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OVERVIEW AND AIMS

Depression is among the most common and burdensome conditions experienced
worldwide. The development of preventative treatments for depression is partly hindered by
an inadequate understanding of the underlying mechanisms involved in its onset and
maintenance. Recently, to better understand mechanisms underlying psychopathological
conditions researchers are beginning to examine dimensions of functioning rather than
diagnostic categories that include heterogenous clusters of symptoms. A dimensional
framework is provided by the Research Domain Criteria (RDoC) project, which aims at linking
biological and physiological mechanisms to clinical phenomena to generate empirically
derived, psychobiological markers of psychopathology. Although depression is increasingly
being linked with every RDoC domain, some of them have unique relevance in understanding
this condition. Firstly, anhedonia, a core symptom of depression, is linked to the hypoactivation
of the approach-related motivational system, which is reflected in the Positive Valence System
(PVS) of the RDoC. A promising line of research has linked low PVS functioning (i.e., reduced
reactivity to pleasant/rewarding cues) with the development of depression. Secondly, recent
evidence suggests that depression is linked to reduced reactivity to unpleasant and threatening
stimuli, indicating a reduced functioning of the Negative Valence System (NVS) of the RDoC.
Finally, in addition to affective symptoms, reduced cognitive control, which can be considered
within the Cognitive Systems of the RDoC, has been widely reported in individuals with
depression. However, although some studies reported reduced cognitive control in affective
contexts, it remains unclear how the PVS and NVS interact with the Cognitive Systems in
depression.

In the “RDoC era”, psychophysiological models have an important role in the
reconceptualization of mental disorders and their vulnerability. Indeed, psychophysiological

studies have highly contributed to the development and refinement of each RDoC dimension



for numerous psychopathological conditions. Psychophysiological models cover multiple
levels of analysis of RDoC constructs. This dissertation explored the PVS, NVS, and Cognitive
Systems of the RDoC in subclinical and clinical depression using a psychophysiological
approach.

Study 1 aimed at simultaneously examining electrocortical correlates of affective
disposition and cognitive processing during the viewing of pleasant, neutral, and unpleasant
images in a group of young adults with dysphoria (i.e., subclinical depression) relative to a
control group. The Late Positive Potential (LPP) was examined as a measure of sustained
processing of motivationally salient stimuli. In addition, Study 1 employed advanced time-
frequency analyses of electroencephalographic (EEG) data that allowed disentangling the
brain’s parallel processing of information, namely affective and cognitive processing of
emotional stimuli. Particularly, time-frequency event-related changes were examined, whereby
affective disposition was indexed by delta and alpha power, while theta power was employed
as a correlate of cognitive elaboration of the stimuli. Cluster-based statistics revealed reduced
LPP to pleasant and neutral images in dysphoria relative to the control group. In addition, a
centro-parietal reduction in delta power emerged for pleasant stimuli in individuals with
dysphoria than controls. Also, dysphoria was characterized by an early fronto-central increase
in theta power for unpleasant stimuli relative to neutral and pleasant. Instead, controls were
characterized by a late fronto-central and occipital reduction in theta power for unpleasant
stimuli relative to neutral and pleasant. The present study granted novel insights into the
interrelated facets of affective elaboration in dysphoria, mainly characterized by a
hypoactivation of the approach-related motivational system and a sustained facilitated
cognitive processing of unpleasant stimuli. In terms of the RDoC dimensions, these results
suggest a reduced functioning of the PVS as well as a potential interaction between the NVS

and the Cognitive Systems in conferring depression risk. Regarding PVS functioning, further



path model analyses showed that the observed reduced time-frequency delta power to pleasant
images in dysphoria is mediated by anhedonia symptoms. These results further support the
hypothesis that delta activity reflects the activation of approach motivation.

Study 2 aimed at extending the findings on the PVS in a group of adults with clinical
depression. Particularly, the present study aimed at analyzing time-frequency delta power in
full-blown clinical depression during the viewing of pleasant and neutral pictures and at
investigating whether the combination of time-domain (LPP) and time-frequency delta would
explain additional variance in the depression status. The LPP of this sample was previously
computed and reported, and participants with depression showed reduced LPP to pleasant
images relative to controls. Cluster-based statistics revealed a centro-parietal increase in delta
power to pleasant relative to neutral pictures in the control group but not within the depression
group. Moreover, a fronto-centro-parietal reduction in delta power to pleasant pictures emerged
in depression relative to controls. Both a smaller LPP and delta power to pleasant pictures were
independently related to depression status. These data suggest that delta power might be a
promising electrocortical correlate of reduced approach-related motivation and PVS
functioning in clinical depression. Additionally, a blunted delta and LPP might reflect unique
processes related to clinical depression and a combination of these measures can be leveraged
together to enhance clinical utility.

Study 3 aimed at exploring whether and how the PVS and NVS influence the ability
to exert cognitive control in individuals with depressive symptoms. In this study, a non-
emotional (“cold”) and emotional (“/of”) task-switching paradigm has been designed to
investigate whether individuals with greater depressive symptoms show a general cognitive
control difficulty or a specific deficit in affective conditions. This was a behavioral study
conducted online during the pandemic and participants (N = 82 young adults) were not divided

into groups based on their depressive state, but depressive symptoms were considered along a
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continuum. Depressive symptoms were linked to greater difficulties in exerting cognitive
control in complex situations (mixed-task blocks) compared to simple and semiautomatic
situations (single-task blocks) in both task versions. Moreover, greater depressive symptoms
were associated with longer latencies in the emotional version of the task across all trial types.
Thus, the emotion-specific effect was not modulated by the degree of cognitive control required
to perform the task and was also not influenced by the emotional category (pleasant,
unpleasant). In sum, depressive symptoms were characterized by a general difficulty to exert
cognitive control in both emotional and non-emotional contexts and by greater difficulty in
even simple attentional processing of emotional material. This study granted novel insights
into the extent of Cognitive Systems functioning and the influence of affective domains (PVS
and NVS).

Together, by employing distinct EEG and behavioral measures to tackle several RDoC
domains, these studies extend our knowledge of mechanisms linked to depression and its
vulnerability, indicating that dysfunctions in multiple RDoC dimensions are involved in
subclinical and clinical depression. Ultimately, these findings may contribute to an improved

ability to identify and prevent this often chronic and burdensome condition.

Keywords: Depression; Research Domain Criteria; EEG; time-frequency
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Theoretical background
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CHAPTER 1

AFFECT AND COGNITION IN DEPRESSION

1.1 Depression: Definition and Epidemiology

Major depressive disorder (MDD) is a mood disorder that affects psychological and
physiological functioning causing an elevated functional impairment and represents a leading
cause of disease burden worldwide (WHO, 2017). MDD represents the world’s most prevalent
and burdensome form of psychopathology (Kessler & Bromet, 2013). The World Health
Organization estimated that in 2015 about 4.4% of the population was affected by MDD
(WHO, 2017), while in Italy, about 10% of the population has experienced at least one
depressive episode in their lifetime (Battaglia et al., 2004). During the COVID-19 pandemic,
a prevalence of 25% of depression was estimated, highlighting the need to further address this
mental health crisis (Bueno-Notivol et al., 2021). Notably, there are important gender
differences in the prevalence of MDD, whereby women are two times more likely to develop
the disorder compared to men and this discrepancy is stable across different areas of the world

(Figure 1.1).
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Figure 1.1. Prevalence of depression based on gender across different countries of the world recorded
between 1990 and 2017. The representation was based on data from the Institute for Health Metrics and
Evaluation e del Global Burden of Disease Study (Our World in Data, 2017).

Depression severely affects both psychological and physiological functioning and was
defined as a leading cause of disease burden worldwide in 2010, with an increase of 37.5% as
compared to 1990 (Ferrari et al., 2013). Today, depression remains the leading cause of
disability globally (WHO, 2017). Notably, MDD is a highly recurrent condition, and each
depressive episode severely increases the likelihood that individuals will develop a subsequent
episode (Solomon et al., 2000). Indeed, up to 35% of individuals experience a further MDD
episode within the first year of recovery (Hardeveld et al., 2010) and the rate of recurrence
increases to 85% over the course of the 15 years following recovery (Mueller et al., 1999).
Moreover, from a socioeconomic perspective, MDD is among the costliest disorders in Europe,
and this makes the study of depression of interest for the entire society (Wittchen et al., 2010).

Given the devastating human and economic toll of depression, numerous researchers
have dedicated their careers to developing successful treatments (Gitlin, 2009; Hollon &
Dimidjian, 2009). Psychological (e.g., cognitive, behavioral), pharmacological, and
neuroscientific (e.g., electroconvulsive therapy, transcranial magnetic stimulation) protocols
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(Dimidjian et al., 2011; MacKenzie & Kocovski, 2016; Yadollahpour et al., 2016; Trambaiolli
et al., 2021) are often useful to diminish depressive symptoms but many people do not fully
recover or do not respond to treatment at all (Cristea et al., 2015; Cuijpers et al., 2010). Given
the pervasive nature of MDD and the inconsistent evidence on treatment success, some
researchers have focused on the prevention of this disorder, and findings have been promising
but rather mixed (Horowitz & Garber, 2006). Efforts to advance effective prevention and
treatment strategies might be hindered by our relatively limited understanding of mechanisms
implicated in developing and maintaining depression.

Depressive symptoms include depressive mood, anhedonia, appetite changes, sleep
disturbances, psychomotor retardation or agitation, lack of energy, excessive guilt and
worthlessness, poor concentration, and suicidal thoughts. According to the Diagnostic and
Statistical Manual of Mental Disorders, 5th edition (DSM-5), MDD is defined by the presence
of five or more of these symptoms, one of which must be a depressed mood or anhedonia
causing social or occupational impairment. With these criteria, there are 227 possible
combinations of symptoms for an MDD diagnosis (Zimmerman et al., 2015). Therefore, there

are numerous pathways and risk factors that lead to the development of depression.

1.1.1 Mapping Depression and its risk onto the Research Domain Criteria’

Given the pervasive nature of depression, improving the early identification of
depression risk, and developing strategies to prevent the onset of full-blown depression is a
core priority (Wahlbeck & Mikinen, 2008). For prevention efforts to succeed, it is necessary
to identify people at risk early and, ideally, before they become ill. Studying individuals who

currently have depression prevents assumptions about whether the observed conditions

! Part of this section has been written for a review article accepted for publication: Dell’Acqua C.,
Palomba, D., Patron, E., Messerotti Benvenuti, S. Rethinking the risk for depression using the RDoC:
a psychophysiological perspective. Accepted for publication in Frontiers in Psychology.
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represent mere correlates of depressive states or reliable markers of its risk. Hence, in the field
of clinical psychobiology, researchers are shifting their focus to the study of biomarkers that
characterize individuals that have a greater risk to develop a full-blown depressive episode.
One reliable risk condition is a parental history of MDD: indeed, adolescents with a parental
history of depression are 3-5 times more likely to develop depression themselves (Goodman et
al., 2011). Other at-risk conditions include individuals with dysphoria, a condition
characterized by subclinical depressive symptoms. Last, individuals with past depression but
currently free from clinical symptoms represent a risk condition of having a recurrence of the
disorder (Michelini et al., 2021). These three groups (i.e., parental history of MDD, dysphoria,
and past depression) are more vulnerable to the development or recurrence of a full-blown
depressive episode than the general population, thus representing target conditions to the study
of psychobiological markers of MDD (Hardeveld et al., 2010; Laborde-Lahoz et al., 2015).
Some researchers have focused on the prevention of MDD by targeting these at-risk conditions
with universal psychological treatments and findings have been promising but rather mixed
(e.g., Horowitz & Garber, 2006). Efforts to advance effective prevention and treatment
strategies might be hindered by our relatively limited understanding of mechanisms implicated
in the development and maintenance of depression.

Considering that the “categorical-polythetic” approach provided by the DSM-5 does
not allow a clear identification of at-risk conditions, a viable way to improve our knowledge
of the pathophysiological mechanisms linked to depression is to move beyond this view and,
instead, adopt a dimensional approach (Cuthbert & Insel, 2013; Weinberg, 2023). In this
context, the National Institute of Mental Health (NIMH) launched the Research Domain
Criteria (RDoC) project, which aims at linking biological and physiological mechanisms to
clinical phenomena to generate empirically derived, psychobiological markers of

psychopathology (Cuthbert & Insel, 2013; Insel et al., 2010). The RDoC assumes that mental
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disorders are multidimensional disorders observable at different levels of analysis (e.g., from
genetics to behavior). The RDoC matrix is rooted in a dimensional approach to mental health
and includes six domains: Positive Valence Systems, Negative Valence Systems,
Arousal/Regulatory Systems, Cognitive Systems, Sensorimotor Systems, and Systems for
Social Processes (Figure 1.2). The columns of the matrix include the different units of analysis:
genes, molecules, cells, circuits, physiology, behavior, and self-report along dimensional
neuro-environmental trajectories. The underlying principle is that by integrating different
levels of analysis along these dimensions, the RDoC approach will also contribute to the
advancement of our understanding of vulnerability to psychopathology (Dillon et al., 2014).
Therefore, RDoC dimensions and constructs should not only be considered as a correlate of
psychopathology but also of increased vulnerability. To determine whether dysfunctions within
RDoC components relate to future psychopathology, conducting studies based on at-risk
categories is warranted.

In the “RDoC era”, psychophysiological models have an important role in the
reconceptualization of mental disorders and their vulnerability (Shankman & Gorka, 2015;
Riesel, Endrass, Weinberg, 2021). Indeed, psychophysiological studies have highly
contributed to the development and refinement of each RDoC dimension for numerous
psychopathological conditions. Psychophysiological models cover multiple levels of analysis
of constructs of the RDoC (e.g., neural, autonomic, and psychological) (Kujawa & Burkhouse,
2017). In the present review, studies that have employed a wide array of psychophysiological
measures for the investigation of RDoC dimensions in at-risk samples will be described.
Ultimately, this review emphasizes the relevance that psychophysiology is playing in the

refinement of the RDoC matrix in the context of depression risk.
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Figure 1.2 Diagram of the RDoC framework. From www.nimh.nih.gov.

Examining depression adopting the RDoC lens means trying to understand this
condition and its underlying mechanisms in an integrative manner through the examination of
multiple units of analysis, spanning, for example, from behavior to neural correlates.
Depressive symptomatology can be mapped onto the six domains proposed by the RDoC. As

it will become clear, these domains are highly interrelated.

The Positive Valence Systems. Individuals with depression are characterized by low
mood and positive emotionality, reduced motivation, and feelings of hopelessness most of the
time. Moreover, one of the core symptoms of depression is anhedonia, which can be described
as diminished motivation to pursue positive/rewarding outcomes and/or reduced pleasure in
response to previously rewarding experiences (American Psychiatric Association, 2013).
Individuals with depression show anticipatory anhedonia and this was negatively correlated

with the mobilization of extra effort to reach a reward, suggesting that the failure to anticipate
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pleasure affects their motivation (Bowyer et al., 2022). In addition, individuals with anhedonia
also have difficulties in learning as a function of rewards. Indeed, providing individuals with
feedback during the execution of a task usually improves their performance, whereas it does
not affect individuals with depression (Ravizza & Delgado, 2014). These symptoms are viewed
as impairments in the Positive Valence System (PVS) functioning (Dillon et al., 2014). The
PVS is composed of a set of systems involved in anticipating, obtaining, and responding to
pleasant or rewarding stimuli (Olino, 2018; Kujawa et al., 2017). Reduced PVS functioning in
depression has been evidenced by self-report (McFarland & Klein, 2009; Treadway & Zald,
2011), behavioral (Pizzagalli et al., 2005: Treadway et al., 2012), and electrophysiological
(Hajcak Proudfit, 2015; Liu et al., 2014) units of analysis (Nusslock & Alloy, 2017). At the
neural level, the processing of appetitive and rewarding stimuli activates a network of cortical
and subcortical brain regions, including the ventral tegmental area, nucleus accumbens, and
frontostriatal pathways (Craske et al., 2016; Dillon et al., 2014; Nusslock & Alloy, 2017).
Functional magnetic resonance imaging (fMRI) studies have shown that individuals with
depression had a lower activation of brain regions associated with the PVS during reward tasks
as compared to healthy controls (Ng et al., 2019; Pizzagalli, 2014). In addition, blunted
electrocortical responses to pleasant and rewarding stimuli have been well documented in
depression (e.g., Admon & Pizzagalli, 2015), in individuals at-risk for depression (e.g., Gotlib
et al., 2010; Luking et al., 2016), and to prospectively predict the development of depression
(e.g., Bress et al., 2013; Nelson et al., 2016). Reduced PVS functioning is one of the main
focuses of the current work and psychophysiological measures of reduced approach motivation
in depression are illustrated in section 1.2 of this Chapter. Additionally, electrocortical
correlates of the PVS functioning and their changes in depression and risk conditions will be

thoroughly discussed in Chapter II.
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The Negative Valence Systems. The Negative Valence Systems (NVS) encompass
five constructs related to responses to aversive stimuli or events. These constructs include
responses to acute threat, potential threat, sustained threat, loss, and frustrative non-reward.
Compared to the PVS, data on the reactivity to unpleasant stimuli in depression and
vulnerability to depression have been extensively produced in several (and different) research
areas and therefore the findings are rather mixed and sometimes even unable to show any
significant effect (for a meta-analysis and a review on psychophysiological studies on
emotional reactivity see Bylsma et al., 2008 and Bylsma, 2021). Initial theories suggested that
depression would be characterized by an increased reactivity to unpleasant emotional stimuli
based on the idea that individuals’ background affective state would prime reactivity to a
stimulus of matching valence (Rosenberg, 1998; Rottenberg, 2017). Cognitive theories of
depression (Beck & Bredemeier, 2016) seem to have a similar hypothesis: negative cognitive
schemas guide preferential processing of negative stimuli which, in turn, lead to enhanced
attention and intake of these cues. For instance, in support of this claim, individuals with
dysphoria, but not controls, repeatedly showed a prolonged cardiac deceleration during passive
viewing of unpleasant stimuli as compared with neutral ones, suggesting a sustained intake of
unpleasant cues and a mood-related bias in this at-risk group (Messerotti Benvenuti et al., 2020;
Moretta et al., 2021). However, the greater processing of unpleasant images observed in
dysphoria does not seem to lead to greater action preparation and reactivity. Indeed, from most
research using both passive and active tasks and different psychophysiological measures,
depression appears to be mostly characterized by a reduced emotional reactivity to unpleasant
stimuli (Foti et al., 2010; Hill et al., 2019; MacNamara et al., 2016; for a review see Bylsma,
2021). The lack of reactivity to unpleasant contents is in line with the emotion context
insensitivity hypothesis (ECI; Bylsma et al., 2008; Bylsma, 2021; Rottenberg et al., 2005; this

model will be better described later in this Chapter in Section 1.2), which suggests that

20



depression might be characterized by an overall blunted emotional reactivity, with reduced
psychophysiological responses to all affective cues.

In support of the ECI model in depression, a few psychophysiological studies reported
a greater electrocortical activity to unpleasant images in depression (Auerbach et al., 2015;
Burkhouse et al., 2017; Zhang et al., 2016), while others reported reduced electrocortical
reactivity to negative stimuli in individuals with clinical depression (Foti et al., 2010; Hill et
al., 2019; MacNamara et al., 2016) and subclinical depression (Benning & Oumeziane, 2017;
Grunewald et al., 2019). Specific psychophysiological correlates of NVS functioning in
depression are illustrated in Section 1.2.3 of this Chapter, while electrocortical correlates are

described in Chapter II.

The Arousal and Regulatory Systems. The DSM-5 criteria for MDD include physical
alterations, such as fatigue, sleep disturbances, and appetite changes. Beyond these three bodily
symptoms, no other physical symptom is mentioned. However, other somatic symptoms are
prevalent in individuals with depression, including headaches, musculoskeletal symptoms,
palpitations, and upset stomach (Breslau et al., 2000; Vaccarino et al., 2008). Arousal might
have a primary role in the somatic and neurovegetative symptoms experienced by individuals
with depression and they can be ascribable to the Arousal and Regulatory Systems (ARS) of
the RDoC (Gunzler et al., 2020). Somatic symptoms of depression are associated with longer
disease duration, greater disability, poorer clinical outcomes, and elevated healthcare costs
(Vaccarino et al., 2008). These somatic consequences could partly be due to metabolic,
immuno-inflammatory, autonomic, and hypothalamic-pituitary-adrenal axis (HPA)
imbalances which can also reflect an altered psychoneuroimmunological interaction. These

imbalances are often present among MDD patients (Penninx et al., 2013) and they can increase
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the risk of developing cardiovascular diseases, metabolic syndromes, and overall immune
system deterioration (Wolkowitz et al., 2011).

Depression has been related to autonomic imbalances, such as increased heart rate and
reduced heart rate variability (HRV), a measure of beat-to-beat variation in the heart over time
that reflects the balance between the two autonomic nervous system (ANS) branches on the
heart, in resting conditions (Dell’Acqua et al., 2020; Koch et al., 2019). These patterns of
reduced HRV in a wide array of at-risk samples suggest that decreased cardiac autonomic
balance might serve as an early marker of depression vulnerability (Figure 1.3). Furthermore,
meta-analytic evidence suggested that, during a stressor, individuals with depressive symptoms

showed hypo-reactivity as indexed by lower fluctuation in heart rate and HRV (Schiweck et

al., 2019).
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Figure 1.3 Violin plot of the distribution of high frequency (InHF) HRV values, that reflect cardiac
vagal tone, at rest for controls, individuals with past depression (PDS) and with dysphoria. The plot
shows the median (indicated by the black horizontal band), the first through the third interquartile range
(the vertical band), and estimator of the density (thin vertical curves) of the InHF in each group
(comparable to a boxplot, except that the distribution of the variable is illustrated as density curves).
The violin plot outlines illustrate kernel probability density, that is the width of the shaded area
represents the proportion of the data located there. Panel b) Mean InHF values for the three groups
(control, PDS and dysphoria). Error bars represent + standard error of the mean (SEM). *p <.05. Notes:
PDS= past depressive symptoms. From Dell’Acqua, Dal Bo et al., 2020.
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Another psychophysiological measure related to autonomic activity is skin
conductance. As previously described, skin conductance mirrors exclusively the sympathetic
nervous system activity. Accordingly, during the viewing of pleasant and unpleasant pictures,
healthy individuals showed comparable skin conductance responses to similarly arousing
stimuli, both pleasant and unpleasant, relative to neutral ones. Instead, individuals with
subclinical depression showed reduced skin conductance to all emotional stimuli, supporting
both the hypothesis of reduced functioning of the Arousal and Regulatory Systems and of the
PVS and NVS domains (Benning & Oumeziane, 2017). Similarly, reduced skin conductance
response was reported in individuals with depression during a mental arithmetic task (Kim et
al., 2019, Figure 1.4) and in individuals with dysphoria during a public speaking task
(Schwerdtfeger & Rosenkaimer, 2011). Additionally, even unaffected offspring of chronically
depressed mothers showed reduced skin conductance to stressful situations (Cummings et al.,

2007).
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Figure 1.4 Reduced skin conductance response (MSCR) in individuals with depression (MDD, red
line) relative to controls (blue line), during baseline (S1), a mental arithmetic task (S2), recovery (S3,
S5), and relaxation (S4). Adapted from Kim et al., 2019.

Another measure related to the Arousal and Regulatory domain is cortisol, the main

stress hormone that reflects HPA functioning and that has been widely used in the study of
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neuroendocrine and dysfunctions in MDD (Herbert, 2013; Lopez-Duran et al., 2009).
Individuals with depression have been shown to have elevated morning cortisol (e.g., Michael
et al., 2000) and a greater cortisol awakening response (e.g., Bhagwagar et al., 2005; Vreeburg
etal., 2009). Moreover, higher cortisol awakening response levels were reported in adolescents
who subsequently developed an episode of major depression in the following year (Adam et
al., 2010; Vrshek-Schallhorn et al., 2013). Collectively, these findings on morning cortisol and
CAR suggest that depression might be related to a hyperactive HPA. Regarding cortisol
reactivity to a stressor, a relatively blunted cortisol stress reactivity even when controlling for

baseline measures was repeatedly observed in MDD (Burke et al., 2005; Harkness et al., 2011).

Cognitive Systems. In addition to affective and somatic symptoms, cognitive
symptoms have been widely reported in individuals with depression. One of the DSM-5 criteria
for depression is, indeed, a diminished ability to think, concentrate, or make decisions (APA,
2013). As it will be better described later in this Chapter, cognitive dysfunctions in depression
include impairments in cognitive control. Studies have reported that individuals with
depression show reduced sustained and divided attention (McClintock et al., 2010),
overgeneralized declarative memory (Zhou et al., 2017), reduced cognitive flexibility, set-
shifting, planning, and updating (Dotson et al., 2020). These deficits align with the Cognitive
Systems domain of the RDoC, which includes constructs of attention, perception, declarative
memory, language, cognitive control, and working memory (Cuthbert & Insel, 2013; Insel et
al., 2010). At the neural level, some of these processes can be mapped onto frontal brain
regions, as described in Section 1.3.2. Besides, impairments in the Cognitive Systems are
strictly related to the PVS and NVS domains. For example, according to the impaired
disengagement hypothesis (Koster et al., 2011), depression is characterized by difficulty in

disengaging attention and impaired attentional control in response to negative thoughts or
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events. Moreover, at the neural level, this impaired cognitive regulation of negative emotions
is related to a failure to recruit frontal control over the amygdala (Taylor & Fragopanagos,
2005). Regarding electrocortical correlates of cognitive control, individuals with depression
show reduced neural indices of monitoring and detection of conflict (e.g., Kaiser et al., 2003;
Weinberg et al., 2015; Ruchsow et al., 2004, 2006). However, the psychological and
physiological mechanisms that mediate the executive function impairment seen in depressive
disorders are still unclear. Interestingly, during an executive control task participants with
depression presented reduced HRV relative to controls, indicating that there may be an
underlying flexibility dysfunction in depression (Bair et al., 2021; Hoffmann et al., 2017).
Indeed, it is possible that blunted sympathetic reactivity and reduced tonic parasympathetic
control might provide a suboptimal condition for cognitive performance in depression (Bair et
al., 2021). A detailed description of cognitive impairments in depression can be found in

Section 1.3 of this Chapter.

The Sensorimotor Systems. Psychomotor disturbances (i.e., retardation or agitation)
are core features of depression and are included as a diagnostic criterion in the DSM-5.
Psychomotor disturbances are particularly common among individuals with a severe
manifestation of MDD (Parker, 2000). These symptoms align with the Sensorimotor Systems
of the RDoC, a domain that was recently added to the matrix (Garvey & Cuthbert, 2017). The
Sensorimotor domain includes four constructs, namely motor actions, agency and ownership,
habit, and innate motor patterns. Psychomotor retardation can be ascribed to the motor actions
construct of this dimension. Several neuroscientific studies have shown that MDD’s motor
symptoms can be mapped on the cerebral motor circuits, showing, for example, increased
resting-state perfusion in the motor cortex in individuals with psychomotor retardation (Yin et

al., 2018).
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Psychomotor retardation in MDD has been documented using self-report measures
(Calugi et al., 2011) and actigraphy (Razavi et al., 2011; Shankman et al., 2020; Walther et al..,
2019). Interestingly, motor processes included in the Sensorimotor Systems are activated in
conjunction with motivational processes described in other domains, such as the PVS (i.e.,
when positive emotionality drive approach actions; Walther et al., 2019).

EEG correlates of motor activity disturbances have only been investigated in clinical
depression and have focused on the examination of resting spectral characteristics in relation
to psychomotor retardation levels (Cantisani et al., 2015; Nieber & Schlegel, 1992). For
example, a left-lateralized pattern of frontal alpha activity was negatively associated with
activity levels (assessed with an actigraphy) in individuals with MDD, suggesting that
psychomotor retardation may be related to impaired motivational drive (Cantisani et al., 2015).
A negative covariance between resting alpha power over motor areas and activity levels was
also reported (Cantisani et al., 2015; Nieber & Schlegel, 1992). Considering that alpha power
mirrors inhibition of a cortical region, these results might indicate that psychomotor retardation
is reflected in reduced motor cortex activity even in conditions of rest, potentially representing
a trait feature or these alternations (Cantisani et al., 2015).

Overall, the exact mechanisms of psychomotor retardation and agitation in depression
are still undefined and studying motor processes in depression adopting the RDoC lens could
be a promising approach to improve our understanding of this feature of depression (Walther

etal., 2018).

