
DIPARTIMENTO

DI INGEGNERIA

DELL'INFORMAZIONE

Challenges in the Industrial Internet of
Things Scenario: wireless systems for

functional safety, distributed
measurement and real-time

communication

Ph.D. candidate

Alberto Morato

Advisor

prof. Stefano Vitturi

Director & Coordinator

prof. Andrea Neviani

Ph.D. School in

Information Engineering

.

Department of

Information Engineering

University of Padova

2021

ii

Challenges in the Industrial

Internet of Things Scenario:

wireless systems for functional

safety, distributed measurement

and real-time communication

Ph.D. candidate: Alberto Morato

Director: prof. Andrea Neviani

Advisor: prof. Stefano Vitturi

Ph.D. School in Information Engineering

Department of Information Engineering

2021

“The problem is you think you have time. The hours have a way of turning into days,

the days into weeks, the weeks into years, and the years into a lifetime. How different

would your life and memories be today (or ten years later) if you had done that?”

Shawn James

Abstract

The changes introduced by Industry 4.0 are profoundly revolutionizing the way production

systems are conceived in many sectors. In the past, production units in industrial plants

were conceived as monolithic entities in which elements communicated and cooperated

only within the unit itself. The insertion of new elements sometimes required a complete

redesign and configuration of the communication network. Today, in a very similar way

to what is happening in the consumer world with the Internet of Things, the Industrial

Internet of Things (IIoT) is progressively taking hold in the industrial scenario. This

paradigm enables all the components of a production unit to be part of a global and

distributed network of smart devices that interact in order to improve the production

process. The effectiveness of this smart environment is based on pervasive and ubiquitous

connectivity, often achieved via wireless systems, able to ensure a fast, safe, reliable, and

contextualized transfer of information. All these characteristics play a fundamental role

in IIoT domains where coordination between sensors, actuators, and control systems is

required, for example, on those implements human–machine interaction. In this thesis,

we address such a topic, focusing on the challenges in integrating real-time distributed

measurement systems and safety critical systems in IIoT scenarios. Innovative solutions

in this context will be proposed and verified through extensive testing and simulations.

Wireless–based Functional safety networks – The first part of this thesis focuses

on the use of safety networks and protocols in an IIoT ecosystem. In particular,

we will discuss the issues and challenges of adopting safety protocols in wireless

communication networks by analyzing the results obtained from a test campaign

conducted on a prototype of such a network. Moreover, the actual applicability in an

industrial context will be verified and discussed through a simulated environment.

Industrial IoT-Based Distributed Measurement Applications – The second part

addresses distributed measurement systems in the IIoT domain. First, the possible

use of protocols designed for Machine–to–Machine (M2M) communications to ex-

change information from the field level up to the cloud between distributed sensors

iv

is analyzed. Next, test results conducted in some implementations of this protocol

will be reported and discussed focusing on power consumption, computational

complexity, and communication time. In order to provide a meaningful evaluation,

the tests were performed in hardware platforms oriented to embedded devices using

both wired and wireless communication systems.

Sommario

I cambiamenti introdotti da Industria 4.0 stanno rivoluzionando profondamente il modo

di concepire i sistemi produttivi in molti settori. In passato, le unità produttive negli

stabilimenti industriali erano concepite come entità monolitiche in cui gli elementi comu-

nicavano e cooperavano solo all’interno dell’unità stessa. L’inserimento di nuovi elementi

talvolta richiede una completa riprogettazione e configurazione della rete di comunicazione.

Oggi, in modo molto simile a quanto sta accadendo nel mondo consumer con l’Internet

of Things, l’Industrial Internet of Things (IIoT) sta progressivamente prendendo piede

nello scenario industriale. Questo paradigma consente a tutti i componenti di un’unità

produttiva di essere parte di una rete globale e distribuita di dispositivi intelligenti

che interagiscono per migliorare il processo produttivo. L’efficacia di questo ambiente

intelligente si basa su una connettività pervasiva e ubiqua, spesso ottenuta tramite sistemi

wireless, in grado di garantire un trasferimento di informazioni veloce, sicuro, affidabile e

contestualizzato. Tutte queste caratteristiche giocano un ruolo fondamentale nei domini

IIoT dove è richiesto il coordinamento tra sensori, attuatori e sistemi di controllo, ad

esempio su quelli che implementano l’interazione uomo–macchina.

In questa tesi, affrontiamo tale argomento, concentrandoci sulle sfide nell’integrazione

di sistemi di misura distribuiti in tempo reale e sistemi critici per la sicurezza negli scenari

IIoT. Soluzioni innovative in questo contesto verranno proposte e verificate attraverso

approfonditi test e simulazioni.

Functional safety tramite reti wireless – La prima parte della tesi è incentrata

sull’uso di reti e protocolli safety in un ecosistema IIoT. In particolare, verranno

discusse le problematiche e le sfide dell’adozione di protocolli safety in reti di

comunicazione wireless analizzando i risultati ottenuti da una campagna di test

condotta su un prototipo di tale rete. Verrà inoltre verificata e discussa l’effettiva

applicabilità in un contesto industriale attraverso un ambiente simulato.

Industrial IoT-Based Distributed Measurement Applications – La seconda parte

della tesi affronta il problema dei sistemi di misura distribuiti in ambito IIoT. In

vi

primo luogo verrà analizzato il possibile utilizzo di protocolli ideati per le comuni-

cazioni Machine–to–Machine (M2M) per l’interscambio di informazioni dal livello

di campo fino al cloud tra sensoristica distribuita. In seguito, verranno riportati e

discussi risultati di test condotti in alcune implementazioni di questo protocollo con

particolare attenzione al consumo energetico, complessità computazionale e tempi

di comunicazione. Al fine di fornire una valutazione significativa, i test sono stati

effettuati in piattaforme hardware orientate ai dispositivi embedded utilizzando

sistemi di comunicazione sia cablati che wireless.

Ringraziamenti

L’ambiente, le situazioni ma soprattutto le persone che ci circondano durante momenti

importanti della vita sono quelle che definiscono chi siamo. Il raggiungimento di questo

obiettivo è stato possibile grazie a tutte le persone che in questi anni mi hanno accompag-

nato lungo questo percorso e che con il loro supporto hanno contribuito a rendermi ciò

che sono oggi. A tutti voi va il mio più sentito ringraziamento.

Grazie al mio PhD advisor Prof. Stefano Vitturi, che fin dall’inizio di questo percorso,

è sempre stato presente con prezioso ed inesauribile supporto. Un mentore che mi ha

fatto crescere come ricercatore, che mi ha aiutato a plasmare ogni aspetto della mia

carriera e che mi ha sempre consigliato per il meglio mettendo le mie ambizioni e la mia

felicità sempre al primo posto.

Grazie anche a Prof Angelo Cenedese e Prof Federico Tramarin per gli innumerevoli

consigli e tutto il lavoro fatto insieme.

Un ringraziamento va al mio tutor aziendale Giampaolo Fadel, ai colleghi dell’ufficio

software e a tutta la CMZ Sistemi Elettronici. In questi anni in azienda ho trovato un

ambiente stimolante, formato da persone con un inestimabile valore tecnico ed umano.

L’avermi coinvolto in progetti ambizioni, avermi permesso di condividere e scambiare

idee, per me è stato una costate fonte di arricchimento tecnico e stimolo alla ricerca

dell’innovazione.

Un ringraziamento va a Christian Rodondi, amico di infanzia ma per me come un

fratello. A volte passano lunghi periodi, ma quando ci ritroviamo è come se non fosse

passato un giorno. Ripensare ai bei momenti di infanzia passati a giocare insieme e

riviverli ancora oggi con le lunghe chiacchierate e le escursioni in MTB, mi ha davo molte

volte la forza di andare avanti. Ti sono grato per i bei momenti passati insieme.

viii

Mi rattrista il non poter condividere questo importante traguardo con due persone

care che non ci sono più. Caro papà, grazie per avermi insegnato a perseguire con

tenacia i miei obiettivi. Nel corso degli anni non sono mancati momenti in cui persone, o

addirittura io stesso, pensassero che non sarei riuscito a raggiungere quelli che per me

sono stati obiettivi importanti. Però, in qui momenti, ho sempre tenuto a mente le tue

parole: volere è potere. Il ricordo di queste parole e dei tuoi insegnamenti sono ciò che mi

ha aiutato ad essere ciò che sono. Te ne sono riconoscente di tutto cuore. Grazie anche a

te zio, che fin da quando ero piccolo hai alimentato e supportato la mia passione per la

scienza e la tecnologia.

Nel momento in cui scrivo questi ringraziamenti, ho da pochi giorni dovuto salutare

per l’ultima volta la mia cagnolina Lucy. Quella che abbiamo condiviso è stata una

piccola parentesi di vita. Eri una piccola luce che portava gioia nei momenti più tristi e

di solitudine. Ricorderò con affetto e malinconia le camminate nei nostri amati boschi

dell’altopiano.

Infine, il ringraziamento più importante va a mia madre. Graziella, ti sono grato per i

sacrifici e per avermi continuamente supportato e incoraggiato in tutte le scelte, dentro e

fuori la carriera universitaria. Tutti gli obiettivi che ho raggiunto e raggiungerò in futuro

sono merito anche del tuo infallibile sostegno. A te la mia più sconfinata gratitudine.

Alberto Morato

Padova, 08/09/2021

Contents

Acronyms xix

1 Introduction 1

1.1 Industry 4.0 . 1

1.2 Contribution . 4

2 Communication Networks for Industrial Functional Safety 7

2.1 Functional Safety Fieldbuses . 10

2.1.1 Assumptions on the communication channel 12

2.2 Functional Safety Protocols based on the White Channel Approach 15

2.2.1 CANopen Safety . 15

2.3 Functional Safety Protocols based on the Black Channel Approach 17

2.3.1 OPC UA Safety . 17

2.3.2 Fail Safe over EtherCAT . 20

3 The Fail Safe over EtherCAT (FSoE) protocol implemented on the

IEEE 802.11 WLAN 25

3.1 Introduction . 27

3.2 FSoE Implementation . 27

3.3 Timing Analysis . 29

3.3.1 Polling Time of a FSoE Slave . 30

3.3.2 Time Slot Allocation to FSoE Slaves 30

3.4 Experimental Results . 31

3.4.1 Basic Configuration Results . 31

3.4.2 Multiple Configuration Results . 34

3.4.3 Discussion . 34

3.4.4 Conclusions . 36

x Contents

4 Assessment of different Transport Layer protocols for Functional safety

over Wireless 37

4.1 TCP . 37

4.2 UDP with caching layer . 38

4.3 Experimetal Setup . 42

4.4 Results . 43

4.4.1 Simulated Channel configuration 43

4.4.2 IEEE802.11 Link configuration . 45

4.5 Discussion . 46

5 Tuning of a simulation model for the assessment of Functional Safety

over Wi-Fi 49

5.1 OMNeT++ Simulation Model . 49

5.2 Calibration of the channel error model . 50

5.3 Calibration of the polling time . 51

5.4 Simulation with multiple slaves . 57

6 Evaluation of the Safety Function Response Time in a Functional Safety

over Wi-Fi Network 59

6.1 Background . 61

6.2 Safety function response time on a FSoE over Wi–Fi network 62

6.3 Evaluation of the Safety Function Response Time 65

6.4 Industrial environment simulation . 67

6.4.1 Discussion . 71

7 Assessment of Different OPC UA Implementations for Industrial IoT-

Based Measurement Applications 73

7.1 Related Work and Contribution . 74

7.2 Introduction to OPC-UA . 76

7.2.1 Origin and Motivation . 76

7.2.2 Open Platform Communication - Unified Architecture 77

7.3 OPCUA in distributed measurement applications 82

7.3.1 Experimental setup . 82

7.4 Measurement Results and Analysis . 85

7.4.1 CPU Usage . 86

7.4.2 Read and Write Services . 86

7.4.3 Subscription Services . 94

Contents xi

7.4.4 PubSub Communication Profile . 96

7.4.5 Power Consumption . 98

7.5 Conclusion and Future works . 100

8 Conclusions 103

References 109

xii Contents

List of Figures

2.1 IIoT warehouse. Inspired by Omron . 8

2.2 Industrial network market shares 2020 according to HMS Networks 10

2.3 Protocol Stack of a Functional Safety Node 11

2.4 Representation of black and white channel taken from Ding, Wang, Xu,

and Li (2016) . 12

2.5 SRDO in CANopen safety. 15

2.6 SRVT timing. 16

2.7 SCT timing. 16

2.8 OPC-UA Safety Protocol Architecture . 18

2.9 OPC-UA Safety Protocol Data Units . 19

2.10 Basic FSoE frame . 21

2.11 Extended FSoE frame . 22

2.12 FSoE state machine of a slave device . 22

3.1 Implementation of the FSoE Protocol Stack 28

3.2 Polling time EPDF for the “Basic Configuration” scenario: (a) ESP8266

modules and (b) PC–Raspberry Pi setup. Comparison of polling time

per sample, where the dashed red line represents the time-out value and

star markers highlight lost packets: (c) ESP8266 modules and (d) PC–

Raspberry Pi setup. 32

4.1 Implementation of the FSoE Protocol Stack on top UDP with addition

caching layer . 38

4.2 Handling of retransmissions in the caching layer 39

4.3 Handling of duplicated frame in the caching layer 40

4.4 Experimatl setup to evaluate the trasport layer on localhost 42

4.5 EPDF of the polling time for different transport layer on simulated channel

with both PLR and PER 10−2 and constant delay of 5 ms 44

xiv List of Figures

4.6 EPDF of the polling time for different transport layer on IEEE802.11 . . 46

5.1 Experimental and simulated PER-SNR curves after calibration. 51

5.2 Experimental set-up . 51

5.3 Comparison of mean, maximum and minimum polling time on the experi-

mental and simulated setup . 53

5.4 MSE . 54

5.5 Comparison of the probability density function of the polling time in the

experimental and simulated setup . 56

5.6 Positions of the nodes . 57

6.1 Representation of the SFRT for SISO systems as defined by IEC 61784-3-3 61

6.2 Partitioning of network entities in SIMO systems 63

6.3 Statistics of the SFRT of the stimulated multi slave network in OMNeT
++. X-axis represent the slave which have originated the safety function

trigger, while y-axis report the SFRT of the network. Blue horizontal line

represent the median while, white square is the mean 67

6.4 Example of semi–automated warehouse. Credit to Jesus Sobalvarro 68

6.5 Top view of the simulated automated area in Figure 6.4 showing location

of the master, fixed slave and an example of trajectories of the mobile robots 69

6.6 EPDF of the SFRT in the simulation with multiple mobile robots 71

7.1 OPC-UA stack . 78

7.2 OPC-UA Information Model . 79

7.3 Monitored items in OPCUA. Inspired by Unified Automation 80

7.4 Publish/Subscribe in OPCUA. 81

7.5 OPC UA TSN in the ISO/OSI layer reference model (Bruckner, Stanica,

Blair, Schriegel, Kehrer, Seewald, and Sauter (2019)). 82

7.6 Example of use of OPC-UA in an IIoT-based Measurement System. . . . 83

7.7 Experimental setup. 84

7.8 Test Task for OPC UA. 87

7.9 Generic OS: EPDF of the execution time of the OPC UA test task for the

Ethernet configuration. Blue line: configuration without CPU isolation.

Red line: configuration with CPU isolation enabled, where both server

and client are forced to run on the isolated CPU. 90

List of Figures xv

7.10 RT OS: EPDF of the execution time of the OPC UA test task for the

Ethernet configuration. Blue line: configuration without CPU isolation.

Red line: configuration with CPU isolation enabled, and where both server

and client are forced to run on the isolated CPU. 91

7.11 Generic OS: EPDF of the execution time of the OPC UA test task for

the Wi-Fi configuration. Blue line: configuration without CPU isolation.

Red line: configuration with CPU isolation enabled, where both server

and client are forced to run on the isolated CPU. 92

7.12 RT OS: EPDF of the execution time of the OPC UA test task for the

Wi-Fi configuration. Blue line: configuration without CPU isolation. Red

line: configuration with CPU isolation enabled, and where both server

and client are forced to run on the isolated CPU. 93

7.13 EPDF of the execution time of the OPC-UA test task for the Prosys Java

implementation on Ethernet with Generic OS. 94

7.14 EPDF of the delivery time for the subscription service – Open62541

implementation over Ethernet with Generic OS. 95

7.15 EPDF of the delivery time for the subscription service – Prosys Java

implementation over Ethernet with Generic OS.. 97

7.16 EPDF of the pubsub transmission time for the Open62541 implementation

on Ethernet with Generic OS. 98

7.17 Setup adopted for current measurements. 99

xvi List of Figures

List of Tables

2.1 Communication Profile Families (CFP) and Functional Safety Protocols

defined by IEC 61784–3 . 11

2.2 Communication errors dealt with by functional safety protocols 13

2.3 Countermeasures adopted by functional safety protocols 14

2.4 Safety Integrity Levels and Residual Error Probability 14

2.5 Safety measures adopted by CANopen Safety to detect communication

errors . 17

2.6 Safety countermeasures adopted by OPC-UA Safety to detect communica-

tion errors . 20

2.7 FSoE: Fields used for CRC Calculation 21

2.8 Safety measures adopted by FSoE to detect errors and faults 23

3.1 Statistics for ESP8266 modules: Polling Time (top) and Lost FSoE Packet

(bottom) . 33

3.2 Statistics for PC–Raspberry Pi setup: Polling Time (top) and Lost FSoE

Packets (bottom) . 33

3.3 Lost FSoE Packet Statistics for multiple ESP8266 modules 34

3.4 FSoE protocol stack execution time for the ESP8266 and the Raspberry

Pi boards . 35

4.1 Lost FSoE Packet Statistics for different transport layer on simulated

channel with both PLR and PER 10−2 and constant delay of 5 ms 43

4.2 Polling time statistics for different transport layer on simulated channel

with both PLR and PER 10−2 and constant delay of 5 ms 43

4.3 Lost FSoE Packet Statistics for different transport layer on IEEE802.11 . 45

4.4 Polling time statistics for different transport layer on IEEE802.11 46

5.1 Statistics of the polling time and PER . 54

5.2 Statistics of the polling time in simulation with multiple slaves 58

xviii List of Tables

6.1 Statistics of the polling time in simulation with multiple slaves in OMNeT++ 65

6.2 Statistics of the SFRT in simulation with multiple static slaves. The slave

index represent the slave which have originated the safety function trigger. 66

6.3 Statistics of the polling time in simulation with multiple mobile slaves.

Slave 1 is the barrier, while the others are the mobile robots 70

6.4 Statistics of the SFRT in simulation with multiple mobile slaves. 70

7.1 OPC UA Implementations. 84

7.2 Statistics of the CPU Usage. 86

7.3 CPU usage for the OPC UA test task. 87

7.4 Statistics of the Execution Time for the OPC UA Test Task – Non–Isolated

CPU. 88

7.5 Statistics of the Execution Time for the OPC UA Test Task – Isolated CPU. 89

7.6 Statistics of the Execution Time for the OPC-UA Test Task for the Prosys

Java implementation on Ethernet with Generic OS. 94

7.7 Statistics of the delivery time for the subscription service Open62541

implementation over Ethernet with Generic OS. 96

7.8 Statistics of the delivery time for the subscription service Prosys Java

implementation over Ethernet with Generic OS. 97

7.9 Statistics of the delivery time for the pubsub communication profile over

Ethernet with Generic OS. 98

7.10 Statistics of the current consumption with CPU governor disabled and

enabled. 99

Acronyms

ACK Acknowledge 15

AGV Autonomous Guided Vehicle 7

AI Artificial Intelligence 1

API Application Programming Interface 76, 77

CAGR Compound Annual Growth Rate 8

CAN Controller Area Network 15

COB Communication Object 15

Cobot Collaborative Robot 7

COM Component Object Model 76, 77

CPF Communication Profile Family 11

CPU Central Processing Unit 75, 79, 83, 85, 86, 87, 88, 89, 94, 95, 96, 97, 98, 99, 100,

105

CRC Cyclic Redundancy Check 15, 20, 21, 23, 27, 29, 39

CTS Clear To Send 33

DCOM Distributed Component Object Model 76, 77

DMS Distributed Measurement System 73

DVFS Dynamic Voltage and Frequency Scaling 97, 98, 100

EPDF Empirical Probability Density Function xiii, xiv, 31, 32, 35, 43, 44, 45, 70, 89,

94, 95, 96

xx Acronyms

FSF Functional Safety Fieldbus 7, 8, 10, 17

FSoE Fail Safe over EtherCAT xiii, xvii, 4, 5, 17, 20, 21, 22, 23, 26, 27, 28, 29, 30, 31,

33, 34, 35, 36, 37, 38, 39, 40, 43, 45, 46, 47, 49, 50, 51, 52, 57, 59, 62, 64, 67, 104,

105

GPIO General Purpose Input/Output 95, 96

HMI Human Machine Interface 76

HTTP Hypertext Transfer Protocol 77

IIoT Industrial Internet of Things xiii, 1, 7, 8, 26, 73, 74, 75, 80, 82, 85, 94, 100, 103,

104

IoT Internet of Things 1, 3

IP Internet Protocol 27, 28, 88

IT Information Technology 1

MAC Medium Access Control 26

MIMO Multiple Input Multiple Output 59, 62

MQTT Message Queue Telemetry Transport 1, 59

MSE Mean Square Error 53, 55

NCS Networked Control System 59

OLE Object Linking and Embedding 76

OMNeT++ Objective Modular Network Testbed in C++ xiv, xvii, 5, 49, 50, 51, 65, 66,

68, 69, 104

OOP Object Oriented Programming 78

OPC Open Platform Communications 76, 77

OPC-UA Open Platform Communications-Unified Architecture xiii, xiv, xvii, 1, 5, 8,

17, 18, 19, 20, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 89, 91, 94, 95, 96,

98, 99, 100, 105

Acronyms xxi

PC Personal Computer 77

PDU Protocol Data Unit 21, 23, 37, 46, 104

PER Packet Error Rate xiii, xvii, 42, 43, 47, 50, 57, 66

PLR Packet Loss Rate xiii, xvii, 42, 43, 47

QoS Quality of Service 26, 37

REP Residual Error Probability 13

RF Radio Frequency 52

ROS Robot Operating System 26

RTE Real-Time Ethernet 7, 8, 18, 59, 103

RTS Request To Send 33

SCADA Supervisory Control And Data Acquisition 76

SCT Safeguard Life Time xiii, 15, 16

SFRT Safety Function Response Time 5, 26, 47, 59, 60, 61, 62, 63, 64, 65, 66, 69, 70,

71, 105

SIL Safety Integrity Level 7, 10, 12, 13, 25, 46

SIMO Single Input Multiple Output 59

SISO Single Input Single Output 59, 60

SNR Signal to Noise Ratio 50, 57, 69

SOAP Simple Object Access Protocol 77

SoC System on Chip 27

SPDU Safety Protocol Data Unit 18, 19, 20, 22, 34, 37, 38, 39, 42, 43, 45, 47, 52, 64, 66

SRDO Safety Relevant Data Object xiii, 15

SRVT Safety Relevant Validation Time xiii, 15

STO Safe Torque Off 67, 68

xxii Acronyms

TCP Transmission Control Protocol 4, 26, 27, 37, 42, 43, 44, 45, 46, 47, 77, 88, 104

TDMA Time Division Multiple Access 26

TLS Transport Layer Security 77

TSN Time-Sensitive Networking 1, 8, 18, 26, 47, 80

UDP User Datagram Protocol 4, 26, 27, 28, 37, 38, 39, 42, 43, 44, 45, 46, 47, 49, 52, 66,

