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Abstract

Environmental epidemiology research raises intriguing and fascinating causal inference

questions, aiming to understand the comprehensive effects of environmental exposures

on human health. The complexity of the ties between air pollution exposure, well-

being index, demographic and socio-economic characteristics of the population, and air

pollution regulations, solicit clear definitions of the causal effects and flexible models.

In reply, we propose novel causal models that leverage the desirable characteristics of

the Bayesian nonparametric prior, particularly the dependent Dirichlet process. These

Bayesian nonparametric mixture models’ well-known flexibility and adaptability are not

the only reasons. In truth, our proposed models can easily handle two central challenges:

the missing data problem, that arises in the causal inference framework of potential

outcome, and the clustering structure, that tethers the applied research question with

the proposed methodologies engaged in this thesis. Indeed the Bayesian paradigm allows

straightforward missing potential outcome imputation, while the mixture structure of

the dependent Dirichlet process naturally induces the clustering of the observations,

through the latent variable that defines the allocation to the components of the mixture.

In the details, we address two common challenging contexts of causal inference that

frequently emerge in observational studies: capture and characterize the heterogeneity

in the causal effects and deal with the post-treatment variables, that are affected by the

treatment and simultaneously affect the outcome. Both contexts elicit the concept of

clustering since the heterogeneous causal effects demand the clarification of the groups

and the post-treatment variables induce the constitution of principal strata. These

concepts manifest in environmental epidemiology studies as the groups of populations

that are differently affected by air pollution exposure or air quality regulations. Indeed,

different levels of vulnerability/resilience characterize the population, highlighting the

socio-economic disparities in American society.



Our proposed models—the confounder-dependent Bayesian mixture model and the

confounders-aware shared-atoms mixture model—allow us to exploit rich forms of de-

pendence given the confounders and relationship between the variables with different

treatment levels, enabling us to (i) define with a flexible structure the probability dis-

tribution of outcome/post-treatment variable, (ii) impute the missing data properly,

(iii) estimate individual treatment effects, competitively with benchmark models, (iv)

identify the groups/strata structure according to the causal estimands of interest, (v)

delineate the characteristics of each group/stratum.



Sommario

La ricerca nell’ambito dell’epidemiologia ambientale solleva interrogativi affascinanti e

stimolanti nel contesto dell’inferenza causale, mirando a comprendere nel loro complesso

gli effetti dell’ambiente sulla salute pubblica. La complessità dei rapporti tra l’esposi-

zione all’inquinamento atmosferico, la salute pubblica, le disuguaglianze demografiche

e socio-economiche della popolazione e le normative governative sull’ambiente, richiede

definizioni chiare degli effetti causali e modelli flessibili. In risposta a ciò, proponiamo

innovativi modelli causali che sfruttano le caratteristiche delle prior non parametriche

bayesiane, in particolare il processo dipendente di Dirichlet. La ben nota flessibilità e

adattabilità di questi modelli mistura non parametrici bayesiani non sono le uniche ra-

gioni di scelta. Infatti, i modelli da noi proposti possono gestire facilmente due questioni

centrali: il problema dei dati mancanti, intrinseco alla definizione di variabili risposte

controfattuali nell’inferenza causale, e la struttura di raggruppamento, che lega le do-

mande di ricerca applicata alle metodologie proposte coinvolte in questa tesi. Infatti,

il paradigma bayesiano consente un’agevole e corretta imputazione dei dati mancanti

della variabile risposta controfattuale, mentre la struttura a mistura del processo dipen-

dente di Dirichlet induce naturalmente il raggruppamento delle osservazioni, attraverso

la variabile latente che definisce l’allocazione ai componenti della miscela.

Nel dettaglio, affrontiamo due sfide di inferenza causale che emergono frequente-

mente negli studi osservazionali: catturare e caratterizzare l’eterogeneità negli effetti

causali e gestire le variabili post-trattamento, che sono influenzate dal trattamento e

contemporaneamente influiscono la variabile risposta. Entrambi i contesti richiamano

il concetto di raggruppamento, poiché gli effetti causali eterogenei richiedono la de-

finizione dei gruppi e le variabili post-trattamento inducono la costituzione di strati

principali. Questi concetti si manifestano negli studi di epidemiologia ambientale come

i sottogruppi della popolazione che sono influenzati in modo diverso dall’esposizione



all’inquinamento atmosferico o dalle normative sulla qualità dell’aria. In effetti, diver-

si livelli di vulnerabilità/resilienza caratterizzano la popolazione, mettendo in luce le

disparità socio-economiche nella società americana.

I nostri modelli proposti—il confounder-dependent mixture model e il confounders-

aware shared-atoms mixture model—ci consentono di sfruttare elaborate forme di di-

pendenza con le variabili confondenti e la relazione tra le variabili con diversi livelli di

trattamento, consentendoci di (i) definire la distribuzione di probabilità delle variabi-

li risposta/post-trattamento con una struttura flessibile, (ii) imputare correttamente i

dati mancanti, (iii) stimare gli effetti individuali del trattamento, in modo competitivo

rispetto ai modelli di riferimento in letteratura, (iv) identificare la struttura di gruppi/-

strati in base agli stimatori causali di interesse, (v) delineare le caratteristiche di ciascun

gruppo/strato.





First and foremost, have fun
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Introduction

Gelman and Vehtari (2021) deliver a critical and thought-provoking overview of the

most important statistical ideas of the last half-century. In this interesting list of major

statistical topics, two methods emerge: causal inference and overparameterized—also

known as nonparametric—models.

The framework of causal inference makes its first steps in various applied fields such as

econometrics, psychometrics, and epidemiology (Gelman and Vehtari, 2021). In statis-

tics, the concept of causality has been defined in rigorous statistical terms throughout

various causal inference frameworks (Zeng and Wang, 2022). With different perspec-

tives, Neyman (1923) and Rubin (1974) propose the potential outcome framework, while

Pearl (2009) introduce the causal inference approach based on structural causal models

and graphical models (i.e. directed acyclic graph). Both with the ambitious goal of

overtaking the traditional statistical inference approach based on correlation across the

variables and allow to makecausal inferences.

Nonparametric models, limited here in the argument for the Bayesian framework,

have experienced substantial growth in the last few decades thanks to the most impor-

tant simulation tools—i.e. MCMC strategies like the Gibbs Sampler and the Metropo-

lis algorithm, etc.— and the software development (Müller and Walker, 2010). Their

considerable degree of flexibility induces a high adaptability to the complexity of real-

data applications. Their flourishing literature includes Dirichlet processes mixture mod-

els (Lo, 1984), Gaussian process (O’Hagan, 1978), Bayesian Additive Regression Tree

(Chipman et al., 2010).

Gelman and Vehtari (2021) provocatively suggests that we might increase progress by

combining these two approaches into a single Bayesian nonparametric causal inference

approach.

Beyond statistics, a pressing topic nowadays is environmental epidemiology. Un-

doubtedly, the environment plays an essential role in human well-being.

Specifically, exposure to pollutants has been linked to a range of health issues, in-

cluding respiratory disease, cardiovascular disorders, and even an increased risk of death

3



4 Overview

Dominici et al. (2014); Pope III et al. (2019); Wu et al. (2020); Dominici et al. (2022).

This thesis covers the above-mentioned aspects and specifically shows how Bayesian

nonparametric mixture models can be used to answer causal questions arising in en-

vironmental health with policy-relevant effects on socioeconomic inequalities, and air

pollution regulation.

Overview

Bayesian nonparametric is known for its flexibility and adaptability to different con-

texts thanks to the ability to capture complex relationships between variables without

imposing rigid modeling assumptions (Escobar and West, 1995; Green and Richardson,

2001; Hjort et al., 2010). In fact, a growing literature has produced a large number

of Bayesian infinite mixture models according to the different challenges that arise in

real-world data scenarios (see e.g. De Iorio et al., 2004; Jara et al., 2010; Caron et al.,

2007; Müller et al., 2004; Chung and Dunson, 2009; Denti et al., 2021).

The application of Bayesian nonparametric models in causal inference (Rubin, 1974)

has elicited notable attention in the past decade, even though the amount of work

is still limited (see the review by Linero and Antonelli, 2023). The main Bayesian

nonparametric contributions in this context include the applications or extensions of

the Bayesian Additive Regression Tree (Chipman et al., 2010), and dependent Dirichlet

Process mixture models (MacEachern, 2000; Barrientos et al., 2012; Quintana et al.,

2020).

Initially introduced into the causal inference framework by Hill (2011) and succes-

sively exploited by Hahn et al. (2020), the Bayesian additive regression tree has been

mostly used to capture the heterogeneity in the causal effects in the context of a binary

treatment and a continuous outcome. Dependent Dirichlet Process mixture models have

been implemented with the goals of addressing various objectives, such as zero-inflation

and skewness in the response variable (Oganisian et al., 2021), handling missing random

covariates (Roy et al., 2018), dealing post-treatment outcome (Schwartz et al., 2011),

and for mediation analysis (Kim et al., 2017; Roy et al., 2022).

Nevertheless, these models have rarely been applied in environmental epidemiological

studies. Though extensive literature highlights the interest in examining the causal link

between air pollution and various diseases and mortality, empirical evidence consistently

reveals that exposure to higher levels of pm2.5 corresponds to heightened mortality and

morbidity risks. (Schlesinger, 2007; Rückerl et al., 2011; Chen et al., 2013; Dominici

et al., 2014; Wang et al., 2016; Schwartz et al., 2017; Wu et al., 2019, 2020; Lee et al.,
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2021; Dominici et al., 2022). With a primary focus on the United States, numerous stud-

ies have extensively documented that racial and ethnic minorities, often associated with

low income, have a higher risk for adverse health outcomes compared to other popula-

tion/income groups (Bargagli-Stoffi et al., 2023; U.S. Environmental Protection Agency,

2022d; Di et al., 2017; Kioumourtzoglou et al., 2016; Bell et al., 2013; Jbaily et al., 2022).

For this reason, the U.S. Environmental Protection Agency has set a

goal to achieve environmental justice (U.S. Environmental Protection Agency,

2022b): no group of people should suffer a disproportionate environmental risk

(U.S. Environmental Protection Agency, 2022c). However, only a limited number of

studies have investigated the implications of the air quality regulations on the reduction

of pm2.5 and mortality risk (Zigler et al., 2012; Zigler and Dominici, 2014a; Zigler et al.,

2018; Samet, 2011). No study today has proposed a data-driven characterization of

the heterogeneous treatment effect of air pollution beside using recursive partitioning

methods (Lee et al., 2021; Bargagli-Stoffi et al., 2023).

Main contributions of the thesis

To account for this shortcomings, in Chapter 2 and Chapter 3, we present two method-

ological contributions, each defining suitable Bayesian nonparametric mixtures. These

models exploit various dependent Dirichlet processes (MacEachern, 2000; Barrientos

et al., 2012; Quintana et al., 2020) as priors, in two challenging contexts within the

potential outcome framework (Rubin, 1974). Specifically, these projects address the

challenges posed by heterogeneity in causal effects and by the principal stratification

framework. For both of them, we also define and provide estimation guidelines for novel

causal estimands.

These innovations hold direct applicability in examining the heterogeneity of the

causal effects of air pollutants on mortality risk and achieving the associative and dis-

sociative effects of air quality regulations on public health.

Confounder-Dependent Bayesian Mixture Model for Heterogeneity in Causal Effect

In causal inference studies, some observed characteristics play a key role in the identifi-

cation of heterogeneity in the treatment effect. The conditional average treatment effect

is widely used to describe how the treatment effect varies by the characteristics of the

population and group identification is crucial to discover and analyze these explanatory

factors.

In Chapter 2, we present a Bayesian nonparametric approach that incorporates the
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information carried by the observed characteristics, for imputing the missing poten-

tial outcomes in case of heterogeneity in the treatment effect by data-driven discov-

ering. Exploiting the flexibility of the dependent Dirichlet Process, we propose the

Confounders-Dependent Bayesian Mixture Model to characterize the distribution of the

potential outcomes conditionally to the covariates that allow us to: (i) estimate indi-

vidual treatment effects, (ii) identify heterogeneous and mutually exclusive population

groups defined by similar Group Average Treatment Effects (GATEs), and (iii) estimate

and characterize causal effects within each of the identified groups.

Specifically, to define the model we take advantage of the feature of Dependent

Probit Stick-breaking Process (Chung and Dunson, 2009; Rodriguez and Dunson, 2011)

in order to address the challenges and constraints that arise within the framework of

causal inference.

The posterior distribution is approximated via a computationally efficient Gibbs sam-

pling algorithm and a pointwise random partition estimator is proposed following Wade

and Ghahramani (2018). We estimate the mutually exclusive groups, each character-

ized by different GATEs, based on the Cartesian product of the latent clusters of each

treatment level.

Simulation studies show that the proposed model has competitive results with causal

Bayesian additive regression tree (Hill, 2011) and Bayesian Causal Forest (Hahn et al.,

2020) for the estimation of individual treatment effect, and has superior performance

broadly for the GATEs with respect to a two-step procedure made of a Bayesian causal

forest and a subsequent classification and regression tree analysis Breiman et al. (1984),

that groups the observations according with their individual treatment effect.

Confounders-Aware Shared-atoms Bayesian Mixture Model for Principal Stratification

In causal inference analyses, researchers are often interested in estimating the causal

effect of a treatment on a primary outcome and to what extent this effect might change

across values of a post-treatment variable. The framework of principal stratification

(Frangakis and Rubin, 2002) deals with the causal effect that splits into direct—i.e. the

effect of the treatment on the outcomes—and indirect—i.e. the effect conveyed through

the post-treatment variable. Frangakis and Rubin (2002) and VanderWeele (2011) pos-

tulate the existence of principal strata: subgroups of individuals with similar values of

joint potential outcomes of the post-treatment variable. In particular, the dissociative

stratum is defined as the stratum in which the treatment does not substantially change

the post-treatment variable and the associative stratum is the stratum in which the
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treatment does substantially affect (positively or negatively) the post-treatment vari-

able.

In Chapter 3, we address this shortcoming by developing a novel approach combin-

ing principal stratification principles and Bayesian nonparametric methods to assess the

causal effect within each stratum. We introduce three major innovations in the princi-

pal stratification framework: (i) we rely on Bayesian nonparametric methodologies for

the imputation of missing potential outcomes for the post-treatment variables; (ii) we

introduce new conditional estimands for the associative and dissociative effects; (iii) we

propose a data-driven methodology to discover heterogeneity in the strata memberships

and in the associative and dissociative effects.

We define a Confounders-Aware Shared-atoms Bayesian mixture model that, in par-

ticular, describes the distribution of the intermediate variable, conditional on the con-

founders and treatment variable, with a Bayesian non-parametric model that benefits

from the flexibility of dependent Dirichlet Process priors and thoughtful revisions, taking

into account the need to share information among the potential intermediate variables.

The posterior distribution is approximated via computationally efficient Gibbs sam-

pling algorithm leveraging Fasano et al. (2022) for the probit stick-breaking Rodriguez

and Dunson (2011) mixture weights.

Socioeconomic Disparities and Regulations in Air Pollution Epidemiology

Several epidemiological studies have demonstrated the significant effects of long-term

exposure to fine particulate matter (pm2.5) on human health (see, e.g., Schwartz et al.,

2017; Wu et al., 2019; Pope III et al., 2019; Chen and Hoek, 2020; Wu et al., 2020; Lee

et al., 2021; Dominici et al., 2022) and additional studies have investigated the causal

impact on the health of interventions aimed at reducing the level of pollutants in the

air (Zigler et al., 2012, 2016, 2018).

Chapter 4 showcases the analysis of two different datasets, exploiting the method-

ological contributions of Chapter 2 and 3. Specifically, we first analyze the heterogeneity

in the effect of pm2.5 on the mortality rate within the elderly population in the state

of Texas (USA). Then, we undertake a comprehensive examination of principal causal

effects—specifically, the associative and dissociative effects—of the air pollution regula-

tions on the mortality rate among Americans, taking into account the heterogeneity in

the causal effects through the pm2.5 levels.

Leveraging our novel methodological contributions, we reach a comprehensive per-

spective on understanding the heterogeneity of causal effects and the distinctive char-

acteristics representing the socioeconomic and demographic disparities in the United
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States. Our analysis allows us to (i) confirm the established conclusions regarding

the effect of high levels of air pollution exposure on increasing mortality rate and the

significant effect of regulations, that aspire to reduce air pollution, on decreasing the

mortality rate among Medicare enrollees; (ii) identify and characterize the groups—in

the first study—and strata—in the second one—that capture the heterogeneity in the

causal effect and characterize the health disparities in the American population.



Chapter 1

Overview: Air Pollution

Epidemiology, Causality, and

Nonparametric Priors.

1.1 Environmental Health and Socio-Economic

Disparities

Commonly air pollutants are grouped into six main categories: carbon monoxide, lead,

nitrogen oxides, ground-level ozone, particle pollution—also called particulate matter—,

and sulfur oxides. Among them, the researchers are particularly interested in the fine

air particulate matter pm2.5 , defined as those particles having aerodynamic diameters

below 2.5µg/m3. Therefore it is the smallest pollutant that can directly travel to the

lungs.

Several epidemiological studies have provided evidence that long-term exposure to air

pollutant, and in particular pm2.5, has a direct effect on various health outcomes, includ-

ing respiratory and cardiovascular diseases, and even mortality (see, e.g., Schlesinger,

2007; Rückerl et al., 2011; Chen et al., 2013; Dominici et al., 2014; Wang et al., 2016;

Schwartz et al., 2017; Wu et al., 2019; Pope III et al., 2019; Chen and Hoek, 2020; Wu

et al., 2020; Lee et al., 2021; Dominici et al., 2022). Where the word long-term indicates

that the causal effect of exposure to air pollution is computed with respect to health

outcomes that occur months or years after the exposure (Schwartz, 2006)

Remarkably, focusing our attention primarily on the United States, some char-

acteristics of the population seem to explain the different degrees of vulnerability

or resilience to air pollution, as underlined by the U.S. Environmental Protection

9
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Agency. In particular, the U.S. Environmental Protection Agency identifies race, na-

tional origin, sex, education, and/or socioeconomic status as potential explanatory fac-

tors (U.S. Environmental Protection Agency, 2022a). This aligns with findings from

epidemiological studies, which have consistently reported similar associations (see, e.g.,

Bell et al., 2013; Kioumourtzoglou et al., 2016; Di et al., 2017; Liu et al., 2021; Jbaily

et al., 2022).

