
Università degli Studi di Padova

Department of Information Engineering

Ph.D. Course in Information Engineering

Mobile Robotics in Unknown Environments:
Towards Full Autonomy

Nicola Lissandrini

Advisor prof. Angelo Cenedese

Director and Coordinator prof. Andrea Neviani

February 28, 2023

Nicola Lissandrini

Mobile Robotics in Unknown Environments:

Towards Full Autonomy

Ph.D. Thesis,

Advisor: prof. Angelo Cenedese

Università degli Studi di Padova

Ph.D. School in Information Engineering

Department of Information engineering

Via Giovanni Gradenigo, 6, Padua, Italy

35100

Abstract

Mobile robotics has become increasingly popular in recent years as it provides

an automated and cost-efficient solution to a variety of tasks. Traditionally,

human operators would have full responsibility on the robot actions with

teleoperation. Recent advances in sensors and algorithms have paved the

way for robots to be able to operate autonomously or with little human

intervention. Autonomous operation in known and structured environments

has been vastly studied over the last decades, but such scenarios are limited

to specific and laboratory applications. Real world contexts are characterized

by unknown and unstructured scenarios that the robot must sense and adapt

while performing the prescribed task. Recently, great effort has been given to

the development of strategies to face these challenges. However, the pursuit

of full autonomy is hindered by the limited hardware capacity of mobile

robots, that constrain the computational capacity available to realize the

desired operation. In this thesis we present several strategies to cope with

uncertainties and unknown environment for both ground and aerial robot

mobility, with a particular focus on the efficiency and the compliance with

real time constraints. First, we consider a task of robust robot coordination

for object transportation. Then, a novel approach for reactive navigation

in unknown environments is presented, with theoretical proofs and experi-

mental validation. Additionally, we present a motion estimation algorithm

for unknown environments with the purpose of aerial physical interaction.

Overall, particular attention is given to the efficient implementation of the

proposed methodologies, which is a key factor for achieving full autonomy.

iii

Contents

1 Introduction 1

2 Nonlinear MPC for cooperative manipulation 9

2.1 Introduction . 9

2.2 Preliminary notation and models 11

2.3 Cooperative manipulation with MPC 13

2.3.1 Leader and follower coordination 16

2.3.2 Obstacle avoidance . 18

2.4 Simulations and experiments 19

2.4.1 Lower level controllers 20

2.4.2 Gazebo simulations . 21

2.4.3 Experiments . 21

2.5 Conclusions . 25

3 NAPVIG: narrow passage navigation 27

3.1 Introduction . 27

3.2 Problem formulation . 29

3.3 Landscape function definition 30

3.4 Narrow passage navigation (NAPVIG) algorithm 33

3.4.1 Navigation strategy . 35

3.4.2 Vehicle model and control 36

3.5 Simulations . 37

3.5.1 Environment design 38

3.5.2 Static scenario . 38

3.5.3 Dynamic scenario . 39

3.6 Experiments: narrow passages and cluttered scenarios 40

3.7 Conclusions . 45

4 Theoretical foundations of NAPVIG algorithm 47

4.1 Introduction . 47

4.2 Preliminary definitions and properties 48

v

4.2.1 Landscape function generalization 53

4.3 The NAPVIG principle theorem 56

4.3.1 Remarks on the theorem 59

4.3.2 Smoother peaks merging 60

4.4 Conclusions . 62

5 NAPVIG-X: navigation in generic and unstructured environments 63

5.1 Introduction . 63

5.2 Problem formulation . 65

5.3 Policy-based exploration-exploitation 66

5.4 Predictive policies . 67

5.4.1 Prediction termination rules 68

5.4.2 Fully-exploitative policy 69

5.4.3 Explorative policies . 71

5.5 Reactive and auxiliary policies 83

5.6 Policy switching rules . 85

5.7 Simulative validation . 87

5.7.1 Scenario #1: corridors 87

5.7.2 Scenario #2: cluttered spaces 91

5.7.3 Scenario #3: target not in sight 94

5.8 Conclusions . 97

6 Visual odometry for aerial phyisical interaction 99

6.1 Introduction . 99

6.2 Mathematical preliminaries: Lie groups. 100

6.2.1 The group of rototranslations 104

6.3 Problem formulation . 105

6.4 Feature-less motion estimation 106

6.4.1 3D Landscape function 107

6.4.2 Optimization on Lie groups 109

6.4.3 Real time optimization 113

6.5 Simulations results . 117

6.6 Conclusions and future directions 122

A Frameworks for real-time performances 123

A.1 Introduction . 123

A.2 Tensors operations . 124

A.3 lietorch: a library for tensor based Lie group operations . . . 126

vi

A.4 ModFlow: a modular, run-time flow control library for robotics 129

A.5 Conclusions . 132

Bibliography 133

vii

1Introduction

„The future is already here – it’s just not evenly

distributed

— William Gibson

A
UTONOMOUS mobile robotics is emerging as a core technology in sev-

eral application fields (Rubio et al., 2019), ranging from industrial

(D’Andrea, 2012; Ball et al., 2017) to the civil (e.g. service robotics (Paden

et al., 2016)), and emergency and military contexts (e.g. field robotics (Lippi

and Marino, 2018; Lissandrini et al., 2019)). Recent advances in the devel-

opment of rich-data acquisition sensors (Raj et al., 2020; Lluvia et al., 2021)

and high-performance embedded microprocessors (Tu et al., 2019) endorse

the ability of robots to efficiently perceive and interpret the surrounding

environment, and thus quickly react and adapt to unknown and dynamic

scenarios. Still, mobile robotics faces critical challenges: a full autonomous

robot needs to balance reactiveness and accuracy under the constraint of min-

imal computational capabilities. The main cause of such limitation is twofold:

on one hand, mobile devices applications are hindered by the limited battery

capacity that forces the robot to be both mechanical and electrically efficient;

on the other hand, full autonomy requires that all or most of the information

upon which an agent can rely comes from on-board sensors, which can entail

the processing of a large set of data. One possible approach to deal with this

complexity is to resort to a multi-agent scheme (Ismail et al., 2018): in this

way the problem can be simplified to set of smaller problems that can also

be solved in parallel by two different computing machines (López-González

et al., 2020). However, this is not always possible, and it strongly depends on

the specific context. A more general approach is to employ algorithms that

are as efficient as possible, relying on little computational capabilities and pro-

cess the data not more than strictly needed. Efficiency and timely-contained

computation, indeed, are crucial in practical applications. While it could

be acceptable that the total energy consumption results in a shorter battery

duration, real-time constraints represent the most critical issues (Koulamas

and Lazarescu, 2018) as they are needed for the motion task itself: the

1

planning and control computation is required in the exact moment that the

system dynamics demand. What makes mobile robotics challenging for real

world applications is that these basics and physics-related constraints must

be entangled with application-oriented requirements:

• Mobility and energy consumption

Other than to mere mechanical design and electrical efficiency, these

aspects are heavily linked to the choice of sensors and actuators. More

limited sensor capabilities need a more advanced algorithmic efficacy

(Stefek et al., 2020), and more lightweight actuators require a more

complex planning on the robotics task. At the same time, lightweight

actuators can allow robots to move with greater agility and speed, thus

reducing the overall energy consumption.

• Safety in interaction

Real world applications are characterized by a certain level of uncer-

tainties that may arise from internal or external entities. In the former

case it could be another collaborating robot, that would require robust

synchronization (Zhang et al., 2006); the latter could be represented by

the environment which in many cases is totally or in part unknown. To

this it is often added an amount of clutteredness and unpredictability:

to cope with such environments the planning strategy must guarantee

a high level of safety in order to avoid collisions and guarantee the

accomplishment of the prescribed task (Xia et al., 2020).

• Accuracy

Strongly related to safety, but also to the ability of performing delicate

tasks, the estimation and planning tasks need to be able to provide

precise results in terms of distance from the ground truth and the

activity requirements, namely the distance from a target location, as

well as safety and repeatability requirements (Wen et al., 2021).

• Reliable autonomy

The robot should be able to complete the desired activity with less inter-

vention of the human as possible, even in presence of unexpected events.

In particular, this entails that the robotic task can only be programmed

from a high, task-organization level, and, in particular, planning and

navigation must be computed in full autonomy (Wahrmann et al.,

2019), only relying upon sensors and on-board algorithms. Reactive-

2 Chapter 1 Introduction

Figure 1.2.: Example of mobile robot composed of an omnidirectional-wheeled base

mounting a 6 d.o.f. manipulator.

second important aspect of mobile robots is the perception of the robot

relative to its surroundings. While motion capture systems can be employed

to obtain a ground truth of the robot’s position with submillimetric precision

(Menolotto et al., 2020), it still suffers from the occlusion problem relying

on such technology greatly limits the application of the developed strategies

and, most importantly, limits the applications to confined laboratory arenas.

The converse approach is to equip the robot with on board sensors such as

cameras or LiDAR (Light Detection and Ranging) (Cheng and Wang, 2018)

and design the navigation system to leverage their measurements in order

to achieve the prescribed goal. To achieve complex and active tasks such

as manipulation and transportation (Sandakalum and Ang Jr, 2022), it is

common to equip the mobile vehicle, that serves as a base of the robot with,

a manipulator with one or more degrees of freedom (e.g. in figure 1.2).

Ground mobile arms can then be leveraged to exert possibly high forces to

the target object in order to transport or manipulate the payload. In turn the

reachable workspace is limited by the size of the manipulator and the areas

that are actually accessible by the ground vehicle, which may be constrained

by physical obstructions such as rough terrain, stairs and obstacles. Legged

locomotion can address some of these limitations (Bruzzone et al., 2022),

however their implementation is often very costly and hardware-demanding.

Also, it does not approach the problem of the limited workspace as concerns

reaching higher altitude, if needed.

4 Chapter 1 Introduction

Figure 1.3.: Example of an aerial robot composed of an hexarotor with a 2 d.o.f.

arm.

An alternative approach is to resort to aerial robots: Unmanned Aerial

Vehicles (UAVs) and Micro Aerial Vehicles (MAVs) have received an enormous

amount of interest both from a research and an industrial point of view. In

the past decades, most of the attention has been given to their role as passive

observers (Shakhatreh et al., 2019), for example data sensing (Yang and

Yoo, 2018), surveillance, environmental monitoring (Alsamhi et al., 2019;

Hernández-Vega et al., 2018), smart cities (Ahad et al., 2020), and so on.

To really unlock the potential of a flying robot, however, the latest trend is

to endow them with the ability of physically interact with the environment

(Ollero et al., 2021) to perform manipulation and a various set of other

tasks. The possibility to actively operate in high altitude workspace and easily

overcome cluttered environments, attracted a great interest from areas like

inspection and maintenance (Ollero et al., 2018). To enable this capability,

the aerial vehicles have been endowed with means of manipulation. Essen-

tially, it is possible to distinguish two directions: in the first one, emulating

ground mobile robots, the drones are equipped with a several degrees of

freedom manipulator, as in figure 1.3 (Lissandrini et al.; Tognon et al., 2019;

Suarez et al., 2020). This results in high manipulation capabilities, but it

comes at the cost of a high payload overhead and consequently requiring for

larger vehicle structure and limiting the battery life, which is one of the most

critical issues in aerial robotics. An alternative direction is to mount a fixed

end-effector (Ryll et al., 2019; Tzoumanikas et al., 2020) on a tilt-rotor aerial

vehicle (Ryll et al., 2021; Kamel et al., 2018; Rashad et al., 2020) that is able

5

to steer and hover the vehicle in any direction (Kamel et al., 2018; Shawky

et al., 2021), differently from a classical quadrotor that can only hover in

horizontal position.

To allow aerial interaction task, classical quadrotors are often not powerful

enough for both strategies, for different reasons, and solutions with higher

number of propellers are adopted (hexarotor (Ollero et al., 2018), octaro-

tor(Brescianini and D’Andrea, 2018)). In the first case, the dexterity of the

interaction relies on the degrees-of-freedom of the manipulator, which in

turn results to be heavy: in this case more propeller are needed to guarantee

sufficient thrust and robustness. In the second case, the vehicle can be more

lightweight but, in turn, a higher number of actuators arranged according to

a proper geometry are needed to fulfill the theoretical conditions to achieve

the required dexterity (Michieletto et al., 2018).

In general, the ingredients for aerial robotics are:

• Interaction control: for interacting robots, to the usual position con-

trol requirement is coupled by the interaction force control, in order to

preserve stability of the entire system. The most common approach is

to establish a desired dynamical property between position and force,

through the so-called impedance (Lippiello et al., 2018; Rashad et al.,

2021) admittance (Ryll et al., 2019; Yüksel et al., 2019; Gabellieri et al.,

2020) control, but it is also possible to implement hybrid force-position

controllers (Praveen et al., 2020).

• Wrench estimation: in order to perform control on the interaction

force/torque, both quantities have to be estimated. While this can be

directly obtained from a sensor (Cataldi et al., 2016), more recently it

is preferred avoid the payload and cost of this additional sensor and

estimate the wrench (i.e. the vector of torques and forces) from the

position, velocity and inertial measurements (Shi et al., 2019; Ryll et al.,

2019; Rajappa, 2018; Wilmsen et al., 2019).

• Localization: localization is needed not only to provide the relative

position to the target point of contact with respect to the robot, but it

is needed in the wrench estimation algorithms. Although the vehicle

position can be computed from external cameras, such as motion cap-

ture systems (Jepsen et al., 2021), this limits the applicability to ad-hoc

6 Chapter 1 Introduction

laboratory setups. Without absolute localization (Santamaria-Navarro

et al., 2018), visual odometry exploit stereo- or depth-cameras (Kerl

et al., 2013) to obtain a local motion estimate, which is well suited for

aerial manipulation since only relative measurements are sufficient to

obtain the interaction wrench estimation. Ultra-wide band can also

be used to measure the distance to beacon and then triangulate the

position of the robot (Güler et al., 2020). A very common technique

is SLAM (Simultaneous Localization and Mapping), based on 3D LI-

DAR sensors (Milijas et al., 2021), which provides for position and

orientation estimate. Recently, fusion techniques have been tested by

combining SLAM with the other sensor information, as in (Paneque

et al., 2019).

The thesis is structured as follows: first, we will provide a baseline imple-

mentation of collaborative robotic task where the uncertainty lies in the

physical interaction between the agents that is robustly handled through a

decentralized strategy based on a nonlinear model predictive controller. In

this case the position of the robots and obstacles are estimated by a motion

capture system available in a laboratory arena. We then try to overcome this

limitation by introducing a novel planar navigation technique (the NAPVIG

algorithm) that is able to navigate through simple environments that, how-

ever, are fully unknown, narrow and cluttered, through a fast and reactive

trajectory planner, validated both in simulation and laboratory experiments.

In the following chapter are presented mathematical results proving that the

algorithm is able to fulfill precise theoretical properties that are desirable for

the purposes of navigation in unknown and unpredictable environments. The

next chapter presents an extension of the NAPVIG algorithm to cope with

local navigation in any kind of cluttered planar environment. Preliminary

results regarding self localization for purposes of physical interaction of aerial

vehicles with unknown environment, with a view of future works involving

aerial-ground collaboration in absence of external sensors. Finally, given the

technological importance of meeting real-time constraints, we will present

the frameworks developed to realize the implementations of the algorithms

involved in this thesis

7

2Nonlinear MPC for

cooperative manipulation

2.1 Introduction

Multi-robot systems is a trending and pervasive topic in academic and indus-

trial research, due to the strong potential impact that affects many application

fields (Chung et al., 2018; Wilson et al., 2020). For instance, cooperative

transportation or manipulation of large or heavy objects (Alonso-Mora et al.,

2017; Lee et al., 2018), inspection and servicing of infrastructures (Suarez

et al., 2016), monitoring and mapping of the environment (Cortés, 2010;

Alonso-Mora et al., 2017), search and rescue operations (León et al., 2016),

are just some real world applications that can benefit more by these studies

and the related technological developments.

Strong results have been demonstrated on the control of single and multiple

robotic systems (Mahony et al., 2012; Franchi et al., 2012) and, more recently,

a lot of effort has been made to allow physical interaction among these

systems and with the environment (Gawel et al., 2017). Robustness in

the estimation and regulation actions for non-ideal actual scenarios and in

presence of environment/agent constraints has been also considered (Zhao

et al., 2017; Corah and Michael, 2017).

Heterogeneous robots with different capabilities (e.g., sensing, actuation) are

an important aspect of multi-robot systems, since they offer greater flexibility

and versatility in complex scenarios (Wurm et al., 2013). In this chapter we

consider the problem of cooperative object transportation via aerial-ground

manipulator-endowed robots, which can be beneficial in cases where the

different sensing and operating workspaces of the two robotic types might be

needed.

Regarding the related literature, (Nguyen and Garone, 2016) considers the

cooperative object transportation by aerial-ground mobile robots, limited to a

9

Figure 2.1.: Two heterogeneous robots transporting an object (in the Gazebo simu-

lation environment).

coplanar case. Collaborative task control with heterogeneous robots has been

also studied in (Naldi et al., 2012), where a team of ground robots is used to

stabilize the aerial vehicle, and in (Kondak et al., 2014) where the interaction

between a multi-rotor and an industrial manipulator is considered. Further

tests for aerial ground manipulation tasks have been made in (Staub et al.,

2017), where the ground vehicle is tasked to deploy the object to a position

and the UAV adjusts its attitude to adapt to it.

In the context of this research, the Model Predictive Control approach in its

non-linear form (NMPC) appears to be the suitable and effective framework

to tackle this study, since it can be formulated as a constrained optimization

problem subject to the system dynamics (Findeisen et al., 2003) and that

accounts also for model uncertainties (e.g. (Nascimento et al., 2013; Nikou

et al., 2017)). In (Nikou et al., 2017), in particular, the problem of cooper-

ative manipulation is solved in a non-scalable centralized way by deriving

a coupled model of the agents involved in the task, with a decentralized

extension being developed in (Verginis et al., 2018); These solutions, how-

ever, do not explicitly consider heterogeneous robots and rely on the strong

assumption of rigid grasping robot-object points.

This work extends the aforementioned works by proposing a multi-robot

algorithm for the cooperative object transportation with collision avoidance

by heterogeneous robots deriving a novel approach to address the problem,

which increases robustness to non-idealities and allows the definition of a

more general framework compared to the cited literature, as well as relevant

10 Chapter 2 Nonlinear MPC for cooperative manipulation

and bold uppercase symbols. Rotation matrices are defined in the Special

Orthogonal group SO(3), while [·]× indicates the skew symmetric matrix

associated to the argument vector. Given two frames {a}, {b}, as well as

a world frame {W}, we denote by T a
b and Tb the affine transformation

from frame {a} to frame {b} and from {W} to {b}, respectively. Similarly,

pa ∈ R3 and Ra ∈ SO(3) are the position and rotation matrix, respectively, of

frame {a} with respect to {W}. Frames {v, i} and {e, i} are the vehicle and

end-effector frame of agent i.

Let qi ∈ Rni be the vector of joint variables describing the configuration of

each manipulator, with ni being the corresponding number of degrees of

freedom. The first-order kinematics of the agents can be written as follows:

Agent i:



























































ṗe,i = Ap,iuv,i + JP,i(qi)uq,i

ωe,i = Aω,iuω,i + JO,i(qi)uq,i

Ṙe,i =
[

ωe,i

]

×
Re,i

q̇i = uq,i

ṗv,i = Apuv,i

Ṙv,i =
[

Aωuω,i

]

×
Rv,i

(2.1)

where:

• pv,i, pe,i(pv,i, qi) ∈ R3 are the position of the base and the end-effector

of the i-th agent, respectively.

• Rv,i, Rei
(Rv,i, qi) ∈ SO(3) refer to the corresponding rotation matrices

relative to a fixed world frame {W}.

• uv,i, uω,i ∈ R3 are the linear and angular input velocities applied at the

base expressed in the local frame.

• uq,i are the joint velocities, which are assumed to be the manipulator’s

control input.

• Ap,i, Aω,i ∈ R3×3 allow modeling constraints on the input velocity (e.g.

reference frame transform or nonholonomic constraints)

• ωe,i is the angular velocity of the end effector in the world frame.

12 Chapter 2 Nonlinear MPC for cooperative manipulation

• JP,i(pv,i, qi), JO,i(Rv,i, qi) ∈ R3×ni are, respectively, the position and

orientation Jacobian matrices, which depend on the structure of the

manipulator.

The full state and input are defined as: xi = [pe,i re,i pv,i qi]
⊤ ∈ Rni,

ui = [uq,i uv,i uω,i]
⊤ ∈ Rpi where the lower case re,i refers to a vector

representation of the rotation matrix Re,i, s.t. [Re,i](h,k) = [re,i](3k+h). We can

then rewrite (2.1) with in compact form as ẋi = fAi
(xi)ui, where fAi

(xi)

collects all the control-affine terms and can be easily inferred by (2.1).

2.3 Cooperative manipulation with MPC

In this section, we propose a decentralized algorithm for cooperative ma-

nipulation with obstacle collision avoidance. The objective is formalized as

follows. Let {o} be a frame attached to the object’s. We consider the reference

trajectory that the object is desired to follow, To,ref (t) ∈ SE(3), t > 0. The

goal is to find a control law for each agent such that the object is transported

along the trajectory, while ensuring collision avoidance. To avoid the object

being detached from the grasps or breaking, we also aim at minimizing the

internal forces and torques applied to the object by the agents.

We assume that, at time t = 0, the agents are still and already grasping the

object, defining an initial condition for the relative transforms from object

frame to each end effector’s T o
e,i(0), that, for t = 0 only, we assume that they

can measure. Also, we assume that they can communicate.

The robotic agents are heterogeneous and, especially in the case of aerial

vehicles, they can be characterized by a low number of degrees of freedom.

This can lead to situations where a perfect compliance of the grasps is

impossible, e.g., an underactuated UAV that needs to roll-pitch to generate

horizontal forces and no possibility to compensate.

To allow the algorithm to be robust to such non-idealities, we first need to

theoretically allow deviations from rigidity. To this aim, we consider the

object gripper joints as elastic, as depicted in Fig. 2.3, with the rest condition

being defined by T o
e,i(0), i = 1, . . . , N . This can either model a case where

gripper joints are actually elastic, or a case where the grasps are rigid, and

2.3 Cooperative manipulation with MPC 13

2.3.1 Leader and follower coordination

At the design stage, one agent is designed to be the leader. This choice has

no theoretical limitations, and it is driven by experimental evaluations. The

leader computes the trajectory for its end effector such that the object tracks

the prescribed trajectory, accounting for the object trajectory error as if the

follower agents could not alter its behavior. In other words, the forces applied

to the object along the desired trajectory are produced by the leader and the

action by the followers is then obtained to minimize the internal forces.

Note that: To(t) = Te,ℓ(t)T
e,ℓ
o (t), with ℓ ∈ {1, . . . , N} being the leader index.

Te,ℓ(t) is a quantity that can be controlled, and it is accounted by (2.1); T e,ℓ
o (t),

on the other hand, is not controllable since it is a direct result of the forces

applied at the object center of mass , due to the elasticity assumption, that

are not included in the model. However, if the overall dynamics is sufficiently

slow and the elasticity is sufficiently low, it is reasonable to assume that, in

absence of other forces and torques, the displacement is bounded over time,

i.e.,

dist(T o
e,ℓ(t),T

o
e,ℓ(0)) < εℓ (2.4)

for a positive constant εℓ. Without the ability to make predictions on T o
e,ℓ,

which is needed to estimate the object position given the end effector predic-

tion, we will choose as estimate T̂ o
e,ℓ(t) = T o

e,ℓ(0), ∀t ∈ [0, T], satisfying (2.4).

Due to this assumption, agents are not needed to measure the object frame

for t > 0. Then, the leader aims at minimizing the cost function:

Jℓ(x̂ℓ(·),uℓ(·) =
∫ t+T

t
dist(T̂e,ℓ(τ), T̂e,ℓ,ref (t)) dτ (2.5)

through the following FHOCP:

argmin
uℓ(·)

Jℓ(xℓ(·),uℓ(·)) +
∫ t+T

t
u⊤

ℓ Wuuℓ dτ

subject to: ˙̂xℓ = fAℓ
(x̂ℓ)uℓ

x̂ℓ(t) = xℓ(t)

x̂ℓ(τ) ∈ Xℓ, uℓ(τ) ∈ Uℓ, τ ∈ [t, t + T]

(2.6)

16 Chapter 2 Nonlinear MPC for cooperative manipulation

The solution to (2.6) u∗
ℓ(τ), for τ ∈ [t, t + T], defines a predicted state

trajectory x∗
ℓ(τ) that is optimal with respect to the reference trajectory for

the object. In particular, from the first 12 components of the state vector the

predicted trajectory for the end effector pose can be extracted, which we will

refer to as T ∗
e,ℓ(·).

Conversely to the leader, the followers have to ensure that the trajectory

planned by the leader is attained by adapting their system states and output

forces/torques. The role of the followers is to minimize the internal forces,

which is accomplished, due to (2.2), by minimizing the second term in (2.3).

