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ABSTRACT
Let G be a finite permutation group on �. An ordered sequence (ω1, . . . , ωt) of
elements of � is an irredundant base for G if the pointwise stabilizer is trivial
and no point is fixed by the stabilizer of its predecessors. If all irredundant bases
of G have the same cardinality, G is said to be an IBIS group. In this paper we give
a classification of quasi-primitive soluble irreducible IBIS linear groups, and we
also describe nilpotent and metacyclic IBIS linear groups and IBIS linear groups
of odd order.
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1. Introduction

Let G ≤ Sym(�) be a finite permutation group. A subset B of � is a base for G if the pointwise stabilizer
G(B) is trivial and we denote by b(G) the minimal size of a base for G. An ordered sequence of elements
of �, � := (ω1, . . . , ωt), is irredundant for G if no point in � is fixed by the stabilizer of its predecessors.
Moreover � is an irredundant base of G, if it is a base and it is irredundant. In particular, such an
irredundant base provides the following stationary chain

G > Gω1 > G(ω1,ω2) > · · · > G(ω1,...,ωt−1) > G(ω1,...,ωt) = 1,
where the inclusions of subgroups are strict.

Irredundant bases for a permutation group possess some of the features of bases in a vector space.
Indeed, B is a basis for a vector space V if and only if it is an irredundant base for the general linear
group GL(V) in its natural action on V . However, some familiar properties of bases in vector spaces do
not extend to bases for permutation groups: irredundant bases for groups in general are not preserved
by reordering, and they can have different sizes.

In [8], Cameron and Fon-Der-Flaass showed that all irredundant bases for a permutation group G
have the same size if and only if all the irredundant bases for G are preserved by re-ordering. Groups
satisfying one of the previous equivalent properties are called Irredundant Bases of Invariant Size groups,
IBIS groups for short. Moreover, Cameron and Fon-Der-Flaass [8] also proved that for a permutation
group G to be IBIS is a necessary and sufficient for the irredundant bases of G to be the base of a
combinatorial structure known as a matroid. If this condition holds, then G acts geometrically on the
matroid and when G acts primitively and is not cyclic of prime order, then the matroid is geometric
(see [8] for more details). This brought Cameron to ask for a possible classification of the IBIS groups.
As explained by Cameron himself in [7, Section 4-14], there is no hope for a complete classification of
IBIS groups, when the cardinalities of the bases are large. But it might be reasonable to pose this question
for primitive groups. The first attempt of classifying finite primitive IBIS groups has been made in [14].
Their approach is via the O’Nan-Scott classification of primitive groups.

Theorem 1.1. [14, Theorem 1.1] Let G be a primitive IBIS group. Then one of the following holds:
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1. G is of affine type,
2. G is almost simple,
3. G is of diagonal type.

Moreover, G is a primitive IBIS group of diagonal type if and only if it belongs to the infinite family of
diagonal groups {PSL(2, 2f ) × PSL(2, 2f )|f ∈ N, f ≥ 2} having degree | PSL(2, 2f )| = 2f (4f − 1).

In the light of this result, the problem of understanding finite primitive IBIS groups is reduced to affine
groups and to almost simple groups. There is some hope for dealing with the second family. Indeed,
suppose that G is an almost simple primitive IBIS group with b(G) = 2. In particular, all bases of G have
cardinality 2. Thus, for any two points α and β in the domain of G we have Gα = Gβ or Gα ∩ Gβ = 1.
Therefore G is a Frobenius group, contradicting the fact that G is almost simple. Thus, if G is an almost
simple primitive IBIS group, then b(G) ≥ 3 and one can get useful information from the work of Burness,
Guralnick, Liebeck, O’Brien, Saxl, Shalev and Wilson on the base size of primitive permutation groups
(see for instance [3–6]). A first result in this direction has been obtained in [13], where the authors
determine the almost simple primitive IBIS groups having socle an alternating group.