Accordingly, it becomes imperative to take decisive action within environmental poli-

cies, that take into account the population disparities and vulnerability, and ultimately

strive to achieve environmental justice (U.S. Environmental Protection Agency, 2022b).

Indeed, environmental justice is an ethical stance of the U.S. Environmental Protection

Agency, which wants to achieve the desirable scenario where no group of people should

have a disproportionate environmental risk (U.S. Environmental Protection Agency,

2022d).

Some research has focused on investigating the implication of air quality regulations

and demonstrating the significant causal impact on health and the reduction of the level

of pollutants in the air (Samet, 2011; Zigler et al., 2012, 2016, 2018).

In this environmental epidemiology discussion, the definition of causality and causal

effects plays a crucial role in quantifying them from a rigorous statistical perspective

and for clear scientific communication.

1.2 Causal Inference

Causality is an open debate in statistics beyond the common agreement on the fact that

“correlation does not imply causation”.

In this thesis, we follow the potential outcome framework (Neyman, 1923; Rubin,

1974), which embodies the principle “no causation without manipulation” (Rubin, 1974;

Holland, 1986). However, other frameworks for causal inference are established, includ-

ing the causal graphical model (Pearl et al., 2000)—see Zeng and Wang (2022) for a

review of different causal approaches.

1.2.1 Potential Outcome Framework

An extended literature reviews the fundamentals of potential outcome framework, from

the randomized experiments (Fisher, 1919; Neyman, 1923; Fisher et al., 1936; Rubin,

1974, 1978), to the observational studies (Dorn, 1953; Cochran and Chambers, 1965;

Cochran and Rubin, 1973). Of particular interest are knotted: more recently Ding and
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Li (2018), Dominici et al. (2021), Ding (2023), with peculiar Bayesian prospective Li

et al. (2023); Linero and Antonelli (2023).

The main interest is to study the causal effect of a defined treatment T—called also

intervention or exposure—on a specific outcome Y .

Specifically, considering a set of n study units, let Ti ∈ {0, 1} the observed (binary)

treatment, with observed value ti, and Yi ∈ Y ⊆ R the outcome. According to Rubin

(1974), the potential outcomes for unit i are defined as {Yi(0), Yi(1)} ∈ R
2, for i =

1, . . . , n. Specifically, Yi(0) is the outcome when the unit i is assigned to the control

group, while Yi(1) is the outcome when it is assigned to the treatment group.

In practice, however, for i = 1, . . . , n, we observe only yi ∈ R, that is the realization

of the random variable Yi that is defined, invoking the Stable Unit Treatment Value

Assumption (SUTVA, Rubin, 1986), as

Yi := (1− Ti) · Yi(0) + Ti · Yi(1).

Specifically, SUTVA enforces that each unit’s outcome is a function of its treatment

only. This is a combination of the following assumptions: (i) no interference among the

units, i.e. the potential outcome values from unit i do not depend on the treatment

applied to other units, and (ii) consistency, i.e. no different versions of the treatment

levels assigned to each unit. Conversely, we can not observe the realization ymisi ∈ R of

the random variable Y mis
i defined as Y mis

i := Ti · Yi(0) + (1− Ti) · Yi(1).

For this reason, Holland (1986) viewed the fundamental problem of causal inference

as a missing data problem, since for each unit only the potential outcome corresponding

to the actual treatment is observed, and the other potential outcomes are missing or

counterfactual. Moreover, it is Holland (1986) again that called Rubin’s Causal Model

this causal inference view, by referring to the mathematical modeling proposed by Rubin.

In this context, it is a reasonable consequence that the individual treatment effect

(ITE), defined for each unit i as

ITE = Yi(1)− Yi(0), (1.1)

cannot be observed.

Additionally, we consider Xi ∈ X ⊆ R
p a set of p observed covariates. The observed

xi, for i = 1, . . . , n, is a vector of subject-specific background characteristics, consid-

ered as covariates and potential confounders—also called pre-treatment variables. Each

vector xi can contain both categorical and continuous variables.
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Therefore, the tuple (yi, ti, xi) for i = 1, . . . , n represents the observed quantities, and

the relation among their respective aleatory variables are represented in Figure 1.1.

X

YT

Figure 1.1: Graphical representation of the link between treatment T , outcome Y ,
and confounders X.

Taking into consideration the variables X, different causal effect are well established

in the literature (Dominici et al., 2021; Li et al., 2023), as the expected value of the

ITE, that is defined as

τ̄i = E[Yi(1)− Yi(0)], (1.2)

with the expected value respect to the distribution of the outcomes of unit i; and

the population average treatment effect (PATE)—with attention to distinguish it from

sample average treatment effect (SATE)— respectively defined as:

PATE := τP = E[Yi(1)− Yi(0)] = E[τi(x)],

SATE := τS =
1

n

n
∑

i=1

(

Yi(1)− Yi(0)
)

.

While SATE is of interest when the target population is the specific sample, as usual

in randomized experiments, PATE is a function of the distribution of the potential

outcomes in a population where we just observe a sample (Li et al., 2023).

ITE and PATE can be seen as the two extremes of the definition of Conditional

Average Treatment Effect (CATE). Indeed, CATE is identified conditionally to a subset

of covariates space C ⊆ X , such that

CATE := τ(C) = E[Yi(1)− Yi(0) | Xi ∈ C]. (1.3)

Additionally, an assorted and broad literature is expressed to capture the hetero-

geneity in the causal effects, defining different estimands and consequently, multifarious

methods to compute them (Dahabreh et al., 2016). However, the literature for heteroge-

neous treatment effect (HTE) can be categorize in two main front (Dwivedi et al., 2020;

Bargagli-Stoffi et al., 2020): (i) estimating HTEs by examining the CATE; (ii) discover-

ing subgroups of a population classified by HTE and explained by peculiar group-specific
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characteristics.

A significant part of them takes advantage of non-parametric machine learning meth-

ods such as the random forest (Breiman, 2001) and Bayesian additive regression tree

(Chipman et al., 2010) and it has been extended to estimate and capture the hetero-

geneity in causal effects (Foster et al., 2011; Hill, 2011; Hahn et al., 2020). Moreover,

the literature includes two-stage doubly robust CATE estimators by Kennedy (2020);

Semenova and Chernozhukov (2021), and various group-base methodologies as Imai and

Ratkovic (2013); Qian and Murphy (2011); Kennedy et al. (2017); Nie and Wager (2021);

Crabbé et al. (2022).

1.2.2 Principal Stratification

In experimental and observational studies, researchers are often interested in estimat-

ing not only the causal effect of a given treatment on a primary outcome but also to

what extent this effect might change across values of a post-treatment variable. Where

the causal effect of the treatment on the outcome can be split into dissociative–—i.e.

the effect of the treatment on the outcomes—–and associative–—i.e. the effect of the

treatment conveyed through the post-treatment variable to the outcome. Basically, the

post-treatment variable is potentially affected by the treatment and also affects the

potential outcomes.

This scenario is delineated in the principal stratification framework, introduced by

Frangakis and Rubin (2002) (see also Pearl, 2011; Baker et al., 2011; VanderWeele, 2011;

Egleston, 2011; Gilbert et al., 2011; Joffe, 2011; Prentice, 2011; Pearl, 2011; Mealli and

Mattei, 2012, for interesting discussions and definitions).

Examples of circumstances where intermediate variables may arise in the estimat-

ing the causal effect of a given intervention on a given outcome are: in cases of non-

compliance with the assigned treatment (i.e. cases where individuals assigned to a

particular treatment level fail to comply and receive a different level of treatment);

truncation by death (which occurs when an individual exits the study due to death

before the outcome is recorded); unintended missing outcome data (which refers to sit-

uations where the health records are unintentionally missing for some individuals in the

study); or surrogate endpoints (in the case where medium-term trends in health records

are used as a substitute measure for long-term health).

Formally, starting from the defined setting in Section 1.2.1, we consider an additional

variable: the post-treatment variable P . According with Frangakis and Rubin (2002),

we define Pi ∈ P ⊆ R, that we can explicit in the Rubin’s Causal Model as the potential

outcome of the post-treatment variables {Pi(0), Pi(1)} ∈ R
2. The vector {Pi(0), Pi(1)}
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represents the collection of the two potential outcomes of the post-treatment variable,

specifically Pi(0) is the outcome when the unit i is assigned to the control group while

Pi(1) is the outcome when it is assigned to the treatment group.

In practice, as explained for the outcome Y in Section 1.2.1 and invoking SUTVA

also for the post-treatment variables, for i = 1, . . . , n, we observe only pi ∈ R, that is

the realization of the random variable Pi defined as

Pi := (1− Ti) · Pi(0) + Ti · Pi(1).

Conversely, we can not observe the realization pmisi ∈ R of the random variable Pmis
i

defined as Pmis
i := Ti · Pi(0) + (1− Ti) · Pi(1).

X

T Y

P

Figure 1.2: Graphical representation of the variables involved in principal stratifica-
tion framework: treatment T , post-treatment variable P , outcome Y , and confounders
X.

In the principal stratification framework, Frangakis and Rubin (2002) postulate

the existence of principal strata defined by the joint potential outcomes of the post-

treatment variables under treatment and control
(

Pi(1), Pi(0)
)

. A principal stratum is

simply a subgroup of individuals characterized by similar values in their joint poten-

tial outcomes for the post-treatment variables (Mealli and Mattei, 2012; Feller et al.,

2017; Ding et al., 2017; VanderWeele, 2011). Consequently, a principal causal effect is a

comparison—e.g. the average of the difference—between the potential outcomes within

a particular stratum. Therefore, the expected associative effect (EAE) is defined as

EAE(p0, p1) = E [Yi(1)− Yi(0)|Pi(0) = p0, Pi(1) = p1] . (1.4)

I.e., EAE is the causal effect of the treatment on the outcome, conditional to the specific

values of the potential post-treatment variables. The particular case of p0 = p1 attracts

specific attention, for the reason that this coincides with the dissociative effect, i.e.

when the causal effect of the treatment on the outcome does not convey through the
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post-treatment variable. It is formalized as the expected dissociative effect (EDE):

EDE(p) = E [Yi(1)− Yi(0)|Pi(0) = Pi(1) = p] . (1.5)

The definition of the causal estimand of EAE and EDE follows the VanderWeele

(2011)’s interpretation of dissociative and associative strata. The dissociative stratum

is the stratum in which the treatment does not change the post-treatment variable, and

the associative strata are those groups of units for which the treatment does affect the

post-treatment variable, increasing it—positive associative—or decreasing it—negative

associative.

However, while these definitions ensure clarity when the post-treatment variable has

a discrete nature, different interpretations of the causal effects can arise when the post-

treatment variable is continuous.

An important contribution for continuous post-treatment variable is given by Zigler

et al. (2018), which defines the similarity among post-treatment variable values—and

consequently the criteria for the stratification— based on a threshold ξ. Therefore, the

EAE and EDE are formalized as

EAE = τa = E
[

Yi(1)− Yi(0)
∣

∣ |Pi(1)− Pi(0)| ≥ ξ],

EDE = τd = E
[

Yi(1)− Yi(0)
∣

∣ |Pi(1)− Pi(0)| < ξ].

However, the discussion revolves around the problem of how to set this threshold ξ.

Indeed, this approach can be too sensible for arbitrary choice, where different values of

ξ can induce different strata allocation of the analyzed units and, consequently, different

estimations of the principal causal effects.

In this thesis, we propose a definition of similarity that does not involve thresholds or

a priori criteria to identify the principal strata and consequently estimate more proper

and valid principal causal effects.

Principal stratification framework has some similarities with mediation analysis (Baron

and Kenny, 1986; MacKinnon and Dwyer, 1993; MacKinnon, 2012; Imai et al., 2010),

however, they generally involve different causal estimands and answer different ques-

tions. In particular, while principal stratification is focused on the identification of

principal strata and explaining the heterogeneity in the causal effect through them,

the mediation analysis is interested in estimating the direct and indirect effects of the

treatment on the outcome through the mediators. See Mealli and Mattei (2012) for an

overview and comparison of the two methods.



16 Section 1.3 - Bayesian Nonparametrics in Causal Inference

Notably interesting for the topics of this thesis, wide literature in mediation analysis

exploits nonparametric Bayesian models, such as Daniels et al. (2012) and Roy et al.

(2018, 2022).

1.3 Bayesian Nonparametrics in Causal Infer-

ence

In the potential outcomes framework, there are mainly three models of inference (Ding

and Li, 2018): Fisherian randomization test, Neymanian repeated-sampling evaluation,

and Bayesian posterior inference. However, the Bayesian paradigm is natural to handle

the missing data, therefore Bayesian models allow straightforward missing potential

outcome imputation (Li et al., 2023).

In particular, this thesis focuses on Bayesian nonparametric methods, inasmuch as

their considerable degree of flexibility induces high adaptability to the complexity of

real-data applications and intrinsic mixture structure induces the clustering among the

observations, that characterizes the heterogeneity in the distributions of the involved

variables. To focus on the latter we avoid digging out Bayesian parametric models. See

Li et al. (2023) for a recent general review of Bayesian methods and models in causal

inference. Bayesian nonparametric methods have recently seen increased interest in the

causal inference literature (Linero and Antonelli, 2023), since their flexibility and sta-

tistically principled uncertainty quantification, and thanks to the recent advancements

in computation and software (Li et al., 2023).

Linero and Antonelli (2023) and Daniels et al. (2023) center their discussion on the

causal inference challenges that can potentially be addressed through the utilization of

Bayesian nonparametric methods. However, exploiting Bayesian nonparametric models

and methods in different contexts of causal inference is not just implementing them as in

a standard prediction problem, but careful considerations have to be taken for the causal

assumptions and the estimands. In fact, regularization induced confounding could occur

using Bayesian nonparametric or, in general, high-dimensional methods (Hahn et al.,

2018). That is when regularization techniques, introduced to improve the performance

or stability of a model, unintentionally introduce confounding factors into the analysis.

Among these main works, Bayesian Additive Regression Tree (Chipman et al., 2010)

became widely used, thanks to the first introduction in causal inference by Hill (2011),

that models the potential outcomes following the T-learner methods as

Yi(t) = µ(t,Xi) + ϵi(t),
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for t = 0, 1, where the function µ has Bayesian additive regression tree prior and ϵ

are Gaussian errors. Recently, Hahn et al. (2020) proposed a reparameterization of the

outcome model including the propensity score and defining the Bayesian causal forest

as:

Yi = µ(t, π̂(xi)) + τ(xi)t+ ϵi,

where µ and τ are independent Bayesian additive regression tree priors and π̂(xi) is the

estimated propensity score π(xi) = P(Ti = 1|xi).

The propensity score is included in the model to further control measured confound-

ing. However, while propensity score is commonly used in the frequentist context, its

use is still discussed in the Bayesian framework. Stephens et al. (2022) discusses the con-

troversial role of Bayesian approaches to causal inference via propensity score regression

and reviews these existing approaches.

Infinite mixture models have also been widely employed in causal inference literature.

Notably, among the various dependent Dirichlet process mixture models (MacEachern,

2000; Barrientos et al., 2012; Quintana et al., 2020), the Enriched Dirichlet process

mixture model (Wade et al., 2011, 2014) and its modifications have found extensive

and promising causal applications (Roy et al., 2018; Oganisian et al., 2020a,b, 2021;

Roy et al., 2022), and the Probit Stick-Breaking process mixture model (Rodriguez

and Dunson, 2011) has been used in principal stratification framework (Schwartz et al.,

2011).

Other Bayesian nonparametric approaches have been employed for causal inference

problems as the spike and slab prior distribution (Mitchell and Beauchamp, 1988; Ish-

waran and Rao, 2005; Hahn and Carvalho, 2015) to regularize many of the regression

coefficients in high-dimensional settings (Zigler and Dominici, 2014b; Hahn et al., 2018),

and the Bayesian bootstrap (Rubin, 1981) to compute different estimands (Linero and

Antonelli, 2023).

Since the discussion in this thesis regards approaches based on outcome modeling, it

is important to remember that a straightforward application of the standard Bayesian

nonparametric priors is sometimes inadequate for causal inference and a desirable prior

should accurately reflect uncertainty according to the degree of covariate overlap (Li

et al., 2023).

1.4 Bayesian Nonparametric Mixture Models

Among the plethora of Bayesian nonparametric methods and models, we focus on

the mixture models that take advantage of the Dirichlet process (Ferguson, 1973,
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1974)—and, in the following section, the relative dependent Dirichlet process (Lo, 1984;

MacEachern, 2000)—as prior. The choice to concentrate our interest on these models

is due to their desirable characteristics, such as flexibility for describing complex distri-

butions and variable relations, adaptability in various real-world applications, ability to

capture the clustering structure, and to handle easily missing data.

Given a random variable Y , that takes values y in the space Y , a Dirichlet process

mixture model assumes, for the distribution f of Y

f(y|G) =

∫

Ψ

K(y, ψ)dG(ψ); (1.6)

where K(·, ψ) is a continuous density function, for every ψ ∈ Ψ, and G is an almost

surely discrete random probability measure. Defining G as a Dirichlet process with

parameter α ∈ R+
0 and G0 probability measure on Ψ—i.e. G|α,G0 ∼ DP (αG0)—,

then the process can be written with the stick-breaking representation, introduced by

Sethuraman (1994):

G(B) =
∞
∑

l=1

ωlδψl
(B),

where B is any measurable set, δψ(·) is the Dirac measure at ψ, and {ωψ}l≥1 and

{ψl}l≥1 represent infinite sequences of random weights and random kernel’s parameters,

respectively. Specifically, the random kernel’s parameters are defined as

ψl|G0
iid
∼ G0;

and the random weights are defined as

ωl = Vl
∏

r<l

(1− Vl) with Vl|α ∼ Beta(1, α),

where Beta(·) is a beta distribution with two shape parameters such that the strike-

breaking ratios {Vl|α}l≥1 are random variables that take values in [0, 1] with mean 1
1+α

and variance α
(α+1)2(α+2)

, with α > 0.

