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Abstract

The statistical modeling of integer-valued extremes has received less attention than

its continuous counterparts in the extreme value theory (EVT) literature. In this disser-

tation, we mainly focus on two problems: one, how to introduce and deal with different

kinds of dependence (either its simple or temporal) behavior over the tail when one is

working with discrete threshold exceedances, and second, how to model the entire range

(i.e., low, moderate and extremes) of discrete extreme data.

Firstly, to describe simple or temporal dependence in discrete exceedances above a

threshold. The modeling framework is executed in two steps. In the first step, discrete

exceedances are modeled through a discrete generalized Pareto distribution (DGPD),

which can be obtained by mixing a Geometric variable with a Gamma distribution.

In the second step, a model for discrete extreme values is built by injecting Gamma

random variables or latent Gamma process via hierarchical framework, which confirms

that the marginal distribution is a DGPD, as expected from classical discrete EVT. In

that construction, we obtained a bivariate distribution with DGPD marginals through

the Laplace transform of multivariate Gamma distribution with Gamma marginals.

In addition, we further developed a bivariate geometric distribution through Farlie-

Gumbel-Morgenstern Copula, mixed it into bivariate Gamma distribution, and found a

bivariate distribution with DGPD marginals. In this scenario, we have two dependence

parameters: one is the copula dependence parameter, and the other is linked with the

layer induced through Gamma random variables associated with the hierarchical setting.

Further, we employ four distinct underlying stationary Gamma processes, each pro-

ducing a different temporal dependency structure, either asymptotic independence or

asymptotic dependence. Through the use of pairwise likelihoods, the proposed model



is applied to real discrete time series. Observations of both series over a finite thresh-

old have shown asymptotic independent behavior. One can use a new model for the

discrete-time series, which has asymptotic-dependent behavior over the tail. In both

scenarios, the proposed model is more flexible.

Secondly, selecting the optimal threshold to define exceedances remains challenging

when working with discrete extreme data. Moreover, within a regression framework, the

treatment of the many data points (those below the chosen threshold) is either ignored

or decoupled from extremes. One possibility is to model the bulk part (observation

below the threshold) and tail part (observation above the threshold) by separate models

with a mixture setting. Again, optimal threshold is needed, and this framework is

computationally burdensome. Based on these considerations, we propose to enforce

EVT compliance by using smooth transitions between the two tails (lower and upper).

By extending Generalized Additive Models (GAM) to discrete extremes responses, we

are able to incorporate covariates. A GAM model quantifies the parameters of the

model as functions of covariates. We also develop models with an additional parameter

representing the proportion of zero values in the data in the case of zero inflation.

The maximum likelihood estimation procedure is implemented for estimation purposes.

With the advantage of bypassing the threshold selection step, our findings indicate that

the proposed models are more flexible and robust than competing models (i.e., DGPD,

Poisson distribution, and negative binomial distribution).



Sommario

La modellazione statistica dei valori estremi interi ha ricevuto meno attenzione rispetto

a quelli continui nella letteratura sulla teoria dei valori estremi (EVT). In questa tesi, ci

concentriamo principalmente su due problemi. Il primo si concentra su come introdurre e

trattare diversi tipi di dipendenza (semplice o temporale) nella coda della distribuzione

quando si tratta il superamento di soglie discrete. In secondo luogo, affrontiamo il

problema di modellare l’intera gamma di dati estremi discreti.

Innanzitutto, poniamo l’attenzione sul primo obiettivo, vale a dire quello di descrive-

re la dipendenza semplice o temporale nel caso di superamenti di una soglia discreta. La

modellazione statistica viene eseguita in due fasi. Nella prima, i superamenti sono mo-

dellati attraverso una distribuzione di Pareto generalizzata discreta (DGPD), che può

essere ottenuta combinando una variabile geometrica con una distribuzione Gamma.

Nella seconda fase, si costruisce un modello per i valori estremi discreti introducendo

variabili casuali Gamma o processi latenti Gamma attraverso una struttura gerarchica,

che conduce ad una distribuzione marginale DGPD, coerentemente alla teoria classica

dei valori estremi discreti. In questa costruzione, abbiamo ottenuto una distribuzione

bivariata con marginali DGPD attraverso la trasformata di Laplace della distribuzione

multivariata Gamma con marginali Gamma. Inoltre, abbiamo sviluppato una distribu-

zione geometrica bivariata attraverso la copula Farlie-Gumbel-Morgenstern, l’abbiamo

combinata alla distribuzione Gamma bivariata e abbiamo ottenuto una distribuzione

bivariata con marginali DGPD. In questo scenario, abbiamo due parametri di dipen-

denza: uno è il parametro di dipendenza della copula, mentre l’altro è legato allo strato

indotto dalle variabili casuali Gamma associate all’impostazione gerarchica.

Inoltre, impieghiamo quattro distinti processi Gamma stazionari sottostanti, ognuno

dei quali produce una diversa struttura di dipendenza temporale, sia di indipendenza



che dipendenza asintotica. Il modello proposto viene applicato a serie temporali discrete

reali utilizzando un approccio di verosimiglianza a coppie. Le osservazioni di entrambe

le serie su una soglia finita hanno mostrato un comportamento asintotico indipendente.

È possibile utilizzare un nuovo modello per le serie temporali discrete, che presenta

un comportamento asintoticamente-dipendente sulla coda. In entrambi gli scenari, il

modello proposto è più flessibile.

Tuttavia, la selezione della soglia ottimale per definire i superamenti rimane una sfi-

da quando si lavora con dati estremi discreti. Inoltre, in un quadro di regressione, il

trattamento dei molti punti di dati (quelli al di sotto della soglia scelta) viene ignorato

o disaccoppiato dagli estremi. Una possibilità è quella di modellare la parte di massa

(osservazioni al di sotto della soglia) e la parte di coda (osservazioni al di sopra della

soglia) con modelli separati con un modello mistura. Anche in questo caso è necessaria

una soglia ottimale e questo schema è computazionalmente oneroso. Sulla base di queste

considerazioni, proponiamo di far rispettare l’EVT utilizzando transizioni morbide tra

le due code (inferiore e superiore). Estendendo i modelli additivi generalizzati (GAM)

a variabili risposta discrete, siamo in grado di incorporare covariate. Un modello GAM

quantifica i parametri come funzioni delle covariate. Sviluppiamo anche modelli con

un parametro aggiuntivo nel caso di inflazione di zeri. La procedura di massima vero-

simiglianza è stata implementata ai fini di stimare i parametri del modello proposto.

Sfruttando il vantaggio di poter evitare la fase di selezione della soglia, i nostri risultati

indicano che i modelli proposti sono più flessibili e robusti rispetto ai modelli concorrenti

(ad esempio, DGPD, distribuzione di Poisson e distribuzione binomiale negativa).
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Introduction

Overview

In many fields, such as climatology, hydrology, ecology, and oceanography, dependencies

in continuous extreme-value data have been a topic of growing importance for the last

few decades. EVT can be used to describe atypical situations that can significantly

impact various applications, where data about how the tail of an actual distribution

behaves is becoming increasingly important. Under suitable conditions, a generalized

Pareto distribution (GPD) can approximate the distribution of exceedances over a high

threshold, which is considered a common approach to modeling continuous extreme

data. A major concern is how to take into account the simple or temporal dependence

of exceedances, which can either be asymptotically dependent when observation of pro-

cess or variables over the threshold lies in clusters or asymptotically independent when

data points over the threshold are independent and identically distributed. In a continu-

ous extreme perspective, literature has suggested different procedures see, for instance,

(Smith et al., 1997; Bortot and Tawn, 1998; Bortot and Gaetan, 2014; Noven et al.,

2018; Bacro et al., 2020, and references therein).

One approach to moving from continuous to discrete extremes is to model thresh-

old exceedances of integer random variables by the discrete version of the generalized

Pareto distribution. Therefore in this manuscript, we develop a hierarchical framework

to model discrete threshold exceedances and to observe different kinds of extremal be-

haviors. The hierarchical construction ensures that the marginal distribution of discrete

exceedances converges to the discrete GPD (DGPD). The marginal DGPD is obtained

by mixing Geometric and Gamma random variables. The valuable feature of this hierar-

chical mixture is the bivariate distribution with discrete GPD marginals is tractable via

the Laplace transform (LT) of bivariate Gamma distribution. Further, to incorporate

different kinds of extremal dependence, we focus on Markov chains with hierarchical

1
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construction and have a Gamma marginal. Indeed, different choices of the underly-

ing Gamma process can lead to different degrees of temporal dependence of discrete

extremes, including asymptotic dependence or asymptotic independence.

On the other hand, the optimal threshold selection that defines exceedances remains

a problematic issue. This thesis also extends the idea of using a smooth transition

between the two tails (lower and upper) to force large and small discrete extreme values

to comply with EVT. The regression-based framework called the Generalized additive

modeling (GAM) framework is developed to model discrete extreme responses when one

deals with the entire range of discrete data. In the case of zero inflation, we extended the

GAM framework with an additional parameter representing the zero inflation problem.

Due to the ability to bypass the threshold selection step, the proposed models appear

more flexible and robust than their rivals.

Main contributions of the thesis

Modeling of bivariate discrete dependent extremes

Chapter 1 of the thesis provides a new modeling framework for bivariate discrete ex-

tremes in perspective to observe different kinds of extremal dependence over the tail.

According to Hitz et al. (2017), the DGPD is considered an appropriate distribution

for modeling discrete exceedances. By keeping this in mind, we developed a bivari-

ate distribution with discrete DGPD marginal by mixing independent Geometric ran-

dom variables with bivariate Gamma random variables. Bivariate LTs of multivariate

Gamma distribution with Gamma marginal supported us in developing the probability

mass function of the bivariate distribution.

A bivariate model constructed by hierarchical mixture representation allows depen-

dence induction through Gamma random variables or both Gamma and Geometric

random variables. We use hierarchical models with Gamma marginals to incorporate

dependence through Gamma random variables. To introduce dependence through Ge-

ometric random variables, we first develop a bivariate Geometric distribution using

Farlie-Gumbel-Morgenstern Copula (FGMC) (Morgenstern, 1956). Again, we get a bi-

variate distribution with DGPD margins by mixing bivariate Geometric and bivariate
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Gamma distributions. This new bivariate distribution will have two dependence pa-

rameters: one is related to the Geometric variables dependence layer, and the other is

related to the Gamma dependence layer.

To observe the extremal behavior of different hierarchical models when working with

proposed models, chapter 1 also developed the tail dependence measure by following the

idea of Coles et al. (1999). More formally, hierarchical models with Gamma marginal

used here have the same correlation ρ. Furthermore, we observe through a tail de-

pendence measure that the hierarchical model shows different extremal behavior when

working with bivariate discrete exceedances.

We show through simulations how different choices of hierarchical models come with

different extremal behavior. Later on, we applied the proposed models to the avalanche

data of two different massifs of the French Alps.

A time series model for discrete extreme values

Chapter 2 presents a new modeling paradigm for describing temporal dependence in

discrete exceedances above a threshold. The modeling framework is executed in two

steps. In the first step, discrete exceedances are modeled through DGPD, which can

be obtained by mixing a Geometric variable with a Gamma distribution (see chapter

1). In the second step, a model for discrete extreme values is built by injecting a latent

Gamma process via hierarchical framework, which confirms that the marginal distribu-

tion is DGPD, as expected from classical discrete extreme value theory. To introduce

temporal dependence (either asymptotic independence or asymptotic dependence) in

the model, we use four stationary Gamma processes, each producing a different tempo-

ral dependence. The proposed model is tested through a simulation study and applied

to time series data of a monthly number of police reports on narcotics trafficking in Syd-

ney, Australia, and the number of tick changes by minutes of the exchange rate of euro

to British pound (EUR/GBP) on December 12th, 2019 by using a pairwise likelihood

approach. Observations of both series over a finite threshold have shown asymptotic

independent behavior. One can use a new model for the discrete-time series, which has

asymptotic-dependent behavior over the tail. In both scenarios, our proposed model is

more flexible.
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Models for the entire range of count data with extreme obser-

vations

In chapter 1 and chapter 2 of the thesis, we model threshold exceedances of integer-

valued random variables by DGPD. Still, the optimal threshold selection that defines

exceedances remains a problematic issue. Moreover, within a regression framework, the

treatment of the many data points (those below the chosen threshold) is either ignored

or decoupled from extremes. Considering these issues, Chapter 3 extends the idea of

using a smooth transition between the two tails (lower and upper) to force large and

small discrete extreme values to comply with EVT. For lower tail representation, we

use the cumulative distribution function of different parametric distributions (say, G)

as discussed in Naveau et al. (2016). In order to implement the modeling framework,

a discrete extended GPD distribution (DEGPD) is developed. In addition, discrete

nature extreme events may contain many zero values. For instance, the number of in-

surance complaints or the number of avalanches may include many zero values. This

type of data is generally referred to as zero-inflated (ZI), requiring specialized statis-

tical methods for analysis. Therefore, we have introduced a zero-inflated version of

discrete extended generalized Pareto distribution (ZIDEGPD). ZIDEGPD models have

an additional parameter in the case of zero inflation.

To incorporate covariates, we extend the GAM framework to discrete extreme re-

sponses. In the GAM forms, the parameters of DEGPD and ZIDGPD models are

quantified as a function of covariates. We applied our proposed model to avalanches

data with environmental covariates. The maximum likelihood estimation procedure is

implemented for estimation purposes. With the advantage of bypassing the threshold

selection step, our findings indicate that the proposed models are more flexible and

robust than competing models (i.e., discrete generalized Pareto distribution and Pois-

son distribution). Models proposed in chapter 3 can further apply to environmental

variables count data by using their temporal or spatio-temporal characteristics.

In addition, chapter 3 proposes bivariate versions of DEGPD (BDEGPD) correspond-

ing to different G families. To develop the probability mass function of BDEGPD, we

use the LT of bivariate Gamma distribution with Gamma(1, 1) marginals. Again, the

hierarchical model with Gamma marginals introduced in chapter 1 can use to induce

dependence.



Chapter 1

Modeling of bivariate discrete

dependent extremes

Overview: Chapter 1

⇝ The main aim of chapter 1 is to develop a modeling framework to observe

a dependence in bivariate discrete extremes. The marginal DGPD is obtained

through hierarchical construction by mixing the Geometric random variable with

the Gamma variable. By keeping hierarchical construction in mind, we propose

a bivariate discrete distribution with DGPD marginals by mixing independent

Geometric random variables with Gamma random variables. This mixture en-

sures that the marginal distribution is DGPD as well. In order to induce different

kinds of dependence in bivariate exceedances, hierarchical models with Gamma

marginals are used. Furthermore, this chapter also focuses on constructing bivari-

ate Geometric distribution through Farlie-Gumbel-Morgenstern Copula (FGMC)

(Barbiero, 2019). It uses to derive the bivariate distribution by considering Geo-

metric Gamma mixture distributions. Bivariate discrete distribution with DGPD

margins is also obtained in copula settings by mixing the bivariate dependent Ge-

ometric random variables with Gamma random variables. Further, we discuss the

tail dependence measure for the different hierarchical models with their extremal

properties to observe tail dependence.

Section 1.1 briefly introduces bivariate extreme and discusses some relevant exist-

ing literature. Section 1.2 provides the detailed construction of discrete hierarchi-

cal models with both simple and copula-based settings. Section 1.3 discusses the

basic concept of conditional tail dependence and proves their asymptotic prop-

erties. Inference information is provided in section 1.4. Simulation study results
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are given in section 1.5. Section 1.6 of the chapter discusses the real applications.

Final remarks are pinned in section 1.7

1.1 Introduction

Classical EVT is crucial in developing stochastic models for solving real-life problems

associated with rare events. Let yj, j = 1 . . . n be independent and identically distributed

(i.i.d) realization of a random variable Y . Practitioners are interested in estimating the

probability P (Y > x) for a large x ∈ R. The probability can be obtained through the

empirical estimate p̂ = |{j : yj > x}|/n. In the case of large x, few points fall above x

resulting in a noisy estimator. In addition, if x exceeds the maximal observation, then

p̂ = 0 which can underestimate important risks if P (Y > x) > 0. This demonstrates

why extreme quantile estimation should sometimes not be performed naively but needs

special techniques. Moreover, EVT motivates a parametric family distribution that can

approximate the tails of a broad class of distributions.

Let Y be a continuous or discrete random variable taking values in [0, yF ) with

cumulative distribution function (CDF) F where yF ∈ R. One of the most famous results

in probability theory is the central limit theorem. It states that for any i.i.d. copies

Yj, j = 1 . . . n of a random variable Y whose variance is finite, there exist sequences cn

and dn such that

d−1
n

(

n
∑

J=1

Yj − cn

)

d→ X (1.1)

as n → ∞, where X follows to a normal distribution; one can choose cn = E(Y )

and dn =
√
n, see for instance, (Billingsley, 1995). Consider the maximum Mn =

maxj=1,...,n(Yj) instead of sum. The counterpart of the central limit theorem, known as

the Fisher—Tippett-–Gnedenko theorem, describe that if there exist sequences cn and

dn such that

d−1
n (Mn − cn)

d→ Z (1.2)
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Figure 1.1: Densities for GEV distribution with µ = 0, σ = 1 and varying ξ ∈
(−0.5, 0, 0.5).

and Z is non-degenerate, then Z follows a generalized extreme value (GEV) distribution

and defined by its CDF

G(z|µ, σ, ξ) =























exp

[

−
{

1 + ξ
(

z−µ
σ

)}
−1
ξ

]

ξ ̸= 0

exp

[

− exp
{

−
(

z−µ
σ

)}

]

ξ = 0

(1.3)

If (1.2) holds, one says that Y or its distribution belongs to the maximum domain of

attraction (MDA) of an extreme value distribution that is Y ∈ MDAξ. Many common

continuous distributions belong to the maximum domain of attraction of extreme value

distributions, including Normal, Log-normal, Student, Exponential, Weibull, Frec̀het,

Beta, Gamma, and Uniform. Figure 1.1 explains how the shape parameter of the GEV

distribution affects the tail behavior by keeping the remaining parameters as constant.

When ξ = 0, the GEV distribution leads to the Gumbel family with a distribution

function given in (1.3). When ξ < 0, the GEV distribution tends to a negative Weibull

distribution with a finite upper endpoint. Last, when ξ > 0 belongs to the Frechet

distribution with a heavier tail. Combining the original three extreme value distributions
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into one simplifies statistical implementation. For more details about GEV distribution,

see, for instance, Coles (2001).

Interestingly, when Y ∈MDAξ, the behavior of Y |Y ≥ u as u→ yF is characterized

as follows: Y ∈ MDAξ is equivalent to saying that there exists a the strictly positive

sequence σu such that

σ−1
u (Y − u) |Y ≥ u

d→ Z, (1.4)

as u → yF , for some Z following a non-degenerate probability distribution on [0,∞).

Under (1.4), Z is approximated to the generalized Pareto distribution (GPD) (Pickands,

1975), defined by its CDF

F (y; σ, ξ) =







1− (1 + ξy/σ)−1/ξ
+ ξ ̸= 0

1− exp (−y/σ) ξ = 0
(1.5)

where (a)+ = max(a, 0), σ > 0 and −∞ < ξ < +∞ represent the scale and shape

parameters of the distribution, respectively.

The shape parameter ξ defines the tail behavior of the GPD. If ξ < 0, the upper

tail is bounded. If ξ = 0, this tends to be the case of an exponential distribution,

where all moments are finite. If ξ > 0, the upper tail is unbounded, but higher moments

ultimately become infinite. Three defined cases are labeled “short-tailed”, “light-tailed”,

and “heavy-tailed”, respectively. These types of tail behavior make GPD more flexible

to model excesses.

Figure 1.2 explains how GPD behaves when the shape parameter varies with dif-

ferent values. This inspires the GPD technique, approximating the distribution of Y

exceedances above a significant threshold u (Davison and Smith, 1990).

In the discrete case, approximating the tail of a discrete distribution using the GPD

poses different challenges. First, an essential condition is that a discrete distribution

F belongs to a maximum domain of attraction when the distribution is long-tailed,

that is F̄ (u + 1)/F̄ (u) → 1 (Anderson, 1970, 1980; Shimura, 2012; Hitz et al., 2017).

Many well-known distributions, including Geometric, Poisson, and Negative binomial

distributions, are applied to model discrete data. But, these distributions are not heavy-

tailed. Second, ties are not permitted, which presents a problem when attempting to

approximate the tail of a discrete distribution by a GPD.

To overcome these problems, Hitz et al. (2017) prove that random variables X ∈ D-

MDAξ and Y ∈MDAξ for ξ > 0 satisfy X
d
= ⌊Y ⌋. Further, they develop two approaches

to model the tails of discrete observations, each relying on a specific assumption of the

underlying distribution. The first one is to approximate P (Y − u = k|Y ≥ u) for large
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Figure 1.2: Densities of the GPD for different values of the shape parameter ξ and
scale parameter is equal to 1. For the Fréchet family ξ = 0.5, and for the Weibull
family ξ = −0.5.

integer threshold u by

P (Y = k) = F (k + 1; σ, ξ)− F (k; σ, ξ), k ∈ N0 (1.6)

where F (.; σ, ξ) is the CDF of GPD. The distribution defined in (1.6) will be called

DGPD. In the existing literature, the DGPD has been used by Prieto et al. (2014) to

model road accidents data, and Ranjbar et al. (2022) applied in regression context to

model extremes of seasonal viruses and hospital congestion in Switzerland. Except for

extreme value applications, numerous features of discrete Pareto-type distributions were

studied in Krishna and Pundir (2009); Buddana and Kozubowski (2014); Kozubowski

et al. (2015). The second one approximate P (Y − u = k|Y ≥ u) by

P (Y = k) =
f(k; σ, ξ)

∑∞
j f(j; σ, ξ)

, k ∈ N0 (1.7)

The distribution defined in (1.7) is called generalized Zipf distribution (GZD). Zipf law

distribution is sometimes presented as the counterpart of the Pareto distribution. In the

case ξ > 0, the GZD tends to a Zipf–Mandelbrot distribution. When ξ < 0, the GZD

has a finite endpoint. Finally, when ξ = 0, the GZD (as well as the DGPD) is simply
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a Geometric distribution. For more details, we refer (Hitz et al., 2017, and references

therein).

In the current scenario, we are interested in modeling discrete exceedances by ensur-

ing that the marginal distribution of exceedances is approximated to DGPD. We develop

the DGPD marginal distribution through hierarchical construction by representing the

DGPD as a mixture of Geometric and Gamma random variables. Like continuous GPD,

DGPD retains the important stability property with respect to the exceedances (Bud-

dana and Kozubowski, 2014). In addition, the conditional distribution of threshold

excesses by DGPD random variable is DGPD distributed too. The stability property

of excesses may be damaged in the case of light-tail Geometric distribution (which is

a special case of DGPD with ξ = 0) (Anderson, 1970; Leadbetter et al., 1983). Fur-

ther, some conditions required to meet when modeling block maxima of discrete random

variables are highlighted in Dkengne et al. (2016).

1.1.1 Bivariate extremes

A further focus is placed on bivariate discrete extreme distributions and we observe

that the joint tail of the distribution exhibits different dependent behaviors. The multi-

variate extremes, especially bivariate extremes, are relatively new and attention-gaining

subject in EVT. Extending extreme value statistics from the univariate to the bivariate

cases is challenging. In the univariate context, the theory is based on manipulating a

few concepts that were useful in analyzing extreme values. However, in the bivariate

context, these notions lose their evident definition (Dutfoy et al., 2014). We have to

reconsider them in order to set an adapted signification.

Several settings, for instance, Gumbel’s logistic and mixed models, see Gumbel

(1960);Gumbel (1961); Gumbel and Mustafi (1967), seem to be quite well established.

Nevertheless, these models have only asymptotic justifications for the univariate case.

Asymptotic extreme value distributions were later derived based on Gumbel’s logistic

and mixed models. The general result is presented in Pickands (1981); Marshall and

Olkin (1988).

Further, many studies have been conducted in continuous extremes to model and

estimate the function that expresses the dependence structure between extreme points.

Substantial efforts are made to develop dependence measures by, for instance, De Haan

and Resnick (1977); Coles and Tawn (1991, 1994); Coles et al. (1999); Schlather and

Tawn (2003), and Eastoe et al. (2013). Despite this, we cannot determine the joint

distribution of the bivariate extremes from a given set of bivariate data using precise
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estimation tools. Of course, the estimates of marginal extreme values can be derived

from marginal data sets as in Zachary et al. (1998); De Haan and De Ronde (1998), but

the joint distribution is still an arguable task.

Adopting a copula model to represent the joint distribution (Nelsen, 2007) is com-

mon when dealing with bivariate extremes. The marginal distribution is derived as a

combination of the copula and asymptotic extreme value distributions, typically of the

GEV type (Coles, 2001). For this specific purpose, several copula models have been

developed; see, for instance, Tawn (1988); De Waal and Van Gelder (2005); Guden-

dorf and Segers (2010), and Ribatet and Sedki (2013). The major disadvantage of this

scheme is that it is relatively ad hoc. Choosing one copula over another does not seem

to be justified theoretically.

Later on, the conditional extremes models proposed by Heffernan and Tawn (2004),

subsequently developed, for instance, by Jonathan et al. (2010); Gardes and Girard

(2010); Das and Resnick (2011); Ewans and Jonathan (2014), and Simpson andWadsworth

(2021), provides an innovative paradigm to model marginals and dependence structures

of multivariate extremes. Firstly, the marginal distribution of the variable is transformed

into standard Gumbel distribution. Thus, the threshold exceedances of a marginal vari-

able are modeled independently using the GPD. However, the dependence structure

is modeled for pairs of transformed variables. In that case, the model assumptions

may lead to the collection of distinct semi-parametric conditional models being fitted

through ad hoc methods. The complicated nature of the methods may restrict model

applicability.

In addition, the hierarchical construction of extreme value models has recently gained

much attention in both theoretical and practical work. To observe the dependence be-

havior of the exceedances over the tail, Bortot and Gaetan (2014) developed the hierar-

chical framework and obtained GPD as marginal distribution by mixing Exponential and

Gamma random variables. Further, they get bivariate distribution with GPD marginals

through bivariate LT of multivariate Gamma distribution with Gamma marginals. In

the same study, they use two distinct hierarchical constructions, representing different

dependence structures over the tail. Subsequently, the hierarchical models are discussed

by Casson and Coles (1999); Gaetan and Grigoletto (2004); Sang and Gelfand (2009);

Bortot and Gaetan (2014); Reich et al. (2014); Bopp and Shaby (2017); Bacro et al.

(2020); Yadav et al. (2020); Courgeau and Veraart (2022); Bortot and Gaetan (2022),

and Bacro et al. (2023).

As discussed above, Bortot and Gaetan (2014) uses a decomposition of the GPD

to develop a hierarchical modeling framework for exceedances that preserves GPD as
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marginal distribution. In contrast, if the values are discrete, one may wish to preserve

and utilize the discreteness of the values. We are mainly concerned with asymptotic

independence and dependence, which are the main limits for using discrete extreme

value distributions to model the tail of the discrete multivariate distributions.

Therefore, the classical extremal techniques are appreciated, and a wide range of

dependence can be considered at extreme levels. We can accomplish this by develop-

ing a bivariate distribution with DGPD marginals by mixing independent Geometric

and Gamma random variables in hierarchical construction. The probability mass func-

tion (PMF) of bivariate discrete distribution can be expressed in terms of multivariate

Gamma LTs with Gamma margins.

Considering dependent Geometric random variables instead of independent Geomet-

ric random variables while developing a bivariate discrete distribution. First, we need

a bivariate Geometric distribution and use it to derive the bivariate distribution with

DGPD marginal by considering the Geometric Gamma distribution mixture. The bivari-

ate Geometric distribution is developed through the FGMC. The FGMC was introduced

by Morgenstern (1956); later, many applications of this copula exist in literature. The

copula theory, whose roots date back to the 20th century, has gained great attention in

the last two decades, especially due to vital applications in hydrology, finance, climatol-

ogy, and actuarial sciences. The copula paradigm permits us to use different marginal

distributions from the study of the dependence models and then combine more marginal

models with several possible dependence structures.

A simpler method to derive valid bivariate Geometric distribution is by pairing a

copula distribution with Geometric marginals. The adoption of copula distribution is

based on the well-known Sklar’s theorem for continuous distributions. For instance,

any continuous distribution can be putrefied into copula and marginal distributions,

and conversely, a recipe of copula and marginal distributions provides a valid continu-

ous joint distribution Sklar (1959). The copulas completely favor dependency structure

for continuous distributions, thus separating marginal distributions from dependencies.

(Inouye et al., 2017). Generally, copula distributions with continuous marginals enjoy

a wide variety of applications (see,, for instance, Cherubini et al. (2004) in finance and

Peres et al. (2018)). However, copula models with discrete margins, such as Geomet-

ric or Poisson, are more challenging from both theoretical and computational points

of view (Genest and Nešlehová, 2007; Nikoloulopoulos and Karlis, 2009; Nikoloulopou-

los, 2013a,b). Furthermore, numerous explanations and recent developments have tried

to tackle discussed limitations (see, for example, Inouye et al. (2017) and references

therein). The purpose behind the development of bivariate Geometric distribution is
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to take into account dependence among Geometric marginal via FGMC dependence

parameter. The copula-based model has two dependence parameters: the copula de-

pendence parameter and the other one is dependence parameter of the layer introduced

through the hierarchy of Gamma random variables.

1.2 Discrete hierarchical models

1.2.1 DGPD and its hierarchical representation

Let Y be a discrete random variable. We are interested in modeling the data points

above the fixed integer value high threshold u, which basically represents the tail be-

havior. Discrete observations above the high threshold u follow the DGPD, which has

the PMF is

P (Y = k) =

(

1 +
ξk

σ

)− 1
ξ

−
(

1 +
ξ(k + 1)

σ

)− 1
ξ

, k ∈ N0 (1.8)

where (1 + ξk/σ)−1/ξ is the survival function (SF) of GPD, σ and ξ are the scale and

shape parameters of DGPD, respectively.

