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and Industry 4.0 Applications

Davide Dalle Pezze

Abstract

The Fourth Industrial Revolution, also known as Industry 4.0, is built on
various technologies, including Artificial Intelligence, the Internet of Things,
Cloud Computing, Robotics, and Big Data Analytics. The ultimate goal is to
improve efficiency, productivity, and flexibility. For example, Quality Control
allows for the discovery and elimination of defective products. Instead, with
Predictive Maintenance is possible to predict the equipment’s next failure and
schedule maintenance in advance. Industry 4.0 has many challenges that will be
discussed and faced, like Interpretability.
In particular, a significant challenge in Industry 4.0 is when the manufacturing
process is not static but dynamic. The current classic DL setting can only
adapt to changing environments if it is retrained from scratch with all data,
which ultimately results in high costs and training time to update the model.
Continual Learning, on the other hand, allows ML models to be updated and grow
their knowledge over time with minimum computation and memory overhead,
lowering the costs associated with machine learning model maintenance.
As a result, we concentrate on CL techniques that can be applied in an Industry
4.0 field. Many industrial problems, such as Anomaly Detection and Multi-Label
Classification, are outside of the conventional classification problems studied in
Continual Learning, as presented in the following text; therefore, little research
has been conducted. Finally, CL can improve the performance of industrial
machine learning models, making them more adaptable to new environments.
Moreover, they can be updated with less resource use than would otherwise be
necessary.
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Chapter 1

Introduction

The Fourth Industrial Revolution, also known as Industry 4.0, is built on a
variety of technologies, including Artificial Intelligence, the Internet of Things,
Cloud Computing, Robotics, and Big Data Analytics. The ultimate goal is to
improve efficiency, productivity, and flexibility. For example, Robotics and ma-
chine can significantly minimize waste and defects, while data analytics can help
detect bottlenecks and inefficiencies in the manufacturing process. Moreover,
with Predictive Maintenance is possible to predict the equipment’s next failure
and schedule maintenance in advance.
Industry 4.0 has many challenges that will be discussed and faced, like Cyber-
security, Interpretability and Data Distribution Shift.
In particular, a significant challenge in Industry 4.0 is when the manufacturing
process is not static but dynamic, i.e., there is a data distribution shift. Machine
learning has advanced the state of the art in solving numerous research and in-
dustry problems in recent years. In particular, deep neural networks (DNNs)
improved the state of the art in many domains like Computer Vision, Natural
Language Processing, and Audio. However, the current classic DL setting can
only cope with changing environments if it is retrained from scratch with all
data, which ultimately results in high costs and training time to update the
model. Indeed, applying a simple fine-tuning of the model using only new data
will result in what is known as Catastrophic Forgetting (CF), where all previous
knowledge is quickly forgotten.
Continual Learning (CL) proposes to consider a setting where new data arrive
at different moments in the form of a sequence of tasks. Continual Learning en-
ables a DL model to learn and adapt to new tasks without forgetting previously
learned patterns. In other words, CL allows ML models to be updated and grow
their knowledge over time with minimum computation and memory overhead,
lowering the costs associated with machine learning model maintenance.
As a result, we concentrate on CL techniques that can be applied in an Indus-
try 4.0 field. Most of the work in CL is developed in a multi-class classification
setting. However, it is common to have problems to solve in Industry 4.0 that
shift from the classic multi-class classification setting. For example, it would

11



12 CHAPTER 1. INTRODUCTION

be expected in a real scenario to not have supervision and to be in an Unsu-
pervised Learning paradigm. For instance, Anomaly Detection is an important
problem since, in practice, often the labels are not provided. Another realis-
tic industrial scenario would be the weakly supervised learning scenario or the
case where there are missing features in the input samples. These and many
other examples are often not considered in CL. However, it is not immediate
to assume that the CL approaches that work in the classic multi-class classi-
fication scenario can be extended automatically to other scenarios. Therefore,
more research on this front should be developed. As a result, we concentrate
on CL techniques that can be applied in an Industry 4.0 field. Many industrial
problems, such as Anomaly Detection and Multi-Label Classification, are out-
side of the conventional classification problems studied in Continual Learning,
as presented in the following text; therefore, little research has been conducted.
Finally, CL can improve the performance of industrial machine learning mod-
els, making them more adaptable to new environments. Moreover, they can be
updated with less resource use than would otherwise be necessary.

The contributions presented in the thesis can be listed in the following orig-
inal work:

• [298] "Alarm Logs in Packaging Industry (ALPI)" on IEEE DataPort
(2020) - Discussed in Chapter 5

• [69] "FORMULA: A Deep Learning Approach for Rare Alarms Predictions
in Industrial Equipment" published on Journal IEEE Transactions on
Automation Science and Engineering (2021) - Discussed in Chapter 5

• [228] "A Multi-label Continual Learning Framework to Scale Deep Learn-
ing Approaches for Packaging Equipment Monitoring" submitted to Jour-
nal "Control Engineering Practice" - Discussed in Chapter 5

• [229] "Continual Learning Approaches for Anomaly Detection" submitted
to Journal "Engineering Applications of Artificial Intelligence" - Discussed
in Chapter 6

• [70] "AcME — Accelerated model-agnostic explanations: Fast whitening of
the machine-learning black box" published on the Journal "Expert Systems
with Applications" (2023) - Discussed in Chapter 4

In this dissertation, we present an overview on the themes of Industry 4.0
and Continual Learning. The original contributions presented in the following
text are numerous and can be summarized in the following points:

• To foster research in the field of Predictive Maintenance we introduce a
new public dataset called ALPI (Alarm Logs in Packaging Industry).

• A novel approach called FORMULA to solve Alarm Forecasting (AF)
formalized as a multi-label classification (MLC) problem is proposed
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• We propose a new method to select the optima subset of samples to keep
in memory in the Replay strategy in the Multi-label setting. Some idea
will be taken from FORMULA and the validity of approach is confirmed
using a real-world industrial scenario

• We also present an overview of CL approaches applied for Industry 4.0
showing the increasing interest of CL in this field

• We propose a framework to study approaches of Anomaly Detection in
the Continual Learning (ADCL)

• We study the ADCL using as benchmark a complex dataset designed for
AD and evaluating using many AD approaches.

• We propose a novel approach to perform Compressed Replay, where the
images are compressed in memory to keep more samples and to have a
distribution more similar to the original one.

The following text is how the manuscript is structured. In Chapter 2, the
theme of Industry 4.0, including enabling technologies, applications, and re-
search areas, will be discussed. Furthermore, various Industry 4.0 challenges
will be discussed, such as Cybersecurity, Data Distribution Shift, Interpretabil-
ity, and other issues. The Chapter 3 will provide an overview of Continual
Learning, presenting numerous concepts such as the different scenarios in CL,
the differences between CL and related paradigms, and common metrics and
datasets used in the field. It will also provide an overview of the most well-
known CL approaches and explain the various families of methods. Furthermore,
it will be provided with a detailed list of CL applications, focusing on real-world
industrial scenarios. In Chapter 4, a novel solution to Interpretability will be
described, a critical problem of Industry 4.0 when models must be deployed in a
real context. The chapter 5 will highlight the significance of Alarm Forecasting
(AF) for Predictive Maintenance (PdM) as well as an innovative solution for a
real-world case from the packaging industry that has been defined as a multi-
label classification problem. Furthermore, this strategy is extended to work in
the context of Continual Learning, and a new method for performing Replay
in Multi-label is proposed. A framework for evaluating Anomaly Detection ap-
proaches in the Continual Learning environment is presented in Chapter 6. We
provide a benchmark considering several AD approaches and a complex dataset
designed specifically for AD to foster research in the field A novel approach to
Compressed Replay is also presented. The Chapter 7 will give the dissertation’s
conclusions, as well as explore the issues of Continual Learning and Industry
4.0.
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Chapter 2

Industry 4.0

Industry 4.0 is a new, so-called, industrial revolution which focuses primarily
on machine learning, fuelled by real-time data monitoring and processing, inter-
connectivity between machines and computers in the autonomous systems

2.1 Introduction to Industry 4.0

The Fourth Industrial Revolution, or Industry 4.0, is a term used to describe
the current automation and data exchange trend in manufacturing technologies.
Industry 4.0, also known as Smart Manufacturing, is a revolution in manufactur-
ing, and it brings a whole new perspective to the industry on how manufacturing
can collaborate with new technologies to get maximum output with minimum
resource utilization [131].

The First Industrial Revolution lasted from the late 18th century through
the early 19th century. It witnessed the evolution of mechanization. A process
that shifted the emphasis from agriculture to industry as the basis of society’s
economic structure. Other key drivers for this transformation included utilizing
steam power and other new metal know-how. At the end of the nineteenth
century, significant technological advances introduced new energy sources: elec-
tricity, gas, and oil. This new paradigm was called the Second Industrial Rev-
olution (Industry 2.0). People began to use electricity in their daily lives and
factories. This improved the industrial operations’ efficiency. In addition, the
assembly line concept was implemented to increase production. Additionally,
new methods of communication were discovered with the invention of the tele-
graph and the telephone. Finally, the introduction of the automobile and the
airplane at the turn of the twentieth century altered transportation systems.
Industry 3.0 evolved in the second half of the twentieth century. As a result,
nuclear energy emerged as a new source of energy. It also saw the rise of elec-
tronics, with the transistor and microprocessor. This revolution ushered in an
era of high-level industrial automation and the employment of robotics in man-
ufacturing operations. Computers and digital technology are used to develop

15
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and control manufacturing processes. Indeed, an important aspect is the in-
tegration of information and communication technologies (ICT) into industrial
processes. Overall, Industry 3.0 has significantly increased manufacturing and
other industrial sectors’ productivity and efficiency. It has also opened the way
for Industry 4.0, which symbolizes the next stage of the industrial digital rev-
olution. Nowadays we are currently living in the Fourth Industrial Revolution.
Industry 4.0 is the new phase of the industrial revolution which focuses primar-
ily on machine learning, fuelled by real-time data monitoring and processing,
interconnectivity between machines and computers in the autonomous systems
[328] . Industry 4.0 is not only using new machines and new technologies. It is
about using the right technology to improve efficiency and revolutionizing the
way the entire business operates and grows.

Integrating modern digital technology into the manufacturing sector is called
Industry 4.0. More specifically, it is distinguished by incorporating sophisticated
technology into industrial processes such as artificial intelligence, the Internet of
Things (IoT), cloud computing, robotics, and big data analytics. These techno-
logical breakthroughs aim to improve efficiency, productivity, and flexibility in
Industry 4.0. Manufacturing businesses constantly strive to improve their pro-
duction yield, uptime, and throughput to improve product quality while lowering
costs. Nowadays, modern industries collect an enormous amount of data, thanks
to the increased availability of sensors in the production lines. These data can
provide useful information about many quantities of interests whose knowledge
would dramatically impact both productivity and cost management. Overall,
Industry 4.0 has the potential to revolutionize manufacturing and supply chain
management, enabling companies to respond more quickly and effectively to
changing market conditions and customer needs. Industry 4.0 can enhance in-
dustrial efficiency and productivity by automating procedures and optimizing
operations. Robotics and machine learning, for example, can significantly min-
imize waste and defects, while data analytics can help detect bottlenecks and
inefficiencies in the manufacturing process. Additionally, 3D printing and other
advanced manufacturing technologies can enable businesses to offer customized
products on demand [131]. The market for Industry 4.0 technologies is pro-
jected to grow in the coming years as more and more companies adopt these
technologies to improve their operations and stay competitive [32], as visible
from Fig. 2.2.

2.2 Enabling Technologies

One of the key features of Industry 4.0 is the integration of physical and digital
technologies, which allows for the creation of "smart factories" that can operate
with minimal human intervention. This involves using sensors, robotics, and
other advanced technologies to automate and optimize manufacturing processes,
as well as data analytics and cloud computing to enable real-time monitoring
and control.

Various technologies have been used for implementing Industry 4.0 applica-
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Figure 2.1: Evolution of Industry. Image from [328]

Figure 2.2: Size of Maintenance 4.0 market worldwide in 2020 and 2021 with
forecast for future years (from 2022 to 2030) [32]
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Figure 2.3: Enabling technologies involved with Industry 4.0
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Table 2.1: Notation used in this chapter

Nomenclature Symbol
Artificial Intelligence AI
Artificial Neural Network ANN
Augmented Reality AR
Condition-Based Maintenance CBM
Cyber-Physical Systems CPS
Deep Learning DL
Denial of service DoS
Digital Twin DT
Human Machine Interface HMI
Industrial Internet of Things IIoT
Internet of Things IoT
Machine Learning ML
Predictive maintenance PdM
Preventive maintenance PM
Prognostics and Health Management PHM
Return on investment ROI
Remaining Useful Life RUL
Virtual Reality VR

tions. These technologies include IoT, Cloud Computing, AI, Big Data, and
other related technologies [337]. This section focuses on emerging technologies
that will play a significant role in Industry 4.0 in the coming years. It should
be noted that this list is not exhaustive and does not include all emerging tech-
nologies that may impact Industry 4.0.

2.2.1 Artificial Intelligence (AI) and Machine Learning
(ML)

Artificial intelligence was founded as an academic discipline in the 1950s. The
field was founded on the assumption that human intelligence can be precisely
described and human-like intelligence through artificial approaches is possible
[271]. AI is concerned with building smart machines capable of performing tasks
that typically require human intelligence [271].

Industry 4.0 incorporates the digital revolution into the physical world, pro-
viding a promising new direction for artificial intelligence [278, 141]. The artifi-
cial intelligence field has encountered a turning point mainly due to the recent
advancements in industrialization and digitalization. Artificial intelligence is
much more than a research field. It is a future technology with the potential to
redefine many tasks in Industry 4.0 [271]. These technologies enable machines
to learn and adapt to new situations, enabling them to perform tasks that would
be difficult or impossible for humans to do.
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AI technologies are becoming an important technical component of Industry
4.0, helping to perform many challenging tasks in industrial operations. AI
has the potential to transform many different industries and has already been
integrated into a variety of applications, including image and speech recognition,
natural language processing, self-driving cars, and personal assistants. In recent
years, AI technologies have experienced a resurgence in industrialization [108,
195]. The advancements in machine learning and deep learning are generating
significant impacts in many sectors of industries.

The problem domain of AI research includes reasoning, knowledge repre-
sentation [238], planning, learning, and natural language processing [132]. Ap-
proaches include machine learning [121] and others. Many techniques are used
in AI, Deep Learning, genetic algorithm [364], knowledge management [85], in-
telligent systems [99], knowledge-based systems [265], and others.

In [153], study applications of AI under the Industry 4.0 concept. In [24]
is presented the AI technologies in manufacturing systems related to Industry
4.0, including AI-based techniques for production monitoring, optimization, and
control. The study by [86] discusses the importance of AI methods in the con-
trol and operation monitoring of dynamic measurements in automation systems
in Industry 4.0. The study [199] shows how AI techniques can assist the man-
ufacturing process in Industry 4.0 environment. According to [124], AI and
machine learning will put Industry 4.0 forward, with the prediction that much
more fundamental changes in business processes and business models caused by
the integration of AI and other new technology eventually will lead to the fact
that business and industry are changing the way of operation [271].

2.2.2 Big data analytics (BDA)

Big data refers to data sets that are so large or complex that they are difficult to
process using traditional data processing applications. Big data also often have
high variety, which means that it includes data from a wide range of sources
and in various formats, such as text, images, audio, and video. This can make
it difficult to structure and process the data meaningfully.

Big data analytics and technologies support real-time data collection from
many different sources, comprehensive data analysis, and real-time decision-
making. This leads to improved manufacturing flexibility, product quality, en-
ergy efficiency, and improved equipment service through predictive maintenance
[155, 131]. Big data analytics has been widely used in manufacturing for process
monitoring, and fault finding supports new capabilities like predictive analytics
[155, 313].

Collecting, processing, and analyzing real-time Big Data from cyber-physical
systems is a strategic phase for the intelligent transformation of the maintenance
function, especially concerning failure prediction, planning, and risk manage-
ment [315]. This is done through the planning and optimization of interventions
using artificial intelligence tools and techniques such as machine learning and
deep learning or through statistical models and approaches based on the data
and information collected by the different sensors [272].
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2.2.3 Internet of Things (IoT)

The IoT is a new industrial ecosystem that combines intelligent and autonomous
machines, advanced predictive analytics, and machine-human collaboration to
improve productivity, efficiency, and reliability [296, 333]. In other words, the
Internet of Things refers to a network of physical items equipped with sensors,
software, and connectivity to collect and exchange data. Examples of IoT de-
vices range from simple sensors that collect data from the environment, such as
temperature and humidity, to more complex devices that can interact with their
surroundings, such as smart thermostats and smart locks. IoT technologies are
utilized in Industry 4.0 to connect machines, devices, and systems in produc-
tion environments, allowing them to communicate and share data in real-time.
In Industry 4.0, IoT technologies connect machines, devices, and systems in
manufacturing environments, enabling them to communicate and share data in
real-time. The Internet of Things (IoT) enables real-time sensing and actuation,
as well as fast data and information transmission, allowing for remote operation
of manufacturing activities and efficient collaboration among stakeholders.

The increasing use of sensors on physical products allows them to capture,
process, and communicate data with humans and other physical systems. IoT
has the potential to transform many industries by enabling the collection and
analysis of large amounts of data from a wide range of sources. There is enor-
mous potential for creating sensor-based applications, as these sensors provide
real-time data that may be used for predictive maintenance by detecting equip-
ment wear and tear, for better capacity planning, and to assess the usage and
functionality of products [165]. It can also track the location and status of prod-
ucts and materials within the factory, improving supply chain visibility and re-
ducing waste. In conclusion, IoT in Industry 4.0 aims to create a more connected
and automated manufacturing environment, increasing efficiency, productivity,
and innovation.

2.2.4 Cloud computing (CC)

Cloud computing delivers computing services—including servers, storage, databases,
networking, software, analytics, and intelligence—over the Internet. Some key
benefits of cloud computing include scalability, cost, reliability, and perfor-
mance. With Cloud Computing is possible to scale up or down the amount of
computing resources depending on the needs. Therefore, the cost is restricted
to the computing resources effectively used. In general, in the cloud computing
paradigm, users get high-quality services at a lower cost [236]. Moreover, cloud
providers have invested heavily in their infrastructure to make it highly avail-
able, reliable, and secure. Regarding performance, Cloud computing resources
are usually faster and more powerful than what companies can afford.

Due to the potential and practical benefits to society and economy, cloud
computing paradigm has attracted enormous attention from academia and in-
dustry. In particular, Cloud Computing is an important enabler of Industry 4.0,
because it allows companies to store and process vast amounts of data from con-
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nected devices and systems in real-time, enabling them to make better, faster
decisions and optimize their operations.

Cloud connects all manufacturers and customers. Customers communicate
with each other and manufacturers to effectively integrate social demands and
production capacities by using computers or mobile devices.

All manufacturing resources and capabilities are virtualized and encapsu-
lated as services to be managed, allocated, and on-demand used through cloud
[289, 290]. Combining IoT, CPS, BDA, and CC technologies enables smart
manufacturing [174].

Cloud computing enables manufacturers to store and process data remotely,
rather than on local servers or devices. This enables them to access and analyze
large amounts of data from anywhere, at any time.

Industry 4.0 systems often rely on cloud computing to store, process, and
analyze data and provide computing resources on demand. This allows for
greater flexibility and scalability and the ability to access data and services
from anywhere.

More in detail, cloud computing can be used to:

• Analyze data from sensors and other Internet of Things (IoT) devices to
optimize production and maintenance processes.

• Use artificial intelligence and machine learning to predict equipment fail-
ures and improve quality control.

• Connect and coordinate different parts of the supply chain in real-time,
enabling companies to respond faster to changing market conditions.

• Develop and deploy new applications and services quickly and at low cost,
enabling companies to be more agile and innovative.

The manufacturing system in a cloud environment allows for higher uti-
lization without increasing investment or degrading performance, and it frees
manufacturers and users from many details. However, many problems still limit
the expansion of smart manufacturing, such as overfull bandwidth, unavailabil-
ity, latency, data validity, security and privacy, and inefficient interaction [236].
Data generated by various manufacturing resources, which may be geograph-
ically distributed, is experiencing explosive growth. These data are conveyed
over the network to the cloud, where data processing is carried out [100]. Data’s
increasing volume and velocity require high bandwidth, which is very expensive.
When network congestion is severe, some data may be lost. Although the data
stored in the cloud can be accessed from anywhere at any time, the user relies
heavily on the availability of an internet connection and the servers [321]. There-
fore, when data cannot be accessed due to network unavailability, the power of
the cloud becomes unusable. Moreover, some real-time and concurrent scenarios
require time synchronization, bringing real-time issues [39]. Data validity refers
to the large set of insignificant data (e.g., redundancy, noise, temporary data,
etc.) conveyed to the cloud, which wastes resources.
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Strictly related to Cloud Computing, there is the theme of Edge Computing.
To extend the smart manufacturing applications in a cloud environment and of-
fer perspectives for implementing solutions that require very low and predictable
latency, a reference architecture based on edge computing for smart manufac-
turing should be considered. The definition of edge computing is a distributed
computing paradigm that brings computation and data storage closer to the lo-
cation where it is needed to improve response times and save bandwidth [271].
Edge computing has the goal of minimizing latency. Edge computing does this
by processing and storing data outside the core network. The time and dis-
tance for data transmission are reduced by processing the information closest
to its source, and the connection speed dramatically increases. Moreover, after
integrating with 5G, the power of edge computing can increase dramatically.
For the IoT, edge computing helps process much more information, and the
processing speed can be much faster.

2.2.5 Additive Manufacturing

Machining techniques such as cutting, drilling, grinding, and sanding used in
traditional manufacturing processes are referred to as subtractive manufactur-
ing, in which parts and components manufacturing relies on the removal method
[131]. These parts and components are then assembled to form the final prod-
ucts. In contrast,3-D printing relies on additive manufacturing, which forms
the final products by building up successive layers of materials, thus avoiding
the need for parts and component assembly. A computer-aided design (CAD)
software is used in 3-D printing to generate a digital model, followed by creat-
ing (printing) a three-dimensional object in a 3-D printer from raw materials in
either liquid or particle form. Thin layers of raw material are deposited micro-
scopically by the printer so that the deposition of successive layers materializes
in the formation of the final product.

Additive manufacturing allows for the production of complex and customized
objects using a wide range of materials, including plastics, metals, ceramics, and
even living cells. It can revolutionize manufacturing by allowing small batches
of customized products and on-demand production.
With open source kits the barriers to entry for designers and inventors started
to fall. While the price of 3D printers has fallen rapidly in recent years, the
accuracy of 3D printing has significantly improved, and designers are no longer
limited to printing with plastic. It has applications in many sectors as diverse
as healthcare, aerospace, and parts replacement [189]. Although 3-D manufac-
turing systems are still in the initial stages, organizations are expected to use
it more broadly in Industry 4.0. In [57] the need for 3-D printing technology as
an enabler for smart manufacturing is asserted.

2.2.6 Augmented Reality (AR)

AR is an emerging technology developed based on virtual reality (VR), which
generates three-dimensional virtual information through a computer system, in-
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cluding virtual scenes, virtual objects, etc. [320], and then superimposes this
information into the real scene to realize the function of real-world enhancement
and improve the user’s perception of the real world [4].
In general, augmented reality can guide human workers through unfamiliar tasks
and visualize information. It has a wide range of applications in the manufac-
turing industry, such as interactive training and onboarding for new employees,
finding spare components in a warehouse, as well as providing real-time guid-
ance and instructions to technicians conducting maintenance and repair jobs
[217]. This technology can help increase manufacturing process efficiency, ac-
curacy, and productivity and ensure high-quality work and near-zero error rates
in numerous industrial processes.

2.2.7 Robotics and Cyber-Physical System (CPS)

Robotics is a field of engineering that involves the design, construction, opera-
tion, and application of robots. A robot is a machine capable of carrying out
a complex series of actions automatically, especially by being programmed by
a computer. Robotics technologies are used in various applications, including
manufacturing, transportation, healthcare, and the military.

Modern robots are characterized as systems offering autonomy, flexibility,
and cooperation. It is predicted that the robots will soon start interacting with
one another and work safely with humans and even learn from them. Moreover,
these robots will offer a cost advantage and an excellent range of capabilities,
performing most of the processes in the intelligent factory [93].

It allows for automation and the integration of digital technologies in in-
dustrial processes. Advanced robotics technologies are being used in Industry
4.0 to automate repetitive, dangerous tasks or those that require a high level
of precision, such as welding, painting, and assembly. Industrial robots can be
programmed to perform a wide variety of tasks. To improve their performance
and capabilities, they can be integrated with other digital technologies, such as
sensors and the Internet of Things (IoT).

Robotic technologies can automate and optimize various aspects of the man-
ufacturing and production process, such as material handling, assembly, inspec-
tion, and Maintenance. Robots can be used in material handling to move mate-
rials around a factory or warehouse, freeing up human workers for other tasks.
They can also be used to assemble products with high precision and speed,
improving efficiency and quality. In addition, robots can be used to inspect
products for defects and ensure that only high-quality products are shipped to
customers. Finally, robots can be used for maintenance tasks such as cleaning
and lubricating machinery, reducing downtime, and improving safety.

A programmable dual-arm robot is proposed by [207] for material distribu-
tion in the assembly line. Further, to ensure the safe operation of the robot and
monitor the environment, if any disturbance, such as a person or equipment
such as an automated guided vehicle, enters the virtual space, the system stops
the robot’s movement with a unique sound, anticipating some complicity. The
operator has to remove the obstacle before the robot starts working again. As
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manufacturing tasks become more individual and flexible, smart factory ma-
chines must do variable tasks collaboratively without reprogramming.

Cyber-Physical System (CPS) is one of the core foundations of Industry
4.0. CPS presents a higher level of integration and coordination between phys-
ical and computational elements. In CPS, physical and software components
are deeply intertwined, each operating on different spatial and temporal scales
and interacting with each other. With the introduction of CPS, machines can
communicate with each other, and decentralized control systems will be able to
optimize production [271]. CPS are physical systems integrated with computa-
tional elements to sense, actuate, and process data. CPS technologies are used in
various applications, including manufacturing, transportation, healthcare, and
the military.

Robotics and CPS technologies often overlap and are often used together in
various applications. For example, a robotic arm in a manufacturing plant may
be controlled by a CPS that monitors and adjusts the production process in real
time.

2.2.8 Cybersecurity

The industrial data is highly sensitive, encapsulating various aspects of the in-
dustrial operation, including information about products, business strategies,
and companies [332]. As Industry 4.0 involves the exchange of large amounts of
data and the integration of advanced technologies, it also raises cybersecurity
concerns. Industry 4.0 systems are often complex and interconnected, making
them more difficult to secure and vulnerable to attacks. Researchers are devel-
oping techniques and technologies to protect against cyber threats, such as data
breaches and cyber attacks. Since Cybersecurity can be considered a technology
to solve security and privacy problems, this part will be discussed further in the
Section of the Challenges of Industry 4.0.

2.2.9 Digital Twin

A Digital Twin (DT) is a digital or virtual copy of physical assets or products.
A digital twin is a virtual model of a physical system or process that can be
used to simulate and analyze the performance of the system or process.

The term was initially coined by Dr. Michael Grieves in 2002 [130]. Digital
twins are created using data from sensors, historical records, and other sources.
As a result, they can be used to predict how the physical system or process
will behave in different scenarios. DTs connect the real and virtual worlds by
collecting real-time data from the installed sensors. The collected data is either
locally decentralized or centrally stored in a cloud. The data is then evaluated
and simulated in a virtual copy of assets [119]. Integrating data into real and
virtual representations helps optimize the performance of real assets. They can
be used to improve the efficiency, reliability, and safety of physical systems,
and they have the potential to revolutionize the way we design, operate, and
maintain complex systems and processes.
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Digital twins can be utilized to enhance and improve manufacturing pro-
cesses in various ways in Industry 4.0. They can, for example, be used to simu-
late and evaluate manufacturing processes to discover bottlenecks and inefficien-
cies and optimize them for increased performance. For example, digital twins
can predict when equipment will break, allowing maintenance to be arranged in
advance, minimizing downtime, and increasing efficiency. Furthermore, digital
twins can be applied for product design and development, simulating and test-
ing new items and processes, eliminating the need for physical prototypes and
accelerating the development process.

2.3 Research Areas
Machine learning is a key technology in Industry 4.0, as it allows for the automa-
tion and optimization of manufacturing processes. Some of the most relevant
research areas in the use of machine learning for Industry 4.0 and manufacturing
include:

• Predictive maintenance: Machine learning algorithms can be used to
analyze data from sensors and other sources to predict when equipment is
likely to fail, allowing preventive maintenance to be scheduled before the
failure occurs. This can help reduce downtime and improve the overall
reliability of manufacturing systems.

• Quality control: Machine learning can be used to analyze data from
sensors and other sources to identify defects in products in real-time, al-
lowing for quick corrective action to be taken. This can help improve the
overall quality of products and reduce waste.

• Production optimization: Machine learning algorithms can be used
to optimize production schedules and identify bottlenecks in the produc-
tion process. By analyzing data from sensors and other sources, machine
learning can help companies identify opportunities for improvement and
increase efficiency.

• Supply chain optimization: Machine learning can also optimize the
supply chain by analyzing data from multiple sources to identify patterns,
trends, and correlations. This can help companies make more informed
decisions about inventory management, transportation, and other aspects
of the supply chain.

• Asset management: This involves managing and tracking the perfor-
mance and maintenance of equipment and other assets in order to optimize
operations and reduce costs.

• Fault Detection: Fault detection refers to the process of identifying
failures or abnormalities within a system. There are several different ap-
proaches to fault detection, including model-based, rule-based, and data-
driven methods.
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• Sensor Fusion

Sensor fusion aims to improve the accuracy and reliability of the informa-
tion being collected by combining data from multiple sensors. Using sensor
fusion, it is possible to overcome the limitations of individual sensors, such
as their accuracy, range, and sensitivity, and combine the strengths of dif-
ferent sensors to create a more comprehensive and reliable picture of the
environment or system being monitored. Sensor fusion can achieve various
goals, depending on the specific application.

• Virtual Sensing (VS) Virtual sensing involves using computer simula-
tions and models to replicate the behavior of physical sensors, while sensor
fusion involves combining data from multiple sensors to improve the ac-
curacy and reliability of the information being collected. Virtual sensing
can be used as an alternative to physical sensors in some applications, or
it can be used in combination with physical sensors to supplement the
data being collected. For example, virtual sensing can be used to simulate
the behavior of sensors on a manufacturing production line to optimize
the production process, while physical sensors can be used to confirm the
accuracy of the simulated data.

The use of machine learning in Industry 4.0 and manufacturing has the potential
to significantly improve efficiency, productivity, and reliability.

In literature, some terms are used interchangeably or with conflicting defini-
tions, though different terms lead to different results. In the following text, we
will consider Fault Detection and Diagnosis when the monitoring is in real-time,
i.e., in the present. Instead, when talking of Predictive Maintenance or Fault
Prediction, we are referring to the future of the system.

In other terms, differentiation is made among them based on the desired
results. Detection is typically used to recognize imminent failures before the
system fails. With Diagnosis, we also want to determine the fault state. Instead,
with Prognosis, Fault Prediction, and PdM, we are interested in the long-term
behavior of the equipment in terms of failure. Moreover, we are considering
RUL as a possible approach to solving PdM.

2.3.1 Predictive Maintenance

PdM is inevitable for sustainable smart manufacturing in I4.0. The develop-
ment of technology aims to increase productivity in areas such as production,
maintenance, and quality in enterprises. Factors such as ineffective periods due
to malfunctions in production and defective products affect productivity signif-
icantly. A maintenance strategy that is predetermined and implemented at the
right time is an essential factor in increasing efficiency. Maintenance strategies,
also called maintenance policies in the literature, include maintenance activi-
ties such as the parts’ replacement, renewal, and repair required to ensure the
continuity of the health status of the assets in the enterprise throughout their
life and to fulfill the operational functions. Maintenance strategies have been
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classified in different ways by many researchers. However, the literature men-
tions four general maintenance strategies: preventive; predictive; corrective and
prescriptive maintenance [371, 136]. PdM is the process of planning mainte-
nance activities and performing maintenance using various forecasting methods
for potential failures before the failure occurs. PdM activities use data science
to predict when equipment might fail. Based on the data, the fault point is es-
timated and maintenance activities can be planned before this point. The aim
is to ensure the system’s sustainability by planning the maintenance process at
the most appropriate moment before the life of the equipment expires [372, 94].

This involves scheduling maintenance activities before equipment failures
occur to prevent downtime and improve the overall reliability of manufacturing
systems. Some of the main problems that are typically considered in the context
of predictive maintenance include:

• Equipment failures: Predictive maintenance aims to identify potential
equipment failures before they occur, in order to prevent downtime and
avoid costly repairs.

• Downtime: Downtime can be costly for manufacturing companies, as
it can disrupt production and lead to lost revenue. Predictive mainte-
nance can help reduce downtime by identifying and addressing potential
equipment failures before they occur.

• Maintenance costs: Predictive maintenance can help reduce mainte-
nance costs by enabling preventive maintenance to be scheduled before
equipment failures occur, rather than reactive maintenance after the fact.

• Quality: Predictive maintenance can help improve the overall quality of
products by identifying and addressing potential equipment failures before
they result in defects.

Overall, predictive maintenance is an important aspect of Industry 4.0, as it
helps improve the reliability and efficiency of manufacturing systems, as well as
reduce downtime and maintenance costs.

Types of Maintenance

Techniques for maintenance policies can be categorized into the following main
classifications [349, 284, 283, 5, 209] and summarized in Figure 2.4.

1. Run 2 Failure (R2F): also known as corrective maintenance or un-
planned maintenance. It is the most straightforward maintenance tech-
nique performed when the equipment has failed. This approach can also
be risky, as equipment failures can result in unplanned downtime, lost
productivity, and increased repair costs. In addition, equipment that is
allowed to run until it fails may also cause additional damage to other
systems or components, which can further increase the cost of repairs.
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Figure 2.4: Types of Maintenance. Image from [329]

Run-to-failure maintenance can be an effective strategy in some situa-
tions, such as when equipment is inexpensive to repair or replace or when
the cost of performing maintenance is significantly higher than the cost of
equipment failure.

2. Preventive Maintenance (PvM): also known as scheduled mainte-
nance or time-based maintenance. PvM refers to periodically performed
maintenance based on a planned schedule to anticipate failures. The fre-
quency of preventive maintenance tasks is typically based on the type and
complexity of the equipment, as well as its operating conditions and en-
vironment. For example, equipment that operates in harsh environments
or under heavy loads may require more frequent preventive maintenance
than equipment that operates in more benign conditions. It sometimes
leads to unnecessary maintenance, which increases operating costs. The
main aim here is to improve the efficiency of the equipment by minimizing
the failures in production [249].

3. Condition-based Maintenance (CBM): This maintenance method is
based on machine or equipment monitoring of process health, which can
only be executed when required The maintenance actions can only be
carried out when the actions on the process are taken after one or more
degradation conditions. CBM is intended to optimize maintenance activ-
ities and reduce the overall cost of maintenance by avoiding unnecessary
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repairs and downtime. However, CBM usually cannot be planned.

4. Predictive Maintenance (PdM): known as Statistical-based mainte-
nance: maintenance schedules are only taken when needed. It involves
using data and analytics to predict when equipment or systems will likely
fail. It is based on the continuous monitoring of equipment like CBM.
PdM aims to identify potential problems before they occur and to sched-
ule maintenance activities in advance rather than reacting to problems as
they occur. It utilizes prediction tools to measure when such maintenance
actions are necessary. Therefore, maintenance can be scheduled. Further-
more, it allows failure detection at an early stage based on historical data
by utilizing those prediction tools such as machine learning methods, in-
tegrity factors (such as visual aspects and coloration different from the
original), statistical inference approaches, and engineering techniques.

It is required that any maintenance strategy minimize equipment failure rates,
improve equipment condition, prolong the equipment’s life, and reduce mainte-
nance costs [64]. PdM captivates the attention of the industries; hence it has
been applied in the era of I4.0 because it can optimize the use and management
of assets [49, 151].

Components of a PdM system

By using PdM, organizations can improve equipment reliability, reduce down-
time, and lower maintenance costs. There are several key components to a PdM
program:

• Monitoring: This involves using sensors, instrumentation, and other di-
agnostic tools to gather data on the condition of equipment or systems.
This data is used to identify potential problems before they occur and to
determine when maintenance is needed.

• Data analysis: The data collected from monitoring is analyzed to identify
patterns and trends that may indicate an impending failure.

• Predictive analytics: Predictive analytics tools and techniques are used
to analyze the data and make predictions about when equipment is likely
to fail.

• Maintenance planning: Based on the predictions made through predic-
tive analytics, maintenance activities can be planned in advance to avoid
downtime and keep equipment running smoothly.

By using PdM, organizations can improve equipment reliability, reduce down-
time, and lower maintenance costs.
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2.3.2 Fault Detection

Fault detection involves using sensors and other monitoring technologies to de-
tect failures or potential failures in equipment. The goal of fault detection is to
identify and fix problems before they cause equipment to fail or result in un-
planned downtime. By identifying and addressing problems before they become
critical, organizations can reduce the frequency and cost of repairs, improve
equipment reliability and availability, and increase overall productivity.
There are several different approaches to fault detection, including model-based,
rule-based, and data-driven methods. Model-based fault detection involves us-
ing a mathematical model of the system to predict its behavior and identify devi-
ations from expected performance. Rule-based fault detection involves defining
specific rules or thresholds that trigger an alert when certain conditions are
met. Data-driven fault detection involves machine learning techniques to ana-
lyze sensor data and identify patterns that may indicate a fault. In the case of
data-driven usually are considered two cases:

• Anomaly Detection in Unsupervised Learning: Assuming that faults are
not present in the training dataset or are so rare that it is not possible to
train a classification model because of the imbalance.

• Anomaly Detection in Supervised Learning using classification if there are
labels that can be used

Fault detection is often implemented in combination with fault diagnosis,
which involves identifying the root cause of a detected fault,

2.3.3 Remaining Useful Life (RUL)

The remaining useful life (RUL) is the period that a piece of equipment is
likely to operate before it needs to be repaired or replaced. Depending on
the system, this period can be represented in days, miles, cycles, or any other
quantity. RUL can be an important factor in determining when maintenance or
repair work should be performed or when a replacement should be considered.
Therefore, it enables maintenance planning, optimizes operating efficiency, and
avoids unplanned downtime [221].

RUL is an essential concept in various fields, including engineering, main-
tenance, and asset management. It is used to plan and budget maintenance
and repair work, optimize the use of resources, and ensure the safe and reliable
operation of systems and equipment.
RUL is often used in the context of predictive maintenance. In predictive main-
tenance, RUL can identify when maintenance or repair work should be per-
formed to extend the useful life of the equipment or system [237]. This can be
done by monitoring the performance and condition of the equipment or system
over time and using data and analytics to predict when it will fail or require
maintenance. Identifying potential problems before they occur makes it possi-
ble to take proactive action to prevent failures and extend the useful life of the
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equipment or system.
The estimation of RUL is a real challenge because the relevance and effective-
ness of maintenance actions depend on the accuracy and precision of the results
obtained RUL = tf − tc. A confidence measure should also be constructed to
indicate the degree of certainty of the RUL.

Generally, two types of methods are used to predict equipment life: physics-
based and data-based methods [361].

The physics-based approach uses mathematical principles such as statistics
and probability to create accurate mathematical models from prior knowledge
to predict equipment life.

However, relying on prior knowledge can lead to poor generalization. Data-
driven methods aim to explore the potential relationship between monitored
sensor data and their RUL value based on historical data.
The RUL of equipment is a random variable that depends on the equipment’s
current age and health information. It gives a machine, component, or system
the remaining time before it is no longer functional. The research has shown
interest in using remaining life estimates within industries [370].
Machine learning can be used to estimate the remaining useful life (RUL) of
equipment or systems. In addition, these techniques can analyze data from sen-
sors or other sources to identify patterns and trends that may be used to predict
the future performance of the equipment or system.
One common technique for estimating RUL using machine learning is to use
regression algorithms. Regression algorithms are designed to predict a numeri-
cal output based on input features. For example, a regression algorithm could
be trained to predict the RUL of a piece of equipment based on data about its
usage, maintenance history, and operating conditions.
Another common machine learning technique for estimating RUL is classifi-
cation. Classification algorithms are designed to predict a categorical output
based on input features. For example, a classification algorithm could be trained
to predict whether a piece of equipment will likely fail within a certain period
based on data about its usage, maintenance history, and operating conditions.
In particular, Deep Learning techniques can also be used to estimate RUL.
These techniques can analyze complex data and identify patterns and trends
that may not be detectable using other methods. In addition, Deep Learn-
ing algorithms can be trained on large amounts of data and often make more
accurate predictions than machine learning techniques.

