H(t)

H(t) = 1− (1− h) tanh

[(
t− t0
τsh

)1/2
]
, (3.24)
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where τsh is the shrinkage half-time in days [201]. The drying creep takes the following expression

Cd(t, t
′, t0) = q5

[
e−8H(t) − e−8H(t0

′)
]0.5

, (3.25)

where t0 is the time at which drying starts in days, and t0
′ = max(t′, t0). q5 is the drying creep

compliance parameter and is a function of the concrete mean strength at 28 days fcm,28 in MPa,

and the ultimate shrinkage strain εsh,∞ , and is given in MPa−1 as

q5 = 0.757fcm28
−1
∣∣εsh∞ × 106

∣∣−0.6
. (3.26)

3.4 Extension of the plastic damage model to include fatigue

The plastic-damage model described above does not allow for plastic flow or damage growth

when the stress state lies below the yield surface. However, fatigue degradation and the correspond-

ing accumulation of plastic strain is often observed experimentally, even for maximum stress levels

smaller than the yielding point of the material. In order to allow for plastic strain and damage

accumulation in such a situation, a modified formulation of the Ménétrey-Willam yield surface is

proposed in this work. Specifically, the yield surface is extended to include a fatigue degradation

function qf , that must depends on a history variable which accumulates as the number of cycle

increases. In this way, the fatigue degradation is interpreted as the reduction of the local strength

of the material, as the number of cycles increases. Therefore, the new expression of the yield surface

in the HW space is expressed as follows

f = 1.5

[
ρ

(1− ω∗)fc

]2
+

qh(κ)m

(1− ω∗)fc

[
ρ√
6
r(θ, e) +

ξ√
3

]
− qh(κ)qs(κ)qf (γf ) = 0, (3.27)

where γf is the accumulated history variable for fatigue, which rate is always positive (γ̇f ≥ 0).

Many choices are possible for the fatigue degradation function qf . As a general rule, it must

always be less than one, and decreases monotonically. The following power-logarithmic function
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has been used as the fatigue degradation function

qf (γ) :=


1 if γ < γt

(1− a log (γ/γt))
2

if γt ≤ γ ≤ 101/aγt

0 if γ > 101/aγt

(3.28)

Figure 3.13: Qualitative representation of the fatigue degradation function.

From Fig. 3.13 that represents a qualitative plot of the fatigue degradation function, it is

observed that the parameter γt is used to control the onset of fatigue degradation, and most

importantly, the parameter a decides the fatigue degradation rate.

The particular choice of the function in Eq. 3.28 is motivated by the similarity between the 1-D

expression of the yield surface (Eq. 3.27), in tension and compression, and the formulae for fatigue

life curves.

In the uniaxial compressive case with σc > 0, the principal stresses are σ3 = −σc;σ2 = σ1 = 0.

The corresponding stress invariants and HW coordinates are evaluated according to Eq. 3.1, and

results into

ξ =
−σc√

3
, ρ =

√
2

3
σc, θ = π/3. (3.29)
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The elliptic parameter r is then evaluated, r(θ, e) = r(π/3, e) = 1, and substituted in the

expression of the yield surface (Eq. 3.2) to obtain the following equation

[
σc

(1− ω∗) fc

]2
− qf (γf )qh(κ)qs(κ) = 0. (3.30)

It finally results in

σc/fc,res = 1− a log (γf/γt) , (3.31)

where, fc,res = qh(κ)qs(κ) (1− ω∗) fc.

Similarly, in the uniaxial tensile case with σt > 0, the principal stresses are σ3 = σ2 = 0;σ1 = σt.

The corresponding stress invariants and HW coordinates are evaluated according to Eq. 3.1, and

results into

ξ =
σt√
3
, ρ =

√
2

3
σt, θ = 0. (3.32)

The elliptic parameter r is then evaluated, r(θ, e) = r(0, e) = 1/e, and substituted in the

expression of the yield surface (Eq. 3.2) to obtain the following equation

[
σt

(1− ω∗) fc

]2
+

qh(κ)m

(1− ω∗) fc
σt

[
1 + e

3e

]
− qf (γf )qh(κ)qs(κ) = 0. (3.33)

Assuming that
f2
c−f2

t

fcft
≃ fc

ft
, it finally results in

σt/ft,res = (1− a log (γf/γt)) , (3.34)

where, ft,res = qs(κ) (1− ω∗) ft.

Eq. 3.31 and 3.34 and very similar to fatigue life curve formulae (see Eq. 2.1). As observed by

Cornelissen et al. [202], no difference was found between tension and compression fatigue life curves,

provided that the stresses were related to the static tensile and compressive strengths respectively.

This is clear indication that, in both cases, the dynamic behaviour of concrete is determined by the

same material properties, namely a and γt in the present case.
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It is assumed that the fatigue degradation is driven by the amount of local extension experienced

by the material, which are governed by the positive part of the elastic strain vector. The internal

variable for fatigue degradation κf is defined such that

κ̇f =
1

2

3∑
i=1

(ε̇ei + |ε̇ei |) , (3.35)

where εei represents the eigenvalues of the elastic strain tensor. Such a choice is motivated by

the fact that, fatigue damage must accumulate, even for stress states below the yield surface. As a

consequence, in the case of tensile load, the fatigue degradation is directly created by the extensions,

in the same direction as the tensile load; However, in the case of compressive load, the extensions

are transmitted by the Poisson’s effect, and then, are perpendicular to the direction of load.

The accumulated history variable γf takes the following expression,

γf =

∫ t

0

H (κ̇f ) |κ̇f | dτ, (3.36)

where H (κ̇f ) represents the Heaviside function, defined such that

H (κ̇f ) :=


1, if κ̇f > 0 (loading)

0, if κ̇f ≤ 0 (unloading)

. (3.37)

In this way, fatigue degradation accumulates only during the loading part of the cyclic loading, and

not during unloading.

Similarly to the hardening and softening functions described above, The residual strength due

to fatigue degradation along the tensile and compressive meridians of the yield surface are provided

in Fig. 3.14.

Fig. 3.15 reports the residual strength due to fatigue degradation on the deviatoric section as

the confinement level increases. It can be seen that, in the case of no confinement, the size of the

deviatoric section reduces is a noticeable manner, as qf increases, while in the cases of medium

and high confinements, the reduction in size is less noticeable, especially in high confinement. As a
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Figure 3.14: Evolution of the compressive and tensile meridians of the yield surface in fatigue.

consequence, the strength degradation due to fatigue is more relevant at lower confinement, while

almost no strength degradation is noticed at higher confinement levels. This is consistent with the

experimental fact that, fatigue life in compression increases with the level of confinement [86].

(a) (b) (c)

Figure 3.15: Evolution of the deviatoric section of the yield surface in fatigue (the section moves
inwards as qf increases): for no confinement(a), medium confinement (b), and high confinement

(c).



Chapter 4

Numerical implementation

In the following chapter. the coupling scheme between the plastic damage and creep models is

discussed. With reference to the coupling scheme, the total stress is split into two components in

an additive manner: a plastic damage component and a creep component. A two-step algorithm,

made of an elastic predictor step, plus a plastic correction step, is used to evaluate the first stress

component, while the exponential algorithm serves for the calculation of the second component.

The computation of the elasto-plastic damage consistent tangent operator, and of the visco-elasto-

plastic constitutive tangent operator is discussed. A ”return to apex” procedure is presented, in

order to deal with situations in which the return-mapping vector does not intersect the yield surface

during the return-mapping procedure.

4.1 Stress-strain relationship and coupling scheme

Let εn+1 be the total strain at a generic time interval [tn, tn+1]. Small strains are assumed and

the constitutive coupled model can be described by the following stress-strain relationship

σn+1 = (1− ωn+1)D
ve
n+1/2

(
εn+1 − εpn+1 − εcn+1

)
, (4.1)

89
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(a) load applied at tn (b) load applied at tn+1 (c) linear variation

Figure 4.1: Different schemes for the plastic damage and creep coupling.

where σn+1, ε
p
n+1 and εcn+1 are the stress, plastic strain, and creep strain, respectively, at time tn+1.

