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Abstract

Multicomponent superfluidity exhibits fruitful physics in contrast to single-component
superfluids. In a binary superfluid with two different hyperfine states, the vorticity is
modified from the single-component case and the circulation is no longer quantized,
which affects thermodynamics and phase transitions. Josephson junctions prepared by
trapping superfluids in a double-well potential are a platform to investigate the dynam-
ics of multicomponent superfluids. Several experiments of Bose Josephson junctions
or superconducting Josephson circuits enable us to clarify the quantum effects on the
relaxation dynamics. In this Thesis, we analyzed quantum effects on multicomponent
superfluidity from the viewpoints of phase transitions in a binary Bose superfluid and
the dynamics in Josephson junctions.

In Chap. 1, we start with an introduction to superfluidity and ultracold atomic
physics. We present comprehensive ideas on why we focus on ultracold atoms and
their advantages. Then, we conclude the introduction by presenting the motivation and
outline of this Thesis.

In Chap. 2, we present the fundamental overview of quantum fluids including the
occurrence of Bose-Einstein condensation, superfluid hydrodynamics, quantized vortices,
and Berezinskii-Kosterlitz-Thouless transitions, which are the basis of the discussions in
the following chapters.

In Chap. 3, we provide analyses of sound velocities in a single-component collisional
Bose superfluid in D-dimension. Including the beyond-mean-field correction, we discuss
the quasicrossing behavior of the first and second sound velocities in collisional Bose
superfluids.

In Chap. 4, we discuss Berezinskii-Kosterlitz-Thouless transitions in a Rabi-coupled
binary Bose superfluid in two dimensions. Starting from the miscibility condition and
vortex excitations, which are distinct from a single-component superfluid, we discuss
the Berezinskii-Kosterlitz-Thouless transition in the binary Bose superfluid. Since it is
a phase transition originating from vortex excitations, the different vortex excitations
peculiar to multicomponent superfluids play a crucial role. We give the comprehensive
behaviors of the superfluid density, superfluid transition temperature, and sound modes.
In particular, the sound modes show significantly different behavior from the single-
component case analyzed in Chap. 3, and we propose experimental verification of our
result based on the sound velocities.

In Chap. 5, we discuss quantum effects on the dynamics in multicomponent superflu-
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ids focusing on Josephson junctions. We reveal that a Bose Josephson junction can be
mapped to a Caldeira-Leggett-type model and it exhibits damped Langevin dynamics.
Such a damped Langevin dynamics can be also observed in a superconducting Josephson
circuit. However, due to the different types of coupling between the Josephson mode and
bath modes, the correlation functions exhibit different relaxation dynamics. We clarify
the effects of quantum fluctuations on the correlation functions. Finally, we conclude
Chap. 5 by showing the quantum correction also to the Josephson frequency.

In Chap. 6, we summarize this Thesis.
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Chapter 1

Introduction

Multicomponent quantum many-body systems are the central target in modern physics,
offering diverse novel physics including fundamental physics such as quantum phases or
dynamical responses, and applications to quantum computation with qubits. Quantum
many-body physics deals with a system composed of a huge amount of particles obeying
quantum theory and collective phenomena manifesting quantum nature on the macro-
scopic scale. If the system has additional degrees of freedom, such as spins, species,
or colors, it exhibits a much richer variety of physics. This Thesis aims to establish a
comprehensive understanding of the multicomponent quantum many-body physics with
a special focus on superfluidity.

1.1 Superfluidity

One of the most striking and fundamental phenomena in quantum many-body physics
is superfluidity. It dates back to Onnes’ first realization of liquid 4He in 1908. In 1937,
Kapitza, Allen, and Misener first observed an inviscid flow in a liquid 4He below the
λ point, which is the significant property of superfluidity [1, 2]. After the observation,
Tisza and Landau proposed superfluid hydrodynamics describing superfluidity in 1941
[3, 4, 5, 6, 7]. In modern interpretations, superfluidity is also related to Bose-Einstein
condensation (BEC) theoretically predicted by Bose and Einstein in 1925 [8, 9]. This
connection between superfluidity and BEC was first indicated by London in 1938 [10].
However, the realization of BEC requires an ultralow temperature around the order of
1µK and high density. Note that even in outer space without starlight, we still have
the temperature of 2.7K due to the cosmic microwave background. For a long time, it
was a highly challenging issue to develop a cooling mechanism to realize Bose-Einstein
condensation at ultralow temperatures.

In 1995, Cornell, Ketterle, and Wieman succeeded in experimentally realizing atomic
BEC with a 87Rb atomic cloud cooled to around 1µK [11, 12, 13]. The atomic gases are
trapped by a magneto-optical trap, and cooled by laser cooling and evaporative cool-
ing technology. This seminal achievement was a milestone in ultracold atomic physics
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1.2. ULTRACOLD ATOMIC PHYSICS

and the realization of BEC was awarded by Nobel Prize in Physics in 2001 [11, 12, 13].
Recently, a wide variety of superfluidity and superconductivity have been reported such
as driven-dissipative superfluids realized in exciton-polariton systems composed of elec-
trons and holes in a cavity [14, 15, 16, 17, 18], topological superconductors hosting
topologically nontrivial phases [19, 20], and laser-induced superconductors [21, 22].

1.2 Ultracold atomic physics

Since the successful achievement of BEC in 1995 [11, 12, 13], ultracold atomic systems
have offered a versatile platform to study quantum many-body physics. In ultracold
atomic systems, neutral atomic gases are magnetically or optically trapped in a vacuum
and cooled down to ultralow temperatures lower than the order of 1µK. Ultracold atomic
systems have several advantages compared to other quantum systems. In this section,
we explain the five aspects in particular: (I) ultracold temperature, (II) diluteness, (III)
neutral charge, (IV) isolated system, and (V) optical lattice.

First of all, (I) ultracold temperature allows us to achieve a quantum degeneracy
regime of the order of 10 nK, which contributes to the realization of an atomic BEC. This
ultralow temperature is also useful to investigate the effects of quantum fluctuations at
low temperatures. Furthermore, (I) ultracold temperature and (II) dilute density result
in a small energy scale of the order of 1 kHz compared to the strongly-correlated electron
systems with the large energy scale eV ∼ 1014Hz. It enables us to observe the real-time
quantum dynamics and the momentum distribution through the time-of-flight (TOF)
method [23]. Indeed, the experimental realization of BEC with 87Rb atoms has been
observed via the measurement of the momentum distribution with the TOF [11, 12, 13].

In addition, (III) charge neutrality simplifies the inter-atomic interactions and en-
ables us to tune the interaction strength in a controllable manner by the technique of
Feshbach resonance [24, 25]. Let us consider the scattering of an incoming atom with
momentum ℏk where ℏ is the reduced Planck constant, and a scatterer ball with the
radius r0. For a particle with the orbital angular momentum Lin = bℏk ≃ ℏl with b
being the impact parameter and l = 0, 1, 2, · · · being the quantum number of angular
momentum, the necessary condition for the scattering is b < r0, which reads l < kr0.
For a 6Li atomic gas cooled down to 100 nK, for instance, k−1 ∼ 104a0 and r0 ≃ 62.5a0
allow us to describe the atomic gas only with the s-wave inter-atomic interaction with
a0 the Bohr radius because only the s-wave channel l = 0 is allowed. The s-wave scat-
tering length as associated with the three-dimensional effective inter-atomic interaction
potential

U3D(r) =
4πℏ2as
m

δ(r), (1.1)

can be controlled by an external magnetic field by the technique of Feshbach resonance.
Feshbach resonance refers to the formation of a resonant bound state when two atoms
collide with each other. The Hamiltonian of the single atom coupled with a magnetic
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CHAPTER 1. INTRODUCTION

field B = (0, 0, B) associated with the hyperfine structure is given by [26]

Ĥhf = Ahf Î · Ĵ − µI
I
BÎz + gLµBBĴz, (1.2)

where Î and Ĵ are the nuclear and electronic spin angular momentum operators, re-
spectively. The first term in Eq. (1.2) stands for the hyperfine interaction between the
nuclear spin and electron spin with the coupling strength Ahf . The second and third
terms are the Zeeman terms for the nuclear spin and electron spin, respectively, where
µI is the nuclear magneton, µB is the Bohr magneton, and gL is the Landé g-factor. The
second term is usually negligible compared to the third term. The total spin F̂ = Î + Ĵ
is a good quantum number with a weak magnetic field. The hyperfine coupling between
the nuclear spin and the electron spin makes the Zeeman energies of the resonant bound
state and the unbound state different. As a result, the effective interaction (1.1) depends
on the external magnetic field and the inter-atomic scattering length in the collision is
related to the magnetic field as

as(B) = abg

(
1 +

Wres

B −B0

)
. (1.3)

Here, Wres is the resonance width and abg is the s-wave scattering length associated with
the triplet scattering. Figure 1.1 shows the dependence of the s-wave scattering length on
the external magnetic field in a 87Rb atomic gas [27]. By irradiating a laser, the resonant
magnetic field B0 changes as shown in Fig. 1.1. By tuning the external magnetic field B,
one can change the magnitude and the sign of the s-wave scattering length as according
to Eq. (1.3), which controls the repulsive or attractive inter-atomic interaction strength
as in Eq. (1.1). This high tunability of interaction by Feshbach resonance with an
external magnetic field and a locally irradiated laser beam allows us to systematically
investigate the strong-coupling effects on physical quantities in quantum many-body
systems. In Fermi systems such as electrons, the formation of Cooper pairs due to
the attractive interaction results in the Bardeen-Cooper-Schrieffer (BCS) superfluidity.
With Fermi atoms by tuning the inter-atomic attractive interaction strength, the BCS-
BEC crossover, which is a continuous crossover from the BCS superfluids to the tightly
bound molecular BEC, was achieved experimentally [28, 29]. In Bose systems, the inter-
atomic repulsive interaction plays an important role in the formation of solitons as well
as superfluidity [30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40].

Since the atoms are confined by a magneto-optical trap in a vacuum, one can realize a
highly isolated system, which is clean without any disorder or impurity atoms. Thanks to
this feature, ultracold atomic systems are useful to demonstrate the relaxation dynamics
in isolated quantum systems [41]. One example is the Josephson dynamics in atomic
superfluids [42], as introduced shortly. We can utilize the atomic hyperfine spin states
to trap an atomic cloud with a magnetic field. For an alkaline atom with nuclear spin
I = 3/2, for instance, there are two split levels of F = I+1/2 = 2 and F = I−1/2 = 1.
The Hamiltonian (1.2) leads to the energy eigenvalues of the two states |F = 2,mF ⟩ and
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1.2. ULTRACOLD ATOMIC PHYSICS

Figure 1.1: Control of inter-atomic s-wave scattering length scaled by abg by the Feshbach
resonance in a 87Rb Bose gas [27]. The vertical lines represent the resonant magnetic fields for
each frequency of the irradiated laser.

|F = 1,mF ⟩ as

E2,mF =
3Ahf

4
+
mF

4
gLµBB −

m2
F − 4

32Ahf
(gLµBB)2,

E1,mF = −5Ahf

4
− mF

4
gLµBB +

m2
F − 4

32Ahf
(gLµBB)2,

(1.4)

respectively up to the second order in B with the total spin magnetic quantum number
mF = −F,−F + 1, · · · , F − 1, F . The energy eigenvalues of the atomic states |2, 2⟩,
|2, 1⟩, and |1,−1⟩ are increasing functions in terms of B. They are subject to a force
in the direction of the weaker magnetic field and are called weak field seeking states
(WFSSs). As a result, alkaline atoms of these states can be trapped at a spot with the
minimum magnetic field.

Although atomic gases are continuous in space, one can introduce (V) optical lattices
to implement a spatially periodic potential [23]. When the atoms are irradiated by an off-
resonant optical field, the atomic levels are effectively shifted due to virtual absorption
and emission of photons (AC Stark effect). The level shift can be regarded as a potential
for the atoms given by

V (r) = −1

2
α(ω)

∣∣Ē(r)
∣∣2, (1.5)

where α(ω) is the AC polarizability and Ē(r) is the time-averaged AC electric field with
frequency ω. When the optical field is a standing wave

∣∣Ē(r)
∣∣2 = E2 cos (k · r), the

potential (1.5) plays a role of a periodic lattice. In this way, one can implement various
configurations of lattices and band structures in atomic systems, which is useful to
simulate the Hubbard model, a theoretical model of strongly correlated electron systems.
In the atomic Hubbard model, the tunneling rate between the nearest neighbor sites can
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CHAPTER 1. INTRODUCTION

Figure 1.2: Schematic figures of the Bose Josephson junction prepared in a double-well potential
with 87Rb atoms [42]. (a,b) Splitting of the original Bose gas into two separated ones. (c,d)
Implementation of the phase shift. (e) Recoupling between the two Bose gases. The lower
panels show the TOF images of the atomic density after 46ms and the white curves stand for
the integrated profiles.

be tuned by the depth of the optical lattice, and the onsite interaction strength can be
controlled by the Feshbach resonance. Indeed, the superfluid-Mott insulator quantum
phase transition at zero temperature has been experimentally observed with 87Rb atoms
[43]. Optical traps can also create tight confinement in specific directions to realize
quasi-2D systems or quasi-1D systems. In the latter part of this Thesis, we focus on
two superfluids separated by a potential barrier. This configuration can be achieved by
a double-well optical potential. Figure 1.2 shows the preparation of the Bose Josephson
junction composed of two one-dimensional 87Rb atomic gases confined in a double-well
potential [42]. The observed relaxation dynamics are reported in Fig. 1.3. It shows the
damped oscillation dynamics of both the relative phase and the population imbalance.

1.3 Multicomponent physics

In addition to the five advantages explained in Sec. 1.2, it is easier to manipulate ad-
ditional degrees of freedom in ultracold atomic systems to investigate multicomponent
physics. There are numerous number of multicomponent physical systems in the world.
The superconducting Josephson junctions and the atomic Josephson junctions illustrated
in Fig. 1.2 are one of the examples of multicomponent systems. Metallic superconduc-
tors consist of Cooper pairs made of spin-up and spin-down electrons. Two-component
ultracold Fermi gases with two different hyperfine states are similar examples exhibiting
BCS-BEC crossover. Currently, they are utilized as a quantum simulator of a neutron
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1.3. MULTICOMPONENT PHYSICS

Figure 1.3: Damped oscillation dynamics of (a) relative phase ϕ and (b) population imbalance
n measured in the setup of Fig. 1.2 with the number of atoms N = 3300 [42]. The red curves
are the fits resulting in U/h = 0.71Hz and J/h = 8Hz. The dashed curves are the mean-field
predictions of the two-mode Bose-Hubbard model. (c) shows the contour plot with respect to
the population imbalance and the relative phase.

superfluid realized in neutron stars. Exciton-polariton systems are also multicomponent
systems composed of electrons and holes coupled with photons in a cavity. It is a driven-
dissipative system and hosts several phases including the electron-hole plasma, electron-
hole BCS phase, exciton BEC phase, exciton-polariton BEC phase, and photon laser
phase in which electrons and holes play the role of a gain medium [44]. A 3He atom is a
fermion and 3He superfluidity also exhibits fruitful superfluid phases such as 3He-A, 3He-
B, and 3He-A1 phases due to the internal degrees of freedom in Cooper pairs in contrast
to 4He superfluidity [45, 46, 47]. In multicomponent Bose superfluids that we focus on in
Chap. 4, there are several specific properties such as the Andreev-Bashkin entrainment
effect describing the mutual drag among the components [48, 49, 50, 51, 52, 53, 54, 55],
and the emergence of fractional circulation of vorticity in contrast to a single-component
superfluid [56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74]. As
a three-component system, a quark system may be a familiar example in high-energy
physics. Quarks have three colors and interact with each other by exchanging gluons.
The theoretical framework of these quark systems is quantum chromodynamics (QCD).
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CHAPTER 1. INTRODUCTION

The QCD hosts a rich phase diagram with respect to the temperature and baryon chem-
ical potential: hadronic phase, quark-gluon plasma, color superconducting phase, and
nuclear superfluid phase [75]. Recently, the analogue of quark systems has been investi-
gated with three-component Fermi atoms [76, 77, 78]

From these points of view, in general, multicomponent quantum many-body systems
exhibit a broader variety of phases compared to single-component systems. Within
ultracold atom setups, one can easily control the internal degrees of freedom such as the
atomic species and hyperfine spin states. In a recent development, in particular, the
first realization of a BEC in a 87Rb -41K mixture in space has been reported [79]. These
experiment of quantum gases in space paves the way to have a shell-shaped bubble trap
potential in microgravity conditions [80, 81, 82, 83, 84, 85, 86, 87, 88, 89]. Based on
these developments of ultracold atomic setups, multicomponent ultracold atomic gases
open new paths to demonstrate and engineer novel quantum many-body physics which
has never been explored in single-component systems.

1.4 Our motivation

The high controllability of ultracold atomic systems introduced in Sec. 1.2 is useful to
study multicomponent superfluidity. The motivation of this Thesis is to reveal novel
physics including both thermodynamics and dynamical properties in multicomponent
quantum many-body systems. In particular, we consider a binary Bose superfluid with
two different hyperfine states and a one-dimensional Bose Josephson junction. In a bi-
nary Bose superfluid with different hyperfine states, in contrast to a single-component
superfluid, exotic vortex excitations are stable. In 2D, in particular, these topologi-
cal excitations play a crucial role in the superfluid-normal phase transition. It indi-
cates that the exotic vortex excitations contribute to novel types of superfluid-normal
phase transitions in multicomponent superfluids. Furthermore, the superfluid-normal
phase transitions induced by vortex excitations are topological phase transitions with-
out spontaneous symmetry breaking. In other words, a specific symmetry in a system
is not necessarily important and the physics of topological excitations are expected to
occur in a broad range of energy scales. Indeed, the exotic vortex excitations have simi-
larities with the quark matters as to be mentioned in Chap. 4. Therefore, these analyses
would be useful in a wide range of physics including high-energy physics. In addition
to the superfluid phase transitions, the dynamical properties in multicomponent super-
fluids are also expected to exhibit interesting properties depending on the interaction
strength and tunnel coupling. The experiment in Ref. [42] reported damped oscillation
dynamics shown in Fig. 1.3 in a Bose Josephson junction, but the damping mechanism
was not clear since the ultracold atomic setup is an ideal isolated system as mentioned
in Sec. 1.2. The clarification of the damping mechanism in comparison with a supercon-
ducting Josephson junction is meaningful work and is expected to contribute to a broad
range of transport phenomena in junction systems.
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1.5. OUTLINE OF THIS THESIS

1.5 Outline of this Thesis

This Thesis consists of 6 chapters. Chapter 2 is a review part. We overview the physics
of quantum fluids with a special focus on Bose superfluids. In Chap. 3, we show the
behavior of first and second sound modes in a D-dimenional single-component Bose su-
perfluid in the hydrodynamic regime. The presented results are based on our work in
Ref. [90]. Chapter 4 is devoted to the study of superfluid-normal phase transitions in
a 2D binary Bose superfluid with two hyperfine spin states. In particular, we show the
novel behavior of superfluid transition temperature and sound modes in stark contrast
to single-component superfluids discussed in Chap. 3 based on our work [91]. Chapter
5 presents analyses of the dynamical properties of multicomponent superfluids focusing
on Josephson junctions. Based on our work [92], we see that the damped Josephson
dynamics in a Bose Josephson junction can be derived without introducing any external
thermal bath. The dynamics are governed by both quantum and thermal fluctuations
analogous to a superconducting Josephson circuit and we clarify the difference by elu-
cidating the effects of quantum fluctuations [93, 94]. The last chapter summarizes the
Thesis.
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Chapter 2

Overview of quantum fluids

In this chapter, we overview the fundamentals of quantum hydrodynamics. We first re-
view the notion of superfluidity and Gross-Pitaevskii theory which describes superfluids
in ultracold atomic systems. Then, we see the hydrodynamics of superfluids and the
emergence of quantized vortices. In a classical fluid, vorticity has a continuous value
because vortices are continuous and can be disconnected. On the other hand, in a single-
component superfluid, the circulation of vorticity is quantized with a unit proportional
to the Planck constant. From this point of view, we can understand that superfluids are
quantum fluids.

2.1 Bose-Einstein condensation and spontaneous symmetry
breaking

First, we review Bose-Einstein condensation as a manifestation of quantum effects on
the macroscopic scale in this section. We see that the occurrence of the Bose-Einstein
condensation is accompanied by spontaneous symmetry breaking.

2.1.1 Bose-Einstein condensation

We start with the quantum many-body system described by

Ĥ = Ĥ0 + Ĥint

=

∫
dr Ψ̂†(r)

[
− ℏ2

2m
∇2 + Vext(r)

]
Ψ̂(r)

+
1

2

∫
dr

∫
dr′ Ψ̂†(r)Ψ̂†(r′)U(r − r′)Ψ̂(r′)Ψ̂(r), (2.1)

where Ψ̂(r) is the field operator. For bosons, it satisfies the commutation relation

[Ψ̂(r), Ψ̂†(r′)] = δ(r − r′), [Ψ̂(r), Ψ̂(r′)] = [Ψ̂†(r), Ψ̂†(r′)] = 0. (2.2)
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2.1. BOSE-EINSTEIN CONDENSATION AND SPONTANEOUS SYMMETRY
BREAKING

In Eq. (2.1), Vext(r) is the external potential and U(r − r′) is the two-body interaction
potential.

Bose systems manifest macroscopic occupation of a lowest-lying state called Bose-
Einstein condensation (BEC) in the thermodynamic limit due to the Bose statistics in
Eqs. (2.2). To discuss BEC in an interacting Bose system, it is convenient to follow the
approach of Penrose and Onsager by introducing the single-body density matrix [95]

ρ1(r, r
′) = ⟨Ψ̂†(r)Ψ̂(r′)⟩, (2.3)

where ⟨· · · ⟩ denotes the grand canonical ensemble average. The single-body density ma-
trix (2.3) represents the probability amplitude of finding a particle annihilated at position
r′ and created at position r simultaneously. It can be time-dependent in nonequilibrium
systems. The diagonal component ρ1(r, r) = n(r) is the number density at position r.
The normalization is given by the total number of bosons N =

∫
dr n(r) =

∫
dr ρ1(r, r)

where the volume integral is performed within the system size V . The off-diagonal
component represents the long-range correlation.

The hermiticity of the single-body density matrix ρ∗1(r
′, r) = ρ1(r, r

′) guarantees
that it is diagonalizable and can be expanded with an orthonormal basis {ϕj(r, t)} =
{eikj ·r/

√
V } with kj = (kx, ky, kz) = (jx, jy, jz)π/

√
V where jx,y,z are integers as

ρ1(r, r
′) =

∑
j

nj(t)ϕ
∗
j (r)ϕj(r

′), (2.4)

with {nj} the real eigenvalues. BEC is a thermodynamic phase in which the eigenvalue
for the lowest-lying microscopic state j = 0 is O(N) and the other eigenvalues are O(1)
in the thermodynamic limit. To see this, we decompose Eq. (2.3) as

ρ1(r, r
′) = N0ϕ

∗
0(r)ϕ0(r

′) +
∑
j ̸=0

njϕ
∗
j (r)ϕj(r

′), (2.5)

where n0 = N0 = O(N) is the maximum eigenvalue and nj ̸=0 = O(1). In the thermo-
dynamic limit N → ∞ and V → ∞ under N/V = const., due to ϕj ∝ V −1/2, only
the first term in Eq. (2.5) remains finite. Then, we define off-diagonal long-range order
(ODLRO) by a finite ρ1(r, r′) in |r − r′| → ∞. By introducing the order parameter or
condensate wavefunction Ψ(r) ≡

√
N0ϕ0(r), the occurrence of ODLRO is defined by the

condition
lim

|r−r′|→∞
ρ1(r, r

′) = Ψ∗(r)Ψ(r′) ̸= 0. (2.6)

In our case of Bose systems, this occurrence of ODLRO states the emergence of BEC.
Here, N0 =

∫
dr |Ψ(r)|2 represents the number of bosons in the condensate. A macro-

scopic number of bosons occupying a single quantum state, BEC is a manifestation of
quantum effects at the macroscopic scale. In this sense, Ψ(r) is also called macroscopic
wavefunction.
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In an ideal Bose gas in thermal equilibrium at temperature T , the momentum dis-
tribution function is given by

fT (εp − µ) =
1

eβ(εp−µ) − 1
, (2.7)

in the grand canonical ensemble where εp = p2/2m is the kinetic energy, µ is the
chemical potential determined by N =

∑
p fT (εp − µ), and β = 1/kBT is the inverse

temperature with kB being the Boltzmann constant. The positivity of distribution
function fT (εp − µ) ≥ 0 requires εp − µ ≥ 0. Since the lowest-lying state is p = 0,
µ ≤ 0 is required. When the chemical potential is identical to the lowest-lying level
ε0 = 0, Eq. (2.7) diverges implying the macroscopic occupation of the lowest-lying state.
To see this, we write the single-body density matrix in the momentum domain as

ρ1(p) =

∫
ds e−ip·s/ℏρ1(r, r + s), (2.8)

which is identical to Eq. (2.7) in a free Bose gas and gives the number of bosons as

N =
∑
p

ρ1(p) = N0 +N ′ =
1

e−βµ − 1
+
∑
p

1

eβ(εp−µ) − 1
, (2.9)

where N0 is the number of bosons occupying the lowest-lying mode p = 0 and N ′ is the
one occupying other excitation modes. In 3D, the latter contribution can be evaluated
as

N ′ =
V

λ3T
g3/2(−βµ), (2.10)

with

λT ≡

√
2πℏ2

mkBT
, (2.11)

being the thermal de Broglie wavelength and

gα(z) ≡
1

Γ(α)

∫ ∞

0
dx

xα−1

ex+z − 1
, (2.12)

where Γ(α) is the Gamma function and gα(0) = ζ(α) is the Riemann’s zeta function.
In the high-temperature regime, most bosons occupy the excited states and N0 = O(1)
and N ′ ≃ N . As one decreases the temperature, λT increases and to keep N ′ ≃ N ,
g3/2(−βµ) must increase. Here, g3/2(z) is monotonically increasing with respect to z
and consequently, monotonically decreasing in terms of |µ|. In the limit of µ → 0,
therefore, the BEC transition temperature TBEC is determined by

V

λ3TBEC

g3/2(0) = N, (2.13)

11
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which reads

TBEC =
2πℏ2

mkB

(
N

ζ(3/2)V

)2/3

. (2.14)

Equation (2.13) states that the thermal wavelength becomes the same order of the
interparticle distance (V/N)1/3 in a BEC.

2.1.2 Spontaneous symmetry breaking

The original Hamiltonian (2.1) is invariant under the global U(1) transformation Ψ̂(r) →
Ψ̂(r)eiα and Ψ̂†(r) → Ψ̂†(r)e−iα. The occurrence of BEC defined by Eq. (2.6) allows
us to write the field operator as a classical variable Ψ(r) =

√
N0e

iθ(r). It indicates
that the occurrence of BEC determined the U(1) phase θ(r) and the U(1) symmetry is
spontaneously broken. Indeed, this U(1) phase plays a crucial role in creating superflow
as we will see in Sec. 2.3. This spontaneous symmetry breaking (SSB) characterizes phase
transitions in general. In the high-temperature regime T > TBEC, thermal fluctuations
prevent the ordered phase and the long-range order decays exponentially. In the low-
temperature regime T < TBEC, thermal fluctuations are suppressed and ordered phases
are favored, which fixes the U(1) phase of the order parameter. It is analogous to the
ferromagnet transition in a spin system. Below a transition temperature T < Tc, the
orientation of spins is ordered to realize a ferromagnet. Indeed, the universality class of
the BEC transition and the ferromagnet transition in spin systems are identical.

Hohenberg-Mermin-Wagner theorem rules out the occurrence of ODLRO due to the
SSB of a continuous symmetry in a D-dimensional system in thermal equilibrium at
finite temperatures for D ≤ 2 [96, 97]. It is because the degeneracy originating from the
continuous symmetry results in large fluctuations and in low dimensions, in particular,
less spatial degrees of freedom cannot suppress the fluctuations to sustain ODLRO.
Hence, in a 2D Bose gas in thermal equilibrium at finite temperatures, BEC cannot
occur. However, the single-body density matrix decays algebraically in the long-range
limit instead of exponentially. This quasi-long-range order is called algebraic long-range
order (ALRO). It is closely related to the Berezinskii-Kosterlitz-Thouless transition,
which is a superfluid-to-normal phase transition peculiar to 2D, as to be addressed in
Sec. 2.6.

