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ABSTRACT 

 

Taking into consideration the implication that subclinical mastitis has for the dairy industry and 

the welfare of the animals, the focus of this PhD thesis was to better characterize the phenotypic and 

molecular aspects associated with udder inflammation and subclinical IMI in dairy cows, with the 

specific focus on the effects of subclinical mastitis on some milk important traits (i.e. protein 

fractions) and also for better explaining the biological complexity behind the development of mastitis. 

To achieve this goal we have analyzed the topic from different angles and split it in three 

contributions (chapters). The dataset used consisted in individual milk information belonging to two 

different projects (BENELAT and LATSAN) which had the overall aim of developing short- and 

long- term interventions for the improvement of animal welfare, efficiency, and quality of dairy cattle 

production. For the first contribution (Chapter I), we collected pooled individual milk samples from 

a population of 1,482 clinically healthy cows reared in six different commercial farms with the aim 

of evaluating the association existing between somatic cell count (SCC) and differential somatic cell 

count (DSCC) on the detailed milk protein profile. The protein fractions were determined with a 

validated Reversed-Phase High Performance Liquid Cromatography (RP-HPLC) which allowed the 

identification of four caseins (i.e., α-S1, α-S2, β- and к-CN) and three whey proteins (β- lactoglobulin, 

α-lactalbumin and lactoferrin) which were later expressed both quantitatively (g/L) and qualitatively 

(percentage of total milk nitrogen).  

In the second contribution (Chapter II) we aimed at investigating the associations between 

naturally occurring subclinical intramammary infection (IMI) caused by different etiological agents 

(i.e., Staphylococcus aureus, Streptococcus agalactiae, Streptococcus uberis and Prototheca spp) in 

combination with SCC on the detailed protein profile at the individual mammary quarter level. For 

this study, an initial bacteriological screening (time 0, T0) on 450 cows was carried out to identify 

healthy animals and the ones having subclinical IMI. We selected 78 infected animals which were 

followed up at the quarter level at two different time points (time 1 and 2, T1 and T2) after two and 
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four weeks from T0. Finally, to get more insights on the molecular mechanism underling the 

development of mastitis, as well as to better understand the relationship between host-pathogen 

interaction, we used the RNA-Sequencing (RNA-Seq) technology with the final goal of evaluating 

the milk somatic cell (SC) transcriptomic signatures upon natural infection from S. agalactiae and 

Prototheca spp. In this third contribution (Chapter III) we also included the integration of 

transcriptomic and phenotypic information to better explain the complexity underlying the molecular 

mechanism of mastitis and to identify putative informative hub variables for early mastitis detection 

and prediction.  

Results from the first contribution firstly confirmed the detrimental effects of the increase in 

SCC on the milk protein profile, and especially on the casein fractions. Then, when we focused on 

the contribution of the leucocyte’s populations extracted from the DSCC parameter, which were 

expressed as combined count of polymorphonuclear cells and lymphocytes (PMN-LYM) and 

macrophages (MAC) count, we observed that the most detrimental effects towards the protein profile, 

and once again, especially on the casein fractions, was carried out by the MAC proportion. This 

finding is probably ascribable to the proteolytic activity derived from macrophages, as they were 

present in higher number given the non-pathological status of the animals. 

The second contribution allowed us to dig deeper on the behavior of milk protein fractions in 

animals having subclinical IMI by exploring in an extensive way the pattern of alteration at the 

mammary gland at the quarter level. Indeed, we observed that both subclinical IMI, and especially 

increased SCC significantly reduced the proportion of two of the most abundant casein fractions (i.e., 

β-CN and αS1-CN), which is ascribed to the increased activity of both milk endogenous and microbial 

proteases. In terms of whey proteins, the most significant alteration involved lactoferrin, which being 

a glycoprotein with direct and undirect antimicrobial activity, increased both with IMI and SCC. 

Overall, we observed that the inflammation status driven by the increase in SCC, was associated with 

the most significant alteration in the protein profile. This suggests that the increase in endogenous 
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proteolytic enzymes related to the onset of inflammation, and not the infection, might be the pivotal 

aspect driving the alteration of the milk protein profile.  

Shifting from the phenotypic to the molecular level in the third contribution, allowed us to shed 

some light on the molecular mechanisms behind subclinical IMI and on the immune reaction of the 

animal in response to the infection from S. agalactiae and Prototheca spp. Results from the RNA-

Seq allowed us to observe the changes in the gene expression from healthy animals to the ones 

infected by S. agalactiae or Prototheca. The evidence collected from the pathway analyses 

highlighted that, even though some differences in terms of immune-related pathways and gene 

expression between the two infections have been observed, there was a strong “core” immune 

response that was commonly shared by the two pathogens. Then, integrating the transcriptomic and 

phenotypic information highlighted a strong correlation between the transcriptome and the immune 

cell populations, and udder health traits (i.e., SCC, DSCC, lactose and conductivity). Also, we 

identified some putative hub genes that could be helpful for the animal’s response to subclinical 

mastitis. In conclusion, the hub variables identified with the integrative approach, once validated in 

a larger population, could be included in screening and diagnostic tools for subclinical IMI detection 

at the herd level.  
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RIASSUNTO 
 

Considerando l’impatto che la mastite subclinica ha sul settore lattiero-caseario e sul benessere 

degli animali, l’obiettivo principale di questa tesi di dottorato è stato quello di caratterizzare in modo 

più approfondito da un punto di vista sia fenotipico che molecolare, l’infezione intramammaria (IMI) 

subclinica e all’infiammazione della ghiandola mammaria nelle bovine da latte, prestando inoltre 

particolare attenzione sui loro effetti su alcune importanti componenti del latte (le frazioni proteiche). 

Per raggiungere questo obiettivo abbiamo analizzato l'argomento da diverse prospettive che 

hanno portato alla realizzazione di tre contributi scientifici. Il dataset utilizzato consisteva in 

informazioni relative a campioni di latte individuali raccolti durante due diversi progetti (BENELAT 

e LATSAN), i quali avevano l'obiettivo generale di sviluppare interventi a breve e lungo termine per 

migliorare il benessere degli animali, l'efficienza e la qualità della produzione di latte bovino. Nel 

primo contributo (Capitolo I), abbiamo prelevato dei campioni di latte individuali da 1,482 bovine 

di razza Frisona, clinicamente sane, provenienti da sei diversi allevamenti, con l’obiettivo di andare 

a studiare in modo approfondito l'associazione esistente tra la conta delle cellule somatiche (SCC) e 

la conta differenziale delle cellule somatiche (DSCC) sul profilo proteico del latte. Esso è stato 

misurato tramite l’utilizzo di una metodica validata di Cromatografia Liquida ad Alta Prestazione in 

Fase Inversa (RP-HPLC) che ha permesso l’identificazione di quattro caseine (αS1-, αS2-, β- e к-) e 

tre sieroproteine (β-lattoglobulina, α-lattoalbumina e lattoferrina), che sono state successivamente 

espresse sia in modo quantitativo (g/L) che qualitativo (% di azoto presente nel latte, %N). Con il 

secondo contributo (Capitolo II) siamo andati ad investigare in modo mirato l’associazione tra 

infezione intramammaria (IMI) subclinica causata da diversi agenti eziologici (Staphylococcus 

aureus, Streptococcus agalactiae, Streptococcus uberis e Prototheca spp), lo stato di infiammazione 

della ghiandola mammaria (SCC), e la loro interazione, nei confronti del profilo proteico del latte, a 

livello di singolo quarto mammario. Per raggiungere questo obiettivo è stato effettuato un primo 

screening batteriologico (tempo 0, T0) su 450 bovine per identificare gli animali sani e quelli affetti 
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da IMI subclinica. Sulla base di questo screening, abbiamo selezionato 78 animali infetti che sono 

stati seguiti a livello del quarto mammario in due tempi diversi (T1 e T2) dopo rispettivamente due e 

quattro settimane dal T0.  

Infine, nel terzo studio (Capitolo III), per ottenere una migliore comprensione dei meccanismi 

molecolari alla base dello sviluppo della mastite subclinica, nonché sulla interazione tra animale e 

agente-patogeno, attraverso l’utilizzo della tecnologia di RNA-Sequencing (RNA-Seq) abbiamo 

valutato il trascrittoma delle cellule somatiche del latte (SC) in animali sani e aventi IMI subclinica 

spontanea causata da due diversi microorganismi: S. agalactiae e Prototheca spp. In aggiunta, siamo 

andati ad integrare le informazioni trascrittomiche con quelle fenotipiche a nostra disposizione 

(popolazioni leucocitarie ottenute tramite cito fluorimetria, caratteri di composizione del latte e salute 

della ghiandola mammaria) non solo per spiegare meglio la complessità dei meccanismi molecolari 

che stanno alla base dello sviluppo della mastite ma anche per identificare potenziali variabili 

informative (fenotipiche e molecolari) potenzialmente informative per l’identificazione e diagnosi 

precoce di questa patologia. 

I risultati del primo studio hanno in primis confermato gli effetti negativi dell'incremento della 

SCC sul profilo proteico del latte, e in particolare sulle frazioni caseiniche. Focalizzandoci in seguito 

sul contributo delle popolazioni leucocitarie estratte dal parametro DSCC (che fornisce una 

proporzione combinata di linfociti [LYM] e neutrofili polimorfonucleati [PMN] , da cui è possibile 

calcolare come complemento a 100 la percentuale di macrofagi [MAC]), abbiamo osservato come i 

MAC fossero la popolazione leucocitaria che influenzava in modo peggiore le frazioni proteiche, e 

le caseine in particolare. Questa associazione sfavorevole dei MAC nei confronti delle caseine sembra 

essere ascrivibile alla loro azione proteolitica endogena. Essendo che gli animali coinvolti si 

trovavano in buone condizioni di salute si è potuto assumere che la popolazione immunitaria 

prevalente fosse appunto quella dei macrofagi.  

Nel secondo contributo, focalizzarci a livello del singolo quarto mammario ci ha permesso di 

spiegare meglio il ruolo degli attori coinvolti nell'alterazione delle frazioni proteiche del latte. Infatti, 
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abbiamo osservato che sia l’IMI subclinica che l'incremento di SCC riducevano significativamente la 

proporzione delle due frazioni caseiniche più abbondanti (β-CN e αS1-CN), attribuibile all'incremento 

dell'attività di proteasi endogene e microbiche del latte. Per quanto riguarda le proteine del siero, 

l'alterazione più significativa ha riguardato la lattoferrina, una glicoproteina con attività antimicrobica 

diretta e indiretta, che è aumentata sia in presenza di IMI che con l’incremento di SCC. Nel 

complesso, abbiamo però osservato che l’incremento di SCC è stato il fattore associato con le 

alterazioni più significative nel profilo proteico del latte. Questo suggerisce che l'incremento degli 

enzimi proteolitici endogeni legati all'insorgenza dell'infiammazione, e non l'infezione (cioè, lo stato 

batteriologico), potrebbe essere l'aspetto chiave che guida l'alterazione del profilo proteico del latte. 

Nel terzo contributo, grazie all’utilizzo dell’RNA-Seq, è stato possibile investigare più a fondo 

i meccanismi molecolari legati alla mastite subclinica. I risultati ottenuti dall’analisi trascrittomica ci 

hanno permesso di osservare dei cambiamenti a livello dell’espressione genica tra animali sani a 

quelli infetti da S. agalactiae o Prototheca, legati per lo più a pathways coinvolti nella risposta 

immunitaria e nel metabolismo energetico. Nonostante alcune differenze riscontrate tra i due 

microorganismi, ciò che è emerso è che la presenza di una risposta “immuno-trascrittomica” 

condivisa dai due patogeni, che potrebbe risultare utile in futuro per identificare dei biomarcatori per 

l’identificazione di IMI, a prescindere dal patogeno. Infine, integrando le informazioni 

trascrittomiche e fenotipiche, abbiamo osservato una forte correlazione tra il trascrittoma e le 

popolazioni leucocitarie del latte, e i caratteri di salute della ghiandola mammaria (SCC, DSCC, 

lattosio e conducibilità). Questo approccio integrativo ha permesso inoltre di identificare alcune “hub 

variables” (sia molecolari che fenotipiche) che, una volta validate in una popolazione più ampia, 

potrebbero essere incluse come strumenti di screening e diagnostici per la rilevazione delle IMI 

subcliniche. 
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GENERAL INTRODUCTION 

 

When it comes to the dairy production, Italy represents one of the most impactful countries in 

Europe both concerning the amount of milk produced and the quality of the derived dairy products. 

In fact, among the EU countries, Italy contributes for the 13% to the production of cheese, placing as 

the third cheese producer, after Germany (23%) and France (18%) (EUROSTAT 2021). Not only 

Italy is one of the top cheese producers in terms of quantity, but together with France, is responsible 

for the greatest amount of high-quality cheese labelled with the Protected Designation of Origin 

(PDO) certification. Indeed, in Italy more than 75% of the produced milk is destined to cheesemaking 

(CLAL, 2022), of which 50% is specifically directed to the production of PDO cheese like Grana 

Padano and Parmigiano Reggiano (ISMEA, 2023). 

In this economic context, milk proteins are important traits related to milk quality and 

technological characteristics. Bovine milk has an average protein content of 35 g/L and from a 

nutritional point of view, it is an important source of high-quality proteins, as not only contains all of 

the nine essential amino acids (Davoodi et al., 2016) but also protein-derived bioactive compounds 

with several physiological activities, such as immunomodulatory and gastrointestinal properties 

(Korhonen and Pihlanto, 2006). Milk proteins are mainly composed by caseins (CNs), which account 

for almost 80% of the protein content, and whey proteins, which represent the remaining 20%. Milk 

caseins, which have the characteristic of precipitating at pH 4.6 at room temperature, are represented 

by α-S1-, α-S2-, β- and к-CN. Whey proteins, on the other hand are found in solution in milk and are 

mainly composed by β-lactoglobulin (β-LG) and α-lactalbumin (α-LA), followed by lactoferrin (LF), 

and a small proportion of serum albumin and immunoglobulins. Several studies have evidenced that 

the quantity and proportion of milk protein fractions, especially caseins, can significantly influence 

the variation of coagulation and cheesemaking ability of milk (Caroli et al., 2009; Bittante et al., 

2012), resulting in the assessment of the genetic variability of these traits for selective breeding (Heck 

et al., 2009). 
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Several animal individual factors can affect the protein profile in bovine milk such as parity, 

stage of lactation, season and feeding regime (Bobe et al., 1999). Together with these factors, also 

the health condition of the mammary gland concurs in influencing the quantity of milk protein 

fractions. In fact, several studies have reported that with the onset of inflammatory conditions (i.e., 

mastitis), milk undergoes through compositional changes which negatively affect its composition and 

quality (Bobbo et al., 2016; Pegolo et al., 2021). Concerning the protein fractions, the inflammation 

status in the udder results in an increased proteolytic activity derived by the release of several types 

of proteases which have a strong impact on milk proteins, and especially on caseins (Caggiano et al., 

2019).  

In this context, it is fundamental to maintain and improve herd management strategies focused 

on the care of udder health to keep a sustainable and efficient milk production.  In fact, despite the 

continuous improvement in hygiene and management strategies, mastitis continues to be the most 

impactful disease which firstly hinders the welfare of dairy cows, but also causes significant economic 

losses, due to veterinary expenses, premature culling and antimicrobial treatments (Neculai-Valeanu 

and Ariton, 2022). 

Bovine mastitis is a complex multifactorial disease of the mammary gland. Even though it can 

be caused by physical trauma, toxic chemicals (Reyher and Dohoo, 2011) and even poor nutrition of 

the animals (Ajose et al., 2022), mastitis typically occurs consequent to the intramammary infection 

(IMI) from a wide range of microorganisms. Bovine mastitis can occur in clinical or subclinical 

forms, depending on the presence (or absence) of observable manifestations of clinical signs. Clinical 

mastitis is characterized by visible signs of inflammation, such as red and swollen udder, and physical 

alteration of milk and of its components. In fact, it is common to observe changes in color, consistency 

and presence of clots and blood (Roberson, 2012). On the contrary, subclinical mastitis shows no 

signs of alteration and usually is associated only with an increase in the milk somatic cells. Being 

unnoticed, it represents an important source of infection for the animals within the farms leading to a 
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significant decrease in milk production (Ruegg, 2017) but also to a possible decrease in the bulk-tank 

milk quality, as this milk is mixed with the ones from the healthy cows (Haxhiaj et al., 2022). For 

these reasons, and since subclinical is estimated to be 15-40 times more frequent than its clinical 

counterpart (Martin et al., 2018), it is probably the most insidious and challenging form.  

It has been reported that the most causative agents of IMI, accounting for over 80% of the 

infections, are Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), Streptococcus 

agalactiae (S. agalactiae), Streptococcus uberis (S. uberis) and Streptococcus dysgalactiae (S. 

dysgalactiae) (Ranjan et al., 2006). Escherichia coli is a Gram-negative bacterium which mainly 

causes clinical mastitis (Ju et al., 2020), while S. aureus, Strep. agalactiae and Strep. uberis are all 

Gram-positive bacteria which are mostly responsible for inducing subclinical and/or chronic forms 

of the disease (Lewandowska-Sabat et al., 201; Chen et al., 2021). Aside from these microorganisms, 

in the last years a change in the pattern distribution of the pathogens has been observed, and other 

microorganisms which originally were labelled as uncommon mastitis agents, are now being 

considered as emerging pathogens, and therefore requiring additional attention. That is the case of 

Prototheca spp. Prototheca is a colorless non-photosynthetic microalgae that in the last years has 

rapidly emerged as a non-negligible causative agents of mastitis (Shave et al., 2021): for example, in 

Italy the prevalence of this pathogen is estimated to be around 11.2 % (Zecconi et al., 2020). Little is 

known about the mechanism of action by which this alga can infect hosts and cause disease. 

Moreover, up to date no effective treatments have been found towards this pathogen (Shave et al., 

2021), which represents a serious problem for the dairy sector and calls for the need of finding 

alternative management strategies rather than premature culling.   

Udder health is of pivotal importance for efficient and sustainable dairy production, since 

mastitis, as above stated, is not just a medical condition but it impacts milk quality, cattle 

performance, and farm antimicrobial use (Neculai-Valeanu and Ariton, 2022). In this context, milk 
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somatic cells can provide useful information for the assessment of the mammary gland health and 

therefore for the screening and detection of mastitis. 

The inflammatory response that can be observed in a cow’s udder can be a sign of the presence 

of mastitis. However, the identification of the causative agents causing the disease is the ultimate way 

of confirming IMI and, up to date, the gold standard analysis for achieving the confirmation of the 

infection status has remained the microbiological examination (NMC, 2017). However, its systemic 

application at a farm level is not always feasible as it is a time consuming and expensive technique, 

which requires also expert personnel. In this context, the somatic cell count (SCC) in milk provides 

an indication of the inflammatory response in the mammary gland and for this reason has become the 

most widespread proxy for identifying mastitis at the quarter, cow, herd and population level 

(Schukken et al., 2003). Milk somatic cells (SCs) are mainly composed by cells derived from the 

immune system (i.e., lymphocytes, polymorphonuclear cells and macrophages) and by a small 

proportion of epithelial cells derived from the shedding of the mammary gland. Each type of immune 

cells contributes in a different way to the inflammatory response and therefore their proportion may 

be subjected to variation according to the stage of infection. In healthy conditions the level of SCs is 

normally low, and usually lymphocytes and macrophages prevail, whereas polymorphonuclear cells 

(PMN) are present only in small proportion (Dosogne et al., 2003; Schwarz et al., 2011). In the 

presence of infection and/or inflammatory condition somatic cells tend to increase not only to help 

fighting the infection but also for repairing tissue damage (Alhussien and Dang, 2018). In fact, once 

the mammary gland are infected, a surge in PMN can be observed  triggered by the resident cells 

while few days later PMN start to decrease leaving space to macrophages for the elimination of 

bacteria and debris (Rivas et al., 2001). 

Conventionally, the cut-off point to distinguish healthy cows from the ones having subclinical 

mastitis, has been set to 200,000 cells/mL (Ruegg, 2011), even if scientific evidence has reported that 

SCC might have some limits in giving information of the cows’ health condition (Bobbo et al., 2017). 
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For example, some studies observed animals with milk with low SCC but positive at the microbial 

examination and, conversely, animals with cultured-negative milk samples but with high SCC (Bobbo 

et al., 2017; Pegolo et al., 2022).  

The somatic cell count has proved to be a robust indicator of the intensity of the mammary 

gland inflammation. However, SCC does not provide specific information on the distribution of each 

immune cell population and therefore cannot provide insights on the stage of inflammation or the 

progression of the disease, which could be pivotal for improving knowledge on this disease. Up until 

recently, the major obstacle for the large-scale evaluation of the main leucocytes populations was the 

unavailability of high throughput technologies, as well as the cost the analysis. Indeed microscopy, 

which is still the gold standard method for the evaluation of the immune cells distribution, it is 

extremely time consuming and it has poor repeatability (Zecconi et al., 2019). Flow cytometry, on 

the other hand, is more efficient, but very expensive and allows only the analysis of few sample per 

day, being therefore not suitable for large-scale analysis outside of the research field (Koess and 

Hamann, 2008). A step forward in this direction was recently made with the introduction of a new 

high-throughput flow cytometry-based analyzer which led to the development of a new parameter: 

the differential somatic cell count (DSCC). This trait represents the sum of PMN combined with 

lymphocytes as a percentage of total SCC (Damm et al., 2017). Moreover, proportion of macrophages 

can be calculated as 100 – DSCC.  The use of DSCC, in combination with SCC, could provide large-

scale additional insights on the mammary gland health status and informative screening tools for the 

detection of mastitis. 