In Eq. 4.1, ωn+1 represents the damage with stiffness recovery at the time tn+1, as mentioned is

Section 3.2.2; while Dve
n+1/2 is the elastic constitutive tensor computed by using the elastic modulus

at mid-interval, as described in Section 4.4.

Three different schemes can be considered for the coupling between the plastic damage and

creep models. During the loading interval from tn to tn+1 the load increment can be applied

instantaneously at the beginning of the time interval (Figure 4.1a); instantaneously at the end of

the time interval (Figure 4.1b); or with a linear variation from the beginning to the end of the

time interval (Figure 4.1c). While in the first two schemes the plastic damage and creep models

evolve independently (specifically, in the first scheme the plastic damage model is activated before

the creep model, while in the second scheme the creep model is activated before the plastic damage

model), in the third scheme they evolve simultaneously.

Herein, the coupling between the plastic damage and creep models is done according to the

first scheme, that is, the load increment is applied instantaneously at the beginning of the time

interval [tn, tn+1]. Due to the presence of the viscous dashpots in the creep rheological model,

that delay the response of the Kelvin moduli (see Section 4.4), the creep component of Eq. 4.1 is

constant. Therefore, at the beginning of the time interval, the total stress is equal to the elastic

trial stress σe,tr
n+1, eventually corrected by the plastic corrector algorithm as described in Section 4.2.

Once the instantaneous elasto-plastic damage stress σep
n+1 is obtained at the beginning of the time

interval, the creep model is activated and the material undergoes a stress relaxation at constant
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(a) (b)

Figure 4.2: Coupling scheme between plastic damage and creep models in the force versus time
domain (a), and stress versus strain domain (b).

strain, corresponding to ∆σc
n+1, from time tn to time tn+1. The coupling mechanism between the

plasto-damage and creep models is graphically described in Figure 4.2a in the force versus time

domain. The same is reported in the stress versus strain uniaxial domain in Figure 4.2b, where the

plastic strain εpn+1 and visco-elastic strain εven+1 are identified.

With reference to the coupling scheme described above, the constitutive equation (Eq. 4.1) can

be split into an elasto-pastic damage part σep
n+1 and a creep relaxation part ∆σc

n+1 as follows

σn+1 = (1− ωn+1)D
ve
n+1/2

(
εn+1 − εpn+1 − εcn+1

)
= (1− ωn+1)D

ve
n+1/2

(
εn+1 − εpn+1 − εcn −∆εcn+1

)
= (1− ωn+1)D

ve
n+1/2

(
εn+1 − εpn+1 − εcn

)︸ ︷︷ ︸−(1− ωn+1)D
ve
n+1/2∆εcn+1︸ ︷︷ ︸

= σep
n+1 + ∆σc

n+1.

(4.2)

4.2 Computation of the elasto-plastic damage stress

Let us denote by (i+1)x the set of unknown variables of the elasto-plastic damage problem at

the (i+ 1)th iteration and time tn+1
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(i+1)X =
[
(i+1)σep

n+1,
(i+1)κn+1,

(i+1)γ̇n+1,
(i+1)κc,n+1,

(i+1)κt,n+1,
(i+1)κf,n+1

]T
(4.3)

corresponding to a total of 11 scalar unknowns. Their evolution laws are reported here below

σ̇ep = (1− ω)Dve ε̇p = λ̇(1− ω)Dve ∂g

∂σ

κ̇ = |Tr (ε̇p)| = λ̇|Tr
(
∂g

∂σ

)
|

κ̇c =
1

2

3∑
i=1

(|ε̇pi| − ε̇pi) = λ̇
1

2

3∑
i=1

(∣∣∣∣ ∂g∂σi

∣∣∣∣− ∂g

∂σi

)

κ̇t =
1

2

3∑
i=1

(ε̇pi + |ε̇pi|) = λ̇
1

2

3∑
i=1

(
∂g

∂σi
+

∣∣∣∣ ∂g∂σi

∣∣∣∣)

κ̇f =
1

2

3∑
i=1

(ε̇ei + |ε̇ei|) .

(4.4)

The nature of the elasto-plastic damage problem motivates the use of a two-step algorithm, with

an iterative procedure for the numerical implementation. The iterative procedure is described as

follows.

At the first step, called the elastic trial step, it is assumed that the plastic multiplier is null.

Therefore, at a generic time interval [tn, tn+1], the strain increment ∆εn+1 is fully elastic and

neither plastic flow nor damage occur. The elastic trial strain and stress, and the internal variable

for plasticity and damage are given by

εe,trn+1 = εen +∆εn+1

σe,tr
n+1 = (1− ωn+1)D

ve
n+1/2ε

e,tr
n+1

κtrn+1 = κn

κtrc,n+1 = κc,n

κtrt,n+1 = κt,n.

(4.5)

However, the internal variable for fatigue κtrf,n+1 is updated according to the trial elastic strain

εe,trn+1 as follows
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κtrf,n+1 = κf,n + κ̇f (ε
e,tr
n+1), (4.6)

where κ̇f (ε
e,tr
n+1) is evaluated from the last equation in 4.4.

Then, the plastic admissibility of the elastic trial is checked. This means, checking if the trial

solution lies below the yield surface (admissible plastic state), or outside the yield surface (inad-

missible plastic state).

If the plastic state of the trial solution is admissible, then the solution at step n+ 1 is given by

the trial solution, and the set of unknowns is updated

Xn+1 = Xtr,

Xtr =
[
σe,tr

n+1, κn, γ̇n, κc,n, κt,n, κ
tr
f,n+1

]T (4.7)

Otherwise, the inadmissible stress state must be brought back to the new boundary of the yield

domain. This is achieved numerically using the return mapping algorithm or plastic correction. In

this step, the set of non-linear algebraic equations (4.8) is solved under the constraint γ̇n+1 > 0

B =



fp (σ, κ, κc, κt)

r (σ, γ̇, κc, κt)

h(σ, γ̇, κ)

s1 (γ̇, κc)

s2 (γ̇, κt)

s3 (γ̇, κf )


=



fp
(
σep

n+1, κn+1, κc,n+1, κt,n+1, κf,n+1

)
σep

n+1 − σe,tr
n+1 + (1− ωn+1)D

ve
n+1/2∆ε

p
n+1

κn+1 − κtr − κ̇

κc,n+1 − κtrc − κ̇c

κt,n+1 − κtrt − κ̇t

κf,n+1 − κtrf − κ̇f


= 0 (4.8)

The system of non-linear equations is solved by using the Newton-Raphson iterative procedure, in

which the Jacobian matrix A of the set of equations (4.8) is inverted, and a new trial set of solutions

is computed until the norm of the residual r (second equation of the set of equations 4.8) is less

than a given tolerance.
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A =



∂fp
∂σ

∂fp
∂κ

∂fp
∂γ̇

∂fp
∂κc

∂fp
∂κt

∂fp
∂κf

∂r
∂σ

∂r
∂κ

∂r
∂γ̇

∂r
∂κc

∂r
∂κt

∂r
∂κf

∂h
∂σ

∂h
∂κ

∂h
∂γ̇

∂h
∂κc

∂h
∂κt

∂h
∂κf

∂s1
∂σ

∂s1
∂κ

∂s1
∂γ̇

∂s1
∂κc

∂s1
∂κt

∂s1
∂κf

∂s2
∂σ

∂s2
∂κ

∂s2
∂γ̇

∂s2
∂κc

∂s2
∂κt

∂s2
∂κf

∂s3
∂σ

∂s3
∂κ

∂s3
∂γ̇

∂s3
∂κc

∂s3
∂κt

∂s3
∂κf



. (4.9)

The incremental solution (i+1)∆X, and the solution (i+1)X at the (i+ 1)th iteration, are given

by

(i+1)∆X = −i
(
A−1B

)
(i+1)X = iX+ (i+1)∆X.

