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Abstract. Recent works have proven the feasibility of fast and accu-
rate time series classification methods based on randomized convolu-
tional kernels [5, 32]. Concerning graph-structured data, the majority of
randomized graph neural networks are based on the Echo State Network
paradigm in which single layers or the whole network present some form
of recurrence [8, 7].
This paper aims to explore a simple form of a randomized graph neural
network inspired by the success of randomized convolutions in the 1-
dimensional domain. Our idea is pretty simple: implement a no-frills con-
volutional graph neural network and leave its weights untrained. Then,
we aggregate the node representations with global pooling operators, ob-
taining an untrained graph-level representation. Since there is no training
involved, computing such representation is extremely fast. We then ap-
ply a fast linear classifier to the obtained representations. We opted for
LS-SVM since it is among the fastest classifiers available. We show that
such a simple approach can obtain competitive predictive performance
while being extremely efficient both at training and inference time.

Keywords: Graph Neural Network · Graph Convolution · Reservoir
Computing · Structured Data · Machine Learning on Graphs · Deep
Randomized Neural Networks.

1 Introduction

In this paper, we develop efficient graph neural networks for graph classification.
When dealing with machine learning for structured data, there are typically two
distinct families of tasks that can be tackled that have to be addressed with dif-
ferent neural architectures. The first task is node property prediction (e.g., node
classification) which is defined as predicting one or more values associated with
each node in a graph. Graph Neural Networks (GNNs) have shown promising
performance on such tasks [26]. The second task is graph property prediction
(e.g., graph classification), in which the property that has to be predicted is a
global property of a graph. In this case, the training set is composed of a set
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of graphs, each with the corresponding associated label. Such tasks require the
inclusion of additional components in the GNN architecture, allowing the trans-
formation of a set of node-wise representations to a single graph-level one before
performing the prediction.

While many different architectures for node and graph classification have
been proposed in the literature, most of the proposals have in common the
end-to-end nature of their training, which results in fairly high computational
complexity. Recently, in order to circumvent the need for expensive end-to-end
training, a family of neural network models that are highly efficient to train
have been receiving increasing attention. Most proposals along these lines so
far have focused on the study of dynamic systems on discrete graphs in the
area of Reservoir Computing (RC) [20, 22]. In this case, a reservoir layer ran-
domly initialized under asymptotic stability constraints, and left untrained, is
responsible for computing the encoding of each node, while training is restricted
only to the output readout layer [8, 7]. However, although this approach enables
learning tasks on graphs in an extremely efficient way, it involves a fixed-point
convergence process of the dynamic reservoir layer on the graph. This process,
in turn, requires a number of iterations that can undermine the overall efficiency
of the approach. More recently, it has been shown [27, 15] that the randomized
approach on graphs can also be exploited without resorting to an iterative pro-
cess. In particular, it is possible to perform node classification using randomized
graph convolutions, i.e., without the necessity of training the convolution pa-
rameters, and still obtain competitive predictive performance when training is
restricted to the readout part, as in RC-based approaches. While recently the
approach has been proven feasible for tasks defined on graph nodes, it is still
unclear if it also applies to graph classification tasks. This research question is
not straightforward since the aggregation layer tends to lose a significant amount
of information. A similar problem was already tackled in the case of randomized
convolutions for time series analysis in a recent work [5].

In this paper, we show that by paying attention to some core aspects of
the network architecture, it is possible to define a very efficient, randomized
GNN model for graph classification tasks. Such critical components are: 1. the
presence of non-linearity between graph convolution layers; 2. the adoption of
a good aggregation scheme; 3. a wise initialization of the network weights. We
analyze each one of these critical aspects in our ablation studies and show how
each component influences the resulting predictive performance of the model.
We refer to our proposed model as Untrained-GCN or U-GCN, acknowledging
the intuitions behind it to come from the worlds of randomized neural networks
and graph convolutional networks.

