Universita degli Studi di Padova

Department of Information Engineering

*

Ph.D. Course in Information Engineering

Mobile Robotics in Unknown Environments:
Towards Full Autonomy

Nicola Lissandrini

Advisor prof. Angelo Cenedese

Director and Coordinator pI‘Of. Andrea Neviani

February 28, 2023

Nicola Lissandrini

Mobile Robotics in Unknown Environments:
Towards Full Autonomy

Ph.D. Thesis,

Advisor: prof. Angelo Cenedese

Universita degli Studi di Padova
Ph.D. School in Information Engineering
Department of Information engineering
Via Giovanni Gradenigo, 6, Padua, Italy
35100

Abstract

Mobile robotics has become increasingly popular in recent years as it provides
an automated and cost-efficient solution to a variety of tasks. Traditionally,
human operators would have full responsibility on the robot actions with
teleoperation. Recent advances in sensors and algorithms have paved the
way for robots to be able to operate autonomously or with little human
intervention. Autonomous operation in known and structured environments
has been vastly studied over the last decades, but such scenarios are limited
to specific and laboratory applications. Real world contexts are characterized
by unknown and unstructured scenarios that the robot must sense and adapt
while performing the prescribed task. Recently, great effort has been given to
the development of strategies to face these challenges. However, the pursuit
of full autonomy is hindered by the limited hardware capacity of mobile
robots, that constrain the computational capacity available to realize the
desired operation. In this thesis we present several strategies to cope with
uncertainties and unknown environment for both ground and aerial robot
mobility, with a particular focus on the efficiency and the compliance with
real time constraints. First, we consider a task of robust robot coordination
for object transportation. Then, a novel approach for reactive navigation
in unknown environments is presented, with theoretical proofs and experi-
mental validation. Additionally, we present a motion estimation algorithm
for unknown environments with the purpose of aerial physical interaction.
Overall, particular attention is given to the efficient implementation of the

proposed methodologies, which is a key factor for achieving full autonomy.

Contents

1 Introduction

2 Nonlinear MPC for cooperative manipulation
2.1 Introduction e
2.2 Preliminary notation and models
2.3 Cooperative manipulation with MPC
2.3.1 Leader and follower coordination
2.3.2 Obstacleavoidance
2.4 Simulations and experiments
2.4.1 Lowerlevelcontrollers
2.4.2 Gazebosimulations
2.4.3 Experimentst
2.5 Conclusions

3 NAPVIG: narrow passage navigation

3.1 Introduction it

3.2 Problem formulation

3.3 Landscape function definition

3.4 Narrow passage navigation (NAPVIG) algorithm
3.4.1 Navigationstrategy
3.4.2 Vehicle model and control

3.5 Simulations
3.5.1 Environmentdesign
3.5.2 Staticscenario.l e e
3.5.3 Dynamicscenario

3.6 Experiments: narrow passages and cluttered scenarios

3.7 Conclusions

4 Theoretical foundations of NAPVIG algorithm
4.1 Introduction
4.2 Preliminary definitions and properties

11
13
16
18
19
20
21
21
25

27
27
29
30
33
35
36
37
38
38
39
40
45

Vi

4.2.1 Landscape function generalization 53

4.3 The NAPVIG principle theorem 56
4.3.1 Remarks on thetheorem 59
4.3.2 Smoother peaks merging 60

4.4 Conclusions e 62

NAPVIG-X: navigation in generic and unstructured environments 63

5.1 Introduction it it 63
5.2 Problem formulation 65
5.3 Policy-based exploration-exploitation 66
5.4 Predictive policies o 67
5.4.1 Prediction terminationrules 68
5.4.2 Fully-exploitative policy 69
5.4.3 Explorative policies 71
5.5 Reactive and auxiliary policies 83
5.6 Policy switchingrules 85
5.7 Simulative validation 0., 87
5.7.1 Scenario #1: corridors 87
5.7.2 Scenario #2: cluttered spaces 91
5.7.3 Scenario #3: targetnotinsight 94
5.8 Conclusions e 97
Visual odometry for aerial phyisical interaction 99
6.1 Introduction v i it 99
6.2 Mathematical preliminaries: Lie groups 100
6.2.1 The group of rototranslations 104
6.3 Problem formulation 105
6.4 Feature-less motion estimation. 106
6.4.1 3D Landscape function 107
6.4.2 Optimization on Lie groups 109
6.4.3 Real time optimization 113
6.5 Simulationsresults, 117
6.6 Conclusions and future directions 122
Frameworks for real-time performances 123
Al Introduction e 123
A.2 Tensors operations v v i e e e 124
A.3 1lietorch: a library for tensor based Lie group operations . . . 126

A.4 ModFlow: a modular, run-time flow control library for robotics 129
A5 Conclusions 132

Bibliography 133

vii

Introduction

The future is already here — it’s just not evenly
distributed

— William Gibson

UTONOMOUS mobile robotics is emerging as a core technology in sev-
A eral application fields (Rubio et al., 2019), ranging from industrial
(D’Andrea, 2012; Ball et al., 2017) to the civil (e.g. service robotics (Paden
et al., 2016)), and emergency and military contexts (e.g. field robotics (Lippi
and Marino, 2018; Lissandrini et al., 2019)). Recent advances in the devel-
opment of rich-data acquisition sensors (Raj et al., 2020; Lluvia et al., 2021)
and high-performance embedded microprocessors (Tu et al., 2019) endorse
the ability of robots to efficiently perceive and interpret the surrounding
environment, and thus quickly react and adapt to unknown and dynamic
scenarios. Still, mobile robotics faces critical challenges: a full autonomous
robot needs to balance reactiveness and accuracy under the constraint of min-
imal computational capabilities. The main cause of such limitation is twofold:
on one hand, mobile devices applications are hindered by the limited battery
capacity that forces the robot to be both mechanical and electrically efficient;
on the other hand, full autonomy requires that all or most of the information
upon which an agent can rely comes from on-board sensors, which can entail
the processing of a large set of data. One possible approach to deal with this
complexity is to resort to a multi-agent scheme (Ismail et al., 2018): in this
way the problem can be simplified to set of smaller problems that can also
be solved in parallel by two different computing machines (Lopez-Gonzalez
et al., 2020). However, this is not always possible, and it strongly depends on
the specific context. A more general approach is to employ algorithms that
are as efficient as possible, relying on little computational capabilities and pro-
cess the data not more than strictly needed. Efficiency and timely-contained
computation, indeed, are crucial in practical applications. While it could
be acceptable that the total energy consumption results in a shorter battery
duration, real-time constraints represent the most critical issues (Koulamas

and Lazarescu, 2018) as they are needed for the motion task itself: the

2

planning and control computation is required in the exact moment that the
system dynamics demand. What makes mobile robotics challenging for real
world applications is that these basics and physics-related constraints must
be entangled with application-oriented requirements:

* Mobility and energy consumption

Other than to mere mechanical design and electrical efficiency, these
aspects are heavily linked to the choice of sensors and actuators. More
limited sensor capabilities need a more advanced algorithmic efficacy
(Stefek et al., 2020), and more lightweight actuators require a more
complex planning on the robotics task. At the same time, lightweight
actuators can allow robots to move with greater agility and speed, thus
reducing the overall energy consumption.

» Safety in interaction

Real world applications are characterized by a certain level of uncer-
tainties that may arise from internal or external entities. In the former
case it could be another collaborating robot, that would require robust
synchronization (Zhang et al., 2006); the latter could be represented by
the environment which in many cases is totally or in part unknown. To
this it is often added an amount of clutteredness and unpredictability:
to cope with such environments the planning strategy must guarantee
a high level of safety in order to avoid collisions and guarantee the
accomplishment of the prescribed task (Xia et al., 2020).

¢ Accuracy
Strongly related to safety, but also to the ability of performing delicate
tasks, the estimation and planning tasks need to be able to provide
precise results in terms of distance from the ground truth and the
activity requirements, namely the distance from a target location, as
well as safety and repeatability requirements (Wen et al., 2021).

* Reliable autonomy
The robot should be able to complete the desired activity with less inter-
vention of the human as possible, even in presence of unexpected events.
In particular, this entails that the robotic task can only be programmed
from a high, task-organization level, and, in particular, planning and
navigation must be computed in full autonomy (Wahrmann et al.,
2019), only relying upon sensors and on-board algorithms. Reactive-

Chapter 1 Introduction

-T—7
L—1 |
/ [
Driving N \z
N\ .
Wheels\ Passive
— wheel
[IS S—|
KRobot
base

Figure 1.1.: Schematic example of differential steering robot

ness (Chatila, 1995) is also crucial to cope with dynamic environments
and scenarios that are unpredictably changing, but it should not com-
promise the performances in terms of accuracy.

This work tries to develop the fundamental steps towards an integrated ap-
proach that accounts for all these constraints at once, rather than focusing
on a single one. In particular, major importance is given to the real time ca-
pabilities of the proposed algorithm. This comes from a careful development
of performant strategies to solve robotics tasks, but also from a particular
attention to an efficient and modular software implementation.

These general aspects and challenges are shared by both ground and aerial
vehicles. The employment of ground mobile robots is well established in
literature (Eskandarian et al., 2019). Locomotion is the core characteristic,
and it is generally achieved via wheeled systems. Due to its simplicity, one
of the most common methods is the differential steering, represented in
figure 1.1, where the two wheels are controlled independently to obtain the
desired linear and angular velocity for the robot. While versatile for many
applications, these systems are underactuated and this can be a limiting
factor in some specific context where complex trajectory are required to be
followed with maximum precision. In these cases it could be preferred to
adopt omnidirectional wheels (e.g. those in figure 1.2) that allow the robot
to instantly move in any direction. On the other hand, these wheels tend to
be sensitive to ground imperfections, so the proper locomotion system should
be carefully evaluated for each specific application. The navigation system is
often abstracted from the physical robot structure and is limited to calculating
a trajectory, and then a distinct, lower-level controller is used to guide the
robot along such trajectory, taking into account its physical constraints. The

4

Figure 1.2.: Example of mobile robot composed of an omnidirectional-wheeled base
mounting a 6 d.o.f. manipulator.

second important aspect of mobile robots is the perception of the robot
relative to its surroundings. While motion capture systems can be employed
to obtain a ground truth of the robot’s position with submillimetric precision
(Menolotto et al., 2020), it still suffers from the occlusion problem relying
on such technology greatly limits the application of the developed strategies
and, most importantly, limits the applications to confined laboratory arenas.
The converse approach is to equip the robot with on board sensors such as
cameras or LiDAR (Light Detection and Ranging) (Cheng and Wang, 2018)
and design the navigation system to leverage their measurements in order
to achieve the prescribed goal. To achieve complex and active tasks such
as manipulation and transportation (Sandakalum and Ang Jr, 2022), it is
common to equip the mobile vehicle, that serves as a base of the robot with,
a manipulator with one or more degrees of freedom (e.g. in figure 1.2).
Ground mobile arms can then be leveraged to exert possibly high forces to
the target object in order to transport or manipulate the payload. In turn the
reachable workspace is limited by the size of the manipulator and the areas
that are actually accessible by the ground vehicle, which may be constrained
by physical obstructions such as rough terrain, stairs and obstacles. Legged
locomotion can address some of these limitations (Bruzzone et al., 2022),
however their implementation is often very costly and hardware-demanding.
Also, it does not approach the problem of the limited workspace as concerns
reaching higher altitude, if needed.

Chapter 1 Introduction

Figure 1.3.: Example of an aerial robot composed of an hexarotor with a 2 d.o.f.
arm.

An alternative approach is to resort to aerial robots: Unmanned Aerial
Vehicles (UAVs) and Micro Aerial Vehicles (MAVs) have received an enormous
amount of interest both from a research and an industrial point of view. In
the past decades, most of the attention has been given to their role as passive
observers (Shakhatreh et al., 2019), for example data sensing (Yang and
Yoo, 2018), surveillance, environmental monitoring (Alsamhi et al., 2019;
Herndndez-Vega et al., 2018), smart cities (Ahad et al., 2020), and so on.

To really unlock the potential of a flying robot, however, the latest trend is
to endow them with the ability of physically interact with the environment
(Ollero et al., 2021) to perform manipulation and a various set of other
tasks. The possibility to actively operate in high altitude workspace and easily
overcome cluttered environments, attracted a great interest from areas like
inspection and maintenance (Ollero et al., 2018). To enable this capability,
the aerial vehicles have been endowed with means of manipulation. Essen-
tially, it is possible to distinguish two directions: in the first one, emulating
ground mobile robots, the drones are equipped with a several degrees of
freedom manipulator, as in figure 1.3 (Lissandrini et al.; Tognon et al., 2019;
Suarez et al., 2020). This results in high manipulation capabilities, but it
comes at the cost of a high payload overhead and consequently requiring for
larger vehicle structure and limiting the battery life, which is one of the most
critical issues in aerial robotics. An alternative direction is to mount a fixed
end-effector (Ryll et al., 2019; Tzoumanikas et al., 2020) on a tilt-rotor aerial
vehicle (Ryll et al., 2021; Kamel et al., 2018; Rashad et al., 2020) that is able

6

to steer and hover the vehicle in any direction (Kamel et al., 2018; Shawky
et al., 2021), differently from a classical quadrotor that can only hover in

horizontal position.

To allow aerial interaction task, classical quadrotors are often not powerful
enough for both strategies, for different reasons, and solutions with higher
number of propellers are adopted (hexarotor (Ollero et al., 2018), octaro-
tor(Brescianini and D’Andrea, 2018)). In the first case, the dexterity of the
interaction relies on the degrees-of-freedom of the manipulator, which in
turn results to be heavy: in this case more propeller are needed to guarantee
sufficient thrust and robustness. In the second case, the vehicle can be more
lightweight but, in turn, a higher number of actuators arranged according to
a proper geometry are needed to fulfill the theoretical conditions to achieve
the required dexterity (Michieletto et al., 2018).

In general, the ingredients for aerial robotics are:

* Interaction control: for interacting robots, to the usual position con-
trol requirement is coupled by the interaction force control, in order to
preserve stability of the entire system. The most common approach is
to establish a desired dynamical property between position and force,
through the so-called impedance (Lippiello et al., 2018; Rashad et al.,
2021) admittance (Ryll et al., 2019; Yiiksel et al., 2019; Gabellieri et al.,
2020) control, but it is also possible to implement hybrid force-position
controllers (Praveen et al., 2020).

* Wrench estimation: in order to perform control on the interaction
force/torque, both quantities have to be estimated. While this can be
directly obtained from a sensor (Cataldi et al., 2016), more recently it
is preferred avoid the payload and cost of this additional sensor and
estimate the wrench (i.e. the vector of torques and forces) from the
position, velocity and inertial measurements (Shi et al., 2019; Ryll et al.,
2019; Rajappa, 2018; Wilmsen et al., 2019).

* Localization: localization is needed not only to provide the relative
position to the target point of contact with respect to the robot, but it
is needed in the wrench estimation algorithms. Although the vehicle
position can be computed from external cameras, such as motion cap-

ture systems (Jepsen et al., 2021), this limits the applicability to ad-hoc

Chapter 1 Introduction

laboratory setups. Without absolute localization (Santamaria-Navarro
et al., 2018), visual odometry exploit stereo- or depth-cameras (Kerl
et al., 2013) to obtain a local motion estimate, which is well suited for
aerial manipulation since only relative measurements are sufficient to
obtain the interaction wrench estimation. Ultra-wide band can also
be used to measure the distance to beacon and then triangulate the
position of the robot (Giiler et al., 2020). A very common technique
is SLAM (Simultaneous Localization and Mapping), based on 3D LI-
DAR sensors (Milijas et al., 2021), which provides for position and
orientation estimate. Recently, fusion techniques have been tested by
combining SLAM with the other sensor information, as in (Paneque
et al., 2019).