80, 96, 104

UDPc UDP with caching layer 4, 42, 43, 44, 45, 46, 47

WLAN Wireless Local Area Network 26, 27, 34, 59

WNIC Wireless Network Interface Controller 52

WSN Wireless Sensor Network 25, 26

XML eXtensible Markup Language 77

1
Introduction

1.1 Industry 4.0

The third industrial revolution began in the early ’70s, has completely transformed several

economic sectors by progressively introducing instruments typical of Information Technol-

ogy (IT) in the industrial field. Undoubtedly, one of the most important innovations was

the progressive digitalization of industrial controls and automation systems, thanks to

communication networks. This wave of digitalization is still so strong today that we are

witnessing the fourth industrial revolution. This technological push, also defined as Indus-

try 4.0, has the Internet of Things, Cyber–Physical Systems, Big Data Analytics, Cloud

Computing, Autonomous Robotics, Augmented Reality, and Additive Manufacturing as

its fundamental cornerstones. In this new and vast scenario, the boundaries between

devices, production processes, and services are gradually disappearing, giving way, as

defined by van Kranenburg and Dodson (2008), to "a dynamic global network infrastruc-

ture with self-configuring capabilities based on standard and interoperable communication

protocols where physical and virtual "Things" have identities, physical attributes, and

virtual personalities and use intelligent interfaces, and are seamlessly integrated into the

information network." Some fundamental aspects of the IIoT landscape emerge from

this definition. First of all, is the pervasive connection between fixed and mobile devices,

which necessarily will often require the massive use of ultra-low latency, high throughput,

2 Introduction

ultra-reliable, secure, and fail-safe hybrid wired-wireless connections (Li, Xu, and Zhao

(2018b)). According to Wijethilaka and Liyanage (2021), it is expected that the number of

interconnected Internet of Things (IoT) devices will be 27 billion by 2024. Real-time wired

networks, Wi-Fi 6, and 5G enabled IoT, will connect a massive number of smart devices

and contribute to meeting market demand for highly integrated services to stimulate new

economics and social development (Adame, Carrascosa, and Bellalta (2020a); Dawy, Saad,

Ghosh, Andrews, and Yaacoub (2015); Li et al. (2018b); Maldonado, Karstensen, Pocovi,

Esswie, Rosa, Alanen, Kasslin, and Kolding (2021); Sudhakaran, Montgomery, Kashef,

Cavalcanti, and Candell; Wijethilaka and Liyanage (2021)). A second fundamental

aspect is the contextualization of exchanged information. Given the large number of

heterogeneous devices that share the same global communication network and that must

be able to self-configure and communicate with each other, it is of paramount importance

to understand the context of collected data to perform effective processing and decision

making (Yavari, Jayaraman, Georgakopoulos, and Nepal (2017)). In other words, the

IT infrastructure supporting these smart systems must be able to both aggregate and

categorize information to be better managed and used. For example, modern predictive

maintenance systems base on Artificial Intelligence (AI), need to aggregate and categorize

massive amount of data from countless distributed measurement devices and sensors

(U, Yang, Cai, Karlapalem, Liu, and Huang (2020)). On the other hand, is necessary

to filter and exclude data irrelevant to the specific application, improving processing

speed and information extraction in embedded IoT applications (Maniglia and Sofia

(2019)). In this regard, examples are MQTT and OPC-UA pub–sub which, thanks to their

publisher–subscriber structure, can achieve those tasks seamlessly. Another crucial aspect

of such networks is the real-time behavior. Especially in wireless networks, a common

pitfall is the high intrinsic sensitivity to channel condition variations due, for example, to

external radio interference. This often leads to consequences such as high transmission

failure probability and the introduction of delays and jitter that can compromise the

system’s real-time behavior. In IIoT systems, these problems can appear even more

evident. Due to a large amount of data to be exchanged and the bandwidth that must

be shared between many devices, the probability of possible collisions with a consequent

increase in latency can be even more marked. Not only that but the lack of timeliness can

also be introduced by the applications that make use of this IIoT ecosystem. For example,

the use of non-real-time operating systems, computationally heavy application layer

protocols, or the use of low-power embedded devices certainly have a negative impact

on the real-time performance of the system. In distributed measurements systems and

safety-critical systems, this is critically important since they are often required to provide

1.1 Industry 4.0 3

very tight timing performance. Both require fast and reliable data transmission, which,

if not guaranteed, can lead to catastrophic consequences. Finally, there is a need to have

standardized communication systems. In the past years, especially in the industrial field,

there has been a fragmentation of technologies for data transmission. Many manufacturers

have proposed proprietary protocols, often with similar but completely non-interoperable

functionality. In recent years, thanks to the standardization requirements introduced

by Industry 4.0, the trend has been reversed, and there is a progressive unification

of the communication systems that make it easier to interact between devices from

different manufacturers. This revolution is not only affecting protocols but also the way

of conceiving devices. For example, the recent introduction of Time-Sensitive Networking

(TSN) standards in both the industrial and consumer sectors makes it possible to coexist

both time–sensitive and best-effort applications on the same network, probably making

dedicated real-time networks unnecessary. This suggests that in the future, there will no

longer be a distinction between IoT and IIoT, but we will come to have an Internet of

Everything (Chatzigiannakis and Tselios (2021)).

While access to information is made easier thanks to this global network of things, this

hyperconnectivity entails cyber threats with significant risks for society, including business,

environment, and health. IoT safety and security is one of the highest priorities to prevent

these systems from causing or inducing unwanted physical damage and threats to the

surrounding environment. Generally speaking, the security problem in IoT systems is of

fundamental importance because, if hacked, devices’ functionality can be manipulated,

causing damage to the controlled objects and endangering people in contact with it. The

same considerations are also valid for safety. Today’s systems are so complex that usually

it is difficult to predict and test all the working conditions. Therefore, it is mandatory

that in case of faults, communication problems, or unexpected behavior, these devices

are fail-safe. Ensuring safety and reliability in IoT systems, undoubtedly, is not an easy

task as it entails high hardware complexity, particular network protocols, timeliness,

and predictability in systems whose functionality, configuration, or topology may change

quickly. However, it is ethically binding to continue to explore the risks and opportunities

associated with IoT-driven systems, developing new design approaches to protect the

privacy and safety of users.

Looking specifically at the industrial environment, traditional static systems, intercon-

nected by hard-wired links or wired networks, have the advantage of having almost always

predictable behaviors. However, with the progressive transformation into smart factories

that are taking place in recent years, the use of autonomous and reconfigurable systems is

increasing. For example, semi-autonomous and fully autonomous robots have been used

4 Introduction

to perform physically intensive and dangerous tasks in several industries. Other examples

are collaborative robots intended to work side-by-side with humans, possibly entailing

physical interactions. Several challenges arise analyzing these emerging technologies

from a functional safety prospective. Adjectives such as distributed, autonomous, and

self-configuring imply the presence in the system of a fair amount of "artificial intelligence"

capable of adapting individual systems to different working conditions. In general, these

characteristics lead the communication system and infrastructures to evolve dynamically

during operation, making it difficult, if not impossible, to predict the entire structure

during design and development. All these factors lead to uncertainties or properties

that are difficult to predict and that, beyond certain limits, can contradict or make the

concept of functional safety inapplicable. For this reason, safety could quickly become a

bottleneck in the transition to Industry 4.0 because, despite its high economic potential,

innovation should never come at the expense of safety. Therefore, in this context, current,

and future research should focus on analyzing ideas, solutions, tools, and technologies

that can make this transition possible without significant impediments.

1.2 Contribution

This manuscript addresses the issues discussed so far by analyzing the challenges and

providing innovative solutions concerned with functional safety networks and distributed

measurements systems in real-time Industrial Internet of Things ecosystems.

In Chapter 2, we first introduce the design characteristics of functional safety networks

and protocols. These are currently adopted in combination with wired real–time commu-

nication networks in environments where the transmission of safety–relevant messages is

required to implement distributed functional safety systems integrated with the factory

communication infrastructure. Two main protocols will be analyzed, namely those based

on a white channel and black channel approach. In particular, the latter, thanks to

particular design characteristics, can potentially be used on means of communication

other than those for which they were originally conceived. Finally, particular insight on

the design characteristics of the Fail Safe over EtherCAT (FSoE) will be provided. Part

of the contributions reported in Chapter 2 is based on Peserico, Morato, Tramarin, and

Vitturi (2021c).

The implementation of the FSoE protocol on top of IEEE802.11 is considered in

Chapter 3. The main idea supporting our implementation is based on the fact that

protocols on top of the black channel are not aware of the transport protocol nor the

transmission medium used to carry the safety data. Hence, the black channel approach

1.2 Contribution 5

represents an ideal approach for porting functional safety protocols over those wireless

industrial communication systems not having a specific safety extension. After a detailed

overview of the implementation, we discuss the extensive tests carried out on a prototype

implementation focusing on the polling time, i.e., the time needed to complete an exchange

of safety data and the packet loss rate, reflecting the maximum achievable safety level.

The contributions reported in Chapter 3 are based on Morato, Vitturi, Cenedese, Fadel,

and Tramarin (2019).

The prototype implementation of FSoE on top of IEEE802.11 revealed some concerns

about the packet loss, which makes the implementation unsuitable for the most demanding

safety system. To overcome the problem, in Chapter 4, we assessed different transport

layer protocols, in particular UDP and TCP. However, even if TCP seems the best

candidate thanks to flow control and quality of service mechanisms, it lacks multicast

and broadcast messaging useful in cases where faster addressing of nodes in the network

is required. For this reason, we have proposed a protocol-agnostic caching layer that

can bring support for frame retransmission and duplicate message management in any

layer of the protocol stack. The algorithm and the working principle of this layer have

been discussed in detail. In addition, the three variants, namely TCP, UDP, and UDPc,

have been compared with each other both through a simulated environment and on a

prototype, analyzing, in particular, the impact on polling time and packet loss.

In Chapter 5, we introduce a simulation model for functional safety over wireless

based on OMNeT++. The main purpose of the simulator is to be able to analyze safety-

critical distributed systems with multiple nodes on different scenarios and environmental

conditions. The tuning of the model has been carried out based on measurements

performed on an experimental setup specifically designed for this purpose. In particular,

the channel error model and the polling time have been tuned for different conditions

of the communication channel. The simulator has been partially tested and validated

considering an industrial scenario comprising multiple nodes. The contributions reported

in Chapter 5 are based on Morato, Peserico, Fedullo, Tramarin, and Vitturi and Peserico,

Fedullo, Morato, Tramarin, and Vitturi (2021b).

In Chapter 6, we address the implementation of a framework to estimate the Safety

Function Response Time (SFRT), an important metric to characterize the responsiveness

of distributed safety systems. The framework is based on the definition of SFRT given

by IEC 61784-3-3, extended by Pimentel and Nickerson (2014), and further modified to

fit the specific use case with FSoE. The proposed framework has been partially validated

comparing theoretical values of the SFRT calculated used worst–case scenarios polling

time obtained in Chapter 5, with the actual SFRT obtained with simulation on the

6 Introduction

calibrated model. The SFRT has also been estimated considering a real industrial use

case scenario comprising multiple autonomous mobile robots. Part of the contributions

reported in Chapter 6 is based on Peserico et al. (2021c).

Finally, Chapter 7 deals with distributed measurement systems. As stated before,

the large-scale adoption and development of Industry 4.0 require standardized commu-

nication protocols capable of operating in different contexts where interaction between

heterogeneous devices is required. A newly developed protocol capable of satisfying these

requirements is OPC-UA. It is an object-oriented protocol, i.e., the information transmit-

ted is contextualized thanks to attributes associated with the information itself. These

characteristics certainly increase the degree of usability of the information transmitted at

the expense of complexity that may have a negative impact on the performance, especially

in low power embedded devices. In this chapter, we assess different OPC-UA solutions

deployed in distributed measurements applications. Some metrics, such as CPU usage,

communication time on Ethernet and Wi–Fi, and power consumption, were evaluated

on an experimental setup comprising low–power embedded devices. The contributions

reported in Chapter 7 are based on Morato, Vitturi, Tramarin, and Cenedese (2020) and

Morato, Vitturi, Tramarin, and Cenedese (2021).

2
Communication Networks for Industrial

Functional Safety

At the beginning of the ’90s, during the third industrial revolution, Real-Time Ethernet

(RTE) communication networks in industrial automation have been progressively enforced.

Indeed, thanks to the improvements brought by such networks in terms of timeliness,

reliability, and scalability opened up the possibility of connecting industrial devices

deployed over large distributed plant areas (Vitturi, Zunino, and Sauter (2019)). At the

same time, the functional safety systems of industrial plants have also begun to evolve.

They have also gradually moved from hard-wired solutions to communication networks.

One of the fundamental aspects is that these new solutions are able to guarantee the

same degree of safety as the hard-wired solutions.

With the advent of Industry 4.0 and the Industrial Internet of Things (IIoT), the

situation is further evolving. As represented in Figure 2.1, this new paradigm allows the

interconnection of cloud systems, controllers, industrial equipment, sensors/actuators, and

any other object within an automation system to each other. The pervasive communication

infrastructures, possibly wireless, enable all the devices to be part of wide and integrated

factory networks and measurement systems, where operators cooperate with machinery

becoming part of the production process itself. Thus, wireless industrial communication

networks are becoming essential in order to introduce a completely new category of

9

been proposed in Etz, Fruhwirth, and Kastner (2020) to design self-organizing safety

systems able to automatically generate a suitable safety configuration based on the

working conditions. Combining these two technologies allows obtaining real-time and

vendor agnostic communication networks capable of interconnecting devices from the

field level to the cloud. Furthermore, due to their design nature, OPC-UA and its safety

extension can operate natively on wireless (Morato et al. (2021)) and mobile networks

(Abukwaik, Gogolev, Groß, and Aleksy (2020); Kim, Jo, and Jeong (2019)). However,

despite the increasing adoption of these new technologies proposed by Industry 4.0,

several plants still use the traditional, perhaps legacy, Fieldbus or RTE protocols and

their safety extensions. Previous studies in this area of research, like the one conducted

by Etz, Fruhwirth, Ismail, and Kastner (2018) and confirmed by HMS Networks (2020),

there are five dominant technologies in the industrial Ethernet market segment, none

of which are part of the recent innovations introduced by Industry 4.0. As shown in

Figure 2.2, EtherNet/IP, PROFINET, EtherCAT, Modbus-TCP, and POWERLINK

shares about 50% of the real-time communication networks market with an annual growth

of 5%. The interest in these communication protocols is growing as well as their safety

extensions. Indeed, as Mordor Intelligence (2021) reported, the functional safety global

market, which includes several device types such as safety sensors/actuators, PLCs, is

expected to grow with a Compound Annual Growth Rate (CAGR) greater than 8% in the

period 2021–2026. One major downside of these networks and their safety extension is

that none of those are natively conceived to work with wireless communication channels.

However, thanks to their design, they can theoretically be modified and used in the

latter. In this chapter, some possibilities in this regard are explored. In particular, after

a description of the fundamental characteristics of FSFs, an implementation of one FSF

on the IEEE 802.11 is presented, and the results of an extensive experimental session

carried out on such a network will be discussed.

This chapter is mainly based on the works in Morato et al. (2019); Vitturi, Morato,

Cenedese, Fadel, Tramarin, and Fantinel (2018); Peserico et al. (2021c); Morato et al.

and Peserico et al. (2021b).

2.1 Functional Safety Fieldbuses 13

slow and costly.

Regardless of the channel approach, functional safety protocols have to be able to

deal with several types of communication impairments. They are listed in Table 2.2.

The functional safety protocols have to adopt adequate countermeasures against possible

errors to achieve the residual error rates necessary to ensure the adequate Safety Integrity

Level (SIL).

Error Description

Corruption The received message is corrupted

Repetition The received message is the repetition of a formerly re-
ceived one

Incorr. Seq. The received message violates the sequencing rules

Loss The message is not received by the recipient

Delay The received message has an unacceptable delay

Insertion The received message comes from an unexpected (invalid)
source

Masquerade The received message is not safety–relevant although it
comes from a valid source

Addressing The received message is safety–relevant, but it was in-
tended for another destination

Table 2.2: Communication errors dealt with by functional safety protocols

In particular, IEC 61784-3 specifies eight countermeasures, as reported in Table 2.3.

The SIL is determined by a risk analysis that involves all the safety functions of a

given plant, machinery, and other equipment. Notably, IEC 61508 recommends that

the adopted communication facilities, e.g., functional safety fieldbuses, may influence

with a maximum percentage of 1% the average frequency of dangerous failures per hour

(PFH) of the safety functions (assuming that every single error could lead to a dangerous

failure). This reflects on the performance figures that functional safety fieldbuses have

to provide, in terms of Residual Error Probability (REP) per hour, as summarized in

Table 2.4.

REP refers to the number of failed safety messages per hour and clearly depends on

• the bit error rate of the underlying channel;

• the number of safety messages transmitted per hour;

• the countermeasures against errors adopted by the functional safety protocols;

14 Communication Networks for Industrial Functional Safety

Countermeasure Description

Sequence Number Unique sequence number associated to each
transmitted message

Time Stamp Time stamp associated to each transmitted
message

Time Expectation Maximum tolerated delay between the ar-
rival of two consecutive messages

Connection
authentication

Unique identifier of the connection between
sender and receiver of a message

Feedback message Acknowledgment sent by the receiver of a
message to the sender to confirm the correct
reception

Data Integrity
Assurance

Techniques adopted to detect possible cor-
ruption of safety data (typically redundancy
checks)

Redundancy with
Cross–Checking

Cross–checking of messages transmitted via
redundant systems

Different Data
Integrity Assurance
Systems

Use of diverse data integrity techniques for
safety–related data and non safety–related
data

Addressing The received message is safety–relevant, but
it was intended for another destination

Table 2.3: Countermeasures adopted by functional safety protocols

SIL REP [failed messages per hour]

SIL 1 < 10−7

SIL 2 < 10−8

SIL 3 < 10−9

SIL 4 < 10−10

Table 2.4: Safety Integrity Levels and Residual Error Probability

It may be observed that IEC 61784-3 makes assumptions on the underlying channel, as

well as on the number of safety messages, that reveal severe for the performance required

by the functional safety protocols (particularly for the countermeasures against errors).

Indeed, it assumes that the functional safety fieldbuses are deployed in “high demand

systems” so that the number of safety messages they have to deal with is high (although

the term “high” is not clearly specified). In addition, IEC 61784-3 assumes that the bit

error rate of the underlying (black) channel is equal to 10−2, which definitely represents

a high value, even for an error–prone environment like the industrial communication

2.3 Functional Safety Protocols based on the Black Channel Approach 17

• Acknowledgment of each CAN message which is part of a SRDO.

• Double identification of an SRDO via a dedicated identifier sequence (of bits) for

the first CANOPEN Safety part containing the information and another one for

the the second bit-wise inverted part.

• Crosscheck of the two CAN messages composing a SRDO bitwise inversion.

• CRC checksum to detect possible frame corruption, implemented at CAN level.

Thus, with refer to the communication errors identified by IEC 61784–3, Tab. 2.5

indicates the effectiveness of the aforementioned countermeasures.

Safety Countermeasures

Error

R
u

n
n

.
N

r

T
im

er
s

A
C

K

rx
/
tx

S
R

D
O

C
ro

ss
ch

k
.

C
R

C
Corruption X X X

Repetition X X

Incorr. Seq. X X

Loss X X X

Delay X

Insertion X X X X

Masquerade X

Addressing X

Table 2.5: Safety measures adopted by CANopen Safety to detect communication errors

2.3 Functional Safety Protocols based on the Black

Channel Approach

This section will discuss the fundamental characteristics of two FSF based on the black

channel approach. The first one is OPC-UA Safety which is one of the protocols introduced

by Industry 4.0. Although it is not yet regulated under IEC 61784-3, it is designed to

meet its requirements. The second protocol we will analyze is Fail Safe over EtherCAT

(FSoE). Thanks to its implementation based on the black channel, it will later be used

as a case study for implementation on a wireless network.

20 Communication Networks for Industrial Functional Safety

has to be acknowledged by the correct reception of the correspondent Response

SPDU.

• Connection Authentication. The field SPDU_ID in the response SPDU is calculated

by the Safety Provider each time a new response SPDU is transmitted. The Safety

Consumer checks this value to detect whether or not the SPDU is arriving from

the intended Safety Provider.

• Data integrity assurance. This measure is implemented employing the data integrity

check achieved with the CRC, calculated by the Safety Provider, and checked by

the Consumer upon reception of each Response SPDU.

Table 2.6 lists the countermeasures adopted by OPC-UA Safety, along with the

communication errors they can detect.

Safety Countermeasures

Error Mon. Nr. Timeout SPDU_ID CRC

Corruption X

Repetition X X

Incor.Seq. X

Loss X X

Delay X

Insertion X

Masquerade X X X

Addressing X

Table 2.6: Safety countermeasures adopted by OPC-UA Safety to detect communication
errors

2.3.2 Fail Safe over EtherCAT

Fail Safe over EtherCAT (FSoE) is referred to as Functional Safety Communication

Profile 12–1 by IEC 61784-3-12. It has been conceived for deployment in conjunction

with EtherCAT.

FSoE is a Master–Slave protocol, with a unique device referred to as FSoE master

and several FSoE slaves. During normal operation, the FSoE master cyclically polls the

FSoE slaves. The data exchange takes place over FSoE connections, which are virtual

communication channels established between the FSoE master and each FSoE slave in

the initialization phase.

The FSoE PDU has two different formats depending on the amount of safe data bytes

that have to be exchanged. The simplest format is shown in Figure 2.10, and it is used to

2.3 Functional Safety Protocols based on the Black Channel Approach 23

by completing configuration procedures. The nodes move from the “Reset” state to

“Session”, in which the devices mutually exchange unique random generated 16-bit Session

ID, which allows differentiating multiple SPDUs sequences in the event of several restarts

of the FSoE connection. In this way, SPDUs generated in a different session should be

distinguishable. The nodes then move to “Connection” where the FSoE connection is

established, upon suitable commands from the master. Similarly to the previous state, the

devices mutually exchange the unique 16-bit Connection ID. This parameter establishes a

one-to-one relationship between the FSoE master and the FSoE slave so that the SPDUs

exchanged by the two are uniquely determined. Subsequently, in “Parameter”, the

operational safety parameters are exchanged, and, finally, the master sends a command

to enter the “Data” state in which the safety relevant process data is actually exchanged.

In every state, an immediate transition to “Reset” may occur due to either a command

received from the master or a problem detected by the slave.

In each device (master and slaves), a watchdog timer monitors the FSoE commu-

nication cycle to detect possible delays on the network. If the FSoE master does not

receive the answer from a queried slave within a specified time–out, then the watchdog

timer of the master triggers the re-initialization of the FSoE connection with that slave.

Conversely, if an FSoE slave is not queried by the master within a time–out, then the

watchdog timer of the slave forces such device to enter the reset state. In this state, the

slave waits to be re-initialized by the master. The FSoE master can handle several slaves

by establishing a unique FSoE connection with each of such devices.

The communication medium, from the safety point of view, is seen as a black channel.

With such an approach, safety applications and standard applications can coexist, sharing

the same communication system simultaneously (IEC 61784-3-12).

The safety protocol encompasses procedures to systematically detect faults or errors

that could occur during operation. The types of faults considered in this work are

classified in Tab. 2.8, which also lists the approach adopted by FSoE to detect their

occurrences.

As an example, the corruption of a Safety PDU is detected by checking the CRC.

Analogously, the loss is detected by a wrong sequence number as well as by the intervention

of the watchdog timer.