(4.10)

During the Newton-Raphson iteration scheme from Eq. 4.10, it can be seen that the inadmissible

stress state from the trial solution iX is modified at the current iteration by an amount of (i+1)∆X

due to the plastic correction. The correction is done until the inadmissible stress state returns back

to the new boundary of the yield surface at the current step.

4.3 The elasto-plastic damage consistent tangent operator

In order to reach the parabolic convergence of the Newton-Raphson method, it is convenient

to define a tangent modulus which is consistent with the adopted integration scheme [203]. The

consistent tangent modulus at step n+ 1 for the elasto-plastic damage model can be evaluated as

[204]
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Dep
n+1 =

dσep
n+1

dεe,trn+1

. (4.11)

Its numerical expression is obtained by differentiation and linearization of the system of return-

mapping equations, leading to the following set of equations



dσep
n+1

∆k

∆γ̇

∆κc

∆κt

∆κf


=



C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66


·



0

(1− ωn+1)D
ve
n+1/2dε

e,tr
n+1

0

0

0

0


(4.12)

where εe,trn+1 = εn+1 − εpn − εcn is the trial elastic strain, and C is the inverse of the Jacobian matrix

A. The consistent elasto-plastic tangent operator is then, computed as

Dep
n+1 =

dσep
n+1

dεe,trn+1

= (1− ωn+1)C12D
ve
n+1/2. (4.13)

4.4 Computation of the stress relaxation due to creep

The stress relaxation ∆σc
n+1 is computed by using the B3 compliance function reported in

Eq. 3.17, which can be modelled with any desired accuracy by a Kelvin chain rheological model,

as shown in Figure 4.3. The Kelvin chain consists of a series of Kelvin units µ = 1, 2, 3, . . . , N ,

each of which is made of a spring of stiffness Eµ(t) coupled in parallel with a dashpot of viscosity

ηµ(t) = τµEµ(t), where τµ are the retardation times that must be adequately chosen.

The springs’ moduli are obtained by a discretization of the continuous retardation spectrum,

which can be uniquely defined by means of the Laplace transformation inversion, by using Widder’s
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Figure 4.3: Kelvin chain rheological model.

approximate inversion formula [205]

L(τµ) = − limk→∞ (−kτµ)kCk(kτµ)

(k − 1)!
, (4.14)

where Ck is the derivative of order k of the creep part of the compliance function

C(t, t′) = J(t, t′)− q1. (4.15)

In practice, there is no need to compute the above limit and k = 3 is sufficient for a good

accuracy [205]. A qualitative representation of the continuous retardation spectra for the basic and

drying creep is reported in Figure 4.4, in function of the logarithm of the age at loading t′ and the

retardation time τµ.

Figure 4.4: Qualitative representation of the continuous retardation spectra for basic creep (left),
and drying creep (right).
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The retardation times τµ, µ = 1, 2, 3, . . . , N , are usually selected so that they are equally spaced

in the logarithmic scale. Further, the smallest retardation time τ1 must be small enough to ac-

count for any instantaneous deformation, and the biggest retardation time must cover at least the

observation time of interest. After the appropriate selection of the retardation times, the discrete

retardation spectrum A(τµ) can be obtained from the continuous one via the following equation

1

E(τµ)
= A(τµ) = L(τµ) ln(10)∆(log(τµ)). (4.16)

If the time step is short enough, the aging of the material can be neglected within the time

step. Therefore, a constant creep function C(t, tn+1/2) can be used to obtain a constant discrete

spectrum for each time step, where tn+1/2 is the age of concrete at the middle of the time step.

Commonly used algorithms for the numerical solution of the first order ordinary differential

equation governing the Kelvin chain model, like the central or backward difference methods, or the

Runge-Kutta method, will have numerical instability problems, as these algorithms are conditionally

stable. For its unconditional stability, the exponential algorithm can be used to overcome this issue.

The steps for the numerical implementation of a visco-elastic creep model by means of the

exponential algorithm are listed here below.

1. At t0 set all components of internal variables λ(τµ) = 0, µ = 1, 2, 3, . . . , N , where λ has the

physical meaning of a dimensionless strain rate [196]; set E0 = 1/J(t0, t0); set the step counter

n to 1.

2. For a given time interval [tn, tn+1], compute the creep function from the compliance function

calculated at mid-step

C(t, tn+1/2) = J(t, tn+1/2)− 1/E0,n+1/2, (4.17)

where tn+1/2 = (tn+1 + tn)/2, and E0,n+1/2 is the elastic stiffness of concrete at mid-step.

3. For k = 3 compute the continuous spectrum of the creep function via Eq. 4.14.
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4. After an adequate choice of retardation times, compute the discrete retardation spectrum

A(τµ)n+1/2 from Eq. 4.16.

5. Compute β(τµ) and λ̃(τµ) as

β(τµ) = e−∆t/τµ (4.18)

λ̃(τµ) = τµ(1− β(τµ))/∆t. (4.19)

6. Compute D(τµ)n+1/2 = 1/
(
A(τµ)n+1/2[1− λ̃(τµ)]

)
.

7. Compute the incremental modulus

Eve
n+1/2 =

(
1

E0,n+1/2
+

N∑
µ=1

1

D(τµ)n+1/2

)−1

. (4.20)

8. Compute the strain increment due to creep

∆εcn+1 =

N∑
µ=1

(1− β(τµ))λ(τµ)n. (4.21)

9. For a given strain increment ∆εn+1, compute the corresponding creep stress increment

∆σc
n+1 = (1− ωn+1)D

ve
n+1/2(∆εn+1 −∆εcn+1), (4.22)

where Dve
n+1/2 is the visco-elastic stiffness tensor computed using the incremental modulus

Eve
n+1/2, and ωn+1 is the damage variable that accounts for stiffness recovery.

10. Update the internal variables using the following formula

λ(τµ)n+1 = λ̃(τµ)A(τµ)n+1/2Z∆σc
n+1 + β(τµ)λ(τµ)n, (4.23)

where Z is the inverse of the unit elastic constitutive tensor.

Recalling Eq. 3.19, the basic creep is described by a log-power law with aging incorporated
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through the solidification theory. It also considers an additional logarithmic term that reflects

viscous flow, and that can be described by a dashpot with age-dependent viscosity. This term can

be treated directly in the rate form, without the need to construct a Dirichlet series approximating

its compliance function. The aging component of the basic creep is defined in a tabular form

[201]. Considering its derivatives up to at least the third order can be tedious. However, a simpler

exponential algorithm exists for basic creep [205], which requires only the definition of the spectrum

of the non-aging log-power component. The aging component can be easily incorporated through

the solidification theory [206] for which the visco-elastic strain rate is given by

ε̇c(t) =

(
q2

√
1

t
+ q3

)
ε̇clog−power(t), (4.24)

where ε̇clog−power(t) represents the visco-elastic strain rate due to the log-power term of the basic

creep. Therefore, the foregoing algorithm can be modified in the following way: at step 3, for k = 3

Eq. 4.14 becomes

L(τµ) = q2
(3τµ)

3

2

d3Φ

dϵ3
, (4.25)

where ϵ = t− t′ and Φ(ϵ) = ln (1 + ϵ0.1).

Eq. 4.16 at step 4 is then modified in the following way

1

E(τµ)
= A(τµ) =

(√
1

tn+1/2
+
q3
q2

)
L(τµ) ln(10)∆(log(τµ)). (4.26)

The effective incremental modulus of the aging Kelvin chain can be evaluated at mid-step a

according to Eq. 4.20

Eve
n+1/2 =

(
1

E0
+

(√
1

tn+1/2
+
q3
q2

)
N∑

µ=1

A(τµ)n+1/2(1− λ̃(τµ))

)−1

, (4.27)

The creep strain increment is then evaluated, by considering aging, using the following expression
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∆εcn+1 =

(√
1

tn+1/2
+
q3
q2

)
N∑

µ=1

(
1− e−∆t/τµ

)
λ(τµ)n, (4.28)

where λ(τµ)n assume the following expression

λ(τµ)n+1 = λ̃(τµ)A(τµ)n+1/2Z∆σn+1 + β(τµ)λ(τµ)n, (4.29)

with ∆σc
n+1 = −(1− ωn+1)D

ve
n+1/2(∆εcn+1), and ∆σn+1 = σep

n+1 +∆σc
n+1 − σn.

