
DIPARTIMENTO

DI INGEGNERIA

DELL'INFORMAZIONE

Reinforcement Learning Through the

Lens of Koopman Operators

The Infinite-Dimensional Framework

Ph.D. candidate

Francesco Zanini

Advisor

prof. Alessandro Chiuso

Director & Coordinator

prof. Andrea Neviani

Ph.D. School in

Information Engineering

.

Department of

Information Engineering

University of Padova

2022



ii



To Nicolas Bourbaki, the mathematician who mastered nearly all aspects of the field,

emphasising rigor in place of conjecture

Actually, to my brothers



iv



Sommario

Il Reinforcement Learning è ad oggi una delle più attive aree di ricerca dell’Intelligenza

Artificiale. Ciò è dovuto sia ai suoi successi applicativi, sia alle diverse sfide teoriche

che presenta, trovandosi all’intersezione fra Teoria del Controllo e Machine Learning.

Sebbene il paradigma sia piuttosto semplice, il quale consiste in un agente che interagisce

con l’ambiente per ottenere reward, ha aperto la strada ad approcci molto diversi. Questi

sono distinti in due grandi categorie: model-based, che si basa su previsioni date da un

modello dell’ambiente, e model-free, che a�ronta direttamente il problema della ricerca

della policy; entrambi con pregi e difetti. La ricerca attuale sta cercando di unire queste

filosofie, ottenendo un algoritmo che eredita i vantaggi di entrambe.

Parallelamente, e finora in modo essenzialmente indipendente, negli ultimi anni si è

assistito a un progressivo aumento della letteratura sul Koopman operator. Quest’ultimo

consente una descrizione lineare di un qualsiasi sistema dinamico non lineare, basandosi

però su uno spazio di funzioni, che risulta essere infinitamente dimensionale. I vantaggi

della descrizione lineare hanno portato a una grande di�usione di questa strategia: prima

per l’analisi dei flussi non lineari, e recentemente anche per il problema del controllo.

Chiaramente i vantaggi della caratterizzazione lineare sono bilanciati dallo svantaggio di

dover gestire una descrizione infinito-dimensionale del sistema. Quest’ultima non è in

pratica esprimibile, quindi in letteratura sono emerse diverse tecniche di approssimazione

finito-dimensionali, anche per stimare l’operatore di Koopman da osservazioni della

dinamica. Tuttavia, queste si basano sulla definizione a priori di uno spazio a dimensione

finita, in cui l’operatore viene approssimato, cosa che rende estremamente vincolante

l’utilizzo di queste tecniche senza informazione a priori sul sistema.

In questa Tesi viene presentato un nuovo approccio per la stima del Koopman operator,

basato sulla teoria dei Reproducing Kernel Hilbert Spaces. Quest’ultimi sono e�ettiva-

mente spazi di Hilbert, quindi infinito-dimensionali, che però inducono una soluzione

finito-dimensionale del problema di ricostruzione, grazie al Representer theorem. La

relazione tra il Koopman operator e i Reproducing Kernel Hilbert Spaces è ampiamente

discussa dal punto di vista della teoria degli operatori. In particolare, l’adozione degli

RKHS permette di rilassare l’ipotesi di uno spazio finito-dimensionale fissato a priori per

la stima, in quanto l’unica informazione a priori nel problema di stima è rappresentata

dalla scelta del kernel, che caratterizzerà poi le funzioni di base di cui la ricostruzione è

una combinazione lineare.

Questo particolare approccio, dato dall’unione del Koopman operator e degli RKHS,

risulta essere particolarmente conveniente per a�rontare il problema proposto dal Rein-

forcement Learning. Infatti si dimostra in questo lavoro come una formulazione naturale



vi Sommario

della value-function, che è la quantità chiave nel framework del Reinforcement Learn-

ing, possa essere data tramite iterazioni successive del Koopman operator. Essendo il

reward l’unica cosa che conta, la propagazione di questa particolare funzione attraverso

l’operatore di Koopman fornisce un modo e�cace di a�rontare il problema del Rein-

forcement Learning. Quest’ultimo configura infatti un modello che non si basa sulla

propagazione dello stato, ma solamente sul reward: può quindi essere considerato un

approccio a metà strada tra una prospettiva model-free e una model-based.



Abstract

Reinforcement Learning is nowadays one of the most active research areas in Artificial

Intelligence. This is due both to its practical successes, and to the theoretical challenges

it poses, lying in between Control Theory and Machine Learning. Although the paradigm

is very simple, and it consists of an agent which interact with an environment to collect

reward, it paved the way for very diverse approaches. These are distinguished in two main

categories: model-based, which relies on predictions given by a model of the environment,

and model-free, which tackles directly the policy search problem; both with merits and

defects. Current research is trying to merge these perspective, yielding an algorithm

which inherits benefits of both.

In parallel, and until now practically independently, recent years have seen a progressive

increase of literature on the Koopman operator framework. The latter allows for a

linear description of any nonlinear dynamical system, although relying on a space of

function, which however is infinite-dimensional. The advantages of the linear description

have led to a great di�usion of this perspective: first for the analysis of nonlinear flows,

and very recently also for the control perspective. Clearly the benefits of the linear

characterisation are balanced by the drawback of having to handle an infinite-dimensional

description of the system. The latter is not feasible in practice, therefore di�erent

finite-dimensional approximation techniques emerged form the literature, also to learn

the Koopman operator from data. However these are based on the a priori definition

of a finite-dimensional space, in which the operator will be learnt, so that they are

unsuccessful without significant prior knowledge.

In this Dissertation a new approach to estimate the Koopman operator is presented,

relying on Reproducing Kernel Hilbert Spaces theory. The latter are indeed Hilbert

spaces, therefore infinite-dimensional, however they yield a finite-dimensional solution

of the reconstruction problem, thanks to the Representer theorem. The connections

between Koopman operator framework and Reproducing Kernel Hilbert Spaces are widely

discussed, from the perspective of operator theory. In particular, by framing the learning

problem in RKHS, it is possible to relax the assumption of a fixed finite-dimensional

space for the estimation, and the only prior knowledge embedded in the problem is done

through the kernel, which shapes the functions yielding the estimate.

The latter approach, resulting from the combination of the Koopman operator framework

and RKHS, turns out to be particularly suitable for dealing with the Reinforcement

Learning problem. In this work it is shown how a natural formulation of the value-

function, which is the key quantity of the Reinforcement Learning setting, can be given

by subsequent iterations of the Koopman operator. As the reward is all that matters, the



viii Abstract

propagation of this particular function through the Koopman operator gives a concise

way of addressing the Reinforcement Learning problem. The latter indeed provides a

model which is not based on the propagation of the state, but relies only on the reward:

therefore it can be regarded as an approach lying midway between a model-free and a

model-based perspective.



Contents

Sommario vi

Abstract viii

Notation 2

1 Introduction 3

2 Koopman operator 15

2.1 A linear framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Definition of the Koopman operator and main properties . . . . . . . . . . 19

2.3 Eigendecomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Koopman for stochastic dynamical system . . . . . . . . . . . . . . . . . . 30

3 Temporal resolution 35

3.1 Discrete samples from a continuous process . . . . . . . . . . . . . . . . . 35

3.2 Policy evaluation in continuous LQR . . . . . . . . . . . . . . . . . . . . . 37

3.2.1 Monte Carlo estimation . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Characterizing the Mean-Squared Error . . . . . . . . . . . . . . . . . . . 40

3.3.1 Finite-horizon, undiscounted . . . . . . . . . . . . . . . . . . . . . 41

3.3.2 Discounted cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.3 Infinite-horizon setting . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Towards nonlinear systems: a numerical study . . . . . . . . . . . . . . . . 48

3.4.1 Linear Quadratic Systems . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.2 Nonlinear systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Learning Koopman from data 51

4.1 From discrete samples to discrete systems . . . . . . . . . . . . . . . . . . 51

4.2 Discrete-time Koopman operator . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Finite-dimensional approximations . . . . . . . . . . . . . . . . . . . . . . 56

4.3.1 Eigendecomposition of finite-dimensional approximations . . . . . 57

4.4 Data-driven approximations . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4.1 DMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4.2 EDMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



x Contents

5 Kernel methods and RKHS 65

5.1 An infinite-dimensional problem . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 A finite-dimensional solution . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3 The regularised LS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4 Definition of RKHS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.5 Spectral characterisation of RKHS . . . . . . . . . . . . . . . . . . . . . . 75

5.6 RKHS and Gaussian Processes . . . . . . . . . . . . . . . . . . . . . . . . 79

6 Learning Koopman operators in RKHSs 83

6.1 Kernel sections as dictionary of observables . . . . . . . . . . . . . . . . . 83

6.2 Koopman & Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.3 A dual view of EDMD and DMD . . . . . . . . . . . . . . . . . . . . . . . 86

6.4 From Koopman to kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.5 From kernels to Koopman . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.6 Duality in RKHS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.7 Illustrative example for estimation . . . . . . . . . . . . . . . . . . . . . . 99

7 Koopman for control 105

7.1 The control framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.2 Koopman operator for controlled systems . . . . . . . . . . . . . . . . . . 109

7.3 Optimal controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.4 Koopman exact form with control . . . . . . . . . . . . . . . . . . . . . . 114

7.5 Linear approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8 Koopman Policy Gradient 121

8.1 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

8.2 The reward as an observable . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.3 Koopman formulation of the value-function . . . . . . . . . . . . . . . . . 127

8.4 Koopman Policy Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.4.1 Policy evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.4.2 Policy improvement . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.5 Illustrative example for control . . . . . . . . . . . . . . . . . . . . . . . . 138

8.5.1 Linear example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8.5.2 Nonlinear example . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

9 Uncertainty propagation 147

9.1 Model-based or model-free? . . . . . . . . . . . . . . . . . . . . . . . . . . 147

9.2 Posterior propagation through Koopman operators . . . . . . . . . . . . . 150



xi

9.2.1 Known observable . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

9.2.2 Estimated observable . . . . . . . . . . . . . . . . . . . . . . . . . 153

9.2.3 Dealing with an unknown reward function . . . . . . . . . . . . . . 156

9.3 Illustrative example for uncertainty propagation . . . . . . . . . . . . . . . 158

10 Conclusion 163

A Appendix 167

A.1 The Riemann Sum Approximation . . . . . . . . . . . . . . . . . . . . . . 167

A.2 Moment Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

A.3 Computation of the Mean-Squared Error . . . . . . . . . . . . . . . . . . . 170

A.3.1 Finite-horizon, undiscounted . . . . . . . . . . . . . . . . . . . . . 171

A.3.2 Finite-horizon, discounted . . . . . . . . . . . . . . . . . . . . . . . 172

A.3.3 Infinite-horizon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

A.4 Vector case analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

A.4.1 Finite-horizon, undiscounted . . . . . . . . . . . . . . . . . . . . . 174

A.4.2 Corollary for infinite-horizon, discounted . . . . . . . . . . . . . . . 179

A.4.3 The case when Ã is a general stable matrix . . . . . . . . . . . . . 181

Bibliography 187



xii Contents



Notation

X State space

A Input space

Y Output space

x State

t Continuous time

f Vector field

fo Output map

a Input

y Output

g Gravitational constant (Earth)

l Rod length

c Coe�cient

U t Koopman operator (continuous)

“, ÷ Parameters

Â Observable

d Dimension of state space

� Flow

� Observable space

F Field

M Metric space

Lp p-Lebesgue space of functions

C0 Space of continuous functions

L Infinitesimal Koopman Generator

G Vector space

O Operator

g Element of a vector space

⁄ Element of the spectrum

Ï Eigenfunction

v Koopman mode

S Functional

H Hilbert space

h Element of the Hilbert

s Representer

S ‡-algebra

fl, ‹, µ Measures



2 Notation

P Perron-Frobenius operator

1 Characteristic function

� Sample space

W Wiener process

k Discrete time

N Dimension of the Koopman approximation

P Projection

D Dictionary of observables

�D Space of function spanned by the dictionary

U Finite-dimensional Koopman operator

M Number of datapoints

x, y Datapoints

lp p-Lebesgue space of sequences

K Kernel

„ Element of a basis

S Kernel Integral Operator

–, — Coe�cients

c Cost

Z left-shift operator

p Dimension of input space

A, B dynamics matrices

Q, R, Qf Cost matrices

fi Policy

� Space of policies

Vfi Value-function

◊ Policy parameter

� Policy space

l Dimension of the policy parameter

r Reward function

z State-parameter variable

X� State-parameter space

w State noise

Á Observable noise

c Constant

p Dimension of input space



1
Introduction

This Dissertation originates from the union of di�erent fields, which combined together

form a single, coherent picture. In particular, a new approach to deal with the Re-

inforcement Learning problem is proposed, which derives from the integration of the

theory of Reproducing Kernel Hilbert Spaces into the Koopman Operator framework.

The resulting algorithm yields a simple method to estimate the value-function and its

gradient, so that the control parameter can be easily improved. The latter method is

built step by step, thus starting with a thorough review of the foundations, proceeding

to address the simpler problem of estimation of a dynamical system, and finally dealing

with the control problem. Throughout this discourse, other original contributions are

presented. The problem of choosing the sampling time to collect data from a dynamical

system is also addressed, as well as the propagation of the uncertainty in the estimate of

the dynamics.

Reinforcement Learning is nowadays one of the most active research areas in artifi-

cial intelligence. Its rapid di�usion in recent years can probably be explained by the fact

that it combines two pillars of scientific research: control theory and machine learning.

From the former, it inherits the paradigm, the final purpose, and largely shares the

setting. The objective of the Reinforcement Learning algorithms is indeed to devise a

policy, which is basically the same concept as the controller, in order to obtain the best

performance from the resulting behaviour of the system with which they interact. From

the latter, it draws the methodologies and the techniques, as well as the language. Indeed

the search for policy relies on finite samples coming from observations of the system, with

which it is possible to derive estimates of the quantities involved, and to build complexity

bounds.

Growing on the shoulders of these giants, the Reinforcement Learning framework have

been able to achieve unimaginable goals and to overcome hitherto inaccessible limits.



4 Introduction

One of the most celebrated examples is given by the AlphaGo algorithm by Silver et al.,

2016, which defeated the European champion Fan-Hui 5 ≠ 0 in a regular tournament

match, the first time a computer program has defeated a human professional player in

even games. Reinforcement Learning techniques are nowadays widely applied in other

fields as well, like robotics (Kober, Bagnell, and Peters, 2013), and very recently also

Natural Language Processing (Luketina et al., 2019). Also branches of science with a

less significant computational part, like Psychology and Neuroscience, benefited from

connections with Reinforcement Learning: many core algorithms developed to address

this setting were also discovered to operate inside the brain, and vice-versa the study of

the cerebral patterns have been of inspiration for actual algorithms (Sutton and Barto,

2018).

The success of Reinforcement Learning is also due to the fact that all algorithms descend

from a simple but specific picture, which defines the setting of the Reinforcement Learning

problem. The general framework involves an agent which iteratively interacts with an

environment, by selecting actions. As a consequence of the chosen action, the agent moves

into a new state, and receives a reward signal. The goal is to obtain as much reward as

possible, despite the uncertainty about the environment. Nonetheless the future state

of the agent is a�ected by its current action, consequently characterising opportunities

and potential in later stages. It is clear that in order to establish the optimal choice

it is necessary the ability to foresee the delayed e�ects of the interplay between the

environment and the chosen policy. This changes the focus of the agent from the reward

to the value-function. Indeed while the agent and the environment are the actors in the

scene, the actual mathematical elements which are indispensable to the Reinforcement

Learning theory are: the policy fi, which defines the agent behaviour with respect to

environment, and in general is a mapping from the set of observations available to the

agent to actions, so that actions of the agent are specified for each state; the reward r,

which is a scalar-valued signal that defines the objective of the Reinforcement Learning

agent, and it is provided at each time step by the environment, thus specifying which

are the good and bad events for the agent; the value-function Vfi, which plays the same

role of the reward but considering the long run, so that it gives a cumulative description

of the performance of the agent over more steps, when following a certain policy; and

the model of the environment, which is a mathematical description of the environment,

allowing to predict the future responses of the environment to specific state and actions.

Note that even if the reward function and the value-function represent similar concept,

there is a significant di�erence. The reward is indeed an intrinsic element of the Re-

inforcement Learning setting, and is therefore directly provided by the environment;



5

the value-function is instead built by the agent for the sole purpose of collecting more

reward. The objective of the Reinforcement Learning framework is defined by the reward,

however it is the maximisation of the value-function which allows to achieve the highest

performances, as the problem of interactive decision making develops over several steps of

interaction, so that predictions about the future becomes a key factor. Sutton and Barto,

2018 explicitly say that "the most important component of almost all Reinforcement

Learning algorithms [...] is a method for e�ciently estimating values. The central role

of value estimation is arguably the most important thing that has been learned about

Reinforcement Learning over the last six decades". The value-function will indeed serve

as the final performance measure to maximise. Therefore the goal of the generic Rein-

forcement Learning algorithm would be to find the policy fiú for which the value-function

yields the maximum value. The aim of this work will consequently be to develop a new

methodology for estimating the latter function under a certain policy, what in Dynamic

Programming literature is called policy evaluation; and at the same time to solve the

policy improvement task, i.e., to provide a simple way to obtain a better policy than the

current one, with respect to the partial ordering given by the value-function.

Reinforcement Learning is often divided into two major categories: model-based Rein-

forcement Learning, and model-free Reinforcement learning. The former prescribe to learn

a model of the environment, and then use the resulting predictive capabilities to design a

control policy which has (possibly) optimal performances, according to the corresponding

estimation of the value-function. The latter instead seeks a direct improvement of the

policy through available data, without building any model of the transition dynamics.

These two perspectives have been analysed in the literature and some systematic merits

and defects have been identified. In particular, model-based algorithms are often said to

be more sample-e�cient but yield a worse asymptotic behaviour; while model-free ones

requires more samples to converge to a solution, but the latter attains usually higher

performances (Tu and Recht, 2019a).

While the model-based perspective is surely closer to the classical control framework, it

is worth pointing out that also the control community started to develop methods which

did not require the identification of a model of the plant, called direct data-driven control.

The growing literature on this topic indicates that the model-free approach may be a

viable alternative to the well-established framework which envisage the estimation of the

plant first, and the design of the controller based on the latter estimate. These works

nonetheless maintain some di�erences with the Reinforcement Learning setting which

are peculiar of the control language, like the description in frequency domain of most of



6 Introduction

the involved quantities (Selvi et al., 2021; Cerone, Regruto, and Abuabiah, 2017; Piga,

Formentin, and Bemporad, 2018; Formentin, 2012; Breschi, Sassella, and Formentin,

2022).

Recently, there have been a collective e�ort from the machine learning community to

develop algorithms which combines the strengths of both approaches while mitigating

their weaknesses (Racanière et al., 2017; Gu et al., 2016; Feinberg et al., 2018).

One of the most celebrated algorithms in history of Reinforcement Learning is MuZero by

Schrittwieser et al., 2020, an extension of the aforementioned AlphaGo, which however

does not make use of samples from an expert and can handle imperfect dynamics. The

latter is accomplished indeed by building a model of the environment, but in a peculiar

way, so that this model depends on the rewards of the transitions, and not on the

transitions themselves. In particular, the state of the environment x is first mapped into

a lower-dimensional representation [x], from which the lower-dimensional representation

of the next state [xÕ] is predicted, together with the corresponding reward r. All these

steps are managed by an Artificial Neural Network, whose weights must be updated

with respect to the target. The peculiarity of this approach is that these weights are

adjusted only according to the reward signal, and not on the observation of the next

state. In this way the learnt lower-dimensional feature space is free to represent arbitrary

characteristics of the state, and is not bound by having to explain actual transitions. The

model is then driven by the reward alone, which makes it goal-oriented, and that may

explain its success with respect to competitors. To back up this intuition, consider the

trivial example of a constant reward, so that no learning is actually necessary, since every

policy attain the exact same reward at each step. The environment can be arbitrary

complicated, and this would obviously have no impact on the performances. A model-

based algorithm which explicitly takes into account transitions would try to model the

complicated dynamics, even though it is completely useless. An algorithm which focuses

on the reward would instead immediately realise that predictions are actually trivial -

although nothing changes in this example, since it is not possible to improve performances.

Of course also a model-free algorithm would quickly realise that the reward is always

the same, as they are not based on predictions, therefore no model of the environment

is involved. However, as mentioned before, model-free algorithms are known to su�er

from sample ine�ciency, precisely because the model turns out to be a convenient and

compact description of the interactions with the environment. This leads to the claim

that MuZero is an algorithm somewhere in between the two perspectives.

In this Dissertation, an algorithm with a similar principle is proposed, which indeed

considers only the propagation of the reward function, and does not learn from the state



7

transitions. In particular, the latter approach deals with continuous action and space

states, which is a setting closer to the control community than to the Reinforcement

Learning one. Although there are works in Reinforcement Learning with continuous

action and state spaces, it is definitely not the most popular setting, not least because of

the more di�cult challenges it poses. For instance, if the working space is continuous, it is

impossible to resort even to asymptotic result which are often evoked for the finite-states

setting, which helps to prove convergence of algorithms relying on the fact that every

state-action pair is visited infinitely many times under the assumption of an infinite

data budget. In order to achieve this, the method presented here exploits the Koopman

operator framework, which has been neglected until recently, but which has lately been

making a rather big impact in control theory, as evidenced by the many new papers on

the subject (Mauroy, MeziÊ, and Yoshihiko, 2020). The latter will allow the estimation

of the system to focus only on reward, and not to chase transitions.

The Koopman operator framework is an alternative description of a general nonlinear

dynamical system, which is translated in an infinite-dimensional but linear fashion. The

latter dates back to the seminal work by Koopman, 1931, but it is only in more recent

years that it has established itself as a useful tool for the analysis of dynamical systems.

First rediscovered and widely used by the fluid dynamics community (Arbabi and MeziÊ,

2017b), its popularity has since been consolidated thanks to the simple estimation meth-

ods derived from it (Tu et al., 2014; Williams, Kevrekidis, and Rowley, 2015), and the

possibility of exploiting theorems on spectrum analysis (Mauroy, 2021; MeziÊ, 2020).

Instead of characterising a dynamical system through the derivative over time of the

state variable, as it usually done in system theory, the Koopman operator framework

considers an infinite-dimensional space of functions, and it gives a description of the

evolution of any function Â (·) in this space, when propagated through the dynamics

under study. Therefore it characterises the composition of the function given as input

and the state-transition map f (·), which is equivalent to the function given as output

Â+ (·). The latter is expressed as:

U t [Â] (t0) = Â (x (t0 + t)) = Â+ (·) , (1.1)

where it is evident that system is expressed through the composition of a generic function

Â, called observable, and the dynamics f (·).

The latter description can be given in both continuous and discrete time, depend-

ing on the underlying system. Clearly, equivalently to what happen with the description

in state space, the continuous-time description is more general, because it can provide



8 Introduction

the discrete-time description by constraining the time variable to assume predetermined

values and considering the integral between these instants. However, in this work, the

operator is learned from a finite amount of data coming from transitions of the system,

as prescribed by the Reinforcement Learning setting. These data necessarily provides

discrete-time information about the system, because they are physically collected at a

certain sampling rate. Given that the Koopman operator returns a linear characterisa-

tion of a generic nonlinear system, it is not di�cult to turn the above system into its

continuous version, however the most widespread approaches yield a reconstruction in

discrete-time. This is why an entire chapter of this Dissertation is dedicated to the study

of how the sampling time influences the properties of the system.

A common belief is that a finer time discretisation always leads to better estimation of

the system behaviour, also for the control cost. However, this will only prove to be true

with an unlimited data budget. With finite data, a higher temporal resolution means

that more data is collected within fewer episodes. This inevitably leads to the question

on how to optimally choose the time discretisation for the task at hand. In practice,

there are always limitations on how much data can be collected, stored and processed.

The practitioner hence faces a fundamental trade-o�: a high temporal resolution leads

to a better approximation of the continuous-time system from discrete measurements,

whereas collecting data along a larger number of trajectories leads to lower variance

in the estimation with respect to stochasticity in the system. This is indeed true for

any system with stochastic dynamics, even if the learner has access to exact (noiseless)

measurements of the system’s state. Data e�ciency can be improved by leveraging

a precise understanding of the trade-o� between approximation error and statistical

estimation error in long term value estimation — two factors that react di�erently to the

level of temporal discretisation.

In particular, the behaviour of a simple Monte Carlo estimator with a fixed data budget

has been investigated. As explained above, the most important quantity for Reinforcement

Learning is the value-function, therefore the problem of value-function estimation has

been considered. By taking the simplest possible dynamics, i.e. a Langevin system, the

analysis showed exactly the existence of a trade-o� in the choice of the sampling interval.

By taking it too small, the single trajectory is well described by the zero-order hold

approximation, so that the cost (or the reward) over the long run is accurate. However

this comes at the price of reducing the number of trajectories that are evaluated, since

the data budget is fixed, which are di�erent from each other because the dynamics are

stochastic. Instead by taking many trajectories, the noise due to the stochasticity can

be managed, but the cost of the single trajectory would be severely biased, as only few



9

samples are used for the approximation. The presence of a trade-o� implies the existence

of an optimal value for the sampling interval, optimally balancing these two phenomena,

which is discussed in Chapter 3.

As a consequences of the above results, data can always be thought of as sampled at

the optimal sampling time, so that it is impossible to extract more information from

the system with a finite data budget, and consequently the discrete-time approximation

yield the best possible description. In light of this, the Koopman operator estimation is

exclusively discussed in the discrete-time setting.

In order to develop the methodology to tackle the Reinforcement Learning problem, the

Koopman operator must indeed be estimated from data, since the latter allows to build

a model of the environment, which it is necessary for predictions. In order to do that,

the setting of Reproducing Kernel Hilbert Spaces have been considered.

Hilbert spaces satisfying certain additional properties are known as Reproducing Kernel

Hilbert Spaces, and RKHS theory is normally described as a transform theory between

Reproducing Kernel Hilbert Spaces and positive semi-definite functions K (·, ·), called

kernels: every RKHS has a unique kernel, and certain problems posed in RKHSs are more

easily solved by involving the kernel (Wahba, 2003). Reproducing Kernel Hilbert Spaces

are indeed very convenient spaces in which to frame the estimation problem because

they are infinite-dimensional, but under specific conditions, the solution of a regularised

regression problem lies in a particular finite-dimensional space. They are particularly

important in the field of statistical learning theory because of the celebrated representer

theorem, which states that every function in an RKHS that minimises an empirical risk

functional can be written as a linear combination of the kernel function evaluated at the

training points. This is a practically useful result as it e�ectively simplifies the estimation

problem from an infinite-dimensional to a finite-dimensional optimisation problem.