2.2 Gross-Pitaevskii equation

In dilute atomic gases, as explained in Sec. 1.2, it is a good approximation to assume
the inter-particle interaction as a contact interaction as

U(r − r′) = gδ(r − r′), (2.15)

12
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where g is the coupling constant. The grand canonical Hamiltonian is then given by

K̂ = Ĥ − µN̂

=

∫
dr Ψ̂†(r)

[
− ℏ2

2m
∇2 + Vext(r)− µ

]
Ψ̂(r) +

g

2

∫
dr Ψ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r),

(2.16)
with µ the chemical potential and N̂ = Ψ̂†Ψ̂ the number operator. The Hamiltonian
(2.16) gives the Heisenberg equation

iℏ∂tΨ̂(r, t) = [Ψ̂(r, t), K̂]

=

[
− ℏ2

2m
∇2 + Vext(r)− µ+ gΨ̂†(r, t)Ψ̂(r, t)

]
Ψ̂(r, t). (2.17)

In a BEC, we decompose the field operator Ψ̂ into the classical order parameter field Ψ
and the other non-condensed part as

Ψ̂(r, t) = Ψ(r, t) + δΨ̂(r, t). (2.18)

It is called Bogoliubov ansatz. If the non-condensed component δΨ̂ is negligible, the field
operator is equivalent to the classical field. In this case, Eq. (2.17) can be written as

iℏ∂tΨ(r, t) =

[
− ℏ2

2m
∇2 + Vext(r)− µ+ g|Ψ(r, t)|2

]
Ψ(r, t), (2.19)

which is the Gross-Pitaevskii (GP) equation. It was first introduced by Gross and
Pitaevkii in 1961 to describe an ultracold inhomogeneous Bose gas [98, 99]. The contact
interaction strength g can be tuned by the Feshbach resonance as explained in Sec. 1.2.
This interaction term makes the GP equation nonlinear. This nonlinearity is crucial also
in the formation of solitons [40] as well as in superfluids as to be shown in Sec. 2.5.3.
The chemical potential in the right-hand-side of Eq. (2.19) can be eliminated by the
U(1) transformation Ψ(r, t) → Ψ(r, t)eiµt/ℏ. The GP equation can be obtained also by
extremizing

L[Ψ,Ψ∗] =

∫
dr

iℏ
2
[Ψ∗(r, t)∂tΨ(r, t)−Ψ(r, t)∂tΨ

∗(r, t)]− E[Ψ,Ψ∗], (2.20)

with the energy functional

E[Ψ,Ψ∗] =

∫
dr

[
ℏ2

2m
|∇Ψ(r, t)|2 + Vext(r)|Ψ(r, t)|2 + g

2
|Ψ(r, t)|4

]
. (2.21)

By setting ∂tΨ(r, t) = 0 in Eq. (2.19), the steady-state solution of the GP equation
(2.19) is obtained by[

− ℏ2

2m
∇2 + Vext(r) + g|Ψ(r)|2

]
Ψ(r) = µΨ(r). (2.22)
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The chemical potential µ is determined by

N0 =

∫
dr |Ψ(r)|2, (2.23)

where N0 is the condensate density.

2.3 Hydrodynamic equations

We consider performing a polar decomposition of the classical field as

Ψ(r, t) =
√
n(r, t)eiθ(r,t), (2.24)

which is also called Madelung transformation, with n(r, t) the condensate density and
θ(r, t) the phase. By multiplying Ψ∗ to Eq. (2.19) and subtracting its complex conjugate,
we get the continuity equation

∂tn(r, t) +∇ · j(r, t) = 0, (2.25)

where the current density

j(r, t) =
ℏ

2im
[Ψ∗(r, t)∇Ψ(r, t)−Ψ(r, t)∇Ψ∗(r, t)]

= n(r, t)
ℏ
m
∇θ(r, t), (2.26)

is related to the phase θ(r, t). The velocity field

vs(r, t) ≡
ℏ
m
∇θ(r, t), (2.27)

is called superfluid velocity and plays the central role in the superfluid component in
two-fluid hydrodynamics introduced later.

By inserting Eq. (2.24) into Eq. (2.19), the real part coincides with the continuity
equation (2.25). The imaginary part, on the other hand, provides

m∂tvs(r, t) +∇
[
µ(r, t) +

mv2s
2

]
= 0, (2.28)

with

µ(r, t) ≡ gn+ Vext(r)−
ℏ2

2m
√
n(r, t)

∇2
√
n(r, t). (2.29)

Equation (2.28) is the Euler equation for the superfluid. The last term in Eq. (2.29)
is the quantum pressure term that stems from the density gradient. Compared to the
Navier-Stokes equation for a viscid fluid

m∂tv +∇
[
µ+ Vext(r) +

mv2

2

]
= ν∇2v +mv × (∇× v), (2.30)

where ν is the viscosity and the second term in the right-hand-side represents the rota-
tional term, one can observe that Eq. (2.28) describes inviscid and irrotational flow.
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2.4 Quantized vortex

The rotation of a velocity field ω = ∇ × v is called vorticity. The line integral of the
velocity field along a closed loop C surrounding a region Ω

Γ =

∮
C
dr · v =

∫
Ω
dS · ω, (2.31)

is called circulation and is related to vorticity ω from the Stokes theorem. The vorticity
and circulation vanish for a potential flow such as the superfluid velocity in Eq. (2.27).
If Ω includes a region in which the superfluid density is absent, Eq. (2.31) can lead to a
finite value. In this case, because Ψ =

√
neiθ must be a single-valued function, Eq. (2.31)

gives

Γ =

∮
C
dr · vs =

ℏ
m

∮
C
dr ·∇θ = κq, (2.32)

with q the integer vortex charge or, in general, winding number. This is Feynman-
Onsager’s quantization of circulation with the quantum of circulation κ = h/m. The
notion of the quantized vortex was first examined theoretically by Onsager and Feynman
[100, 101], and experimentally observed later by Vinen in 1961 [102]. Onsager considered
whether a superfluid rotates. Under the condition of ∇× vs = 0 and incompressibility
∇ · vs = 0, with the boundary condition vs,⊥ = 0 at the edge of a simply connected
container, it allows only vs = 0. In a rotating cylinder, however, Onsager found a solution
of vs ̸= 0 with a finite circulation under the same boundary condition [100]. In 1955,
Feynman developed Onsager’s idea and proposed the notion of the quantized vortex
with the quantized circulation κ [101]. To experimentally realize a multiply connected
domain, Vinen set a lead at the center of a cylinder filled with liquid helium. An AC
electric current makes the lead oscillate due to the Lorentz force. Without any rotational
flow, the two oscillation modes in clockwise and anticlockwise directions degenerate. If
vortices are winding the lead with a rotational flow, a Magnus force split the degeneracy
generating a beat. One can find the circulation around the lead by the observation of
the difference in frequency in the beat. Vinen observed the quantized circulation of the
rotational flow in liquid helium II below the lambda temperature 1.3K, which was the
first observation of the quantized circulation.

Let us consider a vortex line stretched along the z-axis illustrated in Fig. 2.1(a). The
velocity field induced by the vortex line is given by

v =
(
0,

κq

2πr
, 0
)

(2.33)

in the cylindrical coordinate (r, ϕ, z). At r = 0, the velocity v diverges creating a large
kinetic energy cost. It is cancelled by n(r = 0) = 0, which is the vortex core. This is
the case that the circulation of vorticity (2.31) gives a nonzero value. The GP equation
(2.22) provides a better understanding of this vortex core structure. For simplicity, we
ignore the external potential Vext assuming a large enough radius of the cylinder. By
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Vortex line
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Figure 2.1: Vortex with a unit charge q = 1 in a cylinder. (a) illustrates the vortex line in a
cylinder with the velocity (2.33). (b) shows the amplitude of the density numerically solved
from Eq. (2.34) under the boundary conditions f(0) = 0 and f(r → ∞) = 1. The inset shows
the superfluid phase θ(r).

assuming Ψ(r, ϕ) =
√
nf(r)eiqϕ, Eq. (2.22) gives

− ℏ2

2mr

d

dr

(
r
df

dr

)
+

ℏ2q2

2mr2
f + gnf3 = µf. (2.34)

Here, n = µ/g is the bulk density in r → ∞. Equation (2.34) is not analytically solvable.
However, with a large r, the asymptotic solution can be obtained as

f(r) ∼ 1− q2ξ2

r2
, (2.35)

with
ξ =

ℏ√
2mgn

, (2.36)

the healing length. Equation (2.35) indicates that the vortex core size is the same as
the healing length ξ, which is also confirmed by the numerical solution displayed in
Fig. 2.1(b). It shows a numerical solution of Eq. (2.34) under the boundary conditions
f(0) = 0 and f(r → ∞) = 1, which is the bulk value. The inset of Fig. 2.1(b) shows
the superfluid phase. The line y = 0 for x ≥ 0 corresponds to the branch cut and the
vortex core (x, y) = (0, 0) corresponds to the singular point of the superfluid phase. The
vortex core size ξ is the order of ∼Å in 4He, and ∼ 0.1µm in atomic superfluids.

According to Eq. (2.21), the leading contribution to the vortex energy with the vortex
charge q reads [50]

Evor[Ψ] =

∫
d2r

1

2
mnv2s = q2

πnℏ2

m
ln

(
L

ξ

)
+ (core energy) , (2.37)

which is proportional to the square of the vortex charge q2 with the system length L. It
indicates that a vortex with a larger charge is unstable and splits into two vortices with
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smaller charges. For instance, the energy of a vortex with a charge q = 2 is proportional
to q2 = 4. If it splits into two vortices with charges q = 1 separated by a large distance,
the energy is then proportional to 2× q2 = 2, which is energetically favored. Therefore,
we can consider stable vortices only with the unit vortex charge q = 1.

Let us consider the interaction between two vortices with charge q1 and q2 separated
by a distance R. Under the Abrikosov ansatz [103]

Ψ(r; r1, r2) = Ψ1(r − r1)Ψ2(r − r2), (2.38)

the inter-vortex interaction energy can be computed as [50]

Eint = Evor[Ψ]− Evor[Ψ1]− Evor[Ψ2] = −q1q2
2πnℏ2

m
lnR. (2.39)

The inter-vortex force is

Fint = −∂Eint

∂R
= q1q2

2πnℏ2

mR
. (2.40)

In 2D, this force proportional to 1/R is equivalent to the Coulomb force. Indeed, via the
Hubbard-Stratonovich transformation, a vortex can be interpreted as a charged particle
subject to the Coulomb force. It allows us to discuss the vortices by moving on to
the Coulomb gas model in 2D. This correspondence is useful also to analyze the phase
transition caused by the vortices in 2D as to be discussed in Sec. 2.6.

2.5 Elementary excitations and Landau instability

To understand the thermodynamic properties of quantum fluids, we need to know the
elementary excitations. In this section, we provide the derivation of the Bogoliubov
spectrum, which is the elementary excitations in a weakly interacting Bose gas. One can
follow two approaches for the derivation. One is the linear analysis of the hydrodynamic
equations. The other way is the Bogoliubov-de Gennes (BdG) equation.

2.5.1 Bogoliubov spectrum via hydrodynamic equations

First, we consider the linear analysis of the hydrodynamic equations in a uniform Bose
gas Vext = 0. We write the deviations from the equilibrium by

n(r, t) = n0 + δn ei(k·r−ωt), vs(r, t) = δvs e
i(k·r−ωt). (2.41)

Inserting Eqs. (2.41) into Eqs. (2.25) and (2.27), we obtain

mω2δn =

(
gn0k

2 +
ℏ2

4m
k4
)
δn, (2.42)
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up to the linear order in δn. Then, the excitation spectrum in a uniform weakly-
interacting Bose gas reads

Ek = ℏω =
√
εk (εk + 2gn0). (2.43)

In an ideal Bose gas g = 0, Eq. (2.43) reduces to the quadratic dispersion εk = ℏ2k2/2m.
With g ̸= 0 in the long-wavelength limit k → 0, Eq. (2.43) gives a linear phononic
dispersion Ek = cBℏk with

cB =

√
gn0
m

, (2.44)

being the Bogoliubov speed of sound. This change of dispersion from quadratic to linear
one occurs at k ∼

√
2mgn0/ℏ = ξ−1.

2.5.2 Bogoliubov spectrum via Bogoliubov-de Gennes equation

We can derive Eq. (2.43) also through the BdG equation. We follow this approach also
in a multicomponent case as to be discussed in Sec. 4.2. Let us consider the deviation
from the steady state solution of the GP equation (2.19) with Vext = 0 as

Ψ(r, t) = [Ψ(r) + δΨ(r, t)] e−iµt/ℏ, (2.45)

with
δΨ(r, t) =

∑
k

eik·r
(
uke

−iωt + v∗ke
iωt
)
. (2.46)

Inserting Eq. (2.45) into Eq. (2.19), we obtain

Ek

(
uk
vk

)
= M

(
uk
vk

)
, (2.47)

with

M =

(
h+ 2g|Ψ|2 gΨ2

−gΨ∗2 −h− 2g|Ψ|2
)
, (2.48)

and h = εk − µ. By substituting Ψ =
√
n0 and µ = gn0, the eigenvalue equation (2.47)

results in the Bogoliubov spectrum (2.43).

2.5.3 Landau instability and Landau criterion

The elementary excitations allow us to analyze the stability of a steady state. If the
excitation spectra are positive Ek > 0 for any k (except for the Nambu-Goldstone
mode), the steady state is thermodynamically stable because the excitation from the
steady state increases the energy. On the other hand, if Ek < 0 for a mode k, the
steady state is unstable because one can decrease the energy by exciting the mode.
This mechanism is called Landau instability. Even with the Landau instability, the GP
equation provides just oscillation around the steady state because the time evolution of
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the GP equation preserves the total energy. If a dissipation mechanism is introduced to
decrease the energy, we can observe another more stable steady state favored according
to the Landau instability instead of the unstable state.

Based on the knowledge, let us consider a superflow in a weakly-interacting Bose
superfluid. A steady state of the superfluid moving with a constant superfluid velocity
v is given by

Ψ(r) =
√
n0e

imv·r/ℏ, (2.49)

with the chemical potential µ = gn0+mv
2/2. Under this steady state, the BdG equation

gives
E′

k = Ek + ℏk · v, (2.50)

where Ek is the excitation spectrum without the superflow v. If the superflow v makes
the energy E′

k negative, the superfluid is subject to Landau instability. In other words,
the thermodynamic stability condition of superfluidity is

E′
k ≥ 0. (2.51)

Because k · v takes its minimum if k and v are antiparallel with each other, the critical
velocity for the stability condition (2.51) reads

vc = min
k

(
Ek

ℏk

)
, (2.52)

which is the Landau criterion. In particular, for the phononic dispersion in the long-
wavelength limit k → 0, Eq. (2.52) gives vc = cB. Note that, however, the critical
velocity just gives a sufficient condition for the stability of superfluidity. Indeed, in
experiments with superfluid helium and ultracold atoms, it has been observed that
superfluidity undergoes an instability with a velocity lower than the critical velocity
because of the roton or nucleation of quantized vortices [104]. For an ideal Bose gas
g = 0, Eq. (2.52) gives vc = 0. It indicates an important consequence that an ideal Bose
gas cannot exhibit superfluidity because the parabolic excitation energy εk = ℏ2k2/2m
cannot satisfy the stability condition (2.51) for any k.

If the excitation spectrum involves an imaginary part, according to Eq. (2.46), the
fluctuations exponentially grow and the steady state is no longer stable. This instabil-
ity is called dynamical instability. An example subject to dynamical instability is an
attractively interacting Bose gas. With an attractive contact interaction g < 0, the Bo-
goliubov dispersion (2.43) has a finite imaginary part in the long wavelength limit k → 0
indicating dynamical instability. It results in the collapse of the attractively interacting
Bose gas [26].

2.6 Berezinskii-Kosterlitz-Thouless transition

Hohenberg-Mermin-Wagner theorem rules out the occurrence of the off-diagonal long-
range order in 2D thermal equilibrium [96, 97]. However, superfluidity can emerge also
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in 2D and it is subject to a topological phase transition called Berezinskii-Kosterlitz-
Thouless (BKT) transition [105, 106, 107]. It is a phase transition originating from
the vortex excitations without SSB. 2D superfluidity has been realized in a thin films
of 4He [108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123],
ultracold atoms [87, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137,
138, 139, 140, 141, 142, 143], and exciton-polariton systems [15, 16, 144, 145]. The
BKT transition was first observed in a thin 4He film [118], and later observed also
in superconducting films [146, 147, 148] and ultracold atoms [143]. To see this phase
transition, it is instructive to consider the free energy of a vortex. By ignoring the core
structure of vortices by neglecting the vortex core contribution in Eq. (2.37), the energy
for a single vortex with a unit charge is given by

Evor = πJ ln

(
L

ξ

)
, (2.53)

with J = nℏ2/m being the phase stiffness. Since we are ignoring the core structure of
a vortex, the short-range cutoff is determined by the vortex core size ξ. The number of
states for the configurations of vortices can be evaluated as Ω = L2/ξ2 and the entropy
reads

S = kB lnΩ = kB ln

(
L2

ξ2

)
. (2.54)

Then, the free energy for a single vortex at temperature T reads

F = Evor − TS = (πJ − 2kBT ) ln

(
L

ξ

)
. (2.55)

The free energy (2.55) classifies the thermodynamic phase into two distinct phases. If
J < 2kBT/π, F < 0 and the proliferation of free vortices occurs. On the other hand, if
J > 2kBT/π, the vortices form a bound vortex-antivortex pair without any free vortex.
These physical pictures are summarized in Fig. 2.2. In the following section, we review
the BKT transition in a 2D Bose superfluid through the renormalization group analysis.

2.6.1 Nelson-Kosterlitz renormalization group equations

We saw that interacting vortices are equivalent to a Coulomb gas model in Sec. 2.4. It
allows us to construct renormalization group (RG) equations with respect to the phase
stiffness and the vortex fugacity. To see that, let us start with a 2D superfluid described
by the Euclidean action

SE[Ψ,Ψ
∗] =

∫ ℏβ

0
dτ

∫
d2r

[
ℏΨ∗∂τΨ+

ℏ2

2m
|∇Ψ|2 + g

2
|Ψ|4

]
, (2.56)

with β = 1/kBT and τ = it being the imaginary time. To discuss the vortex configura-
tions, we assume a uniform density and time-independent phase as

Ψ(r, τ) =
√
neiθ(r). (2.57)

20



CHAPTER 2. OVERVIEW OF QUANTUM FLUIDS

<latexit sha1_base64="JSySOmKw4whh2qXQ1uejhu2hap8=">AAAC0nichVE7S8NQFP4a3/XRqovgUiyKg5Qb8YWT6OLYpxa0lCRe9WKahCQNanEQN3VUHJwUHMSf4eIfcOjiLo4VXBw8TQO+sJ6Q3HO/c76T75yjWrpwXMaqIamlta29o7Mr3N3T2xeJ9g+sOGbZ1nhOM3XTzquKw3Vh8JwrXJ3nLZsrJVXnq+rOUj2+6nHbEaaRdfcsXigpW4bYFJriEpTKFqNxlmC+xX47cuDEEVjSjD5hHRswoaGMEjgMuOTrUODQswYZDBZhBVQIs8kTfpzjAGHilimLU4ZC6A59t+i2FqAG3es1HZ+t0V90em1ixjDKHtktq7EHdsee2fuftSp+jbqWPTrVBpdbxcjxUObtX1aJThfbn6ymml1sYs7XKki75SP1LrQG39u/qGXm06OVMXbNXkj/Fauye+rA8F61mxRPXzbRo5KWCUK3qQ/Hn6HTdIIb8CjLotj3Ke5+nSOtW/653N/OymRCnklMp6biC4vB4jsxjBGM03ZnsYBlJJGjuhwnOMO5lJX2pUPpqJEqhQLOIL6ZdPoBqymhpw==</latexit>

T

<latexit sha1_base64="/GwDuRcUhf+3XEGe2jsqqNEYj9c="></latexit>

Tc

SF N
Vortex +1

Vortex −1

BKT transition

Binding of neutral 

vortex-antivortex pairs Proliferation of free vortices

Figure 2.2: Schematic picture of the BKT transition in a single-component Bose superfluid.

Here, we ignored the density fluctuations. In a 2D Bose gas, indeed the density fluctu-
ations turn out to be negligible and Eq. (2.57) is justified at sufficiently low tempera-
tures. For details of the suppression of density fluctuations, see Appendix A.1. Inserting
Eq. (2.57) into the action (2.56), one obtains

SXY[θ] =
ℏK
2

∫
d2r (∇θ)2 , (2.58)

where K = ℏ2ns/mkBT = βJ with J = ℏ2ns/m being the superfluid phase stiffness.
Here, we have explicitly substituted the superfluid density for the density n→ ns. This
is indeed a reasonable substitution and can be shown through Popov’s treatment (see
Appendix A.2). The phase action (2.58) is equivalent to the XY model in the continuum
limit.

With vortices with charge {qi} at locations {ri} in a closed region Ω, the distortion
field ∇θ satisfies ∮

∂Ω
dr ·∇θ = 2π

∑
i

qi, (2.59)

which leads to
∇θ = ∇ϕ−∇× [ezf(r)] , (2.60)

with ϕ(r) being a regular function. The second term in Eq. (2.60) guarantees ∇×∇θ =
2π
∑

i qiδ
2(r − ri), which represents the presence of vortices with the stream function

f(r) =
∑

i qi ln |r − ri|. Since a vortex with a higher charge is energetically unstable as
mentioned in Sec. 2.4, we can assume qi = ±1. Inserting Eq. (2.60) into the XY action
(2.58), we obtain

SXY =
ℏK
2

∫
d2r

[
(∇ϕ)2 + (∇× ezf)

2
]
= SSW[ϕ] + Stop[{σi}], (2.61)
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with
SSW[ϕ] =

ℏK
2

∫
d2r (∇ϕ)2 , (2.62)

being the spin-wave contribution while

Stop[{qi}] =
ℏK
2

∫
d2r (∇× ezf)

2 = −2π2ℏK
∑
i,j

qiqjC(ri − rj)

=
∑
i

Score
i − 4π2ℏK

∑
i<j

qiqjC(ri − rj), (2.63)

being the topological contribution due to the vortices. Here, C(r) = ln |r|/2π is the 2D
Coulomb potential. The infrared divergence originating from the Coulomb potential for
r = 0 is absorbed into the vortex core contribution

∑
i S

core
i . The partition function is

then obtained as
Z =

∫
Dθ e−SXY/ℏ = ZSWZtop, (2.64)

with
ZSW =

∫
Dϕ e−SSW[ϕ]/ℏ, (2.65)

and

Ztop =
∞∑

N=0

1

(N !)2

∫ (2N∏
i=1

d2ri

)
e−Stop[{qi}]/ℏ

=

∞∑
N=0

y2N

(N !)2

∫ (2N∏
i=1

d2ri

)
exp

4π2K∑
i<j

qiqjC(ri − rj)

 , (2.66)

where y = exp[−Score
q=±1/ℏ] is the vortex fugacity. The combinatorial factor 1/(N !)2 in

Eq. (2.66) cancels the overcounting of the vortices. Since the spin-wave contribution in
ZSW is Gaussian and analytic, any phase transition must originate from the topological
contribution Ztop which is equivalent to a 2D Coulomb gas.

To obtain the RG equations describing the superfluid phase transition, we have two
possible ways. One is to directly consider the effective Coulomb interaction screened
by other vortices using Eq. (2.66). Another slightly different path is to utilize the
equivalence with the sine-Gordon model. In this section, we show the former derivation.
The latter approach is also given in Appendix A.3.

In Eq. (2.66), C(ri − rj) represents the Coulomb interaction potential between two
vortices located at ri and rj . Let us consider the screening effect on the Coulomb
interaction between two vortices of charges +1 and −1 due to the other vortices. With
the ensemble average in terms of the topological action

⟨O(r)⟩top ≡ 1

Ztop

∞∑
N=0

1

(N !)2

∫ (2N∏
i=1

d2ri

)
O(r)e−Stop[{qi}]/ℏ, (2.67)
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Figure 2.3: RG procedure of intervortex interactions between a vortex at r and an antivortex
at r′ calculated in Eq. (2.68).

the effective interaction can be written as

e−4π2KeffC(r−r′) ≡
〈
e−4π2KC(r−r′)

〉
top

= e−4π2KC(r−r′)

[
1 + y2

∫
d2s1 d

2s2 e
−4π2KC(s1−s2)e4π

2KD(r,r′;s1,s2) +O
(
y4
)]

×
[
1 + y2

∫
d2s1 d

2s2 e
−4π2KC(s1−s2) +O

(
y4
)]−1

= e−4π2KC(r−r′)

[
1 + y2

∫
d2s1 d

2s2

[
e4π

2KD(r,r′;s1,s2) − 1
]
+O

(
y4
)]
, (2.68)

with D(r, r′; s1, s2) ≡ C(r − s1)− C(r − s2)− C(r′ − s1) + C(r′ − s2) describing the
interaction among the internal and external vortex dipoles as sketched in Fig. 2.3. Using
s̄ ≡ (s1 + s2)/2 and s = s2 − s1 and assuming |s| much smaller than any other length
scale r − s̄ and r′ − s̄, one can write

e−4π2KeffC(r−r′) = e−4π2KC(r−r′)

[
1 + 16π5K2y2C(r − r′)

∫ ∞

1
dxx3−2πK +O

(
y4
)]

= e−4π2KC(r−r′)+16π5K2y2C(r−r′)
∫∞
1 dxx3−2πK

,
(2.69)

with a short-range cutoff a and x = r/a. The short-range cutoff length corresponds to
the vortex core size ξ in Eq. (2.36). See Appendix A.3.2 for the details of the above
computation. Consequently, one obtains the relation

Keff = K − 4π3K2y2
∫ ∞

1
dxx3−2πK , (2.70)
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or equivalently, up to O
(
y2
)
,

K−1
eff = K−1 + 4π3y2

∫ ∞

1
dxx3−2πK . (2.71)

By splitting the spatial integral at a boundary b = edl = 1+dl with l the dimensionless
RG scale and introducing

K̃−1 ≡ K−1 + 4π3y2
∫ b

1
dxx3−2πK , ỹ ≡ yb2−πK , (2.72)

Eq. (2.71) can be written as

K−1
eff = K̃−1 + 4π3ỹ2

∫ ∞

1
x3−2πK̃ , (2.73)

after rescaling x → x/b. Finally, with ∂lK(l)−1 = [K̃−1(l) −K(l)−1]/ dl and ∂ly(l) =
[ỹ(l)− y(l)]/ dl, Eqs. (2.72) read

∂lK(l)−1 = 4π3y(l)2, (2.74a)

∂ly(l) = [2− πK(l)] y(l). (2.74b)

The RG equations (2.74) are referred to as Nelson-Kosterlitz (NK) RG equations. As
we have seen, this renormalization procedure includes the effects of additional vortices
screening the bare inter-vortex Coulomb interaction strength K. We can therefore un-
derstand that the RG equations (2.74) incorporate the many-body effect to the phase
stiffness and vortex fugacity taking into account a number of vortices occupying the
system. The fixed point is determined by

Kc =
2

π
, (2.75)

which is referred to as the NK criterion. It indeed implicitly determines the BKT
transition temperature Tc as

kBTc =
πℏ2

2m
ns(Tc). (2.76)

2.6.2 Discontinuous jump in superfluid density

As a consequence of the renormalization, the superfluid density exhibits a discontinuity
at the BKT transition temperature (universal jump) in the thermodynamic limit. Figure
2.4(a) shows the RG flow of Eqs. (2.74). At low temperatures below Tc, 2− πK can be
negative and the vortex fugacity y is irrelevant flowing to y∗ = 0. It implies that vortex
excitations can appear only in the form of neutral pairs as depicted in Fig. 2.2. The
Coulomb interaction strength is renormalized as Keff = K(l → ∞) ≥ Kc. At higher
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Figure 2.4: (a) NK RG flow and (b) superfluid fraction calculated with Eqs. (2.74) under
L = 200ξ. The violet line Kc/K−1 ≤ 0 corresponds to the fixed line. The gray thin dotted line
in (b) stands for kBT = πℏ2ns(T )/2m which intersects with the superfluid density at T = Tc in
the thermodynamic limit L→ ∞.

temperatures than Tc, on the other hand, 2−πK is positive and the vortex fugacity y is
a relevant variable flowing to infinity as ∼ Kc/K−1. It implies a proliferation of vortices
and K is renormalized to zero. In summary, below Tc, the superfluid density is finite
and decreases by increasing the temperature. At the BKT transition temperature Tc, it
discontinuously jumps to zero. Figure 2.4(b) shows the superfluid fraction as a function
of temperature. The maximum RG scale is related to the system size as lmax = ln (L/ξ).
We set L = 200ξ in Fig. 2.4(b). In a finite-size system with lmax < ∞, the superfluid
density exhibits a continuous drop at the BKT transition temperature. The sharp drop
changes to a discontinuous jump in the thermodynamic limit lmax → ∞. This starkly
contrasts the condensate density in a 3D BEC, which continuously vanishes at the BEC
transition temperature.