Modeling a distribution as an infinite mixture of simpler distributions is useful both

as a nonparametric density estimation method and as a way of identifying latent clusters

that can explain the behavior of observed variables (Neal, 2000).

There are numerous alternatives and generalizations of the Dirichlet process that

have been introduced to face several applied problems in the context of mixture mod-

els (see for instance Perman et al., 1992; Pitman and Yor, 1997; Lijoi et al., 2007a,b;

De Blasi et al., 2013). Among them, the dependent Dirichlet process mixture model
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rises to answers to a common scientific question of interest: taking into account that the

distribution of responses often changes with predictors in applied research (MacEachern,

2000; Quintana et al., 2020).

1.4.1 Dependent Nonparametric Mixture Models

The dependent Dirichlet process mixture models can be seen as a generalization of

Dirichlet process mixture models, where we want to model the distribution of the re-

sponse y ∈ Y given the predictors x ∈ X ⊆ R
p (Quintana et al., 2020). Many of these

dependent Dirichlet process mixture models incorporate dependence on predictors x

in the random probability measure G, such that the model definition in (1.6) can be

written as

f(y|x,Gx) =

∫

Ψ

K(y; x, ψ)dGx(ψ),

where {Gx : x ∈ X} is the collection of predictor-dependent mixing probability mea-

sures. Specifically, following the stick-breaking representation (Sethuraman, 1994) of

each element of the set, we have that

Gx(·) =
∞
∑

l=1

ωl(x)δψl(x)(·),

ωl(x) = Vl(x)
∏

r<l

[1− Vr(x)];

where ψl(x) are independent stochastic processes with index set X and G0
x marginal

distributions, and Vl(x), with l ∈ N, are [0, 1]-valued independent stochastic processes

with index set X and Beta(1,MX ) marginal distributions. MX > 0, similarly to α in

the Dirichlet process, is a collection of parameters that controls the precision of the

stochastic process. Specifically, the distribution of Vl(x) can differ from the distribution

of Vl(x
′) if x ̸= x′, for any l ≥ 1, inducing different weights associated with the compo-

nents of the mixture Gx(·). The processes associated with the weights and atoms are

independent.

Therefore, the dependent Dirichlet process construction is defined by a set of random

measures that are marginally—i.e. for every possible predictor value x ∈ X—Dirichlet

process distributed random measures (Quintana et al., 2020).

Almost all of the proposed dependent Dirichlet process mixture models in the liter-

ature can be categorized, following Quintana et al. (2020), in single-weights dependent

Dirichlet process models (see De Iorio et al., 2004; Gelfand et al., 2005) and in single-

atoms dependent Dirichlet process models (see Dunson and Park, 2008; Rodriguez et al.,
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2008). The first category is defined by MacEachern (2000) as the case of common weights

across the values of predictors x, while the atoms depend on them, such that

Gx(·) =
∞
∑

l=1

ωlδψl(x)(·) =
∞
∑

l=1

[

Vl
∏

r<l

(1− Vl)

]

δψl(x)(·),

where {Vl}l≥1 are iid Beta distribution Beta(1, α), common across all levels of x, as in

the Dirichlet process; while the atoms {ψl(x)}l≥1 are independent stochastic processes

with index set X and marginal distribution G0
x.

Included in this definition, is the ANOVA-DDP model introduced by De Iorio et al.

(2004), where the atom ψl(x) is a sequence of an iid random vector of a linear com-

bination of the observed categorical covariates x, and extended to different real-data

problems as longitudinal data (De la Cruz-Meśıa et al., 2007), multiple treatment test-

ing (Gutiérrez et al., 2019), and nonproportional hazards for survival analysis (De Iorio

et al., 2009). Similarly, the linear dependent Dirichlet process model involves a linear

combination of a set of covariates (Jara et al., 2010). Gelfand et al. (2005) defines

the spatial-dependent Dirichlet process mixture model where the weights depend on

the spatial location and are defined as a Gaussian process. Caron et al. (2007) and

Rodriguez and Ter Horst (2008) formulate a dependent Dirichlet process model for dy-

namic phenomena, where the atoms in the infinite mixture are allowed to change in

time.

The second category, the single-atoms dependent Dirichlet process models, is char-

acterized by a set of common atoms across all the values of x, such that the random

probability measure takes the form:

Gx(·) =
∞
∑

l=1

ωl(x)δψl
(·) =

∞
∑

l=1

[

Vl(x)
∏

r<l

(1− Vl(x))

]

δψl
(·),

where Vl(x), with l ∈ N, are [0, 1]-valued independent stochastic processes with index set

X and Beta(1,MX ) marginal distributions, and the parameters {ψl}l≥1 are independent

with marginal distributions G0.

Under this definition, all the covariate-dependence is expressed through the weights

of the stick-breaking representation, with the implication of obtaining partitions that

change with the values of x ∈ X (Quintana et al., 2020). This advantage, not shared

with the single-weights dependent Dirichlet process, assumes a substantial role when

the partition and the latent class are a matter of interest.

Moreover, several models extend this original definition, modifying the stick-breaking

representation to allow incorporation of the covariates dependence. Dunson and Park
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(2008) propose the kernel stick-breaking process where the weights are a function of

beta random variables and random kernel locations. Chung and Dunson (2009) and

Ren et al. (2011) introduce the probit and logic stick-breaking processes, substituting

the Beta random variables with normally distributed random variables with probit and

logic link function respectively. A hierarchical structure has been considered in different

variations of dependent Dirichlet process, as the hierarchical Dirichlet process mixture

model proposed by Müller et al. (2004) or that one by Teh et al. (2006), the nested

Dirichlet process by Rodriguez et al. (2008), and the common atom model (Denti et al.,

2021).





Chapter 2

Confounder-Dependent Bayesian

Mixture Model for

Heterogeneity in Causal Effect

The broad interest in capturing the heterogeneity in the causal effect within the Po-

tential Outcome framework (Rubin, 1974)—introduced in Section 1.2.1—is a reflection

of the wide number of applications where heterogeneity can arise. However, this no-

tion is conceptualized in different estimands and, consequently, estimated with different

methods.

In this chapter, we define the estimand for the Group Average Treatment Ef-

fect (GATE) and introduce the novel method that allows us to estimate GATEs:

Confounder-Dependent Bayesian Mixture Model.

2.1 Estimands for Heterogeneous Causal Ef-

fects

As introduced in Section 1.2.1, the general estimand for the heterogeneous treatment

effect is the CATE, defined in (1.3) as the expected value of ITE conditioning to a subset

C ⊆ X .

The CATE can be specified at different levels of granularity depending on the com-

plexity of C, where at the highest level of granularity stands the IATE—see (1.2) in

Section 1.2.1—, and at a lower level of granularity, the average treatment effect for

some subgroups of the population (Bargagli-Stoffi et al., 2022).

This chapter is based on Zorzetto et al. (2023a).

23
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We assume that the heterogeneity of the treatment effect is induced by a group struc-

ture where the units within a group are characterized by the same individual treatment

effect. Let’s define Gi as a subject-specific group label indicator and g as one of the

labels. Then, the Group Average Treatment Effect (GATE) for group g is defined as

τg = E [Yi(1)− Yi(0)|Gi = g] . (2.1)

As a specific case of CATE, GATE depends on subsets of the covariates space X .

However, most of the approaches for estimating the CATE or GATE require defining

these covariates values a priori. Such approaches lead to disadvantages as (i) they

can be subject to the cherry-picking problem of reporting results only for groups with

extremely high/low treatment effects (Cook et al., 2004); (ii) they must define the groups

a priori, which in turn requires a good understanding of the treatment effects, possibly

from previous literature and, thus, may fail to identify unexpected, yet important,

heterogeneous groups.

Aiming to overcome these limitations, we propose, in the following section, a novel

nonparametric method that allows us to identify mutually exclusive groups, that are

driven by the data, identified by different conditional treatment effects, and distin-

guished by different values of covariates. Specifically, as a feature of the proposed

model, partitions of the data are induced by definition, without a priori assumptions on

the probability of the units being grouped together.

Consistently with the causal inference framework (Rubin, 1980) the following as-

sumption is required, in addition to SUTVA explained in Section 1.2.1, to identify any

causal effects from the observed data.

Strong Ignorability. Given the observed covariate vector xi, the treatment assignment

is strongly ignorable if

{Yi(1), Yi(0)} ⊥ Ti | Xi = xi,

and 0 < P(Ti = 1 | Xi = xi) < 1, for all i = 1, . . . , n. This assumption states that: (i)

we have a random treatment assumption in each group conditional on some covariates

values; (ii) all units have a positive chance of receiving the treatment.

If the SUTVA and strong the ignorability assumption hold, the estimand in (1.2) can

be expressed as

τ(x) = E[Yi(1) | Xi = x]− E[Yi(0) | Xi = x]

= E[Yi | Xi = x, Ti = 1]− E[Yi | Xi = x, Ti = 0]; (2.2)
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and consequently also the estimand of GATE (2.1) can be defined as:

τg = E[Yi(1) | Gi = g]− E[Yi(0) | Gi = g]

=

∫

x

E[Yi(1) | Gi = g,Xi = x] Pr(Xi = x | Gi = g)dx

−

∫

x

E[Yi(0) | Gi = g,Xi = x] Pr(Xi = x | Gi = g)dx

=

∫

x

(

E[Yi | Gi = g,Xi = x, Ti = 1]− E[Yi | Gi = g,Xi = x, Ti = 0]

)

×Pr(Xi = x | Gi = g)dx; (2.3)

where the first equality invokes the properties of expectation and the second equality is

due to the no unmeasured confounding and SUTVA assumption. The expected values

and the probability can be estimated by the outcome model proposed in the following

section.

2.2 Confounder-Dependent Bayesian Mixture

Model

The estimation of the causal effects can be seen as a missing data problem where, for

each subject, we observe just one of the potential outcomes while the other potential

outcome is always missing. Likewise, Rubin (1974) refers to the missing potential out-

comes as counterfactual outcomes (Holland, 1986; Imbens and Rubin, 1997). From (2.3),

we know that under strong ignorability—that is, under a sufficiently rich collection of

control variables—treatment effect estimation reduces to the estimation of the condi-

tional expectations of E[Yi | Xi = x, Ti = 1] and E[Yi | Xi = x, Ti = 0]. Provided the

excellent predictive performance of Bayesian methodologies, Bayesian nonparametric

models have been widely used for this task (Sivaganesan et al., 2017; Hill, 2011; Roy

et al., 2018; Hahn et al., 2020; Oganisian et al., 2021).

Here we propose a Bayesian nonparametric approach for the expectation of condi-

tional outcomes. In particular, we exploit a dependent nonparametric mixture prior—

inspired by the dependent Dirichlet process (MacEachern, 2000; Barrientos et al., 2012;
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Quintana et al., 2020). Formally, we assume for each i = 1, . . . , n:

{Yi | xi, t} ∼ f (t)(· | xi),

f (t)(· | xi) =

∫

Ψ

K(·;ψ)dG(t)
xi
(ψ), (2.4)

G(t)
xi

∼ Π(t)
xi
,

where K(·;ψ) is a continuous density function, for every ψ ∈ Ψ, and G
(t)
xi is a random

probability measure depending on the confounders xi associated to an observation as-

signed to treatment level t. A priori we assume G
(t)
xi ∼ Π

(t)
xi where Π

(t)
xi is a treatment-

and confounder-dependent nonparametric process. Following a single-atom dependent

Dirichlet process (Quintana et al., 2020) characterization of the random measure G
(t)
xi ,

we can write:

G(t)
xi

=
∑

l≥1

ω
(t)
l (xi)δψ(t)

l

, (2.5)

where {ω(t)
l (xi)}l≥1 and {ψ(t)

l }l≥1 represent infinite sequences of random weights and

random kernel’s parameters, respectively. Notably, both random sequences depend on

treatment level t while the weights also depend on the confounders values xi.

Furthermore, the sequence of dependent weights is defined through a stick-breaking

representation (Sethuraman, 1994),

ω
(t)
l (xi) = V

(t)
l (xi)

∏

r<l

{1− V (t)
r (xi)}, (2.6)

where {V (t)
l (x)}l≥1 are [0, 1]-valued independent stochastic processes. The sequence of

random parameters {ψ(t)
l }l≥1 are independent and identically distributed from a base

measure G
(t)
0 .

The discrete nature of the random probability measure G
(t)
xi allows us to introduce

the latent categorical variables S
(t)
i , which identifies the cluster allocation for each unit

i ∈ {1, . . . , n}, whose clusters are defined by heterogeneous responses to the treatment

level t. Assuming P{S(t)
i = l} = ω

(t)
l (xi), we can write model in (2.4), exploiting

conditioning on S
(t)
i , as

{Yi|xi, t, ψ
(t), S

(t)
i = l} ∼ K(· | ψ(t)

l ), ψ
(t)
l ∼ G

(t)
0 .

where ψ(t) represents the infinite sequence {ψ(t)
l }l≥1, for t = {0, 1}.

Among the plethora of dependent nonparametric processes (see the recent review by

Quintana et al., 2020, for a detailed description), we focused on the dependent Probit
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Stick-Breaking process for its success in applications, good theoretical properties, and

ease of computation (Rodriguez and Dunson, 2011). Consistently with this, we specify:

V
(t)
l (xi) = Φ(α

(t)
l (xi)), α

(t)
l (xi) ∼ N (β

(t)
0l + xTi β

(t)
l , 1), (2.7)

where Φ(·) is the CDF of a standard Normal distribution and {α(t)
l (xi)}l≥1 has Gaussian

distributions with mean a linear combination of the p covariates xi.

As commonly done, we assume the kernel K to be a Gaussian, so that model (2.4)–

(2.5) specifies to

{Yi|xi, t, S
(t)
i = l, η(t), σ(t)} ∼ N (η

(t)
l , σ

2(t)
l ). (2.8)

where η(t) and σ(t) represent the infinite sequences {η(t)l }l≥1 and {σ(t)
l }l≥1, respectively.

Prior elicitation is completed by assuming for the regression parameters in (2.7) the

conjugate priors

β
(t)
ql ∼ N (µβ, σ

2
β),

for t = 0, 1, l ≥ 1,and q = 0, 1, . . . , p and for the parameters η
(t)
l and σ

(t)
l in (2.8)

η
(t)
l

iid
∼ N (µη, σ

2
η), and σ

(t)
l

iid
∼ InvGamma(γ1, γ2).

where InvGamma(γ1, γ2) represents the inverse-gamma distribution with shape param-

eter γ1 ∈ R
+ and scale parameter γ2 ∈ R

+, and mean equal to γ2
γ1−1

and variance
γ22

(γ1−1)2(γ1−2)
.

In observation studies, it is fundamental the control the confounding bias. Therefore, in

the real-data application, the study design is required before the fitting of the CDBMM.

2.2.1 Posterior Inference

Rodriguez and Dunson (2011) proves that the finite truncation of the dependent Probit

Stick-Breaking process is a good approximation; therefore, we can rewrite (2.5) as a

finite mixture to L < ∞ components with L a reasonable conservative upper bound.

Rodriguez and Dunson (2011)’s proof is a key point that allows us to provide a simpler

algorithm without losing the robustness of the model.

The Gibbs sampling algorithm for model fitting, which we define below, is inspired

by the algorithm proposed by Rodriguez and Dunson (2011) to obtain draws from

the posterior distribution. Following the steps in the Algorithm 1, in each iteration
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r = 1, . . . , R, we use the observed data (y, t, x) to update the parameters and the

augmented variables and impute the missing potential outcomes ymis.

Cluster Allocation. The latent variables S
(t)
i identifies the cluster allocation for each

units i ∈ {1, . . . , n} at the treatment level t. Its posterior distribution is a multinomial

distribution where

P{S(t)
i = l} ∝ ω

(t)
l (xi)N (yi; η

(t)
l , σ

(t)2
l ),

for i = 1, . . . , n and l = 1, . . . , L, with ω
(t)
l defined as:

ω
(t)
l (xi) = Φ(α

(t)
l (xi))

∏

r<l

(1− Φ(α
(t)
l (xi))),

for l = 1, . . . , L− 1 and with Φ(α
(t)
L (xi)) = 1.

Cluster Specific Parameters. Thanks to the latent variables S
(t)
i , that cluster the units

by the value of their outcome for the treatment level t, we know for each cluster l ∈

{1, . . . , L}, the allocated units and we can update the values of the parameters from

their posterior distributions:

η
(t)
l ∼ N

(

V −1
l ×

(∑

{i:S
(t)
i

=l}
yi(t)

σ
(t)2
l

+
µη
σ2
η

)

, V −1
l

)

, for l = 1, . . . , L;

σ
(t)2
l ∼ InvGamma



γ1 +
n
(t)
l

2
, γ2 +

∑

{i:S
(t)
i

=l}
(yi(t)− η

(t)
l )2

2



 , for l = 1, . . . , L;

where Vl = n
(t)
l /σ

(t)2
l +1/σ2

η and n
(t)
l is the number of units allocated in the l-th cluster.

Augmentation Scheme. In order to sample from {α(t)
l (x)}Ll=1 and the corresponding

weights {ω(t)
l (x)}Ll=1, we need a data augmentation scheme. The idea was developed

by Albert and Chib (2001) and borrowed by Rodriguez and Dunson (2011) to obtain

exact Bayesian inference for binary regression and computationally easy to include it in

the Gibbs sampling (Albert and Chib, 2001). We can impute the augmented variables

Z
(t)
l (xi) by sampling from its full conditional distribution (Rodriguez and Dunson, 2011):

Z
(t)
l (xi)|S

(t)
i , α

(t)
l (xi) ∼







N (α
(t)
l (xi), 1)IR+ if S

(t)
i = l,

N (α
(t)
l (xi), 1)IR− if S

(t)
i < l.
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The mean, α
(t)
l (xi), of the previous normal distributions is obtained from:

α
(t)
l (xi) = ϕ

(

ω
(t)
il (xi)

∏

r<l(1− Φ(xTi β
(t)
l )

)

= ϕ

(

ω
(t)
ir (xi)

1−
∑

r<l ω
(t)
ir (xi)

)

;

where ϕ(·) is the continuous density function of Gaussian distribution.