The latter reduction can be exploited to learn a finite-dimensional approximation of

the Koopman operator. The latter is learnt by minimising the prediction error for the

available datapoints, i.e., in a regression framework. However, in order to make the

problem meaningful, the finite-dimensional reduction of the hypothesis space have always

been considered to be given or to be predetermined, which limits the ability of estimation

or requires strong a priori knowledge. By framing the problem in RKHS, the prior

knowledge which is required to be embedded in the problem is just the one given by the

kernel, which is a very flexible paradigm and can be adapted to di�erent problems, yet

it is still possible to obtain a finite-dimensional solution. In Chapter 6 the estimation

of Koopman operators in RKHS is discussed, which does not solve the control problem



10 Introduction

yet. However it can already be seen how the estimation of the system relies on the

observation of the selected observable. The system is indeed represented through the

Koopman operator in RKHS, given by U
(K)
DMD, and is able to propagate any observable

through its values on the training points, as:

\Â (f (·)) = K (·, x)
Ë
K (·, x) + ‡2

È≠1
U

(K)
DMDÂ (x) , (1.2)

so that the propagation can be specified for a particular observable. The last chapters of

the Dissertation leverage the intuition that the reward can be though as an observable,

in order to build an approach indeed driven by the reward function. The above equation

can indeed by rewritten as:

\r (f (·)) = K (·, x)
Ë
K (·, x) + ‡2

È≠1
U

(K)
DMDr (x) , (1.3)

which yield the estimate of the evolution of the reward based on its observations on

the experienced transition. Note how this approach is indeed aligned with the initial

objective of building a model-based algorithm which however relies only the reward

samples, and not targeting transitions. By recalling that the value-function is just the

sum of the rewards over the predicted trajectory, and having an actual way to predict

those rewards, it is easy to understand that this solves the task of policy evaluation, for a

fixed policy generating the system under analysis. The choice of a policy induces indeed

an autonomous system, as the control input will depend only on the state. For a one-step

prediction, the output are not required to lie in the same space as the state variable, as

for standard kernel methods. However, since the same regression will be iterated to yield

predictions for arbitrary future steps, the latter becomes a mandatory assumption. The

regression must be consistent with itself at the next step, so the state-transition function

must be an endomorphism.

The latter framework is extended to the control problem through the assumption of a

parameterised policy class, which is very common in the Reinforcement Learning setting

with continuous state and action space. This assumption will still make it possible to

treat the system as autonomous, by making it dependent on the control parameter,

which actually changes the dynamics. If a parameterised system needs to be learnt,

a parameterised Koopman operator needs to be defined. Under the dynamics defined

by the control parameter ◊ then, the Koopman operator will maintain its propagation

capabilities as:
\r (f (·)) = K (·, x)

Ë
K (·, x) + ‡2

È≠1
U

(◊)
DMDr (x) , (1.4)



11

In particular, by relying on a result concerning the solution of di�erential equation, in

Chapter 8 it is explained how in the description of a parameterised system, the state and

the parameters basically play the same role. This allows to consider an augmented state

for the estimation problem in z, composed by states and parameters together, so that a

parameterised Koopman operator can be learnt. The latter is given by:

V◊ (·) =
·ÿ

·=1

K (·, z) U
(◊)
EDMD—· , (1.5)

where —· are the coe�cients for the subsequent propagations of the rewards. Assuming

the kernel function is di�erentiable with respect to the control parameter, an expression

for the gradient of the value-function is trivially derived. The control problem can then

be solved through a gradient ascent algorithm following the above formula, which will

yield a parameter with a better performance, according to the current estimation of the

value-function. With every new observation the approximation of the value-function can

be improved, and in turn the gradient.

The fact that the procedure is framed in the language of Reproducing Kernel Hilbert

Spaces allows to understand the proposed algorithm through a Bayesian perspective, and

in particular to consider confidence intervals (Wahba, 1983). Every successive observable

after the first step is indeed estimated as a Gaussian Process, which has a well-defined

covariance description. The latter perspective makes it possible to equip the estimation

of the value-function through the proposed procedure with confidence bounds, expressing

the region where the true function lies with high probability. This is a peculiar feature

among Reinforcement Learning algorithms, which makes it clear that the proposed

approach is unique and still has room for improvement, as there may be other uncommon

hidden properties still to be explored.

Since experience without theory is blind, but theory without experience is mere intellec-

tual play (Bertalan�y, 1962), the formal derivations of the aforementioned results are

always complemented by illustrative examples.

The present work is structured as follows:

• A detailed introduction to the Koopman operator framework is presented in Chap-

ter 2, which explains all its relevant properties and provides all the tools needed

to understand the rest of the work. This part can be considered as background

material, and indeed consist of knowledge coming from relevant works in the field.

• The innovative results on the analysis of the sampling time for observing continuous-



12 Introduction

time system are given in Chapter 3. This chapter consists entirely of original

contributions, which in particular are the exact characterisation of the mean-

squared error for a Monte Carlo estimator of the value function in the case of a

Langevin dynamics; and the corresponding derivation of closed-form solution for

the optimal sampling time.

• Chapter 4 describes the current approaches to estimate the Koopman operator

from data. The formalisation of the finite-dimensional restriction for the original

Koopman operator is introduced, along with the preexisting techniques on which

the development of the proposed method is based. These notions comes from

well-established literature on the Koopman operator.

• The Reproducing Kernel Hilbert Space theory is illustrated in Chapter 5. The

arguments are presented from an operator theory perspective, in order to facilitate

connections with the Koopman operator framework. The contents of this chapter are

again background material, without which it would not be possible to understand

how the proposed method works.

• The formal connection between Koopman operators and Reproducing Kernel Hilbert

Spaces is given in Chapter 6, leading to the core of the proposed approach, which

so far will deal with estimation only. A detailed bridge between kernel methods and

Koopman estimation comes to life in the form of a new algorithm which extends

and generalises the previous ones. The latter allows also to understand better the

dual perspective taken by the well-known methods. The whole chapter represents

an original contribution.

• The control problem is introduced in Chapter 7, with particular emphasis on the

algorithms exploiting the Koopman operator framework. A review on the current

control approaches based on the Koopman linearisation is provided, both from a

theoretical and a practical standpoint. The most relevant and structured works

have been selected from the ever-growing literature.

• In Chapter 8 the original method previously developed for estimation is finally

extended to the control setting. This extension require imperceptible changes from

the previous version, as the control parameter is incorporated into the system

description and basically treated as a state. This section represents an original

contribution, which in particular is given by the derivation of a Policy Gradient

algorithm in order to tackle the Reinforcement Learning task. The latter exploits



13

the Koopman operator framework, which allows the final estimate to be based on

the reward only.

• The last chapter presents additional features of the proposed approach. In particular,

the di�cult problem of propagating uncertainty of the estimated dynamical system

is considered, which can be easily handled by the proposed method. The observable

are indeed propagated as Gaussian Process, which have a well-known covariance

description. A refinement of the proposed method is also presented, which extend

the procedure to the case in which the knowledge of the reward function is not

available, but only its samples from the experienced transitions, as prescribed by the

Reinforcement Learning setting. Also Chapter 9 represents an original contribution

in its entirety.

• Conclusions are drawn in Chapter 10. Strengths and weaknesses of the proposed

approach are also discussed, along with open problems and possible extensions.



14 Introduction



2
Koopman operator

The Koopman operator is the fundamental mathematical tool on which all the work

presented in this Dissertation is based.

In the following a motivation for its introduction, the formal definition and its most

important properties are provided. Some preliminary notions on infinite-dimensional

operators are also introduced. Particular attention is paid to the eigendecomposition, as

well as the Koopman description of stochastic systems.

The contents are mainly based on the work by Mauroy, MeziÊ, and Yoshihiko, 2020.

2.1 A linear framework

Classical system theory is built around the concept of state, which clearly has a central

role in characterising a system (Strogatz, 2000; Wiggins, 2003). Its purpose is indeed

to describe the quantities of interest for the system dynamics, which is in fact done

through the definition of the state variable. The state is the subject of the autonomous

variations of the system, while also being a�ected by inputs, and ultimately producing

outputs. Consequently, a dynamical system is usually described through a function,

which characterises the evolution of the state variable with respect to time. The latter

variable is set to lie in a predefined space, the state space.

In the continuous-time setting, this corresponds to specify the derivative of a generic

state in the aforementioned space for any time instant, thus naturally leading to a

representation through di�erential equations. This led to the usual view of dynamical

systems in state-space form.

The state space is denoted as X, the input space as A and the output space as Y . The



16 Koopman operator

notation used in this works reads as:

Y
]
[

ẋ (t) = dx(t)
dt = f (x (t) , a (t) , t)

y (t) = fo (x (t))
(2.1)

where t œ R represents time, f : X ◊ A ◊ R æ X is the vector field and fo : X æ Y is

the output map.

For the whole manuscript, the state will be assumed measurable, i.e., the output map is

the identity function: the latter is a rather standard assumption in many works which

deal with the Koopman operator framework, as well as in the Reinforcement Learning

literature. Only time-invariant systems will be considered, for which the vector field

does not have an explicit dependence on time. Moreover, until Chapter 7, autonomous

system are taken into account, which does not allow for an input to change the dynamics.

The latter can be thought in the general scenario as if the input was constantly zero, i.e.,

a (t) = 0, ’t œ R.

One of the simplest and most studied case of a dynamical system is the swinging of a

clock pendulum (Baker and Blackburn, 2008), whose dynamics are given by:

d2x (t)

dt2
= ≠

g

l
sin (x (t)) (2.2)

in which the state x œ [≠fi, fi] represents the angle between the direction of the rod and

the vertical axis, i.e., the one along which gravity acts. The dynamics depend on the

local gravitational field of Earth g, and the length of the rod l, and describe the evolution

over time t. There are no exogenous inputs - hence it is an autonomous system - and the

state can be fully observed at any time, so it coincides with the output.

Already in this simple example it turns out that there is no explicit solution for the

dynamics, although the space has been parameterised such that the dynamics can be

written in their simplest form, which is the one given by (2.2), conveniently expressing

the angle as a state. This means that there is no closed-form solution for the di�erential

equation in (2.2), and so there is not an explicit expression for the flow of the dynamics,

i.e., the evolution of the state from a given state and time.

The problem however can be simplified by assuming that x is close to zero. By recalling

that sin (x) = x + O
!
x3

"
, equation (2.2) is approximated with the dynamics for the

harmonic oscillator, given by:
d2x (t)

dt2
= ≠

g

l
x (t) (2.3)



2.1 A linear framework 17

under the "small oscillations" hypothesis.

As a result, the latter has a closed-form solution which can be expressed by:

x (t) = c1 sin

3
t

Ú
g

l

4
+ c2 cos

3
t

Ú
g

l

4
(2.4)

where the coe�cients c1 and c2 depend on the initial conditions. Equation (2.4) com-

pletely characterise the dynamics of the state x over time, given initial conditions on

angular position and angular velocity, x (t0) = x0 and ẋ (t0) = ẋ0.

Note that the nonlinearity given by the sine in the di�erential equation makes the problem

significantly harder, preventing an explicit solution from being found. Linear di�erential

equations instead can be solved exactly, making the linear setting very appealing. The

Koopman operator provides a way to globally linearise nonlinear systems.

The Koopman operator (or composition operator) framework gives an alternative descrip-

tion of any dynamical system, in a function space. The evolution of the system is not

described through the dynamics of the state variable, but rather through functions taking

the state as argument, which change over time. This means that, for every function given

as an input of the Koopman operator U t, a new function is returned, which is equal to

the former function whose argument is the evolution of the state after some time t, for

any state. Since the Koopman operator describes the evolution of any function for any

time, it provides a complete characterisation of the dynamical system.

The main advantage of this framework is that the description of the dynamics is always

linear. Therefore even the nonlinear dynamics given in (2.2) can be characterised by a

linear operator. The latter is given by:

x (t0 + t) = U t [x (t0)] , (2.5)

in the case that the propagated function is the identity.

The formulation above may appear inconclusive, as it would need infinitely many functions

to provide an exact linear description of the dynamics, the operator being infinite-

dimensional. The following example, proposed in Brunton and Kutz, 2019, illustrates

a very simple case in which the dynamics can be characterised with a finite number of

functions, so that the global linearisation provided by the Koopman operator can be

better understood.

Example 2.1.1 (Finite-dimensional Koopman operator). Consider the nonlinear dynamical



18 Koopman operator

system given by: Y
]
[

ẋ1 (t) = ÷x1 (t)

ẋ2 (t) = “
!
x2 (t) ≠ x2

1 (t)
" (2.6)

For “ < ÷ < 0 the system exhibits a slow attracting manifold given by x2 (t) = x2
1 (t). By

describing instead the system through the following functions:

Â1 (x) = x1; Â2 (x) = x2; Â3 (x) = x2
1; (2.7)

the dynamics become linear. Indeed:

Y
____]
____[

Â̇1 (x) = ÷x1 (t) = ÷Â1 (x)

Â̇2 (x) = “
!
x2 (t) ≠ x2

1 (t)
"

= “ (Â2 (x) ≠ Â3 (x))

Â̇3 (x) = 2x1 (t) ẋ1 (t) = 2÷Â3 (x)

(2.8)

which yield the following simple linear system,

S
WWU

Â̇1

Â̇2

Â̇3

T
XXV =

S
WWU

÷ 0 0

0 “ ≠“

0 0 2÷

T
XXV

S
WWU

Â1

Â2

Â3

T
XXV . (2.9)

In the augmented description, Â3 = Â2
1 is an invariant manifold, i.e., trajectories which

starts there are constrained to always stay on the manifold. This can also be seen as

a constraint to recover the original system in (2.6), since the lifted dynamics in (2.8)

are capable of describing a more general behaviour, that is not captured by the original

bi-dimensional characterisation. The dynamics in (2.9) in fact makes sense even if they

are initialised with Â3 ”= Â2
1. Trajectories matching the behaviour of the original system

are therefore the ones constrained on the invariant manifold Â3 = Â2
1. This issue is

explored in more detail by Iacob et al., 2021.

The introduction of this framework dates back to the seminal work by Koopman, 1931

and from early on aroused considerable interest in statistical mechanics (Gaspard, 1998).

It is only in recent times, however, that the Koopman operator proved itself an e�ective

tool for studying geometric properties of nonlinear dynamical systems, allowing for a

di�erent perspective on the analysis of di�erential dynamics which helped the community

to gain a deeper understanding of the subject (MeziÊ and Banaszuk, 2004; Mauroy, MeziÊ,

and Yoshihiko, 2020).

The Perron-Frobenius operator, whose left-adjoint operator is the Koopman operator,

has historically been considered more suitable for the purpose of investigating properties



2.2 Definition of the Koopman operator and main properties 19

of dynamical systems, and indeed it enabled the development of set-oriented methods and

the study of coherent set (Dellnitz and Junge, 2002; Dellnitz, Klus, and Ziessler, 2017).

However, recent works focusing on the analysis of the spectrum of these operators have

revealed that the Koopman operator may have "better-behaved" eigenfunctions, which

makes it more appropriate for non-conservative systems (Mauroy, MeziÊ, and Yoshihiko,

2020).

The latter is usually the case for controlled systems, making the Koopman operator more

appealing for the control problem. It also leads to a more convenient framework for

estimating the latter operator from data, which will be crucial for the development in

the next chapters.

2.2 Definition of the Koopman operator and main properties

Consider an ordinary and time-invariant di�erential equation given by:

ẋ (t) =
dx (t)

dt
= f (x (t)) (2.10)

where f : X æ X, X ™ R
d.

The vector field f induces a flow map �t≠t0 : X æ X describing solutions of (2.10), for

any initial condition. If x (t) is a solution of the initial value problem (also called Cauchy

problem) given by Y
]
[

ẋ (t) = f (x (t))

x (t0) = x0

, (2.11)

then the same solution is described through the flow map as

x (t) = �
t≠t0 (x0) . (2.12)

Although it would be more correct to define the flow on the time interval t ≠ t0 as done

in (2.12), it is customary to assume that t0 = 0 so that the flow is given by �t : X æ X.

In the case of a time-invariant system indeed the flow depends only on the di�erence,

therefore this is done without loss of generality. This convention is also adopted here,

unless explicitly specified.

The Koopman operator focuses on the orbit of the dynamical system described by (2.10)

with respect to a generic function Â : X æ R of interest, called observable (Mauroy,

MeziÊ, and Yoshihiko, 2020). The operator then describes the evolution of the whole

space of observables under the action provided by the dynamics.



20 Koopman operator

Definition 2.2.1 (Observable). An observable is a scalar-valued function taking values

on the state space, i.e., Â : X æ R.

The only requirement for stating the definition of the Koopman operator is to have a

complete and normed vector space, whose general characterisation is given by the Banach

space. The latter is indeed a vector space that allows the computation of a complete

norm for its elements.

Definition 2.2.2 (Banach space). A Banach space is a complete normed space (�, Î·Î
�

),

which is a pair consisting of a vector space � over a scalar field F and a distinguished

complete norm Î·Î
�

: � æ R. For the latter to be complete, it is required for the induced

metric space M that every Cauchy sequence of points in M has a limit which is also in

M.

Then the Koopman operator is defined as the composition of the observable and the

flow induced by the dynamical system. The following definition is general and does not

require any other assumption (Mauroy, MeziÊ, and Yoshihiko, 2020).

Definition 2.2.3 (Koopman operator). Let �t be the flow induced by a dynamical system.

Consider a Banach space � of observables Â : X æ R closed under composition, i.e.,

Â ¶ �t œ �. The family of Koopman operators U t associated with the flows �t : X æ X,

t œ R
+, is defined as:

U t [Â] (x) := Â ¶ �
t (x) = Â

1
�

t (x)
2

, (2.13)

’Â œ �, ’x œ X.

The Koopman operator provides an alternative description of a dynamical system

through the evolution of the function space of observables. This perspective allows

di�erent techniques to be exploited in the analysis of the dynamics. According to the

properties which characterise the underlying system, the associated composition operator

inherit some related properties and translates structural behaviour, such as the one of a

semigroup.

Definition 2.2.4 (Semigroup). A semigroup is an algebraic structure consisting of a set,

together with an associative binary operation.

In particular, the flow �t (·) on the set X is a semigroup action of the additive group

of real numbers on X, if the mapping � : X ◊ R æ X is such that:

�
s

1
�

t (x)
2

= �
t+s (x) , (2.14)



2.2 Definition of the Koopman operator and main properties 21

’x œ X, ’t, s œ R.

The following proposition shows that the semigroup property translates directly into the

Koopman operator.

Proposition 2.2.5 (Semigroup property). If the flow �t (·) induced by a dynamical

system on the set X is a semigroup with respect to t œ R, then the family of Koopman

operators associated with the same dynamical system is a semigroup of operators.

Proof. Exploiting the semigroup property for the flow, it is easy to derive the semigroup

property for the Koopman operator,

U t+s [Â] (x) = Â
1
�

t+s (x)
2

= Â
1
�

t (�s (x))
2

= U t [Â (�s (x))] = U t [Us [Â]] (x) , (2.15)

thus proving the statement.

Other properties translates from the flow to the Koopman operator. For continuity,

for example, the following hold:

• If �t (·) is continuous with respect to t, then U t is strongly continuous in L2
1
X̃

2
,

where X̃ ™ X is a forward-invariant set;

• If �t (·) is uniformly Lipschitz continuous with respect to t, then U t is strongly

continuous in C0
1
X̃

2
, where X̃ ™ X is a forward-invariant set.

The Koopman semigroup of operators is strongly continuous if the following holds:

lim
t ¿ 0

...U t [Â] ≠ Â
...

�
= 0, (2.16)

where Î·Î
�

is the norm given by the Banach space �.

If this is the case, then it is possible to define the infinitesimal Koopman generator

L : �̃ æ �, with �̃ a dense set in �. Indeed the limit:

lim
t ¿ 0

U t [Â] ≠ Â

t
= L [Â] (2.17)

exists ’Â œ �̃, provided (2.16) holds.

The infinitesimal Koopman generator is the analogous of the time derivative of the

observables under the action of the dynamics. Another characterisation of the infinitesimal

generator of the Koopman operator can be given in terms of the associated di�erential



22 Koopman operator

equation (2.10), as:

L [Â] (x0) = lim
t ¿ 0

U t [Â] (x0) ≠ Â (x0)

t
(2.18)

= lim
t ¿ 0

Â (x (t)) ≠ Â (x0)

t
(2.19)

=
ˆÂ

ˆx

----
x=x0

dx

dt

----
t=0

= ÒÂ (x0) f (x0) (2.20)

which provides a connection between the Koopman operator framework and the vector

field f (·) of the underlying dynamics.

It should be noted that the semigroup property and hence the existence of an infinite-

dimensional operator rely on the fact that the considered dynamics are time-invariant, as

in (2.10). If the vector field were to be time-varying and therefore explicitly dependent on

time, f (t, x (t)), this is no longer true. Indeed the Cauchy-Lipschitz - or Picard-Lindelöf

- theorem does not guarantee that for a fixed state x0 there is a unique solution (Agarwal

and Lakshmikantham, 1993). For time-varying systems, the uniqueness of the trajectory

requires to specify also the time in which the system is on that state, x (t0) = x0. Indeed

by starting in the same initial state at di�erent initial times, di�erent trajectories are

observed. This, in turn, makes the flow - and consequently the Koopman operator -

explicitly dependent on the initial time, and not only on the time interval, as in (2.12).

A solution of a time-varying initial value problem could be written as:

x (t) = �
(t0, t) (x0) , (2.21)

and also the corresponding Koopman operator would be parameterised by two time

instants, i.e.,

U t
t0

[Â] (x) := Â ¶ �
(t0, t) (x0) = Â

1
�

(t0, t) (x0)
2

. (2.22)

The analysis of time-varying dynamical system is inherently more general and therefore

more complex, and it is out of the scope of this Dissertation. As a matter of fact, it

is a context that has not yet been explored in the literature, with only few exceptions

(Guého, Singla, and Majji, 2021; Müller, Otto, and Radons, 2017; Zhang et al., 2019).

The description of a dynamical system through the Koopman operator comes at the

price of turning the finite-dimensional state space to an infinite-dimensional space of

functions. This however brings the benefit of having a global linear description of the

dynamical system associated with the operator. To show the linearity of the generic

Koopman operator, recall the following definition.

Definition 2.2.6 (Linear operator). Let G and G̃ be vector spaces over a field F. An



2.3 Eigendecomposition 23

operator O : G æ G̃ is linear if

O [c1g + c2g̃] = c1O [g] + c2O [g̃] (2.23)

’g, g̃ œ G, ’c1, c2 œ F.

The next proposition proves the linearity of the Koopman operator without any other

assumption.

Proposition 2.2.7 (Linearity of Koopman operator). The family of Koopman operators

is linear.

Proof. By following the definition, it holds that:

U t [c1Â1 + c2Â2] = (c1Â1 + c2Â2)¶�
t = c1Â1¶�

t+c2Â2¶�
t = c1U t [Â1]+c2U t [Â2] (2.24)

as required.

One of the most important tool in analysing linear operators is the eigendecomposition.

Therefore it is useful to characterise the spectrum and the eigenfunctions of the Koopman

operator.

2.3 Eigendecomposition

The spectrum analysis of linear operators is quite easy in the case of a finite-dimensional

operator. The same concept is still meaningful even in the infinite-dimensional case, in

which case, however, there is a significant increase in complexity. While the spectrum of

a linear operator on a finite-dimensional vector space is precisely the set of eigenvalues,

an operator defined on an infinite-dimensional space may have additional elements in its

spectrum, and may have no eigenvalues.

The latter is defined from the notion of resolvent set, which is essential to introduce the

spectrum of general linear operators.

Definition 2.3.1 (Resolvent set). Let � be a Banach space and �̃ dense in �; let also

O : �̃ æ � be a linear operator and I denote the identity operator. The resolvent set of

O is defined as:

Res (O) :=
Ó

⁄ œ C | O ≠ ⁄I : �̃ æ � has a bounded everywhere-defined inverse
Ô

(2.25)



24 Koopman operator

i.e., ⁄ œ C is in the resolvent set if there exists a bounded operator Ō : � æ �̃ such that:

Ō (O ≠ ⁄I) = I
�̃

; (O ≠ ⁄I) Ō = I�, (2.26)

meaning that the inverse must defined in the whole �.

The spectrum of a linear operator is then a generalisation of the set of eigenvalues

of a matrix. From Definition 2.3.1 it becomes trivial to define the spectrum of a linear

operator, which is given by all the elements of C which do not belong to the resolvent set.

Definition 2.3.2 (Spectrum of a linear operator). The spectrum of a linear operator

O : �̃ æ � with � Banach space and �̃ dense in � is defined as:

Sp (O) := C \ Res (O) , (2.27)

i.e., a complex number ⁄ is in the spectrum if it is not in the resolvent set.

If the analysis is restricted to bounded linear operators, the inverse operator - when it

exists - is surely linear and therefore it is also bounded, from the bounded inverse theorem

(Narici and Beckenstein, 2010). In particular, in the bounded case, three di�erent subsets

of the spectrum can be distinguished:

• The pair (Ï, ⁄) œ � ◊ C with Ï ”= 0, satisfying:

O [Ï] (·) = ⁄Ï (·) (2.28)

is an eigenpair of O, with ⁄ eigenvalue and Ï eigenfunction. If ⁄ is an eigenvalue,

then O ≠ ⁄I is trivially not injective, therefore ⁄ /œ Res (O) so that ⁄ œ Sp (O).

The set of all eigenvalues is called point spectrum of O, and it is denoted as Spp (O).

• The set of all ⁄ œ Sp (O) for which O ≠ ⁄I is not surjective and and the range

of O ≠ ⁄I is dense in � is called the continuous spectrum, and it is denoted as

Spc (O).

• The set of all ⁄ œ Sp (O) for which O ≠ ⁄I is not surjective and and the range

of O ≠ ⁄I is not dense in � is called the residual spectrum, and it is denoted as

Spr (O).

The Koopman operator in general has a non-empty continuous spectrum, which is

typically associated with chaotic systems, i.e., systems which are highly sensitive to initial

conditions.



2.3 Eigendecomposition 25

However, by focusing on the point spectrum, the Koopman eigenvalues and eigenfunctions

can be defined as follows.

Definition 2.3.3 (Eigenpair). The pair (Ï⁄, ⁄) is composed of an eigenfunction Ï⁄ and

the corresponding eigenvalue ⁄ of the Koopman operator associated with the semi-group

of maps �t (·) if they satisfy

U t [Ï⁄ (·)] = Ï⁄

1
�

t (·)
2

= e⁄tÏ⁄ (·) , (2.29)

Ï⁄ œ � \ 0, ⁄ œ C.

If the semigroup of Koopman operators is strongly continuous, the same definition

can be given in terms of the infinitesimal Koopman generator L, as:

L [Ï⁄ (·)] = ⁄Ï⁄ (·) . (2.30)

By exploiting the identity in (2.20), it is also possible to relate the eigenvalue equation

with the dynamics in (2.10), through:

f (·) ÒÏ⁄ (·) = ⁄Ï⁄ (·) . (2.31)

These definitions refers to the eigenvalues belonging to the point spectrum Spp (U ) of

the Koopman operator, which is in general an infinite set. Indeed if ⁄1, ⁄2 œ Spp (U ),

then c1⁄1 + c2⁄2 œ Spp (U ) provided that the associated eigenfunction Ïc1

⁄1
Ïc2

⁄2
œ �.