24 Communication Networks for Industrial Functional Safety

Safety Countermeasures

Error Con. Id Seq. Nr W.dog CRC

Corruption X

Interchange X X

Repetition X

Insertion X

Loss X X

Delay X

Misrouting X

Table 2.8: Safety measures adopted by FSoE to detect errors and faults

3
The Fail Safe over EtherCAT (FSoE) protocol

implemented on the IEEE 802.11 WLAN

In the era of Industry 4.0 and particularly the Industrial Internet of Things (IIoT),

several manufacturing units, whose functions are dependent on one another, can be

physically located in different sections within the production area or even in distinct

places. This means that the cabling is increasingly complex and branched due to

the ever-larger size of the plants and their distributed locations. Wires are difficult

to install and maintain, and therefore the possibility of replacing them with wireless

reconfigurable links seems a very attractive opportunity and a fundamental step to

incorporate particular applications into the IIoT context (Frotzscher, Wetzker, Bauer,

Rentschler, Beyer, Elspass, and Klessig (2014a); Refaat, Daoud, Amer, and Makled

(2010a)). For example, as pointed out by Taylor, Akerberg, Ibrahim, and Gidlund

(2012), traditional fieldbus communication fails to give a complete solution and efficient

integration in contexts such as mobile autonomous collaborative robotics (Frotzscher,

Wetzker, Bauer, Rentschler, Beyer, Elspass, and Klessig (2014b); Refaat, Daoud, Amer,

and Makled (2010b)) or systems operating in adverse environmental conditions (Xu,

Sun, Liu, Wang, Gu, and Liu (2020)). Driven by these reasons, wireless extensions of

automation networks and fieldbuses have been researched in different forms (Vitturi,

Carreras, Miorandi, Schenato, and Sona (2007); Åkerberg, Gidlund, Lennvall, Neander,

26
The Fail Safe over EtherCAT (FSoE) protocol implemented on the IEEE

802.11 WLAN

and Björkman (2011)). Another challenge is using these systems in a safety critical

context in which the malfunction of the communication system may lead to irreversible

and catastrophic damages to people and the surrounding environment. Therefore in

such applications, ensuring the correct transmission of information is a fundamental

requirement. For example, Sha, Shi, and Watkins (2006) proposed the use of Wireless

Sensor Networks (WSNs) for fire rescue applications. Ikram, Jansson, Harvei, Fismen,

Svare, Aakvaag, Petersen, and Carlsen (2013) successfully exploited the black channel to

implement a SIL compliant wireless hydrocarbon leak detection system based on ProfiSafe

(IEC 61784-3-3) and ISA100.11a (IEC 62734). In Hashemian (2010) and Hashemian

(2011), WSNs have been exploited to monitor safety critical devices in nuclear plants.

Moving to more general researches, Breiling, Dieber, and Schartner (2017) addressed

the implementation of a safety and security layer on top of Transmission Control Protocol

(TCP) and User Datagram Protocol (UDP) for the communication between nodes based

on Robot Operating System (ROS). Both Åkerberg, Reichenbach, and Björkman (2010)

and Åkerberg et al. (2011) and proposed a proof-of-concept for the use of WirelessHART

(WirelessHART (2020)) in safety-critical communications based on ProfiSafe. They

successfully exploited the black channel to integrate into the ProfiSafe network of wireless

gateways to extend the wired network. Essentially, they only changed the transmission

system without changing anything in the upper layers of the protocol stack. Yang,

Ma, Xu, and Gidlund (2018) proposed a similar work focusing mainly on an enhanced

WirelessHART scheduling to minimize the Safety Function Response Time (SFRT).

Indeed, WirelessHART is based on Time Division Multiple Access (TDMA), and all

devices are time–synchronized and communicate in prescheduled 10 ms time slots. The

absence of asynchronous frames represents a bottleneck in cases where high priority

frames, such as alarms, must be sent. This problem has been widely addressed with the

proposal of several modified Medium Access Control (MAC) layers able to offer additional

QoS features. PriorityMAC has been proposed by Shen, Zhang, Barac, and Gidlund

(2014), which introduces a novel medium access method that enables higher priority

traffic to hijack the dedicated transmission bandwidth of the low priority traffic. Liang,

Chen, Priyantha, Liu, and Zhao (2014) proposed RushNet, a framework able to prioritize

traffic in multi-hop sensor networks. Zheng, Gidlund, and Akerberg (2016) proposed

WirArb. This MAC, specifically conceived for industrial WSNs, supports multiple users

by pre-assigning a specific arbitration frequency to each node, allowing to decide the order

of channel access. With this mechanism, WirArb ensures that the node with the highest

priority will immediately gain channel access, guaranteeing a deterministic behavior.

These solutions certainly improve the networks’ responsiveness and reliability but

3.1 Introduction 27

they rely on ad-hoc non standardized solutions which are deeply in contrast with the

IIoT paradigm (Li, Tang, Chan, Wei, Pu, Jiang, Li, and Zhou (2018a)). To successfully

embody Industry 4.0, the proprietary solution must be replaced by open and standardized

solutions (Weyer, Schmitt, Ohmer, and Gorecky (2015)). For this reason, in our work, we

decided to follow a more conservative approach. Indeed, in our contribution, we propose

an implementation of the Fail Safe over EtherCAT (FSoE) protocol on top of IEEE 802.11

WLAN. In this way, this implementation can be adopted in a large variety of devices

equipped with a WiFi interface. Moreover, the future introduction of TSN on WiFi

(Adame, Carrascosa, and Bellalta (2020b); Cavalcanti, Bush, Illouz, Kronauer, Regev,

and Venkatesan (2020); Lee, Bernhard, Cavalcanti, Pang, and Val (2020); Sudhakaran,

Mageshkumar, Baxi, and Cavalcanti (2021)), will bring seamlessly all the advantages

introduced by the custom MAC layers but with the advantage of high interoperability.

3.1 Introduction

Although wireless networks have greatly improved, their performance figures are not

yet comparable to those of wired industrial counterparts such as Profinet or Ethercat.

Indeed, such networks are able to ensure cycle times below 100 µs (Orfanus, Indergaard,

Prytz, and Wien (2013); Robert, Georges, Rondeau, and Divoux (2012); Prytz (2008)), a

value that (for the time being) can not be achieved by any industrial wireless system.

However, industrial networks used for the transmission of safety data have, to a certain

extent, distinct requirements from those of typical factory automation applications.

Indeed, in a master-slave communication implemented by a safety protocol, it has to be

ensured that the master transfers safety data without corruption and that the response

data from the slave are returned within a specified timeout, typically in the order of

hundreds of milliseconds. Such performance figures can be provided by industrial wireless

networks, particularly by the IEEE802.11 Wireless LAN (IEEE 802.11). This suggests

that safety protocols can be, in principle, implemented over wireless networks, thus

opening the field towards further employment of wireless networks in the context of

factory automation Vitturi et al. (2018).

This section considers such a topic and describes an example of practical implementa-

tion of the popular FSoE safety protocol over the IEEE802.11 WLAN. Specifically, we

first provide some implementation details and then describe the results of some practical

measurements carried out on some different experimental setups.

3.2 FSoE Implementation 29

This type of addressing allows obtaining a double check of the correct addressing of the

slave thanks to the correspondence between the IP address and connection ID. Indeed,

the slave knows both its connection ID and IP address, and, therefore, upon receiving a

frame, it can check whether the addressing is correct. Similarly, upon receiving a frame,

the master can immediately check the matching between IP address of the slave and

connection ID. Also, the master can check the possible duplication of Connection IDs. If

any mismatch is detected, the FSoE Master resets the FSoE Connection and forces a

re-initialization.

As an alternative, a different way of exchanging safety data could be devised. With

this solution, the safety data addressed to all slaves, prepared by the FSoE protocol, are

delivered via a single broadcast UDP frame. Such a frame is composed of several fields,

each of them associated with a specific slave. Then each slave answers with a unicast

communication frame to the master. The access to the channel by the slaves may be

regulated by a sequence specified in the frame sent by the master. In this way, each slave

knows when it can transmit the response data. However, also leaving the slaves to access

the channel randomly might be a viable strategy. Indeed, the FSoE protocol does not

impose a strict deterministic procedure on data exchange but, rather, it requires that

safety data arrives within a specified time–out. Although this alternative way has not

been implemented, it looks appealing from both a communication and a computational

delay aspect, which are particularly important for resource constrained setups. Indeed,

it dramatically reduces the number of exchanged UDP frames (for example, with N

slaves, in the former case, 2N UDP frames are required, whereas, with the alternative

strategy, they could be reduced to N + 1). Moreover, the overall elaboration time might

be reduced as well, since all slaves receive data from the master simultaneously, and then

they can prepare the response data in parallel.

It has to be noted that the safety protocol does not encompass any security mechanisms,

possibly exposing the transmissions to common threats as for example spoofing or reply

attacks. Nevertheless, reply attacks are rather difficult to implement since FSoE is

designed in such a way that two successive frames should differ by at least one bit. As

seen in Table 2.7, this is ensured by the use of successive sequence numbers as well as

CRC. Because of this property, if two identical frames are received, they are marked

as duplicates leading to the reset of the FSoE connection forcing the system to a safe

been. Regarding spoofing, FSoE is implemented to accept or reject the frames based on

the CRC. To successfully implement a spoofing attack, the attacker has to be able to

change data and recalculate the CRC on the fly. This is possible only knowing exactly

the current sequence number, which is not transmitted within the frame so the attacker

30
The Fail Safe over EtherCAT (FSoE) protocol implemented on the IEEE

802.11 WLAN

must have monitored all transmissions since the initialization of the connection, and the

previously received CRC. Another way would be by crafting a malicious data field in

such a way that the CRC still remains valid but, due to the rather long polynomial used

in the calculations, the probability of being able to exploit possible CRC collisions is

practically very low. Although FSoE is potentially vulnerable to these types of attacks,

the structure with which the protocol is implemented makes them computationally heavy

and therefore difficult to implement.

3.3 Timing Analysis

In practical applications, the delivery of Safety PDUs from the master occurs cyclically

with a period, Tcycle, determined by the application’s requirements. Since all the slaves

must be queried within a period, the polling time of a single slave represents a meaningful

index of the protocol performance.

3.3.1 Polling Time of a FSoE Slave

The polling time of a slave has been calculated as the time that elapses between the

generation of a FSoE frame transmission request by the master and the reception of the

confirm primitive from the slave. As can be seen in Figure 3.1, the transmission sequence

includes the times necessary to

• execute the FSoE protocol stacks in both master and slave;

• execute both master and slave standard protocol stacks;

• transmit the frame from master to slave and vice–versa.

Under the assumption that the stack execution times are the same for both master

and slave, the polling time Tp can be expressed as

Tp = 2TF SoE + 4(Tstack + TMAC) + 2Ttx (3.1)

where TF SoE is the time to execute the FSoE protocol stack, Tstack is the time to execute

the protocol stack, TMAC is the execution time the last two bottom layers of the protocol

stack, and Ttx is the time to transmit a frame. It is worth remarking that the term

relevant to the execution time of the FSoE stack in Eq. 3.1 is 2TF SoE since the generation

of both the response and confirm primitives is made automatically by the stack, i.e., the

FSoE protocol stack is executed only once at both the master and the slave units.

3.4 Experimental Results 31

3.3.2 Time Slot Allocation to FSoE Slaves

The FSoE protocol has been implemented assuming that each slave may enter/exit

the network dynamically. This implies that, periodically, the master starts a discovery

procedure to identify the N connected slaves. Then, the master assigns a time–slot to

each slave determined as

tslot =
Tcycle

N
(3.2)

In case the polling of a slave is carried out within tslot, the master waits until the

expiration of the whole tslot and then moves to poll the next slave. Conversely, if there is

a time–out (i.e. the polling has not been concluded within tslot), the master forces the

slave into the “Reset” state.

3.4 Experimental Results

Two different configurations have been adopted in the experimental sessions we carried

out. The first one, referred to as “Basic Configuration”, comprised one FSoE master

and one FSoE slave, whereas the second one, referred to as “Multiple Configuration”,

comprised three FSoE slaves. In both configurations, we measured the polling time of

the slaves and the percentages of lost packets, reflecting the number of FSoE connection

re–initializations. The node acting as a master is configured as an IEEE802.11 Access

Point (AP), whereas the slaves are configured as IEEE 802.11 Stations (STAs). In this

way, they can connect directly to the FSoE master.

3.4.1 Basic Configuration Results

In the Basic Configuration, two different setups were deployed operating in the 2.4 GHz

band. We used only ESP8266 modules in the first one, and the wireless connection was

implemented by IEEE 802.11g at 54 Mbits/s. In the second setup, the FSoE master was

a PC running the Linux operating system, and the FSoE slave was a Raspberry Pi board.

In this second case, IEEE 802.11n was used at a rate of 72 Mbits/s. The experimental

sessions, in both configurations, lasted 5 hours and implied the transmission of more than

9,000,000 packets in total. The experiments were executed in an industrial environment

(the laboratory of a factory), where interference from other networks was monitored,

and the IEEE 802.11 channel was selected to limit such a phenomenon. In both the

experimental setups, nodes were located at a distance of 1 m. Figure 3.2(a) reports the

32
The Fail Safe over EtherCAT (FSoE) protocol implemented on the IEEE

802.11 WLAN

1 160 1 180 1 200 1 220 1 240 1 260 1 280
0

1

2

3

4

5

·10−2

Polling time (µs)

E
m

pi
ri

ca
l

P
D

F

(a) ESP8266: Polling Time
EPDF

1 200 1 300 1 400 1 500 1 600
0

2

4

6

8

·10−3

Polling time (µs)
E

m
pi

ri
ca

l
P

D
F

(b) Raspberry Pi: Polling
Time EPDF

0 2 4 6 8

·106

0

0.5

1

1.5

2

2.5

·105

Timeout

Sample

P
ol

lin
g

ti
m

e
(µ

s)

(c) ESP8266: Polling Time
evolution

0.0 0.2 0.4 0.6 0.8 1.0

·107

0

0.5

1

1.5

2

2.5

·105

Timeout

Sample

P
ol

lin
g

ti
m

e
(µ

s)

(d) Raspberry Pi: Polling
Time evolution

Figure 3.2: Polling time EPDF for the “Basic Configuration” scenario: (a) ESP8266 modules
and (b) PC–Raspberry Pi setup. Comparison of polling time per sample, where the dashed
red line represents the time-out value and star markers highlight lost packets: (c) ESP8266

modules and (d) PC–Raspberry Pi setup.

EPDF of the polling time for the ESP8266 setup1, whereas Table 3.1 (top) shows its

statistics.

Moreover, Table 3.1 (bottom) reports the performance in terms of lost FSoE packets.

1 To ease the readability of the plots and the comparison among different configurations, Figure 3.2(a)-
(b) report data comprised in the interval median ± one standard deviation. Also note that a different
y-axis scale is used between (a) and (b), for the same reason.

3.4 Experimental Results 33

Polling time [µs]
mean std min median max

1484.67 1378.95 1051.00 1246.00 76004.00

Packet loss
Total pkt pkt lost % pkt lost test duration [h]

9169850 45 0.000491 5

Table 3.1: Statistics for ESP8266 modules: Polling Time (top) and Lost FSoE Packet
(bottom)

Although there are no specific requirements for the polling time in the FSoE standard,

the measured values can be considered suitable for a wide number of applications.

Conversely, the percentage of lost FSoE packets is definitely not tolerable since the SIL3

requirement specifies as a necessary condition that at most one FSoE connection can be

re–initialized once every 5 hours. In our experiments, 45 re–initializations occurred since

each lost packet corresponds to one re–initialization. It should be noted that increasing

the timeout duration would not have resulted in a reduction in the number of lost packets

because these are packets that were never received and not packets received after the

timeout deadline.

In order to investigate such behavior, we carried out additional tests, using the second

setup in which the two ESP8266 modules were replaced by, respectively, a PC and a

Raspberry Pi board. The results of the experiments are listed in Figure 3.2(b), which

report the EPDF of the polling time, whereas Table 3.2 reports the polling time statistics

and the percentage of lost FSoE packets.

Polling time [µs]
mean std min median max

1592.07 1308.08 1096.52 1301.14 17942.40

Packet loss
Total pkt pkt lost % pkt lost test duration [h]

9584522 10 0.000104 5

Table 3.2: Statistics for PC–Raspberry Pi setup: Polling Time (top) and Lost FSoE Packets
(bottom)

As can be seen, the values of the polling time have slightly incremented with respect to

the ESP8266 setup and the EPDF more spread out. This is likely because, differently from

the ESP8266, both the PC and the Raspberry Pi board use a general purpose operating

34
The Fail Safe over EtherCAT (FSoE) protocol implemented on the IEEE

802.11 WLAN

system which may impact the whole execution times of the implemented protocol stacks.

Conversely, the percentage of lost packets is dramatically reduced. Such results allow

arguing that the number of lost packets is mainly determined by the performance of the

Wi–Fi modules, which are of lower quality in the (cheap) ESP8266 modules.

These considerations are also confirmed by the lower panels of Figure 3.2 (c)-(d) that

report the polling time behavior over the experiment for, respectively, the ESP8266 and

the Raspberry Pi setups. Here the timeout values that determine the lost packet fraction

are also reported, thus proving the different behavior between the two configurations. In

addition, the IEEE 802.11 protocol stack in the PC–Raspberry Pi setup is configured

to make use of the optional Request To Send (RTS)/Clear To Send (CTS) mechanism:

clearly this allows to reduce the frame collision during the transmission and thus to

obtain a lower packet loss rate compared to the ESP8266 setup, in which this feature

could not be enabled.

3.4.2 Multiple Configuration Results

To better assess the (relatively) poor performances of the ESP8266, a test with multiple

slaves has been carried out. Only ESP8266 modules were used in this configuration, and

the network comprised one FSoE master and three slaves.

The results of the experimental measurements are listed in Table 3.3, which reports

the statistic of the globally lost packets as well as the details for each FSoE slave.

Packet loss
Total pkt pkt lost % pkt lost

Global 9713527 2206 0.022710
Slave 0 9713527 567 0.005837
Slave 1 9713527 894 0.009203
Slave 2 9713527 745 0.007669

Table 3.3: Lost FSoE Packet Statistics for multiple ESP8266 modules

It is evident that with multiple slaves, the percentage of lost packets is even more

significant than that of the single slave setup, which may be due to the higher demand,

in terms of system resources, to handle multiple slaves, confirming the inadequacy of

such modules for a safety application.

3.4.3 Discussion

In all the analyzed setup, the percentage of lost packets is not acceptable by FSoE.

However, some techniques to mitigate such a problem are available. For example, the

3.4 Experimental Results 35

transmission speed could be reduced, since lower rates adopt more robust modulations.

Another possibility relies on the use of rate adaptation techniques. In this case, the

transmission speed is selected according to the quality of the wireless link. Since the

purpose of this work is to experience the wireless capability of the FSoE and its limitations,

the implementation of such features is left to future work. Furthermore, during the

experimental sessions, the FSoE nodes only exchanged SPDUs. In practice, however, the

devices may need to transmit data in addition to the failsafe protocol, which will result

in an even higher percentage of lost packets due to increased generated traffic. Also the

analysis of such more complex scenarios is reserved for future work.

On the other hand, it is worthwhile to note that, although the tested configurations

reveal not strictly compliant with the regulations, nonetheless it has been proved that it

is possible to transfer safety PDUs successfully based on FSoE using IEEE 802.11 WLAN.

This actually suggests that these implementations can be used in those less demanding

applications where a connection re–initialization that occurs more frequently than once

every 5 hours is acceptable. Nevertheless, the applicability of the proposed architecture

must be evaluated and validated through safety assessments case by case.

As a further observation, Table 3.4 reports the execution time of the FSoE stack

protocol for the ESP8266 module and the Raspberry Pi board, respectively. As can be

seen, thanks to the larger computational capability, the Raspberry Pi board can elaborate

an FSoE frame more quickly with respect to the ESP8266 module. However, for both

setups the FSoE stack protocol execution time gives only a minor contribution to the

polling time that is primarily due to the execution of the protocol stack.

FSoE execution time [µs]
mean std min median max

ESP8266 50.63 3.06 47.00 50.00 111.00
Rasp.Pi 1.28 1.90 0.34 0.94 140.89

Table 3.4: FSoE protocol stack execution time for the ESP8266 and the Raspberry Pi boards

Finally, considering the statistics of the polling time EPDF for both the ESP8266

and Raspberry Pi setups, we aim to find the minimum time slot in order to allow at

most one lost packet every 5 hours. Let be Nframe the number of frames exchanged in 5

hours. We want to calculate tslot such that

P [Tp > tslot] = 1 − P [Tp ≤ tslot] ≤
1

Nframe

(3.3)

where Tp is the polling time and tslot is the time slot. It results that the minimum time

36
The Fail Safe over EtherCAT (FSoE) protocol implemented on the IEEE

802.11 WLAN

slot tslot has to be 8621 µs and 16 084 µs, respectively, for the ESP8266 and Raspberry Pi

setups. Hence, with a cycle time of 250 000 µs it is possible to connect at most 28 slave

devices to the ESP8266 master device and 15 devices to the Raspberry Pi setup.

If we consider Eq. 3.1, a further evaluation of the experimental timings can be drawn.

The transmission time Tx (in µs) can be obtained from Tramarin, Vitturi, Luvisotto, and

Zanella (2016) as

Tx = 20 + 4
⌈

2
36 + 2.75 + l

r

⌉

+ 6 (3.4)

where l = 43 byte is the data length presented to the 802.11 layer, and r is the data rate

(in [Mbit/s]), which is 54Mbit/s for the ESP8266 setup and 72Mbit/s for the Raspberry

Pi setup: it results in Tx = 38.11 µs and Tx = 30.54 µs for the two setups, respectively.

Giving that for the ESP8266 tstack has been calculated experimentally in Bertolotti

and Hu (2011) as equal to 48 µs, and for the Raspberry Pi it results in 35 µs according

to Chuanxiong and Shaoren (2000), it follows that the TMAC value is around 220 µs and

270 µs for the two considered configurations.

3.4.4 Conclusions

The experimental campaign on three different setups (single safety slave ESP8266 module,

PC to Raspberry Pi board, and multiple safety slave ESP8266 modules) has evidenced

similar results for the polling time, which results in about 1.5 ms. On the other hand,

packet loss results are rather different for the three setups and, more importantly, do

not comply with the limit imposed by the regulation in none of the experiments. In

particular, at the best, a ratio of 10 lost packets every 5 hours has been achieved, while

the regulations impose a maximum rate of 1 lost packet every 5 hours.

In this context, it can be pointed out that the proposed setups of wireless-FSoE can

be used in less demanding application scenarios. However, current research activities

focus on introducing suitable techniques to improve the quality of the wireless links and

minimize the packet loss rate so that the full specifications for safety applications can be

met.

4
Assessment of different Transport Layer protocols

for Functional safety over Wireless

In a first analysis, the implementation we discussed so far of FSoE over IEEE802.11,

revealed the significance and effectiveness of the proposed approach, particularly concern-

ing the applicability of that implementation for some specific application areas. Besides,

the performance achieved in terms of packet loss was still not sufficient to meet the strict

FSoE requirements.

As knows, UDP is a connection–less protocol that does not encompass any QoS

mechanism in which the successful delivery of a PDU entirely relies on the robustness

of the transmission medium. Indeed, due to the lack of flow control and retransmission

mechanisms in UDP, when a frame is lost or corrupted, there is no possibility of requesting

its retransmission. In this session, we discuss the usability of different transport layer

protocols to carry SPDU and their impact on polling time and number of lost packets.

4.1 TCP

The most straightforward approach to improving packet loss is to replace UDP with

TCP. Indeed, unlike UDP, TCP is a connection-oriented protocol that intrinsically

provides Quality of Service (QoS) features, such as error detection, flow control and

4.2 UDP with caching layer 39

it will trigger the transition to the fail-safe state, i.e., the reset of the FSoE connection,

if a valid SPDU is not passed to the FSoE stack within the preset watchdog time. Let be

TW the FSoE watchdog period and Tp the polling time of a device. To effectively exploit

the retransmission mechanism provided by the caching layer, it must be

Tp ≤ TD < TW (4.1)

By selecting TD ≥ TW , the caching layer would have no effect because the FSoE watchdog

would expire before any retransmission could occur, thus obtaining the same behavior as

a standard UDP connection.