The rest of this paper is organized as follows. In Section 2 we introduce some
background concepts that are necessary to present our contribution in Section 3.
In Section 4 we present and discuss our experimental comparisons and ablation
studies. Section 5 concludes the paper.

2 Background

In the following, we use italic letters to refer to variables, bold lowercase letters
to refer to vectors, and bold uppercase letters to refer to matrices. The elements
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of a matrix A are referred to as aij (and similarly for vectors). We use uppercase
letters to refer to sets or tuples.

Let G = (V,E,X) be a graph, where V = {v0, . . . , vn−1} denotes the set of
vertices (or nodes) of the graph, E ⊆ V × V is the set of edges and X ∈ Rn×s

is a multivariate signal on the graph nodes with the i-th row representing the
attributes of vi. We define A ∈ Rn×n as the adjacency matrix of the graph,
with elements aij = 1 ⇐⇒ (vi, vj) ∈ E. With N (v) we denote the set of nodes
adjacent to node v.

2.1 Graph neural networks

As a machine learning model for graph problems, graph neural networks [34, 12,
33] have emerged in recent years. A Graph Neural Network (GNN) is a model
that exploits the structure of the graph and the information embedded in feature
vectors of each node to learn a representation hv ∈ Rm for each vertex v ∈ V . In
many GNN models, the computation of hv can be divided into two main steps:
aggregate and combine. We can define aggregation and combination by using two
functions, A and C, respectively: hv = C(L(v),A({X (u) : u ∈ N (v)})).
The kind of aggregation function A and combination function C determinate
the type of Graph Convolution (GC) adopted by the GNN. The first model that
relies on graph convolutions was proposed by Micheli et. al in 2019 [21]. Recently,
many novel GCs base models have been proposed [18, 4, 37, 13, 19, 39].

The model proposed in this paper is built on top of one of the most common
and widely adopted GC operators: the GCN [18]

H(i) = F
(
SH(i−1)W(i)

)
, i > 1 (1)

where S = D̃− 1
2 (I +A)D̃− 1

2 , A denotes the standard adjacency matrix of the
graph G and D̃ the diagonal degree matrix with the diagonal elements defined as
d̃ii = 1 +

∑
j aij . Further, H(i) ∈ Rn×mi is the matrix containing the represen-

tation h
(i)
v of all nodes in the graph (one per row) at layer i, W(i) ∈ Rmi−1×mi

denotes the matrix of the layer’s parameters, and F is the element-wise (usually,
nonlinear) activation function.

2.2 Graph neural networks with random weights

In structured data domains, the models proposed in the last few years show
increasing complexity, leading to novel architectures with a considerably high
number of parameters. Unfortunately, this implies a high computational cost,
especially in training the models.

For sequential data, many efficient architectures rely on the Reservoir Com-
puting (RC) paradigm [20], which is based on exploiting fixed (randomized)
values of the recurrent weights. The random weights are defined following the
Echo State Property (ESP) [17] that ensures stability conditions of the dynam-
ical system. In particular, the Echo State Networks (ESN) [17] are widely used
when an efficient recursive model is required.

Gallicchio et al. in [7] proposed in 2010 the first model for graph domain that
exploits RC framework. The proposed model, dubbed GraphESN is composed of
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a non-linear reservoir and a feed-forward linear readout. The reservoir computes
a fixed recurrent encoding function over the whole nodes of the graph as follows:

hv[t+ 1] = f(Winxv +
∑

u∈N (v)

Ŵhhu[t]), (2)

where Win ∈ Rm×s, and Ŵh ∈ Rm×m. For each vertex v ∈ V , hv[0] is initialized
to 0 ∈ Rm. The computation of the global state hv[t