The thesis is structured as follows: first, we will provide a baseline imple-
mentation of collaborative robotic task where the uncertainty lies in the
physical interaction between the agents that is robustly handled through a
decentralized strategy based on a nonlinear model predictive controller. In
this case the position of the robots and obstacles are estimated by a motion
capture system available in a laboratory arena. We then try to overcome this
limitation by introducing a novel planar navigation technique (the NAPVIG
algorithm) that is able to navigate through simple environments that, how-
ever, are fully unknown, narrow and cluttered, through a fast and reactive
trajectory planner, validated both in simulation and laboratory experiments.
In the following chapter are presented mathematical results proving that the
algorithm is able to fulfill precise theoretical properties that are desirable for
the purposes of navigation in unknown and unpredictable environments. The
next chapter presents an extension of the NAPVIG algorithm to cope with
local navigation in any kind of cluttered planar environment. Preliminary
results regarding self localization for purposes of physical interaction of aerial
vehicles with unknown environment, with a view of future works involving
aerial-ground collaboration in absence of external sensors. Finally, given the
technological importance of meeting real-time constraints, we will present
the frameworks developed to realize the implementations of the algorithms
involved in this thesis

Nonlinear MPC for
cooperative manipulation

2.1 Introduction

Multi-robot systems is a trending and pervasive topic in academic and indus-
trial research, due to the strong potential impact that affects many application
fields (Chung et al., 2018; Wilson et al., 2020). For instance, cooperative
transportation or manipulation of large or heavy objects (Alonso-Mora et al.,
2017; Lee et al., 2018), inspection and servicing of infrastructures (Suarez
et al., 2016), monitoring and mapping of the environment (Cortés, 2010;
Alonso-Mora et al., 2017), search and rescue operations (Leon et al., 2016),
are just some real world applications that can benefit more by these studies
and the related technological developments.

Strong results have been demonstrated on the control of single and multiple
robotic systems (Mahony et al., 2012; Franchi et al., 2012) and, more recently,
a lot of effort has been made to allow physical interaction among these
systems and with the environment (Gawel et al., 2017). Robustness in
the estimation and regulation actions for non-ideal actual scenarios and in
presence of environment/agent constraints has been also considered (Zhao
et al., 2017; Corah and Michael, 2017).

Heterogeneous robots with different capabilities (e.g., sensing, actuation) are
an important aspect of multi-robot systems, since they offer greater flexibility
and versatility in complex scenarios (Wurm et al., 2013). In this chapter we
consider the problem of cooperative object transportation via aerial-ground
manipulator-endowed robots, which can be beneficial in cases where the
different sensing and operating workspaces of the two robotic types might be
needed.

Regarding the related literature, (Nguyen and Garone, 2016) considers the
cooperative object transportation by aerial-ground mobile robots, limited to a

10

Figure 2.1.: Two heterogeneous robots transporting an object (in the Gazebo simu-
lation environment).

coplanar case. Collaborative task control with heterogeneous robots has been
also studied in (Naldi et al., 2012), where a team of ground robots is used to
stabilize the aerial vehicle, and in (Kondak et al., 2014) where the interaction
between a multi-rotor and an industrial manipulator is considered. Further
tests for aerial ground manipulation tasks have been made in (Staub et al.,
2017), where the ground vehicle is tasked to deploy the object to a position
and the UAV adjusts its attitude to adapt to it.

In the context of this research, the Model Predictive Control approach in its
non-linear form (NMPC) appears to be the suitable and effective framework
to tackle this study, since it can be formulated as a constrained optimization
problem subject to the system dynamics (Findeisen et al., 2003) and that
accounts also for model uncertainties (e.g. (Nascimento et al., 2013; Nikou
et al., 2017)). In (Nikou et al., 2017), in particular, the problem of cooper-
ative manipulation is solved in a non-scalable centralized way by deriving
a coupled model of the agents involved in the task, with a decentralized
extension being developed in (Verginis et al., 2018); These solutions, how-
ever, do not explicitly consider heterogeneous robots and rely on the strong
assumption of rigid grasping robot-object points.

This work extends the aforementioned works by proposing a multi-robot
algorithm for the cooperative object transportation with collision avoidance
by heterogeneous robots deriving a novel approach to address the problem,
which increases robustness to non-idealities and allows the definition of a
more general framework compared to the cited literature, as well as relevant

Chapter 2 Nonlinear MPC for cooperative manipulation

experimental results. The developed scheme is decentralized, since each robot
computes its own MPC control signals via a leader-follower coordination,
inspired by (Verginis et al., 2018). Intuitively, a leader robot generates the
desired trajectory of the grasped object, and the rest of the robots comply
via an internal force minimization problem, without assuming rigid grasping
points. The proposed algorithm is implemented and tested on a system of a
ground and aerial robot (see Fig. 2.1 for an illustrative example), both on the
robotic simulator Gazebo (Koenig and Howard, 2004) and in real laboratory
experiments.

2.2 Preliminary notation and models

We consider a generic setup where /N robotic agents are grasping an object.
The robots are composed of a moving base and a robotic manipulator, which
can have an arbitrary number of degrees of freedom. The base can be either
a ground vehicle, e.g. fully actuated with holonomic wheels and 3 d.o.f., or
an unmanned aerial vehicle (UAV). Figure 2.2 depicts an example of ground
mobile robot composed of a base and a generic manipulator. The aim of the
agents is to transport the object along a collision-free reference trajectory in a

decentralized manner avoiding internal forces exerted by the manipulators.

In the remainder of this chapter, letters i, j, h, k, ¢, are used as indexes; scalar
parameters and variables are denoted by nonbold lowercase letters, while
vector and matrix quantities are denoted, respectively, by bold lowercase

pe,ii\
Re,i

Do i
R,

Figure 2.2.: Generic agent model

2.2 Preliminary notation and models

11

12

and bold uppercase symbols. Rotation matrices are defined in the Special
Orthogonal group SO(3), while -]
associated to the argument vector. Given two frames {a}, {b}, as well as

. indicates the skew symmetric matrix
a world frame {IV}, we denote by T} and T, the affine transformation
from frame {a} to frame {b} and from {IW} to {b}, respectively. Similarly,
p. € R® and R, € SO(3) are the position and rotation matrix, respectively, of
frame {a} with respect to {W}. Frames {v,:} and {e, i} are the vehicle and
end-effector frame of agent i.

Let g; € R™ be the vector of joint variables describing the configuration of
each manipulator, with n; being the corresponding number of degrees of
freedom. The first-order kinematics of the agents can be written as follows:

Dei = Apithy; + Jpi(qi)ug;
Wei = Aup iy + Jo.i(qi) Uy,
Re,z‘ = [we,z} o Re,i

g = Uy i
pv,i = Apu'u,i
Rv,i = [Awuw 1} y Rv,i

Agent i: (2.1)

where;:

* Dui, Pei(Dui; qi) € R are the position of the base and the end-effector
of the i-th agent, respectively.

* R,;, R.,(R,;,q;) € SO(3) refer to the corresponding rotation matrices
relative to a fixed world frame {W}.

* u,,;, u,,; € R are the linear and angular input velocities applied at the
base expressed in the local frame.

* u,,; are the joint velocities, which are assumed to be the manipulator’s
control input.

e A, A, € R*? allow modeling constraints on the input velocity (e.g.

reference frame transform or nonholonomic constraints)

* w,; is the angular velocity of the end effector in the world frame.

Chapter 2 Nonlinear MPC for cooperative manipulation

* Jpi(Pui, @), Joi(Ryi,q;) € R¥™ are, respectively, the position and
orientation Jacobian matrices, which depend on the structure of the

manipulator.

The full state and input are defined as: x; = [p.; Te; Pvi @] € R™,
u; = [ug; u,; u,;|' € RP where the lower case r.; refers to a vector
representation of the rotation matrix R, s.t. [R.;](nk) = [Te,i](3k+n)- We can
then rewrite (2.1) with in compact form as @&; = f4,(x;)u;, where f4 (x;)
collects all the control-affine terms and can be easily inferred by (2.1).

2.3 Cooperative manipulation with MPC

In this section, we propose a decentralized algorithm for cooperative ma-
nipulation with obstacle collision avoidance. The objective is formalized as
follows. Let {0} be a frame attached to the object’s. We consider the reference
trajectory that the object is desired to follow, T, ((t) € SE(3), t > 0. The
goal is to find a control law for each agent such that the object is transported
along the trajectory, while ensuring collision avoidance. To avoid the object
being detached from the grasps or breaking, we also aim at minimizing the
internal forces and torques applied to the object by the agents.

We assume that, at time ¢ = 0, the agents are still and already grasping the
object, defining an initial condition for the relative transforms from object
frame to each end effector’s T?;(0), that, for ¢ = 0 only, we assume that they
can measure. Also, we assume that they can communicate.

The robotic agents are heterogeneous and, especially in the case of aerial
vehicles, they can be characterized by a low number of degrees of freedom.
This can lead to situations where a perfect compliance of the grasps is
impossible, e.g., an underactuated UAV that needs to roll-pitch to generate
horizontal forces and no possibility to compensate.

To allow the algorithm to be robust to such non-idealities, we first need to
theoretically allow deviations from rigidity. To this aim, we consider the
object gripper joints as elastic, as depicted in Fig. 2.3, with the rest condition
being defined by T7?;(0), i = 1,..., N. This can either model a case where
gripper joints are actually elastic, or a case where the grasps are rigid, and

2.3 Cooperative manipulation with MPC

13

14

Figure 2.3.: Elastic joints object to model non-ideal rigidity

the object is elastic itself. We denote by f;, 7;, the forces and torques applied
from agent i to the respective grasping point. In view of the elastic joint
model, a part of these forces/torques will result in actual object motion while
the rest will be absorbed by the imaginary elastic spring. We denote the latter
by fi., Ti», which, since the initial condition at ¢ = 0 is the rest condition,
satisfy

fio(t) :
’ = w;dist (T7,(2),T7;(0 (2.2)

ot (T2, T24(0))

where dist(T,,, T;) := ||pa — po|| + BI|R, Ry — I||F, B € R, k; > 0 is a positive

constant depending on the initial condition and physical properties of the

object and the grippers, and || - ||r is the Frobenius norm. An example

depicting such forces is reported in figure 2.4.

The total forces/torques f, and = applied to the object are the sum of the
contributions of the agents. We define as internal forces all the compo-
nents that cancel out in the sum but create tension/compression stresses on
the object. Given all the possible forces/torques applied at the object that
produce the same acceleration for the object center of mass, we aim at out-
puting those with minimal internal forces that also minimize the total norm
SN fio(t) Tio(t)]||?, since internal forces do not contribute in the net force
but increase the norm sum. Assumption (2.2) then allows to translate this
problem into the minimization of the corresponding displacement T7?;(¢).

In particular, we address the prescribed objectives by resorting to a nonlinear
MPC formulation: at each time ¢, given the state measure x;(t), solve the

Chapter 2 Nonlinear MPC for cooperative manipulation

Figure 2.4.: Example of internal forces applied on the object by the agents

following Finite Horizon Optimal Control Problem (FHOCP) (Findeisen et al.,
2003):

t+T . .
argmin / { dist(To(7), Torer (7))
t

ﬂl() ’U,N(-)

N
£ dist(22, (), T2,(0)
=1

N
+ Z ﬁi(T)TWuﬁi(T)} dr (2.3)
i=1
subject to: & = fu (&)di, i=1....N

5%2(7') S /YZ', '&1(7') S Ul T € [t,t+T]

where the hat terms * denote the predicted variables, over a horizon T'.
The first integral term is the trajectory error, the second accounts for the
minimization of internal forces, W, is a matrix that weighs a penalty on
the control effort, providing stability (Findeisen et al., 2003), T is the finite
time window (MPC horizon) and Xj, U; are the admissible sets for state and

input values for each agent, that can account for singularity-avoidance and
actuation limits.

The problem can be approached in a decentralized way by resorting to a
leader-follower architecture, as follows.

2.3 Cooperative manipulation with MPC

15

16

2.3.1 Leader and follower coordination

At the design stage, one agent is designed to be the leader. This choice has
no theoretical limitations, and it is driven by experimental evaluations. The
leader computes the trajectory for its end effector such that the object tracks
the prescribed trajectory, accounting for the object trajectory error as if the
follower agents could not alter its behavior. In other words, the forces applied
to the object along the desired trajectory are produced by the leader and the
action by the followers is then obtained to minimize the internal forces.

Note that: T),(t) = T, ,(t)T*(t), with £ € {1,..., N} being the leader index.
T, ,(t) is a quantity that can be controlled, and it is accounted by (2.1); T“(¢),
on the other hand, is not controllable since it is a direct result of the forces
applied at the object center of mass , due to the elasticity assumption, that
are not included in the model. However, if the overall dynamics is sufficiently
slow and the elasticity is sufficiently low, it is reasonable to assume that, in
absence of other forces and torques, the displacement is bounded over time,

ie.,
dist(T7,(t), T,,(0)) < ¢ (2.4)

for a positive constant ¢,. Without the ability to make predictions on T,
which is needed to estimate the object position given the end effector predic-
tion, we will choose as estimate Tgﬁ(t) =T7,(0), vVt € [0, T], satisfying (2.4).
Due to this assumption, agents are not needed to measure the object frame

for ¢t > 0. Then, the leader aims at minimizing the cost function:

. t+T . .
To(@e(), wel-) = /t dist(T2o(r), Tgres (£)) dr (2.5)
through the following FHOCP:

t+T
argmin Jy(xe(-), we(+)) +/ u, Wu,dr
ug(") t

subject to:)= fa,(&o)uy (2.6)
@g(t) = wg(t)

A

wg(T) € Xg, ’U,g(T) GZ/[g, T € [t,t—i—T]

Chapter 2 Nonlinear MPC for cooperative manipulation

The solution to (2.6) uj(r), for 7 € [t,t + T], defines a predicted state
trajectory x;(7) that is optimal with respect to the reference trajectory for
the object. In particular, from the first 12 components of the state vector the
predicted trajectory for the end effector pose can be extracted, which we will
refer to as T;,(-).

Conversely to the leader, the followers have to ensure that the trajectory
planned by the leader is attained by adapting their system states and output
forces/torques. The role of the followers is to minimize the internal forces,
which is accomplished, due to (2.2), by minimizing the second term in (2.3).
For j # ¢, define Te‘jj = T7,(0), and then note that, by left-multiplication with
T,(t) and using (2.4), we obtain:

diSt(Teo,j (t)7 Te(jj (0)) = dist (To (t)TeO,j (t)7 To(t)TeO,j) (2 7)
— dist(T,;(t), T, ,(t)(T2) T2, + ¢, '

where ¢; is an error due to the approximations of (2.4). This means that T;?,
for the followers, is controllable up to ;. In this way we explicitly express the
displacement of the grasps from the rest condition in terms of controllable
quantities. In view of (2.7) and given T},(-), which is the leader trajectory
that minimizes (2.6), each follower agent j aims at minimizing the following

cost function:

t+T . R
Ji(@;() i) = [dist(Ley(r), Do (7)) dr (2.8)
where T, ;. ,(t) = Te’fz(t)(’f‘;g)‘lfgjj is a transformation of the trajectory

predicted from the leader. This is achieved, by iteratively solving the following
FHOCP problem:

t+T
argmin Jj(ij(>7ﬁ]()) +/ ﬁ]TWuﬁ] dr
u; () t
subject to: &; = fa, (&), 2.9)
(1) = (1)
() € Xj, a;(T) €Uy, T € [t,t+T]

The decentralized cooperative algorithm can be then summarized as in Alg. 1.

2.3 Cooperative manipulation with MPC

17

Algorithm 1 Decentralized Cooperative Algorithm

* At time t = 0, every agent i measures and stores the pose of the ob-
ject with respect to their end effector T;?; = T7,(0). The leader also

communicates T, to every follower.

* At each sample time #;:

1. Given a desired trajectory for object frame T;,,., leader agent ¢
solves (2.6), obtaining predicted optimizing uj(-) and T7,(-)

2. Leader communicates T, to every follower

3. Each follower j # /, receives T;,, computes T ; .. as in (2.8),

exploiting the measured Tefj and the received Te‘fj, and then solves

(2.9), obtaining uj(-) and x;(-).
4. Agents synchronously apply the control to the lower level con-
trollers, that, in general, may be a function of the predicted trajec-

*

tories and input: w;(t) = fu; (u;(-), ().

2.3.2 Obstacle avoidance

While collision avoidance could be implemented in the MPC constraints, the
optimal solution is in most cases on the boundary of the available set and then
if for some error the state falls outside this set the problem becomes infeasible.
Although this could be solved with slack variables, we propose a different
approach that is particularly convenient in an experimental environment:
this consists in the introduction of an additional term in the cost function,
which avoids increasing the number of optimization variables.