The Systems for Social Processes. Depressive symptoms have long been associated
with social impairments and poor social functioning (Gotlib & Hammen, 1992). Social
impairments are included within the Systems for Social Processes of the RDoC, which are

composed by the following domains: Affiliation and Attachment, Social Communication,
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Perception and Understanding of Self, and Perception and Understanding of Others.
Depression is associated with social anhedonia, namely reduced drive for social affiliation, but
also with increased sensitivity to social rejection. Individuals with MDD are characterized by
impaired interpersonal (Hirschfeld et al., 2002), marital (Fink & Shapiro, 2013), and work
functioning (Kessler et al., 2003). Overall, these social impairments could be related to many
factors, such as a deficit in understanding and controlling emotions in social contexts, reduced
approach motivation, reduced empathy in social interactions, and a reduced problem-solving
ability for interpersonal issues. Overall, integrative research suggested that the interrelation
among biological (e.g., genetic, neural), psychological (e.g., emotion regulation and
recognition), and environmental factors (e.g., exposure to social stressors) over time may
explain the risk of developing MDD (Kupferberg et al., 2016).

As might already be evident, this domain is closely related to the PVS, particularly in
the study of depression. Recent studies have shown that individuals with MDD were
characterized by reduced sensitivity to social rewards, a process that has been included in the
Affiliation and Attachment domain during a social feedback task. For instance, it has been
recently observed that reduced neural activity to social rejection during this task significantly
predicted the onset of depressive symptoms in a sample of adolescents (Pegg et al., 2019; Pegg
et al., 2021) and in individuals with subclinical symptoms (Jin et al., 2019), suggesting that
blunted neural sensitivity to being socially excluded might represent a psychobiological marker
of MDD. In further support for reduced sensitivity to social affiliation, individuals with
dysphoria showed a reduced increase in heart rate to social rewards relative to a control group

(Brinkmann et al., 2014).
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1.2 Affective Models of Depression
1.2.1 The Appetitive and Defensive Motivational Systems

Although emotion represents an important field in psychology and neighboring
disciplines, there is little consensus about its definition and organization. According to some
researchers, emotion is conceptualized as being organized around two motivational systems,
one appetitive and one defensive, refined throughout evolution to facilitate survival and
adaptation to the environment (Bradley et al., 2001; Davidson, 1998; Lang & Bradley, 2013).
The defensive/avoidance system is activated in contexts of threat and is associated with
defensive and withdrawal behavior in response to aversive stimuli (e.g., attack, illness, injury).
The appetitive/approach system is a reward-seeking system activated in contexts that promote
survival (sex, ingestion, caregiving) and is associated with behaviors of approach toward
pleasant rewarding stimuli. The individual differences in the balance between the two
motivational systems have been referred to as the affective style (Davidson et al., 2000;
Davidson, 1998). An individual’s affective style drives the behavioral and physiological
response to emotional stimuli which, in turn, is related to depression and other mental
disorders. Indeed, motivational systems modulate perceptual processing, attentional
engagement, and energy mobilization toward emotional cues. Particularly, the defensive
system is activated in threatening or unpredictable situations and triggers behavioral patterns
of fight, flight, or freeze. These behaviors are sustained by neural circuitry that comprises the
amygdala, the anterior and medial hypothalamus, and the periaqueductal grey matter (LeDoux,
2000). Moreover, this neural pathway is differentially supported and mediated by the
sympathetic and parasympathetic nervous systems. For example, to cope with a threat, the
sympathetic nervous system elicits a fight or flight response based on the available resources
of the individual. During this process, physiological changes occur, such as changes in

cardiovascular activity. Particularly, threatening/unpleasant stimuli prompt increased cardiac
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deceleration (Figure 1.5), which reflects the facilitation of intake and perceptual processing
during the early stages of the defense response (Bradley et al., 2005; Palomba et al., 1997).
Later in the defense response, a shift to cardiac acceleration — which indicates the preparation
for action — can occur only when the stimuli are highly fearful and elicit an unusually high
level of defensive activation (e.g., phobic stimuli, Klorman et al., 1977). Contrariwise, the heart
rate changes in response to an appetitive/rewarding stimulus (e.g., erotic scenes, sports, food)
are characterized by an initial deceleration and then by a mid-interval acceleration, which likely
reflects a tendency to approach (Bradley et al., 2001). Moreover, the appetitive response
primarily activates dopaminergic reward circuits in the brain aimed at reaching rewards. Taken
together, the activation of the two motivational systems is associated with a specific behavioral

and physiological pattern of responses.
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Figure 1.5 Changes in the heart rate while participants viewed pleasant, neutral, and unpleasant
pictures. Unpleasant pictures elicit a sustained decelerative response, while pleasant ones induce a
triphasic response (deceleration, acceleration, deceleration). Adapted from Bradley et al., 2001.
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1.2.2 The Dimensional Model of Emotions

The motivational model conceives emotions as action dispositions, representing
individuals’ readiness to act within their environment accompanied by a physiological
preparatory activation (Frijda, 2007; Lang et al., 1998). The relation between emotion and
action is evident even in the etymology of emotion, a term that comes from the Latin ex-
movere, which refers to the concept of moving. In this context, the dimensional model proposed
by Lang and colleagues (1998) views emotion as a wide disposition to respond to
environmental conditions with expressive language, behavioral patterns, and physiological
changes. According to this model, emotion is the final product of the interaction between these
three systems. The subjective system represents the personal experience of each individual in
relation to an emotional stimulus and is usually reported verbally. The behavioral system
represents the motor sequences in response to the emotional stimulus, including postural and
expressive changes as well as actions that imply approach, fight, or avoidance of the stimulus.
As described above, the physiological system regulates the somato-visceral and central
responses to emotionally valenced cues. The role of these three systems in determining an
emotional state is well-established in the literature and is still a valid framework nowadays.
According to Lang and colleagues, the three systems are partially independent but strictly
connected with each other.

Different emotional states can be distinguished based on the direction of the disposition
that the stimulus elicits (appetitive vs. defensive) and on the intensity, or strength, of the energy
mobilization (Miller, 1966). Direction and intensity are closely linked to two main dimensions
that are at the basis of human emotion: valence and arousal (Lang et al., 1997). The dimension
of valence is fundamental in regulating actions along an approach/withdrawal criterion, based
on the (un)pleasantness of stimuli. The dimension of arousal reflects the subjective feeling of

calmness/activation and reflects the intensity of the physiological response. Lang and
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colleagues (1997) have developed the International Affective Picture Processing (IAPS)
database, a set of pictures based on their dimensional model of emotions. Their aim was to
create a standard database of images that can be used in experimental settings across the world.
The set is composed of more than 1000 images of different semantic categories and as shown
in Figure 1.6, each one of them has a rating along the dimensions of arousal and valence (Lang,

1997).
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Figure 1.6 Pictures from the International Affective Picture System are distributed along the bi-

dimensional space composed of valence (pleasant/unpleasant) and arousal (calm/activated). Each point
in the plot represents the ratings for one picture. From Bradley et al., 2005.
1.2.3 Emotional Reactivity in Depression

As reviewed above, emotions activate different response systems (subjective,
behavioral, and physiological) and the emotional response is associated with individuals’

affective style (i.e., individual differences in the activation of the two motivational systems).

Variations in affective style are thought to underlie psychopathology and, particularly,
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depression. However, the way in which depression relates to specific deficits in emotional
reactivity is still unclear. Over the last decades, cognitive theories of depression have sustained
that depressed mood is linked to the preferential processing of negative stimuli (Beck, 1987).
Drawing from these early cognitive accounts, the first view on emotional reactivity in
depression was developed, the negative potentiation hypothesis, which holds that pervasive
negative mood states that are prevalent in MDD contribute to potentiate emotional responding
to unpleasant stimuli, indicating a heightened activation of the withdrawal-related motivation
system (Bylsma et al., 2008; Rottenberg et al., 2005). Although this view is in line with Beck’s
schema model and classic cognitive theories of depression (see Section 1.3), there is very little
empirical research that supports it. A further view is the positive attenuation hypothesis,
which suggests that MDD is associated with reduced emotional reactivity to pleasant stimuli,
indicating a blunted activation of the appetitive motivational system. Contrary to the negative
potentiation, this view is supported by accumulating empirical evidence (Bylsma et al., 2008 ;
Bylsma, 2021) and is consistent with one of the core symptoms of depression, anhedonia, and
other symptoms such as psychomotor retardation, apathy, and fatigue. Since this hypothesis
focuses solely on pleasant stimuli, it is compatible with the negative potentiation, namely
individuals with depression can show both patterns. However, recent empirical evidence
suggests that depression might be characterized by blunted emotional reactivity to all emotional
stimuli, regardless of their valence. This has been defined as the emotion context insensitivity
(ECI) hypothesis (Bylsma et al., 2008; Bylsma, 2021) and indicates that depression is
characterized by the hypoactivation of both motivational systems. The ECI is based on
evolutionary theories that described depression as the product of environmental disengagement
(Bylsma et al., 2008), which is manifested through a decreased appropriateness of responses to
both pleasant and unpleasant stimuli. Accumulating and consistent evidence has supported the

ECI model: a meta-analysis of 19 studies (Bylsma et al., 2008) demonstrated that individuals
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with depression have an overall pattern of emotional disengagement to all emotionally
valenced cues across behavioral (e.g., Mclvor et al., 2019), self-report (e.g., Benning &
Oumeziane, 2017; Kaviani et al., 2004), and physiological (e.g., Benning & Oumeziane, 2017;
Sloan & Sandt, 2010) response systems (Bylsma et al., 2008). This blunted emotional reactivity
can be conceptualized as a reduced functioning of the Positive and Negative Valence
Systems of the RDoC.

To date, most of the research in support of the ECI model has focused on emotional
reactivity to pleasant and rewarding stimuli. Particularly, numerous neuroimaging and
electrophysiological studies have reported reduced neural processing of rewarding and pleasant
stimuli, suggesting a reduced behavioral and electrocortical activation of reward anticipation
and receipt in MDD (Benning & Oumeziane, 2017; Forbes & Dahl, 2012; Gaillard et al., 2020;
Klawohn et al., 2021; Webb et al., 2017). Further information on electrocortical activity in
response to emotional stimuli will be described in Chapter II. Although much of the
psychophysiological contributions to the study of the PVS in depression vulnerability come
from EEG studies, other psychophysiological indices have also been useful in exploring this
relation. For example, the startle eyeblink reflex consists of the rapid contraction of the
orbicularis oculi muscle and represents a measure of affective modulation when the startle
probe is presented more than 500 ms after the beginning of the presentation of a stimulus.
Specifically, the reflex is potentiated during unpleasant affective states and inhibited during
pleasant affective relative to neutral states (e.g., Bradley et al., 1999). The absence of startle
attenuation to pleasant images was observed in depression (e.g., Dichter & Tomarken, 2008;
see Boecker & Pauli, 2019; Figure 1.7), in dysphoria (Mneimne et al., 2008), and in individuals
with past but recurrent depression (Vaidyanathan et al., 2014), and indicates reduced approach

motivation.
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Figure 1.7 Reduced startle modulation in a group of individuals with MDD relative to a control
group. Adapted from Dichter & Tomarken, 2008.

Moreover, reduced skin conductance levels, a measure that reflects the activity of
sympathetic cholinergic neurons at the level of eccrine dermal sweat glands (Venables &
Christie, 1980), to pleasant (but also unpleasant) stimuli have been shown in individuals with
dysphoria relative to a control group (Benning & Oumeziane, 2017; De Zorzi et al., 2021). A
further measure that can inform us about emotional reactivity is cardiac autonomic modulation,
as the heart is dually innervated by the two branches of the autonomic nervous systems, heart
rate is an index that mirrors both sympathetic (acceleration) and parasympathetic (deceleration)
nervous systems (Berntson et al., 1993). Particularly, during the viewing of emotional videos
(pleasant and unpleasant), healthy individuals show heart rate acceleration due to cardiac vagal
withdrawal (Kreibig, 2010), and this is considered a pattern of autonomic modulation to
flexibly respond to stimuli in the environment (Porges, 1997).

Evidence in support of a blunted emotional reactivity to unpleasant stimuli is less
definite. The first experiments that led to the conceptualization of the ECI model showed that
individuals with depression reported a smaller increase in sadness in response to sad films
compared to a control group (Rottenberg et al., 2002). On the contrary, in another study,

individuals with MDD reported potentiated daily negative affect compared to controls (Bylsma
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etal.,2011). At the physiological level, a few studies reported reduced electrocortical reactivity
to negative stimuli in individuals with clinical depression (Foti et al., 2010; Hill et al., 2019;
MacNamara et al., 2016) and subclinical depression (Benning & Oumeziane, 2017; Grunewald
et al., 2019). Other evidence comes from studies on the startle reflex measured at the
orbicularis oculi muscle during exposure to emotional cues, which have reported reduced
startle potentiation to unpleasant stimuli in individuals with depression (Dichter & Tomarken,
2008; Vaidyanathan et al., 2014; Figure 1.7) and subclinical depression (Messerotti Benvenuti
et al., 2020, Figure 1.8) relative to controls, suggesting a reduced activation of the defensive
motivational system. Moreover, as described above, a few studies documented reduced skin
conductance levels to all emotional stimuli in individuals with subclinical depression relative

to a control group (Benning & Oumeziane, 2017).
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Figure 1.8 Mean blink response magnitude for pleasant, neutral, and unpleasant pictures in a group
with dysphoria (i.e., subclinical depression) and in the group without dysphoria. The dysphoria group
showed a blunted startle potentiation to unpleasant pictures. Adapted from Messerotti Benvenuti et al.,
2020.

Another way to examine emotional reactivity to unpleasant stimuli is to assess
physiological responses to the commission of an error (i.e., error monitoring). Indeed, making

a mistake is generally perceived as subjectively unpleasant and, at times, it can be perilous and

35



threatening to one’s life (Weinberg, Meyer, et al., 2016). For instance, at the physiological
level, like other threats, the commission of an error elicits a cascade of defensive responses:
greater startle reflex (Hajcak & Foti, 2008), higher skin conductance levels, and slower heart
rate (Hajcak et al., 2003; Hajcak et al., 2004). A specific electrocortical measure of error
monitoring is the error-related negativity (ERN), an event-related potential (ERP) o the
electroencephalographic signal which arises as a negative electrocortical deflection at fronto-
central scalp sites within 100 ms following the commission of an error versus a correct response
(Gehring et al., 1995). To date, findings on the ERN in depression have been mixed, with
studies reporting enhanced (e.g., Chiu, & Deldin, 2007; Holmes, & Pizzagalli, 2010) and
reduced (e.g., Dell’Acqua, Hajcak, et al., 2023; Weinberg et al., 2015; Ruchsow et al., 2004,
2006; Schrijvers et al., 2008; Figure 1.9) amplitude relative to healthy controls, or no
differences (Olvet et al., 2010; Riesel et al., 2019; Schoenberg, 2014). Overall, although the
ECI model has been supported across multiple levels of analysis, the nature of emotional
reactivity impairments in depression and their role in the development of the disorder is largely
still unclear.
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Figure 1.9 Response-locked event-related potential (ERP) waveforms for the difference between error
and correct trials (AERN) in the MDD group (red line) and HC group (black line). The graph shows a
reduced ERN in the MDD vs. the HC group. From Dell’Acqua, Hajcak, et al., 2023.
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1.3 Cognitive Models
1.3.1 Classical Cognitive Model of Depression

The first cognitive model of depression was developed about 50 years ago and it
postulates that one’s thoughts, inferences, and interpretations can influence the onset and
course of depression (Beck, 1987). Particularly, Beck’s model holds that the self-referential
schemas — internally stored representations of loss, worthlessness, and failure — lead individuals
to filter environmental cues such that their attention is directed toward mood-congruent stimuli.
Beck argued that these representations lead individuals to have a negative perception of
themselves, the world, and the future — also known as the cognitive triad. Moreover, the
negative schemas induce individuals to have negative information processing biases which, in
turn, contribute to the severity of the disorder. According to this theory, individuals tend to
interpret emotionally ambiguous information negatively, show difficulties in disengaging their
attention from negative information, and usually report general and more negative memories
rather than specific and positive ones. Adverse early life events are thought to contribute to the
development of latent depressive self-referential schemas that can, later, be re-activated

following a negative or stressful event (Disner et al., 2011; Figure 1.10).
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Figure 1.10 Illustration of the cognitive model of depression. Negative schemas - activated by
environmental stressors — lead to biases in attention and memory that, in turn, contribute to depressive
symptoms. Once the schema has led to depressive symptoms, the schema itself is strengthened. Adapted
from Disner et al., 2011.

The activation of depressive schemas, hence, leads to biases in attention and memory.
A meta-analysis comprising 29 empirical studies that employed different paradigms supported
the existence of biased attention in depression (Peckham et al., 2010). Diverse computerized
speeded reaction times paradigms have been developed to study the degree of impaired
disengagement from unpleasant stimuli. For example, the emotional version of the Stroop task
(Stroop, 1935), whereby participants are asked to indicate the print color of emotional (pleasant
and unpleasant) and neutral words while ignoring the meaning of the words themselves, has
been employed to study attention bias in depression (Figure 1.11). Usually, healthy controls,
have greater latencies in naming colors of both unpleasant and pleasant words compared to
neutral items. A greater bias for unpleasant mood-congruent stimuli was reported in individuals
with clinical depression (Epp et al., 2012; Fritzsche et al., 2010), subclinical depression
(Gantiva et al., 2018; Kaiser et al., 2015), in healthy individuals subjected to sad mood
induction (Gilboa-Schechtman et al., 2000; Isaac et al., 2012; Provenzano et al., 2019), and
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women with familiarity to depression (van Oostrom et al., 2013). However, other studies did
not report this attentional bias in subclinical depressive symptoms using the emotional Stroop

task (Dell’Acqua et al., 2021).
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Figure 1.11 Illustration of the emotional Stroop task.

In addition to speeded tasks, eye-tracking studies demonstrated that individuals with
depression tend to spend more time attending to unpleasant images than controls (Kellough et
al., 2008). Another study showed that individuals with depression spent less time attending to
pleasant images (Sears et al., 2010). Indeed, meta-analytic evidence on eye-tracking research
supported greater attention to negative stimuli and less attention to positive stimuli in adult
males (Armstrong & Olatunji, 2012). Notably, recent studies have reported attentional biases
away from positive information (for a review see Winer & Salem, 2016), suggesting an
attentional avoidance of pleasant and rewarding stimuli.

Memory biases consist in preferentially recalling negative events and overgeneralized

autobiographical memories. The self-referential recall is typically assessed with the self-
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referent encoding task (SRET) which requires participants to read a list of negative and positive
adjectives and indicate whether each word describes them. Then, participants are unexpectedly
asked to recall as many adjectives as possible. Children and adults with depression tend to
recall more negative words than positive ones compared to controls (Connolly et al., 2016;

Gotlib et al., 2004).

1.3.2 Executive Functions

Executive functions (EFs) - also called cognitive or executive control - include a set of
top-down cognitive processes that influence lower-level processes and are involved in goal-
directed behaviors (Friedman & Myake, 2017). These high-order processes are strictly tied to
motivation and allow the active maintenance of goal representations and flexible achievement
of goal-directed behavior. Executive functions are particularly important in novel
circumstances, when task goals must be actively maintained, distracting information must be
inhibited, or when habitual responses must be overcome (Baddeley, 1996; Burgess & Shallice,
1996). Specifically, these processes enable several skills, such as suppressing automatic
responses, inhibiting interfering and irrelevant information, planning, monitoring, maintaining,
updating, and manipulating information. Numerous models and definitions have been proposed
and a common point across all of them is that they view EFs as a multidimensional construct,
namely a set of separable units. A meta-analysis of more than 100 studies has identified 39
different processes used to describe the organization of executive functions (Baggetta &
Alexander, 2016). The most investigated process is inhibition, defined as the ability to control
or inhibit prepotent automatic responses. Then, another commonly studied process is working
memory, defined as the ability to maintain, add new information, and remove unnecessary
information. The third most investigated process is set-shifting, which is the ability to shift

from one task to another (Baggetta & Alexander, 2016).
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Executive functions are implemented in the prefrontal cortex (PFC) and several
theoretical models have been based on the anatomical dissociation among distinct processes in
this brain region. The ROtman-Baycrest Battery to Investigate Attention (ROBBIA) model was
firstly proposed by Stuss in 1995 and is based on neuropsychological and neuroimaging
studies. This model firstly hypothesized five processes related to different PFC subregions:
energization, task-setting, monitoring, inhibition, and logic (Stuss et al., 1995). Over the years,
the model has been revised and of the five originally suggested processes, only three have been
supported: task-setting, monitoring, and energization. These processes are believed to be
dissociable anatomically, with a left-right hemispheric specialization in the PFC (Vallesi,
2021). Task (or criterion) setting is thought to be related to left PFC functioning and is defined
as a process responsible for creating and selecting associations or rules that are relevant for
achieving a goal and actively suppressing the interfering irrelevant information (Ambrosini et
al., 2019; Stuss & Alexander, 2007; Vallesi, 2012). Criterion setting is a phasic proactive
process mainly activated when individuals need to learn a new task-rule or when the task
requires dynamic changes of task rule, for example in a task-switching paradigm (Vallesi,
2021). Instead, monitoring mostly relies on the right PFC functioning and is defined as the
cognitive control process responsible for actively maintaining representations of task-relevant
information and making behavioral adjustments to optimize performance (Stuss & Alexander,
2007; Vallesi, 2012). Monitoring is sort of a reality check process that carefully assesses
environmental and internal circumstances to make sure the goal is achieved. Energization is a
complementary process boosting other operations that lose activation either because they are
too complex or because of fatigue (Vallesi, 2021). This last process is associated with the
activity of the superior medial prefrontal regions, such as the anterior cingulate cortex (Stuss
et al., 2005; Stuss et al., 2002). In this revised version of the ROBBIA model, inhibition was

not included as a dissociable process, as inhibitory control can be explained by the
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simultaneous work of energization, task-setting, and monitoring (Stuss & Alexander, 2007,
Friedman & Miyake, 2017). A way to assess criterion-setting and monitoring is to employ a
task-switching paradigm with both single-task and mixed-task blocks (Figure 1.12). Single
task-blocks require participants to perform a task in isolation, while mixed-task blocks are
composed of intermixed rules (switch and repeat trials) (Meiran, 2010; Monsell, 2003). This
paradigm evaluates the cost of switching from one rule to the other, the cost of keeping multiple
task-sets active, and the disengagement from a previous task-set and stimulus (Meiran, 2010;
Monsell, 2003). Specifically, criterion-setting can be assessed with the switching-cost, by
calculating the performance difference between switch and repeat trials. Moreover, monitoring
can be assessed with the mixing cost, by calculating the performance difference between repeat
and single trials (Monsell, 2003; Rubin & Meiran, 2005). Overall, the ROBBIA model and the
dissociation between these two processes have been strongly supported by multimodal
cognitive and neuroscientific approaches (Vallesi, 2021). Yet, this model has been rarely

applied to psychopathology and, especially, the study of cognitive control in depression.
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Figure 1.12 Illustration of a task-switching paradigm. Switching costs are calculated by subtracting
response times (RTs) of switch trials from RTs of repeat trials. Mixing costs are calculated by
subtracting RTs of repeat trials from RTs of single trials.

1.3.3 Executive Functions Impairments and the Role of Emotions in Depression

As mentioned above in Section 1.1, the DSM-5 included as a diagnostic criterion for
depression the “inability to think or concentrate”, suggesting that cognitive impairments
constitute a core component of this disorder. This is not surprising since cognitive control is
crucial in motivated behavior and, as described above, depression is related to deficits in
motivation. However, despite models of depression highlighting the role of cognition and
emotions, the association between these two aspects has rarely been examined systematically.

Consistently, a recent line of research has focused on exclusively studying general

impairments in cognitive control in the absence of emotional material — also defined as cold
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EFs. Studies in this field have reported reduced cognitive control across different tasks in
individuals with depressive symptoms (e.g., Dotson et al., 2020; Harvey et al., 2004; Lin et al.,
2014; Parkinson et al., 2020). For example, depression was related to difficulties in adjusting
to single-task conditions after experiencing task-switching blocks, poor updating, and less task
preparation (Hoffmann et al., 2017; Meiran et al., 2011). These impairments seem to be present
even in remitted individuals (Rock et al., 2014). At the neural level, cognitive control deficits
in depression have been related to reduced resting state or task-related activity in frontal
regions, such as the dorsolateral prefrontal cortex and the anterior cingulate cortex (Gotlib &
Hamilton, 2008; McTeague et al., 2017).

Another line of research suggests that individuals with depression are not characterized
by global cognitive control difficulties, but rather by specific deficits in emotional, or /oft,
contexts. Based on early cognitive theories of depression (Beck, 1987), these studies have
explored the preferential processing of unpleasant stimuli and the consequent difficulty in
suppressing negative material across a variety of computerized tasks. However, most studies
have only used one task (emotional) without comparing participants’ performance with a non-
emotional task version. Depression seems to be related to difficulties in switching away from
or inhibiting unpleasant stimuli (e.g., Everaert et al., 2017; Epp et al., 2012; Wen & Yoon,
2019), and updating working memory when the content is negative (Levens & Gotlib, 2010),
supporting the view that unpleasant content interferes with cognitive control functions
(LeMoult & Gotlib, 2019). Findings are more mixed on cognitive control over pleasant content
in depression, with studies documenting better (Deveney & Deldin, 2006) or poorer cognitive
control over pleasant stimuli relative to controls (Quigley et al., 2020). Some of these studies
have employed an emotional version of the task-switching paradigm, whereby target stimuli
are emotionally valenced images (usually faces) instead of colored shapes. Moreover, a study

that used a simple task-switching paradigm that provided performance feedback (Figure 1.13),
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which in healthy individuals is known to improve speed and accuracy, showed that depressive
symptoms were not related to the feedback effect (i.e., reward-learning, Ravizza & Delgado,
2014). In other words, the deficits in processing the affective component of feedback
influenced cognitive control abilities in individuals with greater depressive symptoms. Taken
together, it remains to be elucidated whether shifting difficulties in depression occur globally

or are specific to the emotional context.

Repeat trial

Shift trial

Figure 1.13 Illustration of the task-switching paradigm where performance feedback is provided at
every trial. From Ravizza & Delgado, 2014.

Despite the evidence supporting reduced cognitive control in depression, current
knowledge on cognitive control in depression is mainly descriptive and research views
cognitive control deficits in depression as reduced ability to exert control but does not provide
a specific model. Particularly, there is a lack of integration between cognitive and motivation-
affective impairments in depression. Whether depression is related to a general difficulty in
exerting cognitive control or to a selective difficulty in exerting cognitive control over
emotional content is mainly unexplored. Although cognitive control in cold contexts does not
directly involve emotional processing, it has been suggested that it may facilitate performance

in hot contexts, counteracting the risk conferred by depression-related emotion-processing
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biases (Roiser et al., 2012; Roiser & Sahakian, 2013). Therefore, depressive symptoms may be
associated with general cognitive control difficulties that, in turn, affect control over emotional
information. Instead, based on the classical cognitive perspective, negative schemas may
generate a processing advantage for unpleasant stimuli, leading to an altered encoding and
processing of every other information (Beck & Bredemeier, 2016). Therefore, individuals with
depressive symptoms may display cognitive control difficulties in 4ot contexts not because of
impaired general mechanisms, but because of enhanced orienting and attention to unpleasant

stimuli that impact cognitive control functions (Lo & Allen, 2011).
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CHAPTERIII
ELECTROENCEPHALOGRAPHIC (EEG) CORRELATES OF

AFFECTIVE AND COGNITIVE PROCESSING

Over the past decades, electroencephalography (EEG) proved to be a valuable tool in
both clinical and scientific applications. The EEG has been particularly useful in the study of
emotional processing and has been widely used in the field of affective neuroscience (e.g.,
Keil, 2013). However, the raw EEG signal is a conglomeration of many distinctive neural
sources of activity that need to be extracted to isolate specific cognitive processes (Luck,
2014a). To do so, there are different techniques, some are simple (event-related potentials),
and others are more advanced and sophisticated (time-frequency analyses). Research on EEG
event-related brain activity began in the 1930s and was mainly focused on sensory processes,
it then shifted to the study of top-down processes answering questions of broad scientific
interest (Luck, 2014a).

In the present Chapter, following an introduction to the EEG signal and its basic
principles, event-related methods and the emotional modulation of EEG frequency bands and

its relevance for the study of depression will be described.