2.4 Machine Learning for I4

Artificial intelligence (AI) as an intelligence exhibited by machines has been an
effective approach to human learning and reasoning [213]. Machine learning and
data mining have recently become the center of attention and the most popular
topics among the research community [306]. This section presents the various
machine learning algorithms considered in the literature in the context of In-
dustry 4.0. For each algorithm, we provide a brief overview of its functioning
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and some examples of its use in the context of Industry 4.0. Please note that
these are just a few examples, and much more research has been conducted in
this field.
ML uses increased computing power and various software to gain meaningful
information and knowledge from big data collected from the environment [23].
The most important techniques that are used for learning, classified by the
available feedback, are supervised, unsupervised, and reinforcement learning
methods [205].
Machine learning (ML) techniques have emerged as a promising tool in PdM
applications for smart manufacturing in I4.0; thus, it has increased the at-
traction of authors in recent years. In general, ML applications provide some
advantages, which include maintenance cost reduction, repair stop reduction,
machine fault reduction, spare-part life increases and inventory reduction, oper-
ator safety enhancement, increased production, repair verification, an increase
in overall profit, and many more. These advantages also have a tremendous
and strong bond with the procedures of maintenance [49, 226, 264, 30, 312].
As of today, ML techniques have been widely applied in several manufacturing
areas (such as maintenance, optimization, troubleshooting, and control) [335].
The rapid development of technologies interconnected with ICT and IoT en-
ables manufacturing growth, leading to Industry 4.0. The implementation of
CPS combined with IoT can provide intelligent, flexible systems capable of self-
learning, which presents the core of Industry 4.0 [213]. As a part of an intelligent
system in Industry 4.0, ML is broadly implemented in various fields of manu-
facturing where its techniques are designed to extract knowledge from existing
data. The new knowledge (information) supports the decision-making process of
a manufacturing system. But the ML techniques’ end goal is to detect patterns
among the data sets or regularities that describe the relationships and structure
between those sets [336].
ML is a technology by which the outcomes can be forecasted based on a model
prepared and trained on past or historical input data and its output behavior
[194]. ML approaches have tremendous advantages, as they can handle multi-
variate, high dimensional data and extract hidden relationships within data in
complex, dynamic, and chaotic environments [49, 335, 295]. However, the per-
formance and advantages might differ depending on the ML approach chosen.
As of today, ML techniques have been widely applied in several manufacturing
areas (such as maintenance, optimization, troubleshooting, and control) [335].
From the manufacturing perspective, various types of big data sets can be cap-
tured, collected, extracted, and analyzed to improve the traditional manufac-
turing systems [213, 90]. Finding the knowledge in big data and transforming
it into information is done by Knowledge Discovery in Databases (KDD) with
the help of ML techniques [213]. According to escobar2017machine, the pri-
mary objective of ML applications in combination with big data analytics is the
achievement of defect-free and fault-free processes. Most manufacturing diffi-
culties are related to classification issues, where the experts in the industrial
field have to determine a class label for a specific object or situation based on
the big data set [231].



34 CHAPTER 2. INDUSTRY 4.0

The applications of ML in manufacturing refer to pattern recognition in exist-
ing sets of data. That is beneficial for the development of foreseeing the future
behavior of the manufacturing system with the end goal being to detect the
present behavior patterns or regularities that describe relations between data
[213], [336]. Also, supervised learning is employed for investigating the decision-
making and process-planning problems in manufacturing [231].
Nowadays, ML algorithms have wide utilization in different manufacturing ar-
eas such as optimization, troubleshooting, and quality control [23]. Moreover,
the result of the scientific research has shown that ML techniques are consid-
ered a powerful tool for permanent quality improvement in a large and complex
process, e.g., semiconductor manufacturing [231].

2.4.1 Supervised Learning

In supervised learning, a system is trained with data that has been labeled.
The labels categorize each data point into one or more groups. Then the sys-
tem learns how this training data is structured and uses this to predict which
categories to classify new output. The final goal of supervised learning process
is that the outputs are close enough to be useful for all given input sets.

The most common supervised machine learning assignments are classifica-
tion, and regression [336]. In classification assignments, the program has to learn
how to predict the most likely category, class, or label for discrete output values
from one or more input data sets. Similar to classification, regression problem
also requires supervised learning techniques. The difference in regression prob-
lems is that programs must foresee and predict the value of a continuous output
by themselves [241]. According to [336] as well as [129], supervised learning is
the most commonly used ML technique because majority of applications can
provide labeled data.
Supervised learning is a type of machine learning in which an algorithm is
trained on a labeled dataset, meaning that the data has been labeled or classi-
fied in some way. Supervised learning aims to make predictions or classify new
data based on the patterns and relationships learned from the training data.
For example, in Industry 4.0, supervised learning could predict equipment fail-
ures or maintenance needs by training a model on a dataset of historical equip-
ment performance data labeled with failure or non-failure instances. This could
allow a company to schedule maintenance and prevent unexpected downtime
proactively. Supervised learning could also be used to optimize production
processes by predicting the yield of a manufacturing process based on various
input variables, such as raw material quality and equipment performance. This
could allow a company to optimize its production and reduce waste. Supervised
learning could also improve supply chain management by predicting demand for
products or materials based on historical data, allowing a company to optimize
its production and inventory management.
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2.4.2 ML Algorithms in Manufacturing

Support vector machine (SVM)

A supervised learning algorithm is used for linear and non-linear problems, such
as classification and regression [259]. SVMs work by finding the "hyperplane"
that maximally separates the data points of different classes. The hyperplane
is chosen such that it maximally separates the data points of different classes
and has the largest margin, or distance, between the data points and the hyper-
plane. The data points closest to the hyperplane are called "support vectors,"
and they play a critical role in determining the position of the hyperplane. Once
the SVM has been trained on a labeled dataset, it can classify new data points
by determining which side of the hyperplane they fall on. SVMs are popular
because they are effective at handling high-dimensional data and relatively sim-
ple to implement. The biggest drawbacks of SVM are its slow learning speed
and its lack of explanation ability to humans [147].
A SVM model is used in [234] to identify failures in automotive transmission
boxes. In this study, four gearboxes are tested at two different speeds and load
conditions, and then the resources are extracted from the vibration signals ac-
quired to train a SVM. Another work proposing a SVM model for PdM is [288].
In this work, an ion filaments prediction module is built. The proposed model
is based on the decision limit provided by the SVM model. The used data are
synthetic and generated using Monte Carlo simulation. As last example, a SVM
is employed in [160] to predict alarm faults in a bearing of a rail network.

Random Forest

A decision tree (DT) is a tree-like model of decisions, with an internal node
representing a feature, the branches representing the possible decisions based
on that feature, and the leaf nodes representing the final decision or prediction.
To create a decision tree, the algorithm starts at the root node and splits the
data into subsets based on the feature that maximally separates the data into
different classes or values.
A random forest is an ensemble learning method that combines the predictions
of multiple decision trees to make a more accurate and stable prediction. RF
was developed by Breiman [37]. It works by training a large number of decision
trees on randomly selected subsets of the data and then averaging their predic-
tions to make the final prediction. This helps to reduce the overfitting that can
occur when training a single decision tree on the entire dataset. According to
[28], RFs have shown good performance when the number of variables is larger
than the number of samples (observations).
In [235] a generic method for predicting repairs to various components of com-
mercial vehicles. However, the method is evaluated using only air compressors.
In [45], RF generates dynamically predictive models. This work proposes an im-
provement of the paper [154], where monitoring of wind turbines is performed.
To do this, status data (activated and disactivated alarms) and operational data
(about the performance of the wind turbines) are employed to design the RF
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model. The main contributions of the paper [45] are speed in data processing,
scalability, and automation. In [281] it proposed a real-time predictive fault
detection system to perform hard disk drive faults. As last example, [150] apply
a RF model to detect the presence or absence of an issue in refrigeration and
cold-storage systems.

XGBoost (eXtreme Gradient Boosting)

XGBoost was developed by [56], a scalable tree boosting system widely used by
data scientists that provides state-of-the-art results on many problems. It is a
gradient boosting algorithm that can be used for classification and regression
tasks. It works by training a sequence of weak decision trees and combining their
predictions through an ensemble method to make a final prediction. XGBoost
is known for its efficiency and effectiveness and has achieved state-of-the-art
performance in many machine learning competitions.
For instance, research on predicting a printing machine’s downtime was reported
based on real-time predictions of imminent failures [359]. Their study used un-
structured historical machine data to train the ML classification algorithms,
including RF and XGBoost, to predict machine failures. For Predictive Main-
tenance, in [302] used XGBoost for Data-wind turbines.

k-Nearest Neighbour (KNN)

Supervised machine learning algorithm that can be used for classification or
regression. It stores all available cases and classifies new ones based on a sim-
ilarity measure (e.g., distance functions). Classification is done by a majority
vote of its k nearest neighbors. For example, if k=3, the new case would be
classified by a simple majority vote of its 3 nearest neighbors. One of the main
advantages of k-NN is that it is a simple, easy-to-implement algorithm. It is
also relatively fast and can handle high-dimensional data well. However, one
of the main disadvantages of k-NN is that it can be computationally expensive
to find the k nearest neighbors for each new data point, especially if there is
a large training dataset. Moreover, it is important to keep in mind that the
performance of the k-NN algorithm can be sensitive to the choice of k and the
distance metric. Finding the k nearest neighbors for each new data point can
be computationally expensive.
The k-NN (k-nearest neighbor) algorithm can be used in Industry 4.0 for pre-
dictive maintenance, quality control, and fault detection. Based on sensor data,
k-NN can classify equipment as "healthy" or "failing" in predictive maintenance.
In quality control, k-NN can classify products as "defective" or "non-defective"
based on data collected during manufacturing. In fault detection, k-NN can
classify equipment as "normal" or "faulty" based on data collected from the
equipment. A real study of kNN was performed in [314] for Fault Diagnosis on
rolling bearings.
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Naive Bayesian

It is a supervised machine learning algorithm based on the Bayesian theorem,
which states that the probability of an event occurring is equal to the prior prob-
ability of the event occurring multiplied by the likelihood of the event occurring
given certain observations or evidence. In machine learning, Naive Bayes can
be used for classification tasks. It makes predictions based on the probability
of an event occurring, given certain features or attributes. One of the main ad-
vantages of Naive Bayes is that it is a simple, easy-to-implement algorithm that
can be used for a wide range of classification tasks. It is also relatively fast and
can handle large amounts of data well. However, one of the main disadvantages
of Naive Bayes is that it assumes independence between features, which is often
not true in real-world data. This can lead to poor performance on some tasks.
A Naive Bayesian Classifier for Remaining Useful Life Prediction was used con-
sidering degrading bearings [78]. Naive Bayesian Classifier was used in [118] for
Predictive Maintenance in Oil and Gas.

Deep learning

The Deep Learning (DL) concept appeared for the first time in 2006 as a new
field of research within machine learning [306]. Deep learning is inspired by the
structure and function of the brain, specifically the neural networks that make
up the brain. It is called "deep learning" because it involves training artificial
neural networks with many layers, typically consisting of multiple interconnected
"hidden" layers between the input and output layers. The ANN allows an ar-
tificial system to perform supervised, unsupervised and reinforcement learning
assignments [336]. Deep learning has achieved state-of-the-art performance on
several tasks, including image and speech recognition, natural language pro-
cessing, and machine translation. It has also been applied to other domains,
including healthcare, finance, and self-driving cars. One of the key advantages
of deep learning is its ability to automatically learn features from raw data
without manual feature engineering. This makes it well-suited to tasks where
the relationships in the data may be complex and difficult to specify explicitly.
However, training deep learning models can be computationally intensive, re-
quiring a large amount of labeled training data to perform well. Additionally, it
can be challenging to interpret the decisions made by deep learning models, as
they are typically composed of many layers of interconnected neurons, making
it difficult to understand how the model arrived at a particular decision.

• Feedforward neural networks: These are the most common type of
neural networks, in which the data flows through the network in one di-
rection, from the input layer to the output layer, without looping back.

• Convolutional neural networks (CNNs): These are specialized neural
networks for processing data with a grid-like structure, such as an image.
They are composed of convolutional layers, which apply a set of filters to
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the input data to extract features, and pooling layers, which reduce the
dimensionality of the data.

• Recurrent neural networks (RNNs): These are neural networks that
are designed to process sequential data, such as time series or natural
language. They are composed of recurrent layers, which allow the network
to maintain a state that depends on the previous input.

• Generative adversarial networks (GANs): These are a type of neural
network that consists of two networks: a generator network and a discrim-
inator network. The generator network generates synthetic samples, while
the discriminator network attempts to distinguish the synthetic samples
from real samples. The two networks are trained simultaneously, with
the generator network trying to generate samples that the discriminator
network cannot distinguish from real samples.

Artificial Neural Networks (ANNs) are among the most common and applied
ML algorithms. They have been proposed in many industrial applications, in-
cluding soft sensing [276] and predictive control [270]. [31] employs an ANN.
It was developed as bench test equipment designed to mimic the operational
condition of a wind turbine to monitor its conditions. This procedure enables
fault recognition in the critical components of the wind turbine. The authors
collected vibration data in a healthy condition and a deteriorated condition.
In [146] ANNs detect faults in industrial equipment for anode production in
real-time, using process sensor data from operation periods. In [218], Convolu-
tional Neural Network (CNN), a class of deep learning algorithms, is proposed
to predict faults in acoustic sensors and photovoltaic panels, respectively.

2.4.3 Unsupervised Learning

Unsupervised Learning represents learning where the evaluation of the action is
not dependent, provided or supervised, because there is no expert [336]. Unlike
Supervised Learning, Unsupervised Learning does not learn from labeled data.
Instead of that, it discovers patterns in the data. The main goal of Unsuper-
vised Learning is to discover the unknown relationships between samples using
clustering analysis [336]. Another unsupervised learning task is dimensionality
reduction [129]. It represents the process of discovering the relationships be-
tween input data sets and can be used for visualizing. Considering that some
problems might contain thousands and thousands of input data, a problem with
big data is that it becomes impossible to visualize [23].

• Dimensionality Reduction: In unsupervised learning, dimensionality
reduction is often used as a tool for exploring and understanding the un-
derlying structure of the data. By reducing the dimensionality of the data,
it can be easier to visualize and identify patterns or trends in the data.
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Dimensionality reduction can also extract meaningful features or represen-
tations of the data, which can be used as inputs to other machine learning
algorithms.

• Clustering: The assignment is to discover groups of related observations
of the input data, namely clusters [23]. Such observations within groups
have cognition based on some similar measurements where similar points
are grouped together. Clustering is a common approach used in unsuper-
vised learning. Clustering aims to identify natural groups or patterns in
the data that may not be immediately obvious.

• Anomaly detection: Anomaly Detection (AD) is an important and chal-
lenging problem in the field of Machine Learning (ML). Anomalies are
patterns characterized by a noticeable deviation from the so-called nor-
mal data, where normal means compliance with some typical or expected
features. In order to effectively detect anomalies, it is important to clearly
understand what constitutes normal behavior and how to differentiate it
from abnormal patterns.

• Auto-Encoders: These are a type of neural network that can be used
for dimensionality reduction and feature extraction.

• Association rule learning: This involves identifying relationships be-
tween variables in the data, such as finding items that are frequently
purchased together.

Auto-Encoder(AE)

Auto Encoder (AE) is an unsupervised learning algorithm that extracts features
from input data without label information needed. It mainly consists of two
parts, an encoder and a decoder. This type of neural network can be used for
dimensionality reduction. The encoder can perform data compression, especially
in dealing with input of high dimensionality, by mapping input to a hidden layer
[252]. The decoder can reconstruct the approximation of input. For example,
suppose the activation function is linear and we have less hidden layers than the
dimensionality of input data [319].
Several variants of AE have been developed and listed as follows:

• Vanilla autoencoder: This is the simplest form of autoencoder, which
consists of an encoder and a decoder network, with the goal of reconstruct-
ing the input data from a reduced-dimensional representation.

• Convolutional autoencoder: This type of autoencoder is designed to
process data that has a grid-like structure, such as an image. It uses
convolutional layers in the encoder and decoder networks to capture the
spatial relationships between pixels in the input data.

• Denoising autoencoder: This type of autoencoder is trained to recon-
struct the original input data from a corrupted version of the input. The
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goal is to learn a robust representation of the data that is robust to noise
and other forms of corruption.

• Sparse Auto Encoder (SAE): SAE makes the most of the hidden unit’s
activations close to zero by imposing sparsity constraints on the hidden
units, even the number of hidden units is large.

• Contractive Auto Encoder (CAE): In order to force the model resis-
tant to small perturbations, CAE encourages learning more robust repre-
sentations of the input x.

• Variational autoencoder (VAE): This probabilistic model learns a con-
tinuous latent space, which can be used to generate new samples that are
similar to the training data. The key difference between a VAE and a
traditional autoencoder is that the latent space learned by a VAE is con-
tinuous and has a well-defined probability distribution, typically a Gaus-
sian distribution. This allows VAEs to generate new samples by sampling
from the latent space and passing them through the decoder network. As
a result, VAEs have many applications, including image generation, text
generation, and anomaly detection.

Clustering

There are several different approaches to clustering, including k-means, hierar-
chical, and density-based. K-means clustering involves dividing the data into
a predetermined number of clusters based on the distance between the data
points. Hierarchical clustering involves creating a hierarchy of clusters, with
each cluster divided into smaller subclusters. Density-based clustering involves
identifying clusters based on the density of the data points, with clusters being
defined as areas of high density surrounded by areas of lower density. These
different approaches can be applied in various contexts, including Industry 4.0,
to gain insights and improve decision making.

K-means is a clustering algorithm used to partition n observations into k
clusters, where each observation belongs to the cluster with the nearest mean.
This popular approach involves dividing the data into a predetermined number
of clusters based on the distance between the data points. The k-means model is
a popular clustering algorithm that uses an unsupervised strategy to determine
a set of clusters [76]. The main aim is to find the k partitions (or clusters) of
the dataset so that “close” samples to each other are associated with the same
cluster, and “far” samples from each other are associated with different clusters
[36]. The k-means algorithm is easy to implement. In addition, it presents good
performance and handles large data sets (as long as the number of clusters k is
small), and it can change the centers of the clusters with retraining when new
samples are available. Another important feature of the k-means algorithm is
that it minimizes inter-class variance.
It is commonly used in the industry for data analysis and data mining tasks. In
the context of Industry 4.0, k-means can be used to cluster data from sensors
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and other sources of data in order to gain insights and improve decision-making.
For example, k-means could be used to cluster data from sensors on a manufac-
turing line to identify patterns and improve efficiency.
For example, in [87] is employed k-means to analyze the behavior of wind tur-
bines by using vibration signal analysis. In [89], k-means is applied to auto-
matically extract groups (clusters) in dissolved gas data in the insulating oil
of a transformer. The aim was to identify the characterization of each cluster
that induces a fault or an alert for possible maintenance actions. The k-means
clustering algorithm was developed using Euclidean distance as a similarity cri-
terion. In [303], it is proposed to use a k-means algorithm to identify clusters
using data (i.e., sensors of the platform temperature, oxygen percentage in the
process chamber and process chamber pressure) from a selective laser melting
machine tool.

Conclusions

To summarize, Unsupervised learning is a type of machine learning where the
data is not labeled or annotated, and the goal is to discover patterns or rela-
tionships in the data. Unsupervised learning algorithms do not have a specific
target or output they are trying to predict. Instead, they must rely on the
structure of the data to identify patterns or relationships.

In the context of Industry 4.0, unsupervised learning could be used to im-
prove various manufacturing and supply chain processes. For example, unsu-
pervised learning can detect anomalies in production data, such as unexpected
changes in output or quality, which could indicate a problem with the manufac-
turing process. Unsupervised learning could also be used to identify patterns
in customer behavior, such as purchasing patterns or preferences, which can
optimize marketing and sales efforts.

Unsupervised learning could also improve supply chain management by iden-
tifying patterns in the flow of materials and finished products through the supply
chain. This could allow a company to optimize its logistics and transportation
operations and identify potential bottlenecks or inefficiencies.

2.4.4 Reinforcement Learning

Reinforcement learning is a type of machine learning in which an agent learns by
interacting with its environment and receiving feedback in the form of rewards
or punishments. The goal of reinforcement learning is to learn a policy that
maximizes the agent’s cumulative reward over time.

In reinforcement learning, the agent learns by trial and error, gradually im-
proving its performance as it receives more and more feedback. The agent learns
through a process of exploration and exploitation, trying out different actions
to see what works best and then relying on the actions that have proven most
effective in the past.
One potential use of reinforcement learning in Industry 4.0 is optimizing pro-
duction processes. For example, an industrial robot could use reinforcement
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learning to learn how to perform tasks more efficiently by receiving rewards for
completing tasks and punishments for mistakes. The robot could then use this
learning to improve its performance continually. Another potential use of rein-
forcement learning in Industry 4.0 is optimizing supply chain management. For
example, a company could use reinforcement learning to learn how to effectively
manage the flow of materials and finished products through its supply chain by
receiving rewards for meeting delivery deadlines and punishments for delays.
In process control, to circumvent a conventional model-based approach and an
online adaptation to continuous process modifications, [215] initially developed
a deep RL approach to control the liquid levels of multiple connected tanks.
The controller minimized the target state difference and adjusted inlet flow
rates between multiple tanks accordingly. In production scheduling, [166] pro-
posed a study. High uncertainties regarding customized products, shutdowns,
or similar cause the complexity of production scheduling. To cope with the
complexities and to reduce human-based decisions, [166] proposed a multi-class
DQN approach that feeds local information to schedule job shops in semicon-
ductor manufacturing. Based on the edge framework, the DQN demonstrated
superior performance and reduced makespans and average flow times. Another
application for RL is personalized production, it has an enormous impact on
the complexity of production control due to individual product configuration
options. Depending on the customer requirements, the products must be dis-
patched to where they can be processed, under consideration of several technical
and logistic constraints and optimization variables [325]. To meet the require-
ments in wafer fabrication dispatching, [12] implemented a single agent DQN
that processed 210 data points as a single state input (such as machine loading
status or machine setup). This enabled the DQN to meet strict time constraints
better than competitive heuristics (TC, FIFO) while reaching predefined work-
in-progress (WIP) targets as a secondary goal. Regarding maintenance, the
interaction of several linked machines in a serial production line was considered
by [122]. Based on a large state space containing buffer levels, operating inputs,
and fault indicators for each machine, the algorithm made decisions about which
machines needed to be turned off at a given time for service. A review of CL
approaches applied in production systems is proposed in [219].
Reinforcement learning has the potential to be a powerful tool for improving
industrial processes and supply chain management in the context of Industry
4.0 by allowing systems to learn and adapt to changing conditions and optimize
their performance over time.

2.4.5 Public data sets for predictive maintenance

Public datasets are useful in research because they enable the comparison and
evaluation of various research approaches. They aid research efforts’ progress
and robustness by offering a shared base for comparison. Public datasets can
help to establish standards and best practices for data collection and con-
tribute to the repeatability and dependability of the research. Furthermore,
public datasets allow researchers to test their models and algorithms on a
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Table 2.2: A short list of public datasets for predictive maintenance.

Reference Description
of Dataset

Lopes & Camarinha-Mato, 1999 Force and torque measurements
to detect robot failures

Lopes & Camarinha-Mato, 2009 Failure data of a generic gearbox

Lindgren & Biteus, 2016 Operation data and failures of a pressure
pressurizing system of a truck

Tarapore et al., 2017 Failure data in a simulated swarm of 20 e-puck robots
(mobile robot with differential wheels)

broader and more diverse set of data, which can aid in identifying potential
biases and limitations as well as improving the generalization of the study.
Moreover, they can stimulate the sharing of fresh work and ideas to advance
the field.

On this premise, some examples of public datasets for Predictive Mainte-
nance in the context of Industry 4.0 are discussed in [50] and reported in the
Tab. 2.2.

The first data set, proposed by Lopes and [177], aims to detect robot fail-
ures using force and torque measurements. It consists of 463 samples and 30
attributes. The second data set, proposed by [176], aims to detect faults and
estimate magnitudes for a gearbox using accelerometer data and information
about bearing geometry. The third data set, proposed by [169], aims to detect
component failures in an air pressure system for trucks. It consists of 76000
samples and 171 attributes. Finally, the fourth data set, proposed by [291],
aims to detect faults in robot swarms. For further information about the data
set, see their references. Another interesting list of public datasets is provided
by [135].
The public datasets can be used to test and evaluate PdM methodologies in dif-
ferent scenarios. However, it is important to highlight that a PdM methodology
is unique and depends on the application [50]. It depends on the environment,
the produced data, and the equipment. And if any of these entities changes,
then, in most cases, the PdM methodology also needs to be changed. These pub-
lic data sets can support new researchers in developing, testing, and comparing
different ML techniques in PdM applications.

2.5 Challenges

Even though adopting predictive maintenance in an industrial context is in-
evitable, it is surrounded by challenges that hinder the application and collective
adoption of this smart maintenance approach.
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Table 2.3: Notation used in this chapter

Nomenclature Symbol
Artificial Intelligence AI
Artificial Neural Network ANN
Augmented Reality AR
Condition-Based Maintenance CBM
Cyber-Physical Systems CPS
Deep Learning DL
Denial of service DoS
Digital Twin DT
Human Machine Interface HMI
Industrial Internet of Things IIoT
Internet of Things IoT
Machine Learning ML
Predictive maintenance PdM
Preventive maintenance PM
Prognostics and Health Management PHM
Return on investment ROI
Remaining Useful Life RUL
Virtual Reality VR

2.5.1 Cybersecurity

Cybersecurity is the set of practices to protect computers, servers, mobile de-
vices, electronic systems, networks, and data from digital attacks, theft, and
damage. It involves using technologies, processes, and policies to secure net-
works, devices, and data from unauthorized access, use, disclosure, disruption,
modification, or destruction.

Cloud-based systems, the IoT, and the interconnectedness of smart indus-
tries have significantly increased unexpected security breaches [198]. Due to
digitalized and connected business processes, Industry 4.0 is more vulnerable
to cyber espionage or cyber sabotage. Currently, we are witnessing the de-
velopment of well-organized groups of cyber criminals with excellent skills and
accustomed to targeting specific industries to hack sensitive information and
intellectual property.

The problem associated with this phenomenon is not limited to its impact
on sales but also includes damage to the organization’s image, loss of know-
how and reduction in the level of competitiveness of affected organizations [224]
[134].

One of the characteristics of Industry 4.0 is the ability to connect across or-
ganizational environments, which has the potential to make the AP provisioning
chain more efficient. However, supply chain systems have inherent security vul-
nerabilities that attackers exploit.

One such security vulnerability is at the supplier level, which is vulnerable to
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phishing attacks and theft of privileged credentials, resulting in massive data ex-
posure. Security awareness, access control through authentication mechanisms,
cryptographic processes, and behavioral analysis are the security mechanisms
that can help prevent supply chain hacking [25].

Another type of attack is Denial of service (DoS), which makes a system
or application unavailable. For example, a DoS attack can be achieved by
bombarding a server with a large number of requests to consume all available
system resources, passing malformed input data to the server that can crash
a process, infiltrate a virus, or destroy or disable a sensor in a system, not
allowing it to function normally [224]. Industry 4.0 relies on a large number of
interconnected systems and processes, and DoS attacks are a very significant
threat in such environments [222].

The transition to Industry 4.0 is a monumental task impacting many areas of
today’s manufacturing industry, including security. Most manufacturing com-
panies are unaware of the security risks associated with adopting the Industry
4.0 paradigm [198]. Typically, they only address security issues when a serious
incident occurs. Therefore, it is critical and essential that organizations adopt
the development of a strategy to deploy and manage the security compliance
processes that Industry 4.0 requires, including reducing the organization’s ex-
posure and effectively managing the mitigation process [25]. In other words,
individuals and organizations must stay up-to-date on the latest cybersecurity
threats and best practices to protect themselves and their sensitive information.

2.5.2 Financial and Organizational Limits

Despite the availability of predictive maintenance algorithms, companies that
want to benefit from Industry 4.0 still have to trade off the opportunities of
predictive maintenance against the capital expenditure required to purchase
necessary instrumentations, software, and expertise. This disadvantage is more
important in the early stages of predictive maintenance development when ac-
tual data on normal and abnormal equipment behavior is lacking or scarce, and
in the case of new systems, when there is no experience with their operation.

Predictive maintenance efforts, such as sensor installation, information re-
trieval, model preparation and maintenance, and maintenance activities, gener-
ate costs for the companies in which predictive maintenance methods are intro-
duced. These costs can vary depending on multiple factors, such as the type and
complexity of equipment and corresponding sensors, the cost of consulting, in-
stallation, and knowledge extraction, and whether the necessary expertise can be
found internally or externally [327]. Moreover, companies may face challenges
finding and retaining skilled workers familiar with Industry 4.0 technologies.
This can be particularly challenging in industries not traditionally associated
with technology.

Companies may hesitate to invest in Industry 4.0 technologies if they are
not convinced that the benefits outweigh the costs. This can be especially
challenging if the benefits of these technologies are difficult to quantify or are
not immediately apparent. One method of assessing whether the introduction
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of predictive maintenance can be beneficial is to create a projected return on
investment (ROI) [79]. The projection of the predictive ROI should consider
the value of predictive maintenance results, the payback time, and the described
costs.

2.5.3 Data Source Limits

The availability of relevant data is essential for creating a production process
management model. However, companies rarely have all the relevant data at the
beginning of the introduction of production process management [185]. After
using the already available data, it is necessary to identify the gaps and aim to
resolve them.

Furthermore, the quality of the available data can vary significantly, and
poor quality data can limit the usefulness of the insights that can be derived
from it. For example, data that needs to be completed, corrected, or updated
can lead to incorrect conclusions or decisions. If only part of the data is affected
by unsatisfactory quality, this can be overcome during data preparation, as long
as the amount of data points is sufficient to achieve statistical significance and
as long as defect detection can successfully isolate machine-critical points [137].

In Industry 4.0, various sources often generate data, including sensors, de-
vices, and systems. Integrating this data can be challenging, as different sources
may use different formats, protocols, and standards.

The company using predictive maintenance methods may then face chal-
lenges when the necessary confidence in the data does not hold true, i.e., if
sensors, controllers, or other data sources provide inaccurate measurements.
This can result in incorrect predictions and missed maintenance urgency or false
alarms. Another challenge for sensor technology is that sensors currently oper-
ate offline without contributing to online data. In addition, sensors are subject
to downtime, instrument degradation, noise, or simply the sensor may fail. It
is then important to clean the data before applying the predictive maintenance
algorithm to predict the true reality and not distort the results.

Other challenges are connected to Data Privacy, Industry 4.0 involves the
collection and analysis of large amounts of data, which raises concerns about
data privacy and the potential for misuse of personal information. Moreover, it
is also necessary to focus on the regulations and standards for using such data,
which can create uncertainty for companies looking to adopt these technologies.

2.5.4 Human-machine interaction

Human intelligence and intervention play a key role due to the safety, security,
and social aspects and the uncertainties posed by these autonomous and intel-
ligent systems. In addition, in parallel with the advanced technologies of these
intelligent systems, the role of humans has evolved from low-level operations
that can be dangerous, difficult, and boring to highly specialized and safe tasks
[212]. However, humans may feel they are easily changed due to technology
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implementation. In addition to technical skills, it has been pointed out that hu-
man work in the manufacturing sector increasingly requires technological skills,
social and communication skills, as well as team skills and self-management
skills [245] [308]. The essential skills to perform the tasks must be identified
and training provided to meet the requirements. The person should have more
opportunities for autonomous decision making, diversity in the workplace, and
social interaction [222]. In other words, Industry 4.0 technologies often involve
close interaction between humans and machines, which can raise concerns about
job displacement and the safety of workers. Ensuring that the interaction be-
tween humans and machines is safe and efficient is essential.

2.5.5 Interpretability

In machine learning, Interpretability entails comprehending how a model pro-
duces predictions. This ability is crucial in many fields, especially for Industry
4.0. Some ML methods, like linear regression and simple decision trees, are
intrinsically interpretable and provide a feature importance score for each of
the input variables. However, many ML models are known as "black-box" since
they cannot explain how these predictions are produced. Many advanced mod-
els nowadays are black-box models, not only neural networks but also other
models like random forests. These models are becoming a growing challenge in
Industry 4.0 because ML models are frequently connected to real-world equip-
ment installed in a real-world environment. As a result, understanding how a
model produces predictions is critical because any error or bias in the model
might have serious implications. For example, to avoid edge cases in robotics,
it is essential to comprehend why machines respond differently based on diverse
inputs. Another example is using a PdM model to determine when a breakdown
will occur and the reasons behind that. Moreover, to improve human-machine
interaction is necessary to have a complete understanding of the model that is
used.

2.5.6 Machine Repair Activity Limits

By being able to predict the remaining life of a component, maintenance times
can be determined, but the actual maintenance of a component still faces chal-
lenges related to the dependence on human interactions and the lack of self-
maintenance [206].

The effectiveness of maintenance depends on the quality of human manage-
ment and skills, given that machine components currently depend on human
operators for control and maintenance. Repairing complex machines often re-
quires specialized technical knowledge and skills. Therefore, companies may
need to invest in training and education in order to ensure that their techni-
cians have the necessary knowledge and expertise to perform repairs. Moreover,
repairing machines can involve working in hazardous environments or with haz-
ardous materials, and it is important to ensure that appropriate safety measures
are in place to protect technicians and other workers.
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Industrial machines particularly work by executing commands in a reactive
manner and do not question the plan for them. However, human task planning
is based on data and experience, which the machine might also be able to
retrieve. Thus, an intelligent component could autonomously propose or even
initiate actions that are beneficial to system health, asset throughput, or product
quality. However, currently, industrial machines do not have this level of self-
awareness and self-maintenance.

2.5.7 Limits in the Deployment of Industrial Predictive
Maintenance Models and Data Distribution Shift

Phases of a ML project

Today, manufacturing is facing an increment of challenges related to complex-
ity and dynamic behaviours [23] while adding the fact that the manufacturing
is affected by uncertainty [336]. In other words, the constant enlargement of
big data and its availability, high-dimensionality, variety as well as homogene-
ity represents the main challenges in manufacturing environment because the
knowledge cannot be extracted [23].
Usually a typycal ML project can be splitted in the following points:

• Data acquisition: during this phase one or more datasets are collected
using several acquisition tools available in the system under exam. It is
possible to distinguish two different procedures for the acquisition process:

– A Design of Experiment (DOE) can be realized and a series of tests
will be performed with the only purpose to acquire data

– The data are constantly acquired during the normal functioning of
the system

• Data Analysis: the acquired datasets are analyzed using graphical tools
or unsupervised methods with the purpose to discover some features that
better represent the relationship between the input data and output data.

• Feature Extraction: features are a series of quantities which represent
the information extracted from raw data. This step can be performed us-
ing automatic tools like PCA (principal component analysis) or manually
extracting some significant characteristics of the data

• Modeling: After the previous step, all extracted features are collected in
a matrix called model matrix, which is used to train the desired models.
Usually, performance evaluation and comparison is performed between
different models using methods such as K-fold or Monte-Carlo [212].

• Roll out: The most suitable model is chosen and deployed in the real
system. Its behavior is then monitored to asses its quality over time and
the correct functioning. The model is available for use in a limited or
controlled way, typically to a small group of users or in a specific location.
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This is often done as a way to test the model’s performance and gather
feedback before making it more widely available.

When an ML model learns from the training data, it means that the model
learns the underlying distribution of the training data to leverage this learned
distribution to generate accurate predictions for unseen data, data that are not
shown during training. The assumption is that the unseen data comes from a
stationary distribution that is the same as the training data distribution. If the
unseen data comes from a different distribution, the model might not generalize
well [282].
However, Roll out of a model is not the end of the process. Deploying a model,
on the other hand, refers to the process of making a model available for use in a
production environment. This typically involves integrating the model into an
application or system and making it available to a larger group of users. Once
a model has been deployed, we still have to continually monitor its performance
to detect issues and deploy updates to fix these issues. The assumption is that
the unseen data comes from a stationary distribution that is the same as the
training data distribution.
Generally, there are three challenging steps after developing failure prediction
models: their integration, monitoring, and updating.

Integration

To be deployed in the real world often is necessary also an integration step.
Model integration in the industry is a challenge because an information tech-
nology (IT) team often performs this task, which is usually dissociated from the
team of researchers and developers who developed the predictive maintenance
models. Building such an IT infrastructure to maintain the data pipelines can
be laborious and is not usually factored into the project planning.
This part is very relevant and challenges of this phase are associated to software
system failures. Software system failures are failures that would have happened
to non-ML systems. Some examples of software system failures are:

• Dependency failure: a software package or a codebase that your system
depends on breaks, which leads your system to break. This failure mode
is common when the dependency is maintained by a third party and espe-
cially common if the third-party that maintains the dependency no longer
exists.

• Deployment failure: failures caused by deployment errors, such as when
you accidentally deploy the binaries of an older version of your model
instead of the current version or when your systems don’t have the right
permissions to read or write certain files.

• Hardware failures: when the hardware that you use to deploy your model,
such as CPUs or GPUs, doesn’t behave the way it should. For example,
the CPUs you use might overheat and break down.
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• Downtime or crashing: if a component of your system runs from a server
somewhere, such as AWS or a hosted service, and that server is down,
your system will also be down.

To understand the importance of this aspect, it should be observed that
they reviewed data from over the previous 15 years to determine the causes and
found out that 60 out of these 96 failures happened due to causes not directly
related to ML.

Monitoring

When a machine learning model is in production, one of the main problems
that can occur is a shift in the data distribution, also known as "concept drift."
This can happen when the statistical properties of the data that the model
was trained on change over time, resulting in a mismatch between the model’s
expectations and the new data is being applied to. This can lead to a decrease
in the model’s performance and accuracy.
In the monitoring phase of a machine learning system in production, the system
is continuously monitored to ensure it performs as expected and to identify any
potential issues or problems. This can involve monitoring model performance,
monitoring the accuracy and performance of the machine learning model over
time to ensure that it is performing as expected. This may involve tracking key
metrics such as precision, recall, and F1 score, as well as monitoring the model’s
output to ensure that it is making accurate predictions.
Instead of model performance is possible to monitoring also data quality. It
is important to ensure that the data used by the machine learning system is
of high quality and represents real-world situations the system will encounter.
This may involve monitoring the data for any issues or anomalies, and taking
steps to address them as needed.
Measuring, tracking, and making sense of metrics for complex systems is a non-
trivial task, and engineers rely on a set of tools to help them do so. There
are many different tools and techniques that can be used to monitor a machine
learning system in production [123]. Some common ones include:

• Logging: Logging can be used to track the performance and behavior
of the machine learning system over time, and to identify any issues or
problems that may arise.

• Alerting: Alerting systems can be set up to notify users or system ad-
ministrators when certain conditions are met, such as when the model’s
performance falls below a certain threshold or when certain system re-
sources are running low.

• Dashboards: Dashboards can be used to display real-time or near-real-
time data about the performance and behavior of the machine learning
system, and can be used to monitor the system in real-time.
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Updating and Data Distribution Shift

There are a few reasons why data distribution shift can occur:

• Changes in the underlying process: The process that generates the data
may change over time, leading to a shift in the data distribution. For
example, if a model was trained on data from a manufacturing process, and
the process was modified, the model may no longer be able to accurately
predict the output of the new process.

• Changes in the environment: The environment in which the data is col-
lected may change, leading to a shift in the data distribution. For example,
suppose a model was trained on data from a specific location and the cli-
mate or other environmental conditions changed. In that case, the model
may no longer be able to predict outcomes accurately.

• Changes in the data collection process: The data collection process itself
may change, leading to a shift in the data distribution. For example, if a
model was trained on data collected using a certain set of equipment and
the equipment was replaced with newer models, the data collected with
the new equipment may have different statistical properties.

As said, the updating of the models is necessary in order to avoid the concep-
tual drift phenomenon that affects machine learning models. This continuous
retraining of the prediction models has several disadvantages.
There are several costs associated with retraining a model from scratch. One
of the main costs is the time and computational resources required to retrain
the model (i.e., its efficiency). Retraining a model from scratch can be time-
consuming, especially if the dataset is large or the model is complex. It also
requires significant computational resources, such as processing power and mem-
ory, to perform the training. These costs can be especially high if the model
is retrained multiple times, as each retraining requires an increasing amount of
time and resources with respect to the initial training. Consider a scenario in
which a model is retrained from scratch multiple times, with each retraining
being considered one update. Suppose there are a total of T updates, and each
update involves adding new data of size N to the dataset. In that case, the
overall complexity of the retraining process will be quadratic in T .
To see why, let’s consider the complexity of each update. If the computational
cost of training the model is the same for each update, the complexity of the i-th
update will be O(N ·i). The overall complexity of T updates will then be the sum
of the complexities of each update, which is

∑T
i=1 O(N · i) = O(T ·(T+1)

2 ·N) =
O(N · T 2). This means that the difficulty of the process grows rapidly as T
increases, which can make the process computationally expensive to run, espe-
cially for large values of T . Retraining as new data is introduced means that the
data used for training may be retained for a longer period than in traditional
machine learning approaches. It is essential to ensure that data is deleted or
anonymized when it is no longer needed to protect privacy. This means that
keeping confidential or important data has several problems connected to data
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sharing and access to sensitive data. In other words, it is important to ensure
that access to this data is controlled and that only authorized parties can access
it. At the same time, it is essential to have clear data sharing agreements in
place and to ensure that data is used ethically and responsibly. The optimal
scenario would be to have a model that can update itself using only new data
and at the same time perform correctly on the old data.
When a model is retrained from scratch, it is necessary to discard the knowl-
edge gained from the previous model and start over. This can be wasteful if the
previous model can be exploited, leading to better performance on a given task
because the model can retain and build upon its previous knowledge. This can
be especially useful when the data is highly correlated across updates, as the
model can transfer its knowledge from one task to another.



