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Abstract

In Bayesian statistics, routinely implemented deterministic approximations of posterior

distributions typically rely on symmetric densities, often taken to be Gaussian. Such

a choice facilitates optimization and inference, but may compromise the quality of the

overall approximation. In fact, even in simple parametric models, the posterior distri-

bution can displays substantial asymmetries that yield major bias and reduced accuracy

when considering symmetric approximations. Recent research has moved toward more

flexible classes of approximating densities incorporating skewness. However, current

solutions are model specific, lack general supporting theory and usually increase the

computational challenges and complexity of the optimization problem.

This thesis aims to fill such a gap by developing a general, and theoretically sup-

ported, family of skew-symmetric approximations. To accomplish this goal, Chapter 1

demonstrates that in the idealized framework where the true data generating mecha-

nism is known, the posterior distribution converges, in an appropriate sense, to a specific

sequence of skew-symmetric distributions at a rate that is faster than the classical Gaus-

sian one derived under the Bernstein-Von Mises theorem. In Chapter 2, these findings

further motivate the development of practical plug-in versions that, besides enjoying

the same theoretical guarantees, can approximate the posterior distribution in real-

world scenarios. The approximations developed in the first two chapters are derived

by exploiting asymptotic arguments. Chapter 3 o↵ers a di↵erent perspective by intro-

ducing a general and provably optimal strategy to perturb any o↵-the-shelf symmetric

approximation of a generic posterior distribution. Such a novel perturbation is derived

without additional optimization steps and yields a similarly-tractable approximation

within the class of skew-symmetric densities that provably improves the finite sample

accuracy of the original symmetric approximation.





Sommario

Nella statistica bayesiana parametrica la distribuzione a posteriori viene spesso appros-

simata con densità simmetriche, in particolare gaussiane. Questa scelta è, in molti casi,

computazionalmente conveniente ma può portare a risultati sub-ottimali. Infatti, anche

semplici modelli parametrici possono dare vita a distribuzioni a posteriori sensibilmente

asimmetriche che vengono mal descritte da approssimazioni che non tengono conto di

tale caratteristica. Non è quindi un caso se, negli ultimi anni, si è osservato un crescente

interesse nello sviluppo di approssimazioni deterministiche asimmetriche. Tuttavia, le

soluzioni attuali sono sviluppate per modelli specifici, mancano di una teoria generale a

supporto e, di solito, presentano una elevata complessità computazionale.

Questa tesi si propone di colmare tali lacune introducendo un’ampia e teoricamente

giustificata famiglia di approssimazioni asimmetriche. Nel Capitolo 1 viene dimostrato

come, sotto l’assunzione che il meccanismo generatore dei dati sia noto, sia possibile de-

rivare una sequenza di distribuzioni asimmetriche alla quale la distribuzione a posteriori

converge, in senso appropriato, più velocemente di quanto faccia verso il classico limite

gaussiano derivato del teorema di Bernstein-Von Mises. Nel Capitolo 2, questo risultato

teorico viene sfruttato per ottenere delle approssimazioni asimmetriche che, pur man-

tenendo le medesime garanzie teoriche, non si basano sulla conoscenza del meccanismo

generatore dei dati e, quindi, possono essere utilizzate in pratica. I primi due capitoli

della tesi si basano su giustificazioni e argomenti di carattere asintotico. Il Capitolo 3 of-

fre, invece, una prospettiva diversa introducendo un metodo che permette di perturbare

in modo ottimale ogni approssimazione simmetrica della distribuzione a posteriori. Per

ogni numerosità campionaria, tale procedura fornisce una approssimazione asimmetrica

che non è mai meno accurata di quella di partenza, pur essendo similmente trattabile.

Rilevante è il fatto che la correzione sopra menzionata non necessiti di particolari pro-

cessi di ottimizzazione ma è basata su semplici valutazioni della distribuzione a priori e

della funzione di verosimiglianza.
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Introduction

Overview

Deterministic approximations of intractable posterior distributions provide a routinely

implemented alternative to sampling-based methods in Bayesian inference (see e.g., Tier-

ney and Kadane, 1986; Minka, 2001; Rue et al., 2009; Blei et al., 2017). Albeit derived

under di↵erent arguments and optimization strategies, these solutions share a common

trade-o↵ between the need to avoid an overly simplified characterization of the posterior

distribution, which may undermine inference accuracy, and the attempt to facilitate op-

timization and posterior inference via a su�ciently tractable approximation. For these

purposes, Gaussian approximations represent a particularly convenient option as they

allow to capture useful characteristics of the posterior distribution while maintaining a

high level of analytical tractability.

From a theoretical perspective, the use of distributions within the Gaussian family

is justified, in asymptotic regimes, by Bernstein-von Mises-type results. Indeed, in

di↵erent frameworks ranging from standard parameteric models (Le Cam, 2012) to high-

dimensional (Boucheron and Gassiat, 2009; Bontemps, 2011; Spokoiny and Panov, 2021)

and semiparametric regimes (Bickel and Kleijn, 2012; Castillo and Rousseau, 2015),

this class of theorems demonstrate that, under appropriate conditions, the posterior

distribution converges in probability to a Gaussian, usually under the total variation

distance.

Although these results are fundamental to our understanding of the theoretical prop-

erties of Bayesian methods, limiting Gaussianity may not be representative of the actual

posterior behavior in non-asymptotic regimes. In fact, in situations where the sample

size is limited, or when the log-posterior is a highly nonlinear function of the model pa-

rameters, it is not uncommon to observe posterior distributions that exhibit asymmetry

and heavy tails, two characteristics that Gaussian approximations inherently fail to cap-

ture. As a consequence, solutions that either explicitly or implicitly take skewness into

account (e.g., Rue et al., 2009; Challis and Barber, 2012; Fasano et al., 2022) tend to

1



2 Overview

perform better than their Gaussian counterparts. Unfortunately, these approximations

are often model specific and a general justification similar to the Bernstein-von Mises

theorem is not yet available. Indeed, current theory on skewed approximations is either

lacking or tailored to the specific models and priors studied (e.g., Fasano et al., 2022).

Main contributions of the thesis

This thesis aims to develop a broad theoretical and methodological framework that

justifies the use of asymmetric approximations in parametric Bayesian inference. This

is done by considering as approximating class the flexible family of skew-symmetric

distributions (Azzalini and Capitanio, 2003; Ma and Genton, 2004). Particular emphasis

is given on providing methods that not only produce satisfactory empirical performances

but also give a clear quantification of the theoretical improvement provided over more

classical solutions.

The skew Bernstein-von Mises theorem

Chapter 1 approaches the problem of approximating the posterior distribution in the

idealized setting where the true generating mechanism of the data is known. In addition

to provide interesting clues about the elements that play a role in the departure of the

posterior from Gaussianity, this chapter introduces one of the key ideas of the thesis.

More in detail, we show that, in parametric models admitting a refined version of the

local asymptotic normality condition (Van der Vaart, 2000), it is possible to incorporate

higher order terms, belonging to the Taylor expansion of both the likelihood and the

prior, into the skewness inducing mechanism of a skew-symmetric density (Azzalini and

Capitanio, 2003; Ma and Genton, 2004; Azzalini and Capitanio, 2014).

More specifically, we consider the setting where the data are modeled by a parametric

family P⇥, where each element is uniquely identified by a parameter ✓ 2 ⇥ ✓
d. In

full generality, we do not require the assumption that the true data generating process

P0 belongs to P⇥, assuming that the final scope of the statistical analysis is to perform

inference on ✓⇤, defined as the Kullback-Leibler projection of P0 onto P⇥. Let �n !

0 be a generic norming rate describing the rate at which the posterior distribution

shrinks toward ✓⇤. For the reparametrization h = �
�1
n (✓� ✓⇤), we show that, under mild

technical conditions, it is possible to improve the rate of convergence, in total variation

distance to the true posterior, by a multiplicative factor �n, by replacing the Gaussian

distribution of the Bernstein-von Mises theorem with a skew-symmetric density of the
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form 2�d(h; ⇠,⌦)w(h � ⇠). In the last expression, �d(h; ⇠,⌦) is the density function

of a d-dimensional Gaussian distribution and w(h � ⇠) is a skewness-inducing factor

depending on a cubic polynomial of the parameter with terms that disappear as �n ! 0.

In the limit, the mean parameter ⇠ and the covariance matrix ⌦ will also approach those

predicted by the usual Gaussian Bernstein-von Mises theorems. As a consequence, as

�n ! 0, the skew-symmetric becomes increasingly close to a Gaussian.

This new approximation provides a series of theoretical and practical advancements

relative to higher-order studies relying on Edgeworth or other types of techniques (see

e.g., Johnson, 1970; Weng, 2010; Kolassa and Ku↵ner, 2020, and the references therein).

Indeed, these contributions give supporting theory for arbitrarily truncated versions of

infinite expansions which, however, do not necessarily correspond to closed-form valid

densities, even after normalization - e.g., the density approximation is not guaranteed

to be non-negative (see e.g., Kolassa and Ku↵ner, 2020, Remark 11). In contrast,

the skewed Bernstein-von Mises results derived in Chapter 1, establish convergence

to a valid and interpretable class of densities which are almost as tractable as the

Gaussian counterpart. In fact, skew-symmetric random variables admit both closed-

form normalizing constant and simple i.i.d. sampling schemes, which facilitate inference

via Monte Carlo evaluation of any functional of the approximate posterior.

In the second part of the chapter, the skew-symmetric limiting law is specialized for

the asymptotic regime where the parameter dimension d is fixed and �n = 1/
p
n, with

n being the sample size. In this case, the total variation distance between the skew-

symmetric approximation and the posterior is shown to be asymptotically of order 1/n

in probability, up to a logarithmic term, while under similar assumptions the rate for the

Gaussian approximation is of order 1/
p
n in probability, again up to a logarithmic term.

Under mild additional conditions, we show that the same improvement holds for the

estimation of the posterior expectation of functions that are bounded by a polynomial.

Joint and marginal skew-modal approximations

The theoretical results derived in Chapter 1 describe the asymptotic behavior of the

posterior distribution evaluated with respect to the unknown parameter ✓⇤. This per-

spective provides insightful indications about the factors influencing the asymmetry of

the posterior distribution and, at the same time, allows us to demonstrate the validity

of the skew-symmetric limiting law under mild regularity conditions. From a practical

point of view, however, the dependence on ✓⇤ prevents our method to be directly applied

as an approximation technique in real-world scenarios. In addition, a second aspect to
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consider is that the process of generating a sample from the skew-symmetric approxi-

mation requires multiple evaluations of the skewness-inducing factor w(·), an operation

that is cubic in the parameter dimension d.

In Chapter 2, the above considerations naturally motivate the development of a

novel practical class of skew-modal approximations. As a first step, we introduce a

plug-in version of the joint skew-symmetric approximation which replace the unknown

✓⇤ with a consistent estimator. Even though, in principle, many di↵erent solutions could

be adopted, we specialize our results for the posterior mode, as it leads to a sensible

simplification of many of the quantities involved in the evaluation of the approximation.

Then, using arguments similar to those in Chapter 1, we derive a family of skew-marginal

approximations that can be applied to any subset ✓C of the model parameter ✓.

Under mild regularity conditions, it is then proved that the newly derived “practi-

cal” versions approximate the posterior distribution with the same level of asymptotic

accuracy as their theoretical counterpart based on ✓⇤ and described in Chapter 1.

If the interest is in the posterior marginals, the possibility to rely on approximations

with closed-form expressions provides important computational gains. In fact, beside

removing the need of drawing samples from the joint approximation, the newly derived

skew marginal approximations depend on skewness-inducing factors that, once their

parameters are evaluated a first time, have a computational cost which is cubic in

the dimension of ✓C and, therefore, negligible for univariate and bivariate marginal

distributions.

The applicability and the good empirical performances of the proposed methods is

demonstrated both through a simulation study and an application on a binary regression

model. The latter also shows how the proposed methodology is competitive with respect

to other state of the art approximations such as expectation propagation (Minka, 2001)

and mean field variational Bayes (see e.g., Durante and Rigon, 2019).

General skew-symmetric approximations of posterior distribu-

tions

The first two chapters of the thesis deal with skew approximations of the posterior dis-

tribution obtained by perturbing Gaussian densities via a scheme which is derived under

asymptotic arguments. In principle, such a choice for the symmetric component is not

the only possible option. In fact, routinely implemented approximation methods such

as variational Bayes (Opper and Archambeau, 2009; Blei et al., 2017) and expectation

propagation (Minka, 2001; Chopin and Ridgway, 2017) provide alternative Gaussian

approximations as the result of specific optimization processes. At the same time, from
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a practical point of view, it is not clear in these cases which form the skewness-inducing

factor should have and whether there is a general way to find it.

In Chapter 3, we provide an answer to the above challenging questions by deriving a

broadly-applicable strategy to perturb, at no additional optimization costs, any o↵-the-

shelf symmetric approximation, giving rise to a similarly-tractable, yet provably more

accurate, skew-symmetric version. Such a novel solution arises by noticing that any

symmetric approximation f
⇤
✓̂
(✓) of a posterior distribution ⇡n(✓), is provably more accu-

rate in approximating a suitably-symmetrized version ⇡̄n,✓̂(✓) = (⇡n(✓) + ⇡n(2✓̂ � ✓))/2

of such a posterior rather than its original non-symmetrized form, under the total vari-

ation distance and any ↵-divergence. Albeit seemingly irrelevant, such a result is of

fundamental importance. In fact, although the final target is the original posterior and

not its symmetrized version, the two corresponding densities are crucially related in a

way that suggests a direct strategy to perturb any o↵-the-shelf symmetric approxima-

tion of a generic posterior distribution. In particular, we demonstrate that the density

of the original posterior can be expressed as the product of its symmetrized version and

a skewness-inducing factor w
⇤
✓̂
(✓) = ⇡n(✓)/(⇡n(✓) + ⇡n(2✓̂ � ✓)) which is available in

closed-form and does not depend on additional unknown parameters. Such a charac-

terization relates to a fundamental existence and uniqueness result of skew-symmetric

representations (Wang et al., 2004) which has been never explored within the context

of Bayesian inference and approximations, despite its unique potentials. In fact, such a

parallel ensures that the perturbation of the original symmetric approximation f
⇤
✓̂
(✓) by

the newly-derived skewness-inducing factor yields a density 2f ⇤
✓̂
(✓)w⇤

✓̂
(✓) that falls within

the class of skew-symmetric distributions (Azzalini and Capitanio, 2003; Wang et al.,

2004; Ma and Genton, 2004; Genton and Loperfido, 2005; Azzalini and Capitanio, 2014),

thus admitting a closed-form normalizing constant and straightforward i.i.d. sampling

schemes. Such schemes only require simulation from the original symmetric approxima-

tion and evaluation of the analytically-available skewness-inducing factor. Importantly,

such a factor depends only on ratios of posterior densities, thus allowing cancellation of

the intractable normalizing constant and, hence, direct computation without additional

optimization costs.

Using rigorous theoretical arguments we prove that the proposed strategy is not

only computationally tractable, but also yields skewed approximating densities that

are provably more accurate than the original symmetric approximation, for any sample

size n and under several routinely-studied divergences. This fact is also supported with

two real-world applications which further demonstrate the superior performance of our

methodological proposal compared to its symmetric counterparts.





Chapter 1

A skewed Bernstein-von Mises

theorem

1.1 Introduction

In Bayesian statistic, several commonly adopted deterministic approximations of the

posterior distribution rely either explicitly or implicitly on Gaussian densities (e.g.,

Tierney and Kadane, 1986; Minka, 2001; Rue et al., 2009; Blei et al., 2017). From a

theoretical point of view, the choice of the Gaussian family to approximate the posterior

distribution is justified, in asymptotic regimes, by Bernstein - von Mises type results.

In its original formulation (e.g. Laplace, 1810; Von Mises, 1931; Le Cam, 1953; Le Cam

and Yang, 1990; Van der Vaart, 2000), the famous Bernstein-von Mises theorem states

that, in su�ciently regular parametric models, the posterior distribution converges to

a Gaussian in total variation distance with probability tending to one under the true

law of the data. Both the mean and the covariance of such limiting Gaussian depends

only on quantities related to the log-likelihood function, while the prior e↵ect tends to

disappear as the sample size increases. Extensions of the Bernstein-von Mises theorem

to more complex settings such as misspecified (Kleijn and Van der Vaart, 2012), high-

dimensional (Boucheron and Gassiat, 2009; Bontemps, 2011; Spokoiny and Panov, 2021)

and semiparametric models (Bickel and Kleijn, 2012; Castillo and Rousseau, 2015; Ray

and Van der Vaart, 2020) have also been made in recent years. In addition, Bernstein-

von Mises type results with a special focus on scalable deterministic approximations such

as expectation-propagation (ep), variational Bayes (vb) and Laplace methods have been

obtained by Dehaene and Barthelmé (2018), Wang and Blei (2019) and Kasprzak et al.

(2022), respectively.

Although considering di↵erent regimes, the above results share a common focus on
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8 Section 1.2 - Notation
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Figure 1.1: For varying sample size n 2 {10, 20, 30}, graphical comparison between the
approximations of the exact posterior density (grey area) provided by the classical Gaussian
Bernstein-von Mises theorem (BvM) and the newly-developed skewed version relying on skew-
symmetric approximating densities (Skewed BvM). Results refer to an exponential exp(✓)
model with exp(1) prior on the rate parameter ✓.

the asymptotic Gaussianity of the posterior distribution and on its frequentist properties,

such as the coverage of credible intervals. While this perspective has led to fundamental

advances in our understanding of Bayesian asymptotics, when the goal is to approximate

the posterior distribution, Gaussian approximations may fail to capture relevant aspects

such as asymmetry and heavy tails, as illustrated for a simple exponential model in

Figure 1.1.

As a consequences, available extensions of Gaussian deterministic approximations

that either explicitly or implicitly account for skewness (e.g., Rue et al., 2009; Challis

and Barber, 2012; Fasano et al., 2022) have shown evidence of improved empirical accu-

racy relative to the Gaussian counterparts. Nevertheless, these approximations are often

model specific, and a general justification similar to the Bernstein-von Mises theorem is

not yet available. In fact, current theory on skewed approximations is either lacking or

tailored to the specific models and priors studied (e.g., Fasano et al., 2022). In this chap-

ter, we take a step toward filling the aforementioned gaps by deriving a novel limiting

law for posterior distributions which belongs to the class of skew-symmetric distributions

(Azzalini and Capitanio, 2003; Ma and Genton, 2004; Azzalini and Capitanio, 2014) and

yields noticeable improvements over the convergence rate of the classical Bernstein-von

Mises theorem based on limiting Gaussian densities.

1.2 Notation

Let {Xi}
n
i=1, n 2 , denote a sequence of random variables with unknown true

distribution P
n
0 . Let P⇥ = {P

n
✓ , ✓ 2 ⇥} , with ⇥ ✓ Rd, be a parametric family of

distributions. In the following, we assume that there exists a common �-finite measure

µ
n which dominates P

n
0 as well as all measures P

n
✓ and we denote by p

n
0 and p

n
✓ the
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corresponding density functions. The Kullback-Leibler projection P
n
✓⇤ of P n

0 onto P⇥ is

defined as P n
✓⇤ = argminPn

✓ 2P⇥
kl[P n

0 kP
n
✓ ] where kl[P

n
0 kP

n
✓ ] denotes the Kullback-Leibler

divergence between the two probability measures P n
0 and P

n
✓ . For two generic probability

densities p1(✓) and p2(✓), Dtv

⇥
p1(✓) || p2(✓)

⇤
= (1/2)

R
|p1(✓) � p2(✓)|d✓ denotes their

total variation distance (see e.g., Ghosal and Van der Vaart, 2017, Appendix B).

The, possibly misspecified, likelihood of the model is L(✓) = L(✓;Xn) = p
n
✓ (X

n)

while the log-likelihood is indicated with `(✓) = `(✓;Xn) = logL(✓;Xn). Prior and

posterior distributions are denoted by ⇧(·) and ⇧n(·) while their densities are ⇡(·) and

⇡n(·), respectively.

Our results rely on higher-order expansions and derivatives. To this end, we charac-

terize operations among vectors, matrices and arrays in a compact manner by adopting

the index notation along with the Einstein’s summation convention (e.g., Pace and Sal-

van, 1997, pg. 335). More specifically, the inner product Z
|
a between the generic

random vector Z 2 Rd
, with components Zs for s = 1, . . . , d, and the vector of coe�-

cients a 2 Rd having elements as for s = 1, . . . , d, is expressed as asZs, with the sum

being implicit in the repetition of the indexes. Similarly, if B is a d ⇥ d matrix with

entries bst for s, t = 1, . . . , d, the quadratic form Z
|
BZ is expressed as bstZsZt. The

generalization to operations involving arrays with higher dimensions is obtained under

the same reasoning.

Leveraging the above notation, the score vector evaluated at ✓⇤ is defined as

`
(1)
✓⇤

= [`(1)s (✓)]|✓=✓⇤ = [(@/@✓s)`(✓)]|✓=✓⇤
2 Rd

,

whereas, the second, third and fourth order derivatives of `(✓), still evaluated at ✓⇤, are

`
(2)
✓⇤

= [`(2)st (✓)]|✓=✓⇤ = [@/(@✓s@✓t)`(✓)]|✓=✓⇤ 2 Rd⇥d
,

`
(3)
✓⇤

= [`(3)stl (✓)]|✓=✓⇤ = [@/(@✓s@✓t@✓l)`(✓)]|✓=✓⇤ 2 Rd⇥d⇥d
,

`
(4)
✓⇤

= [`(4)stlk(✓)]|✓=✓⇤ = [@/(@✓s@✓t@✓l@✓k)`(✓)]|✓=✓⇤ 2 Rd⇥d⇥d⇥d
,

where all the indexes in the above definitions and in the subsequent ones go from 1 to d.

The observed and expected Fisher information are denoted by J✓⇤ = [jst] = �[`(2)✓⇤,st
] 2 Rd⇥d

and I✓⇤ = [ist] = [En
0jst] 2 Rd⇥d, where En

0 is the expectation with respect to P
n
0 . In ad-

dition,

log ⇡(1)
✓⇤

=[log ⇡(✓)(1)s ]|✓=✓⇤ = [@/(@✓s) log ⇡(✓)]|✓=✓⇤ 2 Rd
,

log ⇡(2)
✓⇤

=[log ⇡(✓)(2)st ]|✓=✓⇤ = [@/(@✓s@✓t) log ⇡(✓)]|✓=✓⇤ 2 Rd⇥d
,

represent the first two derivatives of the log-prior density, evaluated at ✓⇤.
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The Euclidean norm of a vector a 2 Rd is denoted by kak, whereas, for a generic

d ⇥ d matrix B, the notation |B| indicates its determinant and �min(B) and �max(B)

its minimum and maximum eigenvalue, respectively. Furthermore, u ^ v and u _ v

correspond to min{u, v} and max{u, v}. For two positive sequences un, vn we employ

un . vn if there exists a universal positive constant C such that un  Cvn. When

un . vn and vn . un are satisfied simultaneously, we write un ⇣ vn.

1.3 The skew-symmetric family of distributions

This thesis makes extensive use of approximating densities belonging to the skew-

symmetric family of distributions (Azzalini and Capitanio, 2003; Ma and Genton, 2004;

Azzalini and Capitanio, 2014). As illustrated in Definition 1.1, this class of random

variables is characterized by a flexible mechanism which perturbs a generic symmetric

density function with a skewness-inducing factor w(·). Such a simple mathematical

structure gives rise to a wide variety of density functions that can encompass not only

asymmetry but also multimodality (Ma and Genton, 2004).

Definition 1.1. A random variable ✓ taking values in ⇥ ✓
d is skew-symmetric (see

e.g., Ma and Genton, 2004; Azzalini and Capitanio, 2014) if its density function can be

written as

2p(✓ � ⇠)w(✓ � ⇠), (1.1)

where ⇠ 2 Rd, p(·) is a symmetric density about zero and w : Rd
! [0, 1] is a skewness-

inducing factor which satisfies 0  w(x)  1 and w(�x) = 1� w(x).

Furthermore, w(·) can be equivalently expressed as the composition

w(·) = F (↵(·)), (1.2)

where F (·) is the cumulative distribution function of a univarite random variable with

density symmetric about zero and ↵ : d
! R is an odd function (Ma and Genton,

2004).

A notable example in the skew-symmetric family is the skew-normal distribution

(Azzalini, 1985; Azzalini and Dalla Valle, 1996), which is obtained by taking p(·) mul-

tivariate Gaussian, F (·) the cumulative distribution function of the standard normal

distribution, and ↵(✓ � ⇠) = a
|(✓ � ⇠) for a 2 Rd. A particularly attractive property of

the skew-normal distribution it that its moments are available in closed form (Azzalini

and Dalla Valle, 1996). This fact does not generally hold for any generic skew-symmetric
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distributions, which therefore necessitate the use of numerical or Monte Carlo methods

to evaluate quantities of interest in statistical inference. For this purpose, in Proposition

1.2 we recall a useful stochastic representation of skew-symmetric random variables. A

direct consequence of Proposition 1.2 is that if simulating from p(·) is easy, then it is

possible to obtain a sample from (1.1) in an exact manner and with little additional

computational cost.

Proposition 1.2. Let ✓sym be a realization of a random variable having density function

p(·) as described in (1.1). Conditioned on ✓sym define S✓sym such that

S✓sym =

8
<

:
1 with probability w(✓sym),

0 otherwise.
.

Then, the random variable ✓ = (2S✓sym � 1)✓sym + ⇠ has density function (1.1) (Azzalini

and Capitanio, 2014, pg. 6).

Finally, note that the class of distributions described by (1.1) is very broad. In

our work, apart from some exceptions in Chapter 3, we will consider skew-symmetric

distributions where the symmetric component p(·) belongs to the Gaussian family.

1.4 A skewed Bernstein-von Mises theorem

This section presents the first important contribution of the thesis. More specifically,

we show how, in Bayesian models satisfying a refined version of the local asymptotic

normality (LAN) condition (see e.g., Van der Vaart, 2000; Kleijn and Van der Vaart,

2012), a new treatment of higher-order terms can yield to a novel limiting law of densities

within the skew-symmetric family (sks) (Azzalini and Capitanio, 2003; Ma and Genton,

2004). Focusing on this alternative sequence of approximating densities, we then prove

that, compared to the classical Gaussian approximation, the convergence rate of its total

variation distance from the exact posterior distribution improves by at least one order

of magnitude. In regular, possibly misspecified settings, this implies a gain of a factor

of order
p
n over the Gaussian limit predicted by the Bernstein-von Mises theorem.

Let �n ! 0 be generic a norming rate governing the posterior contraction toward ✓⇤.

Consistent with standard Bernstein-von Mises type theory (Van der Vaart, 2000; Kleijn

and Van der Vaart, 2012), let us consider the re-parametrization h = �
�1
n (✓ � ✓⇤) 2 Rd.

Then, as illustrated below in Section 1.4.2, the newly-derived class of approximating
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sks densities pnsks has the general form

p
n
sks (h) = 2�d (h; ⇠,⌦)w(h� ⇠), (1.3)

while P
n
sks(S) =

R
S p

n
sks(h)dh is the corresponding cumulative distribution function. In

Equation (1.3), �d (·; ⇠,⌦) is the density of a d-variate Gaussian variable with mean

vector ⇠ and covariance matrix ⌦. The term w(h� ⇠) 2 (0, 1) is instead responsible for

inducing skewness, and takes the form w(h� ⇠) = F (↵⌘(h� ⇠)) where F : R ! [0, 1]

is any univariate cumulative distribution function which satisfies F (�x) = 1�F (x) and

F (x) = 1/2 + ⌘x + O(x2), x ! 0, for some ⌘ 2 R, and ↵ : Rd
! R is a third order

polynomial of (h� ⇠).

