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ABSTRACT

We evaluate the impact of signed realized semivariances and jumps, in the
evolution of the volatility of exchange rates w.rt leading currencies the US
Dollar, the Euro, the UK Pound and the Japanese Yen using high frequency
5-minute interval data. We re-examine the meteor shower and heat wave
hypotheses for four trading time zones i.e., New York, Tokyo and Sydney,
London only and London and NY jointly. We find short-run asymmetries in
the effect of positive and negative semivariances. Meteor showers exist
when trading takes place between London and NY and from NY to Tokyo
and Sydney and are profound for bad volatility. Jump variations influence
the future volatility of the time zones where they originate.

REsumE

Nous évaluons limpact des sauts et des semi-variances signés et réalisés,
sur I'évolution de la volatilité des taux de change par rapport aux principales
devises que sont le dollar américain, I'euro, la livre sterling et le yen japonais.
Nous faisons cela en utilisant des données a haute fréquence d'intervalle de
5 minutes. Nous re- examinons les hypotheses de la pluie de météores et de
la vague de chaleur pour quatre fuseaux horaires commerciaux, c'est-a-dire
New York (NY), Tokyo et Sydney, Londres uniquement et Londres et NY
conjointement. Nous trouvons des asymétries a court terme dans leffet des
semi-variances positives et négatives. Les pluies de météores existent lors-
que les transactions ont lieu entre Londres et NY et de NY a Tokyo et Sydney,
et sont profondes pour une mauvaise volatilité. Les variations de saut
influencent la volatilité future des fuseaux horaires d'ou elles proviennent.

Kevworps: forex markets, good and bad volatility, signed jumps, meteor
showers, heat waves
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1. Introduction

Practical forecasting and theoretical financial models rely on an under-
standing of asset price volatility and the ways in which information pro-
pagates across markets. The seminal contributions of Engle et al. (1990)
and Ito et al. (1992) regarding the information flow in currency markets
introduce the concepts of heat waves and meteor showers.' Heat waves are
associated with local autocorrelation structures, i.e. those specific to a
trading market or a trading window, while meteor showers show evidence
of dependence across markets (or trading windows).

Recently, Greenwood-Nimmo et al. (2016) examine and find spil-
lovers among G10 currencies using an empirical network model on daily
returns, the option-implied risk-neutral volatility and skewness. The work
of Lahaye and Neely (2020), based on the earlier findings of Cai et al.
(2008) on the role of jumps in driving volatility spillover, revisit the
meteor shower and heat wave effects by decomposing the daily realized
variance into continuous and jump components. They find both effects in
the integrated volatility, however, meteor showers being more influential
than heat waves. Su (2021) investigates the determinants of volatility
spillovers in the FX market using an extended heterogeneous autoregres-
sive (HAR) model incorporating market state. He finds that both meteor
shower and heat wave effects are present. However, he argues that due to

1 The literature on exchange rates has evolved from an analysis of periodic patterns, scaling or long-memory properties,
to the modelling of intra-daily and daily exchange rate retuns (see, among many others, the works of Engle et al.
(1990), Baillie and Bollerslev (1991), Hilliard and Tucker (1992), Dacorogna et al. (1993), Andersen and Bollerslev
(1997), Guillaume et al. (1997), and Muller et al. (1997))
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global trading and correlated common shocks, the meteor shower effect
dominates over heat waves.

Our work contributes to the stream of empirical literature on forex
markets in several ways. Barunik et al. (2017) analyse the asymmetry in
the forex market semivariances using forecast error variance decomposi-
tion, building on the recent stock market evidence which shows differ-
ences in the roles of good and bad volatility (Patton and Sheppard, 2015).
So firstly, we evaluate the impact of good versus bad volatility on the
evolution of the volatility of several clusters of exchange rates with respect
to selected leading currencies, namely the US Dollar, the Euro, the UK
Pound and the Japanese Yen. These currencies represent a large fraction of
exchange rate trades, approximately 75% of average daily turnover (BIS,
2019).” From a methodological point of view, unlike common time series
setting as in Lahaye and Neely (2020), and Su (2021), we adopt a panel
approach. Our analyses highlight differences across exchange rate panels
that are attributable to the reference leading currency. In addition, as we
use data recorded at high frequency and on a 24-hour basis, we are also
able to track how the impact of good and bad volatility changes across
time zones. For a given currency, different behaviours across time zones
might be associated with the local relevance of a given leading currency,
complementing the analyses made across leading currencies.

Our second research direction focuses on the role of jumps in curren-
cies. We deviate from Patton and Sheppard (2015) while identifying the
discontinuous component of exchange rate evolution, a choice that allows
the direct ex-post evaluation of jump signs. In this respect, we pre-test the
series for jumps, decompose continuous part of good and bad volatility
after removing the returns associated with jumps, and separate positive
and negative jumps. We evaluate the impact of signed jumps on the
currencies by differentiating between the leading currencies and the time
zones. With respect to these first two issues, we expect to identify differ-
ences in the behaviours of our currency baskets over time zones. In fact,
leading currencies might be more relevant over a specific time zone, while
the impact of signed variations could differ across time zones as well as
over leading currencies. To complement these two findings, we take a
forecasting perspective and evaluate the impact of signed variations, focus-
ing over increasing horizons to highlight possible differences over time

2 Triennial Central Bank Survey. Foreign exchange turnover in 2019. Bank for International Settlements.
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zones, across currencies, for different components of the exchange rate
volatility, accounting for the sign.

While the previous elements focus on the descriptive features of the
forex market, our analyses also focus on the economic interpretation of
our findings, in particular we consider the interdependence across trading
periods. We thus analyse the interdependence across time zones, verifying
whether, for a given leading currency basket, the information associated
with specific time zones is dominant in the evolution of the volatility.
Therefore, we contribute to the literature using a framework closely
related to that of Lahaye and Nelly (2020), but with two relevant differ-
ences. Firstly, building on the work of Patton and Sheppard (2015), we
disentangle the role of “good” and “bad” volatility. This allows us to
evaluate the contribution to heat waves and/or meteor showers associated
with positive and negative returns. Moreover, by using a similar interpre-
tation, and making use of a procedure that allows us to separate jumps
into positive and negative, we account for the jump sign effect. Notably,
when recovering the good and bad volatility components, we introduce a
criterion to identify, within each time zone, which is the riskier currency
in each exchange rate; which is associated with the construction of a
coherent modelling strategy. As a final analysis, we evaluate the horizon
effect and determine the role of signed volatilities and jumps in driving the
future evolution of the realized volatility, again from the angle of heat
waves and meteor showers.

The estimates of the classic heteroskedastic auto-regressive (HAR) spe-
cification confirm the strong presence of heat waves, in line with the
autocorrelation structure that characterizes the realized volatility
sequences. Extending the model to dependence across time zones, meteor
shower effects appear. They are quite diffuse when focusing on statistical
significance, but when we account for their strength, it emerges they are
stronger for contemporaneous European and US trading activity on the
subsequent trading in US markets only, and then from the US market to
the following Asian market trading. We might interpret this in light of the
activeness of the European and US markets. We decompose the volatility
into good and bad components, and cluster assets in such a way that
shocks hitting the riskier currency in an exchange rate lead to good
volatility. We observe that heat waves are stronger for good volatility than
bad volatility. Furthermore, meteor showers are much more diffused for
good volatility, but we do observe some heterogeneity across the leading
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currencies. The jump component of the volatility, in line with the exis-
tence of heat waves, only influence the future volatility of the time zones
where they originate. This evidence is somewhat unexpected as it appears
that jumps on day # in time zone 7 impact the realized volatility on day #+1
in time zone 7 but do not have any effect on the realized volatility of the
same day in time zone i+/. Therefore, only local jumps are relevant in
driving the evolution of the zone-specific realized volatility. For the hor-
izon effect, heat waves are clearly present but the asymmetric role of good
and bad volatility is confirmed only over a short-term horizon. Meteor
showers are present and their strength is in line with the previous analyses.

The paper proceeds as follows. In Section 2 we describe the data
and the estimators we adopt for disentangling the continuous and
discontinuous components of the exchange rate volatility while preser-
ving the information of the sign, and we introduce the modelling
strategy including the parameter estimators. Section 3 presents our
empirical findings in subsections associated with the four research lines.
Section 4 concludes.

2. Data description & Model

The data we use for empirical analysis consists of high-frequency
5-minute exchange rate quotes against four major currencies, the US
Dollar (USD), Euro (EUR), UK Pound (GBP) and Japanese Yen (JPY)
from October 1, 2009 to September 30, 2020. After removing the pegged
currency cases and time series with longer than two months’ stale prices,
our final sample comprises 19 FXs against USD, GBP and JPY and 17
against EUR. Table 1 shows the selected exchange rates for the four
reference currencies. The start date is dictated by the trade-off between
the number of currency pairs and a common sample for all pairs. All
exchange rates are taken from the Kibot.com® database on a nearly
24-hour basis, so in a given day there are 288 prices with matched
date/time information set at New York time.”