Dealing with the primitive groups of affine type seems very difficult. In this case G is a semidirect
product G = V � X, where X is an irreducible subgroup of GL(V). It follows immediately from the
definition that G is an IBIS permutation group if and only if X induces an IBIS permutation group on
the set V \ {0}, in which case we will say that X is a linear IBIS group, or more precisely, that X is an IBIS
subgroup of GL(V).

In this paper we are interested in collecting information on the IBIS irreducible linear groups that
are soluble. Given G ≤ GL(V), we will denote by b(G) the smallest cardinality of a base for the action
of G on V \ {0}. By the main result in [15], b(G) ≤ 3 for any soluble irreducible linear group G. Notice
that b(G) = 1 if and only if G has a regular orbit on V and that in this case G is IBIS if and only if
it is a Frobenius complement in V � G, i.e. if and only if G acts semiregularly on V . In a very recent
paper Yang, Vasil’ev and Vdovin [16] proved that an irreducible quasi-primitive soluble subgroup of
GL(V) which is not metacylic has a regular orbit, except for a few “small” cases. These cases have been
completely classified in a subsequent paper by Holt and Yang [12], and so it is possible to produce with
MAGMA [2] the list of all the soluble irreducible quasi-primitive non-metacyclic groups G that are IBIS
with b(G) �= 1. More precisely we can state the following results:

Theorem 1.2. If G is a soluble irreducible quasi-primitive IBIS subgroup of GL(V), then one of the following
occurs:

1. G is metacyclic;
2. G is a Frobenius complement;
3. G is one of the 39 exceptional linear groups listed in Table 1.

The metacyclic case is investigated in Section 3. If V is a finite vector space of dimension n over GF(q),
where q is a prime power, we denote by �(qn) = �(V) the semilinear group of V , i.e.

�(qn) = {x �→ axφ | x ∈ GF(qn), a ∈ (GF(qn))∗, φ ∈ Gal(GF(qn)/ GF(q))}.
This group has a normal cyclic subgroup N of order qn − 1 (a so called Singer cycle) consisting of those
elements with φ = 1. The subgroup N acts regularly on V \ {0}, and �(qn)/N is cyclic of order n. In the
following statements, given a group X, the notation Xd will be used to mean the subgroup of X generated
by the d-th powers. Our main result is the following:

Theorem 1.3. Suppose that G ≤ �(qn), with n > 1 and |G/G ∩ N| = n. If G is IBIS, then either G is a
Frobenius complement or there exists a prime divisor s of n such that, for every v ∈ V \ {0}, the stabilizer
Gv has order s. More precisely, if φ is the automorphism of GL(qn) sending f to f q and φb ∈ G for some
b ∈ N, then G is IBIS if and only if there exists a divisor r of n such that:
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1. Nqr−1 ≤ G;
2. for every proper divisor t of r, b(qt−1)/(q−1) /∈ Nqt−1(N ∩ G).
3. one of the following occurs:

(a) s = n/r is a prime and b(qr−1)/(q−1) ∈ N ∩ G;
(b) n = r.

In case (a) the stabilizers in G have order s, and in case (b) G is a Frobenius complement.

In Section 3, we will apply the previous theorem to produce some non-trivial examples of IBIS
metacyclic linear groups. Two interesting corollaries of Theorem 1.3 are the following:

Corollary 1.4. Suppose n > 1. Then �(qn) is IBIS if and only if n is a prime.

Corollary 1.5. Suppose that G ≤ �(qn), with n a prime and |G/G ∩ N| = n. Then G is IBIS if and only
if one of the following occurs:

1. G = (N ∩ G)〈φ〉, with Nq−1 ≤ G;
2. G = (N ∩ G)〈φb〉, for some b ∈ N such that b /∈ Nq−1(N ∩ G).

For example consider the subgroup G of �(52) generated by φ and a ∈ N with |a| = 3 : since
|N4| = 6, G is not IBIS.