KR
QR
XX
R
&~

‘:\‘\s\‘
SR
R
N X

D

O
O
O
X

Cost term

Figure 2.5.: Example of planar (xz-y) components of the cost function, added to the
distance penalty to the goal location.

18 Chapter 2 Nonlinear MPC for cooperative manipulation

Mobile robots are extended objects, so we consider a set of K points defined
on the robot as a function of the state p; x(x;) € R?, e.g. p,, P, directly
extracted from the state, or any link origin p;;(x;), defined according the
forward kinematics. A set of M obstacles is defined by their positions o,, € R?
and a radius d,, € R defining the minimum distance avoiding collision. We
then define:

K M
Ji,o(mi) — Z Z C’i7k7m€_)\i,k,m(Hpi,k(mi)_omll‘i‘dm) (2.10)
k=1m=1

where C; ; ., is the desired cost value on the boundary of the sphere defined
by (0m,d) and A\, i, determines the decay rate of the cost. Note that due
to the exponential, the cost is negligible outside a radius defined by A, j .
Figure 2.5 shows an example the cost given by an obstacle with respect
to the = and y components. Finally, in (2.6) and (2.9) we replace J; with
Jrun = J; + Ji o, and the same algorithm apply.

2.4 Simulations and experiments

The proposed framework is validated through a realistic simulation (in
Gazebo environment) and experimental results with 2 heterogeneous robots,
where the continuous time formulation is discretized with a multiple shoot-
ing method. A common implementation for both the simulation and the
experiment has been realized via a ROS network, that allows a common input-
output interface, so that the same algorithm runs the on the two environment,
as illustrated in Fig. 2.6.

The used heterogeneous robots consist of one ground and one aerial vehicles,
as shown in Fig. 2.8. The ground robot is composed of an omnidirectional
base, which is fully actuated on the floor plane, whereas the aerial robot is
a planar hexacopter, both equipped with manipulators, of 4 and 2 revolute
joints, respectively. The proposed framework is implemented with the ground
robot being the leader and the aerial one being the follower.

To evaluate the performance of the algorithm, we consider e, and e,, the
position tracking error for the leader and the object, respectively derived from
T. s and T, , ,.; Moreover, we consider the respective orientation metrics

2.4 Simulations and experiments

19

20

ROS Nodes
_____________ - Gazebo Simulator

’ ; ROS Interface \
[}

Simulated }

URDF

Models Sensors

Experimental Environment

’ ; ROS Interface \
[}

Real Encoders
Robots Mo-cap

(. J

72 ()

Y

>
>

Follower
MPC

E (Tzz)71T0

Figure 2.6.: The MPCs are implemented in ROS, allowing for a common interface
to both the simulation and laboratory.

0y, 0,, defined as 0, = cos™(2((G«) " Guref)*> — 1), with g being the quaternion
errors between the desired and the actual attitude. Since the follower does
not follow an explicit trajectory but rather solves an optimization problem,
we assess the performance for the aerial vehicle by inspecting the cost value
of the MPC problem, which encodes the object displacement from the initial
condition, and then it is proportional to the internal forces, according to
assumption (2.2). Under ideal conditions, the MPC scheme should always be
able to keep it close to zero and, in practice, this should still be bounded. We
can assess the validity of the algorithm by verifying that the value does not

increase over time.

2.4.1 Lower level controllers

In both the simulation and experiment, the MPCs run in different nodes
on a off-board computer within the same ROS network as the robots, at
10 Hz and with an horizon length of 7" = 1s, producing a velocity setpoint
for the joints and the vehicle. In the case of the ground robot, these are
directly supplied to the (real or simulated) motor drivers. The UAV relies on
an attitude stabilization and a controller that converts the MPC command
to desired roll-pitch-yaw-thrust. To increase robustness, the latter aims at
tracking both the computed velocity and the first sample of pose from the
trajectory predicted by the MPC.

Chapter 2 Nonlinear MPC for cooperative manipulation

2.4.2 Gazebo simulations

Gazebo is a multi-robot simulator based on Open Dynamic Engine physics-
engine that allows for realistic robot simulations (Koenig and Howard, 2004).
The two robots are simulated in Gazebo via custom URDF models, as rep-
resented in Fig. 2.1. The dynamic of all joints and the base of the ground
robot are simulated via ros_control, while RotorS (Furrer et al., 2016) is
employed for n-rotor flight simulation.

To launch the scenario, the UAV takes off and starts hovering in a predefined
position near the object, in the grasp position. After this, the experiment
starts (¢t = 0) when the end effectors of ground and aerial robots are at
(0.39, 0.02 0.34] " [m] and [0.81, 0.00, 0.04]" [m]. Fig. 2.7 shows the results
of a simulation where the algorithm is tested with a constant setpoint in
[0,1.5,0.3]" [m] and the same orientation as the initial state, with a box
placed at [0.0,0.5,0.0]" [m] Fig. 2.7 shows that both the ground and the aerial
robots are able to drive the object error to zero by avoiding the obstacle. In
particular, figure 2.7c shows that the displacement of the follower with respect
to the prescribed object trajectory is bounded through the transportation
and eventually converges to zero, despite an initial peak due to a delay in
the reference tracking. The simulation example is clearly illustrated in the
accompanying video!

2.4.3 Experiments

The experiment, whose setup shown in Fig. 2.8, was conducted at the Smart
Mobility Lab?, at KTH Royal Institute of Technology. A motion capture system
was employed to measure the quantities that are part of the state in (2.1), i.e.
the poses of ground base and end effector, and the vehicle of the UAV. The
latter’s end-effector, instead, was occluded by the vehicle and was estimated
via the open-loop forward kinematics. In the initial configuration the robots
are assumed to be already grasping the object, which is a plastic bar, 0.85 m
long, that allows for some elastic deformation.

lhttps://youtu.be/e5iIwjotmic
2https://www.kth.se/is/dcs/research/control-of-transport/
smart-mobility-lab/smart-mobility-lab-1.441539

2.4 Simulations and experiments

21

Position error [m]

Fay y
=
S o | i
0 1 : 1 : l : 1
0 5 10 15 20
Time ¢ [s]
(a) Errors for ground (leader) end-effector

— S —

5 :

—

©

=) 4
g

=

n

o

A i

0, [deg]

0 5 10 15 20
Time ¢t [s]

(b) Errors for the object estimate from aerial (follower) agent
1 T T T T

Cost value

0 5 10 15 20
Time ¢ [s]

(c) Aerial MPC objective cost value for predicted window

Figure 2.7.: Gazebo simulation results

22 Chapter 2 Nonlinear MPC for cooperative manipulation

Figure 2.8.: Experimental setup

The experiment starts with the UAV hovering, grasping the object with its
end-effector at [—0.42, 0.60, 0.15]" [m], while the ground end-effector is
at [0.42, 0.61, 0.2687]" [m] and the bar at [0.09, 0.60, 0.2067] [m]. Two
obstacles, one traffic cone and one box, are placed at [1.00, —0.61, 0.00]
and [1.00, —0.61, 0.00]" [m], forcing the vehicles to perform an avoidance
maneuver. The results of a constant-setpoint tracking experiment, where
the goal position is set at [—0.0175, —1.5652, 0.3000]" [m] and the goal
orientation is the same as the initial one, similar to simulation are reported
in Fig. 2.9a, 2.9b and 2.9c.

It can be noticed from Fig. 2.9 that, while the leader robot is able to converge
to its setpoint, the object has some error. This means that the relative
transforms between the robots and the object, T;,(t) and T;,(t), are not
exactly equal to the initial condition T?,(0) and T7?,(0). Fig. 2.9c shows
that while the cost is bounded, and then the displacements are within the
physical limits of object detachment, it is not driven to zero, as in the gazebo
simulations. This cannot be attributed to the effects of the internal forces
because, intuitively, they would tend to push the follower to lower the error.
Instead, the degradation of performance can be caused by saturation in the
low level controller of the UAV, and ground effects that arise since the latter
is flying close to the ground and the obstacles. Nevertheless, both the error
and the cost in Fig. 2.9¢c are bounded and the MPC scheme is able to keep
the system stable, even when at time ¢t = 22s, when a fictitious external
disturbance is simulated by applying a short impulse to the ground vehicle

2.4 Simulations and experiments

23

£ 2 ern] 1
g i
B €y |
] 1 el,Z 7
S

X

n

8

ol

N
o

6, [deg]
)

0]

0 5 10 15 20 25 30
Time ¢ [s]
(a) Tracking errors for ground (leader) end-effector
2 Cow |
é €o,y
o 1 , €,z | |
ko) SN S
= e N
) T NG]
a O ST
20 | .
"a0
Q
=
< 10r
0 1 1 L | . 1 R R
0 5 10 15 20 25 30

Time ¢t [s]

(b) Tracking errors for the object

Cost value

0 ‘ e

0 5 10 15 20 25 30
Time ¢ [s]

(c) Aerial MPC objective cost value for predicted window

Figure 2.9.: Experimental results

24 Chapter 2 Nonlinear MPC for cooperative manipulation

arm joints commands. In that case, the plots show that the algorithm is able
to handle the disturbance and keep the error bounded. The experiment is
clearly illustrated in the accompanying video, which shows that the algorithm
is able to complete the transportation task without having the object detached
or damaged.

2.5 Conclusions

In this work we proposed a decentralized algorithm to coordinate a team
of heterogeneous robotic agents that are designed to transport an object
to a prescribed target pose. The procedure is designed to be robust to
uncertainties and unmodelled dynamics such as underactuation and non-
ideal tracking of the computed control inputs. The technique was tested both
in a realistic simulation framework and with a laboratory experiment. In the
former, the task was completed with converging errors, whereas in the latter
an error is present at steady-state, mostly due to imperfect low-level control
tracking. Nevertheless, the system is still able to keep the error bounded and
react to unexpected external disturbances.

The main limitation of this approach is that the finite horizon optimization
problem needs to be (locally) convex: in particular, in presence of multiple
solutions, the algorithm will not necessarily compute the shortest path but
the one following the local convexity. While in many cases this suboptimal
solution can be acceptable, in more complex scenarios this can prevent a
feasible solution to be found. In this sense, the proposed strategy should
be intended as solving the problem of obstacle avoidance and not as a path
planner. Indeed, non-convex scenarios need proper approaches and will be
addressed in the following chapters.

2.5 Conclusions

25

NAPVIG: narrow passage
navigation

3.1 Introduction

In the previous chapter we developed a technique for multi robot coordination
and obstacle avoidance strongly relying on the knowledge of the position and
orientation of every robot parts and the obstacles in a fixed reference frame.
We now move to a new approach in order to address broader contexts where
an exact localization is not possible.

In general, the path planning task is resting on two main approaches: the
graph-search and the sampling-based paradigm. Graph-search algorithms
rely on the discretization of the entire operating space to find the path,
corresponding to a minimum cost; while sampling-based methods rest upon
a sparse sample-based representation of the operating space. The probably
most well-known sampling-based planner is Rapidly-exploring Random Trees
(RRT) (LaValle et al., 1998). Its derivations like RRT* (Karaman and Frazzoli,
2011) and others, e.g., (Salzman and Halperin, 2016; Chen et al., 2018;
Mashayekhi et al., 2020; Fu et al., 2020) are ubiquitous, and recently, further
derivations of RRT have been developed to handle dynamic environments
(Chandler and Goodrich, 2017; Qi et al., 2020). On the other hand, the
A* algorithm and its derivations (Lindqvist et al., 2021; Pairet et al., 2021)
constitute the most popular graph-search method, commonly adopted when
dealing with unknown environments.

In general, the mentioned RRT and A* algorithms can find effective and
feasible path planning solution for mobile robots. Nonetheless, both graph-
search and sampling-based approaches tend to be computationally highly
demanding in case of complex scenarios, especially in presence of narrow
passages and/or cluttered environments. Indeed, in these cases requiring
high precision in the path definition, the RRT algorithms are penalized by
the need of a large number of samplings and the employment of ad-hoc

27

28

strategies (Bun et al., 2021), whereas the need of smaller grid cells quickly
deteriorates the performance of A* algorithms. Moreover, both graph-search
and sampling-based methods are not well suited for reactive navigation, since
they imply dynamic remapping and replanning. Thus, real-time requirements
represent a further, highly challenging aspect when dealing with an unknown
and dynamic environment. In this case, the state of the art solutions in-
volve the exploitation of artificial potential fields (APF) (Paternain et al.,
2017). However, although ensuring reactive navigation, their application is
mostly limited to convex map configurations (Arslan and Koditschek, 2019).
Other techniques are based on a dynamic window (Molinos et al., 2019),
and predictive approaches (Choi et al., 2017). An alternative approach is
navigating safely, farthest away from obstacles, relying on the Generalized
Voronoi Diagram (GVD) (Choset and Burdick, 1995). While this allows
for safe navigation, computing the entire GVD is very costly and is usually
employed for offline applications and global path planning (Bhattacharya
and Gavrilova, 2008). Nonetheless, it is possible to approximate the GVD
given sensor data by applying selective algorithms on the Voronoi tessellation
of the measurements (Mahkovic and Slivnik, 2000), or by discretizing the
known map into cells and then applying computer vision techniques (Marie
et al., 2019) based on the distance transform (Datta and Soundaralakshmi,
2003). Such techniques, however, being based on a discretization of the map,
still require a trade-off between precision and computational load, which is
critical in cluttered and narrow environments.

In this work, we present a novel approach for reactive navigation in unknown
environments, that allows for computing the desired trajectory directly from
LiDAR sensor data without the need of approximating a map representation
with discrete grids. This allows precise computation with low computational
requirements. Our approach is therefore specifically suited for embedded
systems and where a very high reactivity is needed.

Conversely, the proposed algorithm exploits discrete raw measurements to
build a spatially continuous landscape function, which is evaluated greedily
along a section to generate a local trajectory. Although the landscape func-
tion has some conceptual similarities with APF, it is not used to generate a
trajectory along its gradient, but it is used to precisely compute one point
in the Voronoi diagram: the resulting point computed by the algorithm at

Chapter 3 NAPVIG: narrow passage navigation

each step depends on the initial conditions of the algorithm In doing this, the
approach proves to be fast and efficient as to work in real-time, and it reveals
to be inherently reactive to any event or environment change occurrence that
may affect the path to travel. More specifically, the contribution of our work
is the following:

* We develop a procedure to allow navigation without an a-priori map
and without performing a preliminary localization, in unknown, clut-

tered and dynamic environments.

* Contrary to existing methods (Ramos and Ott, 2016), the algorithm is
based on a continuous map representation that does not require any
processing of the sensor data.

 This leads to very low computational requirement, allowing for im-
plementation on highly dynamic and in case of limited computation
capabilities.

* We conduct an extensive campaign of simulated and laboratory ex-
periments, i) demonstrating the above claims and ii) showing a high
precision and repeatability.

3.2 Problem formulation

We consider a context where a mobile robot is tasked to navigate in an
unknown, unstructured and dynamic environment, possibly characterized
by narrow passages. Given the large amount of uncertainties and the unpre-
dictability that may affect such scenario, in order to achieve safe navigation,
we set the goal to compute a trajectory that is the farthest away from the
environment obstacles. In the next chapter, we will theoretically prove that

this method is an approximation of the GVD.

Specifically, we assume that the occupied space is a time-variant subset of the
plane X,..(t) C R?, where ¢t € R is time. Moving in the free space the robot is
able to gather local measurements of the occupied space through a LiDAR
mounted on board. Namely, with sampling period 7;, € R, at time ¢, = kT,,,,
k € N, the sensor obtains a measures set My, := {my;, h=1,... H}, H
being the number of measurements per sampling time. We introduce an

3.2 Problem formulation

29

30

inertial reference frame Fy;; and a robot frame F;, which is the pose of the
robot at the continuous time ¢ € R. For each sampling time we also consider
a reference frame F;, corresponding to the pose of the robot at discrete time
t relative to the inertial frame Fy,, so that the measurements my are
expressed in F,. We will refer to frame F; as measurements frame. Given that
the measurements are obtained at discrete sampling times, we also consider
the relative frame F;, that is the relative frame between the discrete time

measurements frame F;, and the continuous time robot frame 7.

To cope with scenarios characterized by dynamic space configurations, the
goal is to iteratively compute a trajectory £(t) € R? which satisfies the safety
requirements with respect to the (static or dynamic) obstacles and that is
supplied at each time ¢ to the low level controllers that steer the robot towards
the computed position in a pure pursuit fashion. It is important to notice that
£(t) is expressed in the robot frame F;.