3 This data provider is lesser known than competitors, but its data quality is comparable to that of the New York Stock
Exchange’s TAQ database. A limited comparison of the two databases is available upon request.

4 For what concerns the treatment of the daylight saving, given that it is not coordinated and homogeneous on a global
scale, we set it according to the standard use in the Eastern Time zone (ET), i.e., in New York time. Therefore, daylight
saving is introduced in the data when considering its deviation with respect to Coordinated Universal Time (UTC), i.e.,
data are 5 hours behind UTC in autumn/winter and 4 hours behind UTC in spring/summer.


http://Kibot.com
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Table 1: Composition of the exchange rate database

Reference currencies

S. No.  Symbol Country and Currency USD EUR GBP JPY
1. AUD Australia Dollar X X X X
2. CAD Canada Dollar X X X X
3. CHF Switzerland Franc X X X X
4. CZK Czech Republic Koruna X X X X
5. DKK Denmark Krone X X X X
6. EUR Euro Member Countries X X X
7. GBP British Pound X X X
8. HUF Hungary Forint X X X

9. ILS Israel Shekel X X X X
10. INR India Rupee X X X
11. 119 Japan Yen X X X

12. KRW South Korea Won X X
13. MXN Mexico Peso X X X X
14. MYR Malaysian Ringgit X X X
15. NOK Norway Kroner X X X X
16. NZD New Zealand Dollar X X X X
17. PLN Poland Zloty X X X X
18. RUB Russia Rouble X X X
19. SEK Sweden Krona X X X X
20. TRY Turkish New Lira X X X X
21. USD USA Dollar X X X
Total pairs 19 17 19 19

Note: the tables reports the exchange rates included in our dataset.

We focus on the price volatility of four time zones so we utilize all the
24-hour data set, splitting the day trades into four samples, as detailed
below. From our analysis we exclude the transactions executed from 18:00
Friday to 18:00 Sunday NY time, because of the low activity on these
days, which could bias our analyses. We denote the observed log-prices on
a given trade day as po, p1, ..., p» where 7+ 1 is the number of unique
time stamps between 0:00:00 and 24:00:00 that have prices.
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The time zones capture the trading activity in a particular region/
location. Consequently, taking into account the timing of our data (set
to New York time), we select the time zones of day 7 as follows: from
18:00 of day (t-1) to 02:55 of day t we have 108 observations associated
with trading in Tokyo and Sydney; the sample from 03:00 of day t to
07:55 of day t includes 60 observations associated with trading in London
only; from 08:00 of day t to 11:55 of day t we have 48 observations
associated with trading in London and NY jointly; and finally, from 12:00
of day t to 17:55 of day t we recover 72 observations associated with
trading in NY (and US) only. See Figure 1 for a graphical representation
of our time zone structure. Note that the trading zones we consider make
a balance between trading activity and the need for including in each time
zone a sufficient number of data points to build a time-zone specific
model. Consequently, our time zones slightly differ from those adopted
by other studies, such as Melvin and Melvin (2003), Cai et al. (2008) and
Lahaye and Neely (2020). The most relevant difference is the use of four
time zones instead of the five adopted by, for instance, Cai et al. (2008).
We note that the missing time zone (or trading segment) corresponds to
what the previously cited papers associate with the joint trading in Asia
and Europe. However, this trading segment lasts only one hour, and thus
has limited information content for subsequent analyses or for recovering
realized volatility and identifying the occurrence of jumps. In the follow-
ing, we indifferently use time zones or trading segments to identify the
four periods into which we separate a trading day. Moreover, we refer to
the trading we associate with the London market as trading zone 1 and the
trading associated with the overlap in trading between Europe and North
America as trading zone 2. Trading zones 3 and 4 refer to the trading in
North America only and in the Australia-Asia area, respectively.

Using the 5-minutes data and focusing on the entire day, we filter the
intra-daily periodic component following Boudt, Croux and Laurent
(2011). Then, on the filtered data, we work on a time-zone basis and

compute the following quantities: the realized volatility RV,U ) (7 identifies
the time zone and ¢ refers to a given day), an estimate of the daily total
variation; the daily jumps and signed (positive and negative) jumps,
A]EV(])) A]EJF»(/)’ A]tzﬂ(])’ with A]f’(j) _ A]tZJr’(j) + A]tzﬂ(/)’ which
estimate the daily discontinuous component of the total variation — jumps
are identified at the intra-daily level with the test put forward by Lee and
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Figure 1: Time zones as per trading activities

Note: From 18:00 of day (t-1) to 02:55 of day t, 108 observations associated with trading in
Tokyo and Sydney. From 03:00 of day t to 07:55 of day t, 60 observations associated with
trading in London only. From 08:00 of day t to 11:55 of day t, 48 observations associated with
trading in London and NY jointly. From 12:00 of day t to 17:55 of day t, 72 observations
associated with trading in NY only. The returns at a specific time period are based on price
at that time and previous period price and thus a five-minute interval is left blank for clarity
between the time zones.
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Mykland (2008); the Good and Bad volatility, RS, ¥ and RS, () , esti-

mating the continuous contribution to the total variation. We note that

RVt(j) = RSj’(j) + RS;’(j) + A],z’(j). Details on the computation of the
various quantities are included in Appendix A.

A preliminary descriptive analysis, see Appendix B, highlights the exis-
tence of heterogeneity among leading currencies and time zones. This
suggests that the analysis of the dynamic volatility might also be hetero-
geneous among time zones and leading currencies. This aspect is analysed
in the following Section 3.

In analysing the role of good and bad volatilities and signed jumps for
predictability of exchange rate total realized volatility, over and across time
zones, we use variations of the popular heterogeneous autoregression
(HAR) model (Corsi, 2009; Miiller et al., 1997). The standard HAR,
in general, regresses the realized variance (RV) on three indicators built
from lagged RVs, i.e., the 1-day lag, the average of the last 5 days, and the
average over the last 22 days. For interpretation purposes, and coherently
with Patton and Sheppard (2015), we use a re-parameterization of the
HAR model which is numerically identical (in terms of fit to the data) to
the original specification of Corsi (2009). In our model, the 2" term is
based only on the average realized variances between the 2 and 5 day lags,
and the 3™ term comprises only the realized variances between the 6 and
22 day lags:
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- 1 4 1 21
Ihirh = o+ de}’): + Ou (Z Z}’t—z‘) + Om (1_7 Z}’t—i) + €r4p (1)
=1 =5

where y is RV for a specific time horizon, and yj, ;1) = %Zf Yr+i is the h-
day average cumulative volatility. Hereafter, we use 7,, to denote the
average value over lags 2 to 5 and J,,, indicates the mean value between
6 and 22 days lag. The model allows us to evaluate the impact of the daily,
weekly and monthly volatility proxies on the total volatility at time #+4,
where />0 represents a forecast horizon. We note that we refer to the
weekly and monthly proxies for simplicity but these are in reality repre-
senting the weekly impact going beyond the daily impact and the monthly
effect going beyond the weekly effect. In the following, we extend the
HAR model by introducing in the dynamic additional elements, associ-
ated with asymmetry, signed components and interdependence between
time zones. In all cases, we estimate the various models for forecast hor-
izons ranging from A=1 to 66 days, similarly to Patton and Sheppard
(2015), from which we also borrow the estimation approach (see Appen-

dix C for details).

In the following, we first focus on the serial dependence structure
within each trading segment (time zone) highlighting the relevance and
impact of specific features of the data, and then focus on the existence of
meteor showers and heat waves within our dataset.

3. Empirical results

3.1 The HAR model results

Our first model corresponds to a baseline heterogeneous autoregressive
model of Corsi (2009) augmented by the introduction of asymmetry, an
additional component adopted in several empirical works; see, among
others, Corsi and Reno (2012), and, in a different framework, Ning et al.
(2015). We adopt here the same asymmetric specification of Patton and
Sheppard (2015). Hence, we estimate the following specification:

Wh,i,t+h = pu+ ¢sRV;, + 'VRVi,r[[m <0] + (%Ww,i,t + Q%Wm,i,z + €irth
(2)
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where RV} 14, RV ;s and RV, have already been defined in Eq. (1),
while /, [ is an indicator of negative lagged daily FX returns. We

estimate the models parameters with a fixed effect estimator, for each
cluster of currencies (with respect to the leading currencies) and for each
time zone. This baseline specification helps us to analyse the heat wave
presence. To examine meteor showers across regions, we estimate the
following extended specification:

rip < 0]

4
RV i1pssh = P+ Z(ij,a’RVj,l,tfjAt) + YRV 1| [, <]
j=1

+ QWRV ;s + PRV i s + €114 (3)

where we allow the volatility of exchange rate 7 in time zone / to depend
on the volatilities of the same exchange rate observed in the same time
zone and in the previous three time zones. For instance, if we focus on the
USD currency panel, and on the USD/EUR exchange rate in time zone 3,
the volatility for time zone 3 and day t+1, depends on the volatility of time
zone 3 at day ¢, the volatility of time zones 2 and 1 at day t, and the
volatility of time zone 4 at day t-1.