As will be clear in Chapter 5, the possibility of characterising the space in which the

Koopman operator acts through its eigenfunctions, reveals useful properties of the latter

space. Therefore a characterisation of the space with eigenfunction is sought in the

following.

As is usually done, the Zermelo-Fraenkel set theory is considered as a foundation for

everything that has been said so far and will be said later. In particular, the extended

set of axioms is assumed to hold, which also includes the axiom of choice (Zermelo, 1904;

Fraenkel, Bar-Hillel, and Levy, 1973).

Axiom 2.3.4 (Axiom of choice). For any set F of nonempty sets, there exists a choice

function f that is defined on F and maps each set of F to an element of the set.

By choosing to rely on the axiom of choice, every normed space admits a basis.

Therefore also the Banach space � of functions admits a basis (Jech, 2008).

The Koopman operator eigenfunctions may provide a basis for the space of observables

�, under some technical assumptions. For instance, this holds true for many Hermitian



26 Koopman operator

operators, such as Strum-Liouville operators, and Hamiltonian operators (Kusse and

Westwig, 2006). For the Koopman operator, a su�cient conditions is that the dynamics

are integrable and defined in a compact space (Mauroy, MeziÊ, and Yoshihiko, 2020).

In a more specific case, if the dynamics and � are such that the Koopman operator is

bounded, compact and self-adjoint - which is the case for measure-preserving dynamical

systems, as it will be discussed in Section 2.4 - then the Hilbert-Schmidt theorem holds,

and the eigenfunctions are guaranteed to form an orthonormal basis with countable

non-zero eigenvalues (Renardy and Rogers, 2004; Royden and L, 1988). Therefore any

observable in the Banach space � can be expressed in terms of eigenfunctions. This

expansion leads to the definition of Koopman modes.

Definition 2.3.5 (Koopman modes). Let the span of Koopman eigenfunctions {Ï⁄i
}Œ

i=1

densely fills the space �̃ µ �. Then the Koopman mode expansion of Â œ �̃ is given by

Â (·) =
Œÿ

i=1

viÏ⁄i
(·) (2.32)

where the coe�cients vi are the Koopman modes related to the observable Â.

By exploiting both the eigendecomposition in (2.29) and the Koopman mode expansion

in (2.32), it is possible to understand the role of eigenfunctions and Koopman modes in

the evolution of the dynamics:

U t [Â (·)] = U t

C
Œÿ

i=1

viÏ⁄i
(·)

D
=

Œÿ

i=1

viU
t [Ï⁄i

(·)] =
Œÿ

i=1

vie
⁄itÏ⁄i

(·) . (2.33)

Note that in the equation above the propagation of the system obtained through the

evolution of the observable is simply given by the exponential functions governed by the

eigenvalues. The Koopman modes and the eigenfunctions are indeed fixed with respect

to time, being associated with invariant geometric properties of the system. The impact

of the eigendecomposition can also be appreciated from the simple nature of propagation

in (2.33). In the case of the identity function, the Koopman mode expansion characterise

the evolution of the di�erent initial conditions, as in (2.5). The latter intuition is the

rationale behind Dynamic Mode Decomposition, a framework for estimating the Koopman

operator, described in detail in Chapter 4.

2.4 Duality

Duality is a powerful concept (Gowers, Barrow-Green, and Leader, 2010) and it may be

useful to gain a deeper understanding of the Koopman operator framework. It will also



2.4 Duality 27

turn out to be useful in the next chapters, and especially in Chapter 5, when Reproducing

Kernel Hilbert Spaces and integral operators will play an important role.

It is well-known that any vector space G has a corresponding dual vector space consisting

of all linear forms on G, together with the vector-space structure of pointwise addition

and scalar multiplication by constants. Since the Koopman operator acts on a Banach

space, its dual is a space of linear forms. For completeness, the definition of linear forms

is recalled here.

Definition 2.4.1 (Linear form). A linear form S is a linear map from a vector space

G to its field of scalars F. It is denoted as linear functional when the vector space is a

space of functions.

As has already been pointed out, the dual space of a vector space can be defined as

the space of linear forms. Note that the following definition is general and holds for any

vector space.

Definition 2.4.2 (Dual space). Given any vector space G over a field F, the dual space Gú

is defined as the set of all linear forms S : G æ F. The dual space itself becomes a vector

space over F when equipped with an addition and a scalar multiplication operations.

Given that the Koopman operator maps the Banach space � in itself, then the dual

operator must act on �ú, which is here defined to be the set of all functionals S from �

to F. The dual operator satisfies:

S (U [Â]) = Uú [S] (Â) , (2.34)

’S œ �ú, ’Â œ �; where time dependency has been omitted to simplify the notation.

A meaningful characterisation of the dual operator can be achieved through the Riesz

representation theorem, which allows to describe a functional through the inner product

between a function, called representer, and the argument of the functional. The latter is

a result of paramount importance in learning theory, and it will be exploited again in

Chapter 5. The action of any functional is characterised through the inner product in a

suitable Hilbert space.

As it will be clear later on, an important subset of �ú is the one composed of bounded

functionals.

Definition 2.4.3 (Bounded functional). A functional S : � æ F defined over a generic

Banach space � is said to be bounded if there exists c œ F such that ’Â œ �, it holds

|S [Â]| Æ c ÎÂÎ
�

.



28 Koopman operator

Since it is now necessary to deal with inner products, Banach space is too general a

concept, which must instead be specialised in a Hilbert space (Hewitt and Stromberg,

1965). The latter are the standard generalisation of Euclidean vector spaces to infinite-

dimensional ones.

Definition 2.4.4 (Hilbert space). A Hilbert space H is a vector space endowed with an

inner product with values in a field F which induces a complete metric space M, with

the distance function derived by the inner product.

Under these premises, it is then possible to state the Riesz theorem (Fréchet, 1907;

Riesz, 1907; Halmos, 1950).

Theorem 2.4.5 (Riesz). Let H be a Hilbert space whose inner product Èh, h̃ÍH is linear

in the first argument and antilinear in the second argument. For every bounded linear

functional S œ Hú, there exists a unique s œ H, called the Riesz representation of S,

such that:

S (h) = Èh, sÍH , (2.35)

’h œ H.

The proof of the Riesz theorem can be found in many textbooks, and di�erent versions

are available. The one in the book by Haaser and Sullivan, 1971 is very general and relies

on properties of the Riemann-Stieltjes integral.

By restricting again the set of functionals to the one taking as input continuous function,

i.e., Gú = C0
1
X̃

2ú
with X̃ ™ X, the Riesz representation theorem provides a direct

characterisation of bounded linear functionals as integrals with respect to suitable

measures. If the measure given by the representer is absolutely continuous, the latter can

be expressed as an integral over the standard Lebesgue measure. This stems from the

Radon-Nikodym theorem, which allows to characterise a general measure with respect to

another one (Nikod˝m, 1930).

Theorem 2.4.6 (Radon-Nikodym). Let (X,S) be a measurable space consisting of a

set X and a ‡-algebra S, on which two ‡-finite measures fl and ‹ are defined. If ‹

is absolutely continuous with respect to fl, then there exists a S-measurable function

µ : X æ [0, Œ), such that for any measurable set X̃ ™ X, it holds:

‹
1
X̃

2
=

⁄

X̃
µ dfl. (2.36)



2.4 Duality 29

Under the assumption of the Riesz theorem and of the Radon-Nikodym one, and

by considering fl in Theorem 2.4.6 as the standard Lebesgue measure, any functional

S : C0
1
X̃

2
æ F can be expressed through a density function µ œ L1, as:

S (Â) =

⁄

X̃
Â (x) µ (x) dx, (2.37)

and it is possible to define an operator P : L1 æ L1 such that

Uú [S] (Â) =

⁄

X̃
Â (x) P [µ] (x) dx. (2.38)

The operator defined above is the Perron-Frobenius operator (or transfer operator). The

latter is related with the propagation of densities according to the flow induced by the

dynamical system. This is shown by the following equation:

⁄

X̃
P [µ] (x) dx =

⁄

�≠1(X̃)
µ (x) dx, (2.39)

which corresponds to the propagation of the indicator function 1X̃ (x). The Koopman

operator corresponds instead to the propagation of observables, which are not densities.

In particular, if µ is a probability measure, the Perron-Frobenius operator provides the

evolution of an initial distribution through the dynamical system, while the Koopman

operator characterise the evolution of the expectation of a specific function - the observable

- over the initial distribution. The latter concept will be made precise in the following

section.

The relation in (2.39) can be used as a definition for the Perron-Frobenius operator in the

general space of integrable functions. A particular characteristic of a dynamical system

makes the two operator interchangeable: the measure-preserving property.

Definition 2.4.7 (Measure-preserving dynamical system). A measure-preserving dynam-

ical system is defined as a measurable space and a measure-preserving transformation

on it. In particular, given a measurable space (X,S), let µ be a measure on S. A

transformation f : X æ X is measure-preserving if

µ
1
f≠1

1
X̃

22
= µ

1
X̃

2
, (2.40)

’X̃ œ S. In this case, µ is called an invariant measure for f .

When the Perron-Frobenius operator satisfies the requirements of the Perron-Frobenius

theorem - which typically happens in finite-dimensional spaces, and was later generalised

to infinite-dimensional spaces by (Schaefer, 1966) - the eigenfunction associated with the



30 Koopman operator

largest eigenvalue gives the invariant measure.

If a system is measure preserving, the invariant measure µ̄ can be used to define the space

� = �ú = L2
µ̄ (X) equipped with the norm ÎÂÎ

�
=

s
|Â|2 dµ̄. The two operator-theoretic

description are equivalent in this case. Moreover they are isometries, i.e.,

ÎU [Â]Î = ÎP [Â]Î = ÎÂÎ (2.41)

and, more generally, they satisfy U Uú = U P = I. Additionally, when they are invertible,

they are unitary (Mauroy, MeziÊ, and Yoshihiko, 2020).

2.5 Koopman for stochastic dynamical system

Many phenomena in nature can be modelled as dynamical systems, describing the

evolution of the state over time. However, often it turns out that there is an intrinsic

random component which a�ects the latter evolution, or the model is not detailed enough

to explain all the complex mechanisms acting at the di�erent levels. Indeed fluctuations

are classically referred to as stochastic when their suspected origin implicates the action

of a very large number of variables or degrees of freedom. For instance, the action of

many water molecules on the motion of a large protein can be seen as noise.

It is therefore of primary importance to understand how the description of a system

through the Koopman operator extends to the stochastic case.

If a deterministic dynamical system is usually described by a di�erential equation as

in (2.10), its stochastic version is described by a stochastic differential equation (SDE).

The latter is a di�erential equation in which one or more of the terms is a stochastic

process, so that the solution is also a stochastic process.

Recall the following definition by Pavliotis, 2014.

Definition 2.5.1 (Stochastic process). Let T be an ordered set, (�, F ,P) a probability

space, and (X,S) a measurable space. A stochastic process is a collection of random

variables x =
Ó

x (t) | t œ T
Ô

such that for each fixed t œ T , x is a random variable from

(�, F ,P) to (X,S). The set � is known as the sample space, where X is the state space

of the stochastic process x.

Typically, SDEs are ordinary di�erential equation driven by white Gaussian noise,

which is formalised through the Wiener process (also called Brownian motion). That

makes the latter process the most important stochastic continuous-time process. Brownian

motion is a zero mean process with independent Gaussian increments.



2.5 Koopman for stochastic dynamical system 31

Definition 2.5.2 (Independent increments). A process x has independent increments

if for every sequence t0 < t1 < · · · < tn, the random variables x (t1) ≠ x (t0) , x (t2) ≠

x (t1) , . . . , x (tn) ≠ x (tn≠1), are independent.

Hence a Wiener process is defined as follows.

Definition 2.5.3 (Wiener process). A Wiener process W (t) : R+ æ R is a real-valued

stochastic process with almost surely (a.s.) continuous paths such that W (0) = 0, it

has independent increments, and for every t > s Ø 0, the increment W (t) ≠ W (s) has a

Gaussian distribution with mean 0 and variance t ≠ s, i.e., the density of the random

variable W (t) ≠ W (s) is

�W (x | t, s) = (2fi (t ≠ s))≠ 1

2 exp

A
≠

x2

2 (t ≠ s)

B
. (2.42)

A stochastic di�erential equation in general takes the form:

dx (t) = u (x (t)) dt + ‡ (x (t)) dW (t) (2.43)

where W (t) is a d̃-dimensional Brownian motion, u : X æ X, X ™ R
d is the drift, and

‡ : X æ R
d◊d̃ is the diffusion. To obtain the same form as (2.10), it is possible to rewrite

the equation as:
dx (t)

dt
= f (x (t)) + ‡ (x (t))

dW (t)

dt
(2.44)

where, however, the derivative of the Wiener process cannot be mathematically defined.

It is useful to think about it as a Gaussian white noise, i.e., a zero-mean Gaussian process

with correlation function given by ” (t ≠ s) I.

The precise interpretation of (2.43) is given by the integral equation for x (t):

x (t) =

⁄ t

t0

u (x (s)) ds +

⁄ t

t0

‡ (x (s)) dW (s) + c (2.45)

but a formal understanding would require to define the stochastic integral against W (s),

which is out of the scope of this Dissertation.

In order to introduce the Koopman operator for the stochastic dynamical systems, it is

necessary to understand how to define the flow of the system, which is the solution of

the initial value problem for a generic x œ X.

For the following lemma, the process x (t) must have continuous paths (Gard and Gard,

1988; Kallenberg, 2002).



32 Koopman operator

Lemma 2.5.4. Under the assumption that the initial value problem given by:

Y
]
[

dx (t) = u (x (t)) dt + ‡ (x (t)) dW (t)

x (t0) = x0 a.s.
(2.46)

has a global forward-in-time solution x (t) , ’t œ R
+ with distribution fl (t, x0), let µ be a

probability measure on a ‡-algebra S of subsets of X. Define by:

flt
µ

1
X̃

2
:=

⁄

X
fl

1
t, X̃

2
µ (dx) , (2.47)

’X̃ œ S. Then a stochastic process is a solution to the initial value problem given by:

Y
]
[

dx (t) = u (x (t)) dt + ‡ (x (t)) dW (t)

fl (t, x0) = µ
(2.48)

if and only if fl (t, x) = flt
µ.

Denote then as �t≠t0 (x0) the solution process with initial condition x (t0) = x0 and

let fl (t, x0) its probability distribution. Analogously to the deterministic case, the sought

relation is something that resembles U t [Â (·)] = Â
!
�t (·)

"
, for a solution of the stochastic

di�erential equation starting from t0 = 0. Let Â (·) œ LŒ (X), then for t œ R
+ and fixed

x œ X, Â (fl (t, x)) is a bounded and Borel-measurable function, mapping C0
!!
R

+, X
""

into R, therefore it is possible to take the expectation of Â (fl (t, x)) wit respect to fl (t, x).

This motivates the following definition by Klus et al., 2020.

Definition 2.5.5 (Stochastic Koopman operator). Let Â œ LŒ (X) and x (t) an observ-

able and the solution of the initial value problem with x (t0) = x0 almost surely. Define

for all t œ R
+ the stochastic Koopman operator U t : LŒ (X) æ LŒ (X) as:

U t [Â (x)] = Efl(t,x)

Ë
Â

1
�

t (x)
2È

, (2.49)

’Â œ LŒ
X (X) and x œ X.

If µ̄ is a stationary measure for the process x (t), and therefore the system is a

measure-preserving one, the Koopman operator can be extended from LŒ
X (X) to the

Hilbert space L2
X (X) with the standard inner product Èh, h̃Í =

s
X h (x) h̃ (x) dµ (x).

The important thing to notice is that the Koopman operator propagates the given

observable through a stochastic dynamical system by returning its expectation. This

property will be crucial in what follows, and in particular in the derivation of the Koopman



2.5 Koopman for stochastic dynamical system 33

formulation of the value-function for the Reinforcement Learning problem. The action

of the Koopman operator is indeed constrained to yield a deterministic function, and

therefore to marginalise out the source of randomness from the system.



34 Koopman operator



3
Temporal resolution

Oftentimes, dynamical systems are dealt with in the discrete-time form, even if they

model continuous processes. The latter occurs because of the sampling operation: this

constrains data coming from the system to yield a discrete-time description. It is common

belief that the best thing to do is to sample as quickly as possible, which would be closer

to a continuous description. In the present Chapter it is shown that this is not true,

in the case of a fixed data budget, both through theoretical derivation and empirical

evidences. The choice of the sampling time leads indeed to a fundamental trade-o�

between approximation error and variance of the estimate.

The contents of this Chapter represent original contribution, and in particular are taken

from the work by Zanini, Francesco et al., 2023.

3.1 Discrete samples from a continuous process

In the previous chapter the Koopman operator was presented in its continuous time

formulation, which is indeed the most general one. The latter can be useful for analysis,

when the continuous-time dynamics of the modelled phenomenon are explicitly available,

in order to discover geometric properties of the underlying system, for instance through

the eigendecomposition. However, from the next chapter onward, the emphasis will be

on how to estimate the Koopman operator from data. In the Reinforcement Learning

problem in fact the agent only witness transitions, and its e�orts to improve performance

should be based entirely on these. The Koopman operator view does not change the

challenges faced in learning a nonlinear system from only discrete snapshots of the

dynamics.

As explained in the next chapter, this means that it will be impossible to learn an infinite-

dimensional operator, as only a finite amount of data will be available. In a similar way,

also learning a continuous-time system would not be possible without leveraging some



36 Temporal resolution

prior knowledge, since there is no di�erence in the sampled transitions for every system

that in those discrete points produces the same values, as it will be clear in Chapter 5.

The latter problem suggest to consider the estimation of a discrete-time system, which

would be aligned to the available data, although yielding a less general description of

the dynamics. This is indeed what will be considered from the next chapter onward.

However, first it is imperative to understand which sampling interval should be chosen to

collect the aforementioned data. Usually, in Reinforcement Learning or Optimal Control

this problem is neglected, and data points are assumed to arrive at a predetermined

fixed clock cycle. However in many cases the practitioner has the ability of changing the

sampling frequency at which data are collected. The discussion in the following sections

shows that this choice has an impact on the estimation of quantities related to the system.

A common belief is that a finer time discretisation always leads to better estimation of

the system properties, however this is not true if a finite data budget is considered. The

latter is of course a meaningful assumption, since in practice, there are always limitations

on how much data can be collected, stored and processed.

There is a sizable literature on Reinforcement Learning in continuous-time systems (Doya,

2000; Lee and Sutton, 2021; Lewis, Vrabie, and Vamvoudakis, 2012; Bahl et al., 2020;

Kim, Shin, and Yang, 2021; Yildiz, Heinonen, and Lähdesmäki, 2021). But these previous

works have largely focused on deterministic dynamics, and do not investigate trade-o�s

in temporal discretisation that allow for its optimization. A smaller body of work has

considered learning continuous-time control under stochastic (Baird, 1994; Bradtke and

Du�, 1994; Munos and Bourgine, 1997; Munos, 2006), or bounded (Lutter et al., 2021)

perturbations, but with a focus on making standard learning methods more robust to

small time scales (Tallec, Blier, and Ollivier, 2019a), again without explicitly managing

the temporal discretisation level. There have also been works that characterize the

e�ects of temporal truncation in infinite horizon problems (Jiang et al., 2016; Droge

and Egerstedt, 2011). Despite these prevailing topics in the literature, in the following

analysis it can be appreciated that managing temporal discretisation o�ers substantial

improvements not captured by these previous studies.

In order to understand how sampling time a�ects the estimation of relevant quantities of

the system, a very simple setting is considered, composed of a Monte Carlo estimator for

the value-function of a Langevin system. The latter will translate in the a linear system

in discrete-time, which is thought to come from a linear controlled system, with a static

feedback from the state. This particular setting is called Linear Quadratic Regulator and

it is presented in Chapter 7. The LQR setting is a standard framework in control theory

and it gives rise to a fundamental Optimal Control problem (Lindquist, 1990), which



3.2 Policy evaluation in continuous LQR 37

has proven itself to be a challenging scenario for Reinforcement Learning algorithms

(Tu and Recht, 2018; Krauth, Tu, and Recht, 2019). The stochastic LQR considers

linear systems driven by additive Gaussian noise with a quadratic form for the cost,

which is sought to be minimised by means of a feedback controller. Although it is a

well-understood scenario and a closed-form of the optimal controller is known thanks

to the separation principle (Georgiou and Lindquist, 2013), only recently the statistical

properties of the long-term cost have been investigated (Bijl et al., 2016). The work in

our paper also closely related to the now sizable literature on Reinforcement Learning

in LQR systems (Bradtke, 1992; Krauth, Tu, and Recht, 2019; Tu and Recht, 2019a;

Dean et al., 2018; Dean et al., 2020; Fazel et al., 2018; Gu et al., 2016). These existing

works uniformly focused on the discrete time setting, although the benefits of managing

spatial rather than temporal discretisation has been considered (Sinclair, Banerjee, and

Yu, 2019; Cao and Krishnamurthy, 2020). Wang, Zariphopoulou, and Zhou, 2020 studied

the continuous-time LQR setting but it focused on the exploration problem rather than

the temporal discretisation.

The task of choosing the temporal resolution can also be understood as an experimental

design problem (Chaloner and Verdinelli, 1995). By choosing the time-discretisation,

the experimenter determines how to allocate measurements for a given data budget.

What is perhaps surprising of the following analysis is that, for any fixed design, there

is a constant approximation error (bias) that persists even when the number of data

points becomes infinite. At the same time, the bias can also be managed by scarifying

estimation error (variance).

3.2 Policy evaluation in continuous LQR

In the classical continuous-time Linear Quadratic Regulator (LQR), a state variable

x (t) œ R
d evolves over time t Ø 0, according to the following equation:

dx (t) = Ax (t) dt + Ba (t) dt + ‡dW (t) , (3.1)

in which the drift is assumed to be linear with respect to both x and a.

The dynamical model is fully specified by the matrices A œ R
d◊d, B œ R

d◊p and the

di�usion coe�cient ‡ œ R
d◊d̃, which is independent from x. The control input a (t) œ R

p

is given by a fixed policy fi, and W (t) is a Wiener process. As will always be assumed,

the state variable x (t) is fully observed.

For simplicity, dynamics are considered to start at x (0) = 0 œ R
d (Abbasi-Yadkori and

Szepesvári, 2011; Dean et al., 2020). The quadratic cost functional J which defines the



38 Temporal resolution

LQR problem (see Chapter 7) is defined for symmetric matrices Q œ R
d◊d, which is

positive semi-definite, R œ R
p◊p, which is positive definite, a system horizon 0 < · Æ Œ

and a discount factor “ œ (0, 1], as:

J· =

⁄ ·

0
“t

Ë
x (t)€ Qx (t) + a (t)€ Ra (t)

È
dt. (3.2)

In what follows, the class of admissible controllers given by static feedback of the state

will be considered, i.e.:

fi (x (t)) = Cx (t) , (3.3)

where C œ R
p◊d is the static control matrix yielding the control input. As will be recalled

later, it is well known that in infinite horizon systems with discounting, the Optimal

Control is of the form (3.3). Since the envisaged objective is the one of policy evaluation,

the specific choice of the policy plays no particular role in the following, therefore the LQR

dynamics in (3.1) are further reduced to a linear stochastic dynamical system described

by a Langevin equation. Using the definitions Ã := A + BC and Q̃ := Q + C€RC, both

the state dynamics and the cost can be expressed in a more compact form, as:

dx (t) = Ãx (t) + ‡› (t) , J· =

⁄ ·

0
“tx (t)€ Q̃x (t) dt, (3.4)

in which the formally incorrect simplification of considering the derivative of a Wiener

process as a zero-mean Gaussian white noise › (t) has been undertaken. The latter is

indeed not measurable with nonzero probability, however this does not play any role with

respect to what follows.

The expected cost V· is the expectation of the cost w.r.t. the Wiener process, i.e.

V· = E [J· ], and it represent the quantity to be estimated. In what follows, equation (3.4)

is analysed, therefore only the compact representation through the Langevin process is

considered.

Also, from now on, an explicit distinction will be made between the finite-horizon setting,

where · < Œ, “ Æ 1 and the cost is V· ; and the infinite-horizon setting where · = Œ,

“ < 1 and the cost is VŒ. Note indeed that in the infinite-horizon case, a discount factor

turns out to be necessary to yield a finite value-function, since with stochastic dynamics

the running cost will never be exactly zero, and integrating for an infinite time the result

would necessary be infinite.



3.2 Policy evaluation in continuous LQR 39

3.2.1 Monte Carlo estimation

The main objective of policy evaluation is to estimate the expected cost from discrete-time

observations. To this end, a uniform discretisation of the interval [0, T ] is considered,

with increment �t, resulting in N = T/�t time points, defined as tk := k�t for

k œ {0, 1, . . . , N ≠ 1}.

Here, the estimation horizon T is chosen by the practitioner, in such a way that T < Œ

and T Æ · - where for simplicity it is assumed that T/�t is an integer. With the N

points sampled from one trajectory, a standard way to approximate the integral in (3.4)

is given by the Riemann sum estimator :

Ĵ (�t) =
N≠1ÿ

k=0

“tk�tx (tk)€ Q̃x (tk) . (3.5)

In turn, in order to estimate V· , M independent trajectories with cost estimates Ĵ1, . . . , ĴM

are averaged, resulting in the Monte Carlo estimator given by:

V̂M (�t) =
1

M

Mÿ

i=1

Ĵi (�t) =
1

M

Mÿ

i=1

N≠1ÿ

k=0

“tk�tx (tk)€ Q̃x (tk) (3.6)

The ultimate goal of this Chapter is to understand the mean-squared error (MSE) of the

Monte Carlo estimator in (3.6), for a fixed system specified by Ã, ‡ and Q̃. This is done

with the objective to inform an optimal choice of the step-size parameter �t, under the

assumption of a a fixed data budget B = M · N .

Note indeed that one degree of freedom can be exploited to choose M and N . For

simplicity, in the finite-horizon setting, the estimation grid is required to be chosen so

that the full episode [0, · ] is covered, which leads to the constraint T = · = N · �t. The

MSE is characterised as the least-squares error surface as a function of �t and B, given

by:

MSET (�t,B) = E

51
V̂M (�t) ≠ VT

22
6

. (3.7)

In the infinite horizon setting, i.e. · = Œ, the estimation horizon T is a free variable chosen

by the experimenter which determines the number of trajectories through M = B

N = B�t
T .

The mean-squared error for the infinite horizon setting is then given as a function of �t,

B, and T :

MSEŒ (�t,B, T ) = E

Ë
(V̂M (�t) ≠ VŒ)2

È
. (3.8)



40 Temporal resolution

3.3 Characterizing the Mean-Squared Error

In what follows the objective is then to characterize the least-squares error of the

Monte Carlo estimator as a function of the step size �t and the total data budget B,

as well as the estimation horizon T in the infinite horizon setting. These results will

uncover a fundamental trade-o� for choosing an optimal step size that leads to a minimal

mean-squared error.

One-Dimensional Langevin Process In order to simplify the exposition while

preserving the main ideas, first the results for the 1-dimensional case will be presented.