3.3 Landscape function definition

The focus of the proposed algorithm is to find a trajectory that is at the
maximum distance from the obstacles. In this view, we define a landscape
function that maps each point of R? to a value related to the distance of the
nearest measurement, in analogy with the grid-based distance transform.
Unlike the latter, however, we define a function that is spatially continuous
and does not need to be computed at every point of a grid, as it will be clear
later.

The idea is to consider a Gaussian-like function centered on each measure-
ment. Formally, we define a Gaussian peak:

2
lz=m]]

[:R*xR? = (0,1]: (z,m) > e~ 27 . (3.1)

Then, for a measurement set M, we define:

v

Li(x) = max I'(x,m) (3.2)

meMy

It is easy to see that, given a measurement set, the value of this function is
proportional to the distance to the closest obstacle, according to a Gaussian

Chapter 3 NAPVIG: narrow passage navigation

2 -2

Figure 3.1.: Example of a landscape function computed with a Monte Carlo method.
Intense yellow areas correspond to the measurement sources; dark blue
areas are the safe regions.

profile, obtaining a representation of the space characterized by elevations in
correspondence with the border of the obstacles and depressions in the free
space, with analogies to the distance transform.

The choice of taking the max instead of the sum, which is what is usually done
in classic artificial potential fields methods, is crucial. Indeed, taking the sum
would produce different peak values depending on the measurements spatial
density, which can be highly non-uniform, and then producing an unequal
representation of space, with high peaks in correspondence to more dense
areas. On the contrary, with the max operation we obtain a map that retains
the information of distance from the obstacles. Nonetheless, while it can
lead to a balanced landscape, the resulting function is not differentiable. The
approach we propose performs a constrained optimization on this function,
as we will introduce in the next section, hence the possibility to evaluate
this function only in the points considered by the optimization algorithm.
Nevertheless, the latter is based on a gradient method and function (3.2) as
it is, is non-differentiable. Indeed, to solve this issue, we obtain a smooth
version by performing a convolution with a Gaussian kernel. We define the
result of this smoothing as the landscape function, namely, for the measures
M, taken at time ¢,:

Li(z) = /IR Ly(w) (e —w) dw (3.3)

3.3 Landscape function definition

31

32

where the kernel is defined as:

[0 + 62 _|=1?
H(:B) = me 262 (34)

with § > 0 being the smoothing radius and choosing the gain to compensate
the amplification of the convolution operation.

A representative example of this function is depicted in Fig. 3.1. The land-
scape function is differentiable, since in this formulation the gradient is
mathematically computed only on the kernel, which is trivially differen-
tiable:

i,C (x) = / L (w)iﬁ(:c —w)dw (3.5)

xS T O '
The integral in (3.5) cannot be computed in closed form, but it can be
approximated with a Monte Carlo method, efficiently exploited thanks to the
Gaussian kernel choice. Indeed, note that:

_z—w]?

Li(x) = /R? Knaﬁvk(w)e 252 dw, (3.6)

where K, is the gain in (3.4), has the form of the expected value of function
of a Gaussian random variable W ~ N (x, §°I,):

Li(x) = E [[] w]2K,,m0 Ly (w) (3.7)

Then, we can estimate the expectation by drawing a number N,,,. of samples

from W, wy, ..., wy,,., and compute the sample mean:
1 Qe %
Ck(a:) = N Z 2Kna7r52£k(w) (38)
me j—1

Finally, we compute the gradient from (3.8):

9, (x) = ! %21{ 520 p (w) (3.9)
ox " TN nalt0 gk '

me =1 a

Chapter 3 NAPVIG: narrow passage navigation

where the gradient of £ is

0 —m* _[==m"
0 f) = B el
m* = argmin ||l — m||.
meMy

It can be verified that the points where the argmin is not unique correspond

to the non-differentiable points of Ly, so in that case %ﬁk(m) is not defined.

However, this is not an issue since those points are, by definition, in the
Voronoi diagram of the measurements set M,, that is provably a zero measure
set in R? and hence the probability of randomly sampling one of those points

is zero.

With this technique, intuitively, we exploit the similarity of the Gaussian
smoothing kernel to a Gaussian distribution around the point of interest to
obtain an efficient estimate of the landscape value and gradient. To obtain the
results of this work it was sufficient a number of samples N,,,. = 50. Note that
this parameter, together with the termination condition of the optimization
algorithm, are the only tuning variables that control the trade-off between
computational cost and precision. For all our experiments the values for
the peak and smoothing radius are chosen to be, respectively, o = 0.2 and
5 = 0.02, and they only should scale with the average size of the robot and
the obstacles.

3.4 Narrow passage navigation (NAPVIG)
algorithm

Given the landscape function previously introduced, the rationale is based
on the observation that, in one dimension, the minimum between the two
centers of two Gaussians is the middle point. We extend this concept to the
2D case by considering the restriction of the landscape function to a line, and
looking for the minimum point. Experimentally, it can be shown that the 1D
analogy still holds for the 2D case.

In this section, we present the algorithm to compute a single point of the
trajectory, which we refer to as NAPVIG algorithm. Given an initial point x, €

3.4 Narrow passage navigation (NAPVIG) algorithm

33

R?, we consider a search direction, that is a vector in S* = {r ¢ R? : ||| = 1},
that represents the direction in which we want to look for the next sample.
The input variables of the algorithm are then x, and . Then:

* We consider the point:

2% = @ + Butepr (3.11)

that is (., farther from «, in the r direction.

» We consider the restriction set as the line passing through) that is
orthogonal to r. First, let R be the orthogonal space to r. Then, the
restriction set is the line:

A={z@)t NeR, rt e RY) (3.12)

* We look for the minimum of the landscape function £, restricted to .A:

" = argmin L (x) (3.13)
xzeA
We compute this point by applying a constrained version of gradient
descent, as follows:

— We consider the orthogonal projection operator P : R? — R*
that associates a vector v € R? to its orthogonal projection onto
R*.

— We perform a gradient descent constrained to R+, with the follow-

ing update rule

)) 0

Ek(w(i))l (3.14)
where 1 > 0.

— The gradient descent terminates when it holds ||z — (9| <

Eterms Eterm > 0.

The output of the algorithm is the point from the last iteration of the gradient
descent, namely:

napvig(xo, r, L) := (3.15)

34 Chapter 3 NAPVIG: narrow passage navigation

where :* is the index in the iteration when the termination condition is
satisfied.

3.4.1 Navigation strategy

We employ the procedure just introduced to reactively compute the next
trajectory sample, given the current robot observations. With the landscape
function £, of the measurements taken at time ¢;,, we consider that the
relative frame between the robot at a generic time ¢ and the last measurement
frame, is composed as follows: Fj.; = (., R), where x;, is the origin of
frame Fj,; and Ry, a rotation matrix representing its orientation. We then
choose the initial conditions as xy = x4, and r = Ry,[1, 0]". The trajectory
sample at time ¢ is then:

E(t) = .F,;tl napvig (s, Ry4[1, 0], L) (3.16)

where F- !, with abuse of notation, converts the result of the algorithm from
the measurement frame, where the landscape function is defined, to the
current robot frame, where the low levels controllers get values. The frame
Fi.+ can be retrieved by local odometry (e.g. wheels encoder, IMU, etc.). Note
that if the trajectory sample is computed synchronously to the measurement
sample, i.e. for ¢ = t;, we obtain the simplified:

&(t,) = napvig([0,0]",[1,0] ", Lx) (3.17)

Remarkably, the purpose of the generalization is to allow the trajectory to be
updated at a higher rate than the LiDAR scan, which is usually lower than
the odometry one. In practice, £(¢) can be computed at ¢t = ¢7,, ¢/ € N and
T, being the odometry sample time, given the last measurements taken at
t, = kT,,.

This choice for the initial condition is to look for local minima of the landscape
functions that are straight ahead in the robot’s frame. Using such initial
condition, however, suggests a preferential navigation direction (by design),
which is surely valid in environments with no bifurcation. Nonetheless, in
more general scenarios there could be multiple local minima, corresponding
to the different possible directions, which can be selected depending on

3.4 Narrow passage navigation (NAPVIG) algorithm

35

36

the initial conditions. In such cases, if needed, by adopting more advanced
techniques on the choice of the initial search direction it is possible to control
this selection, thus allowing NAPVIG to solve the navigation problem in any
kind of environment. In this work we will limit our focus on testing the
performance of the core algorithm on environments without bifurcations,
while the extension to more general scenarios will be addressed in chapter
5.

3.4.2 Vehicle model and control

A differential steering robot can be modelled as a unicycle, controlled in
linear and angular velocity, v, w € R respectively:

, cos(f) 0
:6’.’ — |sin(0) 0] u (3.18)
0 1
where u = [v,w|", = and # are the position and the orientation of the

robot in the plane. The non-holonomic constraint that characterizes this
vehicle needs particular attention in narrow and dynamic environments:
since lateral motions are only possible through arcs, in such contexts it
is desirable to reduce their radius. To this aim, we slow down the linear
velocity proportionally to the angular error. Specifically, given that £(¢) is
the current desired position calculated by the algorithm, expressed in the
local frame F;, we consider the position error as a complex value, namely
e(t) = [1, iJ&(t) € C, where i is the imaginary unit, in order to conveniently
retrieve the angular and linear error without representation problems, and
we employ the following control law:

w(t) = kpoSlog(e(t)),
w®)? (3.19)
v(t) = kpolle(t)]le v,

where & denotes the imaginary part. Here, w(¢) is a proportional control on
the steering angle needed to reach the current trajectory. The linear velocity
command is proportional to the distance to the trajectory sample multiplied
by a factor that reduces the curvature radius when the steering angle is
high.

Chapter 3 NAPVIG: narrow passage navigation

Sl

(a) t =0s (b) t = 0s

]

(c) t=38s (d) t =10s

=

(e) t = 30s (f) t =20s

Figure 3.2.: Gazebo experiments screenshots: static (left column) and dynamic
(right column) scenarios: blue lines represent the visualization of the
laser ray scan.

3.5 Simulations

In the simulated experiments, the laser scanner runs at 5 Hz while the
odometry sensor at 100 Hz. The center of the corridor is defined in this case
as the point with equal distance to the two walls, which we will define in
this section. Fig. 3.2 shows several screenshots of the Gazebo simulation
in the static/dynamic scenarios. These simulations are reported also in the
accompanying video®.

Ihttps://youtu.be/noMnzxsidwE

3.5 Simulations

37

38

3.5.1 Environment design

We consider the context of a single, possibly time-variant, randomly generated
corridor, by producing a set of random points at random angles and fixed
radius:

U ~N(0,02), k=1,...,Kg,09 >0 (3.20)

To stress the approach and simulate an (extremely) time varying context, we
consider a limit case where a sinusoidal disturbance is added at each time ¢
to the generated angles:

O(t) = {Vk(t) = Dk + sin(2m fot + @g), w9 ~N(0,02)}

cos(Vg(t))
sin(dy(t)

(3.21)

’C(t){kk+1(t)kk(t)+p|: yk=1,..., Ky}

with k(t)o = 0, p > 0. Then, we interpolate the key points with a spline,
obtaining the passage center:

~(7,t) = spline(7 ; K(t)) (3.22)

with a desired sampling set 7 € 7 C R. The two walls that define part of
O0X.ou(t) are then:

Wia(t) = {(7,t) £ Xu(T, t)n(7,t), T € T} C 0X0u(t) (3.23)

where n(7,t) is the unit vector normal to ~(7,¢) and A\, (7,t) > 0 is the half
width of the passage and we choose:

)\w(T, t) =)\0 + AA COS(k‘)\T - 27Tf)\t> (324)

3.5.2 Static scenario

We first test the algorithm in a static scenario. We consider the environment
described in the last section where the time is fixed, e.g. ~v(7,0), A, (7,0).
Fig. 3.3a shows the corridor (in blue), its center in dashed black and the

Chapter 3 NAPVIG: narrow passage navigation

resulting trajectory computed by the algorithm. Visibly, the last two are mostly
overlapping. The error with respect the center of the corridor of the trajectory
ee(t) = dist(y(t), &w)(t)), where &,)(t) is the trajectory sample expressed
in the world frame, and the actual robot position e, (t) = dist(vy(t), z(t))
is reported in Fig. 3.3b. It appears that the algorithm is able to provide
an accuracy of more than 3 cm from the corridor center, ensuring collision
avoidance and safe navigation. Note that the main source of noise in the
instantaneous trajectory computation is the gradient estimation accuracy,
which can be selected to be more precise, at the cost of higher computational
load and with the limitation of the accuracy of the laser measurement. Also,
this simulation suggests that the designed procedure is effective and able
to keep up with the real-time requirements, with an average computation
time of 5ms. Although in this context, we are not targeting high speed
performances, we verify that the resulting average speed is 0.23 m/s, which
is in line with many practical applications.

3.5.3 Dynamic scenario

In Fig. 3.4 we report the performance results of NAPVIG in a random dynamic
environment. Fig. 3.4a shows a few corridor instances in light blue. In dark
blue is the last corridor of the experiment visualized: we highlight that a-
priori there does not exist any trajectory travelling the entire corridor without
collision, so in this case it is mandatory resorting to the online computation.
Since the corridor changes dynamically, we can only assess the distance from
the corridor center by looking at the performance metrics, evaluated for each
t according to the current ~(-, ¢), as plotted in Fig. 3.4b. In this case, the error
is slightly higher than that in the static case since, as it might be expected,
the dynamic environment is more challenging to keep up with. Clearly,
there are physical limitations on the rate of change of the environment, the
most important of which, besides the measurement frequency, is the non-
holonomic constraint that causes a delay in the path following. Nevertheless,
the resulting tracked trajectory is able to avoid collisions, with an overall
average speed of 0.22m/s.

3.5 Simulations

39

40

|
»

(a) Randomly generated corridor and resulting trajectory
'g' 006 T T T T

/%0.04 - | .
20024 & , ‘ -
5 oM
"5 0.06
=0.04
X.0.02
+

g
= 0

0 10 20 30 40
Time ¢ [s]

(b) Distance from the corridor center and the computed trajectory e¢(¢) (top) and the actual
robot position e, (t) (bottom)

Figure 3.3.: Simulation: static environment test results

3.6 Experiments: narrow passages and
cluttered scenarios

The experimental campaign has been conducted at the SPARCS Lab?, at the
University of Padova, using a custom-built differential drive robot. Videos of
the experiments are provided in the accompanying video®

The first experiment setup is depicted in Fig. 3.5 and consists in a partially
structured corridor: the length and position of the walls segments are mea-
surable offline but they are built with imperfections, which in turn allows to
assess the algorithm in a less idealized context. Fig. 3.7 shows the corridor

2https://sparcs.dei.unipd.it/index.php/laboratories/sparcslab
3https://youtu.be/noMnzxsi4wE

Chapter 3 NAPVIG: narrow passage navigation

2 T T : T : T

e I
— W) : : : 4
- - - -0,)
TF 5(111)(07) A //)

0 5 10 15 20 25 30 35
Time t [s]

(b) Distance from the corridor center and the computed trajectory eg(t) (top) and the actual
robot position e, (t) (bottom)

Figure 3.4.: Simulation: dynamic environment test results

walls (in black), the approximated generalized Voronoi diagram of the map
computed offline (in blue), given the experimental position errors, and the
robot paths using NAPVIG (in orange). The robot is initially placed with a
generic pose at the beginning of the corridor (Fig. 3.7) and then the naviga-
tion algorithm drives through it towards the opposite end. The experiment
is repeated several times and the plots show that after a short transient, the
paths consistently converge to the center of the corridor.

A second experiment is designed in a more cluttered and irregular environ-
ment, where obstacles are placed in such a way to create a loop that the
robot can travel multiple times (some snapshots of the experiment are shown
in Fig. 3.6). In this scenario we assess repeatability of the navigation and
control action under the same conditions while verifying the accomplishment

3.6 Experiments: narrow passages and cluttered scenarios

41

42

of the task with no collision or impasse. The results reported in Fig. 3.8
present the overall path tracked in six runs along with four detailed views.
After the first transient that drives the robot to the desired trajectory, starting
at around [—0.1, —1.1] [m], the figure and, in particular, the enlarged views,

Figure 3.5.: Experiment #1: The wheeled robot passes through a narrow passage,
set up with card boards.