Table 2A-D gives the results for the selected leading currency (we
always exclude the intercept). In each time zone, we report results for
basic as well as extended HAR specifications. We evaluate the presence of
heat waves and meteor shower combining the statistical significance of
coefficients with their size. In the USD case (Panel A), the baseline model
shows heterogeneity across the active geographical areas. The coefficients
of the daily lag range from 0.217 to 0.338, with the lowest value associ-
ated with the third (NY only) time zone. Furthermore, there is no evi-
dence of asymmetry as the coefficients of the asymmetric term are not
significant at the 1% level, and only in two time zones do we have
significant coefficients but at the 5% level. For the extended HAR, con-
secutive time zones have a statistically significant impact on the volatility
of any particular time zone. However, a significantly higher (0.186) spil-
lover is evident from time zone 2 (London and NY) to time zone 3 (NY
only). Similarly, a significant and high (0.177) influence of volatility from
time zone 3 (NY only) to time zone 4 (Tokyo and Sydney) is noted.

For the Euro, Pound and Yen, the results of the basic and extended
HAR are similar to USD i.e., low coefficient of daily lag in time zone 3
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Table 2: The HAR specification with asymmetric effect

RV }iip = p+ RV + YRV}, <o) + GuRVis + OmRVins + €14
A. Estimation results for the USD

¢5Zl ¢;ZZ ¢523 ¢3{‘z4 7y o O Adj. )'d
0.338 —0.038 0364 0229 0.211
T7-1 (16.07) (—2.12) (18.94) (11.99)
(London only) 0290 0.058 0.043 0.006 —0.038 0335 0205 0.260
(14.26)  (6.24) (3.14) (144 (-2.11) (17.35) (10.48)
0.299 —0.039 0332 0305 0.202
1729 (15.53) (—2.25) (15.98) (14.48)

(London and NY) 9047 0266 0.034 0002 —0.038 0314 0291 0.226
(3.67)  (13.36) (2.70)  (0.79) (—2.22) (14.91) (13.78)

0.217 —0.027 0341 0322  0.101
173 (10.42) (-1.29) (15.02) (13.21)
(NY only) 0.041 0186 0149 002 —0.013 0254 0228  0.200

(1.49) (825 (7.87) (438 (—0.70) (10.86) (8.94)

0290 —0.001 0437 0255 0.435

(TTZ=k4 J (13.91)  (=0.03) (10.05) (7.79)
okyo an
Sydn)e,y) 0.022 0046 0177 0225 0.003 0368 0.201  0.484

(1.29)  (3.65  (5.33) (10.12) (0.15)  (9.77)  (5.39)

B. Estimation results for the EUR

R . X
0.320 —0.019 0370 0253 0.158
7.1 (15.47) (—1.34) (19.03) (13.57)
(London only) 0305 0.022 0009 0001 —0.019 0363 0248 0.171
(14.70)  (2.65) (3200 (1.30) (—1.32) (18.76) (13.26)
0.284 —0.042 0334 0295 0.067
1722 (14.82) (—2.41) (15.19) (11.52)

(London and NY) 9995 0231  0.032 —0.001 —0.040 0299 0274 0.074
(6.60) (11.44) (1.62) (=0.69) (—2.34) (13.71) (10.51)

0.190 —0.047 0.442 0233  0.050
173 (10.60) (—2.85) (19.32) (11.58)
(NY only) 0.081 0257 0117 0.000 —0.032 0313 0.146 0.109

(451)  (7.71)  (7.56)  (0.09) (—=2.08) (14.70) (7.10)

0.255 —0.001 0312  0.272  0.025
T7=4 (11.75)  (=0.08) (8.89)  (9.50)

gTzkYO and 0.072  0.035 0382 0134 —0.004 0.199 0.181  0.066
ydney) 2.07)  (1.01) (419 (552) (-0.22) (668) (5.19)
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Table 2 (Continued): The HAR specification with asymmetric effect

C. Estimation results for the GBP

¢;Zl ¢;Zz ¢;’ZS 524 5 bu b Adj. d
0.300 —0.034 0366  0.249  0.350
T7-1 (10.48) (=1.76) (16.48) (10.96)
(London only) 0.233  0.102 0072 0013 —0.038 0321 0219 0.358
(7.71)  (4.23) (359 (1.98) (=1.97) (13.51) (9.55)
0.257 0.005  0.401  0.244 0.212
172 (14.80) (0.24)  (16.44) (10.59)

(London and NY) 9978  0.208 0.034 0.007 0003 0363 0222 0219
(3.46) (10.97) (3.47) (1.10)  (0.18) (14.15) (9.37)

0.206 —0.036 0377 0288  0.119
173 (8.45) (-1.67) (15.35) (11.99)
(NY only) 0.016 0315 0.131 0.013 —0.016 0244 0.192  0.366

0.50)  (2.75)  (5.21)  (1.80) (—0.84) (6.20) (5.69)

0254 0026 0465 0245 0.290
1Z7-4 9.26)  (0.60) (6.10) (7.17)

(Tokyo and
Sydney) 0025 002 0281 0172 0038 0366 0198 0352
(1.24)  (1.19)  (492) (5.02)  (0.86) (5.86) (5.30)

D. Estimation results for the JPY

o gl I 174 5 b b, Ad K
0.339 —0.047 0385 0235 0.233
171 (14.73) (-2.27) (15.57) (10.68)
(London only) 0266 0058 0.094 0004 —0.041 0337 0205 0272
(1239)  (4.62) (737) (1.12) (=2.10) (14.02) (9.44)
0.331 —0.030 0359 0265 0.395
172 (12.64) (-152) (1423) (11.17)

(London and NY) 9053 0262 0.09 0.008 —0.026 0318 0233 0416
(3.82) (10.82) (5.72) (1.71) (=1.41) (12.35) (9.77)

0.311 —0.041 0362 0277 0301
173 (8.12) (—1.42) (15.44) (11.42)
(NY only) 0.043 0249 0212 0026 -0.036 0238 0.178 0.385

(1.52)  (8.95) (6.35  (291) (—1.34) (8.84) (6.85)

0370 —0.122 0429 0223 0.292

(TTZ=k4 | 9.76)  (~326) (9.94) (8.10)
OKyo0 an
Syany) 0.050 —0.005 0543 0220 —0.103 0285 0.142 0366

(126)  (=0.09) (3.24) (6.19) (=3.19) (6.57)  (4.45)

Note: The model is the reference model that uses realized variance and an asymmetric term. These summary
results are for the forecast horizon of one day. In all cases, average values of R? for individual currencies are
reported. The robust t-statistics are in parentheses. We report in bold daily realized volatility coefficients which are
statistically significant and larger than 0.1; smaller and statistically significant coefficients are in italics.
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(NY only). In the case of Yen, the highest daily lag coefficient is found in
time zone 4 (Tokyo and Sydney). The asymmetric terms are almost always
insignificant, at the 1% level of significance. The influence across time
zones is also like USD. A significantly higher influence is evident from
time zone 2 (London and NY) to time zone 3 (NY only) and from time
zone 3 (NY only) to time zone 4 (Tokyo and Sydney). For the Pound, a
higher impact of lagged RV in time zone 2 (London and NY) to time
zones 1 (London only) is also noted.

These results collectively show evidence of heat waves in all time zones,
an expected result given the known serial dependence characterizing realized
volatility sequences. When we augment the model with impact across time
zones, meteor showers appear. They tend to be quite diffused if we focus
only on the statistical significance. However, if we also take into account the
coefficient size, we note that meteor showers are stronger from time zone 2
to 3 and from time zone 3 to 4. We might read this in light of the relevance
of these time zones within the global financial markets. Moreover, the
information spillover from the joint European and US trading zone to the
US trading zone might be related to the presence of US-based agents active
in both time zones. For the link between the US time zone and the Asian
time zone, we might also read this in light of the accumulation of infor-
mation within a calendar day, which impacts the following day’s exchange
rates in the first time zone trading, i.e. the Asian zone.

The adjusted R-square values are higher in the case of the extended
HAR specification compared to the basic HAR, which indicates that
future volatility of a specific time zone is also explained by the volatility
in other time zones. We plot the adjusted R-square values of the HAR
model estimations for individual currencies in Figure 2 (Panels A to D for
the four leading currencies). Apparently, the explanatory power of indi-
vidual HAR models is relatively lower when FX are quoted against GBP.
Generally, adjusted R-square values are higher in time zones 1 and 2, with
few exceptions. Also, other currencies, such as ILS and INR, have lower
values, irrespective of the leading currencies.