The study of the IBIS property in the case of imprimitive soluble linear groups is much more difficult.
Apparently there is no strategy for a reduction from the imprimitive to primitive case. However we are
able to solve the problem in the particular case of nilpotent irreducible linear groups. First we describe
two families of irreducible linear groups that are IBIS. The following is a consequence of Corollary 1.5.

Proposition 1.6. Let r = 2b − 1 be a Mersenne prime. Consider the following two subgroups of �(r2) =
N〈φ〉 : P1 = O2(N)〈φ〉 (a semidihedral group of size 2b+2) and P2 = (O2(N))2〈φ〉 (a dihedral group of
size 2b+1). If G = PC ≤ �(r2) with P ∈ {P1, P2} and C ≤ O2′(N), then G is an irreducible nilpotent IBIS
subgroup of �(r2) and b(G) = 2.

Proposition 1.7. Let W be the additive group of a finite field F and let H be the multiplicative group of F,
acting on W by scalar multiplication and consider the wreath product X = H  S2 in its imprimitive action
on V = W2. We denote by σ the transposition (1, 2) ∈ S2. Let G be a subgroup of X satisfying the following
conditions:

1. 〈σ , (h, h−1) | h ∈ H〉 ⊆ G for every h ∈ H;
2. (k, 1) ∈ G for some 1 �= k ∈ H.

Then G is an irreducible IBIS subgroup of GL(V), with b(G) = 2. In particular if H is a 2-group, then G is
a nilpotent irreducible IBIS linear group.

Now we may state our result on nilpotent irreducible IBIS linear groups.

Theorem 1.8. If G is a nilpotent IBIS irreducible subgroup of GL(V), then one of the following occurs:

1. G acts semiregularly on V .
2. G is as in Proposition 1.6.
3. G is as in Proposition 1.7.
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Table 1. Parameters of IBIS quasi-primitive soluble groups that do not have a regular orbit.

No. e p d a b Nr. Grp. ordrs. Cmmnts Bs. Sz.

19 4 3 4 1 1 4 640, 192, 320, 160 2,3,5, 6 E− 2, 2, 2, 2
19 4 3 4 1 1 4 1152, 1152, 576, 192 2,4,5, 14 E+ 3, 3, 3, 2
48 3 2 6 2 1 1 648 3 3
62 2 3 2 1 1 2 48, 24 1, 2 2, 2
63 2 5 2 1 1 2 96, 48 1, 2 2, 2
64 2 7 2 1 1 2 144, 72 1, 2 2,2
65 2 3 4 2 1 7 48, 96, 96, 96 2, 2, 2, 2

96, 192, 192 3,4,5,7,8,10, 11 2, 2, 2
66 2 11 2 1 1 2 240, 48 1, 2 2, 2
67 2 13 2 1 1 2 288, 144 1, 2 2, 2
68 2 17 2 1 1 3 384, 96, 192 1, 2, 3 2, 2, 2
69 2 19 2 1 1 2 432, 144 1, 2 2, 2
71 2 5 4 2 1 6 576, 144, 288 2, 2, 2

288, 288, 576 2,5,8,11,12, 13 2, 2, 2
72 2 3 6 3 1 2 1872, 936 1, 2 2, 2

In Section 5 we consider the case of IBIS linear groups of odd order (they are soluble by the Feit-
Thompson Theorem).

Theorem 1.9. Let G be an IBIS irreducible subgroup of GL(V). If |G| is odd, then either G acts semiregularly
on V or G is a primitive linear metacyclic group.

Corollary 1.10. Assume that G is a soluble primitive permutation group of degree n and odd order. If G is
an IBIS permutation group, then either G is a Frobenius group or G ≤ A�L(1, n).

2. The 39 exceptions in Theorem 1.2

The main result of this section is the following proposition, obtained with a computational approach.

Proposition 2.1. The quasi-primitive soluble linear groups that do not have a regular orbit and that are
IBIS are the 39 groups listed is Table 1.