A possible approach to select the retransmission deadline would be by imposing

TD =
TW

M
, M > 1 (4.2)

where M represents the maximum number of retransmissions that the caching layer will

perform within an FSoE watchdog period. Moreover, the optimal value of M could be

statistically determined (Khan, Qiu, Bhartia, and Lin (2015)) to fulfill the requirements

on the maximum number of resets of the FSoE connection.

FSoE Master
stack

Master
caching layer

Master
Protocol stack

Slave
Protocol Stack

Salve
caching layer

FSoE Salve
stackLost frame

The cached

frame

is retransmitted
Transmission

is

successful.

Response is

generated

Deadline

expires

Figure 4.2: Handling of retransmissions in the caching layer

On the other hand, condition Tp ≤ TD is not binding and has been imposed to

minimize possible collisions between subsequent packets due to the saturation on the

communication channel. In fact, the non respect of such constraint does not compromise

the operation of the caching layer but only may lead to the generation of duplicated

frames that, however, is a situation managed by the caching layer as well. Notably,

generating duplicate packets is a condition to be avoided since, as specified in Section

2.3.2, it would result in the FSoE connection being reset.

40
Assessment of different Transport Layer protocols for Functional safety over

Wireless

The handling of duplicate frames is done by exploiting one of the fundamental features

of SPDUs. FSoE is designed to ensure that two consecutive frames should differ at least

one bit. This is ensured by the use of consecutive sequence numbers as well as CRC, as

explained in Table. 2.7. Due to this characteristic, if two identical frames are received,

those are certainly duplicated frames. In this situation, as can be seen in Figure 4.3, the

duplicated frame is detected by caching layer by comparing the received frame with the

previously stored incoming frame. Consequently, the previously stored outcoming frame

is sent without executing the FSoE stack.

FSoE Master
stack

Master
caching layer

Master
Protocol stack

Slave
Protocol Stack

Salve
caching layer

FSoE Salve
stack

Lost frame

The cached

frame

is retransmitted

Transmission

is

successful.

Response is

generated

Deadline

expires

Duplicated

frame

detected.

The cached

frame

is retransmitted

Figure 4.3: Handling of duplicated frame in the caching layer

The working principle of the caching layer is summarized in Algorithm 1. The layer

continuously polls the transport layer for an incoming frame (line 2), which is eventually

acquired (line 3). The incoming frame is compared against the previously stored incoming

frame (line 4), and in case they differ, the FSoE stack is executed, and both the generated

response and incoming frame are locally stored for future comparisons (lines 6-8). The

handle of duplicated frames is implemented by lines 11-12. Indeed, if the incoming frame

matches the one received on the previous transmission, the caching layer responds with

the stored outcoming frame without triggering the execution of the FSoE stack, thus

avoiding the reset of the FSoE connection. When there are no incoming frames, the

algorithm monitors whether the response’s deadline is exceeded (line 14). If so, then the

previous outcoming frame is retransmitted (line 15). Moreover, lines 19-21 handle the

callbacks from the FSoE stack in case a watchdog violation occurs and allow the device

to be forced into a safe state.

4.2 UDP with caching layer 41

Algorithm 1: Caching layer

1 while true do
2 if has imcoming frame from UDP then
3 incomingFrame = ReceiveFsoeFrameFromUdp();
4 if incomigFrame != storedIncomingBuffer then
5 reset deadline TD;
6 storedIncomingBuffer = incomingFrame;
7 outcomingFrame = executeFsoeStack(incomingFrame);
8 storedOutcomingBuffer = outcomingFrame;
9 else

10 outcomingFrame = storedOutcomingBuffer;
11 end
12 TrasmittFsoeFrameToUdp(outcomingFrame);
13 else
14 if deadline TD is expired then
15 TrasmittFsoeFrameToUdp(storedOutcomingBuffer);
16 end
17 update deadline;
18 end
19 update watchdog;
20 if watchdog is expired then
21 trigger fail safe condition;
22 reset FSoE stack;
23 end
24 end

4.4 Results 43

a constant delay equal to 5 ms, the condition Tp ≤ TD will undoubtedly be violated, thus

introducing a considerable number of duplicate packets.

4.4 Results

4.4.1 Simulated Channel configuration

The first set of outcomes is shown in Table 4.1, which reports the total number of

exchanged packets and the corresponding number of lost frames. As can be seen, the

results obtained for UDP confirm those obtained in Section 3.4. UDP, not conceiving any

flow control mechanism, in the presence of channel impairments, neither the retransmission

of lost frames nor the handling of any duplicated ones is guaranteed. Conversely, both

TCP and UDPc, guarantee the successful delivery of all transmitted SPDUs, thus ensuring

that the FSoE connection does not reset.

Packet loss
Total pkt pkt lost % pkt lost

UDP 969654 31804 3.28
TCP 942469 0 0
UDPc 993966 0 0

Table 4.1: Lost FSoE Packet Statistics for different transport layer on simulated channel
with both PLR and PER 10−2 and constant delay of 5 ms

The EPDF of the polling time for the tests carried out on the three versions of the

transport layer is shown in Figure 4.5, whereas the statistics are reported in Table 4.1.

Polling time (µs)
mean std min max

UDP 10375.99 101.43 10148.09 10638.00
TCP 10428.83 102.56 10226.70 10729.79
UDPc 10376.49 106.49 10180.79 10686.70

Table 4.2: Polling time statistics for different transport layer on simulated channel with both
PLR and PER 10−2 and constant delay of 5 ms

It should be noted that, since the simulated channel introduces a constant delay,

all the randomness present in the measures are due mostly to the different software

components used in the three implementations. Therefore, the polling time measure

directly represents the performance of the transport protocol used, without the influence

of external factors. Moreover, statistics and EPDF only take into account individual

packets, i.e., lost or duplicate packets are not considered.

4.4 Results 45

other tasks of the kernel or userspace. This mechanism involves an unavoidable overhead,

thus explaining the considerable increase in the standard deviation.

4.4.2 IEEE802.11 Link configuration

In this section, the packet loss and polling time of the three considered transport layers

are assessed on the same experimental setup proposed in section 3.4.1. A first insight is

provided by Table 4.3, which reports the total exchanged packet and the correspondent

packet loss. Following the experiments presented previously, also in this case, there is

confirmation that UDP is not suitable for the transfer of SPDUs due to the not negligible

packet loss. Contrary to the simulated channel experiment, TCP presents a single packet

loss (one lost over nearly 8 million exchange frames). However, it is interesting to note

that packets marked as lost in TCP, were slave response frames actually arrived, but

after the watchdog timeout expired (set to 250 ms) between receiving two subsequent

SPDUs. Regarding UDPc, the results confirm what has been observed with the simulated

channel, i.e., there is no packet loss, thus confirming the effectiveness of the caching layer

between UDP and FSoE. These results also allow drawing some interesting considerations

about the MAC/PHY layers. It appears evident that the retransmissions performed by

the 802.11 layer are insufficient to ensure the successful delivery of the packets. Indeed,

by adding retransmission at UDP level, the problem is solved. As a result, theoretically,

increasing the 802.11 retry limit would have the same effect as UDPc. However, such

modifications would require the use of custom modified versions of the 802.11 layer,

which are often difficult to implement or obtain as in the Raspberry pi used in these

experimental sessions. Nonetheless, such a possibility will be investigated in future work.

Packet loss
Total pkt pkt lost % pkt lost

UDP 7817020 25 0.00032
TCP 7457630 1 0
UDPc 7726440 0 0

Table 4.3: Lost FSoE Packet Statistics for different transport layer on IEEE802.11

A final insight is given by Figure 4.6 2, which reports the EPDF of the polling time

with the IEEE802.11 link, while Table 4.4 reports its detailed statistics. Once again, the

result confirms what was observed in the previous experimental sessions. As can be seen,

with UDP, it is possible to obtain the lowest polling time, followed by UDPc and finally

2To ease the readability of the plots in Figure 4.6 report data comprised in the interval median ± two
standard deviation.

4.5 Discussion 47

the proposed transport protocols does not require the modification of the stack itself

and therefore the designed SIL has been maintained. In this way, it is possible to use

safety stacks that have been certified out-of-context (i.e., regardless of the application for

which they are used) without needing a new safety assessment. Adopting UDPc does

not lead to any UDP modification since it is an additional software component that

acts as an interface between the safety and transport layers. Furthermore, the caching

layer is both protocol and platform agnostic, i.e., its operation does not depend on the

hardware/software platform in which it is used, nor on the protocols used for the PDU

exchange. This makes it highly interoperable and can be used in any embedded platform.

Another key result of the experimental session is that the adoption of TCP and

UDPc has dramatically decreased lost packets. Indeed, as can be observed in the detailed

comparison reported in Table 4.3, with TCP, in the worst case, only one packet was

lost, whereas, in the same operational conditions with UDP, the lost packets were 25. It

has to remark that the single packet marked as lost in TCP is a response frame from

the slave that actually arrived but after the expiration of the watchdog timeout TW .

The experiments also confirm the effectiveness of the adoption of TCP and UDPc with

the simulated channel in which the impairments were set to emulate a high error–prone

transmission channel, probably far beyond even the worst working conditions that can

occur in an industrial plant. Both TCP and UDPc allowed to successfully exchange

SPDUs without packet losses and without resetting the FSoE stack. This is a significant

result since it allows to state that, with both TCP and UDPc, the reliability of FSoE

over Wi-Fi may reach a level similar to that of a wired system like EtherCAT, even if

at the expense of the timeliness of the protocol. Thus, it is envisaged that with the

adoption of these transport protocols in the black channel, safety applications certified

up to SIL3 can be implemented even over wireless connections. Regarding the timeliness,

in both experimental configurations, it has been observed that the overhead introduced

by TCP is such as to imply a considerable increase in polling time. On the other hand,

UDPc maintains the fundamental characteristics of UDP. It allows obtaining superior

performance (in the order of hundreds of microseconds) to TCP while ensuring the same

degree of reliability in the transfer of SPDUs. As a general observation, it can be said

that the safety over wireless systems may not satisfy the requirements in terms of SFRT

precisely because of the longer transfer times of the SPDUs and the inability to guarantee

tight deadlines compared to the wired counterpart. This situation can be mitigated

by adopting TSN on WiFi which will allow achieving wire-equivalent reliability with

deterministic time and timeliness performance over wireless (Cavalcanti, Perez-Ramirez,

Rashid, Fang, Galeev, and Stanton (2019)). A final consideration can be made about

48
Assessment of different Transport Layer protocols for Functional safety over

Wireless

the effectiveness of the black channel approach. It has been demonstrated that a safety

protocol designed with this method can be implemented on networks different from that

for which it has been conceived. However, it has been evidenced that not all networks can

provide satisfying performance. Indeed, as we have seen, the number of lost packets when

UDP over Wi-Fi is used, particularly with high PER and PLR, does not allow safety

applications to reach SIL3 because the number of FSoE connection re-initializations is

too high to ensure a residual error rate less than 10−9/h.

5
Tuning of a simulation model for the assessment

of Functional Safety over Wi-Fi

Moving from wired to wireless safety communication is becoming a hot and challenging

research topic in the industrial context, as well as in other safety critical fields, such

as automotive (Xie, Li, Han, Xie, Zeng, and Li (2020)) and avionics (Allouch, Koubaa,

Khalgui, and Abbes (2019)). Wireless safety solutions can be derived, for example, by

exploiting the ones designed with the black channel approach described in IEC 61784-3.

In this chapter, we address the widespread Fail Safe over EtherCAT (FSoE) (IEC 61784-3-

12) functional safety protocol. In particular, moving from a prototype implementation of

the FSoE protocol over a Wi-Fi network (Morato et al. (2019)), we developed a realistic

simulation model based on Objective Modular Network Testbed in C++ (OMNeT++).

The model has been carefully calibrated thanks to the results obtained from the prototype

so that it can be used to simulate more complex configurations. In this respect, an

example is reported where a WiFi-based FSoE network comprising a master and five

mobile/fixed slaves is simulated.

50
Tuning of a simulation model for the assessment of Functional Safety over

Wi-Fi

5.1 OMNeT++ Simulation Model

This study aims to implement an accurate simulation model, able to reproduce realistic

representations of the industrial wireless environment behavior, to provide a tool for the

performance assessment of wide wireless industrial safety networks. To this purpose, the

FSoE over Wi-Fi protocol has been implemented using the widespread, discrete event

OMNeT++ simulator. In particular, OMNeT++ is widely adopted to simulate communi-

cation networks and model the surrounding electromagnetic environment, allowing to

build protocols exploiting existing modules. In our case, this feature is particularly useful

since we implemented FSoE using UDP and the validated Wi-Fi stack made available by

OMNeT++ (Bredel and Bergner (2009)).

However, these models often implement generic calibrations that can simulate a

wide range of scenarios but are unlikely to reproduce specific use cases. Therefore,

to carefully simulate a Wi-Fi-based FSoE network, it becomes imperative to set up a

precise calibration phase of both the channel errors models and the polling time, which

is representative of the time necessary to complete the communication cycle between two

devices.

5.2 Calibration of the channel error model

To the aim of the IEEE802.11g OFDM error model calibration, we have at first determined

the PER-SNR relationship through experimental measurements on the channel. We then

exploited a feature of the OMNeT++ framework, which allows as to feed the simulator

with suitable lookup tables representing the PER-SNR relationship. In this way, we

directly employed data from the field to reproduce a very accurate calibration of the

channel model within the simulator.

To this extent, we have reproduced the experimental setup proposed by Tramarin

et al. (2016) to obtain measurements of the PER-SNR function. With an approach

similar to Peserico, Fedullo, Morato, Tramarin, Rovati, and Vitturi (2021a), we fine

tuned the main parameters of the OMNeT++ Wi-Fi channel model. For repeatability

purposes, several tests for each specific SNR value have been executed in the simulation

and experimental setups, and the corresponding PER was evaluated. The results are

shown in Figure 5.1, where the PER-SNR curves obtained with OMNeT++ are compared

with the experimental ones. Table 5.1 reports the number of lost packets corresponding

to the reset of the FSoE connection. As can be seen, the values are relatively similar,

thus demonstrating the quality of the calibration of the error model.

52
Tuning of a simulation model for the assessment of Functional Safety over

Wi-Fi

Therefore, a different set of tests were relevant to the calibration of the simulator

with respect to experimental values. To this goal, a suitable measurement setup has been

designed, as shown in Figure 5.2.

All the experiments have been carried out on Raspberry Pi Model 3B boards which

run a general-purpose operating system Raspbian OS (Kernel version 5.4.83). Each device

has been equipped with an external Alfa AWUS036ACH USB Wireless Network Interface

Controller (WNIC) set to operate in the 2.4 GHz band with IEEE802.11g modulation

standard and output power of 30 dBm. Moreover, the rate adaptation features have been

disabled, thus using a fixed 54 MBps rate. Tests have been conducted in an industrial

area, whereby it is necessary to minimize as far as possible the influence of external factors,

for example, other Wi–Fi stations or background noise. For this reason, the WNICs

antennas have been connected via a coaxial cable, thus simulating an ideal transmission

medium. To further increase the robustness to external noise, the Raspberry Pis and

the WNICs have been embedded into separate shielding boxes. Finally, a variable RF

attenuator, with an attenuation range of 50-110 dBm, has been inserted in the coaxial

transmission line to properly control the real transmission medium’s attenuation.

The FSoE Master and FSoE Slave have been implemented on two different Raspberry

Pi boards, respectively configured as Wi-Fi Access Point (AP) and Station (STA). The

communication between the Master and the Slave is hence managed without intermediate

devices. The simplest FSoE SPDU (7 bytes) has been encapsulated into a UDP frame

to carry safety data. It is worth noting that the FSoE stack runs on the Raspberry

Pi as normal non-prioritized processes. Moreover, SPDUs are sent continuously in a

non-scheduled way. In particular, after receiving the safety frame SFi from the master,

the slave answers with the frame AFi. Then, the master sends a new safety frame SFi+1

immediately after receiving the answer AFi from the slave. In each device, a watchdog of

250 ms monitors the FSoE connection cycle to detect possible delays on the network. If a

device does not receive any answer from the communication partner within the specified

timeout, the frame is marked as lost, and the FSoE connection is re-initialized.

Several experimental sessions have been conducted to test the medium with different

attenuation values that have been varied in 1dB steps. Correspondingly, for each

measurement session, acquisition of more than 50000 unique values of the polling time

Tp has been analyzed.

We used the probability densities obtained from the experimental measurements

to calibrate the polling time model. Each of these was obtained for different channel

attenuation values. Using the Inverse Transform Sampling method, the delays to be

used in the transmission are sampled from the experimental densities according to the

54
Tuning of a simulation model for the assessment of Functional Safety over

Wi-Fi

rxPower
(dBm)

Polling time (µs) PER
MSE on

mean (%)

Mean Std Min Max

Experimental
-80.0 50720.27 11510.14 17271.40 76988.70 0.030 -
-76.0 32437.22 6756.42 13383.80 47484.70 0 -
-73.0 23225.14 6050.65 10836.40 37790.80 0 -
-70.0 16663.57 4124.12 7597.51 28525.20 0 -
-67.0 9870.57 3460.87 2855.14 21021.10 0 -
-64.0 3116.34 220.08 2076.29 4144.56 0 -
-50.0 3010.49 23.01 2931.70 3139.15 0 -
-20.0 3010.20 21.32 2930.30 3130.82 0 -

Simulated
-80.0 41473.87 8602.50 23940.54 59851.54 0.027 18.23
-76.0 31377.75 6506.41 17041.85 45395.85 0 3.26
-73.0 21427.64 4985.96 13059.43 34340.43 0 7.73
-70.0 16684.58 3954.34 11635.10 27807.10 0 0.12
-67.0 9877.29 3260.08 4049.86 20378.86 0 0.06
-64.0 3106.29 82.38 3035.66 3535.66 0 0.32
-50.0 3084.09 21.70 3014.20 3173.20 0 2.44
-20.0 3085.52 19.16 3048.02 3170.02 0 2.50

Table 5.1: Statistics of the polling time and PER

−80 −70 −60 −50 −40 −30 −20

0

2 000

4 000

6 000

8 000

Rx Power (dBm)

M
SE

(µ
s)

Figure 5.4: MSE

reception time to simulate the attenuation effects.

Therefore, the uncertainties introduced by the path loss model overlap with the delays

introduced by the polling time model, causing it to deviate slightly from the experimental

trend. The solution to this problem will require the implementation of a completely

custom path loss model, which will be left for future work. In the current state of the

5.3 Calibration of the polling time 55

simulator, the path loss model has been calibrated to minimize these superimposition

effects.

In general, the accuracy of the calibration can be confirmed by the MSE, which,

except for some isolated cases, remains less than 4%. This is also confirmed by Figure 5.5,

which compares the probability density function of the polling time. As can be seen, they

are definitely very similar.

5.4 Simulation with multiple slaves 57

5.4 Simulation with multiple slaves

The simulation of a realistic multi-node network needs particular care and requires the

execution of several tests. In this section, we analyze the outcomes of some simulation

sessions we have carried out towards assessing the proposed simulation model. We refer

to the prototype network described in Figure 5.6, composed of one FSoE master and five

FSoE slaves. The position of the nodes with respect to each other has been carefully

selected to reproduce and test three different communication scenarios. Firstly, aiming

at analyzing the protocol behavior in the absence of mutual interference, Slaves 1 and 2

are placed relatively distant to each other, thus reproducing an ideal situation. On the

contrary, slaves 3 and 4 have been placed close together to study how possible interference

can affect the polling time and the PER. Finally, slave 5 has been placed far from the

master to analyze the impact of a great attenuation, i.e., a relatively low SNR, on the

polling time and the PER.

0 100 200 300

0

100

200

300

Slave 1

Slave 2

Slave 3
Slave 4

Slave 5

Master

m

m

Figure 5.6: Positions of the nodes

Simulation statistics of both the polling time and exchanged packets for each node

are reported in Table 5.2.

Comparing the behavior of Slaves 1 and 2, it is possible to underline that the latter

introduces a slightly lower polling time, while both do not experience any packet loss.

This is reasonable as they do not have other nodes nearby, but the distance between Slave

1 and the Master is higher than the Slave 2 one. Conversely, Slaves 3 and 4 introduce

mutual interference, as can be noted from both the polling time (Tp) and the Packet

Error Rate (PER). Indeed, the polling times of Slaves 3 and 4 are quite similar to those

of Slaves 1 and 2, although the latter ones have a greater distance from the master.

58
Tuning of a simulation model for the assessment of Functional Safety over

Wi-Fi

Slave
Polling time (µs) Packets

Mean Std Min Max Sent Acknowledged Lost PER

1 33932.20 6581.77 21070.06 48071.06 71997 71997 0 0.000000
2 27618.30 6540.25 15593.58 42273.58 71997 71997 0 0.000000
3 27390.94 6506.25 15576.63 42060.63 71999 71999 0 0.000000
4 31431.96 6545.19 17087.76 45433.76 72000 71998 2 0.000028
5 105864.38 52708.85 28557.11 239921.11 71998 52683 19315 0.268271

Table 5.2: Statistics of the polling time in simulation with multiple slaves

Furthermore, Slave 4 also experiences some packet loss. Finally, Slave 5 introduces higher

Tp and PER, thus underlying the impact of the attenuation on the communication.

6
Evaluation of the Safety Function Response Time

in a Functional Safety over Wi-Fi Network

Recently, industrial automation and distributed measurement systems have seen an

increase in the use of wireless communication networks, which is leading to an improve-

ment in scalability, efficiency, flexibility, and cost reduction (Wollschlaeger, Sauter, and

Jasperneite (2017)). The fundamental aspect in the use of wireless in industrial fields is

the opening towards new categories of autonomous devices that can actively collaborate

with human personnel in the production process. However, the safety implications of

this new paradigm are very strong. In traditional plants, hazardous machineries are

often protected by physical barriers that protect the operating space. The development

of safety fieldbuses and safety strategies for networked industrial systems (Vitturi et al.

(2018)) has further improved safety performance by making it possible to create devices

that operate in a coordinated manner and are able to guarantee a very high degree of

safety (for example SIL3 with residual dangerous fault probability < 10−9/h). In mobile

and collaborative devices, the use of physical barriers is clearly not a viable solution, and

the coordination between sensors, actuators, and control systems must be as reliable as

possible. This becomes possible by ensuring the correct transfer of safety-critical data, and

therefore, the development of the same safety communication techniques present in wired

communications becomes of fundamental importance. The topic has been the subject

60
Evaluation of the Safety Function Response Time in a Functional Safety

over Wi-Fi Network

of numerous researches in which various safety protocols conceived for wired networks

have been successfully ported to wireless networks using the black channel approach. For

example, Åkerberg et al. (2011) implemented ProfiSafe on WirelessHART, presenting

a proof-of-concept experimental setup in which the achievable performance in terms of

cycle time was analyzed. Another application was proposed by Hadz, iaganovic, Atiq,

Blazek, Bernhard, and Springer, where OpenSafety was implemented on Message Queue

Telemetry Transport (MQTT) to implement a Plug&Play distributed safety network.

In chapters 3 and 4, we proposed the implementation of FSoE on IEEE802.11 WLAN,

analyzing in depth the performance in terms of polling time Tp (that is the time necessary

for a complete cycle of communication between Master and Slave) and of packet loss.