3.2 The role of signed realized semivariances and signed jumps

Next, we examine the role of signed realized semivariances in driving
the future volatility of exchange rates across time zones and therefore we
estimate the following basic and extended specifications:
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Figure 2: R-squared values of individual currencies for time zones

Note: For each leading currency, we report the adjusted r-squared of the baseline HAR model.
The x-axis shows the exchange rates, and each time zone adopts a different colour.
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RVyivin = b+ QyRS, + o4 RS;, + ¢y AJ7, + ¢wRV 5,
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4
RV iipsrh = i+ Z (¢j7dRS;r,l7tfjAt> + Z (¢fvdRSj_JJ—jAf>
= =

4
+ Z (¢fJAjj?l,t—jAz> + (bu}RVi,l,w,t
=1

+ ¢mwi71,m7t + €irth (5)

where the realized semivariances RS}, and RS, are calculated as per Eq.
(A.4) and jump variations A/J?, according to Eq. (A.5). Other terms are

equivalent to those in Eq. (2). In this model, we introduce the signed
volatility along with the jump variation. We do not allow for returns
asymmetry because it turns out to be only slightly significant in a few cases.
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Notably, we realize that a preliminary transformation on the exchange
rates is needed to estimate a pooled OLS with semivariances. In fact,
while the realized volatility of, say, the EUR/USD exchange rate is iden-
tical to the realized volatility of the USD/EUR exchange rate, the good
and bad volatility values, in a given day, are inverted. This is a conse-
quence of using intra-daily log-returns characterised by equal values for
EUR/USD and USD/EUR but with opposite signs. Consequently, in
order to obtain a coherent set of results in the panel estimate, we have
to specify for each exchange rate which version, direct or indirect, is used,
taking the point of view of an investor located in the country of the
leading currency we are considering. We chose a relatively simple criter-
ion, that builds on the expectation of observing a larger impact of bad
volatility (i.e. negative shocks), as opposed to good volatility, on the
realized volatility, coherent with the results of Patton and Sheppard
(2015). However, focusing on exchange rates, the identification of nega-
tive shocks depends on the version of the exchange rate considered. As an
example, consider a US investor, and take the indirect exchange rate
between, say, the USD and the Euro, i.e. we evaluate the volume of Euro
for 1 USD. A negative shock on the Euro leads to a depreciation of the
Euro against the USD and, consequently, an increase of the Euro volume
for 1 USD. Therefore, a negative shock equals a positive return on the
USD/EUR exchange rate. On the contrary, if we take the direct exchange
rate, i.e. the USD price of 1 Euro, a negative shock on the Euro turns into
a negative return on the exchange rate. Consequently, in the indirect case,
shocks on the local currency correspond to negative returns and thus
contribute to bad volatility while shocks on the foreign currency contrib-
ute to good volatility. In this setting, the largest between the good and bad
volatility can be used to identify which is the riskiest currency in the
exchange rate. In our analyses we denote as the riskiest currency the one
with the largest contribution coming from negative shocks. Continuing
with our example, if the Euro is riskier than USD, and thus negative
shocks on the Euro are more relevant than positive shocks on the Euro,
we expect the good volatility to be higher than the bad volatility (keep in
mind we use indirect rates and negative shocks on the USD to correspond
to drops in the exchange rate and thus contribute to the bad volatility).

Given the previous discussion, in each time zone, for each leading
currency and for each exchange rate, we estimate a univariate HAR model
with lagged semivariances for the indirect exchange rate (i.e. the volume of
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foreign currency for one unit of the leading currency). If the coefficient of
the good volatility is higher than the coefficient of the bad volatility, it
means that the foreign currency is riskier than the leading currency, and
thus we keep the indirect rate. If the leading currency is riskier, we revert
the exchange rate to its direct form. Note that this puts on the same side
the currencies that are perceived by the market to be riskier in a specific
time zone. The criteria we use are clearly data-driven and deliberate, but
make the exchange rates adopted in the model coherent with respect to
market perception of currency risk. To the best of our knowledge, such an
ordering criterion for exchange rates is novel and has never been used in
previous studies. Table D.2 in the appendix lists the versions of the
exchange rates we adopt in each time zone.

In Table 3, we report the results for selected coefficients, excluding the
intercept and the coefficients associated with the weekly and monthly lags
(which are always significant and coherent with the relevance of the heat wave
effect). We skip the coefficients of jump variations, as the results of the model
with continuous and jump specifications are provided in the appendix.

Overall, we note a significant asymmetry between the coefficients of
positive and negative semivariances, consistent with the findings of Patton
and Sheppard (2015); we stress that, given the discussion above, we do
expect a larger coefficient for good volatility. This shows that the heat
wave effect is mostly driven by shocks on the riskier currency entering the
exchange rates.

For USD and EUR, meteor showers are only present in cases of
positive semivariances, i.e. for shocks originating from the riskier curren-
cies. In the case of GBP, negative semivariance in time zone 2 impacts
time zone 3 and time zone 3 impacts time zone 4. In the case of JPY,
meteor showers effect exits for both positive and negative semivariances.
Again, where positive or negative semivariances are present, the meteor
shower effect is significant from time zone 2 to 3 and from time zone 3 to
4. The estimates of basic specifications for individual currencies are shown
in Figure 3 and indicate asymmetry in the effect of signed semivariances,
without patterns we could associate with the time zones or leading cur-
rencies. Therefore, while the use of semivariances confirms the relevance
of the meteor showers effect, on the economic sides we do not identify
important insights associated either to the time-zone specificities or to the

currency at which we are pointing (between USD, EUR, GBP and JPY).
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Table 3: The role of realized semivariances
Wh.t+/7 =p+ ¢7C+RS,+ + ¢C—RS: + ¢]]t + ¢wRVw,t + ¢mRVm,t + €
A. Estimation Results for the USD
o G2 el g G g gIB G4 AR
0.543 0.253 0.214
T7-1 (13.95) (8.73)
(London only) 0464 0121 0064 —0014 0181 0056 0058 0.041  0.266
(12.28)  (5.38) (2.01) (=0.32) (6250 (3.12) (2.01) (0.78)
0.448 0.284 0.203
17=2 (12.65) 9.59)
(London and NY) 0979 0386 0.052 0011 0078 0232 0028 —0.005 0.233
(2.49)  (10.81) (2.60) (1.24) (.09  (7.69) (1.33) (=0.60)
0.344 0.208 0.101
T7-3 (8.82) (7.65)
(NY only) 0.089 0105 0291 0.008 0034 0012 0160 0.043 0.210
(2.33)  (3.14) (7.82) (0.40) (1.06)  (0.43) (5.86) (1.92)
0.476 0204  0.436
T7=4 (7.42) (4.20)
(Tokyo and
Sydney) 0.148 0065 0213 0366 0.006 0020 0.121 0.123 0.480
(344 (259 (.67 (7.59)  (0.14)  (1.14)  (1.69) (2.11)
B. Estimation Results for the EUR
I A S 2l
0.484 0.305 0.175
A (11.14) (9.82)
(London only) 0380 0.118 0156 —0.003 0225 0.152 0.004 0.003 0.200
(8.40) (240) (256) (—0.90) (645 (1.77) (0.15) (0.83)
0.471 0.222 0.067
77-2 (7.81) (6.25)
(London and NY) 0,180  0.385 0.057 —0.001 0.107 0132 0.029 0.001  0.077
(4.43)  (6.62) (1.79) (—0.08) (2.22) (3.76) (1.64) (0.13)
0.357 0.168 0.051
17=3 (8.66) (4.21)
(NY only) 0.097 0118 0281 —0.009 0.059 0062 0125 0.023 0.136
(3.67)  (340) (7.33) (=0.51) (2.91) (245 (3.22) (1.63)
0.488 0170 0.025
17=4 (5.85) (2.20)
(Tokyo and
Sydney) 0.187 —0.070 0488 0295 0071 —0.056 0.648 —0.017 0.044
(1.81) (—1.24) (1.74) (5.05 (2.32) (—0.82) (2.33) (—0.18)
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Table 3 (Continued): The role of realized semivariances

C. Estimation Results for the GBP

O OB 0E 6E O o P o MR
0.467 0.296 0.345
77-1 (9.17) (8.80)
(London only) 0364 009 051 0033 0179 0186 0.090 —0.009 0.359
6.68) (2120 (3.12) (1.92) (456) (2.23) (2.10) (=0.53)
0.415 0.259 0.220
772 (10.11) 9.93)
(London and NY) 048 0319 0.111 —0.014 0.172 0174 0.042 0.009 0227
(1.19)  (8.63) (353) (—1.05 (1.83) (5.68) (230) (0.56)
0.379 0.199 0.121
17-3 (8.99) (6.40)
(NY only) 0.070 0089 0316 —0.010 0.012 0143 0145 0.035 0.377
(2.27)  (233) (7.91) (—0.40) (0.49) (2.71) (473) (1.34)
0.463 0162 0291
TZ=4 (7.98) (3.44)
(Tokyo and
Sydney) 0.10  0.005 0406 0324 —0.012 —0.023 0438 0.029  0.368
(147) (014 (3.54) (841) (=0.77) (=0.39) (2.95) (0.42)
D. Estimation Results for the JPY
A A R A A A A 2.
0.505 0.303 0.235
77-1 (12.83) (7.18)
(London only) 0390  0.093 0.137 0037 0194 0083 0.133 -0.032 0277
(10.77)  (378) (5.56) (2.33)  (4.63)  (4.02) (5.44) (-2.16)
0.532 0.333 0.398
17=2 (9.89) (10.40)
(London and NY) 0,137 0415 0127 0024 0089 0227 0112 —0014 0423
(3.57)  (8.54) (3.68) (1.04) (242) (6.61) (4.60) (=0.69)
0.436 0.332 0.301
T7-3 (6.65) (7.43)
(NY only) 0.129 0.116 0358 0387 0267 0419 0263 0218 0387
4.97) (294 (5.92) (1.00)  (0.70)  (1.13) (6.86) (0.69)
0.725 0325  0.291
17=4 (5.85) 0.36)
(Tokyo and
Sydney) 0.182 —0.574 0944 0360 0588 —0347 0794 —0.115 0377
221) (-0.69) (2.61) (412) (0.44) (-0.62) (3.16) (~1.57)