Finally, the total creep strain is evaluated by summing the creep strain at Eq. 4.28 to the

additional creep strain increment due to the viscous component of the B3 model,

∆εcn+1 =

(√
1

tn+1/2
+
q3
q2

)
N∑

µ=1

(
1− e−∆t/τµ

)
λ(τµ)n + q4σn

∆t

tn+1/2
. (4.30)

4.5 Visco-elasto-plastic damage constitutive tangent opera-

tor

The visco-elasto-plastic tangent operator Dvep can be expressed as a function of the elasto-

plastic tangent operator Dep and the visco-elastic tangent operator Dve. The total strain at step

(n+ 1) can be written as

εn+1 = εen+1 + εpn+1 + εcn+1 = εven+1 + εpn+1, (4.31)

where εve = εen+1 + εcn+1 is the visco-elastic strain. Recalling equation 4.2, the stress σn+1 is a

function of the visco-elastic strain at step (n+1). By using the chain rule the tangent visco-elasto-

plastic operator Dvep yields

Dvep =
∂σn+1

(
εven+1

)
∂εn+1

=
∂σn+1

∂εven+1

∂εven+1

∂εn+1
= (1− ωn+1)D

ve
n+1/2

∂εven+1

∂εn+1
. (4.32)

The visco-elastic strain is a function of the plastic strain, where the plastic potential is evaluated
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at the beginning of the time interval

εven+1 = εn+1 − εn −∆εpn+1 = εn+1 − εn − γ̇
∂gp

∂σep
n+1

. (4.33)

Taking the derivative of εven+1 over the total strain, yields

∂εven+1

∂εn+1
= I − γ̇

∂2gp
∂(σep

n+1)
2

∂σep
n+1

∂εn+1
= I − γ̇

∂2gp
∂(σep

n+1)
2
Dep. (4.34)

Hence, the constitutive tangent operator for the visco-elasto-plastic model is defined as

Dvep = (1− ωn+1)D
ve
n+1/2

(
I − γ̇

∂2gp
∂(σep

n+1)
2
Dep

)
. (4.35)

4.6 The ”return to apex” algorithm

The convergence of the backward-Euler return mapping algorithm described in Section 4.2 relies

upon the intersection of the normal vector to the plastic potential ∂g
∂σ with the yield surface. For

concrete behaviour in compression, the intersection point is always found. However, with regards to

tension, it may happen that no intersection is found, as shown in Fig. 4.5, where the trial solution

is overcoming the apex point.

Figure 4.5: Classical return-mapping procedure in traction (the projection vector in shown in red).
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In order to tackle this issue, we assume that the solution we are looking for is located and

the apex, and therefore a proper ”return to apex” procedure is implemented. It is represented by

the green line in Fig. 4.5, and allows for the correction along both the hydrostatic line and the

deviatoric plane.

First of all, it must be checked if the return to apex procedure is necessary. This is achieved

by controlling if ξtr overcomes or not ξa. The mathematical expression of ξa is obtained from Eq.

3.27, imposing fp = 0 and ρ = 0. It yields

ξa (κ, κc, κt, κf ) =

√
3 (1− ω∗) fc

m
qs(κ)qf (κf ) . (4.36)

if ξtr > ξa, the ”return to apex” procedure must be activated. The equations of ”return to

apex” procedure are derived here below. Recalling for convenience the expression of the residual of

the return-mapping equations (Eq. 4.8)

r = σep
n+1 − σtr

n+1 + (1− ωn+1)D
ve
n+1/2∆ε

p
n+1, (4.37)

the plastic strain increment required for the projection of the trial stress onto the apex point is

obtained by substituting σep
n+1 with σa in the expression of the residual

∆εpn+1 =
1

1− ωn+1

(
Dve

n+1/2

)−1 [
σtr

n+1 − σa
]
. (4.38)

Then, the internal variables for plasticity, damage and fatigue can be expressed as functions of

∆εpn+1 as follows

κn+1 = κn + |Tr
(
∆εpn+1

)
|

κc,n+1 = κc,n +
1

2

3∑
i=1

(∣∣∆εpn+1,i

∣∣−∆εpn+1,i

)
κt,n+1 = κt,n +

1

2

3∑
i=1

(∣∣∆εpn+1,i

∣∣+∆εpn+1,i

)
κf,n+1 = κf,n +

1

2

3∑
i=1

(∣∣∆εen+1,i

∣∣+∆εen+1,i

)
,

(4.39)
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with ∆εen+1 = ∆εn+1 −∆εpn+1.

As the apex stress is function of the internal variables for plasticity, damage, and fatigue, the

resolution of the Eq. 4.39 and 4.38 require an iterative scheme. The iterations are done, until the

norm of the residual is less than a given tolerance

∥r∥ = ∆εpn+1 −
1

1− ωn+1

(
Dve

n+1/2

)−1 [
σtr

n+1 − σa
]
< Toll. (4.40)
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Chapter 5

Numerical results

In this section, numerical tests are performed to evaluate the capabilities of the model to repro-

duce the non-linear mechanical behaviour of concrete under different loading conditions. First, each

component of the unified model is calibrated and validated against experimental results taken from

literature. Then, meso-scale numerical tests are performed on the unified model. The analyses are

performed via the Abaqus Software [207], in which the constitutive model described in the previous

sections has been implemented within the user subroutine UMAT.

5.1 Calibration and validation of the plastic-damage model

In order to calibrate the plastic-damage model, the response of the constitutive model is com-

pared with results from tri-axial compression tests conducted by [208]. An axial compressive stress

is gradually applied under displacement control on a saturated cylindrical specimen of concrete,

considering different levels of confinement and water to cement ratio w/c equal to 0.55. First, the

calibration is done considering a fixed confinement pressure fcc equal to 8.6 MPa. Then, the con-

stitutive parameters obtained after calibration are used to validate the model considering different

levels of confinement pressures equal to 0.0 MPa, 2.1 MPa, 4.3 MPa, 17.2 MPa and 30.1 MPa.

The constitutive parameters are reported in Table 5.1, while the superposition of numerical and

105
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experimental results, is shown in Fig. 5.1.

E ν fc ft e ts κ1D qh0 A B κc0
(MPa) (MPa) (MPa)
29600 0.22 47.4 3.05 0.55 0.003 0.1 0.4 −2.22 −3.46 0.015
Ac Bc ωc,max κt0 At Bt ωt,max s0 Gf wc −

(J/m2) (mm)
1 100 0.95 0.0015 1 1 0.95 0.2 25 1 −

Table 5.1:
Plastic-damage constitutive parameters for the cement matrix.

It can be seen in Fig. 5.1 that the plastic-damage model is able to catch correctly the material

behaviour with increasing confinement levels. Specifically, the peak stresses and the post-peak

responses are reproduced fairly well.

Figure 5.1: Experimental and numerical comparisons for different confinement levels.

Figure 5.2 depicts the evolution of damage with respect to the equivalent plastic strain, at

varying confinement levels. It comes out that, the confinement pressure has a strong effect on the

damage evolution pattern. Less confined specimens accumulate damage very fast, especially at the

beginning of the loading process, where the damage rate is very high.
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Figure 5.2: Damage evolution for different confinement levels.

Then, the response of he plastic-damage model to a cyclic axial compressive stress under dis-

placement control, with a constant confinement level fcc equal to 8.6 MPa is considered. The

juxtaposition between the numerical and experimental results is shown in Fig. 5.3, where a good

agreement between experimental and numerical results can be observed. In particular, the model is

able to reproduce fairly well the closed loops observed during the elastic unloading and reloading.