For the purpose of subsequent constructions, we use DGPD(β, α) with re-parametrization

of scale and shape parameters as β = σ/ξ and α = 1/ξ. After this re-parametrization,

the PMF of DGPD is

P (Y = k) =

(

1 +
k

β

)−α

−
(

1 +
k + 1

β

)−α

, k ∈ N0 (1.9)

We use the definition discussed by Buddana and Kozubowski (2014) to write DGPD(β, α)

as mixture of Geometric and Gamma distributions, that is

P (Y = k) =

∫ ∞

0

P (Y = k|Λ = λ)f(λ)dλ (1.10)

where P (Y = k|Λ = λ) is Geometric distribution, Geo(q), with q = 1 − e−Λ/β, and Λ

follows Gamma distribution with probability density function

f(λ, α, β) = [βα/Γ(α)]λα−1e−βλ. (1.11)
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Using the standard conditioning argument, the SF of DGPD can be derived by mixing

the components of Geometric and Gamma distributions, that is

P (Y > k) = S(k) =

∫ ∞

0

e−
λk
β f(λ)dλ = L(1)(s)|(s= k

β
), (1.12)

where e−λk/β is SF of Geo(q) distribution, and f(λ) is a probability density function

of the standard Gamma distribution, i.e., Gamma(α, 1). Here L(1)(s)|(s= k
β
) is the LT

of Gamma(α, 1) distribution. For α > 0, the given consideration falls in D-MDAα

(Hitz et al., 2017). Furthermore, similar to continuous GPD, the important stability

property with respect to the exceedances is also retained for DGPD (Buddana and

Kozubowski, 2014). The expression (1.12) has been used in other studies to extend

the modeling framework in different scenarios. For instance, Bhati and Bakouch (2019)

proposed a new geometric discrete Pareto distribution marginal by using a Geometric

random variable with parameter q = 1 − e−(ω+Λ)/β instead of q = 1 − e−Λ/β in (1.12).

By using (1.12), Constantinescu et al. (2019) developed zero modified discrete Pareto

distribution (generally called zero-inflated) by using zero modified Geometric random

variable in place of Geometric random variables (i.e., ZMG(π, q), where π represent the

proportion of zero values and q = 1− e−Λ/β, with β > 0.

1.2.2 Bivariate models

An interesting aspect of our representation is the tractability of the bivariate distri-

bution with DGPD margins. Moreover, the following propositions will clearly define our

proposal regarding bivariate distributions. The proposition 1.1 is based on the Buddana

and Kozubowski (2014) construction.

Proposition 1.1. Let Λ have a standard Gamma distribution. Suppose, given Λ, Yi, i =

1, 2 are independent Geometric random variables with parameter qi = 1−e−λ/β, i = 1, 2,

where β > 0. Then Y = (Y1, Y2) follows a bivariate distribution with DGPD marginals

and is defined through univariate LT of Gamma distribution with the support of both

variables. That is, the joint survival function is written as

S(k1, k1) =

∫ ∞

0

e−
k1λ
β

−
k2λ
β f(λ)dλ = L(1)(s)|

(s=
k1+k2

β
)

(1.13)

where e−k1λ1/β and e−k2λ2/β are the SFs of independent Geometric random variables Y1

and Y2. The expression L(1)(s) is the LT of Λ. Notice that expression (1.13) can easily

be extended to the multivariate case.
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We extend the idea using bivariate Gamma distributions instead of standard Gamma

distributions as in proposition 1.1. Once again, our idea is based on representing bi-

variate distribution as Gamma mixtures of the Geometric distribution, enabling us to

keep easily tractable marginal distributions that remain coherent with univariate EVT.

When comparing with Buddana and Kozubowski (2014) construction, the major ad-

vantage of our proposal is that it allows us to introduce a dependence layer through

bivariate Gamma distribution. Further, proposition 1.2 explains how we proceed with

our proposal.

Proposition 1.2. Let Λ = (Λ1,Λ2) have a bivariate distribution with Gamma margins.

Suppose, given Λ = (Λ1,Λ2), Yi, i = 1, 2 are independent Geometric random variable

with parameter qi = 1 − e−λi/β, i = 1, 2, where β > 0. Then Y = (Y1, Y2) follows

a bivariate distribution with DGPD marginals and is defined through bivariate LTs of

bivariate Gamma distributions. That is, the joint survival function is written as

S(k1, k1) =

∫ ∞

0

∫ ∞

0

e−
k1λ1

β
−

k2λ2
β f(λ1, λ2)dλ1dλ2 = L(2)(s1, s2)|(s1= k1

β
,s2=

k2
β
)
(1.14)

where e−k1λ1/β and e−k2λ2/β are the SFs of independent Geometric random variables Y1

and Y2. The expression L(2)(s1, s2) is the bivariate LT of Λ = (Λ1,Λ2).

The proofs of the proposition 1.1 and 1.2 are given in Appendix A.1. Continuing our

proposal, we incorporate the above propositions into a hierarchical framework. More

formally, as shown in (1.10), a two-stage specification is easy to respect this constraint.

In the second stage, we incorporate the dependence layer (either simple or temporal)

through Gamma random variables or dependent Geometric random variables. In the

case of dependent Geometric random variables, we first need to construct a bivariate

Geometric distribution. This construction is done through a copula; the subsequent

subsection contains a copula-based modeling framework.

1.2.3 Copula based models

In the previous section, we considered independent Geometric random variables and

mixed them with Gamma random variables to get a joint distribution. Another pos-

sibility is to produce dependent Geometric random variables first and then represent

them as a mixture with Gamma distribution (either univariate or bivariate). The atten-

tion is essential to construct a bivariate Geometric distribution and use it to derive the

bivariate distribution with DGPD marginals by considering Geometric Gamma mixture

representation. This construction can be done through the copula function. Before

starting construction, the definition of copula is recalled.
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A d-dimensional copula is a joint CDF in [0, 1]d with standard uniform CDF’s Ui, i =

1, 2, . . . , d, such that:

C(u1, u2, . . . , ud) := P (U1 ≤ u1, U2 ≤ u2, . . . , Ud ≤ ud) (1.15)

The key advantage of the copula in the study of multivariate distribution functions is

summarized by Sklar’s theorem (Sklar, 1959), which here we precisely recap.

Let F be a d-dimensional distribution function with marginals Fi, i = 1, 2, . . . , d. Then,

there exist a d-dimensional copula i.e., Cd : [0, 1]
d → [0, 1], such that ∀ y1, y2, . . . , yd in

domain d. That is,

F (y1, y2, · · · , yd) = Cd(F1(y1), F2(y2), . . . , Fd(yd)). (1.16)

If Fi(.), i = 1, 2, . . . , d are continuous, then Cd is unique; otherwise; Cd is uniquely

determined on Ran(F1)×, . . . ,×Ran(Fd), where Ran(Fi) denote the range of Fi. Al-

ternatively, if Cd is a copula and Fi(.), i = 1, 2, . . . , d are univariate CDF’s, then the

function F given in (1.16) is joint CDF with Fi(.), i = 1, 2, . . . , d marginals. If the

marginals are continuous, then the unique copula Cd is defined as

C(u1, u2, . . . , ud) = F (F−1
1 (u1), F

−1
2 (u2), . . . , F

−1
d (ud)) (1.17)

where F−1
i indicates the generalized inverse of the marginal CDF, according to Sklar’s

Theorem, it is natural to define the notion of copula of a CDF F with continues marginal

CDF’s Fi(.), i = 1, 2, . . . , d as the CDF Cd of (F1(Y1), F2(Y2), . . . , Fd(Yd)) (Biller and

Corlu, 2012). Now, we will proceed to construct a bivariate Geometric distribution using

FGMC. The FGMC was introduced by Morgenstern (1956). In general, the copula is

a function that connects the cumulative distribution function to its marginals, and a

distribution function characterizes the dependence structure of the model.

Let S(ki) = e−kiλi/β, i = 1, 2 are the univariate SFs of univariate Geometric random

variables Yi, i = 1, 2. Following Morgenstern (1956); Gumbel (1960); Farlie (1960), the

bivariate FGMC is given by

C(u1, u2) = u1u2[1 + ϕ(1− u1)(1− u2)], u1, u2 ∈ [0, 1] (1.18)

where ϕ ∈ [−1, 1] is a measure of the dependence between u1 and u2.

The joint SF of Geometric random variables Y1 and Y2 by using FMGC with ui =
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S(ki), i = 1, 2 is written as

S(k∗1, k
∗
2|λ1, λ2) = e−(

λ1k1
β

+
λ2k2

β
) + ϕ

(

e−(
λ1k1

β
+

λ2k2
β

) − e−(
2λ1k1

β
+

λ2k2
β

)

− e−(
λ1k1

β
+

2λ2k2
β

) + e−(
2λ1k1

β
+

2λ2k2
β

)

)

(1.19)

Further, Λ1 and Λ2 are Gamma random variables (see subsection 1.2.1). Notice that,

when ϕ = 0 the joint SF given in equation (1.19) is reduces to S(k1, k2) = e−(λ1k1/β+λ2k2/β)

and Y1 and Y2 are independent. In addition, the PMF of bivariate Geometric distri-

bution can be derived easily by using the relationship of bivariate PMF and SF as

suggested by Barbiero (2019). Since we will use only the SF to move forward, we are

not interested in the bivariate PMF of Geometric distribution.

The main objective is to propose a copula-based bivariate distribution that allows

for dependence between variables while still having the DGPD margins. Subsequent

propositions will support a new proposal regarding bivariate distribution.

Proposition 1.3. Let Λ follow a standard distribution. Suppose, given Λ = λ, S(k∗1, k
∗
2|λ)

is the survival function of copula-based bivariate Geometric distribution with Geometric

margins with parameter qi = 1−e−Λ/β, i = 1, 2, where β > 0. Then Y = (Y1, Y2) follows

a copula-based bivariate distribution with DGPD marginals and is defined through LT

of standard Gamma distribution. That is, the joint SF via (1.13) is written as

S(k1, k1) =

∫ ∞

0

[

e−(
λk1
β

+
λk2
β

) + ϕ

(

e−(
λk1
β

+
λk2
β

) − e−(
2λk1
β

+
λk2
β

) − e−(
λk1
β

+
2λk2
β

)

+ e−(
2λk1
β

+
2λk2
β

)

)]

f(λ)dλ (1.20)

S(k1, k1) = L(1)(s)|
(s=

k1+k2
β

)
+ ϕ

(

L(1)(s)|
(s=

k1+k2
β

)
− L(1)(s)|

(s=
2k1+k2

β
)

− L(1)(s)|
(s=

k1+2k2
β

)
+ L(1)(s)|

(s=
2k1+2k2

β
)

)

(1.21)

where ϕ ∈ (−1, 1) is the copula dependence parameter and L(1)(.) is the LT of random

variable Λ. S(k1, k2) is the joint SF of copula-based bivariate distribution with DGPD

margins.
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When ϕ = 0, the expression (1.21) reduces to Buddana and Kozubowski (2014)

proposal, which is shown in proposition 1.1.

Proposition 1.4. Let Λ = (Λ1,Λ2) having a bivariate distribution with Gamma mar-

gins. Suppose, given Λ = (Λ1,Λ2), S(k
∗
1, k

∗
2|λ1, λ2) is the SF of copula-based bivariate

Geometric distribution with Geometric margins with parameter qi = 1− e−Λi/β, i = 1, 2,

where β > 0. Then Y = (Y1, Y2) follows a copula-based bivariate distribution with DGPD

marginals and is defined through bivariate LTs of bivariate Gamma distributions. That

is, the joint SF is written as

S(k1, k1) =

∫ ∞

0

∫ ∞

0

[

e−(
λ1k1

β
+

λ2k2
β

) + ϕ

(

e−(
λ1k1

β
+

λ2k2
β

) − e−(
2λ1k1

β
+

λ2k2
β

)

− e−(
λ1k1

β
+

2λ2k2
β

) + e−(
2λ1k1

β
+

2λ2k2
β

)

)]

f(λ1, λ2)dλ1dλ2 (1.22)

S(k1, k1) = L(2)(s1, s2)|(s1= k1
β
,s2=

k2
β
)
+ϕ

(

L(2)(s1, s2)|(s1= k1
β
,s2=

k2
β
)
−L(2)(s1, s2)|(s1= 2k1

β
,s2=

k2
β
)

− L(2)(s1, s2)|(s1= k1
β
,s2=

2k2
β

)
+ L(2)(s1, s2)|(s1= 2k1

β
,s2=

2k2
β

)

)

(1.23)

where L(2)(., .) is the bivariate LT of Λ = (Λ1,Λ2). S(k1, k2) is a joint SF of copula-based

bivariate discrete distribution with DGPD margins.

When ϕ = 0, the expression (1.23) reduces to the construction proposed in proposi-

tion 1.2.

The proofs of the propositions 1.3 and 1.4 are also provided in Appendix A.1.

1.2.4 Dependence induction

This section deals with how dependence can be induced in bivariate models as well

as in copula-based models. Interestingly, we can introduce the dependence layer in our

proposal through Gamma random variables. From a modeling perspective, we require

an analytical expression of bivariate LT of multivariate Gamma distribution. We use

hierarchical models with Gamma margins and have different analytical expressions of

their Laplace transforms, which can produce different kinds of dependence structures at

the upper tail. Furthermore, the complete dependence model, which leads to the result

of a proposition 1.1, is discussed later in the simulation study and real data examples.

We are considering the following hierarchical models.
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1. Gaver model (GM): This class of hierarchical model is firstly introduce by Gaver

and Lewis (1980); Walker (2000). Let

Λ1 ∼ Gamma(α, β)

P ∼ Gamma(α, 1)

X|P ∼ Poisson

(

P
(1− ρ)

ρ

)

V |X ∼ Gamma(X,
β

ρ
)

Λ2 = ρΛ1 + V

(1.24)

with Λ1 independent of P ,X|P and V |X. ρ is the dependence parameter which represent

the correlation between Λ1 and Λ2, it ranges 0 ≤ ρ < 1. Given Λ = (Λ1,Λ2) follow the

marginal distributions Gamma(α, β).

2. Kibble model (KM): Among various bivariate Gamma models, we focus on the

bivariate Gamma distribution introduced by Kibble (1941). The major advantage of

using this model is that the analytical form of their LT exists. Further, to simulate

dependent Gamma random variables, we use a hierarchical model introduced by Warren

(1992) and is defined as

Λ1 ∼ Gamma(α, β)

X|Λ1 ∼ Poisson

(

ρΛ1β)

1− ρ

)

Λ2|X ∼ Gamma

(

X + α,
1− ρ

β

)

(1.25)

The resulting Λ = (Λ1,Λ2) again follow Gamma(α, β) margins with dependence pa-

rameter ρ, it ranges 0 ≤ ρ < 1.

3. Thinned Gamma model (TGM): This class of model was introduced by (Wolpert,

2021) by using the thinning layer generated from Beta distribution. Let

Λ1 ∼ Gamma(α, β)

B ∼ Beta(αρ, α(1− ρ))

V ∼ Gamma(α(1− ρ), β)

Λ2 = BΛ1 + V

(1.26)

Λ = (Λ1,Λ2) again followGamma(α, β) margins with dependence parameter ρ, it ranges

0 < ρ < 1.
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The interesting feature of the above hierarchical models is that they have the same

correlation structure, that is, corr(Λ1,Λ2) = ρ. In addition, we will work with LTs of Λ1

and Λ2 because of Gamma(α, β) margins, the univariate Laplace for the above-defined

models is

L(1)(s)|(s= k
β
) = E(e

−Λk
β ) =

(

β

β + k

)α

(1.27)

In addition, we will have to work with bivariate LTs of Λ1 and Λ2 as

L(2)(s1, s2)|(s1= k1
β
,s2=

k2
β
)
= E

(

e−
Λ1k1

β
−

Λ2k2
β

)

, (1.28)

which is given by

L(2)(s1, s2)|(s1= k1
β
,s2=

k2
β
)
=

[

(β + ρk2)β

(β + k2)(β + k1 + ρk2)

]α

, 0 < ρ < 1, (1.29)

for GM and by

L(2)(s1, s2)|(s1= k1
β
,s2=

k2
β
)

=

[

β2

(k1 + β)(k2 + β)− ρk1k2

]α

, 0 < ρ < 1 (1.30)

for KM (Lai and Balakrishnan, 2009), respectively. Further, the

L(2)(s1, s2)|(s1= k1
β
,s2=

k2
β
)

=

[

βα(2−ρ)

(β + k1)α(1−ρ)(β + k1 + k2)αρ(β + k2)α(1−ρ)

]

(1.31)

with 0 < ρ < 1 is bivariate LT for TGM.

1.3 Tail dependence coefficient

Extreme value theory is regularly applied to model the data of different extreme events,

for which the paradigm of dependence is commonly inherent. Dependence arises, for

example, when the stochastic behavior of different processes under investigation is re-

lated to each other. Majority of dependence measures, like Pearson’s product-moment

correlation coefficient, Spearman’s rank order correlation coefficient, and Kendall cor-

relation coefficient, are intended to determine the dependence of random variables on

their distributions. Most regularly used measures fail to represent the dependence of

the distribution at upper and lower tails (Kotz and Nadarajah, 2000). Conversely, the

upper part of the distribution may behave differently in terms of dependency than the

central and/or lower parts of the distribution (Embrechts et al., 2002).

In the continuous extreme value framework, several tail dependence measures were



Chapter 1 - Modeling of Bivariate discrete dependent extremes 21

developed to describe the behavior of two or more variables at tails (upper or lower)

(Ledford and Tawn, 1997) and (Coles et al., 1999). In this context, our main focus is

on the tail dependence coefficient, which was introduced early by Sibuya (1960). For

instance, Y1 and Y2 are two random variables with identical marginal distributions, one

natural measure based on conditional probabilities, later defined by Coles et al. (1999)

χ = lim
k→k∗

P (Y1 > k|Y2 > k) = lim
k→k∗

L(2)(s1, s2)|(s1= k
β
,s2=

k
β
)

L(1)(s)|(s= k
β
)

, (1.32)

where k∗ → ∞ is the upper endpoint of the common marginal distribution. The vari-

ables are said to be asymptotically independent when χ = 0; otherwise asymptotically

dependent. Several statistical methods for the general class of extreme value distri-

butions have been proposed having χ = 0, see, e.g., (Ledford and Tawn, 1996, 1997;

Bortot and Tawn, 1998) . Later, Coles et al. (1999) and Coles (2001, Ch 8) pointed

out that within the class of asymptotically dependent distributions, it is evident that

χ gives the simple extremal dependence measure. However, it shows different behavior

for asymptotically independent distributions at finite levels. That’s why Coles et al.

(1999) introduced another extremal dependence measure, so-called χ̄, to overcome this

deficiency. We define χ̄ as

χ̄ = lim
k→k∗

2 logP (Y1 > k)

logP (Y1 > k, Y2 > k)
− 1 = lim

k→k∗

2 logL(1)(s)|(s= k
β
)

logL(2)(s1, s2)|(s1= k
β
,s2=

k
β
)

− 1

(1.33)

In the present scenario, we are working in the domain of the discrete extreme. The

tail dependence concept is the same as a continuous framework. Furthermore, we ex-

plain the concept of tail dependence more precisely in discrete extreme cases by giving an

example. Figure 1.3 describes the concept of discrete extreme models tail dependencies.

Figure 1.3 shows two generated discrete random variables from different hierarchical set-

tings with parameters (β = 200, α = 30, and ρ = 0.95). Figure 1.3 left is simulated using

the GM, while Figure 1.3 right is generated using the KM. The integer variables (Y1 and

Y2 with realization k1 and k2) are positive in nature in both figures. Notice that the

upper right quadrant shaded with red color (above the red lines) is dissimilar in the left

and right panels of Figure 1.3. The red lines are drawn corresponding to high threshold

values. Hence, the points lying in the upper right quadrant of Figure 1.3 left are locally

dependent, while the points lie in the upper right quadrant of Figure 1.3 right seem to be

locally independent. Also, Bortot and Gaetan (2014) proved in a continuous framework
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Figure 1.3: (a) Upper tail values (upper right quadrant above red lines) of Y1 and Y2
generated from GM are locally correlated; (b) Upper tail values (upper right quadrant
above red lines) of Y1 and Y2 generated from KM seem to be locally independent

that the GM has asymptotic dependence while the KM has asymptotically independent

behavior over the tail. Similarly, the model based on Buddana and Kozubowski (2014)

construction has asymptotic dependent behavior while TGM has asymptotic indepen-

dent behavior over the tail. For this reason, we must derive the asymptotic properties

of conditional tail dependence measure for the hierarchical constructions proposed in

section 1.2.

1.3.1 Gaver model (GM)

For a broader understanding of the extremal dependence in GM, we would like to use

the simplified form of (1.32) and to prove the limiting measure (χ) to evaluate the

dependence between the joint exceedances of discrete random variables Y1 and Y2.

However, the definition of χ measure given in (1.32) is based on the assumption that

Y1 and Y2 are positive discrete-valued random variables with a marginal SF given in

(1.12). Further, the joint SF corresponding GM is provided in the form of LT in (1.29).

To get the limiting measure χ for GM, we solve (1.32) by incorporating univariate and

bivariate LTs of Gamma distribution linked with the GM, that is,

χ = lim
k→∞

[

{β+ρk}β
(β+k){β+k+ρk}

]α

[

β
β+k

]α =

[

ρ

1 + ρ

]α

(1.34)

The positive limit of χ = [ρ/1 + ρ]α indicates that the discrete random variables (Y1

and Y2) are asymptotically dependent.
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To attain a better characterization of the joint tail decay rate under asymptotic

independence, quicker than the marginal tail the decay rate, we use the definition (1.33)

through the limit relation as if χ > 0 then χ̄ = 1. The derivation of the limiting form

of χ and χ̄ corresponding to the GM are provided in Appendix A.2.1.

1.3.2 Copula-based Gaver and Lewis model (CGM)

To obtain the limiting measure χ corresponding CGM, we use equation (1.32) with

joint SF given in (1.23) Thus, we have

χ = lim
k→∞

























[

{β+ρk}β
(β+k){β+k+ρk}

]α

+ ϕ

[

[

{β+ρk}β
(β+k){β+k+ρk}

]α

−
[

{β+ρk}β
(β+k){β+2k+ρk}

]α

−
[

{β+2ρk}β
{β+2k}{β+k+2ρk}

]α

+
[

{β+2ρk}β
{β+2k}{β+2k+2ρk}

]α
]

























[

β
β+k

]α

χ =

(

ρ

1 + ρ

)α

+ ϕ

[

(

ρ

1 + ρ

)α

−
(

ρ

2 + ρ

)α

−
(

ρ

(1 + 2ρ)

)α

+

(

ρ

(2 + 2ρ)

)α
]

(1.35)

Notice that the χ > 0 indicates that CGM also has asymptotic-dependent behavior.

Additionally, ϕ involve in (1.35), which is a copula dependence parameter. Positive

value ϕ show more asymptotic dependence, while a negative value of ϕ show weaker

dependence as compared to GM. When ϕ = 0 CGM has similar asymptotic dependence

behavior as GM. The detailed proof is given in Appendix A.2.2.

1.3.3 Kibble model (KM)

To observe the joint tail dependence behavior of KM via χ and χ̄, we use definitions

given in (1.32) and (1.33) with bivariate LT linked with KM, which is provided in 1.30.

Thus, the

χ = lim
k→∞

[

β2

(k+β)(k+β)−ρk2

]α

[

β
β+k

]α = 0 (1.36)
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and

χ̄ = lim
k→∞

2 log
[

β
β+k

]α

log
[

β2

(k+β)(k+β)−ρk2

]α − 1 = 0 (1.37)

In the case of KM, the measures χ = χ̄ = 0 show no local clustering of extremes in

Y1 and Y2 variables. This means that KM has asymptotic independence behavior over

the tail. The detailed derivation of limiting measure χ and χ̄ corresponding to the KM

are given in Appendix A.2.3.

1.3.4 Copula-based Kibble model (CKM)

To get the limiting form of χ and χ̄ corresponding CKM, we use the definitions given

(1.32) and (1.33) with joint SF given in (1.23) based on bivariate LT associated with

KM provided in (1.30). That is, the χ is

χ = lim
k→∞

























[

β2

(k+β)2−ρk2

]α

+ ϕ

[

[

β2

(k+β)2−ρk2

]α

−
[

β2

(2k+β)(k+β)−2ρk2

]α

−
[

β2

(k+β)(2k+β)−2ρk2

]α

+
[

β2

(2k+β)2−4ρk2

]α
]

























[

β
β+k

]α = 0

Again, the limiting value of χ and χ̄ based CKM tend to zero, indicating that there

is no local clustering at an extreme level of Y1 and Y2 variables. It means that CKM

also has asymptotic independence behavior over the tail. The detailed derivation of the

properties χ and χ̄ are provided in Appendix A.2.4.

1.3.5 Thinned Gamma model (TGM)

Similar to GM and KM, we would like to derive the asymptotic properties of joint tail

dependence measure χ and χ̄ corresponding to TGM by using the usual definitions with

bivariate LT given in (1.31). The limiting measure χ is

χ = lim
k→∞

[

βα(2−ρ)

(β+k)2α(1−ρ)(β+2k)αρ

]

[

β
β+k

]α = 0 (1.38)
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and, the χ̄ is

χ̄ = lim
k→∞

2 log
[

β
β+k

]α

log
[

βα(2−ρ)

(β+k)2α(1−ρ)(β+2k)αρ

] − 1 =
ρ

2− ρ
(1.39)

The measure χ = 0 and χ̄ = ρ/(2− ρ) show that the Y1 and Y2 variables are asymp-

totically independent when generated from TGM. A larger value of ρ in χ̄ may lead to

dependence (Bacro et al., 2020). The detailed derivation of asymptotic properties of χ

and χ̄ is given in Appendix A.2.5.

1.3.6 Copula-based Thinned Gamma model (CTGM)

In order to obtain the limiting value of χ and χ̄ corresponding TGM, we use the defini-

tions given (1.32) and (1.33) with joint SF given in (1.23) based on bivariate LT linked

with TGM provided in (1.31). That is, the χ is

χ = lim
k→∞

























[

βα(2−ρ)

(β+k)2α(1−ρ)(β+2k)αρ

]

+ ϕ

[

[

βα(2−ρ)

(β+k)2α(1−ρ)(β+2k)αρ

]

−
[

β2α−αρ

(β+2k)α−αρ(β+k)α−αρ(β+3k)αρ

]

−
[

β2α−αρ

(β+2k)α−αρ(β+k)α−αρ(β+3k)αρ

]

+
[

β2α−αρ

(β+2k)2α−2αρ(β+4k)αρ

]

]

























[

β
β+k

]α

χ = 0 (1.40)

and χ̄ is ρ/(2− ρ).

Again, measure χ = 0 and χ̄ = ρ/(2− ρ) show that the Y1 and Y2 variables are

asymptotically independent when generated from CTGM. In addtion, the copula de-

pendence parameter ϕ has a neutral role in both χ and χ̄. The derivation is provided

in Appendix A.2.6.

1.3.7 Complete dependence model (CDM)

In order to get the limiting value of conditional tail dependence measure for CDM

discussed in proposition (1.1), we use the usual definition given in (1.32) with LT of
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Gamma distribution given in (1.27) with the involvement of Y1 and Y2 random variables.

χ = lim
k→∞

[

β
2k+β

]α

[

β
β+k

]α =

[

1

2

]α

(1.41)

The positive limit of χ = [1/2]α indicates that the discrete random variables (Y1 and Y2)

are said to be asymptotically dependent. The related proofs are provided in Appendix

A.2.7.

1.3.8 Copula-based complete dependence model (CCDM)

To obtain the limiting measure χ corresponding CCDM, we use again expression

(1.32) with joint SF. Thus, we have

χ = lim
k→∞

[

β
2k+β

]α

+ ϕ

[

[

β
2k+β

]α

−
[

β
3k+β

]α

−
[

β
3k+β

]α

+
[

β
4k+β

]α
]

[

β
β+k

]α

χ =

(

1

2

)α

+ ϕ

[

(

1

2

)α

−
(

1

3

)α

−
(

1

(3)

)α

+

(

1

4

)α
]

(1.42)

The limiting measure χ > 0 clearly indicates that the CCDM has asymptotic-dependent

behavior. For CCDM, the parameter ϕ plays a similar role as for CGM. The proofs are

provided in Appendix A.2.8.

1.4 Inference

The section 1.2 provides the details of the main theoretical results of the proposed

models. In section 1.4, the inference procedure of the models is presented since they

will be exploited in a simulation study and real data analysis.

1.4.1 Censored likelihood

The censored likelihood is developed to estimate the bivariate and copula-based bivari-

ate hierarchical models. Let (k11, k21), . . . , (k1n, k2n) are the realizations of integer-valued

random variables (Y1, Y2) with joint SF defined in expression (1.14) and (1.23), respec-

tively. For suitable thresholds u1 and u2, the marginal distribution of (Y1, Y2) follows

DGPD with SF provided in equation (1.12). Moreover, the joint PMF can be con-

structed by using the joint LTs of Λ1 and Λ2. Thus, the joint PMF, when comparing
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the pair with suitable high thresholds u1 and u2, whether the pair (k1, k2) lies above or

below the thresholds. That is,

• for k1 > u1, k2 > u2.

P (k1, k2; θ) = S(k1, k2) − S(k1 + 1, k2) − S(k1, k2 + 1) + S(k1 + 1, k2 + 1)

P (k1, k2; θ) = L(2)(s1, s2)|(s1= k1
β
,s2=

k2
β
)
− L(2)(s1, s2)|(s1= k1+1

β
,s2=

k2
β
)

− L(2)(s1, s2)|(s1= k1
β
,s2=

k2+1
β

)
+ L(2)(s1, s2)|(s1= k1+1

β
,s2=

k2+1
β

)

• for k1 > u1, k2 ≤ u2.

P (k1, u2; θ) = S(k1) − S(k1 + 1) − S(k1, u2 + 1) + S(k1 + 1, u2 + 1)

P (k1, u2; θ) = L(1)(s)|
(s=

k1
β
)
− L(1)(s)|

(s=
k1+1

β
)
− L(2)(s1, s2)|(s1= k1

β
,s2=

u2+1
β

)

+ L(2)(s1, s2)|(s1= k1+1
β

,s2=
u2+1

β
)

• for k1 ≤ u, k2 > u.