Note: The model is an extended version of the basic HAR model where realized variance is decomposed into
signed semivariances (continuous) and jump components. These summary results (skipped model co-efficient for
jumps, lagged weekly and monthly RVs, as those are similar to values reported in Appendix) are for the forecast
horizon of one day. In all cases, average values of adjusted R* for individual currencies are reported. The robust t-
statistics are in parentheses. In bold we highlight statistically significant coefficients larger than 0.1; smaller and
statistically significant coefficients are in italics.
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Figure 3: Asymmetric impact of positive and negative semivariances for indi-

vidual currencies

Note: For each leading currency, we report on the x-axis the coefficient of the positive semi-
variances and on the y-axis the coefficient of negative semivariances. Each symbol refers to an
exchange rate, and each time zone adopts a different colour.
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following basic and extended specifications:
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4
RVL,[_’;,JH, = U+ Z(qﬁj,dRI/j,l,lfjAl) + Z(¢jJ+ A];L-;A;:)

]’:] =1

4
+ Z (¢jx]7 Aj]%lit—jAt) + ¢WRVi,1,w,t
=

~

+ gbmwi,/,m,t + €itth (7)

where the realized variances RV, are calculated as per Eq. (A.3) and
signed jump variations AJ7 and AJ?,; according to Eq. (A.5). Other

it
terms are equivalent to those in Eq. (3) and refer to the jumps observed in
other time zones. By introducing these elements, we verify if also jumps

are characterized by meteor showers and heat waves effects.

To summarize, the estimation results reported in Table 4 indicate that
the jumps (associated with both positive and negative returns) are only
relevant in the time zones where they originate and indicate that jump
variations have a heat wave effect. There is no significant difference between
the impacts of signed jumps, which is also evident from the estimates of
individual currencies shown in Figure 4. The meteor shower effect (impact
of jumps across time zones in the extended model specifications) in both
positive and negative signed jumps is present only from time zone 3 to 4, in
the case of USD. For the other three leading currencies, this impact only
occurs in the case of negative signed jumps. Overall, this evidence is a bit
surprising as it implies that jumps affecting an exchange rate in day # and
time zone 7 impact only the realized volatility of the same time zone but at
day r+1, and there is no impact on the same day and time zone 7+1.
Therefore, jumps seem to have only a local impact. The information is
conveyed by the continuous volatility component (total or with semivar-
iances) only, given the evidence in the previous model estimates, and thus
referring simply to the predictable component of the total variation. On the
contrary, the jumps, the unpredictable component of the total variation, do
have effect just within the time zone in which they appear, and are not
transmitting to other time zones.

3.3 The horizon effect

So far we have examined the impact of signed semivariances on the
volatility of next one day, and found asymmetries in their influence. In
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A. Estimation Results for the USD

N A AR N B L. ¥/ o
0.117 0.132 0.214
17=1 (3.68) (3.27)
(London only) 0.096 0.029 0.002 -0.025 0106 0016 0.042 —0.004 0263
(3.00) (165 (0.13) (—2.40) (2.70) (0.97) (1.42) (=0.90)
0.154 0.123 0.205
T7=2 (4.32) (3.97)
(London and NY) 0010  0.142  0.034 —0.006 0.016 0110 0.023 —0.002 0233
0.87)  (3.98) (1.56) (~1.02) (0.86) (3.57) (1.01) (=0.91)
0.041 0.109 0.101
173 (1.22) (3.40)
(NY only) 0.029 0.001 0.049 0.05 —0.042 0.030 0111 —0.012 0.209
(1.05)  (0.03) (1.46) (0.27) (=2.31) (1.00) (3.45) (-0.76)
0.217 0.066 0436
174 (4.39) (2.04)
(Tokyo and
Sydney) —-0.022 0.028 0.148 0203 —0.025 0053 0247 0.055 0479
(-1.85) (1.36) (2.30) (425 (=1.64) (1.71) (467) (1.77)
B. Estimation Results for the EUR
Y ) R B Ve o
0.112 0.094 0.167
T7=1 (4.09) (3.13)
(London only) 0.066  0.067 0.000 0004 0.051 0001 0.001 —0.002 0.191
(2.26)  (2.83)  (0.04) (1.89) (1.64) (.14  (0.69) (—0.81)
0.093 0.154 0.066
77-2 (2.81) (4.76)
(London and NY) 0029  0.077 —0.045 0.008 0.000 0133 0.045 —0.014 0.079
(1.67)  (2.18) (—1.46) (1.50) (0.01) (4.25) (1.35) (=2.11)
0.069 0.028 0.063
17=3 (1.52) (1.45)
(NY only) 0.006 0008 0069 —0.006 0.008 0007 0026 —0.012 0.157
0.47) (0250 (1.52) (=0.78) (0.39) (0.43) (1.34) (—1.63)
0.08 0.0 0.02
1724 5 39 7
(2.05) (1.55)
(Tokyo and
Sydney) —0.007 —0.021 0.024 0080 0.023 0.161 0234 0.027 0.047
(—0.44) (—049) (0.18) (1.97) (0.58) (1.80) (2.49) (1.14)
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Table 4 (Continued): The role of realized jumps

C. Estimation Results for the GBP

o171 o122 $173 ¢}"f4 ¢/Tgl ¢/sz2 $1%3 $IZ4 Adj. R

7+ T+ T+
0.108 0.130 0.345
77-1 (3.69) (3.44)

(London only) 0.092  0.040 —0.003 0011 0098 0018 0.040 0.000 0359
(3.21)  (1.10) (-024) (0.89) (2.63) (043) (1.16)  (0.03)

0.158 0.143 0.220
17=2 (4.52) (4.69)

(London and NY) 0069  0.135  0.002 0028 0.034 0112 -0.019 0005 0227
(1.56)  (3.91) (0.26) (1.43) (0.90) (3.72) (=2.11) (0.29)

0.018 0.073 0.120

173 (1.10) (3.09)

(NY only) 0.041  0.045 0013 0.023 0002 0016 0.065 0024 0378
(1.85)  (0.72)  (0.79)  (1.05)  (0.11)  (0.34)  (2.80)  (0.81)

0.187 0.118  0.290

TZ=4 (4.31) 2.72)

(Tokyo and

Sydney) 0.035 0.020 0.081 0176 0.039 —0.018 0228 0.126 0.365

(229) (0.74) (L61) (423) (L.66) (=0.79) (2.05 (3.17)

D. Estimation Results for the JPY

¢}"+7 1 ¢/TZZ (b/Ti 3 ¢/Tf 4 ¢ TZ 1 ¢ TZ 2 ¢ TZ 3 ¢ﬁ4 A aj R2

0.135 0.084 0.235
T7-1 (5.34) (3.53)

(London only) 0117 0019 0.012 0005 0057 —0022 0059 —0.007 0.277
4.75)  (0.78)  (0.66)  (0.49) (2.46) (—1.69) (2.20) (—0.64)

0.127 0.085 0.397
172 (3.81) G.11)
(London and NY) 0004 0.073 0072 —0.004 —0.011 0042 0.033  0.000 0.420
(-030) (233) (2.60) (-040) (~0.87) (1.58) (1.57) (0.02)

0.812 0.974 0.302
77-3 (3.76) (3.72)
(NY only) —0.634 —0.441 0.835 0.833 0.145 —0400 0.963 0275 0.386
(=0.54) (=0.22) (3.22) (0.48) (0.93) (-=1.96) (3.72)  (1.56)
0.220 0.687  0.292
TZ=4 (Tokyo and (3.62) (1.64)
Sydney) —0.198 —0.165 —0.144 0184 —0412 —0512 0325 059 0373

(~1.45) (-1.38) (-0.13) (3.13) (-1.88) (-0.75) (2.17) (1.43)

Note: The model is an extended version of the basic HAR model where realized variance is decomposed into its
continuous and signed jump components. These summary results (skipped model co-efficient for continuous
component, lagged weekly and monthly RVs, as those are similar to values reported in Table 3) are for the forecast
horizon of one day. In all cases, average values of adjusted R for individual currencies are reported. The robust t-
statistics are in parentheses. In bold we highlight statistically significant coefficients larger than 0.1; smaller and
statistically significant coefficients are in italics.
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Figure 4: Asymmetric impact of signed jumps on volatilities of
individualcurrencies

Note: For each leading currency, we report on the x-axis the coefficient of the positive signed
jumps and on the y-axis the coefficient of negative signed good jumps. Each symbol refers to
an exchange rate, and each time zone adopts a different colour.
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this section, we analyse the asymmetries in the impact of signed volatility
over various horizons, by modifying the value of 4 in Eq. (4). Figure 5
shows the evolution over time of the coefficients of good and bad volatility
for the four time zones and leading currencies. A comparison between RV
and its decomposed filtered semivariances is made in Figure 5. The point
estimates of lagged daily RV come from Eq. (2) and the point estimates of
¢} and ¢, come from Eq. (4), for forecast horizons from 1 to 66 days and
with 95% confidence intervals. It is worth noting that Eq. (4) provides
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a full decomposition of the RV into filtered signed variations, i.e. positive
and negative semivariances after filtering for jumps.