This is due to the stiffness recovery function, incorporated in the damage variable ω used in the

constitutive law.



108 CHAPTER 5. NUMERICAL RESULTS

Figure 5.3: Constitutive cyclic response.

5.2 Calibration and validation of the creep model

Among the calibrating parameters for the exponential algorithm, the choice of the number of

Kelvin units m and md, for the basic and drying creep respectively, and the corresponding sets of

retardation times are briefly discussed in the following section. Some suggestions for the appropriate

choice of the retardation times can be found in [205]. In particular, the set of retardation times must

cover the entire range of time of interest. Moreover, the smallest retardation time must be small

enough than the time of load application, in order to capture the irreversible effects of concrete

aging at young ages. A spacing of decades in the logarithmic scale between the retardation time

proves to produce creep curves that are smooth enough [205].

In order to evaluate the number of Kelvin units m for the basic creep that is sufficient for
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an accurate creep algorithm, a creep test on a cubic sample of concrete is considered. A load

corresponding to a uniform unit pressure is applied instantaneously on the top of the cube at 28

days, and the deformation is observed for 10000 days. The simulation is done considering autogenous

conditions. Therefore, no exchange of humidity with the environment takes place, and the drying

creep can be neglected. In this simple case, the analytical solution is expected to be equal to the

product between the basic creep compliance function and the Heaviside step function [196]. The

same problem is solved numerically by implementing the exponential algorithm to the basic creep

part of the B3 model. Three different sets of retardation times are considered: a first set with 13

Kelvin units with the smallest retardation time τ1 = 10−7 days; a second set of 18 Kelvin units with

the smallest retardation time τ1 = 10−9 days; and, finally, a set of 22 Kelvin units with the smallest

retardation time τ1 = 10−15 days. The spacing between the retardation times is uniformly equal to

10 in the logarithmic scale. The parameters of the model B3 are evaluated considering the material

properties reported in Table 5.2. The comparison between the numerical and analytical results is

shown in Figure 5.4a. Table 5.3 reports the maximum and mean error between the analytical and

numerical solutions for each case.

Material property

Young modulus (E) 30000 (MPa)
Poisson’s ratio (ν) 0.15
Strength at 28 days (fc) 27.58 (MPa)
Water-cement ratio (w/c) 0.6
Aggregate-cement ratio (a/c) 7
Cement content (c) 219.29 (kg/m3)

Table 5.2: Material properties for the basic creep test.

Number of Kelvin units Max. error (%) Mean error (%)

13 (with τ1 = 10−7 days) 17.7 7.7
18 (with τ1 = 10−9 days) 12.7 4.9
22 (with τ1 = 10−15 days) 5.7 1

Table 5.3: Maximum and mean errors between analytical and numerical solutions of the basic
creep strain.

Figure 5.4a alongside Table 5.3 show that a total number m of 22 Kelvin units leads to an

accurate enough approximation. Therefore, the set of retardation times for the implementation of
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the basic creep is the following

τµ,basic = 10µ−1τ1,basic; µ = 2, 3, . . . , 22; τ1,basic = 10−15days. (5.1)

A different set of retardation times must be selected for the drying creep. In order to increase

the accuracy of the exponential algorithm for the drying creep, two strategies are simultaneously

adopted. The first one consists in the reduction of the spacing between the retardation times in

the logarithmic scale from 10 to
√
10. Further, with reference to [209], Jirásek and Havlásek have

demonstrated that there is no substantial gain in accuracy by increasing the derivative order in Eq.

4.14, but rather by the adjustment of the discrete retardation times. Therefore, the second strategy

consists in multiplying the retardation times by a constant factor ψ = 1.3. The retardation times

for the drying creep are, therefore, selected as

τµ,drying = 100.5(µ−1)τ1,drying; µ = 2, 3, . . . , 25; τ1,drying = 10−7days. (5.2)

The reliability of the implemented total creep (basic + drying creep) algorithm with the above-

mentioned retardation times is evaluated by comparison between the analytical total creep curve

and the numerical one, obtained by using the same creep parameters as for the basic creep model

described above. Figure 5.4b shows the superposition between the analytical and numerical curves

at varying humidity content, while Table 5.4 shows the corresponding maximum and mean errors.

Relative humidity h Max. error (%) Mean error (%)

0.5 12.1 8.4
0.6 8.5 5
0.7 6.5 3.1
0.8 5.7 2.1
0.9 5.7 1.7

Table 5.4: Maximum and mean errors between analytical and numerical solutions of the total
creep strain for different values of relative humidity.
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(a) (b)

Figure 5.4: Comparison between numerical and analytical results for the basic creep (a), and total
(basic + drying) creep (b).

In order to validate the implementation of the exponential algorithm for the B3 model, an

experimental creep test is considered. To this aim, reference is made to the experiment carried out

by Ranaivomanana, Multon and Turatsinse at Toulouse University, by focusing on the compression

test [210]. Compressive creep tests were carried out on cylindrical specimens of 110 mm in diameter

and 220 mm in height. From the concrete composition, the specific calibrating parameters derived

for the creep model are reported in Table 5.5.

Model parameters

Young modulus (E) 41925 (MPa)
Poisson’s ratio (ν) 0.1
Number of Kelvin units for basic creep (m) 22
Number of Kelvin units for drying creep (md) 25
Time of load application (t′) 28 (days)
Strength at 28 days (fc) 69.7 (MPa)
Water-cement ratio (w/c) 0.44
Aggregate-cement ratio (a/c) 4.5
Cement content (c) 400 (kg/m3)
2 × volume to surface ratio (D) 44 (mm)
Relative humidity (h) 1
Time at which drying starts (t0) 28 (days)

Table 5.5: Constitutive parameters for the creep model.



112 CHAPTER 5. NUMERICAL RESULTS

Figure 5.5 reports the comparison between experimental and numerical creep curves. The close

juxtaposition between the two curves indicate promising capabilities of the model to predict the

long-term deformation of concrete under sustained loadings.

(a) (b)

Figure 5.5: Concrete cylinder numerical model (a), and comparison between numerical and
experimental results (b).

5.3 Calibration and validation of the fatigue model

5.3.1 Cyclic compression tests with different maximum stress levels

The model has been calibrated and validated against cyclic compression tests from [6]. An

axial cyclic compressive load is applied under force-controlled at the top of a cylindrical specimen

of concrete. The minimum stress level was kept constant at Smin = 0.05 in all tests, while the

maximum stress level was either Smax = 0.85 and 0.70. The quantity S is equal to the ratio

between the applied stress and the compressive strength. The frequency of the tests is equal to 1

Hz, and three specimens were tested for each stress level. The domain has been discretized using

8-nodes linear brick, as shown in Fig. 5.6.
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Figure 5.6: Numerical model.

The model has been calibrated considering Smax = 0.85, and the material parameters obtained

after calibration and reported in Table 5.6, have been used to validate the model, considering

Smax = 0.70. At this stage, the creep model is deactivated, due to the small time scale into

consideration. Fig. 5.7 and 5.8 show the juxtaposition between the experimental and numerical

fatigue curves related to the strain development at the maximum stress level (peak strain), and

at the minimum stress level (valley strain), for Smax = 0.85 and Smax = 0.70 respectively. On

the same Figures, are reported the juxtapositions between the numerical and experimental fatigue

modulus, which is evaluated as the ratio of the maximum stress to the peak strain [211].
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E ν fc ft e ts κ1D qh0 A B κc0
(MPa) (MPa) (MPa)
30000 0.2 96 12 0.55 0.005 0.0005 0.7 −2.22 −3.46 0.015
Ac Bc ωc,max κt0 At Bt ωt,max s0 Gf wc a γt

(J/m2) (mm)
1 100 0.95 0.01 1 0.2 0.95 0.2 25 1 0.085 0.01

Table 5.6:
Constitutive parameters after calibration.