2.6.3 Algebraic long-range order

One can show that the 2D Bose superfluid exhibits algebraic decay of the long-range
order. To see it, let us consider the single-body density matrix in Eq. (2.3). Under
Eqs. (2.57) and (2.58), we can write

ρ1(r, r
′) = ⟨Ψ†(r)Ψ(r′)⟩ = n

〈
e−i[θ(r)−θ(r′)]

〉
XY

, (2.77)

where ⟨· · · ⟩XY stands for the ensemble average with respect to Eq. (2.58). We can show

lim
|r−r′|→∞

ρ1(r, r
′) ∝

∣∣r − r′
∣∣−η(T )

, (2.78)

with
η(T ) =

1

2πK
. (2.79)
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For details of the above calculation, see Appendix B. Equation (2.78) indicates the alge-
braic decay of the long-range order instead of the exponential one. Several experimental
reports of η(T ) in 2D systems such as exciton-polariton systems and superconduct-
ing thin films show the exponent at the BKT transition temperature η(TBKT) ≃ 0.25
[144, 146, 147, 148, 149], which supports Eq. (2.75).
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Chapter 3

Sound propagation in quantum
fluids

This Chapter presents an introduction to theoretical tools to study sound propagation
in dilute Bose gases. We first see the transport in a classical fluid described by the
Boltzmann equation focusing on the hydrodynamic regime, which provides classical hy-
drodynamic equations. Introducing superfluidity, we derive Landau’s two-fluid equations
resulting in the second sound due to the propagation of entropy wave as well as the first
sound associated with density fluctuations in quantum fluids.

3.1 Boltzmann equation and hydrodynamic sound in clas-
sical fluids

Physical kinetics can be described by following the time evolution of a distribution
function of a fluid f(r,p, t) at a point (r,p) in phase space at time t. Let us consider
atoms with mass m occupying a cell of volume dr dp at (r,p) at time t. In the absence
of collisions under an external conservative force F = −∇U(r, t), under the equation of
motion

ṙ =
p

m
, ṗ = F , (3.1)

the atoms evolve to (r′ = r + vδt,p′ = p + F δt) at time t + δt and the volume of the
occupied cell is invariant dr′ dp′ = dr dp. Then, the number of atoms in the cell is
conserved as

f
(
r +

p

m
δt,p+ F δt, t+ δt

)
dr′ dp′ = f(r,p, t) dr dp . (3.2)

Up to the linear order in δt, Eq. (3.2) provides the Boltzmann equation(
∂t +

p

m
·∇+ F ·∇p

)
f(r,p, t) = Icoll[f ], (3.3)
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where the right-hand-side Icoll[f ] is the collision integral term which describes the atoms
flowing into the cell or drifting outside the cell due to interatomic collision. The collision
integral is given by

Icoll[f ] =
∑

p1,p′
1,p

′

[
w(p′,p′

1|p,p1)f(r,p
′, t)f(r,p′

1, t)− w(p,p1|p′,p′
1)f(r,p, t)f(r,p1, t)

]
=

∑
p1,p′

1,p
′

w(p′,p′
1|p,p1)

[
f(r,p′, t)f(r,p′

1, t)− f(r,p, t)f(r,p1, t)
]
,

(3.4)
with w(p′,p′

1|p,p1) being the transition rate between the momentum states describing
the scattering in and out of momentum states. For elastic scattering, w(p′,p′

1|p,p1)
satisfies momentum conservation and energy conservation. In the second equality of
Eq. (3.4), we assumed the time-reversal symmetry and parity symmetry leading to
w(p′,p′

1|p,p1) = w(p,p1|p′,p′
1). The detailed-balance condition

f(r,p′, t)f(r,p′
1, t) = f(r,p, t)f(r,p1, t) (3.5)

cancels the collision integral (3.4). In addition to the diffusive term, the Boltzmann
equation (3.3) has two terms relaxing the fluids toward equilibrium. One is the third
term in the left-hand-side associated with the external force F = −∇U . The other
is the collision integral Icoll. The regime in which the latter contribution is dominant
compared to the former one is referred to as collisional regime or hydrodynamic regime.
If the former contribution plays the major role, the regime is called collisionless regime.
To discuss the regimes, it is convenient to introduce collisional time τcoll via the following
relaxation time approximation

Icoll = −f(r,p, t)− f0(r,p)

τcoll
, (3.6)

where f0(r,p) is the distribution function in equilibrium. If the collisional time is much
shorter than the typical time scale of the fluid ω−1, the fluid is in the collisional regime.
If the collisional time is much longer than the typical time scale, the fluid is in the deep
collisionless regime. In this Thesis, we mainly focus on the collisional regime.

For a D-dimensional classical fluid of volume V in thermal equilibrium depicted in
Fig. 3.1(a), the Maxwell-Boltzmann distribution function

fMB
0 (p) = exp

[
−β
(
p2

2m
− µ

)]
(3.7)

satisfies the detailed-balance condition (3.5) with β = 1/kBT being the inverse temper-
ature and the chemical potential µ is determined from the number equation

n =
N

V
=

(
kBT

2m

)3/2∑
p

fMB
0 (p). (3.8)
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(a) Global equilibrium (b) Local equilibrium
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Figure 3.1: Schematic figures of (a) global equilibrium and (b) local equilibrium.

Note that the vanishing collision integral does not mean a collisionless regime. It im-
plies a collisional regime in which sufficient collisions of atoms keep the distribution
equilibrium to cancel Eq. (3.4) even with a small collisional time ωτcoll ≪ 1.

The Maxwell-Boltzmann distribution in local equilibrium given by

fMB(r,p, t) = exp

[
−β(r, t)

[
(p−mu(r, t))2

2m
− µ(r, t)

]]
(3.9)

also satisfies the detailed-balance condition (3.5) though Eq. (3.9) is different from ther-
mal equilibirum. The local equilibrium illustrated in Fig. 3.1(b) is specified by the local
temperature T (r, t) and the local chemical potential µ(r, t) in addition to the local
velocity u(r, t). The chemical potential µ(r, t) is determined from

n(r, t) =

(
kBT (r, t)

2m

)3/2∑
p

fMB(r,p, t). (3.10)

The Boltzmann equation with the local equilibrium distribution (3.9) leads to several
conservation laws by multiplying pk and performing the momentum integral of Eq. (3.3).
With k = 0, one obtains the continuity equation

∂tn(r, t) +∇ · j(r, t) = 0, (3.11)

corresponding to the number conservation with

j(r, t) =
∑
p

p

m
fMB(r,p, t), (3.12)

being the current density. With k = 1, the Boltzmann equation gives the momentum
conservation law

m∂tj(r, t) +
∑
p

(p ·∇)
p

m
fMB(r,p, t) = −∇U(r, t)n(r, t). (3.13)
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Finally, k = 2 provides the energy conservation

∂tE(r, t) +∇ ·
∑
p

p

m

p2

2m
fMB(r,p, t) = −∇U(r, t) · j(r, t), (3.14)

with E(r, t) =
∑

p p
2/(2m)fMB(r,p, t) the energy density.

To describe sound waves, we decompose the hydrodynamic quantities into the equi-
librium part and fluctuating part as n(r, t) = n0 + δn(r, t) and j(r, t) = n0v(r, t) with
v(r, t) being the velocity field which vanishes in thermal equilibrium. The hydrodynamic
equations (3.11), (3.13), and (3.14) reduce to

∂tn(r, t) + n0∇ · v(r, t) = 0, (3.15a)

m∂tj(r, t) = −∇P(r, t)− n0∇U(r, t), (3.15b)

∂tE(r, t) = − (E0 + P0)∇ · v(r, t), (3.15c)

up to the linear order of the fluctuation fields. Here, P(r, t) = 2E(r, t)/3 is the hydro-
dynamic pressure in a classical fluid and P0 = 2E0/3 = n0kBT is the pressure in thermal
equilibrium. They yield a wave equation

∂2t n(r, t)− c2cl∇2n(r, t) = n∇2U(r, t), (3.16)

where

ccl =

√
5kBT

3m
=

√
1

m

(
∂P
∂n

)
s

, (3.17)

is the classical sound velocity. It corresponds to the adiabatic sound velocity as in
the second equality of Eq. (3.17). Indeed, Eqs. (3.15a) and (3.15c) give n−1∂tn =
3P−1∂tP/5, which reads the Poisson’s relation PV 5/3 = const. indicating adiabatic
sound propagation.

3.2 Superfluidity and Landau’s two-fluid model

To construct superfluid hydrodynamics, we start with Tisza-Landau’s two-fluid model

n = ns + nn, j = nsvs + nnvn. (3.18)

It reads that the fluid is composed of two components: normal fluid and superfluid.
Here, nn and ns are the normal density and superfluid density, respectively, and vn and
vs are the normal velocity and superfluid velocity, respectively. For the total density n
and current density j, we have the classical hydrodynamic equations given by

∂tn+∇ · j = 0, (3.19a)
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m∂tj +∇P = 0. (3.19b)

The first equation (3.19a) is the continuity equation as in Eq. (3.11), and the latter one
(3.19b) reads the momentum conservation with P the pressure as in Eq. (3.13) under
∇U = 0.

For superfluid, we have two additional hydrodynamic equations as

∂t(ns) + ns∇ · vn = 0, (3.20a)

m∂tvs +∇µ = 0, (3.20b)

where s is the entropy per mass unit and µ is the chemical potential. The first equation
(3.20a) reflects that only the normal fluid is responsible for the entropy flow, and the
latter one (3.20b) reads the irrotational flow in the superfluid. The two-fluid hydrody-
namics was first introduced by Tisza to explain Helium superfluidity in 1938 [3, 6, 7].
He claimed that the inviscid superfluid component corresponds to the condensed atoms,
while the viscous normal component corresponds to the non-condensed atoms respon-
sible for entropy flow. Later in 1941, Landau considered the quantization of fluids by
imposing nontrivial commutation relations with Poisson brackets and proposed the two-
fluid model and Landau criterion on the stability of superfluidity explained in Sec. 2.5.3
[4]. Landau’s two-fluid model has several common features with Tisza’s one. However,
the major difference is that he interpreted the viscous normal component as the Bogoli-
ubov quasiparticles due to the elementary excitations, which turned out to be a precise
interpretation. Nowadays, the two-fluid model is referred to as Tisza-Landau’s two-fluid
model. Combining these four sets of hydrodynamic equations (3.19a), (3.19b), (3.20a),
and (3.20b), one can derive two wave equations as

m∂2t n−∇2P = 0, (3.21)

which describes the propagation of a density wave common also in a classical fluid, and

∂2t s−
ns
nn
s2∇2T = 0. (3.22)

This second wave equation (3.22) is peculiar to the superfluid and describes the prop-
agation of entropy wave. Note that, in classical fluids, the entropy just contributes to
heat diffusion and does not propagate as a wave. Inserting the plane-wave solutions
n = n0 + δne iω(x/c−t) and s = s0 + δs eiω(x/c−t), one obtains

(
1− c2

∂n

∂P

)
δP − ω2 ∂n

∂T
δT = 0,(

ns
nn
s2 − c2

∂s

∂T

)
δT − ω2 ∂s

∂P
δP = 0,

(3.23)
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Figure 3.2: Setup we consider to derive the formula of the normal density (3.29b).

which results in the two-fluid equation

c4 −
(
v2s + v2L

)
c2 + v2T v

2
L = 0, (3.24)

with

vT =
1

√
mnκT

, vs =
1

√
mnκs

, vL =

√
nsTs

2

nncV
, (3.25)

the isothermal, adiabatic, and Landau velocities, respectively where κT and κs are the
isothermal and adiabatic compressibilities, and cV is the specific heat at constant volume
[150]. The two-fluid equation (3.24) indicates two positive roots due to the additional
entropy wave propagation. The larger velocity c1 is called the first sound and the lower
velocity c2, which originates from the entropy wave propagation in the superfluid phase,
is called second sound. The second sound was first predicted by Landau in 1941 [4]. In
Sec. 3.3, we examine further details of the second sound in 3D, 2D, and 1D Bose gas.

3.2.1 Thermodynamic quantities and Landau’s formula of normal den-
sity

Using a Helmholtz free energy F [T, V,N ], one can calculate the thermodynamic quan-
tities as

κT/s =
1

n

(
∂n

∂P

)
T/s

, s =
1

mN

(
∂F

∂T

)
N,V

, cV = T

(
∂s

∂T

)
N,V

. (3.26)

Let us consider how to obtain the normal density in Eqs. (3.18). First, let us assume
a uniform D-dimensional superfluid moving with velocity v in thermal equilibrium with
the system size LD in contact with a flat plate moving with the parallel velocity v as
illustrated in Fig. 3.2. Galilean invariance guarantees the independence of the thermo-
dynamic properties from the velocity v. Next, by gradually decreasing the velocity of
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the plate up to v = 0, the velocity of the viscous normal fluid vn also decreases and
ends up with vn = 0. On the other hand, the inviscid superfluid remains at its velocity
vs = v. Then, the current density J can be written as

J = nsv, (3.27)

with ns the superfluid density. The Bogoliubov theory gives the current density as

J =
1

mLD
Re

∫
dr
〈
Ψ̂†(r)(−iℏ∇)Ψ̂(r)

〉
= nv +

1

mLD

∑
p

pfT (E
′
p), (3.28)

with ⟨· · · ⟩ being the grand canonical ensemble average, E′
p being the excitation energy

with the Doppler shift in Eq. (2.50), and fT (E) being the Bose distribution function
given by Eq. (2.7). In the second equality of Eq. (3.28), we used Eqs. (2.49) and n =
L−D

∫
dDr ⟨Ψ̂†(r)Ψ̂(r)⟩. By expanding the second term in Eq. (3.28) with respect to

v up to the first order, the lowest term of the zeroth-order vanishes by the momentum
summation

∑
p and Eq. (3.28) reads

J = nsv = (n− nn)v, (3.29a)

nn(T ) = − 1

DmLD

∑
p

p2
∂fT (Ep)

∂Ep
. (3.29b)

The formula of the normal density in Eq. (3.29b) is called Landau’s formula. It is
consistent with the Landau criterion (2.52). Indeed, for an ideal Bose gas g = 0 with
the parabolic dispersion Ep = εp = p2/2m, the normal density in Eq. (3.29b) reads

n(free)n (T ) = −ΩD(2m)D/2+1

2D(2π)D

∫ ∞

0
dε εD/2∂fT (ε)

∂ε
=

ΩD(2m)D/2+1

4(2π)D

∫ ∞

0
dε εD/2−1fT (ε)

=
1

LD

∑
p

fT (εp) = n,

(3.30)
where ΩD = DπD/2/Γ(D/2+ 1) is the volume of the D-dimensional unit sphere. Equa-
tion (3.30) indicates that the fluid totally behaves as a normal fluid and the superfluid
density vanishes n(free)s (T ) = n− n

(free)
n (T ) = 0, which is consistent with the absence of

superfluidity in an ideal Bose gas as mentioned below Eq. (2.52).
Hydrodynamics requires the assumption of the local equilibrium in a fluid depicted

in Fig. 3.1(b) and assumes the sufficiently gradual spatial and temporal variations of the
local physical quantities. Under these conditions, the current density and the number
density can be extended as J → j(r, t) and n→ n(r, t) appeared in Eqs. (3.18).
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Figure 3.3: Quasicrossing behavior of first and second sound velocities at low temperatures in a
3D weakly-interacting Bose gas (left panel (a)) [151] and in a 3D unitary Fermi gas (right panel
(b)) [152]. The right bottom panel (c) shows the superfluid density in the 3D unitary Fermi gas.

3.2.2 Quasicrossing of first and second sound modes

Before moving on to the discussion of sound modes in each dimension, we give a gen-
eral insight from the two-fluid equation (3.24). First, in the normal phase above the
superfluid phase transition temperature Tc, the superfluid density vanishes and vL → 0
indicating no propagation of entropy wave. The only remaining sound wave is the den-
sity mode corresponding to the first sound c1 = vs. It coincides with the speed of sound
in classical fluids in Eq. (3.17). Below Tc, the density and entropy modes are coupled to
each other as in Eqs. (3.23). This coupling is negligible if the cross-coupling coefficient
is small αT ≪ 1 where

α ≡ − 1

n

(
∂n

∂T

)
P

=
1

T

(
v2s
v2T

− 1

)
, (3.31)

is the thermal expansion coefficient. In this case, the two coupled equations (3.23) yield
two independent wave equations for the propagation of density and entropy waves re-
spectively. The incompressibility condition αT ≪ 1 is satisfied generally in the vicinity
of zero temperature in which vT ≃ vs. The first and second sound velocities determined
from Eq. (3.24) exhibit quasicrossing behavior in the low-temperature regime related
to the compressibility of the fluid. The quasicrossing characterizes the temperature at
which the density and entropy modes start to mix. In a 3D weakly-interacting Bose
superfluid, the mean-field analysis in the low-temperature regime predicts the quasi-
crossing behavior as shown in Fig. 3.3(a) [151]. In a unitary Fermi gas, on the other
hand, such quasicrossing behavior cannot be observed as in Fig. 3.3(b) because the
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incompressibility makes the two sound modes uncoupled in a wide range of tempera-
tures [152]. In the next section, we include quantum fluctuations in the free energy to
consider the quantum effects on the sound velocities in a collisional Bose superfluid in
D-dimension.

3.3 Sound modes in dilute Bose gases

In this section, we give our predictions of first and second sound velocities in 3D, 2D, and
1D Bose superfluids including the beyond-mean-field quantum correction. To this end,
first of all, we prepare the Helmholtz free energy in a D-dimensional weakly-interacting
Bose superfluid given by

F = F0 + FQ + FT

=
gN2

2LD
+

1

2

∑
p

Ep + kBT
∑
p

ln
(
1− e−Ep/kBT

)
, (3.32)

where F0 is the mean-field zero-temperature free energy with g the Bose-Bose contact
interaction strength, LD the system size, and FT is the free energy at finite temperature
associated with the Bogoliubov spectrum Ep =

√
εp (εp + 2gn) with n = N/LD the

D-dimensional number density. For convenience, we define a gas parameter

ηD ≡ mg

2πℏ2
n1−2/D, (3.33)

which is indeed identical to gn/[kBTcζ(D/2)2/D] for D = 3 where Tc is the BEC transi-
tion temperature TBEC in an ideal Bose gas given in Eq. (2.14). The quantum correction
FQ corresponds to the zero-point fluctuations and requires regularization to remove the
ultraviolet divergence. Dimensional regularization results in [153, 154]

FQ =



L3 8

15π2ℏ3
m3/2(gn)5/2 (D = 3),

−L2 m

8πℏ2

[
ln

(
ϵΛ
gn

)
− 2

η2

]
(gn)2 (D = 2),

−L 2

3πℏ
m1/2(gn)3/2 (D = 1),

(3.34)

for each spatial dimension. For details of the dimensional regularization, see Appendix
C. For 2D, it involves an ultraviolet energy cutoff ϵΛ = 4ℏ2e−2γ−1/2/(ma22D) ≫ gn with
a2D the 2D scattering length and γ = 0.577 · · · is the Euler-Mascheroni’s constant.

Denoting PMF as the pressure which includes the mean-field plus the thermal con-
tributions, and PQ as the quantum correction to the pressure, one can obtain

vT =

√
1

m

(
∂ (PMF + PQ)

∂n

)
T

=
√
v2T,MF + v2Q, (3.35)
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where vT,MF is the isothermal velocity within the mean-field theory and

v2Q ≡ 1

m

(
∂PQ

∂n

)
T

, (3.36)

is the beyond-mean-field correction to the isothermal velocity. Since FQ is the zero-
temperature free energy, it does not affect the Landau velocity vL and the quantum
correction to the adiabatic velocity is identical to that of the isothermal one as

vs =
√
v2s,MF + v2Q, (3.37)

where vs,MF is the adiabatic velocity within the mean-field theory. The explicit expres-
sions of the quantum correction v2Q are given by

v2Q =



2 (2πη3)
3/2

π2
c2B (D = 3),

−η2
2

[
ln

(
ϵΛ
gn

)
− 2

η2
− 1

2

]
c2B (D = 2),

−
√
η1
2π
c2B (D = 1),

(3.38)

Figure 3.4 represents the quantum correction v2Q to the gas parameter ηD in each dimen-
sion. One can see that v2Q vanishes as ηD → 0 in any dimension. The quantum correction
v2Q is positive in 3D while it is negative in 1D. In 2D, it is positive for η2 > π/ (2eN)

and in the thermodynamic limit N → ∞, one can assume v2Q > 0.

Zero temperature

Within the mean-field level at zero temperature, the Bogoliubov dispersion can be sim-
plified as a linear phononic one Ep = cBp. It yields analytic expressions of both first
and second sound velocities. Under g ̸= 0, the free energy in Eq. (3.32) can be written
as

F

N
=
gn

2
− ΩDΓ(D)ζ(D + 1)

(2πℏ)D
mD/2

gD/2nD/2+1
(kBT )

D+1. (3.39)

It provides the thermodynamic quantities as

P =
gn2

2
+

(
D

2
+ 1

)
ΩDΓ(D)ζ(D + 1)

(2πℏ)D
mD/2

gD/2nD/2
(kBT )

D+1, (3.40a)

s = (D + 1)
ΩDΓ(D)ζ(D + 1)

(2πℏ)D
mD/2−1

gD/2nD/2+1
(kBT )

D, (3.40b)

36



CHAPTER 3. SOUND PROPAGATION IN QUANTUM FLUIDS

-1

0

1

2

3

4

0 0.2 0.4 0.6 0.8

3D

2D

1D

Figure 3.4: The beyond-mean-field correction to the isothermal and adiabatic velocity v2Q for
D = 1, 2, 3 scaled by the Bogoliubov velocity cB =

√
gn/m [90]. The horizontal axis is the gas

parameter ηD = mgn1−2/D/2πℏ2. For D = 2, the number of particles is set to N = 104.

cV = D(D + 1)
ΩDΓ(D)ζ(D + 1)

(2πℏ)D
mD/2−1

gD/2nD/2+1
(kBT )

D, (3.40c)

nn = (D + 1)
ΩDΓ(D)ζ(D + 1)

(2πℏ)D
mD/2+1

gD/2+1nD/2+1
(kBT )

D+1. (3.40d)

They give

c1 = vT,MF = vs,MF = cB, c2 = vL =
1√
D
cB. (3.41)

Hydrodynamic conditions

Our theoretical framework is reliable in the collisional regime in which the hydrodynamic
description of the system is valid. As discussed below Eq. (3.6), the condition is ωτcoll ≪
1 with τcoll being the collisional time and ω ≃ cBk being the frequency of the excited
phononic mode. The collisional time is given by

τcoll ∼
lmfp

vth
∼ 1

nσvth
, (3.42)

where lmfp ∼ 1/(nσ) is the mean-free-path and vth =
√

2kBT/m is the thermal velocity.
For D = 3, the cross-section is given by σ = 4πa2 = m2g2/(4πℏ4), which leads to

ωτcoll ∼ N−1/3

√
gn

2kBT
η−2
3 . (3.43)
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Figure 3.5: Sound velocities in a weakly-interacting Bose gas for D = 3 and η3 = 0.1 (panel
(a)) and the comparison with the first and second sound velocities in Ref. [151] for η3 = 0.02
(panel (b)) [90]. The horizontal axis is the reduced temperature kBT/(gn). Inset of panel (a):
The hybridization of the first sound and second sound modes at low temperatures. The dotted
lines represent the results for η3 = 0.2. The dotted lines in panel (b) represent the results of
Ref. [151].

Equation (3.43) indicates that our hydrodynamic description is valid at high tempera-
tures, for a large gas parameter, or for a large number of particles. Taking into account
the Bogoliubov theory under the low-temperature approximation we employed, our the-
ory would be valid under low temperature, small gas parameters, and a large number
of particles. The cross-section for D = 2 is given by σ ∼ (2πη2)

2 ℏ/(mvth) and the
adimensional collisional time is independent of the temperature as

ωτcoll ∼
1

2
√
2πN

η
−3/2
2 . (3.44)

Equation (3.44) indicates that the hydrodynamic description for D = 2 is valid for a
large gas parameter or a large number of particles. As in the 3D case, working with
the Bogoliubov theory under the low-temperature approximation, our 2D theory is valid
under the conditions of low temperature, a small gas parameter, and a large number
of particles. In the experimental observation reported in Ref. [143], the gas parameter
and the number of particles are η2 ≃ 0.10 and N ≃ 2178 respectively, and one obtains
ωτcoll ≃ 0.13, in which our hydrodynamic description is reliable.

3.3.1 Three-dimensional Bose superfluid

Let us discuss the propagation of the first sound and second sound in D = 3. The
velocities of these modes are shown in Fig. 3.5, where the temperature is rescaled as
kBT/(gn). In Fig. 3.5(a), we set the gas parameter to η3 ≡ mgn1/3/2πℏ2 = 0.1. The
dotted, dashed, and dotted-dashed lines in Fig. 3.5(a) indicate the isothermal, adiabatic,
and Landau velocities for D = 3, respectively. At T = 0 within the mean-field theory,
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as discussed in Eqs. (3.41), we reproduce the well-known result:

c1 = vT,MF = vs,MF = cB, c2 = vL =
cB√
3
. (3.45)

By including the quantum correction in Eq. (3.38), the velocities deviate from Eqs. (3.45)
as shown in Fig. 3.5. Around kBT = 0.6gn, it exhibits a hybridization of the two sound
modes with a small gap, which has been pointed out by Refs. [151, 155, 156, 157, 158]
for a weakly-interacting 3D Bose gas. This phenomenon characterizes the hybridization
of density and entropy modes as discussed in Sec. 3.2.2. In the incompressible regime
αT ≪ 1, the biquadratic Landau equation of Eq. (3.24) gives c1 = vs and c2 = vL,
which indicates that the first sound and second sound mode correspond to the density
mode and the entropy mode respectively. The hybridization temperature Thyb charac-
terizes this incompressible regime as T ≲ Thyb. Experimentally, above the hybridization
temperature, the second sound can be probed by density perturbations while only the
first sound can be probed below the hybridization temperature since the second sound
corresponds to the entropy mode uncoupled from the density oscillation. At a higher
temperature than the critical temperature at which the Landau velocity vanishes, one
can check that the first sound velocity coincides with the adiabatic one c1 = vs. The
inset of the left panel shows the first sound and second sound velocities for η3 = 0.1 and
η3 = 0.2. It exhibits that a larger gas parameter opens the gap larger as η3/43 [151]. In
3D, hybridization occurs for any gas parameters. The normal density nn in Eq. (3.29b)
within Landau’s prescription does not include the effects of interactions among elemen-
tary excitations and is a low-temperature approximation. In addition, the Bogoliubov
theory is not applicable at a high-temperature regime comparable with Tc so that the
critical temperature at which ns vanishes cannot exactly coincide with the superfluid
phase transition temperature Tc [151]. We can also qualitatively reproduce the results
of Ref. [151] as shown in Fig. 3.5(b) while our framework ignored the Lee-Huang-Yang
correction [159], which is included in Ref. [151]. Since Ref. [151] employed perturbation
theory based on Beliaev diagrammatic technique in the higher temperature regions for
better prediction, we find deviations in this regime.

To precisely discuss the detectability of the second sound, we need to examine the
dynamic structure factor for the density response function. In the deep hydrodynamic
regime in our consideration, sound propagation is not accompanied by damping. It
results in the dynamic structure factor in the form of two delta-peaks as [158]

S(q, ω) =
nq2

2m
Z1δ(ω − c1q) +

nq2

2m
Z2δ(ω − c2q). (3.46)

Here, the amplitudes Z1,2 are chosen so that they satisfies the f -sum rule Z1 + Z2 = 1.
The relative amplitudes W1,2 ≡ Z1,2/c

2
1,2 are obtained as

W1 =
1− c22/v

2
T

c21 − c22
, W2 =

c21/v
2
T − 1

c21 − c22
. (3.47)
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Figure 3.6: First and second sound velocities (panel (a)) and the amplitude ratio W2/W1 (panel
(b)) for η3 = mgn1/3/2πℏ2 = 0.1.

If the ratio W2/W1 is larger than one, the second sound can be excited by density per-
turbations. Otherwise, only the first sound can be detected by a density probe. We
show the ratio in Fig. 3.6(b) in comparison with the first and second sound velocities in
Fig. 3.6(a). We can see that the hybridization temperature corresponds to the temper-
ature at which the ratio W2/W1 starts to increase from unity.