By contrasting the signed volatility effect with the impact associated
with the baseline model (the grey line) we note similar patterns in the
various sub-plots. Firstly, the models without a decomposition of volatility
into good and bad lead to a lagged volatility lying between the values
observed for the good and bad cases. The general pattern of how volatility
reacts to past good and bad volatility is similar to what we report for the
1-day forecast in Table 3. Secondly, the difference between the influences
of semivariances disappear (confidence intervals start to overlap) between
5 and 22 days, and thus the asymmetries between the semivariances is
short lived. This confirms that heat waves are diffused in the cross section
of exchange rates, coherently with the stylized facts characterizing realized
volatility sequences (i.e., strong serial dependence and existence of asym-
metric impact from Good and Bad volatility).

To examine the time horizon effect of meteor showers, we repeat the
analysis for all four leading currencies, to forecast the volatilities of the four
time zones (with adjustments of appropriate time lags) up to a forecast
horizon of 66 days, as in Eq. (3). The point estimates of lagged daily RVs,
for four time horizons, for forecast horizons from 1 to 66 days and with
95% confidence intervals are shown in Figure 6.

These plots collectively confirm the previous evidence in Table 2 that
volatility in time zone 2 impacts volatility in time zone 3 and similarly
volatility in time zone 3 impacts volatility in time zone 4. Time zone 1
also has a higher impact on time zone 2 in the case of EUR and GBP.
Notably, this meteor shower effect is also significant up to the 22 days
ahead volatility forecast. Again, the graphical evidence associated with the
horizon effect does not deviate from the interpretation provided for the
one-day-ahead forecasts and included in the previous sections. In addition
to the previous evidence, beside noticing the long lasting effect due to heat
waves, we might also state that this effect appears to be dominating over
the meteor showers.

4. Conclusion

In this paper, we examine the local and regional spillover effects among
different clusters of four major internationally traded currencies. Using
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high-frequency 5-minute exchange rate quotes against the USD, EUR,
GBP and JPY from October 1, 2009 to September 30, 2020, we calculate
the realized volatilities and jumps for four different time zones. In doing
so, we first test for jumps and decompose high frequency FX returns into
returns associated with jumps and non-jumps events. Next, we calculate
and analyse asymmetries (good versus bad) in continuous (seminavar-
iances) and discontinuous (signed jumps) components of exchange rate
evolution. The realized volatilities are highest in case of USD and JPY and
lowest in case of EUR. The realized volatility is highest when the trading
takes place in Tokyo and Sydney. The positive and negative signed jumps
are comparatively higher in the London and NY time zone. The correla-
tion of volatility measures across time zones provide an initial evidence on
the regional spillover effects.

Therefore, we examine, through a forecasting exercise, both local (heat
wave) and regional (meteor shower) spillover using a basic and an
extended panel HAR framework, respectively. The local spillover is found
in all pairs of FX and asymmetric effect of positive and negative semivar-
iances on future realized volatility is found only in the short run. Jump
variations mostly have a local effect. The regional spillover exists when the
trading takes place between London and New York. The information
spillover from the US and European trading zone to the US might be
due to higher activity by US-based agents. The accumulation of informa-
tion within a calendar day also affects the following day’s exchange rates in
the Asian zone. In addition, spillover exits from New York to Tokyo and
Sydney. These regional spillover effects are more profound from the bad
volatility. Recent surveys of Bank for International Settlement (BIS) show
increasing tendency of financial customers (e.g., hedge funds, mutual
funds, institutional investors, and other portfolio managers) to participate
in foreign exchange trades. This phenomenon is reflection of increasing
globalization of forex markets over time, which results in information
flows across trading zones. We postulate that existing asymmetries in
information flow can be used to formulate viable trading strategies. We
have focused on the panel of currencies and hence provide evidence on
the aggregate effects, for future studies, it could be interesting to exam-
ine the local and regional spillover from major trading currencies to
new and emerging European forex markets (see e.g., Kocenda and

Moravcovi (2019)).
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Sign effects of volatility and jumps in forex markets and
a reappraisal of meteor showers and heat waves

Internet Appendix
A. Measuring volatility and jumps

Consider a continuous-time stochastic process for log prices, p,, which
consists of a continuous component and a pure jump component:

t t
P = / fisds + / o dW, + ], (A.1)
0 0

where / stands for a pure jump process, # accounts for the drift of the
stochastic process and is locally bounded, and ¢ is a strictly positive cddldg
process. The quadratic variation of this process is:

b= [ s Y (39 (A2)

0<s<¢

In Eq. (A.2) Ap, = p, - p,_ represents a jump, when one occurs.
Andersen et al. (2001) introduce a natural estimator for the quadratic
variation of a process as the sum of frequently sampled squared returns,
commonly known as realized variance (RV). For simplicity, suppose that
prices po,...p, are observed at 7 + 1 times, equally spaced on [0,7]. Using
these returns, then-sample realized variance, RV, is defined as below and
can be shown to converge in probability to the quadratic variation as the
time interval between observations becomes small (Andersen et al., 2003):

RV:erZ’_,[p,p], as 7 — 00 (A.3)
i=1

where 7, = p;, - pi1
Unlike Patton and Sheppard (2015), we pre-test for jumps through the
Lee and Mykland (2008) (LM) test® and decompose the series of high

5 Dumitru and Urga (2012) perform a comprehensive Monte Carlo comparison between nine procedures and find that
the overall best performance is provided by the Lee and Mykland (2008) approach
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frequency returns into the contribution to the continuous price variance
and the contribution to the discontinuous price variance, i.e. the jumps.
Since accounting for the periodicity greatly improves the accuracy of
intraday jump detection methods, we first apply the Boudt, Croux and
Laurent (2011) procedure to filter returns from the intra-day peri-
odicity. This filtering procedure is applied without sub-dividing the
data into time zones. Next, we apply the Lee and Mykland (2008)
(LM) test for intra-day jump detection. Coherent with LM, we have
used a ratio between the intra-day return at time i and the bipower
variation based on the data of a particular time zone. Within each
time zone, we have different past window size due to difference in
number of observations. The window () is based on the formula
provided by Lee-Mykland (see page # 2542) i.e., K = A¢”". Where
At depends on the no. of observations within each time zone and -1
< a < -0.5, we set @=0.49. Furthermore, by referring to the approach
we adopt to decompose the volatility into the signed continuous and
discontinuous components, we note the following: first, we filter the
intra-daily periodicity component without dividing data into time-
zones; second, we evaluate the LM test statistic for jump detection at
the time zone level, also accounting for the different lengths of the
time-zones.

The returns filtered from jumps are used to capture the pure realized
semivariances, i.e. realized semivariances not contaminated with the
jumps as:

RSt = Z rcl.zl[,l_>o],
i=1
RS™ =t q. (A.4)

i=1

where ¢ are the returns filtered from jumps. On the other hand, for
jumps, we compute the discontinuous component of volatility, together
with its signed versions. We compute the latter by inferring the sign from
the intra-day returns that we “label” as jumps. The three quantities corre-
spond to:
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A =D i

ic]

A_]2+ = Z 77,'2[[ri>0] ;
ic]

AP = Z 72}, <o) (A.5)
ic]

where, 77 are the returns associated with jumps and in a given day, / is
the set of 5-minute intervals where a jump occurs. Therefore, on the days
where no jump component is detected, all the jump measures are exactly
equal to 0 and, in a given day, we might have only one signed jump
component different from zero. Note that, when measuring the pure
realized variance and semivariances for a given day, we evaluate Eq.
(A.3) and Eq. (A.4) using the returns set excluding jumps, i.c. all the

returns within a day minus the returns included in /.

As we work with time zones, all the quantities (realized volatility,
realized semivariances, signed jumps) are evaluated using the data
belonging to a specific time zone. For instance, the realized volatility
is computed as:

RV = > "2, (A.6)
i€N

where NV, is the set containing the return time indexes for time zone j.
We compute in a similar way both jumps as well as semivariances and
signed jumps, starting, in the latter case, from jumps identified at the
single time zone level, and excluding jumps from the evaluation of the
semivariances.