Confounder-Dependent Weights. To conclude the for-loop, the {β(t)
ql }

p
q=0 = (β

(t)
0l , β

(t)
l ),

for l = 1, . . . ,max(S
(t)
i , L− 1), are updated for the posterior distribution:

β
(t)
0l ∼ N ((1/σ2

β + n)−1 × (µβ/σ
2
β + 1Tn Z̃), (1/σ

2
β + n)−1);

β
(t)
l ∼ Np(W

−1 × (µβ/σ
2
β + (X̃)T Z̃),W−1);

where 1n is a n vector of ones, W = Ip/σ
2
β + (X̃)T X̃, Ip is a p × p diagonal matrix, X̃

is a matrix such that it is composed by the rows i in X, such that S
(t)
i ≤ l, and Z̃ is a

vector composed by the z
(t)
l (xi) for the units i such that S

(t)
i ≤ l.

While the Gibbs sampler allows us to recover the posterior distribution of the random

variable, it is crucial to identify the point estimation of the quantities of interest. Ac-

cording to the goal to estimate the GATEs, the point estimation of the partition for

latent variables S(0) and S(1), respectively, is the first step. As explained with further

details and intuitions in the following section, this estimation is obtained through the

Wade and Ghahramani (2018)’s methods. Successively, the group allocation is identi-

fied by the Cartesian product of the two partitions of S(0) and S(1). The GATEs are

computed conditional to the group allocation.

2.2.2 Groups & Clusters

One of the advantages of Bayesian nonparametric mixtures is their ability to cluster

the observations. Consistently with our goal of defining heterogeneous causal effects,

herein we discuss how to estimate mutually exclusive groups of observations, each char-

acterized by different GATEs.

Consistently with the Bayesian nonparametric literature, we call clusters the sets

defining the estimated partition for each treatment level t ∈ {0, 1}. We then combine

these clusters to estimate the groups into which the observations are divided, and for

each group, we calculate a different GATE. Note that we use the term cluster differently

from group. The former refers to the sets defined for a specific t as a byproduct of the
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Algorithm 1 Estimation Confounder-Dependent Mixture Model (CDBMM)

Inputs:

- the observed data (y, t, x).
Outputs:

- posterior distributions of parameters: η, σ, and β;
- posterior distribution over the space of partitions of the units.

Procedure:

Initialization of all parameters and latent variables.
For r ∈ {1, . . . , R} :

For t ∈ {0, 1} :

Compute ω(t)(xi) for i = 1, . . . , n;

Draw S
(t)
i for i = 1, . . . , n;

Draw η(t) and σ(t);
Compute α(t)(xi) for i = 1, . . . , n;
Draw z(t)(xi) for i = 1, . . . , n;
Draw β(t).

End

End

infinite mixture model specification obtained through Wade and Ghahramani (2018)

procedure, while the latter refers to the final groups for which we computed different

GATE.

The model specification introduced in the previous section allows us to define a

group of observation based on the Cartesian product of the latent categorical vari-

ables {S(0)
i , S

(1)
i }, for each unit i = 1, . . . , n. Under our fully Bayesian approach,

Si = {S(0)
i , S

(1)
i } are couples of random variables for which we can characterize the asso-

ciated posterior distribution—reported in the previous section. This is customary in all

Bayesian infinite mixture models, which are inherently associated with random partition

models (Quintana, 2006). Under these settings, the posterior of the random partition

reflects uncertainty in the clustering structure given the data (Wade and Ghahramani,

2018).

A general problem associated with the huge dimension of the space of partitions is

the appropriate summarization of the posterior through a point estimate. Wade and

Ghahramani (2018) propose a solution based on decision theory—i.e. the optimal point

estimate is that which minimizes the posterior expectation of a loss function using either

on Binder’s loss (Binder, 1978) or Variation of Information (Meilă, 2007).

In the following analyses, we use the approach proposed by Wade and Ghahramani

(2018) to divide the observations into separate clusters for each value of t ∈ {0, 1}. By

using this approach, we can associate different treatments with varying numbers of clus-

ters, which allows for a highly flexible model. For instance, in the simulations presented
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in Section 2.3, we designed Scenario 2 to have a single cluster with a constant response

for the treated subjects and different clusters with varying responses depending on the

confounders for the untreated group. Our proposed approach effectively accommodates

such scenarios.

Our proposed method estimates the GATE of each group without the need for a

predefined selection of a partition of the confounder space. This is achieved by directly

obtaining the groups from the posterior of the model. Given that the groups are mutually

exclusive, it is straightforward to identify the characteristics of the units in each group,

such as the average of observed confounders or modal categories for continuous and

categorical confounders, respectively.

We define the posterior distribution of the GATE for each group as the mean of

the posterior distribution of the ITE for units in that group. In the following analyses,

we use the mean as the posterior point estimation of GATE for each group, but other

measures, such as the median, can also be used. Bayesian credible intervals for the

GATE can be obtained as well.

However, our proposed method allows us to define and estimate any functions of

the potential outcomes conditional to the group allocation. An example is the Group

Average Risk Ratio (GARR), used in Chapter 4, that wants to characterize the risk ratio

between the potential outcomes given the group g. Specifically, the causal estimand of

GARR is defined as follows:

GARRg = E

[

Yi(1)

Yi(0)

∣

∣

∣

∣

Gi = g

]

.

Under strong ignorability and properties of expectation, the statistical estimand re-

sults to be

GARRg =
E[Yi(1) | Gi = g]

E[Yi(0) | Gi = g]

=

∫

x
E[Yi(1) | Gi = g,Xi = x] Pr(Xi = x | Gi = g)dx

∫

x
E[Yi(0) | Gi = g,Xi = x] Pr(Xi = x | Gi = g)dx

(2.9)

where Gi is the Cartesian product of the point estimate of the cluster partition of S
(0)
i

and S
(1)
i .

2.3 Simulation Study

The performances of the proposed Confounder-Dependent Bayesian Mixture Model

(CDBMM) are assessed through a simulation study. Our objective is to investigate the
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model’s ability to (i) accurately estimate ITEs—i.e. evaluating bias and mean square

error (MSE) of the SATE—, (ii) correctly identify the groups of data that describe the

heterogeneity in the effects, and, as a result, accurately estimate GATEs. To achieve

this, we conduct simulations under seven different data-generating models and analyze

the results to understand the model’s behavior in different scenarios.

Specifically, in each scenario, we assume that the confounders and the treatment

variable are binary. We simulate them respectively, for i = 1, . . . , n, from X1i ∼ Be(0.4),

X2i ∼ Be(0.6), X3i ∼ Be(0.3), X4i ∼ Be(0.5), X5i ∼ Be(0.2) and Ti ∼ Be(expit(0.4X1i+

0.6X2i)), for all scenarios except for Scenario 5 where the treatment is defined as function

of all the five confounders, such that Ti ∼ Be(expit(0.4X1i+0.6X2i−0.3X3i+0.2X4iX5i)),

where Be(θ) represents a Bernoulli random variable with success probability θ.

Each scenario assumes a different configuration of the groups, defining different char-

acterization of the heterogeneity in the causal effects. Each group is obtained by in-

troducing, for each unit i, categorical variables Si with k categories, that allocate the

unit in one of the k groups according to covariates values. Note that we use the words

group and cluster consistently with the previous section. Conditionally on Si = s we

simulate both potential outcomes as Yi(0)|Si = s ∼ N (η
(0)
s , σ

(0)
s ) under control and

Y (1)|Si = s ∼ N (η
(1)
s , σ

(1)
s ) under treatment.

In each setting, the sample size is fixed to n = 500. For each scenario, we simulate

100 samples. We set k = 3 for Scenarios 1-2-3-6, k = 4 for Scenario 4, k = 5 for Scenario

5, and k = 1 for Scenario 7—i.e. to simulate the degenerative case of heterogeneity:

homogeneity.

Scenario 1: We investigate a situation in which the expected value of the outcome

decreases with the treatment, but the intensity of this decrease varies across different

groups. We set η(0) = (2, 4, 6) and η(1) = (0, 3, 6), and assume that the variance within

each group is constant, with σ
(0)
s = σ

(1)
s = 0.3 for s = 1, 2, 3. This results in group

average treatment effects of (−2,−1, 0) respectively in the three groups. The units are

allocated in the three groups according to the covariates values: s = 1 when X1i =

X2i = 0, s = 2 when X1i = 1, and s = 3 when X1i = 0 and X2i = 1.

Scenario 2: We examine a typical study setting where the population has different

outcomes under the control group but similar outcomes under treatment. To achieve

this, we set η(0) = (0, 2.2, 4.4)T , η
(1)
s = 0 for each s ∈ 1, 2, 3, and σ

(0)
s = σ

(1)
s = 0.2.

Consequently the group average treatment effects is τ(s) = (0,−2.2,−4.4) respectively

for each group. The group allocation is the same as Scenario 1.

Scenario 3: We focus on a case where the groups are less separated, with the location
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parameters η(0) and η(1) being closer to each other and different variances between

groups. Specifically, we set η(0) = (1, 2, 3), η(1) = (0, 1.5, 3), σ(0) = (0.2, 0.25, 0.25), and

σ(1) = (0.25, 0.3, 0.2). This results in group average treatment effects of (−1,−0.5, 0).

The group allocation is the same as Scenario 1.

Scenario 4: We consider a situation in which there are four groups, combining features

from the previous scenarios. Specifically, we consider the values within η(0) and η(1) to

be close to each other, as in Scenario 3, and assume a different behavior under treatment

and control in terms of heterogeneity as in Scenario 2. Specifically, the outcomes under

treatment show four different clusters, while the outcomes under control underline three

different clusters. This is achieved by setting η(0) = (1, 2, 3, 3), η(1) = (0, 1.5, 3, 4.5),

and σ
(0)
s = σ

(1)
s = 0.2 for s = 1, 2, 3, 4. The group average treatment effect results from

(−1,−0.5, 0, 1.5) respectively for four groups. The units are allocated in the four groups

according with the covariates values: s = 1 when X1i = 0 and X2i = 1, s = 2 when

X1i = X2i = 0, s = 3 when X1i = X2i = 1, and s = 4 when X1i = 1 and X2i = 0.

Scenario 5: We consider all the five confounders X as well as characterization of the

groups. Moreover, in this scenario we also increase the number of groups up to 5,

describing a more complex and heterogeneous setting. The cluster-spesific parameters

are set to η(0) = (2, 2, 3, 4.5, 6.5), η(1) = (0, 1, 2.5, 5, 7.5), σ
(0)
s = σ

(1)
s = 0.2 for s =

1, 2, 3, 4, 5. We obtain group average treatment effects equal to (−2,−1,−0.5, 0.5, 1).

The units are allocated in the five groups according to the values of the five covariates:

s = 1 when X1i = X2i = 1, s = 2 when X1i = 0 and X3i = 1, s = 3 when X1i = X3i = 0

and X4i = 1, s = 4 when X1i = X3i = X4i = 0, and s = 5 otherwise.

Scenario 6: This is similar to Scenario 1 and Scenario 3, but with groups that are even

closer and with bigger variance, such that the marginal distributions for the treated and

control outcomes, respectively, are not multimodal. In particular, we have three groups

with η(0) = (1.5, 2, 2.5), η(1) = (1, 1.75, 2.5), and σ
(0)
s = σ

(1)
s = 0.3 for s = 1, 2, 3. The

group allocation is the same as Scenario 1.

Scenario 7: We study the degenerative case of heterogeneity, such that we have only

one group, with η(0) = 2, η(0) = 3, and σ
(0)
s = σ

(1)
s = 0.5. The average treatment effect

is equal to 1.

We choose the same hyperparameters for each setting such that the prior is non-

informative and in common for all the settings. For the regression parameters in (2.7)
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and for the parameters η
(t)
l and σ

(t)
l in (2.8) we use the following conjugate priors

β
(t)
ql ∼ N (0, 20), η

(t)
l ∼ N (0, 10), and σ

(t)
l ∼ InvGamma(5, 1).

for t ∈ {0, 1}, l ∈ {1, . . . , 20}—see Section 2.2.1 for the choice of finite truncation of

the dependent Probit Stick-Breaking process—, and q according with the covariates

considered in different setting.

The performance of the proposed approach is compared to those obtained with

the Bayesian additive regression trees model by Hill (2011)—using the R package

bartCause—and with the Bayesian causal forest approach by Hahn et al. (2020)—

using the package bcf available in GitHub. We chose the Bayesian additive regression

tree and Bayesian causal forest as a benchmark as these models have shown particular

flexibility and an excellent performance—with the need of no or little hyper-parameter

tuning—in both prediction tasks (Linero and Yang, 2018; Linero, 2018; Hernández et al.,

2018) and in causal inference applications (Hill, 2011; Hahn et al., 2020; Logan et al.,

2019; Nethery et al., 2019; Bargagli-Stoffi et al., 2022). These methods do not have a

direct characterization of the heterogeneity of the causal effect, but the groups can be

obtained with second-step, where the ITE are grouped by classification and regression

trees, introduced by Breiman et al. (1984). In particular, the benchmark for group iden-

tification is Bayesian causal forest and classification and regression tree analysis combo,

where we use the R package rpart for the classification and regression tree analysis.

First, we analyze the result for the SATE. As illustrated in Figure 2.1- 2.2, the

results obtained from the three models are quite similar in terms of both bias and mean

square error. In particular, the bias is close to zero, as reported in Figure 2.1, where

the median of the boxplots is close to the red horizontal line that indicates a bias of

zero; and the variability among the censorious is small and correlated to the variability

of the simulated data—e.g. the scenario 7 has boxplot with longer tails than the other

scenarios, due to a bigger simulated values for the parameters σ(0) and σ(1). Additionally,

the mean square errors, in Figure 2.2, reflect the simulated variability in each of the

seven scenarios. The MSE results for the three models are comparable, with smaller

median values for CDBMM, even though, there are some outliers for scenario 4 for this

model.

The proposed method not only produces accurate average treatment effect estimates

but also excels in estimating the GATEs, that directly depend on the identified partition

of the groups. To evaluate the estimated partition we use the adjusted Rand index

(ARI)—using the R package mcclust. ARI is a cluster comparison measure, that informs
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Figure 2.1: Comparison of estimation of the average of individual treatment effects
between Bayesian additive regression tree (BART), Bayesian causal forest (BCF), and
CDBMM: bias.
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Figure 2.2: Comparison of estimation of the average of individual treatment effects
between Bayesian additive regression tree (BART), Bayesian causal forest (BCF), and
CDBMM: mean square error (MSE).
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Table 2.1: Mean and empirical standard deviation of the adjusted Rand index com-
puted for the seven settings with CDBMM and Bayesian causal forest and classification
and regression tree analysis (BCF+CART) combo.

CDBMM BCF + CART
mean sd mean sd

Scenario 1 0.9995 0.0016 0.8203 0.0185
Scenario 2 0.9910 0.0390 0.8203 0.0185
Scenario 3 0.9981 0.0046 0.8158 0.0416
Scenario 4 0.9926 0.0320 1.0000 0.0000
Scenario 5 0.9905 0.0199 0.7935 0.0283
Scenario 6 0.9757 0.0425 0.7351 0.1341
Scenario 7 1.0000 0.0000 1.0000 0.0000

of the goodness of the estimated partition, compared with the simulated partition. It

takes values in [0, 1], with 0 indicating that the two partitions do not agree on any pair

of units and 1 indicating that the partitions perfectly match. We utilize as a benchmark

the Bayesian causal forest and classification and regression tree analysis combo, and

the compared results are reported in Table 2.1. The proposed method has superior

performance, in mean and variability, broadly concerning the Bayesian causal forest and

classification and regression tree analysis combo in Scenarios 1–6 where heterogeneity is

present. In the case of homogeneity (Scenario 7), the methods are comparable as both

methods correctly find a single group.

Concluding the simulation study, we show the estimated GATEs for each group in

the seven simulated scenarios in Figure 2.3. The boxplots underline that the medians

of each GATE are in close agreement with the true simulated values, reported as the

light-blue dot-dashed lines, confirming the model’s capability to identify and estimate

the GATEs with high precision.
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Figure 2.3: GATEs for the groups in the seven simulated scenarios. The light-blue
dot-dashed lines show the true values.





Chapter 3

Confounders-Aware Shared-atoms

Bayesian Mixture Model for

Principal Stratification

Bayesian nonparametric mixture models can handle the challenges that emerge in the

principal stratification framework (Frangakis and Rubin, 2002). First and foremost, our

primary objective is to elucidate the causal estimands, taking into account the contin-

uous nature of the post-treatment variable and its impact on the outcome. Secondly,

we aim to harness the adaptability offered by the dependent Dirichlet process prior to

defining a model that captures the distribution of the potential post-treatment variables

and the complex causal relations.

In pursuit of these aims, in this chapter, firstly we define novel principal strata esti-

mands and secondly, we introduce a new method that allows us to learn these estimands

a Confounders-Aware SHared-atoms BAyesian mixture model denoted by the acronym

CASBAH, with the intentional alteration of the letter “H” for improved terminological

conciseness.

3.1 Principal Strata Estimands

We have elucidated the principal stratification framework in Section 1.2.2, including

the main estimand currently used in the literature. The continuous nature of the post-

treatment variable makes more complex the definition of the standard expected dissocia-

tive effect (EDE) and expected associative effect (EAE) for the discrete post-treatment

This chapter is based on Zorzetto et al. (2023b).

39
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variable. As reported in Section 1.2.2, Zigler et al. (2018) suggests a criteria for the

stratification based on a threshold ξ.