∗] involves the iteration of
eq. (2) till |hv[t

∗+1]−hv[t
∗]| ≤ ϵ. Then, the global state is used by the readout

of the model to compute the output using a linear projection:

o = Wout

∑
v∈V

hv[t
∗]. (3)

in 2020 an evolution of the GraphESN was introduced in [8]. The FDGNN (Fast
and Deep GNN) model constructs a progressively more abstract neural represen-
tation of the input graph by stacking successive layers of GNN. The formulation
of this model is reminiscent of the original formulation of GNN [33], but the
parameters of each layer are initialized by taking into account some stability
constraints and then left untrained. The GC-layer i computes, ∀v ∈ V , the
following equations:

h(i)
v [0]=h(i−1)

v [t(i−1)∗
v ],

h(i+1)
v [t]=tanh(W

(i)
in xv +

∑
u∈N (v)

W
(i)
h h(i)

u [t− 1])

where h
(i−1)
v [t

(i−1)∗
v ] is the state computed by the previous layer. This equation

is iterated for each node till convergence or till a maximum predetermined max-
imum number of iterations T is reached. Regarding the readout, the FDGNN
computes a graph-level representation based only on the node representations
computed on the last convolutional layer of the architecture. For k GC-layers,
the output is defined as o = Wouttanh(Wn

∑
v∈V h

(k)
v [t

(k)∗
v ]). Further evolution

of this kind of model is proposed in [7] where the Graph Ring-reservoir Network
(GRN) is introduced. The GRN simplifies the FDGNN, based on a particular
organization of the hidden neurons. In particular, it exploits a particular reser-
voir with a ring topology so that each neuron propagates its activation to the
successive one (and is fed by the previous one) in a single cycle (ring). This
is implemented by multiplying the reservoir weight matrix by a permutation
matrix P, obtaining hv[t + 1] = tanh(Wxv + λP

∑
u∈N (v) hu[t]), where λ is a

scalar hyper-parameter and all non-zero weights are set to the same value. thank
this λ can be used to control the spectral radius of the reservoir weights matrix
Wr = λ ·P. Regarding the readout, the model uses the same linear feedforward
layer defined in eq. (3).

In [7] an even more simplified model is introduced: the Minimal Graph Net-
work (MGN). Also, in this case, the reservoir weights are arranged in a ring
shape. The main difference with the GRN lies in a further architectural simpli-
fication applied to the matrix W where all the entries are set to the value ω,
while their signs are chosen following the idea of “minimal complexity” [31].
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In [27], the authors propose a model, dubbed Multi-resolution Reservoir
Graph Neural Network (MRGNN) model, that exploits a Reservoir Convolu-
tional layer for graphs able to simultaneously and directly consider all topolog-
ical receptive fields up to k − hops. The convolutional layer relies on a multi-
resolution[3, 28] structure that exploits nonlinear neurons followed by a stan-
dard feed-forward readout. The multi-resolution reservoir is defined as follows:
Hr = Hk,T Wr, where Hk,T = [XW︸ ︷︷ ︸

Hk,T
(0)

, σ(ÃXW)︸ ︷︷ ︸
Hk,T

(1)

, σ(Ãσ(ÃXW)W))︸ ︷︷ ︸
Hk,T

(2)

, . . . ], σ is

the tanh activation function, Ã is is a generic transformation of the adjacency
matrix that preserves its shape, Wr is a randomly projection matrix and Hk,T

(i)

represents the i-th column block of Hk,T . Note that each Hk,T
(i) contains infor-

mation only about random walks of length exactly equal to i.
Recently, Huang et al. [15] explored randomized graph convolutions for the

task of node classification (differently from this paper in which we consider the
more challenging setting of graph classification). The authors propose a single-
layer architecture defined as Z = σ(A2XW )β, where σ is the sigmoid function,
W ∈ Rd×m is the (random) wight matrix for m hidden neurons (that is left
untrained), and β are the trained output weights. Notice that, contrarily to
many graph neural networks, authors propose to adopt a single hidden layer
with an increased receptive field instead of non-linearly stacking multiple layers
with a smaller receptive field.