We first give some information in how to read Table 1. Essentially, we follow the notation in Table 4.1
in the work of Holt and Yang [12]. We have divided Table 1 in 9 columns. The first column is the same
“No. column” as in [12] and simply denotes the line numbering (in our case restricted to the cases where
some IBIS group does exist) for the files in the supplementary material in [12]. The e, p, d, a, b have
the same meaning as the respective columns in [12, Table 4.1] and this meaning is explained in [12, p.
141]. The Nr. indicates the number of groups that are IBIS in the corresponding line and the Grp. ordrs.
indicates the respective orders. In the Cmmts. column we are giving the position in the corresponding
file of the IBIS groups: the first two rows also indicate whether the groups are of type E+ or E−, as
indicated in [12].

The computational work to produce the table has been organized as follows:

1. First we did, for all the groups listed by Holt and Yang, an exhaustive search of bases having size 2. All
cases were small enough, so this step was easy and only a matter of time.

2. For the groups having a base of size 2 (the most frequent situation) we started a random search for
bases having size 3. In all cases where this was successful, the group was not IBIS and hence it could
be omitted from further analysis.

3. For the groups passing the previous step, if these groups are small, we checked extensively for bases
having size 3. If the groups are large, for each orbit we constructed the action of G on this orbit and
checked extensively for bases having size 3 in this action.
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4. Similarly, for the few cases where there is no base of size 2, we checked the existence of bases of size 4.
5. With the computations described in the previous steps, we deduced that all the groups G that are

not listed in Table 1 have an irredundant base of size b(G) + 1 and therefore they are not IBIS. We
remained with 39 groups: if G is one of them, then G admits an irredundant base of size b(G), but does
not admit irredundant bases of size b(G) + 1. These groups are small enough to allow an exhaustive
search of irredundant bases of size at least b(G)+2. This is what we did to ensure that the 39 groups in
Table 1 are IBIS. However a recent remark by P. Cameron implies that this exhaustive search was not
necessary. In his blog (https://cameroncounts.wordpress.com/2023/04/15/bases-2/) he gave a short
and elementary proof of the following fact: if a permutation group G has an irredundant base of size
x and one of larger size y, then there is also an irredundant base of size z for every x ≤ z ≤ y.

3. Metacyclic groups

Let �(qn) = �(V) be the semilinear group of V . Identifying V with the additive group of the field
GF(qn), we have

�(qn) = {x �→ axφ | x ∈ GF(qn), a ∈ (GF(qn))∗, φ ∈ Gal(GF(qn)/ GF(q))}.

As we noticed in the introduction, this group has a normal cyclic subgroup N of order qn − 1 consisting
of those elements with φ = 1.

Lemma 3.1. Suppose that G ≤ �(qn), with n > 1 and |G/G ∩ N| = n. If G is IBIS, then either G is a
Frobenius complement or, for every v ∈ V \ {0}, the stabilizer Gv has prime order.

Proof. Let � = �(qn). We identify the elements of N and the elements of W := V \ {0} with the non-
zero elements of the field GF(qn). Notice that, for every a ∈ W, we have �a = 〈φa1−q〉. Moreover, if
m divides n, then (φa1−q)m = φma1−qm . Suppose that G is IBIS, but not a Frobenius complement. Let
a ∈ W. We want to prove that the stabilizer Ga of a in G has prime order. Since Ga coincides with the
stabilizer of 1 in the subgroup Ga−1 of � obtained by conjugation with a−1, we may assume a = 1. Hence
there exists a proper divisor r of n with G1 = 〈φr〉. Let s = |G1| = n/r. Notice that if N = 〈c〉, then
�c ∩ 〈φ〉 = 1. So in particular Gc ∩ G1 = 1, and (1, c) is an irredundant base. Suppose that s is not a
prime, and write s = tu, with t, u > 1. Then n = rs = rtu, so qrt −1 divides qn −1 and if d ∈ N has order
qrt − 1, then φrt is a nontrivial element of Gd, while φrt /∈ Gc. But then also (1, d, c) is an irredundant
base, in contradiction with the fact that G is IBIS.