3.3.2 Two-dimensional Bose superfluid

As discussed in Sec. 2.6, the superfluid properties of a 2D Bose gas are crucially different
from those of the 3D case due to the BKT transition [105, 106, 107]. The theoretical
framework developed in Sec. 3.3, where the topological excitations of the bosonic fluid
are not taken into account, cannot describe the BKT transition. These excitations are re-
sponsible for the universal jump of the superfluid density at BKT transition temperature,
TBKT. To include it in our theory, we employ the NK criterion (2.76). The superfluid
density ns in Eq. (2.76) is calculated from the Landau formula given in Eq. (3.29b). A
good approximation in an infinite-size weakly-interacting system is to set to zero the
superfluid density fraction for T ≥ TBKT.
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Figure 3.7: Results of sound velocities for D = 2 and η2 = 0.1 [90]. The number of particles is
set to be N = 104. The horizontal axis is the reduced temperature scaled by the BKT transition
temperature TBKT, which is determined by the NK criterion Eq. (2.76) for the superfluid density
in the two-fluid model while the normal density is computed by Eq. (3.29b). Inset: The first
sound and second sound velocities. The solid curves represent the results for η2 = 0.1 and the
dotted ones represent those for η2 = 0.2

We show the sound velocities in a 2D Bose gas in Fig. 3.7. Due to the jump of
the superfluid density at T = TBKT, the first sound and second sound velocities exhibit
discontinuities. One can see that the hybridization of c1 and c2 occurs around Thyb ≃
0.4gn/kB for η2 = 0.1. Figure 3.8 displays the dependence on the gas parameter ηD of
the hybridization temperature Thyb, which is determined by the temperature at which
the difference between the first and second sound velocities starts to increase. Note that
in 2D, for η2 ≳ 0.6, Thyb coincides with the BKT transition temperature. In the region
of η2 ≳ 0.6, at which Thyb = TBKT in 2D, we infer from Fig. 3.8 that the first and
second sound modes are decoupled, respectively, to density and entropy modes, because
the first sound corresponds to the density mode c1 = vs and the second sound vanishes
c2 = 0 in the absence of the superfluid density above TBKT.

Our theoretical approach, based on the Bogoliubov theory, is reliable to describe the
propagation of sound in low-temperature Bose gases, and its predictions are as better as
the gas parameter mg/ℏ2 is smaller than 1. The recent experiments of Ref. [143] with 2D
weakly-interacting bosonic superfluids adopt the value of mg/ℏ2 = 0.64, and, therefore,
can be described with our Bogoliubov theory. However, since these experiments focus
on the high-temperature regime near TBKT, it is useful to extend our previous results
to improve the agreement in this specific temperature regime. In particular, the sound
velocities are strongly dependent on the superfluid density and the one derived from the
Landau formula (3.29b) has, strictly speaking, a simplified behaviour near TBKT.

To improve our theory in the high-temperature regime of the experiments, we eval-
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Figure 3.8: Hybridization temperature for D = 3 and D = 2 as a function of the gas parameter
ηD = mgn1−2/D/2πℏ2 [90]. In the latter case, the particle number is set to N = 104. In 2D,
moreover, the hybridization temperature coincides with the BKT transition temperature for
η2 ≳ 0.6.

uate the renormalized superfluid density by solving the NK RG equations (2.74) [107].
These differential equations describe the renormalization of the superfluid density due
to the presence of vortex-antivortex excitations, which are not taken into account by
the Landau formula of Eq. (3.29b). To describe consistently the finite-size experiments,
we solve numerically these equations up to a finite scale, lmax = ln(L/ξ), where L2 is
the area of the system. In the solution of Eqs. (2.74) the choice of the initial condi-
tions is quite delicate: we choose the chemical potential of the bare vortices as µv(0) =
π2ℏ2n(0)s (T )/2m [160], and for the initial value of K(0) we use K(0) = ℏ2n(0)s (T )/mkBT ,
with n

(0)
s (T ) = n − n

(0)
n (T ). It is important to point out that the bare normal density

which we introduce here, n(0)n (T ), is formally the same as Eq. (3.29b), but is calculated
with the Popov spectrum:

EPop,p =

√
p2

2m

(
p2

2m
+ 2µ

)
, (3.48)

where µ is the chemical potential of the system. We derive this chemical potential as a
function of N and of T by inverting numerically the grand canonical equation of state,
which reads (see Ref. [161])

N =
mµLD

4πℏ2
ln

(
4ℏ2

mµa22De
2γ+1

)
+
∑
p

p2

2m

fT (EPop,p)

EPop,p
. (3.49)
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Figure 3.9: First sound and second sound velocities (panel (a)) and rescaled superfluid density
Ds = nsλ

2
T in 2D (panel (b)) formg/ℏ2 = 0.64, plotted in comparison with the experimental data

of Ref. [143] where D/Dc = TBKT/T [90]. The particle number is set to be N = 2178 [143]. The
blue and green solid curves represent our results using the renormalized superfluid density [107]
calculated with the chemical potential obtained from Eq. (3.49). The orange and violet dashed
curves represent the results with the universal relations [129, 143, 163, 164, 165, 166, 167, 168].

In particular, we evaluate a2D as [162]

a2D = 2.092 az ln

(
−
√
π

2

az
a3D

)
, (3.50)

where az is the characteristic length of the transverse harmonic confinement and a3D
is the three-dimensional s-wave scattering length, which is directly controlled in the
experiment [143]. The procedure described above allows us to have reliable results near
TBKT for n(R)

s ≡ n
(lmax)
s (T ). Given the renormalized superfluid density n

(R)
s for every

temperature T , we use it as an input to calculate the sound velocities.
Our results are outlined in Fig. 3.9, which shows, in comparison with the experimen-

tal data [143], c1 and c2 in panel (a) and the superfluid density Ds = nsλ
2
T in panel (b).

As in the experiment, here we use mg/ℏ2 = 0.64, the number density of n = 3µm−2 and
the system area of L2 = 33×22µm2 [143]. We also emphasize that, within our finite-size
renormalization group calculation, we find a critical BKT temperature of 37 nK, which
is practically coincident with the result TBKT = 2πn/

[
m ln

[
380ℏ2/ (mg)

]]
of Ref. [163],

and compatible with the critical temperature of the experiments of 42 nK [143]. Figure
3.9(a) indicates that the results using the renormalized superfluid density with the ex-
act chemical potential, represented by the blue and green solid curves, are in reasonable
agreement with the experimental values. Note that our first sound velocity also describes
the behaviour towards low temperature in a satisfactory way. The slight deviation of
our second sound velocity from the experimental one at low temperature is ascribed
to the inconsistency between the thermodynamic quantities that appear in Eq. (3.25),
calculated under the low-temperature approximation µ = gn, and the renormalized su-
perfluid density n(R)

s calculated with the improved µ. While this approximation is not
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Figure 3.10: Results of sound velocities for D = 1 and η1 = 0.1 [90]. The horizontal axis is the
reduced temperature kBT/(gn).

particularly problematic near TBKT, it does not allow us to extend the present theory at
low temperatures, where the sound velocities are more sensitive to the normal density.
Figure 3.9(b) displays that the renormalized superfluid density Ds = nsλ

2
T obtained

with the beyond-mean-field chemical potential agrees well with the experimental values.
From this last figure, thus, we can expect that the corrections due to the interaction
between Bogoliubov quasiparticles, which will be more relevant in the high-temperature
regime and outside the very weakly-interacting regime of mg/ℏ2 ≪ 1, are, at least for
the superfluid density, not particularly relevant. This suggests that future works in 2D
with the full evaluation of the improved thermodynamics could be a solid benchmark
for the sound velocities both in the low and high-temperature regimes.

3.3.3 One-dimensional Bose superfluid

On the basis of the Hohenberg-Mermin-Wagner theorem [96, 97], the critical temperature
TBEC below which there is Bose-Einstein condensation, or equivalently below which there
is ODLRO, is positive in 3D, it is zero in 2D, and it is absent in 1D. Instead, the critical
temperature Tc below which there is superfluidity, or equivalently below which there is
ALRO, is equal to TBEC in 3D, it is equal to TBKT in 2D, and it is zero in 1D. Thus, in
the thermodynamic limit and with T > 0, for a 1D weakly-interacting Bose gas there is
neither ODLRO nor ALRO. However, a finite 1D system of spatial size L is effectively
superfluid if [50]

T ≪ Tϕ ≡
Eϕ

kB
ln

(
L

ξ

)
, (3.51)
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Figure 3.11: Experimental protocol to excite density waves [172]. At t < 0, a repulsive laser is
irradiated into the trapped atomic clouds to create a density depletion. The laser is suddenly
switched off at t = 0, and the density defect propagates as density waves at t > 0.

where Eϕ ≃ nℏ2/(mξ) is the energy to create a phase slip (black soliton) and ξ is the
corresponding healing length. Note that, for η1 ≪ 1, the adimensional temperature
kBTϕ/gn can be quite large.

In Fig. 3.10, we show the results of c1 and c2 in an 1D Bose gas for η1 = 0.1. Since the
Bogoliubov theory in 1D well describes the thermodynamics in the weakly-interacting
regime up to η1 ∼ 1 at low temperatures [169, 170], our 1D results would be reliable in
this regime. It exhibits no hybridization of c1 and c2 because of c1 = c2 = cB at zero-
temperature within the mean-field and the gap opening at zero-temperature between c1
and c2 by the quantum correction. In the incompressible regime within the mean-field
theory, one can obtain c1 = c2 = cB in 1D, which indicates that the decoupled density
mode and entropy mode degenerate. Hence, T = 0 corresponds to the hybridization
temperature at which the first and second sound modes are closest to each other in
1D. The beyond-mean-field correction decreases vs and results in c1 = vL and c2 = vs,
namely the first and second sound correspond to entropy and density mode respectively
due to the negative quantum correction v2Q < 0, unlike 3D or 2D case.

3.4 Experiments of sound modes

Before concluding this Chapter, we mention the experimental protocol to detect sound
modes in atomic superfluids. The first experimental observation of sound waves in
an ultracold atomic gas was achieved in Ketterle’s group at MIT in 1997 [171]. The
experimental setup is sketched in Fig. 3.11 [172]. First, they inject a repulsive laser
beam into the center of the atomic cloud confined in a harmonic trap to create a density
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Figure 3.12: Illustration of a box trap [173]. (a) A sketch of the box trap configuration composed
of laser beams. The atoms are confined in the dark cylindrical region. The magnetic field B′

cancels the gravitational force. (b) The upper sketches show the slice of the trapped atomic
cloud in the z-x plane before (left) and after (right) loading into the box trap. The lower panel
shows the corresponding in-situ images of the optical density of the atomic gases. The blue
dashed curves in the left panel are the fits of the optical density in a Bose gas trapped by a
harmonic potential. The green dashed curves in the right panel are the fits for a uniform Bose
gas.

defect at t < 0. Then, at t = 0, they turned off the laser suddenly, and the created
density depletion propagates at t > 0. In this manner, one can observe the propagation
of density waves.

In recent experiments, a box trap composed of laser beams is realized and enables us
to experimentally realize a uniform gas as illustrated in Fig. 3.12 [173]. It is more useful
than the conventional harmonic trap to compare the experimental data and theoretical
predictions, in particular with respect to nonlinearity. The experiment measuring the
first and second sound velocities in a 2D 39K atomic gas shown in Fig. 3.9 and more
recent experiment measuring them in a compressible 3D Bose fluid also used the box
trap and they shook the box to induce density perturbations [143, 174]. As shown in
Fig. 3.9, the first and second sound velocities in a 2D Bose superfluid have been measured
only around the BKT transition temperature. In this regime above the hybridization
temperature, both the first and second sound modes can be excited by density pertur-
bations because the density and entropy modes are mixed. Below the hybridization
temperature, the density probe can detect only the first sound and the detection of the
second sound requires thermal perturbations by heating the Bose gas. We expect that
the measurements at much lower temperatures would be useful to verify our result of
the hybridization temperatures.

46



Chapter 4

Berezinskii-Kosterlitz-Thouless
transition in binary superfluids

This Chapter is devoted to the discussion of multicomponent superfluidity and BKT
transitions in a binary Bose mixture in the presence of a Rabi coupling. In contrast
to the single-component superfluid, the multicomponent superfluidity exhibits fruitful
properties. First, we review some fundamental aspects and practical examples of multi-
component superfluids in ultracold atomic systems. Then, we move on to the analysis of
a binary Bose superfluid and show two distinct ground states: miscible state and phase
separation. We also show that a Rabi coupling exchanging the two species of Bose
atoms results in a rich variation of vortex configurations. The exotic vortex excitations
are also responsible for the new type of BKT transition in 2D. The last section shows
our renormalization group analysis of the BKT transition in a Rabi-coupled binary Bose
mixture [91].

4.1 Multicomponent superfluidity

In ultracold atomic systems, multicomponent superfluidity is relatively easy to realize.
In addition to the density and superfluid phase, in a multicomponent superfluid, we also
have additional degrees of freedom such as the population imbalance or relative phase
between the two species, which gives rise to a rich variety of superfluidity. One exam-
ple of a multicomponent superfluid is a superfluid that includes two different species
of atoms with different atomic masses such as a mixture of 23Na and 87Rb. Another
way to realize a multicomponent superfluid is to simultaneously trap the same atoms
in different hyperfine spin states [175, 176, 177, 178, 179, 180]. For instance, by mag-
netically trapping alkaline atoms in two WFSSs |F = 2,mF = 1⟩ and |F = 1,mF = −1⟩
explained in Sec. 1.2 simultaneously, one can realize a binary superfluid with the same
mass. In the latter case with the same atomic species in different hyperfine states, one
can make the two states coherently coupled by injecting an external electromagnetic
field with a frequency corresponding to the energy difference of the two hyperfine states
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Figure 4.1: Schematic diagram of two hyperfine states coherently coupled with a Rabi coupling.

as illustrated in Fig. 4.1. With the Rabi frequency ωR determined by the coupling be-
tween the atoms and the injected electromagnetic field, such a binary Bose superfluid is
described by

Ĥ =
∑
a=1,2

[∫
dr Ψ̂†

a(r)

(
− ℏ2

2m
∇2 + V

(a)
ext (r)

)
Ψ̂a(r)

+
1

2

∫
dr

∫
dr′ Ψ̂†

a(r)Ψ̂
†
a(r

′)Vaa(r − r′)Ψ̂a(r
′)Ψ̂a(r)

]

+

∫
dr

∫
dr′ Ψ̂†

1(r)Ψ̂
†
2(r

′)V12(r − r′)Ψ̂2(r
′)Ψ̂1(r)

− ℏωR

∫
dr
[
Ψ̂†

1(r)Ψ̂2(r) + Ψ̂†
2(r)Ψ̂1(r)

]
, (4.1)

where Ψ̂a=1,2(r) denotes the annihilation operator of a-boson at a position r and V (a)
ext (r)

is the external potential for a-boson. The atomic masses are the same m = m1 = m2

because we are assuming a single atomic species. In addition to the two-body interaction
potential between the same species Vaa(r − r′), we also have inter-species interaction
potential V12(r−r′). We consider the case of contact interactions Vab(r−r′) = gabδ(r−
r′) with gab the coupling constant. The last term in Eq. (4.1) corresponds to the coherent
Rabi coupling term. For simplicity, we set the detuning, which is the difference of
frequencies between the resonant frequency of the two hyperfine spin states and the
electromagnetic field frequency, to be zero. To deal with the Rabi-coupled binary system
described by Eq. (4.1), we have mainly two possible strategies. One is to analyze it
directly with the component basis {|a⟩} = {|1⟩ , |2⟩}. Another possible approach is to
move on to the dressed states by a unitary transformation so that it diagonalizes the
single-body terms in Eq. (4.1). In this way, for binary fermions, one can find that this
unitary transformation also keeps the two-body interaction terms invariant in the dressed
basis [181]. It is because the spin-singlet states, which are the only allowed states for
fermions to interact with each other under contact interactions, are invariant under the
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rotation on the Bloch sphere corresponding to the unitary transformation. Consequently,
the dressed states are convenient to easily analyze the Rabi-coupled binary fermion
system and the Rabi coupling plays the role of an effective magnetic field splitting the
energy levels of the dressed states. For binary bosons, however, the two-body interaction
terms transform into more complicated terms, which are difficult to treat except for the
rotating-wave approximation [182]. Therefore, we follow the former approach in this
Thesis to analyze the binary Bose mixture.

Under the Bogoliubov ansatz ⟨Ψ̂†
a(r)Ψ̂a(r

′)⟩ → Ψ∗
a(r)Ψa(r

′) for |r − r′| → ∞, the
energy functional with respect to (Ψ1,Ψ2) is obtained as

E =

∫
dr

[ ∑
a=1,2

(
ℏ2

2m
|∇Ψa|2 + V

(a)
ext |Ψa|2 +

gaa
2

|Ψa|4
)
+ g12|Ψ1|2|Ψ2|2

− ℏωR (Ψ∗
1Ψ2 +Ψ∗

2Ψ1)

]
. (4.2)

Equation (4.2) provides the GP equations

iℏ∂tΨ1 =

(
− ℏ2

2m
∇2 + V

(1)
ext + g11|Ψ1|2 + g12|Ψ2|2

)
Ψ1 − ℏωRΨ2, (4.3a)

iℏ∂tΨ2 =

(
− ℏ2

2m
∇2 + V

(2)
ext + g22|Ψ2|2 + g12|Ψ1|2

)
Ψ2 − ℏωRΨ1, (4.3b)

Equations (4.3) indicate the two species of bosons interact with each other through the
inter-species two-body interaction g12 and they exchange with each other through the
coherent Rabi coupling ωR. By inserting the Madelung transformation

Ψa(r, t) =
√
na(r, t)e

iθa(r,t), (4.4)

into Eqs. (4.3), the imaginary parts of Eqs. (4.3) provide

∂tn1 +∇ · j1 = 2ℏωR
√
n1n2 sin (θ1 − θ2), (4.5a)

∂tn2 +∇ · j2 = 2ℏωR
√
n1n2 sin (θ2 − θ1), (4.5b)

respectively, with ja = nava and va = ℏ∇θa/m the each superfluid velocity. It indicates
that the densities of each component are not conserved with a finite Rabi coupling. The
total density n = n1 + n2 is, however, conserved:

∂tn+∇ · j = 0, (4.6)

with
j = j1 + j2 =

ℏ
m

(n1∇θ1 + n2∇θ2) . (4.7)
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4.2 Miscibility and elementary excitations

Let us consider the ground state of the binary Bose mixture in the absence of the external
potential. In a uniform and stationary system, Eq. (4.4) gives the interaction energy

Eint =

∫
dr

[
1

2
g11n

2
1 +

1

2
g22n

2
2 + g12n1n2 − 2ℏωR cos γ

√
n1n2

]
. (4.8)

The relative phase γ = θ2 − θ1 is fixed to be γ = 0 by minimizing the energy. With the
symmetric interaction strength g = g11 = g22, in particular, the derivative with respect
to the population imbalance ζ = (n1 − n2)/n reads

∂Eint

∂ζ
=

∫
dr

n2ζ

2

(
g − g12 +

2ℏωR

n
√

1− ζ2

)
. (4.9)

It admits two possible configurations of the ground state. Since Eq. (4.8) is symmetric in
terms of n1 and n2, we assume ζ ≥ 0 or equivalently n1 ≥ n2 without loss of generality.
For g12 < g+2ℏωR/n, the derivative (4.9) is positive with an infinitesimal increase of ζ
from zero. In this case, the miscible state with

n1 = n2, (4.10)

is stable. For g12 > g+2ℏωR/n, on the other hand, the derivative (4.9) is negative with
an infinitesimal increase of ζ from zero and the energy is minimized by maximizing ζ2.
To achieve it, the configuration that n1 = 0 and n2 is maximized, or n1 is maximized
and n2 = 0, is required. It is the phase separation state, in which the species 1 and
species 2 exist separately, favored as the ground state with

n1 − n2 = ±n

√
1−

(
2ℏωR

(g − g12)n

)2

. (4.11)

The sign depends on whether n1 > n2 or n1 < n2. In the phase separation state,
we have a boundary between the two regions occupied by each component breaking
the homogeneity of the system. In the vicinity of the boundary, we should also have
the gradient energy originating from the boundary, which is, however, negligible in the
thermodynamic limit. In a finite-size system, the configuration of the phase separation
state is realized so that the area of the boundary is minimized. The phase diagram of
the ground state is shown in Fig. 4.2.

To consider the stability of the ground state, let us consider the BdG equation. Due
to the conserved total number of atoms N =

∫
dr |Ψa|2, the chemical potential of each

component is equal. It allows us to write

Ψa(r, t) = e−iµt/ℏeiθa(r,t)
[√

na(r, t) + δΨa(r, t)
]
, (4.12)
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Figure 4.2: Phase diagram of a binary Bose superfluid with respect to the intercomponent
coupling η ≡ g12/g and the Rabi coupling ωR. We focus on the symmetric ground state (GS)
with balanced densities realized in −1 < η < 1+2ℏωR/gn. The boundary η = −1 is the boundary
at which the superfluid collapse due to Landau instability (LI). The boundary η = 1+2ℏωR/gn
is the boundary at which the GS changes to the phase separation state across the dynamical
instability (DI).

where δΨa is the fluctuations written as(
δΨa(r, t)
δΨ∗

a(r, t)

)
= ei(k·r−Et/ℏ)

(
ua
va

)
. (4.13)

Inserting Eq. (4.12) into Eqs. (4.3), we obtain

E


u1
v1
u2
v2

 = M


u1
v1
u2
v2

 , (4.14)

with

M =


h1 gn1 g12

√
n1n2 − ℏωR g12

√
n1n2

−gn1 −h1 −g12
√
n1n2 −g12

√
n1n2 + ℏωR

g12
√
n1n2 − ℏωR g12

√
n1n2 h2 gn2

−g12
√
n1n2 −g12

√
n1n2 + ℏωR −gn2 −h2

 ,

(4.15)
and ha = εk + 2gna + g12nā − µ. In the miscible regime n1 = n2 = n/2, diagonalization
of M gives

(E±
k )

2 =

(
εk − µ+ gn+

1

2
g12n± 1

2
g12n∓ ℏωR

)2

−
(
g ± g12

2
n

)2

. (4.16)
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The chemical potential µ can be determined by minimizing the thermodynamic potential
energy Eint − µN as

µ =
g + g12

2
n− ℏωR. (4.17)

Even though the two branches of elementary excitations (4.16) are gapped in general,
by inserting the mean-field chemical potential in Eq. (4.17), one can obtain [183]

E+
k =

√
εk (εk + (g + g12)n), (4.18a)

E−
k =

√
(εk + 2ℏωR) (εk + (g − g12)n+ 2ℏωR), (4.18b)

which reads one gapless branch and one gapped branch with a finite Rabi coupling. The
plus branch E+

k is real for g > g12 while the minus branch E−
k is real for g12 < g+2ℏωR/n

for any k. It indicates an oscillation around the stationary configuration and guarantees
the linear stability of the miscible state. For g12 > g + 2ℏωR/n, on the other hand,
the minus branch E−

k includes an imaginary part leading to the exponentially diverging
fluctuations. It indicates the dynamical instability of the miscible state and the phase
separation is favored as mentioned above.

4.3 Vortex excitations

In the following, we focus on a 2D binary Bose mixture. In Sec. 2.4, we discussed
quantized vortices in a single-component Bose superfluid. In a binary Bose superfluid,
the particle current is given by Eq. (4.7) resulting in the change of the expression of the
vorticity. The superfluid velocity is given by

vs =
j

n
=

ℏ
m

n1∇θ1 + n2∇θ2
n1 + n2

. (4.19)

In a binary Bose mixture, it is convenient to write

Ψ ≡
(
Ψ1

Ψ2

)
=

√
ne−iα/2

e
−iγ/2 cos

(
β

2

)
eiγ/2 sin

(
β

2

)
 , (4.20)

where α = −(θ1 + θ2) is the total phase, γ = θ2 − θ1 is the relative phase, and β
characterizes the population imbalance through n1 = n cos2 (β/2) and n2 = n sin2 (β/2)
with n = Ψ†Ψ = |Ψ1|2 + |Ψ2|2. This set of three parameters (α, β, γ) can be regarded
as Euler angles and Eq. (4.20) can be written as

Ψ(α, β, γ) = e−iγσ̂z/2e−iβσ̂y/2e−iασ̂z/2

(√
n
0

)
, (4.21)
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with σ̂x,y,z the Pauli matrices and 0 ≤ α, β, γ ≤ 2π. Using (α, β, γ), we can write
Eq. (4.19) as

vs = − ℏ
2m

(∇α+ cosβ∇γ) , (4.22)

which leads to the circulation

Γ =

∮
C
dr · vs = −κ

2
(qα + qγ cosβ) , (4.23)

where C encloses vortices along which the density variation is uniform β = const.,
and qα and qγ are the winding number for the total phase α and the relative phase
γ respectively. Note that, in contrast to Eq. (2.31) in a single-component superfluid,
Eq. (4.23) is no longer quantized because of the second term in Eq. (4.23) proportional to
cosβ. In particular, with balanced densities n1 = n2 equivalent to β = π/2, Γ = −κqα/2
indicates the half-quantized vortices emerge.

In general, the half-quantized vortices can be expressed as

Ψ
(1)
HQV = Ψ(−θ, β,−θ) =

(√
n1e

iθ

√
n2

)
, (4.24a)

Ψ
(2)
HQV = Ψ(−θ, β, θ) =

( √
n1√
n2e

iθ

)
. (4.24b)

The former configuration represents the half-quantized vortex winding only the com-
ponent 1 while the latter one represents the half-quantized vortex winding only the
component 2 with θ the angle for the path encircling the vortices. On the other hand,
one can express the integer vortices as

ΨIV = Ψ(−2θ, β, γ) = eiθ
(√

n1e
−iγ/2

√
n2e

iγ/2

)
, (4.25)

which can take an arbitrary value of γ along the path θ.
Let us consider the half-quantized vortex-antivortex pairs. Denoting a vortex in

component 1 with a unit charge as {1, 0} and the one in component 2 with a unit
charge {0, 1}, we represent the vortex-antivortex pairs as {1, 0}

r0
−{−1, 0} in component

1 with the distance r0 and {0, 1}
r0
− {0,−1} in component 2. The configurations for the

vortex-antivortex pairs are [73]

{1, 0}
r0
− {−1, 0} : Ψ

(1)
V−AV = Ψ(θ−r0,0, β, θ

−
r0,0

) =

(√
n1e

iθ−r0,0
√
n2

)
, (4.26a)

{0, 1}
r0
− {0,−1} : Ψ

(2)
V−AV = Ψ(θ−r0,0, β,−θ

−
r0,0

) =

( √
n1

√
n2e

iθ−r0,0

)
, (4.26b)

53



4.3. VORTEX EXCITATIONS

with

θr0,δ ≡ arctan

(
y − δ/2

x− r0/2

)
, (4.27)

and θ±r0,δ ≡ θr0,δ ± θ−r0,δ.
A finite Rabi coupling between the two hyperfine states stabilizes a vortex molecule,

which consists of two vortices with unit charges of different hyperfine states denoted as
[1, 1]r0 ≡ {1, 0}

r0
− {0, 1}. Indeed, the energy shift due to the finite Rabi coupling in

Eq. (4.8) reads

ER = −2ℏωR

∫
dr |Ψ1||Ψ2| cos γ. (4.28)

The energy (4.28) takes the minimum at γ = 0 and maximum at γ = π. When the
two vortices winding in Ψ1 and Ψ2 are fully overlapped, the relative phase vanishes
everywhere. It implies that this Rabi coupling plays the role of attractive force between
the two vortices of different hyperfine states resulting in the confinement of vortices. The
configurations of the vortex molecule and the vortex molecule-antimolecule pair can be
expressed as

[1, 1]r0 : ΨM = Ψ(θ+r0,0, β, θ
−
r0,0

) =

( √
n1e

iθr0,0
√
n2e

iθ−r0,0

)
, (4.29a)

[1, 1]δ
r0
− [−1,−1]δ : ΨM−AM = Ψ(θ−r0,δ + θ−r0,−δ, β, θ

−
r0,δ

− θ−r0,−δ)

=

( √
n1e

iθ−r0,δ

√
n2e

iθ−r0,−δ

)
, (4.29b)

respectively.
The inter-vortex interaction energies for each configuration of vortex-antivortex pairs

in Eqs. (4.26) can be obtained by inserting Eqs. (4.26) into Eq. (4.2) under V (1)
ext = V

(2)
ext =

0 as [73]

E[Ψ
(1)
V−AV] =

2πℏ2

m
n1 ln

(
r0
ξ1

)
+ ERr0, (4.30a)

E[Ψ
(2)
V−AV] =

2πℏ2

m
n2 ln

(
r0
ξ2

)
+ ERr0, (4.30b)

with ER ≡ ℏ
√

ℏωRn
√
n1n2/m and ξa=1,2 = ℏ/

√
2mgaana the vortex core size for the

a-th component. Note that the Rabi coupling leads to a linear dependence of the energy
on the inter-vortex distance in addition to the logarithmic dependence, which hinders
the BKT transition due to the unbindings of the vortex-antivortex pairs. On the other
hand, the energy for vortex molecule-antimolecule pairs can be calculated as

E[ΨM−AM] =
2πℏ2

m
n ln

(
r0
ξ

)
, (4.31)
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Figure 4.3: Schematic picture of the mechanism of BKT transitions in a binary Bose mixture
(a) without Rabi coupling and (b) with finite Rabi coupling.

with ξ =
√
ξ1ξ2. It has a logarithmic dependence on the inter-molecule distance indi-

cating that the vortex molecule-antimolecule pairs play the role of topological excita-
tions responsible for the BKT transition in a Rabi-coupled binary Bose mixture. The
schematic picture of the BKT transition in a Rabi-coupled binary Bose superfluid is
illustrated in Fig. 4.3.