B. Descriptive analysis

Figure B.1 shows the box plots for the various volatility measures used
inthis paper. These boxplots show 5% quantile, 25% quantile, median (or
50% quantile), 75% quantile, and 95% quantile values for realized var-
iance, goodand bad volatility (realized positive and negative semivarinaces)
and positiveand negative signed jumps. Average (mean) values are indi-
cated using a plussign. Panels A-D correspond to each leading currency,
and within each boxplot,we compare the values for the four selected time
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zones. The realizedvolatilities are highest in case of USD and JPY and
lowest in case of EUR.Collectively, these boxplots show a few differences
across leading currenciesand time zones. For example, the median RV for
all four major currencies ishighest in the fourth time zone, which corre-
sponds to trading in Tokyo andSydney. The magnitude of difference
among RVs across the four time zones ishighest in the case of USD, while
the differences are comparable for EUR and]PY. For GBP, the median RV
is also higher in the first time zone,corresponding to trading in London. A
similar pattern is observed for positiveand negative semivariances, which
are higher in time zone 4. The median valuesof positive and negative
signed jumps are comparatively higher in the secondtime zone, London
and NY jointly. There are no significant differences betweengood and bad
volatilities and jumps within a major currency pair, but they aredifferent
across the four time zones.

Figure B.2a shows, in the form of heatmaps, the median values of
individual currency correlations among the computed volatility mea-
sures. We mediate across the available currencies with respect to a spe-
cific leading currency. For all currencies and time zones, the correlation
between RS" and RS ranges between 63% (Pound in time zone 2) and
93% (Pound in time zone 3). The correlation between positive and
negative signed jumps ranges from 18% (Euro in time zone 1) to
45% (Euro in time zone 4). The values of the correlation between
continuous parts and signed jump parts are considerably lower. These
findings indicate that the decomposition of volatility into its continuous
and jump components yields interesting information. The correlation
between RS" and RS is generally higher in the fourth time zone, sug-
gesting that good and bad volatilities might occur with similar magni-
tude. Overall, there are marked differences between the correlations over
the four time zones.

The heatmaps in Figure B.2b show the median values of individual
correlations among RVs across the four time zones. These images show
the strength of association of volatilities in the four time zones. The
correlation between RVs of time zones 1 and 2 is almost always higher
than the correlation among RVs for the other time zone pairs. Relatively,
the lowest correlation is evident between the RVs of time zones 3 and 4.
Note that the existence of correlation among time zones is evidence of the
presence of dynamic interdependence between zones. These correlations
are, in effect, equivalent to cross-correlations, highlighting the occurrence
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of lead-lag links. This is a consequence of observing the realized quantities
over non-overlapping time periods.

C. Model estimation

For parameter estimation we use a weighted least squares (WLS)
approach, as in Patton and Sheppard (2015). In doing so, the model is
first estimated using ordinary least squares (OLS) and the WLS weights
are then constructed as the inverse of the fitted value from that OLS
estimation.® To recover standard errors we use a Newey and West
(1987) heteroskedasticity and autocorrelation consistent (HAC) estimator.
We calibrate the Newey-West bandwidth by using the 4 days lead of the
left side variables, thus setting the bandwidth at 2(4 - 1).

Although individual exchange rate volatility models can be estimated,
our primary objective is to obtain the significance of the average effect and
therefore we implement and estimate a panel HAR with fixed effects. The
panel HAR, in its simplest specification, is given by:

}_/h,i,t+/7 =M+ ¢d)’i7t + ¢w)_’w,z}r + ¢m}7m7i,t tisth
i=1,..,n, t=1,..., T, (C.1)

where the fixed effect p; allows each exchange rate to have different
levels of long-run volatility. Note that we adopt the specification of
Eq. (C.1) for illustrative purposes; in the following sections we generalize
the model by the addition of further explanatory indicators as well as by
introducing interdependence. Nevertheless, despite the generalized model
structure, the estimation approach is the same across all specifications. Let

— — ! . .
Y+ = Wits VwissJmis) s then the model for the realized variance of each
exchange rate can be compactly expressed as:

y/J,i, t+h — “l + d)/Yi,t + 6i,t+/J i= 17 cee oy My, r= 17 RS ) T. (Cz)

6 Using volatility measures as dependent variables unfortunately results in OLS estimates primarily focusing on the fitting
periods of high variance, placing little weight on more tranquil periods. The level of volatility changes significantly over
the sample period and the positive relationship between volatility itself and volatility of errors is an important drawback.
The WLS is therefore used to capture the heteroskedasticity of model residuals and back it to the level of the process, in
line with the standard asympitotic theory for realized measures (Andersen et al., 2003). As an alternative approach, one
may use OLS on log volatility. However, such a model predicts log volatility rather than levels of volatility, whereas the
latter is the main interest in economic applications.
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~ ~

Now, define y ;14 = Ypivis — Opi and Y;, = Y;, — T, where 0y,;
and T are the WLS estimates of the mean of y;, and Y}, respectively.
Next, the pooled parameters are estimated by:

T 7, -1
é = (T_1 Z (nt_l Z w;, Yi, tY/t))
=1 j
T N B
. <T_1 Z (”t_l Z withiJj’wﬁh) )7 (C.3)
=1 i=1

where W, are the weights and 7, are the number of firms in the cross
section at date z The asymptotic distribution is used for inference as:

\/?((ﬁ - ¢0) 4 N0, 3OS 4 T — oo, (C.4)

where

Y =plim7r_ 7! ZtT:I <nt_l Zt wi,t?iﬁili/,z) , Q= avar(T_l/2 Ztrzl Zt+h),
i=1
y

_ -1 v
and z,,), = n, Wiy Yz’,tﬁz’,t-‘r/}-

=1

Comparing our model to the closely related work of Lahaye and Neely
(2020) it emerges that our specification might be considered a special case
of their proposal. In fact, in Eq. (C.1) we account only for the serial
dependence, while the introduction of cross-trading times interdepen-
dence is discussed in a following subsection. A further distinctive feature
of our approach is that we resort to a panel estimator, thus focusing on the
overall behaviour over a panel of currencies, all linked by a common
denominator (a leading reference currency). While this seems to be a
limited and simplified approach, it allows us to analyse the serial depen-
dence and later the cross-dependence with a large number of exchange

rates, without an explosion in the number of covariates as would happen if
strictly following Lahaye and Neely (2020), see their Table 2.

D. Extended specifications and additional tables

The following basic and extended specifications are estimated using
weighted least squares and Newey and West (1987) HAC to make
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Table D.1: The role of continuous and jump components
A. Estimation results for the USD
égZI G)gZZ d)YC"ZS ¢(TZ4 ¢]TZI ¢]TZZ (D’]TZ% ¢/TZé Aaj R2
0.399 0.125 0.212
TZ=1 (15.90) (4.73)
(London only) 0323  0.088 0.061 0.013 0.101  0.023 0.018 —0.010 0.262
(13.04) (6.87) (291) (1.93) (3.89) (1.86) (1.54) (-3.41)
0.366 0.139 0.203
T7=2 (16.74) (5.32)
(London and NY) 0,078 0310  0.037 0.004 0012 0126 0029 —0.003 0.231
(3.75) (13.32) (2.24) (1.38)  (1.14)  (4.83) (1.61) (—1.25)
0.275 0.076 0.101
173 (10.53) (3.48)
(NY only) 0.059  0.047 0226 0.025 —0.007 0.016 0.080 —0.005 0.208
(251 (@61) (871) (323 (-039) (0.78) (3.70) (—0.46)
0.342 0.135  0.436
T7=4 (12.59) (4.89)
(Tokyo and
Sydney) 0.071  0.042 0.168 0248 —0.024 0.040 0187 0125 0.479
(2.000 (273 (317) (9.84) (-2.17 (1.88) (4.12) (4.67)
B. Estimation results for the EUR
oI o122 123 1z d)jTZl dyTZZ (prjzza ¢}Z4 Adj. K
0.394 0.102 0.17
7171 (15.96) (5.21)
(London only) 0304 0.140 0.071 0.000 0.060 0.003 0.001 0.001  0.19
(10.19)  (3.40) (3.92) (0.09) (2.75) (1.80) (0.85)  (1.92)
0.346 0.126 0.07
T7=2 (14.33) (5.70)
(London and NY) 0,139 0261 0.041 0.000 0016 0.101 0.030 —0.003 0.07
(5.70)  (10.99) (2.83) (0.25) (0.95) (478) (1.29) (—1.68)
0.254 0.041 0.05
17=3 (10.92) (1.76)
(NY only) 0.077 0.093 0196 0.008 0.007 0008 0.040 —0.009 0.13
(5.45) (4.89) (9.03) (1.30) (0.61) (0.55) (1.70) (=2.17)
0.329 0.058  0.03
T7=4 (11.35) (2.37)
(Tokyo and
Sydney) 0.128 —0.064 0575 0138 0.004 0.086 0175 0.047 0.04
(242) (=1.20) (335 (3.67) (0.23) (1.52) (2.40) (1.86)
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Table D.1 (Continued): The role of continuous and jump components