2.1 The EEG Signal: Basic Principles

The EEG is a bioelectric potential recorded from the surface of the head using specific
electrodes. The human EEG was firstly registered by Hans Berger in 1929 and, in a little more
than 10 years, all frequency bands had been observed and categorized. An in-depth description
of EEG and its principles is beyond the scope of this work, and complete reviews can be found
elsewhere (e.g., Luck & Kappanman, 2011; Luck, 2014a). In brief, there is a consensus that
the major sources of the EEG signal are superficial giant pyramidal neurons in the upper layers
of the cerebral cortex (Buzsaki et al., 2012). The electroencephalographic signal mainly reflects
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the summation of excitatory (EPSP) and inhibitory (IPSP) postsynaptic potentials at the
dendrites of groups of neurons with parallel geometric orientations (Figure 2.1). As
neurotransmitters activate ion channels on the cell membrane, ions flow into and out of the
neuron from and to the extracellular space, producing electrical fields that surround the neuron.
In the case of ESP, when the neurotransmitters are released, a positive ions flux (NA™ or Ca®")
flows from the extracellular into the intracellular space, resulting in a negative local field
potential. At the same time, to maintain electro-neutrality, an opposing current moves from the
intracellular to the extracellular space along the neuron, resulting in a positive local field

potential. By generating these current flows, neurons act as electrical dipoles (Buzséki et al.,
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Figure 2.1 Neurotransmitters released by the presynaptic neuron diffuse into the synapse and bind
receptors on postsynaptic neurons. Some neurotransmitters (e.g., glutamate, top) generate excitatory
post-synaptic potentials (EPSPs) and trigger depolarization; while others (e.g., GABA, down), generate
inhibitory post-synaptic potentials (IPSPs) and trigger hyperpolarization. From Bioninja.com (link to
page: https.://rb.gy/0gbpus).

The electrical field generated by one neuron is too weak to be measured from one EEG
scalp electrode, but as the neural activity gets synchronous across thousands of neurons, the

electrical fields generated by individual neurons sum, and the resulting field becomes powerful

enough to be measured from the scalp (Cohen, 2014; Murakami & Okada, 2006). However, if
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the cells are not aligned in a parallel fashion, as in the case of the subcortical regions, then the
recorded potential is very small, due to cancellation.

The EEG signal is oscillatory in nature. Brain oscillations are rhythmic fluctuations in
the excitability of groups of neurons and are linked to many neurobiological events (e.g.,
cognition, emotions, consciousness; Figure 2.2). EEG oscillations are characterized by a
specific morphology, frequency, and amplitude. The frequency of the oscillations represents
the speed of the signal in terms of cycles per second and is measured in hertz (Hz). The
amplitude represents the size, or height of the wave and is measured in microvolts (uV).
Frequency and amplitude are not independent parameters, but with the increase of one, the
other decreases. Since Berger’s studies, brain oscillations were classified into distinct
frequency bands based on the visual inspection of the raw signal. The main frequency bands
are delta (6, frequency 0.5-4 Hz; amplitude > 100-200 pV), theta (0, frequency 4-8 Hz;
amplitude 50-200 uV), alpha (a, frequency 813 Hz; amplitude 30-50 puV), beta (B, frequency
13-30 Hz; amplitude <20 pV) and gamma (y, frequency > 30 Hz; amplitude <5 uV)
(International Federation of Societies for Electroencephalography and Clinical
Neurophysiology, 1974).

Typically, EEG oscillations reflect the level of arousal and activation induced by an
event or in resting conditions (Berger, 1969). For instance, slow frequencies in the delta and
theta range, are prevalent during deep sleep, while alpha waves are associated with a state of
idleness, and faster rhythms are related to active wakefulness (e.g., Kilner et al., 2005). Delta,
theta, and alpha bands are distributed across large cortical regions and are the product of the
synchronous activity of large groups of neurons (Knyazev, 2007). Consistently, these
frequencies are considered global processing modes and seem to reflect the integrations and
synchronization across distant and spatially distributed regions (Nunez, 1995; Knyazev, 2007).

Contrariwise, beta and gamma bands are considered /ocal modes and are distributed over more
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limited regions. In conditions of rest and stimulation, each frequency band has been linked to
specific processes, such as perception, categorization, emotions, and actions (Knyazev, 2007).

The functional role of the main frequency bands in emotional processing will be discussed later
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Figure 2.2 Major EEG frequency bands. From Nacy et al., 2016.

The EEG signal contains a combination of simultaneous oscillations at different
frequencies and amplitudes, but it is possible to separate the features of each individual wave
(Figure 2.3). To achieve this, a common methodological tool is the Fast Fourier Transform
(FFT), a mathematical procedure that computes the amplitude, frequency, and phases of the
sine waves that compose a given EEG signal (Luck, 2014a). The FFT extracts the power
spectrum by decomposing the sine waves that constitute the signal and computes the power
(frequency expressed in amplitude?) for each frequency band (Buzsaki, 2006). In task-related
designs, the continuous EEG signal is divided into shorter segments to compute the FFT, as
this method assumes the stationarity of the signal (i.e., the same mean and variance) and does
take into account the time course of the signal (Cohen, 2014).
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Figure 2.3. Example of the summation of oscillations at different frequencies. The figure illustrates
three different kinds of sine waves and their summation below. The FFT determines the amplitude,
phase, and frequency of the waves that sum together to form the continuous EEG. From Luck, 2014a.

2.2 Event-Related Potentials (ERPs): A Consolidated Approach to the Study of
Emotional Processing

Event-related potentials (ERPs) are powerful tools for measuring the dynamics of
human neural activity and they have been widely used to investigate numerous cognitive
functions. Particularly, ERPs reflect the temporary changes in the EEG signal induced by
external stimulation. The EEG signal is often recorded during paradigms where events are
repeated across multiple trials, which are then averaged to isolate the activity related to the
event, namely the event-related potential (Luck, 2014a). The averaging is needed to cancel out
the noise that is contained in every trial, thus isolating the signal of interest related to the
external stimulus (the ERP, see Figure 2.4). The result is a series of negative and positive
deflections that vary in amplitude and duration within a certain time window (Keil, 2013).
Specifically, ERP waveforms can be defined as “a depiction of the changes in scalp-recorded
voltage over time that reflects the sensory, cognitive, affective, and motor processes elicited by

a stimulus” (Luck & Kappenman, 2011). The amplitude of the peak reflects an index of the
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strength of the underlying process, while the latency regards the timing and duration of the
response. The naming of ERP components reflects their polarity (P for positive or N for
negative) and latency (when the component usually appears following stimulus onset). Some
components’ names are not based on the latency but on the ordinal position of the peak in the
waveform (e.g., N1 for the first negative peak; Luck, 2014a). Some ERP components are
labeled with functionally descriptive names (i.e., late positive potential or LPP).

(a) Stimulus 1 Stimulus 2 ... Stimulus N

! . !
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(b) Ty
! | Averaged ERP
Stimulus 1 -
' ; N1
i i 3
Stimulus 2 | ——— e B
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R ! 0 200 400 600
i o | Time (ms)

frands in Cognitive Sciences
Figure 2.4. Computation of the ERP waveform from continuous EEG data. (a) Stimuli are presented
during the EEG recording, but the exact response to each stimulus is not large enough to be observable.
(b) To isolate event-related activity from the continuous EEG, segments around each stimulus are
extracted and averaged together to compute the averaged ERP waveform. From Luck et al., 2000.

ERPs provide a direct, millisecond-resolution measure of neural activity. This is in
divergence with the blood oxygen level-dependent (BOLD) signal assessed with the functional
magnetic resonance imaging (fMRI), which is delayed by several seconds. Thanks to the
elevated temporal resolution, ERPs have been used in many studies to explore and outline the
time course of emotional reactivity in healthy individuals (e.g., Olofsson et al., 2008; Codispoti
et al., 2007). A review of more than 50 studies that have used ERPs to study emotional

processing and reactivity in healthy adults revealed that the components implicated in
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emotional reactivity begin around 200-300 ms post-stimulus and can vary in amplitude based
on arousal and, sometimes, valence (Olofsson et al., 2008). Within the first 300 ms post-
stimulus onset, ERPs reflect the early perceptual encoding of the stimulus (Olofsson et al.,
2008). For example, for visual stimuli, the P1 (occurring about 80-130 ms after stimulus onset)
and the successive N1 (occurring about 100-150 ms after stimulus onset) peaks mirror the early
processing of perceptual elements of the stimulus within the visual cortex. Studies examining
these early components reveal mixed findings regarding their potential affective modulation.
However, some evidence supports that highly arousing unpleasant images produce larger N1
amplitudes relative to pleasant and neutral stimuli, supporting the hypothesis of a fast neural
threat-detection mechanism (Olofsson & Polich, 2007; Smith et al., 2003; Williams et al.,
20006).

Components occurring later (e.g., those evident after 300 ms stimulus onset) reflect
more elaborated processing of stimulus content, resource allocation, saliency detection,
cognitive effort, and memory processes (Luck, 2005; Olofsson et al., 2008). The amplitude of
the P3 component is larger to infrequent than frequent stimuli in oddball paradigms, indicating
its link to stimulus novelty. The Late Positive Potential (LPP), a positive component that begins
around 300 ms after stimulus onset, has been found to be particularly important for the study
of emotional reactivity to affective information. The LPP appears to mirror motivated attention
following the activation of the motivational systems (approach and avoidance, see Chapter I).
However, the LPP reflects the current motivational state but not its specific direction
(appetitive or defensive). The LPP is often investigated through affective picture viewing
paradigms in which pleasant, neutral, and unpleasant pictures are presented over periods of
several seconds. These studies reveal that the magnitude of the LPP over the centroparietal
cortex consistently increases in amplitude as arousal levels increase for both unpleasant and

pleasant relative to neutral images (e.g., Cuthbert et al., 2000; Codispoti et al., 2007,
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Dell’Acqua, Moretta, et al., 2022; Schupp, et al., 2004; Palomba et al., 1997; Figure 2.5). This
sustained positivity for highly arousing images is evident across the duration of the picture
presentation (Hajcak & Foti, 2020). The first portion of the LPP (300-600 ms) partly overlaps
with the P3, while following 600 ms the LPP mostly mirrors stimulus content and meaning and
not to perceptual processing (De Cesarei & Codispoti, 2006). Indeed, emotion modulation of
the LPP is a robust phenomenon and it has been shown to be independent of stimulus size (De
Cesarei & Codispoti, 2006), or duration (Codispoti et al., 2007). This component has been
thoroughly explored and research showed that it has elevated temporal stability over weeks
(Codispoti et al., 2007). Interestingly, early ERPs components reflecting perceptual processing
were not correlated with the LPP and were not stable over time, indicating that the LPP is

uniquely linked to emotional responding (Codispoti et al., 2007).
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Figure 2.5 Illustration of the LPP in response to pleasant, neutral, and unpleasant images. (Panel a)
Topography of the mean LPP amplitude (uV) averaged over the time window 312—-800 ms for pleasant,
neutral, and unpleasant conditions. (Panel b) Mean amplitude of the LPP of each participant averaged
over the significant electrodes and time points for pleasant, neutral, and unpleasant conditions. Each
circle represents one participant; black frames represent the mean ERP amplitude across all participants
and the solid black lines represent + standard error of the mean (SEM). ***p < .001. (Panel c) Time
course of grand-average LPP waveforms averaged over the significant electrodes for pleasant (red line),
neutral (black line), and unpleasant (blue line) conditions. From Dell’Acqua, Moretta, et al., 2022.
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ERPs for the study of emotional processing in depression

Most studies using ERPs in depression have examined the N2 and P3 components
during the oddball paradigm, a non-emotional task in which participants are required to respond
to an infrequent sound. Individuals with depression showed reduced N2 and P3 amplitudes,
indicating difficulties in automatic attention and stimulus processing (Bruder et al., 2012;
Hajcak Proudfit et al., 2015). Moreover, individuals with anhedonia and dysthymia showed
reduced P3 amplitudes to memory tasks compared to controls and failed to appropriately
respond to varying task demands, indicating that these individuals have difficulties in resource
allocation strategies (Yee & Miller, 1994).

Recently, ERPs research on depression has shifted its focus to the study of attention
and processing of emotional stimuli (Hajcak Proudfit et al., 2015). Some studies on the
processing of emotional words or faces found reduced N2 amplitude to positive cues in
depression compared to neutral ones and controls (Deldin et al., 2000). Moreover, a larger P3
amplitude to negative words relative to neutral and healthy controls was reported in depression,
supporting the view of increased orienting and processing of negatively valenced stimuli in
depression (Ilardi et al., 2007). These results indicate that depression might be related to early
attentional and orientation difficulties toward affective stimuli (i.e., reduced early processing
of pleasant and increased processing of unpleasant stimuli).

Given its robust role in discriminating emotional vs. neutral cues, the LPP has been the
object of thorough investigation in depression in the last decade. Although cognitive models
suggest that depression is related to increased processing of unpleasant content, not many
studies have found greater LPP amplitudes for unpleasant stimuli in depression (Benau et al.,
2019). On the contrary, a series of studies have reported a blunted LPP to negative (threatening)
but not neutral content in depression (Foti et al., 2010; MacNamara et al., 2016; Weinberg et
al., 2017) and in individuals at risk for depression (Kujawa et al., 2012) relative to controls.
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Moreover, blunted LPP when viewing pleasant stimuli has been found in depression
(Grunewald et al., 2019; Weinberg et al., 2016; for a review see Hajcak Proudfit et al., 2015),
in children with depressive symptoms (Kujawa et al., 2011; Whalen et al., 2020) or at risk for
depression (Levinson et al., 2018; Nelson et al., 2015), and to prospectively predict depression
onset (Sandre et al., 2019). Taken together, these studies suggest that depression and depression
risk might be characterized by reduced attention toward positively valenced content instead of

an automatic orientation toward negatively valenced content.

2.2.1. Advantages and Limitations of ERPs

The analysis of ERPs offers several advantages and is well-suited to the study of
emotional processing. For instance, ERPs are simple and quick to compute and generally
involve little data processing. Moreover, contrary to other more recently developed methods,
the extensive literature on ERPs allows for contextualizing and interpreting new findings
(Cohen, 2014). Also, many studies have investigated the psychometric proprieties of ERPs and
found them to be extremely reliable in terms of internal consistency and test-retest variability
(e.g., Ethridge & Weinberg, 2018; Weinberg & Hajcak, 2011).

However, ERPs do not come without limitations. First, some task-related trial-based
information can be lost during ERPs averaging as it does not capture non-phase locked
dynamics (i.e., that vary in latency, see Section 2.2.3 for more details). Second, ERPs are
usually scored at one or a small pool of scalp sensors in a specific time window, which reduces
the multidimensionality of the EEG signal down to two dimensions and does not allow
investigating processes that occur simultaneously (Cohen, 2014). Finally, ERPs do not

generally allow the analysis of whole brain activity, and many hypotheses cannot be tested

with this method (Cohen, 2014).
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2.3 A Shift Toward the Time-Frequency Approach

Although ERPs are considered a reliable and fruitful tool to examine task-related brain
activity, other techniques, such as time-frequency analyses, that can extrapolate more
information from the EEG time series have been developed (Cohen, 2014). As mentioned
above, the EEG data contains rhythmic oscillations with different frequencies, features, and
functional correlates. Indeed, changes in brain rhythmic activity reflect task demands and
different perceptual, cognitive, motor, emotional, mnemonic, and other functional processes.

As previously mentioned, the Fast Fourier Transform assumes that the data is stationary
within an epoch, which means that the statistics (i.e., mean, standard deviation) do not change
over time within a given time window. However, this is not the case for task-related EEG data
that is highly non-stationary, as task events trigger a cascade of processes that differ in latency
and frequency (Cohen, 2014). Hence, to describe task-related characteristics, other methods
that allow the examination of the oscillations’ temporal dynamics, such as wavelet convolution
applied within the time-frequency approach, can be applied (Cohen, 2014). With the time-
frequency approach, the EEG time series is decomposed so that it localizes oscillatory activity
in the temporal and spectral domains simultaneously (Herrmann et al., 2014).

The most diffused time-frequency method is perhaps the complex Morlet wavelet
transform (Figure 2.6), although other methods exist (e.g., Hilbert transform). Morlet wavelets
look like sine waves in the middle and are tapered off to zero at both ends and are the product
of a Gaussian curve with a specific frequency (Cohen, 2014). Wavelets are used to localize
changes in the frequency features over time. The key computation behind time-frequency
analysis is convolution, which involves the multiplication (or dot-product) of two signals to
produce a new signal that captures the common features between them (Cohen, 2014; Morales

et al., 2022).
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Figure 2.6 Illustration of Morlet wavelet convolution. The EEG time series (above) is convolved with
a Morlet wavelet and this process is repeated along the signal by shifting the wavelet, yielding a time
series that contains multidimensional information on the amplitude of the oscillations at each time point.
Adapted from Morales et al., 2022.

In other words, the convolution of the wavelets with the event-related EEG signal in the time
domain allows extrapolating power changes over time (Figure 2.7). The width of the central
Gaussian (or full-width at half-maximum, FWHM) is a specific parameter that is set when
computing Morlet convolution. There is a trade-off between temporal and frequency precision:
the wider the central Gaussian, the less temporal precision but more spectral precision, and

vice-versa for a thinner Gaussian (Figure 2.7; Cohen, 2019; Herrmann et al., 2014).
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Figure 2.7 Illustration of the trade-off between temporal and spectral resolution of the wavelet
transform. (Left) multiplying a narrow Gaussian with continuous oscillations leads to a wavelet with a
shorter duration and wider spectrum. This will result in a time-frequency plot with high temporal
resolution but less spectral precision (in the bottom figure, the responses above and below 5 Hz overlap).
(Right) multiplying a wider Gaussian with continuous oscillations leads to a wavelet with a longer
duration and smaller spectrum. This will result in a time-frequency plot with low temporal resolution
but high spectral precision. From Herrmann et al., 2014.

The presentation of a stimulus or the activity related to a task elicits two types of event-
related oscillations, namely evoked and induced activity. Evoked oscillations refer to brain
responses occurring at the same latency in every trial. These oscillations are both time- and
phase-locked to the stimulus. When averaging multiple trials to obtain event-related activity,
evoked activity is entirely captured. Induced oscillations are time-locked to the stimulus but
not phase-locked, namely, they occur within the same timing, but their peaks are not lined up.
Therefore, in the ERP averaging the induced activity is lost (Figure 2.8). Results of a time-
frequency analysis usually consist of the proportion of change in power following the event
compared to a baseline and include both induced and evoked activity, namely total activity, or
event-related spectral perturbations (ERSP; Herrmann et al., 2014). The results of time-
frequency analyses often refer to synchronization (greater power) and desynchronization

(reduction or suppression of power) of a frequency band.
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Figure 2.8 Left: illustration of evoked and induced activity. The evoked activity is characterized by a
fixed temporal relationship between the phase position and the event so that a corresponding activity is
also observed in the averaged signal. The induced activity also overlaps in time, but here the phase
position varies from measurement to measurement so that the signal activity present in each trial is
averaged out. Right: illustration of both evoked and induced oscillations obtained through time-
frequency analysis at the single trial level. From Herrmann et al., 2014.

2.3.1 The Role of Event-Related Oscillations in Studying the Interplay Between
Emotional and Cognitive Processing

The investigation of affective processing through time-frequency analysis has, among
others, the advantage of being able to disentangle the brain’s parallel processing of information.
Indeed, each frequency band has a specific and distinct functional role. Studies on the
processing of emotional material usually employ paradigms that involve the passive viewing
of emotional pictures, video clips, or emotional sounds. These stimuli oftentimes are drawn
from large and validated databases such as the International Affective Pictures System (Lang
et al., 2008; see Chapter I). Each item in these databases has specific arousal and valence
ratings, making it possible to study neural correlates of emotions in a dimensional fashion.
Most studies have been conducted on healthy individuals and relatively little literature on time-
frequency studies is present in depression or in individuals at-risk for depression. However,

considering that different EEG bands reflect distinct phases and states of the processing of
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emotional material, the application of this method to study emotional reactivity in depression
is rather promising.

Delta oscillations are prevalent during sleep and inactive states. However, from simple
oddball paradigms, it first appeared that delta and theta oscillations are predominantly
contributing to the P300 (Basar et al., 2001; Karakas et al., 2000; Yordanova et al., 2000).
Hence, these oscillations show greater synchronization in response to target stimuli compared
with non-target and simple sensory stimuli. Delta oscillations are also considered a measure of
basic motivational drive, signaling basic needs such as food, sex, and sleep (Knyazev, 2012).
This view originates from an evolutionary perspective, as these oscillations dominate lower
vertebrates such as reptilians and fish during active behavioral states (Knyazev, 2012). The
behavior of lower vertebrates is mainly oriented towards the acquisition of biologically salient
resources to survive (e.g., food, mating), and these behaviors are generally guided by the
activation of the reward systems of the brain. This is in line with most recent findings that
showed that the main hubs of motivational appetitive/reward circuits (i.e., ventral tegmental
area, nucleus accumbens, ventral striatum, and the medial prefrontal cortex), are responsible
for generating delta oscillations (Knyazev, 2012; Figure 2.9). In addition, delta oscillations are
implicated in the synchronization of brain activity with autonomic functions, and this offers
further support to the role of the delta band in basic homeostatic needs. For example, HRV, as
already mentioned an index of cardiac vagal control, was found to change parallelly with

resting state delta EEG activity in humans (Jurysta et al., 2005; Yang et al., 2002).
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Figure 2.9 Localization of potential brain regions involved in the generation of delta oscillations as
suggested by EEG source reconstruction, correlation of EEG data with imaging (i.e., fMRI and PET),
and animal studies. From Knyazev, 2012.

Delta oscillations are believed to be sensitive to the motivational significance of the
presented stimulus (Basar-Eroglu et al., 1992) and to play an important role in emotion
processing (Knyazev, 2012). During paradigms that involve the passive viewing of emotional
material, event-related delta power was reported to increase in response to highly arousing
emotional (both pleasant and unpleasant) relative to neutral stimuli in healthy individuals
mostly in centro-parietal regions (Aftanas et al., 2004; Balconi et al., 2009; Glintekin & Basar,
2016; Gilintekin et al., 2017; Klados et al., 2009; Knyazev et al., 2009; Zhang et al., 2013).
Indeed, in healthy participants, regardless of the valence of the image, intermediate and highly
arousing images elicited greater delta power compared to low arousing ones (Aftanas et al.,
2002; Klados et al., 2009; Figure 2.10). Moreover, Basar and colleagues showed that posterior
delta power synchronization increased when viewing pictures of participants’ grandmothers
(Basar et al., 2007) and of loved ones relative to anonymous faces (Basar et al., 2008). Another
research showed that neglectful mothers had reduced delta power in response to the
presentation of non-infant affective pictures, suggesting they present limited emotional

reactivity compared to non-neglectful mothers (Leon et al., 2014). Furthermore, a series of
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studies has shown that delta synchronization relates to the processing of reward relative to loss
cues, providing further evidence of the relation between delta oscillations and the sensitivity to
reward and approach motivation (Cavanagh, 2015; Foti et al., 2015; Gable et al., 2021; Glazer
et al., 2018). Additionally, a recent study reported that delta activity during a reward task was
dampened by the intake of an opioid drug (buprenorphine), showing how opioidergic drugs

can also modulate the engagement and task relevance (Pecina et al., 2019; Pfabigan et al.,

2021).
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Figure 2.10 Event-related delta power to IAPS images with different arousal levels (low, high) and
valence (high: pleasant, low: unpleasant). Delta power was greater in response to highly arousing
pictures (high valence and high arousal, HVHA and low valence and high arousal, LVHA) regardless
of their valence. From Klados et al., 2009.

To date, delta oscillations during affective picture-viewing tasks have not been explored
in depression. A few studies have, however, compared delta power during the receipt of a
reward relative to a loss in depression. These studies have reported a reduced reward-related
delta in depression (Jin et al., 2019) and in healthy individuals before the onset of depressive
symptoms (Nelson et al., 2018; Webb et al., 2021). These initial studies suggest that depression

and its risk might be related to reduced sensitivity to rewards and, more in general, reduced

approach motivation.
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Similarly, to delta oscillations, resting-state theta band oscillations (4-8 Hz) are also
prevalent during states of drowsiness and are inversely related to brain activation and arousal
(Kilner et al., 2005). However, task-related theta power reflects cognitive effort and is thought
to have specific significance for emotional processing (e.g., Basar-Eroglu et al., 1992). Indeed,
theta oscillations are implicated in emotional processing and, like delta oscillations, have been
reported to be increased for emotional relative to neutral content (Balconi & Pozzoli, 2009;
Balconi & Lucchiari, 2006; Bekkedal et al., 2011; Knyazev et al., 2009), and to differentiate
emotional stimuli based on their level of arousal (Aftanas et al., 2002; Balconi & Pozzoli, 2009;
Balconi & Lucchiari, 2006; Balconi et al., 2009). Theta power is distributed within a large
network of brain regions, appears to be involved in multimodal sensory and cognitive
processing (Kowalczyk et al., 2013, Klimesch et al., 1999; for reviews see Karakas, 2020 and
Sauseng et al., 2010), and, consequently, is believed to have a role in orienting and processing
of arousing stimuli (Aftanas et al., 2004; Karakas, 2020). In particular, theta power is related
to affective attention on perceptual processing of the stimulus (e.g., Zhang et al., 2013).
Consistently, theta rhythm is prevalent in superficial cortical layers in a widely distributed
fashion, supporting its role in the optimization of perceptual features in the environment (e.g.,
Halgren et al., 2015). In addition, theta connections encompass subcortical limbic structures,
and this suggests that theta activity could embody corticolimbic pathways involved in the
cognitive integration of emotional information (Hyman et al., 2005). In addition, theta
dynamics during affective processing are characterized by two distinct stages: 1) an early peak
occurring before 300ms post-stimulus that reflects automatic and unconscious orienting and 2)
a later peak modulated by the conscious and intentional processing of the information
(Knyazek et al., 2009). In this context, posterior late theta synchronization to emotional stimuli
was found to be selectively reduced by distraction, suggesting that the second stage of theta

dynamics can be deliberately modulated (Uusberg et al., 2014; Zhang et al., 2013; Figure 2.11).
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Figure 2.11 Theta power in a posterior cluster during the passive viewing of neutral and negative
pictures, the reappraisal of negative pictures, and the distraction strategy from negative pictures. In the
350-550ms time window, theta power significantly decreased in the distraction (indicated by the red
arrow) compared to reappraise and negative view condition. Adapted from Uusberg et al., 2014.

Only a small number of studies have examined theta oscillatory patterns during
affective processing in depression or dysphoria. An early frontal (~ 200-250 ms) weaker theta
in response to vocalized emotional cues (pleasant and unpleasant) was found in individuals
with subclinical depressive symptoms (Slobodskoy-Plusnin, 2017). In this study, emotional
categories were analyzed as a unitary group and the findings were interpreted as a deficit in the
cognitive processing of all salient content. Accordingly, depressive symptoms are believed to
be associated with reduced orienting and salience processing (Pardo et al., 2006). Moreover,
reduced theta oscillations to pleasant cues and enhanced theta to unpleasant cues relative to
neutral ones in individuals with dysphoria were observed, supporting the hypothesis of higher
cognitive processing of unpleasant stimuli but reduced for pleasant ones in this group

(Bocharov et al, 2017; Figure 2.12).
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Figure 2.12 Time-frequency plots of average power (log dB) in a group with high depressive symptoms
(HD, above) and a group with low depressive symptoms (LD, below) in response to angry (left) and
happy (right) faces. Warmer colors indicate greater synchronization, while green areas are not
significant. The LD group showed reduced theta to angry faces and increased theta to happy faces. The
HD group showed the opposite pattern, with increased theta to angry faces and decreased theta to happy
faces. The right panels show the localization of theta power, which was mostly in the left inferior frontal
gyrus. From Bocharov et al., 2017.

Alpha activity (8 — 13 Hz), a measure considered to be inversely related to the level of
cortical activation (Freeman & Quiroga, 2012), is thought to be an indicator of affective
disposition (Davidson, 1998). The study of resting-state and event-related alpha activity has
focused on frontal alpha asymmetry power (Gilintekin & Basar, 2014). These studies have
highly contributed to the motivational model of frontal asymmetry, which suggests that activity
of the left frontal regions is associated with approach behavior, whereas the right frontal
regions are involved in withdrawal from aversive stimuli (Davidson, 1988). Since alpha
activity is an inverse index of cortical activity, the difference between left and right frontal

alpha activity has been suggested to represent a measure of affective disposition (Allen et al.,

2004).
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Resting-state studies have correlated frontal alpha asymmetry with the balance of the two
motivational systems, mood, and vulnerability for psychopathology (e.g., Davidson, 1998,
2004). For instance, reduced alpha at the left relative to right frontal sites has been correlated
with reward responsiveness (De Pascalis et al., 2010), trait-positive affect (Alessandri et al.,
2015; Tomarken et al., 1992), approach motivation (Harmon-Jones & Allen, 1997, 1998), and
better emotional regulation (Jackson et al., 2003). On the other hand, greater alpha at the left
relative to the right frontal sites has been related to withdrawal motivation (Sutton & Davidson,
1997), and negative affect (Jacobs & Snyder, 1996; Schaffer et al., 1983). The capability model
put forward by Coan and colleagues (Coan et al., 2006; Coan & Allen, 2004) suggests that
individual differences in frontal alpha asymmetry might be best detected during emotionally
charged conditions. This model was built on a series of studies showing that even 10-months
old infants (Davidson & Fox, 1982) had an increased left frontal activation (i.e., alpha
desynchronization) in response to happy relative to sad facial expressions. Similarly, the
voluntary production of happy facial expressions increased left frontal activation (Ekman &
Davidson, 1993). Another study reported greater frontal left activity in response to the viewing
of a sweet that was highly liked by participants and in participants that had not eaten for several
hours (Harmon-Jones & Gable, 2009; Figure 2.13). Overall, these results support the
hypothesis that left frontal activation reflects approach motivation. However, it appears that
frontal asymmetric brain dynamics are not modulated by the valence of the context (i.e.,
pleasant vs. unpleasant) but by motivation tendencies. Indeed, state anger induced in multiple
ways (by insulting participants, social rejection), increased left frontal activation compared to
a non-anger state condition (Harmon-Jones & Sigelman, 2001; Harmon-Jones et al., 2009;

Verona et al., 2009).
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Figure 2.13 (Left panel) Interaction of liking for dessert and picture condition on relative left frontal
activation during the picture viewing. (Right panel) Interaction of time since eaten and picture condition
on left frontal activation during the entire picture viewing. From Harmon-Jones & Gable, 2009.