In Section 1.5, we show that in the asymptotic regime where n ! 1, d is fixed and

�
�1
n =

p
n, the components of (1.3) take the form

⇠ = [⇠s] = [n(J�1
✓⇤

)stut] 2 Rd
, with ut = (`(1)✓⇤

+ log ⇡(1)
✓⇤
)t/

p
n, t = 1, . . . , d,

⌦�1 = [jst/n� (⇠la
(3),n
✓⇤,stl

)/
p
n] 2 Rd⇥d

,

and

↵⌘(h� ⇠) = a
(3),n
✓⇤,stl

{(h� ⇠)s(h� ⇠)t(h� ⇠)l + 3(h� ⇠)s⇠t⇠l}/(12⌘
p
n) 2 R,

with a
(3),n
✓⇤

= `
(3)
✓⇤
/n. Interestingly, in this last case, the first factor in the right hand

side of (1.3) closely resembles the limiting Gaussian density with mean vector `(1)✓⇤
/
p
n

and covariance matrix (I✓⇤/n)
�1 from the classical Bernstein-von Mises theorem which,

however, fails to incorporate skewness. For this reason, the symmetric density factor

in (1.3) is further perturbed via a skewness-inducing mechanism regulated by w(h� ⇠)

to obtain a valid and known asymmetric density with tractable normalizing constant.

Indeed, since ↵⌘(h� ⇠) is an odd function of (h� ⇠), and �d (·; ⇠,⌦) is symmetric about

⇠, it follows that p
n
sks (h) in (1.3) is a density belonging to the skew-symmetric family

introduced in Section 1.3.

The fact that this new approximation is a proper density function is particularly

remarkable. Indeed, even though similar higher order approximations, based on Edge-

worth or other expansions (e.g., Johnson, 1970; Weng, 2010; Kolassa and Ku↵ner, 2020),

can be found in the literature, they generally su↵er from several limitations such as the

possibility of assuming negative values (Kolassa and Ku↵ner, 2020), a problem that

does not a↵ect (1.3). Moreover, the stochastic representation introduced in Proposition

1.2 allows to easily design Monte Carlo strategies to evaluate functionals of interest for

statistical inference with a similar computational cost as simulating from a multivariate
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Gaussian distribution.

The aforementioned discussion clarifies how our result points toward the possibility of

employing a more refined family of valid approximating distributions arising from a sim-

ple perturbation of multivariate Gaussian densities that still allows tractable inference,

while yielding provable, and noticeable, improvements in approximation accuracy.

1.4.1 Derivation of the skew-symmetric approximating distri-

bution

Prior to state and prove the skewed Bernstein-von Mises theorem in Section 1.4.2,

let us focus on providing a constructive derivation of the skew-symmetric approximat-

ing density in (1.3) via a third-order version of the Laplace method. To simplify the

notation, we consider the simple univariate case d = 1 and �
�1
n =

p
n. The extension to

d > 1 and di↵erent asymptotic frameworks yielding the general expression for p
n
sks (h)

in (1.3) follows as a direct adaptation of this univariate case and are reported in Sections

1.4.2 and 1.5.

As a first step towards deriving the sks density p
n
sks (h) in (1.3), notice that the

posterior for h =
p
n(✓ � ✓⇤) can be expressed as

⇡(h | X
n) /

p
n
✓⇤+h/

p
n

pn✓⇤

(Xn)
⇡(✓⇤ + h/

p
n)

⇡(✓⇤)
, (1.4)

since p
n
✓⇤(X

n) and ⇡(✓⇤) do not depend on h, and ✓ = ✓⇤ + h/
p
n.

Under suitable regularity conditions discussed in Section 1.4.2 and Section 1.5 below,

the third-order Taylor’s expansion for the logarithm of the likelihood ratio in Equa-

tion (1.4) is

log
p
n
✓⇤+h/

p
n

pn✓⇤

(Xn) =
`
(1)
✓⇤
p
n
h�

1

2

j✓⇤

n
h
2 +

1

6
p
n

`
(3)
✓⇤

n
h
3 +OPn

0

�
n
�1
�
, (1.5)

whereas the first order Taylor’s expansion of the log-prior ratio is

log
⇡(✓⇤ + h/

p
n)

⇡(✓⇤)
=

log ⇡(1)
✓⇤

p
n

h+O
�
n
�1
�
. (1.6)

Combining (1.5) and (1.6) it is possible to reformulate the right-hand-side of Equa-

tion (1.4) as

p
n
✓⇤+h/

p
n

pn✓⇤

(Xn)
⇡(✓⇤ + h/

p
n)

⇡(✓⇤)
= exp

⇣
uh�

1

2

j✓⇤

n
h
2 +

1

6
p
n

`
(3)
✓⇤

n
h
3
⌘
+OPn

0
(n�1), (1.7)
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where u = (`(1)✓⇤
+ log ⇡(1)

✓⇤
)/
p
n.

Notice that, up to a multiplicative constant, the Gaussian density arising from the

classical Bernstein-von Mises theorem can be obtained by neglecting all terms in (1.5)-

(1.6) which converge to zero in probability. These correspond to the contribution of

the prior, the di↵erence between the observed and expected Fisher information, and

the term associated to the third-order log-likelihood derivative. Maintaining these

quantities would surely yield improved accuracy, but it is unclear whether a valid and

similarly-tractable density can be still identified. In fact, current solutions (e.g., John-

son, 1970) consider approximations based on the sum among a Gaussian density and

additional terms in the Taylor’s expansion. However, as for related alternatives arising

from Edgeworth-type expansions (e.g., Weng, 2010; Kolassa and Ku↵ner, 2020), there

is no guarantee that such constructions provide valid densities.

As a first key contribution we prove below that a valid and tractable approximating

density can be, in fact, derived from the above expansions and belongs to the sks class.

To this end, let ! = 1/v with v = j✓⇤/n� ⇠`
(3)
✓⇤
/n

3/2 and ⇠ = n(j✓⇤)
�1
u, and note that,

by replacing h3 in the right hand side of Equation (1.7) with (h+⇠�⇠)3, the exponential

term in (1.7) can be rewritten as proportional to

�(h; ⇠,!) exp({1/(6
p
n)}(`(3)✓⇤

/n)
�
(h� ⇠)3 + 3(h� ⇠)⇠2

 
). (1.8)

Next recall that, for x ! 0, we can write exp(x) = 1+x+O(x2) and 2F (x) = 1+2⌘x+

O(x2), for some ⌘ 2 R, where F (·) is the univariate cumulative distribution function

introduced in Section 1.4 above. Therefore, leveraging the similarity among these two

expansions and the fact that the exponent in Equation (1.8) is an odd function of (h�⇠)

about 0, of order OPn
0
(n�1/2), it follows that (1.8) is equal to

2�(h; ⇠,!)F (↵⌘(h)) +OPn
0
(n�1),

with ↵⌘(h) defined below Equation (1.3), thereby yielding for the univariate case the

skew-symmetric density in (1.3), up to an additive OPn
0
(n�1) term. The direct extension

of the above derivations to the multivariate case provides the general form of pnsks (h) in

(1.3).

1.4.2 A general theorem

The take-home message of Section 1.4.1 is that, if the cubic term in the Taylor ex-

pansion of the log-posterior is su�ciently small, it is possible to incorporate it into
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the skewing factor of a sks distribution, improving the quality of the Gaussian ap-

proximation by an order of magnitude while avoiding classical problems of polynomial

approximations such as regions with negative mass (see e.g McCullagh, 2018, pg. 154).

In this section, we show that this idea can be applied to obtain a skew-symmetric

approximation in a wide variety of di↵erent settings, provided that the posterior con-

traction is governed by a generic norming rate �n ! 0 and that some additional and

reasonable regularity conditions are satisfied. More specifically, Theorem 1.3 requires

Assumptions 1-4 stated below. For convenience, let us also introduce the notation

Mn =
p

c0 log ��1
n where c0 is a positive constant to be specified later.

Assumption 1. The Kullback-Leibler projection ✓⇤ 2 ⇥ is unique.

Assumption 2. There exists a sequence of d-dimensional random vectors �n
✓⇤ = OPn

0
(1),

a sequence of random matrices V
n
✓⇤ = [vnst] where v

n
st = OPn

0
(1) and a sequence of three

dimensional arrays a
(3),n
✓⇤

= [a(3),n✓⇤,stl
] with entries a

(3),n
✓⇤,stl

= OPn
0
(1) so that

log
p
n
✓⇤+�nh

pn✓⇤

(Xn)� hsv
n
st�

n
✓⇤,t +

1

2
hsv

n
stht �

�n

6
a
(3),n
✓⇤,stl

hshthl = rn,1(h),

with rn,1 := suph2Kn
|rn,1(h)| = OPn

0
(�2nM

c1
n ), for some constant c1 > 0, where Kn =

{k✓ � ✓⇤k  Mn�n}.

In addition, there are two positive constants ⌘
⇤
1 and ⌘

⇤
2 such that the event An,0 =

{�min(V n
✓⇤) > ⌘

⇤
1} \ {�max(V n

✓⇤) < ⌘
⇤
2}, holds with P

n
0 An,0 = 1� o(1).

Assumption 3. There exist a d-dimensional vector log ⇡(1) for which log ⇡(✓⇤+�nh)/⇡(✓⇤)�

�nhs log ⇡
(1)
s = rn,2(h) with log ⇡(1) = O(1) and rn,2 := suph2Kn

|rn,2(h)| = O(�2nM
c2
n ) for

some constant c2 > 0.

Assumption 4. It holds lim�n!0 P
n
0 {⇧n(k✓ � ✓⇤k > Mn�n) < �

2
n} = 1.

A brief discussion of the above assumptions is in order. Assumption 1 is mild and can

be found, for example, in Kleijn and Van der Vaart (2012). Together with Assumption

4, it guarantees that asymptotically the posterior distribution is concentrated in the

region where the two Taylor expansions described in Assumptions 2 and 3 hold with

negligible remainder terms. Note also that, given Assumptions 2 and 3, the prior a↵ects

only the higher-order terms of the log-posterior expansion. This behavior is standard

in the n ! 1-fixed d asymptotic framework. On the contrary, recent studies in high-

dimensional Bayesian statistics Spokoiny and Panov (2021); Spokoiny (2023) highlight

that the prior e↵ect often plays a critical role even through terms associated with its

second-order derivatives. In particular, the prior should provide su�cient shrinkage to
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control the behavior of the third and fourth-order components of the log-posterior. This

framework is beyond the scope of the present section, but can be covered by directly

imposing appropriate su�cient conditions on the behavior of the Taylor expansion of

the log-posterior.

Theorem 1.3 below states the most important theoretical result of this section. It es-

tablishes in a general, misspecified setting, an improved rate of convergence for the total

variation distance between the exact posterior and the skew-symmetric approximation

introduced in (1.3), under the Assumptions 1-4. Our results clarify that a substantially

more accurate representation for the asymptotic behavior of the exact posterior distri-

bution, relative to that achieved under limiting multivariate Gaussians, can be obtained

via a similarly tractable class of skew-symmetric densities. It is worth emphasizing that,

since these results aim to better describe the behavior of the true posterior distribution,

they necessarily inherit its frequentist asymptotic properties. This means that the im-

provement given by using (1.3) instead of the classical Gaussian approximation should

be intended in terms of fidelity to the true posterior and does not, in general, a↵ect

quantities such as the frequentist coverage of the credible sets.

Theorem 1.3. Let h = �
�1
n (✓ � ✓⇤), and Kn = {h : khk < Mn}. Under Assumptions

1 to 4, if ✓⇤ is an inner point of ⇥, it holds

Dtv

⇥
⇡n(h) || p

n
sks(h)

⇤
= OPn

0
(M c3

n �
2
n), (1.9)

with c3 > 0. In (1.9) the skew-symmetric limiting density (1.3) has parameters ⇠ =

�n
✓⇤ + �n(V n

✓⇤)
�1 log ⇡(1)

, ⌦�1 = [vnst � �na
(3),n
✓⇤,stl

⇠l] and w(h � ⇠) = F (↵⌘(h)) with F (·) be

any univarite cdf satisfying F (�x) = 1� F (x) and F (x) = 1/2 + ⌘x+O(x2), for some

⌘ 2 R, when x ! 0 and

↵⌘(h) =
�n

12⌘
{ (3)

stl (h� ⇠)s(h� ⇠)t(h� ⇠)l + 3 (1)
s (h� ⇠)s},

for  (1) = [a(3),n✓⇤,stl
⇠t⇠l],  (3) = [a(3),n✓⇤,stl

].

Remark 1.4. Under related conditions and a simpler proof, it is possible to show that

the order of convergence for the usual Bernstein-von Mises theorem based on Gaussian

limiting distributions is OPn
0
(M c4

n �n), for some c4 > 0. Thus, Theorem 1.3 guarantees

that by relying on sks approximating distributions with the density defined in (1.3) and

derived in Section 1.4.1, it is possible to improve the classical Bernstein-von Mises result

by a multiplicative factor of �n, up a logarithmic term. This follows directly from the

fact that the sks approximation is able to include the terms of order �n that are present
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in the Taylor expansion of the log-posterior but are neglected in the Gaussian limit. In

addition, in order to work, (1.3) requires that the term �n is su�ciently small, a condition

that is also necessary for the validity of the classical Gaussian approximation. The

improvement provided by the use of the skew-symmetric limiting law is thus found when

the posterior is su�ciently concentrated in a neighborhood of the location parameter,

and it is due to a better repartitioning of the density of the approximation in the high

posterior probability region. As illustrated in Sections 1.6-2.4, this simple correction is

usually able to significantly improve the ability of the approximation to capture salient

features of the posterior density.

Remark 1.5. The form of the univariate cumulative distribution function F (·), in The-

orem 1.3, is not explicit since it is only required to satisfy F (�x) = 1 � F (x) and

F (x) = 1/2+⌘x+O(x2) for some ⌘ 2 R when x ! 0. For practical purposes, it is useful

to list some possible choices of F (·). Two good candidates are the cumulative distribu-

tion function of the standard Gaussian distribution, �(x), and the inverse logit function,

g(x) = exp(x)/{1+exp(x)}. In fact, they both satisfy F (�x) = 1�F (x) and their Taylor

expansions take the form �(x) = 1/2+x/
p
2⇡+O(x3) and g(x) = 1/2+x/4+O(x3) for

x ! 0. Moreover, in the first case, the combination of the standard normal cumulative

distribution function with the Gaussian kernel in Theorem 1.3 yields a skew-symmetric

approximation belonging to the family of generalized skew-normal distributions (Ma

and Genton, 2004; Genton and Loperfido, 2005).

Before giving the proof of Theorem 1.3, it is worthwhile to discuss an interesting

point regarding the interplay between skew-symmetric and Gaussian approximations.

In general, a straightforward implication of Theorem 1.3 is that (1.3) provides the same

asymptotic improvement over the Gaussian approximation in estimating the posterior

expectation of any bounded function, with this fact usually extendable to functions

bounded by a polynomial under mild additional conditions, as illustrated in Corol-

lary 1.7. However, Lemma 1.6 below highlights how the skew-symmetric distributional

invariance with respect to even functions (Wang et al., 2004) implies that the skew ap-

proximation 2�d (h; ⇠,⌦)w(h� ⇠) and the corresponding Gaussian �d (h; ⇠,⌦), obtained

by eliminating the skewing factor, provide the same level of accuracy in estimating the

posterior expected value of functions that are symmetric with respect to the location

parameter. Thus our result provides a new explanation on the phenomenon observed

in Spokoiny and Panov (2021) and Spokoiny (2023), where the quality of the Gaus-

sian approximation, in high-dimensional models, increases by an order of magnitude

when evaluated on Borel sets which are centrally symmetric with respect to the location

parameter (see e.g., Spokoiny, 2023, Thm 3.4).
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Lemma 1.6. Let 2�d(✓; ⇠,⌦)w(✓ � ⇠) with ⇠ 2 Rd and ⌦ 2 Rd⇥d, be a skew-symmetric

approximation of ⇡n(✓) and let G : Rd
! R be an even function. If both

R
G(✓ �

⇠)⇡n(✓)d✓ and
R
G(✓ � ⇠)2�d(✓; ⇠,⌦)w(✓ � ⇠)d✓ are finite, it holds

Z
G(✓ � ⇠){⇡n(✓)� 2�d(✓; ⇠,⌦)w(✓ � ⇠)}d✓ =

Z
G(✓ � ⇠){⇡n(✓)� �d(✓; ⇠,⌦)}d✓.

Proof. Lemma 1.6 is a direct consequence of Proposition 6 in Wang et al. (2004).

The proof of Theorem 1.3 is reported below and it follows other general reasoning

behind the classical Bernstein–von Mises type derivations (e.g., Kleijn and Van der

Vaart, 2012), extended to sks distributions. Nonetheless, as mentioned before, the

need to derive a sharp rate which establishes a higher approximation accuracy, relative

to Gaussian limiting distributions, requires a number of additional technical lemmas

and refined arguments ensuring a tight control of the error terms in the expansions

underlying Theorem 1.3.

Proof. By an application of triangle inequality the problem can be split in three parts

Z
|⇡n(h)� p

n
sks(h)|dh 

Z
|⇡n(h)� ⇡

Kn
n (h)|dh

+

Z
|⇡

Kn
n (h)� 2�Kn

d (h; ⇠,⌦)w(h� ⇠)|dh

+

Z
|2�d(h; ⇠,⌦)w(h� ⇠)� 2�Kn

d (h; ⇠,⌦)w(h� ⇠)|dh,

(1.10)

where ⇡
Kn
n (h) = ⇡n(h) h2Kn/

R
Kn

⇡n(h)dh and

2�Kn
d (h; ⇠,⌦)w(h� ⇠) = 2�d(h; ⇠,⌦)w(h� ⇠) h2Kn/

Z

Kn

2�d(h; ⇠,⌦)w(h� ⇠)dh,

are the constrained versions of the corresponding densities to Kn.

Assumption 4 and a standard inequality of the total variation norm give

Z
|⇡n(h)� ⇡

Kn
n (h)|dh  2

Z

h : khk>Mn

⇡n(h)dh = OPn
0
(�2n). (1.11)

We deal with the third term in a similar manner. Leveraging the same total variation

inequality as above and |w(x)|  1 we obtain

Z
|2�d(h; ⇠,⌦)w(h� ⇠)� 2�Kn

d (h; ⇠,⌦)w(h� ⇠)|dh 4

Z

h : khk>Mn

�d(h; ⇠,⌦)dh.
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Let P⇠,⌦(khk > Mn) :=
R
h2Kc

n
�d(h; ⇠,⌦)dh and An,1 = {�min(⌦) > ⌘1} \ {�max(⌦) <

⌘2} \ {k⇠k < M̃n} for some sequence M̃n = o(Mn) going to infinity arbitrary slowly

and some ⌘1, ⌘2 > 0. Moreover, note that V
n
✓⇤ � ⌦

�1 has entries of order OPn
0
(�n). As

a consequence, in view of Assumptions 2-3 and Lemma B.2 we get P n
0 An,1 = 1 � o(1).

Conditioned on An,1, the eigenvalues of ⌦ lay on a positive bounded range. This fact,

together with Markov’s inequality and M̃n/Mn ! 0 imply, for every ✏ > 0,

P
n
0

⇣
P⇠,⌦(khk > Mn)/�

2
n > ✏

⌘
= P

n
0

⇣
{P⇠,⌦(khk > Mn)/�

2
n > ✏} \ An,1

⌘
+ o(1)

 P
n
0

⇣
e
�c̃1M2

n/�
2
n > ✏|An,1

⌘
+ o(1) = o(1),

(1.12)

where c̃1 is a su�ciently small positive constant and the last inequality follows from

the tail behavior of the multivariate Gaussian for a su�ciently large choice of c0 in

Mn =
p

c0 log ��1
n . This gives

Z
|2�d(h; ⇠,⌦)w(h� ⇠)� 2�Kn

d (h; ⇠,⌦)w(h� ⇠)|dh = oPn
0
(�2n). (1.13)

We are left to deal with the term
R
|⇡

Kn
n (h)�2�Kn

d (h; ⇠,⌦)w(h� ⇠)|. Let us consider

the event

An,2 = An,1 \ {

Z

Kn

⇡n(h)dh > 0} \ {

Z

Kn

2�d(h; ⇠,⌦)w(h� ⇠)dh > 0},

Note that P n
0 {
R
Kn

⇡n(h)dh > 0} = 1�o(1) by Assumption 4 and that, in view of (1.12),

it follows

P
n
0

�Z

Kn

2�d(h; ⇠,⌦)w(h� ⇠)dh > 0
 
=P

n
0

�
1�

Z

Kc
n

2�d(h; ⇠,⌦)w(h� ⇠)dh > 0
 

�P
n
0

�
1� 2P⇠,⌦(khk > Mn) > 0

 
= 1� o(1),

implying, in turn, P n
0 An,2 = 1 � o(1). As a consequence, we can restrict our attention

to
Z

|⇡
Kn
n (h)� 2�Kn

d (h; ⇠,⌦)w(h� ⇠)|dh An,2

=

Z h���1�
Z

Kn

2�Kn
d (h; ⇠,⌦)w(h� ⇠)

2�Kn
d (g; ⇠,⌦)w(g � ⇠)

p✓⇤+�ng(X
n)⇡(✓⇤ + �ng)

p✓⇤+�nh(X
n)⇡(✓⇤ + �nh)

2�Kn
d (g; ⇠,⌦)w(g � ⇠)dg

���

⇥ ⇡
Kn
n (h)dh An,2

i
.

(1.14)

Note that the ratio 2�Kn
d (h; ⇠,⌦)w(h�⇠)/2�Kn

d (g; ⇠,⌦)w(g�⇠) corresponds to its uncon-

ditioned version 2�d(h; ⇠,⌦)w(h� ⇠)/2�d(g; ⇠,⌦)w(g� ⇠). This fact and an application
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of Jensen inequality implies that the quantity in the last display is upper bounded by

Z

Kn⇥Kn

���1�
2�d(h; ⇠,⌦)w(h� ⇠)

2�d(g; ⇠,⌦)w(g � ⇠)

p✓⇤+�ng(X
n)⇡(✓⇤ + �ng)

p✓⇤+�nh(X
n)⇡(✓⇤ + �nh)

���⇡Kn
n (h)2�Kn

d (g; ⇠,⌦)w(g � ⇠)dhdg An,2 .

At this point, it is su�cient to recall Lemma B.1 and e
x = 1 + x + e

�x
x
2
/2, for some

� 2 (0, 1) to obtain

Z

Kn

|⇡
Kn
n (h)� 2�Kn

d (h; ⇠,⌦)w(h� ⇠)|dh An,2



Z

Kn⇥Kn

���1� e
rn,4(g)�rn,4(h)

���⇡Kn
n (h)2�Kn

d (g; ⇠,⌦)w(g � ⇠)dhdg An,2

 2|rn,4|+ 2 exp(2�|rn,4|)r
2
n,4 = OPn

0
(�2nM

c3
n ),

(1.15)

where rn,4 = suph2Kn
rn,4(h) and c3 is some constant defined in Lemma B.1. Equation

(1.9) of the theorem is proved by aggregating (1.11), (1.13) and (1.15).

1.5 Skew-symmetric approximations in the standard

asymptotic limit

The skew Bernstein-Von Mises theorem derived in Section 1.4.2 relies on general

assumptions regarding the concentration of the posterior distribution and its Taylor

expansion around ✓⇤. In particular, it holds in settings where the limiting behavior of

the posterior is Gaussian, and the inclusion of the prior e↵ect through a first-order Taylor

expansion, as well as the third-order term in the Taylor expansion of the log-likelihood,

provide an improvement of order �n over the Gaussian approximation.

In this section, we give a set of mild technical conditions which guarantee that the

results presented in Section 1.4.2 holds, for a large class of parametric models, with the

dimension d fixed and �n = n
�1/2. Furthermore we show that the improvement over

the Gaussian approximation can be extended to the expectation of general polynomially

bounded functions with finite prior expectation.

Below, we state the assumptions needed, together with the fundamental Assumption

1, to adapt the general skew Bernstein-von Mises theorem developed in Section 1.4.2 to

the classical fixed-d-increasing-n asymptotic setting.

Assumption 5. The, possibly misspecified, log-likelihood of the model is four times

di↵erentiable at ✓⇤ with

`
(1)
✓⇤,s

= OPn
0
(n1/2), `

(2)
✓⇤,st

= OPn
0
(n), `

(3)
✓⇤,stl

= OPn
0
(n), for s, t, l = 1, . . . , d,
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and suph2Kn
|`

(4)
✓⇤,stlk

(h)| = OPn
0
(n), for s, t, l, k = 1, . . . , d, with `

(4)
✓⇤,stlk

(h) := `
(4)
stlk(✓⇤ +

h/
p
n).

Assumption 6. The entries of the Fisher information matrix satisfies ist = O(n)

while jst/n � ist/n = OPn
0
(n�1/2), for s, t = 1, . . . , d. Moreover, there exist two positive

constants ⌘1 and ⌘2 such that �min(I✓⇤/n) > ⌘1 and �max(I✓⇤/n) < ⌘2.

Assumption 7. The log-prior density log ⇡(✓) is two times continuously di↵erentiable

in a neighborhood of ✓⇤, and 0 < ⇡(✓⇤) < 1.

Assumption 8. For every Mn ! 1 there exists a constant c5 such that

lim
n!1

P
n
0

n
sup

k✓�✓⇤k>Mn/
p
n

1

n
{`(✓)� `(✓⇤)} < �c5

M
2
n

n

o
= 1.

Assumptions 5-6 are mild and usually considered standard in classical frequentist

theory (see e.g. Pace and Salvan, 1997, pg. 347). In Lemma 1.9 we show that they

allow to precisely control the error in the Taylor approximation of the log-likelihood.

Assumption 7 is also satisfied by several priors that are commonly used in practice and

it allows us to take a first order Taylor expansion of the form

log ⇡(✓) = log ⇡(✓⇤) +
log ⇡(1)

✓⇤,s
hs

p
n

+ rn,2(h), (1.16)

with rn,2 := suph2Kn
rn,2(h) = O(M2

n/n). Similarly, Assumption 8 is needed to control

the the rate of contraction of the misspecified posterior distribution into Kn. In other

modern versions of Berstein-Von Mises-type results, it is usually replaced by conditions

on the existence of a suitable sequence of tests. Su�cient conditions for the well specified

case can be found, for example, in Van der Vaart (2000). In the misspecified setting,

assumptions ensuring the existence of such tests have been derived by Kleijn and Van der

Vaart (2012). Another possible option is to assume, for every � > 0, the presence of a

positive constant c� such that

lim
n!1

P
n
0 { sup

k✓�✓⇤k>�

1

n
{`(✓)� `(✓⇤)} < �c�} = 1. (1.17)

In the misspecified setting this is done, for example, by Koers et al. (2023). Assumption

8 is just a slightly more restrictive version of (1.17). In fact, Lemma 1.11 below shows

that it is implied by mild su�cient conditions.