Lemma 3.2. Suppose that G ≤ �(qn), with n > 1 and |G/G ∩ N| = n. If G is IBIS, then either G is a
Frobenius complement or there exists a prime s such that |Gv| = s for every v ∈ V \ {0}.

Proof. Suppose that G is IBIS, but not a Frobenius complement. By the previous lemma, |G1| = s1 for
some prime s1. Let now a ∈ V \ {0}, and assume |Ga| = s2. Let r1 = n/s1 and r2 = n/s2. Notice that
g1 = φr1 and g2 = φr2 a1−qr2 belong to G. Let d = (r1, r2). There exist x, y ∈ Z with d = xr1 + yr2.
Hence, setting t = 1 + qr2 + · · · + qr2(y−1) and u = t(1 − qr2)/(1 − qd), we have

gx
1 gy

2 = φda(1−qr2 )t = φd(au)1−qd ∈ Gau .

Hence n/d divides |Gau | and therefore, by Lemma 3.1, n/d is a prime. This is possible only if d = r1 = r2,
i.e. if s1 = s2.

Proof of Theorem 1.3. The first part of the statement follows from Lemma 3.2.
Assume that G is an IBIS subgroup of � = �(qn) and that φb ∈ G for some b ∈ N. We identify

the elements of N and the elements of W := V \ {0} with the nonzero elements of the field GF(qn)
and we set H = G ∩ N. Either G is a Frobenius complement or there exists a prime s such that all the
stabilizers in G have order s. We set r = n in the first case, r = n/s in the second. If G is a Frobenius

https://cameroncounts.wordpress.com/ 2023/04/15/bases-2/
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complement, then Nqr−1 = Nqn−1 ∈ G. Otherwise G1 = 〈φr〉 and therefore φr ∈ G = H〈φb〉, which
implies b(qr−1)/(q−1) ∈ H. Moreover, for every a ∈ W, Ga = 〈φra1−qr 〉 ≤ G. This implies in particular
that Nqr−1 ≤ H. Finally notice that in any case, if t is a proper divisor of r then, for every a ∈ V \ {0},
φta1−qt

/∈ �a \ G: this means

φta1−qt �= (φb)t = φtb(qt−1)/(q−1) mod H,
for every a ∈ N, or equivalently b(qt−1)/(q−1) /∈ Nqt−1(G ∩ N).

Conversely, if G = H〈φb〉 satisfies conditions (1), (2), and (3), then |Ga| = n/r for every a ∈ V \ {0},
and therefore G is IBIS.

Consider for example the following subgroup of �(q4): G = 〈φa, aq+1〉, with |a| = q4 − 1. We have
Nq2−1 ≤ G. Moreover, if q is odd, then a /∈ Nq−1(G ∩ N) = Nq−1Nq+1 = 〈a2〉. But then it follows from
Theorem 1.3 that if q is odd, then G is an IBIS linear group of order 4(q3 − q2 + q − 1), in which the
stabilizer of every nonzero vector has order 2.

4. Nilpotent irreducible IBIS linear groups

A result useful to investigate the IBIS irreducible linear groups G with b(G) = 2 is the following:

Proposition 4.1. Let G be an IBIS irreducible subgroup of GL(V). If b(G) = 2 and V ∼= Wn is an
imprimitive decomposition for the linear action of G on V, then the stabilizer H of W in G acts transitively
on W \ {0}.

Proof. We may identify G with a subgroup of the wreath product H  Sn. Assume that H is not transitive
on W \ {0}. Then there exists an orbit � for the action of H on W \ {0}, with |�| ≤ (|W| − 1)/2. Take
u ∈ � and let α = (u, 0, . . . , 0) ∈ V = Wn. For any 2 ≤ i ≤ n and w /∈ � ∪ {0}, let

βi,w = (0, . . . , 0, w, 0, . . . , 0) and γi,w = (u, 0, . . . , 0, w, 0, . . . , 0)