Depressive symptoms have been associated with an asymmetric pattern of resting-state
alpha activity characterized by increased alpha in the left frontal cortex compared to the right,
possibly reflecting the hypoactivation of the approach-related motivation system (Allen et al.,
2004). To date, only a few studies have examined alpha asymmetry during emotional
processing in dysphoria or depression (Mennella et al., 2015; Messerotti Benvenuti et al., 2019;
Stewart et al., 2011; Stewart et al., 2014). Most of the studies have analyzed alpha activity only
at anterior scalp sites, but a smaller alpha desynchronization (i.e., greater alpha) in frontal and
right centro-parietal regions to pleasant images was recently found in dysphoria (Messerotti
Benvenuti et al., 2019; Figure 2.14). Given that right parietal activity reflects arousal (Bruder
et al., 2005; Stewart et al., 2011), these results were interpreted as an under-engagement of the

approach-related motivational system in individuals with dysphoria.
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Figure 2.14 Time-frequency results for alpha power to pleasant images in subclinical depression and
controls. Subclinical depression was related to reduced alpha desynchronization in frontal and right
temporal regions to pleasant images relative to controls. (Left) Topography of the mean difference
between groups in event-related alpha power (dB; group without dysphoria minus group with
dysphoria) averaged over the significant time window for the pleasant condition. (Right) Mean event-
related alpha power (dB) in the group with subclinical depression (dysphoria) vs. controls averaged
over the significant electrodes and time points for the pleasant condition. From Messerotti Benvenuti et
al., 2019.

Beta oscillations (13-30 Hz) are prevalent during states of wakefulness and arousal
Kilner et al., 2005). In comparison with delta, theta, and alpha frequency bands, beta
oscillations have been less subjected to examination during affective processing. However,
recent findings suggest that beta desynchronization (i.e., suppression, reduction) could be a
measure of motor preparation observed during motivational states (Gable et al., 2021). For
instance, beta suppression and positive affect were greater before the achievement of a goal
relative to after the goal attainment (Gable et al., 2021). This is in line with the hypothesis that
approach-motivated pre-goal states tend to increase neural preparation and cognitive processes
to facilitate goal pursuit (Gable et al., 2016; Wilhelm & Gable, 2021). Therefore, beta
suppression may be an important indicator of motivated action.

Regarding affective picture-viewing tasks, beta power dynamics follow a specific pattern
of early synchronization (0-100 ms) and later desynchronization (starting 200 ms post-

stimulus) in response to emotional stimuli (Giintekin & Tiilay, 2014; Jessen & Kotz, 2011;
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Wright et al., 2012). A few studies suggested that this pattern could be modulated by emotional
valence, showing that the initial parietal beta increase was higher for unpleasant relative to
pleasant and neutral pictures (Giintekin & Basar, 2007; Giintekin & Tiilay, 2014). Moreover,
a recent study reported greater lower beta (12 — 20 Hz) power suppression over posterior
regions during the processing of erotic (highly arousing) relative to romantic (less arousing)
pictures (Schubring & Schupp, 2019). In another study, the same researchers reported greater
beta power suppression over posterior regions to mutilation stimuli (highly arousing) relative
to unpleasant but low-arousing pictures (Schubring & Schupp, 2021; Figure 2.15). Hence, beta
power dynamics seem to be modulated by the arousal and not the valence of the context. To

date, beta power during affective picture processing in depression remains unexplored.
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Figure 2.15 Time course of event-related desynchronization of lower beta (12-20 Hz) power
for romantic (blue) and erotic (red) images. Erotic images (highly arousing) elicited greater
desynchronization relative to romantic ones. From Schubring & Schupp, 2019.
Taken together, this Section reviewed the role of the main EEG oscillations in the
processing of affective stimuli. This dissertation work was primarily aimed at exploring
approach motivation and cognitive processing of emotional stimuli in subclinical and clinical

depression and, in addition to ERPs, the exploration of different time-frequency patterns during

affective picture processing represents a valuable method to disentangle these overlapping
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mechanisms. On the one hand, from the reviewed literature, event-related delta power and
alpha asymmetry to pleasant (relative to unpleasant and neutral) pictures could be the most
promising measures to explore motivational aspects related to depressive symptoms. On the
other hand, theta power might be employed to investigate the cognitive elaboration of affective
and neutral visual cues. Overall, event-related oscillations to affective relative to neutral
pictures can be employed to study the perceptual and cognitive processing of emotional

information in relation to depressive symptoms.
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PART II:

The experiments
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CHAPTER III
STUDY 1: AFFECTIVE-COGNITIVE PICTURE PROCESSING IN

DYSPHORIA: A TIME-DOMAIN AND TIME-FREQUENCY STUDY?

3.1 Abstract

As detailed in previous Chapters, to date, affective and cognitive processing of
emotional information in individuals with depressive symptoms have been examined through
peripheral psychophysiological measures, event-related potentials, and less frequently with
time-frequency analysis of oscillatory activity. However, electrocortical correlates of
emotional and cognitive processing of affective content in depression have not been fully
defined. Time-frequency analysis of electroencephalographic activity allows disentangling the
brain's parallel processing of information. The present study employed a time-frequency
approach to simultaneously examine affective disposition and cognitive processing during
the viewing of emotional stimuli in dysphoria. Time-frequency event-related changes were
examined during the viewing of pleasant, neutral, and unpleasant pictures in 24 individuals
with dysphoria and 24 controls. Affective disposition was indexed by delta and alpha power,
and theta power was employed as a correlate of cognitive elaboration of the stimuli. The late
positive potential (LPP) was also computed as a measure of sustained processing of
motivationally salient stimuli. The group with dysphoria revealed a smaller LPP amplitude
than the group without dysphoria in response to pleasant and neutral, but not unpleasant, stimuli

at centro-parieto-occipital sites. Cluster-based statistics revealed a centro-parietal reduction in

2 Results from this study have been published in Dell’Acqua, C., Dal B0, E., Moretta, T., Palomba, D.,
& Messerotti Benvenuti, S. (2022). EEG time—frequency analysis reveals blunted tendency to approach
and increased processing of unpleasant stimuli in dysphoria. Scientific Reports, 12, 1-13 and Moretta,
T., Dal Bo, E., Dell’Acqua, C., Messerotti Benvenuti, S., & Palomba, D. (2021). Disentangling
emotional processing in dysphoria: An ERP and cardiac deceleration study. Behaviour Research and
Therapy, 147, 103985.
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delta power for pleasant stimuli in individuals with dysphoria than controls. Also, dysphoria
was characterized by an early fronto-central increase in theta power for unpleasant stimuli
relative to neutral and pleasant. Comparatively, controls were characterized by a late fronto-
central and occipital reduction in theta power for unpleasant stimuli relative to neutral and
pleasant. The present study granted novel insights on the interrelated facets of affective
elaboration in dysphoria, mainly characterized by a hypoactivation of the approach-related
motivational system and a sustained facilitated cognitive processing of unpleasant stimuli. In
terms of the RDoC dimensions, these results suggest a reduced functioning of the Positive
Valence Systems as well as a potential interaction between the Negative Valence Systems and

the Cognitive Systems in conferring depression risk.

3.2 Introduction

Ranked among the world’s most common and economically burdensome conditions,
depression is a mood disorder that results in sustained negative affect and/or loss of interest in
pleasant activities (APA, 2013; Lim et al., 2012). Dysphoria is a condition characterized by
depressive symptoms that does not meet the criteria for a formal diagnosis of major depression
with respect to the frequency, duration and/or severity of symptoms (Rodriguez et al., 2021).
Dysphoria is an acknowledged risk factor for the development of clinical depression measured
at follow-up assessments of up to 4 years (e.g., Lee et al., 2019; Pietrzak et al., 2013). Studying
dysphoria has several advantages, as it represents a risk condition for the onset of clinical
depression, and it allows to analyze early depressive symptoms without any confounds
provoked by the chronicity of the disorder or by the intake of antidepressant medications.

A core feature of depressive symptoms is dysregulated affective disposition (Fowles et
al., 1988). Particularly, symptoms of sadness and distress have been linked to the activation of

the withdrawal-related motivational system, which is primarily activated in contexts of threat
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(Bradley et al., 2001). Conversely, symptoms of anhedonia, psychomotor retardation, and
apathy are linked to the hypoactivation of the approach-related motivational system (Admon
& Pizzagalli, 2015). Dysregulated affective disposition can be assessed by examining
emotional responses, a multifaceted affective process involving subjective, behavioral, and
physiological adjustments to affective experience (Lang et al., 1997). Of note, emotional
responding has been widely studied in relation to the development and maintenance of
depressive symptoms and three main hypotheses have been put forward (e.g., Rottenberg et al.,
2005). Firstly, the negative potentiation hypothesis holds that negative mood tends to potentiate
emotional responding to unpleasant stimuli, indicating a heightened activation of the
withdrawal-related motivation system (e.g., Cook et al., 1992; Sigmon et al., 1992). Although
this model is coherent with depression’s feature of sustained negative affect, it is not fully
supported by recent empirical evidence suggesting, instead, that depressed mood is mostly
linked to a reduced emotional responding to positively valenced or rewarding stimuli (e.g.,
Rottenberg et al., 2005; Dunn et al., 2004; Forbes et al., 2012; Mennella et al., 2015; Messerotti
Benvenuti et al., 2015; Messerotti Benvenuti et al., 2017; Messerotti Benvenuti et al., 2019;
Klawohn et al., 2020). This second view, known as the positive attenuation hypothesis, holds
that depressive symptoms are mostly linked to a reduced emotional response to pleasant
content, indicating a hypoactivation of the approach-related motivational system in the brain
(Forbes et al., 2012; Mennella et al., 2015, Messerotti Benvenuti et al., 2017; Messerotti
Benvenuti et al., 2019; Klawohn et al., 2020; Bylsma et al., 2008). Notably, the hypoactivation
of approach-related motivation represents an important risk factor for the development of
depression (Admon & Pizzagalli, 2015; Luking et al., 2016) Moreover, within the Research
Domain Criteria (RDoC matrix, Insel et al., 2010), is included a dimension believed to be a
potentially unique feature contributing to depression, namely the hypoactivation of the Positive

Valence System (Nusslock et al., 2015). The positive attenuation hypothesis has been extended
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to a third alternative, the emotional context insensitivity (ECI) hypothesis (Bylsma et al.,
2008; Bylsma, 2020), which holds that depression is characterized by a hypoactivation of both
motivational systems (Rottenberg et al., 2005; Bylsma, 2020; Rottenberg & Hindash, 2015;
Sloan & Sandt, 2010). Meta-analytic evidence provided support for a positive attenuation and
the ECI model, but not for the negative potentiation hypothesis (Bylsma et al., 2008;
Rottenberg & Hindash, 2015). Considering the dimensional approach provided by the RDoC
outlined in Chapter I, the ECI model suggests a reduced functioning of both the Positive (PVS)
and Negative (NVS) Valence Systems in depression and its risk.

In addition to dysregulated affective disposition, altered cognitive processes of affective
content have been shown to play a critical role in the development and maintenance of
depressive symptoms. Particularly, according to classical cognitive models of depression,
negative self-referential schemata, characteristic of depression, affect cognitive processing
and, particularly, attention (Clark et al., 1999) The facilitated processing of negative
information is believed to contribute to the etiopathogenesis and maintenance of depressive
symptoms (Beck & Bredemeier, 2016; Gotlib & Joormann, 2010; LeMoult & Gotlib, 2019).
Compared to controls, individuals with depressed mood showed increased orienting and
processing of negatively valenced stimuli (e.g., Disner et al., 2011; Koster et al., 2010; Moretta
et al., 2021; Kaiser et al., 2018; for a review see Gotlib & Joormann, 2010). This mechanism
has been suggested to generate a rigid pattern of negative appraisal of unpleasant events, which
results in an increased difficulty to reappraise and regulate emotions (Disner et al., 2011;
Kircanski et al., 2012). Further, depression appears also to be characterized by reduced
processing of pleasant stimuli (e.g., Moretta et al., 2021; Shane & Peterson, 2007; for a review
see Winer & Salem, 2016), indicating attentional avoidance of pleasant content.

To date, affective disposition and cognitive processing of affective content, two

synchronous mechanisms, have been jointly examined through peripheral psychophysiological
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measures or event-related potentials (ERPs) (e.g., Bradley et al., 2001; Codispoti et al., 2006;
Messerotti Benvenuti et al., 2020). Indeed, ERPs have been largely employed to study affective
stimuli processing in real-time during exposure to standardized emotional stimuli (Cuthbert et
al., 2000; Palomba et al., 1997; Schupp et al., 2006). Specifically, as described in Chapter II,
variability in Late Positive Potential (LPP) reflects reactivity to motivationally salient content,
stimuli representation in short-term memory, and meaning evaluation (Bradley et al., 2003;
Schupp et al., 2006). Specifically, the LPP is a positive and sustained shift reaching its
maximum amplitude between 600 and 800 ms following the presentation of motivationally
salient (pleasant and unpleasant) stimuli (Cuthbert et al., 2000; Schupp et al., 2000; Zhang et
al.,2012).

Given the robust role of the LPP in discriminating emotional vs. neutral cues, researchers
have been particularly interested in examining it in depression as a correlate of reactivity to
pleasant and/or unpleasant content. To the best of our knowledge, only one study supported
enhanced attention (reflected by a larger LPP amplitude) towards unpleasant stimuli (Benau et
al., 2019), whereas a reduced LPP in response to threatening content was found in both
depression (Foti et al., 2010; MacNamara et al., 2016; Weinberg et al., 2017) and risk for
depression (Kujawa, et al., 2012). On the other hand, blunted LPP in response to pleasant
stimuli has been found in depression (Grunewald et al., 2019; Klawohn et al., 2020; Weinberg
et al., 2016; for a review see Proudfit et al., 2015), in children with depressive symptoms
(Kujawa et al., 2011; Whalen et al., 2020) or at risk for depression (Levinson et al., 2018;
Nelson et al., 2015), and to prospectively predict depression onset (Sandre et al., 2019). Taken
together, these findings (i.e., reduction of LPP amplitude for pleasant and unpleasant images)
support the prediction of the ECI model (Benning & Ait Oumeziane, 2017; Cavanagh &

Geisler, 2006; Hill et al., 2019).
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Nevertheless, an even more advantageous measure that can be employed is the time-
frequency analysis of electroencephalographic (EEG) activity within specific frequency bands
while participants are exposed to affective vs. neutral content. Indeed, time-frequency analysis
allows the extrapolation of information that is not available using ERPs analysis and reflects
distinctive aspects of information processing (e.g., Herrmann et al., 2014). Specifically,
affective disposition can be assessed by analyzing delta (1-3 Hz) and alpha (8-12 Hz) frequency
bands. Although delta oscillations are considered a correlate of cortical inactivation prominent
during sleep (Dang-Vu et al., 2008), recent studies have demonstrated that delta rhythm across
spatially distributed cortical regions sustains basic motivational drives, especially towards
pleasant and rewarding stimuli (Knyazev, 2011). Indeed, delta oscillations appear to have a
functional role in monitoring the motivational relevance of affective cues and in the
identification of pleasant/rewarding stimuli and are generated by subcortical regions involved
in the motivational system (Knyazev, 2011; Knyazev, 2007; Alper et al., 2006; Foti et al.,
2015). Studies have shown that event-related delta power is increased by emotionally salient
cues (unpleasant and pleasant) as compared to neutral ones mostly in centro-parietal regions
(Balconi et al., 2009; Knyazev, 2011; Zhang et al., 2013). However, to date, delta power in
individuals with depressive symptoms during a picture viewing task has not been fully
explored. Furthermore, alpha band, a measure considered to be inversely related to the level
of cortical activation (Freeman & Quiroga, 2012), is thought to be an indicator of affective
disposition (Davidson, 1998). An asymmetric pattern of alpha activity, with increased alpha in
the left frontal lobe compared to the right, reflects a hypoactivation of the approach-related
motivation system and has long been considered to represent a potential biomarker for
depression in resting-state conditions (Davidson, 1998; Allen et al., 2004; for a review see Van
Der Vinne et al., 2017) and even more in emotional contexts (Coan et al., 2006). However, to

date, only a few studies have examined alpha asymmetry during emotional processing in
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dysphoria or depression (Mennella et al., 2015; Messerotti Benvenuti et al., 2019; Stewart et
al.,2011; Stewart et al., 2014). Also, most studies have analyzed alpha activity only at anterior
scalp sites, even if asymmetry in the alpha in depression has also been reported at posterior
scalp sites. Indeed, individuals with or without familiarity for depression showed a right
temporo-parietal dysfunction, as indexed by higher alpha activity (Messerotti Benvenuti et al.,
2019; Stewart et al., 2011). Particularly, a smaller alpha desynchronization (i.e., higher alpha)
in frontal and right centro-parietal regions to pleasant images was found in dysphoria
(Messerotti Benvenuti et al., 2019). Given that right parietal activity is thought to reflect
arousal (Stewart et al., 2011; Bruder et al., 2005), these results were interpreted as an under-
engagement of the approach-related motivational system in individuals with dysphoria.
Furthermore, theta band (4-8 Hz) reflects the processing of salient events and can be
employed to assess cognitive processing during the viewing of affective content (Siegel et al.,
2000). Specifically, theta, distributed within a large network of brain regions involved in
multimodal sensory and cognitive processing (Kowalczyk et al., 2013; Klimesch, 1999; for
reviews see Karakas, 2020 and Sauseng et al., 2010), is believed to have a role in orienting and
processing of arousing stimuli (Karakas, 2020; Aftanas et al., 2004). Congruently, theta
oscillations are prevalent in superficial cortical layers in a widespread distributed fashion,
supporting its role in the optimization of perceptual features in the environment (e.g., Halgren
et al., 2015). Moreover, considering that theta connections encompass subcortical limbic
structures, theta activity could embody corticolimbic pathways involved in the cognitive
integration of emotional information (Hyman et al., 2005). As a matter of fact, a greater event-
related theta power for affective vs. neutral pictures at bilateral fronto-posterior sites was
reported (e.g., Balconi & Lucchiari, 2006; Balconi et al., 2009) and was suggested to reflect
the role in the integration of affective and cognitive aspects of attentional operations (Knyazev,

2007; Knyazev et al., 2009). To date, only a few studies have examined theta during affective
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processing in individuals with depression or dysphoria. An early frontal (~ 200-250 ms) weaker
theta in response to vocalized emotional cues was reported in individuals with depressed mood
(Slobodskoy-Plusnin, 2018). Despite emotional categories were analyzed as a unitary category,
this pattern was interpreted as a deficit in cognitive processing of all salient content
(Slobodskoy-Plusnin, 2018). Accordingly, depressive symptoms are believed to be associated
with reduced orienting and salience processing (Pardo et al., 2006). Further, Reduced theta
oscillations to pleasant cues and enhanced theta to unpleasant cues relative to neutral ones in
individuals with dysphoria were observed, suggesting higher cognitive processing of
unpleasant stimuli but reduced for pleasant ones in this group (Bocharov et al., 2017).

The present study aimed to simultaneously examine affective disposition and
cognitive processing in individuals with dysphoria through the analysis of time-frequency
changes within delta, theta, and alpha bands during the passive viewing of pictures from the
International Affective Picture System (IAPS) library (Lang et al., 2008). Additionally, the
LPP was also analyzed to assess motivational salience elicited by the emotional pictures
relative to neutral ones.

The formulated hypothesis was twofold and was based on the abovementioned functional
correlates of delta, theta and alpha bands. First, regarding affective disposition, the dysphoria
group was expected to show a hypoactivation of the approach-related motivational system and,
as suggested by the ECI model, a potential hypoactivation of the withdrawal-related
motivational system. Specifically, the group with dysphoria was expected to show a smaller
LPP and smaller increase in delta band activity in response to pleasant and unpleasant vs.
neutral pictures across spatially distributed cortical regions relative to controls. Also,
considering that reviewed evidence supporting the role of alpha as a measure of the approach-
related motivational system, the dysphoria group was expected to show a smaller alpha

desynchronization in the left frontal and right parietal cortex in response to pleasant (but not
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neutral and unpleasant) stimuli relative to controls. Second, regarding cognitive processing, a
facilitated cognitive processing of unpleasant and reduced processing of pleasant stimuli was
expected in the group with dysphoria. Namely, these processing patterns would be indexed by
increased theta activity to unpleasant relative to neutral stimuli and to controls and by a reduced

theta activity to pleasant relative to neutral pictures and relative to controls.

3.3 Methods
Participants

A cohort of 85 Caucasian students at the University of Padua, Italy, voluntarily took
part in the research project. The sample was medically healthy and free from psychotropic
medication, as assessed with an ad-hoc anamnestic interview. In the present study, a group
with dysphoria and a group without dysphoria were identified on specific criteria. Participants
with dysphoria were identified by module A of the Structured Clinical Interview for DSM-5
(SCID 5-CV; First et al., 2016; Italian version Fossati & Borroni, 2017) assessing current and
past depressive symptoms. Furthermore, the Beck Depression Inventory-1I (BDI-II, Beck et
al., 1996; Ghisi et al., 2006) was also employed for the assessment of depressive symptoms’
severity. Based on the psychological assessment, 27 participants (5 males) who scored equal
to or greater than 12 on the BDI-II and showed at least two present depressive symptoms, for
at least two weeks, without meeting the diagnostic criteria for major depression, persistent
depressive disorder, or bipolar disorder, were assigned to the group with dysphoria. Twenty-
five participants (12 males) who scored equal to or lower than 8 on the BDI-II and had no
history of depression or current depressive symptoms were assigned to the control group (i.e.,
without dysphoria). To ensure separation between groups with dysphoria and without
dysphoria, participants who scored between 9 and 11 on the BDI-II were excluded from the

present study (n = 17). Also, individuals without depressive symptoms but with at least one
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past depressive episode (i.e., remitted, see Dell'Acqua et al., 2020) were excluded from the
present study (n = 16).

With respect to demographic variables, the two groups included in the analyses (with
dysphoria, without dysphoria) did not differ in terms of age (p = .645; dysphoria group: Mean
(M) =20.7, standard deviation (SD) = 2.56, min = 18, max = 24; group without dysphoria: M
=20.4, SD = 1.72, min = 18, max = 28), sex (x2 =3.375, p=.066), and education (p = .920;
dysphoria group: M = 15.0, SD = 1.56, min = 14, max = 18; group without dysphoria: M =
15.0, SD = 1.30, min = 14, max = 17).

Participants were given 13 € for their participation. All participants read, understood,
and signed informed consent. The research was conducted in compliance with the World
Medical Association Declaration of Helsinki on research on human subjects and was approved
by the Ethical Committee of Psychological Research, Area 17, University of Padua (prot. no.

3612).

Psychological measures

The Italian version of the mood episode module (module A) of the SCID-5-CV was
employed as a reliable tool to assess the presence of dysphoria and to exclude individuals with
major depression, persistent depressive disorder, or bipolar disorder. The SCID-5-CV was
administered by a trained psychologist who had previous experience with administering
structured clinical interviews. The Italian version of the BDI-II was also employed as a reliable
measure of the severity of depressive symptoms in the past two weeks. It is a self-report
questionnaire composed of 21 items, each with a Likert scale of four-points and scores range
from O to 63, where higher scores indicating greater depressive symptoms. In the Italian
version, a score of 12 has been reported as the optimal cut-off score to discriminate between

individuals with and without depressive symptoms (Ghisi et al., 2006).
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Experimental task and procedure

Twenty-four pleasant (e.g., erotic couples, sports), 24 neutral (e.g., household objects,
neutral faces), and 24 unpleasant (e.g., attacking humans and animals) color pictures (600 x
800 pixels) were presented to participants. Highly arousing pleasant and unpleasant pictures
were selected from the International Affective Picture System (IAPS; Lang et al., 2008) since
these have been observed to induce elevated psychophysiological changes (e.g., Bradley et al.,
2001). Pleasant and unpleasant pictures were matched for normative arousal ratings which
were significantly higher than for neutral pictures. The number of the selected IAPS pictures
are listed in the supplementary material.

Pictures were shown for 6000 ms each in a semi-randomized sequence (i.e., no more
than one stimulus in the same emotional condition had to be shown consecutively). Each
picture was preceded by a 3000 ms interval where a white fixation cross was placed centrally
on a grey screen. Participants were required to look at the central fixation cross and keep their
gaze on the center of the screen. Picture presentation was followed by a variable intertrial
interval (ITT) of 6000-8000 ms, during which a white fixation cross (identical to the 3-sec
baseline) was presented.

Before the experimental session, participants were required to avoid alcohol
consumption the day before and to avoid caffeine and nicotine the same day of the appointment.
Upon arrival at the laboratory, after reading and signing written informed consent, participants
were administered the ad-hoc anamnestic interview, the mood episode module (module A) of
the SCID-5-CV, and the BDI-II. Then, participants were seated on a comfortable chair in a
dimly lit, sound-attenuated room. After electrodes attachment and a 3-minute resting-state
period, six practice trials including two pleasant, two neutral, and two unpleasant pictures were
provided. Then, participants underwent the emotional passive viewing task while EEG and

electrocardiogram (ECG) were recorded (data from the ECG analyses are not presented here
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but can be found in Moretta et al., 2021). At the end of the passive viewing task, 36 pictures
(12 for each emotional category) were presented again, and ratings of emotional valence and
arousal were obtained using a computerized version of the 9-point Valence and Arousal scales
of the Self-Assessment Manikin (SAM; Bradley & Lang, 1994). Following the completion of
the self-evaluation of emotional valence and arousal, participants were fully debriefed. The
entire procedure lasted approximately 90 min. Figure 3.1 illustrates the experimental

procedure.
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Figure 3.1 illustration of the passive viewing task and self-assessment manikin.

EEG recording

EEG data acquisition was accomplished using a computer running Eego software and
using an Eego amplifier (ANT Neuro, Enschede, Netherlands). EEG was recorded using an
elastic cap with 32 tin electrodes arranged according to the 10-20 System (Fpl, Fpz, Fp2, F7,
F3, Fz, F4, F8, FC5, FC1, FC2, FC6, T7, C3, Cz, C4, T8, CP5, CP1, CP2, CP6, P7, P3, Pz, P4,

P8, POz, O1, Oz, 02, and mastoids: M1, M2), referenced online to CPz. Both vertical and
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horizontal electrooculograms (EOGs) were recorded using a bipolar montage to monitor eye
movements and eye-blinks. The electrode pairs were placed at the supra- and suborbit of the
right eye and at the external canthi of the eyes, respectively. Electrode impedance was kept
below 10 kQ. The EEG and EOG signals were amplified with Eego amplifier (ANT Neuro,

Enschede, Netherlands), bandpass filtered (0.3—40 Hz), and digitized at 1000 Hz.

EEG data reduction and analysis

The EEG signal was downsampled to 500 Hz and re-referenced offline to a linked
mastoids montage as implemented in EEGLAB (Delorme & Makeig, 2005). Further processing
was conducted in Brainstorm (Tadel et al., 2011). The EEG was filtered offline with a band-
pass filter of 0.3-30 Hz and manually corrected for blink artifacts using independent component
analysis (ICA). The EEG was then segmented into 6,000 epochs, from 3,000 ms before the
stimulus onset to 3,000 ms after the stimulus onset, to prevent boundary effects (Messerotti
Benvenuti et al.,, 2017). Each epoch was baseline-corrected by subtracting the mean pre-
stimulus voltage between —250 ms and —50 ms. Segments that contained residual artifacts
exceeding £70 puV (peak-to-peak) were excluded. By applying the a priori criteria of excluding
individuals for whom more than 50% of trials were rejected, two participants (2 females) in
the group with dysphoria were excluded due to excessive noise on the EEG recording and failed
mastoid, respectively. Moreover, one participant in the group with dysphoria (1 female) and
one in the group without dysphoria (1 male) were excluded due to excessive noise on electrode
T7 and overall low-quality signal which precluded cluster-based time-frequency analysis. On
the remaining sample, the artifact rejection led to an average = SD acceptance of 19.0 + 3.6
pleasant trials, 18.5 £ 3.0 neutral trials, and 19.1 & 3.2 unpleasant trials in the dysphoria group,
and of 18.7 &+ 3.2 pleasant trials, 18.7 & 3.2 neutral trials, and 19.0 & 3.1 unpleasant trials in the

control group. No statistically significant differences between groups or among emotional
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conditions in the average acceptance of pleasant, neutral, and unpleasant trials emerged (all ps

> 15).