P (u1, k2; θ) = S(k2) − S(k2 + 1) − S(u1 + 1, k2) + S(u1 + 1, k2 + 1)

P (u1, k2; θ) = L(1)(s)|
(s=

k2
β
)
− L(1)(s)|

(s=
k2+1

β
)
− L(2)(s1, s2)|(s1=u1+1

β
,s2=

k2
β
)

+ L(2)(s1, s2)|(s1=u1+1
β

,s2=
k2+1

β
)

• for k1 ≤ u1, k2 ≤ u2

P (u1, u2; θ) = 1 − S(u1 + 1) − S(u2 + 1) + S(u1 + 1, u2 + 1)

P (u1, u2; θ) = 1−L(1)(s)|
(s=

u1+1
β

)
−L(1)(s)|

(s=
u2+1

β
)
+L(2)(s1, s2)|(s1=u1+1

β
,s2=

u2+1
β

)

In each case L(2)(., .) is the LT of Λ1 and Λ2, L
(1)(.) is the univariate LT of Λ. Inference

for both bivariate and copula-based bivariate models is complicated because a bivariate

pair may lie in any of one regions defined above. For instance, a point (k1, k2) lie in
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Figure 1.4: Censored likelihood working

region three (i.e., k1 ≤ u1, k2 > u2). It means that the specific point of k1 is below

the threshold u1, and the point k2 exceeds the threshold u2. For components that lie

above the u1 and u2 thresholds, the joint PMF (i.e., P (Y1 = k1, Y2 = k2) constitutes the

suitable likelihood component. On the other hand, when (k1, k2) ∈ (k1 ≤ u1, k2 > u2),

there is an information on observed data censoring the marginal k1 points, but not the

k2 components. Figure 1.4 clearly explains how we censor the data points when working

with censored likelihood. Thus the general form of censored likelihood is defined as

L(θ; (k11, k21) . . . (k1n, kkn)) =
n
∏

i=1

P (θ; (k1i, k2i)) (1.43)

where θ = (β, α) is the parameters vector for the CDM model, θ = (β, α, ρ) is the

parameters vector for GM, KM, and TGM, respectively; θ = (β, α, ϕ) is the parameters

vector for CCDM and θ = (β, α, ϕ, ρ) is the parameter vector for CGM and CKM and

CTGM, respectively.
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1.5 Simulation study

A simulation study is designed in order to assess the empirical properties and/or perfor-

mance of our proposals given in section 1.2. Under the proposed models of section 1.2,

we will examine the quality of the estimated parameters obtained using the censored

likelihood approach.

1.5.1 Bivariate and copula-based bivariate models

A simulation study evaluates the censored likelihood estimator for bivariate and copula-

based bivariate proposals. More precisely, we generated n = 20, 000 sample data point

for variable Y1 and Y2 from CDM (as described in proposition 1.1), GM, KM and

TGM using (α = 25, β = 200, ρ = 0.40), (α = 25, β = 200, ρ = 0.90), (α = 30, β =

200, ρ = 0.40) and (α = 30, β = 200, ρ = 0.95) with threshold u equal to the 0.90 order

quantile. In the case of copula-based models, the Gamma random variables Λ1 and Λ2

are simulated from the hierarchical setting of GM and KM, and TGM. By using the

following parameter scheme (α = 25, β = 200, ϕ = 0.4, ρ = 0.40), (α = 25, β = 200, ϕ =

0.8, ρ = 0.90), (α = 30, β = 200, ϕ = 0.4, ρ = 0.40) and (α = 30, β = 200, ϕ = 0.8, ρ =

0.95), the variable Y1 and Y2 with incorporation of Λ1 and Λ2 are simulated by following

below given steps.

Step 1: Simulate random pair (v1, v2) from independent uniform random variables,

that is V1 ∼ U(0, 1) and V2 ∼ U(0, 1).

Step 2: Set w1 = v1 and Y1|Λ1 = F−1
Y1|Λ1

(w1), where F
−1
Y1|Λ1

denotes the quantile function

of Geometric distribution with parameter q1 = 1 − e−Λ1/β, i.e., Y1|Λ1 = ⌈ ln(1−w1)
ln(1−q1)

− 1⌉,
with ⌈.⌉ indicating the ceiling function.

Step 3: Set w2 = 2v2
(a+b)

, where a = 1 + ϕ(1 − pk1|λ1(k1|λ1) + 2Fk1|λ1(k1|λ1 − 1)) and

b = [a2 − 4(a− 1)v2]. Then, Y2|Λ2 = ⌈ ln(1−w2)
ln(1−q2)

− 1⌉, where q2 = 1− e−Λ2/β and ϕ is the

copula dependence parameter.

The CDM, GM, KM, TGM, CCDM, CGM, CKM, and CTGM are fitted to the

exceedances using the censored likelihood approach explained in section 1.4. Root mean

square errors (RMSEs) and bais of the estimates are obtained by repeating the fitting

process 103 times. Table 1.1 and Table 1.2 show the RMSEs and bias of parameter

estimates for both bivariate and copula-based bivariate models, respectively.

During the simulation study, we observe that the scale parameter β is estimated

correctly for every model in each parameter scheme. Therefore, Tables do not report

the RMSEs and bias of the β parameter. Conversely, the RMSEs and bias are smaller

for smaller values of α with a combination of smaller ρ values. RMSEs and bias for α
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slightly increase when parameter combination α is high with smaller ρ. An improvement

is observed in all models when both α and ρ increase. Furthermore, the RMSEs and

bias of α and ϕ in both the CDM and CCDM are quite reasonable. Since both CDM

and CCDM use completely dependent Gamma variables with ρ = 1; therefore, the ρ

parameter results are not shown for both cases. Overall, all models exhibit reasonable

statistical and computational efficiency across the parameter setting.

1.6 Real Applications

This section discusses the real-data application of the proposals made in section 1.2.

Bivariate and copula-based bivariate models are applied to daily avalanches counts at

two different massifs of the French Alps.

The Enquête Permanente sur les Avalanches (EPA) collected avalanches data from

the French Alps, which has monitored about 3900 paths since the early 20th century

(see, for instance, Mougin (1922); Evin et al. (2021)). Quantitative (run-out elevations,

deposit volumes, etc.) and qualitative (flow regime, snow quality, etc.) information is

collected for each event. It varies in quality from time to time, depending on the local

observers (mostly forestry rangers). Natural avalanche activity is also uncertain because

records tend to record paths visible from valleys, so that high-elevation activity may be

underestimated.

This application uses the data of avalanches activity at two massifs (namely Haute-

Maurienne and Maurienne) by the daily number of avalanche events recorded from 1958

to 2021 in the EPA. The daily number of avalanche events at Haute-Maurienne and

Maurienne massifs are extracted from the whole data set, which was used by Evin et al.

(2021) and Dkengne et al. (2016) as shown in Figure 1.5.

Some days after the release of the avalanche, an avalanche event is recorded. By

this reason, this may lead to an approximate estimation of the exact day of the event

estimated by the observers. It is too restrictive to select the events for which the date

is known (too many events are lost) Dkengne et al. (2016). However, suppose the

avalanche happened many days before the observation. In that case, the insertion of

that day could lead to a bias in analysis (because of the wrong number of avalanches for

that day and the difficulty concerning this event to meteorological and snow conditions).

As a compromise, Dkengne et al. (2016) and Evin et al. (2021) only consider avalanche

events that occurred within the previous three days of the observation. Therefore, this

application uses aggregates of daily avalanche events in Haute-Maurienne and Maurienne

regions with the same dates at massif scale for the 64 winter seasons around 1958 to
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Table 1.1: Bias and RMSE for parameter α and ρ acquired from simulations of the models based on CDM, GM, KM and TGM, with
n= 20,000, and threshold u equal to the 0.90 quantile and under different parameter configurations.

α ρ

True CDM GM KM TGM True CDM GM KM TGM
25 3.92 5.51 5.26 5.28 0.40 - 0.26 0.23 0.25

(0.46) (0.97) (0.91) (0.85) - (-0.00) (0.18) (0.01)
25 - 4.31 4.86 4.29 0.90 - 0.23 0.20 0.20

- (0.11) (0.55) (0.16) - (-0.08) (-0.06) (-0.06)
30 (5.74) 7.89 7.68 8.56 0.40 - 0.20 0.30 0.30

0.65 (1.18) (1.40) (1.54) - (0.012) (0.025) (0.02)
30 - 5.00 6.31 4.86 0.95 - 0.21 0.23 0.20

- (0.08) (0.21) (0.05) - (-0.09) (-0.10) (-0.08)

Table 1.2: Bias and RMSE for parameter α, ϕ and ρ acquired from simulations of the models based on CCDM, CGM, CKM, and
CTGM, with n= 20,000, and threshold u equal to the 0.90 quantile and under different parameter configurations.

α ϕ ρ

True CCDM CGM CKM CTGM True CCDM CGM CKM CTGM True CCDM CGM CKM CTGM
25 4.07 4.43 4.24 4.46 0.40 0.10 0.15 0.15 0.16 0.40 - 0.36 0.36 0.37

(0.25) (0.23) (0.37 ) (0.46) 0.00 ( -0.01) (-0.01) ( -0.01) - (0.04) (0.03) (0.04)
25 3.70 3.84 4.12 3.64 0.80 0.10 0.13 0.12 0.13 0.90 - 0.28 0.25 0.27

(0.35) (0.18) (0.34) (0.01) (0.00) ( 0.04) (0.03) ( 0.04) - (-0.12) (-0.09) (-0.12)
30 6.86 6.30 6.16 5.97 0.40 0.09 0.15 0.15 0.15 0.40 - 0.39 0.39 0.39

(0.77) (0.94) (0.43) (0.57) (-0.01) (-0.00) (-0.01) (-0.02) - (0.05) (0.06) (0.06)
30 6.25 6.50 5.71 6.13 0.80 0.10 0.13 0.12 0.13 0.95 - 0.29 0.28 0.30

(0.52) (0.29) ( 0.50) (0.60) (-0.01) (0.05) (0.05) (0.05) - (-0.15) (-0.14) (-0.15)



32 Section 1.6 - Real Applications

Figure 1.5: The 23 SAFRAN massifs of the French Alps. A number between
brackets indicates the mentioned snow avalanches paths in each massif (Evin et al.,
2021).

2021. Further, 186 and 222 paths are covered by both massifs, as shown in Figure 1.5.

In addition, the length of observations at both massifs is 427, with the same collection

dates. Figure 1.6 shows the scatter plot of the Haute-Maurienne and Maurienne massifs

avalanches counts.

The CDM, GM, KM, TGM, CCDM, CGM, CKM, and CTGM are applied to the

bivariate integer-valued data with the threshold u1 = 5 and u2 = 6 corresponding to

0.80 quantiles of Haute-Maurienne and Maurienne data, respectively. Results of the

fitted models with their AIC and BIC are shown in Table 1.3. Estimates of parame-

ter β and α are similar across the simple and copula-based models. The estimated ρ

parameter deviates in both hierarchical and copula-based hierarchical models. In both

cases, KM and TGM lead to a larger estimate. But, the copula dependence parameter

ϕ is over-estimated in copula-based hierarchical models as compared to CCDM. Also,

the estimated ρ reduces in CGM, CKM, and CTGM as compared to GM, KM and

TGM. This may happen by the reason that because we are introducing dependence in

these models from bivariate Geometric distribution and Gamma random variables as

well (theoretical details are provided subsection in 1.2.4 of the chapter). In proposed

models, the ϕ and ρ are basically related to dependence structure. In the fitting at

finite thresholds, the dependence induced by GM and CGM is stronger as compared to
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Figure 1.6: Number of avalanche events in Haute-Maurienne and Maurienne massifs
of the French Alps.

other models. The larger value of ρ in both simple and copula-based models compen-

sates for that tendency. The AIC and BIC indicate a clear performance in both simple

and copula-based models to GM and CGM, respectively. This may tend to extremal

dependence in Haute-Maurienne and Maurienne massifs avalanche at the extreme level.

Table 1.3: Estimates of model parameters with their standard errors (in parenthesis)
of CDM GM, KM, TGM, CCDM, CGM, CKM, and CTGM for Avalanches data of
french Alps.

Model β α ϕ ρ LL AIC BIC

CDM 9.19 (2.35) 3.16 (0.59) - - 868.50 1741.01 1749.12

GM 8.89 (2.36) 3.09 (0.59) - 0.90 (0.23) 868.41 1742.83 1755.00

KM 9.18 (2.38) 3.16 (0.60) - 0.95 (0.13) 868.50 1743.01 1755.18

TGM 9.19 (2.39) 3.16 (0.60) - 0.97 (0.16) 868.50 1743.00 1755.18

CCDM 10.34 (3.00) 3.42 (0.74) 0.39 (0.38) - 867.98 1741.97 1760.19

CGM 9.83 (2.73) 3.31 (0.67) 0.91 (0.67) 0.53 (0.27) 865.92 1739.85 1756.08

CKM 10.55 (2.92) 3.48 (0.71) 0.92 (0.81) 0.68 (0.35) 866.89 1741.78 1758.00

CTGM 10.57 (2.96) 3.49 (0.72) 0.92 (0.86) 0.65 (0.39) 866.99 1741.99 1758.22

For the diagnostics of the fitted models, we inspected the behavior of the summary

statistics that depend only on the characteristics of variable Y1 and Y2: the conditional

probabilities P (Y1 > k|Y2 > k) and the average cluster size of the discrete exceedances
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Figure 1.7: Empirical and model-based estimate of χ(k) = P (Y1 > k|Y2 > k) for
the counts of avalanches at Haute-Maurienne and Maurienne massifs of French Alps.
The dashed lines give 0.95 bootstrap confidence bands

.

k, for k > u. We adopted conditional probabilities to measure the strength of lo-

cal extremal dependence between Haute-Maurienne and Maurienne massifs avalanches.

Further, the conditional probabilities permit evaluation of the model for the short-term

prediction abilities or inadequacies. In practical terms, the average cluster size summa-

rizes the tendency for extreme occurrences. To evaluate the quality of the extrapolation

over a fixed threshold u, the summary measures were analyzed as a function of ex-

ceedances k, with k > u. Asymptotic properties of the measure based on conditional

probabilities are discussed in section 1.3 that joint variables are asymptotically inde-

pendent when the conditional probabilities converge to zero, as k → ∞. Figure 1.7

compares model-based and empirical estimates of the tail dependence measure (devel-

oped in section 1.3 of the chapter) based on conditional probabilities for the estimated

models, namely CDM, GM, KM, TCM, CCDM, CGM, CKM, and CTGM. A decreasing

degree of dependence can be seen in empirical values, and this corresponds to conver-

gence to independence as k → ∞. Values obtained from the CCDM, CGM, CKM, and

CTGM match closely with the empirical patterns of the joint tail dependence, while

CDM, GM, KM, and TGM slightly overestimate the dependence. In the proposed for-

mulation, the copula-based model is preferable over simple models for the avalanches

data of the French Alps; however, all models produce more stable estimates than the
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empirical counterparts as k increases, resulting in the dependence being underestimated

(overestimated) for low (high) values of k.

1.7 Final remarks

This thesis chapter proposes a model that allows us to assess the changes in the

extremal dependence structure. Hierarchical settings and copula are considered the

main tools to introduce different kinds of dependence in the proposed model. This

newly developed framework is the first step to modeling bivariate discrete extremes

having asymptotic dependence or asymptotic independence at the extreme. Moreover,

the theoretical developments of section 1.3 have shown that both asymptotic dependence

and asymptotic Independence are attainable in simple and copula-based models with

an appropriate choice of Gamma random variables in hierarchical settings. Generally

speaking, both scenarios can be tackled with the proposal presented in this chapter.

Furthermore, we perform inference by using the censored likelihood as used by Coles

(2001) for continuous bivariate extremes. In general, the implementation of our proposal

is straightforward, and inference is computationally convenient. In addition, we tested

our models through a simulation study and later applied them to the avalanche count

data of two massifs of the French Alps.

The proposed methodology in this chapter could also be applied to integer-valued

environmental variables and the count data of seasonal viruses. In addition, regression-

type modeling can be implemented for DGPD marginals. Regression-type methodology

work by letting the parameters of marginal DGPD vary with covariates.





Chapter 2

A time series model for discrete

extreme values

Overview: Chapter 2

⇝ This chapter presents a new model for describing temporal dependence in dis-

crete exceedances above a threshold. The modeling framework is executed in two

steps. In the first step, discrete exceedances are modeled through DGPD, which

can be obtained by mixing a Geometric variable with a Gamma distribution (the

main results associated with its hierarchical representation are derived in chapter

1). In the second step, a model for discrete extreme values is built by injecting a la-

tent Gamma process via hierarchical framework, which confirms that the marginal

distribution is DGPD, as expected from classical discrete extreme value theory.

We employ four distinct underlying stationary Gamma processes, each produc-

ing a different temporal dependency structure, either asymptotic independence or

asymptotic dependence. The proposed model is applied to two real discrete time

series. Observations of both series over a finite threshold have shown asymptotic

independent behavior. One can use a novel framework for discrete-time series,

which has an asymptotic-dependent behavior over the tail. In both scenarios, our

proposed model is more flexible.

Chapter 2 is organized as follows. Section 2.1 provides an introduction to tem-

poral extremes containing a detailed literature review and study gap. Section

2.2 presents the latent process model with hierarchical construction for discrete

time-dependent extremes. Asymptotic properties of tail dependence measure are

discussed in Section 2.3. Section 2.4 deals with the inferential activities, especially

the pairwise likelihood approach.The simulation study is given in Section 2.5 to

37
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assess the model parameters and dependence behavior over the tail. Section 2.6

applies the novel model to two distinct examples of discrete time series having ex-

treme observations (monthly number of police reports on narcotics trafficking and

number of tick changes by a minute of EUR/GBP series). Section 2.7 concludes

and provides some further recommendations.

2.1 Introduction

Classical EVT based on asymptotic extreme value models for block maxima or ex-

ceedances over high thresholds plays a crucial role in modeling extremes. Whereas the

GEV distribution ascends as the only possible limit model for block maxima, the GPD is

its counterpart for exceedances over a high threshold. In the univariate and multivariate

framework, block maxima approaches are usually criticized for excluding many relevant

observations. Moreover, they evaluate the joint distribution function of extreme values

occurring inside a block whose coarse might not be appropriate for analysis. In con-

trast, exceedances over threshold methods engage all data points for which at least one

coordinate exceeds a corresponding high threshold, employing the censored maximum

likelihood technique where the likelihood of observation relies on which components

surpass the corresponding thresholds coordinates (Dutfoy et al., 2014).

In the context of stochastic modeling, threshold methods have been extensively de-

veloped in recent years. In this sense, the main question that appears in mind is how

to capture temporal dependence when observations occur in clusters over the tail. For

instance, the exceedances over a high threshold can be asymptotically dependent when

they occur in clusters; otherwise, they may be asymptotically independent. For a review

of modeling time series of extreme values, see Chavez-Demoulin and Davison (2012).

Literature suggests two main approaches. Firstly, a Markov chain model is estimated

using a likelihood function as part of the threshold approach, which assumes that the

extreme model is only fitted to observations that exceed the threshold while the oth-

ers are censored (Smith et al., 1997; Bortot and Tawn, 1998). The transition kernel

of the Markov chain can be specified using standard bivariate extremal models. Near-

independence models can also be specified (Bortot and Tawn, 1998; Ramos and Ledford,

2009; De Carvalho and Ramos, 2012). A second approach considers a hierarchical model.

The parameters of a standard extreme-value distribution are driven by a latent stochas-

tic process (Casson and Coles, 1999; Gaetan and Grigoletto, 2004; Huerta and Sansó,
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2007; Bortot and Gaetan, 2014; Bopp and Shaby, 2017). According to Bortot and Gae-

tan (2014), the marginal distributions generally no longer exhibit extreme values, and

the induced dependence is not strong enough to allow asymptotically high clustering of

extremes.

As discussed in chapter 1 of the thesis, a class of models has been proposed using

Gamma latent variables in a continuous setting. Hierarchical models are flexible in

their characteristics of serial dependence and result in a process with GPD margins.

Similar to Bortot and Gaetan (2014), we want to model serial dependence above the

threshold when working with discrete extremes. However, discrete distribution (e.g.,

DGPD) fulfills the extremal properties, and it remains the favorite for modeling discrete

exceedances (Anderson, 1970; Hitz et al., 2017).

The major contribution of this chapter is to propose a new discrete extreme value

model that accommodates a variety of extremal dependence characteristics. This mod-

eling framework is linked with a hierarchical approach, ensuring that the marginal dis-

tribution of exceedances is DGPD. Therefore, the classical extremal techniques are ap-

preciated, and a wide range of dependence can be considered at the extreme level. We

can accomplish this by representing the DGPD as a mixture of Geometric and Gamma

random variables (Buddana and Kozubowski, 2014). DGPD is considered a natural can-

didate for modeling dependence in exceedances; for more details, see chapter 1. Further,

we use four distinct stationary Gamma processes to generate a temporal layer with dif-

ferent kinds of dependence behavior. Furthermore, the hierarchical construction-based

function was evaluated using the pairwise likelihood method when performing inference.

In the case of nonstationary DGPD margins, the effect of the covariates can be taken

into account by developing a GAM form modeling paradigm and dealing parameters of

the model as a function of covariates.

2.2 Discrete time series hierarchical models

This section of the chapter presents a hierarchical model for discrete threshold ex-

ceedance time series, where a first-order latent Markov chain with stationary Gamma

margins is used to model the extremal dependence. In this hierarchical construction, we

are able to account for serial dependence and maintain DGPD margins for exceedances.

The model is motivated by the following representation for DGPD: for shape parame-

ter, ξ > 0, the DGPD given in (1.8) can be constructed as a mixture of Geometric and
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Gamma random variables (see, for instance, section 1.2). This show that if

Y |Λ ∼ Geo(1− e−Λ/β)

Λ|α, β ∼ Gamma(α, β) (2.1)

then, by equation (1.10), Y ∼ DGPD(α, β) with PMF given in (1.9). Let {Yt} be a

stationary random sequence of discrete random variables. We are interested in mod-

eling the observations above the fixed high threshold u, which basically represents the

tail behavior. Moreover, we work with EVT and defend the DGPD as marginal dis-

tribution of {Yt, t ≥ 1}. From (2.1), firstly, we assume conditionally on {Λt}, the

Yt|Λt ∼ Geo(1−exp[−Λt/β]). Secondly, we introduce the temporal dependence by using

different stationary Gamma processes for Λt having Gamma(α, β) margins. By compli-

ance with the results of section 1.2, the marginal distribution of Yt follows DGPD(α, β),

concerning marginal Λt. In addition, the Gamma distribution parameters are positive;

this representation also puts a constraint on the shape parameter as α > 0, which leads

to a heavy tail case of DGPD (Hitz et al., 2017). Therefore, the interesting feature of

the above representation is that the bivariate distributions with discrete Pareto-type

margins are easily tractable. At this stage, it is much easier to incorporate the temporal

dependence layer via hierarchical settings of stochastic processes with Gamma(α, β)

margins for {Λt}. The following section describes the considered stochastic processes

along their hierarchical structure for introducing the temporal dependence layer in the

proposed representation.

2.2.1 Induction of temporal dependence layer

This section deals with how temporal dependence can be induced in our proposed

representation. Interestingly, we introduce temporal dependence in the proposed repre-

sentation through stationary Gamma process {Λt}. Thus, we focus on different station-

ary Gamma processes, which are more flexible with Markov chains and have recursive

forms which may lead to different extremal dependence structures. After inducing the

temporal layer via {Λt}, the original variable {Yt} may have non-Markovian nature

model (Bortot and Gaetan, 2014). We use the following stationary Gamma processes

as

1. Gaver and Lewis process (GLP): This class of process is discussed by Gaver
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and Lewis (1980); Walker (2000). The GLP is defined as

Λt−1 ∼ Gamma(α, β)

Pt ∼ Gamma(α, 1)

Xt|Pt ∼ Poisson

(

Pt
(1− ρ)

ρ

)

Vt|Xt ∼ Gamma(Xt,
β

ρ
)

Λt = ρΛt−1 + Vt

(2.2)

with Λt−1 independent of Pt, Xt|Pt and Vt|Xt. ρ is the dependence parameter which

is the correlation between Λt−1 and Λt, it ranges 0 ≤ ρ < 1. Given {Λt} is stationary

Gamma process whose marginal distribution is Gamma(α, β).

2. Warren process (WP): The WP was introduced by Warren (1992), and is defined

as follows. Let

Λt−1 ∼ Gamma(α, β)

Xt|Λt−1 ∼ Poisson

(

ρΛt−1β)

1− ρ

)

Λt|Xt ∼ Gamma

(

Xt + α,
1− ρ

β

)

(2.3)

The resulting {Λt} again stationary Markov Gamma process with recursive form and

follow Gamma(α, β) margins with dependence parameter ρ, it ranges 0 ≤ ρ < 1.

3. Thinned Gamma process (TGP): This class of process was introduced in

Wolpert (2021) by using the thinning layer generated from Beta distribution. The

general form of TGP is defined as

Λt−1 ∼ Gamma(α, β)

Bt ∼ Beta(αρ, α(1− ρ))

Vt ∼ Gamma(α(1− ρ), β)

Λt = BtΛt−1 + Vt

(2.4)

where {Λt−1} is independent of Bt and Vt. The {Λt} is a Markov process with gamma

univariate marginal distribution Gamma(α, β) with auto-correlation ρ, it ranges 0 ≤
ρ < 1. The process of passing from {Λt} to BtΛt−1 is called thinning (Wolpert, 2021).

Hence, we will refer {Λt} as thinned gamma process.

4. The Markov change-point process (MCPP): Let {ξn : n ∈ Z} iid∼ Gamma(α, β)

be independent and identically distributed Gamma random variables and let Pt be a
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standard Poisson process index by t ∈ R ( so P0 = 0 and (Pt − Ps=t−1), ∀ −∞ < s <

t <∞, independent increments), and let

Λt = ξn, n = Put, (2.5)

then each Λt ∼ Gamma(α, β) and, for t− 1, t ∈ R, {Λt−1} and {Λt} are either identical

or independent reminiscent of Metropolis Markov Chain Monte Carlo (for more details

we refer to Wolpert (2021)). Once again {Λt} have Gamma(α, β) marginal distribution.

The dependence among exceedances is controlled through ρ, with the larger value of ρ

tending to have a stronger level of dependence. It is worth mentioning that all considered

processes have the same correlation function, that is

Corr(Λt,Λt+j) = ρ|j|

We will work with LTs of Λt and Λt+j and defined as

L
(2)
j (s1, s2)|(s1= k1

β
,s2=

k2
β
)
= E

(

e−
Λtk1
β

−
Λt+jk2

β

)

, (2.6)

The LTs corresponding to GLP, WP and TGP are already defined in (1.29),(1.30) and

(1.31), respectively. We need to replace ρ as ρj when working with time series. In

addition, the LT associated with MCPP is given by

L
(2)
j (s1, s2)|(s1= k1

β
,s2=

k2
β
)
=

[

ρjβα

(β + k1 + k2)α
+

(1− ρj)β2α

(β + k1)α(β + k2)α

]

, (2.7)

0 < ρ < 1, for MCPP, respectively.

2.3 Extremogram for tail behaivor

There is a common measure of dependence in extremes called extremogram, which

describes the conditional probability that one random variable will be extreme when

the other is extreme (Davis and Mikosch, 2009; Chavez-Demoulin and Davison, 2012).

For a strictly stationary N
d
0 integer-valued time series (Yt), by following Davis et al.

(2012) the extremogram is defined for two sets A and B bounded away from zero by

following as

ρA,B(h) = lim
k→∞

P (k−1Yh ∈ B|k−1Y0 ∈ A), h = 0, 1, 2, . . . (2.8)
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with the given limit exists. Since A and B are bounded away from zero, the events

k−1Y0 ∈ A and k−1Yh ∈ B are becoming extreme in a sense the probabilities of these

events are converging to zero with k → ∞ (Davis et al., 2012). For the special choice

in the d = 1 case of A = B = (1,∞), the extremogram reduces to the tail dependence

coefficient (χ) between Y0 and Yh that is often used in EVT and quantitative risk

management (McNeil et al., 2015). The χ measure is discussed in detail in section 1.3

of chapter 1. The variables Y0 and Yh are said to be asymptotically independent when

extremal measure χ = 0 and dependent otherwise.

Another standard measure called the extremal index θ ∈ (0, 1) is developed in the

literature to deal with temporal dependence of a stationary process at asymptotically

high levels that quantify the tendency of extreme values to cluster Leadbetter et al.

(1983). Under certain conditions, the extremal index is the reciprocal of the limiting

mean size of clusters of exceedances as the threshold goes to the upper endpoint of the

univariate marginal distribution (Bortot and Gaetan, 2014). For θ = 1, the tail behavior

of the series (Yt) likes to be asymptotically independent and identically distributed (no

clusters of exceedances). Conversely, when θ < 1, the series reveals temporal depen-

dence, even at asymptotically high levels (clusters of exceedances). Further, In the case

of discrete data, Scotto et al. (2018) analyzed the properties of the extremal index by

working with the maximum First-order integer-valued autoregressive (max-INAR(1))

process, and they got closed-form results for the extremal index. They prove that the

max-(INAR(1) process in case of heavy tail holds the conditions defined by Leadbetter

et al. (1983). In the current scenario, we will work with the tail dependence measure.

The model considered in section 2.2 for {Λt} leads to different dependence structures

among Yt. In response, GLP and MCPP induce asymptotic dependence for all 0 < ρ ≤ 1.

The theoretical results of χ corresponding to GLP and MCPP are given [ρj/(1+ρj)]α and

[ρj/2α], respectively. The non-zero χ indicates that the GLP and MCPP models have

asymptotic-dependent behavior. On the other hand, WP and TGP induce asymptotic

Independence in Yt. The theoretical result of the χ measure corresponding to WP and

TGP converges to zero and clearly shows asymptotic independent behavior. Moreover,

WP and GLP for Λt lead to different extremal dependence characteristics, including

asymptotic dependence Furthermore, the TGM and MCPP models also have different

extremal dependence characteristics. When one uses the extremal index θ, the model

use from choosing {∆t} as in (2.2) and (2.5) has extremal index θ < 1, so that,the

exceedances occur in clusters, whereas the model obtained by choosing (2.3) and (2.4)

has θ = 1 and extremes are asymptotically independent. Related proofs can be found in

Bortot and Gaetan (2014). The simulation-based exploratory analysis associated with
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χ supports the above examples provided in section 2.5.