The formation of the vortex molecules due to the Rabi coupling is analogous to
the quark confinement in QCD [184]. Indeed, although the dimensionality is different
from QCD, there are several attempts to demonstrate QCD by using the quantized
vortices in a binary Bose superfluid [58, 61, 67, 70, 71, 74]. In the context of two-flavour
QCD, a half-quantized vortex winding only the first component described by Eq. (4.24a)
corresponds to the up-quark, and the one winding only the other component given by
Eq. (4.24b) corresponds to the down-quark [71]. And the antiquarks correspond to
each of the antivortices. The quark confinement is described by the formation of vortex
molecules in Eq. (4.29a).

4.4 Berezinskii-Kosterlitz-Thouless transition

Based on the discussion in Sec. 4.3, we consider the BKT transition in a binary Bose
mixture [91].
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4.4.1 Superfluid density and critical temperature

In a binary Bose mixture with balanced densities αa=1,2 = na/n = 1/2, we can obtain
the following set of NK RG equations [73, 91, 185, 186]

∂lK(l)−1 = 4π3Θ(ωR)y(l)
2, (4.32a)

∂ly(l) = [2− πΘ(ωR)K(l)] y(l), (4.32b)

where Θ(x) is the Heaviside step function with Θ(0) = 1/2. It can be derived from the
microscopic Lagrangian as in the single-component case. For details of the derivation,
see Appendix A.4.2. The RG equations (4.32) give the modified NK criterion

kBTc =
πℏ2

2m
Θ(ωR)ns(Tc), (4.33)

at the BKT critical temperature Tc. This NK criterion (4.33) is consistent with the
Monte Carlo analysis in Ref. [73]. To calculate the RG flow, we use the initial conditions
asK(0) = J(0)/(kBT ) = ℏ2n(0)s (T )/(mkBT ) and µv(0) = π2Θ(ωR)J(0)/4 [160, 187, 188,
189], where n(0)s (T ) is calculated by

n(0)s (T ) = n− n−n (T )− n+n (T ), (4.34)

where

n±n (T ) = −1

2

∫
d2k

(2π)2
ℏ2k2

2m
f ′T (E

±
k ), (4.35)

is Landau’s formula (3.29b) of the thermally activated normal density due to the ele-
mentary excitations. In the formula, f ′T (E) is the derivative with respect to E of the
Bose distribution function fT (E) = 1/[eE/(kBT ) − 1]. The maximum value of the RG
scale is related to the system size as lmax = ln (L/ξ) with ξ = ℏ/

√
2mg(n/2) the vortex

core size. Here, we note that the higher-order derivative terms in the XY model can lead
to corrections in the initial conditions for the RG flow. Indeed, it has been pointed out
that the higher-order corrections are important for quantitatively accurate predictions
of the BKT transition in XY models in particular for a small vortex chemical potential
[190]. In our model of a binary Bose mixture, such a higher-order term of the superfluid
velocity can arise and determine a quantitative change in our results with a small vortex
chemical potential as well. In this Thesis, however, since they are expected to give mod-
erate quantitative changes, we do not consider the effects of the spin-wave excitations
on the vortex excitations, which will be the subject of future investigation including the
functional RG analysis [190, 191].

The modification of the NK criterion in the absence of Rabi coupling reflects the half
circulation of vorticity. With fractional parameters αa = na/n, for instance, each of the
circulations for vortices (Ψ1,Ψ2) = (

√
n1e

±iθ0 ,
√
n2) with θ0 = arctan (y/x) is given by

Γ1 = ±2πα1ℏ/m (see Eq. (4.23)) [73]. For a population-balanced system n1 = n2 = n/2,
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Figure 4.4: Renormalized superfluid fraction calculated with Eqs. (4.32) for g̃ = mg/ℏ2 = 0.1
and η = g12/g = 0 [91]. The left panel (a) displays the results with L/ξ = 200 with ω̄R =
ℏωR/(nℏ2/m) = 0.0, 0.1, 1.0. The horizontal axis is the dimensionless temperature 2π/(nλ2T ) =
kBT/(nℏ2/m). The grey dashed curve stands for the superfluid fraction in a single-component
Bose gas with g̃ = 0.1 calculated with Eqs. (2.74). The thin dotted curves represent the bare
superfluid fraction given by Eq. (4.34). The thin solid line and thin dotted line stand for
kBT = πℏ2ns(T )/(4m) and kBT = πℏ2ns(T )/(2m), respectively. The right panel (b) shows the
3D plot of the superfluid fraction as a function of the temperature and Rabi coupling.

in particular, α1,2 = 1/2 gives rise to half vortices. In the presence of Rabi coupling,
on the other hand, topological defects that lead to BKT transition are replaced with
vortex molecule-antimolecule pairs instead of vortex-antivortex pairs [58, 73, 184]. The
formation of vortex molecule pairs modifies the RG equations as in Eqs. (4.32), which
recover the ones for the single-component case in Eqs. (2.74).

Figure 4.4 shows the renormalized superfluid fraction computed with Eqs. (4.32) for
g̃ = mg/ℏ2 = 0.1 and η ≡ g12/g = 0 with L/ξ = 200. Figure 4.4(a) displays the
results with ω̄R = ℏωR/(nℏ2/m) = 0, 0.1, 1.0. The horizontal axis is the dimensionless
temperature kBT/(nℏ2/m) = 2π/(nλ2T ) with λT = [2πℏ2/(mkBT )]1/2 being the ther-
mal wavelength. The thin dotted curves stand for the bare superfluid fraction given by
Eq. (4.34). Due to the finite system size, the discontinuity of the renormalized super-
fluid fraction in the thermodynamic limit L→ ∞ is smeared and altered to a continuous
drop. In the single-component case plotted by the dashed curve, the superfluid fraction
intersects with the thin dotted line kBT = πℏ2ns/(2m) at the BKT transition tempera-
ture as in Eq. (2.76) in the thermodynamic limit. In contrast, in a population-balanced
binary Bose mixture, the superfluid fraction should intersect with the thin solid line
kBT = πℏ2ns/(4m) in the absence of Rabi coupling at the BKT transition temperature
as in Eq. (4.33) in the thermodynamic limit. With a finite Rabi coupling, on the other
hand, the superfluid fraction intersects with the thin dotted line kBT = πℏ2ns/(2m) at
the BKT transition temperature in the thermodynamic limit as in the single-component
Bose gas. A larger value of Rabi coupling shifts the transition temperature to a higher
one. The right panel Fig. 4.4(b) shows the 3D plot of the renormalized superfluid fraction
to the Rabi coupling and the temperature.
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Figure 4.5: Phase diagram of the binary Bose mixture and the BKT transition temperature to
inter-component coupling η = g12/g and Rabi coupling ω̄R [91]. Each of the curves in the left
panel (a) represents the BKT transition temperature for g̃ = 0.1 and ω̄R = 0.0, 0.1, 0.5 below
which the system is superfluid (SF). Above the transition temperature, it turns into a normal (N)
phase with the vanishing superfluid fraction. The grey dotted curve in panel (a) represents the
boundary at η = 1+2ℏωR/(gn). Each of the vertical thin lines represents η = 1+2ℏωR/(gn) for
each Rabi coupling above which the population-balanced ground state changes to the polarized
phase. For η < −1, the population-balanced ground state is unstable. The two dashed curves
in the right panel (b) represent the boundaries of the stable region of the ground state with
balanced densities at η = −1 and η = 1 + 2ℏωR/(gn) respectively.

Figure 4.5 shows the phase diagram and the BKT transition temperature. In the
left panel Fig. 4.5(a), each of the curves represents the intercomponent coupling de-
pendence of the BKT transition temperature in the thermodynamic limit with g̃ = 0.1
and ω̄R = 0, 0.1, 0.5. The shaded region below the transition temperature is the super-
fluid phase with a finite superfluid density for each of the values of Rabi coupling,
while the system is in the normal phase above the temperature. As one increases
η = g12/g from −1, we can observe that the transition temperature first increases. Near
η = 1+2ℏωR/(gn), it reaches a maximum for each ω̄R and turns into a gradual decrease.
In particular, at ω̄R = 0, as displayed in Fig. 4.5(a), the BKT transition temperature is
symmetric with respect to η and reaches its maximum at η = 0. This is a natural conse-
quence of the two symmetric excitation spectra E±

k =
√
εk [εk + gn (1± η)] for ωR = 0.

Figure 4.5(b) displays the 3D plot of the BKT transition temperature to η and ω̄R. It
shows the monotonic increase of the transition temperature by increasing the Rabi cou-
pling ω̄R. This enhancement can be explained by the behavior of the energy gap in E−

k

due to the Rabi coupling. As one increases the Rabi coupling, the gap size also increases
and the normal density n−n in Eq. (4.35) decreases while n+n is unaffected. It results in
an increase of the superfluid density in Eq. (4.34), thereby leading to an enhancement of
the BKT transition temperature according to Eq. (4.33) by replacing the renormalized
superfluid density with the bare one, which is a good approximation at low tempera-
tures as illustrated in Fig. 4.4(a). The maximum value of the transition temperature
scaled by the one in the single-component case is shown in Fig. 4.6 with varying Rabi
coupling. It monotonically increases by increasing ω̄R. Figure 4.6 also reveals that the
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Figure 4.6: Maximum BKT transition temperature scaled by the transition temperature in the
single-component case Tmax

c /T
(0)
c with g̃ = 0.01, 0.1, 0.5 [91].

ratio Tmax
c /T

(0)
c is prominently enhanced as one decreases the intra-coupling strength

g̃. This behavior comes from the monotonic increase of critical temperature T (0)
c in the

single-component Bose gas faster than Tmax
c by increasing g̃. In other words, T (0)

c in
a single-component superfluid approaches zero by g → 0 due to the Landau instability
(2.52), while the transition temperature in a binary superfluid remains to be finite with
a finite intercomponent coupling g12 even with g → 0 because the system is still far from
an ideal Bose gas.

4.4.2 Sound velocities

Let us consider the first and second sound velocities in a binary Bose mixture. The first
and second sound velocities c1,2 are the roots of Landau’s two-fluid equation calculated
from the free energy as we analyzed in Sec. 3.2. In a two-component Bose mixture, the
free energy F at the mean-field level is given by

F =
1 + η

4

gN2

L2
− ℏωRN

+ L2kBT

∫
d2k

(2π)2

[
ln
(
1− e−E−

k /(kBT )
)
+ ln

(
1− e−E+

k /(kBT )
)]
. (4.36)

The first two terms in Eq. (4.36) correspond to the free energy at zero temperature,
and the second line represents the contribution of thermal fluctuations. In the phononic
regime at low temperatures without Rabi coupling ωR = 0, E+

k = cBℏk with cB =√
(1 + η)gn/(2m) and E−

k = c−ℏk with c− =
√

(1− η)gn/(2m) provide

F

N
=

1 + η

2

gn

2
− ℏωR − ζ(3)

2πℏ2
(kBT )

3

n

(
1

c2−
+

1

c2B

)
, (4.37a)
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Figure 4.7: First sound and second sound velocities c1,2 scaled by the Bogoliubov velocity cB for
g̃ = 0.1 and L/ξ = 200 [91]. The inter-coupling is set to be η = 0 in the upper left panel (a), and
η = 0.5 in the lower left panel (b). The dashed curves correspond to ω̄R = 0.0 while the solid
curves correspond to ω̄R = 1.0. The thin dotted curves represent c1,2 in a single-component
Bose gas for g̃ = 0.1. The low-temperature behavior is zoomed in the right panels (c) and (d).
The insets in panels (c) and (d) illustrate the elementary excitations E±

k . The solid curves stand
for the gapless branch E+

k , while the dotted and dashed curves represent E−
k which is gapless

for ω̄R = 0.0 while gapped for ω̄R = 1.0, respetively.

nn = n+n + n−n =
3ζ(3)

2πℏ2
(kBT )

3

2m

(
1

c4−
+

1

c4B

)
, (4.37b)

which results in

vT = vs = cB, vL =

√
c−2
− + c−2

B

c−4
− + c−4

B

=

√
1− η

1 + η2
cB, (4.38)

at low temperatures. For −1 < η ≤ 0, vL ≥ vs leads to c1 = vL and c2 = vs. For
0 < η < 1, vL < vs leads to c1 = vs and c2 = vL. With a finite Rabi coupling ωR > 0,
on the other hand, the thermal contribution associated with the gapped branch E−

k

vanishes at low temperatures because the gapped mode is no longer occupied. Then,
the free energy and normal density are given by

F

N
=

1 + η

2

gn

2
− ℏωR − ζ(3)

2πℏ2
(kBT )

3

nc2B
, (4.39a)
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Figure 4.8: Ratio between the amplitude of the first sound and second sound W2/W1 in the
dynamic structure factor.

nn =
3ζ(3)

2πℏ2
(kBT )

3

2mc4B
. (4.39b)

The thermal part of free energy is identical to the one in the single-component case while
the normal density is half of that in the single-component case in Eq. (3.29b) because of
the prefactor 1/2 in Eqs. (4.35). As a result, the sound velocities at low temperatures
change to

c1,2 = vT = vs = vL = cB, (4.40)

at any value of inter-component coupling η. The difference from the single-component
case in Eqs. (3.41) is ascribed to the modification of the normal density in Eqs. (4.39).

Figure 4.7 illustrates the first and second sound velocities for g̃ = 0.1 and η = 0, 0.5
with ω̄R = 0.0, 1.0. The upper branch is the first sound velocity c1 and the lower branch
is identified as the second sound velocity c2, which survives as long as the superfluid
density is finite. A finite Rabi coupling increases the critical temperature as shown in
Fig. 4.4 and allows the second sound to be present up to a higher temperature. At
the low-temperature limit in the absence of Rabi coupling, using the linear dispersions
E+

k ≃ cBℏk and E−
k ≃ c−ℏk, one finds Eqs. (4.38). For η = 0 as shown in Fig. 4.7(a), in

particular, the first sound and second sound velocities coincide with each other c1 = c2 =
vT = vs = vL = cB. The low-temperature behavior is shown in Fig. 4.7(c). With 0 < η <
1 in the low-temperature regime without Rabi coupling, one observes c1 = vs = vT = cB
and c2 = vL < cB indicating that each of the sound modes is identified as the density
mode and entropy mode respectively as illustrated by the dashed curves in Fig. 4.7(d).
As one increases the temperature, the two branches exhibit a quasicrossing at which
the density mode and entropy mode start to mix as in the case of a single-component
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2D Bose gas plotted with the thin dotted curves in Fig. 4.7 or a 3D Bose gas [90, 151].
In contrast, the solid curves in Fig. 4.7 imply that a finite Rabi coupling suppresses
the quasicrossing as shown in Fig. 4.7(d), which is distinct from a single-component 2D
Bose gas. This behavior can be understood by the presence of a gapped mode. With a
finite Rabi coupling, E−

k is gapped out as shown in the insets of Figs. 4.7(c) and 4.7(d),
and most thermally excited bosons occupy only the gapless mode E+

k ≃ cBℏk. Then,
the major difference from the single-component case is only the additional prefactor 1/2
in Eqs. (4.35) which affects the Landau velocity. Consequently, the Landau velocity is
found to be identical to the Bogoliubov velocity which also coincides with the adiabatic
velocity at low temperatures. It results in the suppression of quasicrossing at a low
temperature. As explained in Sec. 3.2.2, the temperature at which the quasicrossing
occurs characterizes the temperature above which the second sound can be detected by
a density probe [192, 193, 194, 195]. From the experimental point of view, hence, the
suppression of quasicrossing at finite temperature implies that the second sound mode
is sensitive to a density probe even in the low-temperature regime, which can be tested
with ultracold atom experiments [194, 196].

To discuss the detectability of the second sound, as in Sec. 3.3.1, we examine the dy-
namic structure factor (3.46) for the density response function. Figure 4.8 shows the ratio
of the amplitude W2/W1 given by Eqs. (3.47) for (ω̄R, η) = (0, 0), (1.0, 0.0), (0.0, 0.5),
and (1.0, 0.5). It clearly indicates that the ratio becomes smaller than unity W2/W1 ≪ 1
in the low-temperature regime only for (ω̄R, η) = (0.0, 0.5) while otherwise, it is much
larger than unity. From this behavior, we can conclude that the second sound can be
detected by a density probe even in the low-temperature regime unless ω̄R = 0 and
0 < η < 1.
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Chapter 5

Damped Langevin dynamics in
Josephson junctions

This Chapter is devoted to the analyses of dynamics in a Bose Josephson junction and a
superconducting Josephson circuit. First, we see the damped Langevin dynamics in an
atomic Josephson junction in a head-to-tail configuration. It reveals that the Josephson
coupling induces an intrinsic coupling between the Josephson mode and the other bath
modes. The intrinsic coupling causes giant fluctuations in the relative phase. Secondly,
we consider a resistively and capacitively shunted Josephson circuit. In contrast to the
atomic Josephson junction, the resistor plays the role of a thermal bath and leads to
extrinsic coupling with the superconducting phase. We clarify the effects of quantum
fluctuations on the Langevin dynamics and coherence factor in the RCSJ circuit. Finally,
we show the quantum correction to the Josephson frequency.

5.1 Josephson junctions

Josephson junctions were originally proposed as a system composed of an insulator
sandwiched by two superconductors with the superconducting phases ϕ1 and ϕ2 as il-
lustrated in Fig. 5.1(a) [197, 198, 199]. The relative superconducting phase ϕ = ϕ2 − ϕ1
induces an AC Josephson current I(t) = Ic sinϕ(t) flowing across the insulator carried
by the Cooper pairs. This transport phenomenon is the original AC Josephson ef-
fect. The superconductors can be replaced with atomic superfluids as in Fig. 5.1(b).
Atomic Josephson junctions consist of two atomic superfluids trapped in a double-
well potential and separated by a potential barrier as shown in Fig. 5.1(b). The two
separated superfluids are coupled by a tunnel coupling J responsible for the Joseph-
son oscillations of the population imbalance and relative superfluid phase. Gener-
ally, the potential height can be asymmetric as in Fig. 5.1(b) though we consider
only the symmetric case for simplicity throughout this Thesis. These two-terminal se-
tups with ultracold atoms are useful in particular to investigate transport properties
[200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212] or relaxation dynamics
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SuperconductorSuperconductor Insulator

ICooper pair

 (a) Superconducting Josephson junction  (b) Atomic Josephson junction

Figure 5.1: Schematic figures of (a) superconducting Josephson junction and (b) atomic Joseph-
son junction [42].

[42].
Although the Josephson effect itself is a quantum mechanical phenomenon, we should

observe the influence of quantum fluctuations on the Josephson dynamics. In Sec. 5.2, we
consider a Bose-Josephson junction to reveal the Langevin dynamics of Josephson modes.
Next, by analyzing the Josephson dynamics in a superconducting Josephson circuit
subject to quantum fluctuations, we clarify the difference from the atomic Josephson
junction in Sec. 5.3. Section 5.4 presents the quantum correction to the frequency of the
Josephson oscillation.

5.2 Bose Josephson junction

We start with quasi-1D two weakly-interacting Bose gases with the system size L de-
scribed by

LBJJ =
∑
a=1,2

[
iℏΨ∗

a∂tΨa −
ℏ2

2m
|∂xΨa|2 −

g

2
|Ψa|4

]
+
J(x)

2
[Ψ∗

1Ψ2 +Ψ∗
2Ψ1] , (5.1)

with g the interaction strength and J(x) the Josephson coupling dependent on spa-
tial coordinates. This model is analogous to the binary Bose superfluid considered
in Chap. 4, but the spatial dependence of the Josephson coupling J(x), which was a
uniform Rabi coupling in a binary Bose superfluid, characterizes the dynamics in this
Bose-Josephson junction. Moreover, Eq. (5.1) does not include a intercomponent cou-
pling term g12|Ψ1|2|Ψ2|2 due to the spatial separation. One can consider two typical
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(b) Head-to-tail configuration

Figure 5.2: Schematic figures of (a) side-by-side configuration and (b) head-to-tail configuration
in a BJJ.

cases:

J(x) =

{
J0 (side-by-side),
J0Lδ(x) (head-to-tail).

(5.2)

These two configurations are sketched in Fig. 5.2. Here, J0 characterizes the strength
of the tunnel coupling. In the following subsections, we work on these two cases. We
perform the polar decomposition of the complex Bose field of a-th quasi-condensate
Ψa(x, t) as

Ψa(x, t) =
√
na(x, t)e

iϕa(x,t), (5.3)

where na(x, t) = |Ψa(x, t)|2 is the density and ϕa is the phase of the a-th quasi-
condensate. We introduce the average density, population imbalance, total phase, and
relative phase as

n̄ =
n1 + n2

2
, ζ =

n1 − n2
2n̄

,

ϕ̄ = ϕ1 + ϕ2, ϕ = ϕ1 − ϕ2. (5.4)

By inserting Eq. (5.3) into Eq. (5.1) with Eqs. (5.4), the Lagrangian density can be
written as

LBJJ[ζ, ϕ] = −ℏn̄ζϕ̇− ℏ2n̄
4m

[
(∂xζ)

2

1− ζ2
+ (∂xϕ)

2

]
− gn̄2ζ2 + J(x)n̄

√
1− ζ2 cosϕ, (5.5)

with ˙̄n = ˙̄ϕ = 0 and ∂xn̄ = ∂xϕ̄ = 0. By assuming a small population imbalance |ζ| ≪ 1,
the saddle-point approximation by inserting the equation of motion ζ = −ℏϕ̇/[2gn̄ +
J(x) cosϕ] provides the simplified Lagrangian only with respect to the relative phase as

Lϕ =
ℏ
4g
ϕ̇2 − ℏ2n̄

4m
(∂xϕ)

2 + J(x)n̄ cosϕ, (5.6)

within the Josephson regime J(x) ≪ 2gn̄.
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5.2.1 Side-by-side configuration

Let us first consider the side-by-side configuration J(x) = J0, which is the uniform
Josephson coupling as sketched in Fig. 5.2(a). We perform mode expansion of the
relative phase as

ϕ(x, t) =
1√
L

∞∑
n=0

Φn(x)qn(t), (5.7)

with
Φn(x) =

1√
L
cos (knx), (5.8)

and kn = nπ/L. Here, {Φn(x)}∞n=1 is an orthonormal basis satisfying∫ L

0
dxΦ∗

n(x)Φm(x) = δnm. (5.9)

Using this mode expansion (5.7), the Lagrangian can be expressed as

Lϕ =

∫ L

0
dxLϕ =

∞∑
n=0

[
M

2
q̇n(t)

2 − Mω̃2
n

2
qn(t)

2

]
, (5.10)

with M = ℏ2/2gL, ωn = ckn, c =
√
gn̄/m, and

ω̃n ≡
√
ω2
n +Ω2, (5.11)

where Ω =
√
J0n̄/ML is the Josephson frequency. The Lagrangian (5.10) indicates that

the system is described by independent decoupled harmonic oscillators with frequency
ω̃n, which absorbs the effects of Josephson coupling. It does not allow us to describe
the damping effects in the Josephson mode. To discuss the damped dynamics in the
side-by-side configuration, we need to incorporate the higher-order contributions in ϕ.

5.2.2 Head-to-tail configuration

In a head-to-tail configuration J(x) = J0Lδ(x) illustrated in Fig. 5.2(b), on the other
hand, the damped dynamics can be described in a simpler manner. The mode expansion
(5.7) gives

Lϕ =

∞∑
n=0

[
M

2
q̇n(t)

2 − Mω2
n

2
qn(t)

2

]
+ J0Ln̄ cos

(
1

L

∞∑
n=0

qn(t)

)
. (5.12)

In contrast to the side-by-side configuration described by Eq. (5.10), the Josephson
coupling gives an additional contribution as in the last term in Eq. (5.12)

To elucidate the dynamics of the Josephson mode, we perform a canonical transfor-
mation

Q0(t) =
∞∑
n=0

qn(t), Qn≥1(t) = qn(t), (5.13)
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Figure 5.3: Mapping from the Bose Josephson junction in a head-to-tail configuration to the
Caldeira-Leggett-type model.

which results in

Lϕ =
M

2

[
Q̇0(t)−

∞∑
n=1

Q̇n(t)

]2
+

∞∑
n=1

[
M

2
Q̇n(t)

2 − Mω2
n

2
Qn(t)

2

]
+ J0Ln̄ cos

(
Q0(t)

L

)
.

(5.14)
The Hamiltonian reads

Hϕ =
P 2
0

2M
− J0Ln̄ cosϕ0 +

∞∑
n=1

[
(Pn + P0)

2

2M
+
Mω2

n

2
Q2

n

]
, (5.15)

with Pn = ∂Lϕ/∂Q̇n the canonical momenta and

ϕ0(t) ≡ ϕ(0, t) =
Q0(t)

L
, (5.16)

the Josephson mode. The obtained Hamiltonian (5.15) is called velocity-coupling model,
which involves an intrinsic coupling between the Josephson mode ϕ0 and the phononic
bath modes Qn through the momentum. It describes the dynamics of Josephson mode
in contact with a thermal bath similar to the Caldeira-Leggett (CL) model [213]. For
details on the CL model, see Appendix D. Namely, through the canonical transformation
(5.13), we mapped the Bose Josephson system described by Eq. (5.12) to the CL-type
model (see Fig. 5.3). However, this intrinsic coupling with bath modes is in stark contrast
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to the extrinsic coupling in the standard CL model. Indeed, the Hamilton equations

Q̇0 =
P0

M
+

∞∑
n=1

Pn + P0

M
, Q̇n≥1 =

Pn + P0

M

Ṗ0 = −J0n̄ sinϕ0, Ṗn≥1 = −Mω2
nQn, (5.17)

lead to a generalized Langevin equation

ϕ̈0(t) +

∫ t

0
dt′ γ[ϕ(t′); t− t′]ϕ̇0(t

′) + Ω2 sinϕ0(t) = ξϕ(t)− γ0δ(t) sinϕ0(0). (5.18)

Here, the damping kernel is defined by

γ[ϕ(t′); t− t′] ≡ Ω2
∞∑
n=1

cos
[
ωn(t− t′)

]
cosϕ0(t

′). (5.19)

Up to the linear order in ϕ0, Eq. (5.18) can be written as

ϕ̈0(t) +

∫ t

0
dt′ γ(t− t′)ϕ̇0(t

′) + Ω2ϕ0(t) = ξϕ(t)− γ0δ(t)ϕ0(0), (5.20)

with

γ(t− t′) = Ω2
∞∑
n=1

cos
[
ωn(t− t′)

]
, (5.21)

which is simplified as
γ(t− t′) = γ0δ(t− t′), (5.22)

with γ0 ≡ J0n̄/Mc the damping constant in the continuum limit. The stochastic noise
is related to the initial distributions of the infinite number of bath modes as

ξϕ(t) ≡ − 1

L

∞∑
n=1

[
ω2
n cos (ωnt)Qn(0) + ωn sin (ωnt)Q̇n(0)

]
. (5.23)

By assuming that the phonons are initially in thermal equilibrium at temperature T ,
the noise satisfies

⟨ξϕ(t)⟩ = 0, (5.24a)

χϕ(t, t
′) ≡ 1

2
⟨{ξϕ(t), ξϕ(t′)}⟩ = −

∫ ∞

−∞

dω

2π
eiω(t−t′) γω2

MLΩ2
ℏω coth

(
ℏω

2kBT

)
, (5.24b)

where the ensemble average ⟨· · · ⟩ in Eqs. (5.24) is performed with respect to the bath
Hamiltonian of thermal phonons given by [92]

HB =
∞∑
n=1

(
P 2
n

2M
+
Mω2

n

2
Q2

n

)
. (5.25)
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The second term on the right-hand side of Eq. (5.18) is the negligible initial slippage
term.