It can be seen, that the experimental and the numerical results agree fairly well. In particular,

the model is able to catch the three-stage pattern for the strain development and the fatigue modu-

lus, and the gradient of the curves during the secondary stage is fairly well depicted. Furthermore,

the computed number of cycles to failure are within the minimum and maximum tested values.

The plots of the average equivalent plastic strain at the middle section of the cylindrical specimen

are reported in Fig. 5.9 for both the maximum stress levels. it can be seen that, it shows the same

three-stage pattern as the fatigue curves. This supports the idea that, the presented model considers

the accumulation of plastic strains, as the macroscopic indicator which is responsible of the fatigue

degradation of concrete materials.
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(a)

(b)

Figure 5.7: Comparison between numerical and analytical results for peak and valley strains (a),
and fatigue modulus (b), for Smax = 0.85.
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(a)

(b)

Figure 5.8: Comparison between numerical and analytical results for peak and valley strains (a),
and fatigue modulus (b), for Smax = 0.70.
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(a)

(b)

Figure 5.9: Average equivalent plastic strain for Smax = 0.85 (a), and Smax = 0.70 (b).
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5.3.2 Cyclic tension-compression tests with different confinement levels

The fatigue model has been calibrated against tri-axial tension-compression cyclic tests from

[87]. The test were carried out on tapered prism specimens, and both ends of each specimen have

been enlarged to avoid stress concentrations (see Fig. 5.10). The applied sinusoidal waveform cyclic

loading has a maximum stress level σmax = 0.55ft, and a minimum stress level σmin = −0.2fc,

where ft and fc are the tensile and compressive strengths, respectively (by convention, tension is

considered positive, and compression is considered negative). A lateral load is applied along the

two horizontal directions of the specimen, considering three different levels of confinement ratio

R (ratio between the lateral pressure and the compressive strength) equal to 0.3, 0.2, and 0.1.

Five specimens were considered for each test. The domain has been discretized using 8-node linear

bricks, and the enlargements of the concrete specimens were modeled with an elastic behaviour.

Figure 5.10: Numerical model.
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The model has been calibrated considering R = 0.3, and the material parameters obtained after

calibration are reported in Table 5.7. At this stage, the creep model is deactivated, due to the

small time scale into consideration. Then, the model has been validated, considering R = 0.2 and

R = 0.1.

E ν fc ft e ts κ1D qh0 A B κc0
(MPa) (MPa) (MPa)
32000 0.2 27 2.5 0.55 0.001 0.00001 0.6 −22.2 −34.6 0.015
Ac Bc ωc,max κt0 At Bt ωt,max s0 Gf wc a γt

(J/m2) (mm)
1 100 0.95 0.0001 1 0.2 0.95 0.2 25 1 0.0375 0.0015

Table 5.7:
Constitutive parameters after calibration.

Fig. 5.11 to 5.13 report the superposition between the experimental and numerical residual

strains, versus the normalized number of cycles, for each confinement level.

Figure 5.11: Numerical and experimental residual strains for R = 0.3.
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Figure 5.12: Numerical and experimental residual strains for R = 0.2.

Figure 5.13: Numerical and experimental residual strains for R = 0.1.
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It can be seen that, although the residual strains are slightly overestimated during the second

stage and the third stage, the model is able to catch fairly well the first stage and the residual strain

at failure. Furthermore, the computed number of cycles at failure, is very close to the average value

of the tested number of cycles at failure for each confinement level, as shown in Fig. 5.14.

Figure 5.14: Numerical and experimental number of cycles at failure for different confinement
levels.

5.4 Parametric study for some relevant model parameters

A parametric study is performed to assess the influence of the values of some relevant model

parameters on the fatigue performance of the samples analyzed in the previous sections. The

parameters under consideration are the concrete compressive strength fc, the slope of the fatigue

degradation function a, the initial hardening parameter qh0, the tensile strength ft, the initial

equivalent plastic strain for damage in tension κt0, and finally, the threshold for the onset of fatigue

degradation γt. The cyclic compression test described in Section 5.3.1 is selected to study the

influence of the parameters fc, qh0, and a, considering Smax = 0.85. On the other hand, the study
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of the influence of the parameters ft, κt0, and γt, is done considering the cyclic tension-compression

test described in Section 5.3.2, with R = 0.3.

5.4.1 Influence of fc

In order to assess the influence of the parameter fc, three different values are adopted, namely,

93, 96, and 100 MPa. The first value is lower than the one considered in the simulation in Section

5.3.1, while the third one is higher. The peak and valley strain developments are shown in Fig. 5.15.

It can be seen that, the parameter fc affects the fatigue curve in its whole, that is, all the three

stages are affected. Specifically, increasing fc, the secondary strain slope decreases, corresponding

to a higher number of cycles prior to failure. Therefore, the parameter fc has a positive effect on the

fatigue performance. This is expected, since the size of the yield domain in compression increases

with fc.

Figure 5.15: Effect of fc on the strain development.
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5.4.2 Influence of qh0

In order to assess the influence of the parameter qh0, three different values are adopted, namely,

0.55, 0.7, and 0.85. The first value is lower than the one considered in the simulation in Section

5.3.1, while the third one is higher. The peak and valley strain developments are shown in Fig.

5.16. It can be seen that, the parameter qh0 has a less important effect on the fatigue performance.

The secondary strain slope and the number of cycles to failure are similar, for all three values. The

main effect of the parameter qh0 is located in stage 1. As qh0 is related to the initial size of the

elastic domain, higher values of the parameter means longer time in the elastic regime, for the same

value of the parameter a, which is the rate at which the yield surface contracts. Therefore, the case

in which qh0 = 0.85, shows a longer horizontal plateau at the beginning, which corresponds to the

elastic regime.

Figure 5.16: Effect of qh0 on the strain development.
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5.4.3 Influence of a

In order to assess the influence of the parameter a, three different values are adopted, namely,

0.065, 0.085, and 0.1. The first value is lower than the one considered in the simulation in Section

5.3.1, while the third one is higher. The peak and valley strain developments are shown in Fig. 5.17.

It can be seen that, the parameter a has a strong effect on the fatigue performance. Although the

first stages are almost coincident, the secondary strain slope increases with a, which corresponds to

a smaller number of cycles prior to failure. This is expected, since higher values of a means faster

fatigue degradation rate, which is depicted by the slope of the secondary stage.

Figure 5.17: Effect of a on the strain development.

5.4.4 Influence of ft

In order to assess the influence of the parameter ft, three different values are adopted, namely,

2 MPa, 2.5 MPa, and 3 MPa. The first value is lower than the one considered in the simulation

in Section 5.3.2, while the third one is higher. The residual strain curve is shown in Fig. 5.18.

It can be seen that, a small change in the value of ft can have a relevant effect on the fatigue
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performance. A decrease in the tensile strength will lead to an increase in the secondary strain

slope, and a reduction of the number of cycles prior to failure. This behaviour can be anticipated,

given that the tensile strength is related to size of the elastic domain in tension.

Figure 5.18: Effect of ft on the strain development.

5.4.5 Influence of κt0

In order to assess the influence of the parameter κt0, three different values are adopted, namely,

5E-5, 1E-4 MPa, and 5E-4. The first value is lower than the one considered in the simulation in

Section 5.3.2, while the third one is higher. The residual strain curve is shown in Fig. 5.19. It

can be seen that, the parameter κt0 has almost no effect in the first and second stages, since the

fist stages and the secondary strain slopes are almost coincident. However, the number of cycles to

failure seems to increase, with the value of κt0. Therefore, an earlier triggering of tensile damage,

will lead to a premature failure.
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Figure 5.19: Effect of κt0 on the strain development.