Aside from SCC and DSCC, there are other traits that could be helpful for the detection of 

suspected udder inflammation, such as milk lactose and electric conductivity. In fact, during the 

inflammation, the altered permeability of the mammary gland-blood barrier results in an increase in 

lactose and ions like in potassium, magnesium, sodium and calcium, which can together increase the 

electrical conductivity in milk (Viguier et al., 2009). Although lactose and conductivity might be 
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informative indicators, on their own they might be not reliable enough for conclusive diagnosis 

(Norberg, 2005), but as proposed by Ebrahimie et al. (2018), if considered together with SCC and 

DSCC, they could be systematically implemented in health prevention programs as biomarkers for 

the detection of subclinical mastitis.  

In order to improve practical diagnostic and therapeutic tools for battling subclinical (but also 

clinical) mastitis it is fundamental also to further study the complex molecular processed that are 

behind this disease. Thanks to the advances achieved in high-throughput technologies and 

bioinformatic analyses, in the last decade we have observed a significant increase in the use of the so 

called “omic” technologies (i.e. genomic, transcriptomic, epigenomic and metabolomic) in the animal 

science field (Naserkheil et al., 2022), with the final goal of identifying putative reliable biomarkers 

for large-scale disease detection. Among these omic technologies, RNA sequencing (RNA-Seq) 

represents an useful tool for studying the complexity behind host-pathogen interaction, as well as for 

better elucidating the molecular mechanisms behind the disease (Wang et al., 2020a). Up to date 

several studies have investigated the changes in gene expression in the mammary gland after 

intramammary infection from different pathogens (Jensen et al., 2013; Wang et al., 2020b; 

Lewandowska-Sabat et al., 2019), however most of the studies so far focused on experimentally 

induced models of clinical mastitis which do not provide the exact picture of what happens in case of 

natural and subclinical conditions. Moreover, since there is still a difficulty in identifying reliable and 

reproducible molecular biomarkers for mastitis detection and prediction, the integration of multi-layer 

information (i.e., the system biology approach) might represent the ultimate step to strengthen the 

information on this complex molecular system, but also to create more reliable large scale prediction 

models.  
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AIMS AND OUTLINES OF THE THESIS 

 

Taking into consideration the implication that subclinical mastitis has for the dairy industry and 

the welfare of the animals, the focus of this PhD thesis was to better evaluate the phenotypic and 

molecular aspects associated with udder inflammation and subclinical IMI in dairy cows, with the 

specific focus on the effects of subclinical mastitis on some milk important traits (i.e. protein 

fractions) and also for better explaining the biological complexity behind the development of mastitis. 

This topic was dealt from different perspectives and with different approaches, therefore specific aims 

of the thesis were: 

• To study the association between DSCC, firstly combined with SCC and then expressed in a 

quantitative way as combined count of PMN-LYM and MAC, and the detailed milk protein 

profile expressed both quantitatively (g/L) and qualitatively (% of milk nitrogen) in 1,482 

Holstein cows (Chapter I); 

• To deeper investigate the association between naturally occurring subclinical intramammary 

infection (IMI) caused by different pathogens (Staphylococcus aureus, Streptococcus 

agalactiae, Streptococcus uberis and Prototheca spp) in combination with the inflammatory 

status (i.e. SCC), as well as the specific interaction between IMI and SCC, on the detailed 

milk protein profile assessed at the quarter level in Holstein cows (Chapter II); 

• To better assess the molecular mechanisms behind the pathogenesis of naturally occurring 

subclinical mastitis and the potential difference in the host immune response by: i) evaluating 

the milk SCs transcriptome in cows with natural and subclinical infection from S. agalactiae 

and Prototheca spp., and ii) integrate the transcriptomic and phenotypic information (i.e.  milk 

immune cells population, milk composition traits, SCC and DSCC) to better explain the 

complexity behind the development of mastitis and the identification of putative informative 

variables for its detection and prediction (Chapter III). 

 



30 
 

  



31 
 

CHAPTER I 

 

DIFFERENTIAL SOMATIC CELL COUNT AND MILK PROTEINS  

 

 

Impact of somatic cell count combined with differential somatic cell count on milk 

protein fractions in Holstein cattle 

 

V. Bisutti1, A. Vanzin1, A. Toscano1, S. Pegolo1*, D. Giannuzzi1, F. Tagliapietra1, S. Schiavon1, L. 

Gallo1, E. Trevisi2, R. Negrini2, A. Cecchinato1 

 

 

1Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), 

University of Padova, Viale dell’ Università 16, 35020, Legnaro PD, Italy.  

2Department of Animal Science, Food and Nutrition (DIANA) and Research Center Romeo and 

Enrica Invernizzi for Sustainable Dairy Production (CREI), Faculty of Agricultural, Food and 

Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy  

 

 

 

Published in: Journal of Dairy Science 105 (2022) 6447-6459 

https://doi.org/10.3168/jds.2022-22071 

 

 

 

 

 

 

 



32 
 

 

INTERPRETATIVE SUMMARY 

 

Impact of somatic cell count combined with differential somatic cell count on milk protein 

fractions in Holstein cattle 

By Bisutti et al., page 6447. In this study, we present new insights into the role of different immune 

cells’population (i.e. lymphocytes, polymorphonuclear neutrophilis and macrophages) in explaining 

the variation in milk protein fractions in clinically healthy Holstein cows. Overall, the macrophage 

content, expressed quantitatively (i.e. as a percentage of the total somatic cell count) had the most 

significant effect on the protein profile, causing a reduction in the casein fractions, especially β-

casein, and an increase in whey proteins. The effect of the combined proportions of 

polymorphonuclear cells and lymphocytes had a smaller impact and in the opposite direction.  
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ABSTRACT 
 

Udder health in dairy herds has in recent years become a very important issue given its implications 

for animal welfare and the production of high-quality milk. Somatic cell count (SCC) is the most 

widely used means of assessing udder health status. However, differential somatic cell count (DSCC) 

has recently been proposed as a new and more effective means of evaluating intra-mammary infection 

dynamics. Differential somatic cell count represents the combined percentage of polymorphonuclear 

neutrophils and lymphocytes (PMN-LYM) in the total somatic cell count, with macrophages (MAC) 

making up for the remaining proportion. This study’s aim was to evaluate the association between 

SCC and DSCC and the detailed milk protein profile in a population of 1,482 Holstein cows. A 

validated reversed-phase high-performance liquid chromatography (RP-HPLC) method was used to 

quantify four caseins (CN), namely αs1-, αs2-, κ-, and β-CN, and three whey protein fractions, namely 

β-LG, α-LA and LF, which were expressed both quantitatively (g/L) and qualitatively (as a percentage 

of the total milk nitrogen content, %N). A linear mixed model was fitted to explore the associations 

between SCS combined with DSCC and the protein fractions expressed as g/L and %N. We ran an 

additional model that included DSCC expressed as PMN-LYM and MAC counts, obtained by 

multiplying the percentages of PMN-LYM and MAC by SCC for each cow in the data set. When the 

protein fractions were expressed as g/L, SCS was significantly negatively associated with almost all 

the casein fractions, and positively associated with the whey protein α-LA, while DSCC was 

significantly associated with αs1-CN, β-CN and α-LA, but in the opposite direction to SCS. We 

observed the same pattern with the qualitative data (i.e. %N), confirming opposite effects of SCS and 

DSCC on milk protein fractions. The PMN-LYM count was only slightly associated with the traits 

of concern, although the pattern observed was the same as when both SCS and DSCC were included 

in the model. The MAC count, however, generally had a greater impact on many casein fractions, in 

particular decreasing both β-CN content (g/L) and proportion (%N), and exhibited the opposite 

pattern to the PMN-LYM count. Our results show that information obtained from both SCS and 
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DSCC may be useful to in assessing milk quality and protein fractions, and demonstrate the potential 

of MAC count as a novel udder health trait.  

 

Keywords: differential somatic cell count, macrophages, milk quality, protein fractions, HPLC, 

dairy cattle 
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INTRODUCTION 

 

The Italian dairy sector has a significant impact on the country’s economy as most of the milk 

produced is processed into high quality cheese, including Protected Designation of Origin products 

(Bertoni et al., 2001; Bittante et al., 2012). It is widely acknowledged that the quantities and 

proportions of milk protein fractions are one of the most important factors involved in the coagulation 

and cheese-making process (Guinee, 2003; Caroli et al., 2009; Bittante et al., 2012). Caseins, in 

particular, which account for almost 80% of the total milk proteins, are directly involved in curd 

formation and cheese yield (Wedholm et al., 2006). For example, β-CN content is positively 

associated with cheese yield, while κ-CN is responsible for the stability of casein micelles and 

influences dry matter yield (Cipolat-Gotet et al., 2018). Whey proteins, on the other hand, despite 

their high nutritional value, have less economic importance since they are not directly involved in the 

milk coagulation process, although they influence nutrient recovery in the curd. For example, Cipolat-

Gotet et al. (2018) observed that higher milk β-LG contents were associated with lower fat and protein 

recoveries. 

When it comes to efficient dairy production, an important factor having a decisive influence 

on milk production, quality and, consequently, cheese production is udder health (Urech et al., 1999), 

which is the subject of continuously improving farm management strategies (Nørstebø et al., 2019). 

At present, the most widely used indicator able to rapidly provide information on both udder health 

and milk quality, is somatic cell count (SCC) (Guzzo et al., 2018). Somatic cells comprise a small, 

but constant proportion of mammary epithelial cells, and consist in different immune cell populations, 

mainly lymphocytes (LYM), polymorphonuclear neutrophils (PMN) and macrophages (MAC), each 

making different contributions to the inflammatory response, also according to the infection stage.  

Lymphocytes, for example, are responsible for the regulation and suppression of immune responses 

(Nickerson, 1989), while PMN are known to defend against invading bacteria during the early stage 

of an acute inflammatory process (Oviedo-Boyso et al., 2006). Finally, macrophages, having 
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phagocytic and pinocytotic activity, are appointed for the non-specific cell-induced immunity 

(Sordillo et al., 1997). 

SCC is a robust indicator of the intensity of the mammary gland immune response, although 

it does not provide information on the proportions of the individual cell populations, and therefore 

provides no information on the stage of the inflammatory response and the progression of the disease. 

A step forward was recently made with the development of a new parameter to be coupled with SCC: 

the differential somatic cell count (DSCC). This trait represents the combined proportions of PMN 

and LYM in the milk expressed as a percentage, from which the MAC proportion can be calculated 

by subtracting the DSCC from 100% (Damm et al., 2017). 

Milk with a high SCC undergoes changes to its composition due to increased proteolytic 

activity (Wickström et al., 2009), which has detrimental effects on its technological properties, such 

as reduced clotting ability and cheese yield (Bobbo et al., 2016; Pegolo et al., 2021). Proteolytic 

activity seems, in particular, to affect the casein fraction rather than the whey proteins, and has 

commonly been attributed to the PMN (Le Roux et al., 2003). 

Recent studies have started to conduct phenotypic investigation of DSCC and how variations 

in it are associated with total SCC (Damm et al., 2017), udder health traits (Zecconi et al., 2019), milk 

yield and composition (Zecconi et al., 2020; Stocco et al., 2020), and technological properties (Pegolo 

et al., 2021a ;  Pegolo et al., 2021b) 

To date, no studies have yet investigated the possible associations between DSCC and the fine 

composition of milk, and, specifically, the detailed protein profile. Exploring these associations could 

shed light on some of the effects already found with respect to coagulation properties (Pegolo et al., 

2021), as the latter are strictly connected with milk protein fractions (especially caseins). In addition, 

since the different leukocyte populations exhibit different levels of proteolytic activity, the results 

might be useful for identifying potential novel indicator traits of mammary gland inflammation. 

Therefore, the aim of this work was to evaluate the association between DSCC, either combined with 
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SCS or expressed as PMN-LYM and MAC counts, and the detailed milk protein profile, expressed 

both quantitatively (g/L) and qualitatively (% N), in 1,482 Holstein cows. 

 

MATERIALS AND METHODS 

Field Data and Sample Collection 

The present study was carried out as part of the LATSAN and BENELAT projects, whose 

aim is to develop short- and long-term interventions for improving animal welfare and efficiency, and 

the quality of dairy cattle production. 

Individual milk samples were collected from 1,482 Holstein-Friesian cows belonging to six 

different herds (herds size ranging from 27 to 951 lactating cows) located in northern Italy. Three of 

the herds were located in the production area of the Grana Padano Protected Designation of Origin 

(PDO) cheese. All animals were housed in free stalls and fed TMR formulated in accordance with 

the nutritional requirements set by the NRC (2001) and based on corn silage, sorghum silage and 

concentrates. Drinking water was distributed through automatic water bowls and the animals were 

milked twice per day. Cows with any clinical signs of disease or under medical treatment were 

excluded from the sampling. Milk samples were collected once during the evening milking from 

March 2019 to February 2020 (one or more samplings per herd, depending on the size of the herd, 21 

herd-date combinations in total).  

After collection, each sample was divided into two aliquots: bronopol preservative was added 

to one, which was then transferred to the laboratory of the Breeders Association of the Veneto where 

it was stored at 4 °C until analysis of milk composition and udder health traits (within 48 hours of 

collection); the other was taken to the laboratory of the Department of Agronomy, Food, Natural 

Resources, Animals and Environment (DAFNAE) of the University of Padova, Italy, within 3 hours 

of sampling, where it was stored at -80 °C until detailed analysis of the protein profile (within 4 

months of collection). 
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Analysis of Milk Composition and Udder Health Traits 

Samples were analyzed for milk composition traits (fat, protein, casein, lactose and urea 

contents) with an FT6000 Milkoscan infrared analyzer (Foss A/S, Hillerød, Denmark), while SCC 

(cells/mL) and DSCC (%) were determined with a Fossomatic TM 7DC analyzer (Foss A/S, Hillerød, 

Denmark). To obtain a normal distribution, the SCC were transformed to SCS according to the 

equation proposed by Ali and Shook (1980). 

In accordance with Pegolo et al. (2021), the percentages of DSCC were converted to cell 

counts as follows: 

PMN-LYM count, 103/mL = DSCC × SCC (103/mL); 

MAC count, 103/mL = (1 – DSCC) × SCC (103/mL). 

Also the PMN-LYM and MAC counts were log-transformed as log(PMN-LYM or MAC 

count/100,000) + 3, in the same way as SCS, to obtain a normal distribution of the data. 

 

Milk Protein Profiling 

The validated RP-HPLC method proposed by Maurmayr et al. (2013) and recently applied in 

Bisutti et al. (2022) was used to quantify the contents of κ-CN, αs1-CN, αs2-CN, β-CN, β-

lactoglobulin (β-LG), α-lactalbumin (α-LA) and lactoferrin (LF) in 1,264 individual milk samples. 

We were also able to discriminate between the proportions of glycosylated and non-glycosylated κ-

CN, thus the total κ-CN content was the sum of the two peaks. Briefly, an Agilent 1260 Series 

chromatograph (Agilent Technologies, Santa Clara, CA, USA) coupled to a quaternary pump (Agilent 

1260 Series, G1311B) was used to separate the protein fractions using a C:8 reverse-phase analytical 

column (Aeris WIDEPORE XB-C8, Phenomenex, Torrance, CA) with large pore core-shell 

packaging (3.6 μm, 300 Å, 250 x 2.1 I.D). A gradient elution was carried out with a combination of 

two solvents as reported in Maurmayer et al. (2018): solvent A was 94.9% water, 5.0% acetonitrile 
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and 0,1% trifluoroacetic acid and Solvent B was 0,1% TFA in acetonitrile. The flow rate was 0.5 

ml/min and the injection volume was 2 μL. 

All protein fractions were expressed both quantitatively (g/L) and qualitatively (%N), as 

reported in detail in Amalfitano et al. (2020). The quantitative measures were calculated by 

multiplying the proportion of each protein fraction determined by HPLC by the proportion of casein 

determined by the FT6000 infrared analyzer, while the qualitative measures were calculated as their 

percentages of the total nitrogen content. 

Statistical Analysis   

The dataset underwent preliminary editing for all the investigated traits in order to exclude 

records falling outside the interval between 3 standard deviations of the mean. Only milk samples 

with >50,000 SCC/ml and <1,500,000 SCC/ml were used in the analysis, as the Fossomatic 7DC 

analyzer has a reportedly poor level of accuracy for extremely low or high SCC values (Damm et al., 

2017). Following Pegolo et al. (2021), we did not assume any linear relationship between predictors 

and response variables, which was why we discretized the explanatory variables (i.e. SCC, DSCC, 

PMN-LYM count, and MAC count) and created classes on the basis of the 25th, 50th and 75th 

percentiles. This approach ensures better assessment of the pattern of DSCC and SCS effects and 

ensures the classes are balanced. Moreover, SCC and DSCC were included in the same model to 

account for different degrees of mammary gland health as it was reported by Damm et al. (2017) and 

Zecconi et al. (2020) DSCC values may differ in animals with low SCC (healthy or at an early stage 

of the disease) and medium-high SCC (acute or chronic stage of the disease). 

The associations between SCS and DSCC on the one hand and milk yield, composition and 

protein fractions, expressed both as g/L and %N, on the other, were estimated using the following 

linear mixed model implemented in the lme4 package of the R software: 

𝑦𝑖𝑗𝑘𝑙𝑚𝑛 =  DIM𝑖 + Parity𝑗 + SCS𝑘 + DSCC𝑙 + Herd/date𝑚 +  𝑒𝑖𝑗𝑘𝑙𝑚𝑛 [𝐌𝟏] 
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where 𝑦𝑖𝑗𝑘𝑙𝑚𝑛 is the measure of the trait, DIMi is the fixed effect of ith class of DIM (6 levels; i = <60; 

60-120; 121-180; 181-240; 241-300; >300), Parityj is the fixed effect of the jth parity (4 levels; j = 1, 

2, 3, ≥4), SCSk is the fixed effect of the kth class of SCS defined by quartiles (4 levels; k = <2.63; 

2.63-3.33; 3.34-4.29; >4.29), DSCCl is the fixed effect of the lth class of DSCC defined by quartiles 

(4 levels; l = <59.9; 59.9-71.2; 72.3-79.7; >79.7, %), Herd/datem is the random effect of the mth herd-

date (21 levels), and 𝑒𝑖𝑗𝑘𝑙𝑚𝑛  is the random residual assumed to have a normal distribution with 𝑒𝑖𝑗𝑘𝑙𝑚𝑛 ~ N (0, A𝜎𝑒2). 

In addition to M1, another linear mixed model (M2) was built to evaluate the specific effects 

of PMN-LYM and MAC counts in explaining the total variance for the investigated traits: 

  𝑦𝑖𝑗𝑘𝑙𝑚𝑛 =  DIM𝑖 + Parity𝑗 + PMN_LYM𝑘 + MAC𝑙 + Herd/date𝑚 +  𝑒𝑖𝑗𝑘𝑙𝑚𝑛 [𝐌𝟐] 
 In M2, SCS and DSCC were excluded from the vector of fixed effects, while the model 

included PMN-LYMk as the fixed effect of PMN-LYM count class defined by quartiles (k = 4 levels: 

<2.01; 2.01-2.68; 2.69-3.78; >3.78), and MACl as the fixed effect of MAC count class defined by 

quartiles (l = 4 levels: <1.03; 1.03-1.61; 1.62-2.36; >2.36). All the other terms were the same as in 

M1. Polynomial contrasts (P <0.05) were estimated to describe the pattern of the effects of SCS, 

DSCC (%), and PMN-LYM and MAC counts; first order comparisons measured the linear 

relationships, second order comparisons the quadratic relationships, and third order comparisons the 

cubic relationships. A model including the SCS × DSCC interaction was also tested, but it was 

significant for only a few traits and exhibited erratic patterns, so the results are not reported here. 

 

RESULTS AND DISCUSSION 
 

Previous studies have investigated the phenotypic associations between DSCC traits and milk 

composition (Stocco et al., 2020; Zecconi et al., 2020) or technological properties (Pegolo et al., 

2021b). Furthermore, correlations previously obtained between SCS and DSCC (r=0.44), and 
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between PMN-LYM count and MAC (r=0.65) count appear to suggest that they capture different 

biological features (Pegolo et al., 2021). Given the essential role of protein fractions in determining 

the cheese-making ability of milk, and the effects of some leucocytes populations on the integrity and 

functionality of milk proteins, this study focused, for the first time, on evaluating the relationship 

between DSCC and the detailed milk protein profile.     

Descriptive Statistics of Udder Health Traits and Protein Fractions   

Descriptive statistics for the investigated traits are reported in Table 1. The average values of 

the main milk constituents are consistent with previous studies on Holstein cows ( Maurmayr et al., 

2018; Saha et al., 2020). Among the udder health traits, average SCS was 2.65 (± 1.94), in agreement 

with other studies on Holstein cattle (Malchiodi et al., 2014), showing that the  farming systems and 

the overall hygiene conditions in which the sampled herds were kept were good. Mean DSCC was 

69.09% (± 13.51%), while the mean MAC percentage, calculated as 100% minus DSCC, was 30.97% 

(± 13.62%). When DSCC was expressed quantitatively, i.e. as logPMN-LYM and logMAC counts, 

these averaged 3.09 ± 1.35 and 1.82 ± 1.04, respectively. Also in the case of DSCC, the mean value 

was found to be consistent with previous studies (Stocco et al., 2020).  

Regarding the protein profile expressed both quantitatively and qualitatively, the predominant 

casein fractions were αs1-CN and β-CN, with mean values of 9.06 g/L (26.47 %N) and 8.97 g/L (26.19 

%N), respectively. The fractions αs2-CN and κ-CN (calculated as the sum of the glycosylated and 

carbohydrate-free forms) were less represented and averaged 3.48 (10.13 %N) and 5.25 g/L (15.29 

%N), respectively. The most abundant of the whey protein fractions was β-LG, with a mean value of 

3.44 g/L (10.02 %N), followed by α-LA (0.99 g/L, 2.88 %N) and lactoferrin (LF) (0.16 g/L, 0.47 

%N). Overall, the mean values for both the quantitative (g/L) and qualitative (%N) measures were 

similar to those found by Amalfitano et al. (2020) and Maurmayr et al. (2018), with the exception of 

total caseins and β-CN, which were lower than those reported by Amalfitano et al. (2020) (28.36 g/L 

and 78.49 %N, 10.69 g/L and 29.69 %N, respectively), and αs2-CN, which was instead slightly higher 
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(2.78 g/L and 7.2 %N). These differences could be due to several factors, such as differences in 

population size and breed, but also in the analytical method used (Bonfatti et al., 2011; Gebreyesus 

et al., 2016). 