Chapter 3

Continual Learning

3.1 Continual Learning

In recent years, machine learning models have been reported to exhibit or even
surpass human-level performance on individual tasks, such as Atari games or
object recognition [72]. The current dominant paradigm in ML is to train an
ML model on a given dataset to generate a model which is then applied in the
real-world. Without the ability to accumulate and use past knowledge, an ML
algorithm typically needs a large number of training examples in order to learn
effectively. In contrast, humans never learn in isolation or from scratch. We
always retain knowledge learned in the past and use it to help future learning
and problem solving [61].
As a practical example, let’s consider an application to categorize the different
100 products of a company automatically. Such a simple model will be useful
to speed up asset management operations. Therefore, given a set of images, the
model is trained to classify the products correctly, and the resulting performance
is very satisfying. However, ten new products are added at some point, and such
an event is known to happen each month.
The naive way to handle such a problem would be to fine-tune using the new
data and add in the output of the new classes. Fine-tuning is a common method
to adapt a deep neural network (DNN) model trained on a source domain to
perform well on a target domain. In other words, it leverages the previously
learned knowledge of the source domain to adapt to the target domain. This
process can effectively adapt the model to the target domain, and it has the
advantage of needing less data from the target domain.

However, when a DNN is naively fine-tuned on a new dataset, it loses most
of the representations of old classes. In other words, a NN forgets learned pat-
terns upon being presented with new patterns for a certain period. This effect
is also known as Catastrophic Forgetting (CF). A possible explanation of this
effect is that when a NN trained on task A is trained on a new task B, the
weights in the network that are important for task A are changed to meet the

53
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objectives of task B. In other words, the new task will likely override the weights
learned in the past and thus degrade the model’s performance for the past tasks.
From another point of view, CF is strictly connected to Plasticy-Stability Dilemma.
Plasticity is associated with the ability to adapt to new information, while sta-
bility refers to preserving previously learned information. The NN must remain
plastic when presented with significant or useful information but remain stable
when presented with irrelevant information. So, in other words, if the network is
too plastic, older memories will quickly be overwritten; however, if the network
is too stable, it cannot learn new data. The plasticity-stability dilemma refers
to the balance between a neural network’s ability to adapt to new tasks and the
stability of its existing knowledge [3]. As the model is trained on new tasks and
data, the trade-off between preserving the knowledge of past tasks (stability)
and adapting to new ones (plasticity) becomes evident.
A possible solution would be to retrain the model from scratch using all data
seen so far. However, this could be unfeasible for many reasons. The first rea-
son is simply the computing power, retraining from scratch each time new data
arrives can scale quickly in terms of computing power and associated costs. In
other words, updating the model using only the new data would be much more
efficient. Other reasons could be the security and privacy of data.
A research field known to handle the problem of catastrophic forgetting in a
DL model is Continual Learning (CL), which enables a DL model to learn and
adapt to new tasks without forgetting previously learned patterns. CL methods
aim to balance the two conflicting objectives of plasticity and stability, enabling
the model to continually learn and adapt without forgetting previously learned
patterns.

3.1.1 Formal Definition

In order to provide a formal definition for the CL setting, we will follow a
similar approach to that used in previous works such as [178]. This will allow us
to define the CL framework in a clear and consistent manner, making it easier
to understand and define metrics for CL proposed in the literature. It should be
noted that many works propose the same concepts but sometimes with a slight
change in the formulas. We are going to take a formal definition similar to the
one used in works such as [178]. We focus on a stream of tasks T of length T
. Each task t ∈ T has associated a dataset Dt. Therefore, each sample in Dt

can be represented by the triplet (xi, t, yi), which is formed by a feature vector
xi ∈ Xti , a task descriptor t ∈ T , and a target vector yi ∈ Yti . For simplicity, it
is assumed that every triplet (xi, t, yi) satisfies (xi, yi)

iid∼ Pt(X,Y ). Therefore,
the goal is to learn a predictor f , which can be queried at any time to predict
the target vector y. Such test pair can belong to a task that we have observed
in the past, the current task, or a task that we will experience in the future.
Moreover, observe that, based on the kind of scenario, the information of the
task label could be hidden from the model during the training, testing, or both,
as explained in Section 3.2.
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3.2 Continual Learning Scenarios

3.2.1 Types of Data Distribution Changes

Classic machine learning algorithms often assume that the data are drawn, i.i.d.
from a stationary probability distribution. However, typically in the real world,
such an assumption is only valid for a limited period. When examining the data
distribution, one issue is the observed changes in the data statistics as time
progresses.
Data distribution shift refers to the phenomenon in supervised learning where
the data a model works with changes over time. This causes this model’s predic-
tions to become less accurate as time passes [123]. They can happen suddenly
for some specific event, like in the case of a recommendation system where a
new item receives much attention for some news or advertising campaign. It can
also happen gradually because of gradual changes in social norms, languages,
trends, and industries.
There are multiple types of drifts, and it is unlikely that any specific approach
can work well for all of them [158]. Therefore, it is possible to characterize CL
algorithms by their ability to learn under specific distribution drifts associated
with different CL settings.
Changes in the data distribution over time are commonly referred to as concept
drift. It is fundamental to distinguish the different types of drifts since they will
not affect the learning process similarly. We distinguish the following drifts, a
visual representation is also shown in Fig. 3.1:

1. Covariate shift or Domain drift: Drift in P (x) without affecting
P (y|x) nor P (y). Data points sampled after the drift are new, i.e. new
data of the same label space. It is one of the most widely studied forms of
data distribution shift. In statistics, a covariate is an independent variable
that can influence the outcome of a given statistical trial, but which is not
of direct interest. In supervised ML, the label is the variable of direct
interest, and the input features are covariate variables. In production, co-
variate shift usually happens because of major changes in the environment
or in the way your application is used.

2. Virtual Concept Drift or Label shift, also known as prior shift, prior
probability shift or target shift, is when P (Y ) changes but P (X|Y ) remains
the same. You can think of this as the case when the output distribution
changes but for a given output, the input distribution stays the same.
Data points sampled after the drift have new labels. In supervised learn-
ing, it involves observing new data from new classes y. Specifically, the
joint distribution Pt(y, x) shifts through Pt(y) ̸= Pt+1(y) while Pt(x|y) =
Pt+1(x|y).

3. Real concept drift: Concept drift is when the input distribution re-
mains the same, but the conditional distribution of the output given an
input changes i.e., drift in P (y|x) with P (x) fixed. Real concept drifts
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Figure 3.1: Different type drifts: Covariate Shift, Label Shift, Real Concept
Drift. Figure taken from [227]

happen when the relation between the input and the target changes. It
is problematic since it leads to conflicts in the classification, for example,
when a new but visually similar class appears in the data: this will, in
any event, have an impact on classification performance until the model
can be re-adapted accordingly. Specifically, Pt(y|x) ̸= Pt+1(y|x) while
Pt(x) = Pt+1(x), with Pt(y|x) being the probability P (Y = y|X = x) at
time t.

Another possible way to consider the shift is the temporal change. For
example, concept drift can be gradual or abrupt. A list of possible temporal
changes is shown in Figure 3.2 and can be categorized in the following 5 terms
[98].

1. Sudden drift: This refers to a sudden and significant change in the data
distribution used to train a machine learning model. In other words, it
assumes that the underlying distribution change from one to another in
a punctual way, i.e., the moment of change is precise. This type of drift
can significantly impact the model’s performance, as it may be less able
to predict outcomes accurately based on the new data distribution. An
example of such drift could be the replacement of a sensor with another
sensor with a different calibration in a chemical plant.

2. Gradual drift: This refers to a slow and incremental change in the data
distribution over time. This type of drift may be harder to detect as
the changes are smaller and occur over a longer period. However, if left
unaddressed, gradual drift can also significantly impact the performance
of a machine learning model. For example, relevant news topics change
from dwelling to holiday homes, while the user does not switch abruptly
but instead keeps going back to the previous interest for some time [98].

3. Incremental drift: This refers to a series of small changes in the data
distribution that occur over time. In other words, it consists of many
intermediate concepts in between. An example could be a sensor slowly
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Figure 3.2: Different type of temporal changes: sudden, gradual, incremental,
recurring, blips [98]

wearing off and becoming less accurate. This can be due to various fac-
tors, such as physical wear and tear, exposure to harsh environments or
materials, or the passage of time.

4. Recurring drift: This refers to a periodic change in the data distribution
that occurs at regular intervals. This type of drift can be managed by
retraining the model at regular intervals to account for the changes in
the data. This type of drift can be seen as different concepts are seen
multiple times among tasks. For example, images of cats could be seen
in the first task, never appear again for multiple tasks, and reappear only
when visiting the fifth task.

5. Blips: This refers to a temporary change in the data distribution that
quickly returns to its previous state. This type of drift may not signifi-
cantly impact the model’s performance, as the change is short-lived.

The one most seen in CL is the sudden drift. This is because the tasks are
divided very precisely, without ambiguity. This assumption might be seen as a
weakness of CL approaches since it makes them dependent on a specific type
of temporal change. However, such an assumption helps to reduce the search
space and ease the learning process.

3.2.2 Continual Learning scenarios
A well-adopted framework for the context of CL is proposed in [304], where
they split the possible CL scenarios into three categories: Task Incremental
Learning (TIL), Domain Incremental Learning (DIL), and Class Incremental
Learning (CIL). In many continual settings, a period within which a context
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Figure 3.3: Different types of CL scenarios.

remains fixed (corresponding to a stationary data distribution) is called a task
and usually corresponds to a learning experience determined by some specific
learning purpose. Switching from one task to another is usually associated with
a change in the learning process [158].
In classical machine learning, models depend on the type of supervision avail-
able, Supervised Learning relies on label supervision and reinforcement learning
on reward supervision. In Continual Learning, algorithms do not only rely on
those types of supervision but also on task labels. So in CL, the task label is a
piece of additional information given to the model. However, based on the sce-
nario, such a label could be provided in some phases and not in others. The task
index might be available (1) for training and testing, (2) for training, or (3) not
provided at all. Case (1) is associated with Task Incremental Learning, usually
to have also the task label during inference allows dedicating a subset of weights
of the model to that specific task. For example, a dedicated and separated head
for each task will help to decrease the inference. However, how much such a
scenario represents a real-world application is questionable. Indeed, knowing
the specific task to be solved is not always possible. Case (2) is represented by
Domain Incremental Learning (DIL) and Class Incremental Learning. The last
case is often called task-agnostic learning.

3.2.3 Task Incremental Learning (TIL)

This refers to a CL scenario where the model is required to learn and adapt
to new tasks over time, and a task label is provided during training and infer-
ence. This is the easiest continual learning scenario since task identity is al-
ways provided. In this scenario, it is possible to train models with task-specific
components. A typical network architecture in this scenario has a multi-head
output layer, meaning each task has its output units. However, the rest of the
network is (potentially) shared between tasks [304]. Knowing the task label
during inference allows to allocate some weights as task-specific. Many of the
CL approaches that belong to the family architecture-based can perform mainly
in this scenario.
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3.2.4 Domain Incremental Learning (DIL)

Domain Incremental Learning refers to a CL scenario where the model is re-
quired to learn and adapt to new data from the same domain over time. For
example, a DIL model might be trained to classify images of cats and then be
required to continuously learn and adapt to classify as new images of breeds
arrive. In this case, the task identity is not available at test time. Examples of
this scenario are cases where the structure of the tasks is always the same, but
the input distribution is changing.

3.2.5 Class Incremental Learning (CIL)

This refers to a CL scenario where the model is required to learn and adapt
to new data classes over time. For example, a CIL model might be trained to
classify images of dogs and cats and then be required to continuously learn and
adapt to new classes of animals, such as lions and zebras. In such a scenario,
the models should be able to solve all the tasks they have encountered thus far
and determine the specific task being presented to them.

3.2.6 Conclusions

The scenarios described assume that during training there are clear and well-
defined boundaries between the tasks to be learned. Suppose there are no
such boundaries between tasks, for example, because transitions between tasks
are gradual or continuous. In that case, the scenarios we describe here no
longer apply, and the continual learning problem becomes less structured and
potentially a lot harder [304].

3.3 Related Paradigms
It is important to clearly explain related paradigms to Continual Learning and
how they differ from CL to avoid misunderstanding and ambiguity. Doing so
will make it easier to understand the specific concept of CL and how it differs
from other related ideas. Furthermore, by providing this context, readers will
better understand CL’s unique characteristics and how it fits within the broader
field of machine learning. Some possible sources that describe related paradigms
are [175, 72, 208].

3.3.1 Transfer Learning (TL)

Transfer learning involves taking knowledge learned by a model in one context
and applying it to improve its performance in a different context. This is based
on the premise that certain features or patterns learned by a model in one do-
main or task may be useful in a different domain or task [326]. Though in
CL, the main focus is on avoiding Catastrophic Forgetting, one of CL’s charac-
teristics is the leverage of previous knowledge to learn quickly and better the
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new task. However, TL is not concerned with continuous learning or knowledge
accumulation. TL typically involves two domains and the transfer of informa-
tion from a source to a target. Though CL adapts to the new task, there is
no constraint to remembering the original task. In other words, it does not
retain the transferred knowledge. Moreover, TL uses only two tasks instead of
a sequence of tasks that arrive over time, assuming that the source domain and
target domain are very similar.

3.3.2 Multi-Task Learning (MTL)

Multi-task learning (MTL) trains a machine learning model to perform multiple
tasks simultaneously. It aims for better generalization and reduced overfitting
using shared knowledge extracted from the related tasks. By using data from
multiple tasks during learning, forgetting does not occur because the network
weights can be jointly optimized for performance on all tasks. Joint learning of
all tasks simultaneously represents an MTL baseline. There is no adaptation af-
ter the model has been deployed, as opposed to continual learning [72]. So while
MTL learns from a set of tasks, CL learns from a sequence of tasks that arrive
over time. Because Catastrophic Forgetting makes CL challenging, literature is
often considered a reasonable upper bound for CL approaches. In conclusion,
MTL and CL differ in the training process and data availability.

3.3.3 Online Learning (OL)

In online learning (OL), the model is trained on one sample at a time and the
model’s parameters are updated after each sample. This allows the model to
continuously learn and adapt to changes in the data distribution. Its goal is the
same as classic learning, i.e., to optimize the performance of the given learning
task. It is normally used when it is computationally infeasible to train over
the entire dataset for hardware constraints or data availability. In traditional
offline learning, the entire training data must be made available before learn-
ing the task. On the contrary, online learning studies algorithms that learn to
optimize predictive models over a stream of data instances sequentially. Al-
though online learning deals with the streaming of data, its objective is very
different from continual learning. Online learning still performs the same learn-
ing over time, but its objective is rather to learn more efficiently when a new
piece of data becomes available. In particular, online learning assumes an i.i.d
data sampling procedure and considers a single task domain, which sets it apart
from continual learning. Instead, CL considers a sequence of tasks, with the
additional constraint of remembering the previously learned knowledge.

3.3.4 Open World Learning

An effective open world recognition system must efficiently perform four tasks:
detect unknowns, choose which points to label for addition to the model, label
the points, and update the model [208]. Open World Learning deals with the
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problem of detecting new classes at test time, hence avoiding wrong assignments
to known classes. When those new classes are then integrated into the model,
it meets the problem of incremental learning. As such, open world learning can
be seen as a subtask of continual learning [72].

3.3.5 Reinforcement Learning (RL)

Reinforcement learning (RL) is a type of machine learning in which an agent
learns by interacting with its environment and receiving feedback in the form of
rewards. The goal of reinforcement learning is to learn a policy that maximizes
the agent’s cumulative reward over time. In RL, the agent learns by trial and er-
ror, gradually improving its performance as it receives more and more feedback.
The agent learns through exploration and exploitation, trying out different ac-
tions to see what works best and then relying on the actions that have proven
most effective. RL aims to learn an optimal policy that maps states to actions
that maximize the long-run sum of rewards. However, in most cases, learning
is limited to one task and one environment without the explicit accumulation
of knowledge to help future learning tasks. Moreover, environments are often
stationary, losing the need for more specific and explicit incremental learning
and adaptation algorithmic capabilities [175].

3.3.6 Meta Learning

Meta Learning is most commonly understood as learning to learn. It is a learn-
ing process that uses meta-data about past experiences to improve its capacity
to learn from new experiences. During base learning, an inner learning algo-
rithm solves a task defined by a dataset and objective. During meta-learning,
an outer algorithm updates the inner learning algorithm such that the model
improves an outer objective [208]. It aims to learn a new task with only a few
training examples using a model trained on many other very similar tasks. It is
commonly used for one-shot or few-shot learning. The goal is to design models
for learning new skills (tasks) or quickly modifying to new environments with
minimal training examples. While these ideas seem quite close to continual
learning, Meta Learning still follows the same offline training assumption, with
data randomly drawn from a task training distribution and test data being tasks
with few examples [72]. Hence, it is not capable, alone, of preventing forgetting
the previous tasks.

3.4 Evaluation Metrics

Continual learning is an important aspect of AI where the model needs to adapt
and improve their performance over time. The framework involves training a
model on a series of tasks over time rather than training it on a single and fixed
task. Therefore, some specific metrics need to be designed to measure param-
eters usually not considered in the classic DL setting. These metrics will be
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used to evaluate a model’s performance in CL. By measuring the performance
of a model using various metrics, researchers can better understand the model’s
capabilities and limitations and identify areas for improvement.
However, there is not a clear consensus on which metrics should be used to eval-
uate a CL model. In some cases, different formulas could be associated with the
same metric, though they indicate the same concept. This can make it difficult
to compare results across different studies. As a result, researchers often have to
decide which metrics to use based on their judgment or subjective preferences.
Therefore, the following text will describe a set of metrics that should be con-
sidered useful for evaluating a CL model from various perspectives. These met-
rics will provide a foundation for understanding the model’s performance and
identifying areas for improvement and can help guide the development of more
effective CL systems. Some works that define CL metrics used in literature are
[178, 80, 138].
Many of the following metrics will be calculated based on metrics collected dur-
ing the entire stream of tasks in training. In other words, many metrics used
to evaluate a CL algorithm are composed of a combination of metrics used in
the classic DL setting. Such metrics are used to evaluate the performance of a
model on a given task. Many different types of metrics can be used, depending
on the specific characteristics of the task and the model. Some common exam-
ples of metrics include accuracy (for classification tasks), mean squared error
(for regression tasks), and F1 score (for tasks like Anomaly Detection).
Let’s assume that we consider the classification problem in CL and select the
accuracy as a metric. In CL setting, at the end of a task i we evaluate the
model’s performance on all tasks. In such a way, we obtain a matrix R ∈ RTxT

where the value Rij refers to the test classification accuracy obtained by the
model after being trained on task i and evaluated on the dataset associated
to task j. Where T indicates the total number of tasks present in the stream.
Based on the type of metric considered, the following formulas could be slightly
changed, for example, if the objective for the metric is to minimize instead of
maximize, like for accuracy.

3.4.1 Goals of CL

Continual learning allows ML models to update and expand their knowledge
over time, with minimal computation and memory overhead [72]. Thus, an
effective CL solution is expected to have low forgetting, require low memory
consumption and be computationally efficient. By such a definition, it is clear
that though forgetting is an important parameter to evaluate, the performance
of a CL algorithm is not the only one. Indeed, retraining from scratch is a
solution to CF, but at the cost of high memory and computing power. Therefore,
when considering a CL algorithm, multiple variables should be considered. This
means that other variables, such as the memory used to retain samples of old
tasks, the memory of the model used and the computing power, should be taken
into account when considering a CL algorithm. In particular, a CL algorithm
could be chosen wrt another one based on what a project needs. For example,
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if we have a system with a lot of memory and low computing power, we will
choose a CL algorithm with such characteristics. Different papers like [208, 80]
describe which measures should be considered for a CL algorithm. Below, we
will formally present some measures to consider when evaluating a CL approach.

Average Accuracy (ACC)

Let’s assume that a CL approach will be evaluated on a total of T tasks. Given
the accuracy matrix R ∈ RT×T . ACC considers the average accuracy by con-
sidering the values on the last row of R. In other words, it is just evaluated the
final performance on all tasks after the training on the last task of the sequence:

ACC =
1

T

T∑
i=1

RT,i (3.1)

Forgetting (F)

We are going to use the definition of forgetting as defined by [54]. We define
forgetting for a particular task as the difference between the maximum knowl-
edge gained about the task throughout the learning process in the past and
the knowledge the model currently has about it. This estimates how much the
model forgot about the task given its current state. Following this, for a clas-
sification problem, we quantify forgetting for the j-th task after the model has
been incrementally trained up to task k > j as:

fk
j = max

l∈{1,··· ,k−1}
Rl,j −Rk,j , ∀j < k (3.2)

Note, fk
j ∈ [−1, 1] is defined for j < k as we are interested in quantifying

forgetting for previous tasks.
Moreover, by normalizing against the number of tasks seen previously, the av-
erage forgetting at k-th task is written as:

F =
1

k − 1

k−1∑
j=1

fk
j (3.3)

Lower F value implies less forgetting on previous tasks.

Backward Transfer (BWT)

It is the influence that learning a task t has on the performance of a previous
task. Positive backward transfer exists when learning about some task t in-
creases the performance on some previous task k. Instead, negative backward
transfer exists when learning about some task t decreases the performance on
some preceding task k. Large negative backward transfer is also known as (catas-
trophic) forgetting. In other words, Backward Transfer (BWT) measures the
influence of learning a task on previous tasks’ performance [178]. In a multi-task
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or data stream setting, it is important for an agent to be able to continually im-
prove and maintain its performance over time rather than degrading. Following
the equation proposed in [178], BWT can be mathematically defined as:

BWT =
1

T − 1

T−1∑
i=1

RT,i −Ri,i (3.4)

A modified version of such metric is defined in [80] that split the metric in
two separated effects called REM and BWT+. The backward transfer metric
is an important measure of the ability of an agent to learn new tasks without
forgetting what it has learned previously, and is often used to compare the
effectiveness of different continual learning algorithms.

Forward transfer (FWT)

It is the influence that learning a task t has on the performance of a future task.
In other words, it measures the extent to which knowledge gained from learning
one task helps an agent improve its performance on a different but related task.
Let b̄ be the vector of test accuracies for each task at random initialization. We
can define FWT as:

FWT =
1

T − 1

T∑
i=2

Ri−1,i − b̄i (3.5)

A high forward transfer score indicates that the agent can use knowledge from
one task to improve performance on a different task. In contrast, a low score
indicates that the agent cannot transfer its knowledge effectively. If two models
have similar ACC, the one with larger BWT and FWT is preferable.

Model size efficiency

Let’s indicate with θ the parameters of the model and with θi the parameters
at task i. The memory size of the model is quantified in terms of parameters θ
at each task i,Mem(θi), should not grow too rapidly with respect to the size of
the model that learned the first task, Mem(θ1). Model size (MS) is thus:

MS = min

1,

∑N
i=1

Mem(θ1)
Mem(θi)

N

 (3.6)

The model size efficiency metric measures the trade-off between the size of a
model (the number of its parameters) and its performance on a series of tasks.
It is an important measure of the efficiency of continual learning algorithms,
as it indicates how well the agent can learn new tasks using a fixed amount of
model capacity. The ideal goal would be to obtain a MS equal to 1 (or close
to 1). In this way, the model’s size at the end of the training would be equal
(close) to the size of the initial model.
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Samples storage size efficiency

Many CL approaches save training samples as a replay strategy for doesn’t for-
get. The memory occupation in bits by the samples storage memory M,Mem(M),
should be bounded by the memory occupation of the total number of examples
encountered at the end of the last task, i.e., the cumulative sum of all datasets
encountered called lifetime dataset D. So Samples Storage Size (SSS) efficiency
can be defined as:

SSS = 1−min

1,

∑N
i=1

Mem(Mi)
Mem(D)

N

 (3.7)

The samples storage size efficiency metric in continual learning measures the
trade-off between the amount of data an agent stores (i.e., its memory size) and
its performance on a series of tasks.

Computational efficiency

Since the computational efficiency (CE) is bounded by the number of multipli-
cation and addition operations for the training set Di associated to the task i,
we can define the average CE across tasks as:

CE = min

1,

∑N
i=1

Ops↑↓(Tri)·ε
Ops(Tri)

N

 (3.8)

Where Ops (Di) is the number of (mul-adds) operations needed to learn Di, and
Ops ↑↓ (Di) is the number of operations required to do one forward and one
backward (backprop) pass on Di.

Aggregate metric

In [80] is proposed to aggregate several metrics that represent different con-
cepts into a single final metric that should summarize the performance of a CL
algorithm.

In order to assess a CL algorithm, each criterion ci ∈ C (where ci ∈ [0, 1] ) is
assigned a weight wi ∈ [0, 1] where

∑C
i wi = 1. Each ci should be the average

of r runs. Therefore, the final CLscore to maximize is computed as:

CLscore =

#C∑
i=1

wici (3.9)

where each criterion ci that needs to be minimized is transformed to ci =
1−ci to preserve increasing monotonicity of the metric (for overall maximization
of all criteria in C ). On the point of view of vectors we can imagine to have
a vector W such as W = [wA, wMS , wSSS , wCE , wBWT , wRem, wFWT ] and a
vector C that for each criterion has the associated value. The aggregated value
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Figure 3.4: Spider chart representing some CL algorithms and the value associ-
ated to each criterion. Image taken from [80]

can be calculated scalar product between W and C i.e. CLscore = 1−W · C.
For simplicity, a possible configuration of criteria weights could be to evaluate
all metrics equally i.e. each 1

7 since there are 7 metrics. Note that though such
vector consider equally all metrics is not necessary the only choice of values.
This is because based on a specific CL scenario or problem it could be more
important have some optimal parameters and ignore others. For example, in
the case of a real world application on the Edge where the computation power
is limited but not the memory, then it is going to consider more important a
method with low CE and it will weight less high values for SSS and MS. Such
results can also be represented as in Fig. 3.4 using a spider chart.

Conclusion

In general, the main metrics to consider when evaluating the performance of
a CL algorithm are forgetting, backward transfer (BWT), forward transfer
(FWT), and accuracy (ACC) i.e., the performance of a model in the CL set-
ting (included the ability to avoid catastrophic forgetting and to apply transfer
learning to new tasks). However, these metrics are not the only ones to con-
sider when evaluating and choosing a CL algorithm. Other metrics, such as
model size efficiency and sample storage size efficiency, may also be important
when choosing between different CL algorithms. Even though two CL algo-
rithms may perform similarly on the main metrics, one algorithm could still be
preferred over another based on its performance on these additional metrics.



3.5. DATASETS 67

Figure 3.5: Example of PermutedMNIST Dataset. Image taken from [304]

Figure 3.6: Example of RotatedMNIST Dataset. Image taken from [127]

3.5 Datasets

A variety of datasets are commonly used to evaluate and benchmark continual
learning algorithms. It should also be noted that many datasets are artificially
transformed in datasets for the CL setting instead to have inherent properties
like a temporal axis. For example, MNIST, CIFAR-100, SVHN and ImageNet
are all well-known CV datasets that can be transformed to work in the CL under
different scenarios. In other cases, the dataset inherently has a temporal order
associated with the samples.

3.5.1 Classic Datasets

Here will give a brief review of some of well known datasets used in classic DL
setting.

• MNIST: MNIST is a widely used dataset for training and evaluating
machine learning models in the field of computer vision. It consists of
a training set of 60,000 28x28 grayscale images and a test set of 10,000
images, each labeled with the digit it represents.

• CIFAR-10 and CIFAR-100: CIFAR-10 consists of 60,000 32x32 color
training images and 10,000 test images, labeled into 10 classes. The 10
classes are: airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
and truck. CIFAR-100 is similar to CIFAR-10, but it has 100 classes
instead of 10.
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Figure 3.7: Example of images belonging to domains different from photoreal-
istic images like ImageNet. Image taken from [300]

• CUB-200: The CUB-200 dataset (Caltech-UCSD Birds-200-2011) is a
dataset of images of birds. It consists of 11,788 images of 200 different
bird species, with a roughly equal number of images per class. The images
were collected from the web and annotated with the presence or absence of
certain attributes, such as head markings, wing markings, etc. The CUB-
200-2011 dataset is a well-known benchmark in the field of computer vision
and has been widely used in a number of research studies.

• SVHN: The Street View House Numbers (SVHN) dataset is a large
dataset of images of house numbers collected from Google Street View
images. The dataset consists of over 600,000 images, which have been
labeled with the house numbers that appear in the images.

A lot of other datasets are considered to be used in Continual Learning such as:
Stanford cars, Oxford owers, Caltech-256, GTSR, MIT scenes, Flower, FGVC-
Aircraft, Letters and Places365 [61]. Datasets of images belonging to domains
different from photorealistic images like ImageNet are WikiArt Paintings [257]
and Human Sketches [88]. Examples of these datasets are shown in Fig. 3.7.
Other interesting datasets could be MSCOCO and NUSWIDE. The MSCOCO
(Microsoft Common Objects in Context) dataset is a large-scale object detec-
tion, segmentation, key-point detection, and captioning dataset [168]. The
dataset consists of 328000 images, each of which has been annotated with a
variety of labels, including object categories, object attributes, and image cap-
tions. NUS-WIDE (National University of Singapore - Web Image Database)
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is a large-scale dataset of images and associated labels that was developed by
researchers at the National University of Singapore [63]. The dataset contains
over 269,000 images that have been annotated with one or more of 81 different
labels, including object categories, scenes, and image attributes.
In general, most of works of CL are performed in the CV domain. However,
there are other domains like audio for example. In this case the AudioSet can be
used for CL as in the case of [138]. It is a large-scale collection of human-labeled
10-sec sound clips sampled from YouTube videos [102]. In another work [323],
they used self-supervised learning to classify new sound classes using Urban-
Sound8K, DCASE TAU19 and and VGGSound. UrbanSound8K is a dataset of
audio samples collected from urban environments. It consists of 8732 audio clips
in total, each lasting 4 seconds. The UrbanSound8K dataset is divided into 10
classes: air_conditioner, car_horn, children_playing, dog_bark, drilling, en-
gine_idling, gun_shot, jackhammer, siren, and street_music. Each audio clip
in the dataset is labeled with one of these classes, indicating the type of sound
event that is present in the clip. The dataset was created for the 2019 Task on
Acoustic Scene Classification and Sound Event Detection. The DCASE TAU19
dataset consists of audio recordings from six different urban environments, each
with a distinct acoustic character. It consists of 10-seconds audio segments
from 10 acoustic scenes: Airport, Indoor shopping mall, Metro station, Pedes-
trian street, Public square, Street with medium level of traffic ,Travelling by ,a
tram, Travelling by a bus, Travelling by an underground metro, Urban park.
Recordings were made with three devices that captured audio simultaneously.
Each acoustic scene has 1440 segments (240 minutes of audio) recorded with
device A (main device) and 108 segments of parallel audio (18 minutes) each
recorded with devices B and C. The dataset contains in total 46 hours of audio.
VGG-Sound is a large-scale dataset of audio signals, it consists of more than
210k videos for 310 audio classes. It consists of short clips of audio sounds,
extracted from videos uploaded to YouTube. The VGG Sound Dataset is an
extensive collection of audio recordings that cover a wide range of challenging
acoustic conditions and noise types that are commonly encountered in real-
world applications. The audio clips in the dataset were recorded in diverse
environments and are accompanied by corresponding video footage, ensuring
that the sound source is visually identifiable. Each segment in the dataset is
10 seconds long and includes both audio and video data [55]. About the NLP
domain, possible datasets are GLUE and SUPERGLUE benchmarks that track
performance on eleven and ten language understanding tasks respectively, us-
ing existing NLP datasets. Along the same line, in [196] presented the Natural
Language Decathlon (DECANLP) benchmark for evaluating the performance
of models across ten NLP tasks. The DECA NLP benchmark consists of ten
different NLP tasks, including machine translation, summarization, question
answering, and others. The tasks are designed to cover a broad range of lan-
guages and language-related problems, and the benchmark includes data for
over 100 different languages. Similar to DECANLP, a recently proposed Cross-
lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark
also uses a diverse set of NLP tasks and task-specific measures to evaluate
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the performance of cross-lingual transfer learning [120]. XTREME consists of
nine tasks derived from four different categories and uses zero-shot cross-lingual
transfer with the English language as the source language for evaluation [29].

3.5.2 CL Datasets
Many of the datasets described above like MNIST, CIFAR-100, SVHN and
ImageNet can be transformed to use them in the Continual Learning framework.
Since these datasets don’t have any temporal order is necessary to propose some
transformation. However, the transformation depends onon factors like the type
of CL scenario that must be studied, the total number of tasks that want to be
considered, and the number of classes for each task.

CIL

In CIL, the model is trained to learn a series of tasks in a specific order, each
task involving a new set of classes. In the case of CIL, many datasets can
simply be transformed by splitting samples with different classes in different
tasks. For example, in the case a dataset with 100 classes can be created a
dataset composed of 10 tasks with 10 classes for each task. However, if we want
to consider a longer stream we can consider a set of 50 tasks with two classes
for each task. Some examples of possible datasets are the following:

• Split MNIST: Each new session learned contains a set of new classes. It
is tested a model’s ability to sequentially learn new classes is tested.

• Split CIFAR-100: Split into 20 disjoint subsets, 5 classes for each task,
which are randomly sampled without replacement.

• Split CUB: 200 categories into 20 disjoint subsets of classes

• Split mini ImageNet: 20 disjoint subsets, subset of ImageNet with 100
classes and 600 images per class.

• iCIFAR-100: Split into 10 disjoint subsets, 10 classes for each task.

DIL

In the Domain Incremental Scenario (DIL), while the set of possible classes re-
mains fixed, it changes the underlying input distribution.
A well-known dataset and one of the first to be proposed is called PermutedM-
NIST [106] in Fig. 3.5. The advantage of such a dataset is that the number of
tasks is potentially very large. Indeed, for each task, it is chosen a rearrange-
ment of the pixel of the images is kept fixed during the task and changes when
a new task arrives. This method allows for a very large set of tasks that are also
not related to each other. Such a dataset can be useful to measure if a model
can maintain the memory of old tasks. Still, since there is no relation among
tasks, evaluationing methods that exploit task correlation is not possible.
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Figure 3.8: Example of Class Incremental Learning setting. Each new task
corresponds to a new set of images.

Another very used dataset in CL literature is RotatedMNIST [178]. The Ro-
tatedMNIST Dataset is a variant of the MNIST Dataset that consists of images
that are rotated by an angle chosen uniformly by a random angle between 0 and
360 degrees. So each task corresponds to a rotation degree that remains fixed
for all the images of the task and changes among tasks. An example is shown
in Fig. 3.6. As for the case of PermutedMNIST, it is possible to obtain a high
number of tasks. The main difference is that PermutedMNIST is formed by
completely independent tasks, while RotatedMNIST has correlated tasks. This
means that while in the first case, it is interesting only to avoid forgetting, in the
second case, it would be optimal that the model can also apply some transfer
learning and exploit the previous knowledge for the new task.
Another DIL example would be splitting the datasets based on some other
condition. For example, a dataset could have multiple classes like orange, car,
flower, etc and be split based if the images are real photos, images from sketches,
images from cartoons and so on.

Complex Datasets

A simple way to obtain new datasets could be a stream of well-known datasets
instead of subsets of such datasets. For example, a stream of tasks for CIL could
be created where the first task is the entire dataset MNIST with ten classes.
Then the second dataset could be SVHN with ten classes, the third could be
CIFAR10, etc. For example, a benchmark of this kind is proposed in [244] called
Visual Domain Decathlon. The goal of this challenge is to solve ten image
classification problems representative of very different visual domains.
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The data for each domain is obtained from the following image classification
benchmarks: ImageNet, CIFAR-100, Aircraft, Daimler pedestrian classification,
Describable textures, German traffic signs, Omniglot, SVHN, UCF101 Dynamic
Images, VGG-Flowers.
In another work, they propose considering the following sequence of datasets as
tasks: Flower, Scenes, Birds, Cars, Aircraft , Action, Letters, SVHN. A sequence
of eight object recognition datasets:

1. Oxford Flowers: for fine-grained flower classification (8,189 images in
102 categories)

2. MIT Scenes: for indoor scene classification (15,620 images in 67 cate-
gories)

3. CUB-200 (Caltech-UCSD Birds): for fine-grained bird classification (11,788
images in 200 categories)

4. Stanford Cars: for fine-grained car classification (16,185 images of 196
categories)

5. FGVC-Aircraft: for fined-grained aircraft classification (10,200 images
in 70 categories)

6. VOC actions: the human action classification subset of the VOC chal-
lenge 2012 (3,334 images in 10 categories)

7. Letters: the Chars74K datasets for character recognition in natural im-
ages (62,992 images in 62 categories)

8. SVHN: Google Street View House Number SVHN dataset for digit recog-
nition (99,289 images in 10 categories)

Such an approach allows it to scale quickly in terms of data and the number
of tasks.
Moreover, while the proposed benchmarks have a dataset that belongs to only
the CV domain, it is also possible to consider a multi-modal dataset. For exam-
ple, a possible benchmark could be the composition of a stream of tasks where
each task belongs to a different domain, like images, audio, text, etc.
A very recent benchmark proposed is the Never Ending VIsual-classification
Stream (NEVIS’22), consisting of a stream of over 100 visual classification tasks,
sorted chronologically and extracted from papers sampled uniformly from com-
puter vision proceedings spanning the last three decades [34]. Despite being
limited to classification, the resulting stream has a rich diversity of tasks such
as OCR, texture analysis, crowd counting, scene recognition, etc. The diversity
is also reflected in the wide range of dataset sizes, spanning over four orders
of magnitude. Overall, NEVIS’22 poses an unprecedented challenge for current
sequential learning approaches due to the scale and diversity of tasks, yet with a
low entry barrier as it is limited to a single modality and each task is a classical
supervised learning problem.
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Figure 3.9: Images belonging to the dataset CIFAR-10

Reinforcement Learning

Though most of the CL literature is about Supervised Learning in the CV
domain, other scenarios like RL are also considered. Reinforcement learning
(RL) is a type of machine learning in which an agent learns by interacting with
its environment and receiving feedback in the form of rewards.
In Continual Learning on Reinforcement Learning, different environments were
used for evaluation [61]. Atari games [203] are among the most popular ones,
which are used in [145, 254]. The Atari games are well-suited for RL because
they provide a rich, interactive environment where an RL agent can learn to
make decisions and take actions to maximize a reward. Some other environments
include Adventure Seeker [170], CartPole-v0 in OpenAI gym [40], and Treasure
World [188]. Other possible datasets are VizDOOM built around Doom II, a
first-person shooter game [175]. For example, we can consider environmental
changes like light, textures, and objects in the 3D VizDOOM Maze. For all
environments, changes are not gradual but happen at specific points. Other
research platforms are DeepMind Labs and Malmo, which allowed researchers
to explore new research directions to scale reinforcement learning. In [331] is
proposed Continual World, a benchmark consisting of realistic and meaningfully
diverse robotic tasks built on top of Meta-World [353].
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Figure 3.10: Pong, Alien, Centipede, Boxing, Hero, James Bond, Seaquest,
Riverraid, asterix, krull, crazy_climber, riverraid, jamesbond, breakout, go-
pher, kangaroo, kung_fu_master, fishing_derby, enduro, pong, star_gunner,
demon_attack, boxing, asterix, road_runner, defender, freeway, krull,
space_invaders. Image taken from [67]

Final Considerations

Another additional parameter not described previously is the order of tasks.
The order of the tasks is also very important when evaluating an algorithm on
a dataset. For example, a specific configuration of how the data are presented
can alter the model’s performance. A possible solution, though computationally
expensive, would be to test the CL algorithm on multiple instances of the CL
dataset where the order of tasks is different. New datasets can be useful for
continual learning in several ways. First, new datasets can provide a more
realistic and diverse range of tasks for the model to learn, which can help better
evaluate the model’s capabilities and identify areas for improvement. Second,
new datasets can help expose weaknesses or limitations in current continual
learning algorithms. For example, a dataset that requires the model to learn
many tasks may be more challenging for current algorithms and could help
identify new approaches or techniques needed to improve performance.

3.6 Continual Learning Strategies
Continual learning involves the ability to learn from a non-stationary data
stream and accumulate knowledge over time, while successfully dealing with
the catastrophic forgetting problem [95]. A taxonomy can be an important tool
for organizing the CL approaches and provides a clear and systematic framework
for grouping different concepts. In the case of continual learning, the strategies
can be organized into different categories based on the underlying method used
to address the challenge of retaining previously learned knowledge while learning
new tasks. The literature often summarizes the CL approaches in 3 groups as
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depicted in Fig. 3.11, regularization-based [145] [363], architecture-based meth-
ods [254][350] and replay-based [53] [250]. It is important to remember that
there is no universal solution for CL, and different approaches may be more or
less appropriate depending on the specific problem and environment.