The impact of different transport protocols on the Tp was also analyzed. In the context

of safety communications, the analysis of communication time takes on a fundamental

aspect. Indeed, although the IEEE802.11 WLAN demonstrated its effectiveness in the

industrial communication scenario, in that it is able to ensure fast message delivery

times, with jitter and reliability acceptable by diverse types of applications (Tramarin,

Mok, and Han (2019)), their performance figures are not yet comparable with their RTE

counterparts. Generally speaking, in Networked Control Systems (NCSs), jitter and

long communication times may compromise the control system’s responsiveness (i.e., the

reaction time). It also affects a very critical aspect in safety critical communications: the

time between the detection of an error and the system’s transition into a safe state, which

is defined as Safety Function Response Time (SFRT). The SFRT is defined in the IEC

61784-3-3 (ProfiSafe) standard as a metric for safety-critical automation systems, which

defines the worst case time to reach the safe state of the system in the presence of errors

or failure in the safety function or in the communication medium itself. Although SFRT

is explicitly defined for ProfiSafe (primarily conceived to work with wired networks),

its definition can be carried over to other safety communication protocols and wireless

networks. Indeed, Åkerberg et al. (2011) have proposed an approach for estimating SFRT

in SISO systems using IEEE 802.15.4 based wireless networks. Furthermore, Pimentel

and Nickerson (2014) have extended the work of the previous authors, studying the

applicability of SFRT to MIMO systems. In this chapter, we present a framework for

estimating SFRT in SIMO systems using FSoE over Wi–Fi. The estimates will be verified

using the simulator proposed in chapter 5. Finally, the evaluation of SFRT will be

presented by simulating a real industrial environment composed of autonomous mobile

robots.

6.1 Background 61

6.1 Background

The Safety Function Response Time (SFRT) is defined in the IEC 61784-3-3 for SISO

systems as

SFRT =
n

∑

i=1

WCDTi + max
i=1,2,...,n

(WDTimei − WCDTi) (6.1)

= TWCDT + ∆TW D (6.2)

where:

• n is the number of entities on the network.

• WCDTi is the worst case delay time of entity i.

• WDTimei is the watchdog timer of entity i.

Let consider Figure 6.1, which is a representation of Eq. 6.1.

Input
(Slave) Master

Output
(Slave)

Communication
delay

Communication
delay

entity 1

Safety function
tripping

entity 2 entity 3 entity 4 entity 5

WCDTi

5
∑

i=1

WCDTi

SFRT

∆TW D

Safe State

Figure 6.1: Representation of the SFRT for SISO systems as defined by IEC 61784-3-3

As can be seen, an entity is meant as the single component that is part of the chain

between the input that triggers the execution of the safety function and the output that

is forced to the safe state. Each entity has its own execution time WCDTi. For example,

entities 1, 5, and 3 respectively represent the processing time of the slaves and the master

, while entities 2 and 4 represent the transmission delay of the channel. Therefore, the

total delay TWCDT is given by the sum of the delays given by the single components.

In the calculation of the SFRT, the IEC 61784-3-3 considers the case in which one of

the communication paths between the entities may fail. Suppose the entityi is affected

by a communication failure. In this case, the WCTDi delay introduced by the entityi

is equal to WDTimei. Assuming that each entity has its own watchdog time, the term

62
Evaluation of the Safety Function Response Time in a Functional Safety

over Wi-Fi Network

∆TW D takes into account the maximum delay introduced from the entityi in case there

is an error in the communication path. In other words, let be

j : max
i=1,2,...,n

(WDTimei − WCDTi) = WDTimej − WCDTj (6.3)

then, Eq. 6.1 can be rewritten as

SFRT =
n

∑

i=1
i6=j

WCDTi + WDTimej (6.4)

6.2 Safety function response time on a FSoE over Wi–Fi

network

The SFRT equations formulated by IEC 61784-3-3 are conceived for systems with a single

input and single output. In more complex automation systems, interactions are hardly

limited to point-to-point connections. For this reason, Pimentel and Nickerson (2014)

have proposed an extension of the SFRT equation for MIMO systems. In this section, we

will use a modified version of the latter equations to estimate the SFRT in an FSoE over

Wi–Fi system.

Pimentel and Nickerson (2014) have extended the SFRT equation for MIMO sys-

tems, considering the partition E = {Input, Master, Output, T rasmissionDelay} and

redefining Eq. 6.1 as

SFRT =
n

∑

i∈E

WCDTi + max
i∈E

(WDTimei − WCDTi) (6.5)

where WCDTi is the worst case delay time of all entities of type i, thus, representing

the total worst case delay time of all the entities in the network, while WDTimei is

the watchdog timer of all entities of type i. In a FSoE over Wi–Fi network, usually the

trigger of a safety function originated in one of the slaves then, it is propagated to the

Master and subsequently to all the other slaves in the network. In this case, Eq. 6.5

can be rewritten considering a new partition F = {I, O}, |F | = n where I group all the

entities from the Slave that have originated the safety function trigger to the Master,

while O groups all the entities from the Master to the Output Slaves. Figure 6.2 gives

the representation of the partitioning.

6.2 Safety function response time on a FSoE over Wi–Fi network 63

Input
(Slave) Master

Output
(Slave)

Communication
delay

Communication
delay

entity 1 entity 2 entity 3 entity 41 entity 51

entity 42 entity 52

Communication
delay

Output
(Slave)

entity 43 entity 53

Communication
delay

Output
(Slave)

entity 4m entity 5m

Output
(Slave)

Partition I Partition O

O1

O2

O3

Om

Figure 6.2: Partitioning of network entities in SIMO systems

Given the new partitioning, Eq. 6.5 can be rewritten as

SFRT =
∑

i∈I

WCDTi +
∑

j∈O

WCDTj + max
l∈F

(WDTimel − WCDTl) (6.6)

Eq. 6.6 can be further redefined by considering the partitioning of O as O =

{O1, O2, . . . , Om} where Oi represent the entities from the master and a single Slave and

m is the number of output Slaves, so that F = {I, O1, O2, . . . , Om}, |F | = n. Eq. 6.6

become

SFRT =
∑

i∈I

WCDTi +
m

∑

k=1

∑

j∈Ok

WCDTj + max
l∈F

(WDTimel − WCDTl) (6.7)

About the equation Eq. 6.7 some remarks are necessary. First, the processing time of

the master is considered n times as it has a separate instance for each slave. Secondly,

the SFRT is calculated assuming that the polling occurs sequentially, that is, the master

begins a communication with the slave belonging to the Oi partition only after the polling

of the slave belonging to the Oi−1 partition has finished. From this point of view, note

that 6.2 is not exhaustive as it represents the polling of the slaves in parallel mode. Given

this last observation, it can be said that the SFRT also depends on the access mode to

64
Evaluation of the Safety Function Response Time in a Functional Safety

over Wi-Fi Network

the slaves.

In the case of parallel polling, the SFRT takes the form

SFRTP =
∑

i∈I

WCDTi + max
k=1...m

∑

j∈Ok

WCDTj + max
l∈F

(WDTimel − WCDTl) (6.8)

where

I :
∑

i∈I

WCDTi = max
Q∈F

(
∑

q∈Q

WCDTq)

which leads to SFRTP ≤ SFRT . Indeed, as pointed out by Åkerberg et al. (2011),

the SFRT can be enhanced by using different polling strategies.

Now, let us evaluate
∑

WCDT in the case of a network using FSoE over Wi–Fi. As

specified in the 2.3.2 section, FSoE is a polling-based protocol, i.e., the communication

cycle is initiated by the master, which waits for the response from the slave before

generating a new SPDU. The slave itself cannot initialize a safety communication.

To evaluate
∑

WCDT , let us recall the definition of Polling Time Tp: Tp is defined as

the time elapsed from the generation of an FSoE frame transmission request by the master

and the reception of the confirm primitive from the slave. It includes the time necessary

to execute both the FSoE and the underlying protocol stacks in both master and slave,

the time to transmit the safety frame and the slave’s answer message. Therefore, Tp

implicitly includes all processing time of the considered partition entities.

Without loss of generality, let us consider the input partition I. If the safety function

is triggered, the worst case is represented by the trigger immediately after the slave has

sent an SPDU response to the master. In this case, for the master to be notified of the

trigger of the safety function, it is necessary to wait for a network cycle, i.e., Tp. The

same condition also applies to the Oi output partitions. Suppose the master receives the

safety function trigger from the slave in the partition I immediately after initiating a

communication cycle with the slave of the output partition Oi. For the slave in Oi, a

time Tpi
is required to receive the notification of the activation of the safety function,

corresponding to the polling time of the slave in that partition.

Therefore, in general, it can be said that
∑

WCDT = Tp, hence, Eq. 6.7 and Eq. 6.8

can be respectively redefined as

SFRT = TpI
+

m
∑

k=1

TpOk
+ max

l∈F
(WDTimel − WCDTl) (6.9)

6.3 Evaluation of the Safety Function Response Time 65

SFRTP = TpI
+ max

k=1...m
TpOk

+ max
l∈F

(WDTimel − WCDTl) (6.10)

with

I : TpI
= max

Q∈F
(TpQ

)

where TpI
is the polling time of partition I, while TpOk

is the polling time of partition

Ok ∈ O.

6.3 Evaluation of the Safety Function Response Time

To provide an evaluation of the SFRT, we considered the multi slave network proposed

in Chapter 5. Table 6.1 reports the polling times measured by the simulation from which,

using the maximum values, it is possible to calculate both the SFRT and SFRTP using,

respectively, Eq. 6.9 and Eq. 6.10.

Slave
Polling time (µs)

Mean Std Min Max

1 33932.20 6581.77 21070.06 48071.06
2 27618.30 6540.25 15593.58 42273.58
3 27390.94 6506.25 15576.63 42060.63
4 31431.96 6545.19 17087.76 45433.76
5 105864.38 52708.85 28557.11 239921.11

Table 6.1: Statistics of the polling time in simulation with multiple slaves in OMNeT++

It is

SFRT = 239921.11 + 177839.03 + max
l∈F

(WDTimel − WCDTl)µs

= 417760.14 + max
l∈F

(WDTimel − WCDTl)µs

SFRTP = 239921.11 + 48071.06 + max
l∈F

(WDTimel − WCDTl)µs

= 287992.17 + max
l∈F

(WDTimel − WCDTl)µs

For both equations, remain to evaluate the term maxl∈F (WDTimel − WCDTl).

66
Evaluation of the Safety Function Response Time in a Functional Safety

over Wi-Fi Network

Considering the watchdog timer is set to 250 ms among all master and slaves, and as

pointed in Section 3.4.2, the lowest WCDT is given by the elaboration time on the slaves,

which is the order of thousand of µs, it is WDTimel >> WCDTl so that

max
l∈F

(WDTimel − WCDTl) ≈ WDTimel

leading to

SFRT = 417760.14 + 250000µs = 667760.14µs

SFRTP = 287992.17 + 250000µs = 537992.17µs

The obtained SFRT theoretical values were verified using the simulator based on

OMNeT++ and the network with multiple slaves presented in Chapter 5. It is a network

composed of five slaves and one master that communicate via FSoE over Wi–Fi. The

SPDUs are encapsulated in a UDP frame, and communication between master and slaves

occurs unscheduled. To evaluate the SFRT has been simulated the trigger of a safety

function in a slave and were measured the elapsed time between the function trigger and

the instant in which all the other slaves received the trigger notification, i.e., they have

enabled the safe state. In this simulation scenario, the safe state activation request can

be either the actual trigger of the safety function or a communication error, for example,

packet loss. The watchdog time Tw = WDTime has been set to 250 ms. To asses the

SFRT in different conditions, were carried out 1000 simulations in which the trigger of

the safety function occurs at random time instants in one of the randomly chosen slaves.

The simulation results are reported in Figure 6.3, while the detailed statistics are

reported in Table 6.2. In both, are reported either global statistics and those categorized

by the slave that generated the trigger.

Slave
SFRT (µs)

Mean Std Min Max

1 232163.41 120021.29 62244.42 436140.13
2 246799.44 116161.35 119495.67 455973.00
3 225520.75 128919.79 74778.65 434644.44
4 258786.35 143809.41 63660.59 495917.50
5 360902.26 131576.36 94596.89 480198.55
Global 289150.30 141416.21 62244.42 495917.50

Table 6.2: Statistics of the SFRT in simulation with multiple static slaves. The slave index
represent the slave which have originated the safety function trigger.

As a first observation, it can be said that the SFRT has no dependence on the slave

6.4 Industrial environment simulation 67

1 2 3 4 5 Global

0.1

0.2

0.3

0.4

0.5

Slave

SF
R

T
(s

)

Figure 6.3: Statistics of the SFRT of the stimulated multi slave network in OMNeT++.
X-axis represent the slave which have originated the safety function trigger, while y-axis report
the SFRT of the network. Blue horizontal line represent the median while, white square is the

mean

that generates the trigger of the safety function. As can be seen, both the minimum,

average, and maximum values are very similar among all the slaves. This is a significant

result since it allows to estimate, once the operating environment has been defined, a

maximum value of SFRT independently of the position of the nodes. This result is also

of interest for mobile nodes networks, as the global SFRT can be estimated whatever

their position in the operating space.

Concerning SFRT in the worst case, as shown in Figure 6.3 and in detail in Table 6.2,

the maximum value is generally slightly lower than the SFRT theoretically calculated.

However, especially in slaves 4 and 5, the maximum value is close to the theoretical value,

and the average value of the SFRT slightly higher than the other slaves. This is explained

by the fact that both slaves have a PER higher than the other slaves, so it is more likely

that a watchdog timeout condition will be generated, leading to the worst case SFRT. In

any case, the actual SFRT is lower than the theoretical one, thus demonstrating that it

is a conservative upper bound.

6.4 Industrial environment simulation

The need for functional safety wireless networks stems from different industrial use

cases characterized by the need to have distributed devices, possibly mobile, that work

in environments with very strict safety requirements. The case study presented in

this section refers to a semi–automated warehouse, where mobile robots operate goods

68
Evaluation of the Safety Function Response Time in a Functional Safety

over Wi-Fi Network

handling within protected work areas. The plant, which is schematically represented

in Figure 6.4, includes two distinct workspaces. The first, highlighted in green, is the

loading bay where the unloading and loading of goods from trucks by human personnel

takes place manually. The second area is highlighted in red and is a fully automated area

where mobile robots move goods from storage areas for further processing. For safety

reasons, the automated area is forbidden to human personnel.

Figure 6.4: Example of semi–automated warehouse. Credit to Jesus Sobalvarro

When the goods are deposited in the warehouse (green area), they are periodically

transferred manually to the automated area. The two areas are communicating through a

single entrance. Four autonomous mobile robots operate in the automated area. They are

connected via a safety network based on FSoE over Wi–Fi to a centralized safety master

located at the center 5 m above the ground of the automated area in order to provide

an optimal connection converge. The robots represent mobile safety slaves. Another

safety slave, in this case, fixed, is represented by the barriers placed at the entrance to

the automated area. One of the safety requirements is that when the safety barriers are

opened, the Safe Torque Off (STO) (IEC 61800-5-2) safety function must be activated in

the mobile robots, which consists in deactivating the power supply to the electric drives

70
Evaluation of the Safety Function Response Time in a Functional Safety

over Wi-Fi Network

safety barriers and the complete stop of all the robots, 1000 simulations were carried out

in OMNeT++. Initial positions of the nodes and time instant in which the trigger of the

safety function occurs have been chosen randomly in each simulation.

As a first result, global statistics of polling time for all 1000 simulations are reported

in Table 6.3, in which slave 1 refers to the barriers, while the others refer to mobile

robot. As can be seen, the statistics are very similar among all slaves. This result is quite

obvious since, being the master placed in the center of the operating area, on average,

the distance between the master and the slaves remains in the same range, resulting in

similar polling times. In fact, as seen in Chapter 5 in the simulations with static slaves,

nodes placed at a similar distance from the master, and therefore with the same channel

attenuation and SNR, have comparable polling times.

Slave
Polling time (µs)

Mean Std Min Max

1 4867.53 1781.71 2957.13 10828.31
2 4884.32 1795.62 2937.07 10974.59
3 4942.18 1799.11 2993.03 37152.90
4 4876.03 1789.71 2978.20 10837.58
5 4879.58 1792.74 2958.15 10779.85

Table 6.3: Statistics of the polling time in simulation with multiple mobile slaves. Slave 1 is
the barrier, while the others are the mobile robots

Considering that the watchdog time Tw = WDTime has been set to 250 ms, using

the polling time statistics, it is possible to calculate both the SFRT and SFRTP using

respectively Eq. 6.9 and Eq. 6.10, whose lead to

SFRT = 330573.23µs

SFRTP = 298127.49µs

The theoretical values have been compared with the simulation results reported in

Figure 6.6, which represent the EPDF of the SFRT1, whereas its statistics are provided

in Table 6.3.

As can be seen, the results are particularly satisfactory since the safety function is

activated in the mobile nodes on average in about 13 ms. This value can be considered

satisfactory on a wide spectrum of applications. Indeed, in this specific use case, such

1To ease the readability of the plot in Figure 6.6, data greater than median + three standard deviation
are omitted.

72
Evaluation of the Safety Function Response Time in a Functional Safety

over Wi-Fi Network

random polling strategy, it was possible to define a new estimate of the SFRT, namely

SFRTP which value is definitely lower. This chapter shows through measurements on

a calibrated simulator that SFRT and SFRTP actually represent a theoretical upper

bound reached only in the worst case. In fact, in most of the simulations performed,

both with fixed and mobile nodes, the obtained SFRT is far lower than the estimated

theoretical limit.

As seen in the theoretical discussion, the watchdog period has a significant impact on

the value of the SFRT. The degree of safety on a system can be increased by decreasing

the watchdog time, thus decreasing the SFRT value. By decreasing the watchdog time,

the system will be more reactive to any communication problems and therefore to

quickly force the entire system to a safe state. On the other hand, the drastic decrease

can lead to usability problems of the system itself. Especially with wireless networks,

which may be error prone and significantly more affected by interference with respect to

wired connections, a watchdog period that is too low can lead to the watchdog timeout

condition triggered much more often. The choice of the watchdog time and, therefore, of

the SFRT must be a trade off between the required degree of safety and the usability to

be guaranteed in the plant.

7
Assessment of Different OPC UA

Implementations for Industrial IoT-Based

Measurement Applications

In the last few years, the industrial world embraced the Industry 4.0 paradigm Lu

(2017), which merges technologies with products, systems, and services having its intrinsic

networked structures, to realize the Industrial Internet of Things (IIoT) (Sisinni, Saifullah,

Han, Jennehag, and Gidlund (2018); Vitturi et al. (2019)). IIoT is a network of networks

that connects industrial equipment, controllers, sensors and, actuators, i.e., the “Things”,

to provide diverse and advanced types of services in manufacturing systems, aiming at

improving quality, productivity, efficiency, reliability, safety, and security.

Traditionally, the foundation of manufacturing and process industries has been in the

deployment of specific distributed sensor systems for monitoring (and then controlling)

the production process, thus leveraging the concept of Distributed Measurement Systems

(DMSs) (Grimaldi and Marinov (2001)). With the increased pervasiveness of the IIoT

paradigm, DMSs come even more into focus since the components of an IIoT system

need an even further level of interaction to integrate instrumentation data, sensors,

communication, and processing. Moreover, the need to improve production capacity and

optimize the output process, eventually exploiting predictive maintenance and machine

74
Assessment of Different OPC UA Implementations for Industrial IoT-Based

Measurement Applications

learning approaches (Witten, Frank, and Hall (2011)) requires an increased number of

sensor devices and sensor swarms to be deployed.

This new IIoT–enabled DMS scenario is based on the support of efficient and reliable

communication systems, ensuring widespread availability of data gathered from possibly

heterogeneous measurement instruments and sensors (Tian (2001); Skrzypczak, Grimaldi,

and Rak (2009)). Overall, the IIoT paradigm may represent the enabler for several

enhanced measurement features: continuous and thorough measurements through low-

power wireless connections, measurement collection over considerably broad geographic

areas, and real-time analysis of measurement data collected from the field (Ooi and

Shirmohammadi (2020)).

Unfortunately, in the highlighted IIoT scenario, it is expected that components and

sensors devices come from different producers and use different formats to represent mea-

surement data, and also it is very likely that they intrinsically operate over heterogeneous

networks. Hence, the provision of ways to enable communication and interoperability

among such devices is of paramount importance. A key solution toward this goal is

the Open Platform Communication (OPC) Unified Architecture (UA) (Bruckner et al.

(2019)). OPC-UA is a protocol defined by the IEC 62541 international standard conceived

to implement Machine–to–Machine (M2M) communication over possibly different physical

media while ensuring high level data protection against attacks and threats.

OPC-UA represents hence an appealing and advantageous opportunity for the arising

IIoT measurement paradigm. Particularly, its object–oriented structure allows a complete

contextualization of the information. For instance, an OPC-UA object could be used to

store the value of a measurement, the features of the instrument/sensor, the measurement

units, possible thresholds, and so on. Such important characteristics allow the new

generation of measurement instruments to deal with multiple and heterogeneous data

types.

At the same time, the complexity of the OPC-UA protocol may also reveal an obstacle

to its introduction within measurement systems. Indeed, sensors and actuators, field

equipment, and measurement instruments in the IIoT scenario are typically realized

exploiting devices with limited hardware resources and low computational capabilities

(and low costs). Consequently, the implementation of OPC-UA on such devices might be

problematic and the performance might result compromised in terms of increased latency

and power consumption, hence impairing the quality and accuracy of measurements.

7.1 Related Work and Contribution 75

7.1 Related Work and Contribution

The introduction of Industrial IoT technologies in the context of distributed measurement

systems has started to be addressed some years ago. Paper by Ooi and Shirmohammadi

(2020) deals with the potential of IIoT for the instrumentation and measurement fields.

Notably, the authors provide an accurate assessment that addresses benefits and challenges,

including also some useful commercial aspects. In Rizzi, Ferrari, Flammini, and Sisinni

(2017), Lee and Ke, and Palisetty and Ray (2018), the authors address diverse Low Power

Wide Area Networks (LPWAN) to enable IIoT-based measurement and monitoring

applications over large distances. Both papers Bianchi, Boni, Fortunati, Giannetto,

Careri, and De Munari (2020) and Liao and Lai (2020) describe the use of Wi-Fi, another

important network for IIoT, to implement measurement systems that involve remote

cloud data storage and analysis.

Moving to OPC-UA, in Cavalaglio Camargo Molano, Lahrache, Rubini, and Coc-

concelli (2018) the authors describe a method to achieve synchronization among electrical

drives connected via EtherCAT (a widespread real–time Ethernet network) using the

OPC-UA protocol. Mainly, the paper deals with the important topic of obtaining a high

accuracy synchronization over a geographically distributed system, which is of utter-

most importance in distributed measurement applications. In Montavon, Peterek, and

Schmitt (2019), the authors refer to metrology assisted assembly systems, and introduce

the optical large–scale metrology instruments, such as laser trackers and indoor GPS.

Then they propose an object–oriented model to formally describe such instruments and

investigate the suitability of OPC-UA, as well as that of other protocols, to implement

such a model. In Lee, Kim, and Lee (2017), OPC-UA is used to implement a smart sensor

system to monitor the behavior of numerical control devices in the Industry 4.0 context.

Specifically, OPC-UA objects are used to store sensor information such as measurement,

threshold, range, product data, etc. Another interesting OPC-UA application is proposed

in González, Calderón, Barragán, and Andújar (2017). Here the authors present a system

based on OPC-UA to connect and integrate components typical of industrial automation

as well as of distributed measurement systems. Examples of applications are provided

that include smart microgrids, industrial laboratories, and energy systems in general.

Paper by Ferrari, Flammini, Rinaldi, Sisinni, Maffei, and Malara (2018) considers an

IIoT environment and focuses on transferring plant data to a cloud when OPC-UA–based

gateways are used to gather data directly at the production level. Notably, the authors

implemented a measurement system that allowed to determine the impact of Quality of

Service parameters on communication delays.

The papers cited above represent interesting contributions. However, as far as OPC-

76
Assessment of Different OPC UA Implementations for Industrial IoT-Based

Measurement Applications

UA is concerned, they mostly describe meaningful applications that use such protocol

without investigating its actual potential and capabilities. Nor do they consider protocol

implementation aspects, which represent significant issues especially in the industrial

scenario.