We believe that a priori choice of the threshold ξ can be too sensible for arbitrary

choice. However, we believe that the strata are expressions of heterogeneity in the

causal effect of the treatment on the post-treatment variable. Specifically, we assume

that the two potential post-treatment variables {Pi(1), Pi(0)} have distributions that

are a mixture of parametric kernels, and consequently also Pi(1)−Pi(0)—i.e. the causal

effect of the treatment on the post-treatment variable—has a mixture distribution, such

that each of its kernels has a finite first moment.

In other words, we assume that the units can be clustered into strata, where each

stratum has a finite average treatment effect on the post-treatment variable. Specifically,

if the a unit has

• E[Pi(1)− Pi(0)] = 0, it belongs to the dissociative stratum;

• 0 < E[Pi(1)− Pi(0)] <∞, it belongs to the associative positive stratum;

• −∞ < E[Pi(1)− Pi(0)] < 0, it belongs to the associative negative stratum.

In regard to the environmental epidemiology application in Section 4.2, we can de-

fine dissociative stratum as those counties where the air pollution regulation does not

significant modify the level of pm2.5. Oppositely, a county, where the reduction of the

level of pm2.5 is significant greater when the air pollution regulation is apply that when

it is not, is allocated in the associative negative stratum.

Therefore, we propose novel estimands conditionally on latent variables Vi that define

the allocation of each unit i ∈ {1, . . . , n}, in one of the three strata previously described.

Specifically Vi = 0 in the dissociative stratum, while it is equal to ±1 for the associative

positive and negative strata, respectively.

Therefore, conditionally on Vi, we can define the causal estimands for EDE and EAEs

as

EDE = τ0 = E[Yi(1)− Yi(0) | Vi = 0],

EAE+ = τ+1 = E[Yi(1)− Yi(0) | Vi = +1],

EAE− = τ−1 = E[Yi(1)− Yi(0) | Vi = −1]. (3.1)

With respect to the real-data application, the principal causal estimands capture the

heterogeneity in the causal effect of the air pollution regulation on the mortality rate

conditional to the different behaviour of the level of pm2.5. I.e., we want to estimate
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the difference on the mortality rate in case of application and no application of the

regulation, given the principal strata induced by the pm2.5.

In order to identify the causal estimands introduced above, the following assumption

has to be made, in addition to SUTVA invoked for both the outcome variable and the

post-treatment variable, as explained in Section 1.2.2:

Strongly Ignorable Treatment Assignment. Given the observed covariates xi,

{
(

Yi(1), Yi(0)
)

,
(

Pi(0), Pi(1)
)

} ⊥⊥ Ti | Xi,

0 < Pr (Ti = 1 | Xi = x) < 1 ∀ x ∈ X ,

where X is the features’ space. Therefore as reported also in Section 2.1, (i) we have a

random treatment assumption in each group conditional on some covariates values; (ii)

all units have a positive chance of receiving the treatment.

Under these assumptions, the causal estimands in (3.1) can be written as follows. For

a clearer notation, we use the notation EAE[B | A] to indicate
∫

A
E[B | A = a] Pr(A =

a)da where A is the support of the variable A.

E
[

Yi(1)− Yi(0) | Vi = v
]

= E
[

Yi(1) | Vi = v
]

− E
[

Yi(0) | Vi = v
]

= EXi|Vi=vE
[

Yi(1) | Vi = v,Xi = x
]

− EXi|Vi=vE
[

Yi(0) | Vi = v,Xi = x
]

= EXi|Vi=vE
[

Yi | Ti = 1, Vi = v,Xi = x
]

− EXi|Vi=vE
[

Yi | Ti = 0, Vi = v,Xi = x
]

,

for each stratum v ∈ {0,±1}, where the first and second equality invoke the properties

of expectation and the third equality is due to the no unmeasured confounding and

SUTVA assumption. The inner expectation of each integral, for the treatment value

t ∈ {0, 1}, can be decomposed as

E
[

Yi | Ti = t, Vi = v,Xi = x
]

= EPi(1),Pi(0)|Ti=t,Vi=v,X=xE
[

Yi | Ti = t, Vi = v,Xi = x, Pi(1) = p1, Pi(0) = p0
]

= EPi(1),Pi(0)|Ti=t,Vi=v,Xi=xE
[

Yi | Ti = t,Xi = x, Pi(1) = p1, Pi(0) = p0
]

,

such that p1 = p0 when v = 0, p1 > p0 when v = +1, and p1 < p0 when v = −1. The

inner expectations E
[

Yi | Ti = t,Xi = x, Pi(1) = p1, Pi(0) = p0
]

is straightforward to

calculate since we have an outcome model for Yi | Ti, Xi, Pi(1), Pi(0).
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Hence the joint probability of the potential post-treatment variables, involved in the

previous integral can be re-written as

Pr
(

Pi(1) = p1, Pi(0) = p0 | Ti = t, Vi = v,Xi = x
)

=
Pr
(

Pi(1) = p1, Pi(0) = p0, Ti = t, Vi = v,Xi = x
)

Pr
(

Ti = t, Vi = v,Xi = x
)

=
Pr
(

Vi = v | Pi(1) = p1, Pi(0) = p0, Ti = t,Xi = x
)

Pr(Pi(1) = p1, Pi(0) = p0 | Ti = t,Xi = x)

Pr
(

Vi = v | Ti = t,Xi = x
)

=
Pr(Pi(1) = p1, Pi(0) = p0 | Ti = t,Xi = x)I{Vi=v}

Pr
(

Vi = v | Ti = t,Xi = x
) .

Therefore, the statistical estimands for (3.1) are

τv = EXi|Vi=vE
[

Yi | Ti = 1, Vi = v,Xi = x
]

− EXi|Vi=vE
[

Yi | Ti = 0, Vi = v,Xi = x
]

=

∫

x

∫

p0p1

E
[

Yi | Ti = 1, Xi = x, Pi(1) = p1, Pi(0) = p0
]Pr(Pi(1) = p1, Pi(0) = p0 | Ti = 1, Xi = x)

Pr
(

Vi = v | Ti = 1, Xi = x
)

× I{Vi=v} Pr(Xi = x | Vi = v)dp0p1dx−

∫

x

∫

p0p1

E
[

Yi | Ti = 0, Xi = x, Pi(1) = p1, Pi(0) = p0
]

×
Pr(Pi(1) = p1, Pi(0) = p0 | Ti = 0, Xi = x)

Pr
(

Vi = v | Ti = 0, Xi = x
) I{Vi=v} Pr(Xi = x | Vi = v)dp0p1dx,

(3.2)

for v ∈ {0,±1}, where the Pr(Pi(1) = p1, Pi(0) = p0 | Ti = t,Xi = x) and the weights
I{Vi=v} Pr(Xi=x|Vi=v)

Pr
(

Vi=v|Ti=t,Xi=x
) , for t = {0, 1}, can be calculate by the post-treatment variable model

Pi(1), Pi(0) | Ti, Xi, defined in the following section.

3.2 Confounders-Aware Shared-atoms Bayesian

Mixture Model

Following the Bayesian paradigm, the joint probability distribution of the involved vari-

ables is defined as

Pr(Yi(0), Yi(1), Pi(0), Pi(1), Ti, Xi) =

∫

Θ

Pr(Yi(0), Yi(1), Pi(0), Pi(1), Ti, Xi, θ)p(θ)dθ

for i = 1, . . . , n, where p(θ) is the prior distribution for all the involved parameters θ

that take values in the parametric space Θ, and the inner probability can be factorized
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as

Pr(Ti | Yi(0), Yi(1), Pi(0), Pi(1), Xi, θ)× Pr(Yi(0), Yi(1) | Pi(0), Pi(1), Xi, θ)

×Pr(Pi(0), Pi(1) | Xi, θ)× Pr(Xi | θ). (3.3)

Following the assumptions in the previous section, the conditional probability of the

treatment variable can be written as Pr(Ti | Yi(0), Yi(1), Pi(0), Pi(1), Xi, θ) = Pr(Ti |

Xi, θ). Moreover, we condition on the empirical distribution of covariates so that Pr(Xi |

θ) = Pr(Xi). Both the treatment and covariates distributions do not need to be modeled

since they are observed (Schwartz et al., 2011).

However the remaining two probabilities in equation (3.3), have to be modeled: (i) the

distribution of potential outcomes of the response conditional on the potential outcome

of the post-treatment variable and covariates and (ii) the distribution of the potential

outcome of the post-treatment variable conditional on the covariates.

We focus our attention on the latter, that is the distribution of the potential outcome

of the post-treatment variable conditional on the covariates for which we propose a novel

Bayesian nonparametric approach. As our primary focus lies in the post-treatment

variable distribution, for the sake of clarity in our discussion, we make the simplifying

assumption of employing a more straightforward parametric model for the conditional

response distribution following Schwartz et al. (2011)’s settings. While the model for

the outcome is assumed to be a linear regression model, it can also be easily generalized

to a more complex and flexible model.

For the post-treatment variable, we exploit a dependent nonparametric mixture prior,

following the approach adopted in the previous chapter of this thesis and more broadly

the dependent Dirichlet process (MacEachern, 2000; Barrientos et al., 2012; Quintana

et al., 2020). Notably, our model shares some similarities also with the hierarchical

Dirichlet process (Teh et al., 2004, 2006; Teh and Jordan, 2009) and the more recent

common atoms model of Denti et al. (2023).

Specifically, we assume for each i = 1, . . . , n:

{Pi(t) | xi, t} ∼ f (t)(· | xi), for t = {0, 1},

f (t)(· | xi) =

∫

Ψ

K(·; xi, ψ)dG
(t)
xi
(ψ),

G(t)
xi

∼ Πxi , (3.4)

where K(·; x, ψ) is a continuous density function, for every ψ ∈ Ψ, and G
(t)
x is a random
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probability measure depending on the confounders xi associated to an observation as-

signed to treatment level t. In particular, the distributions belonging to G
(0)
x and G

(1)
x

are characterized by specific weights assigned to a common set of atoms induced by the

common process Πx.

Following the characterization of the random probability measures we can write:

G(t)
xi

=
∑

l≥1

π
(t)
l (xi)δψl

, (3.5)

where the sequences {π(t)
l (xi)}l≥1 for t = {0, 1} represent infinite sequences of random

weights, and {ψl}l≥1 is an infinite sequence of random kernel’s parameters—independent

and identically distributed from a base measure H—shared among potential outcome

of post-treatment variable under both the treatment level t.

This definition appears similar to the prior distribution introduced in the previous

chapter. However, the implication of the difference between (2.5) and (3.5) is remarkable

and coherent with the different goals of the two proposed approaches. Basically, while

in the CDBMM the atoms {ψ(t)
l }l≥1 for t ∈ {0, 1, } are independent conditionally to

the treatment level to give maximum flexibility to the model, in the CASBAH the

information between the different treatment levels are shared, such that we have only

one infinite sequence of random kernel’s parameters {ψl}l≥1. This implies that (i) the

potential post-treatment variables {P (1), P (0)} are not independent conditionally to the

covariates X, while in CDBMM the potential outcomes given X are independent, and

(ii) we have the desirable feature that there is a not null probability that, for any i, Pi(0)

and Pi(1) share the same atom—definition that we exploit to identify the dissociative

stratum.

However, the specification of the sequences of weights follows the same stick-breaking

representation (Sethuraman, 1994) reported in (2.6). In particular, we choose again the

dependent Probit Stick-Breaking process (Rodriguez and Dunson, 2011)—see details in

Section 2.2—for its convenient theoretical and computational properties.

The discrete nature of the random probability measure G
(t)
xi , for t = {0, 1}, allows us

to introduce the latent categorical variables S
(t)
i , for t = {0, 1}, describing clusters of

units defined by heterogeneous responses to the treatment level t. Assuming P{S(t)
i =

l} = π
(t)
l (xi), we can write model in (3.4), exploiting conditioning on S

(t)
i , as

{Pi(t)|xi, t, ψ, S
(t)
i = l} ∼ K(· | xi, ψl), ψl ∼ H.

where ψ represents the infinite sequence {ψl}l≥1.
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As commonly done, we assume the kernel K to be a Gaussian, so that model (3.4)–

(3.5) specifies to

{Pi(t)|xi, S
(t)
i = l, η, σ} ∼ N (ηl, σ

2
l ). (3.6)

where η and σ represent the infinite sequences of location parameters {ηl}l≥1 and scale

parameters {σl}l≥1, respectively, such that ψl = (ηl, σl).

Prior elicitation is completed by assuming for the parameters ηl and σl in (3.6)

ηl
iid
∼ N (µη, σ

2
η), and σl

iid
∼ InvGamma(γ1, γ2).

where InvGamma(γ1, γ2) represents the inverse-gamma distribution.

For the regression parameters in the dependent Probit Stick-Breaking process, we

assume the following multivariate Gaussian prior:

β(t) ∼ N(p+1)(L−1)(ξ,Ω) (3.7)

for t = 0, 1 and l ≥ 1. According to Fasano et al. (2022), the Gaussian prior leads to

straightforward posterior computation as discussed in the next section.

Sampling from the posterior joint distribution is straightforward via Gibbs sampling.

In particular, the algorithm—described in detail in Section 3.2.2—takes inspiration from

those proposed by Teh et al. (2004, 2006); Teh and Jordan (2009), for the hierarchical

structure, and by Fasano et al. (2022) for the probit regression in the weights.

However, in observation studies, it is fundamental the control the confounding bias.

Therefore, in the real-data application, the study design is required before the fitting of

the CASBAH.

3.2.1 Conjugate Prior for Multinomial Probit Regression

Assuming a multivariate Gaussian distribution as prior of the probit regression

parameters—Eq. (3.7)—is done not only because it is the most natural choice but also

because it enjoys interesting computational properties if paired with a probit likelihood

as first discussed by Durante (2019). The Gaussian, indeed, is a special case of the

SUN distribution (Arellano-Valle and Azzalini, 2006) and consequently, adapting the

solutions presented in Fasano et al. (2022), it allows us (i) to obtain an efficient step in

the Gibbs sampler and (ii) to avoid data augmentation that has usually same drawbacks.
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Starting from the general distribution of the multivariate Gaussian distribution for

β(t) in Eq. (3.7), i.e. the SUN density distribution, the probability function is defined,

for q = (p+ 1)(L− 1), as

P(β(t)) = ϕq(β
(t) − ξ; Ω)

Φh(γ +∆T Ω̄−1ω−1(β(t) − ξ); Γ−∆T Ω̄−1∆)

Φh(γ; Γ)
, (3.8)

where ϕq(β
(t)−ξ; Ω) is a probability density function of a q-variate Gaussian distribution

with ξ vector of location parameters and Ω the covariance matrix, such that Ω = ωΩ̄ω

where Ω̄ is the correlation matrix and ω = (Ω
⊙

1q)
1/2 where

⊙

is the element-wise

Hadamard product. The second part of the formula introduces a skewness mechanism,

driven by the cumulative distribution function, computed at γ+∆T Ω̄−1ω−1(β(t)−ξ) ∈ R
h

of an h-variate Gaussian with mean vector 0 and h×h covariance matrix Γ−∆T Ω̄−1∆.

The quantity Φh(γ; Γ) is the normalizing constant, which coincides with the cumulative

distribution function, evaluated at γ ∈ R
h, of an h-variate Gaussian with mean vector

0 and h× h covariance matrix Γ.

The amount of skewness in the prior is mainly controlled by the q×h matrix ∆, and

when all the entries in ∆ are 0, the prior for βt coincides with the density of a q-variate

Gaussian distribution with ξ vector of location parameters and Ω the covariance matrix

(Fasano et al., 2022).

Arellano-Valle and Azzalini (2006) show that if β(t) ∼ SUNq,h(ξ,Ω,∆, γ,Γ) then

β(t) d
= ξ + ω(B

(t)
0 +∆Γ−1B

(t)
1 ),

B
(t)
0 ∼ Nq(0, Ω̄−∆Γ−1∆T ),

B
(t)
1 ∼ TNh(−γ; 0,Γ),

where TNh(−γ; 0,Γ) denotes an h-variate Gaussian with zero mean, covariance matrix

Γ and truncation below −γ. A simple mechanism that helps in the simulation of SUN

variables.

The multinomial probit distribution for the weights π(t) = {π(t)
l }Ll=1—defined in

Eq. (??)-(??)—can be rewrite as

P(S
(t)
i = l|β(t), Xi) = Φ(xTi β

(t)
l )

l−1
∏

k=1

[1−Φ(xTi β
(t)
k )] =

l
∏

k=1

Φ
(

(2s̄
(t)
ik − 1)xTi β

(t)
k

)

= Φl(x
T
i β

(t); Il)

for t = {0, 1} and l = 1, . . . , L− 1, and where xi = (1, xi1, . . . , x
T
ip) is the vector of the p

covariates and intercept for the unit i, s̄
(t)
i = (0T

S
(t)
i

−1
, 1)T if S

(t)
i ≤ L− 1 and s̄

(t)
i = 0L−1

if S
(t)
i = L, and Il refers to the l × l identity matrix.
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Consequently the probability over the observation i = 1, . . . , nt for t = {0, 1} is

P(S(t)|β(t), X) =
n(t)
∏

i=1

P(S(t)|β(t), Xi) = Φn̄t
(X̄(t)β(t), In̄(t)) (3.9)

where n̄(t) = n
(t)
1 +· · ·+n(t)

n with n
(t)
i = min(s

(t)
i , L−1), X̄(t) is a n̄(t)×[(p+1)(L−1)] ma-

trix with row blocks X̄
(t)
[i] = X

(t)
i and X

(t)
i = (diag(2s̄

(t)
i −1)

⊗

xTi , 0(n(t)
i

×[(p+1)(L−1−n
(t)
i

)])
).

Considering with the prior (3.8) and the likelihood (3.9), the posterior distribution

for β(t) is

P(β(t)|S(t), X) = ϕq(β
(t) − ξ; Ω)

Φh+n̄t
(γpst +∆T

pstΩ̄
−1ω−1(β(t) − ξ); Γpst −∆T

pstΩ̄
−1∆pst)

Φh+n̄t
(γpst; Γpst)

,

(3.10)

where ∆pst = (∆, Ω̄ω(X̄(t))Td−1), γpst = (γT , ξT (X̄(t))Td−1), Γpst is an (h+ n̄t)× (h+ n̄t)

covariance matrix with blocks Γpst[11] = Γ, Γpst[22] = d−1(X̄(t)Ω(X̄(t))T + In̄(t))d−1, and

Γpst[12] = Γpst[21] = d−1X̄(t)ω∆, where d = [(X̄(t)Ω(X̄(t))T + In̄(t))
⊙

In̄(t) ]1/2.