5.4.6 Influence of γt

In order to assess the influence of the parameter γt, three different values are adopted, namely,

1.5E-4, 1.5E-3, and 5E-3. The first value is lower than the one considered in the simulation in

Section 5.3.2, while the third one is higher. The residual strain curve is shown in Fig. 5.20. It

can be seen that, an earlier triggering of fatigue degradation has a detrimental effect on the fatigue

performance. Specifically, the secondary strain slope and the number of cycles to failure seems to

be very sensitive to the parameter γt. Furthermore, when the value of γt is very small, the strains

develop very fast during the first stage, and the secondary stage disappears, leading to a premature

failure.
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Figure 5.20: Effect of γt on the strain development.

5.5 Assessment of the capabilities of the unified model at

the meso-scale

5.5.1 Description of the meso-scale model

The simplified meso-scale model is considered herein, in which the concrete is modelled as a

two-phases material made of the cement matrix and the coarse aggregates. A prismatic concrete

sample 50×50×50 mm3 is considered. A realistic reproduction of the sample is obtained through

X-ray Computed Tomography (CT), as detailed in [50, 92, 212], in order to consider the real spatial

distribution of the aggregates inside the concrete sample. The reconstructed solid model out of the

real sample is shown in Figure 5.21. The meso-scale analyses are expected to be advantageous

because they allow for the consideration of local confinement effects, that arise due to the inter-

action between the different phases, when the specimen is subjected to compressive loads. Coarse

aggregates of nominal diameter bigger than 5 mm are explicitly modeled. They are assigned elastic
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properties of E = 60000 MPa and ν = 0.22. By doing so, the properties of the finer aggregates are

averaged with those of the cement matrix, with an expected negligible error. The specific material

behaviour illustrated at Section 3 has been used for the cement matrix, and has been implemented

in a UMAT subroutine. The plastic damage and fatigue parameters are reported in Table 5.8, while

the creep parameters are reported in Table 5.9.

E ν fc ft e ts κ1D qh0 A B κc0
(MPa) (MPa) (MPa)
33000 0.2 34.6 3.05 0.55 0.01 0.00005 0.4 −2.22 −3.46 0.015
Ac Bc ωc,max κt0 At Bt ωt,max s0 Gf wc a γt

(J/m2) (mm)
1 100 0.95 0.0001 1 0.4 0.95 0.2 25 1 0.085 0.00001

Table 5.8:
Plastic damage and fatigue parameters for the cement matrix.

E ν m md t0 fc w/c a/c c D h tdry
(MPa) − − − (days) (MPa) − − (kg/m3) (mm) − (days)

33000 0.2 22 25 28 34.6 0.6 7 219 16.7 0.8 28

Table 5.9: Creep constitutive parameters for the cement matrix.

Figure 5.21: Meso-cale model of a cubic concrete specimen through X-ray CT.

5.5.2 Creep test

A creep test is performed at the meso-scale on a solid model of a real concrete specimen in order

to evaluate the capabilities of the proposed model to simulate the non-linear creep characteristics
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of concrete. The idea is to test the performance of the model to reproduce the three stage creep

behaviour described in the introduction, by considering the physical interaction between the mortar

and the aggregates.

The vertical compressive load is applied uniformly at the top surface of the concrete cube at

28 days, and kept constant for 20000 days. The model is isostatically constrained. Figure 5.22a

shows the meso-scale model with its different phases (cement matrix and coarse aggregates), and

the uniform compressive load (in red) applied at the top. Six different loading levels are taken

into consideration. They are defined as a fraction η of the compressive strength fc of the concrete

sample. The loading levels that have been taken into consideration are the following: two low

loading levels η = 0.25 and 0.35, two medium loading levels η = 0.45 and 0.55, and two high

loading levels η = 0.75 and 0.85.

(a) (b)

Figure 5.22: Meso-scale solid model (a), and plot of the vertical displacement at the top surface of
the concrete cube versus time (b).

The plots of the average displacement of the top surface of the cube versus time for each loading

level are displayed in logarithmic scale in Figure 5.22b. For all loading levels it can be observed an

initial fast increase in the vertical displacement due to the instantaneous vertical compressive load,

which corresponds to the primary creep stage. Subsequently, the displacement increases almost at a

constant rate for relatively low loading levels (0.25fc and 0.35fc), and for relatively medium loading
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levels (0.45fc and 0.55fc). This accounts for the secondary creep stage. Finally, for relatively high

loading levels, including 0.75fc and 0.85fc, another fast increase is noticed, with subsequent failure

in a very short time. This corresponds to the tertiary creep stage, which is usually observed for

loading levels above 0.7fc [41]. It can also be observed from Figure 5.22b that the total time from

initial loading to failure decreases with increasing loading level.

In order to get an insight into the interaction between aggregates and cement matrix, reference

is made to the equivalent plastic strain as a measure of the extent of plastic flow that the cement

matrix undergoes due to the mechanical load. When the equivalent plastic strain is equal to zero,

the cement matrix stress state lies in the elastic domain; on the other hand, positive values of the

equivalent plastic strain indicate that the cement matrix has undergone plastic deformations.

The contour plot of the equivalent plastic strain on a section of the concrete sample model is

shown in Figure 5.23 for medium and high loading levels. Specifically, Figure 5.23a depicts the

plastic strain field immediately after the application of the instantaneous load; in Figure 5.23b at

an intermediate time (corresponding to 10000 days medium loading levels, or half time between ap-

plication of load and failure for high loading levels); in Figure 5.23c at the final time (corresponding

to 20000 days for medium loading levels, or to the failure of the concrete specimen for high loading

levels). It can be noted from Figure 5.23a that, for high loading levels, the plastic flow triggers

immediately after the load application. This early formation of plastic zones in the concrete sample

is responsible of the premature failure of the concrete specimen at high loading levels, as shown in

Figure 5.22b. Further, the plastic zones initiate at the interface between aggregates and cement

matrix, especially in regions where the aggregates are close to each other, as highlighted by the

arrows in Figure 5.23a. In fact, in these zones the local confinement of the cement matrix, due to

the interaction between the nearest aggregates, lead to stress concentrations in the matrix, hence

to plastic deformations.

In Figure 5.23b it can be observed that the plastic zones initiate around the aggregates for

the medium loading levels, while they grow bigger in regions around the aggregates and travel

through the matrix for high loading levels. This behaviour can be explained by the strain mismatch

due to creep deformations at the aggregate/cement matrix interface. In fact, on that interface
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(a)

(b)

(c)

Figure 5.23: Contour plot of the equivalent plastic strain on section of the concrete sample
immediately after the load application (a), at an intermediate step (b), and at the final step (c).

the stiffer aggregates oppose to the continuous deformation of the creeping mortar. These strain

incompatibilities lead to increasing stresses in the cement matrix, with a subsequent enhancement
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in the formation and propagation of plastic zones, especially around aggregates which are close to

each other. The plastic regions can grow and finally merge into bigger ones. This explains how

creep deformation can lead to the failure of concrete materials.

Finally, Figure 5.23c shows the distribution of the plastic zones for medium and high loading

levels close to the end of the experiment. The high loading levels show almost complete failure

of the sample, due to a widespread plastic region, while the evolution of plastic zones is relatively

slow for medium loading levels. This can be explained by the rapid increase in creep deformation

rates, as concrete enters into the tertiary creep stage when it is subjected to high loading levels.

At this point the strain mismatch due to creep is enhanced between aggregates and cement matrix,

so leading to a faster propagation of the plastic zones. For medium loading levels, the creep

deformations are visible at the secondary stage, in which the creep rate is constant. Therefore, the

strain incompatibilities due to creep are less relevant and the plastic zones grow accordingly.

The above-mentioned observations are supported by Figure 5.24, which presents the plot of the

equivalent plastic strain versus time at a specific location of the concrete sample (zone A), where

the plastic strains develop first. It can be noticed that the equivalent plastic strain grows in line

with the expected creep rates, for the three different creep stages. Especially for medium loading

levels, the equivalent plastic strain evolves at a constant rate, corresponding to the creep rate at

the secondary creep stage. Differently, for high loading levels the equivalent plastic strain grows

faster, and it increases exponentially with time, as concrete enters into the tertiary creep stage and

approaches failure.