2.3 Untrained convolutions for time series

The design of deep randomized neural networks represents one of the emerging
topics in Deep Learning (see, e.g., [10]). The fundamental idea behind these ap-
proaches is to replace as much as possible the optimization of the parameters
of a deep learning model with their randomization [30]. This usually results in
a neural architecture in which hidden layers are initialized randomly and left
untrained, while training algorithms operate only on the output readout layer.
It is interesting to note how this paradigm, on the one hand, allows for the
design of extremely efficient baselines while, on the other hand, allows for high-
lighting and exploiting the architectural biases of neural information processing
models. Another advantage of this approach is its marked suitability for imple-
mentations in neuromorphic hardware [36] and, in general, in hardware with low
computational resources, e.g., for AI applications of a pervasive nature [1].

When dealing with temporal information, i.e., for sequence processing, the
paradigm of choice in this context is represented by Reservoir Computing (RC)
[20], and in particular Echo State Networks [17, 16]. Here, the crucial idea is to
build an RNN whose internal connections are randomly initialized under asymp-
totic stability constraints. As an alternative to the RC recurrent approach, the
idea of exploiting randomized convolutions has recently been explored for time
series analysis in the ROCKET model [5]. ROCKET is a method based on ran-
domized one-dimensional convolutions for efficient feature extraction on time se-
ries, performing consistently well on a diverse range of datasets. The core contri-
butions of the ROCKET model were: 1. showing that the approach of exploiting
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randomized convolutional kernels (instead of learning them with backpropaga-
tion) is feasible; 2. the adoption of a new non-differentiable readout function that
being associated with the more commonly adopted global max pooling showed
an improvement in the overall predictive performance. The paper also empiri-
cally identified a core set of hyper-parameters that were shown to obtain good
predictive performance on heterogeneous tasks. However, the hyper-parameters
of the features extraction procedure remain of utmost importance, especially
considering that there is no learning involved.

3 Untrained GCN for graph classification

In this section, we present our model for efficient graph classification. We start
in Section 3.1 detailing our graph convolution layers and how they are combined.
Then, in Section 3.2 we describe the pooling operators we adopt, and finally in
Section 3.3 we describe the readout and the possible alternatives.

3.1 Untrained GCN feature extraction

As previously discussed in Section 2.2, recent results in literature have shown
that for the task of semi-supervised node classification, graph neural networks
with random weights are a feasible option. However, it is known in the literature
that for the problem of node classification, even simple models perform well [25,
29, 24]. In this paper, we propose a randomized architecture that is inspired
by fully trained graph neural networks, including the non-linearity scheme. In
particular, we instantiate multiple graph convolution layers (see section 2.1),
each one followed by an element-wise non-linear activation function.

Following the literature on untrained neural networks we decided to ex-
ploit the hyperbolic tangent activation function. We considered the simple and
widespread GCN definition (see Section 2.1). The hidden node representation
computed by the l-th layer is defined as:

H(l) = tanh(SH(l−1)W(l)), (4)

where S is the normalized Laplacian adopted by the GCN, W(l) are the layer
parameters and H0 = X. Note that we omit the bias terms for the sake of
simplicity. The final node representations are obtained concatenating the repre-
sentation computed by each graph convolution layer, i.e. H = [H(1), . . . ,H(L)],
where L is the number of layers of the network.

While we leave as a future work the exploration of other activation functions,
in our ablation studies we consider the network without activation functions be-
tween layers and show that the non-linearity has a significant effect on the overall
performance of our method. Our approach is in contraposition to Huang et al.
[15] that instead apply the non-linearity only after the message passing phase.
Crucially, the weight values in W(l) in eq. 4 are initialized randomly and left
untrained. For the random initialization, we resort to the widely adopted Glorot
uniform approach [11]. In particular, to control the stability of the expansion of
the input information through the successive layers in the architecture, we in-
troduce a gain hyperparameter θ to control the effective scaling of W(l). In the
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resulting process, a weight matrix of shape n×m will have entries sampled from
a uniform distribution U(−a, a) where a = θ

√
6

n+m . In our ablation study, we
show that considering this hyperparameter significantly improves the predictive
performance of the overall network.