Moving from the above considerations, in this chapter, which substantially extends

Morato et al. (2020), we propose a more structural assessment about the adoption of

OPC-UA in the context of IIoT–based measurement systems. In this respect, we report

and discuss the results of an experimental work on some popular implementations of

the OPC-UA protocol stack. Particularly, we considered four OPC-UA implementations.

Three of them are open source, namely Open62541, FreeOPC UA C++, and FreeOPC

UA Python, whereas the fourth one is a proprietary product, namely Prosys OPC Java.

The work aims to investigate the behavior of OPC-UA for the different implementations

focusing on i) CPU usage, ii) communication times and iii) power consumption. In

order to provide a meaningful and fair assessment, the protocol was implemented on a

widespread commercially available Raspberry Pi Model 3B+ board that, thanks to its

features, represents a manageable and effective testbed. The measurement setup has

been designed to be of general usage and reproducible. Also, experiments have been

mostly carried out using two widespread communication systems, namely Ethernet and

Wi–Fi.

In detail, this chapter is organized as follows. Section 7.2 briefly describes the OPC-

UA protocol and outlines the possible structure of distributed measurement systems that

rely on OPC-UA. Section 7.3 introduces the experimental setup implemented for the

measurements. Section 7.4 describes the tests carried out and discusses the obtained

results. Finally, Section 7.5 concludes the chapter and outlines some future directions of

research.

7.2 Introduction to OPC-UA

7.2.1 Origin and Motivation

The use of computers in industrial automation has been a growing trend since the early

’90s. One of the most significant difficulties in interfacing multiple components from

different manufacturers is that each used a different communication system or proprietary

protocols. The problem of creating a standardized system for accessing industrial process

data was already known well before the advent of Industry 4.0. In 1995 a task force was

created to define a Plug&Play technology that would allow Supervisory Control And Data

Acquisition (SCADA) and Human Machine Interface (HMI) to access industrial process

7.2 Introduction to OPC-UA 77

data in a standardized way. The result was the creation of Open Platform Communications

(OPC) (henceforth referred to as OPC Classic), which allows the exchange of pure process

variables. Initially, the operating principle was based on Microsoft’s Component Object

Model (COM) and Distributed Component Object Model (DCOM) technology designed

for communication between software in networked computers. OPC Classic works as

an Object Linking and Embedding (OLE) in which a Windows application is linked

and communicates with industrial equipment. Industrial devices communicate through

the same Windows machine using COM and communicate with other devices in the

network using DCOM. While the use of standardized Microsoft technologies was a

strength in the adoption of OPC Classic by providing a unique Application Programming

Interface (API) for Windows systems, on the other hand, it was one of the main

reasons why OPC Classic quickly gave way to the modern version by Open Platform

Communications-Unified Architecture (OPC-UA). OPC Classic’s biggest drawback was

the restrictions on the Windows operating system. With the development of Ethernet

based communication systems also in embedded devices and with the introduction to

cloud–based computing, being bound to a single hardware/software platform was not a

viable solution. Furthermore, the growing increase in size and complexity of industrial

plants, more often composed of heterogeneous devices, required the exchange of more

complex and structured information.

7.2.2 Open Platform Communication - Unified Architecture

Open Platform Communications-Unified Architecture (OPC-UA), formally released in

its first version in 2006, is a vendor independent platform with an object–oriented

architecture that integrates and extends the functionality of the original OPC Classic.

The main features of OPC-UA are

• Backward compatibility: OPC-UA provides backward compatibility with OPC

Classic functionality by replacing the COM–based system but without losing any

of the featured or performance.

• Platform Independent: the entire OPC-UA architecture has been redesigned to be

used in any hardware and software architecture. These include PCs, cloud–based

services, and microcontrollers, whatever the operating system used.

• Security mechanism: The opening of OPC-UA towards internet and cloud–based

services made it necessary to introduce encryption, authentication, and user control

systems.

78
Assessment of Different OPC UA Implementations for Industrial IoT-Based

Measurement Applications

• Information Model: The information is structured in such a way as to give an easy

semantic understanding of the structure of a complex system.

TCPHTTP

Security Layer

XML UA Binary

Client/Server API

OPC-UA Stack

Figure 7.1: OPC-UA stack

The main elements that make OPC-UA highly interoperable and able to work in

a large variety of systems are the transport mechanism and data modeling. In OPC-

UA, the COM and DCOM transport protocols have been completely replaced by other

transport protocols, namely TCP and Web Services, which represent the state of the art

for reliable, secure, and platform independent communications. As shown in Figure 7.1,

all messages coming from the API are encoded, encrypted by the security layer, and

then sent with the transport mechanisms according to the encoding type that is being

used. UA Binary represents the more optimized version of OPC-UA, where information

is binary serialized and then sent as a TCP stream. This technique presents a low

overhead, making it suitable for processing parameters between industrial embedded

controllers. On the other hand, the traffic generated, which is usually encrypted and

non-human-readable, can be blocked by a firewall, thus making communication via the

internet difficult. To overcome this problem, another transport protocol called Web

Services has been implemented, in which the information to be exchanged is encoded as

an eXtensible Markup Language (XML) structure and then sent via SOAP/HTTP in the

same way as Web browsers communicate to Web servers. Both encodings share the same

security layer responsible for the encryption. It defines two security protocols, namely

WS-SecureConversation and UA-SecureConversation, both based on a certificate-based

connection establishment. WS-SecureConversation is mainly conceived to work with

SOAP/HTTP and thus with the XML encoding. The major drawback is the relatively

high overhead it introduces, which may represent a bottleneck in time-critical applications.

In this regard, UA-SecureConversation represents a more suitable solution since the

7.2 Introduction to OPC-UA 79

encryption based on TLS is more optimized.

Data modeling is necessary to define the basic rules with which OPC-UA exposes

information. Indeed, OPC-UA is based on a client–server relationship, in which the

information is structured following an object–oriented model, where objects are formally

referred to as “nodes”.

Node

Node

Node

Attributes
NodeId

NodeClass

...

V ariableT ype

V alue

...

Variables

...()

...()

...()

Methods

Object

Data change
notification

NodeId

NodeClass

...

Attributes

Reference
...

Root

Read/Write

Call

Event notification

Address Space

Reference
...

...

...

Figure 7.2: OPC-UA Information Model

As can be seen in Figure 7.2, conversely to OPC, where only pure data could be

exchanged, the OPC-UA model defines the nodes’ objects in terms of attributes, variables,

methods, and references. A Node is the fundamental entity of OPC-UA and represents a

basic object with only the attributes necessary to define any kind of information item

(e.g., ID, name, etc.), reference to other objects, and methods that can be invoked. The

set of nodes made available by an OPC-UA server is referred to as the address space

(Damm, Leitner, and Mahnke (2009)). This structure, proper of the Object Oriented

Programming (OOP), allows defining hierarchies and inheritance with which it is possible

to arrange nodes in a way the final structure mimics a physical entity. In this way, the

devices that want to access the device data can hierarchically navigate its structure,

discovering what are the functions and data it exposes and their semantic description.

To access the information stored within the nodes, OPC-UA provides for a number

82
Assessment of Different OPC UA Implementations for Industrial IoT-Based

Measurement Applications

TSN enable seamlessly OPC-UA to operate in a real–time behavior while maintaining

the full protocol stack. Furthermore, the combination of OPC-UA PubSub with TSN

replicates, to some extent, the simplified ISO/OSI structure found in RTE networks,

resulting in increased determinism and real–time capabilities.

OPC UA Device Type Information Model

OPC UA Basic Device Type Information Model

OPC UA Client-Server OPC UA Pub-Sub

OPC UA TCP, NetConf OPC UA UA UADP

TLS

TCP UDP

IP

IEEE 802.1 (incl. TSN) + IEEE 802.3 (LLDP, PTP)

Application
Layer 7

Presentation
Layer 6

Session
Layer 5

Trasport
Layer 4

Network
Layer 3

Datalink
Layer 2

Figure 7.5: OPC UA TSN in the ISO/OSI layer reference model (Bruckner et al. (2019)).

7.3 OPCUA in distributed measurement applications

In the context of IIoT-based measurement applications, the OPC-UA protocol can be

profitably exploited to allow seamless and secure interoperability among the heterogeneous

sources of measurement data, and the heterogeneous communication networks. Indeed,

measurements can be stored by nodes that belong to one or more servers so that they

can be seamlessly accessed by distributed clients using, for example, the aforementioned

service sets. An illustrative sketch representing the described scenario is reported in

Figure 7.6. As can be seen, measurements stored in different devices, and structured

within diverse OPC-UA servers, can be remotely accessed by an OPC-UA client, which

implements techniques of real–time analysis and visualization.

7.4 Measurement Results and Analysis 85

the commit hash of the sources at the time the experiments were performed.

All the listed protocol stacks work natively on Raspberry Pi boards, and consequently,

their setup procedures have not involved any further software adaptation. However,

they are conceptually different. In particular, as can be seen, two out of four stacks are

implemented using compiled languages (C/C++), whereas the other ones are implemented

in, respectively, Python and Java, which are high level interpreted languages. As a

consequence, the analysis of their behaviors reveals necessary to provide useful insights

for the applications that use them. In this direction, since the outcomes of the experiments

also depend on the adopted development environment, the most relevant technical details

are summarized below:

• Python version 3.5.3;

• openJDK 1.8;

• glibc 2.23;

• gcc version 6.3.0;

• gcc optimization option: -O3 -s.

Finally, it has to be pointed out that other valuable OPC-UA implementations are

available (either free of charge or commercial) that could have been considered in our work.

For example, Eclipse Milo, ASNeG OPC-UA, OpenOpcUa, High Performance OPC-UA,

to mention some. In this regard, an interesting overview of such solutions is provided in

Haskamp, Meyer, Möllmann, Orth, and Colombo (2017). However, our analysis aims to

investigate the behavior of OPC-UA in the context of IIoT based measurement systems,

not to provide a comparison of different OPC-UA implementations. For this reason,

we selected among the available solutions listed in Table II, paying attention to their

diversity so that the proposed assessment can result adequately comprehensive.

7.4 Measurement Results and Analysis

The objective of the measurements is to assess the behavior of the diverse different

OPC-UA implementations focusing on performance figures that are of interest for IIoT-

based measurement instruments and applications. Specifically, we addressed the CPU

usage, power consumption, and task execution times. The latter indicator is of particular

significance in the application context of this chapter since it has reflects the overall latency

with which measurement data can be collected at the client, and is hence a meaningful

86
Assessment of Different OPC UA Implementations for Industrial IoT-Based

Measurement Applications

indicator of the intrinsic capability of the system to sustain real-time measurement

analysis over networks (Ooi and Shirmohammadi (2020)).

7.4.1 CPU Usage

The first set of outcomes is resumed in Table 7.2, which shows the statistics about the

CPU usage for the three considered implementations.

CPU Usage

Mean
In Kernel

Space
In User
Space

Open62541 17.2% 60.89% 39.11%
FreeOPC UA C++ 26.1% 50.63% 49.37%
FreeOPC UA Python 51.2% – –
Prosys Java 50.9% – –

Table 7.2: Statistics of the CPU Usage.

As can be seen, Open62541 is the most efficient from the average resources utilization

point of view, followed by FreeOPC UA C++ and FreeOPC UA Python. The latter

one highlighted a rather higher utilization compared to the other ones. However, this

is not surprising since FreeOPC UA Python and Prosys Java are based on interpreted

languages that are undoubtedly less efficient. It is interesting to note that, for the

Open62541 implementation, the subdivision of the used resources of the CPU is slightly

unbalanced towards the Kernel Space, while for FreeOPC UA C++, we have a subdivision

almost at 50%. Unfortunately, values for FreeOPC UA Python and Prosys Java are not

available because the tool Perf, with which the analysis was performed, does not support

measurements of the stack of interpreted languages.

7.4.2 Read and Write Services

The experiments we carried out to test the OPC-UA read and write services were based

on a purposely developed test OPC-UA task, with which the OPC-UA client reads an

integer variable stored in the OPC-UA server. In the first session, we focused on open

source implementations. In this task, the server implements two separate threads, as

shown in Figure 7.8. Thread A simulates the acquisition of a new measurement (i.e., a

physical quantity) every second by increasing an integer variable. Thread B is instead

devised to manage the whole OPC-UA server. The measurement outcome, stored in an

OPC-UA object, is saved in a memory area common to both threads so that the server

can access it. In the test task, the OPC-UA client cyclically reads the variable’s value

7.4 Measurement Results and Analysis 87

stored on the server. This is accomplished by a read request issued by the client, to

which the server answers in agreement with the OPC-UA protocol rules.

Server
Client

Thread A:

Acquisition
of a variable

from the sensor

Thread B:

OPC UA
Server Stack

Common
memory

area

OPC UA
Client Stack

Read

request

Response with

variable object

Figure 7.8: Test Task for OPC UA.

The outcomes relevant to the CPU usage for the read and write services are reported

in Table 7.3. The table refers to context switches, CPU migrations, and the total number

of CPU cycles to complete the execution of 100.000 consecutive OPC-UA test tasks.

These outcomes are common indices exploited to determine the efficiency of a program,

where high values indicate poor optimization and, therefore, long execution times. The

results are in good agreement with those shown in subsection 7.4.1. Also in this case,

both the compiled implementations have comparable values, whereas both the Python

and Java based ones show much higher values regarding, in particular, the number of

CPU cycles.

context
switches

CPU
migrations

CPU
cycles

Open62541 100 · 103 1 7.7 · 109

FreeOPC UA C++ 200 · 103 0 13 · 109

FreeOPC UA Python 283 · 103 29 533 · 109

Prosys Java – – 174 · 109

Table 7.3: CPU usage for the OPC UA test task.

To assess the performance of the read and write services, we measured the task

execution time, Ts, defined as the time necessary to complete one instance of the OPC-UA

test task described in Figure 7.8. Specifically, Ts represents the time that elapses between

the read request of the client, Treq, and the time at which it actually receives the OPC-UA

object containing the variable, Tres.

Ts = Tres − Treq (7.1)

88
Assessment of Different OPC UA Implementations for Industrial IoT-Based

Measurement Applications

In the experiments, Ts has been measured by direct access to the content of the Cycle

Counter Register (CCR), an internal CPU register implemented within ARM processors,

which is a counter of the processor clock cycles. This design choice is significant to improve

the accuracy relevant to the measurement of the task execution time because accessing

the CCR register requires only one CPU cycle as specified in the Arm Architecture

Reference Manual, hence introducing a negligible impact on the evaluation of the time Ts.

The OPC-UA test task was run continuously, meaning that a new instance of the task was

started immediately after the conclusion of the former one. In the Ethernet configuration,

the selected transmission rate was 100 Mbit/s whereas, for the Wi-Fi one, we chose

the IEEE 802.11g mode, with transmission rate dynamically selected by the multi–rate

support feature provided by such protocol1. For each experimental session, N = 100.000

measurements of the execution time have been collected and analyzed. Furthermore, all

the components of the experimental setup were located sufficiently close to each other

to ensure, particularly for the Wi-Fi configuration, a high success probability in packet

delivery. This has been subsequently confirmed by the traffic analysis we carried out,

that showed a very low number of packet retransmissions and losses, with an average of

about 3.6%.

The statistics of the execution time for the OPC-UA test task are reported in Table 7.4

for the case of non–isolated CPU and, respectively, in Table 7.5 for the isolated one.

Execution Time Ts [µs]

Generic OS RT OS

Mean Std Mean Std

Ethernet
Open62541 312.83 12.56 382.48 24.44
FreeOPC UA C++ 377.30 4.54 467.59 15.01
FreeOPC UA Python 736.79 7.44 778.43 20.63

Wi-Fi
Open62541 2036.12 501.60 3765.62 924.52
FreeOPC UA C++ 2063.38 488.10 3869.62 907.36
FreeOPC UA Python 9274.24 750.59 12824.94 3901.25

Table 7.4: Statistics of the Execution Time for the OPC UA Test Task – Non–Isolated CPU.

At first glance, the beneficial effect of introducing CPU isolation appears clear.

Indeed, as shown in Table 7.5, all mean values decrease when such a feature is used. The

behavior of standard deviations is similar, with an exception relevant to the Open62541

implementation. In this case, a slight increase (from 12.56 to 12.76 µs) is observed
1Please note that the multi–rate support feature could not be disabled on Raspberry Pi boards.

7.4 Measurement Results and Analysis 89

Execution Time Ts [µs]

Generic OS RT OS

Mean Std Mean Std

Ethernet
Open62541 306.67 12.76 368.78 10.13
FreeOPC UA C++ 374.74 3.32 457.60 11.32
FreeOPC UA Python 711.27 6.52 735.84 9.69

Wi-Fi
Open62541 1950.29 460.55 3431.68 886.28
FreeOPC UA C++ 2017.71 457.51 3656.67 902.52
FreeOPC UA Python 9031.62 713.10 12463.11 3807.16

Table 7.5: Statistics of the Execution Time for the OPC UA Test Task – Isolated CPU.

when switching from the non–isolated case to the isolated one. We believe this aspect

may be explained by the low average execution time of the Open62541 implementation.

Indeed, we have checked that only the 30% of the CPU time was necessary to execute

the Open62541 stack. Thus, both the task execution time and its variability are mostly

determined by the execution times of unbounded kernel threads (e.g., those concerned

with the TCP/IP protocol suite, the network drivers, etc.), as well as by the network

transmission times, that do not benefit from the CPU isolation.

The results shown in Table 7.5 are confirmed by the probability density functions

obtained experimentally Empirical Probability Density Function (EPDF)), reported for

the Ethernet configuration, respectively, in Figure 7.9 (generic operating system) and

in Figure 7.10 (RT operating system). As can be seen, the CPU isolation improves the

EPDF shapes in most cases.

The tests on the Wi-Fi configuration revealed similar trends, as shown in Table 7.4

and Table 7.5 and both Figure 7.11 and Figure 7.12. In particular, the benefits brought

by the CPU isolation are evident. As can be seen, both mean and standard deviation are

greater with respect to the Ethernet case. This is due to the longer packet transmission

times as well as to the possible retransmissions (interleaved by random backoff times)

that could be necessary to successfully deliver a packet. Also, as Seno, Tramarin, and

Vitturi (2012) discussed, the task execution time is further negatively influenced by the

Access Point, which may introduce additional, non negligible, delays and randomness.

The introduction of the RT operating system, in general, worsened the behavior

of the OPC-UA test task execution time, as can be evinced from the statistics and

the EPDF reported above. Actually, the mean values are higher for all the OPC-UA

implementations with respect to the correspondent cases in which the generic OS is

used. The same happens for the standard deviation, with the unique exception of the

90
Assessment of Different OPC UA Implementations for Industrial IoT-Based

Measurement Applications

270 280 290 300 310 320 330 340 350 360 370 380

0

5

10

·10−2

Ts [µs]

E
m

pi
ri

ca
l

P
D

F Without cpu isolation
With cpu isolation

(a) Open62541

340 350 360 370 380 390 400 410 420

0

10

20

·10−2

Ts [µs]

E
m

pi
ri

ca
l

P
D

F

(b) FreeOPC UA C++

700 710 720 730 740 750 760 770 780 790

0

5

10
·10−2

Ts [µs]

E
m

pi
ri

ca
l

P
D

F

(c) FreeOPC UA Python

Figure 7.9: Generic OS: EPDF of the execution time of the OPC UA test task for the Ethernet
configuration. Blue line: configuration without CPU isolation. Red line: configuration with
CPU isolation enabled, where both server and client are forced to run on the isolated CPU.

Open62541 implementation (in this case, the value decreases from 12.76 to 10.13 µs when

the RT OS is used). However, as already pointed out, these values, for the Open62541

implementation, are mostly influenced by the times necessary to execute unbounded

kernel threads.

Although the worsening observed when the RT operating system is used may seem

surprising, it may be explained by making some considerations about the introduction of

7.4 Measurement Results and Analysis 91

340 350 360 370 380 390 400 410 420 430 440 450 460 470

0

5

10

15
·10−2

Ts [µs]

E
m

pi
ri

ca
l

P
D

F Without cpu isolation
With cpu isolation

(a) Open62541

420 430 440 450 460 470 480 490 500 510 520 530 540 550 560

0

2

4

6

·10−2

Ts [µs]

E
m

pi
ri

ca
l

P
D

F

(b) FreeOPC UA C++

710 720 730 740 750 760 770 780 790 800 810 820 830 840 850 860

0

2

4

6

8

·10−2

Ts [µs]

E
m

pi
ri

ca
l

P
D

F

(c) FreeOPC UA Python

Figure 7.10: RT OS: EPDF of the execution time of the OPC UA test task for the Ethernet
configuration. Blue line: configuration without CPU isolation. Red line: configuration with
CPU isolation enabled, and where both server and client are forced to run on the isolated

CPU.

the Linux real–time extension. As shown in Table 7.2, all the considered implementations

of the OPC-UA protocol stack make extensive use of the kernel functions, especially

those concerning network connectivity. Nonetheless, the real-time patch makes some

parts of the kernel preemptable, thus leaving more space for executing instructions in

the userspace. Thus, the stack execution could be interrupted more frequently, resulting

in longer execution times and greater jitter. Furthermore, as reported in LeMaRiva|Tech,

92
Assessment of Different OPC UA Implementations for Industrial IoT-Based

Measurement Applications

1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7

·103

0

5

10
·10−2

Ts [µs]

E
m

pi
ri

ca
l

P
D

F Without cpu isolation
With cpu isolation

(a) Open62541

1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6

·103

0

5

10
·10−2

Ts [µs]

E
m

pi
ri

ca
l

P
D

F

(b) FreeOPC UA C++

0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 1.02 1.04

·104

0

2

4

6

·10−2

Ts [µs]

E
m

pi
ri

ca
l

P
D

F

(c) FreeOPC UA Python

Figure 7.11: Generic OS: EPDF of the execution time of the OPC UA test task for the
Wi-Fi configuration. Blue line: configuration without CPU isolation. Red line: configuration
with CPU isolation enabled, where both server and client are forced to run on the isolated

CPU.

the application of the Linux real–time extension has negative effects on the throughput

of the communication interface. This is confirmed by the traffic analysis that showed, in

the worst case, an increment of 2.8 times of packet retransmissions.

Focusing on the stack implementations, the obtained results show that both the

compiled versions, Open62541 and FreeOPC UA C++, are characterized by comparable

average values of the OPC-UA test task execution time. Conversely, the average Ts

7.4 Measurement Results and Analysis 93

1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5

·103

0

2

4

6

8

·10−2

Ts [µs]

E
m

pi
ri

ca
l

P
D

F Without cpu isolation
With cpu isolation

(a) Open62541

1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2

·103

0

5

10
·10−2

Ts [µs]

E
m

pi
ri

ca
l

P
D

F

(b) FreeOPC UA C++

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

·104

0

2

4

·10−2

Ts [µs]

E
m

pi
ri

ca
l

P
D

F

(c) FreeOPC UA Python

Figure 7.12: RT OS: EPDF of the execution time of the OPC UA test task for the Wi-Fi
configuration. Blue line: configuration without CPU isolation. Red line: configuration with
CPU isolation enabled, and where both server and client are forced to run on the isolated

CPU.

is much higher (about doubled) for the FreeOPC UA Python implementation, as was

expected since Python is an interpreted language. This aspect is exacerbated for the

Wi-Fi configuration. As far as the standard deviation is concerned, with the Ethernet

configuration, Open62541 presents higher values than both FreeOPC UA C++ and

FreeOPC UA Python, especially as percentage of the mean, reflecting in a considerable

jitter of the execution time. This feature is evident for the generic operating system,

94
Assessment of Different OPC UA Implementations for Industrial IoT-Based

Measurement Applications

whereas it appears more vague for the RT operating system, likely due to the additional

randomness introduced by this latter one. A similar consideration can be made for the

Wi-Fi configuration. In this case, as can be seen, both the mean and standard deviation

are increased with respect to Ethernet. However, the standard deviation values become

comparable, especially for Open62541 and FreeOPC UA C++, likely as an effect of the

randomness in accessing the physical medium introduced by Wi-Fi.