Figure 3.6.: Experiment #2: snapshots of setup.

Chapter 3 NAPVIG: narrow passage navigation

0.8 @® Voronoi vertices
Map

0.6 F Paths

O Initial conditions |:

0.4
0.2

T

-0.2

-0.4

-0.6

-0.8

1.2 T 1 1 1 I
0 0.5 1 1.5 2
z [m]

Figure 3.7.: Experiment #1: shows robustness to different initial conditions (circles)
that converge to very similar paths (orange) close to GVD segments
(blue).

.39 -0.29
0.4 0.3
] 1.36 1.38 1.4
0.5 41 -
o -0.99
I\ 094 e 09 —_—
o ' 1'050 0.12
N S R — 08 — 0T . 0.2 i
1 1 1 1 1
-1 -0.5 0 0.5 1
z [m]

Figure 3.8.: Experiment #2: multiple loop runs show the precision and repeatability
of the navigation algorithm.

3.6 Experiments: narrow passages and cluttered scenarios 43

show that the path repetition range is less than 1 cm along a total traveled
distance of more than 6 m per loop.

(b) Final configuration

Figure 3.9.: Snapshots of experiment #3

Finally, given that the behavior with multiple dynamic parts has been assessed
in simulation, we report a laboratory experiment with one moving obstacle.
The environment is initially set up as in Fig. 3.9a and the algorithm starts
computing a trajectory overcoming the obstacle on the right. The obstacle is
then suddenly moved to a possible collision position and the robot reactively
recomputes the trajectory to perform the navigation task. The overall path
is reported in Fig. 3.10 showing the obstacle’s initial and final positions
in dashed gray and black, respectively: the NAPVIG algorithm drives the
robot through a first straight part of the path, followed by a sudden evasion
maneuver to overcome the moving obstacle.

44 Chapter 3 NAPVIG: narrow passage navigation

192} Path |
) Obstacle pos. 1
Obstacle pos. 2
1 1 1 1 1 1 1 1

06 -04 -02 0 02 04 06
z [m]

Figure 3.10.: Experiment #3: path tracked by the robot (in orange) compared to
the obstacle position, initial (dashed gray) and final (solid black). The
trajectory is reactively updated around point [—0.2, 1.4].

3.7 Conclusions

We presented the NAPVIG algorithm for online local navigation, able to
travel a dynamic environment with narrow corridors, relying only on on-
board sensors. The discussion, the Gazebo real-time simulations, and the
laboratory experiments, show that the approach is effective, consistent, and
able to attain safe navigation, both with static and dynamic collision space
configurations, while complying with the timing requirements for an online
application.

While the NAPVIG algorithm is able to always compute a point farthest
away to every obstacle, the path taken at bifurcations depends on its initial
conditions. In this work we limited our analysis on environments where a
simple choice of the latter resulted in the desired direction, focusing on the
performance of the algorithm itself. Nevertheless, more advanced techniques
for the decision of the initialization can address navigation in very general
configurations. These aspects will be discussed in chapter 5.

3.7 Conclusions

45

Theoretical foundations of
NAPVIG algorithm

4.1 Introduction

In the last chapter we introduced the NAPVIG algorithm that, exploiting
the landscape representation of the configuration space based on the LiDAR
measurements, and a constrained gradient descent algorithm to compute
samples of the target trajectory. The method was motivated with an intuitive
explanation and validated experimentally. We now proceed by defining
a more theoretical formulation of both the algorithm and the Landscape
function, of which we will provide their mathematical properties, and we
will prove that the NAPVIG algorithm computes an approximation of the
Generalized Voronoi Diagram of the map.

Voronoi diagrams (Fortune, 1995) have been extensively studied across a
broad range of domains, from machine learning (Kolahdouzan and Shahabi,
2004) to computer graphics (Valette et al., 2008). Intuitively, given a (finite)
set of points, the plane is subdivided into regions that are closer to a single
point than all others. This concept can be adapted to more generic configu-
ration space, made of continuous sets representing the obstacles, leading to
the Generalized Voronoi Diagram (GVD), that is the set of points of the plane
that are equidistant from two or more obstacles (Lee and Drysdale, 1981).
Following the GVD has been one of the first solutions to the motion planning
problem (Takahashi and Schilling, 1989), and is often used in combination
with roadmaps (Lulu and Elnagar, 2005; Bhattacharya and Gavrilova, 2008),
fast-marching methods (Garrido Bullén et al., 2011; Garrido et al., 2009)
and artificial potential fields (Masehian and Amin-Naseri, 2004). One of the
biggest limitations of these methods to be used in real time is the compu-
tational capacity needed to obtain accurate trajectories and the knowledge
of a map representation. Indeed, fast computation need approximations
(Edwards et al., 2015) and advanced algorithms (Kiseleva et al., 2019) and
the computation is often uncoupled with mapping, that is often assumed to

47

48

be known. For this reason, the application of GVD is limited to global navi-
gation (Gomez et al., 2013). Only recently real time and reactive strategies
employing the GVD for navigation have been effectively tested experimentally.
For example, in (Marie et al., 2019) the GVD is computed with computer
vision techniques starting from an omnidirectional camera, while in (Chi
et al., 2021) it is combined with RRT-based methods. All these techniques are
based on a grid approximation of the target space, thus requiring a trade-off
between precision and computational load, which is critical in cluttered and
narrow environments.

4.2 Preliminary definitions and properties

In this section we provide basic definition and results that will be useful
to show the main propositions regarding the NAPVIG algorithm and the
landscape function.

Definition 4.1. Given a compact set C, we define the projection operator to
the set C as:

P: : D¢ — C : ¢ Pe(x) :=argmin ||y — z|| (4.1)

yel

for the points « € D, for which the argmin is unique:

De={xecR® : NyeClstly—z|<|y—=z|, Vyel} (4.2)

Proposition 4.1. Given a point y € C and a compact set C, if C is also convex,
then the set defined previously Do = R?%, meaning that the argmin ||y — x|| is
yeC

always unique.

Proof. Suppose that there exist y; # yo € C s.t. Yy # y1,y2, |y — x| >
lyr — x|| = ||ly2 — z||. Then consider the midpoint between y; and ys:
z = ¥12%2 Tt holds:

lyr —z||> =y — 2+ 2z — |

(4.3)
=llys =2 +llz — =l* + 2(5n — 2) " (z —)

Chapter 4 Theoretical foundations of NAPVIG algorithm

Since ||y, — x|| = ||ly2 — ||, z results to be the median of an isosceles triangle
of vertices y1, y2, and it immediately follows that y; — z is orthogonal to

z — x, which is the altitude of the triangle, so the last inner product is zero.

Since clearly z # y, then it follows ||z — || < ||y; — «||. By the definition of
argmin, z cannot be in C, but it cannot be outside C either since z is a convex
combination of elements of C, and we assumed C convex. We conclude that
the supposition Jy; # ys is false. O

Proposition 4.2. If C is convex, then the projection operator to C, Pr : R* — C

is uniformly continuous.

Proof. We prove the contrapositive: if P¢ is not uniformly continuous then C
is not convex. If P is not uniformly continuous, it means that:

Je > 0s.t. V0 >0 3581,-’132 S R? s.t.:
4.4)
|lz1 — x2]| < 0 and ||Pe(x1) — Pe(xa)|| > €

Note that it must be x; ¢ C, i = 1,2, otherwise P¢(x;) = «; and trivially
#c > 0. From now on, for convenience, we will use the shorthand notation
y; = Pc(x;), i = 1,2. Consider the point given by the convex combination:

z = ¥12¥2_ First, it is immediate to notice the following relations:

[y = 2| = lly2 — =]

(4.5)
lyr — 2] + ly2 — 2l = llyr — w2l
and ||y; — z|| > 3¢ > 0, for i = 1,2. Call:
¢ =l|z—z, i=1,2, ¢=min{cy,c} (4.6)
Suppose that

for i = 1,2 simultaneously. By looking at the triangles y;, x;, z, for i = 1,2, it
follows:

a1 <y — @ + flys — 2] 4.8)

ca < |ly2 — x| + |ly2 — 2|

4.2 Preliminary definitions and properties

49

Then, by (4.7) and the definition of ¢:

lyo — x| <c <o < lyr — || + [|Jyh — 2|
-l <e<as] | o)
|y — 21| < ¢ <o <y — 22| + [|y2 — 2]

Since ||y; — z|| > 0,i=1,2:

— X < — &
It = 2] < 2 = | 10

[y =zl < lly2 — |

which is not possible, and this implies that (4.7) is false. This means that
lyr — z1|| > ¢ V ||ly2 — 2| > ¢, i.e. at least for one ¢ and 3j it holds:

Iz — @sf| < lz; —]l (4.11)
Then, since by definition Vy € Clly — x;|| > ||ly; — «;]| it follows z ¢ C,

and being z a convex combination of points in C, we conclude that C is not

convex.

Proposition 4.3. Given a closed set C C R? and a point x € R?, = ¢ C, it
holds:

argmin ||y — x| C 9C (4.12)
yeC

Proof. Suppose y belongs to the interior of C, i.e.:

AB.(y) s.t. B.(y) NC = B.(y), (4.13)

where B.(y) .= {x € R? : |z —y| <}

Consider the segment:

R={y+(1—-Nz,\e[0,1]} (4.14)

50 Chapter 4 Theoretical foundations of NAPVIG algorithm

and its intersection with the open ball B.(y):
RNB.={ y+(1—Nz, XNel0,¢e)} (4.15)
Those are points in the interior of C, whose distance with « is such that:
Ihy + (1= Ve — 2] = Ay — 2| < |y - (4.16)

forall 0 < A < mine, 1, in conflict with the definition of y. O

Definition 4.2. We define a configuration space as the partition of the plane
R? into two complementary subsets C.,; and C .. such that C.,y is not neces-
sarily convex, but composed of a finite union of convex sets, with the following

properties:
 Con = U;CY,
« Yy, €CYL (1= Ny + Awo €CY,, VA€ [0, 1]
° ClyNCY)y =0aCk, Nacay, Vi# j

and we call C(E?” the i-th convex component of C..;.

Cfree

Figure 4.1.: Example of configuration space.

Note that:

* A finite union of convex sets can approximate arbitrarily well any
configuration of practical interest.

4.2 Preliminary definitions and properties

51

52

* The last property means that the convex components are either con-
nected components or subsets of connected components that only share
a part of the boundary set.

* Given any set C.y;, if such decomposition exists, there is an infinite
number of ways such components can be defined. Even if we could
consider the decomposition that minimizes the number of components,
in this discussion their number and exact definition is not relevant as
long as the mentioned properties are fulfilled. For this reason we will
provide all definition with a generic 7, neglecting the maximum number

that ¢+ can assume.

Definition 4.3. Given a generic set C, decomposable into convex components,
s.t. C =J,;CY, the relative Generalized Voronoi Tessellation is identified by
the open sets:

X ={x eR? : dist(z,C?) < dist(z,CY), Vj} (4.17)

with the classical definition of distance to a set distx, X = argmin ||y — x||.
yel
The Generalized Voronoi Diagram is instead the union of their boundaries:

Xe = ot (4.18)

Note that X, has no interior points, being a finite union of boundary sets.
Following the classical notation we consider the Voronoi nodes as the points
of the GVD that are equidistant to three or more convex components, and then
we introduce the notation for the Voronoi branches as the paths connecting
the nodes. Formally:

Definition 4.4. We define a generalized Voronoi node as the points:
xe Xy o Fi, gk, st dist(xz,C?V) = dist(x,CV)) = dist(x,c*®) (4.19)

The Generalized Voronoi branches are then the largest contiguous opens sets of
the GVD that do not contain nodes.

Chapter 4 Theoretical foundations of NAPVIG algorithm

4.2.1 Landscape function generalization

We now proceed by providing a more general definition the Landscape
function, that applies to both the ideal ground truth and the measurement
set, by considering a generic set .4 of collision points, which can be the
entire collision space C.,; (ideal case) or the finite subsample M of the real
measurement. In this chapter, for the purposes of the discussion, we will
neglect the dependency on time and samples, as we are considering each
time sample individually. For 4, in both cases, we consider its decomposition
in convex components A,

Definition 4.5. We consider a peak function as:

o—yl2
DR R — (0,1]: (z,y) e 2, (4.20)

with o > 0 being the tuning parameter of the peak radius.

Definition 4.6. The raw landscape function of A is defined as the superposition

of Gaussian peaks:

v

La(x) = max'(z,y). (4.21)

yeA

Definition 4.7. The smooth landscape function of A is:
L= - Li(w)k(x — w) dw, (4.22)

that is the convolution of the raw landscape function with a Gaussian kernel
_)2

k(x) = ke 27, of radius § > 0 and gain k.

The gain % is chosen in order to compensate the amplification of the convolu-
tion, and it is designed such that if we smooth a single gaussian peak, the

4.2 Preliminary definitions and properties

53

54

resulting function has the same maximum value in the peak, i.e.:

=/, INw,y)k(x — w) dw
=y R =y

_lw-yl? Jy—w|?
1:/ e 22 ke 22 dw (4.23)
R2
52 2
_ i [3 el
R2

By using the result on the Gaussian integral and solving for k we obtain:

[z, y)

K= ——7F0%. (4.24)

The projection operator as in Def. 4.1, allows us to see a straightforward but
interesting property of the raw landscape function

Proposition 4.4. Given a point x and its projections onto each convex compo-

nents of A, P4, the raw landscape function can be expressed as:

v

La(x) = max D(x, Py (x)) (4.25)

Consider the GVD of A, Xﬁf). Then it also holds, for x € Xﬁf):

v

La(x) =T(x, Pyir(x)) (4.26)

The second relation tells that, within each Voronoi region, the Landscape

value is associated with the distance to the closest convex component.

Proof. The key element to show these relations is that, by definition, if
|l — y1]| > || — y2|| then I'(x, y1) < I'(x, y2). From this, it is clear that the
only points that can maximize I" are the point of A closest to «: by definition,
for each 4, it must be the projection of «. The second statement then follows
trivially by the definition of Xﬁf).]

Before introducing the main result, need to understand the conditions for
continuity and differentiability of the landscape functions.

Chapter 4 Theoretical foundations of NAPVIG algorithm

Proposition 4.5. The raw Landscape function L 4(z) is continuous in all R%.

Proof. From Prop. 4.4, for x € XX), the landscape function is given by the
peak function, that is continuous since it is uniformly continuous. We have
to show that it is continuous also for € 9X'"). We consider all the possible
converging sequences &, — x, that will have subsequences (") ¢ Xﬁ),
29 e xY and ¥ € x,. For £9 and z{!) the uniform continuity of P,
ensures that £4(x,) — L4(x). From the definition, it immediately holds
L(2X) = L(x), Vn, so in this case the convergence is trivial. For all the
other subsequences that jump between the three sets, it is possible to extract
subsequences that are all entirely contained in one of those sets, each of
which converge to £ 4(x). O

Proposition 4.6. The raw landscape function L 4(x) is piecewise differentiable
within each Xg).

Proof. From Prop. 4.4, for x € /'\fﬁf) , the landscape function is given by the
peak function of the projection of x, and it immediately holds:
0 0
67:c£“4 = %F(CB, PA(i) (CL‘)) (4-27)
The peak function I'(x, y) is trivially differentiable with respect to « for all
x € R?, and it holds;

rT—Y _l=—yl?
952 e 2052 (428)

0

The gradient of £ 4 can then be seen as the composition of 2T (x,y) and

the function g(z) = [z, Py»(z)]"

and it is continuous as composition
of continuous functions since I is differentiable and P, (x) is uniformly

continuous in X 4., from Prop. 4.2. [l

Notably, %Ev 4(x) is not defined for x € 90X, Vi, since, by definition of X,
there are two different convex components A" that have the same distance

from @, so the argmax is not unique.

Proposition 4.7. The smooth Landscape function L 4(x) is differentiable in R2.

4.2 Preliminary definitions and properties

55

56

Proof. The proof is straightforward by noticing that the variable x in the
definition is only in the kernel:

o) v 0
— — — 4.29
amﬁA(a}) /R2 EA(w)axﬁ(a: w) dw (4.29)
and «(x) is differentiable everywhere. O

4.3 The NAPVIG principle theorem

We now introduce the main results that prove that every sample computed
by the NAPVIG algorithm is actually an approximation of the GVD. The proof
is provided in the ideal collision space C.,; and the raw landscape function.
The local minimum considered in the algorithm is exactly a point of the GVD,
provided that some theoretical assumptions are met. In the following, for

notation convenience, we will refer to L¢_, as L.