For j 6= ℓ, define T̂ o
e,j = T o

e,j(0), and then note that, by left-multiplication with

To(t) and using (2.4), we obtain:

dist(T o
e,j(t),T

o
e,j(0)) = dist(To(t)T

o
e,j(t),To(t)T̂

o
e,j)

= dist(Te,j(t),Te,ℓ(t)(T̂
o
e,ℓ)

−1T̂ o
e,j) + εj

(2.7)

where εj is an error due to the approximations of (2.4). This means that T o
e,j,

for the followers, is controllable up to εj. In this way we explicitly express the

displacement of the grasps from the rest condition in terms of controllable

quantities. In view of (2.7) and given T ∗
e,ℓ(·), which is the leader trajectory

that minimizes (2.6), each follower agent j aims at minimizing the following

cost function:

Jj(x̂j(·),uj(·)) =
∫ t+T

t
dist(T̂e,j(τ), T̂e,j,ref (τ)) dτ (2.8)

where Te,j,ref (t) = T ∗
e,ℓ(t)(T̂

o
e,ℓ)

−1T̂ o
e,j is a transformation of the trajectory

predicted from the leader. This is achieved, by iteratively solving the following

FHOCP problem:

argmin
uj(·)

Jj(x̂j(·), ûj(·)) +
∫ t+T

t
û⊤

j Wuûj dτ

subject to: ˙̂xj = fAj
(x̂ℓ)ûj

x̂j(t) = xj(t)

x̂j(τ) ∈ Xj, ûj(τ) ∈ Uj, τ ∈ [t, t + T]

(2.9)

The decentralized cooperative algorithm can be then summarized as in Alg. 1.

2.3 Cooperative manipulation with MPC 17

Mobile robots are extended objects, so we consider a set of K points defined

on the robot as a function of the state pi,k(xi) ∈ R3, e.g. pv, pe,i, directly

extracted from the state, or any link origin pj,i(xi), defined according the

forward kinematics. A set of M obstacles is defined by their positions om ∈ R3

and a radius dm ∈ R defining the minimum distance avoiding collision. We

then define:

Ji,o(xi)=
K
∑

k=1

M
∑

m=1

Ci,k,me−λi,k,m(‖pi,k(xi)−om‖+dm) (2.10)

where Ci,k,m is the desired cost value on the boundary of the sphere defined

by (om, dm) and λi,k,m determines the decay rate of the cost. Note that due

to the exponential, the cost is negligible outside a radius defined by λi,k,m.

Figure 2.5 shows an example the cost given by an obstacle with respect

to the x and y components. Finally, in (2.6) and (2.9) we replace Ji with

Jfull = Ji + Ji,o, and the same algorithm apply.

2.4 Simulations and experiments

The proposed framework is validated through a realistic simulation (in

Gazebo environment) and experimental results with 2 heterogeneous robots,

where the continuous time formulation is discretized with a multiple shoot-

ing method. A common implementation for both the simulation and the

experiment has been realized via a ROS network, that allows a common input-

output interface, so that the same algorithm runs the on the two environment,

as illustrated in Fig. 2.6.

The used heterogeneous robots consist of one ground and one aerial vehicles,

as shown in Fig. 2.8. The ground robot is composed of an omnidirectional

base, which is fully actuated on the floor plane, whereas the aerial robot is

a planar hexacopter, both equipped with manipulators, of 4 and 2 revolute

joints, respectively. The proposed framework is implemented with the ground

robot being the leader and the aerial one being the follower.

To evaluate the performance of the algorithm, we consider eℓ and eo, the

position tracking error for the leader and the object, respectively derived from

Te,ℓ,ref and Te,o,ref Moreover, we consider the respective orientation metrics

2.4 Simulations and experiments 19

Gazebo Simulator

Experimental Environment

ROS Nodes

Leader
MPC

URDF
Models

Simulated
Sensors

(T̂ o
e,ℓ)

−1T̂ o
e,j

Follower
MPC

Real
Robots

Encoders
Mo-cap

ROS Interface

ROS Interface

T
∗

e,ℓ(·)

T
∗

e,i(·)

Figure 2.6.: The MPCs are implemented in ROS, allowing for a common interface

to both the simulation and laboratory.

θℓ, θo, defined as θ∗ = cos−1(2((q̃∗)
⊤q̃∗,ref)2 − 1), with q̃ being the quaternion

errors between the desired and the actual attitude. Since the follower does

not follow an explicit trajectory but rather solves an optimization problem,

we assess the performance for the aerial vehicle by inspecting the cost value

of the MPC problem, which encodes the object displacement from the initial

condition, and then it is proportional to the internal forces, according to

assumption (2.2). Under ideal conditions, the MPC scheme should always be

able to keep it close to zero and, in practice, this should still be bounded. We

can assess the validity of the algorithm by verifying that the value does not

increase over time.

2.4.1 Lower level controllers

In both the simulation and experiment, the MPCs run in different nodes

on a off-board computer within the same ROS network as the robots, at

10 Hz and with an horizon length of T = 1 s, producing a velocity setpoint

for the joints and the vehicle. In the case of the ground robot, these are

directly supplied to the (real or simulated) motor drivers. The UAV relies on

an attitude stabilization and a controller that converts the MPC command

to desired roll-pitch-yaw-thrust. To increase robustness, the latter aims at

tracking both the computed velocity and the first sample of pose from the

trajectory predicted by the MPC.

20 Chapter 2 Nonlinear MPC for cooperative manipulation

2.4.2 Gazebo simulations

Gazebo is a multi-robot simulator based on Open Dynamic Engine physics-

engine that allows for realistic robot simulations (Koenig and Howard, 2004).

The two robots are simulated in Gazebo via custom URDF models, as rep-

resented in Fig. 2.1. The dynamic of all joints and the base of the ground

robot are simulated via ros_control, while RotorS (Furrer et al., 2016) is

employed for n-rotor flight simulation.

To launch the scenario, the UAV takes off and starts hovering in a predefined

position near the object, in the grasp position. After this, the experiment

starts (t = 0) when the end effectors of ground and aerial robots are at

[0.39, 0.02 0.34]⊤ [m] and [0.81, 0.00, 0.04]⊤ [m]. Fig. 2.7 shows the results

of a simulation where the algorithm is tested with a constant setpoint in

[0, 1.5, 0.3]⊤ [m] and the same orientation as the initial state, with a box

placed at [0.0, 0.5, 0.0]⊤ [m] Fig. 2.7 shows that both the ground and the aerial

robots are able to drive the object error to zero by avoiding the obstacle. In

particular, figure 2.7c shows that the displacement of the follower with respect

to the prescribed object trajectory is bounded through the transportation

and eventually converges to zero, despite an initial peak due to a delay in

the reference tracking. The simulation example is clearly illustrated in the

accompanying video1

2.4.3 Experiments

The experiment, whose setup shown in Fig. 2.8, was conducted at the Smart

Mobility Lab2, at KTH Royal Institute of Technology. A motion capture system

was employed to measure the quantities that are part of the state in (2.1), i.e.

the poses of ground base and end effector, and the vehicle of the UAV. The

latter’s end-effector, instead, was occluded by the vehicle and was estimated

via the open-loop forward kinematics. In the initial configuration the robots

are assumed to be already grasping the object, which is a plastic bar, 0.85 m

long, that allows for some elastic deformation.

1https://youtu.be/e5iIwj9tm1c
2https://www.kth.se/is/dcs/research/control-of-transport/

smart-mobility-lab/smart-mobility-lab-1.441539

2.4 Simulations and experiments 21

Figure 2.8.: Experimental setup

The experiment starts with the UAV hovering, grasping the object with its

end-effector at [−0.42, 0.60, 0.15]⊤ [m], while the ground end-effector is

at [0.42, 0.61, 0.2687]⊤ [m] and the bar at [0.09, 0.60, 0.2067] [m]. Two

obstacles, one traffic cone and one box, are placed at [1.00, −0.61, 0.00]

and [1.00, −0.61, 0.00]⊤ [m], forcing the vehicles to perform an avoidance

maneuver. The results of a constant-setpoint tracking experiment, where

the goal position is set at [−0.0175, −1.5652, 0.3000]⊤ [m] and the goal

orientation is the same as the initial one, similar to simulation are reported

in Fig. 2.9a, 2.9b and 2.9c.

It can be noticed from Fig. 2.9 that, while the leader robot is able to converge

to its setpoint, the object has some error. This means that the relative

transforms between the robots and the object, T o
e,ℓ(t) and T o

e,j(t), are not

exactly equal to the initial condition T o
e,ℓ(0) and T o

e,j(0). Fig. 2.9c shows

that while the cost is bounded, and then the displacements are within the

physical limits of object detachment, it is not driven to zero, as in the gazebo

simulations. This cannot be attributed to the effects of the internal forces

because, intuitively, they would tend to push the follower to lower the error.

Instead, the degradation of performance can be caused by saturation in the

low level controller of the UAV, and ground effects that arise since the latter

is flying close to the ground and the obstacles. Nevertheless, both the error

and the cost in Fig. 2.9c are bounded and the MPC scheme is able to keep

the system stable, even when at time t = 22 s, when a fictitious external

disturbance is simulated by applying a short impulse to the ground vehicle

2.4 Simulations and experiments 23

arm joints commands. In that case, the plots show that the algorithm is able

to handle the disturbance and keep the error bounded. The experiment is

clearly illustrated in the accompanying video, which shows that the algorithm

is able to complete the transportation task without having the object detached

or damaged.

2.5 Conclusions

In this work we proposed a decentralized algorithm to coordinate a team

of heterogeneous robotic agents that are designed to transport an object

to a prescribed target pose. The procedure is designed to be robust to

uncertainties and unmodelled dynamics such as underactuation and non-

ideal tracking of the computed control inputs. The technique was tested both

in a realistic simulation framework and with a laboratory experiment. In the

former, the task was completed with converging errors, whereas in the latter

an error is present at steady-state, mostly due to imperfect low-level control

tracking. Nevertheless, the system is still able to keep the error bounded and

react to unexpected external disturbances.

The main limitation of this approach is that the finite horizon optimization

problem needs to be (locally) convex: in particular, in presence of multiple

solutions, the algorithm will not necessarily compute the shortest path but

the one following the local convexity. While in many cases this suboptimal

solution can be acceptable, in more complex scenarios this can prevent a

feasible solution to be found. In this sense, the proposed strategy should

be intended as solving the problem of obstacle avoidance and not as a path

planner. Indeed, non-convex scenarios need proper approaches and will be

addressed in the following chapters.

2.5 Conclusions 25

3NAPVIG: narrow passage

navigation

3.1 Introduction

In the previous chapter we developed a technique for multi robot coordination

and obstacle avoidance strongly relying on the knowledge of the position and

orientation of every robot parts and the obstacles in a fixed reference frame.

We now move to a new approach in order to address broader contexts where

an exact localization is not possible.

In general, the path planning task is resting on two main approaches: the

graph-search and the sampling-based paradigm. Graph-search algorithms

rely on the discretization of the entire operating space to find the path,

corresponding to a minimum cost; while sampling-based methods rest upon

a sparse sample-based representation of the operating space. The probably

most well-known sampling-based planner is Rapidly-exploring Random Trees

(RRT) (LaValle et al., 1998). Its derivations like RRT* (Karaman and Frazzoli,

2011) and others, e.g., (Salzman and Halperin, 2016; Chen et al., 2018;

Mashayekhi et al., 2020; Fu et al., 2020) are ubiquitous, and recently, further

derivations of RRT have been developed to handle dynamic environments

(Chandler and Goodrich, 2017; Qi et al., 2020). On the other hand, the

A* algorithm and its derivations (Lindqvist et al., 2021; Pairet et al., 2021)

constitute the most popular graph-search method, commonly adopted when

dealing with unknown environments.

In general, the mentioned RRT and A* algorithms can find effective and

feasible path planning solution for mobile robots. Nonetheless, both graph-

search and sampling-based approaches tend to be computationally highly

demanding in case of complex scenarios, especially in presence of narrow

passages and/or cluttered environments. Indeed, in these cases requiring

high precision in the path definition, the RRT algorithms are penalized by

the need of a large number of samplings and the employment of ad-hoc

27

strategies (Bun et al., 2021), whereas the need of smaller grid cells quickly

deteriorates the performance of A* algorithms. Moreover, both graph-search

and sampling-based methods are not well suited for reactive navigation, since

they imply dynamic remapping and replanning. Thus, real-time requirements

represent a further, highly challenging aspect when dealing with an unknown

and dynamic environment. In this case, the state of the art solutions in-

volve the exploitation of artificial potential fields (APF) (Paternain et al.,

2017). However, although ensuring reactive navigation, their application is

mostly limited to convex map configurations (Arslan and Koditschek, 2019).

Other techniques are based on a dynamic window (Molinos et al., 2019),

and predictive approaches (Choi et al., 2017). An alternative approach is

navigating safely, farthest away from obstacles, relying on the Generalized

Voronoi Diagram (GVD) (Choset and Burdick, 1995). While this allows

for safe navigation, computing the entire GVD is very costly and is usually

employed for offline applications and global path planning (Bhattacharya

and Gavrilova, 2008). Nonetheless, it is possible to approximate the GVD

given sensor data by applying selective algorithms on the Voronoi tessellation

of the measurements (Mahkovic and Slivnik, 2000), or by discretizing the

known map into cells and then applying computer vision techniques (Marie

et al., 2019) based on the distance transform (Datta and Soundaralakshmi,

2003). Such techniques, however, being based on a discretization of the map,

still require a trade-off between precision and computational load, which is

critical in cluttered and narrow environments.

In this work, we present a novel approach for reactive navigation in unknown

environments, that allows for computing the desired trajectory directly from

LiDAR sensor data without the need of approximating a map representation

with discrete grids. This allows precise computation with low computational

requirements. Our approach is therefore specifically suited for embedded

systems and where a very high reactivity is needed.

Conversely, the proposed algorithm exploits discrete raw measurements to

build a spatially continuous landscape function, which is evaluated greedily

along a section to generate a local trajectory. Although the landscape func-

tion has some conceptual similarities with APF, it is not used to generate a

trajectory along its gradient, but it is used to precisely compute one point

in the Voronoi diagram: the resulting point computed by the algorithm at

28 Chapter 3 NAPVIG: narrow passage navigation

each step depends on the initial conditions of the algorithm In doing this, the

approach proves to be fast and efficient as to work in real-time, and it reveals

to be inherently reactive to any event or environment change occurrence that

may affect the path to travel. More specifically, the contribution of our work

is the following:

• We develop a procedure to allow navigation without an a-priori map

and without performing a preliminary localization, in unknown, clut-

tered and dynamic environments.

• Contrary to existing methods (Ramos and Ott, 2016), the algorithm is

based on a continuous map representation that does not require any

processing of the sensor data.

• This leads to very low computational requirement, allowing for im-

plementation on highly dynamic and in case of limited computation

capabilities.

• We conduct an extensive campaign of simulated and laboratory ex-

periments, i) demonstrating the above claims and ii) showing a high

precision and repeatability.

3.2 Problem formulation

We consider a context where a mobile robot is tasked to navigate in an

unknown, unstructured and dynamic environment, possibly characterized

by narrow passages. Given the large amount of uncertainties and the unpre-

dictability that may affect such scenario, in order to achieve safe navigation,

we set the goal to compute a trajectory that is the farthest away from the

environment obstacles. In the next chapter, we will theoretically prove that

this method is an approximation of the GVD.

Specifically, we assume that the occupied space is a time-variant subset of the

plane Xocc(t) ⊂ R2, where t ∈ R is time. Moving in the free space the robot is

able to gather local measurements of the occupied space through a LiDAR

mounted on board. Namely, with sampling period Tm ∈ R, at time tk = kTm,

k ∈ N, the sensor obtains a measures set Mk := {mk,h, h = 1, . . . , H}, H

being the number of measurements per sampling time. We introduce an

3.2 Problem formulation 29

inertial reference frame FW and a robot frame Ft, which is the pose of the

robot at the continuous time t ∈ R. For each sampling time we also consider

a reference frame Fk corresponding to the pose of the robot at discrete time

tk relative to the inertial frame FW , so that the measurements mk,h are

expressed in Fk. We will refer to frame Fk as measurements frame. Given that

the measurements are obtained at discrete sampling times, we also consider

the relative frame Fk,t that is the relative frame between the discrete time

measurements frame Fk and the continuous time robot frame Ft.

To cope with scenarios characterized by dynamic space configurations, the

goal is to iteratively compute a trajectory ξ(t) ∈ R2 which satisfies the safety

requirements with respect to the (static or dynamic) obstacles and that is

supplied at each time t to the low level controllers that steer the robot towards

the computed position in a pure pursuit fashion. It is important to notice that

ξ(t) is expressed in the robot frame Ft.

3.3 Landscape function definition

The focus of the proposed algorithm is to find a trajectory that is at the

maximum distance from the obstacles. In this view, we define a landscape

function that maps each point of R2 to a value related to the distance of the

nearest measurement, in analogy with the grid-based distance transform.

Unlike the latter, however, we define a function that is spatially continuous

and does not need to be computed at every point of a grid, as it will be clear

later.

The idea is to consider a Gaussian-like function centered on each measure-

ment. Formally, we define a Gaussian peak:

Γ : R2 × R2 → (0, 1] : (x,m) 7→ e−‖x−m‖2

2σ2 . (3.1)

Then, for a measurement setMk, we define:

Ľk(x) = max
m∈Mk

Γ(x,m) (3.2)

It is easy to see that, given a measurement set, the value of this function is

proportional to the distance to the closest obstacle, according to a Gaussian

30 Chapter 3 NAPVIG: narrow passage navigation

where the kernel is defined as:

κ(x) =

√

σ2 + δ2

2πσ2δ2
e−‖x‖2

2δ2 (3.4)

with δ > 0 being the smoothing radius and choosing the gain to compensate

the amplification of the convolution operation.

A representative example of this function is depicted in Fig. 3.1. The land-

scape function is differentiable, since in this formulation the gradient is

mathematically computed only on the kernel, which is trivially differen-

tiable:

∂

∂x
Lk(x) =

∫

R2
Ľk(w)

∂

∂x
κ(x−w) dw (3.5)

The integral in (3.5) cannot be computed in closed form, but it can be

approximated with a Monte Carlo method, efficiently exploited thanks to the

Gaussian kernel choice. Indeed, note that:

Lk(x) =
∫

R2
KnaĽk(w)e−‖x−w‖2

2δ2 dw, (3.6)

where Kna is the gain in (3.4), has the form of the expected value of function

of a Gaussian random variable W ∼ N (x, δ2I2):

Lk(x) = E
[

[
]

w]2Knaπδ2Ľk(w) (3.7)

Then, we can estimate the expectation by drawing a number Nmc of samples

from W , w̄1, . . . , w̄Nmc
, and compute the sample mean:

Lk(x) =
1

Nmc

Nmc
∑

i=1

2Knaπδ2Ľk(w) (3.8)

Finally, we compute the gradient from (3.8):

∂

∂x
Lk(x) =

1

Nmc

Nmc
∑

i=1

2Knaπδ2 ∂

∂x
Ľk(w) (3.9)

32 Chapter 3 NAPVIG: narrow passage navigation

where the gradient of Ľk is

∂

∂x
Ľk(x) = −

x−m∗

2σ2
e−‖x−m

∗‖
2σ2 ,

m∗ = argmin
m∈Mk

‖x−m‖ .
(3.10)

It can be verified that the points x where the argmin is not unique correspond

to the non-differentiable points of Ľk, so in that case ∂
∂x
Ľk(x) is not defined.

However, this is not an issue since those points are, by definition, in the

Voronoi diagram of the measurements setMk, that is provably a zero measure

set in R2 and hence the probability of randomly sampling one of those points

is zero.

With this technique, intuitively, we exploit the similarity of the Gaussian

smoothing kernel to a Gaussian distribution around the point of interest to

obtain an efficient estimate of the landscape value and gradient. To obtain the

results of this work it was sufficient a number of samples Nmc = 50. Note that

this parameter, together with the termination condition of the optimization

algorithm, are the only tuning variables that control the trade-off between

computational cost and precision. For all our experiments the values for

the peak and smoothing radius are chosen to be, respectively, σ = 0.2 and

δ = 0.02, and they only should scale with the average size of the robot and

the obstacles.

3.4 Narrow passage navigation (NAPVIG)

algorithm

Given the landscape function previously introduced, the rationale is based

on the observation that, in one dimension, the minimum between the two

centers of two Gaussians is the middle point. We extend this concept to the

2D case by considering the restriction of the landscape function to a line, and

looking for the minimum point. Experimentally, it can be shown that the 1D

analogy still holds for the 2D case.

In this section, we present the algorithm to compute a single point of the

trajectory, which we refer to as NAPVIG algorithm. Given an initial point x0 ∈

3.4 Narrow passage navigation (NAPVIG) algorithm 33

R2, we consider a search direction, that is a vector in S1 = {r ∈ R2 : ‖r‖ = 1},

that represents the direction in which we want to look for the next sample.

The input variables of the algorithm are then x0 and r. Then:

• We consider the point:

x(0) = x0 + βstepr (3.11)

that is βstep farther from x0 in the r direction.

• We consider the restriction set as the line passing through x(0) that is

orthogonal to r. First, let R⊥ be the orthogonal space to r. Then, the

restriction set is the line:

A = {x(0) + λr⊥, λ ∈ R, r⊥ ∈ R⊥} (3.12)

• We look for the minimum of the landscape function Lk restricted to A:

x∗ = argmin
x∈A

Lk(x) (3.13)

We compute this point by applying a constrained version of gradient

descent, as follows:

– We consider the orthogonal projection operator PR : R2 → R⊥

that associates a vector v ∈ R2 to its orthogonal projection onto

R⊥.

– We perform a gradient descent constrained to R⊥, with the follow-

ing update rule

x(i+1) = x(i) + ηPR

[

∂

∂x(i)
Lk(x(i))

]

(3.14)

where η > 0.

– The gradient descent terminates when it holds ‖x(i) − x(i−i)‖ <

εterm, εterm > 0.

The output of the algorithm is the point from the last iteration of the gradient

descent, namely:

napvig(x0, r,Lk) := x(i∗) (3.15)

34 Chapter 3 NAPVIG: narrow passage navigation

where i∗ is the index in the iteration when the termination condition is

satisfied.

3.4.1 Navigation strategy

We employ the procedure just introduced to reactively compute the next

trajectory sample, given the current robot observations. With the landscape

function Lk of the measurements taken at time tk, we consider that the

relative frame between the robot at a generic time t and the last measurement

frame, is composed as follows: Fk,t = (xk,t,Rk,t), where xk,t is the origin of

frame Fk,t and Rk,t a rotation matrix representing its orientation. We then

choose the initial conditions as x0 = xk,t, and r = Rk,t[1, 0]⊤. The trajectory

sample at time t is then:

ξ(t) = F−1
k,t napvig(xk,t,Rk,t[1, 0]⊤,Lk) (3.16)

where F−1
k,t , with abuse of notation, converts the result of the algorithm from

the measurement frame, where the landscape function is defined, to the

current robot frame, where the low levels controllers get values. The frame

Fk,t can be retrieved by local odometry (e.g. wheels encoder, IMU, etc.). Note

that if the trajectory sample is computed synchronously to the measurement

sample, i.e. for t = tk, we obtain the simplified:

ξ(tk) = napvig([0, 0]⊤, [1, 0]⊤,Lk) (3.17)

Remarkably, the purpose of the generalization is to allow the trajectory to be

updated at a higher rate than the LiDAR scan, which is usually lower than

the odometry one. In practice, ξ(t) can be computed at t = ℓTo, ℓ ∈ N and

To being the odometry sample time, given the last measurements taken at

tk = kTm.

This choice for the initial condition is to look for local minima of the landscape

functions that are straight ahead in the robot’s frame. Using such initial

condition, however, suggests a preferential navigation direction (by design),

which is surely valid in environments with no bifurcation. Nonetheless, in

more general scenarios there could be multiple local minima, corresponding

to the different possible directions, which can be selected depending on

3.4 Narrow passage navigation (NAPVIG) algorithm 35

the initial conditions. In such cases, if needed, by adopting more advanced

techniques on the choice of the initial search direction it is possible to control

this selection, thus allowing NAPVIG to solve the navigation problem in any

kind of environment. In this work we will limit our focus on testing the

performance of the core algorithm on environments without bifurcations,

while the extension to more general scenarios will be addressed in chapter

5.

3.4.2 Vehicle model and control

A differential steering robot can be modelled as a unicycle, controlled in

linear and angular velocity, v, ω ∈ R respectively:







ẋ

θ̇





 =













cos(θ) 0

sin(θ) 0

0 1













u (3.18)

where u = [v, ω]⊤, x and θ are the position and the orientation of the

robot in the plane. The non-holonomic constraint that characterizes this

vehicle needs particular attention in narrow and dynamic environments:

since lateral motions are only possible through arcs, in such contexts it

is desirable to reduce their radius. To this aim, we slow down the linear

velocity proportionally to the angular error. Specifically, given that ξ(t) is

the current desired position calculated by the algorithm, expressed in the

local frame Ft, we consider the position error as a complex value, namely

e(t) = [1, i]ξ(t) ∈ C, where i is the imaginary unit, in order to conveniently

retrieve the angular and linear error without representation problems, and

we employ the following control law:

ω(t) = kp,ωℑ log(e(t)),

v(t) = kp,v‖e(t)‖e
− ω(t)2

2k2
v,ω ,

(3.19)

where ℑ denotes the imaginary part. Here, ω(t) is a proportional control on

the steering angle needed to reach the current trajectory. The linear velocity

command is proportional to the distance to the trajectory sample multiplied

by a factor that reduces the curvature radius when the steering angle is

high.

36 Chapter 3 NAPVIG: narrow passage navigation

(a) t = 0s (b) t = 0s

(c) t = 8s (d) t = 10s

(e) t = 30s (f) t = 20s

Figure 3.2.: Gazebo experiments screenshots: static (left column) and dynamic

(right column) scenarios: blue lines represent the visualization of the

laser ray scan.

3.5 Simulations

In the simulated experiments, the laser scanner runs at 5 Hz while the

odometry sensor at 100 Hz. The center of the corridor is defined in this case

as the point with equal distance to the two walls, which we will define in

this section. Fig. 3.2 shows several screenshots of the Gazebo simulation

in the static/dynamic scenarios. These simulations are reported also in the

accompanying video1.