Effects of Herd-Date 

We observed that herd-date explained a relatively low proportion of the total variance (<25%) for all 

the investigated traits (Table 2), with the exception of urea (56%), which is well known to be 

influenced by diet (Roseler et al., 1993; Schiavon et al., 2015), as well as environmental and 

management conditions (Maurmayr et al., 2018). This result is in agreement with previous studies 

(Schopen et al., 2009; Bonfatti et al., 2011), confirming that variation in the milk protein composition 

is mainly related to genetic factors.    

Association of SCS and DSCC with Milk Yield and Composition  

The results of the ANOVA between SCS combined with DSCC and milk composition and the protein 

profile are reported in Table 2. In agreement with Amalfitano et al. (2020), DIM and Parity resulted 

important sources of variation for almost all the traits considered, confirming the importance of 

including these factors in the statistical models used to analyze these kind of traits.  

The effects of SCS and DSCC on milk yield and composition have been extensively investigated by 

Stocco et al. (2020) and  Pegolo et al. (2021). A significant decrease in milk yield and lactose was 

observed as SCS increased (data not shown) while increased DSCC was associated with increased 

milk yield and lactose (data not shown). Our results generally agree with previous studies, with the 

only exception of the fat proportion, which was not significantly affected by either SCS or DSCC in 

our study, likewise reported by Bansal et al. (2005).  

Association of SCS and DSCC with Milk Detailed Protein Profile   

Regarding protein composition measured quantitatively (g/L), Table 2 shows that SCS had a 

significant effect on true protein (TP) (P <0.05). Among the casein fractions, SCS appeared 
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significantly associated to κ-CN (P <0.01) and αs1-CN (P <0.05), which surprisingly linearly 

increased at increasing SCS (Figure1). Moving on to the whey proteins, SCS had a significant positive 

effect not only on total whey protein content (P <0.01), but also on β-LG and α-LA (P <0.01). All 

whey proteins linearly increased at increasing SCS (Figure 1). Also DSCC evidenced a significant (P 

<0.05) and positive effect on β-CN, but a significant negative effect on the total whey protein content 

(P <0.01), β-LG (P <0.01) and α-LA (P <0.001), an opposite pattern to SCS (Table 2 and Figure1).  

When expressing the protein fractions as percentages of total milk nitrogen (%N), SCS negatively 

affected the total casein proportion (P <0.001) and β-CN (P <0.001), while DSCC showed the 

opposite pattern, and its increase resulted associated to a linear increase of both total casein and β-

CN (P <0.001, Figure 2). Both SCS and DSCC had significant effects on the total proportion of whey 

protein (P <0.05 and P <0.01, respectively) and β-LG (P <0.05 and P <0.01, respectively), confirming 

once again an opposite pattern between them: a higher SCS was associated with higher proportions 

of total whey protein and β-LG, while higher DSCC was associated with lower proportions of those 

fractions. α-LA was significantly affected only by DSCC (P <0.01), the association being negative, 

as with the other whey proteins. β-LG is the most abundant whey protein in milk and it is synthetized 

in the epithelial cells of the mammary gland. The reduction of β-LG with the increase of DSCC needs 

to be further evaluated, as at the moment no clear information are known for its biological role. 

However, we might speculate that β-LG, belonging to lipocalin family, which includes, among others, 

fatty acid-binding proteins and bacterial metalloprotease inhibitors (Broersen, 2020), could have a 

role in the innate immune response of the mammary gland. 

A significant reduction in β-LG and α-LA has been previously observed in mastitic animals with 

elevated SCC (Ishikawa et al., 1982; Hogarth et al., 2004; Ramos et al., 2015). As no cow enrolled 

in our study exhibited clinical signs of mastitis, we could assume that no inflammatory damage of 

mammary secretory tissue or increased leakage between tight junctions in the mammary gland could 

have affected the reduction of either β-LG and α-LA.  
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The reduction in the proportion of total casein, and more specifically the β-CN fraction, observed at 

the increasing of SCS could be ascribed either to reduced synthesis of caseins or to the proteolytic 

activity of plasmin, the principal indigenous proteinase in milk, which seems to break the β-casein 

protein chain, in particular (Le Roux et al., 2003; Crudden et al., 2005; Forsbäck et al., 2010). The 

opposite pattern shown by DSCC could, on the other hand, be ascribed to the fact that the present 

study was carried out on a population of clinically healthy animals, and it is therefore likely that the 

LYM predominated over the PMN and MAC, cells which are known for their proteolytic activity.  

Different Leucocytes Populations Have Contrasting Behavior on Milk Protein Fractions  

Since DSCC is a parameter that provides information on the proportions of the different leucocyte 

populations in milk, it would be interesting evaluate if the trends previously observed could either 

change or be confirmed when considering the quantitative variables, i.e. the PMN-LYM and MAC 

counts. Including both variables in the model did not induce any bias since they were only moderately 

correlated (Pegolo et al., 2021).  

Table 3 reports the results of the ANOVA for the associations between PMN-LYM and MAC counts 

and milk composition and protein profile. Expressed quantitatively, β-CN was the only casein fraction 

significantly affected by both PMN-LYM (P <0.05) and MAC (P <0.001). In particular, an increase 

across PMN-LYM count classes was associated with an increase in β-CN contents (+5.63%), while 

an increase across MAC count classes was associated with lower β-CN contents (-6.75%) (Figure 3). 

Moreover, MAC count significantly affected total whey protein and β-LG (P <0.05), as well as α-LA 

(P <0.001), which was also significantly associated with PMN-LYM count (P <0.01). The effect of 

PMN-LYM and MAC counts on the whey protein fractions was the opposite to what we observed for 

β-CN, with MAC count associated with an increase in total whey proteins, (+9.98%), β-LG (+ 

11.31%) and α-LA (+10.44%), while PMN-LYM was negatively associated with α-LA (-7.29%). 

Regarding the protein fractions expressed as percentages of total nitrogen (%N), we confirmed the 

previously observed trend, with MAC count having a significant negative association with total 
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caseins and β-CN (P <0.001), and a positive association with total whey proteins (P <0.01), β-LG (P 

<0.05) and α-LA (P <0.001) (Figure 4). Once again, PMN-LYM count showed the opposite trend to 

MAC count, being associated with an increase in the β-CN proportion (P <0.05), and a decrease in 

the α-LA proportion (P <0.001).  

In order to correctly interpret these results, it is important to remember that DSCC represents the 

combined proportions of PMN and LYM, which have very different distributions in healthy and 

diseased udders. It is in fact thought that LYM and MAC predominate among the immune cells in a 

healthy mammary gland, while PMN constitute only a small proportion (Wickström et al., 2009; 

Schwarz et al., 2011), but predominate once inflammation occurs (Kehrli and Shuster, 1994). There 

is still some uncertainty concerning the distribution of immune cells during inflammation. Damm et 

al. (2017) and Stocco et al. (2020) observed that PMN and MAC seem to change dramatically and in 

opposite directions across the whole SCC range, while LYM remained fairly constant and were able 

to sustain the immune response. In contrast, other studies reported that the most marked change 

related to inflammation process concerned the proportions of LYM and PMN, with MAC remaining 

relatively unchanged (Schwarz et al., 2011; Pilla et al., 2013). 

The general low SCS values that we observed highlights the overall good conditions of the cows, so 

it was most likely that the predominant leucocyte populations were LYM and MAC, rather than PMN. 

The main function of macrophages, which contain lysosomes with proteolytic enzymes, such as 

collagenase, elastase and cathepsins, is to defend the udder from infection (Kelly and McSweeney, 

2003). They have also been found to produce in vitro the urokinase-type plasminogen activator (u-

PA) (Politis et al., 1991), which converts inactive plasminogen into plasmin, the main native 

proteolytic enzyme in milk. The contribution of MAC to proteolysis in milk has been investigated by 

Caroprese et al. (2007), who found appreciable casein hydrolysis in bulk ewes’ milk, which regarded 

α-CN, in particular, while β-CN did not undergo any appreciable degradation. This difference might 
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be related to the slightly different structures and distributions of casein fractions in different animal 

species.  

CONCLUSIONS 
 

Our results confirm the unfavorable effect of SCC on milk caseins, and specifically on β-CN, which 

is probably related to the proteolytic activity of milk native enzymes, like plasmin, and shed new light 

on the association between DSCC and milk proteins. In particular, the unfavorable association we 

found between MAC count and casein fractions might be related to the proteolytic activity of MAC 

and the fact that they were present in larger amounts than PMN, given the non-pathological status of 

the animals. These results highlight the importance of this trait as a potential novel udder health 

indicator and could be of interest for the dairy industry, given the important role of caseins in milk 

coagulation properties and cheese production.  

To validate these findings and assess the association between DSCC and milk protein fractions in 

greater detail, it will be necessary to be able to accurately differentiate the PMN and LYM populations 

− which are combined in the DSCC parameter − and investigate their individual effects. Furthermore, 

possible developments of this study will concern the study of genetic correlations between DSCC and 

protein fractions which could provide useful information from breeding perspectives.  
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TABLES AND FIGURES 
 

Table 1. Descriptive statistics of single test-day milk yield, composition, udder health, and protein 

fractions expressed both as quantitative (g/L) and qualitative measures (%N) 

Trait1 N Mean SD P12 P992 

Milk yield, kg/d 1,481 33.60 9.41 11.78 57.30 
Milk composition      

Fat, % 1,472 3.66 0.83 1.47 5.71 
Protein, %  1,479 3.43 0.34 2.72 4.32 
Casein, % 1,480 2.68 0.28 2.09 3.43 
Lactose, % 1,470 4.86 0.23 4.21 5.29 
Urea, mg/100g 1,480 26.87 5.90 13.80 40.60 

Udder health       
SCC, 103/ml 1,482 272.30 1192.41 7.00 2972.03 
SCS, units  1,482 2.65 1.94 -0.84 7.89 
DSCC, % 1,260 69.09 13.51 30.97 91.90 
MAC, % 1,260 30.97 13.62 8.10 69.48 
Log PMN-LYM count 1,260 3.09 1.35 0.81 6.43 
Log MAC count 1,260 1.82 1.04 -0.14 4.68 

Protein composition, g/L of milk       
True protein 1,264 31.38 3.30 24.39 39.96 
Caseins 1,262 26.75 2.77 21.00 33.78 

αs1-CN 1,260 9.06 1.08 6.65 11.88 
αs2-CN 1,263 3.48 0.68 2.07 5.20 
β-CN 1,264 8.97 1.34 5.80 12.24 
κ-CN 1,262 5.25 1.05 3.16 8.14 
Glycosylated κ-CN 1,243 1.60 0.58 0.66 3.33 

Whey proteins 1,259 4.58 0.92 2.77 7.19 
β-LG 1,259 3.44 0.84 1.76 5.94 
α-LA 1,258 0.99 0.14 0.68 1.36 
LF 1,256 0.16 0.06 0.05 0.33 

NPN compounds 1,252 2.93 0.91 0.70 5.30 
Urea 1,263 0.28 0.06 0.15 0.41 
Minor N compounds 1,234 2.13 0.84 0.40 4.35 

Protein composition, % of total milk N      
True protein 1,253 91.41 2.62 85.31 98.19 
Caseins 1,259 78.07 1.20 75.08 80.63 

αs1-CN 1,261 26.47 2.05 22.07 31.83 
αs2-CN 1,262 10.13 1.64 6.25 14.13 
β-CN 1,257 26.19 2.60 19.45 31.57 
κ-CN 1,260 15.29 2.60 10.15 22.63 
Glycosylated κ-CN 1,245 4.67 1.62 1.98 9.34 

Whey proteins 1,257 13.38 2.35 8.30 19.88 
β-LG 1,258 10.02 2.21 5.31 16.09 
α-LA 1,258 2.88 0.39 2.03 3.99 
LF 1,257 0.47 0.16 0.16 0.91 

NPN compounds 1,252 8.59 2.62 1.81 14.69 
Urea 1,236 2.45 0.54 1.31 3.78 
Minor N compounds 1,235 6.23 2.39 1.11 12.17 
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1SCS = log2 (SCC/100,000) + 3; DSCC = differential SCC; log PMN-LYM count = polymorphonuclear neutrophils-
lymphocytes count expressed as log2 (PMN-LYM count/100,000) + 3; log MAC count =macrophages count expressed 
as log2 (MAC count/100,000) + 3; caseins= sum of αs1-CN + αs2-CN + β-CN + κ-CN; Whey proteins= sum of β-LG + α-
LA + LF; LF= lactoferrin; NPN compounds= non protein nitrogen compounds, sum of urea and minor non protein N 
compounds (e.g., small peptides, ammonia, creatine, creatinine). 
2P1 = 1st percentile; P99 = 99th percentile 
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Table 2. Results from ANOVA (F-value and significance) for single test-day milk yield, composition 

traits and protein fractions, expressed both as quantitative (g/L) and qualitative measures (%N)  

Trait1 Parity DIM SCS2 DSCC3 Herd-date 

Milk yield, kg/d 9.52*** 38.90*** 5.10** 8.52*** 10 
Milk composition      

Fat, % 3.07* 2.73* 2.49 1.62 25 
Protein, %  7.78*** 30.16*** 3.02* 1.05 11 
Casein, % 9.65*** 31.78*** 1.83 0.91 9 
Lactose, % 18.61*** 4.96*** 17.99*** 14.74*** 7 
Urea, mg/100g 0.02 2.26* 0.86 0.50 56 

Protein composition, g/L of milk       
True protein 7.13*** 33.20*** 3.43* 2.12 7 
Caseins 10.27*** 31.88*** 1.42 0.82 8 

αs1-CN 2.17 12.39*** 2.68* 2.10 20 
αs2-CN 3.27* 6.76*** 0.74 1.94 25 
β-CN 16.52*** 15.09*** 1.48 3.56* 17 
κ-CN 1.05 14.80*** 4.57** 0.91 5 
Glycosylated κ-CN 1.33 25.30*** 2.47 1.70 10 

Whey proteins 1.15 8.22*** 3.88** 4.27** 5 
β-LG 1.82 6.34*** 4.79** 4.73** 3 
α-LA 2.08 1.63 5.11** 6.87*** 16 
LF 1.22 7.84*** 0.08 0.39 16 

N compound 0.03 0.56 0.13 1.60 14 
Urea 0.03 2.40* 0.98 0.43 56 
Minor N compound 0.09 0.67 0.11 1.50 13 

Protein composition, % of total milk N      
True protein 0.26 3.08** 0.45 2.60 11 
Caseins 14.85*** 10.55*** 7.55*** 9.32*** 24 

αs1-CN 1.23 2.43* 0.59 0.55 23 
αs2-CN 1.36 1.53 0.47 1.46 33 
β-CN 13.33*** 2.88* 11.50*** 11.86*** 18 
κ-CN 1.72 2.70* 2.20 0.74 8 
Glycosylated κ-CN 0.90 14.77*** 1.82 1.34 11 

Whey proteins 2.11 0.76 2.70* 4.85** 8 
β-LG 2.71* 1.40 2.73* 3.85** 6 
α-LA 3.37* 4.77*** 2.21 3.87** 18 
LF 0.36 3.14** 0.20 0.44 16 

N compound 0.26 3.08** 0.45 2.60 11 
Urea 1.61 10.66 2.96 1.45 50 
Minor N compound 0.26 1.77 0.09 2.11 10 

1caseins= sum of αs1-CN + αs2-CN + β-CN + κ-CN; Whey proteins= sum of β-LG + α-LA + LF; LF= lactoferrin; NPN 
compounds= non protein nitrogen compounds, sum of urea and minor non protein N compounds (e.g., small peptides, 
ammonia, creatine, creatinine). 
2SCS = log2 (SCC/100,000) + 3. 3DSCC= differential SCC. 4L = linear; Q = quadratic, C = cubic. 

5Herd/Date effect expressed as proportion of variance explained by herd/test date calculated by dividing the corresponding 
variance component by the total variance. 
*P < 0.05; **P < 0.01; ***P < 0.001. 
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Table 3. Results from ANOVA (F-value and significance) for single test-day milk yield, composition 

traits and protein fractions expressed both as quantitative (g/L) and qualitative measures (%N) using 

log counts of PMN and lymphocytes (PMN-LYM) and macrophages (MAC). 

Trait1 Parity DIM Log PMN-LYM2 Log MAC3 Herd-Date, %4 
Milk yield, kg/d 9.61*** 39.39*** 1.88 7.71*** 10 
Milk composition      

Fat, % 3.59* 2.77* 0.33 3.06* 25 
Protein, %  8.16*** 30.67*** 1.78 1.25 11 
Casein, % 10.01*** 32.27*** 2.39 1.49 9 
Lactose, % 19.29*** 5.35*** 2.82* 20.52*** 7 
Urea, mg/100g 0.04 2.27* 0.99 0.43 56 

Protein composition, g/L of milk       
True protein 7.21*** 33.90*** 1.14 0.85 7 
Caseins 10.69*** 32.20*** 2.09 1.73 8 

αs1-CN 2.42 12.68*** 1.88 0.78 20 
αs2-CN 3.22* 6.99*** 0.50 1.54 25 
β-CN 17.54*** 15.13*** 2.97* 6.07*** 16 
κ-CN 1.14 14.81*** 1.25 0.79 5 

    Glycosylated κ-CN 1.48 25.56*** 0.43 1.71 10 
Whey proteins 1.20 8.90*** 0.87 4.44* 5 

β-LG 1.84 7.11*** 0.64 3.73* 4 
α-LA 1.57 1.80 4.76** 8.50*** 16 
LF 1.26 8.38 0.09 0.32 16 

N compound 0.05 0.50 1.47 0.71 14 
Urea 0.04 2.41* 0.95 0.42 56 
Minor N compound 0.11 0.62 1.46 0.67 13 

Protein composition, % of total milk N      
True protein 0.20 3.30** 0.66 0.61 11 
Caseins 15.08*** 10.59*** 2.37 13.85*** 25 

αs1-CN 1.38 2.27* 1.35 0.10 23 
αs2-CN 1.31 1.78 2.40 1.67 33 
β-CN 14.14*** 3.05** 3.16* 13.16*** 18 
κ-CN 1.90 2.55* 0.81 0.77 8 

    Glycosylated κ-CN 0.98 14.99*** 0.61 1.24 11 
Whey proteins 2.35 1.09 2.51 5.40** 8 

β-LG 2.87* 1.78 1.38 3.62* 6 
α-LA 3.21* 4.53*** 7.71*** 8.15*** 18 
LF 0.37 3.69** 0.09 0.45 16 

N compound 0.20 3.30** 0.66 0.61 11 
Urea 1.60 10.87*** 1.51 0.43 50 
Minor N compound 0.20 1.90 1.04 0.58 10 

1caseins= sum of αs1-CN + αs2-CN + β-CN + κ-CN; Whey proteins= sum of β-LG + α-LA + LF; LF= lactoferrin; NPN 
compounds= non protein nitrogen compounds, sum of urea and minor non protein N compounds (e.g., small peptides, 
ammonia, creatine, creatinine). 2Log PMN-LYM count = polymorphonuclear neutrophils-lymphocytes count expressed 
as log2 (PMN-LYM count/100,000) + 3; 3Log MAC count =macrophages count expressed as log2 (MAC count/100,000) 
+ 3. 4Herd/Date effect expressed as proportion of variance explained by herd/test date calculated by dividing the 
corresponding variance component by the total variance.  *P < 0.05; **P < 0.01; ***P < 0.001. 
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Figure 1. Least squares (LS) means and SE of milk protein fractions expressed as quantitative 

measures (g/L) across somatic cell score (SCS) and differential somatic cell count (DSCC) classes. 
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Only significant results (P < 0.05) are displayed. When the trend line across SCS or DSCC LS-means 

classes is presented, it means that the polynomial contrast was significant at P < 0.05. Only linear 

contrasts were significant. Values on the x-axis refer to the average value for each class of SCS [top 

row; expressed as log2 (SCC/100,000) + 3] and DSCC [bottom row; expressed as percentage]. 
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Figure 2. Least squares (LS) means and SE of milk protein fractions expressed as qualitative 

measures (%N) across somatic cell score (SCS) and differential somatic cell count (DSCC) classes. 