3.6.1 Upper Bounds and Lower Bounds

Usually, when evaluating CL approaches is often made a comparison with some
upper bounds to understand how much CL approaches are far from the ideal
case. When considering upper bounds, there are three possible strategies: Cu-
mulative, Multi-Task, and Single Model. The Cumulative strategy, called also
Full Rehearsal, assumes learning a sequence of tasks as in a CL setting. How-
ever, it considers no constraints in terms of memory or computing power. This
means that during the second task, the Cumulative approach will train the
model using all the data from the first and second tasks and a number of epochs
equal to what would be done in the classic DL scenario. Another possible up-
per bound is Multi-Task (MT), the model is trained using all the data from all
tasks. The main difference between Cumulative and MT is that MT is trained
directly on all the samples, while such a thing happens with Cumulative only
at the end of the training when it has already seen all the tasks except the
last. Therefore, MT can be considered an upper bound, assuming that training
on multiple tasks allows generalization and improves performance on all tasks.
Finally, Single Model refers to the scenario where a separate model is trained
for each task. This could represent the ideal case if it is assumed that the set of
tasks could interfere with each other. In the same way, to understand how far
we are from the worst case, we can compare the CL approaches with approaches
considered lower bounds. An example of such an approach is Fine-Tuning (FT).
It would be the naive approach where the model is updated using only the data
of the current task, which causes Catastrophic Forgetting (CF).

3.6.2 Regularization-based approaches

These approaches focus on designing loss terms to retain the representations
for old tasks. In practice, a possible example is Elastic Weight Consolidation
(EWC). Such a method prohibits drastic updates to important parameters.
Based on the same idea, other approaches like SI, MAS, and IMM exist. Another
regularization-based approach is Learning without Forgetting (LwF), which uses
distillation to retain previously acquired knowledge.

3.6.3 Rehearsal-based approaches

The idea is to store or generate data to augment new training batches that help
the network retain its old representations. The previous task’s data is either
used again as input for rehearsal or to restrict the optimization of the new task’s
loss to prevent interference from the previous task. Many approaches belong
to the category such as Gradient Episodic Memory (GEM), Experience Replay
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(ER), Generative Replay (GR), Latent Replay (LR), and Maximally Interfered
Retrieval (MIR) [267].

3.6.4 Architecture-based approaches

These approaches involve modifying the model’s architecture to avoid Catas-
trophic Forgetting. Specific architectures, layers, activation functions, and
weight-freezing strategies are generally used to mitigate forgetting in this family
of approaches. Architecture-based approaches include Progressive Neural Net-
work (PNN), ExperGate, and PathNet. This family dedicates different model
parameters for each task to prevent any possible forgetting. However, when no
constraints are applied to the model size, there is the risk that it loses scala-
bility. Some approaches expand the size of the network over time as new tasks
arrive. Instead, in other approaches, the architecture remains static, with fixed
parts allocated to each task. One of the main disadvantages of such a family of
approaches is that they generally require the task label during inference, which
makes such approaches unfeasible in some real-world applications where such
information cannot be acquired. The task label in inference is necessary to acti-
vate parameters specific to the task, like masks, heads, or parts of the network.
In other words, architecture-based approaches are usually considered for Task
Incremental Learning, where the task is known during inference.

3.7 Regularization-based approaches

3.7.1 Elastic Weighted Consolidation (EWC)

It uses the training data to build a Fisher Information Matrix (FIM) that deter-
mines the importance of each weight in the network for the classification task it
just learned. It employs a regularization scheme that redirects plasticity to the
weights that are least important to previously learned sessions. In other words,
it mitigates forgetting by forcing parameters that contribute a lot to old tasks
to stay fixed. Each parameter’s importance to the change in the loss function
is used as a quadratic penalty term to compose a surrogate loss.
The intuition is given by assuming that the model needs to optimize for two
tasks, A and B. Many configurations of a model of parameters θ will result in
the same performance. Over-parameterization makes it likely that there is a
solution for task B with optimal parameters θ∗B , that is close to the previously
found solution for task A with optimal parameters θ∗A. Therefore, it is necessary
to maintain memory of the parameters important for task A, and keeps them
unchanged and allows the free parameters to adapt to the new task.
So the importance for a weight θk of the network after training on task A can
be calculated as :

Ωk = E(x,y)∼D

[(
δL

δθk

)2
]

(3.10)
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Figure 3.11: Taxonomy of CL approaches

During training on the new task B, the loss can be calculated in the following
way:

L(θ) = LB(θ) +
∑
k

λ

2
Ωk

(
θk − θ∗A,k

)2 (3.11)

Where LB(θ) measure the loss of the new task and the second term avoid that
the new solution shifts too much from task A.

3.7.2 SI

Synaptic Intelligence (SI) replaces Fisher Information Matrix-based Importance
and it was introduced as a variant of EWC [360]. The authors argued that the
computation of FIM is too expensive. So they proposed to calculate weight
importance online during SGD. Therefore, it breaks the EWC paradigm of de-
termining the new task importance weights in a separate phase after training,
they maintain an online estimate during training [72]. Assuming a set of previ-
ous tasks t < N +1. It is possible to determine the new task importance weight
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ΩN+1
k in a separate phase after training, maintaining an online estimate ωN+1

k

during training to eventually attain:

ΩN+1
k =

N+1∑
t=1

ωN+1
k

(∆θtk)
2
+ ξ

(3.12)

Where ∆θtk = θtk − θt−1
k the task-specific parameter distance, and damping

parameter ξ avoiding division by zero.
In another work, it is proposed Memory Aware Synapses (MAS). They use
averaged L2-Norm of per-parameter gradient as the importance measure [10].
In a different study, it is proposed Riemannian Walk, it combines the SI path
integral with an online version of EWC to measure parameter importance [54].

3.7.3 Learning without Forgetting (LwF)

Learning Without Forgetting (LWF) is a regularization approach that tries to
control forgetting using Knowledge Distillation (KD) [162].
In short, knowledge distillation involves the transfer of knowledge, usually from a
large pre-trained model called teacher to a smaller model called student. When
training a smaller model, it tries to imitate the behavior of the larger pre-
trained model [116], to improve efficiency and potentially improve performance.
A possible application is to be used as a form of model compression, which
could be helpful to deploy a large deep neural network model on edge devices
with limited memory and computational capacity. This is achieved by using the
larger model to generate soft targets for the training data, which the smaller
model is then trained to predict. These soft targets contain knowledge about
the data and can be useful for the student model to learn from. The smaller
model is trained to minimize the difference between its own predictions and the
soft targets produced by the larger teacher model.
Lwf records the network’s response to old tasks, which is used in the KD Loss
Term. It uses them to encourage the network to make similar predictions after
being trained for new tasks. The idea is to optimize the new task, with the
constraint that the predictions on the new task’s examples do not shift too
much.
However, the success of this method depends heavily on the new task data and
how strong it is related to prior tasks. It has been shown that this strategy is
vulnerable to domain shift between tasks [72]. Distribution shifts concerning
the previously learned tasks can result in a gradual error build-up to the prior
tasks as more dissimilar tasks are added [72]. This error build-up also applies
in a class-incremental setup.
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3.8 Rehearsal-based approaches

3.8.1 Experience Replay (ER)
In experience replay is stored a small amount of previously seen data and using
them to rehearse or review old tasks. This can help the model retain its ability
to perform previously learned tasks while learning new ones.
In more detail, during the training of the new task, for each batch of the new
task, it also loaded a batch of data from memory based on certain criteria. Then
the model performs training on both the new task and the data from memory.
This allows the model to adapt to the new data and, at the same time to keep
the memory of old tasks. Multiple algorithms were proposed as a strategy for
the optimal selection of the subset of samples to keep in memory. The most
simple strategy will just select a subset in a random way from the dataset, also
known as Random Sampling (RS). Other strategies could be based on the model
prediction (e.g. entropy) or the feature embeddings (e.g. kmeans). A review of
such methods can be found in [344].
In general, the replay strategy was found to be one of the most effective solutions
in CL [343, 223, 42, 140, 200]. The disadvantage of such an approach is that
with an increasing number of tasks, the memory may not be large enough to
contain all the previous tasks. Additionally, a subset of data has too few risks to
accurately represent the original distribution, leading to catastrophic forgetting.
Moreover, using data from previous tasks to train requires additional compu-
tation. Other concerns are about data privacy and the problem of keeping an
additional memory that based on the device could be a huge constraint.

Figure 3.12: Scheme of Experience Replay approach

3.8.2 Generative Replay
Unsupervised learning is a vast subject in machine learning, and it has the ad-
vantage wrt Supervised Learning that labels are not necessary to train these
models. Generative models belong to the area of Unsupervised Learning. They
are a particular type of models designed to reproduce the input data distribu-
tion. The goal is to learn to generate data from the original data distribution,
similar but not identical to the data of the training set. The generative model is
generally a GAN [105] or a Variational Auto-Encoder (VAE), though in general
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can be considered model-agnostic [157].
Generative Replay, also known as Pseudorehearsal, allows the network to revisit
previous memories during the training of a new task without the need to store
previous training examples, which is more memory efficient. It is inspired by
the suggestion that hippocampus is better paralleled with a generative model
than a Replay Buffer. Generative Replay approaches differ from Rehearsal ap-
proaches in that they model the past by training a generative model on the data
distribution rather than relying on a few samples. This allows them to generate
new examples from past experiences when learning new data.
A classical method implementing a generative replay typically makes use of dual
models [157]. One frozen model generates samples from past experiences, and
another learns to generate and classify current samples in addition to the regen-
erated ones. When a task is over, we replace the frozen model with the current
one, freeze it, and initialize a new model to learn the next task.
In [269], given a sequence of tasks, a scholar model containing a generator and
a solver is learned and retained. Such a scholar model holds the knowledge
representing the previous tasks and thus prevents the system from forgetting
previous tasks.

3.8.3 Gradient Episodic Memory (GEM)

The memory of samples can also be used for regularization purposes and not
just replayed from time to time, along with new data in the learning process.
Specifically, GEM aims to reduce forgetting and make positive backward possi-
ble [178]. The key idea is to only constrain new task updates to not interfere with
previous tasks. This is achieved by projecting the estimated gradient direction
on the feasible region outlined by previous task gradients through first-order
Taylor series approximation.

3.8.4 incremental Classifier and Representation Learning
(iCaRL)

iCaRL can be seen as a mixture of a regularization and rehearsal approaches.
For each class, it stores a subset of exemplars per class, where an exemplar set
is a subset of all examples of the class, aiming to carry the most representative
information of the class i.e. they best approximate class means in the learned
feature space. At test time, the class means are calculated the nearest mean
classification based on all exemplars. The idea is that the last layers are the most
task-dependent. Therefore these layers are the most influenced by the addition
of new tasks. They use the first layers of a DNN, which are the most stable,
for representation learning and use the DNN as a feature extractor. Therefore,
using LwF a DNN can be trained continuously. The base idea is that instead
of using a DNN for classification, iCarl uses it for supervised representation
learning.
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3.8.5 Maximally Interfered Retrieval (MIR)

In [11] is proposed a controlled sampling of memories for replay. They retrieve
the samples which will be maximally interfered by the new task data, i.e. whose
prediction will be most negatively impacted by the foreseen parameters update.
This approach also takes some motivation from neuroscience where replay of
previous memories is hypothesized to be present in the mammalian brain [197],
but likely not random. In the CL setting and given a limited computational
budget, an approach can’t replay all buffer samples each time. Therefore, it
becomes crucial to select the best candidates to be replayed. MIR proposes a
better strategy than random sampling in improving the learning behaviour and
reducing the interference.

3.9 Architecture-based approaches

3.9.1 Progressive Neural Network (PNN)

It proposes a progressively growing neural network, which is extended by an
additional column when trained on a new task. By utilizing lateral connections
to the new column and freezing the previous columns, the system can prevent
catastrophic forgetting while reusing previously learned knowledge for the cur-
rent task [254]. The idea is to keep a pool of pre-trained models as knowledge
and use lateral connections between them to adapt to the new task. It is a
combination of parameter freezing and network expansion. For each new task
encountered, a new neural network (or a new column) is created, and its lateral
connections with all previous ones are learned. In progressive neural networks,
each task t is associated with a neural network, which is assumed to have L

layers with hidden activations h
(t)
i for the units at layer i ≤ L. The set of pa-

rameters in the neural network for task n is denoted by Θ(n). When a new task
N + 1 arrives, the parameters Θ(1),Θ(2), . . . ,Θ(N) remain the same while each
layer h

(N+1)
i in the task N + 1 ’s neural network takes inputs from (i − 1) th

layers of all previous tasks’ neural networks.

h
(N+1)
i = max

(
0,W

(N+1)
i h

(N+1)
i−1 +

∑
n<N+1

U
(n:N+1)
i h

(n)
i−1

)
(3.13)

where h0 is the network input,W (N+1)
i denotes the weight matrix of layer i

in neural network N + 1. The lateral connections are learned via U
(n:N+1)
i to

indicate how strong the (i−1) th layer from task n influences the i th layer from
task N + 1. Unlike pretraining and fine-tuning, progressive neural networks do
not assume any relationship between tasks, which makes them more practical
for real-world applications. The lateral connections can be learned for related,
orthogonal, or even adversarial tasks [61]. To avoid catastrophic forgetting,
settings of parameters Θ(n) for each task n, where n ≤ N are frozen, while
the new parameter set Θ(N+1) is learned and adapted for the new task N + 1.
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As a result, the performance of existing tasks does not degrade. The main
disadvantage of such an approach is the significant amount of memory required,
making such an approach not scalable.

3.9.2 Expert Gate(EG)

It is proposed as a network of experts. Each expert model is trained given
a specific task. Assuming EG saw already N tasks, we define for each task
k, an autoencoder model Ak and an expert model Ek where k ∈ {1, . . . , N}.
When a new task N + 1 and its training data DN+1 arrive, DN+1 will be eval-
uated against each autoencoder Ak to find the most relevant tasks. The expert
models of these most relevant tasks are used for fine-tuning or learning-without-
forgetting (LwF ) to build the expert model EN+1. At the same time, AN+1 is
learned from DN+1.
When there are many tasks, a system needs to know what model to load when
making the prediction on a test example. An algorithm is used to determine the
relevance of tasks and only load the most relevant for inference. When predict-
ing a test example, the expert models whose corresponding autoencoders best
describe the sample are loaded in memory and used to make the prediction.
However, the size of the entire architecture tends to explode with an increas-
ing number of tasks. Therefore for some applications could be unfeasible for
scalability problems.

3.9.3 PathNet

PathNet is a modular deep neural network with L layers, each consisting of
M modules, where each module is a neural network. Each task at the end
of training will be represented as a pathway, i.e., for each layer a subset of
modules and all of them together represent the pathway for the task. For each
layer, the outputs of the modules in that layer are summed before being passed
into the active modules of the next layer. When a new task arrives, it uses
an evolutionary algorithm to find the optimal path through such a large DNN,
then freezes the weights along the path. A new task can use previously learned
modules for an old task or create a new one. An advantage is the memory
remains fixed over time. One of the disadvantages is that it is computationally
expensive, and it is necessary to know the task label to select the path associated
with the task. Moreover, the sequence of tasks is limited since every task will
use some new modules until they don’t run out.

3.9.4 Piggyback Approach

A method for adapting a single, fixed deep neural network to multiple tasks
without affecting performance on already learned tasks [186]. A major drawback
of finetuning is the phenomenon of catastrophic forgetting. So they propose not
to change the weights of the network. The idea is based on network quantization,
a binary mask is learned, the mask "piggyback" on an existing network to
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provide good performance on a new task. The advantages of such a method are
that the overhead is very low, only 1 bit for each parameter of NN (per task),
and that performance is agnostic to the task order. However, the choice of the
initialization of the backbone network is crucial for obtaining good performance.
Moreover, only the features learned for the initial task, such as the ImageNet
pre-training, are re-used and adapted for new tasks. It needs to know from
which domain (i.e., task) belongs the sample. Additionally, there is no scope
for added tasks to benefit from each other.

3.9.5 PackNet

It identifies weights important for prior tasks through network pruning and keeps
the important weights fixed after training for a particular task [187]. Additional
information is stored per weight of the network to indicate which tasks it uses.
However, a disadvantage of such a method is that performance begins to drop as
more tasks are added to the network due to a lack of available free parameters,
and the total number of tasks that can be added is ultimately limited due to
the fixed size of the network.

3.10 Applications

When considering many real-world applications, there is to consider that at some
point in time, a data distribution shift is going to happen. CL moves the usual
paradigm of DL towards networks that can continually accumulate knowledge
over different tasks without the need to retrain from scratch. Below are some
examples of domains where continual learning may be beneficial or has already
been applied. However, it should be noted that this is not an exhaustive review
but rather a list of potential applications. The applications consider cases where
the data is available over time and that require an update of the model in an
efficient way. For some applications could also be the additional constraint of
real-time and so the data cannot be stored and reprocessed.

3.10.1 Computer Vision

Over the last few years deep learning methods have been shown to outperform
previous state-of-the-art machine learning techniques in several fields, with com-
puter vision being one of the most prominent cases. Computer vision (CV) is
a field of artificial intelligence (AI) that enables computers to take meaningful
information from images and videos. Some research fields of CV are image clas-
sification, object detection, semantic segmentation, image restoration, activity
recognition and human pose estimation [311].
A possible application of CL in CV could be the necessity to adapt their behav-
iors over time. For example, in the context of object detection, CL may be used
to update a model using only new images of new classes, avoiding retraining
from scratch and improving its object detection capabilities. In general, given
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that much information in a lot of fields can be represented in terms of images,
the field of CV is considered very important. Because of such importance, most
of the work in CL is performed considering the CV domain. It is important
to note that CV is a multifaceted field and therefore, its use can include a
lot of real-world applications described below. Some examples are healthcare,
manufacturing and robotics [301].

3.10.2 NLP

Natural Language Processing (NLP) is a field of artificial intelligence that deals
with how computers can understand, interpret, and generate human language
[62]. NLP is an important area of research and development that has the po-
tential to transform how we interact with computers and each other. Some
research fields are text classification, text summarization, machine translation
and sentiment analysis.
CL algorithms can learn and adapt to new tasks or domains without forgetting
what they have learned previously. This can be useful for tasks that require
systems to adapt to changing patterns or user needs over time. As for CV,
NLP is a multifaceted field and therefore, its uses can include a lot of real-
world applications like healtcare, recommendation systems, virtual assistants
and robotics. For example, in virtual assistants such feature could be very use-
ful. Indeed, CL algorithms can adapt to the specific needs and preferences of
individual users, allowing NLP systems to provide more personalized and ef-
fective language processing services. In particular, a training more light could
allow an adaptation based on user needs directly on the device, avoiding issues
of data privacy. Moreover, CL algorithms can transfer knowledge learned from
one NLP task or domain to another, allowing NLP systems to leverage existing
knowledge to learn new tasks more efficiently.

3.10.3 Audio

Deep learning has significant applications in the field of audio, as proved in
recent years. Some examples are speech recognition, audio classification, audio
generation, and music generation. Continual learning is particularly relevant in
the field of audio, where the model needs to be able to adapt to changes in the
data distribution. One way to apply continual learning to audio is by training
a model to recognize and classify different audio events, such as speech, music,
or ambient noise. The model can be initially trained on a large dataset of audio
signals and then continually fine-tuned as it is exposed to new audio events or
variations in the data distribution. Another application of continual learning in
audio is the development of personalized speech recognition systems, which can
learn and adapt to an individual’s unique voice and speaking style over time.
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3.10.4 Robotics

Autonomous robots can make judgments and conduct activities on their own
without direct human guidance. This is especially beneficial in situations when
a human operator is not practical, such as space exploration or disaster re-
sponse operations. Autonomous robots have numerous applications, including
manufacturing, construction, transportation, agriculture, and healthcare. CL
in this field can be useful because real-world robots may require the ability to
adapt when confronted with new scenarios. For example, CL might be used in
autonomous navigation. CL enables robots to adapt to changing environments
and improve their capacity to navigate unexpected terrain.

3.10.5 Recommendation Systems

A recommender system is a type of AI application that uses data and algorithms
to make personalized recommendations to users. Recommendation systems are
used in various contexts, including e-commerce, social media, and entertain-
ment. CL can be an essential part of a Recommender System, because it can
help improve efficiency and customer satisfaction. It can help users discover
new items they may be interested in and make it easier for them to find what
they want.

3.10.6 Industry 4.0

Industry 4.0 refers to the integration of advanced digital technologies into the
manufacturing sector. Manufacturing industries are in a continuous effort to
improve their production yield, uptime and throughput, to increase production
quality and minimize costs. Complex manufacturing can use Continual Learning
to adapt to changes in the manufacturing process and improve efficiency over
time. There are a few reasons why data distribution shift can occur in Industry
4.0 such as changes in the underlying process, changes in the environment and
data collection process. For example, if a model was trained on data from a
manufacturing process, and the process was modified, the model may no longer
be able to accurately predict the output of the new process. In another case,
the environment in which the data is collected may change, leading to a shift
in the data distribution. For example, if a model was trained on data from a
specific location and then some environmental conditions changed.

3.10.7 Edge Computing

Edge computing is a paradigm that aims to improve response times and conserve
bandwidth by bringing computation and data storage closer to the location
where it is needed. This is typically done by placing small, low-power computing
devices at the edge of a network, near to machines or where users will use them.
So such devices can reduce the amount of data that needs to be transmitted over
the network and reduce the latency. Such features can be especially important
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in situations where real-time data processing is required.
In comparison to cloud computing, edge computing typically has more limited
computing power and data storage capabilities. As a result, it is often only
practical to apply models in the inference phase, rather than training them
using a lot of data. Continual learning can help to address this challenge by
allowing models to update and adapt to the new information that arrives over
time, rather than requiring retraining from scratch using all data seen so far.
This can help to reduce the computing power needed for training, as only an
update of the model is required. For example, consider an edge computing
system that is deployed in a manufacturing location and is used to process data
received from the machines connected thanks to IoT. The data collected by the
sensors may change over time, for example, due to changes in the environment
or the deployment of new sensors. With continual learning, the edge computing
system would be able to be retrained from scratch every time, which may not
be practical due to the limited computing resources available at the edge.

3.10.8 Cybersecurity

Cybersecurity protects computers, servers, electronic systems, networks, and
data from digital attacks. It involves using technologies and policies to avoid
attacks and unauthorized access to networks and data. So CL can be used to
improve many cases of cybersecurity such as malware detection, spam filtering
and network security. For example, in the case of network security, CL can be
used to improve security by enabling systems to adapt to changes in network
traffic patterns and identify suspicious activity.

3.10.9 Smart City

Smart cities utilize many technologies like sensors and artificial intelligence to
gather and analyze data about the city. This information is then used to im-
prove citizens’ quality of life and enhance the efficiency of services offered by
the city.
Continual learning can be useful in the context of smart cities to enable sys-
tems to adapt to changing conditions and improve their performance over time.
Some potential applications of CL in smart cities are traffic management, en-
ergy management and public safety. For example, CL can optimize traffic flow
in real-time based on changing conditions such as accidents. Considering en-
ergy management, CL can be used to predict energy consumption in different
locations in buildings and understand where there can be problems by adapting
to changing demand patterns.

3.10.10 Machine Learning Production Systems

Data could be changing because of trends, or because of different actions made
by the users. For example, let’s consider a recommendation system for buying
new items. Let’s assume that a user could be interested in some hobbies, and
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after some time, it changes user behavior and type of hobbies. So, the system
needs to retrain the model and recommend new items associated to the new
hobbies to the customer. With a model in production, this can happen often
and it needs to be retrained periodically.

Being able to fast train and deploy new prediction models over time becomes
essential to provide up-to-date and always improving services. Another example
could be Anomaly Detection Systems in Continual Learning, in this scenario,
may substantially reduce the computational burden incurred by such systems
in retraining models from scratch every time at a massive scale with a direct
impact on resources occupation and energy consumption.

3.10.11 Conclusions

Continual learning is a type of machine learning that enables models to adapt
to changing data and environments over time. This is particularly valuable in
applications that need machine learning models to be more flexible and improve
their performance as they encounter new data and situations.
The presented applications are meant to give a general idea of some ways that
CL can be utilized, but they only represent part of the scope of its potential
use cases. In other words, there are likely many more ways CL can be applied
beyond the examples mentioned.
CL is a valuable capability for machine learning models, as it allows them to
adapt and improve their performance over time, even as the data and environ-
ments they are working with change. This can make machine learning models
more effective and valuable in various domains.

3.11 Continual Learning and Industry 4.0

Industry 4.0 takes the manufacturing or operating a factory at a new level. It
interconnects the multiple digital technologies with each other and shares the
data by using IoT (Internet of Things). The IoT allows the user as well as a
control unit to access the real-time data of all the systems running in the factory.
This allows better collaboration of digitally connected devices with each other
as well the control unit. This gives an instant boost to productivity, improve a
process, and drives growth and safety.
When considering about CL in the context Industry 4.0 there are many pos-
sible domains like Manufacturing and many possible fields such as Predictive
Maintenance. Continual learning, also known as lifelong learning or incremental
learning, refers to the ability of a machine learning model to learn and adapt
to new information or tasks over time, without forgetting previous knowledge.
This is in contrast to traditional machine learning models, which are trained on
a fixed dataset and are not able to adapt to new information or tasks.
In the context of Industry 4.0, continual learning can be particularly useful
for applications that involve dynamic environments or changing data. For ex-
ample, in a manufacturing setting, a machine learning model that is able to
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continually learn and adapt to new production data can be more flexible and
responsive to changes in the manufacturing process. Similarly, in a predictive
maintenance application, a machine learning model that is able to continually
learn and adapt to new data from sensors and other sources can improve the
accuracy of its predictions over time.

3.11.1 Manufacturing

In the work [319] is pointed out that one of the disadvantages is that DL mod-
els need to rebuild the model from scratch and the existing knowledge may be
difficult to utilize. Therefore, it is necessary to enable deep learning with incre-
mental learning capabilities [319] with the capacity of transfer learning.
In [274] is discussed of the potential of CL for Manufacturing and how continual
learning concepts can be exploited for the development of anomaly detection
systems. Distribution drifts refer to changes in the distribution of data over
time, which can cause problems in the performance of machine learning mod-
els in manufacturing (especially anomaly detection systems). These drifts can
be caused by changes in the manufacturing process and can lead to a decrease
in the overall effectiveness of equipment (OEE), as well as slower manufactur-
ing processes. For example, in the case of Anomaly Detection, OEE decreases
when workpieces produced under the new distribution are wrongly categorized
as faulty workpieces, slowing down the manufacturing process by unnecessary
and excessive manual quality measurements. To avoid these problems, machine
learning systems must be constantly evaluated and potentially retrained and re-
deployed to account for changes in the data distribution. However, this requires
a manual and time-demanding workflow. Continual learning approaches allow
for the continuous acquisition of new information from a continuous data stream
and may offer a solution for developing systems that can adapt to distribution
drifts in real-world manufacturing data.
In practice we can find many studies on CL to solve problems of Manufacturing
and Industry 4.0.
For example, considering Manufacturing, the authors of [191] propose a study
of CL approaches applied on a real industrial metal forming dataset collected
on a hydraulic press. It consists of data from eight pumps applying pressure
on a shared oil reservoir. Due to this setup, anomalous behavior of one pump
is compensated by other pumps. This hides such behavior from the opera-
tor, because initially no problems occur. However, the other pumps experience
increased wear, which makes an early detection of the described anomalous be-
havior desirable. The challenge is further increased by frequent alterations of
the production process, either by improvements such as new molds or changes
of the manufactured product. Every alteration causes a change of the process’
characteristics, which require anomaly detection algorithms to be retrained.
Therefore they propose to use approaches belonging to a specific family of CL
known as regularization-based and perform Anomaly Detection on data. In the
dataset used in this study, pressure data labeled ‘normal’ or ‘anomalous’ from
the production of fifteen different products each being produced hundreds of
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times are included
In [156] they consider CL applied to Fault Classification. They consider the
problem where stream data collected by manufacturing processes have charac-
teristics that vary over time. These sequentially non-stationary hallmarks of
process data confuse model stability and give rise to catastrophically forgetting
the previous features. When temporal structured data samples change over
time, changes in data distribution can be observed. To overcome such problem
they propose in the context of CL a pseudo-rehearsal approach where they use
a GAN as generative model to produce the samples of old tasks to use in con-
junction of samples of the current task during the training of the current model.
Moreover, the model uses GAN to balance fault data during generation. To
validate the approach a dataset of the UCI Machine Learning Repository with
unbalanced six faults is used, showing the positive effect of a balancement.
In [334] is studied CL in the domain of Industrial chemical processes. Industrial
chemical processes are a vital part of many industries and play a critical role in
the production of a wide range of products. Nowadays, industrial chemical pro-
cesses are becoming more and more complex, and the scale is increasing. The
article proposes a new strategy that it is the combination of the proposed im-
proved residual neural network (DResnet), enhanced loss function (AM-Softmax
loss function and distillation loss function), and enhanced training set is used
to alleviate catastrophic forgetting They use the enhanced loss function to con-
strain the neural network to learn new knowledge and retain old knowledge.
The proposed method is compared to the well-known iCaRL approach showing
an improvement in performance. Experiment demonstrates the effectiveness of
the algorithm for mitigating catastrophic forgetting by using the Tennessee-
Eastman (TE) chemical process dataset.
In terms of Fault Prediction and Manufacturing, in [192] they consider the man-
ufacturing process for lithium-ion batteries, which it is complex and requires
specialized equipment and expertise. In recent years, the use of lithium-ion bat-
teries has greatly expanded into products from many industrial sectors, e.g. cars,
power tools or medical devices. Previous knowledge of the time a component’s
failure will occur allows for countermeasures and reduces the risk to a system’s
safety and security [1]. An early prediction and robust understanding of battery
faults could therefore greatly increase product quality in those fields. However,
taking those lithium-ion batteries as an example, their fault mechanisms and
usage behaviors are so complex, that traditional, model-driven approaches do
not suffice. While current approaches for data-driven fault prediction provide
good results on the exact processes they were trained on, they often lack the
ability to flexibly adapt to changes, e.g. in operational or environmental param-
eters. To obtain such flexibility they perform a study using Continual learning
approaches, allowing for an automatic adaption of previously learnt knowledge
to new tasks. More in detail, the paper discusses different continual learning
approaches from the group of regularization strategies and evaluated on a real
battery wear dataset.
Another work was performed by [193] using the Turbofan Engine Degradation
Simulation Data Set (TEDSDS) by NASA [260]. It is based on the Commercial
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Modular Aero-Propulsion System Simulation developed by [214] and includes
four simulated datasets, each one containing several dozens of individual en-
gines’ time series. They are interested in CL to automatically adapting to
different usage contexts, in such way, it would greatly expand the usefulness
of current predictive maintenance solutions. As CL approach they considered
Elastic Weight Consolidation (EWC).
In [368] performed an interesting study of Fault Diagnosis on the bearings.
Rolling element bearings play vital roles in mechanical equipment, they support
rotating bodies to reduce friction and guarantee rotational accuracy. Bearings
normally work in complex and harsh conditions and they are prone to failure
that shuts down the entire machine. However, about 40Bearing monitoring and
diagnosis ensure safety and reduce economic losses. In recent years, various
types of signals have been used for bearing faults diagnosis, including vibration.
Deep-learning schemes have thus been used to diagnose bearing faults [14–16].
However, given the complex and changeable bearing work environments, the
distributions of collected data vary greatly. As deep-learning algorithms are
generally data-driven, performance of the model decreases when the data dis-
tribution changes (i.e. catastrophic forgetting). Therefore they consider as
solution Continual Learning and propose a new approach called Repeated Re-
play Using Memory Indexing (R-REMIND). Such approach is inspired to the
original REMIND since they also perform product quantization and store the
features in indices. The performance was assessed using a dataset from Pader-
born University [32]. The dataset was derived using ball bearings of type 6203
and includes information on artificial damage caused by electric discharge ma-
chining, drilling, etc.
In [128] they propose the study of CL in the context of Induction Motors (IMs).
IMs support most of the production process in the modern industry’s daily life
due to their straightforward construction, reliability, and relatively low cost.
However, IMs operate for long uninterrupted working periods, are exposed to
the elements, and minimum preventive maintenance. These operative conditions
raise unexpected faults that can show up at any time, causing lower produc-
tivity and economic losses. Thus, early motor failure detection and correction
are challenging problems that catch many researchers’ attention. In past years,
deep learning (DL) architectures have been used in fault diagnosis. However,
modifications in the operative conditions can generate patterns from new fail-
ures that differ from those detected by the current model. This issue forces
existing methods to learn a new model considering unknown failure conditions,
but current models for automatic detection can learn new faults at the cost of
forgetting concepts previously learned. Therefore in [citation], the authors pro-
pose a CL approach to overcom this problem in the context of early detection of
fault events of electromechanical systems, which is considered one of the most
critical data challenges in modern industry. Similarly to the well-known CL
approach ICaRL, the authors also use the Nearest Centroid Classifier (NCC) to
classify samples instead of relying on the final output of the neural network. In
conjunction they also apply experience replay (ER) to mantain the knowledge
of old tasks. They provide evidence to support their claim that their approach
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is effective in identifying and addressing faults in a continuous learning setting.
They validate their approach using two public benchmark datasets: the first
belongs to the domain of motor common fault diagnosis and the second is in the
domain of bearing fault diagnosis. Specifically, they used two public benchmark
datasets are: asynchronous motor common fault (AMCF) [1] and Case Western
Reserve University (CWRU) [25].
In the paper [347] it is considered Fault Diagnosis of Control Valve. Deep neural
network learning is a commonly used method for fault diagnosis of the control
valve. However, the catastrophic forgetting problem of deep learning in multi-
task affects the fault diagnosis accuracy. This paper proposes a fusion of elastic
weight consolidation algorithm and residual shrinkage network method, sharing
common feature layers. The results indicate that this method can effectively
alleviate the problem of the catastrophic forgetting for the condition identifica-
tion of the control valve.
Fault data are distributed in a continuous flow of constantly generated informa-
tion and new faults will inevitably occur in unconsidered submachines, which
are also called machine increments. Therefore, adequately collecting fault data
in advance is difficult. Limited by the characteristics of DL, training existing
models directly with new fault data of new submachines leads to catastrophic
forgetting of old tasks, while the cost of collecting all known data to retrain
the models is excessively high. DL-based fault diagnosis methods cannot learn
continually and adaptively in dynamic environments. In [33], it is proposed a
dual-branch adaptive aggregation residual network (DAARN) where two types
of residual blocks are created in each block layer of DAARN: steady and dy-
namic blocks. In addition, a feature-level knowledge distillation loss function is
proposed to further overcome catastrophic forgetting. The effectiveness of the
method is verified by experiments on the three bearing datasets. The results
show that it outperforms other continual learning methods and has satisfactory
robustness.
To characterize machine health for predictive maintenance activities on smart
factory, it is necessary to consider data-driven algorithms. Since data collec-
tion can be expensive, datasets may not cover all the possible fault conditions.
Research has focused ondetecting unknown conditions rather than integrating
unknown conditions into future predictions. Therefore, Continual Learning so-
lutions should learn to classify new conditions and use improved representa-
tions that minimize the need for future fine-tuning. Meta-learning approaches
like Few-Shot Prototypical Networks (FSPN) regularize base-task learning to
find these more generalizable representations. In [253], experiments on a motor
data set demonstrate that FSPN with only 5 or 10 examples of the novel fault
consistently outperforms static, fine-tuning, and Elastic Weight Consolidation
(EWC). To evaluate the proposed method, a SpectraQuest Machinery Fault
Simulator (MFS) Magnum simulated eight motor operating conditions: normal,
faulted bearings, bowed rotor, broken rotor, misaligned rotor, unbalanced rotor,
phase loss, and unbalanced voltage.
In [363] they consider two datasets that resemble manufacturing processes. They
propose a novel approach that is the conjunction of Probabilistic Slow Feature
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Analysis (PSFA) and Elastic Weight Consolidation(EWC) called PFSA-EWC.
PFSA is an unsupervised machine learning method for extracting slow-varying
features from a stream of high-dimensional data. . The first considered dataset
is a continuous stirred tank heater (CSTH), a type of industrial equipment used
to heat a liquid or slurry in a tank by stirring it with a heating element. The
second one is a practical coal pulverizing system, a method of crushing coal into
a fine powder, so that it can be burned more efficiently and used more effectively
in power plants and other industrial processes.

For multimode processes, one generally establishes local monitoring models cor-
responding to local modes. However, the significant features of previous modes
may be catastrophically forgotten when a monitoring model for the current
mode is built. In study [362], a modified PCA algorithm is built with continual
learning ability for monitoring multimode processes, which adopts elastic weight
consolidation (EWC) to overcome catastrophic forgetting of PCA for successive
modes. Such method is called PCA-EWC. A practical industrial system in
China are employed to illustrate the effectiveness of the proposed algorithm
Industrial systems generally operate under multiple modes due to changing of
raw materials, market demands, etc. Multimode process monitoring is increas-
ingly significant as industrial systems generally operate in varying operating
conditions. However, most researches focus on multiple local monitoring mod-
els for complex multimode processes and assume that data of all possible modes
are available and stored before learning. When similar or new modes arrive,
local models are rebuilt corresponding to each mode and the model’s capacity
would increase with the continuous emergence of modes.
The previous method called PCA–EWC [362] assumes that data follow multi-
variate Gaussian distribution and are stationary in each mode. Therefore, in the
paper [363], they consider sparse dynamic inner principal component analysis
(SDiPCA). By adopting the concept of intelligent synapses in continual learning,
a loss of quadratic term is introduced to penalize the changes of mode–relevant
parameters, where modified synaptic intelligence (MSI) is proposed to estimate
the parameter importance. The resulting approach is called SDiPCA–MSI).
The effectiveness and superiorities of the proposed method are demonstrated
by a continuous stirred tank heater case and a practical industrial system. For
industrial systems, such as large–scale power plants and chemical systems, the
proposed method has the ability to monitor successive dynamic modes.
In [294] was proposed a CL study about Quality Prediction for Manufactur-
ing. Deep learning-based predictive quality enables manufacturing companies
to make data-driven predictions of the quality of a produced product based on
process data. In the current state of research, there are already many examples
that successfully demonstrate the feasibility of deep learning based predictive
quality in various manufacturing processes such as deep drawing, hydrocrack-
ing, lasermachining, or additive manufacturing. However, a central challenge is
that production processes are subject to continuous changes. For example, as
soon as a new product is manufactured or a process is reparameterized, the pro-
cess behavior changes and with it the relationships between process and quality
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data, with the result that previously trained models may no longer perform well
in the process. This strongly limits the sustainable use of deep learning in the
production context, especially since the collection of representative process data
is costly and time-consuming. Moreover, often in the production domain are
that, due to limited hardware capacities or corporate policies, long-term process
data cannot be stored or accessed and model training must be carried out in
a resource-friendly manner. Such problems are addressed and demonstrate the
feasibility of application of Continual Learning for a real use case in injection
molding. They consider some CL approaches and also propose a variant of the
approach Memory Aware Synapses (MAS). More in detail, it is used a neural
network for numerical prediction of product quality based on machine parame-
ters and validate using a real-world regression problem in injection molding.
In was performed a study in the field of oil about the Distributed Virtual Flow
Meter. A distributed flow meter can be defined as a metering solution that mea-
sures volume, velocity, and the fraction of fluid components in every location
in the pipe. A distributed reading of the flow meter is essential because it can
provide accurate information about the location of interest on where the inter-
vention might be necessary. With this information, more effective action can be
taken and the reaction time can be significantly reduced, which will translate
to an increase in production well productivity within the multi-trillion-dollar
oil industry. The distributed measurements in this work are acoustic signals
acquired using a technology called distributed acoustic sensing (DAS). It was
shown that using a deep neural network (DNN) can be used to estimate the
phase-fraction of the fluids from the acoustic data. Unfortunately, the accuracy
of such approach degrades rapidly when the model tries to infer from the data
outside the training distribution, which is a common situation for real-world ap-
plications of modeling the DAS data. In [17], they study several well known CL
approaches applied to a real-world distributed sensor dataset collected from an
oilfield, and also propose a novel technique to do Compressed Replay. The novel
sample compression algorithm allows for the rehearsal training to store repre-
sentative data with less memory than the usual size required to store a sample.
The algorithm uses the inverse cutout technique to compress and isolate the
most relevant parts of the input data, and use them for rehearsal. Industrial
robots (IRs) are mainly used for handling and welding tasks that do not exert
high forces on them. The paper [299] presents a CL framework for data-driven
learning of the dynamics model of a 6-degree-of-freedom serial industrial robot.
This model can be used for model-based control algorithms, without the need
for extensive identification of robot specific parameters such as mass inertia,
and can additionally model complex effects such as friction. Furthermore, using
CL, it can adapt to changes of the robot e.g., due to wear or new tasks. With
the help of CL, the ML-based dynamics model is continually fed new data and
improves over the operating period of the robot.
Employers are obliged to have specific work equipment inspected to guarantee
a safe workplace. All work equipment is subject to a maintenance obligation
and some work equipment must undergo an inspection. The employer is obliged
to determine which work equipment must be inspected and must also provide
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written evidence for the regulatory agency. To improve the asset management,
based on customer experiences that registration assets is a time-consuming ac-
tivity, they propose to determine the type of asset based on the image. Based on
the asset type, the brand and object type can also be determined. Retraining on
the data set, including the new images of already familiar classes, might increase
the model’s performance on these classes since training on more data often re-
sults in more accurate performance. In addition, because the model must also
predict the newly added classes, the model must occasionally be updated. A
solution to the problem that training from scratch each time is resource ineffi-
cient, is a Continual Learning model, so in [251] they propose to apply CL in
an asset management context.