1https://youtu.be/noMnzxsi4wE

3.5 Simulations 37

3.5.1 Environment design

We consider the context of a single, possibly time-variant, randomly generated

corridor, by producing a set of random points at random angles and fixed

radius:

ϑ̄k ∼ N (0, σ2
ϑ), k = 1, . . . , Kϑ, σϑ > 0 (3.20)

To stress the approach and simulate an (extremely) time varying context, we

consider a limit case where a sinusoidal disturbance is added at each time t

to the generated angles:

Θ(t) = {ϑk(t) = ϑ̄k + sin(2πfϑt + ϕϑ), ϕϑ ∼ N (0, σ2
ϕ)}

K(t) = {kk+1(t) = kk(t) + ρ







cos(ϑk(t))

sin(ϑk(t)





 , k = 1, . . . , Kϑ}
(3.21)

with k(t)0 = 0, ρ > 0. Then, we interpolate the key points with a spline,

obtaining the passage center:

γ(τ, t) = spline(τ ; K(t)) (3.22)

with a desired sampling set τ ∈ T ⊂ R. The two walls that define part of

∂Xcoll(t) are then:

W1,2(t) = {γ(τ, t)± λw(τ, t)n(τ, t), τ ∈ T } ⊂ ∂Xcoll(t) (3.23)

where n(τ, t) is the unit vector normal to γ(τ, t) and λw(τ, t) > 0 is the half

width of the passage and we choose:

λw(τ, t) = λ0 + Aλ cos(kλτ − 2πfλt) (3.24)

3.5.2 Static scenario

We first test the algorithm in a static scenario. We consider the environment

described in the last section where the time is fixed, e.g. γ(τ, 0), λw(τ, 0).

Fig. 3.3a shows the corridor (in blue), its center in dashed black and the

38 Chapter 3 NAPVIG: narrow passage navigation

resulting trajectory computed by the algorithm. Visibly, the last two are mostly

overlapping. The error with respect the center of the corridor of the trajectory

eξ(t) = dist(γ(t), ξ(w)(t)), where ξ(w)(t) is the trajectory sample expressed

in the world frame, and the actual robot position ex(t) = dist(γ(t),x(t))

is reported in Fig. 3.3b. It appears that the algorithm is able to provide

an accuracy of more than 3 cm from the corridor center, ensuring collision

avoidance and safe navigation. Note that the main source of noise in the

instantaneous trajectory computation is the gradient estimation accuracy,

which can be selected to be more precise, at the cost of higher computational

load and with the limitation of the accuracy of the laser measurement. Also,

this simulation suggests that the designed procedure is effective and able

to keep up with the real-time requirements, with an average computation

time of 5 ms. Although in this context, we are not targeting high speed

performances, we verify that the resulting average speed is 0.23 m/s, which

is in line with many practical applications.

3.5.3 Dynamic scenario

In Fig. 3.4 we report the performance results of NAPVIG in a random dynamic

environment. Fig. 3.4a shows a few corridor instances in light blue. In dark

blue is the last corridor of the experiment visualized: we highlight that a-

priori there does not exist any trajectory travelling the entire corridor without

collision, so in this case it is mandatory resorting to the online computation.

Since the corridor changes dynamically, we can only assess the distance from

the corridor center by looking at the performance metrics, evaluated for each

t according to the current γ(·, t), as plotted in Fig. 3.4b. In this case, the error

is slightly higher than that in the static case since, as it might be expected,

the dynamic environment is more challenging to keep up with. Clearly,

there are physical limitations on the rate of change of the environment, the

most important of which, besides the measurement frequency, is the non-

holonomic constraint that causes a delay in the path following. Nevertheless,

the resulting tracked trajectory is able to avoid collisions, with an overall

average speed of 0.22 m/s.

3.5 Simulations 39

of the task with no collision or impasse. The results reported in Fig. 3.8

present the overall path tracked in six runs along with four detailed views.

After the first transient that drives the robot to the desired trajectory, starting

at around [−0.1,−1.1] [m], the figure and, in particular, the enlarged views,

Figure 3.5.: Experiment #1: The wheeled robot passes through a narrow passage,

set up with card boards.

Figure 3.6.: Experiment #2: snapshots of setup.

42 Chapter 3 NAPVIG: narrow passage navigation

show that the path repetition range is less than 1 cm along a total traveled

distance of more than 6 m per loop.

(a) Initial configuration

(b) Final configuration

Figure 3.9.: Snapshots of experiment #3

Finally, given that the behavior with multiple dynamic parts has been assessed

in simulation, we report a laboratory experiment with one moving obstacle.

The environment is initially set up as in Fig. 3.9a and the algorithm starts

computing a trajectory overcoming the obstacle on the right. The obstacle is

then suddenly moved to a possible collision position and the robot reactively

recomputes the trajectory to perform the navigation task. The overall path

is reported in Fig. 3.10 showing the obstacle’s initial and final positions

in dashed gray and black, respectively: the NAPVIG algorithm drives the

robot through a first straight part of the path, followed by a sudden evasion

maneuver to overcome the moving obstacle.

44 Chapter 3 NAPVIG: narrow passage navigation

4Theoretical foundations of

NAPVIG algorithm

4.1 Introduction

In the last chapter we introduced the NAPVIG algorithm that, exploiting

the landscape representation of the configuration space based on the LiDAR

measurements, and a constrained gradient descent algorithm to compute

samples of the target trajectory. The method was motivated with an intuitive

explanation and validated experimentally. We now proceed by defining

a more theoretical formulation of both the algorithm and the Landscape

function, of which we will provide their mathematical properties, and we

will prove that the NAPVIG algorithm computes an approximation of the

Generalized Voronoi Diagram of the map.

Voronoi diagrams (Fortune, 1995) have been extensively studied across a

broad range of domains, from machine learning (Kolahdouzan and Shahabi,

2004) to computer graphics (Valette et al., 2008). Intuitively, given a (finite)

set of points, the plane is subdivided into regions that are closer to a single

point than all others. This concept can be adapted to more generic configu-

ration space, made of continuous sets representing the obstacles, leading to

the Generalized Voronoi Diagram (GVD), that is the set of points of the plane

that are equidistant from two or more obstacles (Lee and Drysdale, 1981).

Following the GVD has been one of the first solutions to the motion planning

problem (Takahashi and Schilling, 1989), and is often used in combination

with roadmaps (Lulu and Elnagar, 2005; Bhattacharya and Gavrilova, 2008),

fast-marching methods (Garrido Bullón et al., 2011; Garrido et al., 2009)

and artificial potential fields (Masehian and Amin-Naseri, 2004). One of the

biggest limitations of these methods to be used in real time is the compu-

tational capacity needed to obtain accurate trajectories and the knowledge

of a map representation. Indeed, fast computation need approximations

(Edwards et al., 2015) and advanced algorithms (Kiseleva et al., 2019) and

the computation is often uncoupled with mapping, that is often assumed to

47

be known. For this reason, the application of GVD is limited to global navi-

gation (Gomez et al., 2013). Only recently real time and reactive strategies

employing the GVD for navigation have been effectively tested experimentally.

For example, in (Marie et al., 2019) the GVD is computed with computer

vision techniques starting from an omnidirectional camera, while in (Chi

et al., 2021) it is combined with RRT-based methods. All these techniques are

based on a grid approximation of the target space, thus requiring a trade-off

between precision and computational load, which is critical in cluttered and

narrow environments.

4.2 Preliminary definitions and properties

In this section we provide basic definition and results that will be useful

to show the main propositions regarding the NAPVIG algorithm and the

landscape function.

Definition 4.1. Given a compact set C, we define the projection operator to

the set C as:

PC : DC → C : x 7→ PC(x) := argmin
y∈C

‖y − x‖ (4.1)

for the points x ∈ DC for which the argmin is unique:

DC = {x ∈ R2 : ∃! ȳ ∈ C s.t. ‖ȳ − x‖ ≤ ‖y − x‖, ∀y ∈ C} (4.2)

Proposition 4.1. Given a point y ∈ C and a compact set C, if C is also convex,

then the set defined previously DC ≡ R2, meaning that the argmin
y∈C

‖y − x‖ is

always unique.

Proof. Suppose that there exist y1 6= y2 ∈ C s.t. ∀y 6= y1,y2, ‖y − x‖ >

‖y1 − x‖ = ‖y2 − x‖. Then consider the midpoint between y1 and y2:

z = y1+y2

2
. It holds:

‖y1 − x‖2 = ‖y1 − z + z − x‖2

= ‖y1 − z‖2 + ‖z − x‖2 + 2(y1 − z)⊤(z − x)
(4.3)

48 Chapter 4 Theoretical foundations of NAPVIG algorithm

Since ‖y1−x‖ = ‖y2−x‖, z results to be the median of an isosceles triangle

of vertices y1,y2,x and it immediately follows that y1 − z is orthogonal to

z − x, which is the altitude of the triangle, so the last inner product is zero.

Since clearly z 6= y1, then it follows ‖z − x‖ < ‖y1 − x‖. By the definition of

argmin, z cannot be in C, but it cannot be outside C either since z is a convex

combination of elements of C, and we assumed C convex. We conclude that

the supposition ∃y1 6= y2 is false.

Proposition 4.2. If C is convex, then the projection operator to C, PC : R2 → C

is uniformly continuous.

Proof. We prove the contrapositive: if PC is not uniformly continuous then C

is not convex. If PC is not uniformly continuous, it means that:

∃ε > 0 s.t. ∀δ > 0 ∃x1,x2 ∈ R2 s.t.:

‖x1 − x2‖ < δ and ‖PC(x1)− PC(x2)‖ > ε
(4.4)

Note that it must be xi /∈ C, i = 1, 2, otherwise PC(xi) = xi and trivially

∄ε > 0. From now on, for convenience, we will use the shorthand notation

yi = PC(xi), i = 1, 2. Consider the point given by the convex combination:

z = y1+y2

2
. First, it is immediate to notice the following relations:

‖y1 − z‖ = ‖y2 − z‖

‖y1 − z‖+ ‖y2 − z‖ = ‖y1 − y2‖
(4.5)

and ‖yi − z‖ > 1
2
ε > 0, for i = 1, 2. Call:

ci := ‖z − xi‖, i = 1, 2, c̄ = min{c1, c2} (4.6)

Suppose that

‖yi − xi‖ ≤ c, (4.7)

for i = 1, 2 simultaneously. By looking at the triangles yi,xi, z, for i = 1, 2, it

follows:

c1 ≤ ‖y1 − x1‖+ ‖y1 − z‖

c2 ≤ ‖y2 − x2‖+ ‖y2 − z‖
(4.8)

4.2 Preliminary definitions and properties 49

Then, by (4.7) and the definition of c̄:

‖y2 − x2‖ ≤ c̄ ≤ c1 ≤ ‖y1 − x1‖+ ‖y1 − z‖

‖y1 − x1‖ ≤ c̄ ≤ c2 ≤ ‖y2 − x2‖+ ‖y2 − z‖
(4.9)

Since ‖yi − z‖ > 0, i = 1, 2:

‖y2 − x2‖ < ‖y1 − x1‖

‖y1 − x1‖ < ‖y2 − x2‖
(4.10)

which is not possible, and this implies that (4.7) is false. This means that

‖y1 − x1‖ > c̄ ∨ ‖y2 − x2‖ > c̄, i.e. at least for one i and ∃j it holds:

‖z − xi‖ < ‖xj − yj‖ (4.11)

Then, since by definition ∀y ∈ C‖y − xi‖ ≥ ‖yi − xi‖ it follows z /∈ C,

and being z a convex combination of points in C, we conclude that C is not

convex.

Proposition 4.3. Given a closed set C ⊂ R2 and a point x ∈ R2, x /∈ C, it

holds:

argmin
y∈C

‖y − x‖ ⊂ ∂C (4.12)

Proof. Suppose y belongs to the interior of C, i.e.:

∃Bε(y) s.t. Bε(y) ∩ C = Bε(y), (4.13)

where Bε(y) := {x ∈ R2 : ‖x− y‖ < ε}.

Consider the segment:

R = {λy + (1− λ)x, λ ∈ [0, 1]} (4.14)

50 Chapter 4 Theoretical foundations of NAPVIG algorithm

• The last property means that the convex components are either con-

nected components or subsets of connected components that only share

a part of the boundary set.

• Given any set Ccoll, if such decomposition exists, there is an infinite

number of ways such components can be defined. Even if we could

consider the decomposition that minimizes the number of components,

in this discussion their number and exact definition is not relevant as

long as the mentioned properties are fulfilled. For this reason we will

provide all definition with a generic i, neglecting the maximum number

that i can assume.

Definition 4.3. Given a generic set C, decomposable into convex components,

s.t. C =
⋃

i C
(i), the relative Generalized Voronoi Tessellation is identified by

the open sets:

X (i)
C = {x ∈ R2 : dist(x, C(i)) < dist(x, C(j)), ∀j} (4.17)

with the classical definition of distance to a set distx,X = argmin
y∈C

‖y − x‖.

The Generalized Voronoi Diagram is instead the union of their boundaries:

XC =
⋃

i

∂X (i)
C (4.18)

Note that XC has no interior points, being a finite union of boundary sets.

Following the classical notation we consider the Voronoi nodes as the points

of the GVD that are equidistant to three or more convex components, and then

we introduce the notation for the Voronoi branches as the paths connecting

the nodes. Formally:

Definition 4.4. We define a generalized Voronoi node as the points:

x ∈ XC : ∃i, j, k, s.t. dist(x, C(i)) = dist(x, C(j)) = dist(x, C(k)) (4.19)

The Generalized Voronoi branches are then the largest contiguous opens sets of

the GVD that do not contain nodes.

52 Chapter 4 Theoretical foundations of NAPVIG algorithm

4.2.1 Landscape function generalization

We now proceed by providing a more general definition the Landscape

function, that applies to both the ideal ground truth and the measurement

set, by considering a generic set A of collision points, which can be the

entire collision space Ccoll (ideal case) or the finite subsampleM of the real

measurement. In this chapter, for the purposes of the discussion, we will

neglect the dependency on time and samples, as we are considering each

time sample individually. For A, in both cases, we consider its decomposition

in convex components A(i).

Definition 4.5. We consider a peak function as:

Γ : R2 × R2 → (0, 1] : (x,y) 7→ e− ‖x−y‖2

2σ2 , (4.20)

with σ > 0 being the tuning parameter of the peak radius.

Definition 4.6. The raw landscape function ofA is defined as the superposition

of Gaussian peaks:

ĽA(x) = max
y∈A

Γ(x,y). (4.21)

Definition 4.7. The smooth landscape function of A is:

LA =
∫

R2
ĽA(w)κ(x−w) dw, (4.22)

that is the convolution of the raw landscape function with a Gaussian kernel

κ(x) = κ̄e− ‖x‖2

2δ2 , of radius δ > 0 and gain κ̄.

The gain κ̄ is chosen in order to compensate the amplification of the convolu-

tion, and it is designed such that if we smooth a single gaussian peak, the

4.2 Preliminary definitions and properties 53

resulting function has the same maximum value in the peak, i.e.:

Γ(x,y)

∣

∣

∣

∣

∣

x=y

=
∫

R2
Γ(w,y)κ(x−w) dw

∣

∣

∣

∣

∣

x=y

1 =
∫

R2
e− ‖w−y‖2

2σ2 κ̄e− ‖y−w‖2

2δ2 dw

= κ̄
∫

R2
e− 1

2
(δ2+σ2)

σ2δ2 ‖w‖2

(4.23)

By using the result on the Gaussian integral and solving for κ̄ we obtain:

κ̄ =
σ2 + δ2

2πσ2δ2
. (4.24)

The projection operator as in Def. 4.1, allows us to see a straightforward but

interesting property of the raw landscape function

Proposition 4.4. Given a point x and its projections onto each convex compo-

nents of A, PA(i) , the raw landscape function can be expressed as:

ĽA(x) = max
i

Γ(x,PA(i)(x)) (4.25)

Consider the GVD of A, X (i)
A . Then it also holds, for x ∈ X (i)

A :

ĽA(x) = Γ(x,PA(i)(x)) (4.26)

The second relation tells that, within each Voronoi region, the Landscape

value is associated with the distance to the closest convex component.

Proof. The key element to show these relations is that, by definition, if

‖x− y1‖ > ‖x− y2‖ then Γ(x,y1) < Γ(x,y2). From this, it is clear that the

only points that can maximize Γ are the point of A closest to x: by definition,

for each i, it must be the projection of x. The second statement then follows

trivially by the definition of X (i)
A .

Before introducing the main result, need to understand the conditions for

continuity and differentiability of the landscape functions.

54 Chapter 4 Theoretical foundations of NAPVIG algorithm

Proposition 4.5. The raw Landscape function ĽA(x) is continuous in all R2.

Proof. From Prop. 4.4, for x ∈ X (i)
A , the landscape function is given by the

peak function, that is continuous since it is uniformly continuous. We have

to show that it is continuous also for x ∈ ∂X (i). We consider all the possible

converging sequences x̄n → x, that will have subsequences x̄(i)
n ∈ X (i)

A ,

x̄(j)
n ∈ X (j)

A and x̄X
n ∈ XA. For x̄(i)

n and x̄(j)
n the uniform continuity of PC

ensures that ĽA(x̄n) → ĽA(x). From the definition, it immediately holds

ĽA(x̄X
n) = ĽA(x), ∀n, so in this case the convergence is trivial. For all the

other subsequences that jump between the three sets, it is possible to extract

subsequences that are all entirely contained in one of those sets, each of

which converge to ĽA(x).

Proposition 4.6. The raw landscape function ĽA(x) is piecewise differentiable

within each X (i)
A .

Proof. From Prop. 4.4, for x ∈ X (i)
A , the landscape function is given by the

peak function of the projection of x, and it immediately holds:

∂

∂x
ĽA =

∂

∂x
Γ(x,PA(i)(x)) (4.27)

The peak function Γ(x,y) is trivially differentiable with respect to x for all

x ∈ R2, and it holds;

∂

∂x
Γ(x,y) = −

x− y

2σ2
e− ‖x−y‖2

2σ2 (4.28)

The gradient of ĽA can then be seen as the composition of ∂
∂x

Γ(x,y) and

the function g(x) := [x, PA(i)(x)]⊤ and it is continuous as composition

of continuous functions since Γ is differentiable and PA(i)(x) is uniformly

continuous in XA(i) , from Prop. 4.2.

Notably, ∂
∂x
ĽA(x) is not defined for x ∈ ∂X (i), ∀i, since, by definition of X (i),

there are two different convex components A(i) that have the same distance

from x, so the argmax is not unique.

Proposition 4.7. The smooth Landscape function LA(x) is differentiable in R2.

4.2 Preliminary definitions and properties 55

Proof. The proof is straightforward by noticing that the variable x in the

definition is only in the kernel:

∂

∂x
LA(x) =

∫

R2
ĽA(w)

∂

∂x
κ(x−w) dw (4.29)

and κ(x) is differentiable everywhere.

4.3 The NAPVIG principle theorem

We now introduce the main results that prove that every sample computed

by the NAPVIG algorithm is actually an approximation of the GVD. The proof

is provided in the ideal collision space Ccoll and the raw landscape function.

The local minimum considered in the algorithm is exactly a point of the GVD,

provided that some theoretical assumptions are met. In the following, for

notation convenience, we will refer to ĽCcoll
as Ľ.

Theorem 4.1 (NAPVIG Principle). Given a configuration space characterized

by collision space Ccoll, consider the raw landscape function Ľ(x). Given a

pair of initial point and a direction (x,d) ∈ R2 × S1 identifying the line

D = {x + λd, λ ∈ R}. Consider the set of local minima of the restricted

function Ľ
∣

∣

∣

D
:

X ∗ =

{

argmin
x̄∈D

Ľ(x̄)

}

(4.30)

Under the hypothesis that the following relation holds:

d 6⊥ x− PCcoll(x), (4.31)

then the elements of X ∗ are all points of the Generalized Voronoi Diagram of

Ccoll.

Note that the elements of the initialization pair (x,d) correspond in the

NAPVIG algorithm the first step x(0) and the direction of the line R⊤, so d is

orthogonal to r0, i.e. x = x0 + βstepr0 and d ⊥ r0. The notation used in the

theorem is for clarity of presentation only.

56 Chapter 4 Theoretical foundations of NAPVIG algorithm

Proof. Consider a local minimum x∗ of the restriction Ľ
∣

∣

∣

D
. Suppose by

contradiction that x∗ is not a point of the GVD. This entails that:

dist(x∗,X (i)) < dist(x∗,X (j)), ∃i,∀j 6= i (4.32)

which in turn implies that x∗ ∈ X (i). As a consequence, it holds:

Ľ(x∗) = exp





−
x∗ − PC(i)

coll

(x∗)

2σ2







∂

∂x
Ľ(x∗) = −

x∗ − PC(i)
coll

(x∗)

2σ2
exp





−
x∗ − PC(i)

coll

(x∗)

2σ2







(4.33)

Consider now the following parametrization of the restriction of Ľ to D:

Ľ(x)
∣

∣

∣

D
= Ľ(x∗ + λd), λ ∈ R (4.34)

Since x∗ is a minimum and Ľ, from Prop. 4.6, is differentiable in x∗, since

x∗ ∈ X (i), the derivative of the restriction is zero in x∗ and it coincides with

the directional derivative of Ľ along d, namely:

0 =
∂

∂λ
Ľ(x∗ + λd) =

∂

∂x
Ľ(x∗)⊤d (4.35)

This implies:

−

(

x∗ − PC(i)
coll

(x∗)
)⊤

d

2σ2
exp





−
x∗ − PC(i)

coll

(x∗)

2σ2





 = 0 (4.36)

The scalar part is always positive and, since by hypothesis d is not orthogonal

to x∗ − P (x∗)), the numerator

(

x∗ − PC(i)
coll

(x∗)
)⊤

d 6= 0, so this equality

cannot be true an this proves the theorem.

This theorem is shown considering the ground truth Ccoll and the raw land-

scape function. However, two following remarks show that the real case is

a reasonable approximation of the ideal scenario. First, a real sensor can

measure a noisy sample only on the border of Ccoll, but the useful points

in the algorithm are indeed points of the border. Second, we note that the

4.3 The NAPVIG principle theorem 57

smooth landscape function is close to the raw version, and for δ → 0 (limit

case) they coincide. Formally, the following proposition holds.

Proposition 4.8. For any A and any x ∈ R2:

lim
δ→0
LA(x, δ) = ĽA(x) (4.37)

Proof. The kernel κ(x) can be seen as a Gaussian probability density function

(PDF) with variance δ2, up to a scaling factor. It is known that for δ → 0, the

PDF converges to a Dirac delta, so we obtain:

lim
δ→0
LA(x, δ) =

∫

R2
ĽA(w)d(w − x) dw (4.38)

where d(x) is the Dirac delta: its sampling property then proves the proposi-

tion.

1x0

r1
r2

2x0

r3

r4

x0

βstepr0

Gradient Descent

x∗

Figure 4.2.: Example of the algorithm behavior in a single corridor and in presence

of a bifurcation. The walls are depicted in solid black, with the center

of the corridors (corresponding to the GVD) in dashed. The orange

arrows are the first step taken in the search direction, while the red

one represents the trend of the gradient descent algorithm from the

initial point to the output of the algorithm.

58 Chapter 4 Theoretical foundations of NAPVIG algorithm

4.3.1 Remarks on the theorem

The results provided in this chapter allows a better understanding of the

behavior of the NAPVIG algorithm. However, several points needs to be

addressed

Hypothesis 4.31, which we refer to as NAPVIG condition, is an important

aspect as the validity of the theorem depends on it. In practice, it means that,

from x, all search directions d are available except the one that is orthogonal

to the direction of the closest collision point. This assumption not only is

reasonable since it is only one direction out of all the possibilities, but it

highlights a method to understand that a direction is wrong, since it would

drive directly to the closest obstacle. Also, numerically, in this condition

the projection of the gradient onto the search direction performed by the

algorithm would result in a null gradient, making the optimization algorithm

ineffective.

For a pair (x,d), corresponding to the NAPVIG algorithm initial conditions

(x0, r0), there could be multiple local minima, as explicitly considered by the

theorem. In the practical implementation the algorithm, based on a gradient

method, will converge to a specific one according to the initialization, so its

choice is critical for the purpose of the navigation strategy. In Figure 4.2 we

present an example of a corridor with a bifurcation and the outputs of the

algorithm given two different pairs of initial position and search direction.

Intuitively, r indicates the direction towards which it is desired to advance

and compute the next point of the GVD to follow. For example, 1x0 is inside

a single corridor, so the two different search direction r1,2 yield points that

are slightly different but on the same GVD branch. Conversely, for 2x0,

in proximity of the bifurcation, the two initial directions r3,4 yield points

on different corridors. Given that the map is unknown to the agent, it is

not straightforward to understand which initialization will drive towards

the desired goal and different strategies in the choice of x0 and r can be

employed according to the specific case requirements. A simple strategy, with

reference to Figure 4.2 could be to evaluate the results with both r3 and r4

and then chose to follow the point closer to a goal location.

4.3 The NAPVIG principle theorem 59

4.3.2 Smoother peaks merging

The smoothing of the Landscape function not only allows the optimization

problem to be solved with gradient methods, but depending on the smoothing

radius two or more peaks can be merged into a single peak, removing the

local minimum in between them. As a result, conceptually, in the smooth

Landscape function all the measurements that are close enough are implicitly

and automatically consider as a single entity. We now provide a simple analy-

sis of the 1D analogous, in order to understand qualitatively the conditions

under which the two peaks are merged.