The analysis for the vector case exhibits the same quantitative behavior but is significantly

more involved. Therefore, for each setting, primary importance will be given to the scalar

case, for which it is easier to interpret the results, and then the vector case will also be

discussed.

Let then x (t) œ R be the scalar state variable that evolves according to following the

Langevin equation:

dx (t) = ux (t) dt + ‡dW (t) . (3.9)

In equation (3.9), u œ R is the drift coe�cient and W (t) is a Wiener process with scalar

parameter ‡ > 0. As already seen, the latter is the prototypical setting for evaluating a

fixed deterministic policy in the linear quadratic regulator (LQR) framework.

Throughout the whole chapter, a stable - or marginally stable - closed-loop is assumed

for the system under analysis, i.e., u Æ 0. The realisation of the stochastic process, given

as a sample path in episode i = 1, . . . , M , is denoted as xi (t), where it is always assumed

that the starting state is x (0) = 0 and time is t œ [0, T ]. The expected cost then can be

written as:

V· = E

C⁄ ·

0
“tr2

i (t) dt

D
=

⁄ ·

0
“tqE

Ë
x2

i (t)
È

dt, (3.10)

in which ri (t) = qx2
i (t) is the quadratic cost function for a fixed q > 0.

Note that Ji is a random variable with respect to the stochasticity of the system evolution;

while the expected cost V is the expectation V = E [Ji], which is deterministic.

The Riemann sum that approximates the cost attained by the system in episode i œ [M ],

for the scalar case, is given by:

Ĵi (�t) =
N≠1ÿ

k=0

�tqx2
i (tk) . (3.11)



3.3 Characterizing the Mean-Squared Error 41

Given data from M episodes, the Monte-Carlo estimator has the same formulation as in

the general case:

V̂M (�t) =
1

M

Mÿ

i=1

Ĵi (�t) . (3.12)

Since the square of the cost parameter q2 factors out of the mean-squared error in (3.7)

and (3.8), the latter is taken as q = 1 in what follows, without loss of generality.

3.3.1 Finite-horizon, undiscounted

Recall that in the finite-horizon setting we set the system horizon · and estimation

horizon T to be the same. This implies that the estimation grid covers the full episode,

i.e. �t · N = T = · . Perhaps surprisingly, the mean-squared error of the Riemann

estimator for the Langevin system (3.9) can be computed in closed form. The result takes

its simplest form in the finite-horizon, undiscounted setting where “ = 1 and · < Œ.

This result is summarized in the next theorem.

Theorem 3.3.1 (Finite-horizon undiscounted MSE). In the finite-horizon and undis-

counted setting, the mean-squared error of the Monte Carlo estimator is given by:

MSET (�t,B) = E1 (�t, T, u) +
E2 (�t, T, u)

B
, (3.13)

where

E1 (�t, T, u) =
‡4

1
≠2u�t + e2u�t ≠ 1

22 1
e2uT ≠ 1

22

16u4
!
e2u�t ≠ 1

"2 , (3.14)

E2 (�t, T, u) =
‡4T

Ë
�t

1
e2uT ≠ 1

2 1
4e2u�t + e2uT + 1

2
≠

1
e2u�t ≠ 1

2 1
e2u�t + 4e2uT + 1

2
T

È

2u2
!
e2u�t ≠ 1

"2 .

(3.15)

The proof involves computing the closed-form expressions for the second and forth

moments of the random trajectories xi (t) and is provided in appendix (A.2 and A.3.1).

While perhaps daunting at first sight, the beauty of the result is that it exactly charac-

terizes the error surface as a function of the step size �t and the budget B.

In principle, for any fixed B, it is possible to optimize �t in order to minimize the

mean-squared error by searching over possible step-sizes �tm = T/m for m = 1, . . . ,B,

provided knowledge of the system parameters u, ‡ and fixed horizon T . On the other

hand, the practical scope of this procedure is somewhat limited.

On the upside, as it is shown next, the underlying trade-o�s can be characterized and



42 Temporal resolution

understood closely in several di�erent regimes. In Section 3.4, it is evidenced through

numerical experiments how these insights translate into simulations for linear and non-

linear systems.

In the case of marginal stability (u = 0), a simpler form of the MSE emerges which is

easier to interpret, therefore the particular case of u = 0 is considered separately. Taking

the limit u æ 0 of the previous expression gives the following result:

Corollary 3.3.2 (MSE for marginally stable system). Assume a marginally stable system,

u = 0. Then the mean-squared error of the Monte-Carlo estimator is

MSET (�t,B) =
‡4T 2

4
· �t2 +

‡4T 5

3
·

1

�tB
+

‡4T 2(≠2T 2 + 2�tT ≠ �t2)

3B
. (3.16)

The first part of the expression can be understood as a Riemann sum approximation

error, which is controlled by the �t2 term. The second part corresponds to the variance

term, that decreases with the number of episodes as 1
M = T

B�t . The remaining terms are

lower-order terms for small �t and large B.

For a fixed data budget B, the step size �t can be chosen to balance these two terms (up

to lower-order terms in B), as:

�tú (B) := arg min
�t>0

MSET (�t,B) ¥ T

3
2

3B

41/3

. (3.17)

From this, the optimal number of episodes can be computed, yielding:

Mú ¥
B�t

T
=

3
2

3

41/3

B
2/3. (3.18)

Note that under the assumption B ∫ 1, it also hold true that Mú ∫ 1. This is in

agreement with the implicit requirement that �t is big enough to consider at least one

whole trajectory, i.e. �t > T/B.

Consequently, the mean-squared error for the optimal choice of �t (up to lower-order

terms in B) is

MSET (�tú,B) ¥ 3 (3/2)1/3 ‡4T 4
B

≠2/3. (3.19)

In other words, the optimal error rate, as a function of the data budget, is O
1
B

≠2/3
2
.

Next, a similar form for �tú is obtained for the general case where u Æ 0.

Corollary 3.3.3 (Optimal step size). For B ∫ 1, the optimal step-size (up to lower-order



3.3 Characterizing the Mean-Squared Error 43

terms in B) is given by:

�tú (B) ¥

Q
a≠

T
1
4uT ≠ e4uT + e2uT (8uT ≠ 4) + 5

2

2u2(e2uT ≠ 1)2

R
b

1/3

B
≠1/3. (3.20)

Moreover, MSET (�tú,B) Æ O
1
B

≠2/3
2
.

Proof. From Theorem 3.3.1, it is possible to compute the leading terms in �t of the

least-squares error as:

E1 (�t, T, u) =
‡4

1
e2uT ≠ 1

22

8u2
�t2 + O

1
�t3

2
, (3.21)

E2 (�t, T, u)

B
= ≠

‡4T
1
4uT ≠ e4uT + e2uT (8uT ≠ 4) + 5

2

8u4
·

1

�tB
+ O (1/B) ; (3.22)

then solving for the optimal �tú yields the result.

3.3.2 Discounted cost

Adding discounting (“ < 1) in the finite-horizon setting does not fundamentally change

the results, however, the exact expression for the mean-squared error gets significantly

more involved. In the regime where �t is small and B is large, a Taylor expansion

characterizes the error surface as follows:

MSET (�t,B, “) ¥
‡4T

log (“) (u + log (“)) (2u + log (“))2 ·
1

�tB
+

+
‡4“2T

1
e2uT ≠ 1

22

16u2
· �t2+

+
“T

1
e2uT ≠ 1

2 1
“T

1
e2uT (2u + log (“)) ≠ log (“)

2
≠ 2u

2

48u2
· �t3+

+
‡4

144
· �t4 (3.23)

The approximation shows only the lowest order terms for 1/ (�tB), “T and �t. For

details on the derivation, the reader is referred to Lemma A.3.1 in appendix (A.3.2).

The above result shows that the main trade-o� between �t and B persists also for the

discounted objective, as long as “T is treated as a constant relative to �t2 and 1/ (�tB).

In the limit where “T becomes small - e.g. “T = o
!
�t4

"
) - the nature of the trade-o�

changes in that the approximation error improves to O
!
�t4

"
. This can be understood

from the fact that under geometric discounting combined with a decaying process, the



44 Temporal resolution

sum of N = T/�t estimation errors does not su�er a factor N , thereby removing a factor

of 1/ (�t) from the (non-squared) approximation error - see the appendix (A.1) for a

more detailed explanation.

Vector Case Also for the vector case (d > 1) it is possible to exactly characterise the

mean-squared error of the Monte-Carlo estimator for the value-function of the Langevin

system in (3.9). The closed-form computations will however require to assume that the

matrix Ã governing the behaviour of the system is diagonalisable, and stable. The latter

is a rather mild assumption, as it is su�cient for the system in (3.1) to be controllable to

ensure satisfiability of this condition. Controllability in fact translates into the possibility

of freely adjusting the eigenvalues of the closed-loop matrix Ã through the choice of the

controller K. This means that it is always possible to choose eigenvalues to be distinct

from each other, so that Ã is diagonalisable.

The explicit form of the mean-squared error, although actually computable, is given by a

long expression which is not easy to interpret, and is therefore deferred to the appendix

(A.4). The following theorem summarizes the result for the vector case in the form of a

Taylor expansion for small �t and large B.

Theorem 3.3.4 (MSE in vector case). Assume Ã is diagonalisable, with eigenvalues

⁄1, . . . , ⁄n. The mean-squared error of the Monte-Carlo estimator in the finite-horizon,

undiscounted setting, is

MSET (�t,B) = E1 (�t, T, ⁄1, . . . , ⁄n) +
E2 (�t, T, ⁄1, . . . , ⁄n)

B
(3.24)

where

E1 (�t, T, ⁄1, . . . , ⁄n) = (c1 + c1 (⁄1, . . . , ⁄n) O (T )) ‡4T 2
�t2 + O

1
�t3

2
(3.25)

E2 (�t, T, ⁄1, . . . , ⁄n)

B
= (c2 + c2 (⁄1, . . . , ⁄n) O (T )) ‡4 T 5

�tB
+ O (1/B) (3.26)

The proof with the exact derivation of the constants c1, c1 (⁄1, . . . , ⁄n), c2, c2 (⁄1, . . . , ⁄n)

can be found in appendix (A.4.1).

Note that the terms composing the MSE are very similar to the ones obtained in the

scalar analysis. Indeed by comparing them with the expressions in (3.21) and (3.22), all

the terms has the same order for �t,B and T . The only di�erence is that in the vector

case, cumbersome eigenvalue-dependent constants are involved, whereas in the scalar

case the result can more easily be expressed in terms of the system parameter u.



3.3 Characterizing the Mean-Squared Error 45

Since the optimal choice for �t is given by balancing the trade-o� between the two terms

above, E1 for the approximation error and E2 for the variance term, its expression is

analogous to the scalar case, as shown by the following corollary.

Corollary 3.3.5 (Optimal step size in vector case). Under the assumption that B ∫ 1,

the optimal step-size for the vector case is given by:

�tú (B) =

3
c1 + c1 (⁄1, . . . , ⁄n) O (T )

c2 (⁄1, . . . , ⁄n) + c2 (⁄1, . . . , ⁄n) O (T )

41/3

TB
≠1/3 + o

1
B

≠1/3
2

(3.27)

The constants in Corollary 3.3.5 are clearly the same as in Theorem 3.3.4.

Clearly, by removing the diagonalisability assumption, the computations become more

and more tedious. However, general bounds holding for the general case of a vector

Langevin process with a stable matrix Ã are provided in appendix (A.4.3). These results

show that the mean-squared error lies in between two expressions with the same order in

�t and B, whose di�erence depends only on T , and on the eigenvalues of the matrix. Both

the lower and upper bounds are convex functions of �t, narrowing down the behaviour of

the step size in this general case. In particular, the lower bound can always be expressed

in terms of the mean-squared error for the scalar case, emphasizing the importance of

examining this special case.

Although the convex behaviour is only proven for the case of a Langevin system, the

experimental results provided in Section 3.4 exhibit a similar trade-o� for general nonlinear

stochastic systems.

From the present analysis, it is possible to derive guidelines on how to set the step-size

even for the case of nonlinear and unknown dynamics. Although the sharp order in B for

the optimal step-size holds for the case of linear dynamics only, we empirically show in

Section 3.4 that a similar trade-o� carries on to nonlinear dynamics, and �t = cTB
≠1/3

is a solid choice for the more general setting. While the constant c depends on the

controlled dynamics (therefore on both the free dynamics and the policy), c could be

estimated with a small budget, in order to properly scale the value of �t for a large-scale

experiment. This approach does not require the knowledge of the dynamics beforehand,

nonetheless it provides a systematic way of setting the step size �t for any given scenario.

3.3.3 Infinite-horizon setting

The main characteristic of the finite-horizon setting is the trade-o� between approxi-

mation and estimation error. Recall that in the infinite-horizon setting (· = Œ), the



46 Temporal resolution

estimation horizon T < Œ becomes a free variable that is chosen by the experimenter

to define the measurement range [0, T ]. Consequently the mean-squared error of the

Monte-Carlo estimator su�ers an additional truncation error from using a finite Riemann

sum with N = T/�t terms as an approximation to the infinite integral that defines the

cost VŒ.

More precisely, the expected cost can be decomposed as a part which is actually approxi-

mated, and the truncation error, as:

VŒ = VT + VT,Œ, (3.28)

where VT =
s T

0 “t
E

#
x2 (t)

$
dt as before, and

VT,Œ =

⁄ Œ

T
“t
E

Ë
x2 (t)

È
dt =

‡2“T

2u

A
1

log (“)
≠

e2uT

log (“) + 2u

B
. (3.29)

The integral is a direct calculation based on Lemma A.2.1, provided in the appendix

(A.2). Thus, the mean-squared error becomes:

MSEŒ (�t,B, T ) = E

51
V̂M (�t) ≠ V

22
6

(3.30)

= MSET (�t,B) ≠ 2E
Ë
V̂M (�t) ≠ VT

È
VT,Œ + V 2

T,Œ, (3.31)

where MSET (�t,B) = E

Ë
(V̂M (�t) ≠ VT )2

È
is the same mean-squared error of the

discounted finite-horizon setting.

Note that the term V 2
T,Œ is neither controlled by a small step-size �t nor by a large

data budget B, hence results in the truncation error from finite estimation. Fortunately,

the geometric discounting ensures that V 2
T,Œ = O

1
“2T

2
, which is not unexpected given

that the term constitutes the tail of the geometric integral. In particular, by setting

T = c · log (B)/log (1/“) for large enough c > 1, it su�ces to ensure that the truncation

error is below the estimation variance. The latter result is summarised in the next

theorem.

Theorem 3.3.6 (Infinite-horizon, discounted MSE). In the infinite-horizon, discounted

setting, the mean-squared error of the Monte-Carlo estimator is given by:

MSEŒ (�t,B, T ) = ‡4 T c (u, “) ·
1

�tB
+

‡4

144
· �t4 + O

1
�t5

2
+ O

1
B

≠1
2

(3.32)

where c (u, “) = 1
log(“)(u+log(“))(2u+log(“))2 and it is assumed that “T = o

!
�t4

"
.



3.3 Characterizing the Mean-Squared Error 47

It follows that the optimal choice for the step-size is

�tú (B, T ) ¥ (36 T c (u, “) /B)1/5 , (3.33)

while the minimal least-squares error is

MSEŒ (�tú, T,B) Æ O
1
(T c (u, “) /B)4/5 + “2T

2
(3.34)

Lastly, note that if “T is treated as a constant, the cross term E

Ë
V̂M (�t) ≠ VT

È
VT,Œ

in (3.31) introduces a dependence of order O
1
�t“2T

2
to the mean-squared error. In

this case, the overall trade-o� becomes MSEŒ (�t,B, T ) ¥ O
1
1/ (�tB) + “2T (1 + �t)

2
,

and the optimal step-size is �tú ¥ B
≠1/2.

Vector case As happened before, the mean-squared error for the vector case can

be explicitly computed in closed-form assuming that A is diagonalizable. Once again

the result reflects the same behaviour as in the scalar case. Conveniently, the MSE

in Theorem 3.3.6 has been expressed with sharp terms in �t and B, while confining

the dependence on the system parameter u within the constant c, and the impact of

higher-order terms in T within VT,Œ. This allows to state exactly the same result for the

vector case, in which the constant will now depend on the eigenvalues of the matrix Ã,

as well as the discount factor “. These are provided in full detail in appendix (A.4.2).

Corollary 3.3.7. For Ã diagonalisable, with eigenvalues given by ⁄1, . . . , ⁄n, the mean-

squared error of the Monte-Carlo estimator in the infinite-horizon, discounted setting

is

MSEŒ (�t,B, T ) = c3 (⁄1, . . . , ⁄n, “) ‡4 T

�tB
+

‡4

144
�t4 + O

1
�t5

2
+ O

1
B

≠1
2

, (3.35)

under the assumption that “T = o
!
�t4

"
.

The di�erent terms in Corollary 3.3.7 correspond to the estimation error, the approx-

imation error and the truncation error as in the scalar case. The optimal step size choice

exhibits the same dependence on T and B as in the scalar case, but with a di�erent

constant depending on the eigenvalues. Lastly, the general case for Langevin processes

with a stable matrix Ã is discussed in Appendix A.4.3.





3.4 Towards nonlinear systems: a numerical study 49

u = ≠1. The ground truth V is calculated analytically using equation (A.37). The figure

illustrates how the error changes varying the data budget, as B = {212, 213, 214, 215, 216},

and also shows the improvement that can be obtained by increasing the latter budget.

Indeed as B increases, both the error and and the optimal step size �tú decrease. This

result aligns with the analysis shown in Theorem 3.3.1 and Corollary 3.3.3.

Fig. 3.1b and 3.1c show the experimental results for both undiscounted finite-horizon

and discounted infinite-horizon d-dimensional systems. In order to compute V for the

undiscounted finite-horizon system, the Riccati Di�erential Equation has been numerically

solved using backwards induction as is standard practice. For the discounted infinite-

horizon system, the solution of Lyapunov equation has been retrieved using a standard

solver. Note that in the latter experiments the dimension is d = 3.

By fixing all parameters and running experiments on the system Ã = cI3, where c œ

{≠0.2, ≠0.5, ≠1, ≠2, ≠4}, stable dynamics are produced for the closed loop, with di�erent

eigenvalues.

Results in both plots suggest that the impact of these eigenvalues of Ã on �tú is mild

and that the eigenvalue-dependent constants in Corollary 3.3.5 do not significantly a�ect

the optimal step-size �tú. However, the eigenvalues do influence the values of the MSE

achieved in each system: the latter decreases as the magnitude of the eigenvalue increases.

In the infinite horizon system, the horizon needs to be large enough to manage truncation

error while simultaneously being small such that multiple rollouts can be performed. In

the experiments “ has been chosen large, so that a good estimate of V can be learnt.

Also the e�ective horizon is set as T = 1/ (1 ≠ “).

3.4.2 Nonlinear systems

Here it is empirically shown that the trade-o� discovered for linear quadratic systems car-

ries over to nonlinear systems, even with more complex cost functions. Several simulated

nonlinear environments are considered: two from OpenAI Gym (Brockman et al., 2016),

i.e., Pendulum and BipedalWalker, and six from MuJoCo (Todorov, Erez, and Tassa,

2012), including InvertedDoublePendulum, Pusher, Swimmer, Hopper, HalfCheetah

and Ant. Note that the original environments have a fixed temporal discretisation ”t,

pre-chosen by the designer, which is not the same among di�erent tasks.

To measure the e�ect of �t, first all environments have been modified to run at a small

discretised time ”t = 0.001 as a proxy to the underlying continuous-time systems. Then,

a nonlinear policy, parameterized by a neural network, is trained for each system, through

the DAU algorithm (Tallec, Blier, and Ollivier, 2019b). The latter policy is used to

gather data from the continuous-time proxy at intervals of ”t = 0.001, which are then





4
Learning Koopman from data

In order to learn the Koopman operator from data, two simplifications are considered:

the reconstruction will yield a discrete-time model, and the operator will be approximated

with a finite-dimensional version. In particular, the latter is a necessary assumption in

order to deal with a meaningful problem in which a finite amount of data are provided.

This Chapter then discusses first the discrete-time setting and the associated Koopman

operator, highlighting the di�erences with the continuous-time version in Chapter 2. Then

the general framework for the finite-dimensional approximation is presented (Mauroy,

MeziÊ, and Yoshihiko, 2020), and it is furthermore specialised for the two most widespread

approaches to approximate the Koopman operator: Dynamic Mode Decomposition (Tu

et al., 2014) and Extended Dynamic Mode Decomposition (Williams, Kevrekidis, and

Rowley, 2015).

4.1 From discrete samples to discrete systems

In the previous chapter a fundamental trade-o� has been discovered and analysed, which

led to the characterisation of an optimal sampling time to collect observations from a

continuous-time dynamical system. Although the previous result has only been shown

to hold true in the case of a Monte Carlo estimator for the purpose of reconstructing

the value-function of the system, there is supporting evidence to suggest that a similar

trade-o� would appear also for other estimators, e.g. for a maximum likelihood estimator

identifying the parameters of the system (Aït-Sahalia, 2002).

In light of the result above, in what follows it will always be assumed to have data

sampled at the best possible fixed time interval for the task at hand. This allows the

estimation to be carried out in a simpler way, because under these premises the dynamical

system to be estimated is totally independent from time, and maps any point of the state

space into its evolution after the fixed sampling time, which is equal for all samples.



52 Learning Koopman from data

Indeed from the perspective of discrete-time dynamical system, dynamics evolve at

separate points in time, because time is considered a discrete variable. Hence the state of

the system is defined only for these discrete values, and there is no evolution in between,

meaning that the time variable belongs to a set which is not dense in R, e.g. N.

Moreover, there is no characterisation of the vector field, again for the same reason that

a di�erential description would not be defined. The only possible characterisation is the

integral description, which gives the state at the next time step from the knowledge of

the current state. By assuming a fixed interval between time steps, this is the same

characterisation given by the flow, so there is no distinction in this setting:

xk+1 = f (xk) (4.1)

= � (xk) , (4.2)

meaning that the characterisation of the flow is the same as the one given by the discrete

vector field.

Assuming that the discrete-time version is a sampled version of continuous-time dynamics,

it is clear that the discrete-time description of a dynamical system is inherently simpler

than the continuous-time characterisation, as from the latter it is always possible to

recover the former by integrating the di�erential dynamics in the fixed time interval.

Consequently, also the Koopman description of the same system will be less general when

considered in discrete time than in continuous time.

However the estimation relies only on samples from the systems, which inherently yields

a discrete description of the system under analysis, so that the direct derivation of a

continuous-time model will just leverage some kind of prior knowledge in order to fill the

gaps between samples.

In the field of System Identification, the main task is to reconstruct the dynamics of

the system, given discrete samples of the transitions (Söderström and Stoica, 1988;

Ljung, 1999; James et al., 2013). This is classically done through the Prediction Error

Minimisation method, while assuming a fixed model class which should represent the

underlying system. Standard parameterised classes are given by the ARX, ARMAX,

OE and the Box-Jenkins models, which indeed allows to reconstruct both discrete and

continuous dynamics. These models constrain the representation of the system to make

the problem feasible, so that it is possible to generalise the estimation to yield continuous

dynamics. One of the most widespread non-parametric alternatives is represented by

kernel methods, which leverage a di�erent kind of prior knowledge that can be specifically

adapted to the problem under study and allows for greater flexibility. This approach will

be reviewed in Chapter 5.



4.2 Discrete-time Koopman operator 53

The identification through a structured model, which maintain versatility but restrict

the hypothesis class for the regression, allows indeed the estimation to yield a continuous

time dynamics, generalising over time. This is particularly clear in the parameterised

case, in which discrete-time samples are used to estimate parameters, and the same model

with the same parameters can be made dependent on time, so that a prediction for any

time interval can be obtained, even if the regression made use only of data coming from

a fixed sampling time.

For instance, a very strict assumption on the model would be to consider the true

dynamics as linear, in which case the relationship between the vector field and the flow

is known and given by an exponential mapping. This allows to first reconstruct the

discrete-time flow, and then to generalise it to any time interval, through the description

of the vector field. Given that the Koopman description of any system is always linear,

the latter approach is exploited in Mauroy and Gonçalves, 2020 in order to retrieve the

vector field for general non linear systems.

Nonetheless the two perspective of discrete-time and continuous-time system in this case

yield the same amount of information, which is the one given by the discrete samples,

and the apparent greater generality of the continuous-time model is just due to the prior

knowledge. This is evident when the reconstructed model will only be used to predict

the outcome of the system for a fixed interval, which is the same at which samples have

been collected. There would be then no di�erences between the two descriptions.

Furthermore, there may be less pragmatic and more philosophical reasons to always

consider discrete-time dynamical systems, especially in fields related with computer

science, where nothing can physically go under the machine’s clock.

That is why, from this moment onward, only the discrete-time formulation of the Koopman

operator will be considered. Although the sampled version can be fairly regarded as less

general, as it does not describe the evolution for the whole real parameter t, this is not true

for arbitrary discrete-time systems. They indeed allow for a di�erent kind of generality, as

not all discrete-time system can be obtained by integration of a continuous-time system

over the time jump. The restriction to discrete-time system can therefore be seen also as

a deliberate choice of design.

4.2 Discrete-time Koopman operator

Consider then a discrete-time, autonomous and time-invariant dynamical system defined

by the generic nonlinear map f : X æ X, where X is a finite-dimensional metric space.

The dynamics are described through orbits of the state, �k≠k0 (x0), where xk0
= x0 is



54 Learning Koopman from data

the initial condition. The same customary notation as in Chapter 2 will be adopted also

for the discrete-time setting, i.e., if not otherwise specified, k0. Moreover, in this case

if the superscript is omitted, it is assumed that k = 1 so that the flow represents the

evolution over 1 sampling time.

The Koopman operator framework, as in the continuous-time case, provides an alternative

description of the latter system based on the propagation of observables (see Defini-

tion 2.2.1), whose evolution is indeed given by the action of the composition operator

associated with the system.

Definition 4.2.1. Let � be the flow induced by a discrete-time dynamical system.

Consider a Banach space � of observables Â : X æ R closed under composition, i.e.

Â¶� (·) œ �. The Koopman operator associated with the discrete-time flow � (·) : X æ X

is defined as:

U [Â] (x) := Â ¶ � (x) = Â (� (x)) (4.3)

’Â œ �, ’x œ X.

The above definition for the Koopman operator associated with a discrete-time system

is essentially equivalent to the definition for the continuous-time operator, in which the

parameter t generating the family of operators is fixed to the constant sampling interval

�t.

The latter makes it clear why the discrete-time version is less informative than the

continuous one, since the former case can describe evolution only at predefined time

instants, while the latter does not have any restrictions

The discrete-time version is clearly still a linear operator, being a special case of the

continuous-time version. However the semigroup property can no longer hold, since it is

no longer a parametric family of operators, which also means that there is no generator

of the discrete-time Koopman operator. The latter would indeed correspond to the

description obtained through the vector field, and this is not possible for discrete-time

system, as already underlined.