3.11.2 Conclusions
Continual learning is a type of machine learning that enables models to adapt to
changing data and environments over time. This is particularly valuable in the
context of Industry 4.0, as it allows machine learning models to be more flexible
and improve their performance as they encounter new data and situations.
The above approaches mentioned in the original text are just a few examples
of how CL can be applied in Industry 4.0. These examples are meant to give
a general idea of some of the ways that CL can be utilized in this context, but
they do not represent the full scope of its potential use cases. In other words,
there are likely many more ways that CL can be applied in Industry 4.0 beyond
the examples mentioned.
Overall, CL is a valuable capability for machine learning models in Industry
4.0, as it allows them to adapt and improve their performance over time, even
as the data and environments they are working with change. This can help to
make machine learning models more effective and useful in a variety of industrial
settings.
The above approaches are just a few examples of how Continual Learning can
be applied in Industry 4.0, and do not represent the full scope of its potential
use cases. These examples are intended to give a general idea of some of the
ways CL can be utilized in this context.
Overall, continual learning is a valuable capability for machine learning models
in Industry 4.0, as it allows them to adapt to changing data and environments
over time, improving their flexibility and performance.



Chapter 4

Interpretability

In the following chapters, we will examine research questions that are inspired by
industrial problems. Many of the studies we will discuss were conducted in the
context of Continual Learning, as this approach can be beneficial for addressing
many industrial challenges. However, there are other important challenges in
Industry 4.0, such as Interpretability, which also play a significant role. For
example, thanks to Interpretability is possible to understand how a machine
learning model is making decisions and predictions. This is important in indus-
tries where the consequences of incorrect decisions can be significant.

4.1 Motivation

With the increase of computational power and the growing availability of data,
Machine Learning (ML) approaches have been successfully applied to many
scientific, technological, and business areas [129, 133, 275, 305, 163, 112]. In
particular, ML has paved the way for more effective Decision Support Systems
(DSS). To make the most from the advanced data analytics capabilities enabled
by ML, analysts should be able to get explanations about model predictions so
they can make faster, better, and more reliable decisions based on the informa-
tion processed by ML algorithms [268, 6]

On the one hand, some ML methods (e.g. linear regression, simple decision
trees) are intrinsically interpretable and provide a feature importance score for
each of the input variables. On the other, the most advanced ML models that
allow for better performance (not only neural networks but also advanced classic
models such as those based on ensembles of trees) work just like "black boxes"
[111, 75, 348]: they provide predictions to the users, but no hint about how such
predictions are derived. As a consequence, often there is a lack of trust that
hinders the adoption of ML-based solutions. This is particularly detrimental in
the context of DSS [83] and other socio-technical systems [14]. The importance
of being able to explain this type of model, widely used in multiple sectors,
generated great interest and value in the search for methods of interpretability.

95
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4.2 Intepretability

4.2.1 Intro

Interpretable Machine Learning is a research field that aims at shedding light
on how black-box ML model predictions depend on input features [210]. ML
interpretability methods can be classified into model-specific and model-agnostic
ones. The former, also known as ad-hoc methods, are designed for a specific
class of models [204, 46]. The latter, also known as post-hoc methods, can be
applied on top of every ML model [255].

In this work, with DSS in mind, we focus on model-agnostic approaches.
Indeed, in many practical scenarios, different ML models can be used to ad-
dress many data processing tasks needed to distil the information to be exposed
through the DSS. However, users may lack a background in ML, so it can be
difficult for them to deal with different feature importance indicators produced
by different methods. For them, having to deal with a unique set of feature im-
portance indicators, such as those computed by a model-agnostic explainability
approach, is undoubtedly a great advantage. Indeed, less training is needed and,
given a task (e.g. regression or classification), users are always confronted with
the same model evaluation interface, independently from the actual ML model
implemented to solve it.

From the perspective of the level of granularity, interpretability algorithms
can be further divided into two classes: global interpretability methods, aimed
at providing explanations of the model as a whole, and local interpretability
methods, aimed at providing explanations associated with individual predic-
tions. Of course, both global and local interpretability are useful in DSS. On
the one hand, global interpretation can be used to build trust in the predictive
model; on the other, local interpretation provides users with contextual infor-
mation that can be relevant in the decision-making process (e.g. in root cause
analysis).

While it is apparent that in human-in-the-loop applications interpretability
insights must be provided to the user in a reasonable amount of time, most
state-of-the-art interpretability approaches require time-consuming procedures
for computation that do not allow for ’on-the-fly’ operation.

4.2.2 Related Work

Among model-agnostic approaches, Partial Dependence Plots (PDPs) [96] are
one of the most well-known: PDPs simply make each variable vary in a range
and show the annexed predictions in a plot. While PDPs provide a rich de-
scription of the effect each feature has on the prediction, such approach requires
a non-negligible effort by the user to analyse and compare a potentially large
number of plots (one for each feature). Moreover, PDPs focus on global inter-
pretability only. An alternative approach is given by Permutation Importance,
introduced for Random Forests in [38], and its variants, such as the Condi-
tional Permutation Importance described in [279]. These approaches are based
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on random permutations of values for each feature and produce a ranking of
features according to the resulting importance score. Results are very easy to
understand, but they provide only global level interpretability.

As for local interpretability, a key contribution was given in [247], where
authors propose Local Interpretable Model-agnostic Explanations (LIME) ap-
proach. LIME is one of the interpretability techniques that take advantage of
data disturbances, such as EXPLAIN and IME [280].

To explain a prediction of a complex model (target model), LIME chooses
a model from a class of interpretable surrogate models with low complexity
that locally minimizes the distance between the model to be interpreted and
the surrogate model predictions. Examples of LIME usage can be found in
healthcare [71] and industrial [263].

Another model-agnostic approach designed to explain local predictions is
Anchors [248]; Anchors produces decision rules in the form of if-then state-
ments, and it can be applied to different domains, e.g., tabular data, images
and text. However, since rules are computed by means of reinforcement learn-
ing and beam search, this approach has a high computational burden that makes
it not suitable for the deployment within a DSS. Among a posteriori explain-
ability techniques that can provide both global and local interpretation, one
that has received a lot of interest in recent years is SHapley Additive exPlana-
tion (SHAP) [182]. SHAP has been applied in a wide variety of research fields.
In [104], a new global interpretable method based on Shapley values was pro-
posed: the approach combines predictive accuracy with explainability and it is
applied to the financial problem of predicting bitcoin prices. In [220], SHAP
is used to intepret an XGBoost model that detects the occurrence of accidents
using a set of real time data. SHAP has also been extended in different ways.
Recently, approaches such as Asymmetric Shapley values [97] and Shapley Flow
[318] have been proposed to include prior knowledge about causal relationships
among data in the interpretation of the models. In [15], the authors use Kernel
SHAP to tackle an unsupervised task, i.e., to explain anomalies detected by
an autoencoder. Despite the great success, SHAP has some drawbacks. First,
SHAP is computationally burdensome, as it will be discussed in the next sec-
tion. Second, it is a complex approach, not only for its theoretical basis, but
also in terms of the resulting plots, that can be difficult to read, especially for
users with no ML background. About the methodological foundations, they
seem to be not fully understood by many users, potentially leading to misuse
of the tool [152]. While the last issue could be eased by a better training on
the theoretical aspects (even though many end-users may lack the technical
background to grasp them or the time to invest in such training), the compu-
tational complexity could be a bottleneck in situations where multiple models
have to be compared, or limited computational resources are available, or fast
reaction based on model prediction is required. As for the computational speed,
it is nowadays a challenge, particularly in the Web-of-Things context, where the
amount of data is considerable, often in the form of live streams with extremely
fast update. Besides, a fast update of data leads to a more frequent retrain of the
ML models, and when a model changes, it is necessary to rerun the entire ML
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interpretability procedure, which worsens the computational burden associated
to SHAP.

4.2.3 SHAP-based Approaches

4.3 SHAP

SHAP

As mentioned in 4.2.2, SHAP [182] is a framework for interpreting predictions
produced by a ML model based on the concept of Shapley value from cooperative
game theory. Given a trained model f and a generic data point x, represented
by a p-dimensional feature vector (i.e. x ∈ Rp), SHAP computes, for each
feature, a real-valued quantity that represents the contribution of the feature
to the prediction f(x). The main idea is that the prediction can be explained
by treating it as a "payout" that needs to be distributed across features, which
act as “players” in a coalition. As many other interpretability methods, SHAP
relies on the definition of an explanation model g which is simpler than the
predictive model f to be explained, while being a good approximation thereof
at least locally. Specifically, the explanation model g is a linear function of
binary variables zj , indicating the presence or absence of the corresponding
feature in the sampled coalition, and takes the form

g(z) = ϕ0 +

p∑
j=1

ϕjzj . (4.1)

The p-dimensional vector of ones and zeros z = [z1, . . . , zp] represents the
sampled coalition: zj = 1 denotes presence of the j-th feature in the coalition,
while zj = 0 indicates that the j-th feature is not in the coalition. At the core
of the SHAP method is the estimation of the linear model g given K sampled
coalitions z(1), . . . , z(K), which allows for a straightforward computation of the
feature attribution coefficients ϕ’s, i.e. the Shapley values.

Notice that, in light of the nature of the underlying explanation model (4.1),
SHAP can be considered as an additive feature attribution method. The most
popular model-agnostic version of SHAP is KernelSHAP, characterized by high
portability as it can be used on any ML model that has tabular data as input.
Model-specific versions have been proposed for tree-based models (TreeSHAP
[181]) and for Deep Learning models (DeepSHAP [182]), both with the aim of
leveraging the internal structure of the model at hand to improve the compu-
tational performance of the algorithm. Since our main goal is the design of
a completely model-agnostic interpretability method for tabular data, in the
remainder of this work we mainly consider KernelSHAP as benchmark for com-
parisons.
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Age Weight Height Sex Age Weight [kg] Height [cm] Sex
1 1 1 1 −→ 24 88 185 M
1 0 0 0 −→ 24 60 193 F
1 1 0 0 −→ 24 88 178 F
1 1 1 0 −→ 24 88 185 F

Table 4.1: An example of mapping from the space of coalition vectors to the
original feature space, with absent features replaced with feature values (in
bold) randomly sampled from the dataset.

4.3.1 KernelSHAP

At the core of the KernelSHAP method is the estimation of the linear expla-
nation model (4.1) by means of the optimization of a squared loss function in
which the contribution of each sampled coalition z is weighted according to a
specific weighting kernel (whose rationale and properties are discussed below).
The procedure is summarized in Algorithm 4.1.

Figure 4.1: Algorithm KernelSHAP

We recall that hx is a function from {0, 1}p to Rp mapping 1s into the original
feature values of data point x and 0s into feature values randomly sampled from
the dataset (see the example in Table 4.1);

The authors of the method suggest to use K = 2048 + 2 · p coalitions [180]
to obtain the best results in the majority of situations. The higher the number
of evaluated coalitions, the higher the computational time, due to the larger di-
mension of the matrix to be inverted in the estimation of the linear explanation
model. On the other hand, a larger number of coalitions could ensure the esti-
mation of a more accurate explanation model, assumed the sampled coalitions
are sufficiently informative. For this purpose, the coalitions are not chosen at
random: the weight πx(z) is exploited to select top K most informative ones,
i.e. those whose associated weights are the highest. Notice that the number
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of sampled coalitions (according to the authors’ suggestion) increases with the
number of features. In addition, the number of linear models that have to be
estimated increases with the number of data points in the dataset. As a conse-
quence, the computational cost does not scale well with the dataset dimensions
and this is the reason why KernelSHAP is computationally burdensome, espe-
cially in big data regimes. In Section 4.5.2 we will analyze different solutions
the authors provide to lower the computational time, highlighting the impact
such trade-offs have on the quality of the produced explanations.

4.3.2 SHAP results visualization

Before introducing AcME, we briefly introduce the most frequently encountered
visualizations of SHAP results, that will be useful to better assess the visual
efficacy of the novel approach detailed in the following sections. SHAP global
importance is a jitter plot that shows both feature effects and feature impor-
tance. The y-axis has the feature names sorted by decreasing importance score,
while on the x-axis there are the Shapley values. The color map, from blue to
red, represents the value of the feature from low to high. Overlapping points
are jittered in y-axis direction to get a sense of the distribution (Figure 4.5b).
As for local interpretation, SHAP provides two different plots: the waterfall
plot (Figure 4.2(a)) and the force plot (Figure 4.2(b)). They are both based on
the concept that each SHAP value is a ’force’ that either increases or decreases
the estimation: the prediction starts from a baseline, that is the average of all
predictions, and it is then modified by such force. In local importance plots,
each positive Shapley value is an arrow that increases the prediction, while neg-
ative values decrease it. Balancing each other, the arrows point to the actual
prediction for the selected observation. The difference is that, while the force
plot has all the arrows on the same row divided in positive values (on the left)
and negative values (on the right), the waterfall plot has one row for each arrow,
ordered by impact. Both visualizations are very different from the one used for
global interpretation. One shortcoming is that they do not provide any hint
about features distributions to contextualize the values of current observation.

4.4 Proposed Approach

We draw inspiration from the computational simplicity behind PDPs, the ver-
satility and some excellent visualization of SHAP, and we propose AcME, a
new model-agnostic approach for both global and local interpretability. By
proposing a different methodology, with the goal of speeding up computational
time, AcME manages to provide an importance score for each feature and a
plot inspired by SHAP’s summary plot, in which we see not only each feature’s
importance but also the effect on the predictions. Despite being much faster,
the proposed approach proves to be comparable to SHAP in terms of feature
impact evaluation. Also, it brings the same effectiveness to visualization for
local interpretability.
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(a) SHAP waterfall plot.

(b) SHAP for local importance.

Figure 4.2: SHAP local importance plot : Waterfall and Force plot

4.4.1 AcME

In this work, we propose a new approach to model explainability, AcME1, aimed
at analyzing the role played by each feature at both global and local scale. The
importance scores provided by AcME rely on perturbations of the data based
on quantiles of the empirical distribution of each feature. These perturbations
are performed with respect to a reference point in the input space, which we
call baseline vector (denoted xb). First we deal with regression tasks. The
procedures exploited to get global and local importance scores, described in
Section 4.4.2 and Section 4.4.3, respectively, mainly differ in the choice of the
baseline vector and the produced visualizations. In Section 4.4.4, we extend
the proposed approach to classification tasks. As supported by the experimen-
tal results in Section 4.5, the rationale behind AcME allows for a substantial
reduction in computational time, while retaining a quality of explanations com-
parable to state-of-the-art interpretability method SHAP. Besides, AcME pro-
vides very similar visualizations both for global and local interpretability. They
are reminiscent of SHAP global importance visualization, but simpler, provided
the number of considered quantiles in score evaluation is low. Moreover, local
visualization can be used as what-if analysis tools to assess how changes in each
feature values would impact model prediction for a specific observation.

1A Python implementation of the proposed approach is made available at the following
link https://github.com/dandolodavid/ACME

https://github.com/dandolodavid/ACME
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4.4.2 Global interpretability for regression tasks
When dealing with global interpretability, we consider the mean vector x̄, i.e.
the p-dimensional vector whose components are the mean values of the fea-
tures (computed over the whole dataset), as the baseline vector xb. As previ-
ously mentioned, the baseline vector represents the point with respect to which
perturbations (and corresponding predictions) are computed. To evaluate the
importance of each feature j ∈ 1, . . . , p, we create a variable-quantile matrix
Zj ∈ RQ×p whose rows are identical to the baseline vector except for the j-th
component, which is substituted by the Q quantiles of the empirical distribu-
tion of the processed feature j. Notice that the number of rows in Zj can be
easily tuned by changing the number of selected quantiles Q. By comparing the
predictions associated with the rows of the variable quantile matrix Zj with the
prediction associated with the baseline vector, an importance score represent-
ing the relevance of the j-th feature can be computed. Specifically, the whole
procedure for the computation of the global importance score for feature j can
be summarized as follows:

1. Compute the baseline vector:

xb = x̄ = [x̄1, . . . , x̄j−1, x̄j , x̄j+1, . . . , x̄p]
T . (4.2)

2. For each q ∈ {0, 1/(Q− 1), 2/(Q− 1), . . . , 1}, create the new vector zj,q ∈
Rp. This is obtained from x̄ by substituting x̄j with xj,q i.e., the value of
quantile q for the j-th variable:

zj,q = [x̄1, . . . , x̄j−1, xj,q, x̄j+1, . . . , x̄p]. (4.3)

To be more robust, we can avoid the use of quantile 0 and 1, limiting the
range of q to an interval that excludes the possible outliers; in this case,
an appropriate interval could be for example from q = 0.1 and q = 0.9.
For simplicity, in the rest of the paper we will use the complete range of
quantiles, however the procedure remains unchanged.

3. Create the variable-quantile matrix for feature j ∈ {1, . . . , p}:

Zj =


zj,0

zj,1/(Q−1)

...
zj, 1

 =


x̄1 x̄2 . . . xj, 0 . . . x̄p

x̄1 x̄2 . . . xj, 1/(Q−1) . . . x̄p

...
...

. . .
...

. . .
...

x̄1 x̄2 . . . xj, 1 . . . x̄p

 (4.4)

4. Compute predictions associated with the variable-quantile matrix rows:

ŷj =


ŷj,0

ŷj,1/(Q−1)

...
ŷj,1

 =


f(zj,0)

f(zj,1/(Q−1))
...

f(zj,1)

 (4.5)
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5. Calculate the standardized effect:

∆j,q =
ŷj,q − f(xb)√

var(ŷj)
(max(ŷj)−min(ŷj)). (4.6)

6. The global feature importance score for the generic feature j can be com-
puted by averaging the magnitude of standardized effects over the quan-
tiles:

Ij =
1

Q

Q∑
q=1

|∆j,q|. (4.7)

The first multiplicative factor in Equation (4.6) is similar to the well-known
standard score: the objective of this standardization is to achieve scale invari-
ance in the evaluation of the change in prediction caused by using the quantile
q (in place of the baseline value). The second multiplicative factor, instead,
accounts for the overall impact of the variable in terms of how the applied per-
turbations spread out predictions. Indeed, it is reasonable that the wider the
range of changes in the prediction, the more relevant the variable is for the
model.

Notice that for categorical variables, the mode is used in place of the mean
value as baseline. Then, the M distinct values the feature could assume the role
of quantiles.

AcME has in general lower computational complexity than KernelSHAP.
Indeed, AcME only needs to apply the model on Q × p observations, corre-
sponding to the vectors zj,q. The number of observation N in the dataset that
is used to get explanations only affects the computational burden required to
calculate the quantiles (for efficient approaches to compute approximate quan-
tiles in large scale data, we refer the reader to [60]). On the other hand, as
detailed in Section 4.3, to provide global interpretability, KernelSHAP requires
to train a linear model N times, once for each point in the evaluation dataset.
First, for each data point xi, i ∈ {1, . . . , N}, KernelSHAP samples K coalitions.
Then, it applies the model that has to be interpreted to each coalition. Finally,
KernelSHAP uses the K predictions as a training dataset to fit a local linear
model. Notice that, according to the documentation, the choice of K should
also depend on p.
The effectiveness of AcME is amplified when explanations of high-dimensional
datasets are required in real-time, a scenario in which computationally intensive
algorithms are not viable.

In addition, the use of the quantiles enhances robustness against the presence
of outliers (not rare in large datasets), and could be a solution to the lack of
information in small datasets. In fact, with few observations the estimated
density could allow to generate unobserved values, instead of using only observed
values permutation.

Results visualization For the visualization of global feature importance
scores calculated by AcME, we propose two different kinds of plots. The first
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one is simpler, while the second one is more informative.
The former is just a bar plot that shows the feature scores computed according
to Equation (4.7), in decreasing order. An example is depicted in Figure 4.3(a).
This high-level visualization is designed to figure out quickly which features are
the most relevant for the model. Thus, we can use this visualization as a diag-
nostic tool, for example, when comparing different models.
As for the second visualization, we draw inspiration from SHAP global inter-
pretability plots, since they are concise and effective. An example of AcME
global importance detailed score visualization is given in in Figure 4.3(b): on
the y axis the features are sorted in decreasing order of importance according to
Equation (4.7), while the standardized effects for each element of the variable-
quantile matrix are plotted along the x axis. In other words, each horizontal line
(associated with a specific feature) represents the standardized effects for the Q
perturbations based on quantiles. The color represents the quantile level of the
feature from low (marked in blue) to high (marked in red). Moreover the ACME
visualization provides a black dashed line, corresponding to the prediction for
the base point, to separate positive effects, i.e. those pushing the prediction to
higher values, from negative effects, i.e. those pushing the prediction to lower
values.

Compared to PDPs visualization (see the example in Figure 4.4), AcME
offers a remarkable improvement as it provides a condensed visualization that
makes the analysis of results immediate and effective. We recall that the PDP
method produces p different plots (one for each feature) and the time and human
effort required for the analysis could easily become unsustainable as the dimen-
sionality of data grows. Indeed, the complexity of the visualization (in terms
of the number of displayed plots) may collide with the limited human ability to
elaborate simultaneous information, that has been proven to be restricted to a
set of seven univariate simultaneous stimuli [201].

4.4.3 Local interpretability for regression tasks
When the scope of the analysis is the interpretation of individual predictions,
we set the baseline vector xb equal to the specific data point to be explained
x∗, instead of setting xb = x̄ as in the scenario of global interpretability.

The procedure to get importance scores is similar to that outlined in Sec-
tion 4.4.2, but in the local case it only serves to order features in the displayed
plot, which is meant to convey a different kind of information compared to
the global case. The visualization strategy adopted for local interpretability is
described in the next paragraph.

Results visualization In AcME, we produce a local interpretability visual-
ization that is reminiscent of its counterpart used for global interpretability, but
at the same time we introduce fundamentals modifications aimed at making
its interpretation more intuitive and its usage more actionable. Specifically, in
the local case we do not display standardized effects but the actual predictions
associated with the perturbed data points (based on the selected Q quantiles).
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(b) AcME global importance detailed visual-
ization

Figure 4.3: AcME on a regression task (Boston Housing dataset, RF model, see
Section 4.5.2 for details)
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Figure 4.4: PDP calculated for a Random Forest with 100 trees on the Boston
Housing dataset (see Section 4.5.2 for details).
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Such a design choice allows for immediate understanding since the underly-
ing what-if approach is well-aligned with human tendency to reason in coun-
terfactual terms. A dashed line is placed in correspondence of the prediction
associated with the original observation x∗, so that it is clear which variables
are pushing to increase (or decrease) the prediction. The advantage of AcME
visualization for local interpretability, if compared to the SHAP force plot, is
that also information about feature distributions is implicitly provided by means
of quantile levels. In particular, the knowledge of the quantile corresponding
to each feature value in the original observation makes it possible to under-
stand how much the value of a specific feature can be reduced or increased,
and how the corresponding prediction will be affected. Figure 4.13 shows an
example of local interpretability provided by AcME, which is further detailed
in Section 4.5.2.

4.4.4 AcME for classification

In Section 4.4.2 we described AcME for regression tasks. As for classification,
by considering the problem of estimating the probability assigned to each class
instead of the problem of assigning a label, we can easily resort to a regres-
sion task. Thus, the procedure detailed above is still valid. In particular, for
global feature importance, we consider, for each class l and each feature j,
the standardized effects computed by evaluating the changes in the predicted
probability of class l under perturbations of feature j (as usual, perturbations
are obtained by replacing the original feature value with the selected Q quan-
tile). The only drawback of this approach is that we should produce as many
plots as the number of distinct classes in the dataset, as shown in Figure 4.17.
The barplot simplified visualization can circumvent the problem, evolving to a
stacked barplot: each feature is assigned a bar partitioned in as many blocks
as the number of distinct classes and the length of each block is proportional
to the standardized effect associated with the specific class. Figure 4.14 depicts
a comparison between this plot and the on provided by SHAP. Similar consid-
erations hold for the local interpretability. For each class, AcME displays the
predicted probabilities under perturbations with respect to the original obser-
vation feature values (see, for example, Figure 4.15). An application of AcME
to a classification task is described in Section 4.5.3.

4.5 Experimental results

In this section, we describe the experiments carried out to assess the effective-
ness of AcME. It is worthwhile to notice that interpretability problems are non-
supervised tasks, meaning that, in general, there is no ground-truth available
to assess feature ranking and importance scores. To overcome this issue, in Sec-
tion 4.5.1, we resort to synthetic dataset generation that gives us the chance to
have a ground truth, so it enables a more objective evaluation. Then, to assess
the efficiency of AcME, we compare it with KernelSHAP, a model-agnostic vari-
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ant of SHAP, by considering both computational time and explanation quality.
For the sake of reproducibility, experiments were conducted on well-known, pub-
licly available ML datasets that are paradigmatic for regression (Section 4.5.2)
and classification tasks (Section 4.5.3).

4.5.1 Synthetic datasets

We created two synthetic datasets with controlled characteristics in order to
assess the robustness of AcME w.r.t. such conditions. Specifically, we study a
regression task and consider the data points generated by the following linear
model

y = Xβ + ϵ (4.8)

where y = [y1, . . . , yN ]T ∈ RN is the vector of responses, X ∈ RN×p is the de-
sign matrix, β ∈ Rp the vector of model’s coefficients and ϵ ∼ Np(0p,Σ). The
vector of model coefficients β = [β1, . . . , βp]

T is designed so that some variables
have a real effect (βj ̸= 0), while others are not important (βj = 0). In both
the experiments detailed below, we generate N = 200 observations according to
Equation (4.8), then we fit a linear model to the obtained data. We highlight
that interpretability approaches are designed to explain model predictions, not
existing causal relationships among input features and the output. By consid-
ering a data generation process known in advance and by training a model that
can learn the generation mechanism, we can gauge the effectiveness of the in-
terpretability approaches. That is why it makes sense to consider also synthetic
data in the experiments. In particular, what we expect is that both KernelSHAP
(with default parameters) and AcME (with Q = 50) succeed to identify the cor-
rect feature importance ranking. Notice that this is known in advance, since
we can compute it based on vector β. To certificate the quality of the obtained
results, we use Normalized Discounted Cumulative Gain (NDCG) [322]. NDCG
sums the true scores (β) ranked in the order induced by the predicted scores
(the AcME features importance) after applying a logarithmic discount. Then it
divides by the best possible score (ideal Discounted Cumulative Gain, obtained
for a perfect ranking) to obtain a normalized score between 0 and 1. In ad-
dition, to test the effectiveness of the model trained on the synthetic data, we
used the normalized mean squared error.

Experiment #1: variables with the same scale

In the first experiment, we analyze the simplest scenario, where variables all
share the same scale. In particular, the dataset is obtained by setting the
following parameters for the linear model in Equation (4.8) and generating N =
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Experiment True ranking AcME ranking NDCG
1 [x2, x3, x1, x5, x8, x4, x6, x7] [x2, x3, x1, x5, x8, x7, x6, x4] 0.9998
2 [x1, x2, x3, x5, x8, x4, x6, x7] [x1, x2, x3, x5, x8, x7, x4, x6] 0.9998

Table 4.2: NDGC score for Experiment 1 and 2. It is strictly near to 1 in both
of them, showing how the ranking produced by AcME is consistent with the
real one.

200 observations:

µ = [10, 10, 10, 10, 10, 10, 10, 10]T

Σ = 10 ∗ I8
Xi ∼ N8(µ,Σ)

β = [10, 20,−10, 0.3, 1, 0, 0,−0.5]T

ϵi ∼ N8(08,Σ).

(4.9)

Notice that such a design choice for the vector of model coefficients β leads
to specific considerations with regard to features ranking: x1, x2 and x3 are
the variables that have the largest impact on the response y (x2 being the most
relevant), while x4, x6, x7 and x8 have negligible or no effect. Moreover, x3

and x8 affect the model response in the opposite direction w.r.t. the other
variables, resulting in a negative input-output correlation. As can be seen in
Figure 4.5, both AcME and KernelSHAP can correctly identify which features
are actually important for the fitted model. Also, both methods attribute a
negative effect (on the predicted output) to the highest quantiles for features
x3 and x8, reflecting the fact that β3 < 0 and β8 < 0. Features x4, x6 and x7

exhibit the lowest feature importance scores, in accordance with the true model
specifications. The main difference is in the computational time: AcME requires
less than a second, while KernelSHAP requires about 4 minutes in the tested
hardware2. The NDCG calculated on the feature ranking produced by AcME
is reported in Table 4.2. It is very close to 1, showing that the feature ranking
returned by AcME is always similar to the expected one, as the model was able
to infer the actual underlying data generation process, and AcME could explain
how the model maps input to outputs.

Experiment #2: variables with different scale

In this experiment, we aim at studying the effect of exploiting variables with
different scales. The data-generating model is instantiated as previously, with
the exception of µ and Σ, now set as follows:

µ = [100, 10, 10, 10, 100, 10, 10, 100]T

Σ = diag(100, 10, 10, 10, 100, 10, 10, 100).
(4.10)

2As a reference, the experiment reported in this work were achieved on a Macbook with
CPU i5 2,9 GHz, SSD 256 GB and 8GB RAM.
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(b) KernelSHAP

Figure 4.5: [Experiment #1] Result comparison of AcME and KernelSHAP.
AcME elapsed time: 0.9864 s; KernelSHAP elapsed time: 242.0958 s. Model
NMSE : 0.00176

What we expect is that the impact of x1 will be very higher than before,
surpassing x2 and x3. Moreover, we expect that the importance of x8 with
β8 = −0.5 will be comparable more with the importance of x4, x6, x7, even if
the variable receives a great increase both in terms of position and variance. This
expected behaviour is reasonable even if the user performs data normalization in
the preprocessing step, in fact larger scale variables effects would be captured by
an associated larger β, and as demonstrated in the previous experiment, AcME
correctly describes that situation. In Figure 4.6, we could see that the proposed
approach behaves as expected, supporting the quality of the results. As for
experiment #1, the most obvious difference between the two methods is the
elapsed time: approximately 1 second for AcME and 4 minutes for KernelSHAP.
As happened in the previous experiment, the ranked list metric is near to the
upper limit (Table 4.2).
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(b) KernelSHAP

Figure 4.6: [Experiment #2] Result comparison of AcME and KernelSHAP.
AcME elapsed time: 0.9450; KernelSHAP elapsed time: 242.1215. Model
NMSE: 0.00007

4.5.2 Experiments on a regression task: Boston Housing
dataset

The goal of this experiment is to show the results obtained by AcME on a re-
gression task, and to compare them with those achieved by KernelSHAP. To this
aim, we consider a well-known publicly available dataset, UCI Boston Housing
dataset3. The Boston Housing dataset is composed of 506 observations with 14
variables describing houses in the area of Boston Mass. The task is predicting
the median value of owner-occupied homes.
KernelSHAP and AcME are compared in terms of both evaluated feature im-
portance and computational time.

Efficiency comparison between KernelSHAP and AcME

As seen in Section 4.3, what makes KernelSHAP so computationally burden-
some is:

1. the high number of linear models that are estimated;
3https://archive.ics.uci.edu/ml/machine-learning-databases/housing

https://archive.ics.uci.edu/ml/machine-learning-databases/housing/
https://archive.ics.uci.edu/ml/machine-learning-databases/housing/


112 CHAPTER 4. INTERPRETABILITY

Number of samples Elapsed Time (in seconds)
AcME complete 0.36
KernelSHAP 5 357.23
KernelSHAP 10 425.61
KernelSHAP 20 875.85
KernelSHAP 100 1855.65

Table 4.3: [Boston Housing Dataset] Elapsed time for KernelSHAP with differ-
ent dataset sampled.

Ñ (#
samples)

Ranking Kendall
Tau (full)

Kendall
Tau (top 5)

5 RM,LSTAT,CRIM,DIS,PTRATIO,NOX,AGE,TAX,B,INDUS,RAD,ZN,CHAS 0.231 0.2
10 RM,LSTAT,CRIM,PTRATIO,DIS,NOX,AGE,TAX,B,INDUS,RAD,CHAS,ZN 0.692 0.0
20 TAX,AGE,B,ZN,LSTAT,INDUS,CRIM,RAD,PTRATIO,RM,DIS,CHAS,NOX 0.103 -0.2
100 LSTAT,RM,CRIM,DIS,PTRATIO,NOX,AGE,TAX,B,INDUS,RAD,ZN,CHAS 0.359 0.8

complete LSTAT,RM,DIS,NOX,PTRATIO,CRIM,AGE,TAX,B,INDUS,RAD,CHAS,ZN 1 1

Table 4.4: [Boston Housing Dataset] Kendall Tau score obtained with the com-
parison of KernelSHAP ranking list with the full dataset with KernelSHAP
rankings obtained using only 5,10,20,100 samples from the dataset.

2. the computational complexity of the matrix inversion, that increases with
the number of coalitions.

To overcome the first problematic, the authors of [180] suggest to reduce the
number of rows in the dataset, sampling Ñ rows from the original ones. For
the second issue, the only option is to reduce the number of coalitions K. In
this section, we will explore these solutions, evaluating the quality of results
with respect to changes in parameters Ñ and K in terms of their similarity to
results obtained with the complete original dataset and the suggested number
of coalitions. Our experiments suggest that using dataset sampling and coali-
tions reduction to lessen the computational time required by KernelSHAP may
translate into unreliable results. Moreover, elapsed time for KernelSHAP is still
much higher than that required by AcME.

Reducing KernelSHAP computational burden by sampling observa-
tions We compute KernelSHAP by sampling 5, 10, 20, and 100 rows at random
from the original dataset, keeping the default number of coalitions. In Table 4.3,
we show the computational time of AcME run on full dataset compared to that
required by KernelSHAP when considering the sampled rows only. It is clear
that AcME is always much faster. In addition, even though the computational
time required by the sampled KernelSHAP is much lower than the original ver-
sion when using lower values of Ñ , the output is not reliable, as depicted in
Figure 4.7. For instance, when we use Ñ = 20, not only the feature order based
on computed importance is different, but also the model behaviour is not cor-
rectly detected: for example the Shapley values of TAX, RM, AGE are completely
different from all the other cases. The instability in the results is caused by the
sampling procedure on the original dataset, that does not extract rows that are
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(a) SHAP with sampling g = 5 rows (b) SHAP with sampling g = 10 rows

(c) SHAP with sampling g = 20 rows (d) SHAP with sampling g = 100 rows
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(e) SHAP calculated on the full dataset

Figure 4.7: [Boston Housing Dataset] KernelSHAP summary plot for the Ran-
dom Forest model with 100 tree, using a sample in order to reduce the number
of rows of the input dataset. As clear from the plots, the results are not stable
in term of feature behaviour and importance compared to the results obtained
using the full dataset.
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Number of coalitions K Elapsed Time (in seconds)
AcME complete 0.36
KernelSHAP 10 92.40
KernelSHAP 25 221.61
KernelSHAP 50 327.65
KernelSHAP 100 506.31

Table 4.5: [Boston Housing Dataset] Elapsed time for KernelSHAP with differ-
ent number of coalitions used in the estimation of the Shapley values.

truly representative of the dataset.
To measure the uncertainty in the ranking induced by dataset sampling, we

use Kendall’s Tau metric, a measure of the correspondence between rankings;
being a rank correlation coefficient, it will be high for two lists with similar rank-
ing (with the maximum in 1 when perfectly identical), whereas it will be low for
two lists very differently sorted (with the minimum in -1 when all position pairs
are discordant). In Table 4.4 Kendall’s Tau values are reported for each ranking
generated by KernelSHAP with different number of samples, compared with
KernelSHAP ranking obtained with the full dataset, both for entire lists and for
the top five elements of each list. While the correlation values for the full lists
are strictly positive, the same doesn’t happen by considering the top five lists.
In addition, it should be noted that there isn’t a monotonous increasing trend:
in fact, worst results are obtained with g = 20. Both KernelSHAP and AcME
use perturbations of the input dataset to obtain model explanation. However,
as for KernelSHAP, analysing the similarity among the rankings corresponding
to different sampling strategies suggests that sampling may have a detrimental
effect on the quality of explanations, especially when features distribution is not
trivial. Instead, AcME relies on quantiles: the estimation of these statistics is
robust to outliers, while the sampling strategy implemented by SHAP seems to
be not, in general.

With Ñ = 100 the results appear similar to those on the entire dataset,
however the elapsed time is already significantly high.

In this experiment, we extracted rows at random. Alternatively, smarter
sampling techniques could be used: for instance, a suggestion could be the
usage of clustering to detect groups of observations to sample from. However,
the use of clustering, and more generally of others advanced sampling techniques,
requires the tuning of hyper parameters, like the number of clusters. The correct
choice of the parameters is relevant because it could heavily affect the quality
of the results, and it needs ad hoc analysis. For instance, it is not possible
to determine a rule-of-thumb to suggest the correct number of lines to sample,
because this parameter is strongly linked to the intrinsic complexity of the
dataset.

Reducing KernelSHAP computational burden by reducing the num-
ber of coalitions In Table 4.5, we report how the computational time re-
quired by the KernelSHAP procedure varies with the number of sampled coali-
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K (#
coalitions) Ranking Kendall

Tau (full)
Kendall

Tau (top 5)
10 LSTAT,RM,ZN,CRIM,INDUS,CHAS,NOX,DIS,AGE,PTRATIO,TAX,RAD,B -0.05 -0.2
25 LSTAT,RM,DIS,CRIM,NOX,PTRATIO,AGE,B,TAX,INDUS,ZN,CHAS,RAD 0.231 0.06
50 LSTAT,RM,CRIM,DIS,PTRATIO,NOX,AGE,TAX,B,INDUS,RAD,ZN,CHAS 0.359 0.8
100 LSTAT,RM,DIS,CRIM,PTRATIO,NOX,AGE,TAX,B,INDUS,RAD,CHAS,ZN 0.821 0.6

default LSTAT,RM,DIS,NOX,PTRATIO,CRIM,AGE,TAX,B,INDUS,RAD,CHAS,ZN 1 1

Table 4.6: [Boston Housing Dataset] Kendall Tau score obtained with the com-
parison of KernelSHAP ranking list with the default number of coalitions and
KernelSHAP rankings obtained using only 10,25,50,100 coalitions.

tions, by considering 10, 20, 50 and 100 coalitions, using the entire dataset. As
previously stated, reducing the number of sampled coalitions can really speed
up the computation, but the results are once again unstable. Besides, results
exhibit higher variance when the number of considered coalitions is lower. In
Table 4.6 we reported the Kendall’s Tau measure calculated on the ranked lists
obtained reducing the number of coalitions and the ranked list obtained using
the default number of coalitions. This is strictly related to the approximation
used in the computation of the Shapley values, which uses a lower number of per-
mutations to estimate the true values. Again, feature distribution complexity is
an important aspect: with simple distribution a lower number of permutations
could already lead to decent results, but with more complex distributions this
is not always true.

Feature ranking evaluation and comparison between KernelSHAP
and AcME

To study the importance scores assigned to each feature by AcME and Ker-
nelSHAP (calculated on the full dataset with default parameters), we fit three
different types of models: Linear Regression, Random Forest and CatBoost Re-
gression. To evaluate the generated feature ranking, we estimated other two
different models for each model type. We trained the former using only the five
features with the highest importance according to AcME. Instead, the latter
considers all other features only. We expect that the first model will have a
Mean Squared Error (MSE) closer to the value obtained using all the features,
whereas the MSE for the second model will be much higher. There is no ground
truth that we can use for a fair comparison. However, this procedure allows us to
assess the interpretability performance quantitatively. As detailed in Table 4.7,
experimental results reflect the expectations, confirming that AcME correctly
identified the features that are most relevant for the model.

Table 4.8 reports the computing time for AcME and KernelSHAP, while
Figure 4.9 - Figure 4.12 depict the results of the two methods. In Table 4.8, we
also report the elapsed time using the TreeSHAP procedure, which is much faster
than the KernelSHAP on the same model, but in this case, is usable only with
CatBoost and Random Forest. In all four situations, the results are similar both
in terms of importance scores rank and feature-to-output map behaviour, but
the computing time is much lower for AcME, which turns out to be extremely
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Model MSE Top 5 features All features except top 5
Linear Regression 21.89 26.01 55.15
Random Forest 1.54 2.40 4.42
CatBoost 0.52 0.86 3.80
XGBoost 2.37 4.09 14.54
LightGBM 1.54 2.66 13.37

Table 4.7: [Boston Housing Dataset] Mean Square Error for the 3 model used
for AcME ranking evaluation. The best model here is the CatBoost, followed
by the Random Forest.