Corollary 1.7 below states that, under Assumption 1 and Assumptions 5-8, Theorem

1.3 holds with the total variation distance between the true posterior and the skew
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approximation of order OPn
0
(M c6

n /n), where c6 is a fixed positive constant and Mn =
p
c0 log n. The result can be extended to polynomially bounded functionals provided

that their expectation with respect to the prior distribution is finite.

Corollary 1.7. Let h =
p
n(✓ � ✓⇤), and Kn = {h : khk < Mn}. Under assumptions

1 and 5-8 it holds

Dtv

⇥
⇡n(h) || p

n
sks(h)

⇤
= OPn

0
(M c6

n /n). (1.18)

for some c6 > 0. In (1.18) the skew-symmetric density (1.3) has parameters ⇠ = �n
✓⇤ +

(1/
p
n)(V n

✓⇤)
�1 log ⇡(1)

✓⇤
, ⌦�1 = [vnst�(1/

p
n)a(3),n✓⇤,stl

⇠l] with �n
✓⇤,t = j

�1
st

p
n`

(1)
✓⇤,s

, V n
✓⇤ = J✓⇤/n

and a
(3),n = `

(3)
✓⇤
/n. The skewness-inducing factor takes the form w(h � ⇠) = F (↵⌘(h))

with F (·) be any univarite cdf satisfying F (�x) = 1�F (x) and F (x) = 1/2+⌘x+O(x2),

for some ⌘ 2 R, when x ! 0 and

↵⌘(h) =
1

12⌘
p
n
{ (3)

stl (h� ⇠)s(h� ⇠)t(h� ⇠)l + 3 (1)
s (h� ⇠)s},

for  (1) = [a(3),n✓⇤,stl
⇠t⇠l],  (3) = [a(3),n✓⇤,stl

].

In addition, let G : d
! R be a function satisfying |G| . khk

r. If the prior is such

that
R
khk

r
⇡(✓ + h/

p
n)dh < 1 then

Z
G(h)|⇡n(h)� p

n
sks(h)|dh = OPn

0
(M c6+r

n /n). (1.19)

Remark 1.8. As for Theorem 1.3, under conditions similar to those reported in Corollary

1.7, it is possible to show that the total variation distance between the true posterior and

the Gaussian approximation predicted by the standard Bernstein-von Mises theorem is

of order OPn
0
(M c7

n /
p
n) for some fixed c7 > 0. The improvement given by the use

of the skew-symmetric approximation is maintained even when the interest is in the

expectation of polynomially bounded functions.

For ease of reading, the demonstration of Corollary 1.7 is postponed to Appendix

A.1.1.

1.5.1 Log-posterior asymptotic and posterior contraction

In order to move from the general theory of Theorem 1.3 to Corollary 1.7, two key

points are the rate at which the posterior concentrates in Kn = {h : khk < Mn} and the

behavior of the Taylor expansion of the log-likelihood in Kn. In this section, we show

that Assumptions 1 and 5-8 are indeed su�cient for our purpose. In particular, Lemma

1.9 below establishes that, under Assumptions 5 and 6, the error given by replacing the
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log-likelihood with its third-order Taylor approximation is uniformly of order M4
n/n on

Kn.

Finally, in Lemma 1.10, we show that under Assumptions 5 and 6 it is possible to

choose c0 and hence Kn such that the posterior distribution concentrates its mass in

Kn, at any polynomial rate, with P
n
0 probability tending to 1 as n ! 1. This in turn

implies that Assumption 4 of Section 1.4.2 is satisfied.

Lemma 1.9. Under Assumptions 5 and 6, it holds in Kn = {h : khk  Mn} that

log
p
n
✓⇤+h/

p
n

pn✓⇤

(Xn)� hsv
n
st�

n
✓⇤,t +

1

2
v
n
sthsht �

1

6
p
n
a
(3),n
✓⇤,stl

hshthl = rn,1(h), (1.20)

with �n
✓⇤,t = j

�1
st

p
n`

(1)
✓⇤,s

= OPn
0
(1), vnst = jst/n = OPn

0
(1) and a

(3),n
✓⇤,stl

= `
(3)
stl /n = OPn

0
(1).

Moreover,

rn,1 := sup
h2Kn

|rn,1(h)| = OPn
0
(M4

n/n). (1.21)

Lemma 1.10 (Posterior contraction). Under Assumptions 5-8, there exists a choice of

c0 > 0 large enough in Mn =
p
c0 log n, such that for every D > 0 it holds

lim
n!1

P
n
0 {⇧n(K

c
n) < n

�D
} = 1,

where K
c
n is the complement of Kn.

Proof. For ease of reading, the proofs of both lemmas 1.9 and 1.10 are moved to Ap-

pendix A.1.1.

1.5.2 Su�cient conditions for Assumption 8

The validity of the above Lemma 1.10 crucially depends on the fulfillment of Assump-

tion 8 which allows precise control over how the log-likelihood ratio behaves outside the

Kn set. In addition, Assumption 8 also plays an important role in the development

of the skew-modal approximation, as discussed in Section 2.1. To make this assump-

tion practical, we need a set of easily verifiable su�cient conditions that guarantee its

validity. These conditions are given in detail in the Lemma 1.11.

Lemma 1.11. Suppose that Assumptions 1 and 6 hold and that for every � > 0 there

exist a positive constant c� such that

lim
n!1

P
n
0 { sup

k✓�✓⇤k>�

1

n
{`(✓)� `(✓⇤)} < �c�} = 1. (1.22)

If there exist n̄ 2 and �1 > 0 such that, for all n > n̄, it holds
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R1) En
0{`(✓) � `(✓⇤)}/n is concave in {✓ : k✓ � ✓⇤k < �1}, two times di↵erentiable at

✓⇤ with negative Hessian equal to the Fisher information matrix I✓⇤/n,

and

R2)

sup
0<k✓�✓⇤k<�1

1

nk✓ � ✓⇤k
[{`(✓)� `(✓⇤)}� En

0{`(✓)� `(✓⇤)}] = OPn
0

⇣
n
�1/2

⌘
, (1.23)

then for every Mn ! 1 there exist a constant c5 such that

lim
n!1

P
n
0 { sup

k✓�✓⇤k>Mn/
p
n

1

n
{`(✓)� `(✓⇤)} < �c5

M
2
n

n
} = 1.

Proof. The proof of Lemma 1.11 is postponed to Appendix A.1.4.

We conclude this section with a detailed discussion of the key assumptions made in

Lemma 1.11. As already highlighted above, (1.22) is mild and can be found both in

classical versions of the Bernstein-von Mises (Lehmann and Casella, 2006) as well as in

modern misspecified results (Koers et al., 2023). Condition R1 requires the expected

log-likelihood to be su�ciently regular in a neighborhood of ✓⇤ and it is closely related to

standard assumptions on M-estimators (see e.g., Van der Vaart, 2000, Ch. 5). Finally,

among the assumptions of Lemma 1.11, R2 is arguably the most specific. It requires that,

for all ✓ such that 0 < k✓�✓⇤k < �1, the quantity [{`(✓)�`(✓⇤)}�En
0{`(✓)�`(✓⇤)}]/(nk✓�

✓⇤k) converges uniformly to zero in probability with rate n�1/2. This behavior is common

in many routinely implemented statistical models, such as generalized linear models.

1.6 Empirical results

Sections 1.6.1-1.6.2 illustrate through simulation studies the validity of the asymp-

totic results developed in Section 1.5. More specifically, the focus is on providing empir-

ical evidence of the improved accuracy achieved by the sks limiting approximation in

(1.3) relative to its Gaussian counterpart arising from the classical Bernstein-von Mises

theorem both in well specified and misspecified settings.

Notice that, as for other versions of the classical Bernstein-von Mises theorem, also

our results in Section 1.5 require knowledge of the Kullback-Leibler minimizer between

the true data-generating model and the parametric family P⇥, which is clearly un-

known in practical implementations. In Chapter 2, we address this aspect via a plug-in
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Table 1.1: In the exponential example, average, over 50 replicated studies, of the log-
total-variation (tv) distances and first-moment-absolute-errors (fmae) corresponding to the
classical (BvM) and skewed (s-BvM) Bernstein-von Mises theorem in the well-specified sim-
ulation setting described in Section 1.6.1. Results are displayed for di↵erent sample sizes from
n = 10 to n = 1500. The bold values indicate the best performance for each sample size.

n = 10 n = 50 n = 100 n = 500 n = 1000 n = 1500
log tvn

BvM �1.67 �2.50 �2.82 �3.59 �3.98 �4.18
log tvn

s-BvM �2.53 �3.86 �4.41 �5.76 �5.58 �6.58

log fmaenBvM �0.90 �1.77 �1.97 �2.85 �3.21 �3.33
log fmaens-BvM �1.07 �2.81 �3.74 �6.14 �7.09 �7.42

version of the skew-symmetric limiting approximation, which replaces ✓⇤ with its maxi-

mum–a–posteriori estimate, to obtain similar theoretical and empirical support (see the

additional simulations and real-data applications in Section 2.4).

1.6.1 Exponential model

Let Xi
iid
⇠ exp(✓0), for i = 1, . . . , n, where exp(✓0) denotes the exponential distribu-

tion with rate parameter ✓0 = 2. In the following, we consider a well specified model

having exponential likelihood and a exp(1) prior for ✓. To obtain the skew-symmetric

approximation for the posterior distribution induced by such a Bayesian model, let us

first verify that all conditions of Corollary 1.7 hold.

To address this goal first notice that, since the model is well specified, Assumption 1

is met with ✓⇤ = ✓0. The first four derivates of the log-likelihood at ✓ are n/✓ �
Pn

i=1 xi,

�n/✓
2, 2n/✓3 and �6n/✓4, respectively. Hence, Assumptions 5-6 are both satisfied,

even around a small neighborhood of ✓0. Assumption 7 is met by a broad class of

routinely-implemented priors. For instance, exp(1) can be considered in this case.

Finally, we need to check Assumption 8. To this end, note that {`(✓) � `(✓0)}/n =

log ✓/✓0+(✓0�✓)
Pn

i=1 xi/n which, by the law of large number, converges in probability to

a negative constant for every fixed ✓ implying (1.22). Additionally, En
0{`(✓)�`(✓0)}/n =

log ✓/✓0 + (1� ✓/✓0) is concave in ✓ and, therefore, it fulfills Assumption R1 of Lemma

1.11. Since [{`(✓) � `(✓0)} � En
0{`(✓) � `(✓0)}]/n = (✓0 � ✓)(

Pn
i=1 xi/n � 1/✓0) also

Assumption R2 in Lemma 1.11 is satisfied and, as a consequence, also Assumption 8.

The above derivations ensure that Corollary 1.7 holds. Hence, let us derive the

parameters of the skew-symmetric approximating density in (1.3) under this exponential

example. To this end, first notice that, since the prior is an exp(1), then log ⇡(1)
✓0

= �1.

Therefore, ⇠ = ✓
2
0(n/✓0�

Pn
i=1 xi� 1)/

p
n and ⌦ = 1/(✓�2

0 � 2✓�1
0 {1/✓0� (

Pn
i=1 xi)/n�

1/n}). For what concerns the skewness-inducing factor, we choose F (·) = �(·) which

implies a cubic function equal to ↵⌘(h) = {
p
2⇡/(6

p
n✓

3
0)}{(h� ⇠)3 + 3(h� ⇠)⇠2}.



26 Section 1.6 - Empirical results

Table 1.1 compares the accuracy of the skew-symmetric (s-BvM) and the Gaussian

(BvM) approximations corresponding to the newly-derived and classical Bernstein-

von Mises theorems, respectively, under growing sample size and replicated experi-

ments. More specifically, we consider 50 di↵erent simulated datasets with ✓0 = 2

and sample size n
⇤ = 1500. Then, within each of these 50 experiments, we derive

the exact posterior under several subsets of data x1, . . . , xn with a growing sample size

n 2 {10, 50, 100, 500, 1000, 1500}. The di↵erence between the true posterior and the

two approximations is evaluated both in terms of total variation (tv) distances and

absolute di↵erence between the posterior mean and the mean of the two approxima-

tions. Since the exact posterior and the two approximating densities are available in

closed-form, the total variation distances tvn
BvM = (1/2)

R
|⇡n(h) � p

n
gauss(h)|dh and

tvn
s-BvM = (1/2)

R
|⇡n(h) � p

n
sks(h)|dh, as well as, the first moment absolute errors

fmaen
BvM = |

R
h{⇡n(h) � p

n
gauss(h)}dh| and fmaen

s-BvM = |
R

h{⇡n(h) � p
n
sks(h)}dh|

can be evaluated numerically, for each n, via standard routines in R.

Table 1.1 displays, for each n, the logarithm of such summary statistics, computed

across the 50 replicated experiments. It clarifies that the skew-symmetric approximation

consistently yields substantial accuracy improvements relative to the Gaussian counter-

part for any n. This empirical finding clarifies that our theoretical results for the limiting

case are, in fact, visible also in finite, even small, sample size settings, thus making our

theory of direct practical impact, while motivating the adoption of the skew-symmetric

approximation in place of the Gaussian one.

1.6.2 Misspecified exponential model

The previous example deals with a well-specified case where the true generating

mechanism is indeed included in the parametric family chosen to model the data. Since

the results of Corollary 1.7 hold even when the model is misspecified, it is interesting

to evaluate the di↵erences between the accuracy of the skew-symmetric approximation

and the Gaussian one also in this framework. To this end, let consider the case Xi
iid
⇠

L-Norm(�1.5, 1), for i = 1, . . . , n, where L-Norm(�1.5, 1) denotes the log-normal

distribution with parameters µ = �1.5 and � = 1. As in Section 1.6.1, an exponential

likelihood is assumed, parameterized by the rate parameter ✓, and the prior is exp(1).

With this specification, the minimizer of the Kullback-Leibler divergence between the

log-normal distribution and the family of exponential distributions is unique and equal

to ✓⇤ ⇡ 2.71. Similarly to Section 1.6.1 one can show that the conditions of Corollary

1.7 are satisfied, this time ✓⇤ instead of ✓0 in the present setting.
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Table 1.2: In the exponential example, average, over 50 replicated studies, of the log-
total-variation (tv) distances and first-moment-absolute-errors (fmae) corresponding to the
classical (BvM) and skewed (s-BvM) Bernstein-von Mises theorem in the misspecified simu-
lation setting described in Section 1.6.2. Results are displayed for di↵erent sample sizes from
n = 10 to n = 1500. The bold values indicate the best performance for each sample size.

n = 10 n = 50 n = 100 n = 500 n = 1000 n = 1500
log tvn

BvM �1.28 �2.16 �2.53 �3.28 �3.60 �3.86
log tvn

s-BvM �2.32 �3.59 �4.17 �4.49 �5.07 �5.36

log fmaenBvM 0.15 �0.81 �1.27 �2.13 �2.18 �2.64
log fmaens-BvM �0.56 �2.35 �3.30 �5.05 �6.15 �6.80

Again, the quality of the two approximations is evaluated through a simulation study

consisting of 50 di↵erent realizations of the data generation mechanism evaluated at

di↵erent sample sizes, namely n 2 {10, 50, 100, 500, 1000, 1500}. The results are reported

in Table 1.2. As predicted by the theory, pnsks is considerably more accurate than p
n
gauss

in terms of both total variation distance and ability of approximating the posterior

mean. More specifically, both summary statistics exhibit lower values and a quicker

decrease for the skew approximation, even when the sample size is limited.





Chapter 2

Joint and marginal skew-modal

approximations

2.1 Introduction

Besides refining classical Bernstein-von Mises type results and yielding improvements

over available higher-order theoretical studies, the results of Chapter 1 naturally mo-

tivate the development of a novel practical class of skew-modal approximations. This

class, which includes both approximations of the joint and marginal posterior distribu-

tions, relies mainly on the possibility of replacing, under mild conditions, the unknown

quantities depending on the true data-generating mechanism by an estimate evaluated at

the posterior mode. These novel plug-in versions are derived in Section 2.2, for the joint

posterior approximation, and in Section 2.3, for the marginal ones. In these sections,

we also verify that, under mild conditions, the use of the skew-modal approximations

leads to an improvement of an order of magnitude compared to the classical Gaussian

approximation, both in terms of the total variation distance and in the estimation of

polynomially bounded posterior functionals.

2.2 Skew-modal approximation: derivation and the-

oretical guarantees

Consistent with the above discussion, we consider the plug-in version p̂
n
sks of p

n
sks in

Equation (1.3), where the unknown ✓⇤ is replaced by themap ✓̂ = argmax✓2⇥{`(✓) + log ⇡(✓)}.

As a consequence, this yields the skew-symmetric density, for the rescaled parameter

29
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ĥ =
p
n(✓ � ✓̂) 2 Rd, defined as

p̂
n
sks(ĥ) = 2�d(ĥ; 0, ⌦̂)ŵ(ĥ), (2.1)

where ⌦̂ = (V̂ n)�1 with V̂
n = [v̂nst] = [j✓̂,st/n] 2 Rd⇥d

, while the skewness-inducing func-

tion ŵ(ĥ) = F (↵̂⌘(ĥ)) is the combination of ↵̂⌘(ĥ) = {1/(12⌘
p
n)}a(3),n

✓̂,stl
ĥsĥtĥl 2 R,

with a
(3),n

✓̂
= `

(3)

✓̂
/n, and a cumulative distribution function F (·) satisfying the same

conditions of Theorem 1.3. Notice that, relative to the expression for pnsks(·) in Equa-

tion (1.3), the location parameter ⇠̂ is zero in (2.1), since ⇠̂ is a function of the quantity

(`(1)
✓̂

+ log ⇡(1)

✓̂
)/
p
n which is zero by definition when ✓̂ is the map. For the same reason,

unlike its population version defined below (1.18) , in the expression for the precision

matrix of the Gaussian density factor in (2.1) the additional term including the third

order derivative disappears.

Equation (2.1) provides a practical skewed approximation of the exact posterior

centered at the mode. As a consequence, such a solution is referred to as skew-modal

approximation. In order to provide theoretical guarantees for this practical version,

similar to those in Corollary 1.7, let us introduce two mild assumptions in addition to

those outlined in Section 1.5.

M1 The map estimator ✓̂ = argmax✓2⇥{`(✓)+log ⇡(✓)}, satisfies En
0k✓̂�✓⇤k

2 = O(n�1).

M2 There exists two positive constants ⌘̄1, ⌘̄2 such that the event Ân,0 = {�min(⌦̂�1) >

⌘̄1}\{�max(⌦̂�1) < ⌘̄2} holds with probability P
n
0 Ân,0 = 1�o(1). Moreover, there

exist two positive constants � and L such that the inequalities | `
(3)
stl (✓)/n | < L,

| `
(4)
stlk(✓)/n | < L, and | log ⇡(2)

st (✓)| < L hold uniformly over ✓ 2 B�(✓̂) = {✓ 2 ⇥ :

k✓̂ � ✓k < �}, with P
n
0 -probability tending to one.

Condition M1 is mild and holds generally in regular parametric problems. This as-

sumption ensures us that the map is in a small neighborhood of ✓⇤, where the centering

took place in Corollary 1.7. Condition M2 is a weaker version of the analytical assump-

tion for Laplace’s method described in Kass et al. (1990). Note also that assumption M1

implies that M2 is a stronger version of Assumptions 5-6, requiring the upper bound to

hold in a neighborhood of ✓⇤. These conditions ensure uniform control on the di↵erence

between the log-likelihood ratio and its third order Taylor’s expansion.

Based on the above additional conditions we provide an asymptotic result for the

skew-modal approximation in (2.1), similar to Corollary 1.7. The proof of the theo-

rem follows closely the reasoning and derivations considered to prove Theorem 1.3 and

Corollary 1.7.
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Theorem 2.1. Let ĥ =
p
n(✓� ✓̂) and K̂n = {ĥ : kĥk < 2Mn}. If Assumptions 1, 7-8,

M1 and M2 are fulfilled, then the posterior for ĥ satisfies

Dtv

⇥
⇡n(ĥ) || p̂

n
sks(ĥ)

⇤
= OPn

0

�
M

c8
n /n

�
, (2.2)

for some fixed c8 > 0 with p̂
n
sks(ĥ) defined as in (2.1).

In addition, let G : d
! R be a function satisfying |G(ĥ)| . kĥk

r. If the prior is

such that
R
kĥk

r
⇡(✓̂ + ĥ/

p
n)dĥ < 1 then

Z
G(ĥ)|⇡n(ĥ)� p

n
sks(ĥ)|dĥ = OPn

0
(M c8+r

n /n). (2.3)

Proof. The proof of Theorem 2.1 is postponed to Appendix A.2.1

Remark 2.2. Since the total variation distance is invariant to scale and location trans-

formations, the above result can be stated also for the original parametrization ✓ of

interest. For the choice in which F (·) = �(·), this implies that the generalized skew-

normal density

p̂
n
sks(✓) = 2�d(✓; ✓̂, J

�1
✓̂

)�((
p
2⇡/12)`(3)

✓̂,stl
(✓ � ✓̂)s(✓ � ✓̂)t(✓ � ✓̂)l), (2.4)

approximates the posterior density for ✓ with the rate derived in Theorem 2.1.

The skew-modal approximation in (2.4) provides, therefore, a similarly tractable, yet

substantially more accurate, alternative to the classical Gaussian counterpart arising

from the Laplace method. As discussed in Section 1.4, the closed-form density in (2.4)

can be evaluated at a similar computational cost as the Gaussian density, when d is

not too big, and further admits a straightforward i.i.d. sampling scheme that facilitates

Monte Carlo estimation of any functional of interest. Such a scheme mainly relays on

sampling from a d-variate Gaussian and, hence, can be implemented via standard R

packages for simulating from these variables.

An open question is whether similar approximations can be obtained for the posterior

marginal distributions. In the next section, we provide a positive answer by deriving an

alternative approximation that allows us to focus directly on the marginal distributions

of the posterior, providing for them skew-symmetric approximations that maintain the

same level of asymptotic accuracy as the joint approximation described in (2.4).
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2.3 Marginal skew-modal approximations

The skew-modal approximation developed in Section 2.1 targets the joint posterior

distribution. In practical applications, marginal distributions and related functionals

are often the final scope of the analysis. Usually, these quantities are not directly

available from the joint approximation in (2.1). For this reason, it is necessary to rely

on simulation methods by exploiting the stochastic representation of skew-symmetric

random variables introduced in Section 1.3, which allows to draw i.i.d. observations from

(2.1) simply by perturbing a sample obtained by a Gaussian distribution. This procedure

requires multiple evaluations of the skewness-inducing factor ŵ(ĥ), an operation that

is cubic in d. Even though the computational cost is in many case negligible, when

the dimension of ✓ is big, it would be attractive to obtain directly a skewed, closed-

form, expression for the marginal densities. In the following, we show that a precise

use of asymptotic arguments leads to closed-form expressions for the marginal posterior

distributions.

2.3.1 Derivation of a marginal skew-approximation

We now give a constructive derivation of the skew-symmetric approximation for

marginal distributions. Let C ✓ {1, . . . , d} be a set containing the indexes for the

elements of ✓ in which we are interested in, let dC be its cardinality and use the no-

tation C̄ = C
c for the complement. We write h = (hC, hC̄), accordingly, the matrix

⌦̂ = (J✓̂/n)
�1 is partitioned as

⌦̂ =

"
⌦̂CC ⌦̂CC̄

⌦̂C̄C ⌦̂C̄C̄

#
.

Under the regularity conditions stated in Section 2.1, it is possible to write, for

n ! 1,

⇡n(✓̂ + ĥ/
p
n) / exp

⇣
� j✓̂,stĥsĥt/(2n) + a

(3),n

✓̂,stl
ĥsĥtĥl/(6

p
n)
⌘
+OPn

0
(n�1).

with a
(3),n

✓̂
= `

(3)

✓̂
/n. The second order term is proportional to a Gaussian kernel and

it can be decomposed as follows: exp(�j✓̂,stĥsĥt/(2n)) / �d(ĥ; 0, ⌦̂) = �dC(ĥC; 0, ⌦̂CC)⇥

�d�dC(ĥC̄;⇤CĥC, ⌦̄) where ⇤C = ⌦̂C̄C⌦̂
�1
CC is a (d � dC) ⇥ dC matrix and ⌦̄ = ⌦̂C̄C̄ �

⌦̂C̄C⌦̂
�1
CC ⌦̂CC̄ has dimension (d� dC)⇥ (d� dC).

To obtain a marginal skew-symmetric approximation, we use again that the third

order term converges to zero in probability and that ex = 1+ x+O(x2), for x ! 0. An
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approximation on the marginal distribution is therefore proportional to

Z
�dC(hC; 0, ⌦̂CC)�d�dC(hC̄;⇤ChC, ⌦̄)(1 + a

(3),n

✓̂,stl
ĥsĥtĥl/(6

p
n))dhC̄. (2.5)

To determine the value of the above integral, first note that the third order term in (2.5)

can be decomposed as

a
(3),n

✓̂,stl
ĥsĥtĥl + 3a(3),n

✓̂,str
ĥsĥtĥr + 3a(3),n

✓̂,srv
ĥsĥrĥv + a

(3),n

✓̂,rvk
ĥrĥvĥk, (2.6)

where s, t, l 2 C and r, v, k 2 C̄. The first term in (2.6) is not a↵ected by the integral.

We deal with the others one by one, separately. Simple calculations give

3EĥC̄ |ĥC

⇣
a
(3),n

✓̂,str
ĥsĥtĥr

⌘
= �

(1),n
3,stl ĥsĥtĥl, (2.7)

where EĥC̄ |ĥC
denotes the expectation with respect to �d�dC(ĥC̄;⇤CĥC, ⌦̄) and �

(1)
3 is a

d
3
C-dimensional array with entries �(1)

3,stl = 3a(3)
✓̂,str
⇤C,rl with s, t, l 2 C and r 2 C̄. Similarly,

3EĥC̄ |ĥC

⇣
a
(3),n

✓̂,srv
ĥsĥrĥv

⌘
= �

(2),n
1,s ĥs + �

(2),n
3,stl ĥsĥtĥl, (2.8)

and

EĥC̄ |ĥC

⇣
a
(3),n

✓̂,rvk
ĥrĥvĥk

⌘
= �

(3),n
1,s ĥs + �

(3),n
3,stl ĥsĥtĥl, (2.9)

where �
(2),n
1,s = 3a(3),n

✓̂,srv
⌦̄rv and �

(3),n
1,s = 3a(3),n

✓̂,rvk
⌦̄rv⇤C,ks are dC dimensional vectors while

�
(2),n
3,stl = 3a(3),n

✓̂,srv
⇤C,rt⇤C,vl and �

(3),n
3,stl = a

(3),n

✓̂,rvk
⇤C,rs⇤C,vt⇤C,kl are d

3
C-dimensional arrays for

s, t, l 2 C and r, v, k 2 C̄. Note that averaging over the conditional distribution removes

all the components which depends on odds powers of the elements in C̄.