In the particular case in which the prior for β(t) is a multivariate Gaussian

distribution—i.e.h = 0—, then the posterior is still the SUN distribution in Eq. (3.10)

with ∆pst = Ω̄ω(X̄(t))Td−1, γpst = d−1X̄(t)ξ, and Γpst = d−1(X̄(t)Ω(X̄(t))T + In̄(t))d−1.

Moreover a reasonable assumption for β(t) prior is the independence among the q

elements, such that Ω = ω2 · Iq—i.e. the correlation matrix Ω̄ = Iq. Therefore, following

again the Arellano-Valle and Azzalini (2006)’s results, the posterior distribution of β(t)

can be drawn from

β(t) d
= ξ + ω(B

(t)
0,pst +∆pstΓ

−1
pstB

(t)
1,pst),

B
(t)
0,pst ∼ Nq(0, Iq −∆pstΓ

−1
pst∆

T
pst),

B
(t)
1,pst ∼ TNh+n̄(t)(−γpst; 0,Γpst),

with ∆pst = ω(X̄(t))Td−1, γpst = d−1X̄(t)ξ, and Γpst = d−1(ω2X̄(t)(X̄(t))T + In̄(t))d−1

where d = [(ω2X̄(t)(X̄(t))T + In̄(t))
⊙

In̄(t) ]1/2.

3.2.2 Posterior Inference

In this section, we describe the Gibbs sampling algorithm for model fitting that allows

us to draw from the posterior distribution. Following the steps in the algorithm 2, in

each iteration r = 1, . . . , R, we use the observed data (y, p, t, x) to update the parameters

and the augmented variables and impute the missing post-treatment variable Pmis and

missing outcome Y mis.
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The Gibbs sampling algorithm is divided into three parts: the estimation of the

shared atoms mixture model for the post-treatment variables (divided in the estimation

of cluster allocation, cluster-specific parameters, and confounder-dependent weights),

the imputation of the missing post-treatment variables, and the estimation of the out-

come model.

As already discussed, the outcome model is not our main concern, therefore we

assume a linear model. In particular, in the following Gibbs sampler, we consider the

outcome model used in the simulation study—i.e., (3.11)—where only the potential

post-treatment variables are included. This choice is driven by the purpose of focusing

attention on the essential definition of the relation between the post-treatment variable

and outcome, which is crucial to impute the missing post-treatment variable Pmis.

However, the algorithm can be easily modified to include the covariates X in the linear

regression or to consider a more complex and flexible model.

Cluster Allocation. The latent variables S
(t)
i identifies the cluster allocation for each

units i ∈ {1, . . . , n} at the treatment level t. Its posterior distribution is a multinomial

distribution where

P{S(t)
i = l} ∝ π

(t)
l (xi)N (pi; ηl, σ

2
l ),

for i = 1, . . . , n and l = 1, . . . , L, with ω
(t)
l defined as:

π
(t)
l (xi) = Φ(α

(t)
l (xi))

∏

r<l

(1− Φ(α(t)
r (xi))),

for l = 1, . . . , L− 1 and with Φ(α
(t)
L (xi)) = 1.

Cluster Specific Parameters. Thanks to the latent variables {S(0)
i , S

(1)
i }, that cluster

the units by the value of their outcome, we know for each cluster l ∈ {1, . . . , L}, the

allocated units and we can update the values of the parameters from their posterior

distributions:

ηl ∼ N

(

V −1
l ×

(∑

{i:S
(0)
i

=l}
pi(0) +

∑

{i:S
(1)
i

=l}
pi(1)

σ2
l

+
µη
σ2
η

)

, V −1
l

)

;

σ2
l ∼ InvGamma

(

γ1 +
nl
2
, γ2 +

∑

{i:S
(0)
i

=l}
(pi(0)− ηl)

2 +
∑

{i:S
(1)
i

=l}
(pi(1)− ηl)

2

2

)

;

for l = 1, . . . , L and where Vl = nl/σ
2
l + 1/σ2

η and nl is the number of units allocated in

the l-th cluster.
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Confounder-Dependent Weights. The {β(t)
ql }

p
q=0 = (β

(t)
0l , β

(t)
l ), for l = 1, . . . ,max(S

(t)
i , L−

1), are updated for the posterior distribution:

β(t) d
= ξ + ω(B

(t)
0,pst +∆pstΓ

−1
pstB

(t)
1,pst),

B
(t)
0,pst ∼ Nq(0, Iq −∆pstΓ

−1
pst∆

T
pst),

B
(t)
1,pst ∼ TNh+n̄(t)(−γpst; 0,Γpst),

with ∆pst = ω(X̄(t))Td−1, γpst = d−1X̄(t)ξ, and Γpst = d−1(ω2X̄(t)(X̄(t))T + In̄(t))d−1

where d = [(ω2X̄(t)(X̄(t))T + In̄(t))
⊙

In̄(t) ]1/2. More details for X̄(t) and ω definitions in

Section 3.2.1.

Imputation Missing Post-Treatment Variables. For each unit i ∈ {1, . . . , n}, we impute

the missing post-treatment variable Pmis
i . Firstly, drawing the relative cluster-allocation

variable S
(1−t)
i —where t is the observed treatment of the unit i—from a multinomial

distribution with

P{S(1−t)
i = l} ∝ π

(1−t)
l (xi),

for l = 1, . . . , L. Where π
(1−t)
l (xi) = Φ(α

(1−t)
l (xi))

∏

r<l(1 − Φ(α
(1−t)
r (xi))), for l =

1, . . . , L− 1 and with Φ(α
(1−t)
L (xi)) = 1.

Successively, drawing the missing post-treatment variable Pmis
i , conditioned to the

allocation to the cluster l and the observed outcome variables Yi(t). For each i such

that the observed treatment level is T = 1, Pi(1− t) is drawn from

{Pmis
i |S(1−t)

i = l, η, σ2, Pi, Yi} ∼ N

(

v−1

(

ηl
σ2
l

+
m1

v1

))

;

where

v =
1

σ2
l

+
1

v1
, m1 =

Yi(1)− θ10 − θ11Pi(1)

θ12 + θ13Pi(1)
, v1 =

eλ0+λ1Pi(1)

(θ12 + θ13Pi(1))2
.

While for each i such that the observed treatment level is T = 0, Pi(1− t) is drawn from

{Pmis
i |S(1−t)

i = l, η, σ2, Pi, Yi} ∼ N (ηl, σ
2
l ).
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Outcome Model. The θ(t) parameters are independent for the treatment level t, therefore

the posterior distributions are, respectively for t = 0, 1:

θ(t) ∼ Nq(t)

(

(V (t))−1M (t), (V (t))−1
)

;

M (t) = (P̃ (t))TΞ(t)P̃ (t) + (σ2
θ)

−1Iq(t) ;

V (t) = (P̃ (t))TΞ(t)Y (t) +
µθ
σ2
θ

.

For the treatment level t = 0: q(0) = 2; P̃ (0) is a matrix n0 × n0 such that P̃ (0) =

[1n0 , P (0)] with 1n0 a vector of 1 and P (0) the vector of observed values of post-treatment

variable for the units n0 assigned at the control group—i.e. t = 0; and Ξ(0) is a diagonal

matrix n0×n0 with value exp(λ0) in the diagonal. In similar way, for the treatment level

t = 1: q(1) = 4; P̃ (1) is a matrix n1 × n1 such that P̃ (1) = [1n0 , P (1), P (0), P (1) · P (0)]

with 1n1 a vector of 1, P (1) the vector of observed values of post-treatment variable for

the units n1 assigned at the treated group—i.e. t = 0—and P (0) the vector of imputed

values of post-treatment variable; and Ξ(1) is a diagonal matrix n1 × n1 with the values

exp(λ0 + λ1P (1)) in the diagonal.

The parameters in the variance of the Y -model, λ0 and λ1, do not have conjugate

priors, therefore a independent Metropolis proposal step is necessary. At each iteration

r ∈ {1, . . . , R}, λ∗0 and λ∗1 are drown from the proposal distribution N (µλ0 , σ
2
λ0
) and

N (µλ1 , σ
2
λ1
) respectively. Then, at iteration r the value of the parameter are updated

as following: λ
(r)
0 = λ∗0 with probability

∏

i∈nN (Yi|µ
(t)
Y , exp(λ

∗
0 + I(Ti=1)λ

(r−1)
1 Pi(1))

∏

i∈nN (Yi|µ
(t)
Y , exp(λ

(r−1)
0 + I(Ti=1)λ

(r−1)
1 Pi(1))

,

otherwise λ
(r)
0 = λ

(r−1)
0 ; and λ

(r)
1 = λ∗1 with probability

∏

i∈n1
N (Yi|µ

(t)
Y , exp(λ

(r−1)
0 + λ∗1Pi(1))

∏

i∈n1
N (Yi|µ

(t)
Y , exp(λ

(r−1)
0 + λ

(r−1)
1 Pi(1))

,

otherwise λ
(r)
1 = λ

(r−1)
1 ; where µ

(0)
Y = θ00+θ01Pi(0) and µ

(1)
Y = θ10+θ11Pi(1)+θ12Pi(0)+

θ13Pi(0)Pi(1).

While the Gibbs sampler allows us to recover the posterior distribution of the random

variable, it is crucial the identify the point estimation of the quantities related with the

strata. First at all, the posterior distribution of the latent variable Vi, for i ∈ {1, . . . , n},

that describe the probability of the strata allocation, is estimated following the definition

in the following section. While its point estimation is obtain with the mode. Given the
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strata allocation, the estimation of the causal effect on the post-treatment variable and

the EDE and EAEs is straightforward.

Algorithm 2 Confounders-Aware Shared-atoms Bayesian Mixture Model

Inputs:

- the observed data (y, p, t, x).
Outputs:

- posterior distributions of parameters: η, σ, β, θ, and λ;
- imputed values for Pmis;
- posterior distribution over the space of partitions of the units.

Procedure:

Initialization of all parameters and latent variables.
For r ∈ {1, . . . , R} :

−→ Estimation of Shared Atoms Mixture Model:
Compute ω(t)(xi) for i = 1, . . . , n and t = 0, 1;

Draw S
(t)
i for i = 1, . . . , n and t = 0, 1;

Draw η and σ;
Compute α(t)(xi) for i = 1, . . . , n and t = 0, 1;
Draw β(t) fort = 0, 1.

−→ Imputation of Missing Post-Treatment Variables:
Draw Pmis

i for i = 1, . . . , n and t = 0, 1.
−→ Estimation of Outcome Model:

Draw θ(t) for t = 0, 1;
Draw λ0 and λ1.

End

3.2.3 Discovery of Principal Strata

As already underlined in Section 2.2.2, one of the advantages of Bayesian nonparametric

mixtures is their ability to cluster the observations, thanks to the latent categorical

variables, {S(0)
i , S

(1)
i } for i = 1, . . . , n, that describe the probability of each unit to be

allocated in the components of the mixture.

Consistently with our goal to estimate the EAEs and EDE, which are conditional

to the principal strata, we define the principal strata as those observations that have

a particular combination of latent categorical variables for the post-treatment variable

mixture.

Under our fully Bayesian approach the couples {S(0)
i , S

(1)
i } are random variables for

which we can characterize the associated posterior distribution. This is customary

in all Bayesian infinite mixture models which are inherently associated with random

partition models (Quintana, 2006). Moreover, the proposed CASBAH model is defined
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such that the atoms {ψl}l≥1 are shared between the two potential outcomes of the post-

treatment variable of the same unit. Therefore, the model informs us about the posterior

probability of {S(0)
i , S

(1)
i } to be associated with the same atoms or different atoms, for

each unit i.

In particular, we define the variable Vi, for each unit i ∈ {1, . . . , n}, as the latent

categorical variable, function of {S(0)
i , S

(1)
i }, that defines the allocation in one of the

three strata: dissociative, associative positive, and associative negative.

• The unit i that belongs to the dissociative stratum has Vi = 0 when S1i = S0i,

independently on the actual values of the atoms {ψl}l≥1. Note that when S
(1)
i =

S
(0)
i , the latent variables are allocated in the same cluster and thus the expectation

E[Pi(1)− Pi(0) | Vi = 0] is null.

• When S
(1)
i ̸= S

(0)
i —i.e. the latent variables indicate different clusters—and the

value of the corresponding expectation for the latent variable S1i is greater than

the value of the corresponding quantity for the latent variable S
(0)
i —ψ

S
(1)
i

> ψ
S
(0)
i

—

the unit i belongs to the associative positive stratum.

• Similarly to the previous point, the associative negative stratum is composed by

the units with S
(1)
i ̸= S

(0)
i and ψ

S
(1)
i

< ψ
S
(0)
i

, corresponding to Vi = −1.

Under these settings, the posterior distribution on Vi, for each i, reflects the posterior

uncertainty in the strata allocation, taking into account the heterogeneity in the post-

treatment variables induce by the confounders X.

3.3 Simulation Study

The performances of the proposed CASBAH mixture model are assessed through a

simulation study. Our objective is to investigate the model’s ability to (i) accurately

impute the missing post-treatment and outcome variables—i.e. evaluating the bias of the

average of Pi(1)−Pi(0) and for the average of Yi(1)−Yi(0) over the units i = 1 . . . , n—,

(ii) correctly identify the principal strata. To achieve this, we conduct simulations under

five different data-generating models and analyze the results to understand the model’s

behavior in different scenarios.

Specifically, we assume a linear regression model for the outcome model, defined as

following:

[

Y (0)

Y (1)

]

∼ N2

([

θ00 + θ01P (0)

θ10 + θ11P (1) + θ12P (0) + θ13P (0)P (1)

]

,

[

eλ0 0

0 eλ0+λ1P (1)

])

. (3.11)
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Assuming as prior distribution for the parameters

θ(0) = (θ00, θ01) ∼ N2(µθ, σ
2
θI2) and θ

(1) = (θ10, θ11, θ12, θ13) ∼ N4(µθ, σ
2
θI4);

λ0 ∼ N (µλ, σ
2
λ) and λ1 ∼ N (µλ, σ

2
λ);

with µθ = 0, σθ = 10, µλ = 0, and σλ1 = 2.

We simulate two Bernoulli confounders (X1, X2) for the scenarios 1-4 and five

Bernoulli confounders (X1, X2, X3, X4, X5) for scenario 5, and a binary treatment

variable, such that Ti ∼ Be(expit(0.4X1i + 0.6X2i)) for the scenarios 1 − 4 and

Ti ∼ Be(expit(0.4X1i + 0.6X2i − 0.3X3i + 0.2X4iX5i)) for scenario 5, for i = 1, . . . , n.

Each scenario assumes a different conformation of the strata for the continuous post-

treatment variable Pi = (Pi(0), Pi(1)) ∈ R
2. Each stratum is obtained by introducing,

for each unit, categorical variables S
(0)
i and S

(1)
i , for control and treatment levels respec-

tively, with the vector of probabilities that depend on the values of the confounders and

allocates the unit in different clusters. Conditionally on the cluster allocation S
(t)
i = s,

with s that has the same support for control and treatment levels, we simulate both po-

tential post-treatment variables—under control and under treatment, respectively—as

Pi(0)|S
(0)
i = s ∼ N (ηs, σ

2
s), Pi(1)|S

(1)
i = s ∼ N (ηs, σ

2
s).

The continuous potential outcomes (Yi(0), Yi(1)), for i = 1, . . . , n, are simulated follow-

ing the model (3.11) with common values for λ0 = −0.5 and λ1 = 0.1, while θ(0) and

θ(1) are different for each scenario. In each setting, the sample size is fixed to n = 500.

For each scenario, we simulate 100 samples.

Scenario 1: We investigate a situation in which there are two strata: one with a disso-

ciative effect and one with a positive associative effect. In particular, for S
(0)
i = S

(1)
i = 1

Pi(0), Pi(1) ∼ N (1, 0.05), and for S
(0)
i = 2 and S

(1)
i = 3 Pi(0) ∼ N (2, 0.05) and

Pi(1) ∼ N (3, 0.05). The regression parameters for Y-model are θ(0) = (1, 2) and

θ(1) = (1, 2,−1, 0.5).

Scenario 2: We focus on a case where we have a dissociative stratum—for S
(0)
i =

S
(1)
i = 1 both P (0) and P (1) are simulated from N (2, 0.05)—, an associative stratum

with a positive effect—for S
(0)
i = 2 and S

(1)
i = 3 Pi(0) ∼ N (2, 0.05) and Pi(1) ∼

N (3, 0.05)—, and dissociative stratum with a negative effect—for S
(0)
i = 2 and S

(1)
i = 1

Pi(0) ∼ N (2, 0.05) and Pi(1) ∼ N (1, 0.05). The regression parameters for Y-model are

θ(0) = (1, 2) and θ(1) = (1, 1.2,−1, 1).

Scenario 3: This scenario corresponds to Scenario 1 with closer atoms for the strata
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and different variances. In particular, the dissociative stratum has (Pi(0)|S
(0)
i = 1) =

(Pi(1)|S
(1)
i = 1) ∼ N (1.5, 0.12), and the associative stratum has (Pi(0)|S

(0)
i = 2) ∼

N (2, 0.1) and (Pi(1)|S
(1)
i = 3) ∼ N (2.5, 0.08). The regression parameters for Y-model

are θ(0) = (1, 2) and θ(1) = (1, 1.2,−0.8, 0.5).

Scenario 4: This scenario corresponds to Scenario 2 with closer atoms for the strata

and different variances. In particular, the dissociative stratum has (Pi(0)|S
(0)
i = 1) =

(Pi(1)|S
(1)
i = 1) ∼ N (1.5, 0.12), the associative positive stratum has (Pi(0)|S

(0)
i = 2) ∼

N (2, 0.1) and (Pi(1)|S
(1)
i = 3) ∼ N (2.5, 0.08), and the associative negative stratum

has (Pi(0)|S
(0)
i = 2) ∼ N (2, 0.1) and (Pi(1)|S

(1)
i = 1) ∼ N (1.5, 0.12). The regression

parameters for Y-model are θ(0) = (1, 2) and θ(1) = (1, 1.2,−0.8, 0.5).