Method Model Elapsed Time (in seconds)
KernelSHAP Linear Regression 3651.8556
KernelSHAP Random Forest 5639.9273
KernelSHAP CatBoost Regression 4578.0989
KernelSHAP XGBoost 1938.70
AcME Linear Regression 0.2610
AcME Random Forest 0.4107
AcME CatBoost Regression 0.9764
AcME XGBoost 0.24
TreeSHAP Random Forest 4.7886
TreeSHAP CatBoost Regression 3.1525

Table 4.8: [Boston Housing Dataset] Computing time for the various tested
models and the different methods of model explanation on the Boston dataset.

faster than each version of SHAP. In particular:

• Linear Regression: both AcME and KernelSHAP recognise LSTAT as the
most important variable, and both methods mostly agree on how the
model uses the variables. The most important difference is in the im-
portance score for RAD: while KernelSHAP ranks it at the third place,
our method put RAD at sixth place. This happens for construction of
the ∆j,k (Equation (4.6)), because we give greater importance to the vari-
ables with high impact on predictions range. In fact, instead of RAD, AcME
prefers RM that has the bigger variation among all variables.

• Random Forest: here the two methods agree on the first two variables
regarding importance. Then, KernelSHAP gives approximately the same
importance to DIS, NOX, PTRATIO, CRIM, AGE and TAX, while AcME gives
higher importance to DIS. This happens because, for very low quantiles of
DIS, the prediction is pushed to very high values and this does not occur
for the other variables, as shown in Figure 4.10(a) and Figure 4.10(b).

• CatBoost Regression: this is the best model in terms of MSE. In this case,
as in the Random Forest, the only relevant difference between AcME and
KernelSHAP is the impact of DIS, that AcME considers larger than what
KernelSHAP does. Besides, the other importance scores and the model’s
behaviour explanations given by the two methods are very similar.



4.5. EXPERIMENTAL RESULTS 117

(a) n coalitions = 10 (b) n coalitions = 25

(c) n coalitions = 50 (d) n coalitions = 100

Figure 4.8: [Boston Housing Dataset] KernelSHAP summary plot for the Ran-
dom Forest model using a lower number of coalitions of the model to accelerate
the procedure.

• XGBoost: once again, the results of KernalSHAP and AcME are very
similar. There are minor differences in ranking of medium-low importance
variables, the only relevant difference between AcME and KernelSHAP is
the impact of DIS, that AcME considers lower than what KernelSHAP
does.

Additional experiments with other real-world datasets are reported in the
Appendix.

Local interpretability

Figure 4.13 depicts local interpretability results for observation with ID = 200,
when considering a Random Forest model. From the plot, we can understand
how each feature impacts prediction and explore how variations in input values
can affect estimates using a what-if approach:

• variable RM is the number of rooms, it has a high value (big red bubble),



118 CHAPTER 4. INTERPRETABILITY

−30 −20 −10 0 10 20

AGE

INDUS

CHAS

CRIM

B

ZN

TAX

NOX

PTRATIO

RAD

RM

DIS

LSTAT

0.2

0.4

0.6

0.8

quantile

AcME Global Importance : regression

standardized effect

F
e
a
t
u
r
e

(a) AcME on Linear Model

10 5 0 5 10
SHAP value (impact on model output)

AGE

INDUS

CHAS

B

CRIM

ZN

NOX

PTRATIO

TAX

RM

RAD

DIS

LSTAT

Low

High

Fe
at

ur
e 

va
lu

e

(b) SHAP on Linear Model
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Figure 4.9: [Boston Housing Dataset] LINEAR REGRESSION: Result compar-
ison of KernelSHAP and AcME.
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(a) AcME on Random Forest
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(b) KernelSHAP on Random Forest
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(c) AcME Feature Importance
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Figure 4.10: [Boston Housing Dataset] RANDOM FOREST: Result comparison
of KernelSHAP and AcME
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(a) AcME on Catboost Regression
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(b) SHAP on Catboost Regression
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(c) AcME Feature Importance
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Figure 4.11: [Boston Housing Dataset] CatBoost REGRESSION: Result com-
parison of KernelSHAP and AcME.
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(a) AcME on XGBoost
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(b) SHAP on XGBoost
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Figure 4.12: [Boston Housing Dataset] XGBoost: Result comparison of Ker-
nelSHAP and AcME.
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Figure 4.13: AcME result plot for single observation. The underlying model is
a Random Forest with 100 tree, trained on the Boston Housing dataset.

and this increases the estimated value of the house. We could easily see
from the plot that a house with the same characteristics but with a lower
number of rooms will have a lower price, going from actual 33.685 to less
than 25;

• variable LSTAT represent the proportion of the population that is of lower
status (low education or low income). The estimated value is higher due
to the low value of this feature. It can be clearly seen that, as the value
of this proportion increases, the estimated price lowers considerably.

• variable DIS is the weighted distance to five Boston employment centres,
and for this house it is near to the highest encountered in the dataset.
For the model, this is a negative factor that reduces the house estimated
value, and as we can see, a house with the same characteristics could have
a much higher value by reducing the distance: from the actual value of
33.685 it could go near to 38-39.

As for most perturbation-based interpretability methods, it is possible that
new data points are created by AcME in the local interpretability procedure.
This can be problematic since new data points might be very different from
the ones provided during model training. Nevertheless, the proposed approach
to local interpretability is still a relevant contribution. In particular, (i) lo-
cal AcME is suitable in the scenario of Decision Support Systems, where other
model-agnostic approaches, such as SHAP, are not viable due to the high com-
putational cost that is not acceptable for the application; (ii) it allows for similar
visualizations both for local and global interpretability, which cannot be said
for all interpretability methods.
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4.5.3 Experiments on a classification task: Glass dataset
This experiment aims at evaluating the performance of AcME on a classification
task. To this aim we consider a well-known publicly available dataset, Glass4.
The goal is to classify six different types of glass based on their chemical features.
To evaluate the model accuracy, we split the dataframe in train and test with
70%-30% proportion. The model used to resolve the multiclass classification
problem is CatBoost classifier, and the accuracy obtained is 0.84375. Then, we
compare AcME with KernelSHAP. From Figure 4.14 we cans see that AcME
(with K = 20) and KernelSHAP provide similar explanations about global
importance for input features. However, while AcME runs in 0.58 seconds, it
takes 186.5 seconds to obtain the results from KernelSHAP.

In Figure 4.17, instead, we can see how the detailed visualizations provided
by AcME can be adapted to multi-class classification tasks by considering each
class predicted probability, in the same vein as SHAP.

Finally, in Figure 4.15 we show how local interpretability can be used as a
what-if analysis tool. For example, we see that observation with ID = 100 has
probability 0.21 of belonging to class 1, according to the CatBoost model. Ev-
erything else remaining fixed, this probability would grow over 0.5 if we decrease
the aluminium content (Al) from quantile 0.55 (bigger bubble corresponding to
the current observation value) to quantile 0.47, corresponding to the rightmost
dot first row of the chart. Instead, if we reduced Refractive Index (RI) from
current value (quantile 0.59) to quantile 0.33, the resulting class 1 probability
would be 0.04.

4https://archive.ics.uci.edu/ml/datasets/glass+identification
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Figure 4.14: [Glass dataset] Comparison of feature importance provided by
KernelSHAP and AcME on Catboost. Classifier with accuracy: 0.84375

4.5.4 Experiments on a classification task with Neural Net-
work

After studying the behavior of AcME with classification problems, we proceed
to its use with a more complex and, certainly, not self-explanatory model: a
Multi-layer Perceptron classifier. We apply the model to the same dataset of
Section 4.5.3, with the same train test split setup. The number of hidden layer
chosen is 4, with sizes 9, 15, 15 and 6 respectively, with an obtained accuracy
of 0.6094. The results of AcME are once again very similar to the results of
KernelSHAP (Figure 4.18). In this case, the order of importance of the features
is exactly the same, and the observable effect on the various classes is also
quite comparable. Nevertheless, the computational times of the two methods
are extremely different: AcME complete the estimation in 0.54 seconds while
KernelSHAP requires 104.85 seconds.
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Figure 4.15: AcME local importance scores visualization for Glass classification
task.
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(b) SHAP on the Glass dataset: glass type
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(c) AcME on the Glass dataset: glass type
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(d) AcME on the Glass dataset: glass type
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(e) AcME on the Glass dataset: glass type
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(f) AcME on the Glass dataset: glass type
3

Figure 4.16: [Glass dataset]: Feature effect according to AcME (left) and Ker-
nelSHAP (right) for glass type 1, 2 and 3.
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(b) SHAP on the Glass dataset: glass type
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(c) AcME on the Glass dataset: glass type
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(d) SHAP on the Glass dataset: glass type
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(e) AcME on the Glass dataset: glass type
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Figure 4.17: [Glass dataset]: Feature effect according to AcME (left) and Ker-
nelSHAP (right) for glass type 5, 6 and 7.
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Chapter 5

Replay for Multilabel Setting

In this chapter, we will consider the research areas of Alarm Forecasting (sub-
field of Predictive Maintenace), Multi-label Classification, and Continual Learn-
ing. The following research is motivated by the industrial context of the packag-
ing industry. Alarm Forecasting aims to predict alarms in industrial equipment
as a low-cost alternative to sensor-based predictive maintenance. We formal-
ize the problem as a multi-label classification problem and propose as solution
FORMULA [228] . A deep learning method that uses the Transformer and the
Weighted Focal Loss to handle imbalanced data and accurately predict rare but
essential alarms. The approach is shown to be effective using real-world data
from the packaging industry. To make the approach more feasible in a real-
world scenario, we extend the work considering a Continual Learning setting,
where new data equipment arrives over time [228]. We also propose a novel ap-
proach for multi-label classification in continual learning, for which an efficient
approach with logarithmic complexity in the number of tasks is proposed.

5.1 Multilabel

5.1.1 Introduction

Classification is one of the most important machine learning topics [1] . The
goal of classification is to train a computational model using a set of labeled
samples, and obtain a model that can correctly classify new unlabeled samples.
Traditional single-label classification is one of the most well-established machine
learning paradigms. Binary and multi-class classifications are subcategories of
single-label classification that concern learning from a set of samples that are
associated with a single label. Unlike traditional classification, multi-label clas-
sification (MLC) assigns a set of relevant labels to an instance simultaneously
[292]. Many challenging applications, such as image or video annotation, web
page categorization, gene function prediction, and language modeling, can ben-
efit from being formulated as multi-label classification tasks with a large set of
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labels [172].

5.1.2 Applications

Multi-label classification assigns multiple labels for each instance simultane-
ously. This problem has relevance in a variety of fields ranging from protein
function classification and document classification, to automatic image cate-
gorization [172]. During the past decade, multi-label classification has been
successfully applied in computer vision, natural language processing, and data
mining [172]. For example, in bioinformatics, one gene sequence can be associ-
ated with a set of multiple molecular functions [351], the same gene can belong
to the functions of Protein Synthesis, Metabolism and Transcription. In text
categorization, a new document can cover multiple topics such as News, Fi-
nance, and Sport, so the same sample has associated multiple topics [77]. Other
possible applications are medical diagnosis, music categorization and emotion
recognition [366]. In computer vision, many natural images usually contain mul-
tiple objects. Therefore, it is more practical that each image is associated with
multiple labels. For example, an image with the landscape of a mountain can
contain multiple objects/labels such as clouds, sky, water, etc. Thus developing
deep learning techniques that can address MLC problem is a practical and sig-
nificant problem in real-world scenarios. Another example is the development
of a platform for videos or images like Youtube, Instagram, and Facebook. Ef-
ficient and effective indexing and searching for the video and images become
more and more important for the research and industry community [172]. In
the search industry, revenue comes from clicks on ads embedded in the result
pages. Advertising selection and placement can be significantly improved if ads
are tagged correctly [172]. Eventually, the recommender systems can be nat-
urally regarded as an MLC task, since we usually recommend multiple items
simultaneously to the users.

5.1.3 Challenges

When dealing with Multi-label Classification, we need to keep in mind that there
are several challenging aspects. The first challenge is the potentially overwhelm-
ing size of the output space since the number of label sets grows exponentially
as the number of class labels increases [365]. In other words, the possible com-
bination of labels in the output space grows exponentially with the number of
labels. For example, in an output space with 100 items to recommend to a user,
there are 2100 possible combinations of how the model can suggest the items
to the user. Moreover, the labels are extremely sparse, leading to the long-tail
distribution problem. The unequal label distribution, or imbalance among label
frequencies, is present in most multi-labeled datasets [52] and makes the pre-
diction challenging.
Some works [171] have shown that methods that explicitly capture label de-
pendency usually achieve better prediction performance. Therefore, modeling
the label dependency is one of the major challenges in multi-label classification
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problems. Many methods have been motivated to model the dependence, like
the classifier chain (CC) model [243]. It captures label dependency by using
binary label predictions as extra input attributes for the following classifiers
in a chain. Another example is CPLST [59], which uses principal component
analysis to capture both the label and the feature dependencies.
Another important challenge is that current offline MLC methods assume that
all data are available in advance for learning. In practice, data is collected se-
quentially, and data collected earlier in this process may expire as time passes.
Existing off-line MLC algorithms are impractical for streaming data sets since
they require storing all data sets in memory [172]. Additionally, it is non-trivial
to adapt offline multi-label methods to the sequential data.

5.1.4 Evaluation metrics
In a multi-label dataset, it is useful to obtain information of the complexity of
the dataset. For example, based on the long tail distribution or the correlation
among labels, the dataset could be more or less complex to solve. To evaluate
the complexity of a multi-label dataset, several indicators can be utilized. We
present in the following text some of the most common metrics used in the field:

• Label Cardinality. Let’s consider the multi-label dataset D. The most
natural way to measure the degree of multi-labeledness is label cardinality,
i.e. the average number of labels per sample:

Card(D) =
1

|D|

|D|∑
i=1

|Yi| (5.1)

where Yi are the labels of sample i.

• Label Density: it is similar to label cardinality in which the value is
normalized:

Dens(D) =
1

|D|

|D|∑
i=1

|Yi|
|L|

(5.2)

where L is the label set.

• Label Diversity. Another popular measure is label diversity, i.e. the
number of distinct label subsets appearing in the dataset:

LDiv(D) = |{y : ∃x : (x, y) ∈ D}|. (5.3)

• IR per label (IRLbl): An important metric which measures the level
of imbalance of a certain label is the imbalance ratio per label [51], which
is defined as follows:

IRLbl(y) =
maxy′∈L

(∑|D|
i=1 h (y

′, Yi)
)

∑|D|
i=1 h (y, Yi) 16

h (y, Yi) =

{
1 y ∈ Yi

0 y /∈ Yi

(5.4)
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It refers to the difference in the number of instances that belong to each
label. When the imbalance ratio is high, it means that some labels are
much more common in the dataset than others.

• MeanIR: It is an aggregate metric of IRLbl, it average the IRLbl value
of each label:

MeanIR =
1

|L|
∑
y∈L

IRLbl(y) (5.5)

A value near to 1 means that the dataset is balanced. The higher the
value, the higher the level of imbalance across the labels in the dataset.

5.2 Alarm Forecasting

5.2.1 Motivation

Predictive Maintenance technologies are particularly appealing for Industrial
Equipment producers, as they pave the way to the selling of high added-value
services and customized maintenance plans. However, standard Predictive Main-
tenance approaches assume the availability of sensor measurements, and the
costs associated with adding sensors or remotely accessing sensor readings may
discourage the development of such technologies. In this context, Alarm Fore-
casting can be very useful as it represents a low-cost alternative or helpful sup-
port to sensor-based Predictive Maintenance.
In the manufacturing industry, logs of the alarms generated by industrial equip-
ment represent a valuable source of information. Machines raise alarms to
communicate the occurrence of particular events, possibly related to issues or
anomalies, that can be representative of the health state of the equipment and
some of its components [91, 161, 286, 355]. Machines may also send sensor mea-
surements or other variables about the operating conditions, which could enable
Predictive Maintenance (PdM) technologies to prevent faults, reduce down-time
and optimize service policy based on equipment health status estimation.
However, often implementing PdM based on sensor readings is not completely
feasible yet. Indeed, the lack of data integration, the possibly unaffordable
transmission of sensor measurements over the cloud, or the presence of legacy
machines not equipped for sensory data acquisition may hinder the adoption of
PdM methodologies.
Conversely, alarm logs generated by the equipment are a valuable source of
information and they are available also for legacy equipment, and the logging
mechanism is reliable and meticulously maintained because it feeds standard
industrial Supervisory Control And Data Acquisition (SCADA) software [316]
and Human–Machine Interfaces (HMIs) used by human operators to interact
with machines. Thus, alarm or event-log analysis can be a low-cost alternative
or helpful support to sensor-based PdM and can be applied to a wide variety of
application domains.
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Some alarm analysis techniques such as correlation analysis and chattering re-
duction can provide insight to operators that need to take action on the equip-
ment. Alarms are also used to perform Anomaly Detection (AD), but sometimes
the prediction horizon is too short for operators to perform the required cor-
rective actions. On the other hand, if the incoming alarms can be predicted in
advance, the operators can manage potential faults by taking corrective action
in time. This task, named Alarm Forecasting (AF). It plays an essential role in
the safe management of process operations and enables PdM [287] to maximize
machine parts exploitation and to minimize the Total Cost of Ownership (TCO)
[41, 114, 354, 91].

5.2.2 Related work

Alarm data analysis aims at distilling information provided by alarm logs into
actionable insight for operators. This research field encompasses tasks such
as alarm correlation analysis [339], alarm floods monitoring [7], and nuisance
alarms suppression [82]. In particular, alarm analysis methods can be divided
into diagnostic and prognostic approaches. The former ones aim at detecting
the occurrence of anomalies or faults, while the latter ones have the goal of
predicting future equipment behaviour to provide timely actionable insight to
users.

As for diagnostic tools, one of their most frequent applications encountered
in the literature is AD. For the nature of the data at hand, researchers and prac-
titioners have resorted in this area to data-driven AD approaches [81] instead
of model-based ones. In [346], for instance, authors propose a system to detect
suspicious patterns potentially related to security incidents. In [84], a deep neu-
ral network (DNN) model based on Long Short-Term Memory (LSTM) units
is proposed to model a system log as a natural language sequence, aiming at
automatically recognizing abnormal behaviours and supporting root cause anal-
ysis. Another diagnostic tool enabled by the availability of system logs is Fault
Detection and Classification (FDC) [92]. In [18], for instance, authors proposed
a data-driven prediction model that leverages ad-hoc feature engineering and
gradient boosting methods to predict Trouble Ticket based on alarm streams.

About prognostic tools, AF, the focus of this work, plays a key role. In
[338], for instance, historical alarm sequences are exploited using bayesian esti-
mators. In [369], a probabilistic model based on an N-gram model is proposed
to predict the probability of alarm occurrence, given the previous alarms. How-
ever, N-gram models fail to take into account long-range dependencies, because
their estimation is feasible only for small values of N. Therefore, more advanced
models based on neural network architectures were proposed, such as in [44],
where alarm log information is embedded using Word2Vec and an LSTM-based
deep learning model is designed to predict the next alarm. In [310], the au-
thors propose a system that can predict different types of alarms by leveraging
a two-stage forecaster–analyzer approach. It combines LSTM neural networks,
to forecast the future measurements of various sensors, with Residual Neural
Networks to predict the future occurrence of alarms based on estimated future
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sensor measurements.

5.2.3 Challenges
One of challenges in AF is that many business-related critical alarms are rare,
while, similarly to natural languages [239], alarm sequences are dominated by
few uninformative tokens. Often rare alarms are very relevant, because they
can go off when critical events occur that lead to costly machine shutdowns,
production losses, or, in some cases, severe accidents [44]. Unfortunately, most
standard optimization techniques are ineffective about rare classes and tend to
consider them as noise. So, it is necessary to reformulate the problem to focus
on those alarms. At the same time, it is necessary to limit the impact of highly
frequent, uninformative alarms.

5.3 Proposed Approach for Alarm Forecasting
In this work, we propose a new formulation for the Alarm Forecasting problem,
framed as a multi-label classification task. We present a novel deep learning-
based approach called FORMULA (alarm FORecasting in MUlti-LAbel setting).
FORMULA leverages Transformer, a popular Neural Network architecture in
the field of Natural Language Processing. To cope with alarm imbalance, we
draw inspiration from Segmentation and Object Detection. Thus, FORMULA
is trained by minimizing the Weighted Focal Loss, which turns out to be very
effective in predicting rare alarms. These alarms, even if they are difficult to
predict by nature, often are business-critical. We assess the proposed approach
on a representative real-world problem from the packaging industry. In par-
ticular, we show that it outperforms not only classic multilabel techniques but
also models based on recurrent neural networks. As regards the latter, the pro-
posed approach also exhibits a lower computational burden, both in terms of
training time and model size. To foster research in the field and reproducibility,
we also publicly share the alarm logs dataset and the code used to perform the
experiments

5.3.1 Motivation and Formalization of Alarm Forecasting
as Multi-label classification

Motivation

The goal of AF is to predict which alarms will occur in the future, based on the
knowledge about past ones. Since users need time to take corrective actions,
AF should predict alarms well in advance.

The industrial use case that inspired this work (the same use case that will be
used in Section 5.3.7 for the experimental validation of the proposed approach)
comes from a real-world problem in the food packaging industry. In particular,
we focused on the machines used for the primary packaging of dairy products.
The goal is to develop a solution that can be deployed in the context of a
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Decision Support System to provide auxiliary information to human operators
in the monitoring of such machines.

These machines are fairly complex since they are made of thousands of com-
ponents (from 2500 to 3000 depending on the specific configuration) and dozens
of processes and sub-processes controlled by approximately 450 variables. Each
component can fail causing an alarm: some combinations of those alarms stop
the machine causing unexpected downtime. Since the processes into the ma-
chine are fast (they run all under the second) and due to the complexity of the
machine, the operator receives an average of 4 alarms per minute. This implies
that is not useful to predict the next alarm or the next few alarms because of the
high alarm raising frequency and redundancy. In this case study, and in similar
ones with complex industrial machines raising an high volume of alarms, it is
much more interesting for the operators to have a list of distinct alarms that
are expected to occur in a future time window, independently from the actual
sequence order and the exact timestamp.

In other words, the goal is providing a list of the predicted future alarm
occurrences in reasonable advance to the machine operator, to prevent unex-
pected downtime or component failures, in a business context where downtime
of few hours means to throw away the product due to high hygiene requirements;
given a future time window whose beginning and duration depend on monitor-
ing needs and can be chosen arbitrarily, the goal is to predict which events will
occur in this time window, no matter the sequence order and exact timestamp.
The formalization described above is general enough to be interesting also for
other scenarios, not only industrial ones.

Formalization

Therefore, we propose a Multi-label Classification approach, where, given a
future window of fixed length, for each alarm code we predict if it will occur or
not, based on the information about alarms raised by the machine in a past time
window. Given the set of all alarm codes A, we define a subset of alarm codes
So ⊆ A to be predicted (we may be interested in predicting just some of the
existing alarm codes), such that So = {a1, . . . , aM}. In our problem formulation,
the input is the sequence of past alarms x = (x1, . . . , xL), with xj ∈ A for
j = 1, . . . , L, such that x belongs to the set X of all alarm sequences, possibly
with repetitions, whose maximum length is L. The corresponding output is the
n-hot encoding y = (y1, . . . , yM ) ∈ Y, such that yi = 1 if the occurrence of
alarm ai is predicted, otherwise yi = 0. To recap, we frame AF as the task of
estimating the following map from the input set to the label space:

h : X → Y
(x1, . . . , xL) 7→ (y1, . . . , yM ).

(5.6)

It has to be noted that this formulation does not take into account the
elapsed time between alarms. Indeed, we draw inspiration from the techniques
used in Natural Language Processing, where sequences are modeled as a list of
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Abbreviation Description
AD Anomaly Detection
AF Alarm Forecasting
CE Binary Cross Entropy
DL Deep Learning

DNN Deep Neural Network
FDC Fault Detection and Classification
FL Focal Loss

HMI Human-machine Interface
LSTM Long Short-Term Memory
ML Machine Learning
NLP Natural Language Processing
NN Neural Network

SCADA Supervisory Control And Data Acquisition
TCO Total Cost of Ownership Entropy
WFL Weighted Focal Loss

Table 5.1: Abbreviations

subsequent symbols. This choice was made both for simplicity and also because,
in some situations, the elapsed time between alarms may not be informative,
or it could require domain-specific preprocessing to be useful. For example, in
situations where production has several interruptions, time intervals between
machine alarms tend to be very different due to requalification phases after
maintenances or stops [285].

5.3.2 Dataset design in the multi-label classification set-
ting

Usually, raw alarm logs are just lists of tuples, each consisting of (i) an alarm
code, (ii) a timestamp, and (iii) the identifier of the source machine. Thus, the
first step is the pre-processing of data to produce the input and output pairs as
defined in Eq. (5.6). As for the input, it is given by the ordered sequence of
alarms occurred in a time window (Ti, Ti +Di) of fixed length Di. To produce
the corresponding output, we consider all alarms belonging to So occurred in
a subsequent time window of predefined duration Do, starting at Ti +Di + δ,
with δ ≥ 0. Parameters Di, Do and δ can be chosen based on the specific
business and monitoring needs. Fig. 5.1 depicts an example of the creation
of an input-output sequence pair. In addition, we perform data augmentation
by considering partially overlapping input windows through a sliding window-
ing approach. Notice that this procedure is applied separately to the alarms
generated by each piece of equipment. The number of alarms occurring in a
predefined amount of time may vary, but ML algorithms based on mini-batch
gradient descent usually require sequences of fixed length. Therefore, to deal
with this problem, two common procedures are used: padding and cutting (also
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𝑥 = [𝑎10, … , 𝑎2] 𝑜 = [𝑎3, 𝑎1, 𝑎4]

𝑜 = [𝑎3, 𝑎1, 𝑎4] → 𝑦 = [1, 0, 1, 1, 0]

𝑇𝑖 time

𝐷𝑖 δ 𝐷𝑜

Figure 5.1: Suppose we are interested in predicting five target alarms, so So =
{a1, a2, a3, a4, a5} ⊆ A. We define an input sequence x by considering all alarms
occurring in a past time-window with fixed predefined length. Let’s consider a
future time window of predefined duration. Let o denote the output sequence of
alarms occurring in a the future time window. We define our prediction target
y as the n-hot encoding of all alarms in o that belong to So.

known as ’truncating’). At first, we need to decide a specific target length L
which will be the final common size for all samples. A typical choice in the
literature is to set L equal to the mean plus 3 times the standard deviation of
the original input sequence lengths. When a sequence length is less than L, we
apply padding; padding consists in adding 0 values at the end of the sequence
to reach the target length. On the opposite, when a sequence longer than L,
we need to remove the last symbols of the sequence to cut it down to length L.
Eventually, we dealt with uninformative alarms that cause chattering by using
the simple technique to prune repeated consecutive alarms.

5.3.3 FORMULA

To the best of our knowledge, addressing AF as a multi-label classification task
with past alarm sequences in the input is a new problem statement in the litera-
ture. Therefore, in designing the proposed solution, we investigated both classic
and advanced ML methods, based on Neural Networks, for multi-label classifi-
cation. To account for dataset imbalance, which is often the case when dealing
with alarms generated by machines in the industrial scenario, we investigated
the use of non-standard loss functions. Thus, we assessed the classification per-
formance achieved by different combinations of NN architectures and losses, as
detailed in Sections 5.3.4 and 5.3.5, respectively. In light of the experimental
results, we propose an approach called FORMULA, i.e. alarms FORcasting in
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MUlti-LAbel setting. FORMULA is a new method for multilabel alarm fore-
casting: in the proposed approach a neural network inspired to Transformer
[307] is trained by minimizing Weighted Focal Loss to perform AF.

5.3.4 NN Architectures

To learn the map defined by Eq. (5.6), we consider models based on Neural
Networks. It is easy to adapt to the structure of a NN to produce multi-label
predictions. Indeed, to address multi-label classification with M different alarm
codes, we consider NNs whose output layer is given by M sigmoid activations.
Since the sigmoid activations share the hidden layers, whose weights are trained
using back-propagation, the network should be able of capturing relations among
labels, in contrast to some standard ML approaches based on Binary Relevance
problem transformation, described in Sec. 5.3.6.

As stated above, in applying NNs to AF we draw inspiration from approaches
that have been successful in NLP [148]. Thus, we focus on recurrent [22] and
attention-based architectures [345, 307]. In particular, we consider the following
three paradigmatic models:

• REC: a bidirectional recurrent model based on Gated Recurrent Units,
depicted in Fig. 5.2(a);

• ATT: a model that combines an attention mechanism with recurrent units,
shown in Fig. 5.2(b), along the same lines of [345];

• TRM: a model based on the Transformer block [307], depicted in Fig.
5.2(c). Details about the architecture of the Transformer block are shown
in Fig. 5.3.

5.3.5 Loss functions for rare alarms forecasting

High label imbalance makes alarm prediction challenging. To overcome this
issue, we considered different choices for the loss function used to train the
proposed NNs models. In particular, we draw inspiration from the fields of Ob-
ject Detection and Image Segmentation in computer vision, where foreground-
background class imbalance is often very high, whenever there are many candi-
date locations per image but only a few of them are relevant [167, 258].

To shorten notations for some of the considered losses, for each alarm, we
denote its true label by y ∈ {0, 1}. Then, we introduce

pt =

{
p if y = 1

1− p otherwise , (5.7)

where p is the probability given in output by the network corresponding to
a specific alarm. By introducing p, the output array corresponding to the
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Figure 5.2: Considered NN architectures.

Transformer BlockScaled dot product 
attention

Linear Linear Linear

Q K V

Matmul

Scale + Softmax

Matmul

Scaled doattentionScaled dot product 
attention

Concat

Linear

Figure 5.3: Architecture of the Transformer block.
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whole label set, we can define pt analogously. Along the same line, we define a
weighting factor βt as follows

βt =

{
β if y = 1

1− β otherwise , (5.8)

for 0 < β < 1. Fig. 5.4 depicts an example for each of the considered losses
that are detailed below.

Binary Cross Entropy (CE)

Binary Cross Entropy provides a benchmark for our experiments, since it is the
standard loss used in binary classification tasks but it is not optimized to deal
with class imbalance. By Eq. (5.7), the binary Cross Entropy (CE) can be
written as

CE(pt) = −log(pt). (5.9)

Weighted Cross Entropy (WCE)

Weighted cross entropy is a variation of Binary Cross Entropy where a weight
parameter is introduced to compensate class imbalance [19]. By (5.7) and (5.8)
we can write WCE as:

WCE(pt, βt) = −βtlog(pt), (5.10)

where 0 ≤ βt ≤ 1.

Focal Loss (FL)

Drawing inspiration from a successful approach to one-stage object detection
described in [167], we also consider another variation of Binary Cross Entropy
called Focal Loss:

FL(pt, γ) = −(1− pt)
γ log(pt). (5.11)

As suggested by Fig. 5.4, the term (1−pt)
γ acts as an adaptive weighting factor

that is used to down-weight the contribution of easy samples in the training,
so the model can focus more on hard examples. The focusing parameter γ ≥ 1
defines the rate at which easy examples are down-weighted: the higher γ, the
wider the range in which an example receives low loss.

Weighted Focal Loss (FL)

This variation of Focal Loss is proposed in [167]. It includes a fixed weighting
factor βt, as defined in the following equation:

WFL(pt, βt, γ) = −βt(1− pt)
γ log(pt), (5.12)

where γ, βt and pt are defined as above.
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Figure 5.4: Loss functions used to address data imbalance, compared to CE,
when y = 1. In FL and WFL, γ = 2. In WFL, β = 0.8.

5.3.6 Benchmark Approaches

It is non trivial to provide a fair comparison between FORMULA and stan-
dard AF methods. In the literature, the alarm forecasting problem is typically
based on the prediction of the single next alarm; however, in the industrial sce-
nario motivating the proposed approach, the prediction of the next alarm is not
enough to help users achieve a more efficient monitoring and management of
the industrial machine. In the considered scenario, alarms are frequent overall,
and predicting co-occurrences in a future time slot is more relevant than provid-
ing the actual temporal sequence of alarm occurrences. However, by extending
standard methods to predict many future alarms at once, we would encounter
error propagation issues, because we should use the prediction of the i-th alarm
as input for the prediction of the (i+1)-th one. Thus, the comparison would
not be fair with regard to ML methods based on the forecasting of the next
alarm. Therefore, we focus on AF framed as Multi-Label Classification, and we
consider classic ML methods for Multi-Label Classification as benchmarks.

Drawing inspiration from the analogy between alarm sequences and natural
language sentences, we perform feature engineering by mapping input alarm
sequences to tf-idf representations [148]. To apply standard classification al-
gorithms to a multi-label setting with M labels, we consider problem transfor-
mation approaches that convert multi-label problems to single-label problems,
either single-class or multi-class, as detailed in [183, 242]:

• Binary Relevance (BR): M classifiers are trained separately, one for each
label.

• Classifier Chain (CC): it trains M classifiers ordered in a chain according
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to the Bayesian chain rule.

• Label Powerset (LP): it transforms a multi-label problem to a multi-class
problem where each label combination found in the training data is con-
sidered as a separate class.

5.3.7 Experimental Results

As described in Section 5.3.1, the proposed approach was designed while in-
vestigating a real-world AF problem, coming from dairy products packaging
industry. One of the novel contributions in this research is the public release of
the data used to design and evaluate the proposed approach [297]. This aims
to alleviate the limited availability of public data on alarm sequences generated
by real industrial processes, to foster research and provide a benchmark. Not
only the dataset, but also the code used in the experiments is provided in an
open repository [1].

To evaluate the proposed AF approach, we consider logs acquired from
February 2019 to June 2020 by 20 packaging machines deployed in different
plants around the world. In the logs, there are 154 distinct alarm codes. For
confidentiality issues, we cannot provide too many details on the nature of the
underlying alarms, however it can be said that such alarms are quite an hetero-
geneous set: for instance, some of them are related to how the machine is used,
while other are associated with internal mechanisms not directly affected by the
users and the products.

We focus on two forecasting scenarios:

[S.T] Target alarms scenario. The goal is to predict a subset of 15 alarms that
are considered the most valuable based on the business context. This task
is the real-world challenge that inspired this work;

[S.R] Rare alarms scenario. Aiming at extending this work to other equipment
and industrial contexts, we need to understand to what extent the pro-
posed approach can deal with very infrequent alarms. Indeed, alarms that
are very relevant from the business point of view, often are also rare. Thus,
we deal with the forecasting of a subset of 10 rare alarms.

For each alarm label ai, we define its frequency fai
as

fai
=
|s ∈ O where ai ∈ s|

|O|
, (5.13)

where O is the set of output sequences and |O| its size. In Tab. 5.2, we provide
some statistics about the output sequences described above:

• Number of distinct alarms in output sequences;

• Label cardinality, i.e. the average number of occurring alarms in output
sequences;
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Figure 5.5: Distribution of output labels (i.e. subset of alarm codes) for S.R. and
S.T. scenarios. Each alarm is depicted as a dot, corresponding to its frequency.
The horizontal axis, i.e. frequency axis, is in logarithmic scale. We can observe
that in scenario S.T. there are both frequent and rare alarms, with a frequency
range [0.22% - 58.84%]. Instead, frequencies of alarms in scenario S.R. are all
rare, within the interval [0.41% - 1.93%].

• Maximum label cardinality in dataset;

• Percentage of output sequences with no alarms;

• Information about alarm frequencies: first quartile, median, third quartile,
average, and the ratio between the highest and lowest frequency among
alarms (this value can be interpreted as a measure of class imbalance)

• Label diversity, as defined in Sec. 5.3.1.

Alarm frequency distribution is quite imbalanced in scenario [S.T], as shown
in Fig. 5.5, too. In particular, there are two orders of magnitude between the
highest and lowest alarm frequency in the dataset. In scenario [S.R], instead,
the maximum frequency ratio is below 5, indicating a more balanced alarm
frequency distribution. It is interesting to notice that, in scenario [S.R], most
output sequences have no relevant alarms, resulting in label cardinality being
below 1.
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Table 5.2: Output labels statistics.

Target alarms [S.T] Rare alarms [S.R]
Distinct alarms number 15 10

Label cardinality 6.69 ± 5.83 0.11 ± 0.36
Max label cardinality 10 4

Label diversity 1.68e-2 6.82e-4
Percentage of output

sequences with no alarms 1.52% 89.54 %

Q1 frequency 1.24% 0.63%
Median frequency 21.36% 0.92%

Q3 frequency 31.74% 1.44%
Avg frequency 20.8% 1.07%
Min frequency 0.22% 0.41%
Max frequency 58.84% 1.93%

Max frequency ratio 263.52 4.69

Experimental Settings and Evaluation

Taking into account the requirements coming from the motivating industrial
case at hand, we considered alarm sequences designed with Di = 1720 minutes,
Do = 480 minutes, and δ = 0.

To evaluate the proposed ML models, the set of input and output alarm
sequence pairs is split into a training dataset and a subsequent test dataset.
The splitting is performed based on time to avoid data leakage. 70% of the
sequence pairs is used to fit models, and the remaining 30% to assess their
performance.

To measure performance, we consider the macro f1-score. We recall that
f1-score for alarm ai is defined as

f1(ai) = 2 · pi · ri
pi + ri

,

where pi and ri denote precision and recall for alarm ai, respectively. Then,
macro f1 score is defined as the average of f1-scores corresponding to each
alarm label, no matter its frequency:

macro f1 =
1

M

M∑
i=1

f1(ai). (5.14)

The choice of macro f1-score is made to have a fair metric about infrequent
alarms prediction: since alarm distribution is imbalanced, a model that ignore
rare alarms in favor of the most frequent alarms, could have incorrectly been
evaluated as a good model with ’standard’ f1-scores.
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Table 5.3: Comparison between classic ML algorithms for multi-label classifica-
tion considering different strategies (BR, CC, LP) and models (RF, NB).

Scenario Model Macro f1

[S.T]

BR + RFC 0.404
CC + RFC 0.406
LP + RFC 0.422
BR + NB 0.181
CC + NB 0.1867
LP + NB 0.178

[S.R]

BR + RFC 0.067
CC + RFC 0.084
LP + RFC 0.067
BR + NB 0.00695
CC + NB 0.00777
LP + NB 0.00789

Table 5.4: Comparison between classic ML algorithms for multi-label classifica-
tion and FORMULA, i.e. TRM + WFL.

Scenario Approach Model Macro f1
Improvement

w.r.t.
Classic ML

[S.T] Classic ML
BR + RFC 0.404 -
CC + RFC 0.406 -
LP + RFC 0.422 -

FORMULA TRM + WFL 0.549 + 30%

[S.R] Classic ML
BR + RFC 0.067 -
CC + RFC 0.084 -
LP + RFC 0.067 -

FORMULA TRM + WFL 0.367 + 337%

Results in scenario [S.T] for classic multilabel approaches

We first tested the classic ML-based approaches described in Sec. 5.3.6 to
provide a benchmark. To identify the best base classifier, we considered both
Multinomial Naive Bayes (NB) and Random Forest Classifier (RFC) as can-
didates. For each model, hyper-parameter tuning is performed through 5-fold
cross validation applied to the training dataset. Predictive performance is then
evaluated on the test set.

In Table 5.3, we show the performance obtained by RFC and NB models
when trained according to Binary Relevance (BR), Classifier Chain (CC), and
Label Powerset (LP) multi-label approaches. In scenario [S.T] the best perform-
ing solution is Label Powerset transformation with Random Forest.

Tab. 5.4 also shows the comparison with our approach FORMULA i.e.
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Table 5.5: Comparison between Binary Relevance approaches and FORMULA
(i.e. TRM + WFL), scenario [S.T].

Scenario Approach Model Macro f1

[S.T] Binary Relevance BR + RFC 0.404
BR + TRM (WFL) 0.475

FORMULA TRM + WFL 0.549

TRM with WFL. We can observe that our approach performs better in [S.T]
scenario with respect to classic multilabel approaches. A problem with Label
Powerset (LP) is that it may suffer from underfitting issues, since it disregards
combinations of labels not appearing in the training dataset. Moreover, it is
not scalable as the set of alarms to predict is extended, due to the high number
of classes resulting from alarm combinations. Binary Relevance, on the other
hand, is more robust. However, it does not take relations among labels into
account, since each classifier is trained separately. To investigate this, we also
train a dedicated TRM classifier for each target alarm, in a Binary Relevance
approach, and compare the results with standard TRM model with M output
units sharing hidden layers, as described in Sec. 5.3.4. As detailed in Tab. 5.5,
FORMULA approach, i.e. a TRM model with M outputs trained by minimiz-
ing WFL, consistently outperforms the pool of M independent TRM classifiers
trained with WFL according to a Binary Relevance transformation of multi-
label classification task. Besides the lower performance, another drawback in
using NN-based classifiers in a Binary Relevance framework is the computation
burden, since it is necessary to train one NN for each output class.

Results in scenario [S.T] for FORMULA

To motivate the effectiveness of FORMULA, we evaluate all the NN architec-
tures introduced in Sec. 5.3.4, combined with the loss functions described in
Sec. 5.3.5. To assess performance, for each combination of model and loss func-
tion, we consider twenty repeated runs for the training algorithms. Then, we
evaluate models on the test set.