Consider two peaks centered in x̄i ∈ R, i = 1, 2,

Γi(x) = Γ(x, xi) = e− (x−x̄i)2

2σ2 (4.39)

reported in black in Fig. 4.3, along with their superposition, in blue, the raw

landscape function:

Ľ(x) = max
i=1,2

Γi(x) (4.40)

We then consider the smooth function, the result of the convolution with the

Gaussian kernel of radius δ > 0:

Lδ(x) =
∫ +∞

−∞
Ľ(w)e− (x−w)2

2δ2 dw (4.41)

where we highlighted the dependency of L on δ. For simplicity, we consider

x1 = r and x2 = −r. The integral is then:

Lδ(x) =
∫ 0

−∞
e− (w+r)2

2
− (x−w)2

2δ2 dw +
∫ ∞

0
e− (w−r)2

2
− (x−w)2

2δ2 dw, (4.42)

This expression can be solved in closed form, which we report for complete-
ness:

Lδ(x) =

√
2
√

πδ









erf

(√
2
(

δ2r−x

)

2δ
√

δ2+1

)

+ 1



 e
− r

2+2rx+x
2

2(δ2+1) +



erf

(√
2
(

δ2r+x

)

2δ
√

δ2+1

)

+ 1



 e

−r
2+2rx−x

2

2(δ2+1)







2
√

δ2 + 1

(4.43)

60 Chapter 4 Theoretical foundations of NAPVIG algorithm

5NAPVIG-X: navigation in

generic and unstructured

environments

In chapter 3 we studied a scenario in which the goal was to navigate a narrow

and cluttered environment with only one possible path. We restricted the

scope of our analysis to this limited context in order to test the efficacy of the

NAPVIG algorithm in reactively calculating safe trajectories, which in chapter

4 we proved that they correspond to an approximation of the Generalized

Voronoi Diagram of the real map.

The initialization of the algorithm, as mentioned previously, affects the point

of the GVD that results from the algorithm. Each choice of initial conditions

corresponds to a particular branch of the GVD. In this chapter we will present

a basic but effective strategies to solve the problem of local planning in

generic, narrow and cluttered environments using an exploration/exploita-

tion paradigm.

5.1 Introduction

Classically, robotic exploration is focused on constructing a map of the envi-

ronment (Ocando et al., 2017), possibly including localization with SLAM

methods (Al-Hourani and Ristic, 2020; Liu et al., 2020). To this aim, the

most common method is to define the frontiers, segments delimiting the un-

known and explored areas (Keidar et al., 2012; Quin et al., 2014; Sun et al.,

2020), which are often detected with methods based on edge detection and

region extraction techniques from computer vision, such as edge detectors

and region extraction (Upadhyay et al., 2014). In recent years, reinforcement

learning techniques have also been increasingly utilized (Zwecher et al.,

2022; Niroui et al., 2019; Li et al., 2019), thanks also to the availability of

large datasets of indoor maps (Li et al., 2020).

63

In this work the concept of exploration is shifted to a more local perspective:

the goal is not the full coverage of the free space but the reactive discovery of

paths that are leading to the target. This can be interpreted as a strategy to

exit local minima in Artificial Potential Fields (APF) methods (Zhu et al., 2010;

Bounini et al., 2017): indeed, although substantially different, following the

GVD branches could lead to similar problems as local minima since such

branches could lead to a dead end. Strategies for local minima avoidance

(LMA) are very diverse, and they can be bio-inspired (Montiel et al., 2015a;

Teimoori and Savkin, 2010) or employ evolutionary methods (Montiel et al.,

2015b; Boufera et al., 2018). The latest trends integrate potential fields with

reinforcement learning to solve the full stack problem (Yao et al., 2020).

Most of the cited methods are based on maps, often modelled with occupancy

grids (Elfes et al., 1990). In this thesis, instead, the approach is to address

local navigation without keeping track of a discretized spatial representation

of the environment. To make exploration possible, then, we will keep track of

tracked areas with landmarks. Usually, landmarks are reference points used

for localization (Boucher, 2016; Prasad et al., 2020) and can be associated

to semantic information. In this context landmarks will not be used for

localization but will be associated to an index expressing the amount of

information gathered in an area, namely, the regions that have been explored

will be linked to a large value, while areas further away from the explored

path will carry less or zero information.

This index will serve as a metric for an optimization algorithm that will drive

a policy-switching controller. Policy-switching methods are currently utilized

to effectively account for the multiple issues that may arise in distinctive

situations where a particular approach is inadequate to manage all of them

(Amano and Kato, 2022). The concept of policy, in the literature, is strongly

linked with reinforcement learning strategies (Tidd et al., 2021; Patel et al.,

2021; Guo et al., 2021). More in general, a lot of attention has been dedi-

cated to developing neural network-based approaches for learning policies

addressing the general navigation problem in various contexts. For example,

(Zhang et al., 2020) combines a graph architecture with deep reinforcement

learning to address dynamic environments in presence of multiple external

entities; (Devo et al., 2020) propose a visual approach to search and reach

a target, based on two networks that pursue these two goals separately. Re-

64 Chapter 5 NAPVIG-X: navigation in generic and unstructured environments

active vision based approaches can be likened to the one proposed in this

and the previous chapters, in the sense that a global map is not required to

complete the task (Jin et al., 2020; Bektaş and Bozma, 2022). For instance,

(Gupta et al., 2017) propose a top-down representation of the environment

that stores the information that are actually useful for the trained model,

while (Mirowski et al., 2016) directly exploits raw sensor data to perform

navigation in complex environments.

In this work we propose a different approach that takes inspiration from the

reinforcement learning methodologies but exploits the fast Voronoi approxi-

mation obtainable with the NAPVIG algorithm to define a set of algorithmi-

cally defined policies that address the problem of local navigation in cluttered

and unknown environments. We refer to this algorithm as NAPVIG-X, as

it is the extension of the NAPVIG algorithm to the broader case of generic

maps.

5.2 Problem formulation

The context we consider is similar to that of chapter 3. We consider that the

configuration space is characterized by a possibly time-variant collision space

Ccoll(t) ⊂ R2. A ground robot is equipped with a LiDAR that, with sampling

period Tm ∈ R, at time tk = kTm, k ∈ N, obtains a measurement set

Mk :=
{

mk,h, h = 1, . . . , H
}

, H ∈ N, (5.1)

where H is the number of measurements per sample. We consider an inertial

"world" reference frame FW , a robot frame Ft at continuous time t ∈ R, the

measurement frame Fk and the robot frame expressed in the measurement

frame Fk,t, analogously to what done in section 3.2, to which we remind for

a more detailed description of the frames. In the reminder of this chapter,

we will drop the dependency on the LiDAR scan sample when there is no

ambiguity in the notation. By default, unless specified otherwise, all the

quantities are referred to the measurement frame Fk.

The robot is tasked to reach a target position xf (t) ∈ Cfree, possibly time

varying. In the spirit of pursuing full autonomy, the robot is not aware of its

5.2 Problem formulation 65

own global position in the world frame and can only sense the target with

on-board sensors, e.g. a camera or an external estimation algorithm. In the

scope of this work we are not interested in the technical details of how the

target is estimated, but we distinguish two cases:

• Target in sight: the robot is able to sense the position of the target,

which is then expressed in the current robot frame Ft.

• Target not in sight: the robot is not able to have an estimate of the

target’s position, so it need to explore the environment until it finds an

estimate of the target.

5.3 Policy-based exploration-exploitation

The strategy that we are going to present is based on a policy-switching

method that takes inspiration from the famous reinforcement learning of

exploration-exploitation paradigm. Unlike the latter context, NAPVIG con-

veniently allows to locally access the GVD, so the policies can be defined

algorithmically, with a method that is based on the optimization of a cost

function.

Given that the basic assumption is that the robot does not have the knowledge

of the map, and we desire not to spend computational resources for expensive

mapping algorithms, the target-pursuit goal must be entangled with the need

for exploring the map, since a path that might seem the shortest one leading

to the target could result in dead-ends, hence the need to keep track of an

exploration factor, as will be more clear in the rest of this chapter.

The full stack methodology that we will introduce is based on a set of

six policies, that can be categorized as predictive, reactive, and auxiliary,

namely:

• Predictive: fully-exploitative (PFT), fully-explorative (PFX), partly-explorative

(PPX);

• Reactive: legacy (PLE);

• Auxiliary: free-space (PFS), halt (PHT).

66 Chapter 5 NAPVIG-X: navigation in generic and unstructured environments

Depending on the current status of the robot and the configuration space,

each policy has the role of generating a trajectory ξ that will be fed to the

low level controllers. Depending on the internal logic of each of them, they

provide a result status p associated to the trajectory that can assume one of

the following values: accept (RA), fail (RFA), finalize (RFI), complete (RC).

The result status will be the possible transition symbols of a finite state

machine that regulates the switching rules from a policy to another. We will

first introduce the possible policies and then will provide a more detailed

description of their purpose.

5.4 Predictive policies

The main navigation task is performed by the predictive policies: they are

based on the iterative execution of the NAPVIG algorithm and are character-

ized by three key factors: a search direction decision rule (SDR), a termination

rule (TR), and a cost factor that is associated to each predicted trajectory.

Given a search decision and termination rule, the prediction of a trajectory is

simple and reported in Alg. 2. Each policy will then adopt a combination of

SDR and TR that will define TR.terminate, the termination condition, which

is function of the last sample, and SDR.decideSearch, function of the entire

trajectory. Additionally, TR also specifies an exit information associated to

the reason that caused the prediction to terminate, that can be one of the

following: collision (TCO), max window (TMW), target approached (TTA),

napvig fault (TNF). Each termination cause may arise in different context

Algorithm 2 Trajectory Prediction Algorithm

Require: x0 ∈ Cfree: initial robot position
Require: r0 ∈ S1: initial search direction

function PREDICT(x0, r0 SDR, TR)
ξ0 ← x0

while not TR.terminate(ξk, rk) do
rk ← SDR.decideSearch(ξ)
ξk+1 ← napvig(ξk, rk)

end while
cξ ← TR.cause()
return (ξ, cξ)

end function

5.4 Predictive policies 67

and entails different consequences for the different policies: we will provide

a specific meaning for each of them in the next paragraphs.

Then, they can predict one or more trajectory ξ(h), with associated exit

status c
(h)
ξ , for h = 1, . . . , H, where H ∈ N is the total number of predicted

trajectories: to each of them it is associated a cost value J(ξ(h), c
(h)
ξ). In some

cases, depending on the termination condition the trajectory needs to be

directly discarded: in those cases the cost of the trajectory can be associated

to an infinite value. For all the policies, the best trajectory is the one that

solves the following optimization problem:

ξ∗ = argmin
ξ(h), h=0,...,H

J(ξ(h), c
(h)
ξ). (5.2)

5.4.1 Prediction termination rules

We now define a collection of termination rules that can be adopted in various

combination in each policy. The termination rule is based on the current

sample of the trajectory ξk and on the set of collision pointsM, and can be

one of the following:

• Maximum window (TMW): the number of samples reached the max-

imum value: k > Kmax, where Kmax ∈ N can be different for each

policy;

• Collision (TCO): last sample is too close to the obstacles: minm∈M ‖ξ−

m‖ < ρcoll, where ρcoll > 0 is the radius that circumscribes the robot’s

phyisical geometry. This can happen in the cases when the GVD branch

on which the sample is computed is leading to a dead end, correspond-

ing on the Voronoi boundary between two convex components of Ccoll

that are adjacent.

• Target approached (TTA): last sample is close to the target: ‖ξk−xf‖ <

ρtarget, where ρtarget > 0 is the chosen threshold.

• Napvig fault (TNF): the search direction is such to violate the NAPVIG

condition, the theoretical assumption on which the NAPVIG algorithm

is based (4.31), which is equivalent to rk ‖ (ξk −m∗), where m∗ =

68 Chapter 5 NAPVIG-X: navigation in generic and unstructured environments

Label Condition

TMW k > Kmax

TCO min
m∈M

‖ξ −m‖ < ρcoll

TTA ‖ξk − xf‖ < ρtarget

TNF rk ‖ (ξk −m∗)

Table 5.1.: Conditions and termination codes

argmin
m∈M

‖ξk −m‖, if we note that the search direction rk is orthogonal

to the direction d in the NAPVIG theorem.

The conditions are summarized in table 5.1

5.4.2 Fully-exploitative policy

The first idea is to generate a trajectory that points towards the target. More

precisely, for each prediction sample we define the search decision rule:

PFT-SDR.searchDirection(ξ) :=
ξk − xf

‖ξk − xf‖
(5.3)

Note that the points of the trajectory are necessarily on the GVD, while the

target could be any point in the free space. As commonly done in Voronoi-

based navigation approaches, the algorithm is meant to terminate when the

last sample is sufficiently close to the target (TTA condition), and will then

switch to a different control strategy. While this strategy could result in a

very efficient computation since it tends to compute minimal trajectories that

are greedily directed towards the target, there are no guarantees that the

resulting search direction is valid or does not lead to collisions. In principles,

it would make sense not to consider a maximum number of step, and let

the prediction terminate either when the target is approached or when a

collision occurs. However, given the limited sensing capabilities, there could

be obstacles producing a dead-end that are outside the maximum range of

the LiDAR sensor, so the collision cannot be detected. An easy heuristic to

overcome this issue is to limit the maximum prediction window such that the

trajectory does not exceed the LiDAR range. For these reasons, we consider

5.4 Predictive policies 69

if the policy is terminated by TTA and there is at least one sample other

than the initialization, then the trajectory is accepted, and the result status

is pPFT = RA, (accept). Table 5.2 summarize the result status as function of

the termination cause, where with the notation |ξ| we mean the number of

samples of ξ. In Fig. 5.1 are reported two illustrative examples of application

of the fully-exploitative policy. Starting from ξ1, all the search directions

point towards xf (in red): this choice caused the path to follow the left

corridor. In the first case (Fig. 5.1a), the latter is open, so as soon as a sample

is closer to the target than ρtarget, the trajectory is accepted. In the second

example, the left corridor is closed, and NAPVIG computes points on the

branch that would lead to the vertex between the convex components of the

front and left walls. At some point, that branch will be closer to the walls

(collision points) than ρcoll, as ξ6 results to be in the figure. The trajectory is

then rejected: PFT is not able to produce a valid trajectory in this case.

Remark 5.1. It could be noticed that the dead-ends problems are similar to

those affecting methods based on artificial potential fields. Nevertheless, this

policy keeps the advantage of computing point in the GVD and, if a feasible

trajectory exists, it is efficient in terms of number of computed samples.

Otherwise, policy-switching logic will handle the case to a different policy,

that in turn will result to be more expensive, as we will see in the next

sections.

Remark 5.2. Differently to what happens with constrained optimization

based-methods, NAPVIG does not find trajectories at the border of the col-

lision space but farthest away from obstacles. Usually, this requires the

collision radius ρcoll to be quite larger than the real one, to provide a margin

of safety. Instead, given the accuracy that our algorithm results to provide,

the collision radius ρcoll requires much less margin and can be almost the

geometrical radius of the circle circumscribed to the robot, allowing the

passage to narrower passages.

5.4.3 Explorative policies

Consider the example in Fig. 5.1b, where the PFT policy is rejected. Given

that a direct trajectory towards the target does not exist, after having pre-

5.4 Predictive policies 71

dicted a colliding trajectory, in principle the algorithm should choose the

corridor on the right. However, the points on the GVD are computed indi-

vidually, and since, additionally, no prior knowledge is assumed for the map,

there is no semantic knowledge directly available from their computation. In

view of the reactive nature of the navigation strategy that we are proposing,

we now introduce a local exploration strategy based on the prediction of

trajectories in multiple directions starting from the robot’s position.

Given an initial robot position in measurement frame x0 and an initial

direction r0, which correspond to the heading of the robot in the same

reference frame, the idea is then to consider multiple directions starting from

x0, spanning the entire round angle:

ξ(h) := PEX.predict(x0, rϑh
), h = 1, . . . , HPEX,

rϑh
:= R(ϑh)r0, ϑh =

2π

HPEX

,
(5.6)

where PEX can refer to PFX or PPX, of which the corresponding search

decision and termination rules, SDR and TR, will be introduced in the next

paragraph; R(ϑh) is the 2D matrix that rotates by an angle ϑh; HPEX is

the desired number of initial directions. As will be clear later, this number

does not need to be large, since in most situations multiple initial directions

will converge to the same GVD branch, so in the experiments we consider

HPEX := 8, while in the illustrative examples that are going to be reported in

this section we consider HPEX = 4 for clarity of presentation.

The prediction starts with directions rϑh
and continues with the direction

that from one sample points towards the next one, as follows:

PEX-SDR.searchDirection(ξ) =
ξk−1 − ξk

‖ξk−1 − ξk‖
(5.7)

Remark 5.3. This choice allows the exploration of the GVD branch starting

from the angle ϑh, and it only has a local meaning, in the sense that it

is not well suited for large prediction windows. This characteristic has to

be interpreted in the scope of local navigation that represent the real aim

of these policies: the basic assumption is that the obstacles information,

gathered by a LiDAR sensor, are also local. The integration of such strategy

72 Chapter 5 NAPVIG-X: navigation in generic and unstructured environments

with the actual motion of the robot will enable the full navigation of the

actual map.

The prediction algorithm of both the fully and partly explorative policy is

then terminated by a maximum number of samples, other than the collision-

detection conditions:

PEX.terminate(ξk, rk) := (TMW ∨ TCO ∨ TNF) (5.8)

Landmarks A key factor for this strategy is the ability of keep track of

explored areas: we will achieve this by storing landmarks as the robot

moves in the environment. Formally, we define a landmark as a triplet

ℓ = (ℓF ,ℓ t,ℓ x) ∈ SE(2)× R× R2, where:

• ℓF ∈ SE(2) is the last measurement frame when the landmark is

created;

• ℓt ∈ R is the timestamp of the moment the landmark is created;

• ℓx ∈ R2 is the position of the robot in the moment of the landmark

creation, expressed in the frame ℓF .

The landmarks are stored in a batch L = {ℓi, i = 0, . . . , NL} where NL ∈ N

is the current number of landmarks. The batch is initialized with a single

landmark corresponding to the initial position: L = {ℓ0 = (ℓF0,
ℓ t0,

ℓ x0)},

where ℓF0 = I, where I is the identity in SE(3), ℓt0 = 0, and ℓx0 = 0. The

new landmarks are then added to L until NL ≥ NL,max, that is the maximum

capacity of the landmark: after that, the new landmarks replace the oldest

ones, in a FILO queue.

Remark 5.4. This definition of the landmarks need a common inertial frame

to which the frames ℓF are referred to. Given the full-autonomy requirement,

a global position is not available to the algorithm. It is possible, instead, to

integrate the odometry starting from the initial position, obtaining an esti-

mate of the frames that are knowingly affected by an error that is increasing

overtime. However, as will be clear later, the real used information will be

the relative frame between each ℓF and the current measurement frame, that

5.4 Predictive policies 73

results in a bounded error since the landmarks are a finite number and the

old ones are replaced with new ones. This also motivates the choice ℓF0 = I.

The landmark position is referred to the creation frame ℓFi. However, we are

going to need its position in the current frame, namely F . We then define

the function Fi,t as:

Fi,t : R2 → R2 : x 7→ Fi,tx := F−1Fix (5.9)

We consider two standard conditions upon which a new landmark is cre-

ated:

• ‖xt − Fi,t
ℓxNL

‖ > dlandmark, for a constant dlandmark > 0: when it is

farther from the last landmark. This is the standard way the landmarks

are created when the robot moves in the scenario.

• t − ℓtNL
> τelapsed: when too much time has passed since the last

landmark creation. This can help to resolve ambiguous situations

where the cost for multiple trajectories is similar. This will be covered

with more details in the experiment part.

According to these rules landmarks are generated corresponding to points

physically visited by the robot. However, if a predicted trajectory terminates

with a collision, landmarks can be created in correspondence to the samples

of the trajectory ξk.

Fully-Explorative policy We first consider the most general case where there

is no target (e.g. the target is not in sight) and the goal of the navigation task

is to explore the map as much as possible. The idea is that the cost function

associated to each predicted trajectory ξ(h) penalizes those being close to

visited areas. Specifically, for each point in the map we consider a penalty

term that with a Gaussian trend with the distance to the landmark:

Ji : R2 → R : x 7→ Ji(x) := wℓe
− ‖x−ℓ

xi‖2

2ρℓ (5.10)

where wℓ ∈ R is a weight associated to the landmark cost and ρℓ ∈ R is a

value tuning the peak radius, as shown in Fig. 5.2. The figure also suggests

an heuristics on how to choose the value for ρℓ, that should be such the

74 Chapter 5 NAPVIG-X: navigation in generic and unstructured environments

elevator, where the robot cannot move until the floor is reached, so this event

should be handled properly by the policy switching rules, presented later on.

In other cases, where the robot could actually move, but a trajectory is not

found, it means that the parameters are not properly set for the scenario. In

particular, we can point out several possible reasons:

• The considered number of initial directions HPEX are not enough to

identify the available branches. In typical situations (see sec. 5.7), with

HPEX = 8 this is very uncommon. For scenarios configuration when this

happens, a higher number of initial conditions should resolve the issue.

• The prediction window is too large: as mentioned, the search decision

rule (PEX-SDR) is thought to be reasonable in a local neighborhood of

the initial point x0. More specifically, PEX-SDR is assumed to track a

single GVD branch, so in case of bifurcations in the prediction, which

branch will be taken cannot be ensured. For typical applications, we

consider a value of around Kmax = 4.

• The NAPVIG step βstep is too large. Linked to the previous aspect, note

everything in between the NAPVIG initialization and the initial step is

not accounted, so a large value for βstep could even exceed an obstacle.

In principle, this value should be small, but this would require a larger

prediction window, so a trade-off should be considered for efficiency.

For the geometries of robot and obstacles of the experiments, βstep = 0.2

does not report any of these issues.

Fig. 5.3 reports two phases of exploration with PFX, in which we considered

the same scenario as with the fully-exploitative policy. Initially (fig. 5.3a), L

only contains the initial landmark ℓ0, placed in correspondence to the initial

robot position (black circle). We then consider HPEX = 4 initial directions,

for ϑ = 0, π
2
, π, 3

2
π, respectively. It is immediate to notice that all direction

except ϑ = 0 are orthogonal to the walls, resulting in a NAPVIG fault (TNF)

termination. To those trajectories will then be directly associated an infinite

cost and will then be discarded. The only possibility is then to predict a

trajectory (in orange) in the direction of r0, which results in no collision and

is terminated with the maximum window step count (TMW). An important

remark: the fourth search direction r4 is in principle violating the NAPVIG

condition: the orthogonal line to r4 (namely, A in (3.12)) intersects the

GVD into two points, one on the left and one on the right. The NAPVIG

condition violation means that in the initial point of the optimization we are

76 Chapter 5 NAPVIG-X: navigation in generic and unstructured environments

in presence of a stationary point (the gradient of the restriction is zero) then

corresponding to a maximum point, so mathematically the algorithm cannot

converge. However, a small deviation from the ideal condition would lead

the gradient descent to actually converge, but it can in principle identify both

branches. Since there is no prior knowledge on the map, there is no a-priori

reason to prefer one branch to the other: if needed, both of them will be

reactively explored, but this choice is taken on-line when the robot is itself

in correspondence to the GVD bifurcation. At that stage, the initial search

directions rϑ will indisputably identify the two different branches, as will be

clear in the second snapshot of exploration. At this first moment, we consider,

without loss of generality and for illustrative purposes only, that the NAPVIG

algorithm converges to the left branch.

Figure 5.3b shows a second stage in the exploration. We assume that the

robot followed the predicted trajectory until close to the bifurcation. Note

that before that sample, all the trajectories different from ϑ = 0 would

result in TNF. Once in that position the robot is headed as r0. Then, from

the four initial search directions, colored in orange, yellow, green and red,

for ϑ = 0, π
2
, π, 3

2
π, respectively. From the figure it is clear that the orange

trajectory ends with a collision, so we consider landmarks centered in each

sample of the trajectory: ξ
(0)
k , k = 1, . . . , Kmax. Note that the trajectory is very

similar to the one predicted by PFT (Fig. 5.1), even if the search directions

are different. The initial directions rπ
2

and rπ converge to the same GVD

branch, which ends with a collision, so both trajectories will add their samples

to the landmark set, even if they are not represented in the picture for clarity

purposes. The last trajectory, predicted from r 3
4

π, results in tracking the GVD

branch of the right corridor. In this case, that is the only trajectory available

since all the others result with a collision. However, with a smaller prediction

horizon, e.g. Kmax = 3, there would be no landmark in the left corridors as

the orange trajectory would be terminated with TMW. The yellow one would

be discarded as it would terminate with a collision, while the green would

also be accepted. Nevertheless, it would be the one with the highest cost,

considering that its samples are closer to the two landmarks. The orange and

red, instead, have low cost since they are both towards unexplored areas. The

algorithm, however, would choose the orange, although the costs are very

similar but slightly lower: in the context where the goal is the exploration

only, there is no other preferential way on choosing the trajectories, so that

78 Chapter 5 NAPVIG-X: navigation in generic and unstructured environments

would be the final decision even if later the trajectory would lead to a dead-

end. In that case, the robot would move backwards, since that would be

the only available trajectory, until approaching the bifurcation again: at that

point, the landmarks would be similar to figure 5.3b, although they are placed

after visiting and not predicted, the red trajectory would be generated and in

that case the orange one, that is not colliding anymore, would be discarded

as the associated cost would be higher for the presence of landmarks in the

left corridor. This behavior has central importance for the goals of the next

policy, and will be discussed in more detail in the following section.