Only significant results (P < 0.05) are displayed. When the trend line across SCS or DSCC LS-means 

classes is presented, it means that the polynomial contrast was significant at P < 0.05. Only linear 

contrasts were significant. Values on the x-axis refer to the average value for each class of SCS [top 

row; expressed as log2 (SCC/100,000) + 3] and DSCC [bottom row; expressed as percentage]. 
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Figure 3. Least squares (LS) means and SE of milk protein fractions expressed as quantitative (g/L) 

measures across polymorphonuclear neutrophils and lymphocytes (PMN-LYM), and macrophages 

(MAC) classes. Only significant results (P < 0.05) are displayed. When the trend line across SCS or 

DSCC LS-means classes is presented, it means that the polynomial contrast was significant at P < 

0.05. Only linear contrasts were significant. Values on the x-axis refer to the average value for each 

class of PMN-LYM [top row; expressed as log2 (PMN-LYM count/100,000) + 3] and MAC [bottom 

row; expressed as log2 (MAC count/100,000) + 3]. 
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Figure 4. Least squares (LS) means and SE of milk protein fractions expressed as qualitative 

measures (%N) across polymorphonuclear neutrophils and lymphocytes (PMN-LYM), and 

macrophages (MAC) classes. Only significant results (P < 0.05) from model are displayed. When the 

trend line across SCS or DSCC LS-means classes is presented, it means that the polynomial contrast 

was significant at P < 0.05. Only linear contrasts were significant. Values on the x-axis refer to the 

average value for each class of PMN-LYM [top row; expressed as log2 (PMN-LYM count/100,000) 

+ 3] and MAC [bottom row; expressed as log2 (MAC count/100,000) + 3]. 
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INTERPRETATIVE SUMMARY 
 

Effect of intramammary infection and inflammation on milk protein profile assessed at the 

quarter level in Holstein cows 

By Bisutti et al., page 000. In this study we evaluated the existing association between naturally 

occurring subclinical intramammary infection, in combination with somatic cell count, with the 

detailed protein profile in Holstein cows assessed at the individual quarter level. We observed that 

the infection, but mostly the inflammation status of the mammary gland, affected the milk protein 

profile, and in particular the casein fractions. These results helped elucidate the behavior of protein 

fractions during subclinical intramammary infection. 
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ABSTRACT 
 

In this study we wanted to investigate the associations between naturally occurring subclinical IMI 

caused by different aetiological agents (i.e., Staphylococcus aureus, Streptococcus agalactiae, 

Streptococcus uberis and Prototheca spp.), in combination with SCC, on the detailed milk protein 

profile measured at the individual mammary gland quarter. An initial bacteriological screening (time 

0; T0) conducted on individual composite milk from 450 Holstein cows reared in three herds, was 

performed to identify cows with subclinical IMI. We identified 78 infected animals which were 

followed up at the quarter level at two different sampling times: T1 and T2, two and six weeks after 

T0, respectively. A total of 529 quarter samples belonging to the previously selected animals were 

collected at the two sampling points and analyzed with a reversed phase high performance liquid 

chromatography (RP-HPLC) validated method. Specifically, we identified and quantified four 

caseins (CN), namely αS1-CN, αS2-CN, κ-CN, and β-CN, and three whey protein fractions, namely β-

lactoglobulin, α-lactalbumin, and lactoferrin (LF), which were later expressed both quantitatively 

(g/L) and qualitatively (as a percentage of the total milk nitrogen content, %N). Data were analyzed 

with a hierarchical linear mixed model with the following fixed effects: days in milk (DIM), parity, 

herd, SCC, bacteriological status (BACT), and the SCC × BACT interaction. The random effect of 

individual cow, nested within herd, DIM and parity was used as the error term for the latter effects. 

Both IMI (i.e., BACT) and SCC significantly reduced the proportion of β-CN and αS1-CN, ascribed 

to the increased activity of both milk endogenous and microbial proteases. Less evident alterations 

were found for whey proteins, except for LF, which being a glycoprotein with direct and undirect 

antimicrobial activity, increased both with IMI and SCC, suggesting its involvement in the 

modulation of both the innate and adaptive immune response. Finally, increasing SCC in the positive 

samples was associated with a more marked reduction of total caseins at T1, and αS1-CN at T2, 

suggesting a synergic effect of infection and inflammation, more evident at high SCC. In conclusion, 

our work helps clarify the behavior of protein fractions at quarter level in animals having subclinical 
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IMI. The inflammation status driven by the increase in SCC, rather the infection, was associated with 

the most significant changes, suggesting that the activity of endogenous proteolytic enzymes related 

to the onset of inflammation might have a pivotal role in directing the alteration of the milk protein 

profile. 

Keywords: Subclinical mastitis, somatic cell count (SCC), udder health, dairy cows 
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INTRODUCTION 

 

Mastitis is a mammary gland inflammatory condition, which typically develops because of 

the penetration of a wide range of microorganisms (mostly bacteria) in the udder. In the context of 

dairy production, despite the ongoing effort towards the improvement of farm management strategies, 

bovine mastitis remains, especially in the subclinical form, one of the most common and impactful 

diseases, leading to the impairment of animal welfare and huge economic losses, mostly related to 

the decreased milk productivity and quality, veterinary costs, and premature culling (Antanaitis et al., 

2021; Nayan et al., 2022). 

To date, the gold standard for the detection of intramammary infection (IMI) and the 

identification of the respective causative pathogens remains the bacteriological examination 

(Nagasawa et al., 2020), even if its systemic application at a farm level is not always possible as it is 

a time consuming and expensive technique. Milk somatic cell count (SCC) gives instead information 

on the inflammatory status of the mammary gland, and at present is the most widespread tool for 

screening rapidly and on-site the udder condition (Ruegg, 2017). In this context, in dairy farm practice 

a threshold of 200,000 somatic cells/mL is generally considered appropriate for identifying animals 

having subclinical mastitis (NMC, 2017; Dal Prà et al., 2022). However, there have been recent 

studies that demonstrated that SCC may not always provide a complete picture of the animals’ health 

condition (Bobbo et al., 2017). Cases of animals positive at the microbiological examination with low 

somatic cells have been reported as well as culture-negative samples with high SCC (Bobbo et al., 

2017; Pegolo et al., 2022).  

It has been highly demonstrated that milk having high SCC undergoes through compositional 

changes, that negatively affect its composition and quality (Bobbo et al., 2016; Pegolo et al., 2020) 

and, therefore, its economic value. In this context, it has been observed that the increased proteolytic 

activity associated with high SCC seems to have a particularly strong impact on milk protein fractions 
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(Zhang et al., 2015) and especially on caseins (Caggiano et al., 2019), which are important traits 

influencing milk quality and technological characteristics.  

In the context of the Italian dairy sector, where most of the produced milk  is processed into 

high quality cheese, milk proteins, and especially caseins, play a pivotal role as their quantity and 

proportion can directly affect the milk coagulation and cheesemaking ability (Cipolat-Gotet et al., 

2018; Amalfitano et al., 2019). Several studies have investigated the effects of clinical and subclinical 

mastitis on milk composition and quality (Paixão et al., 2017; Stocco et al., 2020)  and technological 

traits (Pegolo et al., 2021a). However, to the best of our knowledge, no extensive research focused 

on the specific interaction between subclinical IMI and SCC (i.e., the inflammatory status) and the 

detailed milk protein profile, when measured at the mammary gland quarter level.  

Therefore, the aim of this study was to investigate the association between naturally occurring 

subclinical IMI caused by four different pathogens (Staphylococcus aureus, Streptococcus 

agalactiae, Streptococcus uberis and Prototheca spp.) in combination with SCC on the detailed milk 

protein profile assessed at the quarter level in Holstein cows. 

 

MATERIALS AND METHODS 
 

Study Design, Animals and Sampling  

This study was conducted within the LATSAN project, which aimed at developing innovative 

tools for improving mammary gland health and milk quality in dairy cattle. The research was 

approved by the Ethical Animal Care and Use Committee (OPBA – Organismo Preposto al Benessere 

degli Animali) of the Università Cattolica del Sacro Cuore and by the Italian Ministry of Health 

(protocol number 510/2019-PR of 19/07/2019).  

This research was a longitudinal observational study aimed at inferring the associations 

between milk protein profile, determined at the quarter level, and subclinical IMI. The null hypothesis 

was that no association existed between them. The experimental unit was the mammary quarter within 
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cow, therefore all comparisons were made between positive and negative samples as well as between 

different classes of SCC, within cow.  The required sample size for this study was calculated assuming 

that β-CN, being together with αs1-CN the predominant milk casein fraction, could be the most 

representative milk protein fractions affected by udder health (Forsback et al., 2010). Therefore, the 

minimum sample size was calculated to achieve a 95% confidence and 80% power to detect 

differences between negative and positive milk samples at the bacteriological screening of 1.6-point 

percentage of total milk N, corresponding to roughly 38% of the standard deviation of the trait. 

Considering an expected prevalence of animals affected by subclinical IMI of 20% and the variability 

of milk protein profile, we considered 280 quarters enough to detect desired differences. Milk samples 

were collected during the evening milking from 450 lactating Holstein cows belonging to three 

different commercial farms in Veneto region (N =  144, 71 and 235 for herd A, B and C, respectively). 

Herd selection was based on a prevalence study conducted by the Istituto Zooprofilattico 

Sperimentale delle Venezie (IZSVe) that investigated some of the most common causative agents of 

mastitis in the Veneto region (Streptococcus. agalactiae, Staphylococcus. aureus, Streptococcus. 

uberis and Prototheca spp.). The detailed description of the structure of the experimental design, as 

well as the management and farming conditions, are reported in the work of Pegolo et al. (2022) and 

Pegolo et al. (2023a). In brief, the first sampling (time 0, T0) consisted in performing a bacteriological 

screening on all lactating cows within each herd, by collecting aseptically 50 mL of composite milk, 

to identify healthy subjects (Neg) from the ones having subclinical IMI. Among the ones positive to 

the bacteriological screening, we selected those with no clinical signs of mastitis during that lactation 

period, and no previous history of antibiotic and other drug treatments. In total 78 animals were 

selected. Two subsequent milk sampling were performed after two (T1) and six (T2) weeks, from T0, 

respectively, in order to monitor the progress of the disease. On such occasions, we collected two 

milk aliquots of 50 mL from each mammary quarter. One aliquot was sent to the regional breeders 

association (Associazione Regionale degli Allevatori del Veneto, ARAV) for milk composition 

analysis and SCC determination. The second aliquot was instead transferred to the Milk Laboratory 
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of the Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE) of 

the University of Padova for the evaluation of the detailed milk protein profile through high 

performance liquid chromatography (HPLC). A schematic summary of the structure of the 

experimental design is also reported in Supplementary figure S1. 

All milk samplings were performed in accordance with the guidelines published by the 

National Mastitis Council (NMC, 2017). Briefly, before the aseptic milk collection, teats were 

cleaned by the veterinarian with a commercial pre-milking disinfectant, dried with individual towels 

then cleaned again with sterile gauzes and alcohol.   Cows were fed TMR mostly based on corn silage, 

sorghum silage and concentrate, and drinking water was available in automatic water bowls. Detailed 

description of the feeding regime adopted in the three herds is available in the study of Pegolo et al. 

(2023b) and also reported in Supplementary table S1.  

Microbiological Analysis   

Milk samples microbiological examination was carried out by the IZSVe laboratory (Legnaro, 

PD, Italy). Samples, which were delivered within 4 hours from collection, were frozen and analysed 

within three days. Pegolo et al. (2022) reported all the detailed procedures of the microbiological 

analyses. Briefly, ten μL of milk from the composite samples was inoculated on each of the following 

selective media: Baird-Parker agar with rabbit plasma fibrinogen (BP-RPF, Biokar Diagnostic, 

Beauvais, France; identification of S. aureus), thallium sulfate-crystal violet-B toxin blood agar 

(TKT, IZSVe internal production; identification of Strep. agalactiae), and Prototheca isolation 

medium (PIM, IZSVe internal production). BP-RPF plates were prepared following the ISO 6888-2 

(2021) standards, TKT according to the method described by Hauge and Ellingsen (1953), and PIM 

in accordance with the NMC guidelines (NMC, 2017). All inoculated media were incubated at 37 °C. 

For BP- RPF plates colonies growth was observed at 24 and 48 hours from the incubation, and 

suspected S. aureus colonies were confirmed through the tube coagulase test (NMC, 2017). 

Concerning the TKT plates, growth was observed at 24 h, and suspected positive colonies for Strep. 

agalactiae were confirmed by CAMP test (NMC, 2017). Prototheca isolation medium plates were 
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observed at 24, 48, and 72 h, and suspected colonies were confirmed by wet mount method (NMC, 

2017). 

Quarter milk samples were cultured following the NMC guidelines (NMC, 2017). Briefly, 10 

μL of milk was streaked on blood esculin agar, incubated at 37 °C and, after 16-18 h, single isolated 

colonies were picked, subcultured and identified through both morphological examination and 

additional NMC tests (NMC, 2017). For mixed species colonies, it was possible to isolate and identify 

up to five different colonies, if more were present the sample was labelled as “contaminated”. 

Bacterial colonies with questionable test results were identified by matrix-assisted laser 

desorption ionization time of flight mass spectrometry (MALDI-TOF MS) performed by Microflex 

Biotyper LT (Bruker Daltonics GmbH, Bremen, Germany). A log (score) ≥ 2 represented the 

threshold for species level identification.   

Analysis of milk composition and SCC 

Milk composition analysis (fat, protein, casein, lactose, and urea contents) was carried out using the 

Milkoscan FT6000 infrared Analyser (Foss A/S, Hillerød, Denmark) while SCC were determined 

using the FossomaticTM 7 DC analyzer (Foss A/S, Hillerød, Denmark).  

Milk Protein Profiling 

The validated Reversed Phase High Performance Liquid Cromatography (RP-HPLC) technique 

(Maurmayr et al., 2013) was applied to identify and quantify the following protein fractions: κ-CN 

(κ-casein), αS1-CN, αS2-CN, β-CN, β-LG (β-lactoglobulin), α-LA (α-lactalbumin), and LF 

(lactoferrin). With this method we were also able to identify the portion of glycosylated and non-

glycosylated (carbohydrate-free) κ-CN by separating the two chromatographic peaks. Total κ-CN 

was expressed as the sum of these two portions. The instrument used consisted in an Agilent 1260 

Series chromatograph (Agilent Technologies) coupled to a quaternary pump (Agilent 1260 Series, 

G1311B). A C:8 reverse-phase analytical column (Aeris WIDEPORE XB-C8, Phenomenex) with 

large pore core-shell packaging (3.6 μm, 200 Å, 250 × 2.1 mm i.d.) was used to separate the protein 

fractions. The injection volume was set at 2 µL and the flow rate was 0.5 mL/min. The 
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cromatographic run was carried out in a gradient elution, whose specifics are reported in detail by 

Maurmayr et al. (2013),  with the combination of two solutions: solvent A was 94.9 % water, 5.0 % 

acetonitrile, and 0.1 % trifluoroacetic acid, and solvent B was 0.1 % trifluoroacetic acid in acetonitrile. 

All protein fractions were later expressed both quantitatively (g/L) and qualitatively (%N) as 

previously reported by Amalfitano et al. (2020). 

Statistical Analysis  

The association between quarter-level protein fractions and subclinical mastitis was explored using a 

hierarchical linear mixed model and the PROC MIXED procedure (SAS institute Inc., Cary, North 

Carolina, USA). Two separate analyses were conducted for T1 and T2 due to heterogeneity of the 

variances and to the possible change in bacteriological status of the quarter between T1 and T2. The 

following model was run for T1 and T2, where the experimental unit was the individual mammary 

gland quarter:  𝑦𝑖𝑗𝑘𝑙𝑚𝑛 =  μ +  DIM𝑖  + Parity𝑗 + Herd𝑘 +  SCC𝑙 + BACT𝑚  +  (SCC ×  BACT)𝑙𝑚 +  𝐶𝑜𝑤𝑛:𝑖𝑗𝑘+ 𝑒𝑖𝑗𝑘𝑙𝑚𝑛             
Where: yijklmn is the investigated trait (milk protein fractions, expressed both quantitatively [g/L] and 

qualitatively as a percentage of the total milk nitrogen content, %N); μ is the overall mean; DIMi is 

the fixed effect of the ith class of days in milk (i = 3 classes; class 1 ≤ 120; 120 < class 2 ≤ 240; class 

3 > 240); Parityj is the fixed effect of the jth parity (j = primiparous or multiparous); Herdk is the fixed 

effect of the kth herd/date (k = 3 herds); SCCl is the fixed effect of the lth class of SCC (l = 4 classes; 

class 1 < 50,000 cell/mL; 50,000 cell/mL ≤ class 2 < 200,000 cell/mL; 200,000 cell/mL ≤ class 3 < 

400,000 cell/mL; class 4 ≥ 400,000 cell/mL); BACTm is the fixed effect of the mth class of 

bacteriological status (m = positive or negative); (SCC ×  BACT)𝑙𝑚  is the two-way interaction 

between SCCl and BACTm; 𝐶𝑜𝑤𝑛:𝑖𝑗𝑘  is the random effect of the nth animal nested within DIMi, 

parityj, and herdk; and eijklmn is the random residual. Cow and the residuals were assumed to be 

normally distributed with a mean of zero and variances of 𝜎𝐶𝑜𝑤2  and 𝜎𝑒2, respectively. With this nested 
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design, the effects of DIMi, parityj, and herdk were tested on the error line of the nth animal nested 

within DIMi, parityj, and herdk, while the SCCl, BACTm, (SCC ×  BACT)𝑙𝑚, and animal effects were 

tested on the residual term. 

We also tested the position and number of affected quarters, but since no significant outcome was 

obtained, we excluded them for the final analyses. 

For SCC classes the orthogonal contrasts were set as follows: 

• class 1 + class 2 vs class 3 + class 4 (low SCC vs high SCC) 

• class 1 vs class 2 (within low SCC) 

• class 3 vs class 4 (within high SCC) 

While for BACT x SCC interaction, orthogonal contrasts were built as following:  

• negative (SCC class 1 + class 2 + class 3 +class 4) vs positive (SCC class 1 + class 2 + class 

3 + class 4) 

• negative (low SCC) vs positive (low SCC) 

• negative (high SCC) vs positive (high SCC) 

• negative vs positive (SCC class 1) 

• negative vs positive (SCC class 2) 

• negative vs positive (SCC class 3) 

• negative vs positive (SCC class 4) 

The significance was set at P < 0.05. 
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RESULTS AND DISCUSSION 
 

This longitudinal study evaluated for the first time the effect of naturally occurring subclinical 

IMI, inflammation status determined by the SCC level, and their combination, on milk protein 

fractions in Holstein cows at the quarter level.  

The detailed results of the herd prevalence and the pathogens distribution for each farm have 

been described in the study of Pegolo et. al (2022). Briefly, among the positive animals identified 

during the first bacteriological screening (T0), Strep. agalactiae was the most prevalent 

microorganism found (n = 51, two herds), followed by Prototheca spp. (n = 19, two herds), S. aureus 

(n = 6, two herds) and finally S. uberis (n = 5, one herd). Three animals from one farm were co-

infected by both Strep. agalactiae and Prototheca, and therefore excluded from the trial. 

As reported by Pegolo et al. (2022), no significant differences were found in terms of milk 

production and composition between negative and positive animals to the bacteriological 

examination, underlying that subclinical infection may lead to no detectable alterations. On the other 

hand, as expected, SCC significantly differed between negative (199,700 cells/mL) and positive 

animals (688,600 cells/mL) (P < 0.001). 

Milk protein fractions were identified and quantified on 529 quarter milk samples from the 

78 subclinically infected animals identified at T0, divided according to the sampling time as follows: 

253 for T1 and 276 for T2, respectively. Nineteen samples (8 and 11 at T1 and T2, respectively) were 

found contaminated, thus they were excluded from the statistical analysis. In total, 63 quarter samples 

tested positive for the presence of microorganisms at T1 while the number of positive samples was 

reduced to 47 at T2. As previously stated, Strep. agalactiae was the prevalent pathogen, with 41 

positive samples at T1 and 34 positive samples at T2 (Supplementary table S2). Strep. agalactiae is 

a reemerging pathogen in European countries, and is becoming one of the most important causative 

agents of subclinical mastitis, despite the implemented eradication programs (Barsi et al., 2022). In 

Italy, no systematic studies have been carried out to evaluate the prevalence of this microorganism. 
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Only two regions, Emilia Romagna and Lombardia have investigated it, with an estimated herd 

prevalence of 7-10% (Sora et al., 2022) 

The descriptive statistics of the traits of concerns are reported in Table 1. As expected, the 

predominant casein fractions were β-CN and αS1-CN, which averaged 9.83 g/L (27.35 %N) and 9.26 

g/L (25.89 %N), respectively. Among the whey proteins, β-LG was the most abundant (4.47 g/L, 

12.47 %N), followed by α-LA (1.04 g/L, 2.91 %N) and LF (0.16 g/L, 0.44 %N). These values were 

overall in accordance with previous works carried out using the same RP-HPLC method on composite 

milk samples (Amalfitano et al., 2020; Bisutti et al., 2022a). 

The pattern of the protein fractions at the two sampling points was overall similar. Moreover, 

we did not find differences when comparing the effects of IMI and inflammation status between the 

two ways of expressing the protein fractions (quantitatively, g/L and qualitatively, %N). Therefore, 

to avoid redundancy we focused on the results expressed as percentage of the total milk nitrogen. The 

plot displaying the results of the protein fractions expressed as g/L are reported in the Supplementary 

materials (Supplementary figures S2, S3, S4 and S5). Moreover, as the behavior of the glycosylated 

and carbohydrate free к-CN had the same pattern as the total к-CN (calculated as the sum of these 

two fractions; data not shown), we focused only on the effects towards the latter. 

Associations between subclinical intramammary infection and milk protein fractions  

The results of the ANOVA for the IMI effect on the investigated traits are reported in Table 

2. The evaluation of pathogen-specific effects towards the investigated traits was not possible due to 

an excessive fragmentation of the dataset which would have led to a significant reduction in the test 

power. 

At T1, subclinical IMI was associated with most of the casein fractions. In particular, we 

observed that mammary quarters positive at the bacteriological examination had higher proportions 

of к-CN (P < 0.05; + 5.8 %) and αs2-CN (P < 0.01; + 5.7 %) but significantly lower β-CN (P < 0.01; 

-7.5 %) (Figure 1). The milk compositional changes in the infected mammary gland are related to the 

activity of immune cells like polymorphonuclear (PMN) cells and macrophages that release a great 
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amount of proteases and other cellular components in the milk (Kelly et al., 2006; Pisanu et al., 2015) 

while fighting invading pathogens. Moreover, infecting bacteria can release into the milk exogenous 

enzymes, like elastases (Guerrero et al., 2016), contributing to proteolysis. Furthermore, some 

bacteria can secrete activators of protease zymogens, which, synergically with native bovine enzymes 

lead to an increase in proteolytic potential of milk (Larsen et al., 2006). Enzymatic degradation seems 

to affect protein fractions in a different way. For example, Considine et al. (2000) observed a cleavage 

specificity of elastase on αs1-CN and β-CN , suggesting that among the casein fractions those two 

might be the most suitable substrates for the proteolysis. Moreover, Hinz et al. (2012) assessed with 

two-dimensional gel electrophoresis (2-DE) the peptides produced by proteolysis in milk samples 

from cows infused with Escherichia coli LPS and observed that almost all the obtained peptides 

derived from αs1-CN and β-CN, in accordance with what observed in our study.  