Fig. 5.6 allows us to compare the performance achieved by the consid-
ered NN architectures when trained using different loss functions. As already
anticipated, TRM model trained by minimizing WFL is the best performing
combination. In particular, WCE and WFL consistently outperform their non-
weighted counterparts for all the considered NN architectures, suggesting that
the weighting policy is actually effective in dealing with class imbalance. In
addition, it seems that the attention mechanism used in ATT and TRM allows
for improving classification performance with regard to REC, for each choice of
the loss function used in training the model. As reported in Tab. 5.4, we can
conclude that approaches based on NNs and WFL perform consistently better
than classic ones.

To shed light on how the choice of the loss function affects the classification
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Figure 5.6: Scenario [S.T]: comparison among different models and loss functions
tested with optimal hyper-parameters.

performance, it is interesting to analyze results at single alarm code level. The
bubble chart in Fig. 5.7 plots f1 score versus alarm frequency. Each bubble is
a specific alarm code: its size is proportional to the recall, while warmer colour
means higher precision. A circle marker is used to denote the results attained
with WFL, while a square is used to depict results obtained through standard
CE. From the plot, we can conclude that the increase of macro f1 score ob-
tained with WFL, w.r.t. standard CE, depends on achieving a higher f1 score
for less frequent classes, as expected based on the considerations detailed in
Sec. 5.3.5. In particular, WFL provides a much higher recall for low-frequency
alarms, partly at the expense of precision, which is slightly lower, in general.
The precision-recall trade-off is a well-known issue in classification tasks. In
principle, in the industrial scenario, higher precision means not wasting human
resources time on false positives. On the other hand, higher recall implies rec-
ognizing most of the situations that may lead to downtime. In our case study,
coming from dairy products packaging industry, where downtime also involves
costly raw material losses due to hygienic constraints, obtaining a high recall is
preferable.

Not only does TRM achieve higher performance than REC and ATT, but it
is also faster to train and to deploy. Indeed, it is possible to leverage parallelism
to deal with multiple attention mechanisms at once, while recurrent layers are
intrinsically sequential. Moreover, when considering model size after hyper-
parameter tuning, the returned TRM model also has the lowest number of
parameters. Based on the experimental results, it also seems that models with
attention mechanism such as ATT and TRM require fewer epochs to converge
when an Early Stopping policy is active during training. More details about
computational time, convergence, and model size are provided in Tab. 5.6.

We would like to stress that the proposed approach is designed to be included



148 CHAPTER 5. REPLAY FOR MULTILABEL SETTING

Table 5.6: Computational time, average number of epochs required to converge
and model size for fine-tuned NN-based models. Models are trained by mini-
mizing WFL.

Model Avg Time
per epoch (s)

Required epochs
for convergence (Avg)

Num. of trainable
parameters

REC 99.09 17.96 172.734
ATT 115.35 8.04 238.250
TRM 10.59 7.29 26.794

Table 5.7: Performance of NN models trained with different loss functions,
scenario [S.T]

Scenario Loss function Model Macro f1 Macro
precision

Macro
recall

[S.T]

CE
REC 0.374 0.454 0.348
ATT 0.391 0.498 0.366
TRM 0.384 0.469 0.361

FL
REC 0.389 0.509 0.355
ATT 0.418 0.569 0.381
TRM 0.405 0.502 0.375

WCE
REC 0.482 0.456 0.614
ATT 0.523 0.491 0.653
TRM 0.529 0.478 0.678

WFL
REC 0.508 0.499 0.630
ATT 0.516 0.490 0.652
TRM 0.546 0.492 0.692

in a Decision Support System. This means that the model predictions are not
consumed by an automatic system. Instead, they are used by operators to
improve their decision making. Before the introduction of FORMULA-based
systems in the motivating industrial case, information about alarms was just
visualized and there was no ’intelligent’ system helping operators in coping
with process monitoring. In this scenario, each piece of additional information
coming from the proposed algorithm is valuable since it helps operators to focus
on the most relevant issues.

Results in scenario [S.R]

Class imbalance can have a detrimental effect on classification performance for
low-frequency classes. However, rare events are often extremely relevant from
the point of view of applications. For instance, as regards AF in the manufactur-
ing industry, severe downtime is rare, but being able to forecast related alarms
would be extremely useful in taking prompt corrective actions to preserve pro-
ductivity and prevent energy and raw materials waste. Thus, investigating to
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Table 5.8: Performance of NN models trained with different loss functions,
scenario [S.R]

Scenario Loss function Model Macro f1 Macro
precision

Macro
recall

[S.R]

CE
REC 0.165 0.407 0.118
ATT 0.161 0.376 0.109
TRM 0.196 0.322 0.151

FL
REC 0.199 0.422 0.146
ATT 0.194 0.449 0.134
TRM 0.206 0.337 0.159

WCE
REC 0.310 0.337 0.307
ATT 0.307 0.344 0.311
TRM 0.357 0.321 0.446

WFL
REC 0.302 0.331 0.305
ATT 0.327 0.379 0.323
TRM 0.367 0.335 0.450

what extent the proposed approach can deal with very infrequent alarms is an
important aspect to assess its effectiveness. Therefore, we evaluate the perfor-
mance achieved by FORMULA in scenario [S.R], where the goal is forecasting
the occurrence of 10 alarms rare output alarms. Details about this dataset
composition are provided in Tab. 5.2 and Fig. 5.5.

As mentioned above, and detailed in Tab 5.8 and Fig. 5.10, using WFL
instead of classic CE improves recall, and translates into higher overall macro
f1 score.

In Tab. 5.4, we can compare the proposed approach with classic multilabel
techniques, and we can observe that it performs much better when we are trying
to predict the rare alarms. In particular, the performance improvement achieved
by FORMULA with regard to classic ML approaches is much more relevant in
scenario [S.R] than in [S.T], reaching an improvement of 337%.

In Fig. 5.9, we compare the performance achieved by previously introduced
NN models and loss functions combinations in the rare alarms scenario [S.R].
TRM model trained by minimizing WFL is the top performer also in this sce-
nario.

In conclusion, results confirm the effectiveness of the proposed approach, in
particular when the focus is on the prediction of rare alarms.

5.3.8 Conclusions

In the industrial scenario, forecasting alarms generated by the equipment may
allow taking prompt corrective actions to prevent or at least minimize down-
time. In this work, we propose a novel problem statement for alarm prediction,
i.e. multi-label binary classification with sequences in the input. Motivated
by the analogies between alarm forecasting and Natural Language Processing,
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Figure 5.7: Scenario [S.T]. Each bubble is a distinct alarm code plotted with
f1 score on y-axis and alarm frequency on x-axis. Its size is proportional to
the recall, while warmer colour means higher precision. A circle marker is
used to denote the results attained with WFL, while a square is used to depict
results obtained through standard CE. For each alarm code there is an arrow
that connect its CE version with the WFL version. In general, WFL results in
higher f1-score for low frequency classes, with increased recall at the price of
slightly reduced precision.

we assess the performance of state-of-the-art Neural Network architectures. To
address alarm frequency imbalance, we consider non-standard loss functions be-
yond classic Binary Cross Entropy, in the same vein as in Object Detection
and Image Segmentation. The resulting approach, named FORMULA (alarm
FORecasting in MUlti-LAbel setting), aims at predicting future alarms in a
multi-label classification setup through a model inspired by the Transformer
and trained with Weighted Focal Loss as the optimization target.

Our experiments on a real industrial dataset suggest that FORMULA per-
forms consistently better than classic ML and that it can focus on low-frequency
alarms too, which is relevant because many business-critical alarms are rare. Fi-
nally, the dataset used in the experiments was publicly shared to foster research.
This dataset contains industrial alarm logs generated by packaging equipment.
In support of the added value provided provided by the proposed approach, we
remark that the industrial partner collaborating in this work is currently rolling
out a new service based on FORMULA.



5.3. PROPOSED APPROACH FOR ALARM FORECASTING 151

Figure 5.8: Scenario [S.T]: comparison between FORMULA f1 and coin toss
f c
1 scores. Each bubble is a distinct alarm code. Horizontal axis reports alarm

frequency, that is equal to f1 score achieved by coin toss, for each alarm. Ver-
tical axis depicts the f1 score improvement obtained by FORMULA defined as
100 (f1(ai)− f c

1(ai))/(f
c
1(ai)).

Figure 5.9: Scenario [S.R]: comparison among different models and loss functions
tested with optimal hyper-parameters.
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Figure 5.10: Scenario [S.R]. In the bubble chart, each bubble is a distinct alarm
code plotted with f1 score on y-axis and alarm frequency on x-axis. Its size is
proportional to the recall, while warmer colour means higher precision. A circle
marker is used to denote the results attained with WFL, while a square is used
to depict results obtained through standard CE. For each alarm code there is
an arrow that connect its CE version with the WFL version.
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Figure 5.11: Average macro f1 score over 10 runs for each combination of Di, Do

and δ in the grid search. Each column represents one of the considered scenarios,
either S.T. or S.R.. Different choices of input window length Di correspond to
different rows. Each heat map has δ values on x axis and window output lengths
Do on y axis.

5.4 Replay for Multilabel Setting

5.4.1 Motivation

A significant challenge is that current MLC methods are studied in the classic
offline setting, which assumes that all data are available in advance for learn-
ing. In practice, data is collected sequentially, and data collected earlier in this
process may not be available as time passes. We consider such a problem from
the point of view of Industry 4.0. Manufacturing industries are in a continuous
effort to improve their production yield, uptime, and throughput to increase
production quality and minimize costs. An example is Predictive Maintenance,
where machine learning algorithms can be used to analyze data from sensors
and other sources to predict when equipment is likely to fail, allowing for pre-
ventive maintenance to be scheduled before the failure occurs. This can help
reduce downtime and improve the overall reliability of manufacturing systems.
In the practice case of Predictive Maintenance, Alarm Forecasting as multi-label
classification is studied as a real-world application of continual learning in the
multi-label setting. In our problem, we assume data from new machines be-
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Figure 5.12: Effect of tuning of the parameters β and γ in the rare scenario
(S.T.) with TRM model.

comes available over time. We also propose a novel approach for multi-label
classification in continual learning, for which an efficient approach with loga-
rithmic complexity in the number of tasks is proposed. In short, this work aims
to adopt a CL framework to achieve a production-ready solution for AF, where
to be scalable it must learn with new pieces of equipment that arrive over time.

5.4.2 Related work
CL tries to learn from a stream of tasks with non-stationary distribution. New
experience is constantly being acquired over time, while old experience is still
relevant and it needs to be preserved. In the classic paradigm, model retrain-
ing using the new data leads to a sharp decrease in performance on previously
learned tasks, a phenomenon known as Catastrophic Forgetting(CF)[106]. The
related literature suggests that the Rehearsal (also know as replay-based) ap-
proach appears to be a strong solution to CF [223, 42, 190, 140]. To the best of
our knowledge, currently, only two main replay-based approaches designed for
Multi-Label classification are proposed in the literature:

(i) The first approach is Partitioning Reservoir Sampling (PRS)[140]. The
idea is that it is sufficient to allocate portion of the memory to the minority
classes to retain a balanced knowledge of present and past experiences.

(ii) The second approach is called Optimizing Class Distribution in Memory
(OCDM) [164]. It aims at speeding up the processing time required to
select the samples, compared to PRS, obtaining a significant improvement.
OCDM is a greedy approach that selects a subset of samples such that
the final distribution of the labels in memory is as close as possible to a
uniform target distribution.
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Both approaches are derived from the scenario of Online CL (OCL), where, in
contrast to classic CL, a single batch of the task is shown at each time. Thus, in
OCL, multiple epochs on the same batch are not allowed. The PRS and OCDM
were proposed for the CIL scenario[304] where, for each new task, new labels
may appear.

In our case, we are considering a Domain Incremental Leaning (DIL) sce-
nario[304] instead, where the set of output labels remains the same, but the
input distribution changes based on the task. In fact, the set of alarm codes is
the same for each piece of equipment, while the alarm frequency is different for
the different deployments. In this work, we start from the OCDM to design a
task-aware replay-based approach, as detailed in the next section.

5.4.3 Optimizing Class Distribution in Memory (OCDM)

Before introducing the novel approach used to address the Continual multi-
label classification problem at hand, we recall some notions about the OCDM
approach. OCDM formulates the memory update mechanism as an optimization
problem. This greedy algorithm, detailed in Alg. 3, provides a solution with a
complexity that is linear in the number of tasks.

The core of the algorithm is the procedure to update the memory when a
new batch of data Bt of size bt coming from the task t ∈ T arrives, as depicted
in the Algorithm 1. Given that the memory M has fixed size M , for each task
the goal of OCDM is to select M samples to save in the memory among the
M + bt available ones. This can be represented as an optimization problem:

min
Ω

Dist(pΩ,p) subject to Ω ⊆M∪Bt, |Ω| = M (5.15)

where p represents the target distribution i.e. the ideal optimal solution,
while, pΩ represents the distribution of the labels produced from the samples
of the set Ω. The Dist(·, ·) function used to measure the difference between the
two distributions is the Kullback–Leibler (KL) Distance. The target distribution
proposed in [164] is defined as follows:

pi =
(ni)

ρ∑C
j=1(nj)ρ

(5.16)

where ni is the frequency of a class i and ρ is the allocation power. Using ρ = 0
the samples are saved in memoryM in order to have equally distributed classes.
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Algorithm 1: Memory Update (MU)
Input: Memory M, b

/* Given a memory M, it will delete b elements from the
memory */

for k ∈ [1, 2, ..., b] do
i = argminj∈M Dist(pM\{j},p)
M←M\ {i}

end
returnM

Algorithm 2: OCDM_task_update
Input: dataset Dt of task t ∈ T , memory M, total size of memory M

for Bt ∈ Dt do
if |M| ≤M then

diff← |M| −M
Vt ← select randomly min(|Bt|,diff) samples from Bt

Bt ← Bt \ Vt

M←M∪ Vt

end
if |Bt| > 0 then

Ω←M∪Bt

M←Memory_Update(Ω, |Bt|)
end

end

Algorithm 3: Optimizing Class Distribution in Memory (OCDM)
Input: task stream T , total size of memory M

M← {} /* Initialize the memory */
for t ∈ T do
Dt ← Get Dataset Dt = {Xt, Yt} of task t
OCDM_task_update(Dt,M,M)

end

5.5 Proposed Approach for Multi-label Replay

5.5.1 Continual Learning classifier design

The industrial scenario is a dynamic environment in which new machines are
installed over time. CL provides tools that enable ML solutions to scale effi-
ciently. In this work, we consider new equipment pieces as new tasks, setting our
problem in the DIL scenario [304] as previously stated. This means that the set
of labels in output Aout remains the same for new deployment of the target ma-
chine, while the input and output distributions change according to the current
task. Indeed, even if the machines are of the same type, they may differ from the
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Figure 5.13: Rehearsal-based approach to deal with multi-label classification in
a CL fashion.

already deployed ones in terms of settings, recipes, and the behavior of human
operators [103]. To make a Multi-Label classifier learn to perform alarm fore-
casting on new machines without forgetting the old ones, we use replay-based
approaches from CL, according to schema depicted in Fig. 5.13.

5.5.2 Balanced Among Tasks OCDM (BAT-OCDM)

The OCDM approach was proposed considering the CIL scenario, where a new
set of labels arrives at each new task [304]. As stated above, in our case, we
are considering the DIL scenario, where we always have the same labels with
potentially new frequencies. Since OCDM focuses only on maintaining balance
among labels, it ends up ignoring the differences among tasks.

In particular, OCDM does not guarantee that all tasks seen so far will be
kept in memory. As an example, it may happen that when a new task with
frequent labels arrives, then the algorithm may decide to never add any sample
from this task into the memory because it would worsen the balance.

To address this limitation, we propose to use a separated memory for each
task. Through this approach, described in Alg. 4, balance is performed on both
labels and tasks, hence the name Balance Among Tasks OCDM (BAT-OCDM).
BAT-OCDM requires two steps to handle the memory:

1. Step 1: Given the data of a new task, BAT-OCDM selects a subset of
samples to be included in the memory, using the same procedure of OCDM
to update the memory.

2. Step 2: Since the total size of memory has to remain fixed, BAT-OCDM
disregards some of the samples belonging to the memories of old tasks
through the Memory_Update (MU) procedure detailed in Alg. 1.

Fig. 5.14 shows a schema of the proposed approach, which uses BAT-OCDM
to train the multi-label Classifier in a CL fashion.
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Figure 5.14: CL multi-label classification with BAT-OCDM strategy.

Algorithm 4: BAT-OCDM
Input: task stream T , total memory size M

Constraint:
∑

t∈T |Mt| = M

N ← 0
for t ∈ T do

/* We are going to assign a part of the memory to the new
task and select the elements to keep in memory. */

Dt ← Get Dataset Dt = {Xt, Yt} of task t
Mt ← {}
N ← N + 1
m← M

N
OCDM_task_update(Dt,Mt,m)

/* We update the memories of old tasks, removing some
elements, to give space in memory to the new task. */

diff← M
N−1 −

M
N

if N ≥ 2 then
for told ∈ T1···N−1 do
Mtold ←Memory_Update(Mtold ,diff)

end
end

end

Computational complexity

Next we compare BAT-OCDM and OCDM in terms of computational complex-
ity. We also consider Dataset-based OCDM, a version of OCDM where, instead
of sequential batches, all the data coming from the task are used for the mem-
ory update. This should improve performance, since the original batch-based
memory update policy could ignore some samples, and thus it may lead to a
less uniform label distribution in the final memory. On the other hand, in this
way the update can no longer be performed on-line as in the original OCDM.
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Algorithm 5: Dataset-based OCDM
Input: task stream T , total size of memory M

M← {} /* Initialize the memory */
for t ∈ T do
Dt ← Get Dataset Dt = {Xt, Yt} of task t
M←M∪Dt

if |M| ≥M then
Ω← Dt ∪M
diff ← min(|Ω| −M,M)
M←Memory_Update(M, diff)

end
end

Table 5.9: Notation used to show the complexity of the algorithms

Notation Description
D size of the dataset associated to a task
T number of tasks used in the experiment
M size of the memory used

Tab. 5.11 summarizes the computational complexity of the strategies mentioned
above, while more details can be found in the supplementary material [2].

Task i Total Assuming M = c ·D
OCDM O(D ·M) O(T ·D ·M) O(c · T ·D2)

Dataset-
based
OCDM

O(D ·M + D2

2 ) O(T · [D ·M + D2

2 ]) O( 2c+1
2 · T ·D2)

BAT-
OCDM

O(D·M
i + M2

i−1 ) O((lnT + 1) ·M · (D +M)) O((c+ c2) · (lnT + 1) ·D2)

Table 5.10: Computational complexity of the proposed approaches

As for the notation, we denote the set of tasks as T = {t1, . . . , tT }. For
simplicity, we assume that each task corresponds to D samples and the memory
M has a fixed size M.

The column Task i provides the complexity of the i−th memory update.
For BAT-OCDM the complexity becomes smaller as i increases. In particular,
the overall complexity, shown in column Total, is logarithmic in the number of
tasks T for BAT-OCDM. For OCDM and Dataset-based OCDM instead, the
complexity is linear in T .

The last column shows the complexity under the assumption that M ≤ D,
i.e. M = c ·D where c ∈ [0, 1]. In this case, the complexity for all methods is
quadratic with regard to to the dataset size D. The results on computational
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complexity do not hold only for the DIL scenario, but also for the CIL sce-
nario studied in the original paper proposing OCDM, showing the same speed
improvement.

5.6 Experimental Setting

5.6.1 Metrics
Following the convention of multi-label classification [317] [101] we are going
to use the macro f1 score to evaluate the performance of the model. Let s
be the macro f1 score, i.e. the average of the f1 scores for each label: s =∑L

i=1 f1(yi, ŷi). Let si,j be the performance of the model on the test set of task
j after training the model on task i. To measure performance in the CL setting,
we introduce the following metrics:

Average macro f1 The average macro f1 score ST ∈ [0, 1] at task T is defined
as:

ST =
1

T

T∑
j=1

sT,j (5.17)

Average Forgetting FT ∈ [−1, 1], the average forgetting measure at task T,
is defined as:

FT =
1

T − 1

T−1∑
j=1

maxl∈{1,··· ,T−1}
sl,j − sT,j

sl,j
. (5.18)

With respect to the original definition used in [54], we are scaling respect
to the maximum macro f1 score, as done in [140]; this is done to compare
the forgetting among labels with very different scores. Notice that the
closer the metric FT is to 1, the higher the forgetting is.

5.6.2 Experiment setup
We test the proposed approach on a publicly available real industrial dataset
originating from the monitoring of dairy products packaging equipment [297]. In
the experiments, we consider the monitoring of 14 packaging machines deployed
in different plants around the world as different tasks to learn in a CL fashion.
The splitting of data in train and test is based on time where in the test there
will be only samples belonging to the future of the machine.
To obtain the design matrix to train the CL-based multi-label classifier, we draw
inspiration from [230], so we consider input windows having a length of 1720
minutes, and output windows of 480 minutes. As described in Sec. 5.3.1, we
represent the input windows using normalized alarm counts.
The code for the BAT-OCDM approach is shared publicly1 as well the dataset
used [297].

1https://github.com/dallepezze/bat-ocdm
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(a) Label frequency (b) Number of samples per task

Figure 5.15: Experimental dataset: Labels and tasks statistics.

Fig. 5.15 shows in detail the frequencies of the labels and the number of
samples for each task. Based on label frequencies, we split them into three
groups to better assess the performance:

• high-freq: labels {4,6,7,13};

• medium-freq: labels {0,3,5,8,14};

• low-freq: labels {1,2,9,10,11,12}.

We used grid search to select the hyper-parameters for the rehearsal ap-
proaches. The ratio of replay is set to 0.5, i.e. at each batch 50% of data will be
from the new task and 50% of the data will be from the old tasks. The memory
size is set to 2000 samples which corresponds also to the 5% of the entire set of
samples. Finally, the hyperparameter ρ used in OCDM and BAT-OCDM is set
to zero, as suggested in the original paper.

All the experimental settings-related details are available at [2] for repro-
ducibility.

5.6.3 Considered Continual Learning approaches
All the memory management strategies can be schemed according to the frame-
work shown in Fig. 5.13. To assess BAT-OCDM, we compare it not only with
OCDM (Alg. 3) and Dataset-based OCDM (Alg. 5), but also with the following
approaches:

• Finetune: At each task ti, the classifier is trained from scratch considering
only the data from task ti. There is no countermeasure against forgetting,
so we consider this approach as a lower bound.

• Cumulative: At each task ti, the classifier is trained from scratch based
on all the data seen so far (i.e. from task t1 to ti), so there is no limit to
memory size.
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• Task-based Random: At each task ti, an equal number of samples is se-
lected at random.

• Reservoir Sampling: This stream-oriented approach from Online Learning
selects samples at random at a fixed rate. Thus, it is expected to include
more samples for tasks whose dataset size is bigger.

5.6.4 Results

We divide alarm codes into three categories based on their frequency in order to
more thoroughly assess how the label frequency influences model performance.
As stated, we then calculate the performance measures for low, medium, and
high-frequency alerts independently. The computation time (measured in sec-
onds) needed for the memory update for each suggested strategy is also evalu-
ated in addition to the average macro f1 score and the forgetting measure.

Performance

The experimental results are displayed in Tab. 5.11. Among the two approaches
based on the random selection of the samples, there is no significant difference.
It is clear from the results that task-based Random and Reservoir Sampling
appear to work well on labels with high and medium frequencies. Instead,
outcomes are unsatisfactory when low-frequency labels are taken into account,
because of the poor representation of these labels in the memory. Unbalanced
label distribution is one of the difficulties with multi-label, since it makes it
harder for the model to concentrate on the rare labels and results in poor end
performance. The best choice of samples to keep in memory also makes the
multi-label in continual learning more challenging (with respect to the classic
multi-label setting) because it must come up with a good strategy to keep a
portion of samples from previous tasks in memory while attempting to have a
balanced label distribution that gives a more equal representation to all labels.
The OCDM method, in contrast, produces good performance for low frequency
labels. These labels have a critical impact on the equipment as evidenced in
[230]. However, this result comes with the trade-off of less effective performance
on labels with high frequency. Instead, there is no relevant performance differ-
ence for the classification of medium-frequency labels.

A possible explanation for this, as mentioned above, could be that some tasks
are not stored in memory. Indeed, the algorithm focuses only on the balance
among labels and not among tasks. This will be explained in more detail in
Sec. 5.6.4 and in Fig. 5.15(b) with the task distribution in memory, where it
can be seen the very low balance among tasks. For this reason, BAT-OCDM
shows superior performance respect to OCDM for low-freq, medium-freq and
high-freq labels. In particular, the drop in performance for higher frequency
labels observed for OCDM is much lower. As for Dataset-based OCDM, even
if it simultaneously uses all data from a task to find a better label distribution
in memory, no significant difference appears in the performance. Instead, as
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(a) Task distribution for RS (b) Label distribution for RS

(c) Task distribution for OCDM (d) Label distribution for OCDM

(e) Task distribution for BAT-OCDM (f) Label distribution for BAT-OCDM

Figure 5.16: At top RS, at center OCDM and at bottom BAT-OCDM. At left it
is shown the final distribution of the number of samples for each task in memory
varying the approach.On the x-axis of the plots are represented the task IDs and
on the y-axis the number of samples of each machine as absolute value. The
dashed line in each plot represents the average number of samples among all
the machines.
Instead at right it is shown the final distribution of the labels of the samples in
memory varying the approach. In the title for each plot is indicated the name
of the approach and KL distance respect to the target uniform distribution: the
larger the value, the less balanced the labels.
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Figure 5.17: Computation time of each technique to handle the selection of the
samples to keep in memory and remove from it. It is showed the time required
during each task. On the y-axis is represented the time in seconds and on x-axis
the current task.

anticipated by the complexity analysis, the time required to update the memory
is much higher.

Balance among labels

We can see the label distributions from the RS, OCDM, and BAT-OCDM tech-
niques in Fig. 5.16. Each plot also shows the KL distance to indicate how
far apart the final distribution is from the desired distribution defined in Eq
(5.16). We can observe that OCDM better approximates the target distribu-
tion. As opposed to OCDM, Random Selection displays a KL distance that is
roughly ten times larger. This is a result of the heavily unbalanced dataset
that was employed. When Fig. 5.15(a) and plot Fig. 5.16(b) are compared, it
can be observed that because the selection is made randomly, the memory has
the same label distribution as the dataset. So the distribution in memory will
be very far from the target distribution with a high KL distance. Regarding
BAT-OCDM, it considers samples from all of the available tasks. The resulting
distribution shows a KL distance five times higher than OCDM and two times
lower than RS.

Balance among tasks

The task distribution in memory achieved by the RS, OCDM, and BAT-OCDM
approaches is shown in Fig. 5.16. By design, BAT-OCDM achieves a completely
uniform allocation of the tasks (Fig 5.16(e)). Additionally, Task-based Random
has the same characteristic because it maintains a separate memory for every
task. For the Reservoir Sampling technique, the amount of samples in memory
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Table 5.11: The table contains the performance for each approach. Above is
the Average macro f1 ST and below the Average Forgetting FT . Based on the
column, these metrics are calculated on a different set of labels. Low, Medium,
and High are label sets grouped by the frequency of the labels, while Total
consider all the labels together.

Approach Total Low Medium High Time (s)

Finetune 0.19 0.04 0.21 0.38 -(0.27) (0.14) (0.39) (0.33)

Cumulative 0.39 0.17 0.42 0.7 -- - - -
Task-based
Random

0.37 0.14 0.4 0.69 0.3(0.11) (0.09) (0.18) (0.05)
Reservoir

Sampling (RS)
0.37 0.14 0.4 0.69 0.3(0.1) (0.1) (0.16) (0.04)

OCDM 0.32 0.2 0.32 0.49 2607.9(0.2) (0.04) (0.31) (0.31)
Dataset-based

OCDM
0.32 0.2 0.33 0.49 4702.30.2 0.04 0.31 0.31

BAT-OCDM 0.38 0.2 0.4 0.64 624.4(0.09) (0.04) (0.15) (0.085)

for each task is proportional to the dataset size of that task as shown by Figs.
5.16(a) and 5.15(b). This is because the random selection occurs at a fixed rate
during the stream of samples corresponding to the various tasks. About OCDM
and Dataset-based OCDM, they have a similar distribution shown in the center
of Fig. 5.16(c). In this case, we can observe that some tasks are almost absent
in the memory, with the risk of being forgotten more quickly than the other
tasks.

Computation times

In Tab. 5.11, we can examine the computing time to handle the memory for the
RS, OCDM, and BAT-OCDM approaches. In comparison to traditional OCDM,
BAT-OCDM requires four times less computing time to update memory. This
outcome is consistent with the algorithm’s anticipated theoretical complexity,
which is logarithmic in the number of tasks T, as opposed to the original ap-
proach’s linear in T. Dataset-based OCDM is slower than OCDM because it
takes into account all of the samples from a task at once. In practice, it is twice
as slow as OCDM.
Additionally, the computation time (in seconds) for each task for all strategies
is shown in Fig. 5.17 For OCDM, we can observe that the time needed for
each task is proportional to the size of the task’s dataset. In other words, the
larger the task’s dataset, the longer it will take. When using dataset-based
OCDM, we can observe that a task takes twice as long to complete as when
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using OCDM. Finally, it appears that the BAT-OCDM computation time grad-
ually reduces over time, which is consistent with the algorithm’s logarithmic
nature.

5.7 Conclusions and future works
This study is the first to address multi-label classification in the context of do-
main incremental learning, as far as we know. For multi-label classification,
earlier Continual Learning methods have focused on the Class Incremental Sce-
nario, in which additional labels are introduced into the task sequence. Instead,
in Domain Incremental Learning, the set of labels remains the same while their
distribution changes over time. To overcome this problem, we present BAT-
OCDM, an effective replay-based method of managing the memory update. The
proposed procedure exhibits higher performance than the simple adaptation of
the previous techniques to the Domain Incremental Learning scenario, especially
in the presence of class imbalance.

We validate the proposed approach on a real-world industrial Alarm Fore-
casting task stemming from the monitoring of packaging equipment. Experi-
ments suggest the efficacy of the proposed methodology, especially on low-freq
labels. Moreover, the complexity of BAT-OCDM is logarithmic in the number
of tasks. The suggested method is therefore more effective than earlier ones that
had linear complexity. Given the efficiency of BAT-OCDM, implementation on
the Edge is a viable perspective. This would be a step towards the Tiny ML
paradigm, which is becoming increasingly popular, also in the scenario of the
Industrial Internet of Things [109].

Possible future research directions include validating BAT-OCDM perfor-
mance in the Continual Incremental Learning scenario. Though the proposed
algorithm allows for a significant reduction in the computation costs, the total
complexity with regard to the dataset dimension is still quadratic. Therefore,
we also envision further investigation of more efficient approaches. Finally, an
additional point to research is how to improve the selection of samples from
the task. For example, the proposed approach takes into account the relation
among labels while training the MLP classifier, but it does not when choosing
the samples to keep in memory for the next training stage. This information, if
correctly included, may lead to further performance enhancement.



Chapter 6

Anomaly Detection for
Continual Learning

Anomaly Detection is a relevant problem that arises in numerous real-world
applications, especially when dealing with images. However, there has been
little research for this task in the Continual Learning setting. In this work,
we introduce a novel approach called SCALE (SCALing is Enough) to perform
Compressed Replay in a framework for Anomaly Detection in Continual Learn-
ing setting. The proposed technique scales and compresses the original images
using a Super Resolution model which, to the best of our knowledge, is stud-
ied for the first time in the Continual Learning setting. SCALE can achieve a
high level of compression while maintaining a high level of image reconstruc-
tion quality. In conjunction with other Anomaly Detection approaches, it can
achieve optimal results. To validate the proposed approach, we use a real-world
dataset of images with pixel-based anomalies, with the scope to provide a reli-
able benchmark for Anomaly Detection in the context of Continual Learning,
serving as a foundation for further advancements in the field.

6.1 Anomaly Detection

6.1.1 Anomaly Detection

Anomaly Detection (AD) is an important and challenging problem in the field of
Machine Learning (ML) and Computer Vision. Anomalies are patterns charac-
terized by a noticeable deviation from the so-called normal data, where normal
means compliance with some typical or expected features [330]. To effectively
detect anomalies, it is essential to clearly understand what constitutes normal
behavior and how to differentiate it from abnormal patterns. Anomaly De-
tection is a relevant problem that arises in numerous real-world applications,
especially when dealing with images. In particular, visual anomaly detection is
an important and challenging problem in machine learning and computer vision.

167
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AD differs from the assumption of a static and closed system that most exist-
ing machine learning methods are based on. AD tries to research how machine
learning models can deal with unknown and uncertain information under the
open and dynamic system environment [341]. With the assumption of an open
environment, the learning systems developed for anomaly detection are usually
expected to leverage the knowledge from the knows (normal data and patterns)
to infer the unknowns (abnormal or novel patterns that differ from the normal
ones). AD approaches usually extract, characterize and model the patterns with
the available normal data and then develop anomaly detectors to discover novel
or abnormal patterns in the newly observed data.
AD not only has interesting theoretical aspects connected to an open environ-
ment. It also has important applications in real-world scenarios. For example,
in the field of manufacturing, defect detection can apply an AD approach to
recognize defects in products in a manufacturing process. In the field of med-
ical image analysis, it can be used to detect lesions or other abnormalities in
medical images. In the field of cybersecurity, it can be used to detect intrusion
and attacks on the network or data.

6.1.2 Benchmark considered

Recently, in [26] is developed a benchmark dataset for evaluating unsupervised
image anomaly detection algorithms: MVtec AD. The dataset consists of vari-
ous texture and object categories, and contains more than 70 different types of
anomalies. The authors evaluated many methods based on image reconstruction
and feature modeling on the proposed dataset.
We propose to use the MVTec Dataset [26] as a benchmark to study the perfor-
mance of architectures and CL strategies for Anomaly Detection. The MVTec
AD dataset is a recent and extensive industrial dataset that includes 5354 high-
resolution images divided into 15 categories: 5 types of textures and 10 types
of objects. The training set only contains normal images, whereas the test set
includes both defect and defect-free images. The image resolutions range from
(700,700,3) to (1024,1024,3) as resolution. In our ADCL framework, we will
consider a sequence of 10 tasks. Each task corresponds to one of the 10 classes
associated with objects. In this study, the model is presented with a series of
tasks, and must be able to identify which pixels in the image are abnormal for
each object. The MVTec dataset used in this study is more challenging and
complex than the commonly used datasets MNIST and CIFAR-10, which are
often used in Continual Learning literature [61, 80, 178]. These datasets have
smaller image sizes, (28,28) for MNIST and (32,32) for CIFAR-10, and fewer
images, making them not as representative of real-world scenarios as the MVTec
dataset.

6.1.3 Strategies for Anomaly Detection

The first important categorization is whether the method uses Deep Learning.
In classic approaches, after obtaining the shallow features of images by hand,
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Figure 6.1: Image examples from the MVTec Dataset AD. For each object is
shown a normal sample (in green) and an anomalous sample (in red). For
each sample, the entire object is displayed, as well as a zoomed-in view of the
region containing the defect. The samples illustrate the range of variations and
abnormalities that can be found in the dataset.

such as the gray value, SIFT [179], and HOG [68], AD attempts to develop dif-
ferent detection mechanisms based on statistics or traditional machine learning
methods, such as density estimation, one-class classification, and image recon-
struction. The development of deep learning techniques, especially convolution
neural networks, has been successful both in low-level and high-level computer
vision tasks [367, 340, 273]. Then relevant research gradually shifted the atten-
tion to combine the powerful representation capability of DL with the problem
of AD.
Another categorization is based on whether supervised information is available
or not, visual anomaly detection can be divided into two research areas: su-
pervised and unsupervised. A review of AD approaches is provided in [341].
However, the unsupervised learning field is more common for most practical
application scenarios. This is because in many real-world scenarios, abnormal
image samples are very rare and difficult to collect, so there is no effective su-
pervision information to use. Moreover, abnormal patterns are usually variable
in shape, color, and size and do not have stable statistical laws. All these will
make it difficult for the supervised learning model to capture enough statistical
information or salient features about abnormal image patterns [341].
Visual Anomaly Detection can also be organized considering another aspect,
the granularity of approaches. Visual Anomaly Detection can be grouped into
two categories: image-level and pixel-level. Image-level usually only focuses on
whether the whole image is normal or abnormal. Instead, pixel-level requires
detecting or locating the abnormal regions in the image.
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Figure 6.2: Categorization of AD approaches for Unspervised Learning

6.1.4 Image-level Anomaly Detection

Unsupervised image-level anomaly detection methods can be roughly divided
into four groups: density estimation, one-class classification, image reconstruc-
tion and self-supervised classification.

Density estimation

The density estimation method first estimates the probability distribution model
of the normal images or features, then detects and identifies whether the newly
observed image is abnormal or normal by testing against the established distri-
bution. Methods based on density estimation usually assume that if the testing
image or image feature does not meet the probability distribution model esti-
mated with the normal image samples, it will be classified as an anomaly.
Typical density methods include parameter distribution estimation, such as
Gaussian model and Gaussian mixture model, non-parametric estimation meth-
ods, such as nearest neighbor and kernel density estimation method [139].
However, estimating a reasonable probability density requires many training
samples. And when the feature dimension of the samples is very large (such as
image data), this problem of the number of training samples becomes particu-
larly prominent. In addition, the scalability of these classic models is poor.

One-class classification

One-class classification is to classify a single class concretely, which attempts to
construct a decision boundary of the target class (normal images) in the fea-
ture space. Classic approaches are one-class support vector machines (OCSVM)
[262], and support vector data description (SVDD) [293]. One-class methods
do not need to estimate the probability of each sample point of the image dis-
tribution, so they do not require a large number of training samples. But they
still suffer from the problems of dimension disaster and scalability. An example
is shown in [225], which proposes a one-class classification method based on
transfer learning that fine-tunes the pre-trained convolution network to extract
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discriminative image features and then uses the nearest neighbor classification
method to construct the classifier.

Image reconstruction

Image reconstruction approaches map the image to a low-dimensional vector
representation (latent space), and then try to find an inverse mapping or recon-
struction for the original image [342]. The reconstruction-based approaches for
anomaly detection assume that the reconstruction errors of the normal images
are small, while that of abnormal images are larger. The widely used recon-
struction model is autoencoder. Autoencoder is proposed by [117] and the basic
idea behind it is redundancy compression and non-redundancy separation. Au-
toencoder is a neural network that has a narrow middle hidden layer. It tries
to compress the input data through the hidden layer and then regenerates the
input. Because the hidden layer is very narrow, the network may compress the
redundant information in the input data while retaining and distinguish the
non-redundant information.
In addition, some methods suggest increasing the difficulty of image reconstruc-
tion. Typically, some transformations for the input image are first performed,
such as color removal or geometric transformations. Then the model is trained
to reconstruct the original input image with the incomplete input image on
which the transformation is made. This method can effectively increase the re-
construction difficulties for abnormal images, so their reconstruction errors are
usually large. As a result, it can effectively increase the disparities between nor-
mal images and abnormal images, thus improving the performance of anomaly
detection.

Self-supervised classification

Visual anomaly detection by self-supervised classification mainly owes to the
powerful visual feature representation capability of self-supervised learning. Self-
supervised learning usually leverages certain auxiliary tasks (pretext) and at-
tempts to mine the available supervision information from large-scale unsuper-
vised data. It takes full use of the self-constructed supervision information to
learn the visual representation typically by a deep convolutional neural network.
Then the representations can be transferred to many downstream tasks, such
as image classification, object detection, and anomaly detection [9].
The idea behind self-supervised classification for anomaly detection is that
through self-supervised training, models can learn unique and more signifi-
cant characteristics and features of normal samples [342]. The representations
learned for the target objects not only reflect their color, texture, and other
low-level features but also the high-level features such as the location, shape,
position, and direction. By learning these features only from normal samples,
the model can effectively discern abnormal samples without such characteristics.
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6.1.5 Pixel-level Anomaly Detection

In terms of different anomaly detection mechanisms, approaches for unsuper-
vised pixel-level anomaly detection can be roughly divided into two categories:
image reconstruction and feature modeling.

Image reconstruction

Reconstruction-based methods include neural network architectures like autoen-
coders [26, 66, 357], variational autoencoders [173] and generative adversarial
networks [8, 261]. The idea is that autoencoders will ignore minor details that
don’t belong to the training distribution and reconstruct the image without
the defects. A typical method of image reconstruction is to compress and re-
construct the input image with the deep convolution autoencoder [27]. It first
learns to do the reconstruction of normal images. Then, potential anomalies
are detected by evaluating the pixel difference between the input image and the
reconstructed image, where pixel-level l2-distance [107] and image structure sim-
ilarity measure (SSIM) [324] can be used to measure the disparities before and
after the reconstruction. Reconstruction-based methods learn to reconstruct
normal images during training. However, during the evaluation, images with
defects are not expected to be reconstructed well. Consequently, they should
exhibit a higher reconstruction error than normal images. In other words, i.e.,
it cannot reconstruct the abnormal image as well as the normal ones. The deep
generative models based on variational autoencoder (VAE) [142] and generative
adversarial network (GAN) [105] can also be used as the reconstruction model.
In [74] is proposed to detect anomalies by comparing the difference between
the test image and its nearest neighbor normal image obtained by optimization.
This method needs to perform an iterative search process, they are inefficient
for practical applications.
Moreover, some methods propose to increase the difficulty of reconstruction
[358]. They remove some information from the input image and then make the
autoencoder reconstruct the input image with the incomplete or degraded in-
put. The information degradation process can effectively increase the difficulty
of abnormal image reconstruction, increasing the anomaly score between the
normal and abnormal samples, thus improving the detection performance.
For example, in [358] an approach based on inpainting is proposed called RIAD.
The idea is to hide a portion of the input image and train the model to recon-
struct it. In the same spirit, it is possible to also consider Super Resolution to
solve Anomaly Detection. In this method, the image is scaled to a lower reso-
lution and then rescaled to the original size, resulting in a loss of information
about the original image.
Image reconstruction for pixel-level anomaly detection is very intuitive. But
because it detects potential anomalies by evaluating the pixel-wise differences
in the pixel or image space, it usually is expected to regenerate high-quality im-
ages for comparisons [342]. However, high-quality image generation itself is still
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a challenging task. For example, the reconstruction approaches usually struggle
to regenerate the sharp edges and complex texture structure for images. As a
result, large reconstruction errors often appear in the edge or texture regions,
leading to many false abnormal alarms.