Scenario 5: We investigate the scenario with the three strata when the number of con-

founders increases, in particular the treatment variable and cluster allocation variables

that depend on five confounders. The dissociative stratum has (Pi(0)|S
(0)
i = 1) =

(Pi(1)|S
(1)
i = 1) ∼ N (2, 0.05), the associative positive stratum has (Pi(0)|S

(0)
i = 3) ∼

N (3, 0.05) and (Pi(1)|S
(1)
i = 4) ∼ N (4, 0.05), and the associative negative stratum

has (Pi(0)|S
(0)
i = 2) ∼ N (2, 0.05) and (Pi(1)|S

(1)
i = 1) ∼ N (1, 0.05). The regression

parameters for Y-model are θ(0) = (1, 2) and θ(1) = (1, 1.2,−1, 0.5).

We choose the same hyperparameters for each setting such that the prior is non-

informative and in common for all the settings. For the regression parameters in (??)

and for the parameters ηl and σl in (3.6) we use the following conjugate priors

β(t) ∼ N(p+1)(L−1)(0, 20× 1(p+1)(L−1)),

ηl ∼ N (0, 20), and σl ∼ InvGamma(2, 0.5),

for t ∈ {0, 1}, l ∈ {1, . . . , 20}, and p according with the covariates considered in different

settings, and where 1q is a diagonal matrix q × q.

The performance of the proposed approach is compared to those obtained with the

Schwartz et al. (2011)’s model (hereinafter referred to as SLM)

Table 3.1 reports the median and interquartile range (IQR) of the bias for the

expected value of the posterior distribution of sample average of Pi(1) − Pi(0) and

Yi(1) − Yi(0), for i ∈ {1, . . . , n}. The results for the five scenarios for the proposed

model CASBAH show a good ability of the proposed model to impute the missing vari-

ables and capture the true distribution, indeed the medians of the bias are close to zero

and the interquartile range is reasonable according to the simulated variability. The

comparison with the Schwartz et al. (2011)’s model, SLM, underlines the superiority of
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CASBAH, which obtains medians of the bias closer to zero and a more contained IQR

for E[Pi(1)− Pi(0)] in all scenarios and almost of them for E[Yi(1)− Yi(0)].

Table 3.1: Median and interquartile range (IQR) of the bias for the expected value
of the posterior distribution of sample average of Pi(1)− Pi(0) and Yi(1)− Yi(0), for
i ∈ {1, . . . , n}. Values reported for CASBAH and SLM.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
Post-treatment variable
CASBAH median -0.0164 0.0027 -0.0318 0.0027 0.0011

IQR 0.0315 0.0254 0.0462 0.0325 0.0183
SLM median -0.0637 0.3388 0.1254 0.3280 0.3572

IQR 0.0989 0.0986 0.0956 0.0963 0.1216
Outcome

CASBAH median 0.0024 0.0256 0.0067 0.0419 0.0344
IQR 0.2235 0.1550 0.4661 0.1357 0.1316

SLM median -1.9891 -1.8265 -1.4363 -1.3115 -1.8856
IQR 0.2546 0.2110 0.1904 0.1836 0.3727

To evaluate the correct identification of the principal strata, we use the adjusted

Rand index (ARI)—defined in Chapter 2. The values of ARI for the five scenarios are

reported in Table 3.2. For all the scenarios, the index is close to 1 and confirms that

the proposed model CASBAH can identify correctly the principal strata, and combined

with the good missing data imputation, allow us to estimate the expected associative

and dissociative effects. The SLM model does not identify the principal strata according

to our definition or simultaneously to the model estimation, in opposition to CASBAH.

Table 3.2: Adjusted rand index for the five simulated scenarios computed on the
point estimated partitions obtained with the proposed model CASBAH. mean and
empirical standard deviation (sd) are reported.

scenario 1 scenario 2 scenario 3 scenario 4 scenario 5
mean 0.9850 0.9906 0.9706 0.9717 0.9154
sd 0.0997 0.0597 0.1021 0.0892 0.1577

The Figure 3.1 reports the results for the five simulated scenarios obtained with

CASBAH. In the left, the boxplots show the distribution over the simulated samples of

the expected values of the difference of the post-treatment variables under treatment and

under control in each stratum. The graphics confirm the ability of our proposed model

to (i) identify correctly the number of strata—two strata in the simulated scenario 1 and

3, and three in the others—and (ii) capture the definition of the associative/dissociative

strata without an a priori criteria—the dissociative stratum is always around zero for

E[P (1)− P (0)], while the dissociative stratum do not include the zero. In the boxplots

in the right, there are the distribution of the principal causal effect: the statistical
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estimate of EAE−, EDE, and EAE+. It is clear that the different strata identify different

treatment effects on the outcome, allowing us to characterize the heterogeneity in the

causal effects. Few outliers are observed, however they are founded in particular in the

Scenario 5 that describes a more complex relation among variables and strata.
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Figure 3.1: Representations of the five simulated scenarios. (Left) The expected
value of the difference of the post-treatment variables under treatment and under
control given the strata allocation. (Right) The expected associative/dissociative
causal effects. In green the associative negative stratum—i.e. corresponding to the
latent variable V = −1—, in yellow the dissociative stratum—i.e., V = 0—, and in
red the associative positive stratum—i.e., V = +1.





Chapter 4

Socio-Economic Disparities and

Regulations in Air Pollution

Epidemiology

In this last chapter, we address the questions that lead us to formulate the causal

Bayesian nonparametric models introduced in the previous chapters: comprehend and

capture the complexity of the causal link among the real-data variables. Specifically,

we study the causal link between (i) long-term pm2.5 exposure and the mortality rate,

and (ii) air pollution regulations and variation of mortality rate, conveyed through

variation of pm2.5. With the main focus on the United States, we take into account the

heterogeneity in the demographic and socio-economic characteristics.

This chapter is based on the data applications in Zorzetto et al. (2023a) and Zorzetto

et al. (2023b), respectively included in Section 4.1 and Section 4.2.

4.1 Socio-Economic Disparities in PM2.5 Exposure

With a focus on uncovering vulnerability/resilience in the causal effects in the context

of an environmental study, we apply the proposed model in Chapter 2—the confounder-

dependent Bayesian mixture model—to discover the heterogeneity in the health effects

of exposure to higher levels of air pollution in Texas for the elderly population. Texas is

a crucial case study for understanding air pollution vulnerability because of its unique

demographic makeup and exposure disparities. First, recent literature has shown that,

in Texas, black and low-income groups are exposed to higher levels of air pollution,

whereas college graduates and high-income groups are exposed to lower levels (Li et al.,

59
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2019). Second, Texas has a high proportion of Hispanic residents, which makes it a

valuable case study for examining the health impacts of air pollution on this demographic

group. According to the US Census Bureau, Hispanic residents make up over 39% of the

Texas population (U.S. Census Bureau, 2020). Studies have shown that low-income and

Hispanic communities are more likely to be exposed to higher levels of pm2.5 compared

to wealthier and non-Hispanic communities (Jbaily et al., 2022).

Using the information on Texan Medicare enrollees (i.e., individuals older than 65),

we investigate the heterogeneous causal link between long-term pm2.5 exposure and

mortality. Our analysis depicts how our method can discover mutually exclusive groups,

estimate the heterogeneity in the effects of long-term exposure to pm2.5 on the mortality

rate, and identify the social-economical characteristics that distinguish the different

groups.

4.1.1 Data Description

We conduct our analysis at the ZIP code level (1,929 units), where we have data

on the following variables: the average pm2.5 levels during the years 2010 and 2011;

the mortality rate in the 5 follow-up years; census variables such as the percentage of

residents for different races/ethnicities (in particular, categorized as Hispanics, blacks,

whites, and other races); the age of each Medicare enrollee (≥ 65 years of age) and their

sex (female/male); the average household income; the average home value; the propor-

tion of residents in poverty; the proportion of residents with a high school diploma; the

population density; the proportion of residents that own their house; the average body

mass index; the smoking rate; the percentage of people who are eligible for Medicare

(this variable is a proxy of low social-economic status and is reported as S.E.S.). More-

over, we also have access to meteorological variables: the averages of maximum daily

temperatures and the relative average of humidity during summer (June to September)

and winter (December to February).

The distribution of the population in Texas during 2010, represented in the map

(a) in Figure 4.1, is clearly concentrated around the main cities, such as Dallas, San

Antonio, Austin, and Houston, while expansive areas are quite empty, due to the desert

ecosystem. Consequently, we consider only the ZIP codes with a population density

different from zero and more than 10 Medicare enrollees, such that we have enough

records in the Medicare dataset for those ZIP codes. For these ZIP codes, the observed

values of pm2.5 and mortality rates in Texas are illustrated in Figure 4.1—(b) and

(c), respectively. Not surprisingly, the highest values on record for pm2.5 are primarily
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Figure 4.1: (a) Population density during 2010 in Texas (USA) (b) Average of long-
term pm2.5 exposure in 2010-2011 in Texas. The data are aggregated by ZIP codes.
(c) The mortality rate at 5 follow-up years for each Texan ZIP code. The gray areas
indicate the ZIP codes with population density different from zero and more than 10
Medicare enrollees.

concentrated in the urban areas, while the mortality rate doesn’t show any particular

pattern.

4.1.2 Study Design

We define the treatment variable as T = 1 if the average pm2.5 in 2010 and 2011

is above the threshold of 10µg/m3—corresponding to 701 out of 1,929 considered zip

codes—and T = 0 otherwise—corresponding to 1,228 zip codes. The choice of 10µg/m3

as a threshold aligns with the new proposal for the National Ambient Air Quality

Standard (NAAQS) established by the U.S. Environmental Protection Agency
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(U.S. Environmental Protection Agency, 2022a).

Our proposed model is applied to a matched dataset, where the census and meteoro-

logical variables are used for the matching. Matching is commonly used in observational

studies to adjust for potential measured confounding bias (Rosenbaum and Rubin, 1983).

In this context, similarly to what has already been done in the literature on air pollution

effects on health (see, e.g., Lee et al., 2021; Wu et al., 2020), we decide to use matching

before running our model to make our analyses as robust as possible with respect to

potential measured confounding bias.

We employ a 1-to-1 nearest neighbor propensity score matching without replacement,

obtaining 1,402 selected units. The reduction of units is due to the different sample sizes

of the treated and control groups in the original data, and 1-to-1 matching creates a

sample with the same size for the treated and control groups since it finds a matched

control unit for each treated unit. Using matching greatly improves the covariates bal-

ance, where the covariate balance is evaluated based on the difference in standardized

means of the covariates. In Figure 4.2, we depict the covariate balance before and after

the matching. Before the matching, there was a significant difference between the dif-

ference in standardized means of the observed values of some covariates, like poverty,

education, or median household income, for the treated and control groups. These im-

balances in the data might have led to spurious discoveries of effect heterogeneity. After

the matching, the mean standardized differences of the covariates and the propensity

score are included in the interval [−0.1, 0.1], which is usually used as a rule-of-thumb

for good quality matches (Ho et al., 2007; Austin, 2011).

4.1.3 Results

We analyze the data with the confounders-dependent Bayesian mixture model, pro-

posed in Chapter 2, considering as covariate, among all the confounders, the percentage

of males, the percentage of white, Hispanic, black, and other races, the average age

among the Medicare enrollees, and the percentage of people who are eligible for Medi-

care. CDBMM identifies six mutually exclusive groups in the matched ZIP codes: four

where exposure to higher levels of pm2.5 increases the mortality rate, and two where

exposure to higher levels of pm2.5 decreases the mortality rate. Figure 4.3 presents the

posterior distribution of the GATEs and the GARRs for each identified group. We

present results for both GATE and GARR as the information they provide is comple-

mentary, and furnishes a deeper insight into the heterogeneity in the causal effects in

the case of our application. The vertical black lines in each figure represent the null

causal effect, which is indicated by a GATE equal to 0 and by a GARR equal to 1.
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Figure 4.2: Comparison of the covariate balance between before and after the nearest
neighbor propensity score matching 1-to-1. The continuous black vertical line indicates
the value 0, while the two dotted lines are for the values −0.1 and 0.1, respectively.

The four groups identified by CDBMM where exposure to higher levels of pm2.5

increases the mortality rate have positive GATE values (in order from highest to lowest:

(f) 0.143, (e) 0.097, (d) 0.039, (c) 0.006) and have GARR values greater than 1 (in

order: (f) 1.892, (e) 1.604, (d) 1.148, (c) 1.021). While the groups where exposure to

higher levels of pm2.5 decreases the mortality rate have negative GATE values (in order

from lowest to highest: (a) -0.040 and (b) -0.007) and have GARR values less than 1

(in order: (a) 0.866 and (b) 0.979).

The majority of the population (90% of ZIP codes) is included in the groups (b), (c),

and (d). In the bigger group (c)—including 45, 4% of the ZIP codes— the mortality

rate of the population increases by 2% under a high level of pm2.5 (corresponding to an

increment of 0.006); the group (d)—including 13% of the ZIP codes—has an increment

of 15% in the mortality (i.e., an increment of 0.039). Conversely, group (b), including

30, 5% of the ZIP codes, has a decrement of mortality by 2%—corresponding to a decre-

ment of 0.007—under a high level of pm2.5. Three small groups (a), (e), and (f) are also

discovered (10% of ZIP codes). More extreme effects characterize these subgroups. An

increment of up to 89% of the mortality rate when the sub-population in (f) is exposed

to a high level of pm2.5 and an increment of 60% for the group (e), while the group (a)

has a decrement of 13% of the mortality rate when it is exposed to a high level of pm2.5

instead of a lower level. I.e., the increment of the mortality rate is 0.143, 0.097, and

−0.040, respectively for groups (f), (e), and (a). The percentages of ZIP codes allocated
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in the various groups are reported in Figure 4.4.

Moreover, the uncertainty of the GATEs and GARRs can be quantified by the pos-

terior distributions. In particular, all the posterior distributions of GATEs and GARRs

are concentrated around the means, with light tails, and the 95% credible intervals of

group (b) and group (c) do not include the value zero, for GATEs, and the value 1,

for the GARR,—values that indicate the null causal effect of the pm2.5 exposure on the

mortality rate.

We would like to remind that there is also an uncertainty induced by the group

allocation. Thanks to the choice of using the Wade and Ghahramani (2018)’s method

allows us to know the posterior of the random partition, as explained in Section 2.2.2.
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Figure 4.3: (Left) Posterior distribution of GATEs for the six estimated groups.
(Right) Posterior distribution of CARR for the six estimated groups in the ZIP codes.
In both plots, the black line identifies the null causal effects and the gray lines are the
mean of each posterior distribution for the GATEs and the GARRs, respectively.

The demographic and socio-economic characteristics of the ZIP codes help us un-

derstand the differences in the causal effects in each identified group. The estimated

model identifies mutually exclusive groups. Therefore, we can describe the distribution

of these characteristics for the ZIP codes allocated in the different groups.

In the spider-plots reported in Figure 4.4, we can observe, for each group, the different

distribution of the variables sex (close to the center indicates a higher percentage of

women in the population of the ZIP codes, far to the center a higher percentage of

men), percentage of white, Hispanic, black and other race (where smaller percentages

are closer to the center), old (where the ZIP codes with age mean close to 65 years for

Medicare enrollees are close to the center, and older population far from the center),

and poor (the center of the spider-plot indicates a population with high income—i.e., a

lower percentage of dually eligible individuals as proxy—, and far from the center lower
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income). Each group is identified with a different color, while the grey area reports the

mean of these variables among all the analyzed ZIP codes after matching.

The groups where exposure to higher levels of pm2.5 increases the mortality rate

are characterized by poorer populations for (c) and (d) and a higher percentage of

black and/or other races for all four groups. Consistently with the intuition, these

groups are characterized by higher percentages of people from minority groups for long-

term exposure to pm2.5 . This could be likely due to the fact that minorities, often

associated with low income, are structurally exposed to higher levels of air pollution.

Exposure effects might accumulate over time—as is likely the case with pm2.5 —leading

to increased mortality rates (see, e.g., Pope III et al., 2019; Liu et al., 2021; Jbaily et al.,

2022). The groups (e) and (f) are characterized by a young (close to 65 years) and rich

population compared to the mean among all the analyzed ZIP codes, specifically with

white and Hispanic women in group (e) and male for group (f).

In juxtaposition, the groups (a) and (b) where exposure to higher levels of pm2.5

decreases the mortality rate is mainly composed of a population with a higher percentage

of Hispanics compared to the mean among all the analyzed ZIP codes and the other

identified groups. In particular, group (a) is also composed of a big community of blacks

and other races. This decrease in mortality when being exposed to higher levels of air

pollution, while surprising, has already been documented in the literature (Liu et al.,

2021; Jbaily et al., 2022). This finds an explanation in potential survival bias (see, e.g.,

Mayeda et al., 2018; Shaw et al., 2021). Survival bias happens in cohort studies that start

later, leading to the most vulnerable individuals in certain groups dying before entering

the cohort. In this case, the individuals entering the cohort are the most resilient ones

and might depict a decreasing mortality effect even when exposed to higher levels of

pollutants. This is likely to be the case for these two groups.

Moreover, Figure 4.5 investigates the spatial distribution of the discovered cluster

in Texas, identified via our CDBMM model. In particular, we find that the clusters

characterized by higher vulnerability are mostly located in southern Texas. The higher-

vulnerability clusters are also found in suburban areas and along interstate highways

between cities. Conversely, resilient clusters can be found in more sparsely populated

areas. Gray areas could not be matched and thus are excluded from our analysis.
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Figure 4.4: Representation of the characteristics of the identified groups. Each
spider plot reports in the colored area the group-specific characteristics—the mean of
the analyzed covariates—and in the gray area the collective characteristics—the mean
of the covariates among all the analyzed Texan ZIP codes. We can consider the gray
area as the benchmark to understand how the characteristics of each group differ from
the collective characteristics of the analyzed Medicare enrollees in Texas.
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Figure 4.5: Representation of the identified clusters on the map of Texas.