Partly-explorative policy We now consider the target in sight case, where

the goal is reaching the target, but there is no available trajectory obtained

with the fully-exploitative policy (PFT). We consider the same method to the

GVD branches as with the fully-explorative policy (PFX). We then consider

the same rules for landmarks generation and the same prediction rules, i.e.

we consider PEX-SDR and PEX-TR as search direction and termination rule,

respectively. We also consider the cost JPFX(ξ), to which we add a term

penalizing the distance to the target, defining the new cost for PPX :

JPPX(ξ) = JPFX(ξ) +
Kmax
∑

k=0

wtarget‖ξk − xf‖
2, (5.12)

where wtarget ∈ R is a weight balancing the trade of between exploration and

exploitation: in principle it would be desirable to choose the trajectories that

are closer to the target, but those trajectories may lead to a dead-end. We

show the importance of this trade off with an illustrative example, of which

three samples are represented in Fig. 5.4. The initial condition is reported

in 5.4a: the robot is positioned in x0, headed as r0 and from the four initial

directions, ϑ = 0, 1
2
π, π, 3

2
π are generated the predicted trajectories in orange,

yellow, green and red, respectively. The value of the cost function for the

individual sample is reported with a shading gradient from white to yellow.

To emphasize the phenomenon that we wish to point out while maintaining

the same map as the previous examples, we only consider a prediction

horizon Kmax = 3. More details on this in the remark 5.5. Note that red and

yellow trajectories are almost overlapping, as they are tracking the same GVD

branch, while the other corridors are identified by the other two. The effect

of the first landmark on the total cost is nearly the same for all of them, while

the target penalty clearly favors the yellow trajectory, which then results to

5.4 Predictive policies 79

be the selected one. We now consider a time instant t1 ∈ R after the robot

has been following the yellow trajectory and is now placed in xt1 (Fig. 5.4b)

and headed as the orange arrow. From now on, in this example, we will

avoid drawing the directions that results in TNF, for clarity. At this moment,

the forward trajectory (orange) result in a collision (TCO): the only valid

trajectory is the one that leads back towards the bifurcation, away from the

target. Due to the TCO termination, all the left corridor is then marked as

"explored" by the placement of landmarks. The third time instant that we

consider, t2 ∈ R, shows the importance of the exploration part in the cost

function: after the robot performs a 180◦ rotation and starts following the

corridor towards the bifurcation, as soon as the backwards trajectory (green)

does not result in a collision, due to the limited prediction window, if there

were no exploration term in the cost function, that trajectory would have a

smaller penelty, and the robot would start again following it, in an infinite

loop. Instead, by considering the placed landmarks, the algorithm will favor

the exploration of other branches. Indeed, in xt2 the yellow trajectory ends

up identifying the right corridor GVD branch, while the orange will identify

the central corridor: at that point, the orange trajectory clearly would have a

higher penalty from the target distance and the robot will follow the yellow

one. Essentially, the exploration term allows overcoming local minima-like

situations by locally increasing the cost function. Note that the ratio between

the weights of the landmark and the target distance is critical: if the latter is

too small, in t2 (5.4b) the algorithm could choose the orange trajectory that

would lead to the backward corridor, since the first sample of the yellow one

is very close to a landmark. This aspect becomes a limitation when the map is

too large: the same weight ratio suitable for a small environment might not

be proper for a larger map, due to the different scale that the target distance

term produces. While it could be possible to design an adaptive weighting

strategy, we highlight that the proposed navigation strategy is meant to solve

local navigation, and it should not be considered as a global planner.

Remark 5.5. The search decision rule SDR-PEX, that from the initial orien-

tation rϑh
considers the directions to one sample from the previous one, as

mentioned, is reasonable for a limited prediction length. Fig. 5.5 reports an

example showing this aspect. We consider Kmax = 6: the robot in xt1 predict

the trajectory in orange, but the configuration of the map has a sharp bent

and the search decision rule ends up tracking the GVD branch leading to the

5.4 Predictive policies 81

5.5 Reactive and auxiliary policies

In the last sections we introduced the main policies that are aimed at cal-

culating the path to follow in presence of the ambiguity presented in cor-

respondence to a bifurcation, as in the accompanying examples. To those

policies we combine others with the purpose of extending the navigation task

or improve its computational efficiency.

Legacy policy While the predictive policies allow the identification of dif-

ferent GVD branches, during the navigation on a single branch, between two

bifurcations, there would actually not the need to look for other directions, as

it would just be enough to keep tracking the same branch. Clearly, given that

there is no direct way to understand whether we are close to a bifurcation

or not and, moreover, in real scenarios the GVD is characterized by a lot of

spurious branches that are unlinked to a semantic meaning: imagine having

an irregular knowledge of the map in the last figures, conceptually, the GVD

will be characterized by a lot of branches leading to the intersection between

the small segments. The smoothing properties of the landscape function

mitigate this problem, but this implies that there is no straightforward way

to discriminate the robot being close to a bifurcation or not. Nevertheless,

we can adopt the easy heuristics of maintaining the direction computed by

predictive policies for a fixed number of samples, and feed it directly to the

NAPVIG algorithm. The rules for the policy switching will be introduced

in the next section, now we consider that a predictive policy calculated the

trajectory ξ∗ at time t̄ ∈ R. The measurement frame a that time is Ft̄. Then,

at the generic time t > t̄, the trajectory that the legacy policy computes has

only one sample, and it is:

ξPLE = napvig(xt, r0,PLE)

r0,PLE = F−1
t Ft̄(ξ

∗
1 − ξ∗

0)
(5.13)

The initial direction r0,PLE is then the direction from the initial condition that

the last computation towards the first predicted sample, converted into the

current measurement frame, which we recall is the standard reference frame

with respect to which all the quantities are referred to in this discussion.

The sample computed by the policy can in general be a collision point or

r0,PLE can trigger a NAPVIG fault. In one of those cases the policy fails, and

5.5 Reactive and auxiliary policies 83

it is associated with a result status pPLE = RFA, otherwise the trajectory is

accepted and pPLE = RA.

Free-space policy All the proposed policies are based on the NAPVIG algo-

rithm, that can only output points on the GVD. However, the target position

xf cannot be constrained to be on it, and it can be everywhere in the free

space Cfree. We then adopt a technique that is typical for Voronoi-based

navigation: when the robot is sufficiently close to the target, so that the space

in between could be considered safe, the robot can navigate in the free space

without considering obstacles at all, for the short space that separate the

robot to the target. The trajectory in this case is then directly the final point

itself, expressed in the last measurement frame:

ξPFS = F−1
t xf (5.14)

Approaching a specific point for a unicycle is a delicate task and many existing

works tackle the problem in many ways. Precise parking is outside the scope

of this work, so we just consider a threshold after which the navigation task

is considered completed:

pPFS = RC if ‖xt − xf‖ < ρterm (5.15)

where ρterm > 0 is the desired, small, threshold, otherwise the sample is

accepted: pPFS = RA

Halt policy This is a pure auxiliary policy. There are some specific conditions

where the robot needs to stop. A first case is when there is no available policy,

that is all the policies are rejected. In this case, the navigation task must be

paused and wait for an external event to occur, e.g. a door to open. Another

case, that we consider for completeness, corresponds to the target location

reached. The trajectory is simply a void command:

ξP HT = 0 (5.16)

and clearly the result status is always pPHT = RA.

84 Chapter 5 NAPVIG-X: navigation in generic and unstructured environments

5.6 Policy switching rules

In the previous section we introduced a set of policies that solve the local

navigation problem in specific contexts. The ability to cope with such contexts

depend on specific conditions, e.g. if the target is in sight or not, or the success

of other policies. We now introduce the rules to switch from one to another,

that are based on a finite state machine. The initial state is IDLE, representing

the state before the algorithm starts. Every other state is associated to a

policy, the three predictive PFT, PFX, PPX (green), the reactive PLE (violet),

and the auxiliary PFS, PHT (orange), as defined in the previous sections.

Once the FSM is transitioned to a state, the corresponding policy is computed.

The next transition then occurs according to the result status associated

to the computed trajectory RA, RFA, RFI, RC, which are combined with

external events, that might be related to map configuration properties or user

triggered. Specifically, we consider the events:

• X-START: user-triggered algorithm start.

• X-TIS: target in sight, is a property that is true if there exists a direct

estimate of the target by the robot.

• X-MLE: maximum legacy count: the maximum number of steps com-

puted with policy legacy is achieved, keeping the same search direction.

• X-RESET: manual reset when halt policy was triggered after no collision-

free trajectory can be computed.

In particular, as introduced in the corresponding section, the event X-MLE

realizes the idea of the policy legacy implementing a more lightweight strategy

when tracking a single GVD branch where we assume that there are no

bifurcations. This assumption is reasonable as long as the total amount of

time is short compared to the map scale and the velocities of the dynamic

parts.

The complete scheme of switching rules between policies is reported in figure

5.7. The initial state, IDLE, corresponds to the moment before the algorithm

is started. After that, the fully exploitative policy, PFT is attempted. Then we

consider two cases:

5.6 Policy switching rules 85

than a threshold to the target, and it can safely perform a parking task,

switching to the free space (PFS) policy, where the state stays with a self loop

until the required accuracy in target tracking is reached, when it switches to

the halt policy PHT to hold its position until the algorithm is manually reset

with X-RESET. The system is also transitioned to this state in correspondence

of situations where no possible trajectory can be computed with any of the

other policies. This occurrence requires manual intervention and should be

exceptional.

5.7 Simulative validation

In the previous sections we provided examples of the algorithm behavior in

an ideal scenario where the map was known and so was the GVD, with the

purpose of explaining the main concepts. We now assess the validity of the

overall methodology in various scenarios of practical interest, in a real-time

simulation environment provided by Gazebo robot simulator. Similarly to

what done in chapter 3, the implementation is realized with C++/ROS to

meet real time constraints. The architecture of such implementation is a

critical aspect to consider since it strongly affects the possibility of actually

meet the timing requirements. For this reason, parallelism, efficiency and

maintainability are of core importance, and they will be presented in more

details in the appendix of this thesis. The simulated experimental setup,

composed of a differential steering robot equipped with a LiDAR, controlled

with a reference position as described in section 3.4.2. We now present several

scenarios where various characteristics of the algorithm can be assessed.

5.7.1 Scenario #1: corridors

For the first simulation we consider the standard arena from Turtlebot31, to

which several walls were added between the columns, shown in dark gray

and white in figure 5.8, respectively. The target is assumed to be known

in the robot frame at each sample time (target in sight), and it is placed

at xf = [1.5, 0] in the world frame, right behind the "head" of the turtlebot

arena. The structure of the walls and obstacles is better reported in figure

1https://www.turtlebot.com/turtlebot3/

5.7 Simulative validation 87

Figure 5.8.: Gazebo rendering of scenario #1 initial condition

5.9. Initially, the robot is placed in the position corresponding to the blue-

white circle. Upon start, the policy PFT is attempted but fails, since the

most direct passage towards the target is closed. The system then switches

to PPX, and the robot starts to explore forward, since it does not detect

the collision immediately given the limited prediction window required for

the explorative policies (see sec. 5.4.3). As soon as the last sample of the

trajectory is sufficiently close to the obstacle, corresponding to the keypoint

#1, marked in green, the forward trajectory is invalidated (by TCO) and

the robot is forced to move backwards, until it reaches #2, where it could

choose between the branch going to south or to west, among which it chooses

the one the latter, being closer to the target and since both corridors are

unexplored. It then starts tracking the corridor towards #3, where all the

trajectories towards north are colliding, again forcing the robot to move back,

towards #4. At that point, the algorithm could choose between taking a

trajectory to the south, with high distance-to-target penalty, or towards east,

that has a lower value for such cost, but has an exploration cost due to the

landmarks placed the first visit. Overall, the chosen tuning parameters favors

the southward trajectory, even though for the philosophy of the algorithm it

could in principle make the same sense to track the other way around close to

88 Chapter 5 NAPVIG-X: navigation in generic and unstructured environments

Figure 5.11.: Gazebo rendering of scenario #2 initial condition, sideways

5.7.2 Scenario #2: cluttered spaces

The first scenario is characterized by corridors that are easy to identify, large

and somewhat regular. Figure 5.11 shows a different map cluttered with

columns: the robot is able to pass through only some of the spaces between

them, other passages are too narrow. Moreover, the configuration of the

map is such to form dead-ends, and the algorithm will have to reactively

identify these situations and cope with them. While this scenario is more

challenging, the working mechanics is the same. A path predicted between

two columns that are too close will be directly excluded by the algorithm,

while the landmarks-based strategy will be able to cope with dead-ends.

We present the results of the simulation in figure 5.12, where the position

tracked by the robot is reported in blue. Since clearly a PFT trajectory, if

existed, would exceed the maximum number of steps, the algorithm directly

starts with PFT. From the initial point, it is easy for to choose the trajectories

leading directly to the target: some of the trajectories predicted from the

initial angles ϑk will track the path passing laterally through the columns,

but clearly the one leading southwards has less target penalty. Figure 5.13

report the Landscape function values for the robot placed in the keypoint

#1 along with the predicted trajectories, that better shows what stated

above. This snapshot also highlights that, according to the local knowledge

of the robot, the branch identified by the selected trajectory (black arrows)

5.7 Simulative validation 91

final choice. While this could be fixed with heuristics, this initial transient

does not affect the final goal, so we neglect this problem in this context.

In this case, the algorithm takes steadily the corridor on the right towards

#1. From there, as far as exploration is concerned, there is no prior reason

to move to the north or the south. However, the choice also depends on

the ability for the robot to actually track the computed trajectory, given the

underactuation of the unicycle model of the robot. In this case, the path

leading southwards results faster to track as there is less curvature for the

robot to keep up with. After that, as could be expected, the cheapest way to

explore the map is by circumnavigating it through the outer corridors, as is

reported in the map with the path from #1 to #2, since any other trajectory

passing through the inner corridors would be closer to the landmarks set in

the path from #0 to #1, so the cost would be higher, even if slightly. At #2,

however, the algorithm cannot select the predicted trajectory advancing in

the outer corridor, since it has a high cost since the area near #1 already

has landmarks set. The robot then needs to move backwards and towards

the inner area delimited by only columns. In crossing the path #0-#1 the

trajectories has some penalty due to the explored branch, but less than the

others, so the already-explored area is crossed in the shortest way. After that,

it reaches #3, from where it initially attempts to explore the corridors on the

west and on the south, shortly before receiving a high cost value due to the

landmarks corresponding to the path #1-#2. The robot then has no other

possibility than tracking the only unexplored area towards #0, reaching its

final position (#4), marked with a blue diamond shape.

Remark 5.6. The scenario we just tested the PFX policy cannot be properly

defined as local navigation: indeed, the entire map is explored. However,

in correspondence of bifurcations the choice is completely determined by

the cost value of each trajectory. This local behavior may not result in the

highest efficiency in achieving the global goal. For example, when far from

the explored area there is little penalty in overcoming a column on one side

or another. This, instead, can result in completely different paths and the

robot could travel across the same path multpile time before exploring new

areas. As a matter of fact, the algorithm is not conceived as a global planner

and there exist many tools in literature that perform exploration of a map in a

more suitable way. Nevertheless, the example we provided in this section has

to be interpreted as a limit case, while its proper application is overcoming a

96 Chapter 5 NAPVIG-X: navigation in generic and unstructured environments

small set of obstacle, leaving the global planning for other and possibly more

sophisticated strategies.

5.8 Conclusions

In this chapter we presented a policy-switching method to reactively navigate

in unknown and unpredictable environments based on sensors only. The

policies represent strategies to predict and select consecutive points of the

GVD of the map through the iterative application of the NAPVIG algorithm

introduced in section 3. The algorithm is tested in several scenarios, where

it proves to efficiently solves local navigation with the limited amount of

information provided by the on-board sensors.

5.8 Conclusions 97

6Visual odometry for aerial

phyisical interaction

6.1 Introduction

Visual odometry (VO) refers to the techniques utilizing camera images to

determine the position and orientation of a vehicle. Specifically, the on-

board camera, may it be a stereo RGB camera or a monocular depth camera

(RGB-D) are exploited to obtain the relative motion between subsequent

frames, as the agent moves in the environment. Possibly, visual odometry

information can be integrated with inertial data from the IMU (Oskiper

et al., 2007), (Visual-inertial Odometry, VIO), where sensors information

are commonly fused exploiting Extended Kalman Filters (EKF) (Sirtkaya

et al., 2013; Bloesch et al., 2015). However, purely relying upon on-board

sensors inevitably produce drifts in the global position. SLAM-based methods

(Grisetti et al., 2007), known as Visual-SLAM, can overcome this issue by

keeping a global map of the environment (Kaess et al., 2008). However, in

this work we restrict our attention to applications of visual odometry for

aerial manipulation tasks, as introduced in chapter 1: in such contexts, a

global estimate of the robot’s position is not central, as it is only needed to

feed the interaction wrench estimator, which captures only the differences in

position rather its absolute one. In this light, we will avoid keeping a map of

the environment, with the goal to save as much computational resource as

possible.

Traditionally, visual odometry includes two steps: first, an algorithm extracts

features from the point clouds (Gumhold et al., 2001; Alshawabkeh, 2020;

Daniels et al., 2007), of which a matching is then determined. The most

popular methods are SIFT (Lowe, 2004), SURF (Bay et al., 2006) and, more

recently, ORB (Rublee et al., 2011), from which originated a variety of

derivative works, the most recent ones are also based on machine learning

techniques (Behl et al., 2019; Shen et al., 2019; Gojcic et al., 2019; Yang

et al., 2020). After having determined the corresponding feature points, it

99

is relatively easy to obtain an estimate of the rototranslation between those

points, with classic nonlinear optimization methods.

Following the paradigm that inspired also the other works in this thesis, we

aim at skipping the preprocessing of feature extraction and matching, and

work directly on the raw data. Feature-less point cloud matching is a classical

problem in computer graphics and it is known as point cloud registration

(Huang et al., 2021a). The classic algorithm to address this problem is the

Iterative Closest Point (ICP) (Besl and McKay, 1992; Rusinkiewicz and Levoy,

2001), which iteratively finds the best correspondence between every pair of

points of the two point clouds and then computes the transformation needed

to align such points. Due to its iterative nature and the need to align every

pair of points, it is highly computational demanding and is hardly suitable

to meet real-time constraints. More recently, deep learning methods have

been employed to obtain this goal, where the input of the learning model

are the two point clouds and the output is the transformation between the

two (Wang et al., 2019; Elbaz et al., 2017). Alternatively, neural networks

and optimization can be combined to obtain hybrid methods (Huang et al.,

2020; Choy et al., 2020; Yuan et al., 2020). The main limitations of those

methods is that computationally expensive strategies are required to cope

with unpredicted variations in the noise distribution, outliers, etc.(Huang

et al., 2021b).

The method we propose is an optimization strategy that leverages a uniform

3D space representation that takes inspiration from the concept of the Land-

scape function from chapter 3 to define a matching index between two point

clouds that works directly on the raw measurements. To ensure maximum

efficiency, the method is entirely formulated to exploit the properties of the

Lie groups, of which we will provide a brief overview.

6.2 Mathematical preliminaries: Lie groups

Throughout this dissertation the set of rotations and transformations, SO(n)

and SE(n), n = 2, 3, have been taken into account indirectly, without exam-

ining its properties, as they were used for their straightforward application

of simply representing and combining poses. In this chapter, instead, they

100 Chapter 6 Visual odometry for aerial phyisical interaction

gain central importance, as they will be the objective of optimization. For

this reason and with the aim of uniforming the notation, we introduce the

basic facts of Lie theory that will be referred to later on.

The Lie group Informally, a Lie group is a smooth manifold whose elements

also satisfy the group axioms. Specifically, given the set G together with a

composition operation ◦, it is a Lie group if G is a smooth manifold and all its

elements x,y, z ∈ G fulfill the following:

• Closure: x ◦ y ∈ G

• Existence of identity: ∃1 ∈ G such that 1 ◦ x = x, x ∈ G.

• Existence of inverse: ∃x−1 ∈ G such that x−1 ◦ x = 1

• Associativity: (x ◦ y) ◦ z = x ◦ (y ◦ z).

The group properties of a Lie group essentially ensure that the composition of

two elements of the manifold remains in the manifold. The key importance

of this property is that it highlights the fact that the only operation allowed

is the composition ◦, that is conceptually separated from the group action.

Lie groups elements can be associated to transformation acted upon different

sets, e.g. rotate and scale points, etc. Formally, given a Lie group G and a

generic set V , the action of x ∈ G on v ∈ V is the function:

· : G × V → V : (x,v) 7→ x · v (6.1)

that need to satisfy the following two properties:

• Identity: 1 · v = v

• Compatibility: (x ◦ y) · v = x · (y · v)

In table 6.1 we report examples of commonly used Lie groups with the

corresponding group action. Note, in particular, that the vector space Rn can

be seen as a Lie group, where the vector sum realizes both composition and

group action.

Tangent spaces The smoothness of the manifold allows us to consider

tangent spaces, that is the space of all possible velocities that a point x(t)

moving in the manifold G. We denote the tangent space of G at x as TxG.

Particularly significant is the tangent space of G at the identity 1, which is

6.2 Mathematical preliminaries: Lie groups 101

Lie Group Target set Action
(Rn, +) Rn x · v = x + v

SO(n) Rn R · v = Rv

SE(n) Rn T · v = Rv + t

(C, ◦) R2 c · v = c ◦ v
H R3 q · v = q ◦ v ◦ q∗

Table 6.1.: Common group actions

referred to as the Lie algebra of G and denoted with g = T1G. Every Lie

group has an associated Lie algebra. We will avoid introducing the formal

mathematical properties characterizing a Lie algebra, which would require

introducing the Lie brackets product, since those concepts are not significant

for the purposes of this work. The interesting property about the Lie algebra

is that it is a linear vector space: we consider the basis vectors Ei such that

g = span{E1, . . . ,EM}, M ∈ N, (6.2)

where M is the dimension of g and corresponds, intuitively, to the number of

degrees of freedom of the manifold G. As a result of (6.2), we can express

the elements of g as a linear combination of its basis elements. This creates

an isomorphism between g and Rm, which we refer as hat function, along

which we consider its inverse vee, as follows:

Hat : Rm → g τ 7→ τ∧ =
M
∑

i=1

τiEi

Vee : g→ Rm τ∧ 7→ (τ∧)∨ = τ =
M
∑

i=1

τiei

(6.3)

where ei are the vectors of the canonical base of Rm. Then, instead of g, we

can then directly work on Rm, which is more convenient.

Elements of the Lie algebra are associated to the elements of the Lie group

according to the exponential map exp(). The elements of the Lie algebra

can be considered as the velocities that keep an element x ∈ G inside the

manifold. Intuitively, given an element of the Lie algebra τ∧, the exp map

is the element of G that is obtained applying the constant velocity τ∧ for

the time unit. This can be seen as a mathematical way to move an element

of the Lie group along the directions of the Lie algebra. Moreover, the

exponential map is the only map that preserves the Lie algebra structure and

102 Chapter 6 Visual odometry for aerial phyisical interaction

composition law of the Lie group elements, making it the most convenient

way to move around the manifold. In addition, it is important to note that the

exponential map is invertible, so the inverse of the exponential map, called

the logarithmic map, can be used to reverse the movement. This can be used

to go back to the initial point of the movement or to a prior point in the Lie

group. The exponential map and its inverse can be formally written as:

exp : g→ G τ∧ 7→ x = exp(τ∧)

log : G → g x 7→ τ∧ = log(x)
(6.4)

For convenience, we can also consider a direct mapping between Rm and G

and vice versa by considering the composition between the exponential/loga-

rithm and the hat/vee isomorphism, as follows:

Exp : Rm → G τ 7→ x = Exp(τ) = exp(τ∧)

Log : G → Rm x 7→ τ = Log(x) = log(x)∨ (6.5)

Derivatives on Lie groups The aim of this introduction is to present the

basic tools for optimization on Lie groups, for which we need to extend the

concept of derivative to functions of elements of Lie groups. In this sense, we

introduce the plus and minus operators:

⊕ : y = x⊕ τ := x ◦ Exp(τ)

⊖ : τ = x⊖ y := Log(x−1 ◦ y)
(6.6)

These operators are to be interpreted in the following sense: the⊕ increments

element x by applying a constant velocity specified by τ for the unit of time,

while the ⊖, conversely, find the velocity that needs to be applied for a time

unit to pass from x to y.

This definition allows us to seamlessly translate the definition of derivative on

vector spaces to Lie groups. We recall that the Jacobian for a vector function

f : Rm → Rn is:

Jf =
∂f(x)

∂x
=













∂f1

∂x1
· · · ∂f1

∂xm

...
...

∂fn

∂x1
· · · ∂fn

∂xm













∈ Rm×n (6.7)

6.2 Mathematical preliminaries: Lie groups 103

and its columns can be interpreted as the directional derivative of f(x) in

the direction of the i-th element of the canonical basis ei:

∂f(x)

∂xi

= lim
h→0

f(x + hei)− f(x)

h
∈ Rm (6.8)

The concept of perturbation for the directional derivative can be extended to

Lie groups by considering it a perturbation in the Lie algebra. By resorting

to the ⊕, ⊖ notation, the generalization is straightforward. Given two Lie

groups G and H and a function f : G → H, the Jacobian of f with respect to

the Lie group element x is:

Df(x)

Dx
= lim

τ→0

f(x⊕ τ)⊖ f(x)

τ
∈ Rn×m (6.9)

= lim
τ→0

Log(f(x)−1 ◦ f(x ◦ Exp(τ)))

τ
(6.10)

Note that the fraction by vector τ has to be interpreted individually for each

component of τ . Moreover, the limit in (6.10) corresponds to the standard

derivative of the function g : Rm → Rn

g(τ) := Log(f(x)−1 ◦ f(x ◦ Exp(τ))) (6.11)

evaluated for τ = 0:

∂f(x)

∂x
=

∂g(τ)

∂τ

∣

∣

∣

τ=0

(6.12)

Finally, given this relation, it is easy to verify that the chain rule also applies

directly in the case of function between Lie groups.