The definition for the spectrum of the discrete-time operator has the same properties as

in the continuous-time case. Also the characterisation of the Koopman modes remains

unchanged. Instead, for the the eigendecomposition, there are slight di�erences, in the

form of the eigenvalues.

Definition 4.2.2 (Discrete-time eigenpair). The pair (Ï⁄, ⁄) is composed of an eigen-

function Ï⁄ and the corresponding eigenvalue ⁄ of the Koopman operator associated



4.2 Discrete-time Koopman operator 55

with the discrete-time map � if they satisfy

U [Ï⁄ (·)] = Ï⁄ (� (·)) = ⁄Ï⁄ (·) (4.4)

Ï⁄ œ � \ 0, ⁄ œ C.

The relationship between the eigenvalues of the discrete-time Koopman operator and

its continuous-time version is the same as between the eigenvalues of a linear discrete-time

system and a continuous one.

The duality characterisation also holds without particular modifications with respect to

the continuous-time case. In particular the discrete time Perron-Frobenius operator will

propagate measures through the considered discrete-time dynamical system, and they

will be available only for the chosen time intervals.

The definition of the stochastic Koopman operator for discrete-time system is analogous

to the continuous one, since the former is again just a particular case of the latter. By

considering indeed a discrete-time Markov chain evolving according to a discrete-time

stochastic dynamical system, which is in this case explicitly denoted by f , it holds:

xk+1 = f (xk) , (4.5)

so that the action of the Koopman operator remains equal to the continuous case, i.e.:

U [Â (xk)] = E [Â (xk+1)] . (4.6)

However, some care needs to be taken in the definition of the stochastic dynamics. In

particular, discrete-time Markov chain are considered, which are stochastic processes for

which the following Markov property holds (Pavliotis, 2014).

Definition 4.2.3 (Markov property). A stochastic process x is a Markov chain if

P

1
xk+k̃ | {xl, l Æ k}

2
= P

1
xk+k̃ | xk

2
(4.7)

’k̃ Ø 0.

The latter definition enables to obtain an equation for the transition probability of

a discrete-time Markov chain. Its evolution is completely characterised by the initial

distribution and the transition function.



56 Learning Koopman from data

4.3 Finite-dimensional approximations

As long as numerical methods are concerned, there is no hope to learn an actual infinite-

dimensional operator, even if its simpler description in discrete-time is considered. Trough

data coming from the system, it is indeed possible to collect only a finite amount of

information, which then can be used for the purpose of system identification. However

the latter will never be enough, and only in the limit for the data budget going to infinity

there would be the possibility of recovering an exact description of the system.

However, the data budget is always assumed to be finite. Moreover, observations from

dynamical systems are often corrupted by noise, so that even in the case of an infinite

data budget the infinite-dimensional problem would be unfeasible, without resorting to

prior information for the estimation.

In this section are then discussed properties of a generic finite-dimensional approximation.

As already underlined, this is a crucial step in order to understand benefits and limitations

of data-driven methods which allows to estimate only a finite-dimensional version of the

Koopman operator and make predictions through it.

Consider a N -dimensional subspace �D µ �, spanned by the basis functions in a

dictionary of observables D = {Âj}N
j=1, along with a projection operator P�D

: � æ �D,

mapping from the general Banach space of observables onto the finite-dimensional

subspace �D. A finite-dimensional approximation of the Koopman operator UD is then

given by:

UD = P�D
U |

�D
: �D æ �D (4.8)

where U |
�D

is the restriction of the Koopman operator to the space �D.

Clearly, even if the infinite-dimensional space of observable � is invariant under the

action of the Koopman operator, the subspace given by �D in general is not, therefore

the projection is needed in order to cast the output in �D.

Define the vector of basis functions which make up the dictionary D as

DÂ (·) :=
Ë
Â1 (·) . . . ÂN (·)

È
, (4.9)

stacking in a row the N observables, in which usually the argument is dropped to ease

the notation if it is not worth specifying.

The function resulting from the action of the finite-dimensional operator in (4.8) will

surely belong to the linear span of the functions contained in the dictionary, so that the

projection operator can be decomposed as

P�D
= DÂE , (4.10)



4.3 Finite-dimensional approximations 57

in which the map E : � æ C
N is a bounded linear operator which yields the coordinates

of the projection of Â in the basis {Âj}N
j=1, and DÂ : CN æ �D provide the basis for

the latter coe�cients. In particular, if � is a Hilbert space and P�D
is an orthogonal

projection, then E [Â] = 0 for all Â ‹ �D.

Since the projection P�D
is just an identity operator on �D, it holds that:

UD [Â] = P�D
U |

�D
[Â] = P�D

UP�D
[Â] = DÂEU DÂE [Â] = DÂUE [Â] (4.11)

’Â œ �D, where

U := EU DÂ (4.12)

is still a finite-dimensional approximation of the Koopman operator U : C
N æ C

N ,

defined on another space, the space of coe�cients. The latter indeed maps the coe�cients

for the original observable Â into coe�cients of the projection of the composition Â ¶ f in

the same subspace given by the linear span of the basis functions given by D. Therefore it

actions does not di�er from the one provided by UD. They perfectly match the behaviour

of the original Koopman operator in the case that both the input and the output functions

belong to �D. If instead the composition does not belong to �D, its projection in the

latter space is then returned.

A direct connection between the finite-dimensional operator acting on coe�cients U and

the original operator U can be given through the map E , as:

EU [Â] = UE [Â] . (4.13)

For Â = Âi it holds that E [Âi] = ei - where ei is the i-th unit vector - so that the i-th

column of U contains the coordinates of P�D
U [Âi] = UD [Âi] in the basis function given

by D.

The finite-dimensional operator U is exactly the maps that Extended Dynamic Mode

Decomposition aims to estimate, as reviewed in Subsection 4.4.2.

4.3.1 Eigendecomposition of finite-dimensional approximations

The eigendecomposition of a finite-dimensional operator is simpler with respect to the

infinite-dimensional case, because its spectrum is only composed of eigenvalues. However

it is not obvious to state that there is a clear relationship between the eigendecomposition

of the Koopman operator and the eigenpairs of its matrix approximation given by UD.

Clearly it would be desirable that the eigenvalues and the eigenvectors of UD somehow

yielded an approximation of the eigenvalues and the eigenfunction of U .



58 Learning Koopman from data

Unfortunately it turns out that the eigenfunctions Ï̃⁄i
of the finite-dimensional operator

UD are not necessarily a projection of the corresponding eigenfunctions Ï⁄i
of the original

operator U onto the subspace �D in which the approximation is defined. The latter is

indeed true only when the Koopman operator commutes with the projection operator

P�D
, i.e., when the subspace given by the linear span of basis function is invariant under

the action of the whole operator U . In that case it holds:

Ï̃⁄i
= P�D

[Ï⁄i
] = Ï⁄i

. (4.14)

However, note that the equality defining the eigenpair in the finite-dimensional space,

i.e.,

UD [Ï̃⁄i
] = ⁄̃iÏ̃⁄i

(4.15)

along with (4.10) and (4.11), implies that

DÂUE [Ï̃⁄i
] = ⁄̃iDÂE [Ï̃⁄i

] (4.16)

which in turn is equivalent to

UE [Ï̃⁄i
] = ⁄̃iE [Ï̃⁄i

] . (4.17)

The latter equation shows that the eigenvalues of the finite-dimensional approximation

of the Koopman operator UD are in fact also the eigenvalues of the coe�cient matrix

U ; and that the corresponding eigenfunctions of UD are realised through the coe�cients

given by the right eigenvectors in the basis provided by the dictionary D.

The same relationship holds between Koopman modes and left eigenvectors.

A more precise discussion on the convergence on the eigenvalues of the finite-dimensional

approximation to those related to the original operator, can be found in a recent work by

Korda and MeziÊ, 2018.

4.4 Data-driven approximations

The approach described in the previous section allows to retrieve a finite-dimensional

approximation of the Koopman operator, so that predictions for the evolution of any

observable are quite straightforward.

There is another line of methods which directly seek instead an approximation of eigen-

values and then obtain eigenfunctions and Koopman modes through projection theorems

(Arbabi and MeziÊ, 2017a; BudiöiÊ, Mohr, and MeziÊ, 2012; MeziÊ, 2005; MeziÊ, 2013;



4.4 Data-driven approximations 59

MeziÊ and Banaszuk, 2004; Mohr and Mezi’c, 2014). The latter make use of generalised

Laplace Averages and its framework is more suitable for the purpose of analysis. Therefore

such methods are not addressed in this Dissertation.

The first solution to the problem of approximating the Koopman operator from data

was given by Arnoldi-type - or Krylov–Rayleigh–Ritz - algorithms, which utilises Krylov

subspaces of the state space, and construct a companion matrix mimicking the behaviour

of the Koopman operator. The latter method relies on data organised in time series, i.e., a

long trajectory needs to be collected in order for this approach to work. In particular, if a

stream of M datapoints are gathered from the system, the last state xM is approximated

with a linear combination of the previous M ≠ 1 observations.

The latter method was then later developed into the Dynamic Mode Decomposition

by Tu et al., 2014, which is arguably the most widespread algorithm to approximate

the action of the Koopman operator in a finite-dimensional subspace. The original

formulation of DMD envisaged the exploitation of data coming from a trajectory, but it

was later generalised to address the more general case in which snapshots of the system

are available. Dynamic Mode Decomposition can be considered as a finite-dimensional

spectral approximation of the Koopman operator associated with the dynamics under

study (Arbabi and MeziÊ, 2017a), which allowed it to play an important role in the

study of complex phenomena, especially in fluid dynamics (Rowley et al., 2009; Lele and

Nichols, 2014; Le Ngo, See, and Phan, 2017; Berger et al., 2015; Mann and Kutz, 2016).

Williams, Kevrekidis, and Rowley, 2015 proposed an extension of the latter method, called

Extended Dynamic Mode Decomposition, which aimed to extend the reconstruction of

the dynamics to a more general function space. If with DMD the approximation takes

place on the space spanned by linear functions of the state, EDMD method frame the

problem as a regression over coe�cients for a user-defined dictionary of function, as seen

in Section 4.3.

Both perspectives have their merits and defects. DMD approach relies on a simple

subspace, which can be further reduced to consider just the most important components,

through Singular Values Decomposition, so that it yields fast computations. This is the

reason behind its widespread use for the linear analysis of a nonlinear systems. However,

for many system, the subspace of linear functions of the state is not enough to capture a

meaningful description of the nonlinear behaviour (Tu et al., 2014; Williams, Kevrekidis,

and Rowley, 2015). The latter problem is what EDMD method seeks to overcome by

relying on a larger dictionary of functions, including also explicitly nonlinear observables,

so that it is easier to reconstruct the generic system. However this makes the method less

favourable from a computational point of view, since in order to approximate reasonably



60 Learning Koopman from data

well the evolution of the observable, a huge number of functions is required. This leads

to a regression problem which becomes computationally challenging.

A unified description of these two approaches is given in Chapter 6, Section 6.3, through

the exploitation of kernel methods (see Chapter 5). This perspective will allow to mitigate

the problem of selecting a the dictionary of function, which will be reduced to the selection

of the kernel function.

4.4.1 DMD

Originally, Dynamic Mode Decomposition was formulated in terms of a companion matrix,

underlying its connection to Arnoldi-type algorithms. However the same algorithm can

be retrieved in a simpler formulation, making it easier to understand its connections with

Extended Dynamic Mode Decomposition. The latter allows also to frame both methods

in a dual way as done by Mauroy and Gonçalves, 2020, and further explored in Chapter 6,

Section 6.3. The more recent formulation relies on M snapshots of the system given by

{xi, yi}
M
i=1, where yi = f (xi), so that the following matrices can be defined,

x =
Ë
x1 · · · xM

È
, y =

Ë
y1 · · · yM

È
. (4.18)

The latter datapoints are thought to be propagated through an unknown linear operator

U : Rd æ R
d, through the relation:

yk = UDMDxk, (4.19)

’k œ [1, M ].

The estimate of the Koopman operator is given by the least squares solution, i.e., the

one which minimises the Frobenius norm ÎUDMDx ≠ yÎF :

UDMD = y (x)† , (4.20)

where (x)† denotes the Moore-Penrose pseudoinverse of x.

The more recent definition of DMD procedure includes also the computation of the

reduced Singular Value Decomposition for the matrix x, in order to deal with the problem

in lower dimensional subspace. The dimension of the problem is then the rank at which

the reduced SVD is truncated, which is an hyper-parameter of the algorithm, playing a

role similar to regularization.

The matrix x is indeed by designed ill-conditioned, i.e., it is nearly rank deficient. The

introduction of the SVD allows indeed to overcome the latter issue, which is particularly



4.4 Data-driven approximations 61

troublesome in presence of noise, by reducing sensitivity on variations of the input.

The reduced version of the Koopman matrix UDMD allows to quickly compute eigenvalues

and eigenvectors, which then can be projected back to the original space, as explained by

Tu et al., 2014.

Note that the DMD approach requires that the dimension of the state space is much

greater than the available datapoints, i.e. M Æ d, that the action of the linear operator

is empirically known only in a small-dimensional subspace.

If through the presented formulation the DMD algorithm approximate a mapping from

values of input locations x to values of output locations y, the one given by Mauroy and

Gonçalves, 2020 seeks for a mapping between values of observables evaluated in input

locations Âi (x) to values of observables evaluated in output locations Âi (x), for some

predetermined observables [Âi}
N
i=1.

4.4.2 EDMD

Extended Dynamic Mode Decomposition is another popular method which generated from

the previous algorithm. It approximates the behaviour of the Koopman operator over a

predetermined function space given by the linear span of the elements in a dictionary D.

Consider in this regard again a set of snapshot pairs {xi, yi}
M
i=1, which are the only data

coming from the system, on which the estimate should rely. The method relies on a

predefined dictionary of function, as done in (4.3), which is composed of user-chosen

observables Âi (·) that should be able to describe the propagation of the generic observable

Â (·) through a linear combination.

Given then a dictionary of functions D = {Âj}N
j=1, it is possible to define the matrices of

evaluations on the available datapoints for all the function in the dictionary, which are

given by:

Dx =

S
WWWWWU

Â1 (x1) Â2 (x1) . . . ÂN (x1)

Â1 (x2) Â2 (x2) . . . ÂN (x2)
...

...
. . .

...

Â1 (xM ) Â2 (xM ) . . . ÂN (xM )

T
XXXXXV

,

Dy =

S
WWWWWU

Â1 (y1) Â2 (y1) . . . ÂN (y1)

Â1 (y2) Â2 (y2) . . . ÂN (y2)
...

...
. . .

...

Â1 (yM ) Â2 (yM ) . . . ÂN (yM )

T
XXXXXV

. (4.21)



62 Learning Koopman from data

The approximation of the Koopman operator given by EDMD is a finite-dimensional

operator acting in the space provided by the linear span of the observables in the

dictionary. The rationale behind the latter algorithm is again the minimisation of the

square loss, so that the solution takes then the form:

UEDMD = D†
xDy. (4.22)

As already stated, the latter represent the mapping from the coe�cients realising the

considered observable in the prescribed basis function to the coe�cients which best

approximate the composition of the observable and the discrete-time dynamics, in the

same basis.

The approximation of the Koopman eigenvalues, eigenfunctions and modes has already

been discussed in Section 4.3, and in particular they are given by eigenvalues, right

eigenvectors and left eigenvectors of UEDMD, respectively.

It can be noted that by selecting a particular dictionary of functions, the two methods

described in this section can be seen under the same framework. In this regard consider

the case in which the N basis functions are chosen as the M scalar projections that pick

the i-th entry of the vector, for i = 1, . . . , N , with N = d. The matrices characterising

the EDMD then become:

Dx = x€, Dy = y€. (4.23)

Hence it becomes clear that DMD is trying to approximate the Koopman operator with

linear functions of the state, while EDMD approach allows to introduce a more general

behaviour for the basis functions defining the space in which the regression takes place.

Note also that for the EDMD to work properly, the number of basis functions should be

smaller than the available datapoints i.e., M Ø N , so that the least squares procedure

makes sense, and yield the solution of minimum norm. Otherwise there would be too

many degrees of freedom for the regression problem. The formulation given in Chapter 6,

Section 6.5 provides a way to overcome this limitation as the dictionary of functions will

always be implicitly chosen with the same dimension as the number of datapoints.

By considering every dimension of the state space as an observable, as in (4.23), it is easy

to understand that the DMD assumption of M Æ d can be interpreted as M Æ N . This

means that DMD actually operates under a di�erent regimes with respect to EDMD,

which is in agreement with the dual perspective. If instead a generic dictionary of function

is considered, as done for the Extended Dynamic Mode Decomposition, the DMD method

can be generalised to yield:

UDMD = DyD†
x (4.24)



4.4 Data-driven approximations 63

as given by Mauroy and Gonçalves, 2020.



64 Learning Koopman from data



5
Kernel methods and RKHS

This Chapter presents the other fundamental mathematical tool which is required to

understand subsequent development of this Dissertation, i.e., Reproducing Kernel Hilbert

Spaces and kernel methods. Their introduction is considered from the perspective of

operator theory, in order to make the discussion coherent with the characterisation of the

Koopman operator in Chapter 2. Although the following contents clearly do not qualify

as an original contribution, the following presentation can perhaps be regarded as an

accurate and compact review of the concepts related to RKHSs, which is hard to find in

the literature.

Reproducing Kernel Hilbert Spaces theory provides a finite-dimensional solution to

an infinite-dimensional problem, through the Representer theorem. The latter can be

exploited to make the problem of regularised regression well-posed, while maintaining the

hypothesis space infinite-dimensional. In order to better link RKHSs to the Koopman

operator framework, a characterisation of these spaces through the spectral decomposition

of the kernel integral operator is also discussed.

5.1 An infinite-dimensional problem

To motivate the introduction of Reproducing Kernel Hilbert Spaces, the starting point

will be to consider the inverse problem of reconstructing a whole function from discrete

measurements. This is clearly an ill-posed problem since the solution is not unique, and if

the search space is not restricted to a particular set, there are always an infinite number

of function fitting the data perfectly (Baumeister, 1987; Vogel, 1987; Sabatier, 1987).

There are di�erent ways to handle this issue, depending on the final objective of the

estimation. For instance, in Chapter 3 one of the simplest solution has been considered,

namely the zero-order hold approximation, which prescribes to hold each sample value

until the next one is provided (Oppenheim, Willsky, and Young, 1983). Even if the latter



66 Kernel methods and RKHS

estimate can be very far from the true function in between two datapoints, it provides

a viable solution, which is however more often employed as a way of approximating a

certain quantity - as done in Chapter 3 - rather than for reconstructing the true behaviour

of the unknown function. The relation reconstructed in that way would indeed be surely

highly discontinuous and also very sensitive to the noise a�ecting the measurements.

The RKHS framework allows to restrict the search space for the reconstruction in a

meaningful manner, in such a way that certain specific properties can be enforced for

the final estimate. For instance, by considering only continuous kernels, the result of the

identification procedure will surely be continuous (Berlinet and Thomas-Agnan, 2004).

In order to frame the problem, assume that M measurements of the true function h are

available as input locations {xi}
M
i=1 and output locations {yi}

M
i=1, which are bound by the

following relationship:

yi = h (xi) . (5.1)

The problem to be solved is the reconstruction of the true function given the discrete

snapshots above, which can be formalised as

ĥ := arg min
hœH

I
Mÿ

i=1

Îyi ≠ h (xi)Î

J
, (5.2)

for a generic norm Î·Î. In this case it is easy to see that the regression task is in fact

ill-posed, as long as H denotes a generic function space.

The latter framework indeed fits into the generic problem of minimising a cost function

over a function space, which without particular restriction is infinite-dimensional. This

di�ers from the one in classical analysis because here the optimisation is considered with

respect to a function and not to a point, what usually is called a variational problem

in mathematics (Goldstine, 2012). Then, in general, the search space is an infinite-

dimensional one, which makes things more complicated. Therefore something needs to be

done in order to address this more general setting; possibly with the aim of adapting the

known optimisation theory in finite-dimensional spaces (Du, Pardalos, and Wu, 2009).

Reproducing Kernel Hilbert Spaces are particular Hilbert spaces which allows to embed

some prior knowledge into the problem, and to accordingly shrink the hypothesis space.

This is accomplished by selecting a kernel function, which will shape the hypothesis space

for the reconstruction. As already mentioned, one type of a priori knowledge that is

usually enforced through this method is the assumption on the regularity of the function

to be estimated, usually continuity. In order to favour functions which comply with the

induced prior knowledge, a penalty on the norm of the regressor is introduced, leading

to a regularised regression task. The Representer theorem by Schölkopf, Herbrich, and



5.2 A finite-dimensional solution 67

Smola, 2001 guarantees that the solution to the latter minimisation - if exists - is unique,

so that the problem becomes well-posed. The RKHS framework allows also to cope

with the problem of noisy measurement. The measurement model in (5.1) can indeed be

relaxed by the addition of a random variable, which takes into account disturbances. This

results in a weighted norm for the fitting term in (5.2), adjusted through the estimated

noise a�ecting data, so that the procedure can be made robust to perturbations in the

measurements (Mendelson and Neeman, 2010).

5.2 A finite-dimensional solution

The first thing to consider to deal with infinite-dimensional problems is a vector space

on the field F = R. As was made clear in Chapter 2, the latter is in general given by a

Banach space, or by a Hilbert space, if there is a requirement for an inner product to be

defined.

Since the current framework develops under the ZFC set of axioms, the axiom of Choice

(Axiom 2.3.4) is assumed to hold. As already state in Chapter 2, the latter implies that

any normed space admits a basis. Although usually the Zorn’s lemma (see Moore, 2012)

is quoted to state that any Hilbert space has an orthonormal basis, it has been shown

to be a consequence of the Axiom of choice (Dunford et al., 1958), therefore no other

assumption is needed. The following clarifies the definition of such a basis.

Definition 5.2.1 (Basis of a normed space). The {Âi}iœI elements of �, with I a general

(possibly uncountable) set of indexes, are said to be a basis of a normed space �, if

’Â œ � and ’‘ > 0 there exists Ĩ ™ I and {ci}iœĨ such that
..Â ≠

q
iœĨ ciÂi

.. Æ ‘.

As the set of indexes I may be uncountable, the definition is quite general. There are

indeed cases of normed spaces with an uncountable basis, e.g. the set of all Â : R æ [0, 1]

endowed with the uniform norm. However, the majority of the results in this chapter

hold for Hilbert spaces which admits a countable basis. Many useful properties in fact

descend from this assumption, therefore it is useful to formally characterise these spaces.

The latter are called separable Hilbert spaces (Prugove�ki, 1971).

Definition 5.2.2 (Separable Hilbert space). A Hilbert space is said to be separable

provided it contains a dense countable subset.

All separable infinite-dimensional Hilbert spaces are isometrically isomorphic to l2,

which is the space of sequences with finite norm. The proof can be found in the book

by Rudin, 1987. This relationship will be important for what follows. To see why this

hold, it is necessary to introduce the definition for isometric operators.



68 Kernel methods and RKHS

Definition 5.2.3 (Isometric operator). Let H1 and H2 be two Hilbert spaces. The

operator O : H1 æ H2 is said to be isometric if it preserves inner products, i.e. ’h1, h2 œ

H1, then O [h1] , O [h2] œ H2 are such that Èh1, h2ÍH1
= ÈO [h1] , O [h2]ÍH2

.

The characterisation of separable Hilbert spaces through their relationship with the

l2 space gives an idea of the finite nature of these particular Hilbert spaces and how they

are close to the discrete-time setting. Also, it allows to think about the l2 space as an

intuitive model for any separable Hilbert space.

In particular it can be shown that the inner product of a generic Hilbert space can

be computed through the inner product in l2, by means of the isometric map in Def-

inition 5.2.3. Since the inner product is the most important feature and the defining

characteristic of an Hilbert space, the latter is equivalent to say that every separable

Hilbert space H has the same properties of l2.

RKHSs have been introduced in order to solve a regression problem, which can be

generalised as the following minimisation of a functional:

ĥ := arg min
hœH

Ó
ÊLP (h)

Ô
, (5.3)

with a generic ÊLP : H æ R.

Since the problem to be solved is a regularised regression, the functional ÊLP will be

composed of a loss function and a penalty on the norm of the function induced by the

Hilbert space. Therefore a more specific problem can be rewritten as:

ĥ := arg min
hœH

{LP (S1 [h] , . . . , SN [h] , ÎhÎH)} (5.4)

where LP : RN+1 æ R is a finite-dimensional map, i.e., N < Œ, and the functionals are

such that Si : H æ R, ’i œ [1, N ].

It turns out that by restricting the class of functionals Si [·] to linear ones, a convenient

solution for the optimisation problem (5.4) is available. This is because the linearity

of the operator is equivalent to other important properties: for instance it is strictly

connected with boundedness - whose importance was already evident from Chapter 2 -

and continuity (Narici and Beckenstein, 2010). The finite-dimensional solution for the

latter infinite-dimensional problem will be given by the Representer theorem, which is

the goal of the present section.

First, a characterisation of linear operators is introduced, which relates them to bounded

operators.

Definition 5.2.4 (Continuous operator). Let H be a Hilbert space, and S : H æ R a



5.2 A finite-dimensional solution 69

functional defined on the same Hilbert space. S is said to be continuous if ’h œ H and

‘ > 0 there exists ” > 0 s.t. ’h̃ œ H s.t.
...h ≠ h̃

...
H

Æ ”, it holds that
---S [h] ≠ S

Ë
h̃

È--- Æ ‘.

The following theorem, which holds for operators defined in general Banach spaces,

shows the equivalence between bounded and continuous functionals under the linearity

assumption.

Theorem 5.2.5 (Equivalence between boundedness and continuity for linear operators).

Let S : � æ R be a linear functional defined over a generic Banach space �. Then S is

continuous if and only if it is bounded.

If the functionals Si [·] are assumed to be linear and are defined over a generic vector

space G, then the properties of boundedness and continuity are equivalent, in the sense

that once linearity or boundedness of the functional can be proved, the other property

consequently holds.

It turns out that in the important case of finite-dimensional operators, from linearity it

directly descend the boundedness of the latter operator, which is then also continuous

thanks to Theorem 5.2.5. This statement is formalised in the next theorem.

Theorem 5.2.6 (Linear and finite-dimensional operators are bounded and continuous).

Let � and �̃ be normed spaces, with norms Î·Î
�

and Î·Î
�̃

. Let � be finite dimensional,

and S : � æ �̃ be linear. Then S is always bounded, and thus continuous.

The proof is easy and can be found in many textbooks, as the one by Schechter, 1996.

It requires the well-known argument that all norms are equivalent in a finite-dimensional

space, and then it su�ces to apply the Heine-Borel theorem (Williamson and Janos,

1987).

Without the finite-dimensional assumption, clearly there exist functionals which are

linear but not continuous.

Note that the Riesz theorem (Theorem 2.4.5) requires the functional to be linear and

bounded, in order to be expressed as an inner product of the representer. As explained in

Chapter 2, the latter result is a fundamental tool in learning theory. The assumption of

the theorem clearly holds true when considering linear and finite-dimensional functionals,

as is clear from the previous characterisation these operators. Another theorem of

absolute importance for the development of kernel methods, which characterises the

solution of the regularised regression problem, is the Representer theorem by Schölkopf,

Herbrich, and Smola, 2001, which conveniently makes use of the same assumptions.