Theorem 4.1 (NAPVIG Principle). Given a configuration space characterized
by collision space C..;, consider the raw landscape function Zﬁ(m) Given a
pair of initial point and a direction (xz,d) € R? x S! identifying the line
D = {x + \d, A € R}. Consider the set of local minima of the restricted
function /f‘D:

X* = {argmin Ev(:i)} (4.30)

zeD

Under the hypothesis that the following relation holds:
d l r — Pcwll(m), (431)
then the elements of X'* are all points of the Generalized Voronoi Diagram of

Ccoll .

Note that the elements of the initialization pair (x, d) correspond in the
NAPVIG algorithm the first step (®) and the direction of the line R, so d is
orthogonal to 7, i.e. £ = &y + Sepro and d L ry. The notation used in the
theorem is for clarity of presentation only.

Chapter 4 Theoretical foundations of NAPVIG algorithm

Proof. Consider a local minimum «* of the restriction é‘p. Suppose by
contradiction that x* is not a point of the GVD. This entails that:

dist(z*, X)) < dist(z*, X)), 3i,Vj # i (4.32)

which in turn implies that 2* € X*). As a consequence, it holds:

- P (3) (CB*)
% c
E *\ — _ coll
(z7) = exp 5o
(4.33)
9 < . Tt — PC@)”(:U*) x* — Pc“’”(w*)
awﬁ(w)= 202 P 202

Consider now the following parametrization of the restriction of £ to D:
L) =L@ +Ad), AeR (4.34)

Since z* is a minimum and £, from Prop. 4.6, is differentiable in x*, since
x* € X the derivative of the restriction is zero in * and it coincides with
the directional derivative of £ along d, namely:

6 p4 a)4 T
- * - * 4.35
0 a)\ﬁ(:c + Ad) amﬁ(m) d ()
This implies:
-
_(w — P, (=)) deXp - P (@) _0 (4.36)
202 202

The scalar part is always positive and, since by hypothesis d is not orthogonal

c

!

to z* — P(x*)), the numerator <ar;* - P (m*)) d # 0, so this equality
coll

cannot be true an this proves the theorem. Il

This theorem is shown considering the ground truth C..,; and the raw land-
scape function. However, two following remarks show that the real case is
a reasonable approximation of the ideal scenario. First, a real sensor can
measure a noisy sample only on the border of C.,;, but the useful points
in the algorithm are indeed points of the border. Second, we note that the

4.3 The NAPVIG principle theorem

57

58

smooth landscape function is close to the raw version, and for 6 — 0 (limit
case) they coincide. Formally, the following proposition holds.

Proposition 4.8. For any A and any = € R?:

lim £4(x,6) = L () (4.37)

6—0

Proof. The kernel x(x) can be seen as a Gaussian probability density function
(PDF) with variance 6%, up to a scaling factor. It is known that for § — 0, the
PDF converges to a Dirac delta, so we obtain:
lim L4(z,0) = | La(w)d(w — x)dw (4.38)
6—0 R2

where 0(x) is the Dirac delta: its sampling property then proves the proposi-

tion. N

e X \
ﬁstep'ro) +
o
I
— Gradient Descent I
I
® xr*) : T2
[
1eo

Figure 4.2.: Example of the algorithm behavior in a single corridor and in presence
of a bifurcation. The walls are depicted in solid black, with the center
of the corridors (corresponding to the GVD) in dashed. The orange
arrows are the first step taken in the search direction, while the red
one represents the trend of the gradient descent algorithm from the
initial point to the output of the algorithm.

Chapter 4 Theoretical foundations of NAPVIG algorithm

4.3.1 Remarks on the theorem

The results provided in this chapter allows a better understanding of the
behavior of the NAPVIG algorithm. However, several points needs to be
addressed

Hypothesis 4.31, which we refer to as NAPVIG condition, is an important
aspect as the validity of the theorem depends on it. In practice, it means that,
from x, all search directions d are available except the one that is orthogonal
to the direction of the closest collision point. This assumption not only is
reasonable since it is only one direction out of all the possibilities, but it
highlights a method to understand that a direction is wrong, since it would
drive directly to the closest obstacle. Also, numerically, in this condition
the projection of the gradient onto the search direction performed by the
algorithm would result in a null gradient, making the optimization algorithm
ineffective.

For a pair (z, d), corresponding to the NAPVIG algorithm initial conditions
(xo, T0), there could be multiple local minima, as explicitly considered by the
theorem. In the practical implementation the algorithm, based on a gradient
method, will converge to a specific one according to the initialization, so its
choice is critical for the purpose of the navigation strategy. In Figure 4.2 we
present an example of a corridor with a bifurcation and the outputs of the
algorithm given two different pairs of initial position and search direction.
Intuitively, » indicates the direction towards which it is desired to advance
and compute the next point of the GVD to follow. For example, 'z, is inside
a single corridor, so the two different search direction r, , yield points that
are slightly different but on the same GVD branch. Conversely, for 2z,
in proximity of the bifurcation, the two initial directions 73, yield points
on different corridors. Given that the map is unknown to the agent, it is
not straightforward to understand which initialization will drive towards
the desired goal and different strategies in the choice of x, and » can be
employed according to the specific case requirements. A simple strategy, with
reference to Figure 4.2 could be to evaluate the results with both =3 and r,
and then chose to follow the point closer to a goal location.

4.3 The NAPVIG principle theorem

59

60

4.3.2 Smoother peaks merging

The smoothing of the Landscape function not only allows the optimization
problem to be solved with gradient methods, but depending on the smoothing
radius two or more peaks can be merged into a single peak, removing the
local minimum in between them. As a result, conceptually, in the smooth
Landscape function all the measurements that are close enough are implicitly
and automatically consider as a single entity. We now provide a simple analy-
sis of the 1D analogous, in order to understand qualitatively the conditions
under which the two peaks are merged.

Consider two peaks centered in z; € R, i = 1,2,

(z—7;)*

Li(x) =T(z,2;) = e 22 (4.39)

reported in black in Fig. 4.3, along with their superposition, in blue, the raw
landscape function:

L(z) = max T;(x) (4.40)

We then consider the smooth function, the result of the convolution with the
Gaussian kernel of radius 6 > 0:

+oo z—w)

Ls(z) = / Fw)e 5 dw (4.41)
where we highlighted the dependency of £ on ¢. For simplicity, we consider
x1 = r and x5 = —r. The integral is then:

0 Wt)2 w2 (m—w)2
Ls(x) = / e~ U5 qu +/ —E - (4.42)

This expression can be solved in closed form, which we report for complete-

ness:
2 2 2 2
a0)
V278 (erf(YW T > + 1) e + | erf 25 +1]e

2vV6%2 +1

Ls(w) =

(4.43)

Chapter 4 Theoretical foundations of NAPVIG algorithm

14
— TI'(2)
1.2 — L(z)

Value

Figure 4.3.: Superimposition of gaussians centered in +1, smoothed with non-
merging and merging kernel radius

1.5

2
Lo — £1(0,9)

0.5 1

Value

0.0

—0.5 T T T T T
0.00 025 050 075 1.00 125 1.50

o

Figure 4.4.: Value of second derivative corresponding to stationary point with fixed
r and varying §

It is easy to verify that a%L(O) = 0 for any choice of ¢ and r, so the origin
is either a maximum point or a minimum. In the former case, it means that
the two peaks have been merged by the kernel, otherwise the local minimum

divides the peaks into two, as depicted in Fig. 4.3.

We are interested in finding the condition under which a kernel of radius §
merges two Gaussians of distance 2r. Since 8%5(0) = 0, by looking at the
sign of 59_;25(@ we can understand, for each choice of § and r, if z =0 is a
maximum or a minimum. Consider %(:p, r,9) as a function of its parameters.
In x = 0 and for any r, we can numerically find §* such that aa—;z(:c, r,0%) =0,
whose trend is reported in Fig. 4.4. Since ['(0,r, §) is decreasing with 6,

A

0"(r) =~ 6"(r) := asr, (4.44)

4.3 The NAPVIG principle theorem

61

62

[
1sf == 80 -
o 5(r) Peed
¥
< 1.0 e
= ‘('”
< &
- ‘4‘
0.5 e
'.
P
0.01 &
0.0 0.5 1.0 15 2.0

Figure 4.5.: Samples of §*(r) for several values of r w.r.t. linear estimation of §*(r)

with a5 = 0.8867 derived with least square fitting. From (4.44) we can also
derive the inverse relation

#(5) = a;'s (4.45)

Summarizing, there exists an almost linear relation between the smoothing

radius needed to merge two peaks for a fixed distance.

4.4 Conclusions

In this chapter we provided a theoretical analysis on the properties of the
Landscape function, which is the key element enabling the NAPVIG algorithm
to precisely compute points in the GVD of the map. Such property is proved
mathematically for the ideal case and the real case results to be a reasonable

approximation.

Chapter 4 Theoretical foundations of NAPVIG algorithm

NAPVIG-X: navigation in
generic and unstructured
environments

In chapter 3 we studied a scenario in which the goal was to navigate a narrow
and cluttered environment with only one possible path. We restricted the
scope of our analysis to this limited context in order to test the efficacy of the
NAPVIG algorithm in reactively calculating safe trajectories, which in chapter
4 we proved that they correspond to an approximation of the Generalized
Voronoi Diagram of the real map.

The initialization of the algorithm, as mentioned previously, affects the point
of the GVD that results from the algorithm. Each choice of initial conditions
corresponds to a particular branch of the GVD. In this chapter we will present
a basic but effective strategies to solve the problem of local planning in
generic, narrow and cluttered environments using an exploration/exploita-

tion paradigm.

5.1 Introduction

Classically, robotic exploration is focused on constructing a map of the envi-
ronment (Ocando et al., 2017), possibly including localization with SLAM
methods (Al-Hourani and Ristic, 2020; Liu et al., 2020). To this aim, the
most common method is to define the frontiers, segments delimiting the un-
known and explored areas (Keidar et al., 2012; Quin et al., 2014; Sun et al.,
2020), which are often detected with methods based on edge detection and
region extraction techniques from computer vision, such as edge detectors
and region extraction (Upadhyay et al., 2014). In recent years, reinforcement
learning techniques have also been increasingly utilized (Zwecher et al.,
2022; Niroui et al., 2019; Li et al., 2019), thanks also to the availability of
large datasets of indoor maps (Li et al., 2020).

63

64

In this work the concept of exploration is shifted to a more local perspective:
the goal is not the full coverage of the free space but the reactive discovery of
paths that are leading to the target. This can be interpreted as a strategy to
exit local minima in Artificial Potential Fields (APF) methods (Zhu et al., 2010;
Bounini et al., 2017): indeed, although substantially different, following the
GVD branches could lead to similar problems as local minima since such
branches could lead to a dead end. Strategies for local minima avoidance
(LMA) are very diverse, and they can be bio-inspired (Montiel et al., 2015a;
Teimoori and Savkin, 2010) or employ evolutionary methods (Montiel et al.,
2015b; Boufera et al., 2018). The latest trends integrate potential fields with
reinforcement learning to solve the full stack problem (Yao et al., 2020).

Most of the cited methods are based on maps, often modelled with occupancy
grids (Elfes et al., 1990). In this thesis, instead, the approach is to address
local navigation without keeping track of a discretized spatial representation
of the environment. To make exploration possible, then, we will keep track of
tracked areas with landmarks. Usually, landmarks are reference points used
for localization (Boucher, 2016; Prasad et al., 2020) and can be associated
to semantic information. In this context landmarks will not be used for
localization but will be associated to an index expressing the amount of
information gathered in an area, namely, the regions that have been explored
will be linked to a large value, while areas further away from the explored
path will carry less or zero information.

This index will serve as a metric for an optimization algorithm that will drive
a policy-switching controller. Policy-switching methods are currently utilized
to effectively account for the multiple issues that may arise in distinctive
situations where a particular approach is inadequate to manage all of them
(Amano and Kato, 2022). The concept of policy, in the literature, is strongly
linked with reinforcement learning strategies (Tidd et al., 2021; Patel et al.,
2021; Guo et al., 2021). More in general, a lot of attention has been dedi-
cated to developing neural network-based approaches for learning policies
addressing the general navigation problem in various contexts. For example,
(Zhang et al., 2020) combines a graph architecture with deep reinforcement
learning to address dynamic environments in presence of multiple external
entities; (Devo et al., 2020) propose a visual approach to search and reach
a target, based on two networks that pursue these two goals separately. Re-

Chapter 5 NAPVIG-X: navigation in generic and unstructured environments

active vision based approaches can be likened to the one proposed in this
and the previous chapters, in the sense that a global map is not required to
complete the task (Jin et al., 2020; Bektas and Bozma, 2022). For instance,
(Gupta et al., 2017) propose a top-down representation of the environment
that stores the information that are actually useful for the trained model,
while (Mirowski et al., 2016) directly exploits raw sensor data to perform

navigation in complex environments.

In this work we propose a different approach that takes inspiration from the
reinforcement learning methodologies but exploits the fast Voronoi approxi-
mation obtainable with the NAPVIG algorithm to define a set of algorithmi-
cally defined policies that address the problem of local navigation in cluttered
and unknown environments. We refer to this algorithm as NAPVIG-X, as
it is the extension of the NAPVIG algorithm to the broader case of generic
maps.

5.2 Problem formulation

The context we consider is similar to that of chapter 3. We consider that the
configuration space is characterized by a possibly time-variant collision space
C.ou(t) C R% A ground robot is equipped with a LiDAR that, with sampling
period T,, € R, at time t;,, = kT,,, k € N, obtains a measurement set

M, = {mm, h:1,...,H}, H €N, (5.1)

where H is the number of measurements per sample. We consider an inertial
"world" reference frame Fy, a robot frame F; at continuous time ¢ € R, the
measurement frame F; and the robot frame expressed in the measurement
frame Fj;, analogously to what done in section 3.2, to which we remind for
a more detailed description of the frames. In the reminder of this chapter,
we will drop the dependency on the LiDAR scan sample when there is no
ambiguity in the notation. By default, unless specified otherwise, all the

quantities are referred to the measurement frame 7.

The robot is tasked to reach a target position x;(t) € Cy., possibly time
varying. In the spirit of pursuing full autonomy, the robot is not aware of its

5.2 Problem formulation

65

66

own global position in the world frame and can only sense the target with
on-board sensors, e.g. a camera or an external estimation algorithm. In the
scope of this work we are not interested in the technical details of how the
target is estimated, but we distinguish two cases:

» Target in sight: the robot is able to sense the position of the target,
which is then expressed in the current robot frame F;.

* Target not in sight: the robot is not able to have an estimate of the
target’s position, so it need to explore the environment until it finds an
estimate of the target.

5.3 Policy-based exploration-exploitation

The strategy that we are going to present is based on a policy-switching
method that takes inspiration from the famous reinforcement learning of
exploration-exploitation paradigm. Unlike the latter context, NAPVIG con-
veniently allows to locally access the GVD, so the policies can be defined
algorithmically, with a method that is based on the optimization of a cost
function.

Given that the basic assumption is that the robot does not have the knowledge
of the map, and we desire not to spend computational resources for expensive
mapping algorithms, the target-pursuit goal must be entangled with the need
for exploring the map, since a path that might seem the shortest one leading
to the target could result in dead-ends, hence the need to keep track of an
exploration factor, as will be more clear in the rest of this chapter.

The full stack methodology that we will introduce is based on a set of
six policies, that can be categorized as predictive, reactive, and auxiliary,

namely:

* Predictive: fully-exploitative (PFT), fully-explorative (PFX), partly-explorative

(PPX);
* Reactive: legacy (PLE);

* Auxiliary: free-space (PFS), halt (PHT).

Chapter 5 NAPVIG-X: navigation in generic and unstructured environments

Depending on the current status of the robot and the configuration space,
each policy has the role of generating a trajectory £ that will be fed to the
low level controllers. Depending on the internal logic of each of them, they
provide a result status p associated to the trajectory that can assume one of
the following values: accept (RA), fail (RFA), finalize (RFI), complete (RC).
The result status will be the possible transition symbols of a finite state
machine that regulates the switching rules from a policy to another. We will
first introduce the possible policies and then will provide a more detailed
description of their purpose.