Time-frequency analysis

Time-frequency analysis was performed using Morlet wavelet transformation on
individual trials for each 1-Hz frequency bin between 1 and 30 Hz, using a mother wavelet at
1 Hz with 3-s time resolution (full width at half maximum; FWHM). Time-frequency
decompositions were then averaged for each participant and emotional condition, and the
event-related spectral perturbation (ERSP) was computed as the change in power expressed in
decibels (dB) relative to the baseline (—900 to —400 ms) in each frequency bin at each time
point (Messerotti Benvenuti et al., 2019). Then, data were grand averaged across each group

for each emotional condition.

Statistical analysis

Valence and arousal self-report ratings were submitted to separate linear mixed-effect
models (LMMs), with participants as random term, and Category (pleasant, neutral,
unpleasant) and Group (with dysphoria, without dysphoria) as fixed factors.

For both time-domain and time-frequency analyses, a cluster-based approach has been
conducted to control over type I error rate arising from multiple comparisons across electrodes
and time points (Maris & Oostenveld, 2007).

This approach is advantageous as it does not rely on assumptions about the distribution
of the data or the theoretical underlying distribution of test statistics under the null hypothesis
(i.e., Gaussian). Instead, the distribution is generated by the data itself, by iteratively shuffling
the condition labels over trials (i.e., within-subjects) or over subjects (i.e., between-subjects)

and recomputing the statistics. The shuffling is repeated thousands of times until a distribution
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of the test statistic value observed under the null hypothesis is generated. If the observed
statistic value (i.e., the test statistic associated with the non-shuffled data) falls within the
distribution of the null-hypothesis test statistic values, the null hypothesis cannot be rejected
and this would indicate that the observed data could have been randomly generated (Cohen,
2014; Luck, 2014b). Cluster-based correction assumes that a true effect should show a temporal
and spatial extension, with neighbor sensors showing similar patterns (Cohen, 2014). With
cluster-based correction, at each iteration of the null- hypothesis distribution generation, a
threshold is applied to the time—frequency map, such that the outcome is units of clusters
instead of single pixels (i.e., electrodes). In the present study, once thresholded values resulted
from statistics across electrodes and time points were obtained, the differences within
emotional conditions or between groups were shuffled pseudo-randomly 2000 times
(Messerotti Benvenuti et al., 2019). To obtain a ‘null’ distribution of effect sizes, the maximal
cluster-level statistics (i.e., the sum of values across contiguously significant electrodes and
time points at the threshold level) were extracted for each shuffle. For each significant cluster
in the (non-shuffled) data, the cluster-corrected p-value was computed as the statistics of the
proportion of clusters in the null distribution that exceeded the one obtained for the cluster in
question (Messerotti Benvenuti et al., 2019). The analysis was conducted with a — 100 to 1400
ms time window and clusters with a pcorr < .05 were considered statistically significant.To test
within-group differences in event-related power changes among emotional categories
(pleasant, neutral, unpleasant) and between-group (with dysphoria, without dysphoria)
differences within each emotional category, cluster-based repeated measures ANOVAs and
two-tailed unpaired #-tests were employed, respectively. The cluster-based statistical tests were
run on event-related potentials (ERPs), event-related delta (1-3 Hz), theta (4—7 Hz), and alpha
(8—13 Hz) power over time-points in the —100 to 1400 ms interval and a p < .05 criterion was

employed to threshold the matrices (Messerotti Benvenuti et al., 2019).

88



Further statistical analyses were conducted using a two-tailed a = .05. LPP and time-
frequency power were extracted according to the significant time window and location (i.e.,

sensors) that emerged from the cluster-based between-group differences for pleasant pictures.

3.4 Results
Valence and arousal self-report ratings

The Category main effect was statistically significant for both valence and arousal
ratings (valence: F(2,150)=201.13, p <.001; arousal: F(2,150)=187.81, p <.001). Unpleasant
pictures were rated as significantly more unpleasant and arousing than pleasant and neutral
pictures (all ps < .01). Moreover, pleasant pictures were rated as significantly more pleasant
and arousing than neutral pictures (ps < .001). No significant main effect for Group or Group

x Category interaction was found.

Event-related potentials (ERPs)

Differences among emotional categories in ERPs. The cluster-based analysis on ERP
data showed a significant centro-parieto-occipital cluster (electrodes = CP5, CP1, CP2, CP6,
P7, P3, PZ, P4, P8, POZ) in the group without dysphoria (cluster F-valuemax = 11249.33,
pcorr = .001, time window = 450—642 ms), and in the group with dysphoria (cluster F-
valuemax =26475.67, pcorr <.001, time window = 352—700 ms), as shown in Figures 3.2 and
3.3, respectively. Particularly, both groups revealed a significantly larger LPP amplitude in
response to pleasant and unpleasant stimuli than neutral ones (all ps < .01; Fig. 3.1 and 3.2).

Differences between groups in ERPs for each emotional category. Cluster-based
unpaired z-tests revealed a significant positive centro-parieto-occipital cluster (electrodes =
CP5, CP1, CP2, CP6, P7, P3, PZ, P4, P8, POZ) for the difference between the groups in
response to pleasant (cluster z-valuemax = 963.16, pcorr = 0.03, time window = 402-518 ms,
Cohen’s d = — 0.68) and neutral (cluster #-valuemax = 1219.05, pcorr = 0.02, time window =

89



396-550 ms, Cohen’s d = — 0.74) conditions, as shown in Figures 3.4 and 3.5, respectively.
Specifically, individuals with dysphoria showed a significantly smaller LPP amplitude in

response to both pleasant and neutral stimuli than those without dysphoria.
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Figure 3.2 (Panel a) Topography of the mean ERP amplitude (uV) of individuals without dysphoria
averaged over the significant time points (450-642 ms time window) for pleasant, neutral, and
unpleasant conditions. (Panel b) Mean ERP amplitude of each participant averaged over the significant
electrodes and time points for pleasant, neutral, and unpleasant conditions. Each circle represents one
participant; black frames represent the mean ERP amplitude across all participants and the solid black
lines represent = standard error of the mean (SEM). **p < .01; ***p <.001. (Panel c) Time course of
grand-average ERP waveforms averaged over the significant electrodes for pleasant (red line), neutral
(grey line), and unpleasant (blue line) conditions. Shaded areas represent + SEM.
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Figure 3.3 (Panel a) Topography of the mean ERP amplitude (uV) of individuals with dysphoria
averaged over the significant time points (352-700 ms time window) for pleasant, neutral, and
unpleasant conditions. (Panel b) Mean ERP amplitude of each participant averaged over the significant
electrodes and time points for pleasant, neutral, and unpleasant conditions. Each circle represents one
participant; black frames represent the mean ERP amplitude across all participants and the solid black
lines represent + SEM. ***p < .001. (Panel c¢) Time course of grand-average ERP waveforms averaged
over the significant electrodes for pleasant (red line), neutral (grey line), and unpleasant (blue line)
conditions. Shaded areas represent + SEM.
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Figure 3.4 (Panel a) Topography of the mean difference between groups in mean ERP amplitude (puV;
group without dysphoria minus group with dysphoria) averaged over the significant time points (402—
518 ms time window) for the pleasant condition. (Panel b) Mean ERP amplitude of each participant in
the group with dysphoria and the group without dysphoria averaged over the significant electrodes and
time points for the pleasant condition. Each circle represents one participant; the frames represent the
mean ERP amplitude across all participants in the group with dysphoria and in the group without
dysphoria and the solid black lines represent = SEM. *p <.05. (Panel c) Time course of grand-average
ERP waveforms averaged over the significant electrodes for the pleasant condition in the group with
dysphoria (dashed, light gray line) and in the group without dysphoria (solid black line). Shaded areas
represent = SEM.
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Figure 3.5 (Panel a) Topography of the mean difference between groups in mean ERP amplitude (puV;
group without dysphoria minus group with dysphoria) averaged over the significant time points (396—
550 ms time window) for the neutral condition. (Panel b) Mean ERP amplitude of each participant in
the group with dysphoria and the group without dysphoria averaged over the significant electrodes and
time points for the neutral condition. Each circle represents one participant; the frames represent the
mean ERP amplitude across all participants in the group with dysphoria and in the group without
dysphoria and the solid black lines represent + standard error of the mean (SEM). **p < .01. (Panel c)
Time course of grand-average ERP waveforms averaged over the significant electrodes for the neutral
condition in the group with dysphoria (dashed, light gray line) and in the group without dysphoria (solid
black line). Shaded areas represent + SEM.

Delta power

Differences among emotional categories in event-related delta power. The cluster-
based analysis on event-related delta power showed a significant positive topographically
widely distributed cluster in the group without dysphoria (electrodes = F3 FZ FC5 FC1 T7 C3
CZ CP5 CP1 CP2 CP6 P7 P3 PZ P4 P8 POZ; cluster F-valuemax = 67817.30, pcorr = .01, time
window = -100 - 898 ms), and in the group with dysphoria (electrodes = FP1 FPZ FP2 F7 F3
FZ F4 FC5 FC1 FC2 T7 C3 CZ C4 CP5 CP1 CP2 CP6 P7 P3 PZ P4 P§ POZ O1 OZ O2; cluster
F-valuemax = 278357.09, pcorr=.001, time window = -100 - 1400 ms) as shown in Figures 3.6

and 3.7, respectively. Both groups showed significantly greater delta to pleasant and unpleasant

stimuli relative to neutral ones (all ps <.017).
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Figure 3.6 (Panel a) Topography of the mean event-related delta power [dB] of individuals without
dysphoria averaged over the significant time points [-100 - 898 ms time window] for pleasant, neutral,
and unpleasant conditions. (Panel b) Time course of grand-average event-related delta power of
individuals without dysphoria averaged over the significant electrodes for pleasant [red line], neutral
[grey line], and unpleasant [light blue line] conditions. Shaded areas represent + standard error of the
mean [SEM] and the gray line represents the end of the significant time window [898 ms]. (Panel c)
Mean event-related delta power of each participant [in the group without dysphoria] averaged over the
significant electrodes and time points for pleasant, neutral, and unpleasant conditions. Each circle
represents one participant; colored frames represent the mean event-related delta power across all
participants and the solid black lines represent = SEM. *p < .05; **p < .01.
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Figure 3.7 (Panel a) Topography of the mean event-related delta power [dB] of individuals with
dysphoria averaged over the significant time points [-100 - 1400 ms time window] for pleasant, neutral,
and unpleasant conditions. (Panel b) Time course of grand-average event-related delta power of
individuals with dysphoria averaged over the significant electrodes for pleasant [red line], neutral [grey
line], and unpleasant [light blue line] conditions. Shaded areas represent + SEM. (Panel ¢) Mean event-
related delta power of each participant [in the group with dysphoria] averaged over the significant
electrodes and time points for pleasant, neutral, and unpleasant conditions. Each circle represents one
participant; colored frames represent the mean event-related delta power across all participants and the
solid black lines represent = SEM. *p < .05; ***p <.001.

Differences between groups in event-related delta power for each emotional category.
Cluster-based unpaired #-tests on event-related delta power revealed significant positive
clusters for the difference between the two groups within pleasant (electrodes = T7 CZ CP5
CP1 P7 P3 PZ P4 POZ O1 OZ; cluster t-valuemax = 14504.83, pcorr = .03, time window = -100
- 1148 ms) and neutral (electrodes = FP1 FPZ F7 FZ FC5 FC1 FC2 FC6 C3 CZ C4 T8 CP1
CP2 CP6 P7 P3 PZ P4 P8 POZ O1 OZ 0O2; cluster t-valuemax = 24222.04, pcorr = .02, time
window = -100 - 958 ms) conditions, as shown in Figure 3.8. Specifically, the dysphoria group

showed reduced delta in response to both pleasant and neutral stimuli relative to the group
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without dysphoria. Unpaired t-test did not reveal any significant cluster for the difference
between the groups within the unpleasant condition. Moreover, delta power within the
significant clusters that emerged from the between-groups comparisons was not influenced by

sex (neutral cluster, p = .125; pleasant cluster, p = .270).
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Figure 3.8 (Panels a and d) Topography of the mean difference between groups in event-related delta
power [dB; group without dysphoria minus group with dysphoria] averaged over the significant time
points for the pleasant (Panel a; -100 - 1148 ms time window) and (Panel d; -100 - 958 ms time window)
neutral condition, respectively. (Panel b) Time course of grand-average event-related delta power
averaged over the significant electrodes for pleasant and (Panel e) neutral conditions in the group with
dysphoria [black line] and the group without dysphoria [red line]. Shaded areas represent + SEM; the
gray line represents the end of significant time windows. (Panel ¢) Mean event-related delta power of
each participant in the group with dysphoria and the group without dysphoria averaged over the
significant electrodes and time points for the pleasant condition and (Panel f) neutral condition. Each
circle represents one participant; the frames represent the mean event-related delta power across all
participants in the group with dysphoria and the group without dysphoria and the solid black lines
represent £ SEM. **p < .01.

Theta power
Differences among emotional categories in event-related theta power. The cluster-

based analysis on event-related theta power showed a significant positive fronto-centro-
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parieto-occipital cluster in the group without dysphoria (electrodes = FP1 FPZ FP2 FZ F4 F8
FC1 FC2 FC6 CZ T8 CP1 CP2 CP6 P7 P3 PZ P4 POZ O1 OZ O2; cluster F-valuemax =
39465.97, pcorr = .03, time window = 836 - 1400 ms) and a positive fronto-centro-parietal
cluster in the group with dysphoria (electrodes = FP1 FPZ FP2 F7 FZ F4 F8 FCS5 FC1 FC2
FC6 C3 CZ C4 CP5 CP1 CP2 CP6 P7 P3; cluster F-valuemax = 41826.52, pcorr = .03, time
window = -60 - 666 ms) and a significant as shown in Figure 3.9 and 3.10, respectively. The
group with dysphoria showed increased theta power in response to unpleasant than neutral and
pleasant stimuli (all ps <.022). Differently, the group without dysphoria revealed reduced theta

power in response to unpleasant than neutral and pleasant stimuli (all ps <.016).
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Figure 3.9 (Panel a) Topography of the mean event-related theta power [dB] of individuals without
dysphoria averaged over the significant time points [836 - 1400 ms time window] for pleasant, neutral,
and unpleasant conditions. (Panel b) Time course of grand-average event-related theta power of
individuals without dysphoria averaged over the significant electrodes for pleasant [red line], neutral
[grey line], and unpleasant [light blue line] conditions. Shaded areas represent + SEM and the gray line
represents the beginning of the significant time window [836 ms]. (Panel ¢) Mean event-related theta
power of each participant [in the group without dysphoria] averaged over the significant electrodes and
time points for pleasant, neutral, and unpleasant conditions. Each circle represents one participant;
colored frames represent the mean event-related theta power across all participants and the solid black
lines represent + SEM. *p < .05.
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Figure 3.10 (Panel a) Topography of the mean event-related theta power [dB] of individuals with
dysphoria averaged over the significant time points [-60 - 666 ms time window] for pleasant, neutral,
and unpleasant conditions. (Panel b) Time course of grand-average event-related theta power of
individuals with dysphoria averaged over the significant electrodes for pleasant [red line], neutral [grey
line], and unpleasant [light blue line] conditions. Shaded areas represent + SEM and gray lines represent
the significant time window [-60 - 666 ms]. (Panel ¢) Mean event-related theta power of each participant
[in the group with dysphoria] averaged over the significant electrodes and time points for pleasant,
neutral, and unpleasant conditions. Each circle represents one participant; colored frames represent the
mean event-related theta power across all participants and the solid black lines represent + SEM. *p <
.05; **p <.01.

Differences between groups in event-related theta power for each emotional category.
Unpaired #-test conducted on event-related theta power did not reveal any significant cluster

for the difference between the groups within each emotional condition (all ps > .125).
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Alpha power

Differences among emotional categories in event-related alpha power. The cluster-
based analyses on event-related alpha power did not reveal any statistically significant cluster
in testing possible within-group differences (all ps > .088).

Differences between groups in event-related alpha power for each emotional category.
Unpaired t-test conducted on event-related alpha power did not reveal any significant cluster
for the difference between the groups within each emotional condition (no cluster was detected;

hence p-values were not generated).

3.5 Discussion

The present study examined affective disposition and cognitive processing in dysphoria
through the analysis of the LPP and time-frequency changes within delta, theta, and alpha
bands during the exposure to emotional pictures. Regarding affective disposition, the dysphoria
group was expected to show a hypoactivation of the approach-related motivational system and,
as suggested by the ECI model, a hypoactivation of the withdrawal-related motivational
system. Second, the dysphoria group was expected to show selective facilitated top-down
processing of unpleasant and a reduced processing of pleasant stimuli.

With respect to affective disposition, a pattern of increased event-related LPP and delta
in response to all affective relative to neutral pictures emerged within both groups, indicating
an affective modulation regardless of valence. Moreover, in line with the hypothesis,
individuals with dysphoria showed a reduction of the LPP and delta to pleasant pictures relative
to the group without dysphoria. This finding possibly indicates a reduced emotional responding
to pleasant images and a hypoactivation of the approach-related motivational system in
individuals with dysphoria. Indeed, delta oscillations are linked to motivational processing,

whereby an increase in its power indicates the identification of potentially rewarding cues (e.g.,
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Balconi & Mazza, 2009; Karakas, 2020; Knyazev et al., 2009; Knyazev, 2011). Hence, reduced
delta to pleasant images could denote reduced emotional responding to pleasant/rewarding
stimuli in dysphoria. Additionally, the dysphoria group showed reduced LPP and delta to
neutral pictures than the group without dysphoria, a pattern probably due to participants’
motivational inertia, characteristic of depressive symptoms. Namely, it is plausible that the
decreased motivation in dysphoria extended to non-relevant stimuli that did not elicit a
saliency-detection process as prominent as in controls. Taken together, these findings provide
support for the positive attenuation hypothesis in dysphoria. Conversely, the present findings
are at odds with the negative potentiation hypothesis as well as with the reduced reactivity to
unpleasant stimuli (Bylsma et al., 2008). However, blunted reactivity to unpleasant stimuli
might specifically be a manifestation of clinical depression.

Furthermore, no significant difference between the dysphoria and the control group was
found in the event-related alpha. This null finding may be due to different methodological
approaches employed across studies. For instance, the present study differs in several
methodological features from the few previous studies that employed a time-frequency
approach (Messerotti Benvenuti et al., 2019; Stewart et al., 2014). Particularly, compared to a
previous study (Messerotti Benvenuti et al., 2019), here an even more rigorous statistical
approach was employed, whereby group level analyses were conducted on distinct time
windows identified through cluster-based analysis conducted within each group separately.
Although reduced alpha desynchronization to pleasant stimuli was reported in depression,
results are still inconsistent in the literature (for a review see Van Der Vinne et al., 2017).

Regarding affective cognitive processing, the two groups showed distinct patterns of
theta power changes at the within-subjects level. Of note, these within-subjects differences
occurred at distinct time windows, indicating potentially different processes occurring within

the same stage of stimulus analysis. In the literature, two stages of emotional processing of

100



theta power were identified: an early increase (~ 300 ms) related to automatic orienting and a
later (after 300 ms) increase related to fine-grained top-down processing of salient stimuli
(Knyazev, 2011; Zhang et al., 2013). Regarding the differences within the dysphoria group, an
early increased in theta power for unpleasant pictures lasted until a later processing stage. On
the other hand, within the control group, reduced theta for unpleasant pictures was evident only
during a subsequent processing stage (836-1400 ms). It could be hypothesized that during the
early stage of processing, individuals with dysphoria showed a preferential early orienting for
unpleasant relative to both pleasant and neutral images. However, this effect was stable even
after the early orienting stage, indicating that individuals with dysphoria performed a selective
top-down processing towards unpleasant cues. Also, this pattern suggests that dysphoria may
show a reduction in orienting towards pleasant pictures, which are processed as neutral ones.
In contrast, controls showed a late reduction of top-down processing for unpleasant cues,
suggestive for a conscious and adaptive regulation of these stimuli (Uusberg et al., 2014).
Consistently, a previous study on healthy participants reported that a late (1000-4000 ms) theta
activity decrease was associated with reappraisal, a regulation strategy aimed at modifying the
meaning of an emotional situation. The late dampening of theta by reappraisal was interpreted
as decreased prioritization of the stimuli by selective attention, following an initial evaluation
of their affective saliency. Hence, the within-subjects pattern in dysphoria not only is consistent
with a facilitated processing of unpleasant cues, but it might indicate a lack of adaptive
regulation strategies as compared to controls. Since theta band has been largely associated with
high-order cognitive processes (Ertl et al., 2013; Nigbur et al., 2011), in future studies it would
be interesting to investigate event-related theta while participants engage in complex affective
cognitive task.

From the current findings, the distinct role of delta and theta is supported. For instance,

albeit speculative, not only do they represent distinct functional correlates of affective
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processing, but they seem to be distinctively associated with the elaboration of pleasant and
unpleasant content, respectively. In this regard, previous time-frequency studies on reward and
loss processing have linked increased delta to reward sensitivity and increased theta to loss
processing, describing them as two dissociable processes (e.g., Bernat et al., 2011; Nelson et
al., 2018). Interestingly, a previous study reported that depressive symptoms were
prospectively predicted by diminished reward-related delta but not loss-related theta (Nelson
et al., 2018). Despite these studies employed a different paradigm, the present findings support
the perspective of a pleasantness-related delta band and unpleasantness-related theta band. The
current findings on theta are novel and future studies are warranted to better disentangle its role
in the top-down processing of affective stimuli in dysphoria.

The time-frequency approach applied in the present study offers several
methodological advantages compared to standard ERPs. Indeed, this approach allowed the
separation of two peculiar measures of affective elaboration reflecting distinct processes
occurring simultaneously, namely affective disposition and top-down processing. Furthermore,
in addition to the analysis of evoked oscillations, time-frequency analysis also incorporates
induced oscillations, known to carry important information about cognitive processes
(Herrmann et al., 2014).

In accordance with findings of previous studies on subclinical (e.g., Messerotti
Benvenuti et al., 2019; Messerotti Benvenuti et al., 2015; Sloan & Sandt, 2010) and clinical
depression (e.g., Dichter et al., 2004), self-report measures of valence and arousal did not differ
between groups. Overall, this suggests that differences in electrocortical measures across
groups cannot be attributed to differences in subjective ratings of valence and arousal. In
addition, these findings would suggest that electrocortical measures of emotional responding
may be more sensitive measures than subjective ratings to identify subclinical depressive

symptoms. Indeed, these measures may reflect unaware attentional processes that are not
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discernible with subjective reports of emotional experience. These results highlight the
importance of employing psychophysiological measures in conjunction with self-report ones
for a better understanding of abnormal patterns of affective processes in dysphoria.

Some limitations should be acknowledged. First, considering that the present study was
based on a community sample and that dysphoria is more prevalent among the female
population (Rodriguez et al., 2021), most of the participants within the dysphoria group
belonged to the female sex. This sex unbalance might not allow the generalization of the
findings to the male population and future studies are warranted to replicate the findings and
increase their generalizability. Furthermore, although the emotional passive viewing task is a
valid and widely used paradigm to study affective processing (e.g., Codispoti et al., 2006;
Klawohn et al., 2020), future studies that include specific experimental manipulations during
the exposure to emotional stimuli are warranted to clarify the functional correlates of delta,
theta and alpha frequency bands in affective tasks.

In conclusion, the present study granted novel evidence on distinct but interrelated
facets of affective elaboration in dysphoria, mainly characterized by a hypoactivation of the
approach-related motivational system and a sustained facilitated cognitive processing along
with reduced adaptive regulation of unpleasant stimuli. In terms of RDoC dimensions, these
results suggest a reduced functioning of the Positive Valence Systems as well as a potential
interaction between the Negative Valence Systems and the Cognitive Systems in conferring
depression risk. Considering that dysphoria is a condition known to considerably increase the
risk of depression, these patterns of affective processing may represent quantitative measures

allowing for early identification and treatment of depressed mood.
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3.6 Study 1b: Reduced electrocortical responses to appetitive stimuli are driven by
anhedonia in dysphoria
3.6.1 Introduction

The goal of these additional analyses was to better understand the association and
pathways that lead to a reduced LPP and delta time-frequency power to pleasant stimuli in
individuals with dysphoria. Considering that the reduction in these measures observed in
dysphoria was interpreted as a hypoactivation of the Positive Valence Systems of approach
motivation, it could be hypothesized that symptoms of anhedonia drive the reduced neural
responses to pleasant cues in this group. Particularly, anhedonia is defined as a lack of interest
or pleasure in normally enjoyable experiences and is conceptualized as arising from a
hypoactivation of the motivational approach system (Davidson, 1998; Pizzagalli, 2008;
Klawohn et al., 2021).

To better understand the direct and mediated paths leading from dysphoria to reduced
LPP and delta power to pleasant stimuli, path analysis models were performed. Specifically, it
was hypothesized that the association between reduced neural responses to pleasant cues (LPP

and delta power) and dysphoria was mediated by symptoms of anhedonia.

3.6.2 Methods

To have a single measure of LPP and delta to pleasant cues, residualized difference
measures for the LPP and delta power were determined by saving the unstandardized residuals
in linear regressions predicting LPP to pleasant images from LPP to neutral images (i.e.,
LPP:esid) and predicting delta power to pleasant images from delta power to neutral images (i.e.,
Deltaresia), respectively. First, Pearson correlations were conducted between the two measures,

the anhedonia subscale of the BDI (items 4, 12, 22 were summed to form an index of anhedonic
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symptoms; Joiner et al., 2003), and non-anhedonia BDI scores (The remaining 18 BDI items
were summed, to form a measure of non-anhedonic depressive symptoms; Joiner et al., 2003).

Then, path analyses were conducted to assess whether the relation between each EEG
measure that was significantly different between the two groups and dysphoria status was
mediated by anhedonia. Path analyses are extensions of regression models and require the
specification of a causal ordering of the variables. Assuming that the defined structure is robust,
these models give a cleaner and more detailed picture of the significant effects. The pattern of
associations was examined using R package Lavaan (R Core Team, 2015; Rosseel, 2012), with
combinations of observed scores (i.e., centered mean score) that composed the latent variable
of anhedonia (BDI items 4, 12, 21) and observed variables (EEG measures and group status).
Path coefficients were estimated using the maximum likelihood method. The possible causal
associations (direct, indirect, and total effects) between LPP or delta power, dysphoria status,
and anhedonia were tested. A bootstrap procedure was used (with 1000 replications) to
generate empirical sampling distribution of effects, which provided confidence intervals for
the direct, indirect, and total effects. Indirect effects were considered significant when
confidence intervals did not include zero (Preacher & Hayes, 2008). Model fit was assessed by
examining the comparative fit index (CFI; Marsh & Hau, 2007) and the root mean square error
of approximation (RMSEA; Cole & Maxwell, 2003). Values > 0.95 are desirable for the CFI,

while RMSEA values should be <0.05 for a good model fit (Hu & Bentler, 1999).

3.6.3 Results
Correlations are shown in Table 3.1. The LPPresia did not significantly correlate with
Deltaresia and the other measures. Deltaresia was negatively correlated with anhedonia but not

with BDI scores.
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Table 3.1 Pearson correlations of LPP and delta power to pleasant cues, anhedonia and BDI
global scores.

LPPresid Deltaresid Anhedonia
Deltaresid 1 3 -
Anhedonia -.11 -.30" -
Non-anhedonic -.14 -20 79

BDI scores
Note. LPP = late positive potential. *p <.05. **p < .01.

The path model on the LPP fit the data well (CFI = 1.00; RMSEA = 0.00) but no direct
effect of the LPPresia (= -.004, SE=.016, p = 0.82, 95% CI [-0.036 0.026]) on group status or
indirect effect of the LPPresia through anhedonia (B=-.018, SE=.017, p = 0.29, 95% CI [-0.047
0.023]) emerged.

The path model on Deltaresia fit well the data (CFI = 1.00; RMSEA = 0.00) and showed
no direct effect of Deltaresia (B=-.10, SE=.100, p = 0.34, 95% CI [-0.269 0.135]) but significant
indirect (B= -.22, SE=.101, p = 0.03, 95% CI [-0.436 -0.033]) and total effects (p= -.31,

SE=.105, p = 0.003, 95% CI [-0.504 -0.065]) through anhedonia (Figure 3.11)>.