6.2.1 The group of rototranslations

We now provide specific results regarding the group of 3D rigid motion SE(3),

whose elements are identified by the matrix:

T =







R t

0 1





 ∈ SE(3) ⊂ R4×4 (6.13)

104 Chapter 6 Visual odometry for aerial phyisical interaction

where R ∈ SO(3) and t ∈ R3 are the corresponding rotation matrix and

translation. The Lie algebra corresponding to SE(3) is denoted with se(3)

and is the group of matrices of the following form:

τ∧ =







[θ]× ρ

0 0





 ∈ se(3), τ =







ρ

θ





 ∈ R6, (6.14)

where ρ ∈ R3 and θ ∈ R3 can be interpreted as the linear and angular

velocities, respectively. In this context we avoid introducing the homogeneous

representation of a point R3 in order to define the roto-translation as a single

matrix multiplication, and we define the group action of SE(3) onto p ∈ R3

as an external operation, also emphasizing the different nature of the group

action than the composition:

· : SE(3)× R3 → R3 : T · p = Rp + t (6.15)

The group action x · v, for fixed v, can be seen as a function of x. We now

provide a result that will be used in the next sections: the Jacobian of the

group action of the transformations SE(3), that can be proven to be:

∂T · v

∂T
=
[

R −R [v]×

]

∈ R3×6 (6.16)

where R ∈ SO(3) is the rotation matrix of the transformation.

6.3 Problem formulation

We consider an aerial robot endowed with a lightweight end-effector rigidly

attached to a hexarotor with tilted propellers. In view of the spirit of full

autonomy that characterizes this thesis, we aim at approaching the problem

of wrench estimation without the knowledge of a precise estimate of the

robot pose. The system is instead equipped with a depth camera that, with

sample time Tc ∈ R, it measures the point cloud of the environment within

its field of view, namely, at time tk = kTc, k ∈ N, it obtains the set:

Pk = {p̄k,h, h = 1, . . . , M} ⊂ R3 (6.17)

6.3 Problem formulation 105

The points p̄k,h compose a 3D representation of the visible objects. Anal-

ogously to the previous chapters, we consider a robot frame at generic,

continuous time t ∈ R, namely Ft ∈ SE(3), and the measurement frame

Fk, corresponding to the robot frame corresponding to the measurement

sample tk. In general, we denote with Fa ∈ SE(3) a frame named a, and

with T a
b ∈ SE(3) we denote the transformation between frames a and b. We

distinguish the notation of these two concepts even if they both refer to

elements of the same Lie group to distinguish where such element should

be interpreted as a coordinate frame or a transformation. Given two sample

times t1 ∈ R and t2 ∈ R, we aim at finding the transformation T t1
t2

that

transforms points in Ft1 to points in Ft2. For convenience of notation, we

now will refer to quantities relative to t1, Pt1, pk1,h, Ft1 and so on with P1,

p1,h, F1, and similarly for t2.

6.4 Feature-less motion estimation

The classic approach to solve this problem is the motion from features strategy

and is based on the two following steps:

• Features extraction: from the point cloud Ph is extracted a subset P̃h

whose elements p̃k,h are associated to a feature, namely a unique and

persistent identifier.

• Motion estimation: the motion T t1
t2

is estimated from the feature matches

between the two sets of features extracted from two different measure-

ments P̃1 and P̃2.

The method we propose aims at skipping the feature extraction and matching

parts and work directly on the raw measurements. Ideally, what we seek to

obtain is the transformation T̂ such that:

p̄2,h ≃ T̂ p̄1,h, ∀h = 1, . . . , M (6.18)

Clearly, this requires that all the points in the two point clouds P1 and P2

are ordered such that there is perfect matching between points, which in

general is not the case. The classical approach is to extract a subsampling

of points of which can be established the correspondence through feature

matching. In this work, instead, we introduce a matching index that regards

106 Chapter 6 Visual odometry for aerial phyisical interaction

the entire point cloud. Specifically, given two point clouds Pa and Pb, we aim

at defining an index J(Pa,Pb) that expresses how much the two point clouds

are similar, and we will resort to the maximization of this index to estimate

the transformation T̂ between two point clouds.

6.4.1 3D Landscape function

The basic idea is to consider a generalized version of the Landscape function

introduced in chapter 3, exploiting its properties of homogeneity in the

representation of space. First, we provide the definition of n-dimensional

Landscape function that is a straightforward generalization. Note that the

definition of the raw Landscape function provided in chapter 4 does not

change if the set A is a subset of Rn. We only change the notation to specify

that the vectors are to be interpreted as elements of Rn

nĽA(x) := max
y∈A

e− ‖x−y‖2

2σ2 (6.19)

The only slight difference is in the definition of the smooth function:

nLA(x) =
∫

Rn

nĽA(w)κ(x−w) dw (6.20)

In the reminder of this section we will consider 3LA, and we will drop the

dependency on the dimensionality for clarity of presentation.

The idea is the following: we consider the landscape function on the second

point cloud P2, and we evaluate it in the points of P1. To explain this concept

and why it is meaningful, we refer to figure 6.1 reporting a monodimensional

equivalent. Fig. 6.1a represents the three point of P2 in this example and the

relative landscape function in blue. In 6.1b we show the points in P1 and the

corresponding value in LP2, marked with a cross. It is clear that, the higher

the value, the higher the correspondence between the point of P1 to one point

of P2. If we transform the points in P2 by the same transformation T ∈ SE(3),

we can adjust the overall value, as exemplified in 6.1c. We formalize this

concept by first defining the matching index between two point clouds:

JP(Pa,Pa) =
1

M

∑

p̄∈Pb

LPa
(p̄) (6.21)

6.4 Feature-less motion estimation 107

where M = |Pa| is the number of elements of the point clouds. Given the

characteristics of the Landscape function, ideally, if two point clouds coincide,

namely Pa ≡ Pb, it would hold:

JP(Pa,Pb) ≃ 1 (6.22)

where the ≃ sign is due to the fact that the maximum value of each peak

can be slightly different from 1 due to the smoothing convolution. Figure

6.1 also shows one of the advantages of considering this representation: the

point cloud measured by the sensor may often have regions where the points

are denser than others. If, for example, the sum operation was used instead

of the max, the areas with more concentration of samples would be given

more sensitivity. This could lead to skewed results, as the regions with the

highest concentration of samples could be over-represented in comparison to

those with less dense samples. The landscape function, instead, guarantees

homogeneity and consistency in the optimality index. It ensures that, no

matter the density or distribution of the samples, all areas are treated equally,

providing an accurate and reliable representation of the data.

6.4.2 Optimization on Lie groups

We now exploit the matching index JP to set up an optimization problem

to estimate the best transformation T ∈ SE(3) that transforms one point

cloud to the other, corresponding to the roto-translation that the vehicle has

tracked between t1 and t2. First, we define the predicted point cloud as:

T · P = {T · p̄, p ∈ P} (6.23)

As classically done, the point clouds we are going to compare are P2 with the

transformed version of P1, namely, we consider:

J1,2(T) := JP(P2,T · P1) :=
1

M

∑

p̄∈P1

LP2(T · p̄) (6.24)

6.4 Feature-less motion estimation 109

the Lie group sense. Before looking at the mathematical details, we complete

the 2D example with the comparison to the case where the optimization step

is directly performed in the manifold. The main difference lies in the fact that

the gradient, intended in the Lie group sense, is an element of the Lie algebra

and thence belonging to the tangent space of SO(2) (in this case depicted

with the isomorphic S1) in x(i), Tx(i)SO(2), represented with a black line in

figure 6.2b. The increment ∆(i) = DJ(x(i))
Dx

is no longer a two-dimensional

vector in R2 but is instead an angular velocity that should be applied to

x(i) over a unit time, by tracking the unit circle through the yellow arc. In

particular, note that ∆(i) does not even have the same dimensionality as the

euclidean vector, since in this case of 2D rotation it only has one dimension

representing the coordinate on the tangent space Tx(i) starting from x(i). This

reveals to be much more natural, since the element x(i), in this example, has

only one possible degree of freedom and the increment is directly expressed

in this sense. Clearly, the optimization in SO(2) and SE(3) are very, different,

since in the former even if the step length is not precisely the correct one, in

the unconstrained update rule, the direction, corresponding to the sign of

the gradient, is very clear in both cases, while in latter the possible directions

are six, and the effects on translation and rotation are intermingled in a very

non-linear way, making in this case the re-projection method much more

sensitive. Indeed, the first method can be considered an approximation of

the second if the step size is sufficiently small. Here lies the main advantage

of the Lie group optimization: it allows larger step sizes and then faster

convergence. We now provide the optimization steps for both methods, so to

compare the results later.

Optimization on the vector space First, for the classic gradient descent step

with renormalization, where the target transformation T (p, q) is parametrized

by p ∈ R3 and q ∈ R4, we can separate, for notation purposes, the gradient

w.r.t. the position and that to the quaternion, since renormalization is only

needed for the latter. For compactness, we consider the rotation of the vectors

p̄ through the multiplication by the rotation matrix R(q) ∈ R3×3 associated

to q, keeping in mind that mathematically the operation is equivalent to the

6.4 Feature-less motion estimation 111

quaternion action, and correspondingly T · p̄ = R(q)p̄+p. By the chain rule,

the euclidean gradient is:

∂

∂p
J(T (p, q)) =

1

M

∑

p̄∈P1

∂

∂p
LP2(R(q)p̄ + p)

∂

∂q
J(T (p, q)) =

1

M

∑

p̄∈P1

∂

∂p
LP2(R(q)p̄ + p)

∂

∂q
R(q)p̄

(6.26)

We then consider the two estimates p̂ and q̂, computed with the update

rule:

p̂(i+1) = p̂(i) + ηp
∂

∂p
J(T (p̂(i), q̂(i)))

q̂(i+1)
s = q̂(i) + ηq

∂

∂q
J(T (p̂(i), q̂(i)))

q̂(i+1) =
q̂(i+1)

s

‖q̂(i+1)
s ‖

(6.27)

where ηp > 0 and ηq > 0 are the step gains of the two estimates. Note

that even if the two equations are written separately, they represent a sin-

gle update in the optimization algorithm, meaning that both estimates are

computed in parallel rather than one after the other.

Optimization on the Lie group We formally define the update step by con-

sidering the values to be elements of a Lie group. Using the chain rule to

evaluate the closed form of the gradient requires more care as each com-

position must be interpreted as a function between Lie groups. It is worth

noticing that any vector space Rn, equipped with the standard sum as a

composition operation, can be seen as a Lie group, namely (Rn, +), with the

Lie algebra associated to it being trivially Rn itself. The matching index J1,2

is a composition that can be decomposed as:

J1,2 : SE(3) → R3 → R

T 7→ T · p̄ 7→
1

M

∑

p̄∈P1

LP2(T · p̄)
(6.28)

The Jacobian of a function of a Lie group, maps elements of the tangent space

of the domain group into elements of the tangent space of the co-domain. In

this case:
D

DT
J1,2 : se(3) → R3 → R (6.29)

112 Chapter 6 Visual odometry for aerial phyisical interaction

In practice, in place of se(3) we consider its isomorphic R6, through the vee

map as introduced in the preliminary section. The gradient of the matching

index, after applying the chain rule, is then:

DJ1,2(T)

DT
=

1

M

∑

p̄∈P1

∂

∂p
LP2(T · p̄)

DT · p̄

DT

=
1

M

∑

p̄∈P1

∂

∂p
LP2(T · p̄)⊤

1×3

[

R −R [v]×

]

3×6

∈ R6 ∼= se(3).
(6.30)

The value of
DJ1,2(T)

DT
, then, represents the (stacked) linear and angular veloc-

ities corresponding to the direction to be applied to T of maximum increase

for J1,2(T). The euclidean update rule can be then converted in terms of Lie

groups element composition as follows:

T̂ (i+1) = T̂ (i) ⊕

(

W
DJ1,2(T)

DT

)

= T̂ (i) ◦ Exp

(

W
DJ1,2(T)

DT

) (6.31)

where W = diag[ηρ✶3, ηω✶3] ≻ 0 is a matrix with the scaling for the linear,

ηρ, and angular, ηω, velocities.

It is noteworthy that, in comparison with Euclidean optimization, this method

is optimizing across a vector consisting of six variables, i.e., the three compo-

nents for the linear velocity ρ and three for the angular velocity ω, as opposed

to seven variables, three for the translation and four for the quaternion; the

latter’s derivatives, moreover, cannot be interpreted as angular velocity and

thus lack physical meaning. The decreased problem size, coupled with the

augmented naturalness of the solution, demonstrates greater efficacy in

terms of algorithm convergence. This allows for the selection of higher

gains and then resulting in fewer iteration steps, as will be demonstrated

subsequently.

6.4.3 Real time optimization

The proposed optimization problem needs to be solved in real time as the

robot moves in the environment, independent of the employed implemen-

tation strategy. Depending on the robot configuration, the target working

6.4 Feature-less motion estimation 113

the fact that the quantities at play are not velocities but transformations. In

the euclidean space, these two concepts are directly linked: it is sufficient

to divide the difference in the position by the elapsed time to obtain the

estimate average velocity. However, the quantities at play must be considered

in the Lie group SE(3), where there is no notion of multiplication by a scalar,

and the velocity is indeed a concept belonging to its tangent space, identified

by the Lie algebra se(3), which in turn is a vector space, where it is actually

possible to divide. Specifically, the concept of velocity needs to pass through

the logarithmic map, and it holds:

νk−Nw

k :=
log

(

T k−Nw

k

)

NwTc

∈ se(3) (6.32)

where νk−Nw

k is the generalized velocity embedding the linear and angular

velocities of the body between tk−Nw
and tk.

Data pruning and stochastic gradient descent Another issue that is limiting

the capabilities of the algorithm is the amount of data that the 3D sensor

yields. Typically, the resolution of a depth image is 640x480, which entails

point cloud size of 300k. Not all of them are actually useful in the estimate.

In particular, we identify two macro categories of non-informative points:

1. Points of the background are usually located close to the sensor’s range

limit and are, thus, more affected by noise, rendering them little infor-

mative.

2. Points that are too close to each other carry the same information, thus

there should be a minimum distance between two points to be relevant.

The first category is easy to exclude, as it is sufficient to remove points farther

than a threshold distance from the camera. By keeping in mind that the

points are referred to the frame of the camera’s optical center. We then

consider:

P ′ = {p̄ ∈ P s.t. ‖p̄‖ < dbg,max} (6.33)

where dbg,max ∈ R is the chosen threshold.

6.4 Feature-less motion estimation 115

To address the second category we employ a heuristics that exploits the fact

that in the vector of the point cloud the points are ordered row-wise, so it is

relatively reasonable to assume that to close indexes correspond close points.

We can then decimate the point cloud P ′ by considering one point every

Nd:

P ′′ = {p̄h ∈ P
′, h = 1, Nd, 2Nd, . . . , M} (6.34)

Although the size of the data is heavily reduced, the size of the point clouds

is still relevant if we note that for the matching index every point of the

point cloud P2 is compared to all the points of the point cloud P1. Drawing

inspiration from the stochastic gradient descent method, we can modify the

update rule of the optimization algorithm as follows:

1. For each optimization step i, draw NSGD,1, NSGD,2 ∈ N random samples

from P ′′
1 and P ′′

2 , that are the original point clouds to which are applied

(6.33) and (6.34):

P̃(i)
i ⊂ P

′′
i , |P̃(i)

i | = NSGD,i, i = 1, 2 (6.35)

2. Redefine for each update step the matching index as

J
(i)
1,2(T) =

1

M

∑

p̄∈P̃(i)
1

LP̃(i)
2

(T · p̄) (6.36)

3. Apply the update rule using J
(i)
1,2(T).

The number of the batch of point considered for each step should be enough

to guarantee computational feasibility, but also it should be such that the

majority of the (pruned) point cloud is statistically sampled, so all the infor-

mation is considered throughout the optimization.

116 Chapter 6 Visual odometry for aerial phyisical interaction

6.5 Simulations results

We now present the preliminary result of a simulated but real time scenario.

The simulation is configured as follows:

• A synthetic point cloud of size M = 103, whose points are draw from a

uniform distribution, is generated, namely

P0 = {p̄h ∼ U [0, 1], h = 1, . . . , M} (6.37)

• We consider a ground truth trajectory that the agent is tracking, namely

TGT : R→ SE(3), such that:

TGT (t) = (pGT (t), qGT (t)), (6.38)

where we highlighted its translation, pGT (t) ∈ R3, and rotation qGT ∈

SO(2), parametrized by a quaternion. Between two samples k − 1 and

k, the ground truth to which we will compare our estimate is then:

Tk,GT = TGT (tk−1)
−1TGT (tk) (6.39)

• Each time step, the new point cloud simulating the current measure-

ment is generated by transforming the points of the last point cloud,

namely:

Pk = {Tk,GT · p̄k−1, p̄k−1 ∈ Pk−1} (6.40)

• The estimate is then the transformation that yields maximum matching

between the current Pk, and the predicted old T · Pk−1:

T̂k = argmax
T∈SE(3)

Jk−1,k(T) (6.41)

6.5 Simulations results 117

Constant velocity trajectory We first consider the case where the agent

moves with a trajectory consisting in a constant linear velocity combined

with a constant rotation around axis z, specifically:

pGT (t) = [vxt, 0, 0], qGT (t) = qz(ωzt), (6.42)

where vx = 3 m s−1, qz(θ) is the quaternion representing rotation about axis z

by an angle θ and ωz = π
6
rad s−1. The simulated velocity is chosen to be quite

high, compared to the typical working conditions of aerial robots, in order

to stress the convergence capabilities of the algorithm. With a sample rate

of 30 Hz, this trajectory corresponds to a transformation between samples of

pk,GT = [x, 0, 0], x = 0.01 m, and qk,GT = qz(θ), θ = π
180

rad. We then initialize

the algorithm by assigning the SE(3) identity element, 1SE(3), to T (0).

To understand the behavior of the algorithm, we will show the error conver-

gence with respect to the number of iteration. We consider the following

metrics to quantify the error between the estimate and the ground truth:

eSE(3)(i) = T (i) ⊖ Tk,GT = Log(T−1
k,GT ◦ T

(i)) ∈ R6 ∼= se(3). (6.43)

The error between T (i) and Tk,GT can be interpreted as the linear and angular

increments in the tangent space to get from the first element to the second,

and they consist of six components, divided into three linear and three

angular components, so that eSE(3) = [ep, eq], ep, eq ∈ R3. It is important

to note that these angular components should not be considered as Euler

angles, as Euler angles represent rotations around the x, y, and z axes with a

prescribed order, while the angular error in se(3) represents angular velocities

that has to be applied simultaneously in the unit of time.

Figure 6.4 shows the convergence of the error eSE(3), comparing the case

where the optimization is performed according the Lie groups rules (fig 6.4a

and 6.4c) with the optimization with renormalization step (fig 6.4b and

6.4d). Since the motion is constant, we report the results of only the first

time steps, being the subsequent ones analogous. It is evident from the plot

that the former method requires 40 iterations to reach convergence of both

linear and angular components, whereas the latter necessitates almost 80

iterations, thus demonstrating improved performance of a factor of two.

118 Chapter 6 Visual odometry for aerial phyisical interaction

Sinusoidal motion We now consider a more dynamic scenario where the

ground truth roto-translation follows a sinusoidal pattern over time. Specifi-

cally:

pGT (t) = [v̄x sin(2πf̄t, 0, 0] (6.44)

where v̄ = 0.016 m s−1, f̄ = 0.15 Hz are the parameter of choice. The algo-

rithm is applied with both methods, optimization in SE(3) and R7 and two

different initialization algorithms are tested. The results are reported in fig-

ure 6.5. First, as in the example for the previous simulation, the algorithm is

initialized with the identity (6.5a, 6.5a). In the second part of the experiment

(6.5c, 6.5d) at each sample time the algorithm is instead initialized with the

previous estimate, namely:

T
(0)
k = T̂k−1 (6.45)

In the plots, the purple vertical bars, whose scale is indicated on the left,

are the total number of iterations needed in each algorithm configuration to

reach convergence, for each sample k, namely

Niter,k = min
i
{‖T (i) ⊖ Tk,GT‖ < 1.5× 10−4 }, (6.46)

while the blue plot is the x component of the ground truth at the k-th

sample and its scale is reported on the right side of the graph. The reported

results confirm that the optimization on the Lie group is able to yield better

results: the number of iterations is almost halved when using either type

of initialization. On the other hand, figures 6.5a and 6.5a reveal a clear

correlation between the number of iterations and the magnitude of the

transformation. This correlation is eliminated when the second type of

initialization is used, as illustrated in figures 6.5c and 6.5d. Notably, at

sample k = 9, where the ground truth velocity is steady (as shown by the blue

plot between samples 8 and 9) no iterations are needed (N9,iter = 0), because

the initialization is already below the desired threshold. This indicates that

if the velocity of the agent is approximately constant, this method requires

very few iterations, and the results suggest that it generally yields improved

performance.

120 Chapter 6 Visual odometry for aerial phyisical interaction

6.6 Conclusions and future directions

In this chapter we presented a method for estimating motion from 3D point

cloud measurements, based on a feature-less matching index and with op-

timization performed on the Lie group of rototranslations. This method is

targeted towards aerial physical interaction, wherein determining the abso-

lute pose of the robot is not the primary goal. Rather, the relative motion

is fundamental, and it is used to feed an admittance controller that can

manage the interaction between the root and the environment, in order

to perform robust manipulation in presence of uncertainties. The results

show that the algorithm is able to converge faster when the optimization is

performed within the Lie group, rather than the standard gradient descent

in the Euclidean vector space. Future directions will involve its implemen-

tation in an experimental environment with a tilt-rotor hexacopter. This

includes the real time processing of point clouds captured by a depth camera

and the definition of a wrench-estimation filter. Preliminary and ongoing

experiments using the Intel RealSense d435i depth camera show promising

results, although the full-stack implementation is challenged by numerous

technological difficulties.

122 Chapter 6 Visual odometry for aerial phyisical interaction

AFrameworks for real-time

performances

A.1 Introduction

The importance of real time constraints in the development of full-stack

architectures for autonomous robots forces a particular attention on how the

algorithms are realized in practice. The efficiency of implementation was

a major factor in the development of the methodologies discussed in this

thesis: an algorithm can be effectively considered efficient only if it allows an

efficient implementation, resulting in a real time execution. This motivates

the strong necessity that the simulations must be performed online, and this

can be achieved through the ROS framework together with the real time robot

simulator Gazebo (Koenig and Howard, 2004). Real time and physics engine-

based simulators offer the possibility to apply the same algorithm to both

the simulation and the real experiments, as long as a common ROS interface

is defined, as presented in chapter 2, with minimal discrepancies when the

simulation is sufficiently precise. To keep up with both the simulation and

the experimental timing requirements, when the algorithmic complexity is

relevant it is fundamental that the implementation is as optimized as possible.

To this goal, a C++ implementation is highly preferred for several reasons.

First, being a compiled language, the compiler itself optimizes the generated

machine code incredibly efficiently (Godbolt, 2020), as a result of decades

of development. Second, its thin runtime layer allows for the most efficient

memory and resources management, of crucial importance especially when

processing data-rich sensors measurements. Finally, its heavily structured

architecture allow for robust large framework development, that begin to be

essential when the full-stack system is composed of different modules (e.g.

the NAPVIG-X algorithm in chapter 5). However, while C++ is suitable for

high performance applications, it does not have the same easy access to a

variety of debug and display tools that are instead one of the advantages of

Python, which, other than being useful in a first prototyping phase, can be

integrated online to C++nodes thanks again to the ROS interface, which is

123

transparent to the used language, and implement online visualization tools.

In this appendix we will present a brief overview on some implementation

details that are of key importance in allowing the proposed algorithms to

fulfill real time requirements.

A.2 Tensors operations

Algorithms involving the processing of data-rich sensors share the necessity

to perform operations on large-scale arrays, often characterized by multidi-

mensionality. The simplest example of a multidimensional array is a colored

image: the pixels are arranged in a matrix, and each pixel itself is a vector

of three elements representing the red, green and blue values, thus repre-

senting a data structure with higher dimensionality than a 2D matrix. The

mathematical objects that are able to model this kind of multi-array are the

tensors, that can be seen as a generalization and unification of the concepts

of scalar, vector, matrices and higher order of representation: they are char-

acterized by a variable number of dimensions, so a tensor of zero dimensions

corresponds to a scalar, one dimension to a vector, and so on, generalizable

to n dimension.

Tensors are vastly employed in machine learning and its recent rapid growth

enforced a huge effort in the development of libraries that offer highly

optimized implementations of mathematical operations on tensors, such as

TensorFlow (Abadi et al., 2016) or PyTorch (Paszke et al., 2019). The latter,

in particular, despite being born for deep learning applications, provide an

excellent math library whose optimization is advantageous even for different

type of data-processing algorithms. This is the library that has been vastly

used to realize the algorithm in this thesis, both in the versions for Python

and C++(libtorch).

The real advantage of tensors is that they are not limited to handle multidi-

mensionality, but they allow for vectorization of the mathematical operations

between data tensors. Its easiest example is the implementation of the sum

of the elements of an array. The traditional way is by iterating over each

124 Appendix A Frameworks for real-time performances

element and increment an accumulator. Assuming v is an iterable vector (e.g.

std::vector<float>), in C++code:

float sum = 0;

for (float v_i : v)

sum += v_i;

The vectorized version of the sum operation would be to directly call a

method sum on the vector, now as a 1-dim tensor, v (in this case with type

torch::Tensor):

torch::Tensor sum = v.sum (0);

Note that the result of a tensor operation is always another tensor, in this

case of size 0, representing a scalar. The 0 as argument of the sum indicates

that the sum should be taken with respect of the first (and only) dimension:

indeed, v could be a N × M matrix and the sum could be taken row or

column wise, indicating 0 or 1 as argument, and in this case the result would

be a tensor with 1 dimension of size M , or N , respectively. Also, the variable

dimension nature of tensor allows to generalize this concept to any number

of dimensionality.