Theorem 5.2.7 (Representer). Consider the functional ÊLP : H æ R where H is a



70 Kernel methods and RKHS

generic Hilbert space, defined as

ÊLP [h] := LP (S1 [h] , . . . , SN [h] , ÎhÎH) (5.5)

where LP : Rn+1 æ R and where the Si : H æ Rs are linear and bounded functionals.

Suppose also that LP is strictly monotonically increasing with respect to the last argument,

i.e., ÎhÎH . Define

ĥ := arg min
hœH

{LP (h)} . (5.6)

Assume that there exists at least one solution of the previous problem (i.e. that the

solution exists but may be not unique). Then the latter has the form

ĥ =
Nÿ

i=1

cisi (5.7)

where the sis are the representers of the functionals Sis, i.e. Si [h] = Èh, siÍH , ’h œ H.

The proof can be found in the work by Schölkopf, Herbrich, and Smola, 2001.

Theorem 5.2.7 state that the solution of the regularised regression problem in (5.3) is

given by a finite linear combination of the representers associated with the functionals

Si [·] composing the objective to be minimised. Note that the search space is still infinite-

dimensional, as it is given by the Hilbert space H, so that the only assumption is about

the functionals. In what follows it will become clear that those functionals are related to

the fitting term in the regression, and in particular they will play the role of evaluation

functionals. In what follows it will be clear that RKHS are exactly those spaces in which

the pointwise evaluation is linear and bounded, thus respecting the conditions of the

Representer theorem.

5.3 The regularised LS

In order to appreciate the impact of the Representer theorem for the identification task,

in this section a regularised regression problem in a finite-dimensional space will be

considered. The finite-dimensional setting will make it easier to understand the elements

involved, while the infinite-dimensional framework is addressed in Section 5.6.

In this regard let �M and �N be positive definite matrices in R
M◊M and R

N◊N respec-

tively. Denote as q œ R
M the fixed target quantity. Then the regularised regression

problem over the vectors h œ R
N , with A œ R

M◊N as regressor, is given by:

ĥ = arg min
hœRn

Ó
(q ≠ Ah)€

�
≠1
M (q ≠ Ah) + ÷h€

�
≠1
N h

Ô
. (5.8)



5.3 The regularised LS 71

where ÷ is a regularisation parameter.

The latter is also called Tikhonov problem (Kress, 1989), and the particular kind of

penalty added as a regulariser is called Tikhonov regularisation. If the solution to

the unregularised problem is not unique, the simple least-squares estimation leads to

an underdetermined or overdetermined solution. The Tikhonov penalty improves the

conditioning of the problem, allowing for a direct numerical solution.

Note that the regression problem (5.8) satisfies the conditions of Theorem 5.2.7. In

particular, the hypothesis space is the Hilbert space R
N endowed with the inner product

Èh, h̃ÍH = h€�
≠1
N h̃, and the functionals Si [h] correspond to the multiplications A[úi]h

(where A[úi] denotes the i-th column of the matrix A), which are indeed linear and

bounded. The Representer theorem does not provide an explicit solution, but guarantees

that the minimiser lies in the linear span of the representers. The latter can be computed

from the definition of the inner product:

Si [h] = Èsi, hÍH = s€
i �

≠1
N h = A[úi]h, (5.9)

so that

si = �N A[iú], (5.10)

and therefore the solution will be given by

ĥ = �N A€c, (5.11)

for some coe�cients c œ R
M .

In this particular regularised regression problem it is still possible to find a closed-form

solution, which also helps drawing connections with the Bayesian interpretation. The

regression in (5.8) can indeed be rewritten as

ĥ = arg min
hœRN

IË
(q ≠ Ah)€ h€

È C
�

≠1
M 0

0 ÷�
≠1
N

D C
(q ≠ Ah)

h

DJ
, (5.12)

so that, by defining

q̃ =

C
q

0

D
, Ã =

C
A

≠I÷

D
, � =

C
�M 0

0 �N

D
, (5.13)

the minimisation can be expressed as

ĥ = arg min
hœRN

;...q̃ ≠ Ãh
...

2

�

<
. (5.14)



72 Kernel methods and RKHS

The latter is an easy problem and can be solved through the weighted least-squares

approach, yielding the following solution:

ĥ =
1
A€

�
≠1
M A + ÷�

≠1
N

2≠1
A€

�
≠1
M q (5.15)

= �N A€
1
A�N A€ + ÷�M

2≠1
q. (5.16)

A proof of the equality above is given in Proposition 6.4.2.

Note that the solution in (5.16) is indeed of the form prescribed by the Representer

theorem, matching the expression given in (5.11).

Although until now the problem in (5.8) has been regarded as a least squares problem, it

is also possible to see it through the lens of Bayesian estimation. The regularisation term

h€�N h can indeed be interpreted as deriving from a Gaussian prior on h, by assuming

the following stochastic linear model:

q = Ah + w (5.17)

where the noise w ≥ N (0, �M ) is Gaussian distributed, and the regression variable

h ≥ N
!
0, ÷≠1�N

"
has a prior Gaussian distribution. The maximum a posteriori estimator

can be computed in closed form, and it is also a Minimum-variance Unbiased Estimator

(MVUE), as explained in more detail in Chapter 6. Its formulation is of course identical

to (5.16).

The Bayesian perspective will be considered in order to derive the formulas for the

infinite-dimensional case in Section 5.6.

5.4 Definition of RKHS

The motivation behind the introduction of Reproducing Kernel Hilbert Spaces was to

solve the estimation problem in (5.2), however, without any prior assumption on the true

function generating the data, it is impossible to even pose the problem in a meaningful

way. In fact there exists infinitely many functions which can perfectly fit the data

provided, and they could be arbitrarily di�erent from the true function anyway.

The idea of stability in machine learning proved itself to be a meaningful tool as a measure

to evaluate the performances of learning algorithms and to address the reproducibility

issue (Stodden, Leisch, and Peng, 2014). A learning algorithm is said to be stable if it

produces consistent predictions with respect to small perturbation of training samples

(Sun, 2015). It is worth mentioning that stability has indeed received much attention in

statistics and related branches as, for instance, high-dimensional regression (Meinshausen



5.4 Definition of RKHS 73

and Bühlmann, 2010; Shah and Samworth, 2013; Liu, Roeder, and Wasserman, 2010; Sun,

Wang, and Fang, 2013; Breiman, 1996; Bousquet and Elissee�, 2002; Elissee�, Evgeniou,

and Pontil, 2005).

In the problem of regression, stability can be regarded as regularity of the candidate

function, because if the reconstruction consider a space of regular functions, the minimiset

will be less a�ected by a change in the single datapoint. Often this is a good prior

knowledge to be embedded in the regression problem in order to avoid fitting the noise,

which indeed produces sudden and subtle variations, and to keep the hypothesis space free

from overly complicated functions, according to the principle of Occam’s razor (Je�erys

and Berger, 1991).

Therefore, by leveraging the latter ideas, in what follows the discussion on Reproducing

Kernel Hilbert Spaces is specialised for continuous functions. Continuity is in fact the

main example of regularity of a function.

Although RKHS of non continuous functions can be defined as well, choosing a Kernel in

such a way that the associated RKHS is composed of continuous functions yields some

useful property and it is particularly suited for the regression task. Clearly, di�erent

objective - also among regressions problem - may require a di�erent kind of prior knowledge

for the hypothesis space, which often can nonetheless be characterised through a kernel

function, which demonstrates the generality of this approach (Schölkopf et al., 1997;

Veillard, Racoceanu, and Bressan, 2011).

From now on continuous functions h : X æ R will be considered, with domain X compact,

and in particular X µ R
d.

In this section the relationship between RKHS and the associated kernel function is

discussed. The first step is clearly to define the elements involved.

Definition 5.4.1 (Kernel). A kernel is a function of two arguments K (·, ·) : X ◊ X æ R

which is symmetric and positive-definite, i.e.:

K (x̃, x) = K (x, x̃) , ’x, x̃ œ X (5.18)

and

Mÿ

i=1

Mÿ

j=1

cicjK (xi, xj) Ø 0, for any x1, . . . , xM œ X and c1, . . . , cM œ R. (5.19)

The specialisation for the continuous case is denoted Mercer kernel.

Definition 5.4.2 (Mercer kernel). A Mercer kernel is a continuous kernel.



74 Kernel methods and RKHS

It turns out that through the definition of the kernel K (·, ·), it is possible to uniquely

characterise the space of functions given by the corresponding RKHS. The latter is indeed

the result of the Moore-Aronszajn theorem.

Theorem 5.4.3 (Moore-Aronszajn). Given a Mercer kernel K (·, ·), then there exists a

unique Hilbert space H endowed with an inner product È·, ·ÍH , called Reproducing Kernel

Hilbert Space, such that:

• K (x, ·) œ H, ’x œ X;

• ÈK (x, ·) , hÍH = h (x), ’x œ X

In addition, H contains only continuous functions, i.e. H µ C (x).

The proof can be found in the work by Aronszajn, 1950.

The second point in the Moore-Aronszajn theorem, which expresses the evaluation of

h in a point x œ X through the kernel function, is called reproducing property. The

latter makes it clear that the inner product with a kernel section K (x, ·) corresponds to

the evaluation functional of any function h on the point x. Therefore, from the Riesz

theorem, it is trivial to understand that the kernel section is the representer associated

with the pointwise evaluation functional.

The following characterisations of the RKHS will be useful in what follows.

Lemma 5.4.4 (Characterisation of RHKSs - 1). Let H be a Hilbert space which satisfies

both points of the Moore-Aronszajn theorem, then H = span {K (x, ·) ; x œ X}.

Proposition 5.4.5 (Characterisation of RHKSs - 2). Let H be an Hilbert space, then H

is a RKHS if and only if H is a Hilbert space where the pointwise evaluation is linear

and bounded.

The latter makes clear why RKHSs are so important: from the proposition above it

stems that RKHSs contain only well-defined functions, which builds up a space in which

the evaluation functional is linear and bounded. Recall that this was the assumption

under which the Representer theorem held true. This is not the case for L2, for example,

because of the presence of classes of equivalence, which makes the evaluation functional

not meaningful.

From the first characterisation of RKHS it becomes clear that the whole space is given

by the span of kernel sections, which are the representers of the pointwise evaluation

functionals. In order to understand why this is important, recall that if the assumption

of the Representer theorem are satisfied, it has been proved that the representers of the

linear and bounded functionals constitute the basis for the optimal estimate.



5.5 Spectral characterisation of RKHS 75

The structure of the representer and the kernel function must indeed be closely related,

since the kernel shape the function space in which the optimisation problem takes place.

In fact, by Riesz representation theorem, it must hold that:

S [h] = Èh, sÍH , ’h œ H. (5.20)

This must be true even if the function h (·) = K (x, ·) is a kernel section, which acts as a

point evaluation functional because of the reproducing property, giving:

• S [K (x, ·)] = ÈK (x, ·) , sÍH , ’x œ X, (Representer theorem);

• ÈK (x, ·) , sÍ = s (x) , ’x œ X;

which leads to

s (x) = S (K (x, ·)) , (5.21)

which highlights again the fact that kernel sections are the representers of the pointwise

evaluation functionals. In light of the Representer theorem, the solution of the regression

problem when the hypothesis space is a RKHS is then given by a linear combination of

kernel sections.

5.5 Spectral characterisation of RKHS

In the following chapters, the RKHS framework will be used as the infinite-dimensional

space on which the approximation of the Koopman operator will be learnt. In particular,

the connection between these two worlds is given in Chapter 6.

In order to establish a common background, a spectral characterisation of RKHS is

discussed in this section, as done in Chapter 2 for the Koopman operator.

The following definitions may be not standard, so they are recalled for completeness.

Definition 5.5.1 (Compact operator). Let O : � æ � be an operator acting on �, the

latter being a generic metric space. O is said to be compact if it maps every limited

subset of � in a pre-compact subset of �.

Definition 5.5.2 (Self-adjoint operator). Let O : H æ H be a linear operator from H

to H, with the domain given by a generic Hermitian space. The operator O is said to be

self-adjoint if ÈO [h] , h̃ÍH = Èh, O
Ë
h̃

È
ÍH , ’h, h̃ œ H.

Definition 5.5.3 (Positive definite operator). Let O : H æ H be a self-adjoint operator.

O is said to be positive definite if ÈO [h] , hÍH Ø 0, ’h œ H. O is instead said to be

strictly positive definite if ÈO [h] , hÍH > 0, ’h œ H.



76 Kernel methods and RKHS

The RKHS is a complete metric space, and not an operator, therefore it does not make

sense to ask for its spectral decomposition. However it is possible to better understand

some properties of this space by defining it through the eigenfunctions of a particular

operator. The latter will indeed be the main goal of this section.

The following result is then useful, since it allows to characterise a generic Hilbert space H,

which is invariant under the action of a compact operator O, through the eigenfunctions

of the same operator O.

Theorem 5.5.4 (Spectral theorem for compact operators). Let O : H æ H be a linear

and compact operator defined over a generic Hilbert space H. Then there exists in H a

complete orthonormal basis „1, „2, . . . given by eigenfunctions of O.

The theorem above holds for a generic Hilbert space and cannot be generalised further.

In order to state the theorem above it is indeed required to deal with inner products, to

define orthogonality, therefore it cannot apply to Banach spaces.

In particular, this result make it easy to deal with linear and compact operators because

many properties can be rewritten in terms of the eigenvalues, as done in what follows.

For instance, the Hilbert-Schmidt norm of a linear and compact operator is then trivially

characterised by the sum of the eigenvalues. Indeed the Hilbert-Schmidt norm is the

sum of the norms of the functions resulting from the application of the operator to each

basis function, which trivially given by the sum of the eigenvalues, if the basis is the one

formed by eigenfunctions. If the latter is finite, then the operator is a Hilbert-Schmidt

operator (Axler et al., 1999). This does not hold for the kernel integral operator, which

will be defined shortly.

The definition of the following operator will be of utmost importance for what follows,

since the Reproducing Kernel Spaces will be characterised through its eigenfunctions.

Definition 5.5.5 (Kernel integral operator). Let X be compact, µ be a non-degenerate

Borel measure, and K : X ◊ X æ R a generic function. Define the kernel integral

operator as:

SH : H æ H, S [h (·)] =

⁄

X
K (x, ·) h (x) dµ (x) (5.22)

’h œ H, where H is a generic Hilbert space.

The latter operator is defined through a generic function of two arguments, which

might not even be a kernel. The properties of the operator clearly depend on the

characteristics of the function that was used to define it. In the case of a continuous

function, these are addressed by the following theorem (Einsiedler and Ward, 2017).

Theorem 5.5.6 (Kernel integral operator over continuous functions). Let L2
µ (X) be a

Hilbert space defined over the compact domain X, and let K : X ◊ X æ R be a general



5.5 Spectral characterisation of RKHS 77

continuous function (not necessarily a kernel). The operator S : L2
µ (X) æ L2

µ (X) defined

in (5.22) is continuous, linear and compact.

The next theorem instead governs the particular case in which K is actually a Kernel.

Since the hypothesis of continuity is already there, the latter will be a Mercer kernel.

Theorem 5.5.7 (Kernel integral operator over Mercer kernel). Let L2
µ (X) be a Hilbert

space defined over the compact domain X, and let K : X ◊ X æ R be a Mercer kernel.

The operator S : L2
µ (X) æ L2

µ (X) defined in (5.22) is continuous, linear and compact,

also self-adjoint and positive definite.

This reveals that the Mercer assumption is not restrictive, but the assumption of

using a particular space such as the RKHS restrict also the operator S to be self-adjoint.

Theorem 5.5.6 states that the operator S is compact, which has already been understood

to be a remarkable property. In particular it is important in this case because it makes

easier the spectral decomposition of the operator. In fact, the following theorem holds:

Theorem 5.5.8 (Spectrum of a compact operator). Let � be a Banach space and O be

a compact operator acting on �. Then:

• Every nonzero ⁄ œ Sp (O) is an eigenvalue of O.

• For all nonzero ⁄ œ Sp (O), there exist n such that ker (O ≠ ⁄I)n = ker (O ≠ ⁄I)n+1,

and this subspace is finite-dimensional.

• The eigenvalues can only accumulate at 0. If the dimension of � is not finite, then

Sp (O) must contain 0.

• Sp (O) is at most countably infinite.

• Every nonzero ⁄ œ Sp (O) is a pole of the resolvent function, which maps ⁄ ‘æ

(O ≠ ⁄I)≠1, and it is defined for ⁄ œ Res (O).

In particular the first proposition reveals that Spc (O) = Spr (O) = ÿ, and the fourth

one that Sp (O) = Spp (O) is at most countably infinite.

As a consequence, it turns out that the Kernel integral operator in Definition 5.5.5

can be diagonalised to yield a set of eigenvalues {⁄i}
Œ
i=1 so that limiæŒ ⁄i = 0. Recall

that if S is self-adjoint, then the eigenvalues are real, and if S is positive-definite, then

⁄i Ø 0, ’i œ N.

From Theorem 5.5.4 it was already clear that eigenfunctions of compact operators form a

basis for the Hilbert space on which the operator acts, but the latter result says also that



78 Kernel methods and RKHS

there are at most countably infinite non-zero eigenvalues, so that there is a subset of at

most countably infinite eigenfunctions which are relevant to characterise the operator.

The previous section presented the Moore-Aronszajn theorem (Theorem 5.4.3), which

formalises the correspondence between the kernel function K (·, ·) and the associated

RKHS, which is then uniquely characterised. Also the kernel integral operator is defined

on top of the kernel function, so that it too is uniquely characterised. Moreover, under

the hypothesis of Theorem 5.5.7, the latter is guaranteed to be compact, meaning that it

provides a basis for the Hilbert space, given by its eigenfunctions.

These eigenfunction can be used to characterise the kernel function itself, and therefore

its associated Reproducing Kernel Hilbert Space. That is how a spectral characterisation

of a complete vector space will be obtained.

The description of the Kernel through the eigenfunction of the kernel integral operator is

given by the Mercer theorem.

Theorem 5.5.9 (Mercer). Let K : X ◊ X æ R be a Mercer kernel with X compact. Let

{⁄i}
Œ
i=0 , {Ï⁄i

}Œ
i=0 be the eigenvalues and eigenfunctions of the kernel integral operator

defined in (5.22). Then:

K (x, x̃) =
Œÿ

i=1

⁄iÏ⁄i
(x) Ï⁄i

(x̃) (5.23)

where convergence is uniform in X ◊ X.

From Theorem 5.5.4 it descends that the set of eigenfunctions {Ï⁄i
}Œ

i=0 is an orthonor-

mal basis for L2
µ (X), given that S is compact. The following theorem characterises the

RKHS H µ L2
µ (X) with the same eigenfunctions, proving that they are a basis also for

H (Fukumizu, Song, and Gretton, 2013).

Theorem 5.5.10 (Spectral decomposition of RKHSs). If (5.23) holds, the associated

RKHS can be expressed as:

H =

I
h =

Œÿ

i=1

ciÏ⁄i
|

Œÿ

i=1

c2
i

⁄i
< Œ

J
(5.24)

and the inner product between h =
qŒ

i=1 –iÏ⁄i
and h̃ =

qŒ
i=1 —iÏ⁄i

is:

Èh, h̃ÍH =
Œÿ

i=1

–i—i

⁄i
(5.25)



5.6 RKHS and Gaussian Processes 79

The latter result makes it clear how the choice of the kernel function completely

characterises the Reproducing Kernel Hilbert space through its spectral decomposition.

Also, it is evident that L2
µ (X) and H are basically the same space, though H has

a constrained representation. The convergence requirement can indeed be seen as a

constraint on the regularity of the function, imposed by the kernel structure. The

coe�cients ci must indeed go to zero fast enough so that:

ÎhÎH =
Œÿ

i=1

c2
i

⁄i
< Œ, (5.26)

for h to be in H.

Also, note that there is no dependency on the measure µ: even if the basis change - i.e.,

Ï⁄i
change - their span and the induced norm remain the same, so that H is the same.

From Theorem 5.5.10 it is clear how the functions belonging to the Hilbert space H, are

implicitly modelled using n basis function, with n possibly infinite. The great benefit of

considering a RKHS as the hypothesis space, is that there is no need to specify the whole

set of basis function - which would be infinite - but just the kernel which characterises the

space. The latter can be chosen in such a way that some prior knowledge is embedded in

the problem, such as smoothness of the regression function, and the hypothesis space is

shaped accordingly. The explicit representation in terms of the basis function may also

be unavailable, as it happens for some well-known kernels, e.g. Matern kernels, which

are nonetheless largely employed.

5.6 RKHS and Gaussian Processes

With a deeper understanding of the RKHS framework, it is possible to derive a closed-

form solution for the problem in (5.8) in the original case of an infinite-dimensional

hypothesis space, which motivated the introduction of the whole framework.

Consider then the infinite-dimensional extension of problem (5.8), given by:

ĥ = arg min
hœH

I
‡≠2

Mÿ

i=1

(yi ≠ h (xi)) + ÷ ÎhÎ2
H

J
(5.27)

where �M = ‡2I for simplicity. Note that the regularised regression problem in (5.27)

is a particular case of the one in (5.4) where Si [h] = h (xi), i.e., the Sis correspond to

the evaluation functionals associated with the input location xi; while LP realises the

fitting term through the corresponding yi and weighs the penalty on the norm with ÷.

From Proposition 5.4.5 it is clear that those functionals are linear and bounded, so the



80 Kernel methods and RKHS

problem above satisfies the conditions of the Representer theorem.

In order to explicitly compute the solution for the presented regression problem, the

Bayesian perspective will be taken into account.

Recall that the penalty for the regularised regression is given by the squared norm of

the candidate function in the Hilbert space H. In the case of RKHS, the latter can be

computed as:

Èh, hÍH = ÈK (x, ·) , K (x, ·)Í = K (x, x) (5.28)

thanks to the characterisation in 5.4.4 and to the reproducing property in 5.4.3.

Recall that the latter, in the finite-dimensional setting, corresponded to the prior variance

of the regressor.

Given that the regression variable is now a function h, a prior distribution over functions

should be considered, which is taken as a Gaussian process, with zero mean for simplicity.

The latter induces the following Gaussian distribution over the input points x,

ĥ (x) ≥ N (0, K (x, x)) , (5.29)

which is the prior distribution considered.

By generalising the measurement model in (5.17) for the infinite-dimensional case, the

observations of the true function are given by noisy versions of samples from x, as:

y = h (x) + w, (5.30)

with w ≥ N
!
0, ‡2I

"
, i.e., the measurement noise which for simplicity is considered

to be independently and equally distributed for every sample. Given that the noise is

independent from the prior distribution of samples in (5.29), the induced prior distribution

on the output locations y trivially results in:

y ≥ N
1
0, K (x, x) + ‡2I

2
. (5.31)

Consider then the joint distribution of output locations y and the output of the candidate

function at a generic test location x; the latter is again a Gaussian distribution and in

particular it is given by:

C
y

ĥ (x)

D
≥ N

A
0,

C
K (x, x) + ‡2I K (x, x)

K (x, x) K (x, x)

DB
. (5.32)



5.6 RKHS and Gaussian Processes 81

Finally, the conditional distribution given the available data and the test location yields

the predictive equations for Gaussian process regression, as:

ĥ (x) | x, y, x ≥ N
!
mĥ, �ĥ

"
, (5.33)

where

mĥ (x) := K (x, x)
Ë
K (x, x) + ‡2I

È≠1
y (5.34)

�ĥ (x) := K (x, x) ≠ K (x, x)
Ë
K (x, x) + ‡2I

È≠1
K (x, x) . (5.35)

The maximum a posteriori corresponds to the mean of the conditional distribution in the

Gaussian case, and indeed it can be seen as a generalisation of the formula in (5.16).

Note that, in accordance with the Representer theorem (Theorem 5.2.7), the estimate is

given by a finite combination of the representers of the evaluation functional corresponding

to the input locations, which have been understood to be the kernel sections K (·, xi),

i = 1, . . . , M .



82 Kernel methods and RKHS



6
Learning Koopman operators in RKHSs

This chapter lays the foundation for subsequent developments. In particular the Koopman

operator framework and the estimation in Reproducing Kernel Hilbert Spaces are finally

merged.

This is done by considering the two most popular methods for learning a finite-dimensional

Koopman operator and analysing them under a Bayesian perspective. The latter process

allows to understand the connections between the Koopman operator framework and

kernel methods. Moreover, an interesting dual perspective between DMD and EDMD is

formalised.

The proposed approach allows to smoothly introduce regularisation in the Koopman

estimation and to meaningfully select the space on which the regression should be

performed through the choice of the kernel.

The chapter is mainly based on the work by Zanini, Francesco and Chiuso, 2021b, and

thus it represents an original contribution.

6.1 Kernel sections as dictionary of observables

As presented in Chapter 4, di�erent approaches have been developed over the past

years in order to approximate the operator from data. In particular, the estimation of

Koopman modes have become an active area of research for the analysis of nonlinear

flows, especially in the fluid dynamics community (Bagheri, 2013; BudiöiÊ, Mohr, and

MeziÊ, 2012; Chen, Tu, and Rowley, 2012; Hemati, Williams, and Rowley, 2014; MeziÊ,

2013; Rowley et al., 2009; Taira et al., 2017). These advances all rely on the linearity

of the Koopman description, which allows for a very simple characterisation of the

evolution of the temporal dynamics, thanks to the eigendecomposition (see Chapter 2,

Section 2.3). The Koopman modes are indeed invariant with respect to the propagation

over time, which is then described by taking powers of the eigenvalues. As it now clear,



84 Learning Koopman operators in RKHSs

this description has the drawback of being infinite-dimensional: the Koopman operator

propagates observables, which lie in a function space.

Therefore, any approach which aims to discover finite-dimensional approximation of the

latter operator, deals with only a particular finite subset of the infinite-dimensional space

of functions. This can be achieved implicitly, as done by Dynamic Mode Decomposition

method (Tu et al., 2014), which performs its operation on the space spanned by linear

functions of the state; or explicitly, following the Extended Dynamic Mode Decompo-

sition procedure (Williams, Kevrekidis, and Rowley, 2015), which prescribes to select

a dictionary of functions, in order to define in advance the invariant subspace for the

Koopman operator. The two algorithms have been introduced in Chapter 4.

Also DMD can be generalised to a richer set of basis functions, as it is explicitly stated

in Mauroy and Gonçalves, 2020, although loosing the computational advantages. The

latter formulation though makes it clear that the two approaches have dual properties,

which is in fact partially investigated in that work.

In particular, since the pseudo-inverse of a rectangular matrix is involved, they are

well-defined for di�erent regimes. The EDMD method requires the number of samples to

be larger than the number of basis functions, in order for the procedure to have a unique

solution; the DMD approach instead works under the assumption that the number of

basis function is greater than the number of snapshots from the system. The latter issue

is explained in Chapter 4, Section 4.4, while a step towards a better understanding of

this duality is presented in Subsection 6.3.