4.2 Effect of Air Pollution Regularization on

Mortality Risk

Aware of the causal link between air pollution and mortality and of the presence of

groups in the population with different degrees of vulnerability to air pollution, due

to socioeconomic disparities, the attainment of environmental justice seems imperative.

The U.S. Environmental Protection Agency declares the goal to promote environmental

justice, defined as “no group of people should bear a disproportionate burden of en-

vironmental harms and risks” (see U.S. Environmental Protection Agency, 2022c, page

116).

To achieve environmental justice and safeguard public well-being, the U.S. Envi-

ronmental Protection Agency established the National Ambient Air Quality Standards

(widely known as NAAQS). These air quality standards impose limits on the atmo-

spheric concentration of air pollutants, with the goal of maintaining these pollutant

concentrations below specified levels to preserve the overall health of the population in

both the short and long term. In doing so, the U.S. Environmental Protection Agency

designates as in non-attainment those counties whose annual average pollutant con-

centration exceeds the National Ambient Air Quality Standards levels. These counties

are mandated to reduce the levels of pollutants in the subsequent years, applying air



68Section 4.2 - Effect of Air Pollution Regularization on Mortality Risk

quality regulations. Hence, it is critically important to understand how air quality reg-

ulations benefit health outcomes and how these effects can vary within different groups

of individuals.

Following the 2003 report from the Health Effects Institute (HEI Accountability

Working Group, 2003), the studies, that analyze the assessment of the extent to which air

pollution impacts health outcomes, are defined as accountability studies. Accountability

studies have been categorized into two branches: indirect and direct assessment studies

(Zigler and Dominici, 2014a). On the one side, indirect accountability studies have

focused on understanding what is the causal effect on the health of exposure to levels

of air pollution (Wu et al., 2020). On the other side, direct accountability studies have

investigated the causal impact on the health of interventions aimed at reducing the level

of pollutants in the air (Zigler et al., 2018; Nethery et al., 2020).

In this thesis, we (i) analyze the causal effects of the air quality regulations on

the mortality rate, considering the variation of pm2.5 levels as post-treatment variable,

under the principal stratification framework, (ii) take advantage of the flexible Bayesian

nonparametric mixture model for post-treatment variable—defined in Chapter 3—to

understand how these effects can vary within strata, and (iii) characterize the identified

different groups of individuals.

4.2.1 Data Description

To answer our research question we have merged two datasets: the information about

the air pollution levels and the demographic and socio-economic characteristics in the

counties in the Eastern United States, used in the Zigler et al. (2018)’s analysis, and

the information about the age adjusted mortality rate in these counties available by the

Center for Disease Control and Prevention of United States.

In particular, Zigler et al. (2018)’s dataset is composed of 384 counties in the Eastern

United States, where national monitoring networks have detected the pm2.5 concentra-

tion. In 2005, the U.S. Environmental Protection Agency designated as nonattainment

of the NAAQS these counties where the average of the pm2.5 concentration was above

15µg/m3, or otherwise attainment. States containing counties designated as nonattain-

ment were required to develop or revise State Implementation Plans outlining how a

nonattainment area will attain the standards with strategies to reduce ambient concen-

trations of pm2.5.

As represented in Figure 4.6, the study design identifies the baseline period of 2000-

2005 and the follow-up period of 2010-2016 during which we have the following informa-

tion: (i) the average ambient concentration of pm2.5, from Zigler et al. (2018)’s dataset;
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(ii) the age-adjusted mortality rate of all-cause mortality, public available in the website

of Center for Disease Control and Prevention of United States.

Moreover, for each county, we have census variables such as the percentage of His-

panic and black residents; the average household income; the percentage of females; the

average house value; the proportion of residents in poverty; the proportion of residents

with a high school diploma; the smoking rate; the population; the percentage of resi-

dents in urban area; the employment rate (the percentage of the workforce employed);

the percentage of the move in the last 5 years. We also have access to meteorological

variables: the averages of daily temperatures and the relative average of humidity; the

dew point (the temperature at which air becomes saturated with moisture, leading to

the formation of dew or condensation).

Figure 4.6: Timeline of National Ambient Air Quality Standards revisions, baseline
and follow-up period (Zigler et al., 2018).

We apply the principal stratification framework introduced in Section 1.2.1 using the

following treatment, post-treatment variable, and outcome variable. The binomial treat-

ment variable is the status designated by the U.S. Environmental Protection Agency for

each county, such that T = 1 if the county is nonattainment and it had to develop or

revise State Implementation Plans and T = 0 otherwise. In the top map in Figure 4.7,

the red points visualize the treated counties, that seem to be closer to the main cities,

such as Chicago, New York City, Washington DC, or Cleveland. The continuous post-

treatment variable is the variation—i.e. the difference—of the pm2.5 level between in the

follow-up period and the baseline period, reported in the bottom left map in Figure 4.7.

The outcome variable is defined as the variation of the age-adjusted mortality rate be-

tween the follow-up period and the baseline period, and it is visualized in the bottom
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right map in Figure 4.7. As reported in the maps, both the post-treatment variable and

the outcome have almost all negative values, underlining a general trend of decreasing

the pm2.5 level and an improvement in the quality of life in the last decade.

Figure 4.7: Considered counties in the Easter United States. (top) Attainment of the
air pollution standard (15µm for pm2.5) and consequently application of air pollution
regulations: 0 if the county was below the threshold (no pollution regulation had to
be applied), 1 if the county was above the threshold and had to apply air pollution
regulation for pm2.5 reduction. (bottom left) Variation of the average of long-term
pm2.5 exposure between baseline and the follow-up period. (bottom right) Variation
of the average of the age-adjusted mortality rate between baseline and the follow-up
period, value per 100.000.

Before the employment of the model proposed in Chapter 3, an analysis of the covari-

ate balance is due to understand the presence of the potential confounding bias. The

analysis of the difference in standardized means of the covariates between the treated

and control group shows a not significant confounding bias since all the values are in-

cluded in the interval [−0.1, 0.1], the rule-of-thumb for good quality matches (Ho et al.,

2007; Austin, 2011). Moreover, the use of matching techniques, such as 1-to-1 matching

without replacement which is commonly used with this type of data, reduces the sam-

ple size that is already limited without improving significantly the covariate balance.

Therefore, we chose to do not use any matching technique in this particular real-data

analysis.
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4.2.2 Results

We apply the proposed confounders-aware shared-atoms Bayesian mixture model to

the previously described 384 counties in the Eastern United States, including all the

covariates—census and meteorological variables—in the weights of the post-treatment

variables mixture, while for the outcome model we use the linear model in (3.11). The

model identifies the three strata: the dissociative stratum with 115 counties (30% of the

total analyzed counties), the associative positive stratum with 48 of counties (12.5%),

and the associative negative stratum with 221 counties (57.5%). According to the

definition of the three strata and as visualized in the left image in Figure 4.8, the

dissociative stratum—identified with the color yellow—is composed of counties where

the application of the environmental plans do not substantially impact the level of

pm2.5 , in fact, the expected value of E[Pi(1) − Pi(0)|Vi = 0] for the counties allocated

to this strata has median close to zero and first and third quantiles of −0.29µg/m3

and 0.07µg/m3. The associative negative stratum—identified with the color green—

is composed of counties where the implementation of environmental plans decreases

significantly the pm2.5 levels. Specifically, in these counties the air quality regulation

can reduce by 0.9µg/m3 in the median the pm2.5 level, with first and third quantiles

of −1.46µg/m3 and −0.38µg/m3. The associative positive stratum—identified with the

color red—is composed of counties where the implementation of environmental plans

increases the pm2.5 levels by 0.8µg/m3 in the median. The latest stratum has the

biggest uncertainly for E[Pi(1) − Pi(0)|Vi = −1], with values of the first and third

quantiles equal to 0.13µg/m3 and 1.34µg/m3, respectively.

The corresponding distributions of the expected dissociative/associative effects are

reported in the right image in Figure 4.8 and show the effect of the implementation of

environmental plans on the mortality rate conditional to the three strata, i.e. condi-

tional the heterogeneity in the causal effect in the level of pollution. The EDE and the

EAE+ has a similar increment in the median by 2.7o/oooo of the mortality rate when the

environmental plans are applied. While the means of these two effects are 0.8o/oooo and

1.3o/oooo, respectively. For both the principal causal effects, the interquantile interval

include the zero value. This mean that the counties where the implementation of envi-

ronmental plans does not affect the pm2.5 level or where this level increase, the mortality

rate is not been affect by the implementation of environmental plans. The EAE−—in

color green in the right image of Figure 4.8- assumes negative values, indicating that the

implementation of environmental plans, in the counties where the regulations affect the

level of pm2.5 , reducing it significantly, reduces also the median age-adjusted mortality

rate. Specifically, the mortality rate is decreased by 11.9o/oooo in median and with the
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interquantile interval of [−15.2o/oooo,−9.1o/oooo].
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Figure 4.8: Boxplots of the three identified strata for (left) the conditional average
of the difference of the post-treatment variables, and (right) the expected associa-
tive/dissociative effects. The light-blue vertical lines show the value zero, identifying
the null effects.

Additionally, it is our interest to characterize the heterogeneity in the strata. Figure

4.9 visualizes the average of the observed covariates within each stratum—reported as

the colored lines—and compares them with the average of the covariates among all the

348 observed counties in the Eastern United States.

The associative positive stratum and the dissociative stratum are composed of rural

counties with a smaller population density, where the population has lower income with

respect to the mean of the overall counties, and with a small employment rate. Differ-

ently, in the countries of the associative positive stratum, the percentage of Hispanics is

smaller than the average, in favor of a bigger percentage of whites and Asians, while the

dissociative stratum is characterized by a bigger percentage of Hispanics and a smaller

community of black people, with a higher level of education. Moreover, the associative

positive stratum is distinguished by a high smoke rate. In opposition, the associative

negative stratum identifies urban counties with high population density. This popula-

tion is characterized by higher income but also a bigger percentage of poor people and

lower levels of education.

The meteorological variable, such as the averages of daily temperatures, the relative

average of humidity, and the dew point seems to play an important role in the distinction

of the strata, i.e. in the characterization of the different effects of the implementation

of environmental plans on the level of pm2.5.

Moreover, our proposed approach allows us to quantify the uncertainly of the strata

allocation, indeed for each county we know the probability to be allocated in each of the

three strata, in addition to the estimation of its allocation. Moreover, we can visualize



Chapter 4 - Air Pollution Epidemiology 73

Urban

Black

Hispanic

Education

Income

Poor

Female

Occupied Moved

House Value

Population

Smoke Rate

Dew Point

Temperature

Humidity

strata: +1

mean pop.

Urban

Black

Hispanic

Education

Income

Poor

Female

Occupied Moved

House Value

Population

Smoke Rate

Dew Point

Temperature

Humidity

strata: 0

mean pop.

Urban

Black

Hispanic

Education

Income

Poor

Female

Occupied Moved

House Value

Population

Smoke Rate

Dew Point

Temperature

Humidity

strata: −1

mean pop.

Figure 4.9: Representation of the characteristics of the identified strata. Each spider
plot reports in the colored area the strata-specific characteristics—the mean of the
analyzed covariates—and in the gray area the collective characteristics—the mean of
the covariates among all the analyzed counties in the Eastern United States. We can
consider the gray area as the benchmark to understand how the characteristics of each
stratum differ from the collective characteristics of the analyzed population.

these information on the US map. Specifically, the first three maps in Figure 4.10

visualize the probability of each county to be allocated to the three different strata. As

already underline Figure 4.9, the counties with higher probability to be allocated in the

associative negative stratum and in the dissociative stratum are far from the biggest

cities, differently to the associative positive stratum. Moreover the Western counties

seem to have a small probability to be allocated in the associative negative stratum.

The fourth map—bottom right in Figure 4.10—reports the partition point estimation

of the strata, partition that is used to estimated the principal causal effects.
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Figure 4.10: Considered counties in the Easter United States. (top left) Probability
to be allocated in the associative positive stratum. (top right) Probability to be
allocated in the dissociative stratum. (bottom left) Probability to be allocated in the
associative negative stratum. (bottom right) Point estimation of strata allocation.



Conclusions

This thesis intertwines three different topics: (i) environmental epidemiology, (ii) the

definition of causal estimands in the potential outcomes framework, and (iii) the use of

flexible Bayesian nonparametric priors to define novel causal models.

We were initially motivated by the study of the possible causal link between air

pollution and public health in its complexity, as the heterogeneity that characterizes

the different levels of vulnerability/resilience among the population, with a particular

interest in socio-economic disparities in the exposure, and the desire to understand the

associative and dissociative causal effect of the air pollution regulation and the imple-

mentation of environmental plans on the mortality risk. The definition of causality in

statistics entails a clear definition of the relation across the involved variables, making

reasonable assumptions, and careful specification of the causal estimands, according

to the causal questions. In particular, the estimation of specific estimands requires

flexible models. We considered Bayesian nonparametric mixture models since they are

well-known for their flexibility, adaptability, and clustering ability. In addition, the

imputation of the missing variables, a problem arising in the potential outcome frame-

work, is straightforward with the Bayesian paradigm via missing variable imputation

from suitable posterior predictive distributions.

Clustering is the thread that binds the three topics: (i) it is an intrinsic characteristic

of the Bayesian nonparametric mixture model, induced by the latent categorical variable

that defines the probability of being allocated in the different components of the mixture;

(ii) it is fundamental in causal inference framework to characterize the heterogeneity in

the causal effect and define estimand as the group average treatment effects or the

expected associative/dissociative effects; (iii) it divides the observed population into

groups that have different causal effects of air pollution or its regulation on mortality

rate between them and similar causal effect in the units inside the group, and allows us

to identify the demographic and socio-economic characteristics of each subpopulation.

Specifically, in this thesis, we have introduced two novel causal models: the

confounder-dependent mixture model, which captures the complex density structure of

the potential outcome, and the confounders-aware shared-atoms mixture model, which
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flexibly defines the distribution of potential post-treatment variable and discovers their

strata. The dependent Dirichlet process as prior allows us to exploit rich forms of de-

pendence given the confounders and relationship between the variables with different

treatment levels. In fact, we have introduced, in both models, the confounders in the

definition of the weights of the stick-breaking representation with the aim, not only of

defining the dependence between the confounders and the outcome or post-treatment

variable but also of imputing properly the missing data (typical problem in the potential

outcome framework) and of characterizing the heterogeneity of the causal effects. More-

over, for the confounders-aware shared-atoms mixture model, we also allow to sharing of

information between the two treatment levels of the potential post-treatment variables,

defining common atoms between the two mixture distributions.

Exploiting suitable Bayesian nonparametric priors, we have tailored these two mod-

els for specific contexts of causal inference. It is common in observational studies to

experience heterogeneity in the causal effects and identify different causal structures

among the variables. Specifically, we have focused on two scenarios: firstly, in the pres-

ence of heterogeneity in the causal effect of the treatment on the outcome, we have

theorized that the heterogeneity is induced by the presence of groups of units, charac-

terized by the same causal effect in the group and different effects between them, and

defined coherently the group average treatment effects as estimand of interest; secondly,

we were interested in estimating the causal effect of a treatment on a primary outcome

and to what extent this effect might change across values of a post-treatment variable,

i.e. assuming the presence of three principal strata that identify the different effect of

the treatment on the post-treatment variable, we define novel estimands for the causal

effect of the treatment in the final outcome conditional to the strata.

Through simulation studies, we tested the ability of these two proposed models

to estimate the specific estimands, comparing them with the benchmark model. The

confounder-dependent mixture model is competitive with Bayesian additive regression

trees and Bayesian causal forest in terms of estimating IATEs and is able to correctly

identify the groups and estimate the GATEs with a high degree of accuracy. The

confounders-aware shared-atoms Bayesian mixture model shows better performance of

the model proposed by Schwartz et al. (2011) on the estimation of the average causal

effect on the post-treatment variable and on the outcome, and additionally, it correctly

identifies the strata and the respective expected dissociative and dissociative effects.

In the applications on environmental epidemiology, the models allow us to study,

firstly the long-term exposure to pm2.5 effects on the mortality rate in the Medicare

enrollees in Texas, discovering six distinct groups that characterize the different levels



Conclusions 77

of vulnerability/resilience, and secondly the causal effect on the air pollution regula-

tions on the age-adjusted mortality rate in the population of the Easter United State,

conditional to the three discovered strata that are identified by the different variation of

the pm2.5 with and without the enforce of air pollution plans. In both applications, the

characterization of the different groups or strata has identified the different ethnic com-

position of the population and the level of poverty as key distinction factors of different

levels of vulnerability/resilience.

The proposed confounder-dependent mixture model and the confounders-aware

shared-atoms mixture model are examples of how the flexibility and adaptability of

Bayesian nonparametric mixtures can address specific questions that arise in various

contexts of causal inference and real-world applications. However, similar Bayesian

nonparametric models can be explored for different and numerous settings of causal in-

ference framework, with careful attention to the causal question that we want to achieve

and consequently the specific estimand that needs to be estimated. Moreover, real-world

applications are flourishing stirring of new challenging contests and research questions

in causal inference framework.
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Crabbé, J., Curth, A., Bica, I. and van der Schaar, M. (2022) Benchmarking heteroge-

neous treatment effect models through the lens of interpretability. Advances in Neural

Information Processing Systems 35, 12295–12309.
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Via C. Battisti 241, 35121, Padova, Italy

dafne.zorzetto@phd.unipd.it

Updated: September 2023

RESEARCH
INTERESTS

Bayesian Nonparametrics: Models and Computational Aspects, Dependent Dirich-
let Mixture Models.
Causal Inference: Heterogeneity of Causal Effects, Principal Stratification, and
Negative Controls for Unmeasured Confounding.

CURRENT
POSITION

Ph.D. in Statistics at Università degli Studi di Padova
Visiting Ph.D. Scholar at Harvard University
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