3 As a control analysis, the same path model was run by including the non-anhedonic BDI scores instead
of anhedonia scores and the indirect path between delta and group through non-anhedonic BDI scores
was not significant (p = 0.910 CI 95% [-0.428 0.649]).
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Figure 3.11 Path diagram depicting direct and indirect associations between Delta,sia and Group with
Deltayesia as the predictor, Anhedonia as the mediator, and Group as the outcome. Standardized path
coefficients and p-values are shown for each association. Anhedonia is a latent variable defined by BDI
items 4, 12, and 21 (observed variables).

3.6.4 Discussion

These additional analyses aimed at examining whether anhedonia, a dimension thought
to underlie reactivity towards pleasant cues, was a significant mediator of the association
between neural responses (LPP and delta power) to pleasant images and group status
(dysphoria, controls).
Partly in line with the hypotheses, the association between time-frequency delta power, but not
LPP, and group status was significantly mediated by anhedonia scores. Namely, a causal
pathway can be inferred, whereby anhedonia was responsible for the observed reduced delta
power to pleasant cues in individuals with dysphoria. Notably, the same did not emerge when
considering non-anhedonic scores of the BDI-II scale, indicating a selective role of anhedonia

in driving blunted delta power to appetitive cues in dysphoria. These results further support the
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hypothesis that delta activity reflects the activation of approach motivation. Of note, LPP and
time-frequency delta power to pleasant pictures were not significantly correlated, suggesting
that frequency-based representation provides unique information that is not apparent with time-
domain analysis. Overall, it could be hypothesized that these two measures could represent
distinct aspects of positive emotional reactivity and that delta power is mostly driven by

anhedonia.
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CHAPTER 1V
STUDY 2: REDUCED ELECTROCORTICAL RESPONSES TO
PLEASANT PICTURES IN CLINICAL DEPRESSION: A TIME-

DOMAIN AND TIME-FREQUENCY DELTA INVESTIGATION*

4.1 Abstract

Study 1 demonstrated that individuals with subclinical levels of depression are
characterized by reduced approach-related motivation, included within the Positive Valence
System dimension of the RDoC and assessed with the LPP and time-frequency delta power to
pleasant images. Additionally, Study 1 showed that the reduced delta power to appetitive cues
in dysphoria was mediated by anhedonia, supporting the link between this neural measure and
the PVS.

The objective of Study 2 was to extend the findings from Study 1 to a group of
clinically depressed individuals. Particularly, the present study aimed at analyzing time-
frequency delta in depression and at investigating whether the combination of time-domain
(LPP) and time-frequency data would explain additional variance in the depression status. EEG
was recorded during a passive viewing task of pleasant and neutral pictures in a community-
based sample of 75 adults with a current depressive disorder and 42 controls. The LPP of this
sample was previously computed and reported, and participants with depression showed
reduced LPP to pleasant images relative to controls. A time-frequency analysis on event-related
changes within delta frequency band was conducted. Cluster-based statistics revealed a centro-

parietal increase in delta power to pleasant relative to neutral pictures in the control group but

* Results from this study have been published in Dell’Acqua, C., Brush, C. J., Burani, K., Santopetro,
N. J., Klawohn, J., Messerotti Benvenuti, S., & Hajcak, G. (2022). Reduced electrocortical responses
to pleasant pictures in depression: A brief report on time-domain and time-frequency delta analyses.
Biological Psychology, 170, 108302.
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not within the depression group. Moreover, a fronto-centro-parietal reduction in delta power to
pleasant pictures emerged in depression relative to controls. Both a smaller LPP and delta
power to pleasant pictures were independently related to depression status. The model
explained a greater amount of variance (Nagelkerke R? = .11) compared to the logistic
regression where the LPPres was entered as independent predictor of group status (Nagelkerke
R*=.07).

These data suggest that delta power might be a promising electrocortical correlate of
the hypoactivation of the approach-related motivational system in clinical depression.
Additionally, a blunted delta and LPP might reflect unique processes related to clinical
depression. A combination of these measures can be leveraged together to enhance clinical

utility.

4.2 Introduction

The hypoactivation of the approach-related motivational system in depression (Admon
& Pizzagalli, 2015) has been extensively documented by event-related potentials (ERPs)
studies, that reported a blunted late positive potential (LPP) to pleasant pictures in current
depression (Klawohn et al., 2021; Weinberg et al., 2016; for a review see Hajck Proudfit et al.,
2015).

As detailed in previous Chapters, additional insight into emotional reactivity can be
provided using time-frequency decomposition of electroencephalography (EEG) data (e.g.,
Bernat, Nelson, & Baskin-Sommers, 2015; Herrmann et al., 2014). Time-frequency approach
allows disentangling multiple overlapping spectral components that are embedded in the time-
domain data (Foti et al.,, 2015). Conceptualizing EEG data as a multidimensional time-
frequency signal has advantages over ERP analyses (Cohen, 2014). For example, task-related

information, such as non-phase locked (i.e., induced) dynamics, can be lost during ERP
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averaging but are observable with time-frequency analysis, which adopts a trial-by-trial
approach (Cohen, 2014; Herrmann et al., 2014).

Delta oscillations (< 3 Hz) are associated with the motivational processing of salient
stimuli (Bernat et al., 2015; Foti et al., 2015; Gilintekin & Basar, 2016; Nelson et al., 2018;
Knyazev, Slobodskoj-Plusnin, & Bocharov, 2009; Knyazev, 2012; Williams et al., 2021;
Zhang et al., 2013). Considering that delta power might add additional information to time-
domain measures in the study of emotional reactivity in depression, it stands to reason that both
time-domain and time-frequency might be leveraged together to better understand depression.

In the previous Chapter, a smaller centro-parietal delta power to pleasant images in
individuals with dysphoria was observed. Time-frequency delta activity to emotional pictures,
however, has not been examined in individuals with a clinical diagnosis of depressive disorder.
Also, whether delta power represents a unique indicator of depression status, independent of
the time-domain LPP, remains unexplored.

In the current study, emotional reactivity to pleasant vs. neutral images through the
analysis of time-frequency changes during an emotional passive viewing task of pleasant and
neutral pictures in individuals with and without clinical depression was examined. The
depression group was expected to show a blunted delta activity in response to pleasant pictures
relative to healthy controls. A second goal of this work was to examine whether utilizing a
combination of LPP and delta activity would explain additional variance in depression status.
In addition, the association of both LPP and delta power with self-report measures of interest

(i.e., depressive symptom severity and anhedonia) was investigated.
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4.3 Method
Participants

The present study is a secondary analysis of EEG data collected during a passive
viewing paradigm (Klawohn et al., 2021). The present study included 117 (92 F) participants
between 18 and 60 years of age. The depressed (DEP) group included 75 (58 F, 17 M)
participants that met diagnostic criteria for a current depressive disorder (current MDD and/or
persistent depressive disorder, PDD), and scored equal to or greater than 13 on the Beck
Depression Inventory-II (BDI-II; Beck, Steer, & Brown, 1996). The healthy control group
(HC) included 42 (34 F, 8 M) participants that never met the diagnostic criteria for a mood
disorder, did not currently meet criteria for any psychiatric disorder, and scored less than a 13
on the BDI-II. Exclusion criteria included the presence of a lifetime diagnosis of a bipolar or
psychotic disorder or any neurological disorders, a current substance use disorder.

The sample included both right- and left-handed participants, as assessed with the
Edinburgh handedness inventory (Oldfield, 1971). The two groups did not differ in terms of
handedness (p = 0.232). Participants were compensated for their participation ($20 per hour).

All procedures were approved by the local ethics committee.

Clinical interviews

The presence of current and past mood disorders was determined using the Structured
Clinical Interview for DSM-5 (SCID-5-Research Version; First et al., 2015). Other past and
present psychopathology was evaluated using the Mini-International Neuropsychiatric
Interview (M.L.N.I.; Sheehan et al., 1998), updated for DSM-5 (version 7.0.2) (Sheehan et al.,

1997).
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Self-report symptoms

Depressive symptoms in the past two weeks were assessed using the Beck Depression
Inventory-II (BDI-II; Beck, Steer, & Brown, 1996). Higher scores indicate greater depressive
symptoms. Internal consistency resulted high for the 21 items of the BDI-II (Cronbach’s a =
.96). As in the additional analyses to Study 1 (Chapter III), anhedonia and non-anhedonic
depressive symptoms were also computed based on BDI items (anhedonia: 4, 12, 21; non-
anhedonic: all the other 18 items).

Participants also completed the anhedonia facet subscale of the Personality Inventory
for DSM-5 (PID-5; Krueger et al., 2012). Higher scores indicate greater anhedonia. Internal

consistency resulted high for the items of the PID-5 anhedonia subscale (Cronbach’s a = .95).

EEG recording

The electroencephalogram (EEG) was recorded using a 32-channel system
(ActiCHamp, Brain Products GmbH) referenced online to Cz with a sampling rate of 1000 Hz
using a bandpass recording filter of 0.01-100 Hz. Both vertical and horizontal
electrooculograms (EOGs) were recorded using a bipolar montage to monitor eye movements

and eye-blinks.

Experimental task and procedure

The picture viewing task comprised 60 color pictures selected from the International
Affective Picture System (IAPS; Lang, Bradley, Cuthbert, 2008); 30 pleasant images (e.g.,
erotic and affiliative images) and 30 neutral images (e.g., objects, humans with neutral facial
expression; specific TAPS picture numbers and normative ratings are listed in the

supplementary material).
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All pictures were presented for 1500 ms, spanning approximately 15 by 20 degrees of
visual angle, in random order across three blocks of 20 trials. Each picture was preceded by a
fixation cross with a random duration of 500-900 ms. Participants were required keep their
gaze on the center of the screen. Picture presentation was followed by a variable intertrial

interval of 500-900 ms, during which a white fixation cross was presented.

EEG Data Processing
Time domain

Offline time-domain EEG data processing was conducted using Brain Vision Analyzer
(Brain Products, Gilching, Germany). Data was referenced to the average mastoid electrodes
and filtered from 0.01 to 30 Hz. Epochs from 200 ms before until 1200 ms after picture onset
were extracted and corrected for eye movement artifacts (Gratton, Cole, & Donchin, 1983).
Segments containing voltage steps >50 mV between sample points, a voltage difference of
175mV within a 400 ms interval, or a maximum voltage difference of <0.5mV within 100 ms
intervals were automatically rejected and additional artifacts were identified and removed
based on visual inspection. Baseline correction was applied using the 200 ms pre-stimulus
interval. Stimulus-locked averages were calculated separately for pleasant and neutral images,
and the LPP was quantified at a parietal electrode-pool (Pz, Cz, CP1 and CP2) as the mean

amplitude from 400 to 1000 ms after picture onset.

Time-Frequency domain

The processing pipeline for the time-frequency domain was similar to the one
conducted for the time domain. Here, the extracted time windows were wider to allow for the
discarding of edge effects, and the artifact rejection procedure was somewhat more

conservative. EEG data processing was conducted in Brainstorm (Tadel et al., 2011). The
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signal was filtered offline with a band-pass filter of 0.3-30 Hz to minimize slow drifts that
could have adverse effects on time-frequency decomposition. Also, independent component
analysis (ICA) was used to correct for blink artifacts. The data were segmented into epochs
from 500 ms before until 1500 ms after picture onset.

Time-frequency analysis was conducted using Morlet wavelet transformation on
individual trials for each 1-Hz frequency bin between 1 and 30 Hz, using a mother wavelet at
1 Hz with 3-s time resolution (as calculated by the full width at half maximum, FWHM). Time-
frequency decompositions were then averaged for each participant and emotional condition,
and the event-related spectral perturbation (ERSP) was computed as the change in power
expressed in decibels (dB) relative to the baseline (—300 to —100 ms) in each frequency bin at
each time point. Then, data were grand averaged across each group for each emotional
condition.

With respect to time-frequency data, a cluster-based permutation approach was run on
the event-related delta (1-3 Hz), as implemented by the FieldTrip toolbox (Oostenveld et al.,
2011). With this approach, the theoretical underlying distribution of test statistics under the
null hypothesis is generated by the data itself, by iteratively shuffling the condition labels over
trials or over subjects and recomputing the statistics. If the test statistic associated with the non-
shuffled data falls within the distribution of the null-hypothesis test statistic values, the null
hypothesis cannot be rejected and this would indicate that the observed data could have been
randomly generated (Cohen, 2014; Luck, 2014b). With cluster-based correction, at each
iteration of the null-hypothesis distribution generation, the outcome is units of clusters instead
of single pixels (i.e., electrodes) (Cohen, 2014). In the present study, the differences within
emotional conditions or between groups were shuffled pseudo-randomly 2000 times. To obtain
a ‘null’ distribution of effect sizes, the maximal cluster-level statistics (i.e., the sum of values

across contiguously significant electrodes and time points at the threshold level) were extracted
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for each shuffle. For each significant cluster in the (non-shuffled) data, the cluster-corrected p-
value was computed as the statistics of the proportion of clusters in the null distribution that
exceeded the one obtained for the cluster in question. Clusters with a peorr <.05 were considered
statistically significant. This approach provides solid control over type I error rate arising from
multiple comparisons across electrodes and time points (Maris & Oostenveld, 2007). Cluster-
based repeated measures ANOVAs were conducted to test within-group differences in event-
related power changes between emotional categories (i.e., pleasant versus neutral). Two-tailed
independent samples #-tests were conducted to test between-group (i.e., DEP versus HC)
differences within each emotional category.

Further statistical analyses were conducted using a two-tailed a = .05. Delta power was
extracted according to the significant time window and location (i.e., sensors) that emerged
from the cluster-based between-group differences for pleasant pictures. Residualized
difference measures for the LPP and delta power were determined by saving the unstandardized
residuals in linear regressions predicting LPP to pleasant images from LPP to neutral images
(i.e., LPPresia) and predicting delta power to pleasant images from delta power to neutral images
(i.e., Deltaresia), respectively. The Shapiro-Wilk test was conducted to ensure that data was
normally distributed. Then, within each group, Pearson correlations were performed. Finally,
a logistic regression was conducted to examine whether the Deltaresia and LPPresia explained
unique or shared variance in depression diagnostic status, and to determine the amount of
variance that was explained by using the two measures as simultaneous predictors of

depression status.
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4.4 Results
Characteristics of the sample

Table 4.1 illustrates demographic and clinical characteristics of the sample (DEP, HC).
In the DEP group, several individuals met diagnostic criteria for one or more comorbid
psychiatric diagnoses, in particular: panic disorder (n = 13), agoraphobia (n = 8), social anxiety
disorder (n = 12), obsessive compulsive disorder (n = 5), post-traumatic stress disorder (n = 4),
generalized anxiety disorder (n = 19), specific phobia (n = 4), eating disorder (n = 7), somatic
symptoms disorder (n = 3) and illness anxiety (n = 2). Moreover, in the DEP group, 39
individuals (52 %) were currently taking psychotropic medication (antidepressants, n = 33;

anxiolytics, n = 13; stimulants, n = 5; anticonvulsants, n = 5).

Table 4.1. Demographic, clinical variables, and EEG data for group with a current depressive

disorder (DEP) and the healthy control group (HC).

HC group (n=42) DEP group (n=75) p

Age 37.0 (14.2) 39.70 (11.9) 280
Sex (% female) 77.33 80.95 .847
Ethnicity 92.86 92.00 571
(% Caucasian)

Education 16.50 (1.60) 16.00 (15.00) 229
BDI 2.21 (3.06) 29.40 (9.32) <.001
PID 5-Anhedonia 2.48 (3.40) 13.80 (5.58) <.001
LPP pleasant (uV) 6.06 (4.19) 4.02 (4.31) .020
LPP neutral (uV) -2.62 (3.54) -3.05 (3.48) .520
Delta pleasant (dB) 0.99 (0.37) 0.84 (0.33) .030
Delta neutral (dB) 0.89 (0.25) 0.85 (0.38) .610

BDI-II, Beck Depression Inventory-1I; LPP, late positive potential, pV, microvolts; dB,

decibels. Note: Means are displayed, standard deviations are in parentheses.
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Cluster-based analysis on Delta power

Differences among emotional categories in event-related delta power. The cluster-
based analysis on event-related delta power showed a significant positive centro-parietal
cluster (electrodes = CP1, PZ, P3, CP2) in the HC group (cluster F-valuemax = 9908.62, pcorr
=.036, time window -0.010 to 0.594 s; Cohen’s d = 0.44), with significantly larger delta power
to pleasant relative to neutral pictures (Figure 4.1, panel a and b). A marginally significant
cluster emerged in event-related delta power by emotional category within the DEP group,
(electrodes = PZ, P4, CP2; cluster F-valuemax =4810.42, pcorr = .052, time window 0.784 to
1.228 s; Cohen’s d = 0.06), showing a decrease of delta power to pleasant relative to neutral in

a late time window (Figure 4.1, panel ¢ and d).
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Figure 4.1 (Panel a) Time course of grand-average event-related delta power of control individuals
averaged over the significant electrodes for pleasant (red line) and neutral (black line) conditions.
Shaded areas represent + standard error of the mean (SEM) and the gray box represents the end of the
significant time window (0.594 s). (Panel b) Mean event-related delta power of each participant (in the
control group) averaged over the significant electrodes and time points for pleasant and neutral
conditions. Each circle represents one participant (Panel ¢) Time course of grand-average event-related
delta power of individuals with depression averaged over the marginally significant electrodes for
pleasant (red line) and neutral (black line) conditions. Shaded areas represent + standard error of the
mean (SEM) and the gray box represents the significant time window. (Panel d) Mean event-related

delta power of each participant (in the depression group) averaged over the significant electrodes and
time points for pleasant and neutral conditions. Each circle represents one participant.

Differences between groups in event-related delta power for each emotional category.
Cluster-based independent samples #-tests on event-related delta power revealed a significant
positive cluster for the difference between the two groups for pleasant pictures (electrodes =
FZ, FCZ, FC1, C3, CP5, CP1, PZ, P3, P7, O1, P4, CP2; cluster t-valuemax = 9879.36; pcorr =
.030, time window =-0.010 to 0.860 s; Cohen’s d = 0.42), with reduced delta power to pleasant

pictures in the DEP compared to HC group (Figure 4.2, panel a, b and c). There were no group

differences in delta power to neutral pictures.
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Figure 4.2 (Panel a) Time course of grand-average event-related delta power averaged over the
significant electrodes for the pleasant condition in the depression (DEP) group (black line) and the
control (HC) group (red line). Shaded areas represent = standard error of the mean (SEM); the gray box
represents the significant time window. (Panel b) Mean event-related delta power of each participant in
the DEP group and the HC group averaged over the significant electrodes and time points for the
pleasant condition. Each circle represents one participant. (Panel ¢) Topography of the mean difference
between groups in event-related delta power (dB; DEP group minus HC group) averaged over the
significant time points (-0.010 to 0.860 s time window) for the pleasant condition. **p <.01.

Correlations

The LPPresia and Deltaresia were uncorrelated across the whole sample (» (115) = .07, p
= .437) and within each group separately (DEP: » (73) =-.03, p =0.801; HC: » (39) = .13; p =
419), suggesting that these two measures reflect distinct processing of positive emotional
reactivity. Within the DEP group, contrarily to what emerged in Study 1, the correlation
between LPPresia and self-report anhedonia approached significance (r (73) = -.212, p = .067),
whereas there was no correlation between other variables (all ps >.229). In the HC group, there

were no correlations among study variables (all ps >.316).
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Logistic regression

Results of the logistic regression are shown in Table 4.2. The multiple logistic
regression showed that both smaller LPPresia and smaller Deltaresia were independently related
to increased likelihood of being diagnosed with a depressive disorder®. The model explained a
greater amount of variance (Nagelkerke R>=0.11) compared to the logistic regression where

the LPPres was entered as independent predictor of group status (Nagelkerke R?=0.07).

Table 4.2. Results of the logistic regression analysis predicting diagnostic status (DEP, HC)

from LPP and Delta power.
Measure Prediction of diagnostic status (DEP, HC)
R? Y2 OR 95% Clor p
Model on 0.11 10.1
combined LPP and

delta power
LPPresia 0.89 0.80—-0.98 .023
Deltaresid 0.29 0.08 -0.99 .050

Note. Logistic regression was used to predict the dichotomous dependent variable diagnosis of
depression (0 = absent, 1 = present); The Nagelkerke R? and y2 statistics are reported for the

logistic regression models. CI = confidence intervals; OR = odds ratio.

4.5 Discussion

The current study sought to extend the findings detailed in Chapter III on dysphoria by
examining emotional reactivity to pleasant pictures in adults with a current clinical depressive
disorder by examining time-frequency changes within the delta frequency band in response to

pleasant and neutral pictures (Lang et al., 2008). Consistent with the hypotheses, individuals

> Considering that, due to the different EEG data processing method required in the time-frequency
analysis, the current sample was slightly different from the one included in the previous work (Klawohn
et al., 2021), a logistic regression with the LPP.iq entered as an independent predictor of group status
was run. The results confirmed a significant model wherein LPP.4 predicted depression status
(Nagelkerke R?2=0.07, 2 = 5.97; Odds ratio = 0.88, p = .018).
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with depression were characterized by reduced delta power to pleasant pictures, but not neutral,
relative to healthy controls.

With respect to the time-frequency analysis, the control group showed increased event-
related delta power to pleasant relative to neutral images, indicating that affective modulation
of pleasant images occurred. However, within the depression group, a significant difference
between the two conditions did not emerge, indicating the absence of affective modulation in
this sample. Moreover, a marginally significant difference between the two conditions emerged
within the depression group, whereby delta power was reduced to pleasant relative to neutral
pictures in a late time window.

Furthermore, as expected, the depression group showed reduced event-related delta
power to pleasant images relative to the control group. This is consistent with findings from
Chapter III on dysphoria. Overall, these findings provide support for the view of depression as
characterized by a hypoactivation of the approach-related motivational system in the brain.
Considering this result in addition to the absence of within-group affective modulation, the
present study suggests that there might be a continuum of reduced approach motivation and
RDoC Positive Valence System functioning based on the severity of depressive symptoms,
with clinically significant depression related to a more extended reduction in approach
motivation relative to subclinical conditions. However, contrary to the previous study, delta
power to appetitive pictures was not inversely correlated with anhedonia scores.

Nevertheless, the combination of delta power and LPP to pleasant pictures increased
the explained variance in the likelihood of suffering from depression relative to the sole
employment of either time-domain or frequency-based measures. This study was the first
attempt to simultaneously examine both EEG measures in clinical depression and it suggests
that leveraging time-frequency delta in conjunction with time-domain measures might be

particularly useful in better elucidating the pathophysiology of depression. The time domain
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and spectral representations were not correlated, suggesting that frequency-based
representation provide unique information that is not apparent with time-domain analysis.
Considering that these electrocortical measures were uniquely related to depression status they
might reflect distinct processes relevant to depression. In line with the fact that the LPP and
delta power are separate predictors of depression status, these two measures were uncorrelated,
suggesting that they could represent distinct aspects of positive emotional reactivity.

Considering the extensive literature indicating that LPP to pleasant stimuli is a reliable
indicator of depression status (for a review see, Hajcak Proudfit et al., 2015), the present study
suggests that the analysis of time-frequency delta could be a complementary measure in the
prediction of depression. The analysis of both LPP and delta can reveal two interrelated
processes, namely reduced motivated attention to positively valenced content and reduced
approach-related motivation, respectively.

The present study has some limitations worth noting. First, most of the participants
included in the study were female and Caucasian. Future investigations should replicate these
findings in more diverse samples. Also, the objective of this study was to focus on approach
motivation deficits in a clinical sample and unpleasant images were not employed. In the
previous study detailed in Chapter I1I, we did not find between-group differences in any of the
EEG measures but distinct within-group patterns for theta power. It would be interesting in the
future to explore whether those findings extend to a clinical group and whether individuals
with clinical depression are characterized by extended deficits in attending and processing
unpleasant stimuli.

In conclusion, the current study provided converging evidence across multiple
approaches that a blunted emotional reactivity to pleasant pictures, reflecting Positive Valence
Systems functioning, is an indicator of clinical depression. Considering that both LPP and time-

frequency delta power can be obtained from the same task, our findings suggest that a
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combination of EEG measures can be leveraged together from the same paradigm to enhance

clinical utility.

4.6 Study 2b: Reduced electrocortical responses to appetitive stimuli are not driven by

anhedonia in clinical depression

4.6.1 Introduction

The goal of this section was to replicate the additional analyses of Study 1 (Chapter III)
to better understand the association and pathways that lead to a reduced LPP and delta time-
frequency power to pleasant stimuli in individuals with clinical depression. In brief,
considering that the pattern of blunted electrocortical responses to pleasant stimuli was
interpreted as a hypoactivation of the Positive Valence Systems of approach motivation in
MDD, it was hypothesized that symptoms of anhedonia could drive the reduced neural
responses to pleasant cues in this clinical group. Particularly, additional analyses of Study 1
revealed that the link between reduced delta power to pleasant images and dysphoria was
mediated by anhedonia symptoms.

To better understand the direct and mediated paths leading from MDD to reduced LPP
and delta power to pleasant stimuli, path analysis models were performed. Specifically, it was
hypothesized that the association between reduced neural responses to pleasant cues (LPP and

delta power) and MDD was mediated by symptoms of anhedonia.

4.6.2 Methods
First, Pearson correlations were conducted among the EEG measures (Deltaresid,
LPPresia) anhedonia subscale of the BDI (items 4, 12, 22 were summed to form an index of

anhedonic symptoms; Joiner et al., 2003), non-anhedonia BDI scores (The remaining 18 BDI
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items were summed, to form a measure of non-anhedonic depressive symptoms; Joiner et al.,
2003) and the anhedonia subscale of the PID-5.

Then, similarly to Chapter III, path analyses were conducted to assess whether the
relation between each EEG measure that was significantly different between the two groups
and MDD status was mediated by the anhedonia. The pattern of associations was examined
using R package Lavaan (R Core Team, 2015; Rosseel, 2012), with combinations of observed
scores (i.e., centered mean score) that composed the latent variable of anhedonia (BDI items 4,
12, 21, Anhedonia PID-5 subscale) and observed variables (EEG measures and group status).
Path coefficients were estimated using the maximum likelihood method. The possible causal
associations (direct, indirect, and total effects) between LPP or delta power, MDD status, and
anhedonia were tested. A bootstrap procedure was used (with 1000 replications) to generate
empirical sampling distribution of effects, which provided confidence intervals for the direct,
indirect, and total effects. Indirect effects were considered significant when confidence
intervals did not include zero (Preacher & Hayes, 2008). Model fit was assessed by examining
the comparative fit index (CFI; Marsh & Hau, 2007) and the root mean square error of
approximation (RMSEA; Cole & Maxwell, 2003). Values > 0.95 are desirable for the CFI,

while RMSEA values should be <0.05 for a good model fit (Hu & Bentler, 1999).

4.6.3 Results
Correlations are shown in Table 3.1. The LPPresia did not significantly correlate with
Deltaresid and the other measures. Deltaresia did not correlate with measures of anhedonia or non-

anhedonic BDI scores.
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Table 4.3 Pearson’s correlations of LPP and delta power to pleasant cues, anhedonia, and BDI
global scores.

LPPresid Deltaresia BDI Anhedonia PID-5
Anhedonia

Deltaresid .03 -
BDI Anhedonia -.10 -.06 -
PID-5 -.10 -12 0.80™ -
Anhedonia
Non-anhedonic .01 -.14 90" 82"
BDI scores

Note. LPP = late positive potential. *p <.05. **p < .01.

The path model on the LPP fit the data well (CFI = 1.00; RMSEA = 0.00) but only a
direct effect of the LPPresia (B= .01, SE=.01, p = .043, 95% CI [0.000 0.027]) on MDD group
status emerged. Instead, no indirect effect (B=-.01, SE=.01, p = 0.20, 95% CI [-0.034 0.007])
or total effect (B=-0.00, SE=. .012, p = 1.00, 95% CI [-0.022 0.023]) of the LPPresia through
anhedonia emerged.

Similarly, the path model on Deltaresia fit well the data (CFI = 1.00; RMSEA = 0.00)
and showed a direct effect of Deltaresia (B =-.18, SE =.09, p =0.04, 95% CI [-0.348 -0.007])
but not a significant indirect (B =-.11, SE=.12, p =.35, 95% CI [-0.329 0.128]) or total effect

(B=-29, SE=.13, p=10.03, 95% CI -0.524 0.008])° through anhedonia.

® The p-value was significant, but the confidence interval included 0. The p-values are computed
assuming the Z-statistic comes from a standard normal distribution, which for most mediation-related
quantities is not true in finite samples. The bootstrap confidence intervals are the most accurate because
they make few assumptions about the sampling distribution of the quantity of interest. Hence, these
analyses rely entirely on the bootstrap confidence intervals (Hayes & Scharkow, 2013).
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4.6.4 Discussion

These additional analyses aimed at examining whether, similarly to Study 1, anhedonia
was a significant mediator of the association between neural responses (LPP and delta power)
to pleasant images and group status (MDD, controls).