5.4 Predictive policies

The main navigation task is performed by the predictive policies: they are
based on the iterative execution of the NAPVIG algorithm and are character-
ized by three key factors: a search direction decision rule (SDR), a termination
rule (TR), and a cost factor that is associated to each predicted trajectory.

Given a search decision and termination rule, the prediction of a trajectory is
simple and reported in Alg. 2. Each policy will then adopt a combination of
SDR and TR that will define TR.terminate, the termination condition, which
is function of the last sample, and SDR.decideSearch, function of the entire
trajectory. Additionally, TR also specifies an exit information associated to
the reason that caused the prediction to terminate, that can be one of the
following: collision (TCO), max window (TMW), target approached (TTA),
napvig fault (TNF). Each termination cause may arise in different context

Algorithm 2 Trajectory Prediction Algorithm

Require: x, € Cy,..: initial robot position
Require: 7, € S': initial search direction
function PREDICT (g, 79 SDR, TR)
&o < o
while not TR.terminate(&g, r;) do
ri, < SDR.decideSearch(&)
€01 — napvig(&e,)
end while
ce < TR.cause()
return (, c¢)
end function

5.4 Predictive policies

67

68

and entails different consequences for the different policies: we will provide
a specific meaning for each of them in the next paragraphs.

Then, they can predict one or more trajectory £, with associated exit
status céh), for h =1,...,H, where H € N is the total number of predicted
trajectories: to each of them it is associated a cost value J (&), céh)). In some
cases, depending on the termination condition the trajectory needs to be
directly discarded: in those cases the cost of the trajectory can be associated
to an infinite value. For all the policies, the best trajectory is the one that
solves the following optimization problem:

&= argmin J(E") (5.2
M), h=0,...H)

5.4.1 Prediction termination rules

We now define a collection of termination rules that can be adopted in various
combination in each policy. The termination rule is based on the current
sample of the trajectory &, and on the set of collision points M, and can be
one of the following:

* Maximum window (TMW): the number of samples reached the max-
imum value: k > K,,.., Where K,,,. € N can be different for each
policy;

* Collision (TCO): last sample is too close to the obstacles: min,,cq ||€ —
m|| < peou, where p.,; > 0 is the radius that circumscribes the robot’s
phyisical geometry. This can happen in the cases when the GVD branch
on which the sample is computed is leading to a dead end, correspond-
ing on the Voronoi boundary between two convex components of C,.,;
that are adjacent.

 Target approached (TTA): last sample is close to the target: ||§,—x| <
Ptarget> Where piq,qe > 0 is the chosen threshold.

* Napvig fault (TNF): the search direction is such to violate the NAPVIG
condition, the theoretical assumption on which the NAPVIG algorithm
is based (4.31), which is equivalent to 7 || (§&x — m*), where m* =

Chapter 5 NAPVIG-X: navigation in generic and unstructured environments

Label Condition

TMW k> K

T in [|€ —
CO rglel}\l/l H€ m” < Peoll

TTA | & — 24| < prarget

Table 5.1.: Conditions and termination codes

argmin ||, — m||, if we note that the search direction r; is orthogonal
meM

to the direction d in the NAPVIG theorem.

The conditions are summarized in table 5.1

5.4.2 Fully-exploitative policy

The first idea is to generate a trajectory that points towards the target. More
precisely, for each prediction sample we define the search decision rule:

PFT-SDR searchDirection(€) 1= 5% — %/ (5.3)

R
Note that the points of the trajectory are necessarily on the GVD, while the
target could be any point in the free space. As commonly done in Voronoi-
based navigation approaches, the algorithm is meant to terminate when the
last sample is sufficiently close to the target (T TA condition), and will then
switch to a different control strategy. While this strategy could result in a
very efficient computation since it tends to compute minimal trajectories that
are greedily directed towards the target, there are no guarantees that the
resulting search direction is valid or does not lead to collisions. In principles,
it would make sense not to consider a maximum number of step, and let
the prediction terminate either when the target is approached or when a
collision occurs. However, given the limited sensing capabilities, there could
be obstacles producing a dead-end that are outside the maximum range of
the LiDAR sensor, so the collision cannot be detected. An easy heuristic to
overcome this issue is to limit the maximum prediction window such that the

trajectory does not exceed the LiDAR range. For these reasons, we consider

5.4 Predictive policies

69

70

Termination cause | TMW TCO TNF TTAA|E|=1 TTAA|E >1

peer | RFA RFA RFA RFI RA

Table 5.2.: Fully-exploitative result status for each termination cause

as termination rule the union of all the conditions introduced in the previous

section:

PFT-TR.terminate(&g, rx) := (TMW Vv TCO VvV TTA vV TNF) (5.4)

The predicted trajectory with PFT is predict with PFT-SDR and PFT-TR, in
short:

& = PFT.predict(xg, 7o) (5.5)

In this case, since only one trajectory is possible, either the predicted tra-
jectory &: is accepted or discarded. Clearly, if the policy terminates with a
collision TCO or a violation of the NAPVIG condition TNF, then the trajectory
is discarded, and the result status is pprr = RFA (i.e. fail). Otherwise, if
the trajectory is immediately terminated by TTA, it means that x is already
sufficiently close to the target. In this case, the (empty) trajectory is again
discarded, and the result status pprr = RFI (i.e. finalize) will cause the
policy to switch to another method to track the final path to ;. Finally,

(a) Accepted trajectory (b) Rejected trajectory
TTAAN |£‘ > 1= pprr = RA. TCO = pprr = RFA.

Figure 5.1.: Example of predicted trajectories with PFT policy

Chapter 5 NAPVIG-X: navigation in generic and unstructured environments

if the policy is terminated by TTA and there is at least one sample other
than the initialization, then the trajectory is accepted, and the result status
is pprr = RA, (accept). Table 5.2 summarize the result status as function of
the termination cause, where with the notation |£| we mean the number of
samples of £. In Fig. 5.1 are reported two illustrative examples of application
of the fully-exploitative policy. Starting from &;, all the search directions
point towards z (in red): this choice caused the path to follow the left
corridor. In the first case (Fig. 5.1a), the latter is open, so as soon as a sample
is closer to the target than p,.,.:, the trajectory is accepted. In the second
example, the left corridor is closed, and NAPVIG computes points on the
branch that would lead to the vertex between the convex components of the
front and left walls. At some point, that branch will be closer to the walls
(collision points) than p..;, as & results to be in the figure. The trajectory is
then rejected: PFT is not able to produce a valid trajectory in this case.

Remark 5.1. It could be noticed that the dead-ends problems are similar to
those affecting methods based on artificial potential fields. Nevertheless, this
policy keeps the advantage of computing point in the GVD and, if a feasible
trajectory exists, it is efficient in terms of number of computed samples.
Otherwise, policy-switching logic will handle the case to a different policy,
that in turn will result to be more expensive, as we will see in the next

sections.

Remark 5.2. Differently to what happens with constrained optimization
based-methods, NAPVIG does not find trajectories at the border of the col-
lision space but farthest away from obstacles. Usually, this requires the
collision radius p..; to be quite larger than the real one, to provide a margin
of safety. Instead, given the accuracy that our algorithm results to provide,
the collision radius p..; requires much less margin and can be almost the
geometrical radius of the circle circumscribed to the robot, allowing the
passage to narrower passages.

5.4.3 Explorative policies

Consider the example in Fig. 5.1b, where the PFT policy is rejected. Given
that a direct trajectory towards the target does not exist, after having pre-

5.4 Predictive policies

71

72

dicted a colliding trajectory, in principle the algorithm should choose the
corridor on the right. However, the points on the GVD are computed indi-
vidually, and since, additionally, no prior knowledge is assumed for the map,
there is no semantic knowledge directly available from their computation. In
view of the reactive nature of the navigation strategy that we are proposing,
we now introduce a local exploration strategy based on the prediction of

trajectories in multiple directions starting from the robot’s position.

Given an initial robot position in measurement frame x, and an initial
direction 7, which correspond to the heading of the robot in the same
reference frame, the idea is then to consider multiple directions starting from
xy, spanning the entire round angle:

el = PEX.predict(xg, ry9,), h=1,..., Hpex,
21 (5.6)

=)
HPEX

Tlgh = R(ﬁh)’ro, 19]1

where PEX can refer to PFX or PPX, of which the corresponding search
decision and termination rules, SDR and TR, will be introduced in the next
paragraph; R(v,) is the 2D matrix that rotates by an angle v;; Hpex is
the desired number of initial directions. As will be clear later, this number
does not need to be large, since in most situations multiple initial directions
will converge to the same GVD branch, so in the experiments we consider
Hpex := 8, while in the illustrative examples that are going to be reported in
this section we consider Hpgx = 4 for clarity of presentation.

The prediction starts with directions ry, and continues with the direction

that from one sample points towards the next one, as follows:

&1 — &k

PEX-SDR.searchDirection(§) = e = &l
k—1 — &k

(5.7)

Remark 5.3. This choice allows the exploration of the GVD branch starting
from the angle ¥,, and it only has a local meaning, in the sense that it
is not well suited for large prediction windows. This characteristic has to
be interpreted in the scope of local navigation that represent the real aim
of these policies: the basic assumption is that the obstacles information,
gathered by a LiDAR sensor, are also local. The integration of such strategy

Chapter 5 NAPVIG-X: navigation in generic and unstructured environments

with the actual motion of the robot will enable the full navigation of the
actual map.

The prediction algorithm of both the fully and partly explorative policy is
then terminated by a maximum number of samples, other than the collision-
detection conditions:

PEX.terminate(&, 7)== (TMW v TCO v TNF) (5.8)

Landmarks A key factor for this strategy is the ability of keep track of
explored areas: we will achieve this by storing landmarks as the robot
moves in the environment. Formally, we define a landmark as a triplet
£=(*F't'x)cSE(2) x R x R?, where:

o {F ¢ SE(2) is the last measurement frame when the landmark is
created;

* ‘t ¢ R is the timestamp of the moment the landmark is created;

» ‘z ¢ R? is the position of the robot in the moment of the landmark
creation, expressed in the frame ‘F.

The landmarks are stored in a batch . = {¢;, i =0,..., N} where N, € N
is the current number of landmarks. The batch is initialized with a single
landmark corresponding to the initial position: .Z = {£, = (*Fo, to,' o)},
where ‘Fy, = Z, where 7 is the identity in SE(3), %, = 0, and ‘zy = 0. The
new landmarks are then added to . until N, > Np, 4., that is the maximum
capacity of the landmark: after that, the new landmarks replace the oldest
ones, in a FILO queue.

Remark 5.4. This definition of the landmarks need a common inertial frame
to which the frames ‘F are referred to. Given the full-autonomy requirement,
a global position is not available to the algorithm. It is possible, instead, to
integrate the odometry starting from the initial position, obtaining an esti-
mate of the frames that are knowingly affected by an error that is increasing
overtime. However, as will be clear later, the real used information will be

the relative frame between each ‘F and the current measurement frame, that

5.4 Predictive policies

73

74

results in a bounded error since the landmarks are a finite number and the
old ones are replaced with new ones. This also motivates the choice ‘F, = T.

The landmark position is referred to the creation frame ‘F;. However, we are
going to need its position in the current frame, namely F. We then define
the function F;; as:

Fir : RRR? : oz Fz=F 'Fix (5.9)

We consider two standard conditions upon which a new landmark is cre-
ated:

o |z — Fiiten, || > diandmark, for a constant djungmarr > 0: when it is
farther from the last landmark. This is the standard way the landmarks
are created when the robot moves in the scenario.

* t — N, > Teapsea: When too much time has passed since the last
landmark creation. This can help to resolve ambiguous situations
where the cost for multiple trajectories is similar. This will be covered
with more details in the experiment part.

According to these rules landmarks are generated corresponding to points
physically visited by the robot. However, if a predicted trajectory terminates
with a collision, landmarks can be created in correspondence to the samples
of the trajectory &.

Fully-Explorative policy We first consider the most general case where there
is no target (e.g. the target is not in sight) and the goal of the navigation task
is to explore the map as much as possible. The idea is that the cost function
associated to each predicted trajectory £ penalizes those being close to
visited areas. Specifically, for each point in the map we consider a penalty
term that with a Gaussian trend with the distance to the landmark:

0012
_ llz="=]]

Ji t RE= R @ Ji(x) i=wee 2 (5.10)

where w, € R is a weight associated to the landmark cost and p, € R is a
value tuning the peak radius, as shown in Fig. 5.2. The figure also suggests
an heuristics on how to choose the value for p,, that should be such the

Chapter 5 NAPVIG-X: navigation in generic and unstructured environments

Gaussian is almost zero beyond the average minimum distances between the
obstacles.

Depending on the characteristics of the map, it could be needed that older
landmarks are weighted less than new ones, so that to allow the exploration
of the same area after a desired amount of time, for instance to cope with
a dynamic configuration of the map. To this aim, at the generic time ¢ we
consider an exponentially decaying weight term e=*(="%), where A > 0 is the
tuning parameter acting as time constant in the exponential decay. Note that
in the cases this aspect is not desired, decaying can be disabled by just setting
A=0.

The total cost associated to each point in R? is then the sum of the contribu-
tions of the penalty terms of each landmark, and the total cost associated to
the predicted trajectory &, is the sum of the cost of each sample, provided
that the prediction ended without faults or collisions:

&l Np,
e M) 1) if ce = TMW
Jrex(§) = kgo; &) : (5.11)
+00 if ¢ = TCO v TNF

It could happen that every predicted trajectory results in a collision/fault. In
this case, according to the parameter configuration, could mean that the robot
cannot move without resulting in a collision within the considered prediction
window. If this is actually the case, it represents a pathological condition
where the exploration problem is ill-posed: the robot is placed in a confined
environment. In some cases, this could be desirable: imagine the case of an

Obstacles
Ji(z) := wee”
3Pg
ECEZ' xr
Unexplored Explored Unexplored

Figure 5.2.: Example of 1-D component of the cost associated to a landmark

5.4 Predictive policies

75

76

elevator, where the robot cannot move until the floor is reached, so this event
should be handled properly by the policy switching rules, presented later on.
In other cases, where the robot could actually move, but a trajectory is not
found, it means that the parameters are not properly set for the scenario. In
particular, we can point out several possible reasons:

* The considered number of initial directions Hpgx are not enough to
identify the available branches. In typical situations (see sec. 5.7), with
Hpgx = 8 this is very uncommon. For scenarios configuration when this

happens, a higher number of initial conditions should resolve the issue.

* The prediction window is too large: as mentioned, the search decision
rule (PEX-SDR) is thought to be reasonable in a local neighborhood of
the initial point x,. More specifically, PEX-SDR is assumed to track a
single GVD branch, so in case of bifurcations in the prediction, which
branch will be taken cannot be ensured. For typical applications, we
consider a value of around K,,,, = 4.

* The NAPVIG step Sy, is too large. Linked to the previous aspect, note
everything in between the NAPVIG initialization and the initial step is
not accounted, so a large value for (., could even exceed an obstacle.
In principle, this value should be small, but this would require a larger
prediction window, so a trade-off should be considered for efficiency.
For the geometries of robot and obstacles of the experiments, [, = 0.2
does not report any of these issues.

Fig. 5.3 reports two phases of exploration with PFX, in which we considered
the same scenario as with the fully-exploitative policy. Initially (fig. 5.3a), ¥
only contains the initial landmark £, placed in correspondence to the initial
robot position (black circle). We then consider Hpgx = 4 initial directions,
fory =0,%,7, %7?, respectively. It is immediate to notice that all direction
except ¥ = 0 are orthogonal to the walls, resulting in a NAPVIG fault (TNF)
termination. To those trajectories will then be directly associated an infinite
cost and will then be discarded. The only possibility is then to predict a
trajectory (in orange) in the direction of r,, which results in no collision and
is terminated with the maximum window step count (TMW). An important
remark: the fourth search direction r, is in principle violating the NAPVIG
condition: the orthogonal line to r4 (namely, A in (3.12)) intersects the
GVD into two points, one on the left and one on the right. The NAPVIG

condition violation means that in the initial point of the optimization we are

Chapter 5 NAPVIG-X: navigation in generic and unstructured environments

(b) Intermediate exploration step, with several landmarks and multiple predicted trajecto-
ries.