3.2 The global pooling layer

The untrained graph convolution layer presented in eq. 4 produces node rep-
resentations that include information about each node’s local connectivity. To
perform graph-level tasks we shall obtain a single representation for the whole
graph. Usually, neural architectures for graph classification achieve this using
global pooling operators, e.g. global maximum, minimum or average pooling.
Notice that in the standard end-to-end training fashion, the pooling operators
have to be differentiable. Instead, if no gradient has to pass through the pool-
ing operator, we can choose also non-differentiable options. This is the case for
the ROCKET model, presented in Section 2.3. The authors proposed a non-
differentiable pooling mechanism that, in the context of randomized 1-D convo-
lutions, was shown to consistently improve the predictive performance compared
to other widespread pooling operators. This operator is referred to as Percentage
of Positive Values (PPV) and is defined as: PPV (z) = 1

n

∑n−1
i=0 I[zi > 0], where

I[zi > 0] is the indicator function which value is 1 if zi > 0, 0 otherwise.
As suggested in the original paper, we used as global pooling both the global

max pooling and PPV, concatenating the resulting representations. Note that
this choice doubles the size of the global graph representation compared to the
representations of the single nodes provided in output by the untrained graph
convolution. We conducted ablation studies to show the impact of different ag-
gregation functions on the overall performance of our proposed method.

3.3 Efficient readout

As mentioned before, our focus in this paper is the development of efficient
and effective neural network models for graph classification. As discussed in
Sections 3.1 and 3.2, the network that computes the graph-level representation
does not need to be trained. This leaves the only trained parameters of the
model to be those in the readout, i.e., the function mapping from the graph-level
representation to the appropriate output for the task. In the case of classification
tasks, one of the fastest linear classifiers in the literature is the Least Squares
SVM (LS-SVM) [35] with a linear kernel (also known as Ridge Classifier). In the
binary case, this classifier follows the simple idea of mapping the two possible
classes in {−1, 1}, and then treats the problem as a regression task, solved with
ridge regression. While other classifier choices may lead to improved results, in
this paper we test only this very efficient classifier, and leave the exploration of
other more complex readouts as future work.

4 Results and discussion

In this section, we present our experimental setting. A critical point when com-
paring different models is the possible dataset augmentation that is applied, and
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the considered validation strategy. We decided to use a common setting for the
chemical domain, where the nodes are labelled with a one-hot encoding of their
atom type. The only exception is ENZYMES, where it is common to use 18
additional available features, and we followed this convention. Moreover, in the
literature, different validation strategies have been applied, making it difficult to
perform a fair comparison between the various methods. For the reported results
we follow the validation strategy discussed in [6]. We estimate the performance
of the U-GCN model by performing 10-fold cross-validation and repeating the
whole procedure 5 times to account for the random initialization. To select the
best model, we used the average accuracy of 10-fold cross-validation on the val-
idation sets, and we used the same set of selected hyper-parameters for each
fold. We did not perform an extensive hyperparameter search on the network
architecture since our goal is to design an untrained GCN model whose perfor-
mance is relatively stable on hyperparameter choice. For this reason, for U-GCN,
we fixed the number of layers to four. As for the number of neurons, from pre-
liminary experiments, it was clear that the more hidden neurons, the higher the
predictive performance. We set the number of hidden neurons to 5, 000 per layer.
Since we use four layers, and concatenate two different readouts, the resulting
graph representation is of size 40, 000. Notice however that since the weights
are not trained, we just have to perform the forward phase which is extremely
fast. We then train an LS-SVM classifier that depends on a regularization hyper-
parameter α that we choose in the set {10−4, 105}. We also select the θ parameter
for weight initialization in the set {0.01, 0.1, 1, 3, 5, 10, 30, 50}.