In a similar manner, we can obtain the Langevin equation with respect to the pop-
ulation imbalance. Based on the assumption of the canonical commutation relation
between the phase and density, it is reasonable to perform the mode expansion of the
population imbalance in terms of the momentum as

ζ(x, t) =
P0(t)

ℏn̄
+

√
L

ℏn̄

∞∑
n=1

Φn(x) [Pn(t) + P0(t)] , (5.26)

and we can identify the Josephson mode as

ζ0(t) =
P0(t)

ℏn̄
. (5.27)

From Eqs. (5.17), we can derive the generalized Langevin equation

ζ̈0(t) +

∫ t

0
dt′ γ(t− t′)ζ̇0(t

′) + Ω2ζ0(t) = ξζ(t). (5.28)

Here, we have omitted the initial slippage term. The stochastic noise is defined as

ξζ(t) = −Ω2

ℏn̄

∞∑
n=1

[
cos (ωnt)Pn(0) +

sin (ωnt)

ωn
Ṗn(0)

]
, (5.29)

which satisfies
⟨ξζ(t)⟩ = 0, (5.30a)

χζ(t, t
′) ≡ 1

2
⟨{ξζ(t), ξζ(t′)}⟩ =

∫ ∞

−∞

dω

2π
eiω(t−t′)MγΩ2

ℏ2n̄2
ℏω coth

(
ℏω

2kBT

)
. (5.30b)

In the classical limit kBT ≫ ℏω, Eqs. (5.24b) and (5.30b) reduce to

χϕ(t, t
′) = − γ0

MΩ2
kBT

d2

dt2
δ(t− t′), (5.31a)

χζ(t, t
′) =

γ0MΩ2

ℏ2n̄2
kBTδ(t− t′). (5.31b)

Note that Eq. (5.31b) recovers the classical FDT while Eq. (5.31a) involves additional
time derivatives.

In the low-temperature limit kBT ≪ ℏω, on the other hand, Eqs. (5.24b) and (5.30b)
reduce to

χϕ(t, t
′) = −

∫ ∞

−∞

dω

2π
eiω(t−t′) γω2

MLΩ2
ℏ|ω|, (5.32a)
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Figure 5.4: Variances of the Josephson modes for relative phase (panel (a)) and population
imbalance (panel (b)) at kBT = 0.01ℏΩ [92].

χζ(t, t
′) =

∫ ∞

−∞

dω

2π
eiω(t−t′)MγΩ2

ℏ2n̄2
ℏ|ω|. (5.32b)

Note that both Eqs. (5.32a) and (5.32b) explicitly exhibit the ultraviolet divergences
due to the quantum fluctuations at zero temperature [214, 215, 216, 217, 218]. These
divergences are present also at any temperature as in Eqs. (5.24b) and (5.30b) except
in the classical limit. In particular, Eq. (5.32a) reveals that the phase mode is subject
to larger fluctuations as ∼ |ω|3 in the ultraviolet region.

5.2.3 Effects of quantum fluctuations on correlation functions

Based on the Langevin equations (5.20) and (5.28), we elucidate the effects of quantum
fluctuations on autocorrelation functions. The variances are given by

∆ϕ0(t)
2 ≡ ⟨ϕ0(t)2⟩ − ⟨ϕ0(t)⟩2 =

∫ t

0
ds

∫ t

0
ds′ χϕ(s, s

′)gR(t− s)gR(t− s′)

=
2ℏ
MΩ

γQ
1− γ2Q

∫ ∞

−∞
dxx3 coth

(
ℏΩ

2kBT
x

)
Gx(t)G−x(t), (5.33a)

∆ζ0(t)
2 ≡ ⟨ζ0(t)2⟩ − ⟨ζ0(t)⟩2 =

∫ t

0
ds

∫ t

0
ds′ χζ(s, s

′)gR(t− s)gR(t− s′)

=
MΩ

ℏn̄2
γQ

1− γ2Q

∫ ∞

−∞
dxx coth

(
ℏΩ

2kBT
x

)
Gx(t)G−x(t). (5.33b)

Here, we set x ≡ ω/Ω and γQ ≡ γ0/2Ω, and introduced the retarded response function

gR(t) ≡
sin
(
Ω
√

1− γ2Qt
)

Ω
√

1− γ2Q

e−γ0t/2Θ(t), (5.34)
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Figure 5.5: Thermal effects on the dynamics of the variances of population imbalance [92].

and

Gx(t) ≡
1

(ix+ γQ)
2 + γ2Q − 1

×

[√
1− γ2Q

[
1− e−(ix+γQ)Ωt cos

(
Ω
√
1− γ2Qt

)]
− (ix+ γQ) sin

(
Ω
√
1− γ2Qt

)]
.

(5.35)
Figure 5.4 shows the variances of Eqs. (5.33) at kBT = 0.01ℏΩ in the underdamped
regime γQ < 1. The ultraviolet cutoff frequency is chosen to be ωmax = cπN/ΩL with
c = 10−3ms−1, N = 103, Ω = 102 s−1, and L = 1µm [42]. Figure 5.4(a) clearly
shows that the variance ∆ϕ0(t)

2, related to the relative phase of the Josephson mode,
oscillates until it reaches an asymptotic value in the long-time limit, as shown in the
inset. The huge initial oscillations are crucially dependent on the cutoff ωmax, and the
asymptotic value strongly depends on the choice of γQ. It is worth noting that a smaller
damping constant γQ leads to a smaller asymptotic value. The variance ∆ζ0(t)

2 of
the population imbalance of the Josephson mode in Fig. 5.4(b) also oscillates in time,
reaching asymptotically a finite value. Here, the asymptotic value also strongly depends
on the damping parameter γQ and a smaller γQ leads to a larger asymptotic value.

The temperature dependence of the variance of population imbalance is displayed
in Fig. 5.5. The figure shows that the asymptotic value ∆ζ0(∞)2 grows by increasing
the temperature. We have verified that the phase variance ∆ϕ0(∞)2 also exhibits the
similar behavior. These results are fully consistent with the ones obtained in Ref. [219]
for the quadratic fluctuations of the damped harmonic oscillator in thermal equilibrium.
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Figure 5.6: RCSJ circuit with resistance R and capacitance C that we study in Sec. 5.3. Here,
Ic represents the critical current in the Josephson junction and I is the external current.

5.3 Superconducting Josephson circuit

A resistively and capacitively shunted Josephson (RCSJ) junction illustrated in Fig. 5.6
is a useful platform to investigate quantum dynamics [220, 221, 222, 223, 224] and a good
example that shows damped dynamics similar to the BJJ in a head-to-tail configuration
discussed in the last section. In this section, we show that the superconducting phase in
the RCSJ circuit also exhibits damped Langevin dynamics and illustrate the differences
from the BJJ. The dynamics of a RCSJ circuit is described by

CV̇ (t) +
V (t)

R
+
∂Uwash(ϕ)

∂ϕ
= η(t), (5.36a)

ϕ̇(t) =
2eV (t)

ℏ
, (5.36b)

where ϕ(t), V (t), C, and R are the superconducting phase, voltage, capacitance, and
resistance, respectively. In Eq. (5.36a),

Uwash(ϕ) = −Ic cosϕ(t)− Iϕ(t), (5.37)

is the tilted washboard potential with the critical current Ic [225, 226]. For a small
external current I < Ic, the washboard potential has potential minima at sinϕ = I/Ic
while if the external current exceeds Ic, it has no potential minimum and it may drive the
phase into a running state as shown in Fig. 5.7. Throughout this section, we consider the
case with a small external current as in Fig. 5.7(a) excluding the running state. Equation
(5.36b) provides the relation between the phase and the voltage. In Eq. (5.36b), e is
the elementary charge. We deal with the phase, voltage, and current noise as classical
quantities. Then, the current noise η(t) in Eq. (5.36a), which originates from the shunted
resistor, satisfies

⟨η(t)⟩ = 0, (5.38a)
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Figure 5.7: Deterministic part of the superconducting phase ϕ0(t) subject to the washboard
potential in Eq. (5.37) in the absence of friction [93]. We set the initial condition ϕ0(0) = 1
and ϕ̇0(0) = 1 for brevity. The upper panel (a) shows the case of I < Ic, while the lower panel
(b) displays the case of I > Ic. In the former case, the phase oscillates around an extremum of
the washboard potential. On the other hand, in the latter case, the potential has no extremum
leading to the running state with respect to the phase.

Γ(ω) ≡
∫ ∞

−∞
dt ⟨η(t)η(0)⟩ e−iωt =

2

R
ℏω coth

(
ℏω

2kBT

)
. (5.38b)

The average ⟨· · · ⟩ stands for the Gaussian average with respect to the colored noise
η(t). The stochastic current noise η(t) is equivalent to the noise in Eq. (5.28) satisfying
Eqs. (5.30) in a head-to-tail BJJ. In the classical limit ℏω ≪ kBT , Eq. (5.38b) reproduces
the classical FDT. On the other hand, at T = 0, Eq. (5.38b) results in Γ(ω) → 2ℏ|ω|/R
[213, 227]. The ω dependence of the correlation in Eqs. (5.38) indicates that the quantum
noise η(t) is the colored noise and approaches the white one in the classical limit. This
current noise spectrum of Eq. (5.38b) has been experimentally measured in Ref. [228]
and includes the zero-point fluctuations in the shunted resistor.

Equations (5.36) provide the equation of motion with respect to the superconducting
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phase ϕ as [229]
ℏC
2e
ϕ̈(t) +

ℏ
2eR

ϕ̇(t) +
∂Uwash(ϕ)

∂ϕ
= η(t). (5.39)

The solution of Eq. (5.39) can be written as

ϕ(t) = ϕ0(t) + δϕ(t), (5.40)

where ϕ0 is the deterministic part of the superconducting phase and δϕ represents the
stochastic part due to the current noise. By assuming |δϕ(t)| ≪ |ϕ0(t)|, each of the
components satisfies [229]

ℏC
2e
ϕ̈0(t) +

ℏ
2eR

ϕ̇0(t) +
∂Uwash(ϕ0)

∂ϕ0
= 0, (5.41)

ℏC
2e
δϕ̈(t) +

ℏ
2eR

δϕ̇(t) + Ic cosϕ0(t)δϕ(t) = η(t). (5.42)

In Ref. [229], Brandt et al. have employed the approximation |δϕ(t)| ≪ |ϕ0(t)| under
the assumption of the small current noise. We also adopt this assumption throughout
this section. Hereafter, we use the following notations

Ω2
J ≡ 2e

ℏ
Ic
C

=
2πIc
Φ0C

, ΩRC ≡ 1

2RC
, (5.43)

where Φ0 = h/(2e) is the magnetic flux quantum, ΩJ is the Josephson plasma frequency,
and ΩRC is related to the resistance leading to damping in phase dynamics; one can write
Eqs. (5.41) and (5.42) as

ϕ̈0 + 2ΩRCϕ̇0 +Ω2
J sinϕ0 = Ω2

J

I

Ic
, (5.44)

δϕ̈+ 2ΩRCδϕ̇+Ω2
Jδϕ cosϕ0 = Ω2

J

η

Ic
. (5.45)

5.3.1 Linear analysis in the absence of external current

We focus on the linear regime in which the washboard potential in Eq. (5.37) can be well
approximated to a harmonic potential in addition to the term that involves the small
external current corresponding to the upper case in Fig. 5.7(a). In the linear regime
sinϕ0 ≃ ϕ0 and cosϕ0 ≃ 1 in the absence of the external current I = 0, the equations
of motion (5.44) and (5.45) read

ϕ̈0 + 2ΩRCϕ̇0 +Ω2
Jϕ0 = 0, (5.46)

δϕ̈+ 2ΩRCδϕ̇+Ω2
Jδϕ =

Ω2
J

Ic
η. (5.47)
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We can obtain the root of this approximated equation of motion as

ϕ(t) = ϕ0(t) +

∫ t

0
dt1G(t− t1)η(t1), (5.48)

and the two-point correlation function

〈
ϕ(t)ϕ(t′)

〉
= ϕ0(t)ϕ0(t

′) +

∫ t

0
dt1

∫ t′

0
dt2G(t− t1)G(t

′ − t2) ⟨η(t1)η(t2)⟩ , (5.49)

where ϕ0(t) is the solution of Eq. (5.46), and

G(t) =
Ω2
J

Ic

e−ΩRCt√
Ω2
J − Ω2

RC

sin

(√
Ω2
J − Ω2

RCt

)
Θ(t). (5.50)

The correlation function (5.49) is analogous to Eqs. (5.33) in a BJJ at t = t′. By using
Eqs. (5.38), the second term in the right-hand-side of Eq. (5.49) can be written as∫ t

0
dt1

∫ t′

0
dt2G(t− t1)G(t

′ − t2) ⟨η(t1)η(t2)⟩ =
∫ ∞

−∞

dω

2π
Γ(ω)Gt(ω)Gt′(−ω)eiω(t−t′).

(5.51)
where

Gt(ω) ≡
∫ t

0
dt1G(t1)e

−iωt1

=
Ω2
J

2Ic

1√
Ω2
J − Ω2

RC

[
e
i
(
iΩRC+

√
Ω2

J−Ω2
RC−ω

)
t − 1

iΩRC +
√
Ω2
J − Ω2

RC − ω
− e

i
(
iΩRC−

√
Ω2

J−Ω2
RC−ω

)
t − 1

iΩRC −
√

Ω2
J − Ω2

RC − ω

]
. (5.52)

Note that Eq. (5.49) is real, while Eq. (5.52) is a complex function. The dynamics in
the absence of the noise as a solution of Eq. (5.44) is

ϕ0(t) =
2πV0
Φ0

e−ΩRCt√
Ω2
J − Ω2

RC

sin

(√
Ω2
J − Ω2

RCt

)
. (5.53)

Consequently, we finally obtain the correlation function including the quantum noise as

〈
ϕ(t)ϕ(t′)

〉
= ϕ0(t)ϕ0(t

′) +
2

R

∫ ∞

−∞

dω

2π
ℏω coth

(
ℏω

2kBT

)
Gt(ω)Gt′(−ω)eiω(t−t′). (5.54)

The frequency integral in Eq. (5.54) involves a logarithmic ultraviolet divergence due
to the zero-point fluctuations in the noise spectrum [228, 230]. In our calculations
below, we restrict the energy range as −∆ ≤ ℏω ≤ ∆, where ∆ is the energy gap of
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the superconductor. This superconducting gap is related to the critical current by the
Ambegaokar-Baratoff formula [231, 232]

Ic =
π∆

2eR
tanh

(
∆

2kBT

)
. (5.55)

One may think that, according to Eq. (5.53), ϕ0(t → ∞) → 0 leads to the breakdown
of the approximation |δϕ(t)| ≪ |ϕ0(t)| that we assumed for Eqs. (5.41) and (5.42). It
is true that the higher order contributions of δϕ(t) can affect the correlations. In the
long-time limit in which ϕ0 vanishes, however, the results under the approximation can
be valid. Setting ϕ0(t) = 0 in the absence of the external current, one obtains

δϕ̈+ 2ΩRCδϕ̇+Ω2
J sin δϕ = Ω2

J

η

Ic
. (5.56)

Hence, within the linear regime with respect to δϕ, we obtain the identical equation as
Eq. (5.47) and our results would be valid even in the long-time limit.

Figure 5.8(a) shows the dynamics of the autocorrelation function of the relative
phase ⟨ϕ2(t)⟩ for kBT = 0.1ℏΩJ with different damping. In the following, we fix
2eΩJ/Ic = 10−2 and V0 = ℏΩJ/(2e) for simplicity. Experimentally, in Ref. [233]
for instance, they used Ic = 9.489 µA and ΩJ = 67.4 GHz, which corresponds to
2eΩJ/Ic ≃ 2.3 × 10−3 and V0 ≃ 2.2 × 10−5 V. Based on these experimental values, we
chose the fixed parameter 2eΩJ/Ic = 10−2. One can see that the correlation is sup-
pressed as one increases the damping coefficient ΩRC/ΩJ. This is a natural behavior
because the large damping constant leads to an earlier exponential decay of the phase
correlation according to Eq. (5.50). In addition, the energy gap ∆ ∼ ΩJ/ΩRC at low
temperatures as an energy cutoff in Eq. (5.54) is also responsible for this strong suppres-
sion with a smaller resistance. In the experiment in Ref. [233], Devoret et al. measured
R = 190 Ω and C = 6.35 pF resulting in ΩRC/ΩJ ≃ 6.2 × 10−3, which corresponds to
the case with a tiny damping constant. Only in the long-time limit t → ∞ does the
energy integral in Eq. (5.54) converge without any cutoff energy. Remarkably, we found
that the asymptotic correlation still depends on the damping constant as a consequence
of quantum fluctuations in the current noise.

In the long-time limit, the correlation functions can also be obtained through Fourier
analysis [198, 234]. Performing the Fourier transformation on Eq. (5.47), we obtain [234]

δϕ̃(ω) ≡
∫ ∞

−∞
dt δϕ(t)e−iωt = α(ω)Ω2

J

η̃(ω)

Ic
, (5.57)

where η̃(ω) ≡
∫∞
−∞ dt η(t)e−iωt and

α(ω) ≡ 1

−ω2 + 2iΩRCω +Ω2
J

. (5.58)

Interestingly, α(ω) is equivalent to the long-time limit of Gt(ω) in Eq. (5.52) as

α(ω) =
Ic
Ω2
J

Gt→∞(ω). (5.59)
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Figure 5.8: Time evolution of the autocorrelation function with respect to the phase ϕ(t) [93].
The upper panel (a) displays the results for kBT/ (ℏΩJ) = 0.1. The blue solid, orange dotted,
and green dashed lines respectively stand for the results for ΩRC/ΩJ = 0.1 (underdamped),
ΩRC/ΩJ = 1 (critically damped), and ΩRC/ΩJ = 2 (overdamped). The panel (b) displays the
results for ΩRC/ΩJ = 0.1. The blue solid, orange dotted, and green dashed lines respectively
stand for the results for kBT/ (ℏΩJ) = 0.1, 10, 50. The lower panel (c) displays the coherence
factor for ΩRC/ΩJ = 0.1. We set 2eΩJ/Ic = 10−2 and V0 = ℏΩJ/(2e).

As a result, the time-independent autocorrelation function with respect to the phase in
the long-time limit can be obtained as [234]

〈
ϕ2(t→ ∞)

〉
=

2Ω4
J

RI2c

∫ ∞

−∞

dω

2π
ℏω coth

(
ℏω

2kBT

)
|α(ω)|2. (5.60)

In particular, in the underdamped limit ΩRC ≪ ΩJ, by virtue of the following relation

2ΩRCω|α(ω)|2 →
π

2ΩJ
[δ(ω − ΩJ) + δ(ω +ΩJ)] , (5.61)

one obtains 〈
ϕ2(t→ ∞)

〉
→ 2eΩJ

Ic
coth

(
ℏΩJ

2kBT

)
. (5.62)
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which is consistent with the classical limit〈
ϕ2(t→ ∞)

〉
cl
=

2eΩJ

Ic

2kBT

ℏΩJ
, (5.63)

with Γ(ω) → 4kBT/R under ℏω ≪ kBT . In a similar manner, one can write the
autocorrelation function with respect to the voltage as well. It is given by

〈
V 2(t→ ∞)

〉
=

(
Φ0

2π

)2 2Ω4
J

RI2c

∫ ∞

−∞

dω

2π
ℏω coth

(
ℏω

2kBT

)
ω2|α(ω)|2. (5.64)

This frequency integral is logarithmically divergent, which is distinct from the case of
phase correlation in Eq. (5.60). Only in the underdamped limit, however, it converges
and reduces to 〈

V 2(t→ ∞)
〉
→
(
ℏΩJ

2e

)2 2eΩJ

Ic
coth

(
ℏΩJ

2kBT

)
, (5.65)

which is also consistent with the classical limit〈
V 2(t→ ∞)

〉
cl
=

(
ℏΩJ

2e

)2 2eΩJ

Ic

2kBT

ℏΩJ
. (5.66)

In the classical limit, in contrast, the asymptotic correlation functions are independent of
the damping. In other words, the dependence of the asymptotic autocorrelations on the
resistance reflects the quantum effects. This manifestation of the quantum effect as the
dependence on the resistance of the correlations in the long-time limit can be measured
experimentally. In the underdamped limit ΩRC ≪ ΩJ, in particular, it reduces to
2eΩJ/Ic · coth [ℏΩJ/ (2kBT )], which recovers the classical asymptotic value 2kBT/ (ℏΩJ)
in the classical limit kBT ≫ ℏΩJ.

Figure 5.8(b) illustrates the numerical results with different temperatures in the
underdamped regime ΩRC = 0.1ΩJ. It shows that the autocorrelation is enhanced in
the high-temperature region due to the dominant thermal fluctuations compared to the
low-temperature region in which quantum fluctuations dominate over thermal ones. It
also indicates that the asymptotic value gets closer to the classical one 2kBT/ (ℏΩJ) in
Eq. (5.63) as one increases temperature, as expected.

Figure 5.8(c) displays the time evolution of the coherence factor for ΩRC = 0.1ΩJ.
Using the Gaussian property of the noise η, one can compute it by

⟨cosϕ(t)⟩ = cosϕ0(t)e
−[⟨ϕ2(t)⟩−ϕ2

0(t)]/2. (5.67)

Figure 5.8(c) shows that the coherence decays earlier at a higher temperature, which
indicates that thermal fluctuations destroy the coherence. The asymptotic values of the
coherence factor are dependent on the damping, as illustrated in Fig. 5.9. The depen-
dence on ΩRC reflects the dependence of the variance as in Eq. (5.67). One can see that
the decay of coherence at a higher temperature gets gradual with larger damping. This
behavior can be interpreted that the large friction suppresses the deviation of the co-
herence due to thermal fluctuations, while the coherence would be destroyed by thermal
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Figure 5.9: Temperature dependence of the coherence factor in the long-time limit
⟨cosϕ(t→ ∞)⟩ [93]. The solid curve stands for the result in the underdamped limit ΩRC/ΩJ →
0. The dotted, dashed, and dotted-dashed curves represent the results for ΩRC/ΩJ = 10, 20, 50,
respectively, obtained by Eq. (5.60). We set 2eΩJ/Ic = 10−2 and V0 = ℏΩJ/(2e).

fluctuations with small friction. However, the figure indicates that even in the under-
damped limit ΩRC/ΩJ → 0, the coherence keeps finite as ⟨cosϕ(∞)⟩ → exp [−eΩJ/Ic]
at T = 0. This result implies that a supercurrent flows even in the underdamped limit
at T = 0 contrary to the picture of the Schmid-Bulgadaev transition, which claims that
the junction is insulating with a resistance above a critical resistance [235, 236]. This
consequence is consistent with the recent work in Ref. [237, 238] on the absence of the
Schmid-Bulgadaev transition.

In a similar manner, one can obtain the dynamics of the voltage in the absence of
noise as

V0(t) =
Φ0

2π
ϕ̇0(t)

= V0
e−ΩRCt√

1− Ω2
RC/Ω

2
J

[
− ΩRC

ΩJ
sin

(√
Ω2
J − Ω2

RCt

)
+

√
1−

Ω2
RC

Ω2
J

cos

(√
Ω2
J − Ω2

RCt

)]
,

(5.68)
and the two-point correlation of the voltage as

〈
V (t)V (t′)

〉
= V0(t)V0(t

′) +

(
Φ0

2π

)2 2

R

∫ ∞

−∞

dω

2π
ℏω coth

(
ℏω

2kBT

)
eiω(t−t′)

× [∂tGt(ω) + iωGt(ω)] [∂t′Gt′(−ω)− iωGt′(−ω)] . (5.69)

Figure 5.10(a) illustrates the dynamics of the autocorrelation function of the voltage
⟨V 2(t)⟩ for kBT = 0.1ℏΩJ with several values of the damping constant. Similar to that
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Figure 5.10: Autocorrelation function of the voltage
〈
V 2(t)

〉
[93]. The upper panel (a) displays

the results for kBT/ (ℏΩJ) = 0.1. The blue solid, orange dotted, and green dashed curves
stand for the results for ΩRC/ΩJ = 0.1 (underdamped), ΩRC/ΩJ = 1 (critically damped),
and ΩRC/ΩJ = 2 (overdamped), respectively. The lower panel (b) displays the results for
ΩRC/ΩJ = 0.1. The blue solid, orange dotted, and green dashed curves stand for the results for
kBT/ (ℏΩJ) = 0.1, 10, 50, respectively. We set 2eΩJ/Ic = 10−2 and V0 = ℏΩJ/(2e).

of the phase in Fig. 5.8(a), one can see that the correlation of the voltage is strongly
suppressed as one increases ΩRC/ΩJ. The asymptotic correlation in the long-time limit
is also dependent on ΩRC as in Eq. (5.64) as a consequence of the quantum fluctua-
tions similar to the phase correlation. As well as the phase correlation, we expect that
this dependence on the damping constant can also be experimentally observed. The
difference from the phase correlation is that, even in the long-time limit, the integral in
Eq. (5.69) does not converge in general. The voltage correlation in Eq. (5.69) indeed
converges only in the classical limit with any damping, or in the underdamped limit with
any temperature regime. In the underdamped limit, the asymptotic value converges to
2eΩJ/Ic ·V 2

0 coth [ℏΩJ/ (2kBT )], which recovers the classical limit. Figure 5.10(b) shows
the results with different temperature for ΩRC = 0.1ΩJ. As well as the phase correlation
in Fig. 5.8(b), Fig. 5.10(b) indicates that thermal fluctuations enhance the correlation
of voltage over a long time.
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Figure 5.11: Dynamics of the variances of the superconducting phase and voltage with ΩRC/ΩJ =
0.1 and kBT = 0.1ℏΩJ, ℏΩJ.

Let us remark on the differences from the head-to-tail BJJ case analyzed in Sec. 5.2.
In the RCSJ circuit, the phase variance shown in Fig. 5.8(a) is less enhanced compared to
the one in a BJJ displayed in Fig. 5.4(a). The giant fluctuations in the relative phase in a
BJJ originate from the intrinsic coupling between the Josephson mode and bath modes
based on the velocity-coupling model, while the RCSJ circuit involves only extrinsic
coupling as in the standard CL model. Furthermore, the variance of the conjugate
variable exhibits in-phase oscillations in a BJJ as obtained in Figs. 5.4 while it exhibits
out-of-phase oscillations in a RCSJ circuit as shown in Fig. 5.11. The conjugate variable
is the population imbalance in a BJJ, while it is the voltage in a RCSJ circuit. This
different oscillatory behavior is also the consequence of the intrinsic coupling with bath
modes in a head-to-tail BJJ.

5.3.2 Effects of external current

In the presence of the external current I, instead of Eq. (5.46), the deterministic part of
the superconducting phase is governed by [239]

ϕ̈0 + 2ΩRCϕ̇0 +Ω2
Jϕ0 = Ω2

J

I

Ic
, (5.70)

81



5.3. SUPERCONDUCTING JOSEPHSON CIRCUIT

0

0.5

1

1.5

2

0 5 10 15 20 25 30

Figure 5.12: Autocorrelation function
〈
ϕ2(t)

〉
for ΩRC/ΩJ = 0.1 and kBT/ (ℏΩJ) = 0.1 [93].

The blue solid, orange dotted, and green dashed lines respectively stand for the results for
I/Ic = 0, 0.1, 0.5. We set 2eΩJ/Ic = 10−2 and V0 = ℏΩJ/(2e).

and the resulting deterministic part of the phase ϕ0 is given by

ϕ0(t) =
ΩJ√

Ω2
J − Ω2

RC

[(
2πV0
Φ0ΩJ

− ΩRC

ΩJ

I

Ic

)
e−ΩRCt sin

(√
Ω2
J − Ω2

RCt

)

+

√
1−

(
ΩRC

ΩJ

)2 I

Ic

[
1− e−ΩRCt cos

(√
Ω2
J − Ω2

RCt

)]]
, (5.71)

which recovers Eq. (5.53) in I = 0. Since we are working within the linear regime,
the transition to the running state due to the tilted washboard potential is absent in
this case and the external current just shifts and intensifies the deterministic part of
the phase instead, as shown in Fig. 5.12. With a larger external current, the magni-
tude of phase correlation is more intensified and shifted. In order to justify the linear
approximation we employed above, it is required to use the relatively small external
current. Under the original washboard potential in Eq. (5.37), with a large external
current, the potential has no extremum and the phase flows away from the initial phase
as illustrated in Fig. 5.7(b). This running state strongly enhances the deterministic part
of the phase correlation

〈
ϕ20(t)

〉
in the long-time regime, which would make the noise

contribution negligible. With a sufficiently small current, on the other hand, the phase
should oscillate around an extremum of the potential as shown in Fig. 5.7(a), and the
linear approximation is expected to well describe the dynamics. Based on this discussion,
we used three relatively small values of external current I/Ic = 0, 0.1, 0.5 in Fig. 5.12.
In t → ∞, the correlation function asymptotically approaches the nonzero asymptotic
value of the deterministic part ϕ20(t→ ∞) → I/Ic plus that of the variance.
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5.4 Quantum correction to Josephson frequency

In the last two sections, we considered the effects of quantum fluctuations on the dynam-
ics of correlation functions. In addition, the Josephson frequency itself is also subject
to quantum corrections. In this final section, we show the quantum correction to the
Josephson frequency through effective action formalism, which can be verified also by
another approach through equations of motion discussed in Appendix E [94].