2.4 Pairwise likelihood

Let kt, t = 1, . . . , n is the observed sequence of discrete nature, the likelihood inference

for hierarchical models requires approximating the n-fold integral, that is

Ln(θ) =

∫

[

n
∏

t=1

{(1− exp(−λt/β) exp(−λtkt/β)} f(λ1, . . . , λn;α, β, ρ)
]

dλ1, . . . , dλn

(2.9)

where θ = (α, β, ρ) and f(λ1, . . . , λn;α, β, ρ) is the joint density function of Λ1, . . . ,Λn.

The formula (2.9) may proceed further via the filtering algorithm. In addition to its

drawbacks, the filtering algorithm propagates numerical errors through nested integrals

(Pedeli and Varin, 2020). In light of this, evaluating Ln(θ) is not feasible because of the

complex integral involved in (2.9). The following pairwise log-likelihood (PL), which is

an example of composite likelihood (Lindsay, 1988) replaces the full likelihood in this

situation:

pln(θ) =
n−1
∑

i=1

min(i+∆,n)
∑

j=i+1

logP (ki, kj; θ) (2.10)

where P (ki, kj) is the joint PMF of (Yi, Yj) and 1 ≤ ∆ ≤ n − 1 is the constant which

defines the maximum lag. We will compute the pairwise likelihood for the ∆ order

using all pairs of observations with lag distances. When compared to the ordinary

likelihood, the pairwise likelihood offers a significant reduction in computational cost.

Moreover, when the pairs (ki, kj) are treated as independent, the PL viewed an example

of composite likelihood (Lindsay, 1988).

The useful feature of our proposed models is that the PL evaluation is much easier. To

this end, each PMF in (2.10) can be written in LTs of {Λt} process.It is easy to construct

the joint PMF when comparing the pair with suitable high threshold u, weathering the

pair (ki, kj) lie above or below the u. That is,

• for ki > u, kj > u.

P (ki, kj; θ) = L
(2)
j−i(s1, s2)|(s1= k1

β
,s2=

k2
β
)
− L

(2)
j−i(s1, s2)|(s1= k1+1

β
,s2=

k2
β
)

− L
(2)
j−i(s1, s2)|(s1= k1

β
,s2=

k2+1
β

)
+ L

(2)
j−i(s1, s2)|(s1= k1+1

β
,s2=

k2+1
β

)
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• for ki > u, kj ≤ u.

P (ki, kj; θ) = L(1)(s)|
(s=

k1
β
)
− L(1)(s)|

(s=
k1+1

β
)
− L

(2)
j−i(s1, s2)|(s1= k1

β
,s2=

u+1
β

)

+ L
(2)
j−i(s1, s2)|(s1= k1+1

β
,s2=

u+1
β

)

• for ki ≤ u, kj > u.

P (ki, kj; θ) = L(1)(s)|
(s=

k2
β
)
− L(1)(s)|

(s=
k2+1

β
)
− L

(2)
j−i(s1, s2)|(s1=u+1

β
,s2=

k2
β
)

+ L
(2)
j−i(s1, s2)|(s1=u+1

β
,s2=

k2+1
β

)

• for ki ≤ u, kj ≤ u.

P (ki, kj; θ) = 1 − L(1)(s)|(s=u+1
β

) − L(1)(s)|(s=u+1
β

) + L
(2)
j−i(s1, s2)|(s1=u+1

β
,s2=

u+1
β

)

In each case L
(2)
j−i(., .) is Laplace transform of Λi and Λj, L

(1)(.) is the univariate Laplace

transform of Λ.

Under suitable regularity conditions, the ∆ order maximum PL estimator θ̂mpl is

consistent and asymptotically normal distributed with asymptotic mean and variance,

that is

θ̂n ∼ N(θ,Gn(θ)
−1 = Hn(θ)

−1Jn(θ)Hn(θ)
−1) (2.11)

where

Hn(θ) = E[−∇2pln(θ)] = E

{

−
n−1
∑

i=1

min(i+∆,n)
∑

j=i+1

∇2 logP (ki, kj; θ)

}

and

Jn(θ) = V ar[∇pln(θ)] = V ar

{

n−1
∑

i=1

min(i+∆,n)
∑

j=i+1

∇ logP (ki, kj; θ)

}

The matrices Hn and Jn must be estimated consistently to evaluate standard errors.

One can recover by using estimates Ĥn = Hn(θ̂n) and Ĵn = Jn(θ̂n). As a result, the

direct calculation of Ĵn is difficult as O(n4) number of calculations required As an

alternative, we estimate Hn(θ) by Hn(θ̂) = −∇2pln(θ̂) and used subsampling approach

(Carlstein, 1986) to estimate Jn. The subsampling procedure contains Jn estimates over

S overlapping windows Wj ⊂ {1, . . . , n}, j = 1, . . . , S, of size wj through the following

expression

Jn =
dn
S

S
∑

j=1

∇plWj
(θ̂)∇plWj

(θ̂)
′

wj
,
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where dn = ∆(n − 1) and ∇plWj
represent the pairwise score which is evaluated over

the window Wj. The asymptotic variance can be estimated as Vn = H−1
n JnH

−1
n .

In our setup, selection among four processes is essential because all four lead to

different tail behaviors and extrapolations. For this task, we followed Varin and Vidoni

(2005) and adopted pairwise likelihood information criterion (PLIC) for model selection.

By using PLIC, we determine a model which minimizes

PLIC(θ̂) = − log pln(θ̂) + tr(JnH
−1
n ) (2.12)

where Jn and Hn are estimated in accordance of the above discussion.

2.5 Simulation study

To evaluate the performance of PL estimator for the proposed models, we carried out

a simulation study. A series n = 30, 000 was simulated from each of GLP, WP, TGP,

and MCPP models using the following parameter settings (α = 5, β = 50, ρ = 0.40),

(α = 5, β = 50, ρ = 0.90), (α = 10, β = 50, ρ = 0.40) and (α = 10, β = 50, ρ = 0.95)

with threshold u equal to the 0.90 quantile. The choice of lag ∆ is necessary for PL. An

increase in lag ∆ may increase the computational burden, but findings in the existing

literature indicate that an improvement in estimation precision will not necessarily be

gained (see, for instance, Bortot and Gaetan (2014)). To this end, the GLP, WP,

TGP, and MCPP models were fitted with support of PL using lag ∆ ∈ (1, 2, 3, 5, 7).

To estimate the root mean square errors (RMSE) and bias of PL estimates for each

proposed model, the fitting process is repeated 103 times.

For every value of ∆, we observe that the parameter β is always estimated correctly.

On the other hand, RMSEs for α and ρ are smaller when true value of α is comparatively

small. It is astonishing to announce that the estimation precision for α and ρ parameters

is reasonable for a smaller value of α, irrespective of choice ∆. Simulation-based RMSEs

and bias of the parameters α and ρ are reported in Table 2.1. A minor improvement

is noted when moving from ∆ = 1 to ∆ = 3, while a further increase in ∆ appears to

provide no benefit.

On the other side, it is difficult to generalize a particular pattern when α is higher.

RMSEs for all models seem higher for larger α and smaller ρ. Moreover, it can be ob-

served from Table 2.1 that the higher lag is advantageous only in some cases. Therefore,

∆ = 3 is considered a more reasonable choice, which provides statistical and computa-

tional efficiency for the proposed models across each configuration of the parameters.
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Table 2.1: Root mean squared error and bias for α and ρ found from simulations of the models based on GLP, WP, TGP, and MCPP,
with n=30,000,(u = 0.90) quantile and under different parameter settings.

α ρ

lag True value GLP WP TGP MCPP True value GLP WP TGP MCPP
1 5 0.27 0.30 0.28 0.28 0.40 0.05 0.06 0.06 0.05

(0.002) (0.02) (0.02) (0.02) (0.00) (0.00) (-0.003) (0.00)
5 0.32 0.28 0.30 0.38 0.90 0.06 0.04 0.04 0.06

(0.02) (0.01) (0.02) (0.03) (-0.002) (-0.001) (0.00) (-0.002)
10 0.97 0.99 0.97 0.99 0.40 0.10 0.10 0.10 0.10

(0.09) (0.08) (0.11) (0.12) (0.007) (-0.001) (-0.001) (0.003)
10 1.01 0.97 0.98 1.09 0.95 0.09 0.07 0.07 0.09

(0.04) (0.10) (0.02) (0.02) (-0.03) (-0.02) (-0.02) (-0.03)
3 5 0.27 0.25 0.28 0.28 0.40 0.04 0.05 0.05 0.04

(0.006) (0.02) (0.02) (0.02) (-0.000) (-0.001) (-0.005) (-0.002)
5 0.32 0.28 0.30 0.38 0.90 0.03 0.02 0.02 0.03

(0.02) (0.001) (0.02) (0.03) (-0.002) (-0.002) (-0.001) (-0.001)
10 0.97 0.99 0.97 0.99 0.40 0.07 0.08 0.08 0.08

(0.09) (0.08) (0.11) (0.12) (0.001) (-0.007) (-0.001) (-0.002)
10 1.04 0.99 1.02 1.12 0.95 0.04 0.03 0.03 0.04

(0.10) (0.15) (0.08) (0.08) (-0.005) (-0.002) (-0.002) (-0.005)
7 5 0.27 0.25 0.26 0.28 0.40 0.04 0.05 0.04 0.04

(0.01) (0.007) (0.01) (0.01) (-0.001) (-0.002) (-0.005) (0.00)
5 0.32 0.28 0.30 0.38 0.90 0.01 0.02 0.01 0.01

(0.02) (-0.003) (0.01) (0.03) (-0.001) (-0.002) (-0.002) (-0.001)
10 0.97 0.99 0.97 1.00 0.40 0.07 0.08 0.08 0.07

(0.09) (0.09) (0.11) (0.12) (0.000) (-0.008) (-0.001) (-0.003)
10 1.02 1.00 1.03 1.14 0.95 0.02 0.02 0.02 0.02

(0.11) (0.16) (0.10) (0.11) (-0.001) (-0.001) (-0.001) (-0.001)



48 Section 2.5 - Simulation study

−1.0

−0.5

0.0

0.5

1.0

0.00 0.25 0.50 0.75 1.00

Quantile

χ
(u

)

Chi Bar plot of GLP

−1.0

−0.5

0.0

0.5

1.0

0.00 0.25 0.50 0.75 1.00

Quantile

χ
(u

)

Chi plot of GLP

(a) Gaver and Lewis process

−1.0

−0.5

0.0

0.5

1.0

0.00 0.25 0.50 0.75 1.00

Quantile

χ
(u

)

Chi Bar plot of WP

−1.0

−0.5

0.0

0.5

1.0

0.00 0.25 0.50 0.75 1.00

Quantile

χ
(u

)

Chi plot of WP

(b) Warren process

−1.0

−0.5

0.0

0.5

1.0

0.00 0.25 0.50 0.75 1.00

Quantile

χ
(u

)

Chi Bar plot of TGP

−1.0

−0.5

0.0

0.5

1.0

0.00 0.25 0.50 0.75 1.00

Quantile

χ
(u

)

Chi plot of TGP

(c) Tinned Gamma process
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(d) Markov change-point process

Figure 2.1: The dependence measure χ(u) and χ̄(u) for simulated data from each of
(a) Gaver and Lewis process; (b) Warren process; (c) Thinned gamma process, and
(d) Markov change-point process. Lag ∆ = 3 is used here.

To analyze the behavior of extremal dependence of our proposed models given in

section 2.2. Empirical estimates of χ(u) and χ̄(u) are calculated for the data, which

is simulated from each of GLP, WP, TGP, and MCPP with parameters configuration

as (α = 1, β = 50, ρ = 0.90). Estimates can be plotted to determine the limiting

behavior as a function of marginal quantiles. The marginal quantile is linked with the

corresponding threshold value from the data. Moreover, a graphical representation of

dependence measures could facilitate discerning between asymptotically dependent and

asymptotically independent relationships. For an illustration, the empirical estimates

plots of χ̄(u) and χ(u) with 95% confidence intervals for the simulated data from our

proposed models are displayed in Figure 2.1. It can be observed that the χ(u) converges

to 0.49 and 0.32 for GLP and MCPP, corresponding to a higher threshold selection

quantile. In fact, these values indicate that the observations generated from GLP and

MCPP occur in clusters above sufficiently high thresholds. On the other hand, χ(u)
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Figure 2.2: Monthly based number of police reports on narcotics trafficking in
Sydney, Australia, along with sample extremogram.

converges to zero value for WP and TGP when using the exceedances above a sufficiently

high threshold. The measure χ(u) of TGP converges to zero slowly compared to WP.

It is evident that WP and TGP have asymptotic independent behavior at the extreme.

Thus, the simulation study supports our theoretical results of section 2.3.

2.6 Real data applications

This section deals with the real data applications of our proposed model. We apply

our model to two real discrete time series as described subsequently.

In the first application, we apply GLP, WP, TGP, and MCPP models on the data of

monthly police reports on narcotics trafficking in Sydney, Australia. The length of the

series is 327 months, and it was recorded from January 1995 to March 2022. This data is

part of the police reports of the New South Wales data set. The data is freely available

at http://www.bocsar.nsw.gov.au/. Furthermore, Gorgi (2020) used this data recorded

from January 1995 to December 2016 in terms of empirical applications of beta-negative

binomial auto-regression modeling.

Figure 2.2 depicts the series time series and extremogram plots. It can be seen that

the series have extreme observations. Especially high numbers of narcotics trafficking

reports were recorded in August 2000, March 2008, July 2010, May 2015, May 2016,

February 2019, and May 2020. The bird’s-eye view of Figure 2.2 expresses that the re-

ports series {Yt} is stationary. For clarity, we test the stationary assumption concerning

a monotonic trend in time using the procedure explained by Naghettini (2017, chp 7).

The estimated test statistics is T̂ = −0.7458. At the significance level α = 0.05, the

critical value of the test statistic is t0.975,325 = 0.2279. Therefore, the decision is not to

reject the null hypothesis that observed sample data are stationary. To this end, our
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proposed model seems appropriate for describing the dependence structure of the series

over the tail.

To fit GLP, WP, TGP, and MCPP models, we set threshold u = 13, correspond-

ing to 0.80 order quantile. Each model was fitted to the time series {Yt} (i.e., the

monthly number of police reports on narcotics trafficking in Sydney) using PL with lag

3. Estimated parameters and standard errors and PLIC are reported in Table 2.2.

Table 2.2: Estimates of the model parameter with their (standard errors) under
GLP, WP, TGP, and MCP for Police reports on narcotics trafficking using PL with
∆ = 3.

Model β α ρ PLIC

GLP 40.99 (9.36) 5.64 (1.06) 0.80 (0.17) -1267.20

WP 40.36 (9.11) 5.57 (1.03) 0.84 (0.13) -1301.72

TGP 40.43 (9.15) 5.58 (1.04) 0.84 (0.13) -1296.95

MCPP 40.59 (9.33) 5.59 (1.06) 0.81 (0.16) -1276.23

In the second application, we also apply all four models to a number of tick changes

by minutes of the exchange rate of euro to British pound (EUR/GBP) on December

12th, 2019. There were general elections in the UK on this day. Accordingly, we analyze

the ticks between 9.00 a.m. to 9.00 p.m. (Greenwich mean time). Prices with high

frequency from foreign exchange markets are used to construct the series. According

to Gorgi (2020), the closing price of EUR/GBP is taken into account at every minute,

and the number of tick changes is calculated by dividing the absolute price variation

by the tick size 10−5. The series has 720 observations, corresponding to the number

of minutes in 12 hours sample. The data is freely available and can be downloaded

from the website http://www.histdata.com/. These time series were also used by Gorgi

(2020) for empirical applications of beta-negative binomial auto-regression models.

Figure 2.3 display the time series plot and empirical extremogram of the series.

Several extreme observations appear in the series and significant autocorrelation, as in-

dicated by the autocorrelation functions. In light of these features, the proposed models

are well suited to model dependence at the extreme level using the heavy tail bivariate

distribution with DGPD marginals. Again using PL with ∆ = 4, all four models are

fitted to exceedances above the threshold u = 29, which is fixed corresponding to the

0.90 order quantile of the series. Table 2.3 reports the results of the second application

of our proposed models to the real data.

Overall, parameter estimates based on the numbers of narcotics trafficking reports

series are similar across all four models. All four models show similarities in parameters
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Figure 2.3: Number of tick changes by a minute of EUR/GBP sterling exchange
rate series with sample extremogram.

in the second application as well. Notice that parameter ρ somehow deviates for WP

and TGP leading to larger estimates. In applying our proposal, ρ is only the specific

parameter linked entirely to the dependence structure. Compared to GLP and MCPP,

WP and TGP induce a weaker extremal dependence. Therefore, the WP and TGP

compensate for the tendency by increasing the estimate ρ when fitting at finite thresh-

olds. WP and TGP have smaller PLIC, which tend to have asymptotic independence at

the extreme in both applications. Employing this, both the monthly number of police

reports on narcotics trafficking and the number of tick changes by minutes, the exchange

rate of EUR/GBP may reveal temporal independence at the extreme level.

Table 2.3: Estimates of the model parameter under GLP, WP, TGP and MCP for
a number of tick changes by a minute of EUR/GBP sterling exchange rate series
(u = 29) at ∆ = 4.

Model β α ρ PLIC

GLP 45.25 (7.10) 4.79 (0.57) 0.85 (0.09) 1821.03

WP 44.86 (6.95) 4.76 (0.56) 0.90 (0.06) 1696.53

TGP 44.89 (6.99) 4.77 (0.56) 0.89 (0.07) 1715.64

MCPP 44.81 (7.09) 4.76 (0.57) 0.85 (0.09) 1804.58

In addition, both observed series are compared with all four respective fitted processes

by examining their sub-asymptotic dependence properties. Thus, we employ tail depen-

dence measures developed in section 2.3, which relies on P (Yt+1 > k∗|Yt > k∗). Using

conditional probability, we summarize the relationship between successive exceedances

of k∗ (Coles (2001); Bortot and Gaetan (2014)), where k∗ represents the varying level

over the fixed threshold u. The variables Yt and Yt+1 are said to be asymptotically
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Figure 2.4: Empirical and fitted models plots of χ = P (Yt+1 > k∗|Yt > k∗) versus
k∗ at lag 4 of two real-time series(a) monthly number of police reports on narcotics
trafficking in Sydney, Australia, and (b) number of tick changes by a minute of
EUR/GBP from 09:00 am to 09:00 pm on December 12th, 2019. The dashed lines in
both figures give 0.95 bootstrap confidence bands.

independent when χ = P (Yt+1 > k∗|Yt > k∗) = 0 as k∗ → ∞; otherwise, they are

asymptotically dependent.

Figure 2.4 depicts empirical and fitted estimates of χ = Pr(Yt+1 > k∗|Yt > k∗) as

function of k∗ > u corresponding to both observed series. The estimates corresponding

to fitted GLP, WP, TGP, and MCPP are obtained through the definition of χ in terms

of LTs using the estimated parameter values of the models. It can be seen from Fig-

ure 2.4(a, b) that the empirical estimates in both cases converge to 0, indicating that

the consecutive observations over of finite threshold are asymptotically independent.

Moreover, empirical and model-based curves mix well within an observed range of both

applications. As we have seen in section 2.3 theoretically, the χ measure based on con-

ditional probability converges to zero for WP and TGP and to a positive constant for

GLP and MCPP. Hence, the model-based estimates of WP and TGP converge to zero

when k∗ → ∞. On the other hand, model-based estimates of GLP and MCPP tend to

have positive constants.

To assess the model adequacy, we use Kendall’s tau rank correlation coefficient (τ),

a non-parametric measure of association between two variables, which measures the

similarity of the rankings of the data points in two observed samples. The τ coefficient

is defined as

τ =
2(nc − nd)

n(n− 1)
(2.13)

where n represents the sample size, nc is the number of concordant pairs and nd is the
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Figure 2.5: Bootstrap boxplots of the estimated Kendall’s tau coefficient centered
at observed Kendall’s tau coefficient using (a) police reports on narcotics trafficking
data, (b) number of tick changes by minutes of the exchange rate of euro to British
pound (EUR/GBP) data.

number of disconcordant pairs. In the case of ties observations in observed samples, the

formula given in (2.13) reflects as

τ =
2(nc − nd)

n(n− 1)
− Tx or τ =

2(nc − nd)

n(n− 1)
− Ty (2.14)

where Tx =
∑

t(t − 1), t is the number of tied observations in each group of the ties

in the first quantity (say X variable), while Ty =
∑

t(t − 1), t is the number of tied

observations in each group of the ties in the second quantity (say Y variable)

Figure 2.5 shows boxplots of the bootstrap estimates of the estimated τ̂est coefficient,

the τ̂est is obtained from the simulated data by using the estimated parameters of each

model from Table 2.2 and Table 2.3. The length of the simulation was similar to the

observed data examples. The red lines in Figure 2.5 (a, b) represent the observed

τobs coefficient, which is obtained from the observed data of considered examples. By

looking at the boxplots in Figure 2.5(a), corresponding to the police reports on narcotics

trafficking, we see that boxplot associated with TGP is close to τobs suggesting an

unbiased estimation of the model, while the boxplot of WP is closer to τobs suggesting a

smaller bias compared to GLP and MCPP. By looking at the boxplots in Figure 2.5(b),

corresponding to the number of tick changes by minutes of the exchange rate of euro to

British pound (EUR/GBP), the boxplots associated with WP and TGP are close to τobs

indicating the unbiased estimation of the models. In contrast, the boxplots deviating
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from τobs show some biasedness in model estimation. As a result, the WP and TGP

models are more adequate and reliable to use for considered examples.

2.7 Final remarks

Chapter 2 is designed to propose a class of models for discrete time series extremes.

We developed a discrete extreme value model that uses the latent process framework to

obtain a flexible dependence structure. Our construction has the benefit of preserving

the DGPD with a positive shape parameter for the marginals, which is reliable for mod-

eling exceedances in discrete extreme value theory. Dependence was induced through

latent Markov chains with a hierarchical setting discussed by Bortot and Gaetan (2014);

Wolpert (2021). A remarkable feature of the developed models is that as you move fur-

ther into the right tail of the marginal distribution, you see a substantial variation in the

temporal dependence structure. To this end, the theoretical constructions of section 2.3

demonstrated that both asymptotic dependence and asymptotic independence of dis-

crete extremes are possibly achievable with an appropriate choice of the latent process

Λt.

Interestingly, the models proposed for discrete extremes have proven to be quite

adaptable in apprehending different kinds of extremal dependence in both the simulation

studies and the real applications. However, both the monthly number of police reports

on narcotics trafficking and the number of tick changes by a minute of the EUR/GBP

series have shown asymptotic independent behavior at the extreme. In the case of non-

stationary marginals, it is no longer possible for a stationary GPD or DGPD model to

adequately capture the tail behavior. To capture non-stationary behavior in univariate

extremes, the GAM has been proposed as a more flexible approach by Chavez-Demoulin

and Davison (2005); Ranjbar et al. (2022). The GAM uses smooth functions in order

to dependence due to covariates and is less rigid than the standard regression model.

The proposed framework can be modified by replacing the latent Markov chain with

trawl processes in the present scenario (Noven et al., 2018). Since extreme values are,

by definition, rare, utilizing information from surrounding nearby geographical locations

could lead to a substantial increase in power for capturing dependence. Although this

would present a computational difficulty, it is an interesting subject for further research.



Chapter 3

Models for the entire range of count

data with extreme observations

Overview: Chapter 3

⇝ The statistical modeling of integer-valued extremes has received less atten-

tion than their continuous counterparts in the EVT literature. One approach to

moving from continuous to discrete extremes is to model threshold exceedances

of integer random variables by the discrete version of the generalized Pareto dis-

tribution. Still, the optimal threshold selection that defines exceedances remains

a problematic issue. Moreover, within a regression framework, the treatment of

the many data points (those below the chosen threshold) is either ignored or de-

coupled from extremes. Considering these issues, we extend the idea of using a

smooth transition between the two tails (lower and upper) to force large and small

discrete extreme values to comply with EVT. In the case of zero inflation, we also

develop models with an additional parameter representing the proportion of zero

values in the data. To incorporate covariates, we extend the Generalized Additive

Models (GAM) framework to discrete extreme responses. In the GAM forms,

the parameters of our proposed models are quantified as a function of covariates.

The maximum likelihood estimation procedure is implemented for estimation pur-

poses. With the advantage of bypassing the threshold selection step, our findings

indicate that the proposed models are more flexible and robust than competing

models (i.e., discrete generalized Pareto distribution and Poisson distribution).

The chapter is organized as follows. Section 3.1 discusses the study background,

spreads light on existing literature, and elaborates the gap of the study. Section

3.2 presented the discrete extended versions of GPD (DEGPD) and zero-inflated

55
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versions of DEGPD (ZIDEGPD) along with a simple sampling scheme. The GAM

forms procedure related to DEGPD and ZIDEGPD is given in Section 3.3. Section

3.4 deals with the construction of bivariate DEGPD. To assess the performance of

the proposed models, Section 3.5 provides the results of the conducted extensive

simulation study. In addition, simulation study results associated with bivariate

DEGPD are provided in 3.6. Section 3.7 discusses applications of DEGPD and

ZIDEGPD to the number of upheld complaints data of insurance companies.

Real application of GAM form models to avalanches data with environmental

covariates is also given in the same section. Bivariate DEGPD applied also applied

to avalances data, and findings are reported in 3.8 Finally, Section 3.9 concludes

with final remarks and a discussion.

3.1 Introduction

EVT originating from the innovative work of Fisher and Tippett (1928) offers a facility

of stochastic modeling related to very high and very low-frequency events (e.g., extreme

temperature, heavy rainfall intensities, heavy floods, and extreme winds, etc.). For ex-

ample, from the last three decades, Coles (2001), Beirlant et al. (2004) and de Hann

and Ferreira (2006) discussed regularly adapted extreme value models to measure uncer-

tainty for continuous extremes events. More precisely, the distribution of exceedances

(i.e., the amount of data that appears over a given high threshold) is often approximated

by the so-called GPD defined by its CDF in (1.5).

Optimal threshold selection in GPD application remains an arguable and elusive

task (see, e.g. Dupuis, 1999; Scarrott and MacDonald, 2012). Numerous studies (for

instance, Embrechts et al., 1999; Choulakian and Stephens, 2001; Davison and Smith,

1990; Katz et al., 2002; Boutsikas and Koutras, 2002) have established how the GPD

can be fitted to continuous extreme events. This is vindicated by Pickands’ theorem

(Pickands, 1975), which states that, for most random variables, the distribution of the

exceedances converges to a GPD as the threshold increases to the right endpoint. One

of the major disadvantages of GPD is that it only models those observations which

occur over a certain high threshold. This imposes an artificial dichotomy in the data

(i.e., observations are either below or above the threshold) and the question of finding

the optimal threshold remains complex for practitioners. In the continuous extreme

value setting, many authors have attempted to model an entire range of data without
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threshold selection. For example, Frigessi et al. (2002) proposed a dynamically weighted

mixture model by combining light-tailed density and heavy-tailed density (i.e., GPD)

through weight function. The dynamically weighted mixture approach can be valuable

in unsupervised tail estimation, especially in heavy-tailed situations and for small per-

centiles. Frigessi’s model has many advantages, but it has a drawback. For instance,

the model has six parameters, and inference is not a straightforward task ( see Frigessi

et al., 2002, for more details). Carreau and Bengio (2009) proposed a semiparametric

model called the ”hybrid Pareto” model that stitches a Gaussian distribution with a

heavy-tailed GPD. According to Carreau and Bengio (2009), the hybrid Pareto model

offers efficient estimates of the tail of the distributions and converges faster in terms

of log-likelihood than existing GPD. They used hybrid Pareto models in a regression

context for statistical modeling of rainfall-runoff. MacDonald et al. (2011) combined a

non-parametric kernel density estimator for the bulk of the distribution with a heavy-

tailed GPD. One of the drawbacks of these approaches is that it still needs to select a

suitable threshold.

To keep a low number of parameters, avoid mixture modeling, and simplify inference,

Naveau et al. (2016) proposed a general procedure to extend the GPD class. This

construction is based on the integral transform idea to simulate GPD random draws,

that is F−1
σ,ξ (U), where U ∼ U(0, 1) represents an uniformly distributed random variable

on (0, 1) and F−1
σ,ξ denotes the inverse of the CDF (1.5). This leads to the class of random

variables stochastically defined as

F−1
σ,ξ {G−1(U)}, (3.1)

where G is a CDF on [0, 1] and U ∼ U(0, 1). The key problem is to find a class for

G that preserves the upper tail behavior with shape parameter ξ and also controls the

lower tail behavior. Naveau et al. (2016) defined restrictions for validity of G families.

For instance, the tail of G denoted by Ḡ = 1−G has to satisfy

lim
u→0

Ḡ(1− u)

u
= a, for some finite a > 0 (upper tail behavior),

lim
u→0

G(u)

uκ
= c, for some finite c > 0 (lower tail behavior). (3.2)

Four examples for parametric family G were studied in Naveau et al. (2016). By con-

struction, this approach bypasses the elusive choice of a fixed and optimal threshold.

Inference can be performed with classical methods such as maximum likelihood and

probability weighted moments (see, e.g. Le Gall et al., 2022; Furrer and Naveau, 2007).
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Semi-parametric modeling based on this class has been studied by Tencaliec et al. (2019)

and extensions to handle covariates have been proposed by Carrer and Gaetan (2022)

and de Carvalho et al. (2022). Furthermore, Gamet and Jalbert (2022) modeled spe-

cific of tail estimation based on the same construction. Still, model (3.1) has to be yet

tailored to handle discrete-valued random variables.