C. Estimation results for the GBP

(Pgm ¢gzz ¢(Tza %24 ¢/T21 ¢/TZZ <Z>]TZ3 ¢/774 Adj. Vo
0.382 0.118 0.344
TZ=1 (11.69) (5.06)
(London only) 0272 0.140 0.118 0.012 0.095 0.029 0.016 0.006 0.357
(6.92)  (3.05 (3.0 (1.00) (411) (1.0 (1.21) (0.57)
0.338 0.150 0.220
77-2 (14.09) 6.11)
(London and NY) 0,107 0251 0.073 —0.005 0.054 0.123 —0.007 0016 0226
(3.16) (1041) (343) (=0.62) (221) (5.06) (~1.39) (1.01)
0.287 0.044 0.120
17-3 (10.11) (2.99)
(NY only) 0.035 0119 0228 0013 0.024 0031 0037 0.024 0376
(1.66) (445 (8.21) (0.99) (145 (1.19) (257) (1.92)
0.314 0.152  0.290
124 (1253) (4.64)
(Tokyo and
Sydney) 0012 0000 0423 0.188 0.036 0000 0.157 0.150 0.362
045  (0.01) (374 (648) (241) (0.01) (3.18)  (5.05)
D. Estimation results for the JPY
(]5521 ¢(7;zz gza ¢7C74 ¢1T21 ¢/TZz <D]TZ3 ¢/TZ4 Adj. Vd
0.407 0.110 0.23
17-1 (12.54) (5.78)
(London only) 0.298 0.089 0.135 0.002 0.087 —0.001 0037 —0.001 028
(9.40) (4.80) (7.84) (0.60) (4.69) (—0.08) (2.73) (—0.10)
0.433 0.106 0.40
17=2 (14.20) (4.31)
(London and NY) 0,114 0323 0120 0.005 —0.007 0.057 0.052 —0.002 042
(3.84) (11.13) (5.18) (1.03) (=0.66) (245 (3.10) (=0.25)
0.383 0.897 0.30
T7-3 (7.86) 4.17)
(NY only) 0767 0783 0312 0313 0372 —0224 0922 0137 038
(2.88) (235 (7.18) (2.82) (0.36) (—1.38) (427) (0.97)
0.379 0.145  0.29
17=4 (1.88) (4.87)
(Tokyo and
Sydney) 0129 —0434 0869 0.127 -0313 —0.793 0.142 0.123 037
(125 (=0.61) (2.92) (2.15) (=1.65) (~1.13) (3.74) (4.99)

Note: The model is an extended version of the basic HAR model where realized variance is decomposed into its
continuous (filtered from jumps) and jump components. These summary results (skipped model co-efficient for
lagged weekly and monthly RVs) are for the forecast horizon of one day. In all cases, average values of adj. R for
individual currencies are reported. The robust t-statistics are in parentheses.




Sign effects of volatility and jumps in forex markets 41
Table D.2: Direct and indirect convention based on currency shocks
A. USD as the leading currency
S. No. Symbol Country and Currency TZ1 TZ2 TZ3 TZ4
22. AUD Australia Dollar Indirect Indirect Indirect Indirect
23. CAD Canada Dollar Indirect Indirect Indirect Indirect
24. CHF Switzerland Franc Indirect Indirect Direct  Direct
25. CZK Czech Republic Koruna  Indirect Indirect Direct  Indirect
26. DKK Denmark Krone Direct Indirect Direct Indirect
27. EUR Euro Member Countries Direct Direct Direct  Indirect
28. GBP British Pound Direct  Indirect Indirect Indirect
29. HUF Hungary Forint Indirect Indirect Indirect Indirect
30. ILS Israel Shekel Direct Indirect Direct Direct
31. JPY Japan Yen Indirect Direct Direct Direct
32. KRW South Korea Won Indirect Indirect Direct  Direct
33. MXN Mexico Peso Indirect Indirect Indirect Direct
34. MYR Malaysian Ringgit Direct Indirect Direct Indirect
35. NOK  Norway Kroner Indirect Indirect Indirect Indirect
36. NZD New Zealand Dollar Indirect Indirect Direct Indirect
37. PLN Poland Zloty Indirect Indirect Direct Indirect
38. RUB Russia Rouble Indirect Indirect Indirect Indirect
39. SEK Sweden Krona Indirect Direct Indirect Indirect
40. TRY Turkish New Lira Indirect Indirect Indirect Indirect
B. EUR as the leading currency
S. No. Symbol Country and Currency TZ1 TZ2 TZ3 TZ4
1. AUD Australia Dollar Indirect Indirect Indirect Indirect
2. CAD Canada Dollar Indirect Indirect Indirect Direct
3. CHF Switzerland Franc Direct  Indirect Indirect Direct
4. CZK Czech Republic Koruna  Indirect Direct  Direct  Direct
5. DKK Denmark Krone Indirect Indirect Indirect Indirect
6. GBP British Pound Direct  Indirect Indirect Indirect
7. HUF Hungary Forint Indirect Indirect Indirect Indirect
8. ILS Israel Shekel Indirect Indirect Indirect Direct
9. INR India Rupee Direct Direct Indirect Direct
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Table D.2 (Continued): Direct and indirect convention based on currency
shocks

10. JPY Japan Yen Indirect Indirect Indirect Direct
11. MXN  Mexico Peso Indirect Indirect Indirect Direct
12. NOK  Norway Kroner Indirect Indirect Direct  Indirect
13. NZD New Zealand Dollar Indirect Indirect Indirect Indirect
14. PLN Poland Zloty Indirect Indirect Indirect Indirect
15. SEK Sweden Krona Indirect Indirect Indirect Direct
16. TRY Turkish New Lira Indirect Indirect Indirect Indirect
17. USD USA Dollar Indirect Indirect Indirect Direct

C. GBP as the leading currency
S. No. Symbol Country and Currency TZ1 TZ2 TZ3 TZ4

1. AUD Australia Dollar Indirect Indirect Indirect Indirect
2. CAD Canada Dollar Indirect Direct Indirect Direct
3. CHF Switzerland Franc Indirect Direct Direct Direct
4. CZK Czech Republic Koruna  Indirect Direct  Indirect Direct
5. DKK Denmark Krone Direct Indirect Direct Direct
6. EUR Euro Member Countries Indirect Direct Direct Direct
7. HUF Hungary Forint Indirect Indirect Indirect Indirect
8. ILS Israel Shekel Indirect Direct Direct Indirect
9. INR India Rupee Direct Direct Indirect Indirect
10. JPY Japan Yen Indirect Direct Direct Direct
11. MXN Mexico Peso Indirect Indirect Indirect Indirect
12. MYR Malaysian Ringgit Direct Direct Direct Direct
13. NOK  Norway Kroner Indirect Direct Indirect Indirect
14. NZD New Zealand Dollar Indirect Indirect Indirect Indirect
15. PLN Poland Zloty Direct Indirect Indirect Direct
16. RUB Russia Rouble Indirect Direct Indirect Indirect
17. SEK Sweden Krona Indirect Direct Indirect Indirect
18. TRY Turkish New Lira Indirect Indirect Indirect Indirect
19. USD USA Dollar Indirect Direct Direct Direct
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Table D.2 (Continued): Direct and indirect convention based on currency
shocks

D. JPY as the leading currency
S. No. Symbol Country and Currency TZ1 TZ2 TZ3 TZ4

1. AUD Australia Dollar Indirect Indirect Indirect Indirect
2. CAD Canada Dollar Indirect Indirect Indirect Indirect
3. CHF Switzerland Franc Indirect Direct Direct Indirect
4. CZK Czech Republic Koruna  Direct  Direct  Direct  Indirect
5. DKK Denmark Krone Indirect Indirect Indirect Indirect
6. EUR Euro Member Countries Direct Direct Direct Indirect
7. GBP British Pound Direct  Indirect Indirect Indirect
8. ILS Israel Shekel Indirect Indirect Direct Indirect
9. INR India Rupee Indirect Indirect Indirect Indirect
10. KRW South Korea Won Direct  Indirect Indirect Direct

11. MXN  Mexico Peso Indirect Indirect Direct Indirect
12. MYR Malaysian Ringgit Indirect Direct Indirect Indirect
13. NOK  Norway Kroner Indirect Indirect Direct  Indirect
14. NZD New Zealand Dollar Indirect Indirect Indirect Indirect
15. PLN Poland Zloty Indirect Indirect Direct  Indirect
16. RUB Russia Rouble Indirect Indirect Indirect Indirect
17. SEK Sweden Krona Direct Indirect Indirect Indirect
18. TRY Turkish New Lira Indirect Direct Direct Indirect
19. USD USA Dollar Direct  Indirect Indirect Indirect

inference on estimated parameters. The model uses continuous realized
variances (filtered from jumps), and jumps. In all cases, average values of
adjusted R?s for individual currencies are reported. The t-statistics (robust)
are in parentheses.

Basic Wh.,ﬁh =K + ¢CRVﬁ + ¢)]]t + (waVw,t + ¢mRVm,t + €rth
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