Single batch operations on tensors, instead of performing “for loops”, results

to have better performances in terms of overall execution time, even in C++

code, that, contrarily to Python, has almost no overhead in the iterations.

The overall reason is the ability to operate on all dimension simultaneously,

allowing for a variety of optimizations. First, it enables the multi-thread

parallelization of the computation, which means that several operations

can be calculated at the same time. Also, it allows for optimized memory

management: for example, the data can be stored contiguously, resulting in

an increased performance due to less cache misses. Furthermore, in certain

operations it is possible to avoid repeated calculations by exploiting some

properties of the structure of the tensor itself, for example the broadcasting

operator, of which we provide a simple example. Consider the case where

we want to find all the distances between two sets of vectors, v1 and v2,

2D tensors of size M ×D and N ×D. A tensor containing all the possible

differences will be a 3D tensor of size M × N × 2: after the input tensors

need to be reshaped to sizes M × 1×D and 1×N ×D, all the entries of p1

will be “broadcasted” to the entries of p2, guided by the dimensions with size

1, known as singleton dimensions. To then get the distances it is sufficient

A.2 Tensors operations 125

to employ the library function norm, specifying the dimension in which the

norm should be taken, in this case the third, containing the two components

of each point difference. Summarizing, the tensor of distances of size N ×M

can be obtained as follows:

distances = (p1.reshape(M, 1, D) - p2.reshape(1, N, D)).norm(2);

Note that this line has to be intended as pseudocode, as the real syntax

would have several additional elements which we neglected for presentation

purposes. The traditional implementation would require three nested for

loops, as follows:

for (int i = 0; i < M; i++)

for (int j = 0; j < N; j++) {

float dist = 0;

for (int d = 0; d < D; d++)

dist += pow(p1[i, d] - p2[j, d], 2);

distances[i, j] = sqrt (dist);

}

In a test with random arrays with M = 100, N = 200, D = 100, performed

on an Intel i7 architecture, and repeated 10000 times, on average, the

C++ implementation of the loop takes 6.29 ms to execute while the tensor

operation takes 0.23 ms, almost 30 times faster. The same loop execution

implemented with Python, for which loops have a large overhead, takes

79.85 ms, with one order of magnitude of difference.

A.3 lietorch: a library for tensor based

Lie group operations

In robotics, and, in particular, in estimation, it is common to apply the same

transformation to a batch of points: for example, in chapter 6 this happens

to the elements of a point cloud to be matched to another point cloud. These

are large arrays, and we want to exploit the advantages of batch tensor

optimization to the operations of the family of roto-translation. This lead

to the development of a C++ library that implements the common Lie group

operations such as composition, rotation, translation, etc. The library is based

on PyTorch and is publicly available on GitHub1.

1https://github.com/nicola-lissandrini/lietorch

126 Appendix A Frameworks for real-time performances

The core characteristics of the library is modularity: given that all the Lie

group share the same operations (composition, group action, inverse, ex-

ponential, etc.), they all derive from a common abstract class by exploiting

CRTP (Curiously recurring template pattern) (Coplien, 1996), that allows

static polymorphism. This is required so that it is possible to use the operator

overloading to write more maintainable code: for example, given two objects

representing a specific Lie group, their composition is simply a * b, with the

standard multiplication operator. On one hand this results in self-explaining

clean code, on the other hand it reveals to be more versatile as it is no longer

tied to a particular implementation, but instead has a semantic meaning that

is easier to interpret.

The abstract class containing all the shared methods has the following struc-

ture2:

template<class Derived>

class LieGroup {

public:

Derived inverse ();

Tangent log ();

Derived compose (Derived other);

Tensor dist (Derived other, DataType weights);

Tensor act (Tensor v);

Tangent differentiate (Tensor outerGradient, Tensor v);

[...]

private:

Tensor coeffs;

};

where:

• Derived is the actual derived class representing the specific Lie group,

that are declared, following CRTP, for example, as:

class Quaternion : public LieGroup<Quaternion>

Thanks to the common abstract base class, derived classes only need to

implement the above functions, while the operator overloading and all

the common technicalities are handled by the base class LieGroup The

2Once more, this has to be interpreted as pseudo-C++ , as inessential syntax details have
been omitted.

A.3 lietorch: a library for tensor based Lie group operations 127

available implemented Lie groups are Rn<N>, translations with N known

at compile time; Quaternion; UnitComplex, 2D rotations; Pose2, union

of Rn<2> and UnitComplex; Pose3, union of Rn<3> and Quaternion.

• Tangent is the dual class associated to each Lie group implementation

representing its Lie algebra. They also derive a base class, that has the

following structure:

template<class Derived>

class Tangent {

public:

LieGroup exp ();

Derived scale (Tensor values);

Tensor norm ();

[...]

private:

Tensor coeffs;

};

where the methods represent the standard exponential, scaling and

norm operations on the Lie algebra. For each implemented Lie group,

the corresponding available implemented derivations of Tangent, in the

same order, are: VelocityRn<N>; AngularVelocity, ComplexVelocity;

Twist2; Twist3.

• inverse, log and compose are the methods for the standard operations

for Lie group elements. act refers to the group action, and is one of the

key features of the library as its implementation allows applying the

group action (e.g. rotation) to multiple vectors simultaneously, stored

into the tensor v as rows.

• differentiate is another key feature of the library, and allows the

batch tensor product of the jacobian of the group action by a batch of

vectors stored as rows of a 2D tensor. This is useful when applying the

chain rule to a function of the action group, as in (6.30). The argument

outerGradient is the gradient of the chained function, and v is the

tensor of points where the gradient should be computed, which may be

needed for the computation of the jacobian in some cases (such as with

rotations).

128 Appendix A Frameworks for real-time performances

In this brief overview we skip the details on the definition of the operator

overloading, whose technicalities are beyond the scope of this thesis and

for which we remind to the repository. However, we provide an example of

use of the library showing the implementation of equation (6.31), that is

very intuitive thanks to the overloading of operators +, implementing the ⊕

operation, and *, implementing the ◦ operation:

predicted = estimate * oldPointcloud;

outerGradient = landscape.gradient (predicted)

nextEstimate = estimate + stepSizes *

estimate.differentiate (outerGradient,

predicted).sum ();

Here, estimate is the current estimate, namely T̂ (i) in (6.31), oldPointcloud

is the old point cloud Pk−1 from (6.40), organized with the points as rows of a

2D tensor, landscape.gradient (predicted) computes the gradient of the

Landscape function in the predicted point cloud, which is the outer gradient of

the chain rule. The last line is the update rule of the estimation algorithm. The

use of operator overloading then separates the technical realization details of

the Lie group operations from those of the optimization algorithm, allowing

robust development of the methodologies, which becomes fundamental in

the implementation of complex and full-stack systems,

A.4 ModFlow: a modular, run-time flow

control library for robotics

A full-stack robotic system must handle complex interaction between different

and asynchronous input streams (i.e. the sensors data), as well as differ-

ent logic units, realizing different aspects of the algorithm. As an example,

implementing the algorithm presented in chapter 5, requires different mod-

ules, such as the one for sensor data acquisition, policy switching, trajectory

computation and evaluation, etc. Handling this interactions may result in

a convoluted code structure that might become difficult to manage as the

size of the project increases. We now briefly present ModFlow, another library

that offers a lightweight solution to this issue and which is publicly available

on GitHub, as part of a general purpose robotics and ROS library3. The main

3https://github.com/nicola-lissandrini/NLib

A.4 ModFlow: a modular, run-time flow control library for robotics 129

concept is inspired by the structure of a ROS network: the computation is

subdivided into modules, that are connected at run time through channels.

Each module handles the computation of a specific part of the algorithm, and

modules can emit and receive signals through the channels. The mechanics

is similar to ROS, but it has several advantages:

• It is extremely lightweight: contrary to ROS, there is almost no overhead

in the communication between modules, as they are realized in the

same executable, directly through function calls.

• Channels can be of any type of data, which can be passed from a module

to another by reference, without the need for copying and converting

the data.

• New modules can be created and connected with few lines of code,

with no need for external launch files, allowing for fast prototyping.

This library, however, should not be considered as an alternative to ROS but

as a complementary and a means to realize ROS nodes. Indeed, the idea is

that the incoming data from a ROS topic subscriber is converted and fed to a

special channel, named source channel, that connects the outside world to

the ModFlow network, and the modules can emit signals on special channels

named sink channels, that output processed data through a ROS publisher.

The main element needed to build a ModFlow network, is to define a class

that derives nlib::NlModFlow, with a member function loadModules that

defines the modules to be loaded, as follows:

class MyModFlow : public nlib::NlModFlow {

public:

[...]

void loadModules () override {

loadModule<Module1> ();

[...]

loadModule<ModuleN> ();

}

};

This will load the specified modules in order. Modules themselves are exten-

sion of the class nlib::NlModule, as follows:

130 Appendix A Frameworks for real-time performances

class Module1 : public nlib::NlModule {

public:

[...]

void initParams (NlParams params) override;

void setupNetwork () override;

void slot1 (int value, string str);

int slot2 ();

[...]

};

Here initParams allows a standardized method to organize parameters, for

whose details we remind to the documentation of the repository. The function

setupNetwork defines all the input and output connections of the module.

Outputs are defined by creating a channel, with the function defined in the

parent class NlModule:

template<typename ...T>

Channel createChannel (string name);

The template arguments specify the types (0, 1 or more) of the channel,

for example createChannel<int, string> ("channel1") creates a chan-

nel with types int and string, while createChannel<> creates an empty

channel. The module can then emit a signal on a channel, through the

function

template<typename ...T>

void emit (Channel channel, T ...values);

This will result in a function call to every modules connected to the same

channel. Such connection from another module to a member function (re-

ferred to, in this context, as slot) can be defined with the method:

template<typename ...T, typename M, typename R>

void requestConnection (string name, R (M::*slot)(T...));

The specified channel name is searched in the existing channels, and a

connection is created so that every time a signal is emitted on that channel,

the function specified in the slot argument is called, passing the arguments

specified in the emit. The types ...T, M and R are the slot argument (the

data passed from the caller module to the receiver), the name of the module

itself (for technical requirement), and the return type of the slot. They

are automatically deduced by the compiler, and they are specified by the

A.4 ModFlow: a modular, run-time flow control library for robotics 131

signature of the slot method. Special modules are loaded by default to

handle sources and sinks. Those modules can be accessed from outside the

ModFlow network via the methods sources() and sinks() in the derived

NlModFlow object (e.g. MyModFlow in the example abouve). Their member

functions declareSource and declareSink create inbound source channels

and outbound sink channels, respectively. Aside from technicalities, they

work as regular channels and slots, with the only exception that the sink slot

should be a member variable of a class external to the ModFlow network, and

the signal on the source channels are emitted via the method callSource.

The presented library contains also a direct integration of ModFlow to a ROS

node, but we refer to the repository for more details.

A.5 Conclusions

In this appendix we presented tools and solutions for the implementation of

real time strategies to address robotics task. Tensor operations proved to be

a valuable resource for this purpose as various optimization can be leveraged

to handle the operations of large multidimensional arrays. We also presented

two open source libraries that provide fast and modular tools that reveal to

be useful in the typical realization of a robotic system.

132 Appendix A Frameworks for real-time performances

Bibliography

Abadi M., Agarwal A., Barham P., Brevdo E., Chen Z., Citro C., Corrado

G. S., Davis A., Dean J., Devin M., and others . Tensorflow: Large-scale

machine learning on heterogeneous distributed systems. arXiv preprint

arXiv:1603.04467, 2016.

Ahad M. A., Paiva S., Tripathi G., and Feroz N. Enabling technologies and

sustainable smart cities. Sustainable cities and society, 61:102301, 2020.

Al-Hourani A. and Ristic B. Mapperbot/iscan: open-source integrated

robotic platform and algorithm for 2d mapping. International Journal of

Intelligent Robotics and Applications, 4(1):44–56, 2020.

Alonso-Mora J., Baker S., and Rus D. Multi-robot formation control and

object transport in dynamic environments via constrained optimization.

The International Journal of Robotics Research, 36(9):1000–1021, 2017.

Alsamhi S. H., Ma O., Ansari M. S., and Almalki F. A. Survey on collabora-

tive smart drones and internet of things for improving smartness of smart

cities. Ieee Access, 7:128125–128152, 2019.

Alshawabkeh Y. Linear feature extraction from point cloud using color

information. Heritage Science, 8(1):1–13, 2020.

Amano K. and Kato Y. Autonomous mobile robot navigation for complicated

environments by switching multiple control policies. In IECON 2022–48th

Annual Conference of the IEEE Industrial Electronics Society, pages 1–6. IEEE,

2022.

133

Arslan O. and Koditschek D. E. Sensor-based reactive navigation in un-

known convex sphere worlds. The International Journal of Robotics Research,

38(2-3):196–223, 2019.

Ball D., Ross P., English A., Milani P., Richards D., Bate A., Upcroft B.,

Wyeth G., and Corke P. Farm workers of the future: Vision-based robotics

for broad-acre agriculture. IEEE Robotics & Automation Magazine, 24(3):

97–107, 2017.

Bay H., Tuytelaars T., and Gool L. V. Surf: Speeded up robust features. In

European conference on computer vision, pages 404–417. Springer, 2006.

Behl A., Paschalidou D., Donné S., and Geiger A. Pointflownet: Learning

representations for rigid motion estimation from point clouds. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pages 7962–7971, 2019.

Bektaş K. and Bozma H. I. Apf-rl: Safe mapless navigation in unknown

environments. In 2022 International Conference on Robotics and Automation

(ICRA), pages 7299–7305. IEEE, 2022.

Besl P. J. and McKay N. D. Method for registration of 3-d shapes. In

Sensor fusion IV: control paradigms and data structures, volume 1611, pages

586–606. Spie, 1992.

Bhattacharya P. and Gavrilova M. L. Roadmap-based path planning-using

the voronoi diagram for a clearance-based shortest path. IEEE Robotics &

Automation Magazine, 15(2):58–66, 2008.

Bloesch M., Omari S., Hutter M., and Siegwart R. Robust visual inertial

odometry using a direct ekf-based approach. In 2015 IEEE/RSJ interna-

tional conference on intelligent robots and systems (IROS), pages 298–304.

IEEE, 2015.

Boucher P. Waypoints guidance of differential-drive mobile robots with

kinematic and precision constraints. Robotica, 34(4):876–899, 2016.

134 Bibliography

Boufera F., Debbat F., Monmarché N., Slimane M., and Khelfi M. F. Fuzzy

inference system optimization by evolutionary approach for mobile robot

navigation. International Journal of Intelligent Systems and Applications, 10

(2):85, 2018.

Bounini F., Gingras D., Pollart H., and Gruyer D. Modified artificial po-

tential field method for online path planning applications. In 2017 IEEE

Intelligent Vehicles Symposium (IV), pages 180–185. IEEE, 2017.

Brescianini D. and D’Andrea R. An omni-directional multirotor vehicle.

Mechatronics, 55:76–93, 2018.

Bruzzone L., Nodehi S. E., and Fanghella P. Tracked locomotion systems

for ground mobile robots: A review. Machines, 10(8):648, 2022.

Bun M., Kingkan C., Kongprawechnon W., and Nakahara H. Cfp rrt for

an automatic robot in the narrow space and the trapped goal environment.

In International Conference on Electrical Engineering/Electronics, Computer,

Telecommunications and Information Technology (ECTI-CON), pages 737–

741, 2021.

Cataldi E., Muscio G., Trujillo M. A., Rodríguez Y., Pierri F., Antonelli

G., Caccavale F., Viguria A., Chiaverini S., and Ollero A. Impedance

control of an aerial-manipulator: Preliminary results. In 2016 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pages

3848–3853. IEEE, 2016.

Chandler B. and Goodrich M. A. Online rrt* and online fmt*: Rapid

replanning with dynamic cost. In IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pages 6313–6318, 2017.

Chatila R. Deliberation and reactivity in autonomous mobile robots. Robotics

and Autonomous Systems, 16(2-4):197–211, 1995.

Chen L., Shan Y., Tian W., Li B., and Cao D. A fast and efficient double-

tree rrt*-like sampling-based planner applying on mobile robotic systems.

IEEE/ASME Trans. on Mechatronics, 23(6):2568–2578, 2018.

Bibliography 135

Cheng Y. and Wang G. Y. Mobile robot navigation based on lidar. In 2018

Chinese Control And Decision Conference (CCDC), pages 1243–1246. IEEE,

2018.

Chi W., Ding Z., Wang J., Chen G., and Sun L. A generalized voronoi

diagram-based efficient heuristic path planning method for rrts in mobile

robots. IEEE Transactions on Industrial Electronics, 69(5):4926–4937, 2021.

Choi S., Kim E., Lee K., and Oh S. Real-time nonparametric reactive naviga-

tion of mobile robots in dynamic environments. Robotics and Autonomous

Systems, 91:11–24, 2017.

Choset H. and Burdick J. Sensor based planning. i. the generalized voronoi

graph. In IEEE International Conference on Robotics and Automation (ICRA),

volume 2, pages 1649–1655, 1995.

Choy C., Dong W., and Koltun V. Deep global registration. In Proceedings of

the IEEE/CVF conference on computer vision and pattern recognition, pages

2514–2523, 2020.

Chung S., Paranjape A. A., Dames P., Shen S., and Kumar V. A survey on

aerial swarm robotics. IEEE Trans. on Robotics, 34(4):837–855, 2018.

Coplien J. O. Curiously recurring template patterns. In C++ gems, pages

135–144. 1996.

Corah M. and Michael N. Active estimation of mass properties for safe

cooperative lifting. In IEEE Int. Conf. on Robotics and Automation (ICRA),

pages 4582–4587, 2017.

Cortés J. Coverage optimization and spatial load balancing by robotic sensor

networks. IEEE Trans. on Automatic Control, 55(3):749–754, 2010.

D’Andrea R. Guest editorial: A revolution in the warehouse: A retrospective

on kiva systems and the grand challenges ahead. IEEE Trans. on Automation

Science and Engineering, 9(4):638–639, 2012.

136 Bibliography

Daniels J. I., Ha L. K., Ochotta T., and Silva C. T. Robust smooth feature

extraction from point clouds. In IEEE International Conference on Shape

Modeling and Applications 2007 (SMI’07), pages 123–136. IEEE, 2007.

Datta A. and Soundaralakshmi S. Fast parallel algorithm for distance

transform. IEEE Trans. On Systems, Man, And Cybernetics-Part A: Systems

And Humans, 33(4):429–434, 2003.

Devo A., Mezzetti G., Costante G., Fravolini M. L., and Valigi P. Towards

generalization in target-driven visual navigation by using deep reinforce-

ment learning. IEEE Transactions on Robotics, 36(5):1546–1561, 2020.

Edwards J., Daniel E., Pascucci V., and Bajaj C. Approximating the gener-

alized voronoi diagram of closely spaced objects. In Computer Graphics

Forum, volume 34, pages 299–309. Wiley Online Library, 2015.

Elbaz G., Avraham T., and Fischer A. 3d point cloud registration for local-

ization using a deep neural network auto-encoder. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 4631–4640,

2017.

Elfes A. and others . Occupancy grids: A stochastic spatial representation

for active robot perception. In Proceedings of the Sixth Conference on

Uncertainty in AI, volume 2929, page 6. Morgan Kaufmann San Mateo, CA,

1990.

Eskandarian A., Wu C., and Sun C. Research advances and challenges

of autonomous and connected ground vehicles. IEEE Transactions on

Intelligent Transportation Systems, 22(2):683–711, 2019.

Findeisen R., Imsland L., Allgower F., and Foss B. A. State and output

feedback nonlinear model predictive control: An overview. European

Journal of Control, 9(2-3):190–206, 2003.

Fortune S. Voronoi diagrams and delaunay triangulations. Computing in

Euclidean geometry, pages 225–265, 1995.

Bibliography 137

Franchi A., Secchi C., Ryll M., Bulthoff H. H., and Giordano P. R. Shared

control : Balancing autonomy and human assistance with a group of

quadrotor uavs. IEEE Robotics Automation Magazine, 19(3):57–68, 2012.

Fu Y.-T., Hsu C.-M., Chen Z.-Y., and Chou J.-H. Path planning for

continuous-curvature avoidance using hierarchical four parameter logistic

curves. In IEEE International Conference on Systems, Man, and Cybernetics

(SMC), pages 3358–3363, 2020.

Furrer F., Burri M., Achtelik M., and Siegwart R. Robot Operating System

(ROS): The Complete Reference (Volume 1), chapter RotorS—A Modular

Gazebo MAV Simulator Framework, pages 595–625. Springer International

Publishing, Cham, 2016.

Gabellieri C., Tognon M., Sanalitro D., Pallottino L., and Franchi A. A

study on force-based collaboration in swarms. Swarm Intelligence, 14(1):

57–82, 2020.

Garrido S., Moreno L., and Blanco D. Exploration of 2d and 3d environ-

ments using voronoi transform and fast marching method. Journal of

Intelligent and Robotic Systems, 55(1):55–80, 2009.

Garrido Bullón L. S., Moreno Lorente L. E., Blanco Rojas M. D., and

Jurewicz Slupska P. P. Path planning for mobile robot navigation using

voronoi diagram and fast marching. 2011.

Gawel A., Kamel M., Novkovic T., Widauer J., Schindler D., von Al-

tishofen B. P., Siegwart R., and Nieto J. Aerial picking and delivery

of magnetic objects with mavs. In IEEE Int. Conf. on Robotics and Automa-

tion (ICRA), pages 5746–5752, 2017.

Godbolt M. Optimizations in c++ compilers. Communications of the ACM,

63(2):41–49, 2020.

Gojcic Z., Zhou C., Wegner J. D., and Wieser A. The perfect match: 3d

point cloud matching with smoothed densities. In Proceedings of the

138 Bibliography

IEEE/CVF conference on computer vision and pattern recognition, pages

5545–5554, 2019.

Gomez E. J., Santa F. M. M., and Sarmiento F. H. M. A comparative study

of geometric path planning methods for a mobile robot: potential field

and voronoi diagrams. In 2013 II international congress of engineering

mechatronics and automation (CIIMA), pages 1–6. IEEE, 2013.

Grisetti G., Grzonka S., Stachniss C., Pfaff P., and Burgard W. Efficient

estimation of accurate maximum likelihood maps in 3d. In 2007 IEEE/RSJ

International Conference on Intelligent Robots and Systems, pages 3472–

3478. IEEE, 2007.

Güler S., Abdelkader M., and Shamma J. S. Peer-to-peer relative localiza-

tion of aerial robots with ultrawideband sensors. IEEE Transactions on

Control Systems Technology, 2020.

Gumhold S., Wang X., MacLeod R. S., and others . Feature extraction from

point clouds. In IMR, pages 293–305, 2001.

Guo Y., Zhang Q., Wang J., and Liu S. Hierarchical reinforcement learning-

based policy switching towards multi-scenarios autonomous driving. In

2021 International Joint Conference on Neural Networks (IJCNN), pages

1–8. IEEE, 2021.

Gupta S., Davidson J., Levine S., Sukthankar R., and Malik J. Cognitive

mapping and planning for visual navigation. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 2616–2625,

2017.

Hernández-Vega J.-I., Varela E. R., Romero N. H., Hernández-Santos C.,

Cuevas J. L. S., and Gorham D. G. P. Internet of things (iot) for monitor-

ing air pollutants with an unmanned aerial vehicle (uav) in a smart city. In

Smart technology, pages 108–120. Springer, 2018.

Huang X., Mei G., and Zhang J. Feature-metric registration: A fast semi-

supervised approach for robust point cloud registration without correspon-

Bibliography 139

dences. In Proceedings of the IEEE/CVF conference on computer vision and

pattern recognition, pages 11366–11374, 2020.

Huang X., Mei G., Zhang J., and Abbas R. A comprehensive survey on

point cloud registration. arXiv preprint arXiv:2103.02690, 2021a.

Huang X., Mei G., Zhang J., and Abbas R. A comprehensive survey on

point cloud registration. ArXiv, abs/2103.02690, 2021b.

Ismail Z. H., Sariff N., and Hurtado E. A survey and analysis of cooperative

multi-agent robot systems: challenges and directions. In Applications of

Mobile Robots, pages 8–14. IntechOpen, 2018.

Jepsen J. H., Terkildsen K. H., Hasan A., Jensen K., and Schultz U. P.

Uavat framework: Uav auto test framework for experimental validation

of multirotor suas using a motion capture system. In 2021 International

Conference on Unmanned Aircraft Systems (ICUAS), pages 619–629. IEEE,

2021.

Jin J., Nguyen N. M., Sakib N., Graves D., Yao H., and Jagersand M. Map-

less navigation among dynamics with social-safety-awareness: a reinforce-

ment learning approach from 2d laser scans. In 2020 IEEE international

conference on robotics and automation (ICRA), pages 6979–6985. IEEE,

2020.

Kaess M., Ranganathan A., and Dellaert F. isam: Incremental smoothing

and mapping. IEEE Transactions on Robotics, 24(6):1365–1378, 2008.

Kamel M., Verling S., Elkhatib O., Sprecher C., Wulkop P., Taylor Z., Sieg-

wart R., and Gilitschenski I. The voliro omniorientational hexacopter:

An agile and maneuverable tiltable-rotor aerial vehicle. IEEE Robotics &

Automation Magazine, 25(4):34–44, 2018.

Karaman S. and Frazzoli E. Sampling-based algorithms for optimal motion

planning. The International Journal of Robotics Research, 30(7):846–894,

2011.