Figure 5.3.: Example of prediction-based map exploration with PFX.

5.4 Predictive policies 77

78

in presence of a stationary point (the gradient of the restriction is zero) then
corresponding to a maximum point, so mathematically the algorithm cannot
converge. However, a small deviation from the ideal condition would lead
the gradient descent to actually converge, but it can in principle identify both
branches. Since there is no prior knowledge on the map, there is no a-priori
reason to prefer one branch to the other: if needed, both of them will be
reactively explored, but this choice is taken on-line when the robot is itself
in correspondence to the GVD bifurcation. At that stage, the initial search
directions ry will indisputably identify the two different branches, as will be
clear in the second snapshot of exploration. At this first moment, we consider,
without loss of generality and for illustrative purposes only, that the NAPVIG
algorithm converges to the left branch.

Figure 5.3b shows a second stage in the exploration. We assume that the
robot followed the predicted trajectory until close to the bifurcation. Note
that before that sample, all the trajectories different from ¢ = 0 would
result in TNF. Once in that position the robot is headed as r,. Then, from
the four initial search directions, colored in orange, yellow, green and red,
forv =0,%,m, %w, respectively. From the figure it is clear that the orange
trajectory ends with a collision, so we consider landmarks centered in each
sample of the trajectory: £,§0), k=1,..., K. Note that the trajectory is very
similar to the one predicted by PFT (Fig. 5.1), even if the search directions
are different. The initial directions rz and r, converge to the same GVD
branch, which ends with a collision, so both trajectories will add their samples
to the landmark set, even if they are not represented in the picture for clarity
purposes. The last trajectory, predicted from T35, results in tracking the GVD
branch of the right corridor. In this case, that is the only trajectory available
since all the others result with a collision. However, with a smaller prediction
horizon, e.g. K,,,. = 3, there would be no landmark in the left corridors as
the orange trajectory would be terminated with TMW. The yellow one would
be discarded as it would terminate with a collision, while the green would
also be accepted. Nevertheless, it would be the one with the highest cost,
considering that its samples are closer to the two landmarks. The orange and
red, instead, have low cost since they are both towards unexplored areas. The
algorithm, however, would choose the orange, although the costs are very
similar but slightly lower: in the context where the goal is the exploration
only, there is no other preferential way on choosing the trajectories, so that

Chapter 5 NAPVIG-X: navigation in generic and unstructured environments

would be the final decision even if later the trajectory would lead to a dead-
end. In that case, the robot would move backwards, since that would be
the only available trajectory, until approaching the bifurcation again: at that
point, the landmarks would be similar to figure 5.3b, although they are placed
after visiting and not predicted, the red trajectory would be generated and in
that case the orange one, that is not colliding anymore, would be discarded
as the associated cost would be higher for the presence of landmarks in the
left corridor. This behavior has central importance for the goals of the next
policy, and will be discussed in more detail in the following section.

Partly-explorative policy We now consider the target in sight case, where
the goal is reaching the target, but there is no available trajectory obtained
with the fully-exploitative policy (PFT). We consider the same method to the
GVD branches as with the fully-explorative policy (PFX). We then consider
the same rules for landmarks generation and the same prediction rules, i.e.
we consider PEX-SDR and PEX-TR as search direction and termination rule,
respectively. We also consider the cost Jpex(&), to which we add a term
penalizing the distance to the target, defining the new cost for PPX :

Kmaw

JPPX(ﬁ) = JPFX(&) + Z wta'rget”fk‘ - mf||27 (512)
k=0

where w4 € R is a weight balancing the trade of between exploration and
exploitation: in principle it would be desirable to choose the trajectories that
are closer to the target, but those trajectories may lead to a dead-end. We
show the importance of this trade off with an illustrative example, of which
three samples are represented in Fig. 5.4. The initial condition is reported
in 5.4a: the robot is positioned in xy, headed as r, and from the four initial
directions, ¥ = 0, %w, T, %W are generated the predicted trajectories in orange,
yellow, green and red, respectively. The value of the cost function for the
individual sample is reported with a shading gradient from white to yellow.
To emphasize the phenomenon that we wish to point out while maintaining
the same map as the previous examples, we only consider a prediction
horizon K,,,, = 3. More details on this in the remark 5.5. Note that red and
yellow trajectories are almost overlapping, as they are tracking the same GVD
branch, while the other corridors are identified by the other two. The effect
of the first landmark on the total cost is nearly the same for all of them, while
the target penalty clearly favors the yellow trajectory, which then results to

5.4 Predictive policies

79

80

Cost value

(a) Stage #1

(b) Stage #2

(c) Stage #3

Figure 5.4.: Example of partly-explorative policy

Chapter 5 NAPVIG-X: navigation in generic and unstructured environments

be the selected one. We now consider a time instant ¢; € R after the robot
has been following the yellow trajectory and is now placed in x;, (Fig. 5.4b)
and headed as the orange arrow. From now on, in this example, we will
avoid drawing the directions that results in TNF, for clarity. At this moment,
the forward trajectory (orange) result in a collision (TCO): the only valid
trajectory is the one that leads back towards the bifurcation, away from the
target. Due to the TCO termination, all the left corridor is then marked as
"explored" by the placement of landmarks. The third time instant that we
consider, t; € R, shows the importance of the exploration part in the cost
function: after the robot performs a 180° rotation and starts following the
corridor towards the bifurcation, as soon as the backwards trajectory (green)
does not result in a collision, due to the limited prediction window, if there
were no exploration term in the cost function, that trajectory would have a
smaller penelty, and the robot would start again following it, in an infinite
loop. Instead, by considering the placed landmarks, the algorithm will favor
the exploration of other branches. Indeed, in x,, the yellow trajectory ends
up identifying the right corridor GVD branch, while the orange will identify
the central corridor: at that point, the orange trajectory clearly would have a
higher penalty from the target distance and the robot will follow the yellow
one. Essentially, the exploration term allows overcoming local minima-like
situations by locally increasing the cost function. Note that the ratio between
the weights of the landmark and the target distance is critical: if the latter is
too small, in ¢5 (5.4b) the algorithm could choose the orange trajectory that
would lead to the backward corridor, since the first sample of the yellow one
is very close to a landmark. This aspect becomes a limitation when the map is
too large: the same weight ratio suitable for a small environment might not
be proper for a larger map, due to the different scale that the target distance
term produces. While it could be possible to design an adaptive weighting
strategy, we highlight that the proposed navigation strategy is meant to solve
local navigation, and it should not be considered as a global planner.

Remark 5.5. The search decision rule SDR-PEX, that from the initial orien-
tation ry, considers the directions to one sample from the previous one, as
mentioned, is reasonable for a limited prediction length. Fig. 5.5 reports an
example showing this aspect. We consider K,,, = 6: the robot in «,, predict
the trajectory in orange, but the configuration of the map has a sharp bent
and the search decision rule ends up tracking the GVD branch leading to the

5.4 Predictive policies

81

82

Ly ZLf
/N \\\ /
) LN s
i /)\, T’\
Pecoll \< 3y “a

(a) Predicted trajectory from x;,, following (b) Correct individuation of the corridor from
PEX-SDR with K4, = 6 T,

Figure 5.5.: Example of prediction window size too large

[]
Zf

mt]_ 7/
\ 4
\N7/

|
[
[
[
Figure 5.6.: Example of trajectory predicted with SDR-PEX and small Fcp.

corner, as can be seen from the figure. The algorithm would then be misled
into marking all the area as explored, and the robot would start following
the green trajectory in the opposite direction. Instead, if we took a shorter
prediction horizon, when the robot is positioned in «,, (Fig. 5.5b), it is able
to track sharp bent properly. In the case of a configuration like this it is
more suitable to consider shorter values for f.,. Figure 5.6 show that with
smaller steps the search direction rule is able to capture the correct branch.
Nevertheless, it might still not be a good choice to have a long prediction
horizon, since the only possibility to look for other directions, and thence
other branches, is in correspondence to the first sample.

Chapter 5 NAPVIG-X: navigation in generic and unstructured environments

5.5 Reactive and auxiliary policies

In the last sections we introduced the main policies that are aimed at cal-
culating the path to follow in presence of the ambiguity presented in cor-
respondence to a bifurcation, as in the accompanying examples. To those
policies we combine others with the purpose of extending the navigation task
or improve its computational efficiency.

Legacy policy While the predictive policies allow the identification of dif-
ferent GVD branches, during the navigation on a single branch, between two
bifurcations, there would actually not the need to look for other directions, as
it would just be enough to keep tracking the same branch. Clearly, given that
there is no direct way to understand whether we are close to a bifurcation
or not and, moreover, in real scenarios the GVD is characterized by a lot of
spurious branches that are unlinked to a semantic meaning: imagine having
an irregular knowledge of the map in the last figures, conceptually, the GVD
will be characterized by a lot of branches leading to the intersection between
the small segments. The smoothing properties of the landscape function
mitigate this problem, but this implies that there is no straightforward way
to discriminate the robot being close to a bifurcation or not. Nevertheless,
we can adopt the easy heuristics of maintaining the direction computed by
predictive policies for a fixed number of samples, and feed it directly to the
NAPVIG algorithm. The rules for the policy switching will be introduced
in the next section, now we consider that a predictive policy calculated the
trajectory £* at time ¢ € R. The measurement frame a that time is ;. Then,
at the generic time ¢ > ¢, the trajectory that the legacy policy computes has
only one sample, and it is:

¢PLE = napvig(z, ropLe)

) (5.13)
rope = F;, Fi(& — &)

The initial direction 7 p ¢ is then the direction from the initial condition that
the last computation towards the first predicted sample, converted into the
current measurement frame, which we recall is the standard reference frame
with respect to which all the quantities are referred to in this discussion.
The sample computed by the policy can in general be a collision point or
ropLe can trigger a NAPVIG fault. In one of those cases the policy fails, and

5.5 Reactive and auxiliary policies

83

84

it is associated with a result status pp g = RFA, otherwise the trajectory is
accepted and pp g = RA.

Free-space policy All the proposed policies are based on the NAPVIG algo-
rithm, that can only output points on the GVD. However, the target position
x; cannot be constrained to be on it, and it can be everywhere in the free
space C.... We then adopt a technique that is typical for Voronoi-based
navigation: when the robot is sufficiently close to the target, so that the space
in between could be considered safe, the robot can navigate in the free space
without considering obstacles at all, for the short space that separate the
robot to the target. The trajectory in this case is then directly the final point
itself, expressed in the last measurement frame:

€prs = F; 'xy (5.14)

Approaching a specific point for a unicycle is a delicate task and many existing
works tackle the problem in many ways. Precise parking is outside the scope
of this work, so we just consider a threshold after which the navigation task
is considered completed:

prrs = RC i |y — 4[| < prerm (5.15)

where p;.,, > 0 is the desired, small, threshold, otherwise the sample is
accepted: pprs = RA

Halt policy This is a pure auxiliary policy. There are some specific conditions
where the robot needs to stop. A first case is when there is no available policy,
that is all the policies are rejected. In this case, the navigation task must be
paused and wait for an external event to occur, e.g. a door to open. Another
case, that we consider for completeness, corresponds to the target location
reached. The trajectory is simply a void command:

Epur =0 (5.16)

and clearly the result status is always ppyt = RA.

Chapter 5 NAPVIG-X: navigation in generic and unstructured environments

5.6 Policy switching rules

In the previous section we introduced a set of policies that solve the local
navigation problem in specific contexts. The ability to cope with such contexts
depend on specific conditions, e.g. if the target is in sight or not, or the success
of other policies. We now introduce the rules to switch from one to another,
that are based on a finite state machine. The initial state is IDLE, representing
the state before the algorithm starts. Every other state is associated to a
policy, the three predictive PFT, PFX, PPX (green), the reactive PLE (violet),
and the auxiliary PFS, PHT (orange), as defined in the previous sections.
Once the FSM is transitioned to a state, the corresponding policy is computed.
The next transition then occurs according to the result status associated
to the computed trajectory RA, RFA, RFI, RC, which are combined with
external events, that might be related to map configuration properties or user
triggered. Specifically, we consider the events:

e X-START: user-triggered algorithm start.

» X-TIS: target in sight, is a property that is true if there exists a direct
estimate of the target by the robot.

e X-MLE: maximum legacy count: the maximum number of steps com-
puted with policy legacy is achieved, keeping the same search direction.

* X-RESET: manual reset when halt policy was triggered after no collision-
free trajectory can be computed.

In particular, as introduced in the corresponding section, the event X-MLE
realizes the idea of the policy legacy implementing a more lightweight strategy
when tracking a single GVD branch where we assume that there are no
bifurcations. This assumption is reasonable as long as the total amount of
time is short compared to the map scale and the velocities of the dynamic
parts.

The complete scheme of switching rules between policies is reported in figure
5.7. The initial state, IDLE, corresponds to the moment before the algorithm
is started. After that, the fully exploitative policy, PFT is attempted. Then we
consider two cases:

5.6 Policy switching rules

85

86

Legend:

[Predictive

X-START [] Reactive

[] Auxiliary
RFAAX-TIS
RFAA—X-TIS
RAAX-MLE RA
VRFA
RA

Figure 5.7.: Finite state machine describing the policy switching rules

X-RESET

* target in sight: the system computes a trajectory according to PFT. If
accepted, it sends it to the low level controllers, otherwise switches to
partly explorative policy (PPX).

* target not in sight: PFT immediately fails and the system directly
switches to the fully explorative policy, PFX.

When any of the predictive policies (PFT, PFX, PPX) is accepted, the state
is switched to PLE, to use the constant search direction from the previous
policy. On the transition to PLE, a counter is reset: PLE.,,,; + 0. Then,
for each accepted trajectory, the counter increments until the maximum
desired value is reached, namely PLE,,,,. The event X-MLE is triggered when
PLE oun: = PLE, 4z, upon which the system status is transitioned back to PFT,
and the predictive policies are attempted again with the same rules.

According to the relative position of robot and target, if the latter is available,
the policies can terminate with an RFI result status, when the robot is closer

Chapter 5 NAPVIG-X: navigation in generic and unstructured environments

than a threshold to the target, and it can safely perform a parking task,
switching to the free space (PFS) policy, where the state stays with a self loop
until the required accuracy in target tracking is reached, when it switches to
the halt policy PHT to hold its position until the algorithm is manually reset
with X-RESET. The system is also transitioned to this state in correspondence
of situations where no possible trajectory can be computed with any of the
other policies. This occurrence requires manual intervention and should be

exceptional.

5.7 Simulative validation

In the previous sections we provided examples of the algorithm behavior in
an ideal scenario where the map was known and so was the GVD, with the
purpose of explaining the main concepts. We now assess the validity of the
overall methodology in various scenarios of practical interest, in a real-time
simulation environment provided by Gazebo robot simulator. Similarly to
what done in chapter 3, the implementation is realized with C++/ROS to
meet real time constraints. The architecture of such implementation is a
critical aspect to consider since it strongly affects the possibility of actually
meet the timing requirements. For this reason, parallelism, efficiency and
maintainability are of core importance, and they will be presented in more
details in the appendix of this thesis. The simulated experimental setup,
composed of a differential steering robot equipped with a LiDAR, controlled
with a reference position as described in section 3.4.2. We now present several
scenarios where various characteristics of the algorithm can be assessed.

5.7.1 Scenario #1: corridors

For the first simulation we consider the standard arena from Turtlebot3!, to
which several walls were added between the columns, shown in dark gray
and white in figure 5.8, respectively. The target is assumed to be known
in the robot frame at each sample time (target in sight), and it is placed
at zy = [1.5,0] in the world frame, right behind the "head" of the turtlebot
arena. The structure of the walls and obstacles is better reported in figure

https://www.turtlebot.com/turtlebot3/

5.7 Simulative validation

87

88

Figure 5.8.: Gazebo rendering of scenario #1 initial condition

5.9. Initially, the robot is placed in the position corresponding to the blue-
white circle. Upon start, the policy PFT is attempted but fails, since the
most direct passage towards the target is closed. The system then switches
to PPX, and the robot starts to explore forward, since it does not detect
the collision immediately given the limited prediction window required for
the explorative policies (see sec. 5.4.3). As soon as the last sample of the
trajectory is sufficiently close to the obstacle, corresponding to the keypoint
#1, marked in green, the forward trajectory is invalidated (by TCO) an<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>