By combining (2.7), (2.8) and (2.9) we obtain the following expression for the integral

in (2.5)

2�dC(ĥC; 0, ⌦̂CC)(1/2 + ⌘↵C(ĥC)), (2.10)

where

↵C(ĥC) = (⌫n
1,sĥs + ⌫

n
3,stlĥsĥtĥl)/(12⌘

p
n),

with ⌫
n
1,s = �

(2),n
1,s + �

(3),n
1,s and ⌫

n
3,stl = a

(3),n
stl + �

(1),n
3,stl + �

(2),n
3,stl + �

(3),n
3,stl for s, t, l 2 C. Note,

also, that ↵C(ĥC) is an odd polynomial function of ĥC and that

↵C(ĥC) = EĥC̄ |ĥC

�
↵̂⌘(ĥ)

�
. (2.11)
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Then (2.10) can be reformulated as

2�dC(ĥC; 0, ⌦̂CC)(1/2 + ⌘↵C(ĥ)) =2�dC(ĥC; 0, ⌦̂CC)F (↵C(ĥC)) +OPn
0
(n�1),

where ⌘ 2 and F (·) is the cdf of a univariate random variable on satisfying

F (�x) = 1� F (x), F (0) = 1/2 and F (x) = F (0) + ⌘x+ O(x2). As a consequence, the

posterior marginal density of ĥC can be approximated by the following skew-symmetric

density

p̂
n
sks,C = 2�dC(ĥC; 0, ⌦̂CC)wC(ĥC), (2.12)

where wC(ĥC) = F (↵C(ĥC)) = F (EĥC̄ |ĥC
{↵̂⌘(ĥ)}).

We briefly describe the salient features of (2.12) before formalizing its theoretical

properties. The symmetric component is obtained by marginalizing the Gaussian ap-

proximation derived from the Laplace method and it is therefore very easy to obtain.

The operation with the highest computational cost is the first evaluation of the pa-

rameters in wC(ĥC), which involves summations over the three-dimensional array a
(3),n

✓̂
.

However, once this step is completed, each evaluation of (2.12) is cubic in dC. Since

one is usually interested in the univariate or bivariate marginal distribution, the compu-

tational gain over the sampling from the joint approximation (2.1) can be substantial,

also because functionals of interest, such as the posterior mean and variance, can be

evaluated by standard low-dimensional numerical integration methods.

In the next section we prove that this marginal approximation has the same accuracy

as the joint skew-symmetric approximation discussed in Theorem 2.1.

2.3.2 Theoretical guarantees for the marginal approximation

This section provides a rigorous justification for the use of the skew-symmetric

marginal approximation derived above. To this end, we denote the marginal poste-

rior density for ĥC with ⇡n,C(ĥC) =
R
⇡n(ĥ)dĥC̄. The following theorem shows that,

under the same assumptions as in Theorem 2.1, the total variation distance between

⇡n,C(ĥC) and p̂
n
sks,C is, up to a logarithmic factor, of order n�1 in P

n
0 -probability.

Theorem 2.3. Under the assumptions of Theorem 2.1

Dtv

⇥
⇡n,C(ĥC) || p̂

n
sks,C(ĥC)

⇤
= OPn

0

�
M

c9
n /n

�
, (2.13)

for some c9 > 0 with p̂
n
sks,C(ĥ) defined as in (2.12).

Remark 2.4. Similarly to Remark 2.2, in view of the invariance to scale and location

transformation of the total variation distance, the above results hold with the original
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parametrization ✓ as well. This implies that by taking F (·) = �(·) the marginal posterior

density is estimated with the marginal generalized skew–normal density

p̂
n
sks,C(✓C) = 2�dC(✓C; ✓̂C, J

�1
✓̂,CC)�

⇣p2⇡

12
{⌫

n
1,s(✓�✓̂)s+n⌫

n
3,stl(✓�✓̂)s(✓�✓̂)t(✓�✓̂)l}

⌘
, (2.14)

with rate given in Theorem 2.3, s, t, l 2 C and ⌫
n
1,s,⌫

n
3,stl defined in (2.10).

2.4 Empirical results joint and marginal approxima-

tions

Sections 2.4.1-2.4.2 demonstrate the practical applicability of the joint and marginal

skew-modal approximations derived in Sections 2.1-2.3 on both synthetic datasets and

a real-data application on Cushing’s syndrome (Venables and Ripley, 2002). These

empirical analyses provide consistent evidence of substantial accuracy improvements

relative to the Gaussian approximation induced by the Laplace method. The compari-

son between the skew-modal approach and other deterministic approximations, such as

mean-field variational Bayes (e.g., Blei et al., 2017) and expectation-propagation (e.g.,

Minka, 2001; Vehtari et al., 2020) is also discussed. In the following we take F (·) = �(·).

2.4.1 Exponential model revisited

Let us first replicate the simulation studies regarding the exponential model under

both the well-specified and the misspecified setting as described in Sections 1.6.1-1.6.2.

This time the focus is on the plug-in skew-modal approximation in (2.4), rather than

its population version which assumes knowledge of ✓⇤. Consistent with this focus, the

performance of the skew-modal approximations is compared against the Gaussian ap-

proximation N(✓̂, J�1
✓̂

) arising from the Laplace method (e.g., Gelman et al., 2013, pg.

318). Note that both the well-specified and the misspecified models satisfy the additional

assumptions M1-M2 required by Theorem 2.1 and Remark 2.2. In fact, ✓̂ is asymptoti-

cally equivalent to the maximum likelihood estimator which implies that condition M1 is

fulfilled. Moreover, in view of the expressions for the first three log-likelihood derivatives

in Section 1.6.1 also M2 is satisfied.

Table 2.1 reports the same summaries as Tables 1.1-1.2, but now the two total

variation distances from the exact posterior and the first-moment absolute errors are

computed with respect to the skew-modal approximation in (2.4) and the Gaussian
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Table 2.1: We consider both the well and misspecified exponential examples introduced
in Sections1.6.1- 1.6.2, respectively. In both cases the average (over 50 replicates) of the
log–total–variation (TV) distances and first–moment–absolute–errors (FMAE) are reported,
both for the Gaussian modal (GM) and the newly–developed skew–modal (SKEW–M) ap-
proximations. The sample size ranges from n=10 to n=1500. The best performing method in
each experiment is highlighted in bold.

n = 10 n = 50 n = 100 n = 500 n = 1000 n = 1500
WELL-SPECIFIED

log tvn
BvM �2.48 �3.28 �3.63 �4.43 �4.78 �4.98

log tvn
s-BvM �3.71 �5.33 �6.03 �7.65 �8.34 �8.74

log fmaenBvM �0.61 �1.30 �1.63 �2.41 �2.76 �2.96
log fmaens-BvM �1.91 �3.52 �4.35 �6.50 �7.50 �8.09

MISSPECIFIED

log tvn
BvM �2.48 �3.28 �3.63 �4.43 �4.78 �4.98

log tvn
s-BvM �3.71 �5.33 �6.03 �7.65 �8.35 �8.75

log fmaenBvM �0.41 �1.05 �1.36 �2.12 �2.46 �2.66
log fmaens-BvM �1.71 �3.28 �4.08 �6.21 �7.21 �7.79

N(✓̂, J�1
✓̂

), respectively. Similarly to the population versions assessed in Sections 1.6.1-

1.6.2, also the practical skew-modal approximations provide higher accuracy compared

to their Gaussian counterpart both in the well specified and misspecified frameworks.

This confirms that, also in this context, the asymptotic theory in Theorem 2.1 and

Remark 2.2 closely matches the empirical behavior observed in practice even for finite,

possibly small, sample sizes.
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Figure 2.1: Visual comparison between skew-modal (blue) and Gaussian (orange) approxi-
mations of the exact bivariate posteriors (grey) for the three coe�cients of the probit regression
model in the Cushings application.
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Figure 2.2: Visual comparison between skew-modal (blue) and Gaussian (orange) ap-
proximations of the exact bivariate posteriors (grey) for the three coe�cients of the logistic
regression model in the Cushings application.

2.4.2 Probit and logistic regression model

We now consider a real-data application on the Cushings dataset (Venables and

Ripley, 2002), which is openly-available in the R library Mass. In this case the true

data-generative model is not known and, therefore, this analysis is useful to evaluate

performance in situations which are not guaranteed to meet the assumptions underlying

our theory in Sections 2.1 and 2.3.

The data are obtained from a medical study on n = 27 subjects, aimed at investi-

gating the relationship between four di↵erent sub-types of Cushing’s syndrome and two

steroid metabolites, Tetrahydrocortisone and Pregnanetriol respectively. To simplify the

analysis, we consider the binary response Xi 2 {0, 1}, i = 1, . . . , n taking value 1 if

the patient is a↵ected by bilateral hyperplasia, and 0 otherwise, for i = 1 . . . , n. The

observed covariates are zi1 = “urinary excretion rate (mg/24hr) of Tetrahydrocortisone

for patient i” and zi2 = “urinary excretion rate (mg/24hr) of Pregnanetriol for patient

i”. In the following, we focus on the two most widely-implemented regression models

for binary data, namely:

Probit regression. Xi ⇠ Bern(�(✓0 + ✓1zi1 + ✓2zi2)), independently for i = 1, . . . , n,

with regression coe�cients (✓0, ✓1, ✓2) = ✓ 2 R3.

Logistic regression. Xi ⇠ Bern(g(✓0 + ✓1zi1 + ✓2zi2)), independently for i = 1, . . . , n,

with (✓0, ✓1, ✓2) = ✓ 2 R3, and g(·) the inverse logit function defined in Remark 1.5.

Under both models, Bayesian inference proceeds via routinely-implemented weakly
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Table 2.2: For probit and logistic regression, estimated joint, bivariate and marginal total
variation distances between the exact posterior and both the skew-m and the gm approxi-
mations under analysis in the Cushings application. The bold values indicate the best perfor-
mance for each subset of parameters.

tv✓ tv✓01 tv✓02 tv✓12 tv✓0 tv✓1 tv✓2

Probit
skew-m 0.11 0.05 0.06 0.09 0.03 0.04 0.05

gm 0.19 0.10 0.13 0.18 0.09 0.08 0.11
Logit
skew-m 0.14 0.08 0.10 0.13 0.05 0.06 0.07

gm 0.23 0.13 0.17 0.22 0.11 0.10 0.14

informative Gaussian prior N(0, 25) for the three regression coe�cients. Recalling Du-

rante (2019), such a choice yields a closed-form unified skew-normal (Arellano-Valle

and Azzalini, 2006) posterior for ✓ under probit regression, which admits tractable i.i.d.

sampling schemes. Extending the results in Durante (2019), a recent contribution by

Onorati and Liseo (2022) has proved that similar findings, for an extension of the unified

skew-normal, can be obtained also under logistic models. Although yielding important

advancements in the field of Bayesian inference for binary regression models, the derived

closed-form posteriors require the evaluation of n-dimensional Gaussian cumulative dis-

tribution functions. As a consequence, inference under the exact posterior becomes

intractable as n grows. This motivates the adoption of deterministic approximations in

order to perform Bayesian inference while reducing the computational burden.

Both the joint and the marginal skew modal approximations (ske-m), as well as, the

classical Gaussian modal approximation (gm) can be readily derived from the closed-

form derivatives of the log-likelihood and log-prior for both the probit and logistic re-

gression models. Moreover, since the prior is Gaussian, the map under both models

coincides with the ridge-regression estimator and hence can be computed via basic R

functions. Table 2.2 displays the Monte Carlo estimates of the tv distance from the

exact posteriors of ✓ for both gm and ske-m approximations, under probit and logistic

regression. Additionally, Table 2.3 reports the L1-distance between the true and the

approximated posterior means (bias), as well as, the average absolute error resulting

in using gm and ske-m, in place of ⇡n, to evaluate the expected value of the poste-

rior probabilities of the model, in both probit and logistic regression, respectively. In

the probit model, for a generic approximating density p̂
n
app, this last quantity takes the

form Ave-pr =
Pn

i=1 |pri � p̂rapp,i|/n with pri =
R
�(✓0 + ✓1zi1 + ✓2zi2)⇡n(✓)d✓, and

p̂rapp,i =
R
�(✓0 + ✓1zi1 + ✓2zi2)p̂napp(✓)d✓, for i = 1, . . . , n. The logistic case follows by

replacing �(·) with g(·). In both models, the proposed skew-m solutions generally yield

remarkable accuracy improvements relative to gm. More specifically, skew-m almost
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Table 2.3: For probit and logistic regression, posterior mean bias andAve-pr error obtained
when replacing the exact posterior distribution with both skew-m and gm approximations
under analysis in the Cushings application. The bold values indicate the best performance for
each subset of parameters.

bias✓0 bias✓1 bias✓2 ave-pr
Probit
skew-m 0.004 0.002 0.015 0.006

gm �0.092 0.008 0.051 0.026
Logit
skew-m 0.069 �0.001 �0.008 0.009

gm �0.116 0.010 0.060 0.064

halves, on average, the tv distance associated with gm, while providing a much more ac-

curate approximation for the posterior mean and posterior probabilities. This better fit

is evident in Figures 2.1-2.2, which visually compare the approximation accuracy of the

newly-developed bivariate marginal skew-modal approximations to the aforementioned

gm.

We conclude this section by discussing the behavior of the skew-m approximation

when compared to other, advanced, techniques within the class of deterministic approxi-

mation for binary regression models. State-of-the-art methods under this framework are

mean-field variational Bayes (mf-vb) (Consonni and Marin, 2007; Durante and Rigon,

2019) and expectation-propagation (ep) (Chopin and Ridgway, 2017), while partially-

factorized variational Bayes (pfm-vb) (Fasano et al., 2022) is available only for probit

regression. Table B.1 in the Appendix highlight how the use of skew-m yields notice-

able improvements relative to mf-vb and pfm-vb. The gains over pfm-vb in the probit

model are remarkable since also such a strategy leverages a skewed approximation of the

exact posterior distribution. This yields higher accuracy than mf-vb, but the improve-

ments are not as noticeable as skew-m. A reason for this result is that pfm-vb has

been originally developed to provide high accuracy in high-dimensional p > n settings

(Fasano et al., 2022), whereas in this study p = 3 and n = 27. Finally, skew-m also

performs comparably well to state-of-the-art ep methods in terms of TV distances from

the true posterior. This fact is noteworthy for at least two reasons. First, Gaussian ep

methods are known to approximate the first two moments of the target density in a

precise way, which, being a global characteristic of the density, usually leads to approx-

imations that, even though symmetric, are di�cult to improve. On the contrary, our

skew-m is based on the simple gm, an approximation that only interpolates the local

behavior of the posterior distribution in a neighborhood of its mode. It is therefore

interesting to note that properly accounting for skewness can dramatically improve the

global quality of an approximation, suggesting that a similar correction could also be



40 Section 2.4 - Empirical results joint and marginal approximations

useful to refine more advanced methods. Second, ep techniques typically rely on a con-

venient factorization of the target density (see e.g., Gelman et al., 2013, pg. 338), a

condition that is not required for the adoption of skew-m, making the latter applicable

to a wider range of approximation problems.

2.4.3 High–dimensional logistic regression

We conclude our numerical analysis with another real-world binary regression prob-

lem that is particularly well suited for evaluating the performance of the marginal skew-

modal approximation introduced in Section 2.3. The data, which are available in the

R package AppliedPredictiveModeling (Kuhn and Johnson, 2018), are obtained from

a clinical study on n = 333 subjects designed to investigate whether biological mea-

surements from cerebrospinal fluid can be used to diagnose Alzheimer’s disease (Craig-

Schapiro et al., 2011). Specifically, 130 explanatory variables are collected along with

the response variable Xi 2 {0, 1}, i = 1, . . . , n, which takes the value 1 if the patient is

a↵ected by Alzheimer’s disease and 0 otherwise.

For the inference, we assume a logistic regression with independent Gaussian priors

N(0, 4) on the coe�cients. Note that the inclusion of the intercept and the presence of

a categorical variable with 6 di↵erent levels imply that the number of parameters of the

model is d = 135. As a consequence, although the sample size is not small in absolute

terms, since n/d ⇡ 2.46, the behavior of the posterior distribution in this example is

not necessarily well described by the asymptotic theory developed in Sections 2.2 and

2.3.2.

The posterior distribution is obtained via 7 chains of length 10 000 of Hamiltonian

Monte Carlo using the R function stan glm from the rstanarm package (Goodrich et al.,

2023). In the following, we focus on the marginal posterior distributions and compare

the marginal univariate skew-modal approximation introduced in Section 2.3 with the

corresponding Gaussian derived from the Laplace method (Gelman et al., 2013, pg.

318). The comparison is made in terms of both the absolute di↵erence between the

exact posterior mean and its approximation (bias), and the total variation distances

between each marginal posterior density and its approximation (tv). Table 2.4 reports

both the mean and the median of these quantities for the skew-modal and Gaussian

marginal approximations, respectively. It is clear that the skew-modal approximation

outperforms the Gaussian for both quantities under investigation. Considering that the

95% of the posterior means are between �2.68 and 2.66, the improvement in terms of

bias is particularly relevant.
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Table 2.4: For the logistic regression described in Section 2.4.3, mean and median
bias and total variation distance for both the marginal skew-m and the gm approx-
imations. The bold values indicate the best performance.

mean-bias median-bias mean-tv median-tv
gm 0.425 0.347 0.145 0.120
skew-m 0.139 0.068 0.104 0.078

The results of this section provide further empirical evidence that our methodological

proposal tends to perform well not only in settings where the parameter dimension is

moderate and the departure from Gaussianity is mainly due to the small sample size, but

also in frameworks where both the parameter dimension and the number of observations

are not small.





Chapter 3

General skew-symmetric

approximations

3.1 Introduction

The skew-symmetric approximations introduced in Chapters 1-2 are derived under

asymptotic arguments. More specifically, both the perturbed Gaussian density and the

skewness-inducing factor are obtained by manipulating higher-order Taylor expansions

of the log-likelihood and of the log-prior. Interestingly, the symmetric component of

the skew-modal approximation studied in Chapter 2, which is a Gaussian distribution

with mean at the posterior mode and covariance matrix the inverse of the observed

information, is closely related to the classical Gaussian distribution obtained from the

Laplace method (e.g., Gelman et al., 2013, Ch 13). In this regard, an important ques-

tion is whether it is possible to replace such a Gaussian density by one of the many

symmetric deterministic approximations available in the literature and, if so, what form

the skewness-inducing factor should assume.

In this chapter, we give an answer to these questions by developing, in Section 3.3,

a method which, starting from any approximation f
⇤
✓̃
(✓) of the posterior distribution

that is symmetric about ✓̃ 2 Rd, it provides a similarly tractable, yet provably more

accurate, skew-symmetric approximating density q
⇤
✓̃
(✓) = 2f ⇤

✓̃
(✓)w⇤

✓̃
(✓). Although this

novel strategy is guaranteed to improve the accuracy of any symmetric approximation,

in practice it is natural to perturb those obtained as an output of routinely-implemented

Laplace, ep and Gaussian vb approximations which we briefly review in Section 3.2.

43
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3.2 A brief overview of symmetric approximation of

posterior distributions

When seeking a tractable symmetric approximation of a generic posterior distribu-

tion for the parameter ✓ 2 ⇥ ✓ Rd, a simple option is to consider the classical Gaussian

approximation arising from the Laplace method (e.g., Bishop, 2006, Ch. 4.4). Such a

solution follows directly from a second-order Taylor expansion of the unnormalized log-

posterior log[⇡(✓)L(✓;Xn)] at the maximum a posteriori (map), which yields a Gaussian

approximating density centered at the map and with variance and covariance given by

the inverse of the negative Hessian for log[⇡(✓)L(✓;Xn)], again evaluated at such map.

Such a strategy provides, therefore, a simple approach which only requires estimation

of the map via standard optimization schemes (see e.g., Gelman et al., 2013, Ch. 13).

This has stimulated broad applicability and several subsequent extensions, including,

among others, integrated nested Laplace approximation (inla) (Rue et al., 2009) and

approximate Laplace approximation (ala) (Rossell et al., 2021). inla provides an e↵ec-

tive framework which combines e�cient numerical integration strategies and analytical

approximations to yield accurate characterizations of posterior marginals for parameters

of interest, under latent Gaussian models. Such a solution is inspired by Tierney and

Kadane (1986) Laplace approximation of the marginal posterior density for a subset

of parameters of interest which expresses such a marginal as proportional to the ratio

between the joint posterior and the full conditional density of the remaining parameters,

and then applies the Gaussian approximation from the Laplace method to such a latter

density. Although this strategy can yield non-symmetric approximations of marginal

posterior densities, it still relies on nested Gaussian approximations. Therefore, the

closed-form skew-symmetric approximation we derive in Section 3.3 has potentials to

further improve also inla accuracy by replacing the commonly-used Gaussian approx-

imation for the full conditionals, with the proposed skew-symmetric one. Our novel

perturbation strategy can be also applied directly to improve the overall accuracy of

the symmetric approximation underlying ala. In fact, such a scalable procedure does

not di↵er from the classical Laplace method in the shape of the approximating density,

but rather in providing a computationally-cheaper and theoretically-supported strategy

which avoids map estimation when locating the symmetric approximation.

While Laplace-type schemes provide simple strategies to approximate intractable

posterior densities, recalling e.g. Bishop (2006, Ch. 4.4), these solutions arise from a

Taylor expansion of the log-posterior at a given point, and thus fail to incorporate global

properties beyond the local behavior around such a point. This problem has motivated
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alternative approximation strategies, with an overarching focus on vb (e.g., Blei et al.,

2017) and ep (e.g., Vehtari et al., 2020).

vb specifies a family F of tractable approximating densities and then identifies,

within such a family, the one that is closest to the intractable posterior under the

Kullback-Leibler (kl) divergence (Kullback and Leibler, 1951) between the approxi-

mating density and such a posterior. Common practice in specifying F relies either

on parametric families, often imposing a Gaussian approximation (see e.g., Opper and

Archambeau, 2009; Challis and Barber, 2013; Tan and Nott, 2018), or on mean-field

assumptions (e.g., Blei et al., 2017), forcing the joint approximation density for ✓ to

factorize as a product of marginals for suitably selected non-overlapping subsets of pa-

rameters. In the first case, the final output of the optimization problem is, by definition,

a symmetric density, which can be readily improved under our proposed skew-symmetric

approximation. Conversely, the second case may yield skewed solutions. In fact, as

shown in e.g, Blei et al. (2017), the optimum for each factor, under mean-field vb, has

the same shape as the actual-not necessarily symmetric-full conditional density for the

subset of parameters in ✓ comprising that factor, and the associated variational coef-

ficients can be estimated iteratively via coordinate ascent variational inference (cavi)

algorithms (e.g., Blei et al., 2017). Nevertheless, several routinely used Bayesian mod-

els, such as logit (Durante and Rigon, 2019) and probit (Consonni and Marin, 2007)

regression, allow Gaussian full conditional on the coe�cients. Thus, the proposed per-

turbation may be useful even in mean-field vb to improve the accuracy of the symmetric

density factors and thus the overall approximation for the entire posterior. These Gaus-

sian density approximations also appear in Laplace variational inference, delta-method

variational inference, and automatic di↵erentiation variational inference (advi) (Wang

and Blei, 2013; Kucukelbir et al., 2017), which are often used to facilitate the imple-

mentation of mean-field vb, even in more complex models where cavi does not allow

simple closed-form updates.

Although vb is arguably the most widely studied and implemented deterministic

approximation strategy, routine-use variational approximations often su↵er from an un-

derestimation of posterior uncertainty (e.g., Blei et al., 2017; Giordano et al., 2018).

This is implicit in the expression of the kl minimized under vb that penalizes approxi-

mating densities placing mass where the one assigned by the actual posterior is low and

does not enforces a similarly-strong penalty for the opposite case. As a consequence,

minimizing such a kl yields more concentrated approximations avoiding regions where

the actual posterior does not places substantial mass. While improved estimates of vari-

ances and covariances have been proposed in the context of vb (Giordano et al., 2018),
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another natural solution is to consider ep (e.g., Vehtari et al., 2020), which addresses

such a issue by minimizing a reverse form of the kl considered under vb. This implies

penalizations in the opposite direction than those of vb and, therefore, a tendency to

favor more global zero-avoiding approximations that match more closely the variability

encoded in the target posterior. To obtain these approximations ep postulates that the

target posterior density itself can be expressed as a product of factors-often arising as a

direct consequence of the conditional independence structures in the likelihood-and then

iteratively approximates each of these factors with an element of a tractable parametric

family, almost always Gaussian. This results in a computational scheme updating each

factor at-a-time via moment matching between the global approximating density and a

hybrid one, more tractable than the target posterior, where the other factors are kept

fixed at the most recent approximation (e.g., Vehtari et al., 2020). Being often Gaussian,

these ep approximating densities can be readily perturbed under our proposed strategy

to further improve the quality of the approximation. In fact, although several empirical

studies have highlighted remarkable accuracy of Gaussian ep (e.g., Chopin and Ridg-

way, 2017; Vehtari et al., 2020; Anceschi et al., 2023) relative to Laplace and vb, there

is still a lack of tractable solutions capable of including skewness within these Gaus-

sian densities to further improve the quality of ep approximations. As illustrated in

the empirical studies in Section 3.6, incorporating these skewed behaviors yields further

remarkable improvements over such an already-successful strategy.

Before moving to the proposed skew-symmetric perturbation in Section 3.3, it is

important to emphasize that our strategy applies directly to any symmetric approxima-

tion, not necessarily Gaussian. This can be useful to perturb further extensions of the

aforementioned methods aimed at capturing higher-order (e.g., tails) properties. For

example, generalizations from Gaussian approximating densities to Student-t ones have

been explored in the context of Laplace, vb and ep (see e.g., Ding et al., 2011; Futami

et al., 2017; Liang et al., 2022; Gelman et al., 2013, Ch. 13), but there are no strategies,

to date, for including skewness within such extensions. Our proposed solution applies

also to these symmetric approximations and, as proved in Section 3.5, allows to progres-

sively improve the asymptotic convergence rates to the exact posterior via perturbation

of these increasingly accurate symmetric densities.
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3.3 Skew-symmetric perturbation of symmetric ap-

proximations

As anticipated in Section 3.1, the newly-proposed skew-symmetric approximation

arises from the perturbation of an already-available approximating density f
⇤
✓̃
(✓), which

is symmetric about the point ✓̃, i.e., f ⇤
✓̃
(✓) = f

⇤
✓̃
(2✓̃ � ✓) for any ✓ 2 ⇥. Although f

⇤
✓̃
(✓)

arises from the attempt to accurately approximate the target posterior density ⇡n(✓)

via, e.g., one of the methods discussed in Section 3.2, the overall quality of f ⇤
✓̃
(✓) is

clearly undermined by the fact that ⇡n(✓) is often skewed in practice, whereas f
⇤
✓̃
(✓)

is symmetric. To this end, it is natural to ask whether the given density f
⇤
✓̃
(✓) would

rather provide a more accurate approximation for a symmetrized version ⇡̄n,✓̃(✓) of ⇡n(✓)

about ✓̃ than for the original posterior ⇡n(✓), under a suitable divergence. Lemma 3.1

states that this is the case when the symmetrized version ⇡̄n,✓̃(✓) is defined as

⇡̄n,✓̃(✓) =
⇡n(✓) + ⇡n(2✓̃ � ✓)

2
, (3.1)

for every parameter value ✓ 2 ⇥ and known point of symmetry ✓̃ 2 ⇥.

Lemma 3.1. Let ⇡n(✓) be a generic posterior density for the parameter ✓ 2 ⇥, and

denote with f
⇤
✓̃
(✓) an already-available approximation of ⇡n(✓) which is symmetric about

the point ✓̃ 2 ⇥. Moreover, define the symmetrized posterior density about ✓̃ as in (3.1).

Then

D[⇡̄n,✓̃(✓) || f
⇤
✓̃
(✓)]  D[⇡n(✓) || f

⇤
✓̃
(✓)],

for any ✓̃ 2 ⇥ and sample size n, where D is either the tv distance (Dtv) or any

↵-divergence (D↵).