The final experiments of the read and write services were concerned with the Prosys

Java implementation. Due to space limitations, we considered only the (most meaningful)

case of generic OS over Ethernet. The EPDF of the test task execution time is shown

in Figure 7.13, whereas the statistics are reported in Table 7.6. As can be seen, both

mean and standard deviation are considerably higher with respect to the open source

implementations, confirming the trend already observed when an interpreted language

(Java in this case) is used. Also, the EPDF shown in Figure 7.13 evidence the high

variability of Ts, which is only partially mitigated by the CPU isolation.

2,4502,5002,5502,6002,6502,7002,7502,8002,8502,9002,9503,0003,050

0

2

4

·10−2

Ts [µs]

E
m

pi
ri

ca
l

P
D

F Without cpu isolation
With cpu isolation

Figure 7.13: EPDF of the execution time of the OPC-UA test task for the Prosys Java
implementation on Ethernet with Generic OS.

Execution Time Ts [µs]

Without
CPU Isolation

CPU Isolation

Mean Std Mean Std
2793.19 348.50 2648.31 280.13

Table 7.6: Statistics of the Execution Time for the OPC-UA Test Task for the Prosys Java
implementation on Ethernet with Generic OS.

7.4 Measurement Results and Analysis 95

7.4.3 Subscription Services

In this session of experiments, we addressed the OPC-UA subscription services. Similar to

the last test of the previous subsection, we considered the case of generic OS over Ethernet.

Moreover, we focused on only one open source implementation, namely Open62541, and

on the Prosys Java proprietary solution. Notably, Open62541 revealed the most effective

open source implementation among those addressed in the previous subsection. Also, as

discussed in Palm, Gruener, Pfrommer, Graube, and Urbas (2015) and Pfrommer (2016),

Open62541 is well supported and suitable for applications in the IIoT scenario.

Subscription services are completely asynchronous and let the server notify changes

in its nodes. Referring to Figure 7.8, we associated a monitoring item to the sensor value

simulated by Thread A. In this way, the server checks the data source with a period

defined by the “Sampling Interval” and, when the publishing interval elapses, it sends a

“Publish Response” message containing the notification of data change. Then the client

acquires the data and sends a “Publish Request” message that acknowledges the received

data.

To assess the performance of the subscription service for the Open62541 implemen-

tation, we evaluated the delivery time, defined as the time employed by the client to

acquire data published by the server. The measurements have been carried out as follows.

When the publish response message is ready to be transmitted, the server sets one of

the GPIO pins of the Raspberry Pi. Similarly, when the client receives the message at

the application level, it sets one of its GPIO pins. The interval elapsed between the

generation of the two consecutive signal edges represents the delivery time. This type of

measurement also has the advantage of not requiring the systems to be time synchronized.

In this experiment, 6000 measurements have been collected and analyzed.

On the server, both the publishing interval and sampling interval have been set

to 100 ms, which is the minimum selectable value on the default implementation of

Open62541, whereas the update interval of Thread A has been set to 30 ms. It is

important to note that these values are not imposed by the OPC-UA standard, but

rather by the implementations to limit computational complexity. The signal edges of

the GPIO have been acquired by a logic analyzer with a sample rate of 24 MHz.

The EPDF of the delivery time is shown in Figure 7.14, whereas its statistics are

provided in Table 7.7. Although an effective comparison with the results of the read and

write services reported in Subsection 7.4.2 can not be done (the adopted measurement

techniques had to be necessarily different), it may be observed that the delivery time has,

on average, lower values than the task execution time of the read service. This can be

explained considering that, with the subscription services, a single message transmission

96
Assessment of Different OPC UA Implementations for Industrial IoT-Based

Measurement Applications

210 220 230 240 250 260 270 280 290 300 310 320 330
0

0.5

1

1.5

2
·10−2

Ts [µs]

E
m

pi
ri

ca
l

P
D

F Without cpu isolation
With cpu isolation

Figure 7.14: EPDF of the delivery time for the subscription service – Open62541 implemen-
tation over Ethernet with Generic OS.

Delivery Time [µs]

Without
CPU Isolation

CPU Isolation

Mean Std Mean Std
267.77 24.55 255.68 22.59

Table 7.7: Statistics of the delivery time for the subscription service Open62541 implementa-
tion over Ethernet with Generic OS.

by the server is sufficient to make the measured data available to the client. Conversely,

the jitter increases with respect to the read service for the Open62541 implementation.

For the same considerations made in Subsection 7.4.2, we believe this is most likely due

to the execution of unbounded kernel threads that may heavily impact the behavior of

the delivery time. As a final observation, the CPU isolation is also beneficial in this case.

Moving to the Prosys Java implementation, an analogous procedure to evaluate the

delivery time could not be used since, for such a proprietary implementation, it has

not been possible to modify the stack core to set the GPIO pins. Thus, we resorted

to analyze the timestamps of the messages exchanged over the network, acquired with

Wireshark. The delivery time has been hence determined as the time interval between

the generation of the publish response message and the arrival of the acknowledgment

generated by the client.

The EPDF of the delivery time is shown in Figure 7.15, whereas the statistics are

reported in Table 7.8.

As can be seen, also in this case, the subscription service appears more efficient than

the read one (although, as already pointed out for the Open62541 implementation, an

effective comparison can not be made). Indeed, the mean time necessary to acquire a

measurement by the client is definitely lower than that shown in Table 7.6 for the read

service. Also, the beneficial effect of the CPU isolation is evident.

7.4 Measurement Results and Analysis 97

220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540

0

1

2

3
·10−2

Ts [µs]

E
m

pi
ri

ca
l

P
D

F Without cpu isolation
With cpu isolation

Figure 7.15: EPDF of the delivery time for the subscription service – Prosys Java imple-
mentation over Ethernet with Generic OS..

Execution Time Ts [µs]

Without
CPU Isolation

CPU Isolation

Mean Std Mean Std
434.33 47.57 401.53 24.84

Table 7.8: Statistics of the delivery time for the subscription service Prosys Java implemen-
tation over Ethernet with Generic OS.

7.4.4 PubSub Communication Profile

In a final experimental session, we addressed the OPC-UA PubSub communication model.

Currently, PubSub is only supported by Open62541 and, although it provides all the

main methods, it is an experimental version still under heavy development. Similarly

to the subscription services carried out for Open62541, the server has been configured

to publish a message every 100 ms. These messages were sent to a message oriented

middleware via UDP multicast transmissions using the UADP encoding rather than using

the full stack implementation which, as previously discussed and shown in Figure 7.5,

should theoretically decrease communication time and improve real–time capabilities. As

for Open62541, we measured the delivery time as the difference between the generation

of the two consecutive signal edges on the GPIO pins. The EPDF of the delivery time

and its statistics are reported respectively in Figure 7.16 and Table 7.9. Contrary to

expectations, with the use of PubSub, there is a remarkable worsening of performance

with respect to the subscription services. Indeed both mean and jitter values increase

considerably. This is an unexpected result since the PubSub communication model has

been conceived to minimize protocol overhead and hence to reduce the transmission times

between publishers and subscribers. Thus, there are no logical explanations for these

outcomes. We suppose the problem is because the PubSub implementation of Open62541

98
Assessment of Different OPC UA Implementations for Industrial IoT-Based

Measurement Applications

is still under development.

260 280 300 320 340 360 380 400 420 440 460 480 500 520 540
0

0.5

1

1.5

2
·10−2

Ts [µs]

E
m

pi
ri

ca
l

P
D

F Without cpu isolation
With cpu isolation

Figure 7.16: EPDF of the pubsub transmission time for the Open62541 implementation on
Ethernet with Generic OS.

Delivery Time Ts [µs]

Without
CPU Isolation

CPU Isolation

Mean Std Mean Std
384.77 43.93 376.28 43.69

Table 7.9: Statistics of the delivery time for the pubsub communication profile over Ethernet
with Generic OS.

7.4.5 Power Consumption

One of the main issues concerned with, possibly mobile, battery powered devices is the

autonomy. Indeed, such devices have to ensure a good level of performance for a given

amount of time. To meet these requirements, modern processors are capable of DVFS

to minimize their power consumption and, consequently, extend the battery lifetime

(Howard, Dighe, Vangal, Ruhl, Borkar, Jain, Erraguntla, Konow, Riepen, Gries, Droege,

Lund-Larsen, Steibl, Borkar, De, and Van Der Wijngaart (2011)). In the Raspberry PI

boards used in the experimental setup, the DVFS functionality is driven by a default

kernel governor, called ondemand, that dynamically adjusts the CPU frequency according

to the workload variation. Specifically, if the workload exceeds a predefined threshold for

a certain amount of time, then the governor increases the CPU operating frequency to

its maximum value. Conversely, if the workload is below the threshold, the operating

frequency is switched to the lowest feasible one (Karpowicz (2016)). This approach

clearly, represents an optimal trade-off between performance and power consumption in

a generic processing system.

100
Assessment of Different OPC UA Implementations for Industrial IoT-Based

Measurement Applications

for both average and standard deviation values. However, the time necessary to complete

the experimental session increases, by almost 10%, as a result of the continuous CPU

frequency adjustments caused by the workload variations. Thus, at first glance, it might

not be worth maintaining the governor enabled since the benefits achieved in terms of

power savings may result nullified by the performance degradation. However, a decision

in this direction has to consider other aspects, such as the specific devices adopted and

the performance requirements.

A further observation can be made with respect to the current consumption in idle

state. Table 7.10 clearly shows only a limited increase of the current consumption when

moving from this state to that in which experiments were executed, regardless of the

governor status (enabled or disabled). This may be explained considering that Open62541

uses very low CPU resources that, evidently, are not sufficient to imply a remarkable

variation in current consumption, as confirmed by the results presented in Table 7.2.

Finally, we carried out additional tests for the subscription service set and PubSub

communication profile. In both cases, we measured the power consumption for the

Open62541 implementation, over Ethernet, with the governor disabled. The analysis,

actually, has not revealed any significant change with respect to the former measurements.

7.5 Conclusion and Future works

In this chapter, we considered the case of IIoT measurement applications and proposed the

adoption of the OPC-UA protocol to enable seamless interoperability when heterogeneous

sources of measurement data coexist, sharing information over the network. We focused on

four widespread implementations of the protocol to analyze their impact on a networked

measurement system, mainly in terms of latency and power consumption. A reproducible

and effective measurement setup has been designed that allowed to carry out a thorough

assessment, thus providing a complete characterization of OPC-UA for network-based

measurement instrumentation systems.

Meaningful results have been obtained, also allowing to provide some interesting

implementation guidelines. For instance, it has been verified that using a real-time

operating system does not bring specific advantages whereas, in general, the best perfor-

mances are achieved with a generic operating system exploiting the CPU isolation for

the measurement application.

Furthermore, in compliance with modern IIoT-based applications, we considered the

case of battery powered wireless measurement systems, thus providing some valuable

insights about the expected power consumption in some selected and relevant cases.

7.5 Conclusion and Future works 101

Indeed, the measurement campaign highlighted that the DVFS feature should be enabled,

allowing for lower power consumption without compromising the performance.

The current work opens up to future analysis. For instance, power consumption also

depends on intrinsic parameters of the accumulator and environmental conditions, hence

requiring a more extensive experimental campaign focused on mobile battery powered

measurement instruments. In addition, the proposed experimental setup for latency

analysis seems to be overkill for small integrated smart sensors. Hence, we plan to test

the framework on low power embedded devices, like widespread microcontrollers with no

operating systems.

102
Assessment of Different OPC UA Implementations for Industrial IoT-Based

Measurement Applications

8
Conclusions

The IIoT ecosystems are rapidly expanding towards devices and applications requiring

strict timeliness, a relatively high safety, and data contextualization. Consider, for

example, autonomous collaborative robots whose safe operation is determined by a correct

exchange of process data, often wirelessly, and the coordination between distributed

sensors and controllers. These features require the development and deployment of

high-performance communication networks capable of interconnecting many distributed

devices. Furthermore, the need for increasingly strict safety requirements may easily

represent a bottleneck for the large scale adoption of Industry 4.0 concepts. Thus, there

is a growing necessity in providing and assuring a real-time exchange of information

to guarantee safe operations. Moved by these considerations, our contribution mainly

focused on studying the challenges in IIoT enabled safety communication systems and

distributed measurements systems.

In Chapter 2, we illustrated how the panorama of safety communication protocols in

the industrial sector is decidedly broad. Unfortunately, most industrial RTE networks

include their own safety extension, none of which are originally intended to operate over

wireless networks. On the other hand, the design characteristics of most of these protocols

open up the concrete possibility of being able to use them on means of communication

other than those for which they were designed. Indeed, the functional safety protocols

defined by IEC 61784-3 have been designed assuming the underlying communication

104 Conclusions

system behaves like a black channel. With such an approach, the safety nodes are not

aware of the channel features, nor of the industrial network they rely on, except for the

service primitives necessary to data transmission.

From these assumptions, in Chapter 3, we investigated the possibility of using Fail

Safe over EtherCAT (FSoE) on IEEE802.11. The safety protocol stack was implemented

and tested on two experimental setups, the first with embedded devices without an

operating system, while the second was on devices equipped with an operating system

and higher computational capacity. In both cases, the results of the experiments confirm

the potential effectiveness of the black channel approach, as they demonstrate the

possibility of implementing the FSoE protocol on a network for which it was not explicitly

designed, without any modification to the protocol itself. This achievement can be likely

extended to the other protocols that adopt the same approach, e.g., those defined by

IEC 61784-3. Although the polling time proved adequate for soft real–time applications,

the number of lost packets was too high, concluding that the SIL3 can not be reached.

The use of a transport protocol such as UDP that does not include any flow control and

quality of service management is certainly one of the causes of the high packet loss.

In Chapter 4, we investigated the use of other transport protocols for the encapsulation

of safety PDUs. While TCP seems like the obvious choice from this point of view, the

lack of broadcast addressing could make it difficult to use in some applications. We have

therefore proposed a protocol agnostic caching layer that implements the retransmission

and management of duplicate frames. In our implementation, the layer was interposed

between UDP and FSoE. The effectiveness of these protocols was assessed by measuring

the number of lost packets in a simulated and real transmission channel, as well as

monitoring the impact on the polling time. Both TCP and caching layer implementations

have outperformed UDP, drastically lowering packet loss. The impact of TCP on the

polling time was more evident, while the introduction of the caching layer has practically

irrelevant effects. The results obtained are a further step towards implementing IIoT

enabled safety critical wireless systems, as it has been possible to achieve levels of

reliability very similar to those of a wired network.

Field testing of distributed functional safety systems is not always a feasible operation.

For this reason, Chapter 5 deals with the implementation and calibration of a functional

safety over wireless simulation model in OMNeT++. The calibration was done using

measurements conducted in an experimental setup specifically designed for this purpose.

The error channel model and polling time have been calibrated for various transmission

channel conditions. The comparison with the experimental measurements and the tests

conducted on a simulation with multiple nodes revealed a good calibration of the simulator.

105

However, further extensive tests are required for precise and complete validation.

Chapter 6 deals with creating a framework for the calculation and estimation of

the Safety Function Response Time (SFRT). This metric is particularly incisive in the

assessments of safety critical communication networks as it allows to estimate in the

worst case what is the time to force the entire system to a fail-safe condition in case of

communication errors or requests for execution of safety functions. In this chapter, we

have proposed the modification of the SFRT equations defined in IEC 61784-3-3 for the

specific use case with FSoE on Wi–Fi. Using these equations and the results of Chapter

5, it was possible to calculate the SFRT and verify, through the calibrated simulator, that

these were comparable. Finally, the SFRT was evaluated in a real industrial use scenario

that includes four mobile safety nodes. It has been shown how, even in the case of

communication errors, the entire system can be forced to a safe state in a reasonable time,

thus proving the feasibility, from a practical point of view, in using wireless networks in

safety critical contexts.

Chapter 7 concludes the thesis with the assessment of different OPC-UA imple-

mentations for industrial IoT-based measurement applications. One of the concerns

about OPC-UA is that its intrinsic high complexity can represent a bottleneck when

used in low power distributed measurement systems. Various implementations of this

protocol were then tested, and the CPU usage, cycle time, and power consumption on

different operating system and communication network configurations were evaluated

as key performance indexes. Generally speaking, it has been seen that the adoption of

OPC-UA in distributed sensors is generally feasible both on wired and wireless networks.

However, the use of the latter leads to an increase in cycle times and a decrease in

determinism. This problem can be mitigated for both types of networks by using a

combination of real–time operating systems and CPU isolation to reduce the disturbance

effect of other competing processes to the measurement one. Positive results also emerged

from the energy consumption point of view. Regardless of the communication network,

it has been seen that the implementations based on compiled languages (C, C++) have a

computational efficiency that potentially allows the use of battery-powered sensors even

for long periods.

106 Conclusions

References

References 109

Abukwaik H., Gogolev A., Groß C., and Aleksy M. OPC UA Realization for

simplified commissioning of adaptive sensing applications for the 5G IIoT. Internet of

Things, 11:100221, September 2020. ISSN 25426605.

Adame T., Carrascosa M., and Bellalta B. Time-Sensitive Networking in IEEE

802.11be: On the Way to Low-latency WiFi 7. arXiv:1912.06086 [cs], November 2020a.

Adame T., Carrascosa M., and Bellalta B. Time-Sensitive Networking in IEEE

802.11be: On the Way to Low-latency WiFi 7. arXiv:1912.06086 [cs], November 2020b.

Åkerberg J., Reichenbach F., and Björkman M. Enabling safety-critical wireless

communication using WirelessHART and PROFIsafe. In 2010 IEEE 15th Conference

on Emerging Technologies Factory Automation (ETFA 2010), pages 1–8, September

2010.

Åkerberg J., Gidlund M., Lennvall T., Neander J., and Björkman M. Efficient

integration of secure and safety critical industrial wireless sensor networks. EURASIP

Journal on Wireless Communications and Networking, 2011(1):100, December 2011.

ISSN 1687-1499.

Allouch A., Koubaa A., Khalgui M., and Abbes T. Qualitative and Quantitative

Risk Analysis and Safety Assessment of Unmanned Aerial Vehicles Missions Over the

Internet. IEEE Access, 7:53392–53410, 2019. ISSN 2169-3536.

Arm Architecture Reference Manual. Arm Architecture Reference Manual Armv8,

for Armv8-A architecture profile. https://developer.arm.com/documentation/

ddi0487/fb/.

Bertolotti I. C. and Hu T. Real-time performance of an open-source protocol stack

for low-cost, embedded systems. In ETFA2011, pages 1–8, 2011.

Bianchi V., Boni A., Fortunati S., Giannetto M., Careri M., and De Munari

I. A wi-fi cloud-based portable potentiostat for electrochemical biosensors. IEEE

Transactions on Instrumentation and Measurement, 69(6):3232–3240, June 2020.

Bredel M. and Bergner M. On The Accuracy of IEEE 802.11g Wireless LAN

Simulations Using OMNeT++. In Proceedings of the Second International ICST

Conference on Simulation Tools and Techniques, Rome, Italy, 2009. ICST. ISBN

978-963-9799-45-5.

110

Breiling B., Dieber B., and Schartner P. Secure communication for the robot

operating system. In 2017 Annual IEEE International Systems Conference (SysCon),

pages 1–6, Montreal, QC, Canada, April 2017. IEEE. ISBN 978-1-5090-4623-2.

Bruckner D., Stanica M.-P., Blair R., Schriegel S., Kehrer S., Seewald M.,

and Sauter T. An Introduction to OPC UA TSN for Industrial Communication

Systems. Proceedings of the IEEE, 107(6):1121–1131, June 2019. ISSN 0018-9219,

1558-2256.

Cavalaglio Camargo Molano J., Lahrache A., Rubini R., and Cocconcelli

M. A new method for motion synchronization among multivendor’s programmable

controllers. Measurement, 126:202–214, October 2018.

Cavalcanti D., Bush S., Illouz M., Kronauer G., Regev A., and Venkatesan

G. Wireless TSN–Definitions, use cases & standards roadmap. Avnu Alliance, pages

1–16, 2020.

Cavalcanti D., Perez-Ramirez J., Rashid M. M., Fang J., Galeev M., and

Stanton K. B. Extending Accurate Time Distribution and Timeliness Capabilities

Over the Air to Enable Future Wireless Industrial Automation Systems. Proceedings

of the IEEE, 107(6):1132–1152, June 2019. ISSN 0018-9219, 1558-2256.

Chatzigiannakis I. and Tselios C. Internet of everything. In Intelligent Computing

for Interactive System Design: Statistics, Digital Signal Processing, and Machine

Learning in Practice, pages 21–56. 2021.

Chuanxiong G. and Shaoren Z. Analysis and evaluation of the TCP/IP protocol stack

of Linux. In WCC 2000-ICCT 2000. 2000 International Conference on Communication

Technology Proceedings (Cat. No. 00EX420), volume 1, pages 444–453, 2000.

Damm M., Leitner S.-H., and Mahnke W. OPC Unified Architecture. Springer-

Verlag Berlin Heidelberg, 2009.

Dawy Z., Saad W., Ghosh A., Andrews J. G., and Yaacoub E. Towards Massive

Machine Type Cellular Communications. arXiv:1512.03452 [cs, math], December 2015.

Ding L., Wang H., Xu A., and Li S. New considerations for SIL verification of

functional safety fieldbus communication. Journal of Loss Prevention in the Process

Industries, 43:488–502, September 2016. ISSN 09504230.

References 111

EN 50325-4. Industrial communication subsystem based on ISO 11898 (CAN) for

controller-device interfaces. CANopen. European Committee for Standardization,

2002.

EN 50325-5. Industrial communications subsystem based on ISO 11898 (CAN) for

controller-device interfaces. Functional safety communication based on EN 50325-4.

European Committee for Standardization, 2010.

Espressif ESP8266. ESP8266 Wi-Fi MCU I Espressif Systems. https://www.espressif.

com/en/products/socs/esp8266. (accessed 2021-09-28T14:19:55Z).

Etz D., Fruhwirth T., Ismail A., and Kastner W. Simplifying functional safety

communication in modular, heterogeneous production lines. In 2018 14th IEEE

International Workshop on Factory Communication Systems (WFCS), pages 1–4,

Imperia, June 2018. IEEE. ISBN 978-1-5386-1066-4.

Etz D., Fruhwirth T., and Kastner W. Flexible Safety Systems for Smart Man-

ufacturing. In 2020 25th IEEE International Conference on Emerging Technologies

and Factory Automation (ETFA), pages 1123–1126, Vienna, Austria, September 2020.

IEEE. ISBN 978-1-72818-956-7.

Ferrari P., Flammini A., Rinaldi S., Sisinni E., Maffei D., and Malara M.

Impact of quality of service on cloud based industrial IoT applications with OPC UA.

Electronicsweek, 7(7):109, July 2018.

Frotzscher A., Wetzker U., Bauer M., Rentschler M., Beyer M., Elspass S.,

and Klessig H. Requirements and current solutions of wireless communication in

industrial automation. In 2014 IEEE International Conference on Communications

Workshops (ICC), pages 67–72, June 2014a.

Frotzscher A., Wetzker U., Bauer M., Rentschler M., Beyer M., Elspass S.,

and Klessig H. Requirements and current solutions of wireless communication in

industrial automation. In 2014 IEEE International Conference on Communications

Workshops (ICC), pages 67–72, Australia, June 2014b. IEEE. ISBN 978-1-4799-4640-2.