(where w is the entry in the i-position). Notice that y ∈ Gγi,w if and only if y = (h1, . . . , hn)σ , with
uh1 = u, whi = w and 1σ = 1, iσ = i. In particular Gγi,w = Gα ∩ Gβi,w . Since b(G) = 2, Gv �= 1 for
every v ∈ V , and since G is IBIS, if Gv3 = Gv2 ∩ Gv1 , then Gv1 = Gv2 = Gv3 . So Gα = Gβi,w , for any
w /∈ �∪{0}, and any i ≥ 2. In particular, if g ∈ Gα , then g = (x, y2, . . . , yn) with x ∈ Hu and yj ∈ Gw for
every w /∈ �. But then the number of vectors in W fixed by yj is at least (|W|+1)/2, and therefore yj = 1
by [9, Theorem 1]. This implies that there exists 1 �= K ≤ H such that Gα = {(k, 1, . . . , 1) | k ∈ K}. On
the other hand, G contains an elements z = (h1, . . . , hn)τ with 1τ = 2 and Kz

α = {(1, kh1 , 1, . . . , 1) |
k ∈ K} ≤ Gα , a contradiction.

Theorem 4.2. [10, Theorem 1.1] b(G) ≤ 2 for every irreducible nilpotent subgroup of GL(V).

Proof of Proposition 1.7. Let A = {(h, 1) | h ∈ H} ∩ G, B = {(1, h) | h ∈ H} ∩ G and let v = (w1, w2) �=
(0, 0) ∈ V . If w1 = 0, then Gv = A, if w2 = 0, then Gv = B and if neither w1 = 0 nor w2 = 0,
then Gv = 〈(h, h−1)σ 〉 where h is the unique element of H with w1h = w2. In the last case |Gv| = 2
and Gv ∩ A = Gv ∩ B = 1. Hence, if v1 and v2 are nonzero elements of V , then either Gv1 = Gv2 or
Gv1 ∩ Gv2 = 1.

Proof of Theorem 1.8. If G has a regular orbit on V , then (1) holds. So assume that G does not have a
regular orbit on V . By Theorem 4.2, b(G) = 2.

If G is primitive, then by [11, Theorem 2.4] (see also [11, Remark 2.6]) G is as in Proposition 1.6.
So we may assume that V has an imprimitive decomposition V = W1 × · · · × Wn, with W ∼=

Wi for 1 ≤ i ≤ n, and that G permutes primitively the factors W1, . . . , Wn. Let H be the nilpotent,
irreducible subgroup of GL(W) induced by the action on W1 of the setwise stabilizer of W1 in G and T the
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nilpotent primitive permutation group induced by the permutation action of G on the set {W1, . . . , Wn}.
A nilpotent primitive permutation group is cyclic of prime order, so n is a prime and T = 〈σ 〉, with
σ = (1, 2, . . . , n). Moreover it follows from the “embedding theorem” (see for example [1, Theorem
3.3]) that we may assume G ≤ H  〈σ 〉. Let X := G ∩ Hn. Notice that X is a subdirect product of the
base subgroup Hn, i.e., if πi : X → H is the projection on the i-th component, then Xπi = H for each
i = 1, . . . , n. For any w ∈ W, let vw = (w, 0, . . . , 0) ∈ V . If w �= 0, then Gvw ≤ X and (Gvw)π1 = Hw.
In particular, if (w1, . . . , wt) is an irredundant base for the action of H on W \ {0}, then, for 2 ≤ i ≤ t,
(G(vw1 ,...,vwi )

)π1 = H(w1,...,wi) < H(w1,...,wi−1) = (G(vw1 ,...,vwi−1 ))
π1 . Moreover G(vw1 ,...,vwt ) = ker π1, so, if