The results of the numerical tests at the mesoscale show evidence that the model is capable to

account for the non-linear creep, which is not included in the B3 creep model, by considering the

physical interaction at the interface of the mortar and the aggregates.

5.5.3 Fatigue test

A fatigue test is performed at the meso-scale, considering a vertical cyclic compressive load

applied at the top of the concrete cube specimen. The minimum stress level was kept constant

σmin = 5%fc, and the frequency of the test is equal to 1 Hz. Two different maximum stress levels



5.5. ASSESSMENTOF THE CAPABILITIES OF THE UNIFIEDMODEL AT THEMESO-SCALE133

Figure 5.24: Plot of the equivalent plastic strain in Zone A versus time in days for medium and
high loading levels.

are considered: σmax = 40%fc, and σmax = 75%fc. As in the creep test, the model is isostatically

constrained. Fig. 5.25 depicts the vertical displacement at the top of the concrete cube versus the

number of cycles of loading, for both the stress levels considered. In the case of the higher stress

level, the number of cycles prior to failure is less than 1000, while in the case of the low stress level,

this number is higher than 10 000, and failure has not occurred yet. According to the classification

of Hsu et al. [14], the former falls into the LCF regime, while the latter falls into the HCF regime.

In the LCF case, we can observed the three-stage pattern of the fatigue curve, in which the first

and third stages last about 10 % of the whole life, while the second stage represents around 80 %

of the fatigue life. In the HCF case, the displacement evolves very slowly, with a secondary strain

rate which is very small compared to the LCF case.

The vertical displacement pattern observed can be explained, with a deeper insight at the meso-

scale structure of the concrete cube. The contour plots of the equivalent plastic strain at different

times are shown in Fig. 5.26, and Fig. 5.27 for σmax = 40%fc, and σmax = 75%fc respectively. It

can be seen that, the plastic strains tend to develop at the interfaces between the aggregates and

the cement matrix, due to the local stress concentrations that arise in these zones. Then, they tend

to grow and coalesce to occupy bigger zones in the specimen. The fatigue curve evolution in Fig.

5.25, is therefore explained by the progressive accumulation of plastic strains inside the material.
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Figure 5.25: Vertical displacement at the top surface versus the number of cycles.

In the HCF case, it can be noted that, despite the concrete cube did not fail, internal plastic

zones can somehow be observed inside the heterogeneous structure of the material. The plastic

zones evolve slowly, a result which consistent with the small gradient of displacement observed

during the second stage in Fig.5.25.

However, in the LCF case, a wide plastic zone can be observed only after 10 % for the fatigue

life, which corresponds to approximately 80 cycles. Fig. 5.27 shows how the plastic zones evolve

very fast, which is consistent with the higher slope of the fatigue curve during the second stage

in Fig. 5.25. Then, the plastic zones coalesce, until occupying almost the full specimen, which

corresponds to the third stage.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.26: Equivalent plastic strain evolution in the sample at different times: at 10% (a), at
20% (b), 50% (c), 60% (d), 80% (e), 100% (f) of the total time for σmax = 40%fc.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.27: Equivalent plastic strain evolution in the sample at different times: at 10% (a), at
20% (b), 50% (c), 60% (d), 80% (e), 100% (f) of the total time for σmax = 75%fc.
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Conclusions

The objective of the present work, was to build a plastic damage constitutive model for concrete,

in order to to reproduce its non-linear mechanical behaviour when subjected to long-term and

fatigue loadings. The main assumption at the basis of the model is that, the accumulation of

inelastic strains is the physical mechanism responsible of the creep failure and fatigue degradation

of concrete materials.

As a starting point, a literature review of existing plasticity models combined with the isotropic

damage formulation was done. These models were unable to catch the mechanical response of

concrete under cyclic loading with constant amplitude. Therefore, several attempts have been

made to extend such models, in order to include a fatigue behaviour. A review of such models was

done, and it came out the need to develop more comprehensive models for concrete materials that

can account for creep and fatigue loadings in a unified manner.

The plastic formulation of the proposed model is based on a modified version of the Ménétrey-

Willam failure surface, and the internal variable that controls the plastic flow is defined as the

absolute value of the volumetric component of the plastic strain tensor. The damage formulation

differentiates between the damage in tension and compression, and follows the scalar isotropic dam-

age formulation of Mazars. The creep behaviour is taken into consideration by the phenomenological

B3 model of Bažant. The physical micro-structural degradation due to fatigue is interpreted as a

137
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gradual reduction of the size of the elastic domain as the number of cycles increase. To this aim, a

modified version of the Ménétrey-Willam yield surface is proposed, in which a strength degradation

function is included in its formulation to account for the effects of fatigue. This allows for plastic

flow and damage accumulation, even for stress states initially below the yield surface.

Then, the numerical implementation of each component of the model and the coupling have

been discussed. In particular the total stress can be subdivided into a plastic damage component

and a creep component. The first component have been evaluated by means of the backward

return-mapping algorithm, while the second component have been evaluated via the exponential

algorithm. The mathematical expressions of the consistent elasto-plastic tangent operator and the

coupled constitutive tangent operator have been derived. Then, a ”return to apex” procedure has

been implemented to deal with the non-convergence that may arise in case of extreme tensile loads.

Each component of the model have been calibrated and validated against experimental tests

from the literature. In particular, then model was able to account for stiffness degradation and

the strength loss under cyclic loadings. Furthermore, the model was able to catch the three-stage

pattern observed experimentally, for concrete materials subjected to creep and fatigue loadings

under multi-axial stress states.

Meso-scale analysis have been performed, in which the cement matrix and the coarse aggregates

are differentiated. By performing creep tests at the meso-scale, the proposed model was able

to account for the tertiary creep stage, due to an excessive accumulation of plastic strains at

the interface between the creeping mortar and the stiffer aggregates, which is not present in the

formulation of the B3 model. Furthermore, fatigue tests at the meso-scale have helped to get an

insight in the local damaging process that occurs inside the complex heterogeneous structure, for

both HCF and LCF regimes.

Although the presented model has shown good capabilities for describing the mechanical be-

havior of concrete under creep and fatigue loadings, it can still be improved, considering two main

aspects. First, a more in-depth understanding of the physical mechanisms underlying the damage

initiation and growth could require the consideration of the Interfacial Transition Zones (ITZ) in

the meso-scale modeling of concrete. These zones, formed at the interface between aggregates and
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mortar during setting, have a chemical composition similar to mortar, but with higher porosity.

Therefore, they could be critical zones for the initiation and growth of damage inside the meso-

structure of concrete. On the other hand, although the model described herein offers the possibility

to track the evolution of plastic strains during cyclic fatigue loading, the conventional cycle-by-cycle

integration scheme used to define the evolution of the plastic, damage and fatigue history variables,

could be demanding in terms of computational effort. This is especially true for HCF, where mil-

lions of cycles can be observed prior to failure. Therefore, a more efficient simulation of concrete

subjected to a very high number of cycles of load, would require optimization techniques, such as

the cycle or the adaptive jump methods.
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[193] M. Jirásek and P. Grassl. “Evaluation of directional mesh bias in concrete fracture simu-

lations using continuum damage models”. In: Engineering Fracture Mechanics 75.8 (2008),

pp. 1921–1943.

[194] C. A. Coronado and M. M. Lopez. “Numerical modeling of concrete-FRP debonding using

a crack band approach”. In: Journal of Composites for Construction 14.1 (2010), pp. 11–21.



160 BIBLIOGRAPHY

[195] Y. He and W. Fan. “Plastic-Damage Cap Model with Crack Closure Behavior for Concrete

Modeling”. In: Journal of Engineering Mechanics 148.11 (2022), p. 04022067.
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[198] F. I. du Béton. “International Federation for Structural Concrete Special Activity Group

New Model Code”. In: Lausanne: International Federation for Structural Concrete (2012).
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