At T2, subclinical IMI was associated with higher LF (P < 0.05; + 51%; Figure 1). Lactoferrin 

is an iron-binding glycoprotein synthesized by specific granules in PMN and glandular epithelial cells 

(Cheng et al., 2008), that is characterized by antimicrobial properties. The increased concentration of 

LF found in our study was in accordance to Chaneton et al. (2008) who also found a greater content 

of this protein in infected quarters of animal having clinical mastitis.  

Apart from LF, we did not observe further significant effects of the bacteriological status 

towards the whey proteins. Different studies on the milk peptidome in cows with mastitis highlighted 

that peptides derived from the degradation of whey proteins were few or not even detected (Baum et 

al., 2013; Mansor et al., 2013). Hence, previous studies that observed a reduction of β-LG and α-LA 

in animals affected from clinical mastitis (Hogarth et al., 2004; Guerrero et al., 2016) attributed this 

alteration as a result of either the physical damage of the mammary epithelial cells from the pathogen 

invasion or the reduced synthesis and secretion of those proteins (McFadden et al., 1988), rather than 

from enzymatic degradation. Conversely, evaluation of whey from cows with subclinical mastitis 

through by two-dimensional gel electrophoresis (2-DE) did not observe a reduction in either one of 

those proteins (Baeker et al., 2002), in accordance with what we observed in our study.  
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We might speculate that this result might partly be related to the chronic nature of infection, 

and partially to the fact that animals involved in our study, even if all displayed a subclinical 

condition, were not in the same stage of infection, and therefore the changes in the whey population 

might have been less evident than the ones found for caseins.  

Associations between milk somatic cell count and protein fractions 

The results of the ANOVA for the SCC effect on the investigated traits are reported in Table 

2. At T1, SCC was associated with all the casein fractions. Increases in SCC led to a reduction αs1-

CN (-8 %; P < 0.001) and β-CN (-8 %; P < 0.01). On the other hand, к-CN and αs2-CN showed an 

opposite trend, as we observed for both these casein fractions a higher proportion at increasing SCC 

(+17% and 4.9% for к-CN and αs2-CN, respectively; Figure 2). Indeed, the reduction in αs1-CN and 

β-CN, which are the two most abundant protein fractions, is probably to be ascribed to the increase 

of milk endogenous proteases, which include plasmin, enzymes produced by leucocytes and those 

derived from the transition through the altered blood-milk barrier (Le Roux et al., 2003; L. Forsback 

et al., 2010). Plasmin, the main milk native enzyme (Crudden et al., 2005), exists as a component of 

a complex system, which includes its zymogen, plasminogen and plasminogen activators (PAs) 

(Kelly et al., 2006). Even though it is normally present in milk, both plasmin and plasminogen 

significantly increase with elevated SCC (Dallas et al., 2016), together with the urokinase type I 

plasminogen activator (u-PA), which activates plasminogen into plasmin (Guerrero et al., 2016). 

Along with plasmin, other proteases like cathepsin B and D, collagenases, and elastases, are released 

by lysosomes contained in macrophages and PMN cells with the onset of inflammation. Some of 

these enzymes (like elastase and cathepsin B) have the ability to kill different pathogens that are 

causative agents of mastitis (Ezzat Alnakip et al., 2014; Abdelmegid et al., 2020), but at the same 

time they significantly concur in the degradation of milk protein fractions (Le Roux et al., 2003; 

Wedholm et al., 2008).  

It was observed that, among all caseins, β-CN, followed by αs1-CN were the fractions most 

subjected to the enzymatic degradation (Urech et al., 1999; Ramos et al., 2015). In addition, studies 
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that evaluated changes in peptidome in animals affected by subclinical mastitis evidenced a more 

pronounced production of β-CN and αs1-CN derived peptides (Guerrero et al., 2016; Addis et al., 

2020), suggesting that к-CN might be more resistant to the proteolysis by these enzymes than the 

other casein fractions. Therefore, we might speculate that the higher sensitivity to proteolysis of these 

two casein fractions might be attributable either to their aminoacidic structure or to their tertiary 

structure, which could make the proteases cleavage sites more accessible. 

Among the whey proteins, SCC was associated with β-LG (P < 0.05) and LF (P < 0.001; + 

95%) (Figure 3). However, in our study the pattern of variation of β-LG across the SCC classes was 

erratic, suggesting further evaluations. Aside from protein fractions, we observed a significant 

reduction in the urea proportion at the increase of SCC (P < 0.001; - 9.6%). Urea is the primary 

metabolite derived from dietary protein and tissue protein turnover and it is released from liver to the 

bloodstream and then to the milk in a stable form (Hayton et al., 2012). Urea is greatly influenced by 

management and feeding conditions, like the lack of rumen degradable proteins, alteration in dry 

matter intake, or the energy in the feed ration (Rezamand et al., 2007). There have been studies which 

reported a reduction in milk urea proportion in cows with IMI and increased SCC (Nyman et al., 

2014; Timonen et al., 2017). The molecular mechanisms behind this association are not fully 

understood and therefore require further evaluations, however we might speculate being partially 

linked to the reduction of feed intake that is observed in animals having masitits . 

Overall, the patterns of milk protein fractions according to SCC classes agreed at the two 

sampling points. In fact, at T2 SCC was associated with almost all the protein fractions, except for β-

LG and α-LA. We observed a 9% reduction in β-CN (P < 0.001). On the flipping side, we confirmed 

the same behavior as at T1 for к-CN (+ 14%; P < 0.001) and αs2-CN (+ 5%; P < 0.05), whose 

proportion increased with higher SCC. The increase in к-CN was found in accordance to a previous 

study which evaluated the impact of SCC and differential somatic cell count (DSCC) in clinically 

healthy animals (Bisutti et al., 2022b). We observed the same trend also for LF (P < 0.001; + 121%). 

Aside from its antimicrobial effect, it has been reported that LF can exert a wide range of actions 
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towards the immune system, from the inhibition of the inflammatory process to the modulation of 

both the innate and adaptive immune response (Drago-Serrano et al., 2017; Shimazaki and Kawai, 

2017) . In our study we observed an increase of LF from T1 to T2, and this result might be ascribed 

to the fact that, with the progression of inflammation, LF might have accumulated due to both its 

induced production and additional degranulation of PMN (de la Rosa et al., 2008).   

Association of the interaction between BACT and SCC with milk protein fractions 

The results of the ANOVA for the IMI combined with SCC effect on the investigated traits 

are reported in Table 2. Evaluating the interaction between the infection status and inflammation 

process allowed us to focus directly on the effect of subclinical IMI within each SCC classes, to better 

understand which could be the major forces of alteration of milk protein fractions. 

At T1, the BACT x SCC interaction was associated with the total casein proportion (P < 0.01, 

Figure 3). Specifically, both positive and negative samples showed the highest proportion of casein 

with very low SCC (< 50,000 cell/mL), and then decreased across higher SCC classes, The behavior 

of negative and positive samples differed for the SCC class ≥ 400,000, with these latter having the 

lowest casein content (Figure 4). At T2, we observed an association of the BACT x SCC with αs1-

CN. In positive samples we observed an increase in αs1-CN from the first SCC class to the second 

one (≥ 50,000 and < 200,000 cells/mL) but then a reduction, reaching the lowest value with SCC > 

400,000 cells/mL.  

These results suggest that the effect of IMI on milk caseins seems to be more evident at very 

high SCC value, probably linked to a synergic effect of infection and inflammation. In fact, aside 

from the pathogen release of exogenous enzymes, some bacteria are able to induce the production of 

protease activators, which by enhancing the proteolysis in the mammary gland, release important 

substrates for the bacterial growth  (Mehrzad et al., 2005; Kelly et al., 2006).  

These results further support that the level of inflammation (i.e., SCC) strongly affects the milk 

protein profile, which is known to be a factor of interest for the dairy sector, given the crucial role 

that protein fractions play in determining the milk cheesemaking aptitude. It is however worth 
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remembering that IMI, especially when subclinical, is not always associated with increased SCC. 

Indeed, cases of animals positive at the microbiological examination but with low SCC (< 200,000 

cells/mL) have been reported, as well as culture-negative samples with high SCC (Bobbo et al., 2017; 

Pegolo et al., 2022). This can be due to different reasons, including the stage of infection, the animals’ 

immune response to infection and/or the pathogens’ infection patterns. For instance, Staphylococcus 

aureus can induce chronic infections with intermittent and cyclical shedding (Sears et al., 1990). 

 

 

CONCLUSIONS 
 

In conclusion, this study added new insights on the behavior of milk protein fractions in animals 

having subclinical IMI. Moreover, it explored for the first time and in an extensive way the pattern 

of alteration of the protein fractions at the quarter level. The IMI had a significant impact on mostly 

casein fractions, negatively affecting β-CN and αs1-CN proportions. However, we have substantiated 

that the increase in SCC seemed to be the factor associated with the most significant changes in the 

protein fractions. This suggests that the increase in endogenous proteolytic enzymes related to the 

onset of inflammation, and not the infection (i.e., the bacteriological status), might be the pivotal 

aspect driving the alteration of the milk protein profile. Finally, our results further confirmed the 

importance of SCC as an indicator of both udder health and milk quality. 
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TABLES AND FIGURES 

 Table 1.  Descriptive statistics of the milk protein fractions expressed both quantitatively (g/L) and 

qualitatively (%N) 

1 κ-CN: sum of glycosylated κ-CN and carbohydrate-free κ-CN; Caseins= sum of κ-CN + αs2-CN + αs1-CN + β-CN; 
Whey proteins= sum of β-LG + α-LA + LF; NPN compounds= sum of Urea and Minor NPN compounds. 

2 P1 = 1st percentile; P99 = 99th percentile. 

  

Item1 N Mean SD P12 P992 

Protein composition, g/L of milk      
True protein 528 33.60 4.04 24.43 43.09 
Caseins 528 27.92 3.28 19.98 35.07 
κ-CN 528 5.49 1.40 3.27 9.58 
Glycosylated κ-CN 528 2.13 0.86 1.03 5.33 
Non glycosylated κ-CN 528 3.36 1.09 1.56 6.87 
αs2-CN 528 3.36 0.67 1.98 5.07 
αs1-CN 528 9.26 1.42 6.31 13.00 
β-CN 527 9.83 2.19 5.30 14.50 

Whey proteins 528 5.68 1.33 3.41 10.20 
β-LG 528 4.47 1.19 2.32 8.30 
α-LA 528 1.04 0.25 0.61 2.08 
LF 526 0.16 0.19 0.03 0.97 

N compounds      
Urea 524 0.22 0.05 0.12 0.36 

Protein composition, % of total milk N      
True protein 503 93.20 2.65 87.51 99.17 
Caseins 528 77.81 1.13 74.05 79.73 

κ-CN 528 15.24 3.07 10.18 24.78 
Glycosylated κ-CN 528 5.87 1.98 2.95 12.65 
Non glycosylated κ-CN 528 9.37 2.73 4.23 17.82 
αs2-CN 528 9.36 1.53 5.63 13.50 
αs1-CN 528 25.89 3.27 18.92 32.93 
β-CN 527 27.35 5.17 16.51 36.91 

Whey proteins 528 15.84 3.34 10.40 27.61 
β-LG 527 12.47 3.06 7.01 21.18 
α-LA 528 2.91 0.67 1.74 5.04 
LF 526 0.44 0.49 0.10 2.52 
N compounds      
Urea 483 1.55 0.63 0.47 3.12 
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Table 2. F-values and significances of the linear mixed model tested for quarter-level protein 

fractions at sampling time 1 (T1) and time 2 (T2).  

 T1  T2 
Item1 

BACT2 SCC3 SCC*BACT4   BACT2 SCC3 SCC*BACT4 
 

Protein composition, g/L of milk       

True protein 0.66 0.73 0.33   1.39 0.48 0.24  

  Caseins 0.00 1.91 2.16   0.61 0.97 0.67  

 κ-CN 5.94* 18.67*** 1.00   0.19 8.86*** 0.27  

 Glycosylated κ-CN 2.24 3.52* 1.51   0.01 9.99*** 0.33  

 Carbohydrate-free к-CN 3.32 15.56*** 2.85*   0.97 5.06** 0.23  

 αs2-CN 9.15** 3.96** 0.48   1.20 6.41*** 1.19  

 αs1-CN 0.77 5.35** 0.22   0.55 3.13* 3.53*  

 β-CN 6.97** 4.05** 1.33   0.34 3.53* 0.31  

 Whey proteins 3.58 1.94 0.73   0.03 0.12 0.63  

 β-LG 2.92 2.69* 1.03   0.44 0.20 1.03  

 α-LA 1.49 1.97 0.30   0.35 0.51 2.29  

 LF 1.72 19.24*** 2.11   3.92* 5.77** 1.58  
N compounds          

Urea 0.96 10.98*** 0.35   3.22 8.26*** 0.44  

Protein composition, % of total milk N       

True protein 1.54 1.86 0.93   0.27 5.24** 0.95  

  Caseins 4.81* 27.64*** 4.58**   0.13 27.57*** 0.72  

 κ-CN 5.95* 12.75*** 0.87   0.03 8.68*** 0.79  

 Glycosylated κ-CN 1.68 2.83* 1.84   0.03 9.13*** 0.53  

Carbohydrate-free к-CN 3.59 11.04*** 2.20   0.67 4.25** 0.62  

 αs2-CN 9.47** 2.35 0.43   0.72 2.78* 0.79  

 αs1-CN 0.11 9.76*** 0.12   1.93 15.28*** 3.74*  

 β-CN 10.36** 5.19** 1.26   0.02 9.51*** 0.24  

 Whey proteins 1.54 1.87 1.22   0.18 0.49 0.59  

 β-LG 1.75 3.15* 1.64   0.70 0.67 0.81  

 α-LA 0.61 1.49 0.33   0.49 0.51 2.37  

 LF 0.55 16.90*** 1.19   4.38* 5.91*** 1.83  

N compounds          

 Urea 1.18 18.21*** 1.10   1.40 5.98*** 0.47  
1 κ-CN: sum of glycosylated κ-CN and carbohydrate-free κ-CN; Caseins= sum of κ-CN + αs2-CN + αs1-CN + β-CN; 
Whey proteins= sum of β-LG + α-LA + LF; NPN compounds= sum of Urea and Minor NPN compounds. 

2 BACT: Bacteriological status (negative, positive).  

3 SCC: Somatic cell count, expressed in classes (4 classes: class 1: SCC < 50,000 cells/mL, 50,000 cells/mL ≤ class 2 < 
200,00 cells/mL; 200,00 cells/mL≤ class 3 < 400,000 cells/mL; class 4 ≥ 400,00 cells/mL. 
4 BACT x SCC: Interaction between the bacteriological status and the somatic cell count effects.  

* P < 0.05; ** P < 0.01; *** P < 0.001.  
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Figure 1. Least square means and standard error (SE) of the bacteriological status on the protein 

fractions expressed qualitatively (%N) and measured at the quarter level, at T1 and T2, respectively. 

BACT classes were defined as: negative at bacteriological examination (neg) and positive at 

bacteriological examination (pos).  Only significant (P < 0.05) traits for at least one sampling time 

were displayed. 

P < 0.05 

P < 0.01 

P < 0.01 

P < 0.05 
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P < 0.001 

P < 0.001 P < 0.001 

P < 0.05 

P < 0.001 

P < 0.001 P < 0.01 
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 Figure 2. Least square means and standard error (SE) of the SCC classes on the casein fractions 

expressed qualitatively (%N) and measured at the quarter level, at T1 and T2, respectively. Only 

significant traits (P < 0.05) for at least one sampling time were displayed.  
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Figure 3. Least square means and standard error (SE) of the SCC classes on the whey protein fractions 

and milk urea expressed qualitatively (%N) and measured at the quarter level, at T1 and T2, 

respectively. Only significant traits (P < 0.05) for at least one sampling time were displayed.  

P < 0.05 

P < 0.001 P < 0.001 

P < 0.001 P < 0.001 
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Figure 4. Least square means and standard error (SE) of the bacteriological status (BACT) × somatic 

cell count (SCC) interaction on the protein fractions expressed qualitatively (%N) and measured at 

the quarter level, at T1 and T2, respectively. Only significant traits (P < 0.05) for at least one sampling 

time were displayed.  

 

  

P < 0.01 

P < 0.05 
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SUPPLEMENTARY INFORMATION 

 

Supplementary Table S1. Feed ingredients and main nutritional values of the rations used in the 

three herds. 

 

 Herd A Herd B Herd C 

Feed ingredients (kg DM/d)    
  Corn silage 4.0 7.0 4 
  Sorghum silage 3.0  2 
  Meadow hay, mid maturity 3.0 3.0 4 
  Barley grain 3.0   
  Corn grain 3.0 8.0 6.5 
  Soybean meal solvent (44% crude 
protein) 3.0 2.5 2.8 
  Mineral – vitamin mixture  1.0 0.8 1 
  Total  20.0 21.3 20.3 
Nutritional values:    
  Net energy, MJ/kg DM 6.48 6.92 6.59 
  Crude protein, g/kg 160 142 151 
  Ether extract g/kg 27 32 30 

  NDF, g/kg 337 282 313 
  ADF, g/kg 202 169 191 
  Ash, g/kg 50 40 48 
  Ca, g/kg 8.4 8.2 8.1 
  P, g/kg 4.6 4.4 4.5 

The rations characteristics were provided by the extension service of the farmers. Data were based on chemical analysis 
for the forages produced in the farms, and on tabular values (NRC, 2001) for the concentrates From: Pegolo et al. (2023b). 
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Supplementary Table S2. Microbiological results of quarter milk samples collected at time 1 (T1) 

and time 2 (T2). 

Microbiological results 
 T1   T2 
 N %1  N %1 

S. aureus  4 1.6  3 1.1 

Strep. agalactiae  41 16.2  34 12.3 

Prototheca spp.  15 5.9  8 3.3 

Strep. uberis  3 1.2  1 0.4 

Total positive quarter samples  63 24.9  47 17.02 

Contaminated samples2  8 3.2  11 4.0 

Total quarter samples  253 -  276 - 
1Percentage of samples on the total quarter samples analyzed according to the bacteriological results. 
2Samples contaminated by environmental microorganisms (Acinetobacter spp., Bacillus spp., Corynebacterium spp., E. 

coli, Enterococcus spp., Klebsiella spp., Proteus spp., Staphylococcus spp. coagulase negative) 

 

  



100 
 

 

 

Supplementary figure S1. Schematic representation of the experimental design and sampling 

activity. T0: Time 0, T1: time 1, after two weeks from T0; T2: time 2, after four weeks from T1. SCC: 

somatic cell count. Modified from Pegolo et al., (2022).  
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Supplementary Figure S2. Least square means and standard error (SE) of the bacteriological status 

on the protein fractions expressed quantitatively (g/L) and measured at the quarter level at T1 and T2, 

respectively. BACT classes were defined as: negative at bacteriological examination (neg) and 

positive at bacteriological examination (pos).  

Only significant traits (P < 0.05) for at least one sampling time were displayed.  

P < 0.05 P < 0.001 

P < 0.01 

P < 0.01 

P < 0.05 
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P < 0.001 P < 0.001 

P < 0.01 P < 0.001 

P < 0.01 P < 0.05 

P < 0.01 P < 0.05 
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Supplementary Figure S3.  Least square means and standard error (SE) of the SCC classes on the 

casein fractions expressed quantitatively (g/L) and measured at the quarter level at T1 and T2, 

respectively. Only significant traits (P < 0.05) for at least one sampling time were displayed. 
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Supplementary Figure S4. Least square means and standard error (SE) of the SCC classes on the 

whey protein fractions and milk urea expressed quantitatively (g/L) and measured at the quarter 

level at T1 and T2, respectively. Only significant traits (P < 0.05) for at least one sampling time 

were displayed.  

P < 0.05 

P < 0.001 P < 0.01 

P < 0.001 P < 0.001 
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Supplementary Figure S5. Least square means and standard error (SE) of the bacteriological status 

(BACT) × somatic cell count (SCC) interaction on the protein fractions expressed quantitatively (g/L) 

and measured at the quarter level at T1 and T2, respectively. Only significant traits (P < 0.05) for at 

least one sampling time were displayed.  

  

P < 0.05 

P < 0.05 



106 
 

 

 

 

 

 

  



107 
 

CHAPTER III 

 

 

 

Transcriptome-wide mapping of milk somatic cells upon subclinical mastitis 

infection in dairy cattle 

 

Vittoria Bisutti1†*, Núria Mach2†, Diana Giannuzzi1, Alice Vanzin1, Emanuele Capra3, Riccardo 

Negrini4, Maria Elena Gelain5, Alessio Cecchinato1, Paolo Ajmone-Marsan4, Sara Pegolo1 

 

 

1DAFNAE, University of Padova, viale dell’Università 16, Legnaro (PD), Italy 

2IHAP, Université de Toulouse, INRAE, ENVT, 23 Chemin des Capelles, Toulouse, France   

3IBBA, National Research Council, via Einstein, Lodi, Italy. 