The subsequent development deals with the discrete extreme models. A PMF of

discrete distribution is obtained in (1.6) by discretizing the CDF defined by (1.5). The

distribution defined in (1.6) is called DGPD. Like continuous GPD, the DGPD is well

approximated to discrete excesses over a high threshold (Hitz et al., 2017). Again, an

appropriate threshold selection procedure is required that can offer an optimal threshold

for fitting DGPD. Also, a few questions arise the DGPD models the data above the

threshold, but how to model the observations below the threshold or how to model the

entire range of count data having extreme observations.

One possibility is using threshold spliced mixture representation to model the discrete

observations. Again, the optimal threshold is needed for fitting the threshold spliced

mixture model. The detail is provided in section 3.2.1. By keeping these arguments in

mind, we want to develop a modeling framework that can be used to model the entire

range of discrete extreme data without fixing the threshold. We take advantage of the

constructions given in Naveau et al. (2016) to introduce such a modeling framework.

Thus, DEGPD is proposed here by discretizing the CDF of continuous extended gen-

eralized Pareto distributions via equation (1.6). Discrete nature extreme events may

contain a lot of zero values. For instance, the insurance complaints data or avalanches

data may include many zero values. This data type is generally called zero-inflated (ZI),

requiring specialized statistical methods for analysis. Therefore, we have introduced a

zero-inflated version of DEGPD (ZIDEGPD). To model excess zeros, Lambert (1992)

introduced a two-component mixture model, where one component is a point mass at

zero and the other component is an assumed parametric count distribution. Lambert’s

specification is an example of a distributional regression model where “distributional”

should emphasize that the conditional distribution of the count data is modeled in terms

of covariates rather than the the mean.

So far, the main focus of the literature has been on the relationship between the

mean, the variance with the covariates (Rigby and Stasinopoulos, 2005), less attention

has been paid to the tail of the count distribution. Finally, we aim to correctly model

excess zeros and the heavy tail of the distribution using DEGPD and ZIDEGPD GAM

forms models.
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3.2 Discrete extremes modeling

3.2.1 The discrete Gamma spliced threshold DGPD model

As we have seen in existing literature, the discrete and continuous GPD is well approx-

imated to the data existing over a specified threshold. In the continuous extreme value

framework, many authors have tried to model the bulk part with some specific distri-

bution (for example, Gamma, Normal, Log-normal, Weibull, Beta distribution, etc.).

The arrangement, where data above and below an unknown threshold is drawn from

the “bulk” and “tail” distributions, respectively, meets into a family of models called

spliced threshold models. The distinctive motivation for the model is the privilege that

two underlying processes originally generate the data above and below the threshold.

For a thorough review of the general spliced threshold model in the continuous domain,

see, for example, Dey and Yan (2016).

Let Fm(y|θB) be the CDF of gamma distribution which corresponds to the bulk

model, and Fm(y|θT ) is CDF of GPD corresponds to tail model, where θB and θT

indicates the parameter vectors of bulk and tail models, respectively. The CDF of the

bulk and tail model spliced at the threshold is given by

Hm(y) =







(1− ϕ)Fm(y|θB)
Fm(u|θB)

for y ≤ u

1− ϕ+ ϕFm(y|θT , u) for y > u
(3.3)

with corresponding probability density function

hm(x) =







(1− ϕ) fm(x|θB)
Fm(u|θB)

for x ≤ u

1− ϕ+ ϕfm(x|θT , u) for x > u
(3.4)

When we have discrete extreme data that characteristically exhibits several ties on

the lower tail. That’s why we need to amend the model developed before for continuous

paradigm to discrete form in order to account for the censored data. Let Y ∼ Γ(α, β),

we write the PMF of discrete gamma distribution (Chakraborty and Chakravarty, 2012)

as

Pg(Y = k) =
1

Γ(α)
[γ(α, β(k + 1))− γ(α, βk] (3.5)

where α > 0, β > 0, Y ∈ N0 and γ(α, βk) is the lower in complete gamma function

γ(α, βk) =

∫ βk

0

tα−1e−tdt (3.6)
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Figure 3.1: Probability mass function and the cumulative distribution function of
discrete gamma GP spliced at threshold model corresponding to θB = (α = 5, β =
0.25), u=25, θT = (σ = 15, ξ = 0, 0.1, 0.3, 0.5)

On the other hand, If Y ∼ GPD(u, σ, ξ),the PMF of DGPD is written by using (1.6) as

Pdp(Y = k) =

(

1 +
ξ(k − u)

σ

)−1/ξ

−
(

1 +
ξ(k + 1− u)

σ

)−1/ξ

(3.7)

for (−∞ < u, ξ < ∞), σ ∈ (0,∞) and k ∈ N0. The DGPD support k ≥ u when ξ ≥ 0

and u ≤ k ≤ u − σ
ξ
when ξ < 0. Here, we observe ξ > 0. Hence, the discrete gamma

generalized Pareto distribution (DGGPD) spliced at the threshold model is given by

Pdggp(Y = k) =







(1− ϕ)Pg(Y=k|θB)

F (u−d|θB)
for k ≤ u− d

ϕPdp(Y = k|θT , u) for k ≥ u
(3.8)

where Pg(X = k|θB) ∼ discrete Gamma(α, β), Pdp(X = k|θT ) ∼ discrete GPD,

d = min(k), which indicates that we model integer data and ϕ is the proportion of

observations over threshold u. For more details about mixture models and their impli-

cations, see, for instance, Hu and Scarrott (2018).

Figure 3.1 shows the bulk and tail parts behavior in terms of PMF and CDF of DG-

GPD spliced at the threshold. Also, for fitting this mixture model, a suitable threshold

is needed. However, a new framework to model a whole range of data has been developed

to overcome this deficiency by avoiding the threshold selection issue.
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3.2.2 Discrete extended generalized Pareto distribution

We start by considering the CDF G {F (.; σ, ξ)} of EGPD where G meets the conditions

(3.2). To model non-negative integer data, we discretize the CDF by

P (Y = k) = G {F (k + 1; σ, ξ)} −G {F (k; σ, ξ)} , k ∈ N0 (3.9)

The distribution defined by (3.9) will be called discrete extended generalized Pareto

distribution (DEGPD). The explicit formula of the CDF of DEGPD is developed as

P (Y ≤ k) = G {F (k + 1; σ, ξ)} (3.10)

and the quantile function is derived as

qp =







⌈σ
ξ

[

{1−G−1(p)}−ξ − 1
]

⌉ − 1, if ξ > 0

⌈−σ log {1−G−1(p)}⌉ − 1, if ξ = 0
(3.11)

with 0 < p < 1.

For G, we use four parametric expressions G(·, ψ), already proposed in Naveau et al.

(2016), namely

i. G(u;ψ) = uκ, ψ = κ > 0;

ii. G(u;ψ) = 1 − Dδ{(1 − u)δ}, ψ = δ > 0 where Dδ is the CDF of a Beta random

variable with parameters 1/δ and 2, that is:

Dδ(u) =
1 + δ

δ
u1/δ

(

1− u

1 + δ

)

iii. G(u;ψ) = [1−Dδ{(1− u)δ}]κ/2, ψ = (δ, κ) with δ > 0 and κ > 0;

iv. G(u;ψ) = puκ1 + (1− p)uκ2 , ψ = (p, κ1, κ2) with κ2 ≥ κ1 > 0 and p ∈ (0, 1).

The parametric family (i) leads to PMF of DEGPD with three parameters (κ, σ and

ξ): κ deals the shape of the lower tail, σ is a scale parameter, and ξ controls the rate of

upper tail decay. Thus, Figure 3.2(a) shows the behavior of PMF of DEGPD with fixed

scale and upper tail shape parameter (i.e., σ = 1 and ξ = 0.5) and with different values

of lower tail behaviors (κ=1, 2, 5, 10). Similar to the EGPD framework of Naveau et al.

(2016), the DGPD is recovered when κ = 1, and additional flexibility for low values is

attained by varying κ. For instance, more flexibility on the lower tail can be observed

without losing upper tail behavior in Figure 3.2(a) when putting the value of κ = 10.
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Figure 3.2: (a) Probability mass function corresponding to model in (3.9) type (i)
for σ = 1, ξ = 0.5 and shape parameter for lower tail κ = 1, 2, 5, 10; (b) Probability
mass function corresponding to model (3.9) combined with G(u;ψ) = 1−Dδ(1− u)δ

for σ = 1, ξ = 0.5 and δ = ∞, 5, 3, 1; (c) Probability mass function corresponding
to model (3.9) combined with G(u;ψ) = [1 − Dδ(1 − u)δ]κ/2 for σ = 1, ξ = 0.5,
δ = 1, 2 and κ = 1, 2, 5, and (d) Probability mass function corresponding to model in
(3.9) combined with G(u;ψ) = puκ1 − (1 − p)uκ2 for σ = 1, ξ = 0.2, κ1 = 1, 2 and
κ2 = 1, 2, 5, 10.

The parametric family (iv) is the mixture of power laws: κ1 identifies the shape of

the lower tail, while κ2 modifies the shape of the central part of the distribution and σ

and ξ are scale and upper tail parameters, respectively. It can be observed from Figure

3.2(d) that the DEGPD related to G(u;ψ) = puκ1 +(1−p)uκ2 is also showing flexibility

with p = 0.5, σ = 1, ξ = 0.5, κ1 = 1, 2, different values of κ2.

The parametric family (ii) is another interesting choice for constructing DEGPD.
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This choice is fairly more complex than the previous two. Figure 3.2(b), illustrates the

behavior of PMF with different values of δ. the EGPD connected with this G family

converges to GPD when δ increases to infinity. Moreover, conditions in (3.2) are satisfied

with δ = 2 (see Naveau et al., 2016, for more details). In discrete settings, the DEGPD

corresponding G(u;ψ) = 1−Dδ{(1−u)δ} also becomes very closer to the DGPD density

when δ increases to infinity.

In general, the parameter δ describes the central part of the distribution. Thus, this

parameter relatively improves the modeling flexibility for the central part of the distri-

bution. The parameter δ is sometimes interpreted as a ”threshold tuning parameter”.

One of the drawbacks of DEGPD (ii) is that it models only the central and upper part

of the distribution. On the other hand, the lower tail behavior could not be estimated

directly. This drawback is addressed by implementing another parametric family.

The parametric family (iii) supports the lower tail of the distribution with the κ > 0

parameter. Interestingly, this family also tends to the DEGPD with parameters (κ, δ, σ

and ξ). The (κ, δ and ξ) represents the lower, central, and upper parts of the distribution,

respectively, and σ is a scale parameter as usual. In particular, Figure 3.2(c) showing the

behavior of PMF of DEGPD linked with G(u;ψ) =
[

1−Dδ{(1− u)δ}
]κ/2

at different

settings of the parameters.

Overall, all types of DEGPD discussed above with a combination of different para-

metric families are more flexible for modeling discrete extremes except the DEGPD

(ii). In fact, the DEGPD (ii) corresponding to the parametric family (ii) has limited

flexibility on the lower tail.

In addition, a large number of zeros can be found in various practical application

data sets. In that case, the usual statistical models with a flexible lower tail cannot

be adjusted for the excessive zeros, which complicates a precise statistical analysis. An

investigation of the origins of these zeros is essential. The subsequent section will explain

the zero inflation modeling framework.

3.2.3 Zero-inflated discrete extended generalized Pareto dis-

tribution

We follow Lambert (1992) and we suppose that Z is observed with an excessive num-

ber of zeros relative to those observed under the DEGPD, the zero-inflated distribution

(ZIDEGPD) is defined in a straightforward way as:

P (Z = m) =

{

π + (1− π)G {F (1, σ, ξ)} m = 0

(1− π) [G {F (m+ 1, σ, ξ)} −G {F (m, σ, ξ)}] m = 1, 2, . . .
(3.12)
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where 0 ≤ π ≤ 1 and the remaining parameters would be the same as DEGPD. It turns

out that the CDF of ZIDEGPD is

P (Z ≤ m) = π + (1− π)G {F (m+ 1, σ, ξ)} , m ∈ N0, (3.13)

and the quantile function is

qp∗ =







⌈σ
ξ

[

{1−G−1(p∗)}−ξ − 1
]

⌉ − 1, ξ > 0

⌈−σ log {1−G−1(p∗)}⌉ − 1, ξ = 0
(3.14)

with 0 < p∗ = (p − π)/(1 − π) < 1. Again, the above expressions are simple and

straightforward with the existing four G families. The flexibility of the proposed ex-

tended versions is observed here through PMF with different lower tail parameters.

The parametric family (i) also leads to PMF of ZIDEGPD given in (3.12) with four

parameters (π, κ, σ and ξ): π is the proportion of zero observations in the sample that

is inflating the data distribution and the interpretation of other parameters is same as

DEGPD. Thus, Figure 3.3(a) shows the behavior of PMF of ZIDEGPD with fixed zero-

inflation, scale, and upper tail shape parameters (i.e., π = 0.20, σ = 1 and ξ = 0.2) and

with different values of lower tail behaviors (κ = 1, 2, 5, 10). The zero-inflated DGPD is

recovered when κ = 1 with more proportion of zero values. Additional flexibility for low

values with the proportion of zero inflation is attained by varying κ. For instance, more

flexibility on the lower tail with zero inflation can be observed without losing upper

tail behavior in Figure 3.3(a) when putting the value of κ = 10 or 20. ZI Poisson and

ZIDEGPD densities behave similarly for small and moderate values but differ at the

upper tail.

The ZIDEGPD corresponding to parametric family (iv) has six parameters (π, p, κ1, κ2, σ

and ξ) by following the restriction (κ1 ≤ κ2). It can be noticed from Figure 3.3(d) that

the ZIDEGPD based on G(u;ψ) = puκ1 + (1− p)uκ2 is also a flexible and produce zero

inflation when using π = 0.2, p = 0.5, σ = 1, ξ = 0.2, κ1 = 1, 2, different values of κ2.

Again, the density of ZI Poisson and ZIDEGPD show similar behavior for small and

moderate values; it may change at the upper tail due to the heavy tail of ZIDEGPD.

The ZIDEGPD proposed by using G(u;ψ) = 1 − Dδ{(1 − u)δ}) have four parameters

(π, δ, σ and ξ) . Figure 3.3(b) describes the behaviour of PMF with fixed parameters

(i.e., π = 0.2, σ = 1 and ξ = 0.2) and with different values of δ. The ZIDEGPD follows

ZIDGPD when δ increases to infinity. It can be observed that the number of zeros

increases when δ increases. This behaves like ZIP at the lower tail and a central part

when the mean of ZIP is small. The disadvantage of this kind of ZIDEGPD is that
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Figure 3.3: (a) Probability mass function corresponding to model in (3.12) with
G(u;ψ) = uκ having π = 0.2, σ = 1, ξ = 0.2 and shape parameter for lower tail κ =
1, 5, 10, 20; (b) Probability mass function corresponding to model in (3.12) combined
with G(u;ψ) = 1 − Dδ(1 − u)δ for π = 0.2, σ = 1, ξ = 0.2 and δ = 1, 3, 5,∞; (c)
Probability mass function corresponding to model in (3.12) combined with G(u;ψ) =
[1−Dδ(1− u)δ]κ/2 for π = 0.2, σ = 1, ξ = 0.2, δ = 1, 2, 5 and κ = 1, 5, 10, 20, and (d)
Probability mass function corresponding to model (3.12) combined with G(u;ψ) =
puκ1 − (1 − p)uκ2 for π = 0.2, p = 0.5, σ = 1, ξ = 0.2, κ1 = 1, 2 and κ2 = 1, 2, 5, 10.
The orange lines represent the zero-inflated Poisson probability mass function with
different settings of their parameter.

it models only the central and upper parts of the distribution; the lower tail behavior

could not be estimated directly even though we have zero inflation.

The proposed ZIDEGPD based on G(u;ψ) =
[

1−Dδ{(1− u)δ}
]κ/2

) have five pa-

rameters: π supporting the proportion of zero values, the (κ, δ and ξ) represents the

lower, central and the upper parts of the distribution, respectively, and σ is a scale pa-

rameter as usual. Figure 3.3(c) showing the behavior of PMF of ZIDEGPD linked with
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G(u;ψ) =
[

1−Dδ{(1− u)δ}
]κ/2

at different settings of the parameters. Zero inflation

also occurs when κ increases. Again, the density shape is similar to ZIP at the lower

and central part of the distribution.

For modeling zero-inflated discrete extremes, all types of ZIDEGPD discussed above

are flexible for both tails. The ZIDEGPD (ii) corresponding to parametric family (ii)

has limited flexibility on the lower tail, but the π parameter explains zero proportion

more correctly.

3.3 Generalized additive modelling

This section proposes regression-based discrete extreme models by letting the parameters

of discrete extreme models vary with covariates. In a continuous framework, modeling

continuous variables via extreme value model approximations, employing techniques

that allow for the incorporation of flexible forms of dependence on covariates is very ap-

pealing. Davison and Smith (1990) used such models to model the size and occurrence

of excesses over a high threshold through GPD. Pauli and Coles (2001) proposed smooth

models for extreme value distribution parameters based on penalized likelihood. Later

on, Chavez-Demoulin and Davison (2005) used Generalized Additive Model (GAM)

that was originally proposed by Hastie and Tibshirani (1990) to estimate flexible GPD

parameters with an orthogonal reparametrization. Yee and Stephenson (2007) devel-

oped vector generalized additive models to model generalized extreme value distribution

parameters as linear or smooth functions of covariates. Vector generalized additive mod-

els can easily be implemented in an R package called VGAM. More recently, Youngman

(2019) models threshold exceedances with GPD parameters of GAM forms. Generally,

the GAM form models characteristically reflect additive smooths representations with

splines.

In the sequel we denote the vector of parameters (ξ, σ, ψT )T or (ξ, σ, ψT , π)T with

θ = (θ1, ..., θd)
T . In practice, the parameters of the distribution of Y or Z may depend

on some covariates x, i.e. θ(x) = (θ1(x), . . . , θd(x))
T . The specification is an instance

of a distributional regression model (Stasinopoulos et al., 2018).

For relating the distributional parameters (θ1(x), . . . , θd(x)) to the covariates, we

consider additive predictors of the form

ηi(x) = si1(x) + · · ·+ siJi(x) (3.15)

where si1(·), . . . , siJi(·) are smooth functions of the covariates x. The predictors are
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linked to the distributional parameters via known monotonic and twice differentiable

link functions hi(·).
θi(x) = hi(ηi(x)), i = 1, . . . , d (3.16)

In the case of model with G(u;ψ) = uκ, common link functions are

ξ(x) = exp(ηξ(x)), σ(x) = exp(ησ(x)), κ(x) = exp(ηκ(x)), π(x) = exp

(

ηp(x)

1 + ηp(x)

)

The functions sij in (3.15) are approximated in terms of basis function expansions

sij(x) =

Kij
∑

k=1

βij,kBk(x), (3.17)

where Bk(x) are the basis functions and βij,k denote the corresponding basis coefficients.

These basis can be of different types (see Wood, 2017, for instance). The basis function

expansions can be written as sij(x) = tij(x)
Tβij where tij(x) is still a vector of trans-

formed covariates that depends on the basis functions and βij = (βij,1, . . . , βij,Kij
)T is a

parameter vector to be estimated.

The MLE method is practiced to estimate the parameters of the proposed mod-

els. Let y1, . . . , yn be n independent observations from (3.9) and x1, . . . ,xn the related

covariates. The log-likelihood function is given by,

l(β) =
n
∑

i=1

log [G(F (yi + 1; σ(xi), ξ(xi));ψ(xi))−G(F (yi; σ(xi), ξ(xi));ψ(xi))] .

(3.18)

where β collects all unknown coefficient βijk of the basis expansions.

Instead if we consider n independent observations z1, . . . , zn from (3.12) we get

l(β) =
n
∑

i=1

I0(zi) log [π(xi) + (1− π(xi))G(F (1; σ(xi), ξ(xi));ψ(xi))] +

+
n
∑

i=1

(1− I0(zi)) log(1− π(xi)))×

[G(F (zi + 1; σ(xi), ξ(xi));ψ(xi))−G(F (zi; σ(xi), ξ(xi));ψ(xi))] .(3.19)

Derivatives with respect to unknown parameters of DEPGD and ZIDEGPD can be

solved by standard numerical techniques to obtain the maximum likelihood estimators

for unknown parameters.

To ensure regularization of the functions sij(x) so-called penalty terms are added to

the objective log-likelihood function. Usually, the penalty for each function sij(x) are
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quadratic penalty λβTijGij(λij)βij where Gij(λij) is a known semi-definite matrix and

the vector λij regulates the amount of smoothing needed for the fit. A special case is

when Gij(λij) = λijGij. Therefore the type and properties of the smoothing functions

are controlled by the vectors xij(x) and the matrices Gij(λij).

The penalized log-likelihood function for the latter models reads:

lp(β) = l(β)− 1

2

d
∑

i=1

Ji
∑

j=1

βTijGij(λij)βij

= l(β)− 1

2
λkβ

TGkβ (3.20)

where l(β) is the log-likelihood function (3.18) or (3.19). Wood (2011) proposed a

restricted maximum likelihood by coupling with GAM forms to estimate β and λ,

Wood et al. (2016) extends beyond the exponential family. Let β̂ be the maximizer of

lp given λ and let H = −∇2lp(β̂). The result in a restricted likelihood

lR(λ) = l(β̂) +
1

2
log |Gλ|+ − 1

2
log |H|+ cst (3.21)

where Gλ = λkG
k and |Gλ|+ the product of the positive eigen-values of Gλ. Compre-

hensive details for implementing restricted maximum likelihood estimation using (3.21)

is provided in Wood et al. (2016); Youngman (2019).

To fit DEGPD and ZIDEGPD with GAM forms, we have written an R code that im-

plements the distributions as “new families” for evgam R package (Youngman, 2020). An

example of R code with the name “Fit degpd zidegpd.R” and the complete source code

of the function is provided on the GitHub https://github.com/touqeerahmadunipd/degpd-

and-zidegpd.

3.4 Bivariate modeling of entire range discrete ex-

tremes data

In this section, we discuss bivariate versions of DEGPD (BDEGPD). Let Y∈ N0

follow the DEGPD with PMF and CDF defined in (3.9) and (3.10). To obtain BDEGPD,

we start with the CDF of EGPD defined in Naveau et al. (2016). It turns out that

Y ∼ H(k) iff

Y = σH−1
ξ {G−1(U)} (3.22)
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or

Y = σH−1
ξ [G−1{H1(X)}] (3.23)

where G is a CDF on [0, 1], U ∼ U(0, 1) and H1(X) is the CDF of GPD with shape

ξ = 1. Let suppose (Y1, Y2) ∈ N0 × N0 are independent random variables, and the joint

PMF is defined as

P (Y1 = k1, Y2 = k2) = P (k1 < Y1 ≤ k1 + 1, k2 < Y2 ≤ k2 + 1) (3.24)

In general, the joint PMF can be written in terms of joint CDFs as

P (Y1 = k1, Y2 = k2) = P (Y1 ≤ k1 + 1, Y2 ≤ k2 + 1)− P (Y1 ≤ k1 + 1, Y2 ≤ k2)

−P (Y1 ≤ k1, Y2 ≤ k2 + 1) + P (Y1 ≤ k1, Y2 ≤ k2) (3.25)

To simplify the above expression, we solve each part of the right side separately. Thus,

we start with

P (Y1 ≤ k1, Y2 ≤ k2) = P
(

σH−1
ξ [G−1{H1(X1)}] ≤ k1, σH

−1
ξ [G−1{H1(X2)}] ≤ k2

)

= P

(

X1 ≤ H−1
1

[

G

{

Hξ

(

k1
σ

)}]

, X2 ≤ H−1
1

[

G

{

Hξ

(

k2
σ

)}])

= P (X1 ≤ x1, X2 ≤ x2) (3.26)

The term P (X1 ≤ x1, X2 ≤ x2) can be written as Laplace transform of Gamma distri-

bution by means of Xi following GPD with shape parameter ξ = 1. By using this trick,

the Laplace transform of Gamma distribution with Λ ∼ Gamma(1, 1) is written as

P (X1 > x1, X1 > x2) = EΛ

(

e−Λx1e−Λx2
)

=
1

(1 + x1 + x2)

= L(2)(s)|(s=x1+x2) (3.27)

Now, the joint CDF P (Y1 ≤ k1, Y1 ≤ k2)=P (X1 ≤ x1, X1 ≤ x2) can be derived easily

with the support of Gamma Laplace transforms, that is

P (Y1 ≤ k1, Y2 ≤ k2) = 1− P (Y1 > k1)− P (Y2 > k2) + P (Y1 > k1, Y1 > k2)(3.28)

= 1− L(1)(s)|(s=k1) − L(1)(s)|(s=k2) + L(2)(s)|(s=k1+k2)

where L(1)(.) is the univariate Laplace transform of Gamma(1, 1). Similarly, the expres-

sions P (Y1 ≤ k1+1, Y2 ≤ k2+1), P (Y1 ≤ k1+1, Y2 ≤ k2) and P (Y1 ≤ k1, Y2 ≤ k2+1)
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can be derived by following the same procedure. By using (3.25), we get the PMF of

BDEGPD in terms of LTs of bivariate Gamma distribution as

P (Y1 = k1, Y2 = k2) = L(2)(s)|(s=k1+1+k2+1) − L(2)(s)|(s=k1+1+k2)

−L(2)(s)|(s=k1+k2+1) + L(2)(s)|(s=k1+k2)
(3.29)

where L(2)(., .) is Laplace transform of Gamma(1, 1) distribution. In addition, the hi-

erarchical models discussed in Chapter 1 can also be used in (3.27). Moreover, the LTs

corresponding to GLM, WM, and TGM defined in (1.29), (1.30) and (1.31) tend to

(3.27), when dependence parameter ρ = 1 and marginal Gamma(1, 1) distribution. The

above model is called the complete dependence model.

3.5 Simulation study

3.5.1 Discrete extended Generalized Pareto distribution

In this section, we discuss a simulation study intended to assess the accuracy of a

maximum likelihood estimate (MLE). Different settings of parameters are tried to test

each model. Moreover, the scale and upper tail shape parameters are permanently set

to (σ = 1, ξ = 0.2) for all four models. The sample size n = 1000 with 104 replications

are used to calculate root mean square errors (RMSEs) corresponding to each model.

The remaining parameters of the proposed models are set as follows:

(i) G(u;ψ) = uκ with lower tail parameter κ = 1, 2, 3, 10.

(ii) G(u;ψ) = 1−Dδ{(1− u)δ}, with δ = 0.5, 1, 2, 5.

(iii) G(u;ψ) =
[

1−Dδ{(1− u)δ}
]κ/2

with δ = 0.5, 1, 2, 5 and κ = 1, 2, 3, 10.

(iv) G(u;ψ) = puκ1 + (1− p)uκ2 with p = 0.5, κ1 = 1, 2, 3, 10 and κ2 = 2, 3, 10, 20.

The boxplots of the MLEs are constructed to assess the models performance for

the above representative cases. Figure 3.4 shows the boxplots of estimated parameters

conforming to all four models with different simulation settings. Figure 3.4(a) show

MLEs of DEGPD based on parametric family G(u;ψ) = uκ with true parameter settings

(i.e., κ = 1, 2, 5, 10, σ = 1, and ξ = 0.2). In addition, the horizontal red line in

each boxplot represents the true parameters. Figure 3.4(a) indicates that the MLEs of

DEGPD (i) are quite reasonable with less variability.

Figure 3.4(b) reports much variability in parameter δ estimates when we increase

the true value of δ. This may happen due to the skewness parameter δ. Skewness
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Figure 3.4: Boxplots of maximum likelihood estimates of parameters of each model
from n = 1000 with 104 replication at different parameters settings: (a) corresponds
to model type (i), (b) corresponds to model type (ii), (c) corresponds to model type
(iii), and (d) corresponds to model type (iv).

parameters like δ and κ2 are hard to estimate by the MLE method; this was observed

by Naveau et al. (2016) for extended generalized Pareto distributions, Sartori (2006) for

the skew-normal and Ribereau et al. (2016) for skew generalized extreme value case.

Similarly, Figure 3.4(c) shows that the estimate of parameter δ is again outperformed

when the true value increases. Figure 3.4(d) shows the MLEs for all parameters are

reasonable, with variability seen in κ2 and sometimes in κ1. Again, this may be due to
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the appearance of κ2 as skewness parameter (Naveau et al., 2016).

Table 3.1: Root mean square errors of parameter estimates of DEGPD found from
104 independent data sets of size n = 1000.

G(u;ψ) = uκ

κ RMSE σ RMSE ξ RMSE

1 0.24 1 0.21 0.20 0.07

2 0.35 1 0.16 0.20 0.05

5 0.76 1 0.12 0.20 0.04

10 2.05 1 0.13 0.20 0.03

G(u;ψ) = 1−Dδ{(1− u)δ}
δ RMSE σ RMSE ξ RMSE

0.5 1.52 1 0.33 0.20 0.06

1 1.36 1 0.22 0.20 0.06

2 2.13 1 0.20 0.20 0.06

5 19.64 1 0.16 0.20 0.06

G(u;ψ) =
[

1−Dδ{(1− u)δ}
]κ/2

δ RMSE κ RMSE σ RMSE ξ RMSE

0.5 0.42 1 0.20 1 0.20 0.20 0.06

1 0.94 2 0.39 1 0.20 0.20 0.05

2 1.94 5 1.01 1 0.19 0.20 0.04

5 30.15 10 2.33 1 0.13 0.20 0.04

G(u;ψ) = puκ1 + (1− p)uκ2

p RMSE κ1 RMSE κ2 RMSE σ RMSE ξ RMSE

0.5 0.28 1 0.58 2 1.83 1 0.23 0.20 0.06

0.5 0.32 2 0.98 5 6.43 1 0.26 0.20 0.06

0.5 0.32 5 2.13 10 12.19 1 0.23 0.20 0.04

0.5 0.30 10 4.62 20 25.47 1 0.23 0.20 0.04

For further investigation, the RMSEs of model parameters for each configuration are

given in Table 3.1. Overall, the findings of the table show that the maximum likelihood

estimator performed well for model type (i) when the lower shape parameter κ increases.