140 Bibliography

Keidar M., Sadeh-Or E., and Kaminka G. A. Fast frontier detection for

robot exploration. In International Conference on Autonomous Agents and

Multiagent Systems, pages 281–294, Berlin, Heidelberg, 2012. Springer.

Kerl C., Sturm J., and Cremers D. Dense visual slam for rgb-d cameras. In

Proc. of the Int. Conf. on Intelligent Robot Systems (IROS), 2013.

Kiseleva E., Hart L., Prytomanova O., and Kuzenkov O. An algorithm

to construct generalized voronoi diagrams with fuzzy parameters based

on the theory of optimal partitioning and neuro-fuzzy technologies. In

MoMLeT, pages 148–162, 2019.

Koenig N. and Howard A. Design and use paradigms for gazebo, an open-

source multi-robot simulator. In IEEE/RSJ Int. Conf. on Intelligent Robots and

Systems (IROS) (IEEE Cat. No.04CH37566), volume 3, pages 2149–2154,

2004.

Kolahdouzan M. and Shahabi C. Voronoi-based k nearest neighbor search

for spatial network databases. In Proceedings of the Thirtieth international

conference on Very large data bases-Volume 30, pages 840–851, 2004.

Kondak K., Huber F., Schwarzbach M., Laiacker M., Sommer D., Bejar

M., and Ollero A. Aerial manipulation robot composed of an autonomous

helicopter and a 7 degrees of freedom industrial manipulator. In IEEE Int.

Conf. on Robotics and Automation (ICRA), pages 2107–2112, 2014.

Koulamas C. and Lazarescu M. T. Real-time embedded systems: Present

and future, 2018.

LaValle S. M. and others . Rapidly-exploring random trees: A new tool for

path planning. 1998.

Lee D.-T. and Drysdale R. L., III. Generalization of voronoi diagrams in the

plane. SIAM Journal on Computing, 10(1):73–87, 1981.

Lee H., Kim H., and Kim H. J. Planning and control for collision-free

cooperative aerial transportation. IEEE Trans. on Automation Science and

Bibliography 141

Engineering, 15(1):189–201, 2018.

León J., Cardona G. A., Botello A., and Calderón J. M. Robot swarms

theory applicable to seek and rescue operation. In Int. Conf. on Intelligent

Systems Design and Applications, pages 1061–1070. Springer, 2016.

Li H., Zhang Q., and Zhao D. Deep reinforcement learning-based automatic

exploration for navigation in unknown environment. IEEE transactions on

neural networks and learning systems, 31(6):2064–2076, 2019.

Li T., Ho D., Li C., Zhu D., Wang C., and Meng M. Q.-H. Houseexpo:

A large-scale 2d indoor layout dataset for learning-based algorithms on

mobile robots. In 2020 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pages 5839–5846. IEEE, 2020.

Lindqvist B., Agha-Mohammadi A.-A., and Nikolakopoulos G.

Exploration-rrt: A multi-objective path planning and exploration

framework for unknown and unstructured environments. In IEEE/RSJ Int.

Conf. on Intelligent Robots and Systems (IROS), pages 3429–3435, 2021.

Lippi M. and Marino A. Cooperative object transportation by multiple

ground and aerial vehicles: Modeling and planning. In 2018 IEEE Interna-

tional Conference on Robotics and Automation (ICRA), pages 1084–1090.

IEEE, 2018.

Lippiello V., Fontanelli G. A., and Ruggiero F. Image-based visual-

impedance control of a dual-arm aerial manipulator. IEEE Robotics and

Automation Letters, 3(3):1856–1863, 2018.

Lissandrini N., Michieletto G., Antonello R., Galvan M., Franco A., and

Cenedese A. Cooperative optimization of uavs formation visual tracking.

Robotics, 8(3):1–22 (Article Number 52), 2019. ISSN 2218-6581. DOI:

https://doi.org/10.3390/robotics8030052.

Lissandrini N., Verginis C. K., Roque P., Cenedese A., and Dimarogonas

D. V. Decentralized nonlinear mpc for robust cooperative manipulation

by heterogeneous aerial-ground robots. In 2020 IEEE/RSJ International

142 Bibliography

Conference on Intelligent Robots and Systems (IROS), pages 1531–1536.

IEEE.

Liu S., Li S., Pang L., Hu J., Chen H., and Zhang X. Autonomous explo-

ration and map construction of a mobile robot based on the tghm algorithm.

Sensors, 20(2):490, 2020.

Lluvia I., Lazkano E., and Ansuategi A. Active mapping and robot explo-

ration: A survey. Sensors, 21(7):2445, 2021.

López-González A., Campaña J. M., Martínez E. H., and Contro P. P.

Multi robot distance based formation using parallel genetic algorithm.

Applied Soft Computing, 86:105929, 2020.

Lowe D. G. Distinctive image features from scale-invariant keypoints. Inter-

national journal of computer vision, 60(2):91–110, 2004.

Lulu L. and Elnagar A. A comparative study between visibility-based

roadmap path planning algorithms. In 2005 IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems, pages 3263–3268. IEEE, 2005.

Mahkovic R. and Slivnik T. Constructing the generalized local voronoi

diagram from laser range scanner data. IEEE Transactions on Systems, Man,

and Cybernetics-Part A: Systems and Humans, 30(6):710–719, 2000.

Mahony R., Kumar V., and Corke P. Multirotor aerial vehicles: Modeling,

estimation, and control of quadrotor. IEEE Robotics Automation Magazine,

19(3):20–32, 2012.

Marie R., Said H. B., Stéphant J., and Labbani-Igbida O. Visual servoing

on the generalized voronoi diagram using an omnidirectional camera.

Journal of Intelligent & Robotic Systems, 94(3):793–804, 2019.

Masehian E. and Amin-Naseri M. A voronoi diagram-visibility graph-

potential field compound algorithm for robot path planning. Journal

of Robotic Systems, 21(6):275–300, 2004.

Bibliography 143

Mashayekhi R., Idris M. Y. I., Anisi M. H., Ahmedy I., and Ali I. In-

formed rrt*-connect: An asymptotically optimal single-query path planning

method. IEEE Access, 8:19842–19852, 2020.

Menolotto M., Komaris D.-S., Tedesco S., O’Flynn B., and Walsh M. Mo-

tion capture technology in industrial applications: A systematic review.

Sensors, 20(19):5687, 2020.

Michieletto G., Ryll M., and Franchi A. Fundamental actuation properties

of multirotors: Force–moment decoupling and fail–safe robustness. IEEE

Transactions on Robotics, 34(3):702–715, 2018.

Milijas R., Markovic L., Ivanovic A., Petric F., and Bogdan S. A compari-

son of lidar-based slam systems for control of unmanned aerial vehicles.

In 2021 International Conference on Unmanned Aircraft Systems (ICUAS),

pages 1148–1154. IEEE, 2021.

Mirowski P., Pascanu R., Viola F., Soyer H., Ballard A. J., Banino A.,

Denil M., Goroshin R., Sifre L., Kavukcuoglu K., and others . Learning

to navigate in complex environments. arXiv preprint arXiv:1611.03673,

2016.

Molinos E. J., Llamazares A., and Ocaña M. Dynamic window based

approaches for avoiding obstacles in moving. Robotics and Autonomous

Systems, 118:112–130, 2019.

Montiel O., Orozco-Rosas U., and Sepúlveda R. Path planning for mo-

bile robots using bacterial potential field for avoiding static and dynamic

obstacles. Expert Systems with Applications, 42(12):5177–5191, 2015a.

Montiel O., Sepúlveda R., and Orozco-Rosas U. Optimal path planning

generation for mobile robots using parallel evolutionary artificial potential

field. Journal of Intelligent & Robotic Systems, 79(2):237–257, 2015b.

Naldi R., Gasparri A., and Garone E. Cooperative pose stabilization of an

aerial vehicle through physical interaction with a team of ground robots.

In IEEE Int. Conf. on Control Applications, pages 415–420, 2012.

144 Bibliography

Nascimento T. P., Moreira A. P., and Conceição A. G. S. Multi-robot

nonlinear model predictive formation control: Moving target and target

absence. Robotics and Autonomous Systems, 61(12):1502–1515, 2013.

Nguyen T. and Garone E. Control of a uav and a ugv cooperating to

manipulate an object. In American Control Conference (ACC), pages 1347–

1352, 2016.

Nikou A., Verginis C., Heshmati-Alamdari S., and Dimarogonas D. V. A

nonlinear model predictive control scheme for cooperative manipulation

with singularity and collision avoidance. In 25th Mediterranean Conf. on

Control and Automation (MED), pages 707–712, 2017.

Niroui F., Zhang K., Kashino Z., and Nejat G. Deep reinforcement learning

robot for search and rescue applications: Exploration in unknown cluttered

environments. IEEE Robotics and Automation Letters, 4(2):610–617, 2019.

Ocando M. G. and others . Autonomous 2d slam and 3d mapping of an

environment using a single 2d lidar and ros. In 2017 Latin American

Robotics Symposium (LARS) and 2017 Brazilian Symposium on Robotics

(SBR). IEEE, 2017.

Ollero A., Heredia G., Franchi A., Antonelli G., Kondak K., Sanfeliu A.,

Viguria A., Martinez-de Dios J. R., Pierri F., Cortés J., and others . The

aeroarms project: Aerial robots with advanced manipulation capabilities

for inspection and maintenance. IEEE Robotics & Automation Magazine, 25

(4):12–23, 2018.

Ollero A., Tognon M., Suarez A., Lee D., and Franchi A. Past, present, and

future of aerial robotic manipulators. IEEE Transactions on Robotics, 2021.

Oskiper T., Zhu Z., Samarasekera S., and Kumar R. Visual odometry

system using multiple stereo cameras and inertial measurement unit. In

2007 IEEE Conference on Computer Vision and Pattern Recognition, pages

1–8. IEEE, 2007.

Bibliography 145

Paden B., Čáp M., Yong S. Z., Yershov D., and Frazzoli E. A survey of

motion planning and control techniques for self-driving urban vehicles.

IEEE Trans. on Intelligent Vehicles, 1(1):33–55, 2016.

Pairet È., Hernández J. D., Carreras M., Petillot Y., and Lahijanian M.

Online mapping and motion planning under uncertainty for safe naviga-

tion in unknown environments. IEEE Trans. on Automation Science and

Engineering, 2021.

Paneque J. L., Martínez-de Dios J., and Ollero A. Multi-sensor 6-dof

localization for aerial robots in complex gnss-denied environments. In

2019 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pages 1978–1984. IEEE, 2019.

Paszke A., Gross S., Massa F., Lerer A., Bradbury J., Chanan G., Killeen

T., Lin Z., Gimelshein N., Antiga L., and others . Pytorch: An imper-

ative style, high-performance deep learning library. Advances in neural

information processing systems, 32, 2019.

Patel U., Kumar N. K. S., Sathyamoorthy A. J., and Manocha D. Dwa-

rl: Dynamically feasible deep reinforcement learning policy for robot

navigation among mobile obstacles. In 2021 IEEE International Conference

on Robotics and Automation (ICRA), pages 6057–6063. IEEE, 2021.

Paternain S., Koditschek D. E., and Ribeiro A. Navigation functions for con-

vex potentials in a space with convex obstacles. IEEE Trans. on Automatic

Control, 63(9):2944–2959, 2017.

Prasad A., Sharma B., Vanualailai J., and Kumar S. Stabilizing controllers

for landmark navigation of planar robots in an obstacle-ridden workspace.

Journal of Advanced Transportation, 2020, 2020.

Praveen A., Ma X., Manoj H., Venkatesh V. L., Rastgaar M., and Voyles

R. M. Inspection-on-the-fly using hybrid physical interaction control for

aerial manipulators. In 2020 IEEE/RSJ International Conference on Intelli-

gent Robots and Systems (IROS), pages 1583–1588, 2020.

146 Bibliography

Qi J., Yang H., and Sun H. Mod-rrt*: A sampling-based algorithm for

robot path planning in dynamic environment. IEEE Trans. on Industrial

Electronics, 68(8):7244–7251, 2020.

Quin P., Alempijevic A., Paul G., and Liu D. Expanding wavefront fron-

tier detection: An approach for efficiently detecting frontier cells. In

Australasian Conference on Robotics and Automation, ACRA, 2014.

Raj T., Hashim F. H., Huddin A. B., Ibrahim M. F., and Hussain A. A

survey on lidar scanning mechanisms. Electronics, 9(5):741, 2020.

Rajappa S. Towards Human-UAV Physical Interaction and Fully Actuated Aerial

Vehicles. Logos Verlag, 2018.

Ramos F. and Ott L. Hilbert maps: Scalable continuous occupancy mapping

with stochastic gradient descent. The International Journal of Robotics

Research, 35(14):1717–1730, 2016.

Rashad R., Bicego D., Zult J., Sanchez-Escalonilla S., Jiao R., Franchi

A., and Stramigioli S. Energy aware impedance control of a flying end-

effector in the port-hamiltonian framework. IEEE transactions on robotics,

2021.

Rashad R., Goerres J., Aarts R., Engelen J. B., and Stramigioli S. Fully

actuated multirotor uavs: A literature review. IEEE Robotics & Automation

Magazine, 27(3):97–107, 2020.

Rubio F., Valero F., and Llopis-Albert C. A review of mobile robots: Con-

cepts, methods, theoretical framework, and applications. International

Journal of Advanced Robotic Systems, 16(2):1729881419839596, 2019.

Rublee E., Rabaud V., Konolige K., and Bradski G. Orb: An efficient

alternative to sift or surf. In 2011 International conference on computer

vision, pages 2564–2571. Ieee, 2011.

Rusinkiewicz S. and Levoy M. Efficient variants of the icp algorithm. In Pro-

ceedings third international conference on 3-D digital imaging and modeling,

Bibliography 147

pages 145–152. IEEE, 2001.

Ryll M., Bicego D., Giurato M., Lovera M., and Franchi A. Fast-hex–a

morphing hexarotor: Design, mechanical implementation, control and

experimental validation. IEEE/ASME Transactions on Mechatronics, 2021.

Ryll M., Muscio G., Pierri F., Cataldi E., Antonelli G., Caccavale F., Bicego

D., and Franchi A. 6d interaction control with aerial robots: The flying

end-effector paradigm. The International Journal of Robotics Research, 38

(9):1045–1062, 2019.

Salzman O. and Halperin D. Asymptotically near-optimal rrt for fast, high-

quality motion planning. IEEE Trans. on Robotics, 32(3):473–483, 2016.

Sandakalum T. and Ang Jr M. H. Motion planning for mobile manipula-

tors—a systematic review. Machines, 10(2):97, 2022.

Santamaria-Navarro A., Loianno G., Sola J., Kumar V., and Andrade-

Cetto J. Autonomous navigation of micro aerial vehicles using high-rate

and low-cost sensors. Autonomous robots, 42(6):1263–1280, 2018.

Shakhatreh H., Sawalmeh A. H., Al-Fuqaha A., Dou Z., Almaita E., Khalil

I., Othman N. S., Khreishah A., and Guizani M. Unmanned aerial vehi-

cles (uavs): A survey on civil applications and key research challenges. Ieee

Access, 7:48572–48634, 2019.

Shawky D., Yao C., and Janschek K. Nonlinear model predictive control

for trajectory tracking of a hexarotor with actively tiltable propellers. In

2021 7th International Conference on Automation, Robotics and Applications

(ICARA), pages 128–134. IEEE, 2021.

Shen T., Luo Z., Zhou L., Deng H., Zhang R., Fang T., and Quan L. Beyond

photometric loss for self-supervised ego-motion estimation. In 2019 Inter-

national Conference on Robotics and Automation (ICRA), pages 6359–6365.

IEEE, 2019.

148 Bibliography

Shi F., Zhao M., Anzai T., Chen X., Okada K., and Inaba M. External

wrench estimation for multilink aerial robot by center of mass estimator

based on distributed imu system. In 2019 International Conference on

Robotics and Automation (ICRA), pages 1891–1897. IEEE, 2019.

Sirtkaya S., Seymen B., and Alatan A. A. Loosely coupled kalman filtering

for fusion of visual odometry and inertial navigation. In Proceedings of the

16th International Conference on Information Fusion, pages 219–226. IEEE,

2013.

Staub N., Mohammadi M., Bicego D., Prattichizzo D., and Franchi A.

Towards robotic magmas: Multiple aerial-ground manipulator systems.

In IEEE Int. Conf. on Robotics and Automation (ICRA), pages 1307–1312,

2017.

Stefek A., Van Pham T., Krivanek V., and Pham K. L. Energy comparison

of controllers used for a differential drive wheeled mobile robot. IEEE

Access, 8:170915–170927, 2020.

Suarez A., Heredia G., and Ollero A. Lightweight compliant arm with

compliant finger for aerial manipulation and inspection. In IEEE/RSJ Int.

Conf. on Intelligent Robots and Systems (IROS), pages 4449–4454, 2016.

Suarez A., Real F., Vega V. M., Heredia G., Rodriguez-Castano A., and

Ollero A. Compliant bimanual aerial manipulation: Standard and long

reach configurations. IEEE Access, 8:88844–88865, 2020.

Sun Z., Wu B., Xu C.-Z., Sarma S. E., Yang J., and Kong H. Frontier

detection and reachability analysis for efficient 2d graph-slam based active

exploration. In 2020 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pages 2051–2058, 2020.

Takahashi O. and Schilling R. J. Motion planning in a plane using general-

ized voronoi diagrams. IEEE Transactions on robotics and automation, 5(2):

143–150, 1989.

Bibliography 149

Teimoori H. and Savkin A. V. A biologically inspired method for robot

navigation in a cluttered environment. Robotica, 28(5):637–648, 2010.

Tidd B., Cosgun A., Leitner J., and Hudson N. Learning when to switch:

composing controllers to traverse a sequence of terrain artifacts. In 2021

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

pages 5144–5150. IEEE, 2021.

Tognon M., Chávez H. A. T., Gasparin E., Sablé Q., Bicego D., Mallet A.,

Lany M., Santi G., Revaz B., Cortés J., and others . A truly-redundant

aerial manipulator system with application to push-and-slide inspection in

industrial plants. IEEE Robotics and Automation Letters, 4(2):1846–1851,

2019.

Tu X., Xu C., Liu S., Xie G., and Li R. Real-time depth estimation with an

optimized encoder-decoder architecture on embedded devices. In 2019

IEEE 21st International Conference on High Performance Computing and

Communications; IEEE 17th International Conference on Smart City; IEEE

5th International Conference on Data Science and Systems (HPCC/SmartCi-

ty/DSS), pages 2141–2149. IEEE, 2019.

Tzoumanikas D., Graule F., Yan Q., Shah D., Popovic M., and Leuteneg-

ger S. Aerial manipulation using hybrid force and position nmpc applied

to aerial writing. arXiv preprint arXiv:2006.02116, 2020.

Upadhyay S., Kumar S., and Krishna K. M. Crf based frontier detection

using monocular camera. In Proceedings of the 2014 Indian Conference on

Computer Vision Graphics and Image Processing, pages 1–7, 2014.

Valette S., Chassery J. M., and Prost R. Generic remeshing of 3d triangular

meshes with metric-dependent discrete voronoi diagrams. IEEE Transac-

tions on Visualization and Computer Graphics, 14(2):369–381, 2008.

Verginis C. K., Nikou A., and Dimarogonas D. V. Communication-based

decentralized cooperative object transportation using nonlinear model

predictive control. European Control Conf. (ECC), pages 733–738, 2018.

150 Bibliography

Wahrmann D., Hildebrandt A.-C., Schuetz C., Wittmann R., and Rixen D.

An autonomous and flexible robotic framework for logistics applications.

Journal of Intelligent & Robotic Systems, 93(3):419–431, 2019.

Wang L., Chen J., Li X., and Fang Y. Non-rigid point set registration net-

works. arXiv preprint arXiv:1904.01428, 2019.

Wen J., Zhang X., Bi Q., Pan Z., Feng Y., Yuan J., and Fang Y. Mrpb

1.0: A unified benchmark for the evaluation of mobile robot local plan-

ning approaches. In 2021 IEEE International Conference on Robotics and

Automation (ICRA), pages 8238–8244. IEEE, 2021.

Wilmsen M., Yao C., Schuster M., Li S., and Janschek K. Nonlinear wrench

observer design for an aerial manipulator. IFAC-PapersOnLine, 52(22):1–6,

2019.

Wilson S., Glotfelter P., Wang L., Mayya S., Notomista G., Mote M., and

Egerstedt M. The robotarium: Globally impactful opportunities, chal-

lenges, and lessons learned in remote-access, distributed control of multi-

robot systems. IEEE Control Systems Magazine, 40(1):26–44, 2020.

Wurm K. M., Dornhege C., Nebel B., Burgard W., and Stachniss C. Coor-

dinating heterogeneous teams of robots using temporal symbolic planning.

Autonomous Robots, 34(4):277–294, 2013.

Xia F., Shen W. B., Li C., Kasimbeg P., Tchapmi M. E., Toshev A., Martín-

Martín R., and Savarese S. Interactive gibson benchmark: A benchmark

for interactive navigation in cluttered environments. IEEE Robotics and

Automation Letters, 5(2):713–720, 2020.

Yang J., Zhao C., Xian K., Zhu A., and Cao Z. Learning to fuse local

geometric features for 3d rigid data matching. Information Fusion, 61:

24–35, 2020.

Yang Q. and Yoo S.-J. Optimal uav path planning: Sensing data acquisition

over iot sensor networks using multi-objective bio-inspired algorithms.

IEEE Access, 6:13671–13684, 2018.

Bibliography 151

Yao Q., Zheng Z., Qi L., Yuan H., Guo X., Zhao M., Liu Z., and Yang T. Path

planning method with improved artificial potential field—a reinforcement

learning perspective. IEEE Access, 8:135513–135523, 2020.

Yuan W., Eckart B., Kim K., Jampani V., Fox D., and Kautz J. Deepgmr:

Learning latent gaussian mixture models for registration. In European

conference on computer vision, pages 733–750. Springer, 2020.

Yüksel B., Secchi C., Bülthoff H. H., and Franchi A. Aerial physical inter-

action via ida-pbc. The International Journal of Robotics Research, 38(4):

403–421, 2019.

Zhang F., Chen W., and Xi Y. Motion synchronization in mobile robot

networks: Robustness. In 2006 IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 5570–5575. IEEE, 2006.

Zhang T., Qiu T., Pu Z., Liu Z., and Yi J. Robot navigation among external

autonomous agents through deep reinforcement learning using graph

attention network. IFAC-PapersOnLine, 53(2):9465–9470, 2020.

Zhao S., Dimarogonas D. V., Sun Z., and Bauso D. A general approach to

coordination control of mobile agents with motion constraints. IEEE Trans.

on Automatic Control, 63(5):1509–1516, 2017.

Zhu Y., Zhang T., and Song J.-Y. Study on the local minima problem of path

planning using potential field method in unknown environments. Acta

automatica sinica, 36(8):1122–1130, 2010.

Zwecher E., Iceland E., Levy S. R., Hayoun S. Y., Gal O., and Barel A.

Integrating deep reinforcement and supervised learning to expedite indoor

mapping. In 2022 International Conference on Robotics and Automation

(ICRA), pages 10542–10548. IEEE, 2022.

152 Bibliography

Bibliography 153

	Titlepage
	Abstract
	1 Introduction
	2 Nonlinear MPC for cooperative manipulation
	2.1 Introduction
	2.2 Preliminary notation and models
	2.3 Cooperative manipulation with MPC
	2.3.1 Leader and follower coordination
	2.3.2 Obstacle avoidance

	2.4 Simulations and experiments
	2.4.1 Lower level controllers
	2.4.2 Gazebo simulations
	2.4.3 Experiments

	2.5 Conclusions

	3 NAPVIG: narrow passage navigation
	3.1 Introduction
	3.2 Problem formulation
	3.3 Landscape function definition
	3.4 Narrow passage navigation (NAPVIG) algorithm
	3.4.1 Navigation strategy
	3.4.2 Vehicle model and control

	3.5 Simulations
	3.5.1 Environment design
	3.5.2 Static scenario
	3.5.3 Dynamic scenario

	3.6 Experiments: narrow passages and cluttered scenarios
	3.7 Conclusions

	4 Theoretical foundations of NAPVIG algorithm
	4.1 Introduction
	4.2 Preliminary definitions and properties
	4.2.1 Landscape function generalization

	4.3 The NAPVIG principle theorem
	4.3.1 Remarks on the theorem
	4.3.2 Smoother peaks merging

	4.4 Conclusions

	5 NAPVIG-X: navigation in generic and unstructured environments
	5.1 Introduction
	5.2 Problem formulation
	5.3 Policy-based exploration-exploitation
	5.4 Predictive policies
	5.4.1 Prediction termination rules
	5.4.2 Fully-exploitative policy
	5.4.3 Explorative policies

	5.5 Reactive and auxiliary policies
	5.6 Policy switching rules
	5.7 Simulative validation
	5.7.1 Scenario #1: corridors
	5.7.2 Scenario #2: cluttered spaces
	5.7.3 Scenario #3: target not in sight

	5.8 Conclusions

	6 Visual odometry for aerial phyisical interaction
	6.1 Introduction
	6.2 Mathematical preliminaries: Lie groups
	6.2.1 The group of rototranslations

	6.3 Problem formulation
	6.4 Feature-less motion estimation
	6.4.1 3D Landscape function
	6.4.2 Optimization on Lie groups
	6.4.3 Real time optimization

	6.5 Simulations results
	6.6 Conclusions and future directions

	A Frameworks for real-time performances
	A.1 Introduction
	A.2 Tensors operations
	A.3 lietorch: a library for tensor based Lie group operations
	A.4 ModFlow: a modular, run-time flow control library for robotics
	A.5 Conclusions

	Bibliography