4DIANA, Università Cattolica del Sacro Cuore, via E. Parmense 84, Piacenza, Italy 

5BCA, University of Padova, viale dell’Università 16, Legnaro (PD), Italy 

† Equally contributing authors 

 

 

 

 

Published in: Journal of Animal Science and Biotechnology 93 (2023) 1-19 

https://doi.org/10.1186/s40104-023-00890-9 

 

 

 

 

 

 

 

 



108 
 

ABSTRACT 
 

Subclinical intramammary infection (IMI) represents a significant problem in maintaining dairy 

cows’ health. Disease severity and extent depend on the interaction between the causative agent, 

environment, and host. To investigate the molecular mechanisms behind the host immune response, 

we used RNA-Seq for the milk somatic cells (SC) transcriptome profiling in healthy cows (n = 9), 

and cows naturally affected by subclinical IMI from Prototheca spp. (n = 11) and Streptococcus 

agalactiae (S. agalactiae; n = 11). Data Integration Analysis for Biomarker discovery using Latent 

cOmponents (DIABLO) was used to integrate transcriptomic data and host phenotypic traits related 

to milk composition, SC composition, and udder health to identify hub variables for subclinical IMI 

detection. 

A total of 1,682 and 2,427 differentially expressed genes (DEGs) were identified when 

comparing Prototheca spp. and S. agalactiae to healthy animals, respectively. Pathogen-specific 

pathway analyses evidenced that Prototheca’s infection upregulated antigen processing and 

lymphocyte proliferation pathways while S. agalactiae induced a reduction of energy-related 

pathways like the tricarboxylic acid cycle, and carbohydrate and lipid metabolism. The integrative 

analysis of commonly shared DEGs between the two pathogens (n = 681) referred to the core-mastitis 

response genes, and phenotypic data evidenced a strong covariation between those genes and the flow 

cytometry immune cells (r2 = 0.72), followed by the udder health (r2 = 0.64) and milk quality 

parameters (r2 = 0.64). Variables with r ≥ 0.90 were used to build a network in which the top 20 hub 

variables were identified with the Cytoscape cytohubba plug-in. The genes in common between 

DIABLO and cytohubba (n = 10) were submitted to a ROC analysis which showed they had excellent 

predictive performances in terms of discriminating healthy and mastitis-affected animals (sensitivity 

> 0.89, specificity > 0.81, accuracy > 0.87, and precision > 0.69). Among these genes, CIITA could 

play a key role in regulating the animals’ response to subclinical IMI. 

Despite some differences in the enriched pathways, the two mastitis-causing pathogens seemed to 
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induce a shared host immune-transcriptomic response. The hub variables identified with the 

integrative approach might be included in screening and diagnostic tools for subclinical IMI 

detection. 

 

Keywords: Data integration, Immune response, Milk somatic cells, RNA-sequencing, Subclinical 

mastitis 
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INTRODUCTION 
 

Mastitis in dairy cattle is a well-established problem that firstly affects animal welfare but also 

hinders milk production and quality, leading to significant economic losses at the expense of farmers 

(Halasa et al., 2007). Mastitis typically occurs in response to the penetration of a wide range of 

microorganisms in the mammary gland. It exists in two forms: the clinical one, with overt signs of 

inflammation, udder swelling, and changes in milk physical composition, and the subclinical one, 

where usually the only alteration observed is the increase in the somatic cell count (SCC) derived 

from the proliferation and migration of the immune cells in the udder (Bradley, 2002). Subclinical 

mastitis is the most challenging form, estimated to be 15-40 times more frequent than its clinical 

counterpart (Martin et al., 2018). It represents a significant source of infection for the animals within 

the herds leading to an essential decrease in milk production (Ruegg, 2017) while going unnoticed. 

The most common causative agents of mastitis, accounting for over 80% of the infections (Ranjan et 

al., 2006), are Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), Streptococcus agalactiae 

(S. agalactiae), Streptococcus uberis (S. uberis) and Streptococcus dysgalactiae (S. dysgalactiae). 

However, in the last few decades, the spreading of other microorganisms, like microalgae of the genus 

Prototheca, has rapidly become an emerging threat for the dairy sector, mainly because nowadays, 

there is still no treatment effective towards this type of microorganism (Shave et al., 2021). 

The different etiology of invading pathogens can trigger a diverse host immune response, 

consequently affecting the extent and outcome of the infection (Schukken et al., 2011). For example, 

Gram-negative bacteria like E. coli usually induce an intense stimulation of cytokine production, 

leading to fully activating both the local and generalized host-immune response (Jensen et al., 2013; 

Petzl et al., 2018), Gram-positive pathogens elicit a weaker immune reaction with usually no systemic 

repercussion (Günther et al., 2017). In addition, the immuno-cytofluorimetric study conducted in 

subclinical mastitis induced naturally by S. agalactiae and Prototheca (Pegolo et al., 2022b) 

highlighted a differential immune reaction between the two microorganisms, primarily directed 
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towards an innate response in the case of S. agalactiae, as opposed to the adaptive response triggered 

by Prototheca spp. Therefore, a deeper understanding of the pathogen-specific molecular 

mechanisms underlying the pathogenesis of mastitis and the induced immune response is pivotal for 

uncovering new ways of predicting the infection outcome and designing practical diagnostic and 

therapeutic tools for battling this costly disease.  

In this context, RNA sequencing (RNA-Seq) represents a suitable tool for investigating the 

complexity of the host-pathogen interaction (Wang et al., 2020a). Different transcriptomic studies 

have evaluated the mammary gland (Günther et al., 2017; Wang et al., 2020a) or hepatic (Heimes et 

al., 2020) response to intra-mammary infection with different types of pathogens in cows. However, 

only a few studies evaluated the changes in somatic milk cells (SC) transcriptome (Asselstine et al., 

2019; Niedziela et al., 2021) in response to subclinical intra-mammary infection (IMI), and, more 

importantly, to the best of our knowledge, no studies are currently available on the investigation of 

milk SC transcriptomic signature of Prototheca spp infection in dairy cattle. Finally, most of the 

previous transcriptomic studies were conducted using experimentally induced models of clinical 

mastitis (Wang et al., 2020b), while less information is available on naturally occurring subclinical 

mastitis (Cheng et al., 2021).  

Work on identifying putative candidate genes associated with mastitis has already been carried 

out in genome-wide association studies (GWAS) and transcriptomic profiling (Welderufael et al., 

2018; Asselstine et al., 2019; Bakhtiarizadeh et al., 2020). However, the concordance among these 

studies could be higher, highlighting the difficulty in identifying reliable and reproducible biomarkers 

for mastitis detection and mastitis resistance. In this context, integrating transcriptomic with 

phenomic information might represent the ultimate step not only to strengthen the information on the 

complexity of the molecular system by reinforcing complementary levels of knowledge but also to 

create more reliable prediction models (Naserkheil et al., 2022). 

Therefore, this study aimed to i) evaluate the milk SC transcriptomic signatures upon natural 

infection of S. agalactiae and Prototheca spp., ii) integrate transcriptomic and phenomic information 
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to explain better the complexity underlying the molecular mechanisms of mastitis, and identify hub 

variables for early mastitis detection and prediction and, iii) perform a meta-analysis using three 

publicly available datasets to confirm the reproducibility of our results. 

 

METHODS 
 

Animal cohort, housing, and diet 

Thirty-one multiparous Holstein cows (ranging from 3 to 7 years of age) between 98 and 448 

days in milk were selected from a commercial herd of 450 lactating cows (Veneto region, Italy) 

regularly monitored for S. agalactiae and Prototheca spp between January and February 2021. Herd 

selection was based firstly on a prevalence study conducted by the Istituto Zooprofilattico delle 

Venezie (IZSVe) for the identification of the most common pathogen responsible for mastitis in the 

Veneto region and on ease of access to the farm location and the cooperation of the dairy farm owners 

and their associated veterinary practices. For successful participation in the study, we required the 

following criteria: (i) absence of clinical signs of infection; ii) no antibiotic treatment or anti-

inflammatory medications before enrollment; (iii) being multiparous and non-pregnant; and (iv) 

having > 98 days in milk (DIM). Moreover, we required that animals used as negative control had no 

previous history of mastitis.  Information was collected from the herd management software (Dairy 

Comp Sata, Alta Italia Srl, Milan, Italy). Based on these criteria, an initial bacteriological screening 

(time 0, T0) was performed on 188 lactating cows to identify healthy individuals and cows with 

subclinical mastitis from S. agalactiae or Prototheca spp. Animals with co-infection were excluded 

from the experiment. Moreover, cows with chronic mastitis cases (apparently healthy cows with 

lumps palpable in the udder and milk quality changes) were not enrolled. Following the 

bacteriological test results, we created three experimental groups from eligible animals: (i) healthy 

individuals (n = 9) with a negative bacteriological examination in all glands at T0 and time 1 (T1, 

two weeks after T0); (ii) naturally infected animals with S. agalactiae (n = 11) and (iii) naturally 
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infected animals with Prototheca spp. (n = 11). At T1, a second bacteriological assessment was made 

on all the animals enrolled to confirm the bacteriological evaluation made at T0 (Table S1). 

Cows were fed a total mixed ration formulated to meet or exceed the requirements of mid-

lactation dairy cattle, mainly based on corn silage, sorghum silage, and concentrate. Feed was 

delivered once a day at 8:00, and the amount fed was adjusted daily to allow for a minimum of 5% 

refusals. Drinking water was available in automatic water bowls, and cows were milked twice daily, 

from 2:00 to 6:00, and from 14:00 to 18:00. Individual cow milk yield was recorded at each milking 

using herd software. 

Animal health was managed by the farmers and local veterinarians, who intervened when 

needed. All cows were subjected to the same management practices and environment to ensure 

sample homogeneity.  

Ethical statement 

This study was part of the LATSAN project that aimed to develop innovative tools for 

evaluating and studying mammary gland health and improving dairy cows’ nutritional milk quality 

and coagulation properties. The research was approved by the Ethical Animal Care and Use 

Committee (OPBA - Organismo Preposto al Benessere degli Animali) of the Università Cattolica del 

Sacro Cuore and by the Italian Ministry of Health (protocol number 510/2019-PR of 19/07/2019).  

Milk sample collection  

Before morning milking, ~ 200 mL of milk from all quarters (pool sample) was aseptically 

collected from each animal according to the National Mastitis Guidelines ((NMC), 2017). Briefly, 

teat ends were externally cleaned with commercial pre-milking disinfectant, dried with individual 

towels, and then washed again with alcohol 70%. Composite milk of the four glands was then 

collected after discarding the first streams of foremilk from each quarter and stored at 4 °C before 

microbiological analysis. Four milk aliquots (~ 50 mL) of each milk sample were collected and gently 

mixed separately into sterile tubes for analysis as follows: (i) microbiological analysis; (ii) evaluation 

of milk composition, SCC, and differential somatic cell count (DSCC) measurement; (iii) milk flow 
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cytometry analysis, and (iv) RNA extraction and transcriptomic analysis. All the samples were 

immediately refrigerated at 4°C to minimize the metabolic activity of cells and enzymes and keep the 

bacteriological composition as stable as possible. Samples were transported under refrigerated 

conditions (4°C) to the different laboratories. 

Microbiological analysis  

Microbiological examination of milk samples was conducted at the IZSVe laboratories 

(Legnaro, PD, Italy). After reception (within 4h after sample collection), samples were frozen and 

analyzed within 3 d. Pegolo et al. (2022b) reported specifics of the microbiological analyses in detail. 

Briefly, 10 μL of every composite sample were inoculated in each of the following selective media: 

i) Baird Parker agar with rabbit plasma fibrinogen (BP-RPF; Biokar Diagnostics, Beauvais, France), 

ii) tallium kristalviolette tossin agar (TKT; IZSVe internal production), and iii) Prothoteca isolation 

medium (PIM; IZSVe internal production). Suspected colonies of S. agalactiae were confirmed using 

the Christie– Atkins–Munch-Peterson test (NMC, 2017) after 24h of incubation. At the same time, 

Prototheca isolation medium plates were observed at 24, 48, and 72 h, and the wet mount method 

confirmed suspected colonies (NMC, 2017). 

Milk composition and quality traits 

Milk composition (protein, casein, lactose, fat, and urea content), milk conductivity (mS/cm), 

and milk pH analysis were carried out on fresh samples using an FT6000 Milkoscan infrared analyzer 

(Foss A/S, Hillerød, Denmark). SCC and DSCC were measured through the Fossomatic 7 DC 

analyzer (Foss A/S).  

Flow cytometry analysis 

A 50 mL aliquot of each sample was immediately processed in the Comparative Biomedicine 

Department (BCA) cell laboratory of the University of Padova (Italy) for flow cytometry analysis. In 

all cases, analyses were performed within 12 h after sample collection with milk stored at 4ºC. The 

whole flow cytometry methodology and analysis are reported in the work of Pegolo et al. (2022b) 
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Briefly, for each sample, flow cytometry analysis was run in four tubes containing: 1) only cells 

(no antibodies; used as a negative control); 2) cd4pe-cd8alexa fluor 647; 3) cd11bfitc-cd14pe; and 4) 

cd45fitc-cd21pe-cd18alexa fluor 647. Flow cytometric analyses were performed using a CyFlow 

Space flow cytometer (Partec-Sysmex, Sysmex Europe GmbH, Norderstedt, Germany) fitted with a 

blue laser (488 nm), a red laser (635 nm) and a UV laser. The data were analyzed with the FlowMax 

software version 2.82 (Sysmex- Partec, Sysmex Europe GmbH, Norderstedt, Germany). The 

morphology and complexity of the cells were evaluated in an FSC vs. SSC dot plot; total white blood 

cells were identified as CD45 and CD18 positive events; polymorphonuclear cells as CD11b positive 

CD14 negative events; macrophages as CD11b and CD14 positive events; T-helper lymphocytes as 

CD4 positive and CD8 negative events; T cytotoxic lymphocytes as CD8 positive and CD4 negative 

events; B lymphocytes as CD45, CD21, and CD18 positive events. In this study, we considered for 

the statistical analyses only animals subjected to RNA-seq analyses which are part of the broader 

cohort of animals previously analyzed (Pegolo et al., 2022b). 

The Kruskal Wallis and Dunn test assessed significance among the experimental groups for 

pairwise comparison of milk production, composition, and flow cytometry variables. The significance 

was set at P < 0.05. 

RNA extraction from milk somatic cells  

A 50 mL aliquot from each sample was first centrifuged at 2,000 g for 10 min at 4°C. The fat 

layer and the supernatant were discarded, and the cell pellet was then washed with 50 mL of PBS 

with ethylenediaminetetraacetic acid (EDTA) at 0.05 mmol/L, pH 7.2. Samples were then re-

centrifuged at 1,500 for 10 min at 4°C, the supernatant discarded, and the pellet was re-suspended in 

800 μL of Trizol (Invitrogen, Carlsbad, CA) and stored at -80 °C until the RNA extraction.  

Total RNA was extracted from the Trizol reagent and purified using a NucleoSPin miRNA kit 

(Macherey-Nagel, Düren, Germany), following the combined protocol with TRIzol lysis with small 

and large RNA in one fraction (total RNA). RNA concentration and quality were determined by Agilent 

2100 Bioanalyzer (Santa Clara, CA). Extracted RNA was stored at −80 °C until use. 
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Library preparation  

The 31 RNA samples, including control (n = 9), positive for S. agalactiae (n = 11), and positive 

for Prototheca (n = 11), were subsequently sent on dry ice to the Nuova Genetica Italiana (NGI, Como, 

Italy) facility for library preparation and sequencing. MGIEasy rRNA Depletion kit V1.1 (MGI Tech 

Co., Ltd., Shenzen, China) was used to remove ribosomal rRNA and maximise unique sequencing 

reads. RNA-seq libraries were then prepared from 500 ng of total RNA using the MGIEasy RNA 

Library Prep Set V3.1 (MGI TechCo., Ltd, Shenzen, China), according to the manufacturer’s protocol. 

RNA-seq experiments were performed on a DNBSEQ-G400 high throughput machine (MGI Tech Co) 

using a paired-end approach using the DNBSEQ-G400 sequencing kit (MGI TechCo., Ltd., Shenzen, 

China).  

RNA-seq data processing and analysis 

Data pre-processing was made following the consensus pipeline built by Overbey et al. (2021). 

First, the quality control of RNA sequences was assessed with the FastQC software (v. 0.11.9). Clean 

reads were obtained by removing low-quality bases and adaptors with the TrimGalore software (v. 

0.6.4) (Krueger, 2019). FastQC was used again on the trimmed sequences to check the quality of the 

reads. MultiQC package (v.1.8) (Ewels et al., 2016) was run to create summary statistics reports that 

included the sample quality control result categories from FastQC across all experiment samples. The 

sample information of clean data is shown in Table S2.  

The paired-end clean reads were aligned against the Bos taurus DNA reference genome (ARS-

UCD1.2) from the USDA’s Agricultural Research Service with the splice-aware STAR (v.2.7.3a) 

(Dobin et al., 2013). The genome indexing was performed using ARS-UCD1.2 as the reference 

FASTA and the Ensembl gene annotation file (Bos_taurus.ARS-UCD1.2.106.gtf.gz; 

http://ftp.ensembl.org/pub/release-106/gtf/bos_taurus/). 

We subsequently used RSEM (v.1.3.3) (Li and Dewey, 2011) to quantify gene expression. 

Similar to STAR, RSEM was run in two distinct phases. The first phase used the reference genome 

file:///C:/Users/nmachcas/Dropbox/Shared%20Folders/Transcriptomics/paper/Bos_taurus.ARS-UCD1.2.106.gtf.gz
http://ftp.ensembl.org/pub/release-106/gtf/bos_taurus/
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and GTF files to prepare indexed genome files. The second phase used the indexed files and the 

mapped reads from STAR to assign counts to each gene.  

Gene expression evaluation and differential expression analysis  

Counts filtering, data normalization, and differential expression analysis were performed in R 

studio (R v.4.1.2, R studio v. 1.4.1103). Only protein-coding genes were considered for the analysis. 

We first normalized the transcriptome count matrix with the sequencing depth for each sample 

by calculating counts per million (CPM). We filtered out genes expressed in less than 10 samples 

with CPM < 0.5 using the edgeR package (v. 3.36.0) (Robinson et al., 2010). Genes failing these 

criteria were removed before the exploration and differential expression analysis. 

Exploratory analysis of the expressed genes matrix was performed using unsupervised principal 

component analysis (PCA) and the multidimensional scaling (MDS) analysis after the regularized-

logarithm transformation (edgeR) or variance stabilizing transformation in DESeq2 (v. 1.34.0) (Love 

et al., 2014).  

Differentially expressed gene (DEG) analysis was performed pairwise using DESeq2 and edgeR 

packages: i) negative animals vs. S. agalactiae naturally infected animals; ii) uninfected subjects vs. 

Prototheca infected animals, and iii) S. agalactiae vs. Prototheca infected individuals. Then, the 

voom() function from the limma R package (v.3.50.0)  was used to fit a generalized linear regression 

model to correct the data with the group as a fixed effect. The group factor and the cow dependency 

were included in the generalized linear model using the nbinomWaldTest() function, which estimates 

and tests the significance of regression coefficients with the following explicit parameter settings: 

betaPrior = FALSE, maxit = 5,000, useOptim = TRUE, useT = FALSE, useQR = TRUE, minmu = 

0.5. The P-values were adjusted for multiple testing using the Benjamini and Hochberg procedure 

(FDR, false discovery rate).  

Only DEGs with an adjusted P-value < 0.05 and shared between DESeq2 and edgeR approaches 

were used for the downstream pathway analysis.  

Functional pathway analysis  
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The shared list of DEGs for each comparison was fed to the Cytoscape (v. 3.9.1, 

http://cytoscape.org) ClueGo plugin (v. 2.5.8) (Bindea et al., 2009) software to identify relevant 

biological processes and immune systems networks. A minimum of 10 genes were needed to be 

associated with a term. These genes would represent at least 4% of the total number of related genes. 

Only pathways with a P-value < 0.05 (Bonferroni step-down correction) were retained. Results were 

illustrated as a functionally grouped network of terms, having the most significant one as a leading 

term. The edges that show term-to-term interactions were obtained using a Kappa score of 0.4. 

Then, coupled with DEG-driven approaches, we used the pathifier algorithm from the pathifier 

R package (v.1.32.0) (Drier et al., 2013), which by transforming the whole transcriptome expression 

data into pathway-level information, infers the pathway deregulation scores by measuring how much 

the gene expression of a sample deviates from normal behavior. Kyoto Encyclopedia of Genes and 

Genomes (KEGG) annotation was used, and the quantify_pathway_deregulation() function was used 

to quantify the deregulation scores. Euclidean distance was used to calculate samples’ distances, then 

visualized using the Ward.D2 clustering method in a heatmap.  

Phenomics: complementary data integration approaches 

A global non-metric multidimensional scaling (NMDS) ordination was used to extract, 

visualize and summarize the variation in the transcriptome (the “response variable”) using the vegan 

R package (v.2.5.7) (Dixon, 2003). Stress values were calculated to determine the number of 

dimensions for each NMDS. Stress values measure how much the distances in the reduced ordination 

space depart from those in the original p-dimensional space. High-stress values indicate a greater 

possibility that structuring observations in the ordination space is entirely unrelated to the actual full-

dimensional space. Then, the explanatory variables related to milk composition and quality traits, 

cytometry cell profiles, and host morphometric parameters were fitted to the ordination plots using 

the envfit() function in the vegan R package (Clarke and Ainsworth, 1993) with 10,000 permutations. 

The envfit() function performs multivariate analysis of variance (MANOVA) and linear correlations 

for categorical and continuous variables. The effect size and significance of each covariate were 
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determined by comparing the difference in the centroids of each group relative to the total variation, 

and all P-values derived from the envfit() function were Benjamini-Hochberg adjusted. The obtained 

r2 gives the proportion of variability (that is, the main dimensions of the ordination) that can be 

attributed to the explanatory variables.  

As a second integrative approach, the N-integration algorithm DIABLO (Data Integration 

Analysis for Biomarker discovery using Latent Components) of the mixOmics R package (Rohart et 

al., 2017) (http://mixomics.org/, v. 6.18.1) was used. We combined host-centered transcriptomics with 

phenomics data to achieve this integrated perspective, coined holo-omics (Nyholm et al., 2020). It is 

to be noted that, in the case of the N-integration algorithm DIABLO, the variables of all the data sets 

were also centered and scaled to unit variance before integration. In this case, the relationships among 

all data sets were studied by adding a different categorical variable, e.g., the infection status of cows. 