Model type (ii) highlights that the MLEs are sensible when threshold tuning parameter

δ < 5. The RMSEs with respect to model type (iii) show that the MLEs are poor when

δ > 1. Finally, the case of model type (iv) intensifies that the parameters κ1 and κ2

entail much variability, especially when κ1 > 2 and κ2 > 5.
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3.5.2 Zero-inflated discrete extended Generalized Pareto dis-

tribution

To evaluate the maximum likelihood estimator for ZIDEGPD models, the simulation

study has been conducted with different configurations of parameters. The scale and

upper tail shape parameters are fixed to σ = 1 and ξ = 0.2 for all four models. Like

DEGPD, the sample size n = 1000 with 104 replications are used to calculate RMSEs

for each model. The other parameters of the proposed ZIDEGPD are chosen as

(i) G(u;ψ) = uκ with lower tail parameter κ = 5, 10

(ii) G(u;ψ) = 1−Dδ{(1− u)δ}, with δ = 1, 5.

(iii) G(u;ψ) =
[

1−Dδ{(1− u)δ}
]κ/2

with δ = 1, 5 and κ =5, 10.

(iv) G(u;ψ) = puκ1 + (1− p)uκ2 with p = 0.5, κ1 = 1, 5 and κ2 = 5, 10.

The zero inflation parameter (i.e., the proportion of zeros) π is considered 0.2 and 0.5

for all models, respectively.

Figure 3.5 clearly shows that the parameter of ZIDEPD are estimated correctly for

G(u;ψ) = uκ even though when the proportion of zeros is higher. Similar to DEGPD,

the estimates of δ of ZIDEGPD model (ii), κ and δ of ZIDEGPD model (iii) and κ1 and

κ2 of ZIDEGPD model (iv) showing more variability. This is already noted for DEGPD

cases.

Similar to DEGPD, we check the performance of the maximum likelihood estimator

for ZIDEGPD by observing RMSEs of the parameters. We found that the δ parameter

involved in model type (ii) and model type (iii) and κ2 parameter of model type (iv)

entail much variability when estimated by MLE. Similar characteristics have already

been noted in DEGPD models. In addition, we found the ZIDEGPD based on G(u;ψ) =

uκ is more reliable than other models. Information regarding RMSEs of ZIDEGPD

parameters is reported in Table S1 of ”Appendix B”.

3.5.3 GAM form modeling

To assess the parameter of our proposal in finite samples, we run a simulation study

with GAM non-parametric forms. We consider the DEGPD type (i) model with three

different settings to explore the complex nonlinear function. The following models are
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Figure 3.5: Boxplots of maximum likelihood estimates of parameters of each
ZIDEGPD model from n = 1000 with 104 replication at different parameters set-
tings: (a) corresponds to model type (i), (b) corresponds to model type (ii), (c)
corresponds to model type (iii), and (d) corresponds to model type (iv).

considered in a simulation study

M1 : σ = s(x); κ = cst; ξ = cst

M2 : σ = cst; κ = s(x); ξ = cst

M3 : σ = cst; κ = cst; ξ = s(x)

where s(·) indicates the smoothed predictor and covariate x is generated from N (0.2, 1)
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Figure 3.6: Left: Fitted non-parametric GAM form models with true parameters
generated through orthogonal polynomial of order 2, Right: Fitted non-parametric
GAM form models with true parameters generated from the orthogonal polynomial of
order 5. The black solid line in each curve represents the varying true parameters, and
the red line represents the estimated one with 95% confidence intervals. The boxplots
centered at true values represent the estimates of the fixed parameters in each model.

distribution. We simulated a matrix of true parameters (κ, σ and ξ) through orthogonal

polynomials of order 2 and 5 by supplying x and β = (20, 10, 10). Further, we generated

DEGPD responses for each model using true parameters with some modifications. For

instance, the DEGPD response variable forM1 is generated using a varying true param-

eter for σ, keeping (κ = 10) and (ξ = 0.2) constant. Similarly, the DEGPD response

variable for M2 is generated using varying κ parameters by keeping the remaining pa-

rameters constant. In contrast, the DEGPD response variable forM3 is generated using
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varying ξ parameters by keeping the remaining constant. The sample size was set to

n = 15000, which is consistent with real applications. We fitted models based on the

maximum likelihood estimator defined in 3.3. For simulation, the number of replication

was set to 500.

Figure 3.6 shows the estimates of the non-parametric effect of covariates individually

on the parameters of DEGPD type (i). Boxplots centered at true values in each model

are constructed for constant parameters. By looking at plots of varying σ parameters

in the top panel, corresponding to model M1, we see that the non-parametric effect

is estimated correctly when compared with the true parameter. Also, the boxplots

centered at true values show that constant parameters κ and ξ are estimated correctly.

Considering the covariate in the κ parameter (i.e., M2), the estimated model seems

reasonable for both cases, and constant parameters are also estimated correctly. On

the other side, by looking at the bottom plots, corresponding to model M3, the non-

parameter effects are not estimated correctly when we use the shape parameter ξ as

a function of covariate x with a complex function. Also, the boxplots of the constant

parameters deviate from true values. This result supports the argument that we find

in the existing literature that the shape parameter is difficult to estimate when using

covariates in GAM (Ranjbar et al., 2022). Overall, the model M1 performs much better

than the others, even when we have more complex non-parametric forms. Similarly, the

DEGPD (ii)-(iv) and ZIDEGPD (i)-(iii) are hard to estimate correctly when estimating

parameters p, δ, κ2 and ξ as a function of covariate x.

3.6 Bivariate discrete extended generalized Pareto

distribution

We carried out a simulation study to assess the robustness of the BDEGPD proposed

in Section (3.4). In order to simulate realizations from the proposed BDEGPD with

different settings of parameters of each type, one can use the following algorithm. The

steps of the algorithm to be applied are the following:

a. Simulate a random variable E1 and E2 from exponential distribution with rate

parameter is 1. That is, E1 ∼ Exp(1) and E2 ∼ Exp(1).

b. Simulate Λ variable from Gamma distribution with unit scale and shape parame-

ters. That is Λ ∼ Gamma(1, 1)

c. Set X1 = E1

Λ
and X2 = E2

Λ
, the resulting variable X1 and X2 marginally follow

GPD with shape parameter is equal to 1.
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d. Set U1 = H1(X1) and U2 = H1(X2), where H1(Xi), i = 1, 2 denotes the CDF of

GPD with shape parameter equal to 1.

e. Simulate Yi = σH−1
ξ [G−1(Ui)] i = 1, 2

f. Set y1 = ⌊Y1⌋ and y2 = ⌊Y2⌋, where ⌊.⌋ denotes the floor function.

Furthermore, different parameter settings have tried to evaluate the performance

of the maximum likelihood estimator. For instance, we permanently fix the scale and

dependence parameters (σ = 1, ρ = 0.9) for all models associated with G families. In

addition, we try the upper shape parameter ξ = 0.1, 0.2. Again, the sample size n = 500

with 104 replications are used to calculate RMSEs for each BDEGPD model. As for the

remaining parameters related to G families, we use the same values as those used for

DEGPD in subsection 3.5.1.

To summarize the simulation study results related to BDEGPD, Table 3.2 reports

the RMSEs of MLEs. We are interested in checking the overall fitting of each model

and investigating how different settings of the upper shape parameter influence the other

parameters. Here, we use the complete dependence model with dependence parameter

ρ = 1. We do not need to report the RMSE of ρ parameter anymore. It can be

observed from Table 3.2 that the RMSEs of Model type (ii), type (iii), and type(iv)

show more variability in parameters, especially in δ and κ2 when shape parameter

ξ = 0.1. Reasons behind the variable in skewness parameters (i.e., δ and κ2) have been

discussed prior (see, for instance, subsection 3.5.1). Furthermore, when we increase the

shape parameter ξ = 0.1 to ξ = 0.2 with the same specification of other parameters, the

RMSEs corresponding to parameters relatively increased for all four models. Again, the

same variability is noted in δ and κ2. Overall, the simulation study suggested that all

four BDEGPD models are flexible. In addition, BDEGPD corresponding G(u;ψ) = uκ

is considered more favorable for modeling the entire range of bivariate discrete count

data.
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Table 3.2: Root mean square errors of the parameter estimates of BDEGPD found
from 104 independent data sets of size n = 500. The cells contain RMSEs of param-
eters κ/σ/ξ for BDEGPD associated with family G(u;ψ) = uκ, δ/σ/ξ for BDEGPD
associated with family G(u;ψ) = 1−Dδ{(1− u)δ}, δ/κ/σ/ξ for BDEGPD associated

with G(u;ψ) =
[

1−Dδ{(1− u)δ}
]κ/2

, and p/κ1/κ2/σ/ξ for BDEGPD linked with
G(u;ψ) = puκ1 + (1− p)uκ2 , respectively.

Model type (i) G(u;ψ) = uκ

κ ξ

0.1 0.2

1 0.48/0.27/0.09 0.71/0.31/0.10

2 0.56/0.23/0.07 0.79/0.27/0.07

5 1.17/0.21/0.05 1.40/0.25/0.05

10 4.32/0.24/0.05 6.06/0.29/0.05

Model type (ii) G(u;ψ) = 1−Dδ{(1− u)δ}
δ ξ

0.1 0.2

0.5 4.83/0.26/0.07 4.17/0.34/0.06

1 10.44/0.20/0.06 14.54/0.23/0.06

2 24.26/0.26/0.06 25.48/0.28/0.06

5 58.47/0.30/0.08 35.35/0.33/0.08

Model type (iii) G(u;ψ) =
[

1−Dδ{(1− u)δ}
]κ/2

(δ, κ) ξ

0.1 0.2

(0.5, 1) 1.65/0.36/0.25/0.08 1.65/0.38/0.31/0.09

(1, 2) 5.84/0.98/0.29/0.08 3.89/0.90/0.32/0.07

(2, 5) 4.57/1.92/0.29/0.05 8.79/2.57/0.31/0.06

(5, 10) 7.25/2.81/0.25/0.05 7.25/3.41/0.29/0.05

Model type (iv) G(u;ψ) = puκ1 + (1− p)uκ2

(κ1, κ2) ξ

0.1 0.2

(1, 2) 0.33/0.59/1.37/0.27/0.07 0.35/0.58/1.31/0.31/0.08

(2, 5) 0.39/1.06/2.48/0.24/0.06 0.39/1.09/2.77/0.29/0.06

(5, 10) 0.38/1.90/4.07/0.24/0.05 0.38/1.84/3.72/0.27/0.05

(10, 20) 0.37/2.96/10.95/0.21/0.04 0.36/2.94/6.36/0.24/0.04
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3.7 Real data applications

This section discusses the real applications of the proposed models in sections 3.2, 3.3,

and 3.4. Firstly we shall consider a dataset on automobile insurance claims. Then we

consider the avalanches data of the Haute-Maurienne massif of the French Alps with

environmental variables as covariates. For BDEGPD application, we use the avalanches

data of the Haute-Maurienne and the Maurienne region of the French Alps.

3.7.1 Discrete extended generalized Pareto distribution

We apply the proposed DEGPD models to the automobile insurance claims data of

the companies of New York City recorded from 2009 to 2020. The data is recorded

under the Department of Financial Services (DFS) rank of automobile insurance com-

panies running a business in New York State based on the number of consumer com-

plaints upheld against them as a percentage of their total business over two years.

Complaints typically include problems like delays in the payment of no-fault claims

and nonrenewal of policies. Insurers with the least upheld complaints per million dol-

lars of premiums stand at the top. The data is freely available on the given website

https://www.ny.gov/programs/open-ny. The frequency distribution of the data (1942

observations) is depicted in Figure 3.7.
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Figure 3.7: Frequency distribution of upheld complaints of automobile insurance
companies in New York City (2009-2020).

Moreover, the DEGPD and ZIDEGPD based on parametric families (i), (ii), (iii),

and (iv) are fitted to the upheld complaints count data. Results of the fitted DEGPD

models with their standard errors and bootstrap confidence intervals are given in Table

3.3. AIC and BIC associated with fitted DEGPD and ZIDEGPD models and Chi-square

goodness-of-fit test statistic along with p-values are reported in Table 3.4. According to
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AIC and BIC values given Table 3.4, the DEGPD (i) and ZIDEGPD (i) with G(u;ψ) =

uκ perform better for this specific data example. DEGPD type (ii) fitting is also quite

reasonable to the upheld complaints data with a smaller estimate of the parameter

δ. However, model type (ii) has restricted flexibility on its lower tail. This is one of

the disadvantages of model type (ii) (Naveau et al., 2016). In case of zero-inflation in

the data the ZIDEGPD based on G(u;ψ) = 1 − Dδ{(1 − u)δ} may perform better by

the reason that it has an additional parameter which represents the zero proportion

separately.

Table 3.3: Estimated parameters for extended versions of discrete Pareto distribu-
tion with all four parametric families fitted to insurance complaints data of New York
City. Standard errors are reported between parenthesis. The bootstrap confidence
intervals at level 95% are reported between square brackets.

G(u;ψ) = uκ

κ σ ξ

1.41 0.80 0.73

(0.37) (0.20) (0.05)

[1.00, 2.35] [0.43, 1.22] [0.61, 0.83]

G(u;ψ) = 1−Dδ{(1− u)δ}
δ σ ξ

0.006 0.36 0.65

(0.86) (0.15) (0.04)

[0.00, 1.46] [0.33, 0.61] [0.60, 0.80]

G(u;ψ) =
[

1−Dδ{(1− u)δ}
]κ/2

κ δ σ ξ

1.61 0.11 0.49 0.65

(0.42) (0.65) (0.24) (0.07)

[1.05, 2.79] [0.00, 1.68] [0.27, 1.20] [0.55, 0.83]

G(u;ψ) = puκ1 + (1− p)uκ2

p κ1 κ2 σ ξ

0.11 0.01 2.08 0.63 0.73

(0.12) (0.44) (2.59) (0.16) (0.05)

[0.00, 0.46] [0.00, 1.59] [1.44, 10.66] [0.20, 0.84] [0.64, 0.83]

The fitting of DEGPD type (iii) with G(u;ψ) =
[

1−Dδ{(1− u)δ}
]κ/2

and DEGPD

type (iv) with G(u;ψ) = puκ1 + (1 − p)uκ2 is also quite sensible with lower AIC and

BIC value as compared to ZIDEGPD type (iii) and ZIDEGPD type (iv). But the κ2
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parameter of DEGPD type (iv) has gained more variability, which is also pointed by

Naveau et al. (2016) in the continuous framework. In addition, q-q plots given in Figure

3.8 show that all types of DEGPD are fitted reasonably well to upheld complaints data

of New York City. Furthermore, the p-values of chi-square test statistic corresponding

to each of DEGPD and ZIDEGPD indicate that the fitting of the models proposed in

section 3.2 is pretty good for this specific real data example. Based on AIC and BIC,

we prefer the DEGPD of type (i) for upheld complaints data.
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(c) G(u;ψ) = 1−Dδ{(1− u)δ}
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(d) G(u;ψ) = puκ1 + (1− u)vκ2

Figure 3.8: Quantile-quantile plots of the fitted models with 95% bootstrap-based
confidence intervals

3.7.2 GAM forms applications of DEGPD and ZIDEGPD to

avalanches data

In the Alpine regions, extreme frequency or magnitude snow avalanches are considered

a life-threatening hazard. Avalanches are usually caused by severe storms that bring

high snowfalls coupled with snow drifting, but strong variations of environmental factors

(e.g., temperature, wind, humidity, and precipitation, etc.) causing snow melt and/or

fluctuations of the freezing point can also be involved (Evin et al., 2021). It is crucial

to anticipate future avalanches activity in the short-term and long-term management.
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Figure 3.9: Correlation among covariates for avalanches data.

Since extreme events have potentially terrible consequences, it is crucial to assess their

statistical characteristics correctly. To this end, we try to highlight avalanches events

over a short period of time with the help of newly proposed extreme value models. In

particular, we intend to quantify how weather-related variables affect the probability of

avalanche occurrence each day.

Table 3.4: AIC and BIC associated with the fitted DEGPD and ZIDEGPD along
with Chi-square goodness-of-fit test. P-values are reported between parenthesis.

AIC BIC Chi-square

Model DEGPD ZIDEGPD DEGPD ZIDEGPD DEGPD ZIDEGPD

(i) 7290.93 7291.40 7307.65 7313.69 0.20 (0.99) 0.18 (0.99)

(ii) 7291.88 7293.05 7308.60 7315.34 0.19 (0.99) 0.20 (0.99)

(iii) 7293.36 7294.56 7315.64 7322.42 0.20 (0.99) 0.20 (0.99)

(iv) 7294.45 7297.56 7322.30 7330.99 0.20 (0.99) 0.22 (0.99)

The Enquête Permanente sur les Avalanches (EPA) collected avalanche data from

the French Alps, which has monitored about 3900 paths since the early 20th century
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(see Mougin, 1922; Evin et al., 2021). Quantitative (run-out elevations, deposit volumes,

etc.) and qualitative (flow regime, snow quality, etc.) information are collected for each

event. It varies in quality occasionally, depending on the local observers (mostly forestry

rangers). Natural avalanche activity is also uncertain because records tend to record

paths visible from valleys, so high-elevation activity may be underestimated.

Table 3.5: Detailed information of covariates

Name Definition

WS maximum wind speed at 10 meters (m/s)

PREC precipitation (mm/day)

MxT maximum temperature at 2 Meters (oC)

MnT minimum temperature at 2 Meters (oC)

RH relative humidity at 2 Meters (%).

We consider the dataset in Dkengne et al. (2016) and the three-day moving sum of the

daily number of avalanche events recorded from February 1982 to April 2021. Environ-

mental covariates (see Table 3.5) have been downloaded from https://power.larc.nasa.gov/data-

access-viewer/ by specifying latitude and longitude information. Then, the moving me-

dian of the previous three days was considered for each of them.

Figure 3.9 displays a correlation plot among the covariates, highlighting maximum

temperature (MxT) and minimum temperature (MnT) are positively strong correlated,

while precipitation (PREC) has no significant correlation with MxT. On the other hand,

relative humidity (RH) has a moderate positive correlation with wind speed (WS) and

PREC, while it has a weak negative correlation with temperature variables. Further,

wind speed and precipitation have a weak correlation with minimum and maximum

temperature variables. Backward variable selection procedures based on AIC were per-

formed for the DEGPD model under the GAM form, using evgam function with our

own developed code. A preliminary study showed that a constant model is numerically

preferred for lower shape parameters (κ and κ1), threshold tuning parameters (δ and

κ2), and upper shape parameter ξ.

After comparing different combinations of the covariates, we found WS, MxT, PREC

and RH are more appropriate to use as covariates. It turned out that the models with
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Figure 3.10: Estimated non-parametric effects of covariates in the σ component of
DEGPD model type (i).

the lowest AIC are

Model type (i) : κ = cst; σ = s(WS) + s(MxT ) + s(PREC) + s(RH); ξ = cst

Model type (ii) : δ = cst; σ = s(WS) + s(MxT ) + s(PREC) + s(RH); ξ = cst

Model type (iii) : κ = cst; δ = cst; σ = s(WS) + s(MxT ) + s(PREC) + s(RH);

ξ = cst

Model type (iv) : p = cst; κ1 = cst; κ2 = cst;

σ = s(WS) + s(MxT ) + s(PREC) + s(RH); ξ = cst

where s(·) indicates the smoothed predictor.

We fitted all four DEGPD GAM form models to the response variable (i.e., avalanches

counts) with the above-selected covariates. Table 3.6 shows the fitted model results. It

can be observed from Table 3.6 that parametric and nonparametric terms for DEGPD

GAM form models are statistically significant except for the shape parameter in DEGPD
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type (iii). In addition, during estimation, much variability has been seen in constant

parameters δ and κ2. This may be due to the appearance of δ and κ2 as skewness

parameters of the model (Naveau et al., 2016).

Figure 3.10 shows the corresponding estimated functions of DEGPD type (i) model

for the regressors that are included as nonparametric terms in the model for the effect of

the environmental variables. To this end, the included nonparametric term is significant

and has similar behavior for all models. Based on the results of all four models, a

broad interpretation of the finding that the temperature and relative humidity seems

to better explain the avalanches occurrence as compared to wind and precipitation.

The fluctuation in temperature may cause more avalanches coupled with snow drifting.

We also fitted ZIDEGPD GAM form models looking at possible zero inflation in the

avalanches data.

A slight improvement is noted in ZIDEGPD types (i) and (iii). We found that

parameter π in ZIDEGPD type (ii) is insignificant. This is possible due to much variation

gained by δ parameter. The results of the ZIDEGPD model can be found in Table S2

of ”Appendix B”.

Further, when comparing our proposed models, the GAM forms DEGPD and ZIDEGPD

type (i) and type (iii) overall performed well for the avalanches data. It may be possible

the other proposed models perform better to other real data examples.

To assess the overall adequacy of GAM form DEGPD or ZIDEGPD models, we

also fitted other existing competitor distributions such as DGPD (1.6) and Poisson

distribution. Moreover, we fitted DGPD without threshold selection because the density

behavior of the avalanches response is similar to DGPD density. The goodness-of-fit

assessment uses the randomized residuals (Dunn and Smyth, 1996; Chiogna and Gaetan,

2007) defined as

ri = Φ−1((1− ui)F (ki − 1; θ̂i) + uiF (ki; θ̂i)) (3.30)

where Φ is a standard normal distribution function, ui is drawn from a uniform distri-

bution, and F (.; θ̂) is the parametric estimate of the CDF of the fitted model. Random-

ization allows obtaining continuous residuals even if the response variable is discrete.

Randomization allows to achieve continuous residuals even if the response variable

is discrete. Aside from sampling variation in the parameter estimates, the randomized

residuals appear to be exactly normal if the fitted model is correctly specified. Figure

3.11 shows normal quantile-quantile plots of randomized residuals of the proposed GAM

form DEGPD type (i) to DEGPD type (iv) and competing models. Graphical repre-

sentation of residuals of ZIDEGPD type (i) to ZIDEGPD type (iii) models is given in
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Figure 3.12. The randomized residuals derived from our proposed models show no ap-

parent departure from normality detected, while randomized residuals based on DGPD

and Poisson models departed from normality at the lower and upper tail, respectively.

Table 3.6: Estimated coefficients and smooth terms for GAM form DEGPD models
fitted to avalanches data.

Model type (i) G(u;ψ) = uκ

Parameter (intercept) Estimate Std.Error t value P-value

log(κ) -1.83 0.06 -32.38 <2e-16
log(σ) 0.2 0.1 2.06 0.0197
log(ξ) -0.54 0.08 -6.88 2.93e-12

** Smooth terms for log(σ) **
log(σ) edf max.df Chi.sq Pr(> |t|)
s(WS) 1.44 4 22.01 8.66e-06
s(MxT) 3.57 4 663.24 <2e-16
s(PREC) 1.26 4 33.94 2.91e-08
s(RH) 5.72 9 79.14 9.9e-15

Model type (ii) G(u;ψ) = 1−Dδ{(1− u)δ}
Parameter (intercept) Estimate Std.Error t value P-value

log(δ) 4.72 1.28 3.7 0.000109
log(σ) -2.52 0.07 -34.84 <2e-16
log(ξ) -0.14 0.03 4.94 3.89e-07

** Smooth terms for log(σ) **
log(σ) edf max.df Chi.sq Pr(> |t|)
s(WS) 1.90 4 31.12 3.75e-07
s(MxT) 3.52 4 528.98 <2e-16
s(PREC) 1.27 4 38.59 1.07e-08
s(RH) 6.30 9 59.21 8.61e-11

Model type (iii) G(u;ψ) =
[

1−Dδ{(1− u)δ}
]κ/2

Parameter (intercept) Estimate Std.Error t value P-value

log(κ) -0.62 0.18 -3.4 0.000339
log(δ) 4.82 0.67 7.24 2.3e-13
log(σ) -0.62 0.29 -2.15 0.0158
log(ξ) -0.13 0.09 -1.39 0.0819

** Smooth terms for log(σ) **
s(WS) 1.78 4 29.29 4.66e-07
s(MxT) 3.61 4 562.36 <2e-16
s(PREC) 1.31 4 49.93 5.2e-10
s(RH) 6.07 9 47.71 1.3e-08

Cont...
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Table 3.6: (Cont...) Estimated coefficients and smooth terms for GAM form
DEGPD models fitted to avalanches data.

Model type (iv) G(u;ψ) = puκ1 + (1− p)uκ2

Parameter (intercept) Estimate Std.Error t value P-value

logit(p) 4.89 0.33 14.69 <2e-16

log(κ1) -1.84 0.06 -31.88 <2e-16

log(κ2) 3.5 0.41 8.51 <2e-16

log(σ) 0.17 0.1 1.66 0.0484

log(ξ) -0.86 0.13 -6.78 6.07e-12

** Smooth terms for log(σ) **

s(WS) 1.67 4 19.68 3.08e-05

s(MxT) 3.57 4 623.83 <2e-16

s(PREC) 1.05 4 35.18 4.71e-09

s(RH) 5.67 9 80.50 5.31e-15

We further check the normality of randomized residuals by using Kolmogorov–Smirnov

test. Table 3.7 indicates that the newly proposed models considered for GAM form mod-

eling deliver a good fit for the avalanches. among the different types, DEGPD type (i)

and DEGPD type (iv) clearly outperform than others, as shown in Figure 3.11 as well.

Furthermore, the randomized residuals from GPD and Poisson distribution did not meet

the normality assumption.

Table 3.7: Kolmogorov–Smirnov (KS) test statistics (p-values between parentheses)
of the proposed DEGPD type (i) to type (iv) and competitor (DGPD and Poisson)
distributions.

Model DEGPD DGPD Poisson

(i) 0.0038 (0.9855) 0.0132 (0.0130) 0.21048 (2.2e-16)

(ii) 0.0106 (0.0779)

(iii) 0.0098 (0.1958)

(iv) 0.0066 (0.5590)
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−4

−2

0

2

4

−4 −2 0 2 4

Theoretical Quantiles

S
a
m

p
le

 Q
u
n
a
ti
le

s

Normal Q−Q plot

(d) DEGPD type (vi)
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Figure 3.11: Diagnostic plots of residual quantiles of the proposed DEGPD type (i)
to type (iv) and competitor (DGPD and Poisson) distributions.

3.8 Bivariate discrete extended generalized Pareto

distribution

We fitted four different BDEGPD models described in section 3.4 to the data of Haute-

Maurienne and Maurienne massifs of the French Alps using the MLE procedure. Results

of the fitted models with AIC and BIC are summarized in Table 3.8. By comparing AIC

and BIC, the model associated with G(u;ψ) =
[

1−Dδ{(1− u)δ}
]κ/2

in (3.29) performs

pretty good overall. Similarly, the Model type (iv) G(u;ψ) = puκ1 +(1−p)uκ2 fits quite
well, but it has five parameters. As for the model based on G(u;ψ) = 1−Dδ{(1− u)δ}
seems to be the poorest fit, it also lacks flexibility in the lower tail (Naveau et al., 2016),

as we also note in a simulation study. Model type (i) with G(u;ψ) = uκ in (3.29) is

frequently comparable.
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(b) ZIDEGPD type (ii)
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Figure 3.12: Diagnostic plots of residual quantiles for the proposed ZIDEGPD type
(i) to ZIDEGPD type (iii) models.

3.9 Final remarks

This chapter proposes different versions of DEGPD and ZIDEGPD models to demon-

strate that it can jointly model the entire range of count data without selecting a

threshold. Further, the DEGPD and ZIDEGPD GAM form models are developed and

implemented. The flexibility of these models and their many practical advantages in

discrete nature data make them very attractive. A few parameters make it simple to

implement, interpret, and comply with discrete EVT for both upper and lower tails.

The inference is performed through the MLE procedure, which shows more adequacy

in results. Compared to ZIDEGPD, the fitted DEGPD appears more straightforward,

robust, and genuinely represents zero proportion in the upheld complaints data of NYC.

We observed that our proposed ZIDEGPD models are more flexible and robust for the

data with zero inflation, and the remaining observations have risen in the lower tail

up to structural mode and exponential decay at the upper heavier tail. As noted in

the simulation study, the parameters δ and κ2 gained more variability when estimated

through the MLE method; Bayesian analysis with informative priors may improve the

estimates of these parameters.

In addition, we developed and implemented the GAM forms methodology of our pro-

posed models that allow for non-identically distributed discrete extremes. This method-

ology was implemented in evgam using the author’s written R functions. The response

variable of interest (three-day moving sum of daily avalanches at Haute-Maurienne mas-

sif of French Alps) is statistically explained by other environmental variables (e.g., tem-

perature, wind, precipitation and humidity). GAM form models proposed in this study
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Table 3.8: Estimated parameters for bivariate extended discrete generalized Pareto
distribution with all four parametric families fitted to Haute-Maurienne and Mauri-
enne massifs of French Alps. Standard errors are reported between parenthesis. The
bootstrap confidence intervals at level 95% are reported between square brackets.

Model type (i) G(u;ψ) = uκ

κ σ ξ - - AIC BIC
2.79 1.02 0.52 - - 2624.19 2640.41
(0.77) (0.42) (0.05)

[1.85, 4.02] [0.02, 1.51] [0.45, 0.70]
Model type (ii) G(u;ψ) = 1−Dδ{(1− u)δ}

δ σ ξ
1.09 1.42 0.52 - - 2647.22 2663.45
(0.43) (0.15) (0.04)

[0.42, 1.83] [1.15., 1.67] [0.42, 0.60]

Model type (iii) G(u;ψ) =
[

1−Dδ{(1− u)δ}
]κ/2

κ δ σ ξ
0.64 6.68 0.40 0.62 - 2587.10 2607.38
(0.42) (3.65) (0.38) (0.07)

[0.01, 1.79] [2.44, 14.68] [0.08, 1.47] [0.46, 0.71]
Model type (iv) G(u;ψ) = puκ1 + (1− p)uκ2

p κ1 κ2 σ ξ
0.01 2.16 6.82 0.46 0.61 2587.14 2611.48
(0.13) (5.13) (7.07) (0.35) (0.06)

[0.00, 0.30] [0.00, 14.32] [2.13, 20.43] [0.19, 1.38] [0.42, 0.65]

allows parametric non-parametric functional forms, which would most likely be required

for larger datasets. Our models (especially DEGPD and ZIDEGPD type (i)) also show

more flexibility and a good fit for avalanches data with the effect of environmental con-

ditions as covariates than other competing models (i.e., DGPD, negative binomial, and

Poisson). It is worth mentioning that GAM form DEGPD models may perform bet-

ter than the other real data example. Again, GAM form ZIDEGPD models are more

flexible and adequate when the response variable has zero inflation, and the remaining

observations have an exponential rise in the lower tail till mode and then decay at the

upper heavier tail.
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Discussion

In this dissertation, we have considered the problem of capturing different types of

tail behavior in discrete extreme values, arguing that more tools are needed to support

an approach where one may want to take into account the asymptotic dependence of

extremes, including asymptotic independence. We have focused on hierarchical mod-

els with Gamma variables or stationary Gamma processes with Gamma marginals to

induce simple or temporal dependence among discrete threshold exceedances. Optimal

threshold selection that defines exceedances remains a problematic issue. Considering

this issue also, we have focused on the idea of using a smooth transition between the

two tails (lower and upper) to force large and small discrete extreme values to com-

ply with EVT. This thesis further focuses on the models with an additional parameter

representing the proportion of zero values in the data in the case of zero inflation.