4.1 Datasets

We empirically evaluated U-GCN on commonly adopted graph classification
benchmarks. We considered four datasets modeling bioinformatic problems: PTC
[14], NCI1 [38], PROTEINS, [2], and ENZYMES [2]. Moreover, we used two
large social network datasets: IMDB-B and IMDB-M [40]. PTC, and NCI1 in-
volve chemical compounds represented by their molecular graphs, where node
labels encode the atom type, and bonds correspond to edges. PROTEINS and
ENZYMES involve graphs that represent proteins. Amino acids are represented
by nodes and the edges connect amino acids that in the protein are less than
6Å apart. IMDB-B and IMDB-M are composed of graphs derived from ac-
tor/actress and genre information of different movies on IMDB. The target value
for each movie represents its genre. IMDB-B models a binary classification task,
while IMDB-M considers three different classes.

4.2 Experimental results

In Table 1 we report the results of our experimental comparison. We considered
seven datasets to allow for a comparison with many existing methods in the liter-
ature. We performed a pairwise Wilcoxon signed-rank test between our proposed
U-GCN method and the others. We chose this test because our focus is to pro-
pose an efficient and effective alternative and we want to show that our method
performs comparably to the state of the art. Thus, the absence of a statistically
significant performance difference between our method and the alternatives is
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already a good result in our point of view. From the test, it emerges that our
method performs even significantly better than some state-of-the-art end-to-end
trained architectures, showing that the approach we propose is indeed promising.

In Table 2 we perform an ablation study to show the contribution of each
core component of our architecture. First, we consider a version of U-GCN that
only uses the global max pooling as an aggregator, thus discarding the PPV
presented in Section 3.3. For this ablation, we doubled the number of neurons in
the network to consider graph representations of the same size. While there is
no clear winner in the comparison, notice that the feature extraction of U-GCN
is faster since it requires extracting half the number of features. The second
ablation we consider is the same U-GCN where the tanh activation function
between graph convolutional layers is removed, obtaining a linear model. In
this case, U-GCN performs significantly better than linear ablation. Finally,
we consider the impact of the θ parameter comparing U-GCN with a version
where we fix θ = 1 (its default value). In this case, U-GCN performs again
significantly better than the ablation. Moreover, we explored different hidden
layer sizes (number of neurons) and confirmed that a higher number of neurons
always corresponds to higher predictive performance (plots not reported for lack
of space).

Concerning the computational times, running on CPU on a server equipped
with an Intel(R) Xeon(R) CPU E5-2630L v3 @ 1.80GHz, for instance for the
ENZYMES dataset with 5, 000 neurons per layer the feature extraction on the
whole dataset takes 33 seconds, while a single LS-SVM training takes on average
5 seconds. For NCI1, the times are 42 and 6 seconds, respectively. These times are
orders of magnitude faster when compared to GNN models trained end-to-end
with stochastic gradient descent. Concerning the test times, they correspond to
the forward pass and the evaluation of the (linear) LS-SVM model, thus they are
roughly equivalent to the ones of common GNN models. Notice that the forward
pass could also be implemented on GPU for even faster feature extraction.

5 Conclusions

In this paper, we proposed a novel extremely efficient GNN model to perform
graph classification. The proposed architecture, dubbed Untrained-GNN (U-
GNN), is reminiscent of the models that rely on Reservoir Computing (RC).
Indeed, as the name suggests, the U-GNN exploits simple stacked graph convo-
lutional layers where the weights are randomly initialized and then left untrained.
The random convolutional projections of the graph’s nodes computed by the GC
layers are aggregated using a global pooling operator to obtain a graph-level rep-
resentation that is composed of two functions: the global max pooling and the
percentage of positive values (PPV). Finally, the classification task is performed
using one of the fastest linear classifiers in the literature: LS-SVM. We assessed
the performance of the U-GNN on 7 datasets from different application areas,
comparing our proposal both with models that exploit standard end-to-end train-
ing and with GNN based on the RC framework. The empirical results show that
our approach achieved results comparable to the state-of-the-art methods.
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Model \
Dataset PTC NCI1 PROTEINS D&D ENZYMES IMDB-B IMDB-M