Healthy cows (n = 9) were compared to infected individuals (n = 22). DIABLO seeks to estimate 

latent components by modeling and maximizing the correlation between pairs of pre-specified 

datasets to unravel similar functional relationships (Singh et al., 2019). The model was first fine-

tuned using leave-one-out cross-validation by splitting the data into training and testing. Then, 

classification error rates were calculated using balanced error rates (BERs) between the predicted 

latent variables and the class labels' centroid. Only interactions with r ≥ |0.80| were visualized using 

CIRCOS.  

Identification and validation of hub variables 

To visualize the high-confidence variable co-associations, only those with r ≥ |0.90| and more 

than 15 connections were automatically visualized using the organic layout algorithm in Cytoscape 

(version 3.9.1). The Molecular Complex Detection (MCODE) Cytoscape plug-in (version 2.01, 

Hogue and Groll, 2001) was adopted to detect densely connected modules within the interaction 

network. MCODE scores ≥ 3 were set as a cut-off criterion with default parameters.  

Finally, cytoHubba (version 0.1) (Chin et al., 2014), a Cytoscape plug-in, was used to explore 

the network modules for identifying hub genes, defined as genes having high correlation in candidate 
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modules. The top 20 variables were identified and ranked using the Maximal Clique Centrality 

(MCC) method. 

To validate the abovementioned hub genes as putative markers for mastitis infection, we 

performed the receiver operating characteristics (ROC) and precision-recall analyses using the R 

package pROC (v. 1.18.0) package to quantify the infection status predictive power of hallmark 

variables.  

The meta-analysis cohort 

To confirm the reproducibility of our prediction results in healthy and infected individuals, 

studies on the transcriptome of the milk somatic cell in dairy cows with high-throughput RNA 

sequence data in .fastq format deposited in publicly accessible databases and available metadata were 

retrieved.  

We obtained 81 somatic cell transcriptomic samples from three independently published studies 

as an orthogonal dataset. The three studies were labeled as Seo (Seo et al., 2016), Asselstine 

(Asselstine et al., 2019), and Niedziela (Niedziela et al., 2021). Data included acute and subclinical 

infection regarding both naturally and experimentally infected animals. Raw sequence data and 

metadata from the Seo study were available at GSE60575 in the GEO database. In contrast, Asselstine 

study raw fastq files and metadata were retrieved from the NCBI under PRJNA544129 Bioproject 

accession number. Raw fastq files and metadata of the Niedziela study were available in the European 

Nucleotide Archive (ENA) repository with the project number PRJEB43443. The published data was 

pre-processed and annotated as described above. In this validation set, “healthy” subjects were 

defined as those reported as not being infected in the original research; alternatively, “mastitis” 

subjects were defined as those diagnosed with mastitis infection either by the California Mastitis Test 

(Asselstine et al., 2019) or after 24 h from the disease onset with two different strains of 

Staphylococcus aureus  (Niedziela et al., 2021). 

Ten-fold cross-validation sparse Partial Least Squares Discriminant Analysis (sPLS-DA) was 

employed to evaluate the prediction model’s performance and validate the essential genes responsible 
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for the differences between groups using the mixOmics R package. The DESeq2 R package quantified 

differences between groups' relative gene abundance. 

 

RESULTS 
 

Animals and data 

The 31 Holstein cows enrolled in this study were, on average, 4 years of age. The mean DIM 

at enrollment for all dairy cattle was 235 days, and the mean parity was 2.5, ranging from 2 to 5.  

The average milk yield was 26.97 (± 9.01) kg/day. Milk had 2.19 ± 0.74% of fat, 3.49 ± 0.29% 

of protein, 2.73 ± 0.27% of casein, and 4.51 ± 0.44% of lactose. Milk pH and conductivity were 6.46 

± 0.08 and 9.94 ± 1.30 mS/cm, respectively (Table S1). A schematic summary of the experimental 

design and the conducted analyses is reported in Fig. 1.  

S. agalactiae and Prototheca infections induced milk quality changes and divergent infiltration of 

immune cells 

S. agalactiae and Prototheca infections were not accompanied by any clinical sign (e.g., udder 

swelling, redness, udder pain) or systemic reaction, but a significant drop in milk production (P < 

0.05) compared with their uninfected counterparts (Fig. S1a). However, in contrast to the bacterial 

pathogen, Prototheca infection affected more the milk quality, by reducing the lactose content (P < 

0.05; Fig. S1b) and casein index (P < 0.05; Fig. S1c). Additionally, algal infection increased milk 

conductivity (P < 0.05; Fig. S1d), mirroring possible changes in the blood-milk barrier permeability. 

The milk protein, casein, and fat proportions were similar between groups (Fig. S1e-g) and urea 

concentration and milk pH (Fig. S1h-i). Both types of pathogens, however, increased the amounts of 

somatic cells (SC, P < 0.001; Fig. S2a) and the combined ratio of neutrophils and lymphocytes to 

total SCC (DSCC) compared to healthy animals (P < 0.05; Fig. S2b), reflecting the inflammatory 

status of the mammary gland. Although both pathogens increased the total leucocyte population (P < 

0.001, Fig. S2c), the immunological cell content differed between S. agalactiae and Prototheca 
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pathogens, evoking distinctly different immune responses to both pathogens. For instance, exposure 

to S. agalactiae primarily triggered the recruitment of nearby macrophages that increased more than 

1.55-fold than the healthy animals. In contrast, Prototheca decreased macrophage populations by 

20% (Fig. S2d) and sharply increased T helper cells (+ 73%), T killer cells (+ 110%), and B cells 

(+30%) compared to S. agalactiae (Fig. S2 e-g). No significant differences were found among the 

three experimental groups for PMN cells (Fig. S2h), even if their proportion was slightly higher in 

the S. agalactiae-induced mastitis. Importantly, we found large variability of immune cell contents 

among individuals within each group, as assessed by the principal component analysis (PCA) 

visualization (Fig. S2i). 

Somatic cell transcriptome changes upon Prototheca spp. and S. agalactiae infections 

A total of seven billion paired-end reads were obtained from the somatic cells of 31 dairy cows 

(9 healthy and 22 naturally infected subjects), corresponding to an average of 119 M ± 49.8M per 

sample. After quality filtering, 88.84 % of high-quality paired reads were mapped, on average, to the 

bovine reference genome ARS-UCD1.2 and aligned with 27,607 unique genes. After filtering for 

genes with CPM > 0.5 in at least two samples, we obtained 14,564 abundant genes, henceforth 

referred to as expressed genes, corresponding to ~ 53% of the transcriptome (Table S3). 

The generalized PCA showed that the expression of genes varied according to the infection 

status, separating infected and uninfected individuals (generalized PCA axis 1: 22 %; Fig. 2a). 

Altogether, transcriptome signatures fell into different S. agalactiae, Prototheca, and control 

response patterns, except for two S. agalactiae and one Prototheca spp. samples that grouped with 

healthy ones. Besides pathogen infection, we determined to what extent differences in host-associated 

variables could further explain the observed patterns of transcriptional variation. Using NMDS 

ordinations (Fig. 2b) for visualizing the structure of gene expression (ordination stress = 12.36%, k = 

2, non-metric fit r2 = 0.985, linear fit r2 = 0.932), the principal contributors explaining the total 

variance of the transcriptome were flow cytometry variables, including leucocytes (envfit, r2 = 0.5329, 

P < 0.001), T-helper (envfit, r2 = 0.4167, P < 0.001), T-killer (envfit, r2 = 0.3999, P < 0.001) cells, 
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and PMN (envfit, r2 = 0.3512, P < 0.01), together with udder health parameters, such as DSCC (envfit, 

r2 = 0.4456, P < 0.001) and SCC (envfit, r2 = 0.4456, P < 0.001), and milk yield (envfit, r2 = 0.3569, 

P < 0.01) (Fig. 2c). Macrophages, lactose, casein index, pH, and conductivity also accounted for the 

transcriptome variation, albeit of lesser significance.  

A total of 1,682 DEGs were detected in Prototheca-infected animals (671 downregulated, 1,011 

upregulated; P < 0.05) compared to the healthy controls, and these differences were even more 

significant for the S. agalactiae-infected group (n = 2,427 DEGs; 890 down- and 1,537 upregulated; 

P < 0.05). DEG lists shared significant similarities between the two types of pathogens, as 40% of 

Prototheca’s DEGs were also expressed in the S. agalactiae group. When comparing S. agalactiae 

with Prototheca infections, 974 genes were differentially expressed (378 under and 596 over-

expressed genes; P < 0.05). The list of all the DEGs belonging to each comparison is reported in Table 

S4. To gain insights into the biological and immune processes in response to the type of infection, we 

performed a functional enrichment analysis of the differentially up and downregulated genes.  

Following Prototheca infection, 33 % of DEGs were involved in immune system response (n 

= 228), antigen processing (n = 41), and response to other organisms’ invasion (n = 293) (Fig. 3a). 

Immune activation involved pathways related to innate response, such as toll-like receptors (TLR9) 

and pro-inflammatory molecules like IL-15, IL-17A, and IL-17F and adaptive immune response. The 

adaptive immune response mainly guided the defense line against Prototheca through the activation 

of class II MHC molecules (BoLA-DMA, BoLA-DMB, BoLA DOA, BoLA-DOB, BoLA-DRA, BoLA-

DRB3), stimulation of IFN-γ and IL4I1 (interleukin 4 induced 1), and proliferation of lymphocytes 

(n = 86 genes). The induction of CD48 and CD80 promoted T cell activation following Prototheca 

infection. At the same time, B lymphocyte upregulation was conducted by B lymphocyte 

differentiation (IKZF3) and B-cells response to antigens (POU2AF1). 

In the context of S. agalactiae infection, the innate immune cells development and 

differentiation (n = 137) appeared as the first line of defense against the disease, coupled with a 

reduction of mitochondrial energy metabolism (n = 526, 21% of DEGs), that is, depletion of the TCA 
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(n = 83), oxoacid (n = 266), and carbohydrate derivative metabolic processes (n =177) (Fig. 3b). At 

a closer look, the immune response to S. agalactiae infection seemed to be led by Notch receptor 1 

(NOTCH1), NF-κB signaling pathway, and pattern recognition receptors (PRR) like TLR9 and NOD2. 

Other pathways involved in cell-cell adhesion (SELL, CD274, BOLA-DRA, CSF3R), pro-

inflammatory chemokines, and cytokine secretion (IL-17A, IL-17F, OSM, LTA, LTB) and activation 

of the complement system C3 mediated were also enriched. Additionally, S. agalactiae modulated 

the expression of myeloid-derived suppressor cells (MDSCs) by activating the transcription factor 

STAT3. Despite the high number of differentially expressed genes in comparing the two pathogen 

infections (S. agalactiae vs. Prototheca; Table S4), no differential enriched pathways resulted from 

the analysis.  

Last, we sought to support further that S. agalactiae and Prototheca triggered different immune 

responses using Pathifier. Through this algorithm, we identified 69 KEGG pathways with Pathway 

Deregulation Scores (PDS) significantly associated with the two types of infection compared to 

healthy individuals (Fig. 3c). Notably, the peroxisome proliferator-activated receptor (PPAR) 

pathway, an essential modulator of the immune response, was firmly (more than 2-fold) deregulated 

in S. agalactiae-infected animals compared to healthy counterparts. Additionally, NK cells mediated 

cytotoxicity path, which can be considered a more innate defense, was almost two times more 

deregulated in the S. agalactiae infection concerning the healthy animals. The energy-related paths 

(e.g., TCA cycle, carbohydrate metabolism, oxidative phosphorylation) in the S. agalactiae infection 

resulted in 2-fold deregulation compared to the healthy animals. At the same time, no significant 

alterations were detected for Prototheca’s infected animals.  

Specific alteration in Prothotheca’s PDS involved a clear focal adhesion path, almost 3-fold 

lower than healthy animals and more than 2-fold lower than S. agalactiae. Conversely, the adherens 

junction path was specifically deregulated in S. agalactiae infection. Both disorders' pathways 

involving extracellular matrix receptor interaction (ECM) and gap junction were mildly deregulated. 

A closer look at the immune paths showed that both infections displayed strong PDS concerning the 
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NF-κB signaling pathway. Despite it, the S. agalactiae infection showed the most diverging scores, 

especially when considering innate response-related functions such as leucocyte migration, 

endocytosis, and neutrophil extracellular trap formation. Interestingly, PDS concerning Th17 cell 

differentiation and B cell receptor signaling, pathways more explicit for the adaptive immune 

response, were significantly deregulated (more than 2-fold) in Prototheca-infected animals, even if a 

modest alteration was also observed in S. aglactiae infection.  

A set of core mastitis-response genes 

Even if there were differences in intensity between the pathways regulated by the two 

microorganisms, the core immune transcriptome did not seem to respond so differently. For this 

reason, beyond the type of pathogen, we identified 1,954 DEGs in response to mastitis, of which 

1,289 were under-expressed and 665 were over-expressed in infected individuals compared to healthy 

ones. Among them, 681 DEGs were commonly shared with the pathogen-specific DEGs lists. These 

were considered the core mastitis-response genes (Table S4). Enzymes make up the most significant 

gene function category (67%), outranking transcription factors (TF, 8.8%), transporters (6.7%), 

transmembrane receptors (4.4%), kinases (3.8%), and G-protein coupled receptors (2.5%). Around 

9.8% of genes were unannotated. Two hundred twenty-nine genes were highly expressed in infected 

samples. The functional analysis showed that roughly 23% of these genes (n = 156) were directly 

involved in activating and regulating the immune response. In contrast, 69 genes were associated 

explicitly with catabolic and oxidative pathways (Fig. S3). Interestingly, inflammasome activation 

and regulation were enriched upon encountering a pathogenic agent (e.g., NLRC5, TLR9, GBP5, 

PLCG2) and the mitochondrial-related genes (n = 80; hypergeometric test, an adjusted P-value of 

5.29 x 10-5). Moreover, we found the downregulation of pathways involved in the lipid metabolism 

and synthesis of de-novo fatty acids (FASN, ACACA). 
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Integration of core mastitis-response genes and phenomic data  

Using DIABLO, we observed the strongest covariation between the core mastitis genes and the 

immune cells populations (IS) (r2 = 0.72), followed by the udder health (UH) (r2 = 0.64) and milk 

quality (MQ) parameters (r2 = 0.64; Fig 4a). No important covariation was found between the core 

mastitis response genes and the host variables (e.g., parity and DIM; r2 = 0.33). Concomitantly, the 

immune cells co-varied with the udder health-related variables (r2 = 0.64). Then, to add biological 

meaning to the predicted model, we investigated the relationship between the DIABLO-selected 

features with the highest covariation. The first latent variable of the immune cells data set supported 

induction of the immune system response in mastitis cows, with increased infiltrations of leucocytes 

and T-killer cells, and to less extent, PMN, T-helper cells, macrophages, and B cells (Fig 4b). Paired 

with these immune-related cells, the first latent variable for the udder health parameters pointed at 

higher levels of DSCC, SCC, and milk conductivity upon mastitis but lower casein index, lactose, 

and pH (Fig 4c). Regarding the genes selected, the first latent variable of the expected model indicated 

that subjects with mastitis overexpressed the Prostate Androgen-Regulated Mucin-Like Protein 1 

(PARM1) gene. Moreover, in infected animals, we observed the induction of genes involved in the 

transcription of class II MHC molecules (CIITA), cell proliferation and apoptosis (SAMD9), and 

adhesion and diapedesis of granulocytes (SELPLG) (Fig. 4d). Conversely, healthy subjects were 

primarily defined by genes related to molecules transportation and transmembrane proteins 

(LAPTM4A, ANO10, GNA11).  

Identification of mastitis hub variables  

The co-association of gene expression and phenomic data obtained from CIRCOS (Fig. 4e) 

resulted in a network construction consisting of 116 interactors (nodes) and 4,430 interactions 

(edges). This network was further analyzed using the Molecular Complex Detection (MCODE) 

Cytoscape plug-in, which identified four densely connected modules. The two most significant 

modules showed MCODE scores of 54.732 and 6.667, respectively. Seven variables (AGFG1, 
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CEMIP2, ITGB7, RRAD, Urea, T killer cells, and leucocytes) were not assigned to any module (Fig. 

S4).  

Lastly, with cytoHubba, we identified the top 20 hub variables, which are displayed in Fig. 5 

and ordered as follows according to the MCC ranking method: milk conductivity, lactose, P2RY6, 

SPTBN5, BoLA-DOA, ENSBTAG00000053850, CIITA, GNA11, ENSBTAG0000003367, casein 

index, ENSBTAG0000003408, HIP1, CLMN, RESEF, EFHD1, LAPTM4A1, FCRL5, milk yield, 

PAH, ELF5 (Full MCC ranking in Table S5). The genes that were commonly shared by both DIABLO 

and cytoHubba (P2RY6, SPTBN5, BOLA-DOA, CIITA, GNA11, ENSBTAG0000003367, 

ENSBTAG0000003408, HIP1, LAPTM4A, FCRL5) were then submitted to a ROC analysis resulted 

in having excellent prediction performances in terms of discriminating healthy and mastitis animals 

with sensitivity > 0.89, specificity > 0.81, accuracy > 0.87 and precision > 0.69. The detailed 

predictive performances of the hub genes are presented in Table S6. 

Meta-analysis of subclinical mastitis   

To validate the core mastitis response genes, we additionally gather publicly available somatic 

cell transcriptome RNA-seq datasets (n = 81) derived from three independent studies in dairy cows: 

i) pooled milk sampled from 12 healthy cows (Seo et al., 2016), ii) quarter samples from 6 cows (n = 

12) (Asselstine et al., 2019); and, 14 cows sampled at five different times (n = 48) (Niedziela et al., 

2021). As with the study cohort, the transcriptome profiles could be distinguished based on the 

infection status (Fig. 6a), with higher transcriptome dispersion in infected individuals. The first 

principal component accounted for 51 % of the total variance, and the first two accounted for 74%. 

Consistent with the training set, many genes (n = 7,226) were differentially expressed between the 

healthy and infected individuals, including 3,912 up- and 3,314 down-regulated. We then intersected 

the list of core mastitis-response genes and the list of DEGs from these published datasets (Fig. 6b). 

We found that 53% of these core-mastitis response genes were DEG in the validation set, 

strengthening the shared transcriptional response to infection, independently on the pathogen, 
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regional, and other potential differences, such as diet, medication, energy expenditure, age, and DIM 

of the dairy cows.  

To further assess the feasibility of the previously selected hub genes for discriminating healthy 

and infected animals, we re-performed a ROC analysis on the unified training-validation dataset (n 

=112). The class II transactivator (CIITA) had the best prediction performances, having sensitivity, 

specificity, and accuracy > 0.7 and precision equal to 0.8. 

 

DISCUSSION 

 

Somatic cells are released in milk as the first line of defense against mammary infections, and 

they are widely applied as an indicator for mastitis screening and detection. Moreover, their 

expression signatures fit suitably for performing mastitis mammary-gland-specific studies and 

monitoring the pathogen-specific molecular response. 

To the best of our knowledge, this is the first study on the milk somatic cell transcriptome 

variations in response to the infection of two pathogens: S. agalactiae, a Gram-positive bacterium, 

and Prototheca spp., a microscopic alga. Prototheca’s molecular mechanism of action is still poorly 

understood and has only recently been recognized as a non-negligible mastitis agent, with an 

estimated 11.2% prevalence on Italian territory (Shave et al., 2021). In addition, for the first time, we 

integrated somatic cell transcriptome data with a wide range of phenotypic traits in a joint analysis to 

identify hub variables affected by subclinical intramammary infection in dairy cattle.  

We tried to minimize any possible source of variation that might modify the transcriptional 

response by excluding primiparous cows and animals during their periparturient period. In fact, in 

early lactating cows, the decreased feed intake and the increased energy demand often result in an 

energy-negative balance condition (Ingvartsen and Moyes, 2013), which can also affect the proper 

activation of the immune cell’s metabolism in response to pathogens' invasion (Wathes et al., 2009).  
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In terms of production performances, the significant drop in milk yield in the infected animals 

(regardless of the pathogen) was in line with what was observed by previous studies conducted on 

subclinical mastitis (Bobbo et al., 2017). Instead, the most quality-impaired milk was the one from 

Prototheca infection. Pegolo et al.  (Pegolo et al., 2022a) reported similar results on a broader cohort 

of animals affected by subclinical IMI from four pathogens: S. aureus, S. agalactiae, S. uberis, and 

Prototheca spp.  Both pathogens significantly increased milk SCC compared to the negative control 

samples but resulted in different leucocyte proportions. Exposure to S. agalactiae primarily triggered 

an innate immune response by recruiting nearby macrophages at the site of infection. At the same 

time, Prototheca seemed to show resistance to the phagosomal defense mechanism and a more 

adaptive-driven response through the crucial role of T-cells. Even though the diverse leucocyte profile 

suggests a different immune response, the large variability of the immune cells assessed by the PCA 

(Fig. S2i) evokes that beyond infection and protection, immune cell patterns could also be driven by 

a range of genetic and non-genetic factors such as the inflammation stage as well as individual 

environmental exposures. 

SC transcriptome response upon S. agalactiae and Prototheca infection 

To further dissect these phenotypic phenomena, the RNAseq approach was applied. Antigen-

presenting and processing was a critical pathway enriched in Prototheca spp. infected samples, 

suggesting that the adaptive immune response was mainly guided by the activation of MHC class II 

molecules. The bovine MHC genes are called the Bovine Lymphocyte antigen (BoLA) (Behl et al., 

2012). Specifically, class II is expressed on antigen-presenting cells and activates CD4+ T cells, 

resulting in the coordination and regulation of effector cells (Wieczorek et al., 2017).  