(z1, . . . , zu) is an irredundant base for the action of ker π1 on V \ {0}, then (vw1 , . . . , vwt , z1, . . . , zu) is
an irredundant base for the action of G on this set. Hence the assumption that G is an IBIS subgroup of
GL(V) implies that H is an IBIS subgroup of GL(W). By Theorem 4.2, b(H) ≤ 2. So we distinguish two
cases:
a) b(H) = 1. Fix 0 �= w ∈ W, let βi = (w, . . . , w, 0, w, . . . , w) ∈ V , with 0 in the i-th position, and γi =
(0, . . . , 0, w, 0, . . . , 0) ∈ V with w in the i-th position. As we are assuming that G is IBIS with b(G) = 2,
Gβi �= 1. As Hw = 1, we have Gβi = {(1, . . . , 1, s, 1, . . . , 1)|s ∈ Si} for some nontrivial subgroup Si
of H. Moreover, if g ∈ Gγi , then g ∈ Hn and gπi = 1. If n ≥ 3 then 1 �= Gβ3 ≤ Gγ1 ∩ Gγ2 < Gγ1 ,
as Gβ2 ≤ Gγ1 and Gβ2 �≤ Gγ2 . This contradicts the fact that G is IBIS and b(G) = 2. Hence n = 2.
By Proposition 4.1, the action of H on W \ {0} is transitive. Moreover, since H is IBIS and b(H) = 1,
this action is also regular. So we may identify W with the additive group of the field F with rk elements,
being r a prime, and H with the multiplicative group of this field. Let f be a non-zero element of F and
v = (1, f ) ∈ W2. Since b(G) = 2, we have 1 �= (t1, t2)σ ∈ Gv for some t1, t2 ∈ H, with σ = (1, 2).
This implies t1 = f , t2 = f −1 and therefore (f , f −1)σ ∈ G. But now let u = (f , f ) ∈ V . Again we have
1 �= (u1, u2)σ

j ∈ Gu for some u1, u2 ∈ H and j ∈ {0, 1}. The only possibility is u1 = u2 = 1 and j = 1.
So 〈σ , (h, h−1) | h ∈ H〉 ⊆ G. Since G is nilpotent, 〈σ , (h, h−1) | h ∈ H〉 is also nilpotent, and this
implies that rk − 1 is a 2-power. Finally let z = (0, 1) ∈ V . Again Gz �= 1, and this is possible only if
(h, 1) ∈ G for some 1 �= h ∈ H. We have so proved that G is as described in Proposition 1.7.
b) b(H) = 2. Let 0 �= w ∈ W. There exists a nontrivial element h ∈ H such that wh = w. Since Xπ1 = H,
there exist h2, . . . , hn ∈ H such that (h, h2, . . . , hn) ∈ X. Assume that h2 = · · · = hn = 1. Then, as 〈σ 〉
acts transitively on H1, . . . , Hn, there exists a nontrivial element t ∈ H such that (1, t, 1, . . . , 1) ∈ X.
Take u ∈ W such that uh �= u and let β = (w, 0 . . . , 0), γ = (u, 0, . . . , 0). Then 1 �= Gβ ∩ Gγ < Gγ , as
1 �= (1, t, 1, . . . , 1) ∈ Gβ ∩ Gγ and (h, 1, . . . , 1) ∈ Gβ \ Gγ . This is in contradiction with the fact that
G is IBIS. Thus there exists i such that hi �= 1. Let z ∈ W be such that zhi �= z. Assume that n �= 2. Let
δ = (w, z2, . . . , zn) ∈ V , where zi = z and zj = 0 if j �= i. Then Gδ ≤ X. As G is an IBIS group and
b(G) �= 1, we have that Gδ �= 1. Moreover 1 �= Gδ = Xδ < Xβ , as (h, h2, . . . , hn) ∈ Xβ \ Xδ , but this
gives again a contradiction. We have so proved that n = 2. Moreover, repeating the argument above,
we deduce that X contains no nontrivial elements of the type (h, 1), with h ∈ H. As X is a subdirect
product of H2, there exists an automorphism α of H such that X = {(h, hα)| h ∈ H}. Moreover there
exists g = (1, k)σ ∈ G and α ∈ Aut(G) such that G = {(h, hα) | h ∈ H}〈g〉.