Proof. For ease of reading the proof of Lemma 3.1 is moved to Section A.3.1.

Remark 3.2. Although other forms of symmetrization can be designed to define ⇡̄n,✓̃(✓),

the one considered in (3.1) is arguably the most natural and simple. In fact, although it

has been generally overlooked in the subsequent literature and, to the best of our knowl-

edge, never explored in the context of Bayesian deterministic approximations, such a

symmetrization has been successfully employed in classical frequentist literature to im-

prove standard estimators of empirical distribution functions associated with underlying

symmetric densities (Schuster, 1975; Hinkley, 1976; Lo, 1985; Meloche, 1991). Our con-

tribution leverages such a symmetrization in an innovative manner and with a substan-

tially di↵erent focus. Nonetheless, as clarified in the following, its distinctive form plays
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a crucial role also within our context, in that it allows to design a theoretically-supported

and similarly-tractable skew-symmetric perturbation of the known f
⇤
✓̃
(✓) without addi-

tional optimization steps.

Remark 3.3. Lemma 3.1 states a general result which applies to any symmetric ap-

proximation f
⇤
✓̃
(✓) of a generic posterior ⇡n(✓), and holds under both the tv distance

Dtv[p(✓) || q(✓)] =
R
⇥ |p(✓) � q(✓)|d✓/2 and every ↵-divergence D↵[p(✓) || q(✓)] =

[1/(↵(1� ↵))](
R
⇥ 1� p(✓)↵q(✓)1�↵

d✓) for ↵ 2 R \ {0; 1} (see e.g., Cichocki and Amari,

2010). Notice that, when ↵ ! 0 and ↵ ! 1, the distance D↵ reduces to the kl di-

vergences kl[q(✓) || p(✓)] and kl[p(✓) || q(✓)], respectively (e.g., Cichocki and Amari,

2010). Hence, Lemma 3.1, and the subsequent theoretical results we derive, hold un-

der the most widely used divergences within the context of deterministic approxima-

tions for posterior distributions. As discussed in Section 3.2, the two kl divergences

kl[q(✓) || p(✓)] and kl[p(✓) || q(✓)] formally enter the formulation of the minimization

problems underlying vb and ep (e.g., Blei et al., 2017; Vehtari et al., 2020), whereas

tv is a reference distance in the study of the asymptotic accuracy of standard approx-

imations (e.g., Kasprzak et al., 2022; Wang and Blei, 2019). Recent literature has also

explored variational approximations based on a generic ↵-divergence, beyond its limit-

ing kl form, to obtain increased flexibility in the minimized loss function (Yang et al.,

2020). Hence, our methods and theory further extend to these strategies.

Although the result in Lemma 3.1 is interesting in its own right, the ultimate goal is

to approximate the actual posterior ⇡n(✓), and not its symmetrized form ⇡̄n,✓̃(✓). With

this objective in mind, Proposition 3.4 establishes an analytic relation among these two

densities which is fundamental to derive our improved skew-symmetric approximation

of ⇡n(✓) via a closed-form perturbation of the original f ⇤
✓̃
(✓).

Proposition 3.4 (Skew-symmetric representation of posterior densities). Consider a

generic posterior density ⇡n(✓) = ⇡(✓)L(✓;Xn)/c(Xn) for ✓ 2 ⇥, where ⇡(✓) is the

prior, L(✓;Xn) the likelihood, and c(Xn) the normalizing constant. Moreover, denote

with ⇡̄n,✓̃(✓) = [⇡n(✓) + ⇡n(2✓̃ � ✓)]/2 the symmetrized form of such a posterior density

about a point ✓̃ 2 ⇥, and let

w
⇤
✓̃
(✓) =

⇡(✓)L(✓;Xn)

⇡(✓)L(✓;Xn) + ⇡(2✓̃ � ✓)L(2✓̃ � ✓;Xn)
. (3.2)

Then, the posterior density ⇡n(✓) can be equivalently re-expressed as

⇡n(✓) = 2⇡̄n,✓̃(✓)w
⇤
✓̃
(✓), (3.3)
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for any ✓̃ 2 ⇥ and sample size n, where w
⇤
✓̃
(✓) 2 [0, 1] satisfies w⇤

✓̃
(✓) = 1� w

⇤
✓̃
(2✓̃ � ✓).

The proof of Proposition 3.4 is direct and simply requires to note that the posterior

density ⇡n(✓) can be equivalently re-written as 2⇡̄n,✓̃(✓)[⇡n(✓)/(2⇡̄n,✓̃(✓))]. Therefore,

replacing ⇡̄n,✓̃(✓) with its expression in (3.1), and ⇡n(✓) with ⇡(✓)L(✓;Xn)/c(Xn), yields

the skewness-inducing factor w⇤
✓̃
(✓) in (3.3), after noticing that the intractable normaliz-

ing constant c(Xn) cancels out in the ratio between the target posterior density and its

symmetrized form. The [0, 1] range for w⇤
✓̃
(✓) and the property w

⇤
✓̃
(✓) = 1� w

⇤
✓̃
(2✓̃ � ✓)

follow directly from its definition. As clarified later, such properties for w⇤
✓̃
(✓) are fun-

damental to ensure that the proposed perturbation for f ⇤
✓̃
(✓) belongs to a tractable class

of skew–symmetric distributions (Azzalini and Capitanio, 2003; Wang et al., 2004; Ma

and Genton, 2004).

Proposition 3.4 crucially relates to a core result in Wang et al. (2004) which estab-

lishes the existence and uniqueness of skew–symmetric representations for generic den-

sities. Such a parallel ensures that the equivalent expression derived for ⇡n(✓) in (3.3) is

the one of a skew-symmetric density. Although the representation for ⇡n(✓) in Proposi-

tion 3.4 has been never explored in the context of Bayesian inference and deterministic

approximations, as clarified in (3.3), the resulting skew-symmetric representation un-

veils a previously-overlooked form given by the product between a, possibly intractable,

symmetrized posterior ⇡̄n,✓̃(✓) and a tractable skewness-inducing factor w⇤
✓̃
(✓), where the

normalizing constant c(Xn) cancels out. Hence, such a representation, together with

Lemma 3.1, suggest a natural strategy to obtain a skew-symmetric approximation via di-

rect perturbation of f ⇤
✓̃
(✓). More specifically, since by Lemma 3.1, f ⇤

✓̃
(✓) ⇡ ⇡̄n,✓̃(✓) more

accurately than ⇡n(✓), and, as a direct consequence of (3.3), ⇡̄n,✓̃(✓) = ⇡n(✓)/[2w⇤
✓̃
(✓)],

it follows that

f
⇤
✓̃
(✓) ⇡ ⇡̄n,✓̃(✓) �! f

⇤
✓̃
(✓) ⇡ ⇡n(✓)/[2w

⇤
✓̃
(✓)] �! 2f ⇤

✓̃
(✓)w⇤

✓̃
(✓) ⇡ ⇡n(✓). (3.4)

Setting q
⇤
✓̃
(✓) = 2f ⇤

✓̃
(✓)w⇤

✓̃
(✓) yields the novel skew-symmetric approximation in Defini-

tion 3.5.

Definition 3.5 (Skew-symmetric approximation of posterior densities). Denote with

⇡n(✓) a generic posterior density for the parameter ✓ 2 ⇥, and let f ⇤
✓̃
(✓) be an already-

known approximation of ⇡n(✓) which is symmetric about the point ✓̃ 2 ⇥. Moreover,

denote with w
⇤
✓̃
(✓) 2 [0, 1] the skewness-inducing factor defined in equation (3.2). Then,
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a skew-symmetric approximation of ⇡n(✓) arising from the perturbation of f ⇤
✓̃
(✓) is de-

fined as

q
⇤
✓̃
(✓) = 2f ⇤

✓̃
(✓)w⇤

✓̃
(✓), (3.5)

for every known symmetry point ✓̃ 2 ⇥ and sample size n.

Remark 3.6. Note that, in (3.5), the skewness-inducing factor w
⇤
✓̃
(✓) admits a natural

interpretation. Indeed it coincides with the relative proportion of posterior density

assigned at ✓ 2 ⇥ with respect to the total given to such a ✓ and to 2✓̃ � ✓. For every

✓ 2 ⇥, this yields a skewing function which quantifies di↵erences in the posterior density

at points (✓, 2✓̃� ✓) that are symmetric with respect to the center of symmetry ✓̂ of the

original approximation f
⇤
✓̃
(✓). Hence, if the posterior is actually symmetric about ✓̃, then

for all ✓ 2 ⇥, w⇤
✓̃
(✓) = 1/2 and q

⇤
✓̃
(✓) reduces to f ⇤

✓̃
(✓), as expected. Conversely, whenever

there are asymmetries within ⇡n(✓), the original symmetric approximation f
⇤
✓̃
(✓) is re-

weighted by w
⇤
✓̃
(✓) in order to properly re-distribute the total density at each pair (✓, 2✓̃�

✓) according to the one assigned by the actual posterior to ✓ and 2✓̃� ✓. This yields an

improved approximation q
⇤
✓̃
(✓) which incorporates the skewness in ⇡n(✓) with respect to

the know symmetry point ✓̃. For instance, if ⇡n(✓) > ⇡
(n)(2✓̃ � ✓), then, by definition,

also q
⇤
✓̃
(✓) > q

⇤
✓̃
(2✓̃ � ✓), whereas f ⇤

✓̃
(✓) = f

⇤
✓̃
(2✓̃ � ✓) by construction.

As clarified in Definition 3.5 and in Remark 3.6, the proposed approximation q
⇤
✓̃
(✓)

results from the re-weighting of the known f
⇤
✓̃
(✓) by a skewness-inducing factor w

⇤
✓̃
(✓)

via a strategy which does not require additional optimization costs relative to those

required for deriving the original f ⇤
✓̃
(✓). In fact, the expression for w⇤

✓̃
(✓) in (3.2) does

not depend on additional unknown parameters beyond ✓̃, which is in turn available as

the output of the already-solved optimization problem that targeted the posterior ⇡n(✓)

via the symmetric density f
⇤
✓̃
(✓). Proposition 3.7 below guarantees that, albeit more

flexible and sophisticated than the original f ⇤
✓̃
(✓), the deterministic approximation q

⇤
✓̃
(✓)

in Definition 3.5 still preserves similar tractability in inference, in that it belongs to the

known class of skew-symmetric densities (Azzalini and Capitanio, 2003; Wang et al.,

2004; Ma and Genton, 2004; Genton and Loperfido, 2005).

Proposition 3.7. The expression for q
⇤
✓̃
(✓) given in equation (3.5) coincides with the

density of a skew-symmetric distribution with symmetric component f ⇤
✓̃
(✓) and skewing

function w
⇤
✓̃
(✓).

Proposition 3.7 follows directly from the general definition of skew-symmetric densi-

ties in, e.g., Wang et al. (2004), after noticing that, by construction, f ⇤
✓̃
(✓) is symmetric
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Algorithm 1 i.i.d. sampling from the approximating distribution with density

q
⇤
✓̃
(✓) in (3.5)

For s = 1, . . . , Nsampl do:

1. Sample ✓
(s)
0 from the distribution having symmetric density f

⇤
0 (✓0),

2. Draw a sample from the Bernoulli random variable u
(s)

⇠ Be(w⇤
✓̃
(✓̃ + ✓

(s)
0 )),

3. Set ✓(s) = (2u(s) � 1)✓(s)0 + ✓̃.

Output: i.i.d. samples ✓
(1)

, . . . , ✓
(Nsampl) from the approximating distribution with density

q
⇤
✓̃
(✓).

about ✓̃ and, as proved in Proposition 3.4, w
⇤
✓̃
(✓) has support in [0, 1] and satisfies

w
⇤
✓̃
(✓) = 1� w

⇤
✓̃
(2✓̃ � ✓).

The connection with skew-symmetric distributions established in Proposition 3.7 is

crucial in facilitating inference also under q⇤
✓̃
(✓), in that such a class admits a straightfor-

ward and rejection-free i.i.d. sampling scheme from the general stochastic representation

of skew-symmetric random variables described in Chapter 1, Proposition 1.2. The al-

gorithm to obtain a sample from q
⇤
✓̃
(✓) is outlined in Algorithm 1.

Note that Algorithm 1 only requires simulation from the original symmetric ap-

proximation f
⇤
✓̃
(✓) and computation of the skewness-inducing factor w

⇤
✓̃
(✓), which is

analytically-available in Definition 3.5 and does not depend on intractable quantities.

The first task is straightforward whenever the perturbed density f
⇤
✓̃
(✓) arises from one of

the routinely-implemented approximation schemes discussed in Section 3.2, and, when

the interest is in more complex functionals, it is often required also for inference un-

der f
⇤
✓̃
(✓). The second, requires instead evaluation of the likelihood, which enters the

definition of w⇤
✓̃
(✓). Although this yields some increment in sampling costs relative to

inference under f ⇤
✓̃
(✓), as illustrated in the empirical studies in Section 3.6, the notice-

able gains we obtain in approximation accuracy justify this additional cost. Notice

also that these likelihood evaluations are standard in state-of-the-art sampling-based

inference schemes, such as, for example, importance sampling, Metropolis-Hastings,

Hamiltonian Monte Carlo and sequential Monte Carlo, among others (e.g., Chopin and

Ridgway, 2017; Chopin and Papaspiliopoulos, 2020). However, unlike for Algorithm 1,

these schemes are characterized by additional complexities, which often require further

tuning and do not ensure a rejection-free i.i.d. sampling strategy. To this end, Algo-

rithm 1 achieves a sensibile balance between the inference tractability ensured by f
⇤
✓̃
(✓)

and the increased accuracy associated with state-of-the-art sampling schemes targeting

the exact posterior density.

Sections 3.4-3.5 clarify that the skew-symmetric approximation proposed in Defini-

tion 3.5 is not only tractable from both an optimization and inference perspective, but
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also yields a provably more accurate characterization of the exact target posterior, both

in finite sample settings and in asymptotic regimes.

3.4 Skew-symmetric correction: finite-sample prop-

erties and optimality

The original motivation for the skew-symmetric approximation q
⇤
✓̃
(✓) in (3.5) is to

improve the accuracy of the original unperturbed f
⇤
✓̃
(✓). Theorem 3.8 provides theoret-

ical support in finite samples to such an accuracy improvement and crucially clarifies

that the overall quality of q⇤
✓̃
(✓) solely depends on how accurate f ⇤

✓̃
(✓) is in approximat-

ing the symmetrized posterior ⇡̄n,✓̃(✓) in (3.1). These results are further deepened in

Theorem 3.9 which proves that the skewness-inducing factor w⇤
✓̃
(✓) in Definition 3.5 is

optimal among all those yielding a skew-symmetric approximation for ⇡n(✓), with f
⇤
✓̃
(✓)

as symmetric component.

Theorem 3.8 (Finite-sample accuracy). Let ⇡n(✓) be a generic posterior density for

the parameter ✓ 2 ⇥, and denote with f
⇤
✓̃
(✓) an already-known approximation of ⇡n(✓)

which is symmetric about the point ✓̃ 2 ⇥. Moreover, let q⇤
✓̃
(✓) = 2f ⇤

✓̃
(✓)w⇤

✓̃
(✓) with w

⇤
✓̃
(✓)

as in equation (3.2). Then

D[⇡n(✓) || q
⇤
✓̃
(✓)]  D[⇡n(✓) || f

⇤
✓̃
(✓)], (3.6)

for any symmetry point ✓̃ 2 ⇥ and sample size n, where D is either the total variation

distance (Dtv) or any ↵-divergence (D↵). Moreover,

D[⇡n(✓) || q
⇤
✓̃
(✓)] = D[⇡̄n,✓̃(✓) || f

⇤
✓̃
(✓)], (3.7)

for any ✓̃ 2 ⇥ and n, where ⇡̄n,✓̃(✓) is the symmetrized posterior density in equation (3.1).

Proof. For ease of reading the proof of Theorem 3.8 is postponed to Section A.3.2.

Theorem 3.8 states two important results. First, according to (3.6), q⇤
✓̃
(✓) is, prov-

ably, never less accurate than the original f ⇤
✓̃
(✓) in approximating the target posterior

⇡n(✓), irrespectively of the chosen f
⇤
✓̃
(✓), its symmetry point ✓̃, and the sample size n.

Second, as clarified in (3.7), the overall quality of q⇤
✓̃
(✓) actually coincides with the one

achieved by the original unperturbed f
⇤
✓̃
(✓) in approximating the symmetrized posterior

⇡̄n,✓̃(✓) in (3.1). Such a latter result is of direct practical interest in that, among the

approximating densities with the same symmetry point, it suggests to prioritize those
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yielding a more accurate approximation of the symmetrized posterior in (3.1), rather

than of the original ⇡n(✓). Therefore, although this objective goes beyond our original

scope of perturbing an already-available f
⇤
✓̃
(✓), equations (3.6)-(3.7) stimulate the de-

velopment of novel symmetric approximations explicitly targeting ⇡̄n,✓̃(✓) rather than

the original posterior ⇡n(✓). In fact, as a consequence of (3.6)-(3.7), the perturbation

of these approximations under the proposed strategy can yield increasingly accurate

characterizations of ⇡n(✓).

In addition, the results in Theorem 3.8 follow from the specific form of the skewness-

inducing factor w
⇤
✓̃
(✓) in equation (3.2). Theorem 3.9 proves the optimality of such a

choice.

Theorem 3.9 (Optimality of the skewness-inducing factor). Let ⇡n(✓) denote a generic

posterior density for the parameter ✓ 2 ⇥, and let f ⇤
✓̃
(✓) be an already-known approx-

imation of ⇡n(✓) which is symmetric about ✓̃ 2 ⇥. Moreover, denote with q
⇤
✓̃
(✓) =

2f ⇤
✓̃
(✓)w⇤

✓̃
(✓) the proposed approximation in Definition 3.5, and define with q✓̃(✓) =

2f ⇤
✓̃
(✓)w✓̃(✓) an alternative skew-symmetric perturbation of f

⇤
✓̃
(✓), where w✓̃(✓) corre-

spond to a generic skewing function such that w✓̃(✓) 2 [0, 1] and w✓̃(✓) = 1�w✓̃(2✓̃� ✓).

Then, for every w✓̃(✓), it holds that

D[⇡n(✓) || q
⇤
✓̃
(✓)]  D[⇡n(✓) || q✓̃(✓)], (3.8)

for any ✓̃ 2 ⇥ and sample size n, where D is either the tv distance (Dtv) or any

↵-divergence (D↵).

Proof. The proof of Theorem 3.9 is postponed to Section A.3.3

According to Theorem 3.9, the skewness-inducing factor w
⇤
✓̃
(✓) = ⇡(✓)L(✓;Xn)/

[⇡(✓)L(✓;Xn) + ⇡(2✓̃ � ✓)L(2✓̃ � ✓;Xn)] we derive is guaranteed to provide a pertur-

bation q
⇤
✓̃
(✓) of f ⇤

✓̃
(✓) which is never less accurate in approximating the target posterior

⇡n(✓) when compared to those arising from any other skew-symmetric density q✓̃(✓) with

symmetric component f ⇤
✓̃
(✓) and generic skewing function w✓̃(✓). Notice that to ensure

that q✓̃(✓) = 2f ⇤
✓̃
(✓)w✓̃(✓) is a skew-symmetric density it su�ces that the skewing func-

tion satisfies w✓̃(✓) 2 [0, 1] and w✓̃(✓) = 1 � w✓̃(2✓̃ � ✓). Hence, in principle, there are

infinitely-many options to perturb the original symmetric approximation so that the re-

sulting density falls in the skew-symmetric class. Some interesting examples of skewing

functions have been derived in Azzalini and Capitanio (2003); Ma and Genton (2004)

and Genton and Loperfido (2005) with a focus on generalizations of skew-normal and

skew-elliptical densities which belong to the broader skew-symmetric family. According

to Theorem 3.9, all these options would be suboptimal relative to the proposed skewing
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factor w⇤
✓̃
(✓). Intuitively, this is because, unlike other possible choices of skewing func-

tions, w⇤
✓̃
(✓) exactly matches the skewness factor of the actual target posterior, when

expressed in skew-symmetric form as in Proposition 3.4.

Besides proving the optimality of the skewness-inducing factor w
⇤
✓̃
(✓), Theorem 3.9

also allows to formalize the proposed skew-symmetric approximation in Definition 3.5

as the solution of a well-defined optimization problem. Such a result is stated in Corol-

lary 3.10 and is useful to establish connections with state-of-the-art approximation

strategies arising from optimization of specific divergences, e.g., vb (Blei et al., 2017)

and ep (Vehtari et al., 2020). In addition, as discussed in Remark 3.11, it provides the

premises to further expand the scope of the perspective considered in this thesis.

Corollary 3.10. Consider the generic posterior density ⇡n(✓) for the parameter of

interest ✓ 2 ⇥, and let f
⇤
✓̃
(✓) be an already-available approximation of ⇡n(✓) which

is symmetric about the point ✓̃ 2 ⇥. Moreover, denote with q
⇤
✓̃
(✓) = 2f ⇤

✓̃
(✓)w⇤

✓̃
(✓) the

proposed skewed approximation in Definition 3.5, and define with

Q = {q✓̃(✓) = 2f ⇤
✓̃
(✓)w✓̃(✓) : w✓̃(✓) 2 [0, 1], w✓̃(✓) = 1� w✓̃(2✓̃ � ✓)},

the family of skew-symmetric densities that arise from the perturbation of f ⇤
✓̃
(✓) via a

generic skewing function w✓̃(✓). Then

q
⇤
✓̃
(✓) = argminq✓̃(✓)2Q

D[⇡n(✓) || q✓̃(✓)],

for any ✓̃ 2 ⇥ and sample size n, where D is either the tv distance (Dtv) or any

↵-divergence (D↵).

Although the skew-symmetric approximation derived in Section 3.3 is not explicitly

obtained as the solution of a suitably-defined optimization problem, Corollary 3.10 clar-

ifies that, in fact, the proposed q
⇤
✓̃
(✓) can be formalized also under such a perspective.

In particular, the skew-symmetric density q
⇤
✓̃
(✓) in Definition 3.5 actually coincides with

the solution of the constrained minimization for a suitable divergence D between the

target posterior ⇡n(✓) and a given approximating density q✓̃(✓) within the family Q

of skew-symmetric densities with symmetric component fixed at the original approxi-

mating density f
⇤
✓̃
(✓) to be perturbed. This interpretation allows to establish connec-

tions with the optimization-based perspectives underlying vb (Blei et al., 2017) and ep

(Vehtari et al., 2020) solutions. However, unlike these methods, Corollary 3.10 holds

under a broader class of divergences, rather than a specific one, and, when compared

to routinely-implemented vb and ep schemes yielding symmetric approximations, it

considers an expanded family which ensures improvements in accuracy. Notice that,
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consistent with the focus of this chapter, f
⇤
✓̃
(✓) and, as a consequence, ✓̃ 2 ⇥ are

known and fixed in Corollary 3.10 and, hence, the only quantity to be derived is the

skewness-inducing factor. Crucially, as clarified Theorem 3.9, the solution w
⇤
✓̃
(✓) to such

a minimization with respect to w✓̃(✓) does not require optimization of additional param-

eters beyond the already-available ✓̃ 2 ⇥. Although extending the optimization problem

in Corollary 3.10 to the case in which also f
⇤
✓̃
(✓) is unknown goes beyond the scope of

our contribution, as clarified in Remark 3.11, such a direction can be of substantial

interest to further improve the accuracy of q⇤
✓̃
(✓), and our results open several avenues

to stimulate future advancements along these lines.

Remark 3.11. As already discussed, the overarching focus of this chapter is to improve

the accuracy of state-of-the-art symmetric approximations of posterior distributions via

a broadly-applicable perturbation scheme which can be derived at no additional opti-

mization costs and applied directly to the output f
⇤
✓̃
(✓) of standard implementations.

To this end, f ⇤
✓̃
(✓) is kept fixed and known in our derivations. However, although the

optimization of such a symmetric component goes beyond the scope of our contribu-

tion, combining the results in Theorem 3.8 and Corollary 3.10 with the skew-symmetric

representation of posterior densities in Proposition 3.4, opens promising directions to

further improve approximation accuracy via the additional optimization of the sym-

metric component. In particular, notice that as a consequence of Corollary 3.10 and

equation (3.7), minq✓̃(✓)2QD[⇡n(✓) || q✓̃(✓)] = D[⇡n(✓) || q⇤✓̃(✓)] = D[⇡̄n,✓̃(✓) || f
⇤
✓̃
(✓)], for

any, possibly unknown, f ⇤
✓̃
(✓). Hence, when solving the minimization problem in Corol-

lary 3.10 also with respect to f
⇤
✓̃
(✓), it su�ces to find the closest symmetric density

to the symmetrized posterior in equation (3.1) and then perturb such a density via

the already-derived optimal skewness-inducing factor w⇤
✓̃
(✓). This is expected to further

improve accuracy relative to perturbations of currently-implemented symmetric approx-

imations that target the actual posterior instead of its symmetrized version. In fact,

to the best of our knowledge, such a di↵erent target has been never considered and,

hence, our innovative perspective and results can open unexplored avenues to derive

improved classes of tractable deterministic approximations, along with novel computa-

tional methods to obtain these approximations. This is because the minimization of

D[⇡̄n,✓̃(✓) || f
⇤
✓̃
(✓)] implies a peculiar reasoning which first requires finding that loca-

tion ✓̃ inducing the symmetrized posterior in (3.1) more accurately approximated by a

density within the assumed symmetric class and then, among the densities symmetric

about such a location ✓̃, it seeks the one closest to the posterior symmetrized about

✓̃. Therefore, intuitively, such schemes implicitly require searching for both an optimal

symmetrized posterior and also for an accurate approximation to such a symmetrized
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posterior. When specializing D to the kl minimized under vb, which is a limiting case

of ↵-divergence, a promising direction could be to solve such an optimization problem

via automatic di↵erentiation variational inference schemes (Kucukelbir et al., 2017).

Theorems 3.8 and 3.9 provide finite-sample support on the accuracy improvements

of the proposed skew-symmetric approximation q
⇤
✓̃
(✓). The theory in Section 3.5 fur-

ther strengthens these results by quantifying the magnitude of such improvements in

asymptotic regimes.

3.5 Asymptotic properties

Theorems 3.8-3.9 provide finite-sample theoretical guarantees for the better approx-

imation quality of the newly developed skew-symmetric solution compared to its sym-

metric counterpart. At the same time, it is not clear whether such an improvement

can have an e↵ect also from an asymptotic point of view. Indeed, a general answer to

this question is di�cult to give, as a straightforward implication of Theorem (3.8) is

that the behavior of the skew-symmetric approximation q
⇤
✓̃
(✓) only depends on how the

symmetric component f ⇤
✓̃
(✓) approximates the symmetrized posterior ⇡̄n,✓̃(✓).