In particular, chapter 1 proposes a model that allows us to assess the changes in

the extremal dependence structure over the tail. We introduce different types of de-

pendence in the proposed model using hierarchical settings and copula-based construc-

tions. This framework is the first step toward modeling bivariate discrete extremes

with asymptotic dependence or independence. Based on the tail dependence measure,

we can achieve asymptotic dependence and asymptotic independence in bivariate and

copula-based models with an appropriate choice of the hierarchical model having Gamma

marginals. Generally speaking, asymptotic dependence and asymptotic independence

can be tackled with our proposal explained in chapter 1. In addition, the proposed

model was applied to the avalanches count data of two massifs of the French Alps.

Model-based and empirical estimates of the tail dependence measure (developed in

section 1.3 of the chapter 1) were compared based on conditional probabilities for the

estimated models, namely CDM, GM, KM, TCM, CCDM, CGM, CKM, and CTGM. A

decreasing degree of dependence can be seen in empirical values, and this corresponds

to convergence to asymptotic independence as k → ∞. In the proposed formulation,

the copula-based model is preferable over simple models for the avalanches data of the
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French Alps; however, all models produce more stable estimates than the empirical

counterparts as k increases.

Chapter 2 is intended to discuss a class of models for time series with discrete nature

extremes. We developed a discrete extreme value model based on the latent process

framework to obtain a flexible dependence structure. As a result of this construction,

the marginal DGPD is preserved with a positive shape parameter, which is reliable for

modeling extreme value exceedances. In time series modeling, the latent Markov chains

with a hierarchical setting were used to induce temporal dependence in exceedances. In

the developed models, one notable feature is that the temporal dependence structure

varies considerably as one moves further into the right tail of the marginal distribution.

To this end, the theoretical constructions of the tail dependence measure demonstrated

that both asymptotic dependence and asymptotic independence of discrete time se-

ries extremes are possibly achievable with an appropriate choice of the latent process

Λt. Moreover, a measure of tail dependence (χ) is developed to evaluate the extreme

dependence of the proposed models.

Chapter 3 proposes different versions of DEGPD and ZIDEGPD models to demon-

strate that they can jointly model the entire range of count data (low and high extreme)

without selecting a threshold. In addition, GAM models for DEGPD and ZIDEGPD

are developed and implemented. Discrete data models developed in chapter 3 are ad-

vantageous due to their flexibility and practicality. Fewer parameters make them simple

to implement, interpret, and comply with discrete EVT for both upper and lower tails.

It appears that DEGPD fits the upheld complaints data of NYC more robustly and

straightforwardly than ZIDEGPD. Accordingly, we found that ZIDEGPD models are

more flexible and robust for the data with zero inflation.

GAM form models proposed for the entire range of discrete extremes allows para-

metric non-parametric functional forms, which would most likely be required for larger

datasets. Models (especially DEGPD and ZIDEGPD type (i)) show more flexibility and

a good fit for avalanches data with the effect of environmental conditions as covariates

than other competing models (i.e., DGPD, negative binomial, and Poisson). It is worth

mentioning here that the other GAM form DEGPD models may perform better than

existing models when applied to other real data examples.

Hence, our proposed models can be applied to discrete count data with extreme

observations. Further, GAM forms proposals are flexible regarding spatial modeling of

discrete extremes.
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Future directions of research

Interestingly, the model proposed in chapter 1 can be extended to the multivariate

case (Bacro et al., 2023), but it is challenging. On the other side, dependence can be

considered through Gaussian graphical models (Hitz and Evans, 2016)when working

with high dimensional data, which are more feasible with inverse covariance matrix to

reduce dimensionality and to visualize the dependence structure as a graph. Following

are some other possibilities for continuing the proposed models.

Proposition: Let Λ = (Λ1,Λ2) have a bivariate distribution with gamma margins.

Suppose, given Λ = (Λ1,Λ2), Yi, i = 1, 2 are independent geometric random variables

with parameter qi = 1 − e−(ω+λi)/β, i = 1, 2, where β > 0. Then Y = (Y1, Y2) follows a

bivariate distribution with New geometric Discrete Pareto distribution marginals, which

was introduced by Bhati and Bakouch (2019). Bivariate LTs of bivariate gamma distri-

butions are supportive of defining the bivariate distribution.

Proposition: Let Λ = (Λ1,Λ2) have a bivariate distribution with gamma margins.

Suppose, given Λ = (λ1, λ2), Yi, i = 1, 2 are independent Zero Modified geometric random

variables (i.e ZMG(πi, qi), where qi = 1−e−λi/β, i = 1, 2, with β > 0. Then Y = (Y1, Y2)

follows a bivariate distribution with Zero Modified Discrete Pareto distribution marginals

which was introduced by Constantinescu et al. (2019). Again, bivariate LTs of bivariate

Gamma distributions are useful to define the bivariate distribution.

On the other side, models based on chapter 2 can further be modified in different

ways; see, for instance, section 2.7 of chapter 2.

Models proposed in chapter 3 can be applied to the variables with discrete count

data having extreme observation. Further, GAM forms proposals are flexible regarding

spatial-temporal modeling of discrete extremes. In addition, it may be possible to extend

DEGPD theoretically using r-Pareto processes (Huser and Wadsworth, 2020) and use it

to modeling of discrete spatial extremes.
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Appendix A

A.1 Proofs of propositions

Proof. of Proposition 1.1: Let Yi, i = 1, 2 are independent Geometric random variables

with parameter qi = 1 − e−Λi/β, i = 1, 2, where β > 0. The SF of Geometric of

distribution when Yi, i = 1, 2 are independent Geometric random variables

P (Yi > ki|Λ) = S(ki|Λ) = e−
λki
β , i = 1, 2 (A.1)

where Λ follows standard Gamma marginal distribution having PMF is

f(λ, α, β) = [βα/Γ(α)]λα−1e−βλ. (A.2)

Without loss of generality, the joint SF function we have

P (Y1 > k1, Y1 > k1|Λ) = S(k1, k2|Λ) = E
(

e−
Λk1
β

−
Λk2
β

)

(A.3)

S(k1, k2) =

∫ ∞

0

∫ ∞

0

e−
k1λ
β

−
k2λ
β f(λ)dλ = L(1)(s)|

(s1=
k1+k2

β
)

(A.4)

where S(k1, k1) is the joint SF function of a bivariate distribution that has DGPD

margins and the expression L(1)(s) is the univariate Laplace transform of Λ = Λ.

The PMF of the bivariate distribution having DGPD margins is written by using the

joint SF as

P (Y1 = k1, Y2 = k2) = S(k1, k2)−S(k1+1, k2)−S(k1, k2+1)+S(k1+1, k2+1) (A.5)
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P (k1, k2) = L(1)(s)|
(s=

k1+k2
β

)
− L(1)(s)|

(s=
k1+1+k2

β
)
− L(1)(s)|

(s=
k1+k2+1

β
)

+ L(1)(s)|
(s=

k1+1+k2+1
β

)
(A.6)

This completes the proof.

Proof. of Proposition 1.2 Let Yi, i = 1, 2 are independent Geometric random variables

with parameter qi = 1 − e−Λi/β, i = 1, 2, where β > 0. The SF of Geometric of

distribution when Yi, i = 1, 2 are independent Geometric random variables

P (Yi > ki|Λi) = S(ki|Λi) = e−
λiki
β , i = 1, 2 (A.7)

where Λi follow Gamma marginal distribution having probability mass function given

in A.2. Without loss of generality, the joint SF function we have

P (Y1 > k1, Y1 > k1|Λ1,Λ2) = S(k1, k2|Λ1,Λ2) = E
(

e−
Λ1k1

β
−

Λ2k2
β

)

(A.8)

S(k1, k2) =

∫ ∞

0

∫ ∞

0

e−
k1λ1

β
−

k2λ2
β f(λ1, λ2)dλ1dλ2 = L(2)(s1, s2)|(s1= k1

β
,s2=

k2
β
)
(A.9)

where S(k1, k1) is the joint SF function of a bivariate distribution that has DGPD mar-

gins and the expression L(2)(s1, s2) is the bivariate Laplace Transform of Λ = (Λ1,Λ2).

The bivariate PMF can be obtained using the definition (A.5).

P (k1, k2) = L(2)(s1, s2)|(s1= k1
β
,s2=

k2
β
)
− L(2)(s1, s2)|(s1= k1+1

β
,s2=

k2
β
)

− L(2)(s1, s2)|(s1= k1
β
,s2=

k2+1
β

)
+ L(2)(s1, s2)|(s1= k1+1

β
,s2=

k2+1
β

)

This completes the proof.

Proof. of Proposition 1.3 Let Yi, i = 1, 2) are independent Geometric random variables

with parameter qi = 1− e−
Λ
β , i = 1, 2. Given Λ = λ follow a standard Gamma distribu-

tion with PDF given in (A.2). Thus, the SFs of Geometric distribution corresponding

random Y1 and Y2 are S(Y1 > k1|Λ = λ) = e−
λk1
β and S(Y2 > k2|Λ = λ) = e−

λk2
β . The

joint SF of bivariate Geometric distribution developed through FGMC is given by

S(k∗1, k
∗
2|λ) =

[

e−(
λk1
β

+
λk2
β

)
] [

1 + ϕ
(

1− e−
λk1
β − e−

λk2
β + e−(

λk1
β

+
λk2
β

)
)]

(A.10)
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S(k∗1, k
∗
2|λ) =

[

e−(
λk1
β

+
λk2
β

) + ϕ

(

e−(
λk1
β

+
λk2
β

) − e−(
2λk1
β

+
λk2
β

) − e−(
λk1
β

+
2λk2
β

)

+ e−(
2λk1
β

+
2λk2
β

)

)]

(A.11)

Using definition A.3, and we get

S(k1, k1) =

∫ ∞

0

[

e−(
λk1
β

+
λk2
β

) + ϕ

(

e−(
λk1
β

+
λk2
β

) − e−(
2λk1
β

+
λk2
β

) − e−(
λk1
β

+
2λk2
β

)

+ e−(
2λk1
β

+
2λk2
β

)

)]

f(λ)dλ (A.12)

Later we write in form of LTs

S(k1, k1) = L(1)(s)|
(s=

k1+k2
β

)
+ ϕ

(

L(1)(s)|
(s=

k1+k2
β

)
− L(1)(s)|

(s=
2k1+k2

β
)

− L(1)(s)|
(s=

k1+2k2
β

)
+ L(1)(s)|

(s=
2k1+2k2

β
)

)

(A.13)

where ϕ is the copula dependence parameter and L(1)(.) is the LT of random variable Λ.

S(k1, k2) is a joint SF of copula-based bivariate distribution with DGPD marginals. The

bivariate PMF can be obtained using the definition (A.5). This completes the proof.

Proof. of Proposition 1.4 Let Yi (for i = 1, 2) are independent Geometric random

variables with parameter qi = 1 − e−
Λi
β , i = 1, 2. Given Λ = (Λ1,Λ2) follow a bi-

variate Gamma distribution with Gamma margins. Thus, the SFs of Geometric dis-

tribution corresponding random Y1 and Y2 are S(Y1 > k1|Λ1 = λ1) = e−
λ1k1

β and

S(Y2 > k2|Λ2 = λ2) = e−
λ2k2

β . The joint SF of bivariate Geometric distribution devel-

oped via FGMC is given by

S(k∗1, k
∗
1|λ1, λ2) =

[

e−(
λ1k1

β
+

λ2k2
β

) + ϕ

(

e−(
λ1k1

β
+

λ2k2
β

) − e−(
2λ1k1

β
+

λ2k2
β

) − e−(
λ1k1

β
+

2λ2k2
β

)

+ e−(
2λ1k1

β
+

2λ2k2
β

)

)]

(A.14)

Using (A.9) and we get the joint SF of copula based bivariate distribution which as

DGPD margins
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S(k1, k1) = L(2)(s1, s2)|(s1= k1
β
,s2=

k2
β
)
+ϕ

(

L(2)(s1, s2)|(s1= k1
β
,s2=

k2
β
)
−L(2)(s1, s2)|(s1= 2k1

β
,s2=

k2
β
)

− L(2)(s1, s2)|(s1= k1
β
,s2=

2k2
β

)
+ L(2)(s1, s2)|(s1= 2k1

β
,s2=

2k2
β

)

)

(A.15)

where ϕ is the copula dependence parameter and where L(2)(., .) is the bivariate Laplace

transform of Λ = (Λ1,Λ2). S(k1, k2) is a joint SF of copula-based bivariate distribution

with DGPD marginals. The bivariate PMF can be obtained using the definition (A.5).

This completes the proof.

A.2 Properties of conditional tail dependence

A.2.1 Gaver model

To evaluate the dependence between the exceedances of Y1 and Y2 variables, we use

the definition of limiting measure (χ) found in Coles et al. (1999)). That is

χ = lim
k→∞

P (Y1 ≥ k + 1, Y2 ≥ k + 1)

P (Y1 ≥ k + 1)
(A.16)

To obtain the limiting measure χ for GM, we solve (A.16) by incorporating univariate

and bivariate LTs of Gamma distribution associated with GM, provided in section 1.2

of chapter 1 of the thesis, that is,

χ = lim
k→∞

L(2)(s1, s2)|(s1= k+1
β
,s2=

k+1
β

)

L(1)(s)|(s= k+1
β

)

= lim
k→∞

[

(β+ρ)β
(β+k+1)(β+k+1+ρk+1)

]α

[

β
β+k+1

]α

= lim
k→∞

[

(((((((β(k + 1 + β){β + ρ(k + 1)}
(((((((β(k + 1 + β)(β + k + 1 + ρ(k + 1))

]α

= lim
k→∞

[ {β + ρ(k + 1)}
(β + (k + 1) + ρ(k + 1))

]α

= lim
k→∞

[

β + ρk + ρ

β + k + 1 + ρk + ρ

]α

= lim
k→∞

[

��k(
β
k
+ ρ+ ρ

k
)

��k(
β
k
+ 1 + 1

k
+ ρ+ ρ

k
)

]α

=

[

ρ

1 + ρ

]α

(A.17)
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In order to gain a finer characterization of the joint tail decay rate under asymptotic

independence, the χ̄ index is defined by following the definition of Coles et al. (1999) as

χ̄ = lim
k→∞

2 logP (Y1 ≥ k + 1)

logP (Y1 ≥ k + 1, Y2 ≥ k + 1)
− 1

= lim
k→∞

2 logL(1)(s)|(s= k+1
β

)

logL(2)(s1, s2)|(s1= k+1
β
,s2=

k+1
β

)

− 1

= lim
k→∞

2 log
[

β
(k+1+β)

]α

log
[

β{β+ρ(k+1)}
(k+1+β)(β+(k+1)+ρ(k+1))

]α − 1

= lim
k→∞

2 [log(β)− log(k + 1 + β)]

log(β) + log{β + ρ(k + 1)} − log(k + 1 + β)− log{β + (k + 1) + ρ(k + 1)} − 1

= lim
k→∞

2 [log(β)− log(k + 1 + β)]

log(β)− log(k + 1 + β) + log{β + ρ(k + 1)} − log{β + (k + 1) + ρ(k + 1)} − 1

= lim
k→∞

2
(((((((((((((
[log(β)− log(k + 1 + β)]

(((((((((((((
[log(β)− log(k + 1 + β)]

[

1 + log{β+ρ(k+1)}
log(β)−log(k+1+β)

− log{β+(k+1)+ρ(k+1)}
log(β)−log(k+1+β)

] − 1

= lim
k→∞

[

2

1 + log(β+ρ(k+1))
log(β)−log(k+1+β)

− log(β+(k+1)+ρ(k+1))
log(β)−log(k+1+β)

]

− 1

=
2

limk→∞

[

1 +
log(k)+log(β

k
+ρ+ ρ

k
)

log(β)−log(k)−log(1+ 1
k
+β

k
)
− log(k)+log(β

k
+1+ 1

k
+ρ+ ρ

k
))

log(β)−log(k)+log(1+ 1
k
+β

k
)

] − 1

=
2

limk→∞

[

1 +
1+ 1

log(k) [log(
β
k
+ρ+ ρ

k
)]

−1+ 1
log(k) [log(β)−log(1+ 1

k
+β

k
)]
− 1+ 1

log(k) [log(
β
k
+1+ 1

k
+ρ+ ρ

k
))]

−1+ 1
log(k) [log(β)+log(1+ 1

k
+β

k
)]

] − 1

= 2− 1 = 1 (A.18)

The positive limit of χ = [ρ/1 + ρ]α and χ̄ = 1 indicate that the discrete random

variables (Y1 and Y2) are said to be asymptotically dependent when one work with GM.
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A.2.2 Copula-based Gaver model

By using the definition given in A.16, we have

χ = lim
k→∞























L(2)(s1, s2)|(s1 = k+1
β
, s2 =

k+1
β
) + ϕ

[

L(2)(s1, s2)|(s1 = k+1
β
, s2 =

k+1
β
)

− L(2)(s1, s2)|(s1 = 2(k+1)
β

, s2 =
k+1
β
)− L(2)(s1, s2)|(s1 = k+1

β
, s2 =

2(k+1)
β

)

+ L(2)(s1, s2)|(s1 = 2(k+1)
β

, s2 =
2(k+1)
β

)

]























L(1)(s)|(s = k+1
β
)

(A.19)

where L(2)(., .) is the bivariate LT of GM defined in (1.29). Thus, we have

χ = lim
k→∞

























[

(β+ρ)β
(β+k+1)(β+k+1+ρ(k+1))

]α

+ ϕ

[

[

(β+ρ)β
(β+k+1)(β+k+1+ρ(k+1))

]α

−
[

(β+ρ)β
(β+k+1)(β+2(k+1)+ρ(k+1))

]α

−
[

(β+ρ)β
(β+2(k+1))(β+k+1+2ρ(k+1))

]α

+
[

(β+ρ)β
(β+2(k+1))(β+2(k+1)+2ρ(k+1))

]α
]

























[

β
β+k+1

]α

χ = lim
k→∞

(A) + ϕ
[

lim
k→∞

(B)− lim
k→∞

(C)− lim
k→∞

(D) + lim
k→∞

(E)
]

(A.20)

Similar to GM, we would like to prove all limits of A.20 as

lim
k→∞

(A) = lim
y→∞

(B) = lim
y→∞

[

{β+ρ(y+1)}β
(β+y+1){β+y+1+ρ(y+1)}

]α

[

β
β+y+1

]α =

[

ρ

1 + ρ

]α

lim
y→∞

(C) = lim
k→∞

[

{β+ρ(k+1)}β
(β+k+1){β+2(k+1)+ρ(k+1)}

]α

[

β
β+k+1

]α =

[

ρ

2 + ρ

]α

lim
k→∞

(D) = lim
k→∞

[

{β+2ρ(k+1)}β
{β+2(k+1)}{β+k+1+2ρ(k+1)}

]α

[

β
β+k+1

]α =

[

ρ

2 + ρ

]α

lim
k→∞

(E) = lim
k→∞

[

{β+2ρ(k+1)}β
{β+2(k+1)}{β+2(k+1)+2ρ(k+1)}

]α

[

β
β+k+1

]α =

[

ρ

2 + 2ρ

]α
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After putting all limits in A.20, we get

χ =

(

ρ

1 + ρ

)α

+ ϕ

[

(

ρ

1 + ρ

)α

−
(

ρ

2 + ρ

)α

−
(

ρ

(1 + 2ρ)

)α

+

(

ρ

(2 + 2ρ)

)α
]

(A.21)

In addition, the χ̄ corresponding to CGM is derived by using the definition given in

A.18 as

χ̄ = lim
k→∞

2 log
[

β
β+k+1

]α

log

























[

{β+ρ(k+1)}β
(β+k+1){β+k+1+ρ(k+1)}

]α

+ ϕ

[

[

{β+ρ(k+1)}β
(β+k+1){β+k+1+ρ(k+1)}

]α

−
[

{β+ρ(k+1)}β
(β+k+1){β+2(k+1)+ρ(k+1)}

]α

−
[

{β+2ρ(k+1)}β
{β+2(k+1)}{β+k+1+2ρ(k+1)}

]α

+
[

{β+2ρ(k+1)}β
{β+2(k+1)}{β+2(k+1)+2ρ(k+1)}

]α
]

























− 1

(A.22)

χ̄ = lim
k→∞

2 log
[

β
β+k+1

]α

log



























[

{β+2ρ(k+1)}β
{β+2(k+1)}{β+2(k+1)+2ρ(k+1)}

]α
[

1 + ϕ

(

1

− [ {β+ρ(k+1)}β
(β+k+1){β+2(k+1)+ρ(k+1)} ]

α

[ {β+ρ(k+1)}β
(β+k+1){β+k+1+ρ(k+1)} ]

α − [ {β+2ρ(k+1)}β
{β+2(k+1)}{β+k+1+2ρ(k+1)} ]

α

[ {β+ρ(k+1)}β
(β+k+1){β+k+1+ρ(k+1)} ]

α

+
[ {β+2ρ(y+1)}β
{β+2(k+1)}{β+2(k+1)+2ρ(k+1)} ]

α

[ {β+ρ(k+1)}β
(β+k+1){β+k+1+ρ(k+1)} ]

α

)]



























− 1

χ̄c = lim
k→∞

2 log
[

β
β+k+1

]α

log

[

[

{β+2ρ(k+1)}β
{β+2(k+1)}{β+2(k+1)+2ρ(y+1)}

]α
[

1 + ϕ

(

1− A− B + C

)]] − 1

where

A =

[

{β+ρ(k+1)}β
(β+k+1){β+2(k+1)+ρ(k+1)}

]α

[

{β+ρ(k+1)}β
(β+k+1){β+k+1+ρ(k+1)}

]α =

[ {β + k + 1 + ρ(k + 1)} {β + 2ρ(k + 1)}
{β + 2(k + 1) + ρ(k + 1)} {β + ρ(k + 1)}

]α
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B =

[

{β+2ρ(k+1)}β
{β+2(k+1)}{β+k+1+2ρ(k+1)}

]α

[

{β+ρ(k+1)}β
(β+k+1){β+k+1+ρ(k+1)}

]α

=

[ {β + (k + 1)} {β + k + 1 + ρ(k + 1)} {β + 2ρ(k + 1)}
{β + 2(k + 1)} {β + k + 1 + 2ρ(k + 1)} {β + ρ(k + 1)}

]α

C =

[

{β+2ρ(k+1)}β
{β+2(k+1)}{β+2(k+1)+2ρ(k+1)}

]α

[

{β+ρ(k+1)}β
(β+k+1){β+k+1+ρ(k+1)}

]α

=

[ {β + (k + 1)} {β + k + 1 + ρ(k + 1)} {β + 2ρ(k + 1)}
{β + 2(k + 1)} {β + 2(k + 1) + 2ρ(k + 1)} {β + ρ(k + 1)}

]α

χ̄ = lim
k→∞

2α [log(β)− log (β + k + 1)]

α log
[

β{β+ρ(k+1)}
{β+k+1}{β+k+1+ρ(k+1)}

]

+ log

{

1 + ϕ (1− A− B + C)

} − 1 (A.23)

= lim
k→∞

2α [log(β)− log (β + k + 1)]

α [log(β) + log {β + ρ(k + 1)} − log(β + k + 1)− log(β + k + 1 + ρx)] +D
− 1

(A.24)

where, D = log

{

1 + ϕ (1− A− B + C)

}

χ̄ = lim
k→∞

2α [log(β)− log (β + k + 1)]

α [log(β)− log(β + k + 1)] + α [log {β + ρ(k + 1)} − log {β + k + 1 + ρ(k + 1)}] +D
− 1

= lim
k→∞

2
((((((((((((((
α [log(β)− log (β + k + 1)]

((((((((((((((
α [log(β)− log(β + k + 1)]

[

1 + α[log{β+ρ(k+1)}−log{β+k+1+ρ(k+1)}]
α[log(β)−log(β+k+1)]

]

+ 1
α[log(β)−log(β+k+1)]

D
− 1

= lim
k→∞

2
[

1 + [log{β+ρ(k+1)}−log{β+k+1+ρ(k+1)}]
[log(β)−log(β+k+1)]

]

+ 1
α[log(β)−log(β+k+1)]

D
− 1

= 1

The limiting measure χ > 0 and |χ̄| = 1 show that the CGLM also allow the asymptotic

dependence between Y1 and Y2 over tail rather it may weak.

A.2.3 Kibble model

To derive the joint tail dependence measures χ and χ̄ for KM, we use the definitions

given in (A.16) and (A.18) with bivariate LT associated with KM. Thus, the limiting
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measure χ is

χ = lim
k→∞

L(2)(s1, s2)|(s1= k+1
β
,s2=

k+1
β

)

L(1)(s)|(s= k+1
β

)

= lim
k→∞

[

β2

(k+1+β)(k+1+β)−ρ{(k+1)(k+1)}

]α

[

β
β+k+1

]α

= lim
k→∞

[

(k + 1 + β)β

(k + 1 + β)(k + 1 + β)− ρ(k + 1)2

]α

= lim
k→∞





β

(k + 1 + β)
[

1− ρ(k+1)2

(k+1+β)2

]





α

= 0 (A.25)

and, the χ̄ is

χ̄ = lim
k→∞

2 logL(1)(s)|(s= k+1
β

)

logL(2)(s1, s2)|(s1= k+1
β
,s2=

k+1
β

)

− 1

= lim
k→∞

2 log
[

β
(k+1+β)

]α

log
[

β2

(k+1+β)2−ρ(k+1)2

]α − 1

= lim
k→∞

[

2 {log(β)− log(k + 1 + β)}
2 log(β)− log {(k + 1 + β)2 − ρ(k+1)2}

]

− 1

= lim
k→∞





2 log(β)− 2 log(k + 1 + β)

2 log(β)− log
[

(k + 1 + β)2
{

1− ρ(k+1)2

(k+1+β)2

}]



− 1

= lim
k→∞





2 log(β)− 2 log(k + 1 + β)

2 log(β)− 2 log(k + 1 + β)− log
{

1− ρ(k+1)2

(k+2)2

}



− 1

= lim
k→∞











2 log(β)− 2 log(k + 1 + β)

2 log(β)− 2 log(k + 1 + β)

[

1−
log

{

1−
ρ(k+1)2

(k+1+β)2

}

2 log(β)−2 log(k+1+β)

]











− 1

= lim
k→∞







1

1−
log

{

1−
ρ(k+1)2

(k+1+β)2

}

2 log(β)−2 log(k+1+β)






− 1

= 0 (A.26)

The limiting measures χ = χ̄ = 0 show no local clustering at an extreme level of Y1

and Y2 variables.
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A.2.4 Copula based Kibble model

To prove the asymptotic properties of χ and χ̄ associated with CWM, we use the

usual definition given in (A.19) and (A.22) with bivariate LT linked with WM. Thus,

the limiting measure χ is

χ = lim
k→∞

























[

β2

(k+1+β)2−ρ(k+1)2

]α

+ ϕ

[

[

β2

(k+1+β)2−ρ(k+1)2

]α

−
[

β2

(2k+2+β)(k+1+β)−2ρ(k+1)2

]α

−
[

β2

(k+1+β)(2k+2+β)−2ρ(k+1)2

]α

+
[

β2

(2k+2+β)2−4ρ(k+1)2

]α
]

























[

β
β+k+1

]α

χ = lim
k→∞

(A) + ϕ
[

lim
k→∞

(B)− lim
k→∞

(C)− lim
k→∞

(D) + lim
k→∞

(E)
]

(A.27)

Similar to WM, we would like to prove all limits of (A.27) as

lim
k→∞

(A) = lim
k→∞

(B) = lim
k→∞

[

β2

(k+1+β)2−ρ(k+1)2

]α

[

β
β+k+1

]α = 0

lim
k→∞

(C) = lim
k→∞

(D) = lim
k→∞

[

β2

(2k+2+β)(k+1+β)−2ρ(k+1)2

]α

[

β
β+k+1

]α = 0

lim
k→∞

(E) = lim
k→∞

[

β2

(2k+2+β)2−4ρ(k+1)2

]α

[

β
β+y+1

]α = 0

By putting all limits in (A.27), we get

χ = 0 (A.28)
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and χ̄ is

χ̄ = lim
k→∞

2 log
[

β
β+k+1

]α

log

























[

β2

(k+1+β)2−ρ(k+1)2

]α

+ ϕ

[

[

β2

(k+1+β)2−ρ(k+1)2

]α

−
[

β2

(2k+2+β)(k+1+β)−2ρ(k+1)2

]α

−
[

β2

(2k+2+β)(k+1+β)−2ρ(k+1)2

]α

+
[

β2

(2k+2+β)2−4ρ(k+1)2

]α
]

























− 1

(A.29)

χ̄ = lim
k→∞

2 log
[

β
β+k+1

]α

log





























[

β2

(k+1+β)2−ρ(k+1)2

]α
[

1 + ϕ

(

1

−
[

β2

(2k+2+β)(k+1+β)−2ρ(k+1)2

]α

[

β2

(k+1+β)2−ρ(k+1)2

]α −
[

β2

(2k+2+β)(k+1+β)−2ρ(k+1)2

]α

[

β2

(k+1+β)2−ρ(k+1)2

]α

+

[

β2

(2k+2+β)(k+1+β)−2ρ(k+1)2

]α

[

β2

(k+1+β)2−ρ(k+1)2

]α

)]





























− 1

χ̄ = lim
k→∞

2α log [log (β)− log (β + k + 1)]




























log
[

β2

(k+1+β)2−ρ(k+1)2

]α

+ log

[

1 + ϕ

(

1

−
[

β2

(2k+2+β)(k+1+β)−2ρ(k+1)2

]α

[

β2

(k+1+β)2−ρ(k+1)2

]α −
[

β2

(2k+2+β)(k+1+β)−2ρ(k+1)2

]α

[

β2

(k+1+β)2−ρ(k+1)2

]α

+

[

β2

(2k+2+β)(k+1+β)−2ρ(k+1)2

]α

[

β2

(k+1+β)2−ρ(k+1)2

]α

)]





























− 1

χ̄ = lim
k→∞

2α [log (β)− log (β + k + 1)]

log
[

β2

(k+1+β)2−ρ(k+1)2

]α

+D
− 1

= lim
k→∞

2α{log(β)− log(β + k + 1)}

2α{log(β)− log(β + k + 1)}
{

1−
log

(

1−
ρ(k+1)2

(β+k+1)2

)

2 log(β)−2 log(β+k+1)

}

+D

− 1

= lim
k→∞

(((((((((((((((

2α{log(β)− log(β + k + 1)}

(((((((((((((((

2α{log(β)− log(β + k + 1)}
[

{

1−
log

(

1−
ρ(k+1)2

(β+k+1)2

)

2 log(β)−2 log(β+k+1)

}

+ 1
2α{log(β)−log(β+k+1)}

D

]
− 1
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= lim
k→∞

1
[

{

1−
log

(

1−
ρ(k+1)2

(β+k+1)2

)

2 log(β)−2 log(β+k+1)

}

+ 1
2α{log(β)−log(β+k+1)}

D

]
− 1

=
1

[{

1− 0
}

+ 0
] − 1

= 0 (A.30)

Again, the limiting value of χ and χ̄ tend to zero, indicating no local clustering at the

extreme level of Y1 and Y2 variables when generated from CWM.