This chapter discusses how the Koopman operator can be learned in Reproducing Kernel

Hilbert Spaces, and what are the benefits of framing the problem in this setting. As

explained in Chapter 5, RKHSs are Hilbert spaces which are uniquely characterised

by a kernel function K (·, ·), whose basis of functions may not even yield an explicit

formulation in the feature space. This is in contrast with the EDMD approach, which

expressly requires to specify the observables generating the subspace.

In the proposed approach, it is the choice of the kernel function that determines the

space, solving the problem of having to choose the dictionary of functions a priori. Of

course it is still required to select the Kernel function, however nowadays there is a rather

clear understanding about the prior information that many common kernels induce in the

regression problem, so that a meaningful choice can be made, with respect to the system

under study (Chen, 2018; Carli, Chen, and Ljung, 2017; Chen et al., 2014; Chen et al.,

2016; Chiuso et al., 2014; Dinuzzo, 2015; Chen and Ljung, 2015; Marconato, Schoukens,

and Schoukens, 2016; Pillonetto, Chiuso, and Nicolao, 2011). Moreover, the solution

of the regression problem in RKHS lies in the span of linear combinations of kernel



6.2 Koopman & Kernels 85

sections, centred on available datapoints, as prescribed by the Representer theorem (see

Chapter 5). This means that the number of kernel functions building the invariant space

for the Koopman estimate is implicitly selected to be always equal to the number of

snapshots from the system; making the computational complexity only dependent on the

number of available observations, and not on the space of functions.

6.2 Koopman & Kernels

Given the two important reasons above, RKHSs seem a natural choice for the subspace of

functions representing the invariant space for the approximation of the Koopman operator.

However, so far, the literature has mainly focused on the analysis of the spectrum of the

Koopman operator through kernel methods, without investigating an explicit formulation

of the operator with respect to the Kernel sections, or bridging the Bayesian framework

with the composition operator view.

In Williams, Rowley, and Kevrekidis, 2015 there is one of the first mentions of kernel

methods applied to the Koopman operator framework. In the latter paper, the problem

of computational complexity increasing with the number of basis functions is addressed.

In particular, a matrix approximation of the Koopman operator is proposed, which is

very similar to EDMD except that some algebraic manipulations are performed in order

to "hide" within matrix products the dimension corresponding to the space of functions.

This is indeed the principle behind the kernel trick (Theodoridis and Koutroumbas, 2009;

Shalev-Shwartz and Ben-David, 2014), so that the space of functions can grow without

burdening the computational complexity. The new matrix is shown to have the same

eigenvalues as the EDMD approach, and the eigenvectors can be obtained by a linear

combination of EDMD eigenvectors. This result in the same formulation as given later

in (6.61), when the regularisation term is neglected.

A very similar approach is taken by Kawahara, 2016, resulting however in a variant of

Dynamic Mode Decomposition. In this work it is explicitly stated that the search space

is given by a RKHS, in order to approximate the Koopman eigenfunctions with a richer

basis of functions. However, by relying on the Krylov subspace for regression, the method

they propose only works under the assumption of sequential data, i.e., for a stream of

observations coming from a long trajectory, which is a less general case than considering

general snapshots of the system.

In Takeishi, 2019 and Kurebayashi, Shirasaka, and Nakao, 2016, the problem of learning

kernel hyper-parameters is addressed, with the aim to obtain better prediction for the

Koopman operator. The former method relies on the Galerkin approximation (Giannakis,



86 Learning Koopman operators in RKHSs

2017; Das and Giannakis, 2019), and thus again it works only for data collected along

a single trajectory. In this paper a particular kernel is defined, whose implicit distance

measure takes into account the evolution over time of observed points. The Koopman

operator commutes with the integral operator defined upon that kernel function, when

the number of "propagated points" goes to infinity (Das and Giannakis, 2019). By relying

on the latter fact, the main idea of the paper is to minimise the norm of the commutator

of the Koopman operator and the integral operator thus defined. The commutator

however cannot be evaluated directly, so a bound on the norm is minimised instead. The

latter paper instead relies on the aforementioned kernel version of the EDMD approach

(Williams, Rowley, and Kevrekidis, 2015), but utilises a separate set of datapoints - which

are then not used to approximate the Koopman operator - in order to minimise the Mean

Squared Error over the kernel hyper-parameters, as it is usually done in cross-validation

techniques.

Another related paper is the one by Das and Giannakis, 2020, whose aim is to identify

Koopman eigenfrequencies and eigenfunctions, from data collected over a long trajectory.

The main result of the paper are necessary and su�cient conditions for a Fourier function,

defined on samples along an orbit of the dynamics, to be extensible to a Koopman

eigenfunction over the whole state space, lying in a Reproducing Kernel Hilbert Space.

In Klus, Schuster, and Muandet, 2020 the eigendecomposition of transfer operator is

analysed, with reference to Reproducing Kernel Hilbert Spaces. Similarly to what will be

presented in later sections, an explicit formulation of the Koopman operator is derived,

however they specifically link their approach with conditional mean embeddings and

covariance operators, relying on a uniform sampling measure to match the framework in

which only a finite amount of data are available. Also their approach seems less intuitive

as, for instance, the introduction of the regularisation is there to overcome the otherwise

necessary technical assumption that a version of the conditional expectation is included

in the RKHS as a function of the input locations (Fukumizu, Song, and Gretton, 2013).

The presentation in this chapter instead exploits the well-known Representer theorem

(Schölkopf, Herbrich, and Smola, 2001) to address the regression in RKHS, and the

regularisation parameter is introduced following the Bayesian interpretation (Rasmussen

and Williams, 2006).

6.3 A dual view of EDMD and DMD

The two most popular approaches to estimate a finite-dimensional approximation of

the Koopman operator from data, reviewed in Chapter 4, Section 4.4, can be given a



6.3 A dual view of EDMD and DMD 87

dual interpretation. The proposed unifying framework will reveal that in the case of an

equal number of basis functions and snapshots of the system, the two approaches are

substantially equivalent. Although some slight di�erences in the formulation will still

be present, since EDMD acts in the space of coe�cients for a fixed basis while DMD

operates in the space of function values, the interpretation is actually the same. The

latter is an important remark because in the RKHS framework that will be presented

later, this is always the case. Indeed, with kernel methods, the solution of the regression

problem is known to lie on a subspace of the associated Hilbert space, given by the

finite-dimensional span of the kernel section which are centred in the available points.

This means that the number of basis functions for the space is the same as the number of

datapoints, and the estimate belongs to that space. The dual view for the kernel version

of the Koopman operator is presented in Section 6.6.

As already explained in Chapter 4, both approaches rely on a fixed dictionary of observ-

ables, {Âj : X æ R}N
j=1, and on observations coming from the system, i.e., d-dimensional

snapshots of the discrete-time flow describing the dynamics of interest, given as {xi, yi}
M
i=1,

where yi = f (xi). The vector containing the whole set of datapoints is denoted for the

input and output locations respectively as x =
Ë
x1 . . . xM

È
and y =

Ë
y1 . . . yM

È
.

Given then a dictionary of functions D = {Âj}N
j=1, define as usual the space

�D = span {D} = span {Â1, . . . , ÂN } (6.1)

as the finite-dimensional space of linear combinations of the functions provided by the

dictionary. The EDMD approach prescribes to minimise the residual r (·) between the

actual Koopman operator and its projection on �D, for all the basis functions Âj . If the

space �D was invariant with respect to the Koopman operator, then the residual would

be zero. But since the fixed dictionary of function in general cannot describe exactly the

behaviour of the Koopman operator (unlike in Example 2.1.1), the image of the operator

is a superset of �D, i.e. ÷j œ [1, N ] | U [Âj ] /œ �D so that, with some abuse of notation,

Im [U [�D]] ) �D.

The latter is analogously expressed as:

U [Â] (·) = P�D
[Â] (·) + r (·) . (6.2)

’Â œ �D, where P�D
: � æ �D is the projection operator going from the whole space

of observables onto the linear space spanned by the dictionary, and r (·) denotes the

residual.

The objective is to minimise r (·) relying on the available observations {xi, yi}
M
i=1. There-



88 Learning Koopman operators in RKHSs

fore equation (6.2) is specialised for the observed snapshots pair as

U [Â] (x) = P�D
[Â] (x) + r (x) , (6.3)

so that

r (x) = U [Â] (x) + P�D
[Â] (x) (6.4)

= Â (f (x)) + P�D
[Â] (x) (6.5)

= Â (y) + P�D
[Â] (x) (6.6)

Define the vector of basis functions composing the dictionary D as

DÂ (·) :=
Ë
Â1 (·) . . . ÂN (·)

È
, (6.7)

with the N observables, as done in previous chapters. The matrix of evaluations on the

available datapoints for all the function in the dictionary are again

Dx =

S
WWWWWU

Â1 (x1) Â2 (x1) . . . ÂN (x1)

Â1 (x2) Â2 (x2) . . . ÂN (x2)
...

...
. . .

...

Â1 (xM ) Â2 (xM ) . . . ÂN (xM )

T
XXXXXV

,

Dy =

S
WWWWWU

Â1 (y1) Â2 (y1) . . . ÂN (y1)

Â1 (y2) Â2 (y2) . . . ÂN (y2)
...

...
. . .

...

Â1 (yM ) Â2 (yM ) . . . ÂN (yM )

T
XXXXXV

, (6.8)

with Dx, Dy œ R
M◊N , whose rows are in turn written as

Dxi
=

Ë
Â1 (xi) . . . ÂN (xi)

È
, Dyi

=
Ë
Â1 (yi) . . . ÂN (yi)

È
. (6.9)

The EDMD method requires to find N vectors of coe�cients, grouped as columns of the

matrix U , which give the best approximation of the composition Âj ¶ f , using a linear

combination of functions which are present in the dictionary, ’j œ [1, N ]. This means

that the cumulative error between the observation and the approximation within �D is

minimised, for every snapshot pair and every basis function. Denoting as U (új) the j-th



6.3 A dual view of EDMD and DMD 89

column of the matrix U and as U (iú) the i-th row, the error is given by:

Mÿ

i=1

Nÿ

j=1

C
Âj (yi) ≠

Nÿ

k=1

Âk (xi) U (jk)

D2

(6.10)

=
Mÿ

i=1

Nÿ

j=1

Ë
Âj (yi) ≠ Dxi

U (új)
È2

(6.11)

=
Mÿ

i=1

..Dyi
≠ Dxi

U
..2

(6.12)

= ÎDy ≠ DxUÎ2
F . (6.13)

The matrix U minimising (6.13) is the finite-dimensional approximation of the Koopman

operator:

UEDMD = min
UœRN◊N

ÎDy ≠ DxUÎ2
F , (6.14)

whose solution is

UEDMD = D†
xDy. (6.15)

Recall that any observable Â œ �D is uniquely determined by a vector coe�cient –

multiplying the functions of the dictionary D. It holds:

Â (·) =
Nÿ

i=1

–iÂi (·) (6.16)

= DÂ–, (6.17)

’Â œ �D.

Then for any – characterising Â the EDMD approach finds — describing another function

in �D which best approximate the action of the infinite-dimensional Koopman operator

on Â. The action of the approximate operator is given by

— = UEDMD–, (6.18)

which maps the coe�cients of the observable Â into the coe�cients — representing Â ¶ f .

The latter is exactly the operator acting on coe�cients that has been derived in Chapter 4,

Section 4.3.

Note that the problem is meaningful if N Æ M , i.e., when the number of functions in the

dictionary are less than the training pairs, so that it is not possible to fit perfectly all

the observations with the given functions. This implies that Dx is an injective operator,

hence the left inverse exists, and it is given by D†
x.



90 Learning Koopman operators in RKHSs

The DMD approach can be formulated in a dual fashion, where the sought matrix is a

mapping from inputs to outputs, with respect to the values of the observables obtained

by evaluating the functions of the dictionary at the available points. That is, the problem

is to minimise the quantity:

ÎÂi (y) ≠ UÂi (x)Î2
F , (6.19)

’i œ [1, N ], with respect to the matrix U œ R
M◊M .

This yield the dual problem as follows:

UDMD = min
UœRM◊M

ÎDy ≠ UDxÎ2
F , (6.20)

whose solution (Mauroy and Gonçalves, 2020) is

UDMD = DyD†
x; (6.21)

which instead makes sense for M Æ N , so if the number of functions are higher than

training points. The latter condition indeed makes Dx a surjective operator, and D†
x is

its right inverse.

The duality of these two approaches can be appreciated by comparing (6.14), (6.15) and

(6.20), (6.21). Moreover, in the particular case of N = M , the pseudo-inverse becomes

the same, because of the uniqueness of the Moore-Penrose inverse.

So far the snapshots of the system are assumed to be noiseless pairs coming from the true

transition function that should be estimated. In the next sections the system dynamics

are instead assumed to be noisy.

This is considered in order to tackle a larger class of problems: the case of stochastic

dynamics has already proved itself important in Chapter 3, and many system have

inherent stochasticity. The latter can for instance be given by the measurement process.

On the other hand, the noise could be an artifact to take into account undermodeling,

when the postulated model class cannot describe the dynamics in full. Also, the estimated

noise in the dynamics can be used as a regularisation parameter which is often employed

to avoid fitting the disturbance and therefore to make the algorithm more stable.

In what follows, the measurements will be assumed to satisfy the following relation:

xk+1 = f (xk) + wk (6.22)

where wk is a general discrete-time noise process.

Note that for the task of one-step prediction, the one addressed in this chapter, the

assumption of full measurability of the state is not needed. Indeed, as with kernel



6.4 From Koopman to kernels 91

methods, the same procedure is valid even if the observation do not correspond to the full

state, but instead represent an output that could lie in a di�erent space. However, as will

be clear in the next chapter, the proposed procedure will be iterated to obtain subsequent

predictions of the observable and therefore address the control problem. Predictions for

steps arbitrarily far away in the future will be necessary, and in order to get this, the

measurability assumption is required, to set the regression correctly. This is equivalent

to impose that the state-transition function is an endomorphism.

6.4 From Koopman to kernels

The EDMD principle relies on a fixed dictionary of functions to capture the dynamics

and understand the evolution of the observables of the system that are of interest. The

approximation of the Koopman operator is then N -dimensional, with N the number

of functions in the dictionary, and �D is the invariant subspace which keeps confined

the action of the learned operator UEDMD. As explained in the previous section and in

Chapter 4, the Extended Dynamic Mode Decomposition learn an approximation of the

Koopman operator acting on the space of coe�cients, which uniquely characterise any

function in the linear span of the given basis. This is accomplished as:

— = UEDMD– = D†
xDy– (6.23)

where – are the coe�cient of the generic desired function Â, belonging to �D, and — are

the coe�cients which yield the best representation in �D for the composition Â ¶ f .

However, since the dynamics in (6.22) are a�ected by the noise wk, there is no exact

correspondence between the evaluations of the observable in the available snapshot pairs,

i.e., Â (y) ”= Â (f (x)).

In what follows, this mismatch is modeled as a static perturbation Á, so that:

Â (y) = Â (f (x)) + Á. (6.24)

As prescribed by the EDMD approach, the objective is to find — so that the Koopman

operator is well approximated in �D, i.e., Â (f (x)) = Dx—. Then the chosen — should

satisfy

Â (y) = Dx— + Á, (6.25)

for — œ R
N .

In order to make the problem easily tractable, the uncertainty Á is modeled as a zero-mean

Gaussian random variable with variance V [Á] = ‡2. Also, by aiming for a Bayesian



92 Learning Koopman operators in RKHSs

perspective, a prior distribution is assumed for the regression coe�cients as — ≥ N (0, �),

with � œ R
N◊N .

Since the learned operator acts on �D, it only makes sense to choose Â in that space,

so that there exists – such that Â (·) = DÂ–. Specialising this relation for the observed

outputs y, it holds that Â (y) = Dy–. This gives rise to the following linear measurement

model:

Â (y) = Dy– = Dx— + Á. (6.26)

For a linear model in the Bayesian setting, predictions are based on the posterior

distribution of the coe�cients —, computed using Bayes rule (Bayes, 1763).

Theorem 6.4.1 (Bayes). The conditional probability of the events E and Ẽ belonging to

a probability space can be expressed as:

P

1
E | Ẽ

2
=

P

1
Ẽ | E

2
P(E)

P

1
Ẽ

2 (6.27)

which in the Bayesian setting can be interpreted as (Rasmussen and Williams, 2006)

posterior =
likelihood ◊ prior

marginal likelihood
. (6.28)

In the considered case, the theorem is written as:

p (— | Dy–, Dx) =
p (Dy– | Dx, —) p (—)

p (Dy– | Dx)
(6.29)

where the marginal likelihood is just a normalising constant, since it is independent of

the regression coe�cients. Indeed it is given by:

p (Dy– | Dx) =

⁄
p (Dy– | Dx, —) p (—) d—, (6.30)

where it is clear that the regression coe�cients are marginalised out.

By computing the terms in (6.29) for the Bayesian case, it is possible to retrieve the

following expression for the probability of —, conditioned on the observations:

p (— | Dy–, Dx) Ã exp

C
≠

1

2

1
— ≠ —̂

2€
A

D€
x Dx

‡2
+ �

≠1

B 1
— ≠ —̂

2D
, (6.31)

where —̂ =
1
D€

x Dx + ‡2�≠1
2≠1

D€
x Dy–. It is clear that the distribution in (6.31) is



6.4 From Koopman to kernels 93

Gaussian, so that the posterior has the following distribution:

p (— | Dy–, Dx) = N

A1
D€

x Dx + ‡2
�

≠1
2≠1

D€
x Dy–,

A
D€

x Dx

‡2
+ �

≠1

BB
. (6.32)

For any Gaussian posterior the mean coincides with the mode of the distribution (Ras-

mussen and Williams, 2006), so that —̂ is called the maximum a posteriori (MAP) estimate

of —.

Interestingly, the MAP estimate can be seen as a regularised version of EDMD. Indeed,

by setting the regularisation parameter ‡2 = 0, the original formula from Williams,

Kevrekidis, and Rowley, 2015 is recovered:

—̂ =
1
D€

x Dx

2≠1
D€

x Dy– = D†
xDy–. (6.33)

Therefore the regularised EDMD is defined to be the following:

U
(‡2)
EDMD =

1
D€

x Dx + ‡2
�

≠1
2≠1

D€
x . (6.34)

The next proposition presents a di�erent expression for the regularised EDMD operator

in 6.34, which will be exploited in what follows.

Proposition 6.4.2. The regularised EDMD can equivalently be rewritten as:

U
(‡2)
EDMD = �D€

x

1
Dx�D€

x + ‡2IN

2≠1
(6.35)

Proof. By rearranging the terms in the following expression

D€
x

1
Dx�D€

x + ‡2IN

2
= D€

x Dx�D€
x + D€

x ‡2 (6.36)

=
1
D€

x Dx + ‡2
�

≠1
2

�D€
x , (6.37)

it is trivial to derive the identity

1
D€

x Dx + ‡2
�

≠1
2≠1

D€
x

1
Dx�D€

x + ‡2IN

2
= �D€

x (6.38)

so that 1
D€

x Dx + ‡2
�

≠1
2≠1

D€
x = �D€

x

1
Dx�D€

x + ‡2IN

2≠1
(6.39)

which proves the proposition.



94 Learning Koopman operators in RKHSs

Given that the Extended Dynamic Mode Decomposition maps the coe�cients for the

observable in D into new coe�cients approximating the composition in the same basis,

the estimation for the action of the Koopman operator would be:

[U [Â] (x) = DÂ (x) — = DÂ (x) U
(‡2)
EDMD– (6.40)

= DÂ (x) �D€
x

1
Dx�D€

x + ‡2IN

2≠1
Dy– (6.41)

= DÂ (x) �D€
x

1
Dx�D€

x + ‡2IN

2≠1
Â (y) , (6.42)

in which the last equation yields a clear connection with kernel methods. Indeed, by

defining a suitable finite-dimensional kernel, it is possible to understand (6.42) as the

estimate given by the Representer theorem. The latter kernel is the one associated with

the dictionary of functions D. In order to see this, define the kernel as inner product of

basis function, through:

K (x, y) := DÂ (x) �DÂ (y)€ = ÈDÂ (x) , DÂ (y)Í�; (6.43)

then, the estimate provided by the regularised EDMD can be rewritten in terms of kernel

sections as:
[U [Â] (x) = K (x, x)

Ë
K (x, x) + ‡2IM

È≠1
Â (y) . (6.44)

It is possible to recognise in (6.44) the a posteriori Bayesian estimate of the composition

function, given by Â+ (·) := Â (f (·)). Indeed, under the Gaussian prior

Â+ (·) ≥ N (0, K (·, ·)) , (6.45)

and given the noisy measurements

Â (y) = Â (f (x)) + Á, (6.46)

the Gaussian posterior distribution is centred in (6.44), which is then the MAP estimate

of Â+ (·).

6.5 From kernels to Koopman

To ultimately draw connections with the RKHS framework, the reverse problem is

addressed in this section, i.e., the reconstruction of the Koopman operator with a

dictionary of functions composed of kernel sections. Exploiting again the Bayesian

perspective, consider observables Â (·) which are zero-mean Gaussian processes with



6.5 From kernels to Koopman 95

covariance function given by K (x, x̃) = E [Â (x) Â (x̃)]. This is equivalent to assume that

�D is a Reproducing Kernel Hilbert Space characterised by the kernel K (·, ·).

The objective is the same, i.e., to reconstruct the composition function Â+ (·), given the

generic observable Â (·) œ �D, and noisy observations coming from the system, which

are modeled through:

Â (y) = Â (f (x)) + Á, (6.47)

where Á ≥ N
!
0, ‡2

"
From these measurements, and by taking into account the space of

functions given by the RKHS, an estimate of Â (f (·)) = Â+ (·) should be provided.

Recall that under the Bayesian framework (see Chapter 5, Section 5.6) the MAP estimate

is given by:

Â̂+ (·) = K (·, x)
Ë
K (x, x) + ‡2IM

È≠1
Â (y) . (6.48)

where ‡2 is a regularisation parameter corresponding to the estimated variance of the

noise in the observations, which are the evaluation of the observables in the training

points.

Under the assumption that Â œ �D, it is clear that:

Â (·) =
Mÿ

i=1

K (·, xi) –i, (6.49)

so that

Â (y) =
Mÿ

i=1

K (y, xi) –i. (6.50)

This gives the coe�cient of the considered observable Â, with respect to the basis functions

given by the kernel section centred in the input locations x. The latter are needed to

reconstruct the action of the EDMD approach. By rewriting equation (6.48) as

Â̂+ (·) = K (·, x)
Ë
K (x, x) + ‡2IM

È≠1
Mÿ

i=1

K (y, xi) –i (6.51)

= K (·, x)
Ë
K (x, x) + ‡2IM

È≠1
K (y, x) – (6.52)

it is clear that the EDMD formulation with respect to the basis given by the kernel

sections is given by:

U
(K)
EDMD =

Ë
K (x, x) + ‡2IM

È≠1
K (y, x) . (6.53)

Indeed by multiplying the above matrix with the coe�cients – of the selected observable,

the operator returns the coe�cients — = U
(K)
EDMD– for the same kernel sections K (·, x),



96 Learning Koopman operators in RKHSs

which best approximate the composition function Â+ (·).

This is formalised in the next proposition.

Proposition 6.5.1. Given an observable Â œ �D, the regularised estimate of the EDMD

approach framed in a Reproducing Kernel Hilbert Space, defined as

U
(K)
EDMD =

Ë
K (x, x) + ‡2IM

È≠1
K (y, x) , (6.54)

maps the coefficients – describing the observable in the space spanned by the kernel

sections K (x, · · ·), obtained as Â (y) = K (y, x) –, to

— = U
(K)
EDMD–, (6.55)

which defines the Bayesian estimate of Â (f (·)) under the measurement model

Â (y) = Â (f (x)) + Á. (6.56)

Proof. Values at output locations Â (y) can be written as K (y, x) –, with

– = [K (y, x)]≠1 Â (y) . (6.57)

Therefore, writing equation (6.48) with respect to the kernel section K (·, x), the Bayesian

estimate of Â (f (·)) is given by:

\Â (f (·)) = K (·, x)
Ë
K (x, x) + ‡2IM

È≠1
Â (y) (6.58)

= K (·, x)
Ë
K (x, x) + ‡2IM

È≠1
K (y, x) – (6.59)

= K (·, x) U
(K)
EDMD–, (6.60)

where U
(K)
EDMD is defined as:

U
(K)
EDMD =

Ë
K (x, x) + ‡2IM

È≠1
K (y, x) . (6.61)

By defining

— := U
(K)
EDMD–, (6.62)

then the sought estimate is given by:

\Â (f (·)) = K (·, x) — (6.63)



6.6 Duality in RKHS 97

which indeed is the MAP estimate under the measurement model in 6.56.

Remark 6.5.2. Technically, it should be assumed that the kernel matrix K (y, x) is

invertible, to make (6.57) meaningful. However, from Definition 5.4.1, it follows that

kernel sections are linearly independent, therefore it holds almost surely - with respect

to the probability of realisations of the noise - that the matrix is invertible, hence the

assumption is not needed.

The regularised version of the EDMD approximation for the Koopman operator

simply di�ers from the kernel version in the fact that the former is expressed in the basis

provided by the functions in the dictionary D, while the latter is written with respect to

kernel sections centred at input locations K (·, x).

There emerges the greatest di�erence in the two approaches. By relying on the standard

EDMD procedure it is necessary to specify the whole dictionary of function in order

to perform the regression, and the latter will be fixed throughout the whole estimation

process even though it may not be suitable for the problem at hand. In the kernel version

it is instead required to specify only the kernel structure, which has the meaning of a

similarity measure among functions. Through the kernel indeed it is possible to encode

important prior information - such as smoothness - in the estimation, so that the search

space of functions will automatically shape itself according to the observed data. However

the solution will still lie in a finite-dimensional space so the estimation procedure is

well-defined and has a closed-form solution in the case of a Gaussian prior, and Gaussian

measurements.

6.6 Duality in RKHS

In the previous sections the connections between the EDMD approach and estimation

in the Bayesian framework have been explored and analysed. The kernel version of the

DMD formulation has not been characterised yet, though from the duality presented in

Section 6.3 it is straightforward to understand that the latter approach should be similar

to the EDMD formulation, given that, by framing the problem in a RKHS, it always

holds that N = M ; where N is the number of basis functions and M is the number

of datapoints. The two operators however are defined in di�erent ways: EDMD acts

on coe�cients for the basis functions, while DMD maps values of observables into the

same values when the state is propagated through the dynamics. In what follows the

connection between the two formulations in RKHS is discussed, finally accomplishing the

objective of bridging the di�erent frameworks.

Following the DMD perspective, given the values of an observable at the input locations



98 Learning Koopman operators in RKHSs

Â (x), the aim is to reconstruct the values of the observable at output locations Â (y), as

introduced in Chapter 4. The latter problem is projected into the RKHS as follows.