Building upon the results of Chapter 2, in this section, we provide an answer to such

a challenging question for two particular symmetric approximations, in the asymptotic

regime where d is fixed and n ! 1. More specifically, we consider the cases in which

f
⇤
✓̃
(✓) is either the Gaussian approximation centered at the posterior mode ✓̂, and derived

from the Laplace method (see Section 3.2),

f✓̂,1(✓) = �d(✓; ✓̂; J̃
�1
✓̂

),

with J̃✓̂ = �(`(2)
✓̂

+ log ⇡(2)

✓̂
), or a newly derived higher-order extension of it belonging

to the family of semi-nonparametric distributions (Gallant and Nychka, 1987). This

approximation is obtained by exploiting a fourth-order expansion of the symmetrized

log-posterior distribution at ✓̂ which, compared to the Gaussian density, is able to cap-

ture more accurately the behavior of the posterior distribution at the tails. In this case,

the probability density function takes the form

f✓̂,2(✓) = �d(✓; ✓̂; J̃
�1
✓̂

)P (✓ � ✓̂)/Ef✓̂,1
{P (✓ � ✓̂)}, (3.9)
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where, Ef✓̂,1
{P (✓ � ✓̂)} =

R
P (✓ � ✓̂)�d(✓; ✓̂, J̃

�1
✓̂

)d✓ and P (✓ � ✓̂) is a non-negative

polynomial taking the form

P (✓ � ✓̂) =1 +
1

24
`
(4)

✓̂,stlk
(✓ � ✓̂)s(✓ � ✓̂)t(✓ � ✓̂)l(✓ � ✓̂)k

+
1

2

⇣ 1

24
`
(4)

✓̂,stlk
(✓ � ✓̂)s(✓ � ✓̂)t(✓ � ✓̂)l(✓ � ✓̂)k

⌘2
+

1

2

⇣1
6
`
(3)

✓̂,stl
(✓ � ✓̂)s(✓ � ✓̂)t(✓ � ✓̂)l

⌘2
.

Note that, since P (✓ � ✓̂) is always non negative, f✓̂,2(✓) is a proper density function

which is symmetric about ✓̂. As a consequence, these two particular choices of the

symmetric component give rise to di↵erent skew-symmetric approximations q✓̃,1(✓) =

2f✓̂,1(✓)w✓̂(✓), q✓̃,2(✓) = 2f✓̂,2(✓)w✓̂(✓) which share the same skewness-inducing factor

w✓̂(✓).

Theorem 3.12 below, demonstrates that the total variation distance between the pos-

terior and q✓̃,1(✓) converges to zero in probability with rate 1/n, up to a logarithmic term,

while for q✓̃,2(✓) the rate improves to 1/n2 again up to a logarithmic term. Informally,

the di↵erence between the performance of the two methods is explained by the fact that

f✓̂,2(✓) is, asymptotically, a better approximation of the symmetrized posterior ⇡̄n,✓̂(✓)

and that, in view of Theorem 3.8, the same level of accuracy if maintained by q✓̃,2(✓) in

approximating the original posterior. To prove the validity of Theorem 3.12 we require

the same assumptions of Theorem 2.1 with Assumption M2 replaced by Assumption

M3 below.

M3 There exists two positive constants ⌘̄1, ⌘̄2 such that the event Ãn,0 = {�min(J̃✓̂/n) >

⌘̄1}\{�max(J̃✓̂/n) < ⌘̄2} holds with probability P
n
0 Ân,0 = 1�o(1). Moreover, there

exist two positive constants � and L such that the inequalities | `
(3)
stl (✓)/n | < L,

| `
(4)
stlk(✓)/n | < L, and | log ⇡(2)

st (✓)| < L hold uniformly over ✓ 2 B�(✓̂) = {✓ 2 ⇥ :

k✓̂ � ✓k < �}, with P
n
0 -probability tending to one.

When f✓̂,2(✓) is considered, for the same � and L as above, the inequalities

| `
(5)
stl (✓)/n | < L, | `(6)stlk(✓)/n | < L, and | log ⇡(3)

st (✓)| < L hold uniformly over ✓ 2

B�(✓̂), with P
n
0 -probability tending to one.

The first part of Assumption M3 is essentially equivalent to Assumption M2 described

in Chapter 2. The additional conditions required when f✓̂,2(✓) is adopted, as symmet-

ric component, are clearly slightly more restrictive since they concern the behavior of

additional log-likelihood and log-prior higher-order derivatives. At the same time, they

are the price to pay if one wants to reach a higher level of asymptotic accuracy. Note

also that they are still fulfilled in many, commonly adopted, regular statistical models

such Poisson regression, logistic regression and other generalized linear models.
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The combination of Assumptions 1, 7-8, M1, described in Chapters 1-2, with As-

sumptions M3 allows us to demonstrate Theorem 3.12. The proof of the theorem is

based on the one already developed for Theorem 2.1 but adapted to exploit the results

derived in this chapter.

Theorem 3.12 (Asymptotic accuracy). Under Assumptions 1, 7-8, M1 and M3 it holds

DTV[⇡n(·) || q✓̃,1(✓)] = OPn
0

�
M

c13
n /n

�
, (3.10)

and

DTV[⇡n(·) || q✓̃,2(✓)] = OPn
0

�
M

c14
n /n

2
�
, (3.11)

with Mn =
p
c0 log n and some fixed constants c0, c13, c14 > 0.

Remark 3.13. Under the same assumptions, it is possible to prove that the rate of

convergence of the symmetric components f✓̂,1(✓) and f✓̂,2(✓) to the posterior distribution

is OPn
0
(M c15

n /
p
n), for some c15 > 0. The di↵erent asymptotic performances observed in

(3.10) and (3.11) are thus entirely due to how each symmetric component approximates

⇡̄n,✓̂(✓).

The Gaussian density f✓̂,1(✓) is closely related to the symmetric component of the

skew-modal approximation introduced in (2.4). In fact, the only di↵erence between the

two is the presence of the second log-prior derivative in J̃✓̂, since the covariance matrix

in (2.4) takes the form J
�1
✓̂

= �(`(2)
✓̂
)�1. If d is fixed and n ! 1, such a di↵erence

a↵ects only terms of order 1/n, and as a consequence, from an asymptotic point of

view, using �d(✓; ✓̂; J✓̂) instead of f✓̂,1(✓) leads to skew-symmetric approximations with

the same asymptotic accuracy.

3.6 Empirical studies

This section provides empirical evidence for the superior performance of the skew-

symmetric correction introduced in Section 3.3 when compared (and applied) to three

common symmetric approximations: the Gaussian approximation derived from the

Laplace method (la) (see e.g. Gelman et al., 2013, Chapter 13), Gaussian variational

Bayes with full covariance matrix (gvb) (Opper and Archambeau, 2009), and Gaussian

expectation propagation (gep) Minka (2001).

Two generalized linear models are considered, a logistic regression, and a Poisson

regression with a logarithmic link function. In both cases, draws from the target poste-

rior distribution are obtained via 5 chains of length 10000 under Hamiltonian Markov

Chain Monte Carlo using the function stan glm, available in the R package rstanarm
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Table 3.1: For the logistic regression applied to the Glioma Grading Clinical and
Mutation Features dataset, estimated values of the 7 summary statistics introduced
in Section 3.6 for the Gaussian approximations la, gvb, and gep, and their skew-
symmetric counterparts skew-la, skew-gvb, and skew-gep.

q1.err median.err q3.err mean.err wass ks tv
la 0.205 0.158 0.138 0.188 0.191 0.088 0.088

skew-la 0.162 0.117 0.093 0.138 0.144 0.067 0.067
gvb 0.170 0.135 0.127 0.164 0.166 0.072 0.071

skew-gvb 0.117 0.087 0.071 0.105 0.109 0.048 0.047
gep 0.017 0.036 0.032 0.009 0.037 0.021 0.028

skew-gep 0.016 0.008 0.015 0.009 0.020 0.012 0.016

(Goodrich et al., 2023). The parameters of la and gvb approximations are obtained

from the same function stan glm with the specification algorithm="optimizing" and

algorithm="fullrank", respectively. gep is computed with Julia using the function

ep glm (Barthelmé, 2023).

The quality of the resulting approximations is evaluated by considering the aver-

age, over all the marginal distributions, of seven di↵erent summary statistics. These

quantities are estimated via Monte Carlo by drawing a sample of dimension 10000

from each approximation. Note that, given the Gaussianity of la, gvb and gep, this

task can be easily done by exploiting Algorithm 1. The first 4 summary statistics are:

mean absolute di↵erence between the exact posterior first quartile and its approxima-

tion (q1.err), mean absolute di↵erence between the exact posterior median and its

approximation (median.err), mean absolute di↵erence between the exact posterior

third quartile and its approximation (q3.err), and mean absolute di↵erence between

the exact posterior mean and its approximation (mean.err). In addition, the average

of the empirical Wasserstein distances (wass), the Kolmogorov-Smirnov statistics (ks),

and the total variation distances (tv) between each marginal posterior density and its

approximation is considered.

3.6.1 Example 1: logistic regression

We consider the Glioma Grading Clinical and Mutation Features dataset (Tasci et al.,

2022). These data, which are freely available in the UCI Machine Learning Repository,

were obtained in a clinical study aimed at investigating, on n = 839 subjects, the ability

of d = 23 explanatory variables to discriminate between patients with low-grade glioma

or glioblastoma multiforme, two di↵erent forms of gliomas, the most common primary

tumors of the brain (Tasci et al., 2022). The 23 predictors consist of 3 demographic
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Table 3.2: For the Poisson regression in Section 3.6.2, estimated values of the 7
summary statistics introduced in Section 3.6 for the Gaussian approximations la,
gvb, and gep, and their skew-symmetric counterparts skew-la, skew-gvb, and
skew-gep.

q1.err median.err q3.err mean.err wass ks tv
la 0.009 0.007 0.007 0.008 0.011 0.022 0.023

skew-la 0.005 0.003 0.005 0.004 0.007 0.014 0.018
gvb 0.013 0.012 0.014 0.016 0.016 0.025 0.025

skew-gvb 0.007 0.006 0.007 0.008 0.009 0.016 0.017
gep 0.004 0.004 0.004 0.003 0.006 0.012 0.017

skew-gep 0.002 0.002 0.003 0.003 0.004 0.010 0.013

variables, gender, age at diagnosis and race; and the expression of 20 genes known to

be associated with the two conditions.

To perform statistical inference, we define the response variable xi 2 {0, 1}, where

i = 1, . . . , n, takes the value 1 if the patient is a↵ected by low-grade glioma and 0

otherwise. A logistic regression model is assumed, meaning that each xi is an inde-

pendent realization of a Bernoulli random variable Xi ⇠ Be(exp(z|i ✓)/{1 + exp(z|i ✓)}),

where zi 2 R24 is a vector containing the intercept and the explanatory variables, while

✓ 2 R24 is the parameter of interest. Finally, for each element of ✓ we assume a weakly

informative Gaussian prior N(0, �2), � = 5.

Table 3.1 compares, for the model under study, the accuracy of la, gvb, and gep

approximations with that of their skew-symmetric counterparts, skew-la, skew-gvb,

and skew-gep, respectively. In this case, the improvement provided by our newly

derived skew-symmetric solution is clear and uniform across all summary statistics.

This highlights how in this case our skewness-inducing correction leads to a much more

accurate representation of the true posterior shape.

3.6.2 Example 2: Poisson regression

As a second example, we consider a survey study in which 2276 high school students

were asked whether they had ever used alcohol, cigarettes, or marijuana (see e.g. Agresti,

2015, Ex. 7.2.6). The dataset, which can also be retrieved using the R package MLGdata

(Sartori et al., 2020), consists of n = 32 entries representing all possible combinations of

5 explanatory variables: alcohol, cigarette and marijuana use together with 2 additional

binary predictors: gender and race (classified as white or other). The variable of interest

is xi = “number of students in the i-th combination of the predictors”, for i = 1, . . . , n.

For these data, we assume a Poisson regression model, where each xi is an indepen-

dent realization of Xi ⇠ Pois(exp(z|i ✓)), with zi 2 R16 being a vector containing the



Chapter 3 - General skew-symmetric approximations 61

intercept, the 5 binary explanatory variables and all their possible pairwise interactions,

while ✓ 2 R16 is the parameter of the model.

The comparison between the accuracy of la, gvb and gep and their corresponding

skew-symmetric versions is reported in Table 3.2. As in the previous example, correcting

for asymmetry leads to approximations of the posterior distribution that are significantly

more accurate than the symmetric ones. This phenomenon is clear for all summary

statistics considered.
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Conclusions

Discussion

This thesis proves that substantial theoretical and practical improvements in accu-

racy can be achieved by replacing Gaussian, and more generally symmetric, determin-

istic approximations of the posterior distribution with suitably defined skew-symmetric

densities.

Such a result is achieved first by adopting an asymptotic perspective in Chapters 1-2,

where di↵erent limiting skew-symmetric approximations are constructively derived from

a third-order version of the Laplace method. Beside demonstrating that, to approxi-

mate the posterior distribution, the same level of accuracy obtained by the adoption

of higher-order polynomial approximations (Johnson, 1970; Weng, 2010; Kolassa and

Ku↵ner, 2020) can be reached with a family of proper density functions, our contri-

bution has also a remarkable methodological impact. Indeed, the joint and marginal

skew-modal approximations derived in Chapter 2 can be directly applied to a wide class

of statistical problems, both as a stand-alone method and as a building block of more so-

phisticated strategies, such as inla (Rue et al., 2009), which currently rely on Gaussian

approximations in some of their parts.

The methodological contribution of the thesis is further broadened in Chapter 3

by introducing a novel and widely-applicable strategy to perturb any given symmetric

approximation of a generic posterior density for obtaining an improved, yet tractable,

skew-symmetric approximation with rigorous theoretical guarantees of improved accu-

racy and remarkable quality in empirical studies. Unlike recently-developed determinis-

tic approximations based on generalizations of skew-normal distributions, the proposed

solution [i] applies to generic posterior densities and to any symmetric approximation of

such densities, [ii] does not imply additional optimization costs relative to those required

for obtaining the original symmetric approximation to be improved, [iii] is simple and

can be applied directly to any output of state-of-the-art software yielding symmetric

approximations of posterior densities, [iv] has strong theoretical guarantees in terms

of accuracy, both in finite-sample settings and in asymptotic regimes, and, finally, [v]
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it arises from a yet-unexplored skew-symmetric representation of posterior densities in

Proposition 3.4, which opens interesting avenues for future research in the context of

deterministic approximations for Bayesian inference.

Future directions of research

The results of the thesis stimulate a number of interesting future research directions

which we now briefly discuss. First of all, the methods we have derived are designed for

Bayesian parametric models. Therefore, the extension of both theory and methods de-

rived in Chapters 1-2 to semiparametric (Bickel and Kleijn, 2012; Castillo and Rousseau,

2015) problems opens an interesting and challenging area of research. Regarding the

results of Chapter 3, another promising line of study is discussed in Remark 3.11 and

relates to the case where the symmetric approximation density f
⇤
✓̂
(✓) is also unknown

and part of the novel optimization problem formalized in Corollary 3.10. Such an ex-

tension, combined with our results in Section 3.4, interestingly supports a change of

perspective that suggests focusing on the symmetrized posterior densities (3.1), rather

than on the original posterior, as the target of symmetric approximations. To the best

of our knowledge, such a perspective has never been considered before, and is therefore

expected to stimulate active research motivated by the novel questions associated with

this task. For example, as mentioned in Remark 3.11, such a novel perspective implic-

itly requires extracting an appropriate symmetric component from the target posterior

density which can be accurately approximated by a tractable symmetric density whose

perturbation yields the final skew-symmetric approximation of ⇡n(✓).

Another important question is whether the perturbation strategy developed in Chap-

ter 3 can be used to obtain a non-asymptotic counterpart of the marginal skew-modal

approximations described in Section 2.3. Indeed, as for that class of approximations,

such a solution would allow one to obtain quantities of interest for inference, such as

posterior means and variances, by using of standard numerical integration methods and

thereofore completely bypassing the need to sample from the approximation. From a

practical point of view, the main challenge in this case is that the skewness-inducing

factor of each marginal component depends on quantities that are not directly available

in the un-normalized posterior and therefore need to be estimated. Since the error intro-

duced by this additional approximation step is generally not easy to quantify, the quality

of the resulting marginal skew-symmetric approximation is also di�cult to assess.

Finally, we shall emphasize that, although our focus is on improving the accuracy of

deterministic approximations for posterior densities, the results of Chapter 3 can have
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important consequences also in refining sampling-based inference schemes. In fact, sev-

eral of these schemes, including, e.g., importance sampling, Metropolis-Hastings, Hamil-

tonian Monte Carlo and sequential Monte Carlo methods (e.g., Chopin and Ridgway,

2017; Chopin and Papaspiliopoulos, 2020), rely on tractable proposal densities, often

symmetric, whose closeness to the target posterior is a key in driving the convergence,

mixing and degeneracy properties of the resulting sampling scheme. Perturbing such

densities via our proposed strategy yields a skew-symmetric proposal which is provably-

closer to the target posterior and, as discussed in Section 2.4, similarly-tractable from

a sampling perspective. Hence, our contribution is expected to stimulate advancements

also in the context of sampling-based Bayesian inference aimed at improving conver-

gence, mixing and degeneracy issues encountered by state-of-the-art schemes.
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Appendix A

Proofs main results of Chapters 1, 2

and 3

A.1 Proofs main results of Chapter 1

In this section we report the proofs of the theoretical results introduced in Chapter 1.

The notation is the same as the main part of the thesis.

A.1.1 Proof of Corollary 1.7

Proof. To prove (1.18) note that the general Assumptions 1-2 and 4, introduced in

Section 1.4.2, are implied by Assumptions 1-5-6-8 together with Lemma 1.9 and Lemma

1.10. In addition, Assumption 7 implies that Assumption 3 is verified with log ⇡(1) =

(@/@✓) log ⇡(✓)|✓=✓⇤ . Hence all the conditions Theorem 1.3 are satisfied with �n = 1/
p
n,

proving the validity of the first part of corollary.

To deal with (1.19), recall that Kn = {h : khk < Mn} = {✓ : k✓ � ✓⇤k < Mn/
p
n}

and note that it is su�cient to prove the statement for khk
r. Leveraging triangle in-

equality we split the problem in three parts

Z
khk

r
|⇡n(h)� p

n
sks(h)|dh 

Z

Kc
n

khk
r
⇡n(h)dh+

Z

Kc
n

khk
r
p
n
sks(h)dh

+

Z

Kn

khk
r
|⇡n(h)� p

n
sks(h)|dh.

(A.1)

Recall that, An,0 = {�min(J✓⇤/n) > ⌘
⇤
1}\{�max(J✓⇤/n) < ⌘

⇤
2}, for some positive constants

⌘
⇤
1, ⌘

⇤
2, and An,1 = An,0\{k⇠k < M̃n} for some M̃n going to infinity arbitrary slow. Note

that from Assumptions 5-6, Lemma B.2 and Lemma 1.9 it follows P n
0 An,1 = 1� o(1).
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To bound the first element on the right-hand-side of the inequality we use that, from

Assumptions 7-8 and equation (A.7) of Lemma 1.10 the event

An,3 = An,1\{ sup
k✓�✓⇤k>Mn/

p
n
{`(✓)�`(✓⇤)} < �c5M

2
n}\{

Z

Kn

e
`(✓⇤+h/

p
n)�`(✓⇤)⇡(✓⇤+h/

p
n)dh > c̃1},

where c̃1 is an arbitrary small and fixed positive constant, satisfies P n
0 An,3 = 1� o(1).

By combining this fact with
R
khk

r
⇡(✓⇤ + h/

p
n)dh < 1 and Jensen’s inequality we

obtain

Z

Kc
n

khk
r
⇡n(h)dh An,3 

Z

Kc
n

khk
r e

`(✓⇤+h/
p
n)�`(✓⇤)⇡(✓⇤ + h/

p
n)R

Kn
e`(✓⇤+g/

p
n)�`(✓⇤)⇡(✓⇤ + g/

p
n)dg

dh An,3

. 1

nc0c5

Z
khk

r
⇡(✓⇤ + h/

p
n) = O(n�1),

for a su�ciently large choice of c0 in Mn. Since P
n
0 An,3 = 1� o(1), this implies

Z

Kc
n

khk
r
⇡n(h)dh = OPn

0
(n�1). (A.2)

Similarly the boundedness of w(h�⇠) and the tail behavior of the Gaussian distribution

give Z

Kc
n

khk
r
p
n
sks(h)dh An,1 2

Z

Kc
n

khk
r
�d(h; ⇠,⌦)dh An,1 = O(n�1),

for a su�ciently large choice of c0. In turn, this implies

Z

Kc
n

khk
r
p
n
sks(h)dh = OPn

0
(n�1). (A.3)

Finally, equation (1.18) gives

Z

Kn

khk
r
��⇡n(h)� p

n
sks(h)

��dh  M
r
n

Z
|⇡n(h)� p

n
sks(h)|dh = OPn

0
(M c6+r

n /n). (A.4)

Equation (1.19) follows by the combination of (A.2), (A.3) and (A.4).

A.1.2 Proof of Lemma 1.9

Proof. The statement of the lemma easily follows from Assumptions 5-6. In fact, they

allow to take, in Kn = {h : khk  Mn}, the following Taylor expansion

log
p
n
✓⇤+h/

p
n

pn✓⇤

(Xn) = hs

`
(1)
✓⇤,s
p
n

�
1

2

jst

n
hsht +

1

6
p
n

`
(3)
✓⇤,stl

n
hshthl + rn,1(h),
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with `
(1)
✓⇤,s

/
p
n = OPn

0
(1), jst/n = OPn

0
(1), `(3)✓⇤,stl

/n = OPn
0
(1) and

sup
h2Kn

rn,1(h) = sup
h2Kn

1

24n

`
(4)
✓⇤,stlk

(�h)

n
hshthlhk = OPn

0
(M4

n/n),

for some � 2 (0, 1). To conclude, we need to check that the first term can be written

as hs(jst/n)�n
✓⇤,t with �n

✓⇤,t = j
�1
st

p
n`

(1)
✓⇤,s

= OPn
0
(1). To this end, note that, in view

of Assumption 6, Lemma B.2 implies that �max(J✓⇤/n) and �min(J✓⇤/n) are bounded

from above and below, respectively, with probability tending to 1 as n ! 1. Since, by

the eigendecomposition (we assume the eigenvectors to be normalized) follows that the

entries of (J✓⇤/n)
�1 are bounded, in absolute value, by d/�min(J✓⇤/n), we get nj

�1
st =

OPn
0
(1), which implies, in turn, �n

✓⇤,t = OPn
0
(1).

A.1.3 Proof of Lemma 1.10

Proof. To prove Lemma 1.10 we start by writing

⇡n(K
c
n) 

R
Kc

n
p
n
✓⇤+h/

p
n(X

n)⇡(✓⇤ + h/
p
n)dh

R
Kn

pn
✓⇤+h/

p
n
(Xn)⇡(✓⇤ + h/

p
n)dh

. (A.5)

Recall that under Assumption 8 it holds

lim
n!1

P
n
0 { sup

khk>Mn

{`(✓⇤ + h/
p
n)� `(✓⇤)} < �c5M

2
n} = 1.

As a consequence, for every D > 1,

Z

Kc
n

(pn✓⇤+h/
p
n/p

n
✓⇤)(X

n)⇡(✓⇤ + h/
p
n)/⇡(✓⇤)dh = OPn

0
(n�D), (A.6)

given a su�ciently large constant c0 inMn and the boundedness condition in Assumption

7. For the denominator of the right-hand-side of (A.5), we use Assumptions 5-6-7 to take

the Taylor expansions reported in (1.16) and (1.20). Recall that from Assumption 6 and

Lemma B.2 there exist two positive constants ⌘⇤1 and ⌘
⇤
2 such that An,0 = {�min(V n

✓⇤) >

⌘
⇤
1} \ {�max(V n

✓⇤) < ⌘
⇤
2}, holds with probability P

n
0 An,0 = 1� o(1). As a consequence, if

we include the third order term in (1.20) and the prior e↵ect in the remainder, we get

(pn✓⇤+h/
p
n/p

n
✓⇤)(X

n)⇡(✓⇤ + h/
p
n)/⇡(✓⇤)/ An,0 = exp

⇢
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=exp
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/ An,0 ,
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with �n = v
n
st�

n
✓⇤,s�

n
✓⇤,t/2 > 0, since V

n
✓⇤ is positive definite when conditioned on An,0,

rn,5(h) = rn,1(h) + rn,2(h) +
1

6
p
n
a
(3),n
✓⇤,stl

hshthl +
1
p
n
log ⇡(1)

✓⇤,s
hs,

and rn,5 = suph2Kn
rn,5(h) = OPn

0
(M3

n/
p
n).

Define the event An,4 = An,0 \ {k�n
✓⇤k < M̃n} \ {|rn,5| < �1} for some M̃n going to

infinity arbitrary slow and �1 a fixed positive constant. Since P
n
0 (An,4) = 1� o(1) and

�n > 0, we can equivalently study the asymptotic behavior of the following lower bound

Z

Kn

(pn✓⇤+h/
p
n/p

n
✓⇤)(X

n)⇡(✓⇤ + h/
p
n)/⇡(✓⇤)dh/ An,4

� exp(��1)

Z

Kn

exp
�
�v

n
st(h��n

✓⇤)s(h��n
✓⇤)t/2

 
dh/ An,4

=exp(��1)(2⇡)
d/2

|V
n
✓⇤ |

�1/2
Z

Kn

(2⇡)�d/2
|V

n
✓⇤ |

1/2 exp
�
�v

n
st(h��n

✓⇤)s(h��n
✓⇤)t/2

 
dh/ An,4 .

(A.7)

Due to the fact that, in Kn, Mn ! 1, �n
✓⇤ = OPn

0
(1) and that, in An,4 , the eigenvalues

of V n
✓⇤ lay on a bounded and positive range, the quantity in the last display is positive

and bounded away from zero. This, together with (A.6), gives the statement of Lemma

1.10.

A.1.4 Proof of Lemma 1.11

Proof. To prove the statement of Lemma 1.11 we deal with the cases k✓� ✓⇤k > �1 and

Mn/
p
n < k✓ � ✓⇤k < �1 separately. For k✓ � ✓⇤k > �1 the claim trivially follows from

(1.22). We are left to deal with the case Mn/
p
n < k✓ � ✓⇤k < �1. We write

1

n
{`(✓)� `(✓⇤)} = Dn(✓, ✓⇤) + D̄n(✓, ✓⇤).

where Dn(✓, ✓⇤) = [{`(✓) � `(✓⇤)} � En
0{`(✓) � `(✓⇤)}]/n and D̄n(✓, ✓⇤) = En

0{`(✓) �

`(✓⇤)}/n. Note that Assumption R1 implies that D̄n(✓, ✓⇤) is concave in k✓ � ✓⇤k < �1

with Hessian �I✓⇤/n. Since I✓⇤/n is positive definite from Assumption 6, for su�ciently

small choice of ⇢ > 0 it follows

D̄n(✓, ✓⇤) � ⇢ist(✓ � ✓⇤)s(✓ � ✓⇤)t/n

� ⇢�min(I✓⇤/n)(✓ � ✓⇤)s(✓ � ✓⇤)s  �⇢⌘1k✓ � ✓⇤k
2
.

In addition, define the event An,5 = {sup0<k✓�✓⇤k<�1 Dn(✓, ✓⇤)/k✓� ✓⇤k < c̃1M̃n/
p
n} for

a su�ciently large constant c̃1 and a sequence M̃n which goes to infinity arbitrary slow.

Note that P n
0 (An,5) = 1� o(1) from Assumption R2. As a consequence, conditioned on
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An,5, we have for every ✓ such that 0 < k✓ � ✓⇤k < �1 that

Dn(✓, ✓⇤) + D̄n(✓, ✓⇤) c̃1k✓ � ✓⇤kM̃n/
p
n� ⇢⌘1k✓ � ✓⇤k

2

={c̃1M̃n/(k✓ � ✓⇤k
p
n)� ⇢⌘1}k✓ � ✓⇤k

2
.