Let us start with the action of the simplest Josephson junction: a spatially zero-
dimensional Bose Josephson junction given by

SBJJ[Ψ1,Ψ
∗
1,Ψ2,Ψ

∗
2] =

∫
dt LBJJ[Ψ1,Ψ

∗
1,Ψ2,Ψ

∗
2]

=

∫
dt

∑
a=1,2

(
iℏΨ∗

aΨ̇a −
U

2
|Ψa|4

)
+
J

2
(Ψ∗

1Ψ2 +Ψ∗
2Ψ1)

 ,
(5.72)

where Ψa(t) is the adimensional complex field of bosons in the ath site at real-time t, U
is the on-site interaction strength of particles, J is the tunneling energy, and dot stands
for the time-derivative. The Madelung transformation Ψa(t) =

√
Na(t)e

iϕa(t) with the
number of bosons Na(t) and the phase angle ϕa(t) in the ath site leads to the BJJ action
SBJJ[ϕ, z, ϕ̄,N ] =

∫
dt LBJJ[ϕ, z, ϕ̄,N ] with

LBJJ[ϕ, z, ϕ̄,N ] =
iℏ
2
Ṅ − U

4
N2 +

ℏ
2
N
(
zϕ̇− ˙̄ϕ

)
− U

4
N2z2 +

J

2
N
√
1− z2 cosϕ, (5.73)

and
N(t) = N1(t) +N2(t), z(t) =

N1(t)−N2(t)

N(t)
,

ϕ̄(t) = ϕ1(t) + ϕ2(t), ϕ(t) = ϕ2(t)− ϕ1(t). (5.74)

The relative action only in terms of the relative quantities S[ϕ, z] =
∫
dt L(ϕ, z) can be

obtained by integrating out the total number of bosons N(t) and the total phase ϕ̄(t)
as ∫

DϕDz eiS[ϕ,z]/ℏ =

∫
DΨ1DΨ∗

1DΨ2DΨ∗
2 e

iSBJJ[Ψ1,Ψ∗
1,Ψ2,Ψ∗

2]/ℏ

=

∫
DϕDz

∫
DN ei

∫
dt[LBJJ[ϕ,z,ϕ̄,N ]−ℏṄϕ̄/2]/ℏ

∫
Dϕ̄ ei

∫
dtṄϕ̄/2.

(5.75)
The integral with respect to ϕ̄ in Eq. (5.75) yields δ[Ṅ ] and the total number of boson
N turns out to be a constant of motion. Consequently, the relative Lagrangian is found
to be

L[ϕ, z] =
ℏN
2
zϕ̇− UN2

4
z2 +

JN

2

√
1− z2 cosϕ. (5.76)

Here, we omitted negligible constants that stem from the Jacobian for the Madelung
transformation in Eq. (5.75).
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One of the simplest approximations to analyze the quantum dynamics governed by
Eq. (5.76) is the saddle-point (mean-field) approximation. Within this saddle-point
approximation, we focus only on the configurations extremizing the action satisfying the
Euler-Lagrange equations given by

ℏϕ̇ = J
z√

1− z2
cosϕ+ UNz, ℏż = −J

√
1− z2 sinϕ. (5.77)

Equations (5.77) describe the mean-field dynamics of the macroscopic quantum tunnel-
ing in the Josephson junction.

5.4.1 Josephson oscillations in the linear regime

In the regime with small amplitude of oscillations |ϕ(t)| ≪ 1 and |z(t)| ≪ 1, the relative
Lagrangian (5.76) is simplified as

L(quad)[ϕ, z] =
ℏN
2
zϕ̇− JN

4
ϕ2 − JN + UN2

4
z2. (5.78)

The quadratic Lagrangian (5.78) produces the linearized equations of motion:

ℏϕ̇ = (J + UN)z, ℏż = −Jϕ, (5.79)

which are equivalent to two sets of uncoupled harmonic equations as

ϕ̈+Ω2ϕ = 0, z̈ +Ω2z = 0, (5.80)

with the Josephson frequency

Ω =

√
J(J + UN)

ℏ
=


ΩR =

J

ℏ
(UN/J ≪ 1),

ΩJ =

√
JUN

ℏ
(UN/J ≫ 1).

(5.81)

In the Rabi regime UN/J ≪ 1, the Josephson frequency (5.81) reduces to the Rabi
frequency ΩR. In the Josephson regime UN/J ≫ 1, on the other hand, it reduces to ΩJ.

5.4.2 Effective phase action

To consider quantum corrections to the standard Josephson frequency (5.81), we first
derive the phase action. Expanding the relative Lagrangian (5.76) up to the Gaussian
level with respect to the population imbalance z(t), we obtain

L[ϕ, z] =
ℏN
2
zϕ̇− UN2 + JN cosϕ

4
z2 +

JN

2
cosϕ. (5.82)

One may think that a phase action can be obtained by naively integrating out the
population imbalance z(t) as we performed in Eq. (5.75) in terms of N and ϕ̄. However,
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the second term involving ϕ proportional to z2 indeed produces a modification of the
resulting kinetic term and path-integral measure. To precisely discuss this procedure of
integrating out population imbalance, we introduce a path-integral propagator for the
phase

K(ϕf , tf |ϕi, ti) =
∫ {ϕf ,tf}

{ϕi,ti}
Dϕ
∫

Dz eiS[ϕ,z]/ℏ, (5.83)

with S[ϕ, z] =
∫
dt L[ϕ, z] and L[ϕ, z] given by Eq. (5.82). To perform the integral over

the z(t) paths, it is useful to use the time-sliced representation of the propagator. In
that case, the paths are subdivided into n time infinitesimal steps δt = (tf − ti)/n, and
one lets n to be infinity at the end of the calculation. The path integral over z(t) is
then performed as an n-fold integral over the variables zj with j = 1, · · · , n. Performing
these integrals, we find

K(ϕf , tf |ϕi, ti) =

n−1∏
j=1

∫ 2π

0
dϕj

 n∏
j=1

Kinf(ϕj , tj |ϕj−1, tj−1), (5.84)

where the infinitesimal propagator is found to be

Kinf(ϕj , δt|ϕj−1, 0) =

√
ℏN

(UN + J cosϕj)4πiδt

× exp

[
− ℏN(ϕj − ϕj−1)

2

4i(UN + J cosϕj)δt
+

i

2ℏ
JNδt cosϕj

]
. (5.85)

The prefactor of the exponential in Eq. (5.85) is a normalization factor that ensures the
condition

lim
δt→0

Kinf(ϕj , δt|ϕj−1, 0) = δ(ϕj − ϕj−1). (5.86)

This prefactor is crucial to remove the divergence resulting from the quantum fluctua-
tions of ϕ(t) [240]. By setting n → ∞, the exponential phase factor for the ϕ(t) path
can be represented as exp[iS0[ϕ]/ℏ] with the phase action

S0[ϕ] =

∫
dt

[
Nℏ2

4 (UN + J cosϕ)
ϕ̇2 +

JN

2
cosϕ

]
, (5.87)

and the full propagator in Eq. (5.83) is given by

K(ϕf , tf |ϕi, ti) =
∫ {ϕf ,tf}

{ϕi,ti}
Dϕ eiS0[ϕ]/ℏ. (5.88)

In Eq. (5.88), the path-integral measure is related to the prefactor in Eq. (5.85) as∫
Dϕ = lim

n→∞

n∏
j=1

∫ π

−π

dϕj√
(U + J cosϕj/N) 4πiδt/ℏ

. (5.89)

Note that the phase action S0[ϕ] can be also obtained by inserting the linearized equation
of motion z = ℏϕ̇/(UN + J cosϕ) into Eq. (5.82).
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5.4.3 One-loop correction to Josephson frequency

In the Josephson regime UN ≫ J , the integral measure (5.89) no longer depends on
ϕ(t) and the phase action reduces to

SJ[ϕ] =

∫
dt

[
MJ

2
ϕ̇2 − V [ϕ]

]
, (5.90)

with MJ = ℏ2/2U and V [ϕ] = MJΩ
2
J cosϕ/2. Thanks to the negligible higher-order

contributions of ϕ in the kinetic term, Eq. (5.87) is simplified to Eq. (5.90). It is the
familiar action of a capacitively shunted superconducting Josephson circuit in which the
population imbalance of Cooper pairs is tiny |z(t)| ≪ 1 but the total number of Cooper
pairs N is large. In this framework, Ic = eJN/ℏ corresponds to the critical electric
current and C = 2e2/U corresponds to the electric capacitance appeared in Sec. 5.3
[241].

To determine quantum corrections to the Josephson frequency ΩJ, we consider the
quantum effective action ΓJ[ϕ]. It is a modified expression of the original phase action
SJ[ϕ] taking into account quantum corrections. Extremization of ΓJ[ϕ] provides the
exact equation of motion for the expectation value of the field ϕ(t). First, we rewrite
the potential term in Eq. (5.90) as

V [ϕ] =
MJΩ

2
J

2
ϕ2 + Ṽ [ϕ], (5.91)

with

Ṽ [ϕ] =MJΩ
2
J (1− cosϕ)−

MJΩ
2
J

2
ϕ2 = λϕ4 +O

(
ϕ6
)
, (5.92)

with the four-point coupling constant λ = −JN/48. Within the effective action for-
malism, it is the potential Ṽ [ϕ] that encodes quantum fluctuations [242]. Up to the
quadratic order in the derivative expansion [242, 243, 244], the quantum effective action
is given by

ΓJ[ϕ] =

∫
dt

[
Z[ϕ]

2
ϕ̇2 − Veff [ϕ]

]
, (5.93)

where
Z[ϕ] =MJ + Z1[ϕ] + Z2[ϕ] + · · · , (5.94)

is the effective mass with Zn=1,2,··· ∝ ℏn and

Veff [ϕ] = V [ϕ] + V
(1)
eff [ϕ] + V

(2)
eff [ϕ] + · · · , (5.95)

is the effective potential with V
(n=1,2,··· )
eff ∝ ℏn represented as ℏ expansions, or equiva-

lently, loop expansions [242]. In particular, to the first order of the ℏ expansions, we
find

Z1[ϕ] =
ℏ

32M2
J

[
∂3ϕṼ [ϕ]

]2
[
Ω2
J +

1

MJ
∂2ϕṼ [ϕ]

]5/2 , (5.96)
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and

V
(1)
eff [ϕ] =

ℏ
2

[√
Ω2
J +

1

MJ
∂2ϕṼ [ϕ]− ΩJ

]
. (5.97)

Note that the original potential V [ϕ] must be convex so that Eqs. (5.96) and (5.97)
are real. This is realized in the domain |ϕ| <

√
2, which has already been satisfied

under |ϕ| ≪ 1 that makes the approximation from Eq. (5.87) to Eq. (5.90) valid. By
extremizing ΓJ[ϕ], the equation of motion with the one-loop correction reads

[MJ + Z1[ϕ]] ϕ̈+
∂ϕZ1[ϕ]

2
ϕ̇2 + ∂ϕ

[
V [ϕ] + V

(1)
eff [ϕ]

]
= 0. (5.98)

The equation of motion (5.98) is obtained by the second-order derivative expansion and
neglecting higher-order contributions of ℏ. This approximation is valid under [242]∣∣∣∣ λϕ4

MJΩ2
Jϕ

2/2

∣∣∣∣≪ 1. (5.99)

By inserting the oscillator length ϕ =
√

ℏ/MJΩJ into Eq. (5.99), one obtains another
condition ∣∣∣∣ 2ℏλ

M2
JΩ

3
J

∣∣∣∣≪ 1. (5.100)

The condition (5.99) reads |ϕ| ≪ 2
√
3 which is already satisfied under |ϕ| ≪ 1. The

latter one (5.100) reads UN/J ≪ 36N2. This condition indicates that the approximation
is valid under a sufficiently small ratio between the onsite interaction energy and the
tunneling energy within the Josephson regime 1 ≪ UN/J ≪ 36N2. The effective mass
Z1[ϕ] turns out to give higher-order contributions and provides no correction to the
Josephson frequency. Up to the quadratic level of ϕ, the one-loop effective potential is
found to be

V
(1)
eff [ϕ] =

ℏΩJ

2

(√
cosϕ− 1

)
≃ 3λ

MJΩJ
ϕ2 = −

√
JUN

8ℏ
ϕ2. (5.101)

As a result, we obtain the one-loop correction to the Josephson frequency as

Ω
(1)
J = ΩJ

√
1− 1

2

√
U

JN
. (5.102)

Obviously, Eq. (5.102) recovers ΩJ in Eq. (5.81) for N ≫ 1. In a capacitively shunted
superconducting Josephson circuit, Eq. (5.102) reads

Ω(1)
p = Ωp

√√√√
1− 1

2

√
2e3

ℏCIc
, (5.103)

87



5.4. QUANTUM CORRECTION TO JOSEPHSON FREQUENCY

with Ωp =
√
2eℏIc/ℏC being the Josephson plasma frequency. Based on the experi-

ments of the Bose Josephson junction with 87Rb atoms trapped in a double-well po-
tential reported in Ref. [42], the number of bosons is typically N = 2500 and the ratio
between the interaction and tunneling energy is UN/2J ∼ 102. These experimental data
produce (ΩJ − Ω

(1)
J )/ΩJ ≃ 0.1%, which indicates that the one-loop correction slightly

reduces the Josephson frequency. One could observe the effect of this quantum correc-
tion more significantly in the deep Josephson regime by increasing the ratio UN/J at
fixed N , in other words, by increasing the onsite interaction strength U or decreasing
the Josephson coupling J under Eq. (5.100) because Ω

(1)
J /ΩJ = (1−ΩJ/2NΩR)

1/2 with
ΩJ/ΩR =

√
UN/J . In a superconducting Josephson circuit, the typical experimental

value 2eΩp/Ic = 2(2e3/ℏCIc)1/2 ≃ 2.3× 10−3 in Ref. [233] results in (Ωp − Ω
(1)
p )/Ωp ≃

0.03%, which slightly reduces the plasma frequency in the order of 10−4. A larger value
of 2eΩp/Ic could amplify the quantum correction.

Our obtained results of one-loop quantum correction to the Josephson frequency in
Eq. (5.102) can be also verified by another approach through the equation of motion.
For the details, see Appendix E. Experimentally, our results can be tested not only in
an atomic Josephson junction but also in a superconducting Josephson circuit.
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Chapter 6

Conclusion

In this PhD thesis, we theoretically investigated multicomponent superfluidity from the
viewpoint of the BKT transition in a 2D atomic superfluid and Josephson dynamics in
atomic Josephson junctions and superconducting Josephson circuits.

In Chap. 2, we overviewed fundamental knowledge of quantum fluids to proceed with
the discussion in the following chapters. In particular, we explained quantized vortices
in superfluids, which are responsible for the BKT transition in 2D.

In Chap. 3, we presented the theoretical framework to study sound modes based
on Tisza-Landau’s two-fluid hydrodynamics. We analyzed the first and second sound
velocities in a single-component collisional Bose superfluid in D-dimension including
the beyond-mean-field quantum correction. It revealed the distinct behaviors of the
hybridization temperature characterizing the hybridization of density and entropy modes
in a D-dimensional superfluid. In 2D, in particular, our results of sound velocities are
in fair agreement with the recent experimental data.

Chapter 4 was devoted to the study of 2D binary Bose superfluids and the BKT
transition. In contrast to a single-component superfluid considered in Chap. 2, multi-
component superfluids have half-quantized vortices and vortex molecules. We clarified
the BKT transition resulting from these exotic vortex excitations. The BKT transition
temperature turned out to be amplified by increasing the Rabi coupling, while it be-
haves nonmonotonically with respect to the two-body intercomponent coupling. The
enhancement of the superfluid transition temperature can be understood from the two
branches of elementary excitations. In addition, we analyzed the first and second sound
velocities in the binary Bose mixture. We found the parameter regime in which the
hybridization is hindered. In particular, the hybridization is suppressed by a finite Rabi
coupling due to the gapped elementary excitations, which can be tested experimentally
with ultracold atoms.

In Chap. 5, we clarified the dynamical properties of the multicomponent superfluid
focusing on Josephson junctions. We showed that a Bose Josephson junction can be
mapped to a Caldeira-Leggett-type system in which the Josephson mode is coupled to
the bath modes through an intrinsic coupling. As a result, the Josephson mode exhibits

89



damped Langevin dynamics and the correlation functions are amplified by the quantum
fluctuations. The Josephson mode in a superconducting Josephson circuit also shows the
damped Langevin dynamics, but the dynamics of correlation functions are different from
that in the Bose Josephson junction due to the extrinsic coupling through the resistance.
Finally, we elucidated the quantum correction also to the Josephson frequencies via the
effective action formalism. Our results of dynamics in multicomponent superfluids would
provide a wide application to a broad range of junction systems.
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Appendix A

Nelson-Kosterlitz renormalization
group analysis

This Appendix is devoted to the derivation of the Nelson-Kosterlitz renormalization
group equations in a 2D Bose superfluid. First, we see the suppression of amplitude
fluctuations in a 2D Bose superfluid allowing us to focus only on the phase fluctuations.
Then, we show the connection between a 2D dilute Bose superfluid and the XY model
employing Popov’s treatment. Next, we show the equivalence of the XY model with
the sine-Gordon model in the presence of vortices. Starting from the equivalent sine-
Gordon model, we derive the Nelson-Kosterlitz renormalization group equations through
a correlation function.

A.1 Suppression of amplitude fluctuations

Let us consider the fluctuations of the uniform superfluid order parameter given by

Ψ̂(r) = Ψ + δΨ̂(r), (A.1)

similar to Eq. (4.12). To distinguish the amplitude and phase fluctuations, we decompose
the field operator as

Ψ̂(r) =
√
n+ δn̂(r)eiθ̂(r). (A.2)

In this manner, the amplitude and phase fluctuation fields are related to δΨ̂(r) as

δn̂(r) =
√
n
[
δΨ̂†(r) + δΨ̂(r)

]
, θ̂(r) =

i

2
√
n

[
δΨ̂†(r)− δΨ̂(r)

]
. (A.3)

From the Bose commutation relation in Eq. (2.2) with respect to Ψ̂(r), the relation (A.3)
yields

[δn̂(r), θ̂(r)] = iδ(r − r′), (A.4)
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indicating that the density and phase fluctuation fields are conjugated. Inserting Eq. (A.2)
into Eq. (2.1) under Eq. (2.15) and Vext(r) = 0, up to the quadratic order of δΨ̂(r), we
obtain

Ĥ =

∫
dr

[
− ℏ2

2m

[
1

4n
δn̂†(r)∇2δn̂(r) + nθ̂†(r)∇2θ̂(r)

]
+
g

2
δn̂†(r)δn̂(r)

]
. (A.5)

Here, we omitted a constant mean-field energy term. The Fourier expansions

δn̂(r) =
∑
k

eik·rδn̂k, δn̂†(r) =
∑
k

e−ik·rδn̂†k, (A.6a)

θ̂(r) =
∑
k

eik·r θ̂k, θ̂†(r) =
∑
k

e−ik·r θ̂†k, (A.6b)

with δn̂k = δn̂†−k and θ̂k = θ̂†−k give [50]

Ĥ =
∑
k

[
εk + 2gn

4n
δn̂†kδn̂k + nεkθ̂

†
kθ̂k

]
. (A.7)

Under the Bogoliubov transformation

γ̂k = ukδn̂k + vkθ̂k,

γ̂†−k = u∗−kδn̂k + v∗−kθ̂k, (A.8)

with the choice of the coherence factors

uk =

√
Ek

4nεk
, vk =

i

2uk
= i

√
nεk
Ek

, (A.9)

and Ek =
√
εk(εk + 2gn), we can diagonalize Eq. (A.7) and obtain

Ĥ =
∑
k

Ekγ̂
†
kγ̂k, (A.10)

in addition to a constant ground state energy.
To see the magnitude of each of the fluctuations, let us consider ∆n ≡

∑
k ∆nk and

∆θ ≡
∑

k ∆θk with [245]

∆nk ≡ ⟨δn̂†kδn̂k⟩ = Tr
[
e−βĤδn̂†kδn̂k

]
= n

εk
Ek

[2fT (Ek)− 1] , (A.11a)

∆θk ≡ ⟨θ̂†kθ̂k⟩ = Tr
[
e−βĤ θ̂†kθ̂k

]
=

1

4n

Ek

εk
[2fT (Ek)− 1] . (A.11b)

First of all, the relative weight of the fluctuations at each momentum is

∆nk
∆θk

= 4n2
k2

k2 + 8πη2n
, (A.12)
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where η2 is the gas parameter in 2D defined by Eq. (3.33). Equation (A.12) indi-
cates that, in the low-temperature regime in which only the low momentum states are
occupied, the amplitude fluctuations are less significant than the phase fluctuations
∆nk/∆θk → 0. In the short-wavelength regime, the magnitude of the amplitude fluc-
tuations becomes comparable to the one of phase fluctuations ∆nk/∆θk ∼ 1. On the
other hand, in the higher temperature regime kBT ≫ Ek, the Bose distribution function
can be simplified as fT (Ek) ≃ kBT/Ek and the momentum summation results in

∆n

n2
=

2

nλ2T
ln

(
kBT

2gn

)
. (A.13)

Consequently, Eq. (A.13) shows the suppression of the amplitude fluctuations in a 2D
Bose gas also in the higher temperature regime kBT ≫ Ek as long as nλ2T ≫ 1, namely
Ek ≪ kBT ≪ 2πnℏ2/m.

A.2 Popov’s treatment

In Eq. (2.58), we used the substitution of the superfluid density |Ψ|2 → ns. We derive
this substitution through Popov’s treatment in this section [50, 246]. In Sec. A.1, we saw
that the phase fluctuations are dominant rather than the amplitude fluctuations in 2D.
Based on this discussion, we decompose the Bose field Ψ into the fast varying variable
Ψ̃ and the slowly varying variable θ as

Ψ(r) = Ψ̃(r)eiθ(r). (A.14)

We consider grand canonical Hamiltonian with a chemical potential µ, a normal fluid
velocity vn, and superfluid velocity vs given by

K =

∫
dr

[
ℏ2

2m
|∇Ψ(r)|2 + g|Ψ(r)|4

]
− µN − vn · P − s · I

=

∫
dr

[
ℏ2

2m
|(−iℏ∇−mvn)Ψ(r)|2 +

(
g|Ψ(r)|2 − µ− mv2n

2

)
|Ψ(r)|2 − ℏs ·∇θ

]
,

(A.15)
with

P =
iℏ
2

∫
dr [(∇Ψ∗)Ψ−Ψ∗∇Ψ] , (A.16)

being the total momentum and

I = ℏ
∫

dr∇θ, (A.17)

being the topological invariant and its conjugate variable s associated with the superfluid
velocity vs. The thermodynamic potential is given by

Ω[T, µ,vn, s] = − 1

β
lnZ[T, µ,vn, s], Z[T, µ, vn, s] = Tr[e−βK ]. (A.18)
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The thermodynamic potential produces the ensemble averages as

⟨P ⟩ = − ∂Ω

∂vn
, ⟨I⟩ = −∂Ω

∂s
, ⟨N⟩ = −∂Ω

∂µ
. (A.19)

The definition of the grand canonical Hamiltonian (A.15) gives a relation

Ω[T, µ, vn, s] = Ω

[
T, µ+

mv2n
2
, 0, s

]
− V mvn · s. (A.20)

Equation (A.20) is a general relation independent of the interactions [50]. In vn → 0,
Eq. (A.20) yields

mvn
∂Ω

∂µ
− ∂Ω

∂vn
= V ms, (A.21)

which is equivalent to
⟨P ⟩ = V m (⟨n⟩vn + s) , (A.22)

with ⟨n⟩ = ⟨N⟩/V being the average density. The current density given by (3.28) is
related to the total momentum as J = ⟨P ⟩/mV and Eqs. (A.22) and (3.18) give

s = ns (vs − vn) . (A.23)

Here, we introduce the macroscopic superfluid density by

vs =
1

mV
⟨I⟩ = − 1

mV

∂Ω

∂s
. (A.24)

Indeed, in vn → 0, J → s = nsvs and

vs =
s

ns
= − 1

mV

∂Ω

∂s
. (A.25)

By acting ∇s· on Eq. (A.25) and using ∇s · s = D, Eq. (A.25) reads

1

ns
= − 1

DmV
∇2

sΩ

∣∣∣∣
s→0

, (A.26)

With ds = ns dvs and Ω[T, µ, vn, s] = −P [T, µ,vn,vs]V with P[T, µ,vn,vs] the pressure,
we find the formula of the superfluid density as

ns = − 1

Dm
∇2

vs
P[T, µ, 0,vs]

∣∣∣∣
vs→0

. (A.27)

The Euclidean action corresponding to the grand canonical Hamiltonian (A.15) is
given by

SE[Ψ] =

∫ ℏβ

0
dτ

∫
dr

[
ℏΨ∗∂τΨ+

ℏ2

2m
|∇Ψ|2 + g|Ψ|4 − µ|Ψ|2

− iℏ
2
vn · [(∇Ψ∗)Ψ−Ψ∗∇Ψ]− s ·∇θ

]

= SE[Ψ̃] +

∫ ℏβ

0
dτ

∫
dr

[(
iℏ∂τθ +

ℏ2

2m
(∇θ)2

)
|Ψ̃|2 + iℏ2

2m
∇θ · [(∇Ψ∗)Ψ−Ψ∗∇Ψ]

]
.

(A.28)
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The second term in Eq. (A.28) gives shifts to the chemical potential and the normal
fluid velocity as

µ→ µ̃ = µ− iℏ∂τθ −
ℏ2

2m
(∇θ)2, (A.29a)

vn → ṽn = vn −
ℏ
m
∇θ. (A.29b)

The partition function is given by

ZE =

∫
DΨDΨ∗ e−SE[Ψ]/ℏ =

∫
Dθ Zθ, (A.30)

with
Zθ =

∏
j

Zj , Zj =

∫
(∆τj ,∆Vj)

DΨ̃ e−SE[Ψ]/ℏ. (A.31)

Here, in Eq. (A.31), we divide the system volume and imaginary time path into parts
ℏβ =

∑
j ∆τj , V =

∑
j ∆Vj such that the spacetime variation of the superfluid phase

θ is locally slow in each cell: ∂τθ = const. and ∇θ = const. and there is no correlation
between the different cells. Then, by performing the path integral in terms of Ψ̃ within
each cell, one finds

Zj = exp
[
−∆τjΩ[0, µ̃, ṽn, 0]/ℏ

]
= exp

[
∆τj∆VjP[0, µ̃, ṽn, 0]/ℏ

]
= exp

[
∆τj∆VjP[0, µ− iℏ∂τθ,vn = 0,vs = ℏ∇θ/m]/ℏ

]
. (A.32)

In the last equality, we used Eq. (A.20). In vn → 0, we find

Zθ = e−SE[θ]/ℏ, (A.33)

with

SE[θ] = −
∫ ℏβ

0
dτ

∫
drP0[µ− iℏ∂τθ,vs = ℏθ/m]

=

∫ ℏβ

0
dτ

∫
dr

[
−P0[µ, 0] + iℏ∂τθ

∂P0[µ, 0]

∂µ
− v2s

2D
∇2

vs
P0 + · · ·

]
, (A.34)

with P0[µ,vs] being the pressure at zero temperature and vn = 0. Note that odd powers
of vs = ℏ∇θ/m vanishes by the spatial inversion symmetry. In particular with time-
independent superfluid phase θ(r), the formula of the superfluid density (A.27) leads to

SE[θ] =

∫ ℏβ

0
dτ

∫
dr

ℏ2ns
2m

(∇θ)2, (A.35)

up to the quadratic order of vs = ℏ∇θ/m. Equation (A.35) coincides with Eq. (2.58),
which is obtained just by inserting the Madelung transformation (2.57) and substitut-
ing n → ns. Consequently, this substitution turns out to be equivalent to Poppov’s
treatment integrating out fast amplitude variable.
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A.3 Sine-Gordon model

In this section, we show another approach to derive the NK RG equations (2.74) through
the 2D sine-Gordon model given by

SsG[ϕ] = S0[ϕ]−
2ℏgsG
(2πα)2

∫
d2r cos (2ϕ), (A.36)

with
S0[ϕ] =

ℏ
4πKsG

∫
d2r (∇ϕ)2, (A.37)

and ϕ(r) being the analytic real field where KsG and gsG are the coefficients of the
kinetic term and cosine potential, respectively, and α is the short-range cutoff.

A.3.1 Equivalence to XY model

Using the identity cos (2ϕ) =
∑

σ=±1 e
2iσϕ/2, we can perturbatively calculate the parti-

tion function for the sine-Gordon model

ZsG =

∫
Dϕ e−SsG[ϕ]/ℏ (A.38)

as

ZsG =
∞∑
n=0

1

n!

( gsG
2π2

)n ∫  n∏
j=1

d2xj

∫ Dϕ e−S0[ϕ]/ℏ cos [2ϕ(x1)] · · · cos [2ϕ(xn)]

=
∞∑
n=0

1

n!