González I., Calderón A. J., Barragán A. J., and Andújar J. M. Integration of

sensors, controllers and instruments using a novel OPC architecture. Sensors, 17(7),

July 2017.

Grimaldi D. and Marinov M. Distributed measurement systems. Measurement, 30

(4):279–287, December 2001. ISSN 02632241.

112

Hadz, iaganovic A., Atiq M. K., Blazek T., Bernhard H.-P., and Springer A.

The performance of openSAFETY protocol via IEEE 802.11 wireless communication.

page 8.

Hashemian H. Aging management of instrumentation & control sensors in nuclear

power plants. Nuclear Engineering and Design, 240(11):3781–3790, November 2010.

ISSN 00295493.

Hashemian H. Wireless sensors for predictive maintenance of rotating equipment in

research reactors. Annals of Nuclear Energy, 38(2-3):665–680, February 2011. ISSN

03064549.

Haskamp H., Meyer M., Möllmann R., Orth F., and Colombo A. W. Bench-

marking of existing OPC UA implementations for Industrie 4.0-compliant digitalization

solutions. In 2017 IEEE 15th International Conference on Industrial Informatics

(INDIN), pages 589–594, 2017.

HMS Networks . Industrial network market shares 2020 according to HMS Networks.

https://www.hms-networks.com/news-and-insights/news-from-hms/2020/05/

29/industrial-network-market-shares-2020-according-to-hms-networks,

2020. (accessed 2021-05-05T13:53:43Z).

Howard J., Dighe S., Vangal S. R., Ruhl G., Borkar N., Jain S., Erraguntla

V., Konow M., Riepen M., Gries M., Droege G., Lund-Larsen T., Steibl S.,

Borkar S., De V. K., and Van Der Wijngaart R. A 48-Core IA-32 Processor in

45 nm CMOS Using On-Die Message-Passing and DVFS for Performance and Power

Scaling. IEEE Journal of Solid-State Circuits, 46(1):173–183, January 2011. ISSN

0018-9200, 1558-173X.

IEC 61158-1. Industrial communication networks - Fieldbus specifications - Part 1:

Overview and guidance for the IEC 61158 and IEC 61784 series. International Elec-

trotechnical Commission, 2019.

IEC 61508. IEC 61508: Functional safety of electrical/electronic/programmable electronic

safety-related systems. International Electrotechnical Commission, 2016.

IEC 61784-3. Industrial communication networks. Profiles. Part 3. International Elec-

trotechnical Commission, 2021.

IEC 61784-3-12. Industrial communication networks - Profiles - Part 3-12: Functional

safety fieldbuses - Additional specifications for CPF 12. International Electrotechnical

Commission, 2010.

References 113

IEC 61784-3-3. Industrial communication networks - profiles - part 3-3: Functional

safety fieldbuses - additional specifications for CPF 3. International Electrotechnical

Commission, 2016.

IEC 61800-5-2. IEC 61800: Adjustable speed electrical power drive systems - Part 5-2:

Safety requirements - Functional. International Electrotechnical Commission, 2016.

IEC 62541. OPC unified architecture - Part 1: Overview and concepts. International

Electrotechnical Commission, 2016.

IEC 62734. Industrial networks - Wireless communication network and communication

profiles - ISA 100.11a. International Electrotechnical Commission Sign in | Create

account, 2014.

IEEE 802.11. IEEE Standard for Information technology—Telecommunications and

information exchange between systems Local and metropolitan area networks—Specific

requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical

Layer (PHY) Specifications. IEEE Std 802.11-2016 (Revision of IEEE Std 802.11-2012),

pages 1–3534, December 2016.

Ikram W., Jansson N., Harvei T., Fismen B., Svare J., Aakvaag N., Petersen

S., and Carlsen S. Towards the development of a SIL compliant wireless hydrocarbon

leakage detection system. In 2013 IEEE 18th Conference on Emerging Technologies

& Factory Automation (ETFA), pages 1–8, Cagliari, September 2013. IEEE. ISBN

978-1-4799-0864-6.

Islam K., Shen W., and Wang X. Wireless Sensor Network Reliability and Security in

Factory Automation: A Survey. IEEE Transactions on Systems, Man, and Cybernetics,

Part C (Applications and Reviews), 42(6):1243–1256, November 2012. ISSN 1094-6977,

1558-2442.

ISO 11898-1. Road vehicles - Controller area network (CAN). International Organization

for Standardization, 2015.

Jesus Sobalvarro . Warehouse | 3D CAD Model Library | GrabCAD. https://

grabcad.com/library/warehouse-6. (accessed 2021-07-05T07:36:25Z).

Karpowicz M. P. Energy-efficient CPU frequency control for the Linux system. Con-

currency and Computation: Practice and Experience, 28(2):420–437, 2016. ISSN

1532-0634.

114

Khan M. O., Qiu L., Bhartia A., and Lin K. C.-J. Smart retransmission and rate

adaptation in wifi. In 2015 IEEE 23rd International Conference on Network Protocols

(ICNP), pages 54–65. IEEE, 2015.

Kim J., Jo G., and Jeong J. A Novel CPPS Architecture Integrated with Centralized

OPC UA server for 5G-based Smart Manufacturing. Procedia Computer Science, 155:

113–120, 2019. ISSN 18770509.

Lee H. and Ke K. Monitoring of Large-Area IoT Sensors Using a LoRa Wireless Mesh

Network System: Design and Evaluation. IEEE Transactions on Instrumentation and

Measurement, (9):2177–2187.

Lee K. B., Bernhard H.-P., Cavalcanti D., Pang Z., and Val I. Reliable, High-

Performance Wireless Systems for Factory Automation. page 10, 2020.

Lee S., Kim C., and Lee J. Development of a smart sensor system using OPC UA.

In Proc. MoMM, pages 220–225, Salzburg, Austria, 2017.

LeMaRiva|Tech. Raspberry Pi: The N-queens Problem! (benchmark)

Preempt-RT vs. Standard Kernel! https://lemariva.com/blog/2018/04/

raspberry-pi-the-n-queens-problem-performance-test. (accessed 2021-05-

11T09:59:33Z).

Li Q., Tang Q., Chan I., Wei H., Pu Y., Jiang H., Li J., and Zhou J. Smart man-

ufacturing standardization: Architectures, reference models and standards framework.

Computers in Industry, 101:91–106, October 2018a. ISSN 01663615.

Li S., Xu L. D., and Zhao S. 5G Internet of Things: A survey. Journal of Industrial

Information Integration, 10:1–9, June 2018b. ISSN 2452414X.

Liang C.-J. M., Chen K., Priyantha N. B., Liu J., and Zhao F. RushNet:

Practical traffic prioritization for saturated wireless sensor networks. In Proceedings

of the 12th ACM Conference on Embedded Network Sensor Systems, pages 105–118,

Memphis Tennessee, November 2014. ACM. ISBN 978-1-4503-3143-2.

Liao Y. and Lai H. Investigation of a wireless real-time pH monitoring system based

on ruthenium dioxide membrane pH sensor. IEEE Transactions on Instrumentation

and Measurement, 69(2):479–487, February 2020.

Liggesmeyer P. and Trapp M. Safety in der industrie 4.0. In Handbuch Industrie

4.0 Bd. 1, pages 107–123. Springer, 2017.

References 115

Lo Bello L. and Steiner W. A Perspective on IEEE Time-Sensitive Networking for

Industrial Communication and Automation Systems. Proceedings of the IEEE, 107(6):

1094–1120, June 2019. ISSN 0018-9219, 1558-2256.

Lu Y. Industry 4.0: A survey on technologies, applications and open research issues.

Journal of Industrial Information Integration, 6:1–10, June 2017. ISSN 2452-414X.

Maldonado R., Karstensen A., Pocovi G., Esswie A. A., Rosa C., Alanen O.,

Kasslin M., and Kolding T. Comparing Wi-Fi 6 and 5G Downlink Performance

for Industrial IoT. IEEE Access, 9:86928–86937, 2021. ISSN 2169-3536.

Maniglia D. and Sofia R. Context-Aware Edge Based Mechanisms to Improving IoT

Data Transmission. March 2019.

Meany T. Functional safety and Industrie 4.0. In 2017 28th Irish Signals and Systems

Conference (ISSC), pages 1–7, Killarney, Co Kerry, Ireland, June 2017. IEEE. ISBN

978-1-5386-1046-6.

Montavon B., Peterek M., and Schmitt R. Model–based interfacing of large–scale

metrology instruments. Proc. SPIE 11059, Multimodal Sensing: Technologies and

Applications, 110590C, June 2019.

Morato A., Peserico G., Fedullo T., Tramarin F., and Vitturi S. Tuning of a

simulation model for the assessment of Functional Safety over Wi-Fi. page 6.

Morato A., Vitturi S., Cenedese A., Fadel G., and Tramarin F. The Fail

Safe over EtherCAT (FSoE) protocol implemented on the IEEE 802.11 WLAN. In

2019 24th IEEE International Conference on Emerging Technologies and Factory

Automation (ETFA), pages 1163–1170, Zaragoza, Spain, September 2019. IEEE. ISBN

978-1-72810-303-7.

Morato A., Vitturi S., Tramarin F., and Cenedese A. Assessment of Different

OPC UA Industrial IoT solutions for Distributed Measurement Applications. In

2020 IEEE International Instrumentation and Measurement Technology Conference

(I2MTC), pages 1–6, Dubrovnik, Croatia, May 2020. IEEE. ISBN 978-1-72814-460-3.

Morato A., Vitturi S., Tramarin F., and Cenedese A. Assessment of Different

OPC UA Implementations for Industrial IoT-Based Measurement Applications. IEEE

Transactions on Instrumentation and Measurement, 70:1–11, 2021. ISSN 0018-9456,

1557-9662.

116

Mordor Intelligence . Functional Safety Market | Growth, Trends, COVID-

19 Impact, and Forecasts (2021 - 2026). https://www.mordorintelligence.

com/industry-reports/functional-safety-market, 2021. (accessed 2021-05-

06T13:26:02Z).

Munirathinam S. Industry 4.0: Industrial Internet of Things (IIOT). In Advances in

Computers, volume 117, pages 129–164. Elsevier, 2020. ISBN 978-0-12-818756-2.

Omron . Omron Italia. https://omron.it/it/home. (accessed 2021-09-13T12:06:28Z).

Ooi B. and Shirmohammadi S. The potential of IoT for instrumentation and

measurement. IEEE Instrumentation and Measurement Magazine, 23(3):21–26, May

2020.

Orfanus D., Indergaard R., Prytz G., and Wien T. EtherCAT-based platform

for distributed control in high-performance industrial applications. In 2013 IEEE

18th Conference on Emerging Technologies Factory Automation (ETFA), pages 1–8,

September 2013.

Palisetty R. and Ray K. C. FPGA prototype and real time analysis of multiuser vari-

able rate CI-GO-OFDMA. IEEE Transactions on Instrumentation and Measurement,

67(3):538–546, March 2018.

Palm F., Gruener S., Pfrommer J., Graube M., and Urbas L. Open source as

enabler for OPC UA in industrial automation. In Proc. ETFA, pages 1–6, Luxembourg,

Luxembourg, 2015.

Peserico G., Fedullo T., Morato A., Tramarin F., Rovati L., and Vitturi S.

SNR-based Reinforcement Learning Rate Adaptation for Time Critical Wi-Fi Networks:

Assessment through a Calibrated Simulator. In 2021 IEEE International Instrumenta-

tion and Measurement Technology Conference (I2MTC), pages 1–6, Glasgow, United

Kingdom, May 2021a. IEEE. ISBN 978-1-72819-539-1.

Peserico G., Fedullo T., Morato A., Tramarin F., and Vitturi S. Wi–Fi based

Functional Safety: An Assessment of the Fail Safe over EtherCAT (FSoE) protocol.

page 8, 2021b.

Peserico G., Morato A., Tramarin F., and Vitturi S. Functional Safety Networks

and Protocols in the Industrial Internet of Things Era. Sensors, 21(18):6073, January

2021c.

References 117

Pfrommer J. Semantic interoperability at big-data scale with the open62541 OPC UA

implementation. In Proc. Workshop Interoperability and Open-Source Solutions for the

Internet of Things, pages 173–185, Stuttgart, Germany, 2016.

Pimentel V. and Nickerson B. G. A safety function response time model for wireless

industrial control. In IECON 2014 - 40th Annual Conference of the IEEE Industrial

Electronics Society, pages 3878–3884, Dallas, TX, USA, October 2014. IEEE. ISBN

978-1-4799-4032-5.

Prytz G. A performance analysis of EtherCAT and PROFINET IRT. In 2008 IEEE

International Conference on Emerging Technologies and Factory Automation, pages

408–415. IEEE, September 2008.

Raspberry Pi. Raspberry Pi Foundation. https://www.raspberrypi.org/. (accessed

2021-05-18T12:02:03Z).

Refaat T. K., Daoud R. M., Amer H. H., and Makled E. A. WiFi implementation

of wireless networked control systems. In 2010 Seventh International Conference on

Networked Sensing Systems (INSS), pages 145–148, June 2010a.

Refaat T. K., Daoud R. M., Amer H. H., and Makled E. A. WiFi implementation

of Wireless Networked Control Systems. In 2010 Seventh International Conference

on Networked Sensing Systems (INSS), pages 145–148, Kassel, Germany, June 2010b.

IEEE. ISBN 978-1-4244-7911-5.

Rizzi M., Ferrari P., Flammini A., and Sisinni E. Evaluation of the IoT Lo-

RaWAN solution for distributed measurement applications. IEEE Transactions on

Instrumentation and Measurement, 66(12):3340–3349, December 2017.

Robert J., Georges J.-P., Rondeau E., and Divoux T. Minimum cycle time

analysis of Ethernet–based real-time protocols. International Journal of Computers,

Communications and Control, 7(4):743–757, 2012.

Robinson S. Living with the Challenges to Functional Safety in the Industrial Internet

of Things. In Living in the Internet of Things (IoT 2019), pages 35 (6 pp.)–35 (6 pp.),

London, UK, 2019. Institution of Engineering and Technology. ISBN 978-1-83953-089-0.

Seno L., Tramarin F., and Vitturi S. Performance of Industrial Communication

Systems: Real Application Contexts. IEEE Industrial Electronics Magazine, 6(2):

27–37, June 2012. ISSN 1932-4529.

118

Sestito G. S., Turcato A. C., Dias A. L., Rocha M. S., da Silva M. M., Ferrari

P., and Brandao D. A Method for Anomalies Detection in Real-Time Ethernet

Data Traffic Applied to PROFINET. IEEE Transactions on Industrial Informatics, 14

(5):2171–2180, May 2018. ISSN 1551-3203, 1941-0050.

Sha K., Shi W., and Watkins O. Using Wireless Sensor Networks for Fire Rescue

Applications: Requirements and Challenges. In 2006 IEEE International Conference

on Electro/Information Technology, pages 239–244, East Lansing, MI, USA, May 2006.

IEEE. ISBN 978-0-7803-9592-3 978-0-7803-9593-0.

Shen W., Zhang T., Barac F., and Gidlund M. PriorityMAC: A Priority-Enhanced

MAC Protocol for Critical Traffic in Industrial Wireless Sensor and Actuator Networks.

IEEE Transactions on Industrial Informatics, 10(1):824–835, February 2014. ISSN

1551-3203, 1941-0050.

Sisinni E., Saifullah A., Han S., Jennehag U., and Gidlund M. Industrial

internet of things: Challenges, opportunities, and directions. IEEE Trans. Industr.

Inform., 14(11):4724–4734, November 2018.

Skrzypczak L., Grimaldi D., and Rak R. Analysis of the different wireless trans-

mission technologies in Distributed Measurement Systems. In Proc. IDAACS, pages

673–678, Rende, Italy, 2009.

Sudhakaran S., Mageshkumar V., Baxi A., and Cavalcanti D. Enabling QoS for

Collaborative Robotics Applications with Wireless TSN. In 2021 IEEE International

Conference on Communications Workshops (ICC Workshops), pages 1–6, Montreal,

QC, Canada, June 2021. IEEE. ISBN 978-1-72819-441-7.

Sudhakaran S., Montgomery K., Kashef M., Cavalcanti D., and Candell R.

Wireless Time Sensitive Networking for Industrial Collaborative Robotic Workcells.

page 4.

Taylor J. H., Akerberg J., Ibrahim H. M. S., and Gidlund M. Safe and secure

wireless networked control systems. In 2012 IEEE International Conference on Control

Applications, pages 871–878, Dubrovnik, Croatia, October 2012. IEEE. ISBN 978-1-

4673-4505-7 978-1-4673-4503-3 978-1-4673-4504-0.

Tian G. Y. Design and implementation of distributed measurement systems using

fieldbus-based intelligent sensors. IEEE Transactions on Instrumentation and Mea-

surement, 50(5):1197–1202, October 2001.

References 119

Tramarin F., Mok A. K., and Han S. Real-Time and Reliable Industrial Control

Over Wireless LANs: Algorithms, Protocols, and Future Directions. Proceedings of the

IEEE, 107(6):1027–1052, June 2019. ISSN 0018-9219, 1558-2256.

Tramarin F., Vitturi S., Luvisotto M., and Zanella A. On the Use of IEEE

802.11n for Industrial Communications. IEEE Transactions on Industrial Informatics,

12(5):1877–1886, October 2016. ISSN 1551-3203, 1941-0050.

U L. H., Yang J., Cai Y., Karlapalem K., Liu A., and Huang X., editors. Web

Information Systems Engineering: WISE 2019 Workshop, Demo, and Tutorial, Hong

Kong and Macau, China, January 19–22, 2020, Revised Selected Papers, volume 1155 of

Communications in Computer and Information Science. Springer Singapore, Singapore,

2020. ISBN 9789811532801 9789811532818.

Unified Automation. UA ANSI C Server Professional: OPC UA Subscription

Concept. http://documentation.unified-automation.com/uasdkc/1.4.2/html/

L2UaSubscription.html. (accessed 2021-06-08T13:03:54Z).

van Kranenburg R. and Dodson S. The Internet of Things: A Critique of Ambient

Technology and the All-Seeing Network of RFID. Network Notebooks. Institute of

Network Cultures, 2008. ISBN 978-90-78146-06-3.

Vitturi S. Stochastic model of the Profibus DP cycle time. IEE Proceedings - Science,

Measurement and Technology, 151(5):335–342, September 2004. ISSN 1350-2344,

1359-7094.

Vitturi S., Carreras I., Miorandi D., Schenato L., and Sona A. Experimental

Evaluation of an Industrial Application Layer Protocol Over Wireless Systems. IEEE

Transactions on Industrial Informatics, 3(4):275–288, November 2007. ISSN 1551-3203.

Vitturi S., Morato A., Cenedese A., Fadel G., Tramarin F., and Fantinel R.

An innovative algorithmic safety strategy for networked electrical drive systems. In

2018 IEEE 16th International Conference on Industrial Informatics (INDIN), pages

368–373, Porto, Portugal, 2018. IEEE.

Vitturi S., Zunino C., and Sauter T. Industrial Communication Systems and Their

Future Challenges: Next-Generation Ethernet, IIoT, and 5G. Proceedings of the IEEE,

107(6):944–961, June 2019. ISSN 0018-9219, 1558-2256.

Weyer S., Schmitt M., Ohmer M., and Gorecky D. Towards Industry 4.0 -

Standardization as the crucial challenge for highly modular, multi-vendor production

systems. IFAC-PapersOnLine, 48(3):579–584, 2015. ISSN 24058963.

120

Wijethilaka S. and Liyanage M. Survey on Network Slicing for Internet of Things

Realization in 5G Networks. IEEE Communications Surveys & Tutorials, 23(2):

957–994, 2021. ISSN 1553-877X, 2373-745X.

Willig A. and Wolisz A. Ring stability of the PROFIBUS token-passing protocol over

error-prone links. IEEE Transactions on Industrial Electronics, 48(5):1025–1033, 2001.

ISSN 02780046.

WirelessHART . HART Field Communication Protocol Specification, Rev. 7.7. 2020.

Witten I. H., Frank E., and Hall M. A. Data Mining: Practical Machine Learning

Tools and Techniques. Morgan Kaufmann, Boston, third edition, 2011. ISBN 978-0-12-

374856-0.

Wollschlaeger M., Sauter T., and Jasperneite J. The Future of Industrial Com-

munication: Automation Networks in the Era of the Internet of Things and Industry

4.0. IEEE Industrial Electronics Magazine, 11(1):17–27, March 2017. ISSN 1932-4529.

Xie G., Li Y., Han Y., Xie Y., Zeng G., and Li R. Recent Advances and Future

Trends for Automotive Functional Safety Design Methodologies. IEEE Transactions on

Industrial Informatics, 16(9):5629–5642, September 2020. ISSN 1551-3203, 1941-0050.

Xu Y., Sun Y., Liu Y., Wang Y., Gu P., and Liu Z., editors. Nuclear Power

Plants: Innovative Technologies for Instrumentation and Control Systems: The Fourth

International Symposium on Software Reliability, Industrial Safety, Cyber Security and

Physical Protection of Nuclear Power Plant (ISNPP), volume 595 of Lecture Notes

in Electrical Engineering. Springer Singapore, Singapore, 2020. ISBN 9789811518751

9789811518768.

Yang D., Ma J., Xu Y., and Gidlund M. Safe-WirelessHART: A Novel Framework

Enabling Safety-Critical Applications Over Industrial WSNs. IEEE Transactions on

Industrial Informatics, 14(8):3513–3523, August 2018. ISSN 1551-3203, 1941-0050.

Yavari A., Jayaraman P. P., Georgakopoulos D., and Nepal S. ConTaaS: An

Approach to Internet-Scale Contextualisation for Developing Efficient Internet of

Things Applications. In Hawaii International Conference on System Sciences, 2017.

Zheng T., Gidlund M., and Akerberg J. WirArb: A New MAC Protocol for Time

Critical Industrial Wireless Sensor Network Applications. IEEE Sensors Journal, 16

(7):2127–2139, April 2016. ISSN 1530-437X, 1558-1748, 2379-9153.

	Acronyms
	Introduction
	Industry 4.0
	Contribution

	Communication Networks for Industrial Functional Safety
	Functional Safety Fieldbuses
	Assumptions on the communication channel

	Functional Safety Protocols based on the White Channel Approach
	CANopen Safety

	Functional Safety Protocols based on the Black Channel Approach
	OPC UA Safety
	Fail Safe over EtherCAT

	The Fail Safe over EtherCAT (FSoE) protocol implemented on the IEEE 802.11 WLAN
	Introduction
	FSoE Implementation
	Timing Analysis
	Polling Time of a FSoE Slave
	Time Slot Allocation to FSoE Slaves

	Experimental Results
	Basic Configuration Results
	Multiple Configuration Results
	Discussion
	Conclusions

	Assessment of different Transport Layer protocols for Functional safety over Wireless
	TCP
	UDP with caching layer
	Experimetal Setup
	Results
	Simulated Channel configuration
	IEEE802.11 Link configuration

	Discussion

	Tuning of a simulation model for the assessment of Functional Safety over Wi-Fi
	OMNeT++ Simulation Model
	Calibration of the channel error model
	Calibration of the polling time
	Simulation with multiple slaves

	Evaluation of the Safety Function Response Time in a Functional Safety over Wi-Fi Network
	Background
	Safety function response time on a FSoE over Wi–Fi network
	Evaluation of the Safety Function Response Time
	Industrial environment simulation
	Discussion

	Assessment of Different OPC UA Implementations for Industrial IoT-Based Measurement Applications
	Related Work and Contribution
	Introduction to OPC-UA
	Origin and Motivation
	Open Platform Communication - Unified Architecture

	OPCUA in distributed measurement applications
	Experimental setup

	Measurement Results and Analysis
	CPU Usage
	Read and Write Services
	Subscription Services
	PubSub Communication Profile
	Power Consumption

	Conclusion and Future works

	Conclusions
	References