Since M̃n can be chosen such that M̃n/Mn ! 0, the first component in the right-

hand-side of the last display becomes always negative for n large enough and the whole

expression is asymptotically maximized when k✓ � ✓⇤k is at its minimum. This implies

sup
Mn/

p
n<k✓�✓⇤k<�1

Dn(✓, ✓⇤) + D̄n(✓, ✓⇤)  �c5M
2
n/n,

for some c5 > 0, with P
n
0 -probability tending to one. This concludes the proof of the

lemma.

A.2 Proofs main results of Chapter 2

This section collects the proof for Theorem 2.1 and Theorem 2.3 which were given

in Chapter 2.The notation is the same as the main part of the thesis.

A.2.1 Proof of Theorem 2.1

Proof. The proof of Theorem 2.1 is closely related to the ones of Theorem 1.3 and

Corollary 1.7. The main additional step is the need to condition on the event Bn =

{k✓̂� ✓⇤k  Mn/
p
n} in order to deal with the set K̂n = {✓ :

p
nk✓� ✓̂k < 2Mn} using

what has been proved in Corollary 1.7 for Kn = {✓ :
p
nk✓ � ✓⇤k < Mn}.

We start by splitting the problem in three parts

Z
|⇡n(ĥ)� 2�d(ĥ; 0, ⌦̂)ŵ(ĥ)|dh 

Z
|⇡n(ĥ)� ⇡

K̂n
n (ĥ)|dĥ

+

Z
|⇡

K̂n
n (ĥ)� 2�K̂n

d (ĥ; 0, ⌦̂)ŵ(ĥ)|dĥ

+

Z
|2�d(ĥ; 0, ⌦̂)ŵ(ĥ)� 2�K̂n

d (ĥ; 0, ⌦̂)ŵ(ĥ)|dĥ,

(A.8)

where

⇡
K̂n
n (ĥ) = ⇡n(ĥ) ĥ2K̂n

/

Z

K̂n

⇡n(ĥ)dĥ,

2�K̂n
d (ĥ; 0, ⌦̂)ŵ(ĥ) = 2�d(ĥ; 0, ⌦̂)ŵ(ĥ) ĥ2K̂n

/

Z

K̂n

2�d(ĥ; 0, ⌦̂)ŵ(ĥ)dĥ,
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are versions of ⇡n(ĥ) and 2�d(ĥ; 0, ⌦̂)ŵ(ĥ) conditioned to K̂n.

A standard inequality of the total variation norm gives
R
|⇡n(ĥ) � ⇡

K̂n
n (ĥ)|dĥ 

2⇧n(K̂c
n). We show below that ⇧n(K̂c

n) is OPn
0
(n�1). To this end, note that, from

assumption M1 and Markov’s inequality it follows P
n
0 Bn = 1 � o(1). From triangle

inequality and the definition of Bn we get

⇧n(K̂
c
n) Bn  ⇧n({✓ : k✓ � ✓⇤k > Mn/

p
n}) Bn .

In view of Lemma 1.10 the right-hand-side of the previous display is of order OPn
0
(n�1)

and, as a consequence, the same is true for ⇧n(K̂c
n). This implies

Z
|⇡n(ĥ)� ⇡

K̂n
n (ĥ)|dĥ = OPn

0
(n�1), (A.9)

for a su�ciently large choice of c0 in Mn.

We deal with the third term in a similar manner. The same total variation inequality

and the skew-symmetric invariance with respect to even functions (see e.g. Azzalini and

Capitanio, 2014, Prop. 1.4 ) give

Z
|2�d(ĥ; 0, ⌦̂)ŵ(ĥ)� 2�K̂n

d (ĥ; 0, ⌦̂)ŵ(ĥ)|dĥ 2

Z

ĥ : kĥk>2Mn

2�d(ĥ; 0, ⌦̂)ŵ(ĥ)dĥ

=2

Z

ĥ : kĥk>2Mn

�d(ĥ; 0, ⌦̂)dĥ.

Let P0,⌦̂(kĥk > 2Mn) :=
R
ĥ : kĥk>2Mn

�d(ĥ; 0, ⌦̂)dh, and recall Ân,0 = {�min(⌦̂�1) >

⌘̄1} \ {�max(⌦̂�1) < ⌘̄2}. For every ✏ > 0, Assumption M2 implies

P
n
0

⇣
nP0,⌦̂(kĥk > 2Mn) > ✏

⌘
= P

n
0

⇣
{nP0,⌦̂(kĥk > 2Mn) > ✏} \ Ân,0

⌘
+ o(1)

 P
n
0

⇣
ne

�c̃1M2
n > ✏|Ân,0

⌘
+ o(1) = o(1),

(A.10)

where c̃1 is a su�ciently small positive constant and the last inequality follows from

the tail behavior of the multivariate Gaussian for a su�ciently large choice of c0 in

Mn =
p
c0 log n. This gives

Z
|2�d(ĥ; 0, ⌦̂)ŵ(ĥ)� 2�K̂n

d (ĥ; 0, ⌦̂)ŵ(ĥ)|dĥ = oPn
0
(n�1). (A.11)

We are left to deal with
R
|⇡

K̂n
n (ĥ)� 2�K̂n

d (ĥ; 0, ⌦̂)ŵ(ĥ)|dĥ. Define

Ân,1 = Ân,0 \ {

Z

K̂n

⇡n(ĥ)dĥ > 0} \ {

Z

K̂n

2�d(ĥ; 0, ⌦̂)ŵ(ĥ)dĥ > 0}.
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Note that P n
0 {
R
K̂n

⇡n(ĥ)dĥ > 0} = 1�o(1), by the order of ⇧n(K̂c
n) derived above (A.9),

and P
n
0 {
R
K̂n

2�d(ĥ; 0, ⌦̂)ŵ(ĥ)dĥ > 0} = 1 � o(1) by (A.10), which implies P
n
0 Ân,1 =

1 � o(1). As a consequence we can work similarly as in the proof of Theorem 1.3, use

Lemma B.3 and e
x = 1 + x+ e

�x
x
2
/2, for some � 2 (0, 1), to obtain

Z
|⇡

K̂n
n (ĥ)� 2�K̂n

d (ĥ; 0, ⌦̂)ŵ(ĥ)|dĥ Ân,1



Z

K̂n⇥K̂n

���1� e
r̂n,4(ĝ)�r̂n,4(ĥ)

���⇡K̂n
n (ĥ)2�K̂n

d (ĝ; 0, ⌦̂)w(ĝ)dĥdĝ Ân,1

 2|r̂n,4|+ 2 exp(2�|r̂n,4|)(r̂n,4)
2 = OPn

0
(M c8

n /n),

(A.12)

for r̂n,4 := supĥ,ĝ2K̂n
r̂n,4(h) and some constant c8 defined in Lemma B.3. The result

reported in Equation (2.2) is obtained by aggregating (A.9), (A.11) and (A.12).

It remains to deal with (2.3). Note that it is su�cient to prove the statement for

kĥk
r. Using triangle inequality it is possible to split the problem in three parts

Z
kĥk

r
|⇡n(ĥ)� p̂

n
sks(ĥ)|dĥ 

Z

K̂c
n

kĥk
r
⇡n(ĥ)dĥ+

Z

K̂c
n

kĥk
r
p̂
n
sks(ĥ)dĥ

+

Z

K̂n

kĥk
r
|⇡n(ĥ)� p̂

n
sks(ĥ)|dĥ.

(A.13)

To bound the first element on the right-hand-side of the inequality we note that, from

Assumption 8 and the fact that P
n
0 B

c
n = o(1) where Bn = {k✓̂ � ✓⇤k  Mn/

p
n}, it

follows

lim
n!1

P
n
0 { sup

k✓�✓̂k>2Mn/
p
n

1

n
{`(✓)� `(✓̂)} < �

c̃2M
2
n

n
} = 1,

for some c̃2 > 0. Moreover, conditioned on Bn, Kn ⇢ K̂n which, combined with equation

(A.7) of Lemma 1.10, implies that
R
e
`(✓̂+ĥ/

p
n)�`(✓̂)

⇡(✓̂+ĥ/
p
n)dĥ >

R
K̂n

e
`(✓̂+ĥ/

p
n)�`(✓̂)

⇡(✓̂+

ĥ/
p
n)dĥ is positive and bounded away from zero with P

n
0 -probability tending to one.

Let

Ãn,2 =Ãn,1 \ {

Z
e
`(✓̂+ĥ/

p
n)�`(✓̂)

⇡(✓̂ + ĥ/
p
n)dĥ > c̃2}

\ { sup
k✓�✓̂k>2Mn/

p
n

{`(✓)� `(✓̂)}/n < �c̃2M
2
n/n},

and note that from Assumptions M1 and 8, together with K
c
n � K̂

c
n, imply P

n
0 Ãn,2 =

1 � o(1), for some fixed small positive constant c̃2. By combining these two facts with
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R
kĥk

r
⇡(✓̂ + ĥ/

p
n)dĥ < 1 and Jensen’s inequality we obtain

Z

K̂c
n

kĥk
r
⇡n(ĥ)dĥ Ãn,2



Z

K̂c
n

kĥk
r e

`(✓̂+ĥ/
p
n)�`(✓̂)

⇡(✓̂ + ĥ/
p
n)

R
K̂n

e`(✓̂+ĝ/
p
n)�`(✓̂)⇡(✓̂ + ĝ/

p
n)dĝ

dĥ Ãn,2

. 1

nc0c̃2

Z
kĥk

r
⇡(✓̂ + ĥ/

p
n)dĥ Ãn,2

= o(n�1),

for a su�ciently large choice of c0. Since P
n
0 Ãn,2 = 1� o(1), this implies

Z

K̂c
n

kĥk
r
⇡n(ĥ)dĥ = oPn

0
(n�1). (A.14)

Similarly, conditioned on Ân,0, the boundedness of ŵ(ĥ), together with the tail behavior

of the Gaussian distribution implies

Z

K̂c
n

kĥk
r
p̂
n
sks(ĥ)dĥ An,0 2

Z

K̂c
n

kĥk
r
�d(ĥ; 0, ⌦̂)dĥ An,0 = o(n�1),

for a su�ciently large choice of c0. In turn, this implies

Z

K̂c
n

kĥk
r
p̂
n
sks(ĥ)dĥ = oPn

0
(n�1). (A.15)

Finally, (2.2) implies

Z

K̂n

kĥk
r
��⇡n(ĥ)� p̂

n
sks(ĥ)

��dĥ  (2Mn)
r

Z
|⇡n(ĥ)� p̂

n
sks(ĥ)|dĥ = OPn

0
(M c8+r

n /n), (A.16)

where c8 is defined in (2.2). Equation (2.3) follows by the combination of (A.14), (A.15)

and (A.16).

A.2.2 Proof of Theorem 2.3

Proof. Let K̂n,C = {ĥC : kĥCk < 2Mn}. The total variation distance between ⇡n,C(ĥC)

and p̂
n
sks,C is given by (1/2)

R
|⇡n,C(ĥC) � p

n
sks,C(ĥC)|dhC. By adding and subtracting

R
p
n
sks(ĥ)dĥC̄ and by exploiting Jensen’s and triangle inequality, we obtain the following

upper bound

Z
|⇡n,C(ĥC)� p

n
sks,C(ĥC)|dĥC 

Z
|⇡n(ĥ)� p

n
sks(ĥ)|dĥ+

Z
|

Z
p
n
sks(ĥ)dĥC̄ � p

n
sks,C(ĥC)|dĥC.
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It follows from Theorem 2.1 that

Z
|⇡n(ĥ)� p

n
sks(ĥ)|dĥ = OPn

0
(M c8

n /n), (A.17)

for some c8 > 0. Therefore, it is su�cient to study
R
|
R
p
n
sks(ĥ)dĥC̄ � p

n
sks,C(ĥC)|dĥC.

Note that, from (2.11), it follows that

Z
p
n
sks(ĥ)dĥC̄ � p

n
sks,C(ĥC) = 2�dC(ĥC; 0, ⌦̂CC)EĥC̄ |ĥC

h
F (↵̂⌘(ĥ))� F (EĥC̄ |ĥC

{↵̂⌘(ĥ)})
i
.

Let Cn,0 = {�min(⌦̂CC) > ⌘1,C} \ {�max(⌦̂CC) < ⌘2,C} for some fixed ⌘1,C, ⌘2,C > 0. From

Assumption M2 and Lemma B.4 it follows P
n
0 Cn,0 = 1 � o(1). We condition on Cn,0,

and we split the integral

Z ���2�dC(ĥC; 0, ⌦̂CC)EĥC̄ |ĥC

h
F (↵̂⌘(ĥ))� F (EĥC̄ |ĥC

{↵̂⌘(ĥ)})
i���dĥC Cn,0 ,

between K̂n,C and K̂
c
n,C. It follows from the boundedness of EĥC̄ |ĥC

h
F (↵̂⌘(ĥ))�F (EĥC̄ |ĥC

{↵̂⌘(ĥ)})
i

and from the tail behavior of the Gaussian distribution that

Z

ĥC2K̂c
n,C

���2�dC(ĥC ; 0, ⌦̂CC)EĥC̄ |ĥC

h
F (↵̂⌘(ĥ))� F (EĥC̄ |ĥC

{↵̂⌘(ĥ)})
i���dĥC Cn,0  4e�c̃1M2

n ,

for some constant c̃1 > 0, which in turn implies that

Z

ĥC2K̂c
n,C

���2�dC(ĥC; 0, ⌦̂CC)EĥC̄ |ĥC

h
F (↵̂⌘(ĥ))� F (EĥC̄ |ĥC

{↵̂⌘(ĥ)})
i���dĥC = OPn

0
(n�1),

(A.18)

for a su�ciently large constant c0 in Mn. In addition, from Lemma B.5 it follows

sup
ĥC2K̂n,C

���EĥC̄ |ĥC

h
F (↵̂⌘(ĥ))� F (EĥC̄ |ĥC

{↵̂⌘(ĥ)})
i��� = OPn

0
(M c10

n /n),

from some c10 > 0, which implies

Z

ĥC2K̂n,C

���2�dC(ĥC ; 0, ⌦̂CC)EĥC̄ |ĥC

h
F (↵⌘(ĥ))� F (EĥC̄ |ĥC

{↵⌘(ĥ)})
i���dĥC Cn,0 = OPn

0
(M c10

n /n).

(A.19)

The combination of (A.17),(A.18) and (A.19) concludes the proof of the theorem with

c9 = c8 _ c10.
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A.3 Proofs main results of Chapter 3

This section reports the proofs of the theoretical results introduced in Chapter 3.

The notation is the same as the main part of the thesis.

A.3.1 Proof of Lemma 3.1

Proof. Without loss of generality consider the case ✓̃ = 0. Moreover, to lighten the

notation we drop ✓̃ from ⇡̄n,✓̃(✓),f
⇤
✓̃
(✓) and f

⇤
✓̃
(✓) and we write ⇥ = ⇥+ [ ⇥� where for

every ✓ 2 ⇥+ it holds �✓ 2 ⇥�.

First, we deal with the case in which D[·||·] = D↵[·||·] is an ↵-divergence. Assume

that ↵ is fixed and ↵ /2 {0, 1}. By exploiting the skew-symmetric representation of the

posterior distribution (3.3), w⇤(�✓) = 1 � w
⇤(✓) , 0  w

⇤(✓)  1 and the symmetry of

⇡̄n(✓) and f
⇤(✓) we obtain

D↵[⇡n(✓) || f
⇤(✓)]�D↵[⇡̄n(✓) || f

⇤(✓)]

=
1

↵(1� ↵)

Z ⇥
⇡̄n(✓)

↵
f
⇤(✓)1�↵

� {2⇡̄n(✓)w
⇤(✓)}↵f ⇤(✓)1�↵

⇤
d✓

=

Z

⇥+

⇥
2� {2w⇤(✓)}↵ � {2(1� w

⇤(✓))}↵
⇤
⇡̄n(✓)

↵
f
⇤(✓)1�↵

d✓.

(A.20)

Now, note that the function (k) =
⇥
2� (2k)↵ � {2(1� k)}↵

⇤
/{↵(1� ↵)} has first and

second derivative, with respect to k, equal to 2{�(2k)↵�1 + {2(1� k)}↵�1
}/(1�↵) and

4{(2k)↵�1 + {2(1 � k)}↵�1
}, respectively. For k 2

⇥
0, 1
⇤
, the fist derivative is equal to

zero if and only if k = 1� k = 0.5 while the second derivative is always positive. This

implies that k = 0.5 is a point of minimum. Since (0.5) = 0, it follows from ⇡̄n(✓)↵ > 0

f
⇤(✓)1�↵

> 0 that the last integral in (A.20) is always grater than or equal to zero,

implying, in turn,

D↵[⇡̄n(✓) || f
⇤(✓)]  D↵[⇡n(✓) || f

⇤(✓)], (A.21)

for any ↵ /2 0, 1. We are left to the cases ↵ ! 1 and ↵ ! 0.

In this regard, a useful fact is that, for two generic densities p(✓) and q(✓), lim↵!1 D↵[p(✓) ||

q(✓)] = KL[p(✓) || q(✓)] while lim↵!0 D↵[p(✓) || q(✓)] = KL[q(✓) || p(✓)] (see e.g., Ci-

chocki and Amari, 2010). As a consequence, by exploiting again w
⇤(�✓) = 1 � w

⇤(✓),
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0  w
⇤(✓)  1 and the symmetry of ⇡̄n(✓) and f

⇤(✓) we get

lim
↵!1

D↵[⇡n(✓) || f
⇤(✓)]�D↵[⇡̄n(✓) || f

⇤(✓)]

=kl[⇡n(✓) || f
⇤(✓)]� kl[⇡̄n(✓) || f

⇤(✓)]

=

Z h
2w⇤(✓) log

�
2w⇤(✓)

�i
⇡̄n(✓)d✓

=

Z

⇥+

⇥
2w⇤(✓) log

�
2w⇤(✓)

�
+ 2(1� w

⇤(✓)) log
�
2{1� w

⇤(✓)}
�⇤
⇡̄n(✓)d✓.

(A.22)

The function 1(k) = 2k log
�
2k
�
+2(1�k) log

�
2{1�k}

�
has first and second derivative,

with respect to k, equal to 2{log(k)� log({1�k})} and 2(1/k+1/(1�k)), respectively.

For k 2
⇥
0, 1
⇤
, the first derivative is equal to zero when k = 1�k = 0.5 while the second

derivative is always positive. As a consequence, k = 0.5 is a point of minimum for 1(·).

Since 1(0.5) = 0 and ⇡̄n(✓)↵ > 0 the last line in (A.22) is always grater or equal then

zero. As a result,

kl[⇡n(✓) || f
⇤(✓)]� kl[⇡̄n(✓) || f

⇤(✓)] � 0. (A.23)

Finally, for the case ↵ ! 0 we use again w
⇤(�✓) = 1�w

⇤(✓), 0  w
⇤(✓)  1 and the

symmetry of f ⇤(✓) to obtain

lim
↵!0

D↵[⇡n(✓) || f
⇤(✓)]�D↵[⇡̄n(✓) || f

⇤(✓)]

=kl[f ⇤(✓) || ⇡n(✓)]� kl[f ⇤(✓) || ⇡̄n(✓)]

=�

Z
log(2w⇤(✓))f ⇤(✓)d✓ = �

Z ⇥
log(2w⇤(✓)) + log(2{1� w

⇤(✓)})
⇤
f
⇤(✓)d✓.

(A.24)

The function 2(k) = �
⇥
log(2k) + log(2{1 � k})

⇤
, with k 2 [0, 1], has first derivative

equal to�{1/k�1/(1�k)} while the second derivative takes the form {1/k2+1/(1�k)2}.

As in the previous cases, the first derivatives cancel-out at k = 0.5 while the second one

is always positive, indicating that 2(0.5) = 0 is a point of minimum. This implies,

kl[f ⇤(✓) || ⇡n(✓)]� kl[f ⇤(✓) || ⇡̄n(✓)] � 0. (A.25)

The statement of the lemma regarding the ↵-divergences follows by aggregating

(A.21),(A.23) and (A.25).

We are left to deal with the total variation. To this end it is su�cient to note

that by the skew-symmetric representation of the posterior distribution (3.3), w⇤(�✓) =

1 � w
⇤(✓) , 0  w

⇤(✓)  1 and the symmetry of ⇡̄n(✓) and f
⇤(✓) it follows from the
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triangle inequality

2
⇣
DTV[⇡n(✓) || f

⇤(✓)]�DTV[⇡̄n(✓) || f
⇤(✓)]

⌘

=

Z ��2⇡̄n(✓)w
⇤(✓)� f

⇤(✓)
��d✓ �

Z ��⇡̄n(✓)� f
⇤(✓)

��d✓

=

Z

⇥+

n��2⇡̄n(✓)w
⇤(✓)� f

⇤(✓)
��+
��2⇡̄n(✓)(1� w

⇤(✓))� f
⇤(✓)

��
o
d✓ �

Z ��⇡̄n(✓)� f
⇤(✓)

��d✓

�2

Z

⇥+

��⇡̄n(✓)� f
⇤(✓)

��d✓ �
Z ��⇡̄n(✓)� f

⇤(✓)
��d✓ = 0.

This concludes the proof of the lemma.

A.3.2 Proof of Theorem 3.8

Proof. To prove Theorem 3.8, note that, in view of Lemma 3.1, it is su�cent to prove

(3.7), as (3.6) directly follows from the combination of Lemma 3.1 and (3.7).

Without loss of generality consider the case ✓̃ = 0. Moreover, to lighten the notation

we drop ✓̃ from ⇡̄n,✓̃(✓),f
⇤
✓̃
(✓),q⇤

✓̃
(✓) and f

⇤
✓̃
(✓). Let also, ⇥ = ⇥+ [ ⇥� where for every

✓ 2 ⇥+ it holds �✓ 2 ⇥�.

Consider the case in which D[·||·] = Dtv[·||·] is the total variation distance. By ex-

ploiting the skew-symmetric representation of the posterior distribution (3.3), w⇤(�✓) =

1� w
⇤(✓) , 0  w

⇤(✓)  1, the symmetry of ⇡̄n(✓) and f
⇤(✓) we obtain

DTV[⇡n(✓) || q
⇤(✓)] =

1

2

Z ��2⇡̄n(✓)w
⇤(✓)� 2f ⇤(✓)w⇤(✓)

��d✓

=
1

2

Z

⇥+

n
2w⇤(✓)

��⇡̄n(✓)� f
⇤(✓)

��+ 2(1� w
⇤(✓))

��⇡̄n(✓)� f
⇤(✓)

��
o
d✓

=

Z

⇥+

��⇡̄n(✓)� f
⇤(✓)

��d✓ = DTV[⇡̄n(✓) || f
⇤(✓)].

(A.26)

This proves the validity of (3.7) for the total variation distance.

Now consider the case in which D[·||·] = D↵[·||·] is an ↵-divergence. From the defini-

tion of ↵-divergence and the same arguments as above it easily follows that

D↵[⇡n(✓) || q
⇤(✓)] =

1

↵(1� ↵)

�
1�

Z
2w⇤(✓)⇡̄n(✓)

↵
f
⇤(✓)1�↵

d✓
 

=
1

↵(1� ↵)

�
1� 2

Z

⇥+

⇡̄n(✓)
↵
f
⇤(✓)1�↵

d✓
 
= D↵[⇡̄n(✓) || f

⇤(✓)].
(A.27)

Note that (A.27) holds also in the cases when ↵ ! 0 and ↵ ! 1. This because

{2w⇤(✓)↵}{2w⇤(✓)1�↵
} = 2w⇤(✓) for every ↵ 2 [0, 1]. The combination of (A.26) and
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(A.27) concludes the proof of the theorem.

A.3.3 Proof of Theorem 3.9

Proof. Without loss of generality consider the case ✓̃ = 0 and drop ✓̃ from ⇡̄n,✓̃(✓),f
⇤
✓̃
(✓),

q✓̃(✓), q
⇤
✓̃
(✓) and f

⇤
✓̃
(✓). Recall also that ⇥ = ⇥+ [ ⇥� where for every ✓ 2 ⇥+ it holds

�✓ 2 ⇥�.

In the following, we exploit the skew-symmetric representation of the posterior dis-

tribution 2⇡̄n(✓)w⇤(✓) introduced in Proposition 3.4, as well as, the properties of the

skewing factors w(✓) and w
⇤(✓).

For the total variation distance case, triangle inequality and equation (3.7) in Theo-

rem 3.8 imply

Dtv[⇡n(✓) || q(✓)] =
1

2

Z ��2⇡̄n(✓)w
⇤(✓)� 2f ⇤(✓)w(✓)

��d✓

=
1

2

Z

⇥+

��2⇡̄n(✓)w
⇤(✓)� 2f ⇤(✓)w(✓)

��+
��2⇡̄n(✓)(1� w

⇤(✓))� 2f ⇤(✓)(1� w(✓))
��d✓

�
1

2

Z ��⇡̄n(✓)� f
⇤(✓)

��d✓ = Dtv[⇡n(✓) || q
⇤(✓)].

(A.28)

For what concerns the ↵-divergences, consider first the case with fixed ↵ /2 {0, 1}.

From equation (3.7) of Theorem 3.8 it follows

D↵[⇡n(✓) || q(✓)]�D↵[⇡n(✓) || q
⇤(✓)]

=
1

↵(1� ↵)

h Z
⇡̄n(✓)

↵
f
⇤(✓)1�↵

d✓ �

Z
{2⇡̄n(✓)w

⇤(✓)}↵{2f ⇤(✓)w(✓)}1�↵
d✓

i

=
2

↵(1� ↵)

Z

⇥+

⇥
1� w

⇤(✓)↵w(✓)1�↵
� {1� w

⇤(✓)}↵{1� w(✓)}1�↵
⇤
⇡̄n(✓)

↵
f
⇤(✓)1�↵

d✓.

We study the behavior of the function 3(k, v) =
⇥
1�k

↵
v
1�↵

�{1�k}
↵
{1�v}

1�↵
⇤
/{↵(1�

↵)}. To do it, fix k 2 (0, 1) and denote with 3,k(v) the function obtained from 3(k, v)

when maintaining k fixed. Note now that, for every ↵ /2 {0, 1}

lim
v!0+

3,k(v) � 0, and lim
v!1�

3,k(v) � 0.

Moreover, 3,k(v) is continuous in (0, 1) with first derivative
⇥
� k

↵
v
�↵ + {1� k}

↵
{1�

v}
�↵
⇤
/↵ which cancels out if and only if k = v and second derivative

⇥
k
↵
v
�(↵+1) + {1�

k}
↵
{1� v}

�(↵+1)
⇤
which is always positive for v 2 (0, 1). Since 3,k(k) = 0, this implies

3,k(v) � 0. To show that 3(k, v) � 0 for every fixed ↵ /2 {0, 1} we need to check also

the behavior of 3(k, v) at the boundary of its domain. To this end, note that the cases



80 Appendix A

in which both k and v are zero should be discarded as they represent points where all

⇡n, q(✓) and q
⇤(✓) have null mass. If k ! 0+ and v is fixed and bigger than 0, we get

lim
k!0+

3(k, v) =

8
>>><

>>>:

� 0 if ↵ 2 (0, 1),

+1 if ↵ < 0,

� 0 if ↵ > 1,

and the same limits hold for k ! 1� and v 2 (0, 1), fixed. In addition, if k ! 1� and

v ! 0+

lim
k!1�,v!0+

3(k, v) =

8
<

:
1 if ↵ 2 (0, 1),

+1 if ↵ < 0 or ↵ > 1.