Unlike the results of Study 1, the link between electrocortical responses to pleasant
images and MDD group status was not mediated by anhedonia scores. In Study 1, anhedonia
mediated the link between blunted delta power to appetitive images in dysphoria, supporting
the hypothesis that delta activity reflects the activation of approach motivation. Considering
that the present study was conducted on individuals with clinical depression, it could be
hypothesized that anhedonia drives blunted electrocortical responses to appetitive cues at initial
and subclinical phases of depression, while in participants with already full-blown depression
these reduced neural responses might be related to a complex interaction of multiple variables
that were not considered in this study. In addition, this null finding could be due to the intake
of psychotropic medications in the experimental group. Taken together, future studies should

include further measures of positive affect as well as other relevant symptom dimensions.
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CHAPTER V
STUDY 3: DEPRESSIVE SYMPTOMS AND COGNITIVE CONTROL:

THE ROLE OF AFFECTIVE INTERFERENCE’

5.1 Preface to Study 3

Study 1 employed an advanced time-frequency approach to explore affective and
cognitive processing of emotional (pleasant, unpleasant) pictures in individuals with dysphoria.
What emerged was a reduced affective disposition to appetitive images and greater cognitive
processing of unpleasant images in dysphoria. Then, Study 2 focused on the exploration of
approach motivation in clinical depression and replicated findings from Study 1.

As described in Chapter I, although depressive symptoms seem to be characterized by
altered cognitive function, it remains unclear whether these deficits are selective for affective
contexts or extend to non-affective conditions. Hence, Study 3 aimed at exploring the influence
of the Positive and Negative Valence Systems on the Cognitive Systems in relation to
depressive symptoms with task-switching paradigm designed in a non-emotional and an
emotional version. The current work was conducted online because of the pandemic, thus only
behavioral data were collected and, instead of dividing the sample into two groups based on

diagnostic status, continuous levels of depressive symptoms were considered.

" Results from this study have been published in Dell’ Acqua, C., Messerotti Benvenuti, S., Vallesi, A.,
Palomba, D., & Ambrosini, E. (2022). Depressive symptoms and cognitive control: the role of affective
interference. Cognition and Emotion, 1-15.



5.2 Abstract

As detailed in Chapter I, depressive symptoms are characterized by reduced cognitive
control. However, whether depressive symptoms are linked to difficulty in exerting cognitive
control in general or over affective content specifically remains unclear. To better differentiate
between affective interference or general cognitive control difficulties in individuals with
depressive symptoms, a non-emotional (cold) and an emotional (hot) version of a task-
switching paradigm was employed in a nonclinical sample of young adults (N = 82) with
varying levels of depressive symptoms. Depressive symptoms were linked to greater
difficulties in exerting cognitive control in complex situations (mixed-task blocks) compared
to simple and semiautomatic situations (single-task blocks) in both task versions. Moreover,
greater depressive symptoms were associated with longer latencies in the emotional version of
the task across all trial types. Thus, the emotion-specific effect was not modulated by the degree
of cognitive control required to perform the task and was also not influenced by the emotional
category (pleasant, unpleasant). In sum, depressive symptoms were characterized by a general
difficulty to exert cognitive control in both emotional and non-emotional contexts and by
greater difficulty in even simple attentional processing of emotional material. This study
granted novel insights on the extent of RDoC Cognitive Systems functioning in emotional and

non-emotional contexts for individuals with depressive symptoms.
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5.3 Introduction

Difficulties in cognitive control have been acknowledged as relevant to the
development and maintenance of depressive symptoms (e.g., De Raedt & Koster, 2010; Disner
et al., 2011; Keller et al., 2019). Indeed, although the core symptoms of depression are
sustained negative affect and anhedonia, the Diagnostic and Statistical Manual of Mental
Disorders (5th ed.; DSM-5; American Psychiatric Association, 2013) has included a
“diminished ability to think or concentrate” as a diagnostic criterion for depression. Depression
has been linked to difficulties in cognitive control, a set of high-order functions that allow
people to flexibly achieve goal-directed behaviour (Kashdan & Rottenberg, 2010; Meiran et
al., 2011; Stange et al., 2017). Regarding the Research Domain Criteria (RDoC) detailed in
Chapter I, cognitive control deficits suggest a reduced functioning of the Cognitive Systems of
the RDoC.

Moreover, a recently emerging approach, especially in the study of depressive
symptoms, is to differentiate cognitive control functions exerted in emotional contexts (hot
functions) from general non emotional cognitive control functions (cold functions; Fossati,
2018; Roiser & Sahakian, 2013; Salehinejad et al., 2021). This distinction conceptualizes
cognitive control on a continuum, where each function can be relatively hot or cold depending
on the context (Salehinejad et al., 2021).

A wealth of evidence has demonstrated that individuals with depressive symptoms are
characterized by broad cognitive control difficulties (Bortolato et al., 2014; Dotson et al.,
2020; Rock et al., 2014; Snyder et al., 2013). Cognitive inflexibility has been documented in
individuals with different levels of depressive symptoms across different non emotional
neuropsychological tests (e.g., Harvey et al., 2004; Lin et al., 2014; Moritz et al., 2002;
Parkinson et al., 2020; Rokke et al., 2002; Wilkinson & Goodyer, 2006). Of note, the effect

sizes of cognitive control difficulties were larger for older adults or individuals with clinical
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depression (Dotson et al., 2020). Indeed, other studies have not found depressive symptoms to
have a significant effect on cognitive inflexibility in samples of adolescents and young adults
without clinical depression (Goodall et al., 2018; Vilgis et al., 2015). Some researchers who
have specifically employed computerized task-switching paradigms in studies on depression
have found longer latencies in switch trials compared to repeat trials (i.e., greater switch costs;
Hoffmann et al., 2017), whereas others have failed to find switch cost differences in individuals
with depression and healthy controls (Meiran et al., 2011; Remijnse et al., 2013; Whitmer &
Gotlib, 2012).

Notably, a separate line of research has focused on the study of cognitive control in kot
contexts in relation to depressive symptoms (e.g., Joormann & Vanderlind, 2014; Koster et al.,
2011). In particular, the preferential processing of unpleasant stimuli across all domains of
information processing is thought to influence cognitive control performance in individuals
with depressive symptoms (Gotlib & Joorman, 2010; Joormann & Vanderlind, 2014; LeMoult
& Gotlib, 2019). Using various paradigms, several studies have shown that depressive
symptoms or the risk of developing depression was related to difficulties in switching away
from or inhibiting unpleasant stimuli (i.e., angry and sad faces, threatening and sad scenes and
words; Epp et al., 2012; Everaert et al., 2017; Goeleven et al., 2006; Lisiecka et al., 2012;
Murphy et al., 2012; Wen & Yoon, 2019) and updating working memory when the content was
unpleasant (Joormann, 2010; Levens & Gotlib, 2010), corroborating the view that unpleasant
content interferes with cognitive control functions (Gotlib & Joorman, 2010; Joormann, 2010;
LeMoult & Gotlib, 2019;). Moreover, greater difficulties in switching away from unpleasant
stimuli have also been related to psychological aspects linked strictly to depressive symptoms,
such as ruminative thinking (Genet et al., 2013), reduced adaptive emotional regulation
strategies (i.e., reappraisal; Grol & De Raedt, 2021; Malooly et al., 2013), and resilience (Grol

& De Raedt, 2018). Additionally, a study showed that individuals with depressive symptoms,
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compared to those in a control group, had poorer switching abilities for unpleasant stimuli but
better switching abilities for pleasant stimuli (Deveney & Deldin, 2006). Instead, longer
latencies in switching away from pleasant stimuli than from unpleasant stimuli were
documented in individuals with clinical depression (Quigley et al., 2020). Furthermore,
affective switching difficulties for both pleasant and unpleasant content were found in
individuals with depression (De Lissnyder et al., 2012) and depression in remission (Lange et
al., 2012) and were found to prospectively predict increased depressive symptoms in a remitted
sample (Demeyer et al., 2012).

Generally, valence-specific effects in hot task-switching paradigms in relation to
depressive symptoms are still unclear. For instance, valence-specific effects on pleasant stimuli
have not been thoroughly explored. Considering the evidence on the reduced processing of
pleasant stimuli in individuals with depressive symptoms (e.g., Mennella et al., 2015;
Messerotti Benvenuti et al., 2015, 2019; Nandrino et al., 2004; Shane & Peterson, 2007; for a
review, see Winer & Salem, 2016), the investigation of cognitive control over both unpleasant
and pleasant stimuli would allow a better understanding of potential valence-specific cognitive
control difficulties in individuals with depressive symptoms. In terms of RDoC functioning,
the study of valence-specific effects on cognitive control would allow the study of the influence
of the Positive and Negative Valence Systems on Cognitive Systems functioning.

To date, only a limited number of studies have employed both cold and hot versions of
the same paradigm to investigate cognitive control in people with depressive symptoms. These
few studies have linked depression to a selective difficulty in cognitive control in emotional
task versions compared to non-emotional task versions (Lo & Allen, 2011; Murphy et al.,
2012). However, the employment of paradigms tackling distinct processes (e.g., go/no-go,

internal shifting task) and the fact that the investigation was restricted exclusively to clinical
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samples make reaching a consensus hard regarding the distinct involvement of cold and hot
functions in people with depressive symptoms.

Hence, despite the evident involvement of cognitive control processes in modulating
depressive symptoms, whether depressive symptoms are linked to a general difficulty to exert
cognitive control or to a selective difficulty to exert cognitive control over emotional content
remains unclear (Grahek et al., 2018; Joorman & Tanovic, 2014). On one hand, although
cognitive control in cold contexts does not directly involve emotional processing, several
researchers have suggested it may facilitate the implementation of emotional regulation
strategies and protect performance in hot contexts, counteracting the risk conferred by
depression-related emotion-processing biases (Roiser et al., 2012; Roiser & Sahakian, 2013;
Whitmer & Gotlib, 2012). Therefore, depressive symptoms may be associated with general
cognitive control difficulties that, in turn, affect control over emotional information. On the
other hand, a classical view of cognitive processes in individuals with depressive symptoms
postulates that negative schemas generate a processing advantage for unpleasant stimuli,
leading to the altered encoding and processing of all other information (Beck & Bredemeier,
2016; Clark & Beck, 2010; Siegle et al., 2002). Therefore, individuals with depressive
symptoms may display difficulties in switching away from emotional stimuli in hot contexts
not because of impaired switching mechanisms, but because of enhanced reactivity to
emotional stimuli that impact cognitive control functions (e.g., Lo & Allen, 2011).

To better understand whether depressive symptoms are characterized by selective
difficulties in emotional contexts or by general cognitive control difficulties, studies comparing
performance in cold and hot versions of the same paradigm are warranted (Quigley et al.,
2020). To this end, we employed both a cold and a hot version of a task-switching paradigm in
a nonclinical sample of young adults with varying levels of depressive symptoms. This

paradigm requires participants to perform tasks either in isolation (single-task blocks) or in an
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intermixed fashion (mixed-task blocks, composed of switch and repeat trials; Meiran, 2010;
Monsell, 2003). This paradigm evaluates different aspects of cognitive control, including the
cost of switching from one rule to the other, the cost of keeping multiple task sets active, and
the disengagement from a previous task set and stimulus (Kiesel et al., 2010; Meiran, 2010;
Monsell, 2003). Specifically, two distinct and dissociable processes can be assessed with this
paradigm: (a) the so-called “switching cost,” namely the process of task-set reconfiguration, a
phasic and transient activation required to switch between tasks, assessed based on the
performance difference between switch and repeat trials; and (b) the so-called “mixing cost,”
a sustained process reflecting the increase in active demands due to the concurrent maintenance
and management of multiple task sets, assessed based on the performance difference between
repeat and single trials (Monsell, 2003; Rubin & Meiran, 2005).

Because this was the first study to directly compare the participants’ performance on
both hot and cold versions of a task-switching paradigm in relation to depressive symptoms,
the main hypothesis was twofold. Based on the reviewed literature linking depressive
symptoms to a general reduction in cognitive control abilities, we expected more depressive
symptoms to be associated with cognitive control difficulties in both task versions.
Additionally, based on the few studies that have linked depression to a selective difficulty in
affective cognitive control (Lo & Allen, 2011; Murphy et al., 2012), we expected these
cognitive control difficulties to be more pronounced (i.e., longer response times) in the
emotional compared to the non-emotional task version. Moreover, specifically for the
emotional version of the task, we expected higher levels of depressive symptoms to be related
to a valence-specific bias, with longer RTs in switching away from unpleasant stimuli

compared to pleasant stimuli.
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5.4 Methods

Participants

Ninety-five Caucasian young adults (35 males; Mage = 25.4 years, SDage = 2.9) were recruited
through local advertisements or by word of mouth and voluntarily took part in the online study.
Exclusion criteria included the presence of any mental disorder and the use of psychotropic
drugs. Furthermore, only individuals between the ages of 18 and 35 years were recruited
because young adults with depressive symptoms already show poor cognitive control, and this
has been suggested to be an early risk factor for depression (Goodall et al., 2018). Of the total
sample of 95, seven volunteers were excluded from the study after an anamnestic interview
because they reported clinical depression or anxiety in pharmacological treatment (n = 4) and
substance abuse (n = 3). Individuals who reported a diagnosis of clinical depression were
excluded because the study was conducted online and confirming the diagnosis was not
possible through a clinical interview (e.g., structured clinical interview for DSM-5). Another
reason for not including those on medications or with diagnoses was that most of the
participants had only subthreshold levels of depression; therefore, including seven participants
with clinical depression, anxiety, or substance abuse would have led to an unbalanced sample.
In addition, six participants could not complete the task due to technical issues. The final
sample consisted of 82 participants (30 males; Mage = 25.5 years; SDage = 3.0), medically
healthy and free from psychotropic medications, as assessed with an ad hoc anamnestic
interview. Because it was not possible to assess the presence of a depressive disorder through
clinical interviews, depressive symptoms were evaluated on a continuum. Moreover, the
examination of subclinical depressive symptoms provides an advantage because it allows
isolation of the effects of interest without any alterations produced by the use of antidepressant
medications or the chronicity of the disorder. The participants were not compensated for their

participation. This study was conducted with adequate understanding and written consent of
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the participants in accordance with the Declaration of Helsinki and was approved by the Ethics

Committee, University of Padua (Protocol No. 3640).

Sensitivity power analysis

Our sample consisted of a convenience sample recruited via online advertisements
through social networks or identified via researchers’ personal networks. The method
introduced by Westfall et al. (2014) was used to perform a sensitivity power analysis for a fully
crossed linear mixed-effects model, assuming participants, stimuli, and residual variance
partitioning coefficients of .25, .05, and .7, respectively, as estimated conservatively from some
recent unpublished studies with a similar design to ours. The other variance partitioning
coefficients were set to 0, because those effects were not included in the models we tested. This
analysis revealed that the sample size (82 participants and eight stimuli, see below) was large
enough to detect a small effect size (Cohen’s d = 0.15) with a power of .80. However, this
approach is not fully adequate for complex mixed-effects models such as the one used in this
work, but it nonetheless provided a useful estimation of the so-called minimal statistically
detectable effect for our study (i.e., the lower bound of the range of effect sizes that can be
detected). Indeed, to the best of our knowledge, to date, no accepted analytical approaches have
been ascertained to compute statistical power accurately for such models. To provide another
estimate of our minimal statistically detectable effect, which could also facilitate comparison
with future studies using more standard analytical approaches, a sensitivity power analysis in
G*Power for a repeated measure analysis of variance (ANOVA) for the domain by condition
interaction, assuming a correlation between repeated measures of .85, was performed. This
analysis revealed that the sample size was large enough to detect a small effect size (d =0.17,
corresponding to np> = .007) with a power of .80. Notably, however, G*Power (and to the best

of our knowledge, all other software commonly used to compute power) does not support a
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power calculation for general linear model effects including both multiple within-subjects
factors and continuous covariates.
Data were analysed using R (Version 1.2.5001; R Core Team, 2012), the stats package

(R Core Team, 2013), Ime4 (Bates et al., 2015), and ImerTest (Kuznetsova et al., 2017).

Self-report measure of depressive symptoms

Depressive symptoms were assessed using the Beck Depression Inventory-II (BDI-II;
Beck et al., 1996; Italian version by Ghisi et al., 2006). The BDI-II scale is a reliable and valid
self-report questionnaire developed to assess the severity of depressive symptoms over the
previous 2 weeks. Specifically, the BDI-II is composed of 21 items, each based on a 4-point
Likert scale, and scores range from 0 to 63, with higher scores indicating greater depressive
symptoms (Ghisi et al., 2006). Internal consistency was high for the 21 items of the BDI-II

(Cronbach’s a = .92).

Task-switching paradigm and behaviour data reduction

Cognitive control in cold and hot contexts was assessed with two versions (emotional
and non-emotional) of a task-switching paradigm adapted from Rubin and Meiran (2005) and
created in the PsychoPy software (Peirce et al., 2019). Figure 5.1 graphically represents the
task design. Each version consisted of a total of four single-task blocks, each comprising 30
trials, and two mixed-task blocks, each comprising 40 trials. A “sandwich-like” design was
adopted: Two single-task blocks, each comprising 10 practice trials, were followed by two
mixed-task blocks, comprising 10 practice trials, and then again by two single-task blocks. The
order of single-task blocks was counterbalanced across participants. Half of the participants

started with the hot version, and the other half with the cold one.
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The single-task blocks required the participants to perform two types of subtasks, one
at a time in different blocks. In the mixed-task blocks, the participants had to categorize the
target stimulus based on a categorization rule indicated by a cue, which changed unpredictably
trial by trial. The task could be either repeated (repeat trials) or switched (switch trials) based
on a pseudorandom order. Within the single-task blocks, a trial started with the presentation of
a black fixation cross on a grey background positioned at the centre of the screen for 500 ms,
followed by the presentation of the target stimulus until the participants produced a response.
The inter-trial interval included a black fixation cross on a grey background positioned at the
centre of the screen, and its duration was either 500 or 700 ms. Within the mixed-task blocks,
before stimulus presentation, a visual cue that indicated the task to be performed appeared at
the centre of the screen for 1,000 ms.

The stimuli included in the cold version of the paradigm were two geometric shapes
(triangle and circle) coloured in red or blue, presented individually at the centre of the screen
on a grey background. The participants were asked to respond according to either the shape or
the colour of the target stimulus. The single-task blocks required the participants to categorize
the target stimulus selectively based on either colour or shape. Instead, the mixed-task blocks
included the categorization of the target (either a “colour task™ or a “shape task™) based on a
cue. The participants had to press the left arrow button to indicate either a triangle or a blue
shape and the right arrow button to indicate either a circle or a red shape.

The stimuli included in the hot version of the paradigm were four coloured images of
faces with no hairline from the A series of the Karolinska Directed Emotional Faces database
(Lundqvist et al., 1998) selected from a validation study of the database’s picture set (Goeleven
et al., 2008)8, presented individually at the centre of the screen on a grey background. The

stimuli included two happy faces (one female, one male) and two sad faces (one female, one

8 The KDEF images included in the study were: F26SA, M17SA, F26HA, M17HA.
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male) selected from a validation study of the database’s picture set based on intensity ratings
(happy, M = 6.34, SD = 1.64; sad, M = 6.55, SD = 1.70) and arousal ratings (happy, M = 3.7,
SD = 2.85; sad, M = 4.0, SD = 1.84; Goeleven et al., 2008). The happy and sad faces did not
differ in arousal ratings (p = .57). The participants were asked to respond according to the
emotion or gender of the face. Particularly, the single-task blocks required the participants to
categorize the target stimulus selectively based on either the emotion or gender of the face. The
mixed-task blocks included the categorization of the target (as either an “emotion task™ or a
“gender task”) based on a cue. The participants had to press the left arrow button to indicate
either an unpleasant stimulus or a female face and the right arrow button to indicate either a
pleasant stimulus or a male face.

The task was self-paced, and RTs and accuracy were measured. The first trial of each
block was excluded from the analysis. Incorrect trials (3.49% of all trials) and RTs longer than
3,000 ms or shorter than 100 ms (0.41% of correct trials) were also excluded from the analyses.
The RTs were then inversely transformed (—1,000/RTs in ms) to produce the normal
distribution required to conduct linear mixed-effects models, because the RT distributions were
heavily skewed (skewness = 2.61) as typically observed (e.g., Schmidt & Weissman, 2016).
The reliability of the transformed RTs in the single, repeat, and switch trials in the cold and hot
tasks was evaluated by computing split-half correlations corrected with the Spearman-Brown

formula (2,000 random splits).

General procedure

This study was conducted within an extensive research project on vulnerability to
depression, and self-report measures of emotional regulation, anxiety, and heart rate were
collected but not analysed in this work. First, each participant completed an online survey
administered via Google Modules that included informed consent, a sociodemographic and

anamnestic interview, and the BDI-II self-report questionnaire. Subsequently, the participants
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received a link to complete the task-switching paradigm on their computers through the
Pavlovia.org online platform. The participants were instructed to find a quiet and comfortable
room free of distractions and to avoid completion of the task during night hours (completion
time was checked on the output data) and the consumption of alcohol or caffeine in the hours

preceding the experiment.
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Figure 5.1 Task-switching paradigms. A) Non-emotional (cold) paradigm. On the left single-task
blocks, where the categorization of the target is based on one feature (either colour or shape). On the
right mixed-task blocks, where the task varies based on a cue presented for 1000 ms before stimuli
onset and each trial can be either a repeat trial or a switch B) Emotional (cold) paradigm. On the left
single-task blocks, where the categorization of the target is based on one feature (either emotion or
gender). On the right mixed-task blocks, where the task varies based on a cue presented for 1000 ms
before stimuli onset and each trial can be either a repeat trial or a switch.
Statistical analyses

Statistical analyses were performed in R (Version 1.2.5001; R Core Team, 2012). The
effects of depressive symptoms on cognitive control in both cold and hot contexts were
investigated by performing a linear mixed model with the RTs as the dependent variable using

the Imer function from the ImerTest library (Kuznetsova et al., 2017). Specifically, we tested

for the effects of BDI-II scores, domain (emotional or hot, non-emotional or cold), and
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condition (trial types: single, repeat, switch) and all their two- and three-way interactions as
fixed effects of primary theoretical interest.

Mixed-effects models have several advantages over traditional linear model analysis
(i.e., repeated-measures ANOVA). Because this analysis was conducted at the trial level, it
accounted for variability at the individual level and avoided potential bias due to data
aggregation (i.e., comparing mean values; Singmann & Kellen, 2019). Moreover, unlike
general linear models, mixed-effects models are very robust at handling missing data and
unbalanced data sets (Baayen et al., 2008; Quene & van den Bergh, 2008).

The simplest, best linear mixed-effects model to fit the dependent variable (RTs) was
determined by iteratively comparing simpler models (starting from the null model) with more
complex models using the ANOVA function (R stats library), which provided the chi-square
statistics and the related p value of the likelihood ratio test. The Bayes factors in favour of the
simpler models (BFi12) using the BayesFactor package (Morey et al., 2015) were also
computed’. Particularly, the models were as follows: (a) a null model that included only the
participant ID and experimental stimuli as random intercepts and the trial order as both a fixed
effect and a by-participant random slope to control for possible confounding time-on-task
effects, (b) more complex models that also included the main fixed effects of condition,
domain, and BDI-II scores, (c) more complex models that also included their two-way
interactions, and (d) the full-factorial model that also included their three-way interaction. After
this model-building procedure, the statistical significance of the fixed effects included in the

final model was assessed as detailed below.

° The Bayes factor can be interpreted as a measure of the strength of evidence in favor of one model
over another. In line with an influential classification scheme for interpreting Bayes factors, values
greater than 3, 10, 30, and 100 are considered, respectively, moderate, strong, very strong, and extreme
evidence (Lee & Wagenmakers, 2014; Jeffreys, 1961).
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The final model was refitted after we excluded outliers, which were identified as
observations with absolute standardized residuals greater than 3 (Ambrosini et al., 2015). For
the fixed effects, the estimated coefficient (b), standard error (SE), and ¢ values for each
parameter included in the final model were reported. In addition, the p values obtained through
the Satterthwaite approximation (implemented in the ImerTest library) were reported. A p
value of .05 was the cut-off for statistical significance.

Regarding the specific valence-effects within the emotional version of the paradigm, a
separate linear mixed-effects model was conducted to explore the potential influences of the
valence (pleasant, unpleasant) of the previous trial in simple and complex cognitive control
conditions (i.e., trial types) on the RTs as a function of the participants’ BDI-II scores.
Specifically, we tested BDI-II, condition (trial types: single, repeat, switch), valence of the
previous trial (pleasant, unpleasant), and their two- and three-way as fixed factors of primarily
theoretical interest. The same model-building procedure detailed above was conducted to
identify the simplest, best linear mixed-effects model to fit the dependent variable (RTs), and
statistical analysis of the final model was conducted as detailed above. The same analysis was
conducted with the valence of this trial.

Accuracy was not analysed because it was very high (> 96%), indicating the
participants’ performance was at the ceiling level. Indeed, 68 of the 82 participants
(corresponding to approximately 83% of the sample) had perfect accuracy in at least one
experimental condition. This prevented the reliable estimation of the experimental effects on
accuracy. Nonetheless, we checked for the presence of a speed—accuracy trade-off by
correlating the participants’ mean RTs and accuracy. This analysis revealed a near-zero
correlation, » =.001, #80) = 0.01, p = .990, indicating the absence of a speed—accuracy trade-

off in our sample.
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5.5 Results

Descriptive statistics

The average BDI-II score of the sample was 10.7 (SD = 9.2), and the scores ranged from 0 to
43, with a skewness of 1.48 and a kurtosis of 2.04 (Figure 5.2). Regarding the RTs for each
trial type (single, repeat, switch), domain (cold, hot), and accuracy, the descriptive statistics
are displayed in Table 5.1. The reliability estimates of the inverse-transformed RTs were very
high (median value across the 2,000 random splits > 0.95 in all cases), indicating the adequacy

of the online assessment of task-switching ability.
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Figure 5.2 Distribution of Beck Depression Inventory (BDI-II) scores across the sample.
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Table 5.1. Descriptive statistics for behavioural data.

Single Repeat Switch
M SD M SD M SD

COLD TASK
Response times (ms) 503 93.2 685 198 763 232
Accuracy (%) 98 3.9 97 2.6 95 2.2

HOT TASK
Response times (ms) 606 106 763 208 852 252
Accuracy (%) 97 6.1 97 2.1 94 2.6

Note. M = mean; SD = standard deviation; ms = milliseconds

Depressive symptoms and task performance in the cold and hot task versions

The model-building procedure revealed that the inclusion of the three-way interaction
(Condition x Domain x BDI-II scores) was not justified, ¥*(2) = 0.12, p = .94; BF12 = 685.
Instead, the simplest, best linear mixed-effects model to fit the dependent variable (RTs) was
the model that included the main fixed effects (condition, domain, BDI-II), their two-way
interactions, the fixed effect for trial and its random by-participant slope, and the participants

and stimuli as random intercepts. The R notation for the final model was as follows.

Imer(RTs ~ trial + domain * condition + domain * BDI-II + condition * BDI-Il +

(trial/participant) + (1/stimulus)).

The marginal R? of the final model, which represents the variance explained by the

fixed effects, was .18; the conditional R?, which is the variance explained by both the fixed and

random effects, was .44. The statistics for the fixed effects of the final model are displayed in
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Table 5.2. A significant main effect of trial emerged, F(1, 77) =21.47, p < .001, reflecting an
overall decrease of RTs as the experimental session progressed. Moreover, a significant main
effect of domain emerge, F(1, 22) =178.70, p < .001, reflecting overall longer RTs for the
emotional (i.e., hot) compared to the non-emotional (i.e., cold) task version. Additionally, a
significant main effect of condition emerged, F(2, 31605) =920.63, p < .001, with longer RTs
for the switch trials compared to both the repeat and single trials and longer RTs for the repeat
trials compared to the single trials (all ps < .001). A significant interaction between domain
and condition (Figure 5.3) also emerged, F(2, 31067) =115.68, p < .001, showing that the
domain effect, that is, the increase in RTs for the emotional (i.e., hot) compared to the non-
emotional (i.e., cold) task version, was smaller for both the repeat and switch trials compared
to the single trials (p <.001), whereas no significant difference was observed for the domain

effect between the repeat and switch trials (p = .607).
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Figure 5.3 Interaction effect of Condition and Domain on response times (RTs). Error bars represent
Ninety-five % confidence bands for each Condition. Note. SIN = single trials; REP = repeat trials; SWI
= switch trials.