( gsG
4π2

)n ∫  n∏
j=1

d2xj

 ∑
{σj}=±1

〈
e2i

∑n
j=1 σjϕ(xj)

〉
0
,

(A.39)
where xj = rj/α is the dimensionless length scaled by the short-range cutoff and ⟨O⟩0 ≡
Z−1
0

∫
DϕO[ϕ]e−S0[ϕ]/ℏ with Z0 =

∫
Dϕ e−S0[ϕ]/ℏ. The ensemble average in Eq. (A.39)

can be computed as〈
e2i

∑n
j=1 σjϕ(xj)

〉
0
=

1

Z0

∫
Dϕ e2i

∑n
j=1 σjϕ(rj)e−S0[ϕ]/ℏ

= e4KsG
∑

i<j σiσj ln |xi−xj |. (A.40)

Here, the Gaussian integral imposes the neutral condition
∑n

j=1 σj = 0 requiring n = 2N
is even. Using Eq. (A.40), one obtains

ZsG =

∞∑
N=0

1

(N !)2

( gsG
4π2

)2N ∫  2N∏
j=1

d2xj

 e8πKsG
∑2N

i<j σiσjC(xi−xj). (A.41)
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Comparing Eq. (A.41) and Eq. (2.66) with unit vortex charges qj = σj , we find that
the sine-Godron model and the singular part of the XY model in Sec. 2.6 are equivalent
with the correspondence of

πK = 2KsG, y =
gsG
4π2

. (A.42)

Namely, KsG plays the same role of the phase stiffness (scaled by the temperature) in
the XY model, while the coupling constant of the cosine potential gsG corresponds to
the vortex fugacity. Since the vortices discussed in the XY model are described only by
the topological part of the partition function (2.66), this equivalence is useful to derive
the equivalent RG equations (2.74) through the sine-Gordon model.

A.3.2 Derivation of renormalization group equations

Based on the correspondence with the sine-Gordon model proven in Sec. A.3.1, we derive
the NK RG equations (2.74) from the sine-Gordon model. To this end, we introduce a
correlation function

R(r1 − r2) =
〈
eiϕ(r1)e−iϕ(r2)

〉
=

1

ZsG

∫
Dϕ eiϕ(r1)e−iϕ(r2)e−SsG[ϕ]/ℏ. (A.43)

First of all, the lowest contribution without the cosine potential term is given by

R0(r1 − r2) =
〈
eiϕ(r1)e−iϕ(r2)

〉
0
= e−2πKsGC(r1−r2). (A.44)

with C(r) = ln (|r|/α)/2π. Including the effects of the cosine potential perturbatively
up to O

(
g2sG
)
, one finds the correlation function as

R(r1 − r2) = R0(r1 − r2)

+
1

2

( gsG
4π2α2

)2 ∑
σ1=±1

∑
σ2=±1

∫
d2r′

∫
d2r′′

[〈
eiϕ(r1)e−iϕ(r2)e2iσ1ϕ(r′)e−2iσ2ϕ(r′′)

〉
0

−
〈
eiϕ(r1)e−iϕ(r2)

〉
0

〈
e2iσ1ϕ(r′)e−2iσ2ϕ(r′′)

〉
0

]
(A.45)

To evaluate Eq. (A.45), it is useful to employ the formula [185]〈∏
j

eiAjϕ(rj)

〉
0

= exp

2πKsG

∑
i<j

AiAjC(ri − rj)

 , (A.46)

only if
∑

j Aj = 0. Unless the neutral condition is satisfied, the correlation function
vanishes. It indicates that only σ1 = σ2 gives a non-zero contribution to Eq. (A.45).
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The formula (A.46) results in

R(r1 − r2) = R0(r1 − r2)

+
g2sG

32π4α4

∑
σ1=±1

∫
d2r′

∫
d2r′′ e−2πKsGC(r1−r2)e−8πKsGC(r′−r′′)

[
e4πσ1KsGD(r1,r2;r′,r′′) − 1

]
= R0(r1 − r2)

[
1 +

g2sG
32π4α4

∑
σ1=±1

∫
d2r′

∫
d2r′′ e−8πKsGC(r′−r′′)

[
e4πσ1KsGD(r1,r2;r′,r′′) − 1

]]
,

(A.47)
with D(r1, r2; r

′, r′′) = C(r1 − r′) − C(r1 − r′′) − C(r2 − r′) + C(r2 − r′′). Using
R = (r′ + r′′)/2 and r = r′ − r′′ and assuming r ≪ R, one can expand the integrand in
Eq. (A.47) as

e4πσ1KsGD(r1,r2;r′,r′′) = e4πσ1KsGr·∇R[C(r1−R)−C(r2−R)]

= 1 + 4πσ1KsGr ·∇R [C(r1 −R)− C(r2 −R)]

+ 8π2KsG [r ·∇R [C(r1 −R)− C(r2 −R)]]2 +O
(
r3
)
. (A.48)

The second term proportional to σ1 in Eq. (A.48) vanishes after performing the sum-
mation

∑
σ1=±1. This expansion reduces Eq. (A.47) to

R(r1 − r2) = R0(r1 − r2)

×
[
1 +

g2sG
4π2α4

∫
d2R

∫
d2r e−8πKsGC(r)K2

sG [r ·∇R [C(r1 −R)− C(r2 −R)]]2
]

= R0(r1 − r2)

[
1−

g2sG
8π2α4

∫
d2R

∫
d2r e−8πKsGC(r)K2

sGr
2

× [C(r1 −R)− C(r2 −R)]∇2
R [C(r1 −R)− C(r2 −R)]

]

= R0(r1 − r2)

[
1 +

g2sG
2π2α4

K2
sGC(r1 − r2)

∫
r>α

d2r r2e−8πKsGC(r)

]
.

(A.49)
The last equality in Eq. (A.49) follows from ∇2

rC(r) = δ2(r). By setting R(r1 − r2) =
e−2πKeffC(r1−r2), the effective coupling strength Keff reads

Keff = KsG −
g2sG

4π3α4
K2

sG

∫
r>α

d2r r2e−8πKsGC(r)

= KsG −
y2sG
2
K2

sG

∫ ∞

1
dxx3−4KsG , (A.50)

with x = r/α. Up to O
(
g2sG
)
, Eq. (A.50) can be written as

K−1
eff = K−1

sG +
g2sG
2π2

∫ ∞

1
dxx3−4KsG . (A.51)
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As we performed in Eqs. (2.72), by splitting the integral at the boundary x = b = edl =
1 + dl and introducing

K̃−1
sG = K−1

sG +
g2sG
2π2

∫ b

1
dxx3−4KsG , g̃sG = gsGb

2−2KsG , (A.52)

Eq. (A.51) can be written as

K−1
eff = K̃−1

sG +
g̃2sG
2π2

∫ ∞

1
dx′ x′3−4K̃sG , (A.53)

after rescaling x′ = x/b, which is equivalent to Eq. (A.51). Equations (A.52) yield

∂lKsG(l)
−1 =

1

2π2
gsG(l)

2, (A.54a)

∂lgsG(l) = [2− 2KsG(l)] gsG(l). (A.54b)

Under the mapping (A.42), Eqs. (A.54) are found to be identical to the NK RG equations
(2.74).

A.4 Renormalization group equations for a binary Bose su-
perfluid

In this section, we give the detailed calculation for the derivation of the NK RG equations
(4.32) in a Rabi-coupled binary Bose mixture illustrating the difference from the single-
component Bose superfluid. The Lagrangian density for a two-component Bose mixture
is given by

L =
∑
a=1,2

[
iℏΨ∗

a∂tΨa −
ℏ2

2m
|∇Ψa|2 −

g

2
|Ψa|4

]
− g12|Ψ1|2|Ψ2|2 + ℏωR [Ψ∗

1Ψ2 +Ψ∗
2Ψ1] .

(A.55)
The Madelung transformation (4.4) with a uniform density na and time-independent
superfluid phase θa(r) gives

Lθ[θ1, θ2] = −J1
2
(∇θ1)

2 − J2
2
(∇θ2)

2 + 2ℏωRñ cos (θ1 − θ2), (A.56)

where ñ ≡ √
n1n2 and Ja=1,2 = ℏ2na/m = αaJ with J = ℏ2ns/m being the total

phase stiffness. Here, we omitted constant terms −g(n21 + n22)/2 − g12ñ
2. According

to Popov’s treatment introduced in Sec. A.2, na can be interpreted as the superfluid
density of each component. In particular, with balanced densities α1 = α2 = 1/2, we
have J1 = J2 = J/2. The Lagrangian (A.56) yields the equations of motion

J1∇2θ1 = 2ℏωR sin (θ1 − θ2), J2∇2θ2 = −2ℏωR sin (θ1 − θ2). (A.57)
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Figure A.1: Sine-Gordon kink in a Rabi-coupled binary Bose superfluid. (a) shows Rabi coupling
potential VR = −2ℏωRñ cos (θ1 − θ2). (b) shows the kink solution (A.60).

A.4.1 Sine-Gordon kinks with a finite Rabi coupling

Without Rabi coupling ωR = 0, the Lagrangian (A.55) is invariant under the U(1)
transformation of each component U(1)1: Ψ1 → eiφ1Ψ1 or U(1)2: Ψ2 → eiφ2Ψ2, and
hosts U(1)1 × U(1)2 symmetry. On the other hand, with a finite Rabi coupling, only
U(1)1+2 symmetry holds. Indeed, moving on to the basis θ± = (θ1± θ2)/

√
2, Eq. (A.56)

reads Lθ = L+ + L− with

L+ = −ℏ2n
4m

(∇θ+)
2, (A.58a)

L− = −ℏ2n
4m

(∇θ−)
2 + 2ℏωRñ cos (

√
2θ−), (A.58b)

for balanced densities n1 = n2. Equations (A.58) indicate that U(1)1−2 symmetry is
explicitly broken by the Rabi coupling while U(1)1+2 symmetry is preserved. Figure
A.1(a) illustrates the Rabi coupling potential VR = −2ℏωRñ cos (θ1 − θ2). Winding θ1−
θ2: 0 → 2π requires overcoming a potential barrier located at θ1− θ2 = π corresponding
to a kink.

Equations of motion (A.57) correspond to the local minima of the energy. They read
[184]

θ1 = α2θA, θ2 = −α1θA, (A.59)

with

θA = 4arctan ekz, k2 =
2mωR

ℏ
n

ñ
. (A.60)

Equations (A.59) are the kink solutions, which are dependent only on one spatial coor-
dinate z. Here, k−1 is the characteristic length of the kink and the tension is given by
σ = 8n

√
2ℏ3ωR/m(ñ/n)3/2 [184]. Figure A.1(b) shows the kink solution θA = θ1 − θ2.
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A.4.2 Derivation of renormalization group equations

Without the Rabi coupling ωR = 0, by inserting Eqs. (A.57) into Eq. (A.56) to eliminate
θ2, one obtains the optimized Lagrangian

Lopt
θ [θ1] = −J1

2
(∇θ1)

2 = −J
4
(∇θ1)

2, (A.61)

with balanced densities α1 = α2 = 1/2. With a finite Rabi coupling, on the other hand,
by inserting the kink solution (A.59) into Eq. (A.56), we obtain

Lopt
θ [θ1] = −J1(∇θ1)

2 +O
(
∇4
)
= −J

2
(∇θ1)

2 +O
(
∇4
)
, (A.62)

which is identical to the single-component XY model (2.58). Compared to the case with
no Rabi coupling or the single-component case described by Eq. (A.61), the effective
phase stiffness in the Lagrangian (A.62) is modified as J1 → 2J1 = J due to the coupling
between the two components through the sine-Gordon kink. This modification of the
effective phase stiffness leads to the change of the NK RG equations (4.32) with a finite
Rabi coupling. Indeed, with a finite Rabi coupling ωR > 0, Eq. (A.62) is identical to the
single-component XY model (2.58) and gives the identical NK RG equations (2.74) by
following the same procedure in Sec. A.3.2. In the absence of the Rabi coupling ωR = 0,
on the other hand, the phase stiffness is halved as in Eq. (A.61) and consequently, the
phase stiffness in the NK RG equations (4.32) are also halved.
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Algebraic long-range order in
two-dimensional Bose superfluids

In this Appendix, we explain the details of the calculation of the single-body density
matrix in Eq. (2.78). Performing the Fourier transformation

θ(r) =
∑
q

θqe
iq·r, (B.1)

we can write the XY action in Eq. (2.58) as

SXY[θ] =
ℏK
2

∑
q

q2θqθ
∗
q. (B.2)

The single-body density matrix in Eq. (2.77) can be evaluated as

ρ1(r, r
′) = n

〈
e−i[θ(r)−θ(r′)]

〉
XY

= n

〈
e
−i

∑
q θq

(
eiq·r−eiq·r

′)〉
XY

= n
〈
e−i

∑
q θ̃q(eiq·R−1)

〉
XY

= n

∫ ∏
q′ dθ̃q′ dθ̃∗q′ e−SXY[θ]/ℏe−i

∑
q θ̃q(eiq·R−1)∫ ∏

q′ dθ̃q′ dθ̃∗q′ e−SXY[θ]/ℏ
. (B.3)

with θ̃q ≡ θqe
iq·r′ and R ≡ r − r′. By performing the Gaussian integral in Eq. (B.3),

the single-body density matrix reads

ρ1(r, r
′) = n exp

[∑
q

cos (q ·R)− 1

Kq2

]
. (B.4)

Here, the wavenumber summation is expressed as∑
q

cos (q ·R)− 1

q2
=

∫ ∞

0

dq

2π

1

q

∫ 2π

0

dφ

2π
[cos (qR cosφ)− 1] . (B.5)
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For qR < 1, one can write cos (qR cosφ) ≃ 1. For qR ≫ 1, cos (qR cosφ) rapidly oscil-
lates and can be negligible after summation. As a result, by introducing an ultraviolet
cutoff R−1

c , Eq. (B.5) can be evaluated as

∑
q

cos (q ·R)− 1

q2
≃
∫ R−1

c

R−1

dq

2π

1

q
=

1

2π
ln

(
Rc

R

)
, (B.6)

and we obtain

ρ1(r, r
′) = n exp

[
1

2πK
ln

(
Rc

R

)]
= n

(
|r − r′|
Rc

)−η(T )

, (B.7)

with the exponent η(T ) given by Eq. (2.79).

106



Appendix C

Dimensional regularization

This Appendix summarizes the dimensional regularization used in Sec. 3.3. Within the
mean-field level, we are usually free from any divergence, making the mean-field analysis
easy. However, once we include quantum corrections, ultraviolet divergences frequently
appear as in Sec. 3.3. To treat this problem, we employ the dimensional regularization
developed by ’t Hooft and Veltman [153]. Historically, in the one-loop calculations of
Feynman diagrams, first Pauli and Villars invented a regularization procedure by adding
regulators with a cutoff parameter to make the integrand decays faster with respect to
the momentum. Gupta improved the Pauli-Villars regularization to preserve gauge
invariance in Abelian gauge theory. However, this Pauli-Villars-Gupta regularization
does not preserve gauge invariance of vector fields in non-Abelian gauge theory. ’t Hooft
and Veltman developed dimensional regularization preserving the gauge invariance in
non-Abelian gauge theory [153].

Dimensional regularization exploits the analytic continuation of an integral extending
the dimensions to complex. Let us remember the Gamma function

s−z =
1

Γ(z)

∫ ∞

0
dt e−sttz−1, (C.1)

for s ̸= 0. Equation (C.1) is well-defined with

Re[s] ≥ 0, 0 < Re[z] < 1. (C.2)

If Im[s] ≤ 0, we can bend the integral path to the imaginary axis as

s−z =
iz

Γ(z)

∫ ∞

0
dt e−isttz−1. (C.3)

Now Eq. (C.3) no longer requires the condition Re[s] ≥ 0 and well-defined with Im[s] < 0
and Re[z] > 0.

To compute the quantum correction

FQ =
1

2

∑
p

Ep =
ΩDL

D

2(2π)D

∫ ∞

0
dp pD−1

√
p2

2m

(
p2

2m
+ 2µ

)
, (C.4)
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with µ = gn in Sec. 3.3, we introduce Euler’s beta function defined by

B(x, y) =

∫ ∞

0
dt

tx−1

(1 + t)x+y
=

Γ(x)Γ(y)

Γ(x+ y)
. (C.5)

Then, Eq. (C.4) reads

FQ =
LDΩDµ

2(2π)D

(
4mµ

ℏ2

)D/2

B

(
D + 1

2
,−D + 2

2

)
. (C.6)

Equation (C.6) involves Γ(x) with x < 0 according to Eq. (C.5). Note that to obtain
Eq. (C.6), the condition Re[−D/2 − 1] > 0 is required. However, once we obtain the
expression of Eq. (C.6), it gives us the extension to an arbitrary complex dimension
D as long as it is a holomorphic function in terms of D. An important feature of
dimensional regularization is that the divergence of the original momentum summation
(C.4) is inherited to the isolated poles with respect to the dimension D. Indeed, Γ(z)
has isolated poles at z = 0,−1,−2, · · · and the infinite product representation

1

Γ(z)
= zeγz

∞∏
n=1

(
1 +

z

n

)
e−z/n, (C.7)

gives

Γ(−n+ ε) =
(−1)n

n!

[
1

ε
+ ψ(n+ 1) +O(ε)

]
, (C.8)

with ε ≪ 1 and ψ(z) ≡ Γ′(z)/Γ(z) being the digamma function. In particular, ψ(1) =
−γ where γ = 0.5772 · · · is the Euler-Mascheroni constant.

For the three-dimensional case D = 3, Eq. (C.5) has no pole and Eq. (C.6) reads
[154]

FQ = L3 8

15π2

(mµ
ℏ2
)3/2

µ. (C.9)

For the one-dimensional case D = 1 as well, Eq. (C.6) reads

FQ = −L 2

3π

√
mµ

ℏ2
µ. (C.10)

For the two-dimensional case D = 2, on the other hand, Eq. (C.5) has an isolated pole
in Γ(−2) and requires careful treatment with Eq. (C.8). To this end, we write Eq. (C.6)
for D = 2 as

FQ

L2
=

κεΩDµ

2(2π)D−

(
4mµ

ℏ2

)D−/2

B

(
D− + 1

2
,−D− + 2

2

)
, (C.11)

with κ being a regulator with the dimension of wavenumber and D− = D − ε = 2 − ε.
The expansion (C.8) and xε = 1 + ε lnx+O

(
ε2
)

give

FQ

L2
= − µ

2
√
π

mµ

πℏ2

[
1 +

ε

2
ln

(
πℏ2κ
mµ

)
+O

(
ε2
)]
B

(
D− + 1

2
,−D− + 2

2

)
= −mµ2

4πℏ2

[
1

ε
+

ln 16− 2γ − 1

4
+

1

2
ln

(
πℏ2κ2

mµ

)
+O(ε)

]
. (C.12)
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We perform minimal subtraction that subtracts the infinity 1/ε in ε→ 0 in Eq. (C.12).
As a result, at zero temperature, the free energy in Eq. (3.32) is modified by the quantum
correction as

F0

L2
=
µ2

g
− mµ2

8πℏ2
ln

(
4πℏ2κ2

mµe2γ+1/2

)
. (C.13)

With κ = 1/a2D and µ = gn, Eq. (C.13) gives the 2D result in Eq. (3.34). The identical
result can be obtained also through the renormalization of the coupling constant g, or
the momentum-cutoff regularization [154].
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Appendix D

Caldeira-Leggett model

This Appendix is devoted to the outline of the Caldeira-Leggett (CL) model, which
describes the quantum Brownian motion [213]. It consists of a system coupled with a
number of phonons. After the first analysis by Caldeira and Leggett in 1983, it has been
applied to a variety range of physics such as SQUID [247].

The Hamiltonian of the CL model is given by

ĤCL = Ĥ0 +
∑
n

[
p̂2n
2m

+
mω2

n

2

(
x̂n − κn

mω2
n

x̂

)2
]
, (D.1)

with

Ĥ0 =
p̂2

2M
+ V (x̂), (D.2)

being the Hamiltonian of a particle subject to a potential V (x̂) satisfying the canonical
commutation relation [x̂, p̂] = iℏ. In Eq. (D.1), κn represents the coupling strength
between the particle and the n-th harmonic oscillator with the mass m and frequency
ωn in the thermal bath. The harmonic oscillators also satisfy the canonical commutation
relation [x̂n, p̂m] = iℏδn,m. One can decompose Eq. (D.1) into

ĤCL = Ĥ0 + Ĥint + ĤB + Ĥc, (D.3)

with
Hint = −x̂

∑
n

κnx̂n, (D.4)

being the interaction term with the thermal bath described by

ĤB =
∑
n

(
p̂2n
2m

+
mω2

n

2
x̂2n

)
. (D.5)

The counter term Ĥc = x̂2
∑

n κ
2
n/2mω

2
n can be absorbed into the potential term as

Vc(x̂) = V (x̂) + Ĥc.
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Heisenberg equations read

dx̂(t)

dt
=
p̂(t)

M
,

dp̂(t)

dt
= −V ′

c (x̂) +
∑
n

κnx̂n(t), (D.6)

dx̂n(t)

dt
=
p̂n(t)

m
,

dp̂n(t)

dt
= −mω2

nx̂n(t) + κnx̂(t). (D.7)

Equations (D.6) and (D.7) give

x̂n(t) = x̂n(0) cos (ωnt) +
p̂n(0)

mωn
sin (ωnt) +

κn
mωn

∫ t

0
ds x̂(s) sin [ωn(t− s)]

= x̂n(0) cos (ωnt) +
p̂n(0)

mωn
sin (ωnt)

+
κn
mω2

n

[
x̂(t)− cos (ωnt)x̂(0)−

∫ t

0
ds
p̂(s)

M
cos [ωn(t− s)]

]
. (D.8)

Inserting Eq. (D.8) into Eqs. (D.6), we can obtain the quantum Langevin equation

dp̂(t)

dt
+

∫ t

0
dsΓ(t− s)

p̂(s)

M
+ V ′(x̂) = ξ̂(t)− Γ(t)x̂(0), (D.9)

where

Γ(t) =
∑
n

κ2n
mω2

n

cos (ωnt), (D.10)

is the damping kernel and

ξ̂(t) =
∑
n

κn

[
x̂n(0) cos (ωnt) +

p̂n(0)

mωn
sin (ωnt)

]
, (D.11)

is the stochastic noise. The second term in the right-hand-side of Eq. (D.9) is the initial
slippage term and negligible apart from t = 0 if Γ(t) decays fast enough.

By assuming the initial thermal equilibrium of the bath with temperature T and
denoting the thermal average with ĤB as ⟨· · · ⟩B, Eq. (D.11) provides

⟨ξ̂(t)⟩B = 0, (D.12)

χ(t) =
1

2
⟨{ξ̂(t), ξ̂(0)}⟩B =

∑
n

κ2n
2mωn

coth

(
ℏωn

2kBT

)
cos (ωnt). (D.13)

Introducing a spectral density

J(ω) =
∑
n

κ2n
2mωn

δ(ω − ωn), (D.14)
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one can write Eqs. (D.10) and (D.13) as

Γ(t) = 2

∫ ∞

0
dω

J(ω)

ω
cos (ωt), (D.15)

χ(t) = ℏ
∫ ∞

0
dω J(ω) coth

(
ℏω

2kBT

)
cos (ωt). (D.16)

The Fourier transformations of Eqs. (D.15) and (D.16) lead to the second FDT

χ̃(ω) =
ℏω
2

coth

(
ℏω

2kBT

)
Γ̃(ω). (D.17)

In the classical limit ℏω/kBT → 0, one recovers the classical FDT

χ̃(ω) = kBT Γ̃(ω). (D.18)

In particular, with an Ohmic spectral density

J(ω) =
γ

π
ω, (D.19)

the damping kernel (D.15) reduces to

Γ(t) = 2γδ(t), (D.20)

which is Markovian without memory effects. The quantum Langevin equation (D.9)
reduces to

dp̂(t)

dt
+ γ

p̂(t)

M
+ V ′(x̂) = ξ̂(t)− 2γδ(t)x̂(0), (D.21)

where the noise in the classical limit reduces to

χ(t) = 2γkBTδ(t). (D.22)

In general, the damping kernel (D.15) is non-local in time, which makes the quantum
Langevin equation non-Markovian with memory effects.
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Appendix E

Alternative derivation of quantum
correction to Josephson frequency

In this Appendix, we give the Hamiltonian description of the phase dynamics in Sec. 5.4,
and provide another approach to obtain the one-loop correction to the Josephson fre-
quency (5.102) derived through effective action formalism in Sec. 5.4.

E.1 Hamiltonian and phase wavefunction

The term ℏNzϕ̇/2 in the relative Lagrangian (5.76) implies that the phase ϕ(t) and the
population imbalance z(t) are canonically conjugated allowing us to introduce canonical
momentum

pϕ =
ℏN
2
z, (E.1)

and the Hamiltonian reads

H = pϕϕ̇− L[ϕ, z] =
U

ℏ2
p2ϕ − JN

2

√
1− 4

ℏ2N2
p2ϕ cosϕ, (E.2)

which is the Hamiltonian of a nonrigid pendulum [248]. The Hamilton equations give
Eqs. (5.77).

For the phase action (5.87), the Lagrangian is

L0[ϕ] =
Nℏ2ϕ̇2

4 (UN + J cosϕ)
+
JN

2
cosϕ, (E.3)

and the canonical momentum reads

pϕ =
∂L0

∂ϕ̇
=

Nℏ2

2 (UN + J cosϕ)
ϕ̇. (E.4)

Then, the phase Hamiltonian is given by

H0 =
UN + J cosϕ

ℏ2N
p2ϕ − JN

2
cosϕ. (E.5)
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E.2. ALTERNATIVE DERIVATION OF ONE-LOOP CORRECTION

Equation (E.5) can be obtained by expanding Eq. (E.2) up to the quadratic level of pϕ.
First quantization pϕ → p̂ϕ = −iℏ∂ϕ allows us to obtain the time-dependent Schrödinger

equation
iℏ∂tΨ(ϕ, t) = Ĥ0Ψ(ϕ, t), (E.6)

with the phase wavefunction Ψ(ϕ, t) and

Ĥ0 = −
(
U +

J

N
cosϕ

)
∂2ϕ − JN

2
cosϕ. (E.7)

This quantized Hamiltonian (E.7) is related to the phase action (5.87) as

⟨ϕf | e−iĤ0(tf−ti)/ℏ |ϕi⟩ =
∫

DϕDpϕ ei
∫ tf
ti

dt[pϕϕ̇−H0]/ℏ =

∫
Dϕ eiS0[ϕ]/ℏ. (E.8)

E.2 Alternative derivation of one-loop correction

In this section, we provide an alternative derivation of the one-loop correction to the
Josephson frequency obtained in Eq. (5.102) through equations of motion. This approach
is analogous to the one developed recently to determine beyond-mean-field corrections
to the critical temperature in two-band superconductors [249]. The equation of motion
derived from Eq. (5.90) reads

MJϕ̈+MJΩ
2
J sinϕ = 0. (E.9)

Then, we decompose the phase field into the mean-field part ϕ0(t) and the small fluctu-
ation part ϕ̃(t) encoding quantum fluctuations as

ϕ(t) = ϕ0(t) + ϕ̃(t). (E.10)

Up to the quadratic level of ϕ̃(t), Eq. (E.9) gives

MJϕ̈0 +MJ
¨̃
ϕ+MJΩ

2
J

(
1− ϕ̃2

2

)
sinϕ0 +MJΩ

2
Jϕ̃ cosϕ0 = 0. (E.11)

We consider performing an ensemble average with respect to ϕ̃ defined by

⟨O⟩ = 1

Z

∫
Dϕ̃ O[ϕ̃] eiS

(quad)
J [ϕ̃]/ℏ, (E.12)

with

S
(quad)
J [ϕ̃] =

∫
dt

(
MJ

2
˙̃
ϕ2 −

MJΩ
2
J

2
ϕ̃2
)
, (E.13)

being the quadratic Josephson action in terms of ϕ̃ and Z =
∫
Dϕ̃ eiS

(quad)
J [ϕ̃]/ℏ. Perform-

ing the ensemble average, one obtains

⟨ϕ̃⟩ = 0, ⟨ϕ̃2⟩ =
√

U

JN
, (E.14)
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and Eq. (E.11) yields

MJϕ̈0 +MJΩ
2
J

(
1− 1

2

√
U

JN

)
sinϕ0 = 0. (E.15)

Compared with Eq. (E.9), Eq. (E.15) indicates that the Josephson frequency ΩJ is
modified to Eq. (5.102). Consequently, we have verified our result of Eq. (5.102) obtained
via effective action formalism. We considered the ensemble average with respect to the
quadratic action (E.13), which requires that the quartic and higher-order contributions
are negligible. It corresponds to the condition (5.99) required from the validity of the
second-order derivative expansion in the effective action in Sec. 5.4.3, and the other
condition (5.100) follows as well.
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