S. agalactiae was found to modulate the expression of MDSCs, a heterogeneous subset of 

immature monocytes and granulocytes, by activating STAT3, which stimulates myelopoiesis, 

inhibiting myeloid-cell differentiation (Gabrilovich and Nagaraj, 2009). Interestingly, the infection 

of S. agalactiae induced a down-regulation of mitochondrial energy related-pathways like the TCA 

cycle, oxoacid, and carbohydrate derivative metabolic processes, which might be partially linked to 
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the relationship existing between macrophages and mitochondria. With the onset of inflammation, 

macrophages activate, showing a proinflammatory profile metabolically characterized by an 

increased glycolysis and lactate production (Tur et al., 2017). In contrast, even in the presence of 

oxygen, mitochondrial oxidative phosphorylation (OXPHOS) is reduced in pro-inflammatory 

macrophages (the so-called Warburg effect), presumably as an effect of the tricarboxylic acid (TCA) 

cycle fragmentation (Jha et al., 2015).  

Finally, using the Pathifier algorithm, we identified 69 KEGG pathways which explained the 

differential gene expression profile in the two types of infection for the negative control. In line with 

our previous findings, we observed the significant deregulation in the TCA cycle, carbohydrate 

metabolism, oxidative phosphorylation pathways as well as the peroxisome proliferator-activated 

receptor (PPAR), which is an essential modulator of the immune response tightly linked to 

mitochondrial metabolism (Di Cara et al., 2019), confirmed the role of mitochondria as major hubs 

in inflammatory and immune response carried out by S. agalactiae.  

Pathways involving ECM, focal adhesion, and gap junction, which comprehend the group of 

genes involved in the communication and integrity of the epithelial cells (Dedhar, 2000), were mildly 

deregulated in both infections, confirming transcriptomic and iTRAQ-proteomics patterns on Chinese 

Holstein cows challenged with S. agalactiae via nipple tube perfusion (Zhang et al., 2018) . Altered 

gene expression within these pathways might be related to the reorganization of the actin 

cytoskeleton, which may represent one way of reducing tissue damage caused by invading pathogens. 

Our previous functional analysis supported these findings in which we found some integrin family 

coding genes. In S. agalactiae-positive samples, we found ITGA5 upregulated, similar to the work of 

Niedziela et al. (2021). This gene encodes the light and heavy chains that create the α5 subunit, which, 

by associating with the β1 subunit, form the receptors for fibronectin and fibrinogen. These two 

glycoproteins are essential mediators of the pathogen adhesion (Hauck and Ohlsen, 2006). Their 

abundance increased in the work of Mudaliar et al. (Mudaliar et al., 2016), where a label-free 

proteomic approach analyzed the changes in the protein profile of milk whey in a cohort of animals 
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experimentally infected by S. uberis. In Prototheca infection, we found instead ITGA9, which 

encodes integrin subunit β7, necessary for the leukocyte adhesion (Ivaska and Heino, 2000).  

Moreover, PDS concerning Th17 cell differentiation and B cell receptor signaling, pathways 

more specific for the adaptive immune response, were significantly deregulated in Prototheca-

infected animals, even if a modest alteration was observed in S. agalactiae infection.  

It is crucial to notice that with this approach, we also found significant differences in PDS 

within samples belonging to the same group. This is partially linked to the fact that we did not have 

the species identification for Prototheca or the strain identification for S. agalactiae, which led to 

divergent responses. Secondly, as we worked on naturally occurring mastitis, we could have had 

different stages of inflammation in our samples.  

Common transcriptomic signature of subclinical intramammary infection 

Despite some differences in the DEGs expression within the activation of the immune system 

pathways, we did not find extreme differences in the two microorganisms’ transcriptomic profiles, 

despite the great phylogenetic distance between them. This was further confirmed by the enrichment 

analysis comparing the DEGs among the two pathogens that did not produce significant pathways.  It 

is, however, important to remember that S. agalactiae and Prototheca are known to induce a weak 

immune reaction compared to Gram-negative bacteria like E. coli, which results in subclinical 

mastitis with usually no systemic repercussions (Günther et al., 2017). Both pathogens can put in 

place mechanisms of immune evasion that might explain a more moderate inflammatory response. 

Indeed, in S. agalactiae, synthetase proteins such as FbsA and FbsB are involved in fibrinogen 

binding that can decrease the risk of opsonization by phagocytic cells. Moreover, the production of 

the serine protease CspA allows this pathogen to further evade the immune response by cleaving 

specific chemokines responsible for the neutrophil recruitment (Kabelitz et al., 2021). Prototheca, 

conversely, seems to be able to form a biofilm which could be implicated in its pathogenicity, partial 

immune invasion (Pegolo et al., 2022b), and ability to persist in the environment (Leonel Gonçalves 

et al., 2015). 
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Regardless of the pathogen, we identified several highly expressed genes in animal samples 

with subclinical IMI. This suggests these “core mastitis-response genes” may represent a typical 

infection signature and provide a potential therapeutic window for mastitis drug development.  

Pathway analysis conducted on the 681 core-mastitis response genes (the ones commonly 

shared by the two infections) identified that most upregulated pathways were related to the activation 

of innate and adaptive immune system processes. Interestingly, among the expressed ILs, the 

significant upregulation of IL-17A and IL-17F might be specifically linked to the so-called “type 3” 

immunity, which encompasses innate and adaptive immune response and is characterized both by the 

recruitment of neutrophils and the stimulation of epithelial antimicrobial defenses at the sites of 

infection (Rainard et al., 2020). Overexpression of IL-17A and IL-17F encoding genes was also 

observed in the mammary gland of cows infected with E.coli (Roussel et al., 2015) and in goats 

infected by S. aureus (Rainard et al., 2018).  In contrast, the downregulated ones involved oxoacid 

metabolic processes. These biological processes were commonly shared with the work of Asselstine 

et al. (2019), one of the few published papers that characterized the milk somatic cell transcriptome 

in Holstein cows. In addition, they found several unspecific Gene Ontology (GO) terms, which might 

be explained by the fact that genes expressing alternative transcripts might have been associated with 

a heterogeneous role in biological functions (Cardoso et al., 2018).  

NLRC5, TLR9, GBP5, and PLG2 were highly enriched upon encountering the pathogenic 

agents. These genes are well-known to have a pivotal role in the activation of NLRP3 (NLR family 

PYD containing 3),  which is considered one of the essential activators and synergic components of 

the inflammasome (Yu and Lee, 2016) which, in turn, are a class of molecules assembled by the PRRs 

which are well known to play an important role in innate immunity through the stimulation of pro-

inflammatory cytokines and pyroptosis (Backert et al., 2016). Moreover, the identification of several 

mitochondrial-related DEGs was consistent with the hypothesis that mitochondria activity may be 

regulated by subclinical intramammary infection.  
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Within the pathway involved in the fatty acid metabolic process, we found several lipogenic 

genes (FASN, ACACA) that were downregulated. The decreased expression of these genes in animals 

with mastitis compared with negative control was also observed in the work of Moyes et al.  (Moyes 

et al., 2009) and  Huma et al.  (Huma et al., 2020) might probably be related to the fact that with the 

onset of inflammation, the energy demand needed to produce new fatty acids is too high (Li et al., 

2021). 

Interestingly, the most under-expressed gene was the SLC34A2, according to what was 

observed by Asselstine et al. (2019). SLC34A2 encodes the solute carrier family 34 members 2, a 

sodium-dependent phosphate transporter, which was upregulated in disease-resistant cows (van 

Altena et al., 2016). It is therefore considered a putative biomarker for selecting disease resistance in 

dairy cattle. 

Identification of hub variables for subclinical intramammary infection  

Among the candidate DE genes identified by DIABLO, the class II transactivator (CIITA) had 

one of the highest loading scores and was significantly upregulated in mastitis animals. CIITA has 

been recognized as one of the master regulators in the gene expression of MHC. Moreover, it is 

involved in the transcription graduation of over 60 immunologically essential genes, including 

interleukin 4 (IL-4) and IL-10 (Devaiah and Singer, 2013). CIITA was found to be a critical regulator 

of the immune response of Cynoglossus semilaevis towards the infection of Vibrio harvey, suggesting 

its putative involvement also in the molecular inflammatory process of mastitis. Interestingly, it was 

also proposed as one of the most important candidate genes for bovine paratuberculosis tolerance in 

the GWAS study conducted by Canive et al. (2022) 

All the immune-cells variables selected by DIABLO were positively associated with mastitis, 

with total leucocytes having the highest loading score. It is already widely established for milk quality 

traits that SCC, and more recently DSCC, represent the most critical and easy-to-use indicator for 

identifying inflammation at the udder level (Pilla et al., 2013; Guzzo et al., 2018).  



134 
 

Moreover, lactose and casein index proportion are two traits that are highly influenced by 

inflammatory processes. The reduction in lactose proportion associated with clinical and subclinical 

mastitis is related to the reduced secretory activity of the mammary epithelial cells and an increase in 

the permeability of the mammary epithelium due to tight junction impairment (Televičius et al., 

2021). The casein index reduction upon IMI is related to the increased proteolytic activity due to both 

endogenous and bacterial proteases that particularly damage the casein fractions (Le Roux et al., 

2003; Forsbäck et al., 2010). Casein index and lactose content represent a useful additional tool for 

discriminating against healthy/infected animals.  

Among the phenotypic indicators identified by the integrated DIABLO-cytohubba approach, 

milk conductivity, and lactose were the ones showing the highest ranking. In fact, during the 

inflammation of the mammary gland, the osmotic balance is maintained through the increase in Na+ 

and Cl-, which are responsible for the rise in milk electrical conductivity (Norberg et al., 2004). In 

this context, a study by Ebrahimie et al.  (Ebrahimie et al., 2018) on Holstein cows identified milk 

lactose and conductivity, together with SCC, as the most reliable indicators for the detection of 

subclinical mastitis. Moreover, also a recent work conducted by Antanaitis et al. (Antanaitis et al., 

2021) on 5814 cows observed a strong association between lactose levels and subclinical mastitis 

pathogens, concluding that it might be helpful to include lactose (as well as milk conductivity) as a 

biomarker of suspected udder inflammation in health prevention programs.  

 Among the selected hub genes, BoLA-DOA encodes the major histocompatibility complex 

(MHC), class II, DO alpha. It is already well known that molecules linked to MHC play a fundamental 

role in the antigen recognition, presentations, and activation of the adaptive immune response (Behl 

et al., 2012). Among the numerous molecules that belong to the BoLA family, BoLA-DOA specific 

mechanism of action has yet to be unraveled. Nonetheless, some studies found this gene upregulated 

in the presence of mastitis. Chen et al. (Chen et al., 2021), for example, in the transcriptional survey 

of exosomes derived from Staphylococcus aureus-infected bovine mammary epithelial cells, found a 

significant upregulation of the BoLA-DOA gene. Conversely, Cheng et al.  (Cheng et al., 2022) 
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observed the downregulation of BoLA-DOA and several other genes involved in antigen presentation 

and processing in the blood-circulating leucocytes of animals recovering from E.coli clinical mastitis. 

This difference in gene expression might be related to the fact that E. coli, unlike S. agalactiae or 

Prototheca, generally induces an acute and robust udder inflammation with a more generalized 

immune response (Petzl et al., 2018). 

One of the essential hub genes downregulated in mastitis animals was GNA11, which encodes 

for a type of guanine nucleotide-binding protein (G-protein) functioning as a modulator or transducer 

in the transmembrane signaling systems. In the recent work of Pan et al. (Pan et al., 2022) on 

transcriptome evaluation in early calf nutrition, GNA11 was significantly implicated in energy-related 

pathways, especially fat metabolism. Therefore, its downregulation in mastitis-positive samples 

should be further evaluated better to explain the relationships between energetic pathways and 

immune response. 

 

CONCLUSIONS 

 

This work evaluated for the first time the somatic cell transcriptomic signature derived from 

naturally occurring subclinical mastitis caused by two different etiological agents: S. agalactiae and 

Prototheca spp. Even though we found some differences in the immune-related pathways and gene 

expression between the two infections (e.g., more robust activation of the antigen and processing 

complex in Prototheca and potent inhibition of energy-related pathways in S. agalactiae infection), 

the core immune response was commonly shared between the two pathogens.  

The integrated analysis of core mastitis response genes and phenotypic traits confirmed a strong 

correlation between the transcriptome and the leucocyte populations determined by flow cytometry 

and with udder health traits (SCC, lactose, conductivity, and casein index), strengthening the need to 

systematically include them as screening and diagnostic indicator for the IMI detection. Finally, the 

predictive performances on the hub genes tested within the meta-analysis highlighted that CIITA 
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might have a crucial role in the molecular mechanism underlying the animals’ response to subclinical 

IMI and need further evaluation in future studies, also taking into consideration a wider cohort of 

animals. 
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TABLES AND FIGURES 
 

 

Fig.1. A schematic flow of the experimental design  
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Fig. 2. Plots of samples spatial separation. (a) principal component analysis (PCA) of the 14,564 

expressed genes; (b) non-metric multidimensional scaling (NMDS) for the visualization of the 

variation of the 14,564 expressed genes according to the phenotypic traits; (c) the principal 

contributors explaining the total variance of the transcriptome. SCC: somatic cell count; prod: milk 

yield (kg/d); DSCC: differential somatic cell count. 
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Fig. 3. Pathway analysis of the differentially expressed genes in milk somatic cells. (a) ClueGO 

functionally grouped network of up and downregulated genes within the healthy and Prototheca’s 

infected cows. (b) ClueGO functionally grouped network of up and downregulated genes within the 

healthy and S. agalactiae’s infected cows. Terms are represented as nodes linked according to a kappa 

score ≥ 0.4. The node size means the term enrichment significance. Functionally related groups 

partially overlap. (c) heatmap built on the pathway deregulation scores (PDSs) of the whole 

transcriptomic data of healthy, Prototheca’s, and S. agalactiae’s infected animals. Each row 

corresponds to a pathway, and each column to a sample. Blue corresponds to “no deregulation”, and 

yellow to high deregulation. 
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Fig. 4. Integration of transcriptomic and phenomic information using the DIABLO approach. (a) 

correlation plot among the different sets of categories; (b-d) the loading plots of flow cytometry 

immune cells (b) udder health traits (c) and differentially expressed genes (DEGs) (d). Pink and light 

blue bars represent healthy animals and cows with subclinical intramammary infection (sIMI), 

respectively. The negative values of the loading weights (light blue bars) signify that the 

corresponding variables had higher expression/value in infected animals. The positive values (pink 

bars) mean that related variables had higher expression/values in healthy animals. (e) Circos plot 

showing the correlation between candidate variables. MQ: milk quality, IS: immune system, UH: 

udder health. 
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Fig. 5.  Cytohubba top 20 hub variables according to the maximal clique centrality method (MCC). 

Higher ranking is represented by a redder color. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



155 
 

 

 

Fig. 6. The meta-analysis. (a) principal component analysis (PCA) of the present dataset and the ones 

downloaded from public repositories on milk somatic cell transcriptome. (b) Venn diagram of 

differentially expressed genes (DEGs) among the different experimental comparisons (Prototheca vs. 

healthy, S. agalactiae vs. healthy, mastitis vs. healthy, mastitis vs. healthy external data set). 1: 

transcriptomic data from the work of Seo et al. [38]; 2: transcriptomic data from the work of 

Asselstine et al. [14]; 3: transcriptomic data from the work of Niedziela et al. [15]; 4: transcriptomic 

data from the present dataset. 
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SUPPLEMENTARY INFORMATION 
 

The Supplementary materials that are not reported in the present document (too large files) can be 

found at: https:// doi. org/ 10. 1186/ s40104‑ 023‑ 00890‑9 

 

Additional file 1: Table S1. Metadata of the study 

Additional file 2: Table S2. Read mapping statistics of the transcriptome data before and after 

trimming. Quality control has been conducted using multiQC. 

Additional file 3: Fig S1. Variation of milk phenotypic traits in healthy, Prototheca’s and S. 

agalactiae’s infected animals. Boxplots of milk yield (a), milk lactose (b), milk casein index (c), milk 

conductivity (d), milk protein (e), milk casein (f), milk fat (g), milk urea (h) and milk pH (i) according 

to the three experimental groups. 

Additional file 4: Fig. S2. Flow cytometry results for immune cell populations according to the three 

experimental groups. Violin plots of milk somatic cell score (SCS) (a), differential somatic cell count 

(DSCC) (b), leucocytes (c), macrophages (d), T helper cells (e), T killer cells (f), B cells (g) and, 

PMN (h) in healthy, Prototheca’s and S. agalactiae’s infected animals. (i) Principal component 

analysis (PCA) shows the samples’ separation according to the flow cytometry variables. 

Additional file 5: Table S3. Matrix of the 14,564 expressed genes obtained after filtering for counts 

per million (CPM) > 0.5 in at least 10 samples. Genes failing these criteria were removed from the 

exploratory and DEGs analyses. 

Additional file 6: Table S4. List of the DEGs for each experimental comparison (Prototheca vs. 

healthy, S. agalactiae vs. healthy, Prototheca vs. S. agalactiae, healthy vs. mastitis, healthy vs. 

mastitis in the meta-analysis cohort, core mastitis response genes). 

Additional file 7: Fig. S3. ClueGo pathway analysis of the 681 “core mastitis response genes” 

commonly shared between S. agalactiae and Prototheca. 
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Additional file 8: Fig. S4.  PPI network construction and module analysis carried out with 

Cytoscape’s plug-in MCODE. Nodes belonging to different modules are differently colored. White 

nodes are variables that were not assigned to any modules. Lines represent the interaction between 

nodes (red arrows are positive interactions, and blue are negative).  

Additional file 9: Table S5. Full Maximal Clique Centrality (MCC) ranking of the 20 hub variables 

obtained with cytohubba. 

Additional file 10: Table S6. Predictive performances obtained through ROC analysis for the hub 

genes. 
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Fig S1. Variation of milk phenotypic traits in healthy, Prototheca’s and S. agalactiae’s infected 

animals. Boxplots of milk yield (a), milk lactose (b), milk casein index (c), milk conductivity (d), 

milk protein (e), milk casein (f), milk fat (g), milk urea (h) and milk pH (i) according to the three 

experimental groups. 
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Fig. S2. Flow cytometry results for immune cell populations according to the three experimental 

groups. Violin plots of milk somatic cell score (SCS) (a), differential somatic cell count (DSCC) (b), 

leucocytes (c), macrophages (d), T helper cells (e), T killer cells (f), B cells (g) and, PMN (h) in 

healthy, Prototheca’s and S. agalactiae’s infected animals. (i) Principal component analysis (PCA) 

shows the samples’ separation according to the flow cytometry variables. 
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Fig. S3. ClueGo pathway analysis of the 681 “core mastitis response genes” commonly shared 

between S. agalactiae and Prototheca. 
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Fig. S4.  PPI network construction and module analysis carried out with Cytoscape’s plug-in 

MCODE. Nodes belonging to different modules are differently colored. White nodes are variables 

that were not assigned to any modules. Lines represent the interaction between nodes (red arrows are 

positive interactions, and blue are negative). 

 

 

 

 

 

  



162 
 

 

 

 

 

 

 

  



163 
 

GENERAL CONCLUSIONS AND FUTURE PERSPECTIVES 

 

Our work provided new insights on the effect of udder inflammation and subclinical IMI on 

both phenotypic (i.e., milk protein profile) and molecular level. With the first contribution we focused 

on the evaluation of two phenotypic indicators commonly used for the screening of mastitis, the SCC 

and DSCC, and we evaluated their effect on the detailed milk protein profile in a cohort of clinically 

healthy cows. Our results firstly confirmed the unfavorable effect of increased SCC on milk protein 

fractions, especially on caseins and shed some new light on the association between DSCC and the 

protein profile. Indeed, when we expressed the DSCC parameter as count of PMN + LYM and MAC 

we observed that the greater impairment for the protein fractions was related to proteolytic activity 

derived from macrophages, as they were present in higher number given the non-pathological status 

of the animals. With the second contribution, we dug deeper on the behavior of milk protein fractions 

in animals having subclinical IMI by exploring in an extensive way the pattern of alteration at the 

mammary gland at the quarter level. Our results showed that subclinical IMI significantly impaired 

particularly the caseins fractions while no important alteration was observed for the whey proteins 

proportion. However, we have substantiated that the increase in SCC seemed to be the factor 

associated with the most significant changes in the protein fractions. This suggests that the increase 

in endogenous proteolytic enzymes related to the onset of inflammation, and not the infection (i.e., 

the bacteriological status), might be the pivotal aspect driving the alteration of the milk protein profile. 

The third contribution, shifting from the phenotypic to the molecular level, allowed us to shed 

some light on the molecular mechanisms behind subclinical IMI and on the immune reaction of the 

animal in response to the infection of two different microorganisms: S. agalactiae and Prototheca. 

Our results showed that, even though we observed some differences in terms of immune-related 

pathways and gene expression between the two infections, there was a strong “core” immune response 

that was commonly shared by the two pathogens, probably linked to the subclinical nature of 

infection. Finally, with the integration of the transciptomic and phenotypic information we observed 
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a strong correlation between the transcriptome, the immune cells and some udder traits variables (i.e., 

lactose and milk conductivity). Also, we identified some putative genes that could be informative for 

the animal’s response to subclinical mastitis. In the future, we will aim at validating these potential 

biomarkers in a wider cohort of animals.  

To conclude, it is worth noting that while individual data layers provide valuable information 

on their own, much stronger insights could be obtained by integrating different sources of information 

which could offer a better comprehension of the complexity of this disease. For these reasons, our 

future challenge will be to perform a multi-layer omic integration including together with the 

transcriptomic and phenotypic data, also peptidomic, metagenomic and DNA-methylation 

information to possibly identify hub variables to be used for screening purpose at the herd level. 
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