A.2.5 Thinned Gamma model

By using the usual definitions of χ and χ̄, we derive the asymptotic properties of tail

dependence measure χ and χ̄ correspond to TGM. Moreover, the limiting measure χ is

χ = lim
k→∞

L(2)(s1, s2)|(s1= k+1
β
,s2=

k+1
β

)

L(1)(s)|(s= k+1
β

)

= lim
k→∞

[

βα(2−ρ)

(β+k+1)2α(1−ρ)(β+2k+2)αρ

]

[

β
β+k+1

]α

= lim
k→∞

[

βα(2−ρ)(β + k + 1)α

βα(β + k + 1)2α(1−ρ){β + 2(k + 1)}αρ
]

= lim
k→∞

[

βα(1−ρ)

(β + k + 1)α(1−2ρ){β + 2(k + 1)}αρ
]

= 0

χ̄ = lim
k→∞

2 logL(1)(s)|(s= k+1
β

)

logL(2)(s1, s2)|(s1= k+1
β
,s2=

k+1
β

)

− 1

= lim
k→∞

2 log
[

β
β+k+1

]α

log
[

βα(2−ρ)

(β+k+1)2α(1−ρ)(β+2k+2)αρ

] − 1

= lim
k→∞

[

2α {log(β)− log(k + 1 + β)}
2α [log(β)− log(β + k + 1)]− αρ [log(β)− 2 log(β + k + 1) + log(β + 2k + 2)]

]

− 1

= lim
k→∞





 (((((((((((((((

2α [log(β)− log(k + 1 + β)]

(((((((((((((((

2α [log(β)− log(k + 1 + β)]
[

1− ρ[log(β)−2 log(β+k+1)+log(β+2k+2)]
2[log(β)−log(k+1+β)]

]






− 1

= lim
k→∞





1
[

1− ρ[log(β)−2 log(β+k+1)+log(β+2k+2)]
2[log(β)−log(k+1+β)]

]



− 1



Appendix 107

=
1

[

1− ρ[0−2+0+1+0]
2(0−1−0)

] − 1

=
ρ

2− ρ
(A.31)

We conclude on the basis of χ and χ̄ that the Y1 and Y2 variables are asymptotically

independent when generated from TGM. A larger value of ρ in χ̄ may lead to stronger

dependence.

A.2.6 Copula-based Thinned Gamma model

To prove the asymptotic properties of χ and χ̄ associated with CTGM, we use the

usual definition given in (A.19) and (A.22) with bivariate LT linked with CTGM. Thus,

the limiting measure χ is

χ = lim
k→∞

























[

βα(2−ρ)

(β+k+1)2α(1−ρ)(β+2k+2)αρ

]

+ ϕ

[

[

βα(2−ρ)

(β+k+1)2α(1−ρ)(β+2k+2)αρ

]

− 2
[

β2α−αρ

(β+2k+2)α−αρ(β+k+1)α−αρ(β+3k+3)αρ

]

+
[

β2α−αρ

(β+2k+2)2α−2αρ(β+4k+4)αρ

]

]

























[

β
β+k+1

]α

χ = lim
k→∞

(A) + ϕ
[

lim
k→∞

(B)− 2 lim
k→∞

(C) + lim
k→∞

(D)
]

(A.32)

Similar to TGM, we would like to prove all limit of (A.32) separately

lim
k→∞

(A) = lim
k→∞

(B) = lim
k→∞

[

β2α−αρ

(β+k+1)2α−2αρ(β+2k+2)αρ

]

[

β
β+k+1

]α = 0

lim
k→∞

(C) = lim
k→∞

[

β2α−αρ

(β+2k+2)α−αρ(β+k+1)α−αρ(β+3k+3)αρ

]

[

β
β+k+1

]α = 0

lim
k→∞

(D) = lim
k→∞

[

β2α−αρ

(β+2k+2)2α−2αρ(β+4k+4)αρ

]

[

β
β+k+1

]α = 0

By incorporating all the limits in (A.32), we get

χ = 0 (A.33)
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and χ̄ is

χ̄ = lim
k→∞

2 log
[

β
β+k+1

]α

log

























[

βα(2−ρ)

(β+k+1)2α(1−ρ)(β+2k+2)αρ

]

+ ϕ

[

[

βα(2−ρ)

(β+k+1)2α(1−ρ)(β+2k+2)αρ

]

− 2
[

β2α−αρ

(β+2k+2)α−αρ(β+k+1)α−αρ(β+3k+3)αρ

]

+
[

β2α−αρ

(β+2k+2)2α−2αρ(β+4k+4)αρ

]

]

























− 1

= lim
k→∞

2 log
[

β
β+k+1

]α

log





























[

βα(2−ρ)

(β+k+1)2α(1−ρ)(β+2k+2)αρ

]

[

1 + ϕ

(

1

−
2
[

β2α−αρ

(β+2k+2)α−αρ(β+k+1)α−αρ(β+3k+3)αρ

]

[

βα(2−ρ)

(β+k+1)2α(1−ρ)(β+2k+2)αρ

]

+

[

β2α−αρ

(β+2k+2)2α−2αρ(β+4k+4)αρ

]

[

βα(2−ρ)

(β+k+1)2α(1−ρ)(β+2k+2)αρ

]

)]





























− 1

= lim
k→∞

2 log
[

β
β+k+1

]α





























log
[

βα(2−ρ)

(β+k+1)2α(1−ρ)(β+2k+2)αρ

]

+ log

[

1 + ϕ

(

1

−
2
[

β2α−αρ

(β+2k+2)α−αρ(β+k+1)α−αρ(β+3k+3)αρ

]

[

βα(2−ρ)

(β+k+1)2α(1−ρ)(β+2k+2)αρ

]

+

[

β2α−αρ

(β+2k+2)2α−2αρ(β+4k+4)αρ

]

[

βα(2−ρ)

(β+k+1)2α(1−ρ)(β+2k+2)αρ

]

)]





























− 1

= lim
k→∞

2α [log(β)− log (β + k + 1)]

2α [log(β)− log(β + k + 1)] + αρ [2 log(β + k + 1)− log(β)− log(β + 2k + 2)] +D
− 1

= lim
k→∞

1

1 + αρ[2 log(β+k+1)−log(β)−log(β+2k+2)]
2α[log(β)−log(β+k+1)]

+ 1
2α[log(β)−log(β+k+1)]

D
− 1

=
1

1− ρ
2
+ 0

− 1

=
ρ

2− ρ
(A.34)

The limiting value of χ = 0 and χ̄ = ρ/2− ρ show that the Y1 and Y2 variables are

asymptotically independent when generated from CTGM. A larger value of ρ in χ̄ may

lead to dependence.
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A.2.7 Complete dependence model

To evaluate the dependence between the exceedances of Y1 and Y2 variables, we opt

usual definition for χ and χ̄ found in Coles et al. (1999). To obtain the limiting measure

χ for CDM, we solve (A.16) by incorporating LTs of Gamma distribution corresponding

to CDM. That is, the limiting measure χ is

χ = lim
k→∞

L(1)(s)|(s= k+1+k+1
β

)

L(1)(s)|(s= k+1
β

)

= lim
k→∞

[

β
2k+2+β

]α

[

β
β+k+1

]α

=

[

1

2

]α

(A.35)

and the χ̄ is

χ̄ = lim
k→∞

2 logL(1)(s)|(s= k+1
β

)

logL(1)(s)|(s= k+1+k+1
β

)

− 1

= lim
k→∞

2 log
[

β
(k+1+β)

]α

log
[

β
(2k+2+β)

]α − 1

= lim
k→∞

2 [log(β)− log(k + 1 + β)]

log(β)− log(2k + 2 + β)
− 1

= lim
k→∞

2
[

log(β)
log(k)

− 1− 1
log(k)

log(1 + 1
k
+ β

k
)
]

[

log(β)
log(k)

− 1− 1
log(k)

log(2 + 2
k
+ β

k
)
] − 1

= 2− 1 = 1 (A.36)

The positive limit of χ = [ρ/1 + ρ]α and χ̄ = 1 indicate that the discrete random

variables (Y1 and Y2) are said to be asymptotically dependent when one work with

GLM.
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A.2.8 Copula-based complete dependence model

Again, we use the usual definition of the limiting measure χ and χ̄ to prove the

asymptotic properties of tail dependence for CCDM. Thus, the copula-based tail depen-

dence measure for CCDM is

χ = lim
k→∞













[

β
2k+2+β

]α

+ ϕ

[

[

β
2k+2+β

]α

−
[

β
3k+3+β

]α

−
[

β
3k+3+β

]α

+
[

β
4k+4+β

]α
]













[

β
β+k+1

]α

= A+ ϕ [B − 2C +D] (A.37)

where,

lim
k→∞

(A) = lim
k→∞

[

β
2k+2+β

]α

[

β
β+k+1

]α =

[

1

2

]α

= lim
k→∞

(B)

lim
k→∞

(C) = lim
k→∞

[

β
3k+3+β

]α

[

β
β+k+1

]α =

[

1

3

]α

lim
k→∞

(C) = lim
k→∞

[

β
4k+4+β

]α

[

β
β+k+1

]α =

[

1

4

]α

χ =

(

1

2

)α

+ ϕ

[

(

1

2

)α

− 2

(

1

3

)α

+

(

1

4

)α
]

(A.38)

and, the χ̄ is

χ̄ = lim
k→∞

2 log
[

β
β+k+1

]α













log
[

β
2k+2+β

]α

+ ϕ

[

[

β
2k+2+β

]α

−
[

β
3k+3+β

]α

−
[

β
3k+3+β

]α

+
[

β
4k+4+β

]α
]













− 1
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= lim
k→∞

α [2 log(β)− 2 log(β + k + 1)]












log
[

β
2k+2+β

]α

+ log

[

1 + ϕ

{

1− [ β
3k+3+β ]

α

[ β
2k+2+β ]

α − [ β
3k+3+β ]

α

[ β
2k+2+β ]

α

+
[ β
4k+4+β ]

α

[ β
2k+2+β ]

α

}]













− 1

= lim
k→∞

α [2 log(β)− 2 log(β + k + 1)]












α log(β)− α log(2k + 2 + β) + log

[

1 + ϕ

{

1− 2
[

2k+2+β
3k+3+β

]α

+
[

2k+2+β
4k+4+β

]α
}]













− 1

= lim
k→∞

[

2 log(β)− 2 log(k)− 2 log(β
k
+ 1 + 1

k
)
]













log(β)− log(k)− log(2 + 2
k
+ β

k
) + 1

α
log

[

1 + ϕ

{

1− 2
[

2k+2+β
3k+3+β

]α

+
[

2k+2+β
4k+4+β

]α
}]













− 1

χ̄ = lim
k→∞

log(k)
[

2 log(β)
log(k)

− 2− 2 log(β
k
+1+ 1

k
)

log(k)

]

log(k)
[

log(β)
log(k)

− 1− log(2+ 2
k
+β

k
)

log(k)
+ 1

log(k)
D
] − 1 =

0− 2− 0

0− 1− 0 + 0
− 1 = 1(A.39)

where D = 1
α

[

1 + ϕ
{

1− 22k+2+β
3k+3+β

+ 2k+2+β
4k+4+β

}]

. The limiting measure χ > 0 and χ̄ = 1

indicate that the CCDM has asymptotic dependent behavior.
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Appendix B

B.1 Maximum likelihood procedure of DEGPD

(i) The PMF of DEGPD corresponding to G(u;ψ) = uκ, ψ = κ > 0 is written as

P (Y = k) =

[

{

1−
(

1 +
ξ(n+ 1)

σ

)− 1
ξ
}κ

−
{

1−
(

1 +
ξn

σ

)− 1
ξ
}κ
]

(B.1)

The log-likelihood function is defined as

l(κ, σ, ξ) =
n
∑

j=1

log

[

{

1−
(

1 +
ξ(kj + 1)

σ

)− 1
ξ
}κ

−
{

1−
(

1 +
ξ(kj)

σ

)− 1
ξ
}κ
]

(B.2)

(ii) First, we need to define the PMF based on

G(u;ψ) = 1−Dδ{(1− u)δ}, ψ = δ > 0

where Dδ is CDF of beta distribution with parameters 1/δ and 2. By definition

H(x) = G
{

Fξ

(x

σ

)}

where Fξ(.) is the CDF of GPD. So,

H(x) = 1−Dδ

[

{

1− Fξ

(x

σ

)}δ
]

H(x) = 1−Dδ

[

{

F̄ξ

(x

σ

)}δ
]

(B.3)
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We solve, Dδ

[

{

F̄ξ
(

x
σ

)}δ
]

= Dδ [z], where z =
{

F̄ξ
(

x
σ

)}δ

The CDF of beta distribution with above specific parameters (i.e.,1/δ and 2) is written

as

Dδ(z, 1/δ, 2) =
B(z, 1/δ, 2)

B(1/δ, 2)
(B.4)

After solving the Beta functions, we get

H(x) = 1 +
1

δ

[

F̄ξ

(x

σ

)]δ+1

− δ + 1

δ

[

F̄ξ

(x

σ

)]

The PMF of DEGPD corresponding to G(u;ψ) = 1−Dδ{(1− u)δ} is written as

P (Y = k) =
1

δ

{

(

1 +
ξ(k + 1)

σ

)− 1
ξ

}δ+1

− δ + 1

δ

{

(

1 +
ξ(k + 1)

σ

)− 1
ξ

}

− 1

δ

{

(

1 +
ξk

σ

)− 1
ξ

}δ+1

+
δ + 1

δ

{

(

1 +
ξk

σ

)− 1
ξ

}

(B.5)

The log likelihood function is defined as

l(δ, σ, ξ) =
n
∑

j=1

log

[

1

δ

{

(

1 +
ξ(kj + 1)

σ

)− 1
ξ

}δ+1

− δ + 1

δ

{

(

1 +
ξ(kj + 1)

σ

)− 1
ξ

}

− 1

δ

{

(

1 +
ξkj
σ

)− 1
ξ

}δ+1

+
δ + 1

δ

{

(

1 +
ξkj
σ

)− 1
ξ

}]

(B.6)

(iii) Similar to model (ii), the CDF of EGPD corresponding to

G(u;ψ) =
[

1−Dδ{(1− u)δ}
]κ/2

;ψ = (δ, κ) > 0

is written as

H(x) =

[

Fξ

(x

σ

)

+
1

δ

[

F̄ξ

(x

σ

)]δ+1

− 1

δ

[

F̄ξ

(x

σ

)]

]κ
2

The PMF of DEGPD corresponding to G(u;ψ) =
[

1−Dδ{(1− u)δ}
]κ/2

can be written

as

P (Y = k) =

[

1−
(

1 +
ξ(k + 1)

σ

)− 1
ξ

+
1

δ

{

(

1 +
ξ(k + 1)

σ

)− 1
ξ

}δ+1
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− 1

δ

{

(

1 +
ξ(k + 1)

σ

)− 1
ξ

}]κ
2

−



1−
(

1 +
ξk

σ

)− 1
ξ

+
1

δ

{

(

1 +
ξk

σ

)− 1
ξ

}δ+1

− 1

δ

{

(

1 +
ξk

σ

)− 1
ξ

}





κ
2

(B.7)

The log likelihood function is defined as

l(κ, δ, σ, ξ) =
n
∑

j=1

log

[[

1−
(

1 +
ξ(kj + 1)

σ

)− 1
ξ

+
1

δ

{

(

1 +
ξ(kj + 1)

σ

)− 1
ξ

}δ+1

− 1

δ

{

(

1 +
ξ(kj + 1)

σ

)− 1
ξ

}]κ
2

−
[

1−
(

1 +
ξkj
σ

)− 1
ξ

+
1

δ

{

(

1 +
ξkj
σ

)− 1
ξ

}δ+1

− 1

δ

{

(

1 +
ξkj
σ

)− 1
ξ

}]κ
2
]

(B.8)

(iv) The PMF corresponding to G(u;ψ) = puκ1 + (1 − p)uκ2 , ψ = (p, κ1, κ2) > 0 with

κ1 ≤ κ2 is written as

P (Y = k) = p

[{

1−
(

1 +
ξ(k + 1)

σ

)− 1
ξ

}κ1

−
{

1−
(

1 +
ξk

σ

)− 1
ξ

}κ1]

+ (1− p)

[{

1−
(

1 +
ξ(k + 1)

σ

)− 1
ξ

}κ2

−
{

1−
(

1 +
ξk

σ

)− 1
ξ

}κ2]

(B.9)

The likelihood function is defined as

l(p, κ1, κ2, σ, ξ) =
n
∑

j=1

log

[

p

[{

1−
(

1 +
ξ(kj + 1)

σ

)− 1
ξ

}κ1

−
{

1−
(

1 +
ξkj
σ

)− 1
ξ

}κ1]

+ (1− p)

[{

1−
(

1 +
ξ(kj + 1)

σ

)− 1
ξ

}κ2

−
{

1−
(

1 +
ξkj
σ

)− 1
ξ

}κ2]]

(B.10)

To find the estimates of unknown parameters of above model, we solve the derivatives

of log likelihood function of model (i), (ii), (iii) and (iv) numerically.
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B.2 Maximum likelihood procedure of ZIDEGPD

(i) The PMF of ZIDEGPD based on G(u;ψ) = uκ, ψ = κ > 0 is written as

P (Z = m) =











π + (1− π)
[

1−
(

1 + ξ
σ

)− 1
ξ

]κ

, m = 0

(1− π)

[{

1−
(

1 + ξ(m+1)
σ

)− 1
ξ

}κ

−
{

1−
(

1 + ξ(m)
σ

)− 1
ξ

}κ]

, m > 0

(B.11)

Thus, the likelihood function is defined as

L(θ) =

[

π + (1− π)G

{

Fξ

(

1

σ

)}]r n
∏

j=1;mj ̸=0

(1−π)
[

G

{

Fξ

(

mj + 1

σ

)}

−G
{

Fξ

(mj

σ

)}

]

(B.12)

The log likelihood function is

l(π, κ, σ, ξ) = r log

[

π + (1− π)

{

1−
(

1 +
ξ

σ

)− 1
ξ

}κ]

+ (n− r) log(1− π)

+
n
∑

j=1

log

[

{

1−
(

1 +
ξ(mj + 1)

σ

)− 1
ξ
}κ

−
{

1−
(

1 +
ξ(mj)

σ

)− 1
ξ
}κ
]

(B.13)

(ii) The PMF of ZIDEGPD obtained via G(u;ψ) = 1−Dδ{(1−u)δ}, ψ = δ > 0

P (Z = m) =







































π + (1− π)

[

1
δ

{

(

1 + ξ
σ

)− 1
ξ

}δ+1

− δ+1
δ

{

(

1 + ξ
σ

)− 1
ξ

}

+ 1

]

, m = 0

(1− π)

[

1
δ

{

(

1 + ξ(m+1)
σ

)− 1
ξ

}δ+1

− δ+1
δ

{

(

1 + ξ(m+1)
σ

)− 1
ξ

}

−1
δ

{

(

1 + ξm
σ

)− 1
ξ

}δ+1

+ δ+1
δ

{

(

1 + ξm
σ

)− 1
ξ

}

]

, m > 0

(B.14)

The log-likelihood function is defined as

l(π, δ, σ, ξ) = r log



π + (1− π)





1

δ

{

(

1 +
ξ

σ

)− 1
ξ

}δ+1

− δ + 1

δ

{

(

1 +
ξ

σ

)− 1
ξ

}

+ 1









+ (n− r) log(1− π) +
n
∑

j=1

log

[

1

δ

{

(

1 +
ξ(mj + 1)

σ

)− 1
ξ

}δ+1

− δ + 1

δ

{

(

1 +
ξ(mj + 1)

σ

)− 1
ξ

}

− 1

δ

{

(

1 +
ξmj

σ

)− 1
ξ

}δ+1

+
δ + 1

δ

{

(

1 +
ξmj

σ

)− 1
ξ

}]

(B.15)
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(iii) The PMF of ZIDEGPD corresponding to G(u;ψ) =
[

1−Dδ{(1− u)δ}
]κ/2

;ψ =

(δ, κ) > 0 is

P (Z = m) =



















































π + (1− π)





[

1−
(

1 + ξ
σ

)− 1
ξ
+ 1

δ

{

(

1 + ξ
σ

)− 1
ξ

}δ+1

− 1
δ

{

(

1 + ξ
σ

)− 1
ξ

}

]κ
2



 , m = 0

(1− π)

[[

1−
(

1 + ξ(m+1)
σ

)− 1
ξ
+ 1

δ

{

(

1 + ξ(m+1)
σ

)− 1
ξ

}δ+1

− 1
δ

{

(

1 + ξ(m+1)
σ

)− 1
ξ

}

]κ
2

−
[

1−
(

1 + ξm
σ

)− 1
ξ
+ 1

δ

{

(

1 + ξm
σ

)− 1
ξ

}δ+1

− 1
δ

{

(

1 + ξm
σ

)− 1
ξ

}

]κ
2
]

, m > 0

(B.16)

The log-likelihood function is defined as

l(π, κ, δ, σ, ξ) = r log

[

π+(1−π)









1−
(

1 +
ξ

σ

)− 1
ξ

+
1

δ

{

(

1 +
ξ

σ

)− 1
ξ

}δ+1

− 1

δ

{

(

1 +
ξ

σ

)− 1
ξ

}





κ
2







]

+ (n− r) log(1− π) +

n
∑

j=1

log

[[

1−
(

1 +
ξ(mj + 1)

σ

)− 1
ξ

+
1

δ

{

(

1 +
ξ(mj + 1)

σ

)− 1
ξ

}δ+1

− 1

δ

{

(

1 +
ξ(mj + 1)

σ

)− 1
ξ

}]κ
2

−
[

1−
(

1 +
ξmj

σ

)− 1
ξ

+
1

δ

{

(

1 +
ξmj

σ

)− 1
ξ

}δ+1

− 1

δ

{

(

1 +
ξmj

σ

)− 1
ξ

}]κ
2
]

(B.17)

(iv) The PMF of ZIDGPD corresponding to G(u;ψ) = puκ1 + (1− p)uκ2 , ψ = (p, κ1, κ2) > 0

is

P (Z = m) =







































π + (1− π)

[

p

{

1−
(

1 + ξ
σ

)− 1
ξ

}κ1

+ (1− p)

[{

1−
(

1 + ξ
σ

)− 1
ξ

}κ2]]

, m = 0

(1− π)

[

p

[{

1−
(

1 + ξ(m+1)
σ

)− 1
ξ

}κ1

−
{

1−
(

1 + ξm
σ

)− 1
ξ

}κ1]

+(1− p)

[{

1−
(

1 + ξ(m+1)
σ

)− 1
ξ

}κ2

−
{

1−
(

1 + ξm
σ

)− 1
ξ

}κ2]
]

, x > 0

(B.18)

The likelihood function is defined as

l(π, p, κ1, κ2, σ, ξ) = r log

[

π+(1−π)
[

p

{

1−
(

1 +
ξ

σ

)− 1
ξ

}κ1

+ (1− p)

[{

1−
(

1 +
ξ

σ

)− 1
ξ

}κ2]]]

+ (n− r) log(1− π) +
n
∑

j=1

log

[

p

[{

1−
(

1 +
ξ(mj + 1)

σ

)− 1
ξ

}κ1

−
{

1−
(

1 +
ξmj

σ

)− 1
ξ

}κ1]
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+ (1− p)

[{

1−
(

1 +
ξ(mj + 1)

σ

)− 1
ξ

}κ2

−
{

1−
(

1 +
ξmj

σ

)− 1
ξ

}κ2]]

(B.19)

Similar to DEGPD, the unknown parameters of ZIDEGPD models, we solve the derivatives

of log likelihood function of model (i), (ii), (iii) and (iv) numerically.

Table S1: Root mean square errors of parameter estimates ZIDEGPD found from
104 independent data sets of size n = 1000.

Model type (i) G(u;ψ) = uκ

π κ σ ξ − −
TRUE RMSE TRUE RMSE TRUE RMSE TRUE RMSE TRUE RMSE TRUE RMSE

0.2 0.04 5 3.00 1 0.28 0.2 0.06

0.2 0.01 10 3.19 1 0.20 0.2 0.04

0.5 0.03 5 3.83 1 0.34 0.2 0.07

0.5 0.02 10 3.97 1 0.25 0.2 0.05

Model type (ii) G(u;ψ) = 1−Dδ{(1− u)δ}
π δ σ ξ − −

0.2 0.09 1 4.18 1 0.22 0.20 0.06

0.2 0.10 5 3.08 1 0.17 0.20 0.06

0.5 0.06 1 4.10 1 0.20 0.20 0.07

0.5 0.09 5 1.72 1 0.20 0.20 0.08

Model type (iii) G(u;ψ) =
[

1−Dδ{(1− u)δ}
]κ/2

π κ δ σ ξ −
0.2 0.03 5 6.09 1 1.90 1 0.29 0.20 0.05

0.2 0.02 10 4.20 5 4.10 1 0.27 0.20 0.05

0.5 0.03 5 4.49 1 1.63 1 0.38 0.20 0.07

0.5 0.02 10 5.41 5 4.80 1 0.34 0.20 0.07

Model type (iv) G(u;ψ) = puκ1 + (1− p)uκ2

π p κ1 κ2 σ ξ

0.2 0.14 0.5 0.29 1 4.03 5 4.16 1 0.34 0.20 0.07

0.2 0.07 0.5 0.30 5 2.24 10 9.40 1 0.25 0.20 0.05

0.5 0.23 0.5 0.35 1 0.66 5 2.14 1 0.37 0.20 0.08

0.5 0.09 0.5 0.33 5 2.33 10 7.64 1 0.27 0.2 0.06
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Table S2: Estimated coefficients and smooth terms for GAM form ZIDEGPD models
fitted to Avalanches data of Haute-Maurienne massif of French Alps

Model type (i) G(u;ψ) = uκ

** Parametric terms **

Parameter (intercept) Estimate Std.Error t value P-value

log(κ) -1.83 0.06 -32.25 <2e-16

log(σ) 0.2 0.1 1.99 0.0232

log(ξ) -0.53 0.08 -6.84 4.04e-12

logit(π) -52.06 0.09 -16.84 6.02e-13

** Smooth terms **

log(σ) edf max.df Chi.sq Pr(> |t|)
s(WS) 1.02 4 23.56 1.29e-06

s(MxT) 3.99 4 652.73 <2e-16

s(PREC) 1.00 4 36.41 1.6e-09

s(RH) 4.19 9 70.35 7.59e-14

Model type (ii) G(u;ψ) = 1− Fδ{(1− u)δ}
** Parametric terms **

Parameter (intercept) Estimate Std.Error t value P-value

log(δ) 4.67 599.22 0.01 0.497

log(σ) -0.73 0.08 -8.92 <2e-16

log(ξ) -0.3 0.05 -6.17 3.44e-10

logit(π) 0.48 9.04 0.05 0.479

** Smooth terms **

log(σ)

s(WS) 1.71 4 22.34 1.3e-05

s(MxT) 2.54 4 692.76 <2e-16

s(PREC) 1.03 4 33.96 7.51e-09

s(RH) 5.50 9 85.89 3.46e-16

Cont...
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Table S2 : (Cont...) Estimated coefficients and smooth terms for GAM form
ZIDEGPD models fitted to Avalanches data of Haute-Maurienne massif of French
Alps

Model type (iii) G(u;ψ) =
[

1−Dδ{(1− u)δ}
]κ/2

** Parametric terms **

Parameter (intercept) Estimate Std.Error t value P-value

log(κ) -1.23 0.21 -5.96 1.27e-09

log(δ) 2.1 0.43 4.86 5.83e-07

log(σ) 0.52 0.01 37.92 <2e-16

log(ξ) -0.65 0.07 -9.43 <2e-16

logit(π) -0.96 0.59 -1.62 0.0528

** Smooth terms **

log(σ)

s(WS) 1.00 4 610.20 <2e-16

s(MxT) 3.95 4 11340.79 <2e-16

s(PREC) 1.01 4 792.57 <2e-16

s(RH) 7.89 9 1701.40 <2e-16
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