Feature modeling

Instead of detecting anomalies in the image space, the feature-based methods
detect anomalies in the feature space. In other words, it uses pre-trained neural
networks to extract meaningful features from images. These approaches try to
construct an effective representation of the local regions of the image by using
the handcrafted features, the representation learned by neural networks [266].
Then, many machine learning models such as sparse coding [47], Gaussian mixed
model [35], and Kmeans clustering [211] can be used to model the feature dis-
tribution of normal images.
For anomaly detection, if the regional feature corresponding to the local region
of the test image deviates from the modeled feature distribution, this region will
be labeled as abnormal. To improve the detection performance, the multiscale
model ensemble strategy [48] is usually adopted, which combines the results of
multiple single models derived from different image region sizes. Besides, to
locate the abnormal region in the image, feature-based methods usually need to
divide the image into many small image patches first and then model and detect
the anomalies in the image patch level. Therefore, it is very time-consuming
during both training and testing, especially when the deep neural network is
required to extract the deep image features. Mover, because each local region
of an image is evaluated independently, it may not be able to infer anomalies
by leveraging the global context information of the image.
SPADE [65] first performs image feature extraction based on a WideResNet50
[356] trained on ImageNet [149], then retrieves the K-nearest normal images,
and finally achieves pixel alignment with deep feature pyramid correspondences.
Even if it has virtually no training time, the k-nearest neighbour clustering
procedure is slow at test time with highly multidimensional data. Similarly
to SPADE, PaDiM [73] relies on ImageNet pre-trained feature extractor with
multi-scale pyramid pooling. However, instead of k-nearest neighbor clustering,
it computes an anomaly score based on the Mahalanobis distance. To enhance
segmentation results, the metric parameters are estimated for each feature vec-
tor from the pooled feature maps. Normalizing Flows (NF) [246, 143] are a
powerful tool for modeling complex distributions, such as those that arise in
Anomaly Detection tasks. By embedding normal data into a high-dimensional
standard normal distribution, it becomes possible to use the probability of the
data under the distribution as a measure of its normality. This can be useful
for identifying and localizing anomalies in data. For example, in the case of
image data, normalizing flows can be used to model the distribution of image
features, and then use the probability of a given image under the distribution
to identify and locate anomalies in the image. FastFlow and CFLOW-AD are
two examples of methods that use normalizing flows for anomaly detection, with
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FastFlow focusing on improving anomaly localization by using a 2D flow model.

6.2 Compressed Replay

Continual learning provides ML models with the ability to update and expand
their knowledge over time, with minimal computation and memory overhead
[72]. Thus, an effective CL solution is expected to have low forgetting, require
low memory consumption and be computationally efficient.

CL strategies are usually classified into three categories: replay-based [269,
250, 58] methods, regularization-based [233, 240, 110] methods and architecture-
based [277, 186] methods. The related literature suggests that the Replay (also
known as Rehearsal) approach appears to be the most effective and practical
solution to reduce CF [343, 223, 42, 140].

The simplest implementation, known as Experience Replay (ER) [250, 53]
consists in storing some samples in the raw format selected randomly from the
current task and passing them during the subsequent tasks. Therefore, during
training, each batch of data from the current task is combined with a batch of
data from the previous tasks (sampled among them with the same probability).
However, the memory storage limit is a significant constraint, the smaller the
memory size, the further we are from the original training distribution of old
tasks.

Methods for reducing the storage cost of old training samples have recently
been developed for this problem. We refer to them as Compressed Replay,
where the goal is to learn a compressed data representation. The most important
and vast family of this field is Latent Replay. Latent Replay methods propose
to store activations from an intermediate layer of a neural network and Replay
these representations to prevent forgetting. Typically, in a classification task,
these encodings are used as Replay starting from a specific layer, as done in [223],
where lower layers are trained at a slower pace to avoid latent representation
shift. In [216] authors propose to use pre-trained models to extract features and
use them for training a classification model. They study the performance of
Replay and Latent Replay using several pre-trained models. In [113], the lower
layers are frozen, and only the upper layers are trained. Moreover, to store more
samples, they propose to use Product Quantization (PQ) to compress and save
the features efficiently, obtaining a compression factor of around 50. In [125]
authors propose to apply feature adaptation so that features learned for the old
task remain consistent with the new feature space.

The previous works were done for the classification problem, and the com-
pression factor depends on the size of the layer chosen to extract the features to
store in memory, so different compression factors can be obtained depending on
the chosen layer. However, because we are interested in generative problems,
we want to be able to compress the original samples while retaining the ability
to reconstruct the original image in the output. For instance, in [20] authors
propose EEC, a Generative Replay approach that also memorizes the centroid
and covariance of each class to make the training more stable.
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In [43] authors introduce the use of Adaptive Quantization Modules(AQM)
to Continual Compression on the LiDAR dataset and also allow the selection
of the trade-off between the compression factor and quality of reconstructed
images.

Many generative models, as described in Section 6.5, can be used for Latent
Replay. However, no research on generative models regarding Latent Replay
was conducted. Therefore, as an additional contribution, we also provide an
accurate comparison of several generative models for Latent Replay, examining
their efficacy in terms of compression factor and image quality. Moreover, we
propose a novel approach for Compressed Replay called SCALE and described
in Section 6.4. This approach shows a high level of compression and at the same
time, a high level of quality in the generated images.

6.3 Anomaly Detection for Continual Learning

Despite the fact that it is extremely relevant in practice, only a few works in
the literature addressed the AD problem in the CL setting.

In [330], the authors propose using the Variational Autoencoder (VAE)
with the Generative Replay approach to learn continually new classes while
also performing AD. The datasets used in the evaluation are KDD Cup 1999
and MNIST, which have been artificially adapted to AD by marking one of
the classes as anomalous. In [13], using the same dataset KDD Cup ’99 and
other datasets belonging to Network Intrusion Detection, the authors study the
problem of AD formulated as a binary classification supervised learning. The
authors of [191] propose a regularization-based approach for continual AD in
manufacturing, and evaluate it on a real industrial metal forming dataset.

As for AD for images, the majority of work in this field focuses on predict-
ing whether an image is normal or abnormal. However, in practice, anomaly
localization is frequently required. Not only is it necessary to explain the pre-
dictions, but it is also necessary to perform root cause analysis. As a result,
we investigate a complex image dataset such as MVTec, which contains pixel-
based anomalies. We also investigate a wide range of models and assess their
performance.

6.3.1 Proposed Framework for ADCL

Anomaly detection is a challenging task, particularly when the data contains
distinct objects. In this case, abnormal samples are often much closer to normal
ones than to samples from other classes. This is illustrated in Figure 6.3, where
different colors represent different object classes, normal samples are depicted
as circles, and anomalies are depicted as crosses. The closeness of the anomalies
to the normal samples makes it difficult to identify and distinguish them using
traditional methods.

The task becomes even more challenging when we want to identify if the
single pixel of an image is an anomaly or not in the CL setup where new objects
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Figure 6.3: We show the PCA on the original images where the first two di-
mensions capture 73% of the total variance. Each class is depicted in a different
colour, with circles representing normal images and crosses representing abnor-
mal images. As can be seen, the separation between normal and abnormal
samples coming from the same class is much lower than the distance between
classes. The actual scenario is even more challenging since we aim at detecting
pixel-level instead of image-level anomalies.

must be learned subsequently.
The goal is to train a neural network model that can detect anomalies while

also retaining the knowledge it has learned from previous tasks. The model
is trained on a sequence of tasks, each of which corresponds to one or more
object classes. During training, the model learns the distribution of normal
(i.e., anomaly-free) images for each task. Then, during evaluation, the model is
tested on a dataset that contains data from all tasks, both normal and abnormal.
This allows the model to detect anomalies in the test data by comparing it to
the learned distribution of normal data.

In more formal terms, ADCL is a method for learning a model that can
detect anomalies in data. The model is trained on a sequence of tasks with
a total of T tasks. Each Anomaly Detection task t corresponds to a dataset
Dt. Each dataset Dt consists of pairs of data (Xt, Yt), where Xt is a set of
images or more formally Xt ⊂ NH×W×3 where H and W denote the spatial
dimensions and t = 1 · · ·T . Yt is a set of labels for each pixel of the image,
indicating whether the pixel is normal (0) or anomalous (1). The goal of the
model is to learn a mapping fθ : X → RH×W from the space of images X to a
probability vector. This allows the model to assign a probability to each pixel
in an image, indicating how likely it is to be normal or anomalous.

In the field of Continual Learning, there are three main scenarios that
are commonly studied: Task Incremental Learning (TIL), Domain Incremen-
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tal Learning (DIL), and Class Incremental Learning (CIL) [309, 184]. In our
problem, we are dealing with the DIL scenario because the classes of output
remain fixed independently by the change of task (i.e. there are always only
two classes, normal and abnormal, for each pixel of the image), while the input
distribution changes between tasks i.e. P (X) ̸= P (X ′).

We introduce a general framework for ADCL. We present a general frame-
work for the task of Anomaly Detection in Continual Learning (ADCL). The
goal of this framework is to enable incremental learning of new objects while also
detecting anomalies in images from previous tasks. The proposed framework,
depicted in Fig. 6.5, is broken down into two modules:

1. Memory Module: This component’s goal is to retain the memory of
previous tasks. Depending on the type of CL strategy considered, such a
module may take various forms. In the case of Replay, for example, such
a module consists of a limited memory containing some of the images of
previous tasks. In the case of Latent Replay, the module will consist of an
autoencoder (AE) and a set of compressed samples memorized through the
latent space. In the case of regularization-based strategies, such as EWC
[145], the Memory Module will be composed of the importance values
associated with each weight of the architecture used in the AD Module.

2. AD Module: It is the architecture used to detect anomalous pixels. The
chosen architecture can be any previously proposed approaches, like AE,
VAE, and GANs for reconstruction-based approaches or FastFlow, and
CFlow for embedding similarity-based.

It is important to note that the Memory Module and the AD Module are
typically described as separate functional entities, but the same model can serve
both functions. For example, many reconstruction-based methods can generate
images of old tasks for use during the training of a new task, the ability to
reconstruct images can also be used for anomaly detection by comparing the
reconstructed image to the original image.

The Memory Module is a key component of a Continual Learning system,
responsible for storing and updating information about previous tasks. This
module is updated using a combination of data from the current task and a
batch of old data from the previous task, as depicted in Fig. 6.5. In the case of
classic Replay, the Memory Module simply stores images. With Latent Replay
and generative models such as CAE or VAE, the Memory Module stores the
model of the previous task and samples in the latent space, which allows for
more efficient storage of images compared to Replay. It is also possible to use
Generative Replay with VAE and GAN models, but it has been shown to result
in a high degeneration [159].

6.4 Our Approach: SCALE
Within the above-introduced framework for Visual Anomaly Detection in Con-
tinual Learning, we proposed SCALE (SCALing is Enough), a Super Resolution-
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based approach, as a Compressed Replay technique. Super Resolution aims to
convert a low-resolution image with coarse details into a high-resolution im-
age with improved visual quality and refined details [16]. In practice, as SR
model, we consider the Pix2Pix [126], a general-purpose model for image-to-
image translation composed of a conditional GAN [202]. The cGAN, unlike the
classic GAN [202], is conditioned not only by random noise but also by an input
image. The GANs have the flaw of having a high forgetting with Generative
Replay (where the images are generated using random noise) [159]. We show
how conditioning to an input image plus the noise can result in a method that
can still generate images with a low forgetting even though the output still has a
random component. Though such architecture is not the state-of-the-art of the
SR field, it is sufficient to obtain good results and justify its use in this context,
as shown in Section 6.6. Therefore, in our work, the SR model is studied with
three final objectives:

1. Since it is the first time that the SR problem is studied in CL, we provide
an evaluation in terms of reconstruction of the original images and how
this approach behaves in terms of forgetting.

2. We also investigate the use of memory in combination with AD approaches
that are by nature not able to perform the function of memory.

3. We consider the efficacy of SR in terms of AD.

The proposed schema for using the SR model in Continual Learning is shown
in Fig. 6.4 and can be summarized in the following steps:

a) When a new task is received, the images are resized to a lower resolution
and a copy is saved in memory. The objects saved for a task will remain
unchanged during training, as opposed to Replay and Latent Replay.

b) The process for handling the images of the new task is depicted in the
yellow portion of Fig. 6.4. The other image is resized again (which reduces
its quality) and sent to the SR model to learn how to reconstruct the
original image.

c) The procedure to obtain images of old tasks to be used in the training of
current tasks is depicted in Fig. 1 as the light blue part. To obtain images
from old tasks to use in training the current tasks, the scaled image saved
in memory of shape (32,32,3) is rescaled to its original size (256,256,3)
and labeled as input2 in Fig. 6.4. Then it is passed to the SR model to
obtain an image quality similar to the original, such output is labeled as
target2 in Fig. 6.4. The SR model of the current task is then trained
to reconstruct the rescaled image (input2) using the reconstructed image
(target2).

By memorizing the scaled images and increasing the resolution when needed, it
is possible to achieve a compression factor. The value of such compression de-
pends on the final quality that is desired, and it will depend on the final scope.
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Figure 6.4: Scheme of the proposed approach for compressed Replay called
SCALE. To perform Super Resolution (SR), we use a Pix2Pix architecture.
First, the current task images are scaled (compressed) and saved in memory
(yellow area). Then, they are rescaled (input), and the model is trained to
reconstruct the original image (target). Instead, for old tasks, the images are
taken from memory, rescaled, and reconstructed using the SR model from the
previous task, in order to retain old knowledge (light blue area). After that, the
rescaled blurry image (input2) is fed into the current SR model, with the target
corresponding to the image reconstructed by SR in Task i− 1 (i.e., target2).
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Figure 6.5: The proposed framework is composed of 2 modules: memory and
Anomaly Detection. The Memory Module will be updated using the data from
the current task as well as a batch of old data retrieved using the Memory
Module of previous task.

We are going to present its results in terms of performance for Anomaly Detec-
tion in Section 6.6 and in terms of the quality of reconstructed images in the
Section 6.6.2. Because this is the first time that SR has been studied in the
context of CL, we present additional results for such a model in Section 6.6.3
where we explain why it works compared to classic GANs and its advantages.
Among the results, it is shown to be advantageous to keep the memory of a
task fixed over time rather than changing continuously as is typical in Latent
Replay.

6.5 Experimental Settings

6.5.1 Considered CL Strategies

We are going to evaluate the different architectures in terms of performance
for both the Memory Module and the AD Module. Such evaluation will be
performed considering different CL strategies that will be applied to the models.

• Single Model: As an upper bound, we train a different model for each
task.

• Fine-tuning: As a lower bound, we consider the fine-tuning approach, in
which a model is presented sequentially only with data from the current
task.

• Ideal Replay: As a benchmark Continual Learning strategy, we consider
an approach where we randomly select n images from a task and create
a training batch with half data from the current task and half data from
previous tasks. The constraint on processing power is respected, but not
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the constraint on memory. Indeed, this approach takes into memory all
samples seen so far. This implies that the memory can capture the original
distribution completely. We refer to this approach as Ideal Replay, and we
propose to consider it as an additional upper bound for CL approaches.

• Replay: We consider a constrained memory size of n images such that:
n << |D| where D represents the entire dataset. In the experiments, n
is set to 40 images, representing less than 2% of the total dataset. This
means that the total memory size is limited to 40 images, i.e., four images
for each class at the end of the training.

• Compressed Replay: When dealing with Replay, we should keep in
mind that the risk of overfitting is high when only a few samples represent
a task. Given that memory size can influence final results, the ability
to save more samples has the potential to reduce forgetting because the
distribution in memory of an old task is more similar to the original one
(assuming that the quality of compressed samples is high enough). So in
Compressed Replay, the images are compressed. For example, in Latent
Replay, we consider their representation in the latent space. Similar to
Replay, we consider the constraints on processing power and memory size,
but with Compressive Replay, we try to keep more images in memory by
utilizing some compression method.
When considering Latent Replay, because we will be studying architecture
such as autoencoders, it is more natural to choose the latent space that
corresponds to the Encoder’s output and the Decoder’s input, i.e. the
bottleneck layer, which has the lowest dimensional space.

• Generative Replay: In the case of Generative Replay [269], we use
models such as GANs to generate images without the need to store any
additional information other than the model itself. This can be very useful
because it eliminates the need to save any data in memory. However, in
previous experiments [159], the Generative Replay had a high level of
forgetting and much of the information was quickly lost.

To ensure a fair comparison between Compressed Replay and Replay, we use
the same amount of memory in terms of bytes for both approaches. We define
the memory size as C, which is the number of bytes needed to store n images
using the Replay strategy. For Compressed Replay, a number of compressed
samples will be stored, taking up a maximum of C bytes of storage.

In general, we will compare the different methods, with upper bounds in-
cluded, taking into account that, on the practical side, the only valid CL ap-
proaches are Replay, Compressed Replay, and Generative Replay, since they are
the only ones with a memory size and processing power constraint.

We will be comparing the Continual Learning strategies introduced above
in terms of their performance in two key areas: Anomaly Detection and the
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quality of the reconstructed images. For the Compressed Replay strategy, we
will also be considering the compression factor as a key metric. A higher com-
pression factor means that more samples can be stored, but we must also take
into account the quality of the reconstructed images. If the compression factor
is high, but the quality of the reconstructed images is poor, then the distribu-
tion of the reconstructed images will be significantly different from the original
distribution. It is important to find the right balance between these two factors
to achieve optimal performance.

6.5.2 Considered Architectures in Memory and Anomaly
Detection modules

The following models were considered as both Memory and AD modules:

• Convolutional Auto-Encoder(CAE): It has a latent space of shape
(512,4,4) i.e. of dimension 8192, implying a compression factor value equal
to 6 (assuming that we are working with 4 bytes for each value). Taking
into account an input shape (256,256,3) we can simply calculate the com-
pression factor as 196608

8192·4 = 6. We will memorize the activations of the
CAE obtained in the latent space in the case of Latent Replay.

• Variational Auto-Encoder(VAE): Using the VAE (Variational Au-
toencoder) architecture, we were able to achieve good results with a smaller
latent space compared to the CAE (Convolutional Autoencoder). Specif-
ically, we obtained a latent space dimension of 256 and a compression
factor of 96. It is worth noting that the VAE architecture can be used not
only with the Latent Replay strategy but also with Generative Replay,
which allows the model to store information without any actual samples.
However, as previously mentioned and shown by our results, the quality
of the images generated by VAE with Generative Replay degrades quickly.

As for the approaches that can be used as AD Module only, we consider:

• Inpaint: We tried to use the same architecture of RIAD [357] in our
study, but found that the architecture was very sensitive to the continual
learning setting and we were unable to obtain satisfactory results. As an
alternative, we adopted the spirit of the RIAD approach (i.e., inpainting)
and proposed a different architecture, a Pix2Pix model [126], for the in-
painting task. In our version, training is done by masking random areas of
the images. During reconstruction, the same image is fed into the model
multiple times (with different masks each time), and averaging is used if
the same pixel is masked multiple times.

• FastFlow: We use FastFlow [352] in combination with the WideResNet50
[356]. This approach, described in Section 6.1.5, learns a Normalizing Flow
that models normal images.
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It should be noted that this is one of the few studies on Normalizing Flow
architectures in CL setting. To the best of our knowledge, only two other
studies were done [232, 144].

6.5.3 Evaluation Metrics for Anomaly Detection
There are several metrics commonly used to evaluate the performance of Anomaly
Detection models on the MVTec AD dataset. The ROC AUC score at the pixel
and image levels is the most widely used, but other metrics such as f1 score
and IoU are also taken into account. In the Anomaly Detection literature, it is
generally believed that metrics such as the f1 score are more fair when dealing
with imbalanced datasets, which is often the case with Anomaly Detection [256].
Therefore, in this study, we use the f1 score to assess a model’s ability to detect
anomalies. A well-performing model should have a high f1 score and a low FID
score.

6.5.4 Evaluation of image reconstruction quality
To evaluate the quality of the reconstruction performed by the models used in
the Memory Module, we will use the Fréchet Inception Distance (FID) [115],
which is a commonly used metric for evaluating generative models [159]. This
type of evaluation is useful for analyzing the performance of all architectures
that can function as Memory Modules under various CL strategies. The FID is
calculated as:

FID = ||µr − µg||2 + Tr(Σr +Σg − 2(ΣrΣg)
1
2 ) (6.1)

The statistics (µr,Σr) and (µg,Σg) are the activations of a specific layer of
a discriminative neural network trained on ImageNet for real and generated
samples, respectively. A lower FID indicates that real and generated samples are
more similar, as measured by the distance between their activation distributions.
Beyond the models that can be used in the Memory module, we will evaluate
the image reconstruction quality also for Inpaint, even if it lacks the ability to
compress them and to act as a Memory Module.

6.5.5 CL Metrics
Following the convention of Continual Learning we are going to considered the
average value at the end of the training and the forgetting. Let si,j be the
performance f1 of the model on the test set of task j after training the model on
task i. To measure performance in the CL setting, we introduce the following
metrics:

Average f1 The average f1 score ST ∈ [0, 1] at task T is defined as:

ST =
1

T

T∑
j=1

sT,j (6.2)
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Average Forgetting FT ∈ [−1, 1], the average forgetting measure at task T,
is defined as:

FT =
1

T − 1

T−1∑
j=1

maxl∈{1,··· ,T−1}
sl,j − sT,j

sl,j
. (6.3)

With respect to the original definition used in [54], we are scaling respect
to the maximum f1 score, as done in [140, 228]; this is done to compare
the forgetting among tasks with very different scores. Notice that the
closer the metric FT is to 1, the higher the forgetting is. What it was
defined above for the metric f1 will be redefined in a very similar way
for the metric FID, with the consideration that the goal of FID is to be
minimized while with f1 we want to maximize it.

6.6 Results
6.6.3. Each test is repeated ten times for each cell in the result tables, and only
the average is shown. The plots shown in the Section Results will display the
mean and variance of the runs. For the sake of reproducibility, the code used in
the experiments is available in a public repository online1.

6.6.1 Quality of the Anomaly Detection

Regarding the AD results, it should be kept in mind that CAE, VAE, SR, and
Inpaint are all reconstruction-based methods, whereas FastFlow is an embedding
similarity-based method that uses pre-trained models for feature extraction and
is considered state-of-the-art in the field. Embedding similarity-based methods,
such as FastFlow, are incapable of acting as Memory Module because they
produce only the anomaly map as output and not the reconstructed image. As
a result, when we use the Compressed Replay strategy on FastFlow and Inpaint,
we use the SR architecture as the Memory Module (which turns out to be the
best among the generative models as shown in Section 6.6.2) and FastFlow and
Inpaint as the AD Module.

In Fig. 6.6 we show the results of AD obtained for a sample with two dif-
ferent architectures VAE and SR. The first image in the row shows the original
image, while the second column displays the reconstructed image produced by
the model. The third column presents the ground truth for each pixel, which
provides a reference for evaluating the accuracy of the reconstructed image. The
fourth column displays the anomaly map, which indicates the probability that
each pixel is anomalous (i.e., differs significantly from the ground truth). This
can help identify areas of the image that may be corrupted. The fifth column
shows the predicted class for each pixel, which can provide additional informa-
tion about the final prediction of the model on what is considered anomalous.

1https://github.com/dallepezze/adcl_scale
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(a) Reconstruction based on VAE

(b) Reconstruction based on SR

Figure 6.6: The images reported here show examples of the VAE (Variational
Autoencoder) architecture in (a) and the SR (Super-Resolution) architecture in
(b). The first image in each row is the original image, and the second column is
the model’s reconstructed image. The third column displays the ground truth
for each pixel, which can be used to evaluate the accuracy of the reconstructed
image. The fourth column shows the anomaly map, which indicates the proba-
bility that each pixel is abnormal (i.e., significantly different from the original
pixel). This can help identify corrupted areas of the image. The fifth column
displays the predicted class for each pixel, which provides more information
about the model’s final prediction on what is considered anomalous. The sixth
column highlights any potential issues with the image by showing the anoma-
lous parts of the image, making it easier for users to identify and address any
problems.

Finally, the sixth column presents the portion of the image that contains anoma-
lous parts, highlighting any potential issues with the image. This can help users
quickly identify and address any problems with the image. The final values
for AD performance are showed in Table 6.1 varying strategy and architecture.
In the Single Model (classic setting), FastFlow performs better than the other
models, as expected. It is significantly better than the next best model, with a
margin of 0.57. However, in the CL setting, FastFlow performs poorly for both
the Replay and Ideal Replay strategies. When using the Compressed Replay
strategy, FastFlow performs better than the CAE and VAE models, but still
worse than SR and Inpaint. Interestingly, when FastFlow is evaluated using
the Compressed Replay strategy, it outperforms Replay in terms of AD perfor-
mance. We can observe that, among the feasible Replay-based strategies, the
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Table 6.1: Summary table for the AD performance under different CL strate-
gies and architectures for the Memory and the AD Module. Since Inpaint and
FastFlow cannot achieve Compressed Replay, but only act as AD modules, we
consider them in combination with CAE, VAE and SR as Memory Modules. We
report the Average f1 value (↑ stands for "the higher the better") and, within
round brackets, the forgetting associated to the metric, for each combination.
We highlight in bold the best combination. We can observe that, among the
viable Replay-based strategies, the best combination is using Inpaint as AD
Module with SR as Memory Module adopting the Compressed Replay strategy.
The best combination is in bold while the best architecture for each strategy
is in italic.

Strategy Memory
Module

AD Module (Average f1 metric ↑ )
CAE VAE SR Inpaint FastFlow

Single
Model - 0.28 0.36 0.33 0.38 0.57

FT - 0.09
(66.35%)

0.11
(68.19%)

0.14
(59.39%)

0.11
(72.73%)

0.19
(69.79%)

Ideal
Replay - 0.28

(13.22%)
0.33

(6.38%)
0.36

(5.72%)
0.34

(11.25%)
0.22

(62.53%)

Replay - 0.26
(19.88%)

0.30
(21.2%)

0.29
(22.23%)

0.34
(13.27%)

0.21
(64.57%)

Generative
Replay - - 0.11

(63.68%) - - -

Compressed
Replay

CAE 0.23
(25.61%) - - 0.25

(34.00%)
0.17

(53%)

VAE - 0.25
(21.87%) - 0.26

(30.27%)
0.2

(48%)

SR - - 0.34
(7.99%)

0.35
(10.28%)

0.30
(41.27%)

best combination is Inpaint as AD Module with SR as Memory Module trained
according to the Compressed Replay Strategy.

In addition, it should be observed from Table 6.1 that the fine-tuning strat-
egy appears to have better values in FastFlow than in other models.

In terms of forgetting, as shown in Table 6.1, FastFlow has a significantly
higher forgetting than the other approaches. Instead, in terms of forgetting, SR
with Compressed Replay has a very low forgetting.

Fig. 6.7 presents the results in greater detail, displaying the performance
progressively as each task is presented in sequence. The Figure shows four
different plots, each representing the performance of a specific strategy. The x-
axis of each plot indicates the task ID of the training, while the y-axis represents
the value of the chosen metric. Each line in the plot represents a different model.
The value at the task i include only the performance on the tasks seen so far.
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(a) Single Model (b) Ideal Replay

(c) Replay (d) Compressed Replay

Figure 6.7: Each plot shows the performance for a strategy comparing different
architectures in terms of AD performance i.e. Average f1 score. The Average f1
metric is shown on axis y, and the index of the current training task is shown
on axis x.

6.6.2 Quality of the reconstructed images
Table 6.2 shows a summary of the results, which corresponds to the average
FID on all tasks evaluated at the end of the training. Table 6.2 also displays
the associated percentual forgetting value in round brackets.

Moreover, it is possible to examine average FID on the tasks seen so far in
the plots of Fig. 6.8. For each strategy, the performance of each model is shown,
where a lower value means a better quality of the reconstructed image.

From Fig. 6.8, we can clearly see that the SR model is the best architecture
for each strategy considered. For each of the strategies considered, the gap
between SR and other architectures is significant. In other words, regardless of
the strategy, the SR model is the best for learning a good representation of the
original images. Moreover, its output is conditoned by the scaled image and
random noise which means a certain level of randomness in output, while in the
classic GANs imply a very quickly forgetting [159], that it doesn’t happen in our
case. Despite all these aspects, the SR is able to obtain a good representation
of the original distribution.
As stated above, Inpaint can’t act as Memory Modules like CAE and VAE
because it cannot perform Compressed Replay. However, since Inpaint is a
generative model, we can still analyze its reconstruction performance in terms
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Table 6.2: Summary table about the quality of reconstructed images for different
models. For each model and strategy, we report the FID value. Please note that
the lower FID, the better the reconstruction is. In round brackets we report
also the forgetting value in percentual. Note that for each strategy the best
architecture is SR. Moreover, the best strategy results to be Compressed Replay.
The best combination is in bold while the best architecture for each strategy
is in italic.

Average FID ↓
Strategy CAE VAE SR Inpaint

Single Model 266.52 219.40 125.15 204.29

FT 376.64
(73.65%)

399.44
(91.33%)

244.25
(194.31%)

363.20
(114.41%)

Ideal Replay 216.82
(7.50%)

255.84
(11.93%)

89.53
(7.74%)

192.12
(5.24%)

Replay 227.88
(14.70%)

245.87
(14.54%)

111.87
(40.6%)

181.74
(7.90%)

Compressed Replay 248.42
(20.33%)

316.48
(36.17%)

105.57
(14.66%) -

Generative Replay - 405.34
(77.84%) - -

of FID in Table 6.2 and Fig. 6.8.
Another interesting fact is that CAE seems to have a more stable trend than

VAE in Latent Replay strategy. In fact, it can be observed that while CAE is
worse than VAE in Single Model, it obtains better performance for Replay and
Compressed Replay.

Among the proposed models VAE is the only one to be applied under the
Generative Replay strategy. Results are shown in Table 6.2 and it can be seen
that, as said before, the forgetting is very high.
According to these graphs, the difference between Compressed Replay and Ideal
Replay appears to be greater for models CAE and VAE than for SR and In-
paint.
It should be noted that the compression factors for the CAE, VAE, and SR
architectures are 6, 196, and 64, respectively.
The only model that allows Generative Replay is VAE, but as seen in 6.2, the
performance degrades very quickly, so it is only shown in the tables and not the
plots (the same for fine-tuning).
As a final remark, it can be stated that the SR model allows for a good com-
pression factor while maintaining a very high image quality in memory.

6.6.3 Results of SR Model

As the first study on Super Resolution in the context of Continual Learning, we
thoroughly examine how variables such as the number of epochs and the way in
which images are saved affect the final performance in terms of the quality of
the reconstructed images. This analysis helps us to gain insight into the critical
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Strategy epochs Average FID ↓ FID Increase %
wrt Ideal Replay ↓

Single
Model 30 125.15 -

Ideal
Replay 30 89.53

(7.74%) -

Replay 30 111.87
(40.6%) 24.95%

Compressed
Degenerative

Replay
30 106.49

(13.58%) 18.94%

Compressed
Replay 30 105.57

(14.66%) 17.92%

Single
Model 50 82.06 -

Ideal
Replay 50 85.27

(11.18%) -

Replay 50 109.51
(59.41%) 28.43%

Compressed
Degenerative

Replay
50 97.31

(19.08%) 14.12%

Compressed
Replay 50 91.17

(10.88%) 6.92%

Table 6.3: Comparison of different strategies for training a SR model. The table
shows the results for two different values of the number of epochs (30 and 50).
The FID score is shown in the third column, with the percentage of forgetting
in round brackets. The fourth column shows the increase in performance with
respect to the Ideal Replay strategy, in other words more a value is lower and
more is close to the optimal. The best results for each number of epochs are
highlighted in bold.



190CHAPTER 6. ANOMALY DETECTION FOR CONTINUAL LEARNING

(a) Single Model (b) Ideal Replay

(c) Replay (d) Compressed Replay

Figure 6.8: The results show the quality of the constructed images for different
continual learning strategies and architectures. Each plot represents a different
CL strategy, and each line represents a different architecture. The y-axis shows
the FID metric, and the x-axis shows the index of the current training task.
Each value represents the average FID across all tasks seen so far, with a lower
value indicating a higher quality of reconstruction. The plots show that the best
architecture for each CL strategy is SR, our approach.

issues facing generative models such as GANs in Continual Learning. Based on
this analysis, we conclude that there are at least three critical issues that arise
during the training of GANs in CL.

1. The initial quality of the learned distribution is the first critical issue.
Based on the number of epochs, we can easily demonstrate that an initial
higher quality has a long-term beneficial effect.

2. In classic GANs, we create images only using a random vector for each
new task, producing an output image that will be used as input to the
model at the new task. However, there will be some perturbation in the
final image. These perturbations accumulate in the produced images over
time, increasing their distance from the original distribution.

3. The third critical issue is catastrophic forgetting of the model’s weights,
which is inherent in all models in the CL setting.

To simplify the explanation, we are going to define the following notation:
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Figure 6.9: The comparison of the SR model using 30 epochs (left) and 50
epochs (right) with different strategies is shown in the figures. The y-axis shows
the FID metric, and the x-axis shows the index of the current training task. It
can be observed that the Compressed Replay strategy performs closer to the
Ideal Replay strategy (i.e. the optimal performance) when there is an increase
in the number of epochs from 30 to 50.

Figure 6.10: The figure on the left shows the best model using different Contin-
ual Learning strategies, and the figure on the right shows all models using the
Compressed Replay strategy. The y-axis shows the Average f1 metric, and the
x-axis shows the index of the current training task.

• Xi: The original data of the i-th Task;

• Oi(Xi): The output produced by SR after training the i-th Task on data
Xi;

• Si: The scaled images of the data Xi;

• Mij : The memory about the j−th Task after training the i-th Task.

In Compressed Replay for SR, the scaled image Si is saved in memory Mi,i

during the i-th Task i.e. Mi,i = Si. Such scaled images will never be changed,
they will remain fixed over time or in other terms Mi,i = Mi+1,i = · · · = MT,i.
Now we define a modified version called Compressed Degenerative Replay that
simulates the critical issue (ii) present in GANs, where the images used for an
old task during the training of a new task are different from the images used for
a previous task. During the (i+1)−th Task, we take the images saved during the
previous task Mi,i = Si and produce the new reconstructed images as Oi+1(Si).
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Such images are scaled and saved in memory i.e. Mi+1,i = Oi+1(Si). This is
repeated for all the tasks and then we have that for the i-th Task the memory
change over time i.e. Mi,i ̸= Mi+1,i ̸= · · · ̸= MT,i

The difference in results for each strategy based on the number of epochs
(30 or 50) can be seen in Table 6.3 and Fig. 6.9. Generally, the results obtained
using a larger number of epochs (i.e., a better initial learned representation)
are better, as expected. For example, the Ideal Replay strategy improves from
95.2 to 89.5 in terms of FID, and the Replay strategy improves from 112 to
109.5. However, the most significant improvement is seen with the Compressed
Replay strategy, which drops from 105.5 to 91. In terms of percentage increase
compared to Replay, Compressed Replay shows a minor decrease at 50 epochs
(7%) compared to 30 epochs (18%). This suggests that the proposed solution
performs very close to the upper bound of Ideal Replay, particularly when the
initially learned representation is very good (i.e., a higher number of epochs).

Finally, when comparing the Compressed Replay strategy vs Compressed
Degenerative Replay strategy, we can see that the positive effect of Compressed
Replay vs compressed Degenerative Replay increases with the number of epochs.
Indeed, with 50 epochs, Compressed Replay has a 7% increase over Ideal Re-
play, while Compressed Degenerative Replay has a 14% increase. Furthermore,
the percentage increase in comparison to the Ideal Replay for Compressed De-
generative Replay is lower for 50 epochs (14% instead of 18%). This means that
using more epochs and Compressed Replay instead of Replay or compressed
Degenerative Replay allows you to get closer to the Ideal Replay, which uses the
original distribution in memory.
However, while Compressed Degenerative Replay is inferior to Compressed Re-
play, the table shows that Compressed Degenerative Replay with 50 epochs is
superior to Compressed Replay with 30 epochs. This means that the main factor
is the number of epochs i.e. the initial quality of the learned representation.

6.7 Conclusions

In this research, we propose a framework for performing anomaly detection in
a setting where the model is continually learning new tasks. Our approach
combines a Memory module, which stores information from previous tasks, and
an Anomaly Detection module, which identifies anomalies in new data. By
using these modules together, our approach can detect anomalies at the pixel
level in new image classes without forgetting how to identify anomalies in pre-
viously learned classes. To the best of our knowledge, this is the first time that
a method using a Super Resolution module to enable Compressed Replay has
been proposed for use in continual learning. We also suggest a real-world bench-
mark dataset specifically designed for evaluating the performance of anomaly
detection approaches in a continual learning setting.

There are several potential future developments. Application and evalua-
tion of other models considered state-of-the-art in Anomaly Detection in the
CL setting should be a research direction. Furthermore, some of these models
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could be modified to produce better results in the case of Anomaly Detection
for Continual Learning. While the MVTec Dataset is an excellent benchmark
for Anomaly Detection, other datasets could be used to confirm the models’
efficacy. Furthermore, a follow-up study on the SR problem should be carried
out, analyzing models closer to the state of the art and using a more complex
dataset to validate their efficacy in the Continual Learning setting.



194CHAPTER 6. ANOMALY DETECTION FOR CONTINUAL LEARNING



Chapter 7

Conclusions and Future
Research

7.1 Conclusions

The aim of this dissertation was to provide novel approaches for Continual
Learning and new solutions for Industry 4.0 field. In particular, the first con-
cern was to point out how Industry 4.0 field can benefit from the perspective of
Continual Learning setting. In support of this assertion, in Section 3.11.1 was
shown many practical applications of Continual Learning in the Manufacturing
field. We also point out how observed in [21] that Continual Learning should
increase the research in settings different from the classic multi-class classifica-
tion. In practice, other applications could be more reasonable, like Unsuper-
vised Learning. Indeed, often acquiring labels for a problem can be expensive
or unfeasible. From the point of view of Industry 4.0, the goal of CL to allow
ML models to be updated, lowering the costs associated with machine learning
model maintenance and resource utilization can be very appealing. Indeed, the
main focus of Industry 4.0 is to improve efficiency, productivity, and flexibility.
Therefore CL seems very aligned with these goals.
To summarize our contributions, we provide an overview of Industry 4.0 in
Chapter 2 and of Continual Learning in Chapter 3. After we provide a novel
approach for Interpretability in Industry 4.0 Then we consider a real industrial
scenario from packaging industry and formalize the problem of Alarm Forecast-
ing as multi-label classification and propose a novel solution for it. Then, we
extend the problem in the Continual Learning setting and propose a novel ap-
proach for Replay in Multi-label. In Chapter 6 we propose a framework for
Anomaly Detection in Continual Learning Setting (ADCL) to evaluate differ-
ent CL strategies. We study the ADCL using as benchmark a complex dataset
designed for AD and evaluating using many AD approaches. Eventually, we
propose a novel approach for Compressed Replay.
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7.2 Future research
In the first part of this chapter we highlight the research performed and the con-
tributions provided in this manuscript. However, many of problems proposed
have potentially many research directions to improve the approaches. For exam-
ple, though not discussed, studies on Intepretability in the Continual Learning
setting could be an interesting direction since few research was done in the field.
When considering the problem discussed in Chapter 5 there is definitely poten-
tial improvements, in particular in the construction of the memory by selecting
the optimal samples for multi-label. Not only the performance in terms of opti-
mal samples should be considered but also the speed of the selection algorithms.
When considering the problem Anomaly Detection in the Continual Learning
from the results provided in Chapter 6 is clear how is still an open problem and
more research should focus on this field.
As said before, the separation in tasks with task id provided in training can
be considered a simplification of real scenarios and AD architectures can be a
first step in this direction. Though it is not usually considered in the classic CL
setting, it is technically possible to use an AD model to detect data distribution
shift and avoid the use of task id in training. However, more study should be
performed to validate the feasibility of the approach.

Another possible research direction should be performed on generative mod-
els for Continual Learning and the mode-collapse problem. Additionally, Com-
pressed Replay seems an interesting approach to reduce the burden of memory
in CL approaches.
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