By Proposition 4.1, H is transitive on W \{0}, and consequently H is a primitive irreducible subgroup
of GL(W). By [11, Theorem 2.4] H is as is Proposition 1.6. In particular W can be identified with the
additive subgroup of the field F with r2 elements, where r is a Mersenne prime and H can be identified
with a subgroup of � = �(r2). Let 0 �= f ∈ F. We have �f ∼= C2. On the other hand, since b(H) = 2,
Hf �= 1, and therefore Hf = �f . By the transitivity of H on F \ {0}, it follows H = �. Suppose that
there exists h ∈ H such that hhαk �= 1. There exists 0 �= v ∈ W with hhαk ∈ Hv. Let w = vh and
y = (h, hα)(1, k)σ . Then y ∈ G(v,w) and |y| > 2. In particular y2 = (hhαk, hαkh) ∈ G(v,w) ∩ G(v,0).
Since G is IBIS, we must have {(t, tα) | t ∈ Hv} = G(v,0) = G(v,w), in contradiction with the fact that
|G(v,0)| = |Hv| = 2 and |G(v,w| ≥ |y| > 2. But then hα = (kh)−1 for any h ∈ H. This implies k = 1 and
hα = h−1 for every h ∈ H. However this would implies that � = H is abelian. This final contradiction
implies that the case b(H) = 2 cannot occur.
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5. IBIS primitive permutations groups of odd order

Proof of Theorem 1.9. By [15, Theorem 1.3], b(G) ≤ 2. If b(G) = 1, then G acts semiregularly on V . So
we may assume b(G) = 2. This implies that Gv �= 1 for every 0 �= v ∈ V , and if 0 �= v1, v2, then either
Gv1 = Gv2 or Gv1 ∩ Gv2 = 1. Assume, by contradiction, that G is not a primitive linear group. Then
G ≤ H  Sn, with H ≤ GL(W) and V ∼= Wn and n ≥ 2. Fix 0 �= u ∈ W and let α = (u, 0, . . . , 0). For
any 2 ≤ i ≤ n and 0 �= w ∈ W, let βi,w = (0, . . . , 0, w, 0, . . . , 0) and γi,w = (u, 0, . . . , 0, w, 0, . . . , 0)

(where w is the entry in the i-position). If g ∈ Gγi,w , then g = (h1, . . . , hn)σ , with {1, i}σ = {1, i}.
Since |G| is odd, also |σ | is odd. Thus 1σ = 1, iσ = i and consequently uh1 = u, whi = w and
1 �= Gγi,w = Gα ∩ Gβi,w . Hence Gα = Gβi,w , for any 0 �= w and any i ≥ 2. But then there exists
1 �= X ≤ H such that Gα = {(x, 1, . . . , 1) | x ∈ X}. On the other hand G contains an elements
z = (y1, . . . , yn)τ with 1τ = 2 and (Gα)z = {(1, xy1 , 1, . . . , 1) | x ∈ X} ≤ Gα , a contradiction. Finally,
if G is a primitive linear group, then it follows from Theorem 1.2 that G is metacyclic.

To give an example of an IBIS linear group of odd order, choose an odd prime r and consider the
subgroup G of �(qr) generated by φ and an element of N of order (qr − 1)/(q − 1). Then |G| = r(qr −
1)/(q − 1) is odd and G is IBIS by Corollary 1.5. Another example can be obtained taking the subgroup
G := 〈φa2, a2c〉 of �(79) with |a| = 79 − 1 and c = 1 + 7 + 49 = 57. We have that |G| = 3185811 and
G is IBIS by Theorem 1.3.

Proof of Corollary 1.10. Let V = soc(G). Then |V| = n and a point-stabilizer Gω is an IBIS irreducible
subgroup of GL(V) of odd order. If Gω acts semiregularly on V , then G is a Frobenius group. Otherwise,
by Theorem 1.9, G is metacyclic, and therefore, by [15, Theorem 2.12], Gω ≤ �L(1, n) and consequently
G ≤ A�L(1, n).
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