Moreover, the BDI-II x Domain interaction was significant, F(1, 1242) =14.95,p <

.001, showing a BDI-II-dependent increase in RTs that was stronger for the emotional (i.e.,
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hot) than the non-emotional (i.e., cold) task version (Figure 5.4, Panel b). The BDI-II x
Condition interaction was also significant, F(2, 31066) =13.23, p < .001, showing that the
BDI-II-dependent increase in RTs was stronger for both the switch and repeat trials compared
to the single trials (both ps <.001), whereas it did not significantly differ between the switch
and repeat trials (p = .231; Figure 5.4, Panel a).

Due to the nonnormality of the BDI-II distribution, a control analysis was performed to
verify the robustness of the described results and control for possible biases due to the influence
of participants with high BDI-II values. To this aim, the same linear mixed-effects model was
conducted after log transforming the BDI-II scores. The control analysis confirmed all the

effects described above.
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Figure 5.4 Panel a) Interaction effect of BDI scores and Condition (Single, Repeat, Switch) on
response times (RTs). Ninety-five % confidence bands for each Condition are presented in different
colours. Note. REP = repeat trials; SIN = single trials; SWI = switch trials. Panel b) Interaction effect
of BDI scores and Domain (cold or hot) on response times (RTs). Ninety-five % confidence bands for
cold and hot task versions are presented in different colours.
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Depressive symptoms and valence-specific effects

The model-building procedure revealed that the inclusion of the three-way interaction
(Condition x Valence x BDI-II) was not justified, x*(2) = 1.99, p = .37; BF12 > 10°. Moreover,
the inclusion of the valence effect and its interactions with either BDI-II or condition was not
justified (all ps > .3; all BFi2s > 41). Instead, the simplest, best linear mixed-effects model to
fit the dependent variable (RTs) was the model that included the main fixed effects of condition
and BDI-II, their two-way interaction, the fixed effect for trial, and its random by-participant
slope, and the participants and stimuli as random intercepts. The R notation for the final model
was as follows: Imer(RTs ~ trial + condition * BDI-II + (trial/participant) + (1/stimulus)).

The marginal and conditional R? of the final model were, respectively, 0.09 and 0.39.
The analysis confirmed the significant main effect of condition, F(2, 14938)=335.89, p <.001,
and Condition x BDI-II interaction, F(2, 14956) =9.43, p <.001, which replicated the pattern
of results in the previous analysis. Again, a control analysis performed with log-transformed
BDI-II scores confirmed the general pattern of the results.

Furthermore, a similar control analysis was performed to verify whether the valence
modulated the reported result. Again, however, the analysis revealed that the more complex
model including the interaction with the valence predictor was not justified, ¥*(6) = 11.26, p =

.08; BF12> 10%.
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Table 5.2. Estimated parameters of the final linear mixed-effect model of response times with a
baseline of Single trials and Cold task version.

Fixed Effects Estimate (SE) t D
Intercept -2.210 (.055)  -40.000 <.001
Domain .380 (.020) 18.790 <.001
Condition - Repeat 359 (.013) 27.670 <.001
Condition - Switch 521 (.013) 39.930 <.001
BDI .000 (.004) -.020 .986
Domain:ConditionRepeat -.165(.014)  -11.740 <.001
Domain:ConditionSwitch -.174 (.014) -12.250 <.001
Domain:BDI .004 (.001) 3.870 <.001
ConditionRepeat:BDI .004 (.001) 4.690 <.001
ConditionSwitch:BDI .002 (.001) 3.200 001

Note. SE = standard error; BDI-II = Beck Depression Inventory-II; Significant effects are
displayed in bold.

5.6 Discussion

This study was the first to employ the same task-switching paradigm in emotional (i.e.,
hot) and non-emotional (i.e., cold) versions to assess whether the presentation of emotional
material in individuals with greater depressive symptoms would influence cognitive control.
We expected more depressive symptoms to be associated with general cognitive control
difficulties in both task versions. Alternatively, based on the few studies that have linked
depression to a selective difficulty in affective cognitive control (Lo & Allen, 2011; Murphy
et al., 2012), we expected higher levels of depressive symptoms to be associated with selective

difficulties in the hot contexts. Moreover, specifically for the emotional version of the task, we
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expected a valence-specific bias, with longer RTs in switching away from unpleasant stimuli
compared to pleasant stimuli.

For the whole sample, condition had a significant effect, namely, as expected in a task-
switching paradigm, a difference among the three task conditions, with longer RTs in the
switch trials than in repeat (i.e., switching cost) and single trials and longer RTs in repeat than
in single trials (i.e., mixing cost). These differences reflect the distinct processes that can be
disentangled in a task-switching paradigm, namely a switching cost, determined by the
activation of a task set reconfiguration process that is not required in repetition trials, and a
general mixing cost, determined by the need to keep multiple task sets active during the mixed
block compared to the single block condition (Monsell, 2003; Rubin & Meiran, 2005).
However, depressive symptoms were related to greater difficulties in exerting cognitive control
in the complex situations (switch and repeat trials) than in the simple and semiautomatic
situations (single trials), in both the emotional and non-emotional task versions. Hence, the
BDI-II scores were not differentially related to the switch and repeat trials, presenting a similar
pattern for both trial types. This indicates that the individuals with greater depressive symptoms
did not show the typical facilitation effect for the repeat trials compared to the switch trials.
Consequently, mixing cost, namely the difference between the repeat and single trials,
increased with the BDI-II scores. Although the switching cost has been widely studied as a
measure of cognitive control abilities (e.g., Rubin & Meiran, 2005), the study of mixing cost
has been fairly neglected, and this is the first study on depressive symptoms to include single-
task blocks. However, several researchers have argued that mixing cost may represent an
accurate measure of cognitive control in conditions requiring sustained attention and the
management of competition between task sets (Ambrosini et al., 2019; Mari-Beffa et al., 2012;
Mari-Beffa & Kirkham, 2014; Meiran, 2005). Therefore, in this study, depressive symptoms

were associated with a general difficulty in the maintenance of cognitive control (i.c.,
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mixing cost) due to a diminished differentiation between the switch and repeat trials, leading,
in turn, to reduced switching costs. However, this does not necessarily indicate that individuals
with greater depressive symptoms do not show difficulties in phasic task-set reconfiguration,
because they might also be likely to employ a task-set reconfiguration process in both switch
and repeat trials indiscriminately. In the context of computerized task-switching studies on
depression, these results are in contrast with some previous studies that reported specific
switching difficulties in depression (e.g., Hoffmann et al., 2017) but are in line with other
studies that did not report a significant difference between switch and repeat trials (Meiran et
al., 2011; Remijnse et al., 2013; Whitmer & Gotlib, 2012). The mixed findings in the literature
could be due to the employment of slightly different paradigms, making the comparison
between studies rather difficult. Moreover, this study was the first to apply a more robust
statistical approach rather than rely on data aggregation (i.e., comparing mean values).
Furthermore, depressive symptoms were related to a selective and extended difficulty
in performing tasks with emotional stimuli compared to non-emotional stimuli. Indeed, the
participants’ BDI-II scores were positively associated with longer RTs in the hot version
compared to the cold version. However, this effect was not modulated by the degree of
cognitive control required to perform the task, because the three-way interaction between
condition, domain, and BDI-II scores was not significant. In other words, depressive symptoms
were characterized by an affective interference not only in demanding and complex conditions
but also even in simple and semiautomatic conditions (i.e., single-task blocks). These results
are partly in line with the affective interference hypothesis (Siegle et al., 2002), which suggests
that the automatic orienting and processing of affective stimuli interfere with attentional
processing by detaining more cognitive resources in depression. Hence, longer latencies in the
emotional task may be due to the distribution of cognitive resources between the completion

of the task and the attentional processing of the emotional features of the stimulus, which is
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slowed in individuals with greater depressive symptoms. Moreover, the reduced readiness to
initiate a task under exposure to emotional stimuli compared to non-emotional stimuli may be
consistent with studies that described a reduced ability to inhibit affective stimuli in individuals
with depressive symptoms (e.g., Joorman & Gotlib, 2010; Joorman & Tanovic, 2014).
However, the effect was not valence-specific, as no difference was found between trials that
required disengagement from a previous unpleasant or pleasant stimulus. The interference of
unpleasant stimuli may extend to sustained difficulty in task completion even in trials requiring
disengagement from pleasant stimuli rather than selectively modulating the performance of
trials requiring disengagement from unpleasant stimuli. For instance, individuals with greater
depressive symptoms may have more difficulties in deactivating the unpleasant features of
images, which results in poorer control over preventing irrelevant affective information from
interfering with the completion of the whole emotional task (Lo & Allen, 2010). Our results
are in line with one of the few studies that adopted an emotional (with pleasant and unpleasant
trials) rather than a non-emotional version of the same task-switching paradigm and found a
selective difficulty in the emotional task-switching paradigm, regardless of the stimulus
valence, in individuals with depression (Lo & Allen, 2010). However, the authors of that study
did not include the RTs for both task versions within a single statistical model but conducted
two separate ANOVAs, making it impossible to compare the two task versions directly.
Furthermore, contrary to our study, they did not include single-task blocks. Therefore, the
previous study did not make it possible to state whether emotional material influences
cognition even in relatively simple conditions or if it selectively influences high-order
functions that require greater cognitive resources.

The focus on cognitive aspects of depression aligns with the Cognitive System domain
within the Research Domain Criteria framework, an initiative developed to better characterize

affective, cognitive, and biological factors underlying psychopathology (Insel, 2010; Kozak &
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Cuthbert, 2016). The Research Domain Criteria also includes the Positive and Negative
Valence Systems, domains that are related strictly to emotional processing (Keller et al., 2019).
Studying how these systems interact in people with depressive symptoms is of increasing
interest, and our study provides further evidence of the influence of affective stimuli on
cognitive control (mixed-task blocks) and simpler attentional processing (single-task blocks).
Overall, this study demonstrates that depressive symptoms are characterized by general
cognitive control difficulties and the interference of affective stimuli in both complex and
simple tasks.

In addition, although the order of the two tasks was counterbalanced, a control analysis
revealed that the participants who first completed the emotional task had greater emotion-
specific effects (i.e., greater RTs in the emotional task). In addition, those who first completed
the non-emotional task had greater emotion-specific effects in the single trials compared to the
task-switching trials. In this study, the inclusion of other higher order interactions, including
the task order factor, was not justified. Overall, these results should be investigated further and
considered in future studies.

The results of this study have not only theoretical implications but also implications for
the prevention and treatment of depression. These findings suggest that reduced cognitive
control abilities and an overall interference of affective stimuli might be useful in early
identification of the risk for developing a full-blown depressive episode. In turn, these findings
lay the foundation for the implementation of preventive programs for individuals who show
difficulties in cognitive control abilities. Moreover, our findings seem compatible with the
emerging evidence documenting the efficacy of cognitive control training in diminishing
depressive symptoms (Koster et al., 2017). However, a combination of general and affective

cognitive control training might be more effective (e.g., lacoviello et al., 2014). To date, task-
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switching training has not been employed in the treatment of depression, and future studies on
both cold and hot cognitive training with this paradigm are warranted.

In interpreting our findings, several limitations should be considered. First, although
the participants were given precise instructions for completing the experiment, the fact that we
conducted the study remotely through a web platform, due to the COVID-19 pandemic, might
have influenced the results. However, due to the ease of collecting larger samples, online
studies are increasingly being conducted, and the accuracy of web platforms has been tested
and validated in a recent study (Anwyl-Irvine et al., 2021). In addition, the reliability analysis
conducted in this study showed the adequacy of the online assessment of the task-switching
paradigm. Moreover, the fact that data collection was conducted during the second wave of the
COVID-19 pandemic might limit these results to this specific context. Second, although task-
switching paradigms tap distinct aspects of cognition and are considered promising tools for
accurately measuring cognitive control (Meiran, 2010; Monsell, 2003), to explore cognition in
people with depressive symptoms fully, future studies should consider the use of multiple tasks
and employ a latent variable approach (e.g., Ambrosini et al., 2019). Additionally, although the
task was extensively piloted to ensure comparability between the two task versions, they were
not fully comparable. Furthermore, to make the two task versions as comparable as possible,
the emotional task comprised only four emotional faces (two for gender and two for emotion).
This represents a limit, because previous studies that explored emotional task-switching
abilities have employed many pictures to avoid habituation (e.g., De Lissnyder et al., 2012;
Grol & De Raedt, 2018). Therefore, this habituation to the emotional stimuli could have led to
the absence of selective difficulties in the emotional task version as a function of depressive
symptoms. Lastly, future studies should consider selecting individuals with more severe
depressive symptoms to better typify the extent of cognitive control difficulties in both cold

and hot contexts in depression.
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In conclusion, this study provides novel evidence on the extent of cognitive control
difficulties in emotional and non emotional contexts in relation to depressive symptoms. These
findings show the presence of depressive symptoms is associated with a general difficulty to
exert cognitive control in both contexts and with a more extended difficulty in even simple
attentional processing of affective material. Future laboratory studies are warranted to confirm
these findings and better understand the interplay between affect and cognition in individuals

with depressive symptoms.
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CHAPTER VI:

GENERAL DISCUSSION

6.1 Overview of the Aims and Findings

A promising line of research is exploring distinct domains of the Research Domain
Criteria (RDoC) to better understand the mechanisms that lead to or are associated with
depression and its vulnerability. The present work sought to explore affective and cognitive
processes, encompassed in the Positive (PVS) and Negative Valence (NVS) and the Cognitive
Systems, and their interactions in subclinical depression (dysphoria) and clinical depression.
Through the study of these two conditions, it was possible to explore mechanisms related to
both an at-risk condition (dysphoria) and full-blown clinical depression.

In general, Studies 1 and 2 supported the sensitivity of time-frequency analysis in
reflecting multiple aspects of affective picture processing in subclinical and clinical depression.
Indeed, time—frequency analysis of EEG data within specific frequency bands allows the
extrapolation of information that is not available using ERPs analysis and reflects distinctive
aspects of information processing (Cohen, 2014; Munneke et al., 2015). Although studies on
the late positive potential (LPP) have provided important insight into our understanding of
attention to salient affective cues, this measure does not fully leverage all information in the
EEG signal (Morales et al., 2022). Instead, the employment of delta and theta power in Study
1 allowed us to simultaneously examine affective disposition and cognitive processing of the
emotional images, respectively. For instance, delta oscillations are thought to have a functional
role in monitoring the motivational relevance of affective stimuli and in the identification of
pleasant/rewarding cues and are generated by subcortical regions involved in the motivational
system (Foti et al., 2015; Giintekin & Basar, 2016). Instead, theta power, distributed within a

large network of brain regions involved in multimodal sensory and cognitive processing
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(Karakas, 2020; Kowalczyk et al., 2013; Sauseng et al., 2010), is believed to have a role in
orienting and processing arousing stimuli.

Study 1 revealed that already at the subclinical level, depression is characterized by
blunted motivated attention and emotional responding to appetitive cues, as indexed by reduced
LPP and delta power to pleasant images, respectively, relative to a control group. These
findings suggest that depressive symptoms might relate to reduced PVS functioning and
support the positive attenuation hypothesis of depression. This aligns with models describing
depression as a deficit in appetitive motivation, which is related to core depressive features,
such as anhedonia and behavioral apathy (Davidson, 1998; Henriques & Davidson, 2000).
Indeed, additional analyses to Study 1 showed that reduced delta power to pleasant images in
dysphoria was mediated by anhedonia levels, suggesting a role of anhedonia symptoms in
driving reduced neural responses to appetitive cues in individuals with subclinical levels of
depression. Study 1 also showed greater cognitive processing of unpleasant images, indexed
by greater theta power to these stimuli relative to neutral and pleasant ones, in dysphoria but
not controls. However, the greater processing of unpleasant images observed in dysphoria
might not lead to greater action preparation and reactivity. Considering previous evidence on
other psychophysiological indices, such as cardiac deceleration and the startle reflex (e.g.,
Messerotti Benvenuti et al., 2020), assessing attentional processing and motivation disposition
respectively, the findings from this work are in line with the idea that depression risk might be
associated with greater intake of unpleasant cues but that does not lead to greater action
preparation and reactivity. Hence, the present data are not at odds with the negative potentiation
hypothesis, which proposed that depressive symptoms are characterized by hyperarousal and
motivation disposition to actively withdraw from aversive and unpleasant stimuli. However, to
better clarify and explore this hypothesis and the Emotion Context Insensitivity Hypothesis

(ECI), future studies should integrate multiple psychophysiological measures (e.g., EEG time-
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frequency, cardiac deceleration, startle reflex) to concurrently tackle attentional processing and
affective disposition to emotional content in depression. In terms of the RDoC matrix, Study 1
revealed an involvement of the PVS as well as an interaction between the NVS and Cognitive
Systems in dysphoria.

Study 2 showed that findings on reduced electrocortical responses (LPP and delta
power) to pleasant images extended from subclinical to clinical samples. Moreover, the LPP
and delta power were uncorrelated and independently predicted MDD clinical status,
suggesting that leveraging time- and time-frequency analyses within the same study might
enhance clinical utility. Unlike Study 1, within the MDD group, there was an absence of
affective modulation of delta power, namely affective elaboration of pleasant images was
comparable to neutral ones. This result suggests that in clinical depression the motivational
deficit might be more extended than in subclinical depression. Also, unlike Study 1, the link
between time-frequency delta power and MDD status was not mediated by symptoms of
anhedonia. This indicates that, in clinical phases of depression, reduced neural responses to
appetitive cues might generally relate to the depressive state and are not driven by some of its
specific features. This null finding could also be due to the chronicity of the disorder and the
intake of psychotropic medications in the MDD group.

Taken together, Studies 1 and 2 evidenced the role of time-frequency delta power in
the study of approach motivation in depressive symptoms and both supported the positive
attenuation hypothesis in subclinical and clinical depression. In both studies, the LPP and delta
power to pleasant images were reduced in dysphoria and MDD but these measures were
uncorrelated, supporting the idea that they might reflect two distinct aspects of affective
processing dysfunctions in depressive symptoms, namely reduced attention to salient pleasant
stimuli and hypoactivation of the approach motivation, respectively. Importantly, Study 1

showed that only reduced delta power, and not the LPP, to pleasant images in dysphoria was
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mediated by anhedonia levels, further supporting the selective link between time-frequency
delta and approach motivation and PVS functioning. However, as suggested by the findings of
Study 2, the use of the LPP and delta power as two independent measures of affective
processing might improve the clinical utility, suggesting that they might be complementary.

Considering that Study 1 only tackled simple visual processing rather than higher
cognitive control functioning, Study 3 investigated how both the PVS and NVS influenced the
Cognitive Systems through two versions (emotional and non-emotional) of a task-switching
paradigm. What emerged from Study 3 was that depressive symptoms are characterized by
overall difficulties in higher cognitive control functions but also by an affective interference of
both pleasant and unpleasant cues across both lower and higher cognitive control functions. In
this study, important foundations for a more precise study of cognitive processing in emotional
and non-emotional contexts were set and future studies should be designed to further advance
our knowledge on this matter.

Overall, these results indicate that depressive symptoms can arise from a complex
interaction between distinct RDoC dimensions adding to the literature a better characterization
of neural and behavioral patterns related to depressive symptoms in young adults. This offers
several relevant advantages, such as the possibility of highlighting different manifestations of
psychopathology pertaining to the same nosographic category (Kring & Bachorowski, 1999).
Moreover, extending the study of RDoC dimensions will ultimately allow the adoption of a
dimensional approach to mental disorders, whereby emotion-related disorders could be
construed as deficits in the affective and cognitive dimensions of the RDoC rather than by a

series of strict categorical criteria.
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6.2 Clinical Implications

This line of work aims at improving the understanding of the underlying mechanisms
of depression and how individuals develop depression in order to, eventually, improve the
ability of clinicians to identify, prevent and/or treat the disorder.

The findings presented in this dissertation represent a step forward in the early
identification of individuals that might develop depression and that might benefit from
personalized types of interventions. For example, including EEG time-frequency measures of
affective processing along with self-report measures during ordinary clinical screening might
increase the sensitivity and specificity of identifying subclinical depressive symptoms. Then,
instead of targeting individuals with subclinical levels of depression with standard protocols,
it could be a useful strategy to create personalized psychology interventions based on
individual subjects targeting, for example, neural responses to pleasant cues and/or cognitive
control difficulties.

Regarding treatment or prevention protocols, considering that the PVS emerged as a
potentially relevant domain implicated in both subclinical and clinical depression,
interventions aimed at increasing approach motivation might be indicated for these conditions.
For example, Positive Affect Treatment (PAT) is an intervention that comprises the planning
of pleasant activities in combination with cognitive training focused on the positive, and
exercises to foster pleasant experiences (Craske et al., 2016). This intervention has been shown
to improve depressive symptoms relative to other interventions aimed at reducing negative
affect (Craske et al., 2019). However, although the design of this protocol was based on
psychophysiological and neural findings on depression such as the ones presented in this
dissertation work, no study has yet explored whether PAT modulates and improves neural

responses to pleasant and rewarding experiences and stimuli.
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Furthermore, based on the findings on greater orienting and elaboration of unpleasant
images that emerged in Study 1, two interventions could be suggested. First, training
individuals with depressed mood to reduce the facilitated top-down processing of unpleasant
stimuli, while increasing it for pleasant ones might be a useful strategy to diminish the tendency
to automatically focus their cognitive resources on negatively valenced content, thus improving
mood and psychological well-being (e.g., Dai et al., 2019; Hallion and Ruscio, 2011). Second,
targeting emotion regulation by increasing the ability to use adaptive strategies, such as
cognitive reappraisal, might allow individuals with depressed mood to reframe their thoughts
relative to a given event or stimulus to decrease its emotional impact (Gross, 2002).

Finally, Study 3 confirmed the involvement of the Cognitive Systems functioning in
depressive symptoms and this appears to be in line with the emerging evidence documenting
the efficacy of cognitive control training in diminishing depressive symptoms (Koster et al.,
2017). However, a combination of general and affective cognitive control training might be
more effective (e.g., lacoviello et al., 2014). To date, task-switching training has not been
employed in the treatment of depression, and future studies on both cold and hot cognitive
training with this paradigm could be developed.

Needless to say that more studies are warranted to refine our knowledge of specific
RDoC domains implicated in at-risk conditions in order to develop more specific intervention
strategies. These future efforts will guide psychophysiology and the study of mental illness
toward a “precision medicine era” that will significantly improve the quality of life of the entire

population.
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6.3 Limitations and Future Directions

The results enclosed in this dissertation should be interpreted in light of several
limitations that have partly been outlined throughout the discussions of each Study.

First, studies 1 and 3 aimed at studying at-risk individuals that are more vulnerable to
developing full-blown depression. However, this work did not consider multiple at-risk
conditions but only dysphoria and this significantly reduced the strength of potential inferences
regarding risk factors for depression. Studying individuals that are currently free from
depressive symptoms (even subclinical) but have a familiar history of depression might better
disentangle whether the observed effects could be considered risk factors rather than correlates
of a symptomatologic condition. In addition, the studies were cross-sectional and did not
include a follow-up assessment to evaluate whether participants with dysphoria developed a
depressive episode. Hence, it might be important for future research to conduct multi-wave
studies on other at-risk samples (e.g., individuals with a parental history of depression, with
past depression).

Second, this dissertation established that depressive symptoms are related to reduced
approach motivation, cognitive control difficulties, and an affective interference of pleasant
and unpleasant stimuli even in simple attentional conditions. However, this work does not fully
speak to the underlying mechanisms through which these phenomena potentially interact. For
instance, the study of cognitive control in emotional and non-emotional conditions (Study 3)
was the first step in the exploration of the influence of PVS and NV on cognitive functioning
and was constrained to a behavioral study due to the pandemic. One hypothesis on the
interaction between the PVS and the Cognitive Systems could be that the reduced sensitivity
to appetitive stimuli experienced by individuals with or at risk of depressive symptoms may
affect the ability to improve cognitive control abilities through the use of performance feedback

(Ravizza & Delgado, 2014). Indeed, providing individuals with feedback during the execution
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of a task (but also in everyday settings) usually improves their performance, whereas it does
not affect individuals with depressed mood. Given the findings presented in this work on
reduced approach motivation and cognitive control, future studies could implement
reinforcement learning paradigms (e.g., a task-switching paradigm that includes the delivery
of performance feedback) to better tackle the interaction between these two systems.

Moreover, Studies 1 and 2 assessed affective and cognitive processing with only one
task, the passive viewing of emotional pictures. This task allowed studying the Initial Response
to the Reward subconstruct of the RDoC, which includes the emotional responding to
appetitive cues. Other tasks including different appetitive stimuli (e.g., monetary or social
rewards) could be used in combination with the passive viewing to fully tackle this
subconstruct in dysphoria. So far, a few initial studies have observed reduced time-frequency
delta power in reward tasks (e.g., doors task) in at-risk conditions for depression (Ethridge et
al., 2021; Nelson et al., 2018). However, these studies did not implement a cluster-based
approach to the time-frequency analysis, thus reducing the robustness of the findings. Also,
considering the growing literature on reduced ERPs to social rewards (Freeman et al., 2022)
and the prominent social impairment involved in depression (Kupferberg et al., 2016), future
research should explore time-frequency patterns during social/affiliative reward tasks instead
of only focusing on standard monetary rewards. This would allow expanding this RDoC
approach to the Systems for Social Processes functioning in the risk for depression as well as
its interactions with the PVS. Finally, a more complete understanding of the mechanisms
underlying the PVS might be granted by the implementation of multiple tasks assessing other
subconstructs of the RDoC (e.g., Effort expended to obtain reward, and Reinforcement
Learning).

Additionally, the emotion-cognition interaction could be further explored through the

integration of multiple psychophysiological measures. For example, a peculiar measure in this
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regard is the startle eyeblink reflex, which consists of the rapid evoked contraction of the
orbicularis oculi muscle. When a non-startling stimulus (prepulse) is presented immediately
before (less than 500 ms) a startle-eliciting stimulus (probe), the amplitude of the startle reflex
is attenuated, a phenomenon known as “prepulse inhibition” (Graham, 1992). The amplitude
of reflex inhibition indicates the level of attentional resources allocated to the prepulse, namely
the greater the allocation to the prepulse, the greater the inhibition of the startle reflex (Bradley
et al., 1993). Instead, when the startle probe is presented during affective processing more than
500 ms after the beginning of the presentation of an emotional stimulus, the startle amplitude
reflects affective modulation. Specifically, the reflex is potentiated during unpleasant affective
states and inhibited during pleasant affective states (e.g., Bradley et al., 1999; Dichter et al.,
2002). The literature on the attentional and affective modulation of the startle in clinical
depression suggests that this condition is related to a general insensitivity to emotional stimuli
(Boecker & Pauli, 2019). However, studies on depression risk are still very mixed and remain
largely unexplored. For instance, regarding affective modulation, studies reported reduced
startle potentiation to unpleasant stimuli in individuals with dysphoria (Messerotti Benvenuti
et al., 2020), but also enhance startle potentiation in individuals with past depression
(Vaidyanathan et al., 2014).

Another caveat is that Study 2 used slightly different demographic groups relative to
the other two studies. Study 1 and 3 included young adults (mean age = 20.5 and 25.4,
respectively) living in Padova (Italy), while Study 2 included adults (mean age = 38.7) from
the Tallahassee community in the USA. However, the fact that Study 2 confirmed findings
from Study 1 mean that, even across different socio-cultural and demographic characteristics,
reduced approach motivation is a robust finding in individuals with depressive symptoms.
Also, most of the participants across all three studies were Caucasian and future studies should

include more diverse samples.
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Although this was not the focus of the present dissertation, many environmental factors
may act as catalysts for vulnerability factors in determining the development of depression and
future studies should take this into account (Weinberg, Kujawa, & Riesel, 2022). For example,
exposure to negative stressful life events is a well-established risk factor for psychopathology
and seems to have an impact on multiple domains. Chronic stress has significant adverse effects
on brain regions implicated in reward processing (Burani, Gallyer, et al., 2021; Pizzagalli,
2014) and endocrine and autonomic regulation (Shet et al., 2017). Of note, there is evidence of
how stressful life events interact with neural activity to rewards to prospectively predict the
development of depression (Burani, Klawohn, et al., 2021), further supporting the role of an
environmental influence on the functioning of an RDoC domain in determining vulnerability

for psychopathology.

6.4 Conclusions

Taken together, findings described in this dissertation are relevant in the advancement
of the dimensional characterization of mechanisms underlying depression and its risk. This
work supports the notion that reduced approach motivation might be the driving force
associated with the manifestation of subclinical (Study 1) and clinical levels of depression
(Study 2), instead of imbalances of the withdrawal motivational system. Also, subclinical
depression appears to be characterized by greater orienting and processing of unpleasant
stimuli (Study 1) as well as cognitive control difficulties, especially in affective conditions
(Study 3). Ultimately, the evaluation of these measures might be leveraged to improve clinical

utility and design more precise identification and personalized intervention protocols.
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