Finally, for k ! 1�, v ! 1� and ↵ 2 (0, 1) we get limk!1�,v!1� 3(k, v) = 0. On

the contrary, for the case ↵ < 0 or ↵ > 1 the limit does not necessary exists but

�(1 � k)↵(1 � v)1�↵
/{↵(1 � ↵)} is always a non negative quantity. As a consequence,

3(k, v) � (1� k
↵
v
1�↵)/{↵(1� ↵)} with limk!1�,v!1�(1� k

↵
v
1�↵)/{↵(1� ↵)} = 0.

All these considerations imply, for fixed ↵ /2 {0, 1}, that

D↵[⇡n(✓) || q(✓)] � D↵[⇡n(✓) || q
⇤(✓)]. (A.29)

To conclude the proof of the theorem we need to study the limits ↵ ! 0 and ↵ ! 1.

As in the proof of Theorem 3.8 we use the fact that this cases correspond to Kullback-

Leibler divergences (see e.g. Cichocki and Amari, 2010). When ↵ ! 1

lim
↵!1

D↵[⇡n(✓) || q(✓)] = kl[⇡n(✓) || q(✓)]

=

Z
log
⇣2⇡̄n(✓)w⇤(✓)

2f ⇤(✓)w(✓)

⌘
2⇡̄n(✓)w

⇤(✓)d✓

=

Z
log
⇣2⇡̄n(✓)w⇤(✓)

2⇡̄n(✓)w(✓)

⌘
2⇡̄n(✓)w

⇤(✓)d✓ +

Z
log
⇣2⇡̄n(✓)w(✓)

2f ⇤(✓)w(✓)

⌘
2⇡̄n(✓)w

⇤(✓)d✓

= kl[⇡n(✓) || 2⇡̄n(✓)w(✓)] + kl[⇡̄n(✓) || f
⇤(✓)]

� kl[⇡̄n(✓) || f
⇤(✓)] = kl[⇡n(✓) || q

⇤(✓)],

(A.30)

with the second equality which follows by adding and subtracting
R
log(2⇡̄n(✓)w(✓))

2⇡̄n(✓)w⇤(✓)d✓, the third by the definition of kl-divergence, as well as, w⇤(�✓) = 1 �

w
⇤(✓), the inequality from the positive definiteness of the kl-divergence and the last
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equality form (3.7) of Theorem 3.8. The statement

lim
↵!0

D↵[⇡n(✓) || q(✓)] = kl[q(✓) || ⇡n(✓)]

� kl[f ⇤(✓) || ⇡̄n(✓)] = kl[q⇤(✓) || ⇡n(✓)],
(A.31)

follows as in (A.30) with the role of ⇡n(✓) and q(✓) reversed. The combination of (A.28),

(A.29),(A.30) and (A.31) completes the proof of the theorem.

A.3.4 Proof of Theorem 3.12

Proof. To prove Theorem 3.12, we demonstrate the validity of (3.11), (3.10) follows

in a similar manner but with less technical steps. For practical convenience, in view

of the invariance of the total variation distance with respect to scale and location

transformations, we proceed by reparameterizing with respect to ĥ =
p
n(✓ � ✓̂).

Note that, in this parametrization, the approximating density q✓̃,2(ĥ) transforms to

2�d(ĥ; 0, ⌦̃)P (ĥ)w0(ĥ)/E0,⌦̃{P (ĥ)} where ⌦̃�1 = �(`(2)
✓̂

+ log ⇡(2)

✓̂
)/n, w0(ĥ) = w✓̂(✓̂ +

ĥ/
p
n), E0,⌦̃{P (ĥ)} =

R
P (ĥ)�d(ĥ; 0, ⌦̃)dĥ and

P (ĥ) = 1 +
â
(4)

✓̂,stlk
ĥsĥtĥlĥk

24n
+

1

2

⇣ â(4)
✓̂,stlk

ĥsĥtĥlĥk

24n

⌘2
+

1

2

⇣ â(3)
✓̂,stl

ĥsĥtĥl

6
p
n

⌘2
,

with â
(3)

✓̂
= `

(3)

✓̂
/n and â

(4)

✓̂
= `

(4)

✓̂
/n. In addition, define also the event Bn = {k✓̂� ✓⇤k 

Mn/
p
n} and the sets K̂n = {✓ : k

p
n(✓ � ✓̂)k < 2Mn} and Kn = {✓ : k

p
n(✓ � ✓⇤)k <

Mn}.

As a first step we split the problem in three parts

Z
|⇡n(ĥ)� 2�d(ĥ; 0, ⌦̃)P (ĥ)w0(ĥ)|dh 

Z
|⇡n(ĥ)� ⇡

K̂n
n (ĥ)|dĥ

+

Z
|⇡

K̂n
n (ĥ)� 2�K̂n

d (ĥ; 0, ⌦̃)P (ĥ)w0(ĥ)|dĥ

+

Z
|2�d(ĥ; 0, ⌦̃)P (ĥ)w0(ĥ)/E0,⌦̃{P (ĥ)}� 2�K̂n

d (ĥ; 0, ⌦̃)P (ĥ)w0(ĥ)|dĥ,

(A.32)

where

⇡
K̂n
n (ĥ) = ⇡n(ĥ) ĥ2K̂n

/

Z

K̂n

⇡n(ĥ)dĥ,

2�K̂n
d (ĥ; 0, ⌦̃)P (ĥ)w0(ĥ) = 2�d(ĥ; 0, ⌦̃)P (ĥ)w0(ĥ) ĥ2K̂n

/

Z

K̂n

2�d(ĥ; 0, ⌦̃)P (ĥ)w0(ĥ)dĥ,

are versions of ⇡n(ĥ) and 2�d(ĥ; 0, ⌦̃)P (ĥ)w0(ĥ) conditioned to K̂n. Notice that, since
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w0(�ĥ) = 1�w0(ĥ) and that K̂n is symmetric about 0, the normalizing constant of the

skew-symmetric approximation can be equivalently rewritten as
R
K̂n

2�d(ĥ; 0, ⌦̃)P (ĥ)w0(ĥ)

dĥ =
R
K̂n

�d(ĥ; 0, ⌦̃)P (ĥ)dĥ.

In view of a standard inequality of the total variation distance, we get
R
|⇡n(ĥ) �

⇡
K̂n
n (ĥ)|dĥ  2⇧n(K̂c

n). Moreover note that, from assumption M1 and Markov’s inequal-

ity it follows P
n
0 Bn = 1 � o(1). As a consequence, from triangle inequality and the

definitions of Bn, Kn and K̂n we get

⇧n(K̂
c
n) Bn  ⇧n(K

c
n) Bn .

From Lemma 1.10, with a su�ciently large choice of c0 in Mn, the right-hand-side of

the previous display is of order OPn
0
(n�2) and the same is true for ⇧n(K̂c

n), implying in

turn, Z
|⇡n(ĥ)� ⇡

K̂n
n (ĥ)|dĥ = OPn

0
(n�2). (A.33)

In order to deal with the third term in the right-hand-side of (A.32), we exploit the

same total variation inequality. This, the symmetry of the set K̂
c
n with respect to 0

and the skew-symmetric invariance with respect to even functions (see e.g. Azzalini and

Capitanio, 2014, Prop. 1.4 ) give

Z
|2�d(ĥ; 0, ⌦̃)P (ĥ)w0(ĥ)/E0,⌦̃{P (ĥ)}� 2�K̂n

d (ĥ; 0, ⌦̃)P (ĥ)w0(ĥ)|dĥ

2

Z

ĥ : kĥk>2Mn

2�d(ĥ; 0, ⌦̃)P (ĥ)w0(ĥ)/E0,⌦̃{P (ĥ)}dĥ

=2

Z

ĥ : kĥk>2Mn

�d(ĥ; 0, ⌦̃)P (ĥ)/E0,⌦̃{P (ĥ)}dĥ.

Recall that Ãn,0 = {�min(⌦̃�1) > ⌘̄1} \ {�max(⌦̃�1) < ⌘̄2}. Conditioned on Ãn,0,

E0,⌦̃{P (ĥ)} lies on a bounded positive range and, for n su�ciently large,

1� log{P (ĥ)}/(ĥ|⌦̃�1
ĥ/2) > 0.5,

uniformly in ĥ. As a consequence, for large n,

2

Z

ĥ : kĥk>2Mn

�d(ĥ; 0, ⌦̃)P (ĥ)/E0,⌦̃{P (ĥ)}dĥ Ãn,0
. 2

Z

ĥ : kĥk>2Mn

�d(ĥ; 0, 2⌦̃)dĥ Ãn,0
.

(A.34)
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For every ✏ > 0, Assumption M3, the tail behavior of the Gaussian distribution and

su�ciently large choice of c0 in Mn =
p
c0 log n imply

P
n
0

⇣
n
2
P0,2⌦̃(kĥk > 2Mn) > ✏

⌘
= P

n
0

⇣
{n

2
P0,2⌦̃(kĥk > 2Mn) > ✏} \ Ãn,0

⌘
+ o(1)

 P
n
0

⇣
n
2
e
�c̃1M2

n > ✏|Ãn,0

⌘
+ o(1) = o(1),

(A.35)

where c̃1 is a su�ciently small positive constant. This gives

Z
|2�d(ĥ; 0, ⌦̃)P (ĥ)w0(ĥ)/E0,⌦̃{P (ĥ)}� 2�K̂n

d (ĥ; 0, ⌦̃)P (ĥ)w0(ĥ)|dĥ = OPn
0
(n�2).

(A.36)

We are left to deal with
R
|⇡

K̂n
n (ĥ)� 2�K̂n

d (ĥ; 0, ⌦̃)P (ĥ)w0(ĥ)|dĥ. To this end, define

the event

Ãn,1 = Ãn,0 \ {

Z

K̂n

⇡n(ĥ)dĥ > 0} \ {

Z

K̂n

2�d(ĥ; 0, ⌦̃)P (ĥ)w0(ĥ)dĥ > 0}.

Note that P
n
0 {
R
K̂n

⇡n(ĥ)dĥ > 0} = 1 � o(1), by the order of ⇧n(K̂c
n) derived above

(A.33), and P
n
0 {
R
K̂n

2�d(ĥ; 0, ⌦̃)P (ĥ)w0(ĥ)dĥ > 0} = 1 � o(1) by (A.34) and (A.35),

implying P
n
0 Ãn,1 = 1 � o(1). To conclude the proof of the theorem, we express the

posterior distribution in its skew-symmetric form ⇡n(ĥ) = 2⇡̄n,✓̂(ĥ)w0(ĥ). In view of

Theorem 3.8, equation (3.7), the problem can be rewritten only in terms of symmetric

densities as Z ���2⇡̄K̂n

n,✓̂
(ĥ)w0(ĥ)� 2�K̂n

d (ĥ; 0, ⌦̃)P (ĥ)w0(ĥ)
��dĥ

=

Z ���⇡̄K̂n

n,✓̂
(ĥ)� �

K̂n
d (ĥ; 0, ⌦̃)P (ĥ)

��dĥ,

with

2⇡̄K̂n

n,✓̂
(ĥ)w0(ĥ) = 2⇡̄n,✓̂(ĥ)w0(ĥ) ĥ2K̂n

/

Z

K̂n

2⇡̄n,✓̂(ĥ)w0(ĥ)dĥ,

where, in view of the properties of w0(·) and of the symmetry of K̂n, the normalizing

constant can be rewritten as
R
K̂n

2⇡̄K̂n

n,✓̂
(ĥ)w0(ĥ)dĥ =

R
K̂n

⇡̄
K̂n

n,✓̂
(ĥ)dĥ.

At this point, it is su�cient to proceed as in Theorem 1.3. We restrict our attention

to
Z

K̂n

|⇡̄
K̂n

n,✓̂
(ĥ)� �

K̂n
d (ĥ; 0, ⌦̃)P (ĥ)|dĥ Ãn,1

=

Z

K̂n

���1�
Z

K̂n

�
K̂n
d (ĥ; 0, ⌦̃)P (ĥ)

�
K̂n
d (ĝ; 0, ⌦̃)P (ĝ)

⇡̄
K̂n

n,✓̂
(ĝ)

⇡̄
K̂n

n,✓̂
(ĥ)

�
K̂n
d (ĝ; 0, ⌦̃)P (ĝ)dĝ

���⇡̄K̂n

n,✓̂
(ĥ)dĥ Ãn,1

.

(A.37)

where the ratios �
K̂n
d (ĥ; 0, ⌦̃)P (ĥ)/{�K̂n

d (ĝ; 0, ⌦̃)P (ĝ)} and ⇡̄
K̂n

n,✓̂
(ĥ)/⇡̄K̂n

n,✓̂
(ĝ) correspond
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to their unconditioned version �d(ĥ; 0, ⌦̃)/�d(ĝ; 0, ⌦̃) and ⇡̄n,✓̂(ĥ)/⇡̄n,✓̂(ĝ), for ĥ, ĝ 2 K̂n,

respectively. This fact and an application of Jensen inequality implies that the quantity

in the last display is upper bounded by

Z

K̂n⇥K̂n

���1�
�d(ĥ; 0, ⌦̃)P (ĥ)
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⇡̄n,✓̂(ĥ)
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x
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for some � 2 (0, 1) we obtain
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2
n,6 = OPn

0
(M c12

n /n
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(A.38)

where r̂n,6 = supĥ2K̂n
|r̂n,6(ĥ)| and c12 is some constant defined in Lemma B.6.

Equation (3.11) of Theorem 3.12 is proved by combining (A.33), (A.36) and (A.38)
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Additional results for Chapters 1 - 2

and 3

B.1 Technical lemmas

We collect in the section the technical lemmas applied in the proofs of our main

results.

Lemma B.1. Let F be the cdf of a univariate random variable on such that F (�x) =

1�F (x), F (0) = 1/2 and F (x) = F (0)+⌘x+O(x2) for some ⌘ 2 . Under Assumptions

2 and 3 it follows that

log
p
n
✓⇤+�nh

pn✓⇤

(Xn)
⇡(✓⇤ + �nh)

⇡(✓⇤)
+ (h� ⇠)s⌦
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st (h� ⇠)t/2

� log 2w(h) + � = rn,4(h),

(B.1)

where � is a constant not depending on h, ⇠ = �n
✓⇤ + �n(V n

✓⇤)
�1 log ⇡(1)

, ⌦�1 = [vnst �

a
(3),n
✓⇤,stl

⇠l]. As a consequence

↵⌘(h) =
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12⌘
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s (h� ⇠)s},

with  (1) = [a(3),n✓⇤,stl
⇠t⇠l],  (3) = [a(3),n✓⇤,stl

].

Moreover,

rn,4 := sup
h2Kn

rn,4(h) = OPn
0
(�2nM

c3
n ), (B.2)

for some constant c3 > 0.
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Proof. We start by noting that Assumptions 2 and 3 imply
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p
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Furthermore, note that
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where ⇠ = �n
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�1 log ⇡(1) and �1 is a quantity not depending on h.

Second, we add and subtract ⇠ from h in the three dimensional array part, obtaining
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where �2 does not depend on h.

By combining (B.4) and (B.5) it is possible to rewrite (B.3) as
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where ⌦�1 = V
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To conclude the proof of the lemma note that, Assumption 2, the fact that the

parameter dimension d is fixed and Cauchy-Schwarz inequality imply
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By exploiting the conditions imposed on F (·) we write,
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since the argument of F (·) converges to zero in probability. An additional Taylor ex-

pansion, this time log(1 + x) = x+O(x2) for x ! 0, gives
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where the remainder term r̃n,1(h) is OPn
0
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6
_ 1}). Note that, when restricted on

Kn, r̃n,1 = suph2Kn
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n). This fact combined with (B.6) and (B.7)

gives
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for some constant c3 > 0, concluding the proof.

Lemma B.2. Let A and Â be two d ⇥ d real symmetric matrices. Suppose that the

entries of Â are random and satisfy ast = O(1), âst = OPn
0
(1) and

ast � âst = OPn
0
(�n), (B.9)

for some norming rate �n ! 0 and s, t 2 {1, . . . , d}. If there exist two positive constants

⌘1 and ⌘2 such that �min(A) > ⌘1 and �max(A) < ⌘2 then, with P
n
0 -probability tending to

1, there exist two positive constants ⌘⇤1 and ⌘
⇤
2 such that �min(Â) > ⌘

⇤
1 and �max(Â) < ⌘

⇤
2.

Proof. Leveraging (B.9), let us first notice that Â = A+R with R having entries of

order OPn
0
(�n). As a consequence, there exist constants c̃1 > 0 and c̃2 > 1 such that

P
n
0 (|Rst| > c̃1�

c̃2
n ) = o(1),

for each s, t = 1, . . . , d. Define now the matrix M with entries Mst = |Rst| ^ c̃1�
c̃2
n for

s, t = 1, . . . , d. FromWielandt’s theorem (Zwillinger and Je↵rey, 2007), with probability

1 � o(1), the spectral radius of M is an upper bound of the spectral radius of R.
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Moreover, since M is a non-negative matrix, the Perron-Frobenius theorem (Perron,

1907; Frobenius, 1912) implies that the largest eigenvalue in absolute value is bounded

by constant times �
c̃2
n . Since both A and R are real symmetric matrices, in view of

the Weyl’s inequalities (e.g., Tao, 2011, equation (1.54)), the eigenvalues of Â and A

can di↵er at most by constant times �
c̃2
n with probability 1 � o(1). As a consequence,

since the lemma assumes the existence of two positive constants ⌘1 and ⌘2 such that

�min(A) > ⌘1 and �max(A) < ⌘2, it follows that there exist ⌘
⇤
1, ⌘

⇤
2 > 0 such that, with

probability 1� o(1), �min(Â) > ⌘
⇤
1 and �max(Â) < ⌘

⇤
2.

Lemma B.3. Let F (·) be any cdf of a univariate random variable on such that

F (�x) = 1� F (x), F (0) = 1/2 and F (x) = F (0) + ⌘x+O(x2).

Under assumption M2 it follows that
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(3),n

✓̂,stl
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Moreover,
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with K̂n = {ĥ : kĥk < 2Mn}, for some constant c8 > 0.

Proof. Let ĥ be fixed. Note that at ✓̂ the first log-posterior derivative is null by definition.

As a consequence, from Assumption M2 it follows that the third order Taylor expansion

of the log-posterior takes the form
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By combining all the pieces together we obtain
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+ ĥs⌦̂

�1
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({kĥk6 _ 1}/n) and hence r̂n,4 = OPn

0
(M c8
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Lemma B.4. Let A be a d⇥ d symmetric positive definite matrix satisfying �min(A) �

⌘1A and �max(A)  ⌘2A. Let S ✓ {1, . . . d} be a set of indexes having cardinality d⇤,

and B be the d⇤ ⇥ d⇤ submatrix obtained by keeping only rows and columns of A whose

position is in S. Then it holds that �min(B) � ⌘1A and �max(B)  ⌘2A.

Proof. Without loss of generality assume that the elements of S are increasing order.

Note, also, that B = SAS
| where S is a d⇤ ⇥ d matrix having entries sij = 1 if j = Si,

where Si denotes the i-th element of S, and sij = 0 otherwise. Recall that, from

the relation between minimum and maximum eigenvalues and the Rayleigh quotient it

follows that

�min(A) = min
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x
|
Ax

x|x
, and �max(A) = max
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.

Similarly, leveraging SS
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with the inequality that follows from the fact that {x 2
d : x = x

|
⇤S for x⇤ 2 Rd⇤} ✓

R
d
. Following the same line of reasoning it is possible to prove �max(A) � �max(B) which

concludes the proof of the lemma.

Lemma B.5. Under the assumptions stated in Theorem 2.3, for every univariate cdf

F (·) satisfying F (�x) = 1� F (x), F (0) = 1/2 and F (x) = F (0) + ⌘x+O(x2), it holds

sup
ĥC2K̂n,C
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where K̂n,C = {ĥC : kĥCk < 2Mn}, c10 denotes a positive constant and ↵̂⌘(ĥ) is as

defined in Section 2.2.

Proof. Recall that the covariance matrix ⌦̄, associated to the Gaussian measure PĥC̄ |ĥC
,

is the Schur complement of the block ⌦̂CC of the matrix ⌦̂. This implies that, in view of

Assumption M2, Lemma B.4 and the properties of the Schur complement, there exist

constants 0 < c̃1 < c̃2 < 1 such that the eigenvalues of ⌦̄ are bounded from below by

c̃1 and above by c̃2 with probability tending to one.
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As a consequence, there exists a large enough constant c0,C̄ > 0 such that the

complement of the set K̂n,C̄ = {ĥC̄ : kĥC̄ � EĥC̄ |ĥC
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We further decompose the first term on the right–hand–side of the last display by

adding and subtracting the first order Taylor expansion of F (↵̂⌘(ĥ)). Moreover, recall

that under the assumptions of Theorem 2.3, there exists c̃3 > 0 such that Ln,1 =
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| < c̃3} holds with probability P

n
0 Ln,1 = 1 � o(1). Since kĥk 

kĥCk + kĥC̄k it follows also that, conditioned on Ln,1, both supĥ2K̂n,C\K̂n,C̄
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F (↵̂⌘(ĥ))� 1/2� ⌘↵̂⌘(ĥ)
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To conclude, note that for n su�ciently large,
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with the first inequality that follows from the Taylor expansion of F (·) at 0, the equality

from ĥC̄2K̂n,C̄
= 1� ĥC̄2K̂c

n,C̄
and the last line from Cauchy-Schwarz inequality. Finally,
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for some c̃6 > 0 large enough. From the previous display it follows
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for some c̃7 large enough. The combination of (B.13), (B.14) and (B.15) concludes the

proof.

Lemma B.6. Let ĥ =
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Under Assumption M3 it follows that
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(3)

✓̂
/n and â

(4)

✓̂
= `

(4)
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/n.

In addition,

r̂n,5 := sup
ĥ2K̂n

|r̂n,5(ĥ)| = OPn
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and

r̂n,6 := sup
ĥ2K̂n

|r̂n,6(ĥ)| = OPn
0
(M c12

n /n
2), (B.19)

for some constants c11, c12 > 0.

Proof. We demonstrate the validity of (B.17) and (B.19). (B.16) and (B.18) follows in

a similar way but with less tedious algebra. For reasons of compactness we adopt the

notation
h`

(k)

✓̂
, ĥ

⌦k
i

k!nk/2
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`
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✓̂,s1···sk
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to denote the k-the element of the log-likelihood Taylor expansion. The same notation

is adopted for the Taylor expansion of the log-prior with `
(k)

✓̂
replaced by log ⇡(k)

✓̂
.

Recall that under condition M1 the event {k✓̂�✓⇤k  �} for any � > 0 has probability

tending to 1. As a consequence from Assumption M3 it is possible to expand the log-

likelihood ratio around ✓̂ as

log
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p
n
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Similarly, the Taylor expansion of the log-prior takes the form
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p
n

⇡✓̂

=
2X

k=1

hlog ⇡(k)

✓̂
, ĥ
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Combining these facts, we can write the log-posterior ratio as

˜̀(✓ + ĥ/
p
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where â
(k)
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= (`(k)
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+ log ⇡(k)
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)/n, if k  2, and â
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= `
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/n otherwise. Moreover, since ✓̂

is the posterior mode, by definition, â(1)
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= 0.

By exploiting (B.20) and e
x = 1 +O(x), x ! 0 we obtain
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Note that from Assumption M3 it follows that, for k � 2, ã(k)
✓̂

= OPn
0
(1). By exploit-

ing e
x = 1+ x+ x

2
/2 + x

3
/6 +O(x4), we can manipulate the the second multiplicative

term on the right-hand-side of the last equality of (B.21) as double the
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hâ
(2k+1)

✓̂
, ĥ
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As a consequence, recalling the asymptotic order of ã(r)
✓̂
, we can rewrite the second

multiplicative term in the right-hand-side of the last equality of (B.21) as
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To conclude, we exploit again e
x = 1+x+x

2
/2+O(x3), and the fact that even, partial,

sums of the exponential series are always positive (Zemyan, 2005). This leads to the

following higher order, non-negative, approximation of the un-normalized, symmetrized,

posterior density

1

2
exp{˜̀(✓̂ + ĥ/
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⌦2
i

2

⌘⇣
1 +

hâ
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where the last lines follows from ⌦̃ = �(â(2)
✓̂
)�1 and from the definition of P (ĥ). To

conclude, it su�ces to note that log(1 + x) = O(x) for x ! 0 and therefore,
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st ĥsĥt/2� logP (ĥ),
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Table B.1: For probit and logistic regression, estimated joint, bivariate and marginal total
variation distances between the exact posterior and the deterministic approximations under
analysis in the Cushings application. The bold values indicate the best performance for each
subset of parameters.

tv✓ tv✓01 tv✓02 tv✓12 tv✓0 tv✓1 tv✓2

Probit
skew-m 0.11 0.05 0.06 0.09 0.03 0.04 0.05

gm 0.19 0.10 0.13 0.18 0.09 0.08 0.11
ep 0.13 0.07 0.09 0.11 0.01 0.07 0.09
mf-vb 0.50 0.32 0.41 0.47 0.18 0.28 0.35
pfm-vb 0.25 0.12 0.22 0.23 0.06 0.09 0.19
Logit
skew-m 0.14 0.08 0.10 0.13 0.05 0.06 0.07

gm 0.23 0.13 0.17 0.22 0.11 0.10 0.14
ep 0.14 0.07 0.11 0.12 0.01 0.07 0.10
mf-vb 0.25 0.13 0.21 0.24 0.07 0.10 0.19

with r̂n,6(ĥ) = OPn
0

⇣
{kĥk12_1}

n2

⌘
and

r̂n,6 := sup
ĥ2K̂n

|r̂n,6(ĥ)| = OPn
0
(M c12

n /n
2),

for c12 = 12. This concludes the proof of the lemma.

B.2 Cushings dataset

This section reports some additional details regarding the real data analysis described

in Section 2.4.2. In particular, the comparison with the performance of the joint and

marginal skew-modal approximations is extended to include additional state-of-the-art

deterministic Gaussian approximation methods, such as mean-field variational Bayes

(mf-vb) (Consonni and Marin, 2007; Durante and Rigon, 2019), expectation propaga-

tion (Chopin and Ridgway, 2017) (ep) and, in the case of the probit model, partially

factorized variational Bayes (pfm-vb). mf-vb and pfm-vb for probit regression use the

implementation in the GitHub repository Probit-PFMVB (Fasano et al., 2022), while in

the logistic setting we rely on the codes in the repository logisticVB (Durante and

Rigon, 2019). Note that pfm-vb is designed for probit regression only. Finally, ep

is implemented under both models using the R library EPGLM. (Chopin and Ridgway,

2017).

Table B.1 reports the total variation distance from the true posterior for each of

the 5 approximations considered. It highlights how the skew-modal approximations

generally tend to outperform not only gm, but also mf-vb and pfm-vb. In addition,



skew-m tends to work comparably well as ep. As discussed in Section 2.4.2, the similar

performance between skew-m and ep is probably due to the better quality of the ep

approximation compared to gm, which is a key component in our skew-m method.

At the same time, one of the main features that makes skew-m attractive over ep

is the fact that, besides its very good performance, it can in principle be applied to

a wider range of problems, since it only assumes the ability to compute the Laplace

approximation and the third derivatives of the log-posterior, and does not require any

special factorization of the log-posterior to be used.
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