FGCNN[23] 58.8±1.8 81.5±0.4 74.6±0.8 77.5±0.9 - - -
DGCNN[23] 57.1±2.2 73.0±0.9 74.0±0.4 78.1±0.7 - - -
DGCNN[6] * - 76.4±1.7 72.9±3.5 76.6±4.3 38.9±5.7 53.3±5.0 38.6±2.2
SGC[28] * 55.6±7.6 76.3±2.5 75.4±3.4 77.1±4.4 31.3±5.6 66.4±5.5 43.3±3.4
Cheb-Net[28] 55.2±6.5 80.9±1.9 75.8±5.1 77.9±3.7 38.1±6.2 70.6±3.8 43.9±3.4
GIN[6] * - 80.0±1.4 73.3±4.0 75.3±2.9 59.6±4.5 66.8±3.9 42.2±4.6
DIFFPOOL[6] * - 76.9±1.9 73.7±3.5 75.0±3.5 59.5±5.6 68.3±6.1 45.1±3.2
GraphSAGE[6] - 76.0±1.8 73.0±4.5 72.9±2.0 58.2±6.0 69.9±4.6 47.2±3.6
Baseline[6] - 69.8±2.2 75.8±3.7 78.4±4.5 65.2±6.4 50.7±2.4 36.1±3.0
FDGNN[8] 63.4±5.4 77.8±1.5 76.8±2.9 - - 72.4±3.6 50.0±1.3
MGN[9] - 78.8±2.3 - - - 72.7±3.2 49.5±2.2
GRN [9] - 78.2±2.2 - - - 71.7±2.8 50.5±1.4
GESN[9] - 77.8±2.0 - - - 71.7±3.6 48.7±2.1
MRGNN[27] 57.6±10.0 80.6±1.9 75.8±3.5 - 68.2±6.9 72.1±3.6 46.9±3.7
U-GCN 61.2±2.2 82.2±0.4 74.2±1.4 78.0±1.0 68.8±0.6 68.7±1.2 45.8±0.6

(θ = 0.1) (θ = 30) (θ = 10) (θ = 5) (θ = 3) (θ = 1) (θ = 1)
Table 1. Experimental comparison between the proposed U-GCN and many state-of-
the-art methods.

Model \
Dataset PTC NCI1 PROTEINS D&D ENZYMES IMDB-B IMDB-M

U-GCN 61.2±2.2 82.2±0.4 74.2±1.4 78.0±1.0 68.8±0.6 68.7±1.2 45.8±0.6
(θ = 0.1) (θ = 30) (θ = 10) (θ = 5) (θ = 3) (θ = 1) (θ = 1)

U-GCN ablation (max aggr.) 64.1± 1.5 80.6± 0.5 74.7± 0.9 74.7± 0.8 70.1± 0.8 69.8± 1.1 45.8± 0.7
(θ = 50) (θ = 30) (θ = 3) (θ = 30) (θ = 5) (θ = 1) (θ = 0.01)

U-GCN ablation (linear) * 60.6± 1.0 80.5± 0.3 73.3± 0.7 76.8± 0.5 65.7± 1.9 65.5± 1.9 45.5± 1.38
(θ = 1) (θ = 30) (θ = 50) (θ = 30) (θ = 10) (θ = 30) (θ = 1)

U-GCN ablation (θ = 1) * 60.8± 1.3 80.2± 0.5 73.9± 0.5 77.2± 0.6 67.6± 1.3 68.7± 1.2 45.8± 0.62

Table 2. Ablation study: comparison of the proposed U-GCN with different variations.
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