An estimate of the observable function Â (·) is obtained through the measurements Â (x),

by performing the regression from the actual input locations x to the observable mappings

Â (x). This is nothing but the projection of Â on the finite-dimensional space spanned by

the kernel sections centred on datapoints, given by:

Â̂ (·) = K (·, x) [K (x, x)]≠1 Â (x) . (6.64)

Then the values which the latter estimates takes on the output locations y can be seen

as a noisy observation of the actual Koopman composition Â+ (·) = Â (f (·)), i.e.,

Â̂ (y) = K (y, x) [K (x, x)]≠1 Â (x) , (6.65)

which indeed highlights the mapping sought by the DMD approach. The kernel version

of the Dynamic Mode Decomposition of the Koopman operator then takes the form of:

U
(K)
DMD = K (y, x) [K (x, x)]≠1 (6.66)

so that

Â (y) = U
(K)
DMDÂ (x) . (6.67)

It should be noted that in (6.65) a second regression problem is introduced. In particular,

the values of the observable corresponding to the output locations are reconstructed

through the knowledge of x, y and Â (x). This is actually not necessary, as it is clear

from Proposition 6.5.1, where the coe�cients are taken as – = [K (y, x)]≠1 Â (y), yielding

the exact observed values. That formulation however can be employed only when the

knowledge of the values of the propagated points are known. For instance, in the case of

subsequent propagations - which is matter for Chapter 8 - this no longer true. Moreover,

the second layer of regression allows to add regularisation also for the reconstruction

of the observable function, which is neglected here, considering the evaluation of the

observable as noiseless.

By recalling the formula of the final estimate for the composition of the observable and

the transition function, it turns out to be trivial to link the EDMD and DMD approaches



6.7 Illustrative example for estimation 99

in their kernel versions:

\Â (f (·)) = K (·, x) — (6.68)

= K (·, x) U
(K)
EDMD– (6.69)

= K (·, x) U
(K)
EDMD [K (x, x)]≠1 Â (x) (6.70)

= K (·, x)
Ë
K (x, x) + ‡2IM

È≠1
K (y, x) [K (x, x)]≠1 Â (x) (6.71)

= K (·, x)
Ë
K (x, x) + ‡2IM

È≠1
U

(K)
DMDÂ (x) (6.72)

= K (·, x)
Ë
K (x, x) + ‡2IM

È≠1
Â (y) . (6.73)

6.7 Illustrative example for estimation

The Koopman operator framework, and in particular the proposed approach making

use of kernel methods, allows to estimate the evolution of a generic observable when

propagated through the system. In the following chapters this capability will be exploited

to tackle the Reinforcement Learning problem, leaning on the intuition that the reward

(or cost) itself can be thought as an observable.

So far, the approach introduced in this chapter only deals with estimation. However,

the following example already frames the problem in terms of a cost function, whose

composition with the dynamics needs to be estimated. In other terms, the final task for

an estimation algorithm in this framework would be the estimation of the cost of the

next state, given the current one.

In order to illustrate the e�ective applicability of the proposed framework, a simple

example is shown, in which the same task is solved both through the Extended Dynamic

Mode Decomposition, which rely on a fixed dictionary of functions, and the proposed

generalisation with kernels, which instead use a standard Radial Basis Function kernel.

For the sake of clarity, a scalar system is considered so that transition maps and observables

can be easily plotted, and the results visually inspected. In particular, the following

discrete-time autonomous dynamics are taken into account:

xk+1 = f (xk) = ≠xk +
3!

1 + x2
k

" +
1

2
sin (2xk) , (6.74)

which are characterised by an oscillatory behaviour, and exhibit an equilibrium point in

x(e) ƒ 0.988.

This system is a modification from the one considered by Mauroy and Gonçalves, 2020,



100 Learning Koopman operators in RKHSs

in the example of the genetic toggle switch (Gardner, Cantor, and Collins, 2000). The

latter system is derived from the statistical mechanics of Transcription Factor Binding,

and in particular it is composed of Hill functions, which represents an approximation

of how the production rate of a gene depends on the transcription factor concentration

(Alon, 2006; Phillips, Kondev, and Theriot, 2008; Dill and Bromberg, 2011; Bintu et al.,

2005; Lamprecht and Zotin, 2019).

The tasks to solve will be to reconstruct both the transition function given in (6.74) and

its composition with the following cost function:

c (xk) =
...xk ≠ x(r)

...
2

, (6.75)

for an arbitrary reference value x(r), which would be the minimiser of the cost.

Both the 2 objectives can be easily embedded in the Koopman operator framework by

considering the prediction of two di�erent observables:

Â(I) (x) = x; (6.76)

Â(c) (x) = c (x) . (6.77)

In particular, the observable in (6.76) corresponds to the identity function, so that

learning its composition with the dynamics would mean to actually learn the transition

function, which is the first task. The other observable instead is equal to the cost, which

gives the sought composition. The latter framework then follows the same idea which

will be enforced later, i.e., that the cost (or reward) should be thought as an observable.

The aim of the experiment will be to prove that the infinite-dimensional implicit dictionary

of functions provided by the Gaussian kernel can solve both problems, representing a

meaningful approach when no explicit prior knowledge on the system is available. The

reconstruction of the dynamics through EDMD method would indeed be easy if the three

functions that linearly gives the state-transition function in (6.74) were all explicitly

provided in the dictionary. However, this would not be true for the second task, in which

the latter functions are no longer suitable to the regression, because they cannot account

for the composition of the transition and the reward. This instead is well handled by the

reconstruction with kernels, as proved by the following simple example.

In order to make the Extended Dynamic Mode Decomposition as competitive as possible,

the user-defined dictionary of functions D is selected as:

D =
Ó

1, x, x2, sin (2x)
Ô

fi H
4, (6.78)



6.7 Illustrative example for estimation 101

where H
n is the set of the first n-th simple Hills functions with even powers, defined as:

H
n =

n€

i=1

;
1

1 + x2i

<
. (6.79)

Therefore there are N = 8 functions in the dictionary D = {Âi (·)}N
i=1, with which the

reconstruction can be performed. Moreover, the chosen function allows for a perfect

reconstruction of the dynamics, as explained earlier. Note that also the cost function

itself belongs to the dictionary, being equal to a linear combination of the functions

1, x, x2 in the scalar case. The latter is however not true for the composition of the

dynamics and the cost function in (6.75), which in this would require to compute the

squared norm of the transition and take every single function. In other words, it holds

that:

Â(I) (f (·)) œ span {D} ; Â(c) (·) œ span {D} ; Â(c) (f (·)) /œ span {D} . (6.80)

As explained in Section 6.4, the original EDMD algorithm can be expressed through

kernel functions by defining a finite dimensional kernel which expresses the inner product

between basis function, as given in (6.43). Therefore it is su�cient to compare the

performances of the same algorithm when using the custom kernel given by:

K(D) (x, x̃) =
Nÿ

i=1

Âi (x) Âi (x̃) (6.81)

in which the prior variance of the coe�cients � = IN is taken to be the identity matrix,

without loss of generality. The regularisation will indeed be adjusted by the parameter

‡2, because, as can be appreciated from equation (6.34), what matters is only the ratio

‡2�≠1.

The reconstruction over the implicit infinite-dimensional space of function can be achieved

by di�erent choices of the kernel. In this case a standard Radial Basis Function (RBF)

kernel is considered:

K(G) (x, x̃) = exp

3
≠Í

...x ≠ x(r)
...

2
4

. (6.82)

In the actual simulations the reference state is taken to be x(r) = 0 for the cost in (6.75).

Data from the system are given as snapshots pair {xk, xk+1}, where the samples are

collected as noisy input of the state-transition function in (6.74), according to the

measurement model:

xk+1 = f (xk) + wk (6.83)



102 Learning Koopman operators in RKHSs

in which wk is a Gaussian zero-mean perturbation distributed as wk ≥ N
!
0, ‡2

"
.

Di�erent scenarios are taken into account, with di�erent noise levels, given by:

‡2
(1) = 0; ‡2

(2) = 0.2; ‡2
(3) = 0.5. (6.84)

In any case, M = 50 available pairs are considered, consisting of 5 trajectories, each of

10 points. The initial point of every trajectory is sampled from a uniform distribution

between 0 and 7.

By considering the variance of the output locations approximately equal to the variance

of the input locations - which is reasonable given the behaviour of the system in (6.74)

- the di�erent scenarios can be understood in terms of the signal-to-noise ratio (SNR),

given by:

SNR(1) = Œ; SNR(2) = 20; SNR(1) = 8. (6.85)

In the actual experiments the regularisation parameter is set to be equal to the variance

of the noise injected in the measurements, i.e., ‡2 = ‡2.

The hyper-parameter Í for the Gaussian kernel has been optimised for each new recon-

struction by minimising the negative marginal log-likelihood on a small grid. The latter is

indeed an important step as it defines the shape of the kernel sections, which are linearly

combined to form the estimate. While it’s true that with the kernel approach only the

kernel function must be chosen a priori, the hyper-parameters play a fundamental role in

shaping the estimate. The advantage is that, unlike with EDMD approach in which the

dictionary of function has to be selected a priori, the hyper-parameters can be adjusted

based on available data. Therefore the goodness of the estimate also depends on a careful

choice of the hyper-parameters.

As explained in the previous section, the kernel formulation of the Koopman operator

yields an M ◊ M matrix, where M is the number of training examples. A well-known

di�culty for kernel learning is the computational complexity, which is bound by the

necessity of handling the kernel matrix. Therefore the proposed approach su�er from the

same issue, as the matrix inversion is a costly operation, which leads to a complexity of

at least O
!
M3

"
. However, given the benefits and the popularity of kernel methods, there

is already an extensive literature on methods to reduce the computational cost of these

approaches, e.g. by carefully selecting a subset of the kernel matrix entries, dealing with

a low-rank approximation, or resorting to the random projection method (Cesa-Bianchi,

Mansour, and Shamir, 2015).

In Figure 6.1 the reconstruction of the transition map with noiseless data is addressed.

As expected, the true curves and the one obtained by EDMD are overlapping, since the



6.7 Illustrative example for estimation 103

-6 -4 -2 0 2 4 6
-�

-6

-4

-2

0

2

4

6

�

true

data

Gaussian

fixed

Ã
(I

)
(f

(x
))

=
f
(x

)

x

Figure 6.1: Example of reconstruction of the state-transition map, formally estimating the

identity observable, obtained with the two kernels, where "fixed" corresponds to the estimation

through EDMD technique, and "Gaussian" label is related to the RBF kernel. Data for the

reconstruction are represented with a cross.

provided basis function allows for a perfect estimation of the dynamics.

-6 -4 -2 0 2 4 6
-�0

0

�0

20

�0

40


0

true

data��s�nt�eti��

Gaussian

fixed

x

Ã
(c

)
(f

(x
))

=
c
(f

(x
))

Figure 6.2: Reconstruction of the composition of the cost function and the state-transition

map with the two different kernels related to EDMD and RBF regression. The label "fixed"

corresponds to the estimation with the chosen dictionary of functions D, while "Gaussian" is

the one coming from the kernel perspective. Data for the reconstruction are represented with

a cross.

The drawbacks of dealing with a fixed dictionary of functions become evident in the

second task, namely the reconstruction of the composition of the cost and the dynamics.

The bad estimation is of course due to the fact that the basis functions in the dictionary



104 Learning Koopman operators in RKHSs

cannot linearly describe the objective function, therefore resulting in a shape which is

very di�erent from the original curve, no matter how many data may be provided. The

latter is evident in Figure 6.2, in which the reconstruction through the RBF kernel can

instead give a good representation of the sought composition. Furthermore, the Gaussian

kernel estimator improves as more data are provided, contrary to EDMD technique.

In order to better understand the behaviour of the di�erent perspectives, their perfor-

mances have been analysed by performing the reconstruction under di�erent noise levels,

given in (6.84), and evaluating the normalised L2 norm (NLN) of the di�erence between

the estimate and the true function, given by:

NLN :=
... ‰Â(c) (xk+1) ≠ c (f (xk))

... / Îc (f (xk))Î . (6.86)-6 -4 -2 0 2 4 6
-�0

0

�0

20

�0

40


0

true

data��s�nt�eti��

Gaussian

fixed

0

0.5

1

1.5

2

N
L
N

G(¾(1)) F(¾(1)) G(¾(2)) F(¾(2)) G(¾(3)) F(¾(3))

Figure 6.3: Evaluation over 100 trials of the NLN for the three different noise level considered.

The label "G" corresponds to the estimation with the Gaussian kernel while "F " denotes the

reconstruction with the fixed dictionary of functions. The noise level is specified within

parenthesis. The boxplots represents the represent the 25-th and 75-th percentiles around the

median, while the bar includes all data apart from the outliers, marked with a red plus sign.

Figure 6.3 shows the result of 100 Monte Carlo simulations, under the di�erent level

of noise. It can be seen that if the dictionary of function does not allow for a perfect

reconstruction, then the approach with Gaussian kernel outperforms the EDMD technique.

Also, the milder prior imposed by the Gaussian assumption helps to e�ectively deal with

the noise, which could instead induce very wrong coe�cients for the linear reconstruction

with the fixed dictionary, due to misleading data.



7
Koopman for control

While in previous chapters the Koopman operator has been used to perform the recon-

struction of autonomous systems, in what follows the control setting is addressed.

The control problem is formalised in the first section, which is followed by a thorough

introduction of the Koopman operator framework for controlled systems, also by review-

ing previous work on this topic which recently emerged from the literature. The linear

setting provided by the Koopman operator proves to be advantageous as the linear control

problem can be solved sharply. Di�erent linear approximations for nonlinear controlled

systems are analysed: although they succeed in approximating the dynamics, they fail to

provide a simple form for the design of the controller, unlike the new approach proposed

in the next Chapter.

7.1 The control framework

The classical definition of the Koopman operator (Definition 2.2.3) deals with autonomous

dynamics, i.e., systems for which the time-invariant vector field f : X æ X is a function

only of the state x œ X. Considering such systems is surely useful from the point of

view of the analysis: a large part of the literature on the Koopman operator is indeed

concerned with understanding the properties and the behaviour of generic nonlinear flows

(Mauroy and Sootla, 2017; MeziÊ, 2005; Mauroy and MeziÊ, 2012; Kühner, 2019; Bátkai,

Fijavz, and Rhandi, 2017; Lasota and Mackey, 2013; MeziÊ and Wiggins, 1999; MeziÊ

and Banaszuk, 2004; Lan and MeziÊ, 2013; MeziÊ, 2015; Mauroy, MeziÊ, and Moehlis,

2013). The Koopman operator indeed turned out to be a useful tool for this purpose,

revealing geometric properties of the system and for example allowing the derivation of

new conditions for stability (Mauroy and MeziÊ, 2016; Rantzer, 2001; Vaidya and Mehta,

2008; Susuki and MeziÊ, 2014; Sootla and Mauroy, 2017). The latter can give di�erent

insights with respect to the usual state-space view, as it is one of the most important



106 Koopman for control

properties of a dynamical system and therefore something that should be thoroughly

understood.

Nonetheless the final aim of this work is to investigate how the Koopman operator -

and especially its embedding in the RKHS framework, as given in Chapter 6 - can be

exploited for the control task.

When considering controlled systems, the dynamics are a�ected not only by the state

x, but also on the control input a, which is in general a function depending on time, as

stated by the following definition, which considers the continuous-time setting.

Definition 7.1.1 (Control input). A function mapping time to inputs, a : [0, Œ) æ

A, A ™ R
p, is called a control. The set of control functions is denoted as �A.

The expression for an autonomous dynamical system, specialising the di�erential

formulation in (2.1), is then given by:

ẋ (t) = f (x (t) , a (t)) , (7.1)

where now the vector field maps state-action pairs into states, i.e., f : X ◊ A æ X.

The controlled dynamical system in (7.1) models the fact that part of the dynamics can

be significantly changed through the exogenous input a (t), so that the same system with

two di�erent control inputs can have di�erent behaviours.

In control theory the controlled dynamics are analysed with di�erent objectives. The

degrees of freedom given by the choice of the control input allow for a whole spectrum

of systems in the form of (7.1), hence di�erent tasks can be pursued. For example, a

common goal is to find the class of stabilising controllers, for a given set X̃ ™ X, in which

once again linearity proves to be a key property. Indeed for Linear and Time Invariant

(LTI) systems the latter property holds globally, i.e., X̃ = X (Willems, 1970); however

for nonlinear systems this is in general not possible, and it is sought a class of controllers

that induce a stable dynamics in X̃ µ X for the flow associated with the vector field

(Lefschetz, 1963; Hirsch and Smale, 1974).

The general objective of the control problem is then to design a controller so that the

performances of the system meet certain criteria. Usually the latter are defined through

a functional which depends on the dynamics, so that the goal is to find the best control

aú (t) which minimise or maximise this performance functional.

In order to make precise the control task, define the functional J : �A æ R as

J (a (t)) =

⁄ tf

t0

cr (x (t) , a (t) , t) dt + cf (x (tf) , tf) , (7.2)



7.1 The control framework 107

which evaluates the performance of the controlled system under the action of the controller

a (t). The function cr - often referred to as running cost - is the instantaneous measure

of the system behaviour, while cf denotes the terminal cost.

The general formulation of the control problem is to find the best control aú (t) so that

the objective functional is minimised (or maximised):

aú (t) = arg min
aœ�A

{J (a (t))} , (7.3)

subject to: ẋ (t) = f (x (t) , a (t)) , (7.4)

x (t0) = x0. (7.5)

Since the objective functional depends on the evolution of the system under a particular

control, the same problem could be rewritten in terms of the flow. As done for the

autonomous case, define as

x (t) = �
t
a (x0) (7.6)

the solution of the di�erential equation in (7.1), a�ected by the control a (t), with initial

condition given by x (0) = x0. For a specific control action, the system evolution is fixed

and the performance index depends only on the flow, which in turn depends on the

control and on the initial state and time. However, usually the initial condition and the

dynamics are not a decision variable for the control problem, so that the functional can

be only minimised with respect to a (t), given f and x0.

Since the problem consists of minimising a functional with respect to a set of functions

�A, it pertains to the field called calculus of variations. A way to find the best possible

control minimising (7.3) is given by the Pontryagin’s maximum principle (Pontryagin

et al., 1962; McShane, 1989; Kirk, 2004; Lee et al., 1967), which states a necessary

condition for any control to be optimal, along with the optimal state trajectory.

The derivation of the conditions is achieved by taking the Legendre transform of a

modified cost function, to which Lagrange multipliers have been added. The resulting

system is a Hamiltonian system, so that some necessary condition on optimality based on

a first-order Taylor expansion can be derived. The latter allows to formulate the problem

as a standard maximum condition on the control Hamiltonian, provided other technical

conditions are satisfied. The variational problem is turned in this way into a static

optimisation problem given by a two-point boundary value problem, which is definitely

easier. The necessary conditions thus obtained becomes also su�cient under certain

convexity conditions on the objective and constraint functions; which are related to the

positive-definiteness of the Hessian of the Hamiltonian (Mangasarian, 1966; Kamien and



108 Koopman for control

Schwartz, 1971).

The Maximum Principle stems from a variational approach, and requires the optimal

curve to be at least at a local minimum, i.e., neighbouring curves should not yield smaller

costs. The necessary conditions for optimality are indeed obtained by imposing that the

candidate solution is optimal with respect to small variations of the latter curve. While

this "spatial" view has been useful to derive the aforementioned necessary conditions,

there exists another perspective, which considers optimality over time, that yield su�cient

conditions for the control to minimise the objective functional. The "temporal" view

is the one followed by Dynamic Programming, stating that the optimal curve remains

optimal at intermediate points in time.

Dynamic Programming is a mathematical optimisation method developed by Bellman,

1954, whose idea is to break down a complicated problem into a sequence of simpler

sub-problems, in a recursive manner. This is the foundation of Bellman’s optimality

principle, which says that once an optimal trajectory is found for the whole interval

[t0, tf ] by solving the Optimal Control problem on that interval, the resulting trajectory

is also optimal on all sub-intervals of the form [t, tf ], with t > t0, provided that the initial

condition at time t was obtained from running the system forward along the optimal

trajectory from time t0 (Bellman, 1957). The term Bellman equation usually refers to

the dynamic programming equation associated with discrete-time optimization problems

(Kirk, 2004); while in continuous-time optimization problems, the analogous is given

by a partial di�erential equation which is called the Hamilton–Jacobi–Bellman (HJB)

equation.

The latter gives a necessary and su�cient condition for optimality of a control with

respect to a loss function. It is, in general, a nonlinear partial di�erential equation in the

value-function, which means its solution is the value-function itself. Once this solution

is known, it can be used to obtain the Optimal Control by taking the maximiser (or

minimiser) of the Hamiltonian involved in the HJB equation.

The Dynamic Programming approach has extensively been exploited in Optimal Control

and later in the Reinforcement Learning field, so that the value-function actually became

the key quantity to deal with. In particular, it represents the objective that the general

Reinforcement Learning algorithm aims to minimise. Indeed many results in this field

are derived from the Bellman equation, as well as the majority of the algorithms. The

Reinforcement Learning framework is presented in the next chapter, as well as a way to

tackle the related Optimal Control problem which exploits the Koopman operator. It is

therefore of primary importance to understand how the control setting can be described

by the Koopman framework.



7.2 Koopman operator for controlled systems 109

7.2 Koopman operator for controlled systems

The extension of the Koopman operator which allows to take into account control inputs

is a fairly new paradigm which can be regarded as the smooth consequence of the latest

advancements brought by the Koopman perspective for the analysis of autonomous

systems.

A natural way of defining this extended operator is to rely on a di�erent definition of

observables, so that the composition operator actually operates in the same manner.

In this regard, it is necessary for the new observable to deal with the control input,

which a�ects the dynamics of the system. The following definition of control-dependent

observable, extrapolated from Proctor, Brunton, and Kutz, 2018, allows to extend the

definition of the Koopman operator in a straightforward way.

Definition 7.2.1. A control-dependent observable is a scalar-valued function taking as

argument both the state and the control, i.e., Â : X ◊ A æ R.

In order to stick to the idea of the Koopman operator as an operator that propagates

the system forward in time according to the observable given in input, the composition

operator for controlled system is defined by Mauroy, MeziÊ, and Yoshihiko, 2020 as

follows.

Definition 7.2.2 (Koopman operator for controlled systems). Let �t
a be the flow induced

by a controlled dynamical system as (7.1), under the control a (·) œ �A. Consider a

Banach space � of control-dependent observables Â : X◊A æ R closed under composition.

The family of Koopman operators U t associated with the flows �t
a : X ◊�A æ X, t œ R

+,

is defined as:

U t [Â] (x, a (·)) := Â
1
�

t
a (x) , Zt [a (·)]

2
, (7.7)

’Â œ �, ’x œ X and ’a (·) œ �A; where Zt : �A æ �A indicates the left-shift semigroup

of operators, defined by

Zt [a (t0)] = a (t0 + t) (7.8)

which propagates forward in time the control input.

The definition above guarantees that the family of Koopman operators still enjoy

the semigroup property, as shown in the next proposition. This is true under the same

condition of the autonomous case, i.e., when the flow is itself a semigroup.

Proposition 7.2.3 (Semigroup property of Koopman operator for controlled systems). If

the flow induced by a controlled dynamical system �t
a (·) on the set X ◊�A is a semigroup



110 Koopman for control

w.r.t. t œ R, then the family of Koopman operators associated with the same controlled

dynamical system is a semigroup of operators.

Proof. By relying on the semigroup property for the flow, it is possible to write:

U t+s [Â] (x, a (·)) = Â
1
�

t+s
a (x) , Zt+s [a (·)]

2
(7.9)

= Â
1
�

t
a (�s

a (x)) , Zt [Zs [a (·)]]
2

(7.10)

= U t [Â (�s
a (x) , Zs [a (·)])] (7.11)

= U t [Us [Â]] (x, a (·)) (7.12)

which proves the semigroup property for the Koopman operator.

Note that in Definition 7.2.2 the Koopman operator evolves also the control input

acting on the system, through the left-shift operator. This is a natural choice, but there

are other viable options, as underlined by Mauroy, MeziÊ, and Yoshihiko, 2020. Another

meaningful definition is indeed given by:

U t [Â] (x, a (·)) := Â
1
�

t
a (x) , a (·)

2
, (7.13)

obtained by considering an input signal a (·) which is reset after every propagation.

Evolution curves for the system described by (7.13) correspond to a re-initialisation of

the state with the propagated value and the application of the same control input a (·). In

this case U t does not have the semigroup property, which is broken by the re-initialisation

of the controller.

Given that in the latter definition the control input always remains the same at each

evolution, it is easy to see that the formulation in (7.13) corresponds to a family of

operators parameterised by a:

U t
a [Â] (x) = Â (�x

a (t)) (7.14)

’Â : X æ R, in which then the dependence of the observable on the control input is

dropped. The notion of a Koopman operator parameterised by the control will be a key

tool in the next chapter.

The same definition for the controlled dynamics can be given in the discrete-time domain.

In this regard, the following definition settles the discrete-time control input.

Definition 7.2.4. A sequence a : N æ A, A ™ R
p, is called a discrete-time control. The

set of control sequences is denoted as lA.



7.2 Koopman operator for controlled systems 111

The corresponding definition for a discrete-time Koopman operator is obtained from

the continuous-time one by fixing a time-interval t, and it is given by Korda and MeziÊ,

2018 as follows.

Definition 7.2.5. Consider an extended space X ◊ lA; the Koopman operator for the

skew product system given by

(� (x, a (0)) , Z [a (·)]) : X ◊ lA æ X ◊ lA (7.15)

is defined as

U [Â] (x, a (·)) = Â (� (x, a (0)) , Z [a (·)]) , (7.16)

where Z is the left-shift operator defined as:

Z [ak] = ak+1, (7.17)

’k œ N.

Note that the discrete version of the Definition in (7.13) is inherently simpler, as there

is no explicit dependence on time, and the Koopman operator evolves the system over a

fixed time step. This makes it a convenient description with respect to the controller,

which is reset to the same quantity at each propagation. Hence, given that the evolution

on X depends on the input a (·) just through the first element a (0), it is possible to

consider the space given by the Cartesian product X ◊R
p, interpreting input variables as

additional state variables, so that the Koopman operator is defined as (Proctor, Brunton,

and Kutz, 2018):

U [Â] (x, a) = Â (� (x, a) , a) , (7.18)

’Â : X ◊ R
p æ R. In this formulation, the control acts as a parameter of the system,

and its evolution over time is not considered. This is equivalent to defining a family of

Koopman operators parameterised by a, as:

Ua [Â] (x) = Â (�a (x)) . (7.19)

Each operator is associated with the map �a (·), so that the sequence of operators

Ua(0), Ua(1), · · · corresponds to the evolution under the control input a (·).

Having understood how the Koopman operator can handle control inputs, and recalling

that the Koopman operator yield a global linearisation of the dynamics, it would be

interesting to understand if it is possible to exploit this property for the design of the

controller. In this regard, the next section will highlight why the linearity property is so



112 Koopman for control

important in the Optimal Control problem, while after that the Koopman setting will be

considered.

7.3 Optimal controller

The following introduction of the Optimal Control problem under the linear assumption

can be presented both in the continuous-time setting and in the discrete-time domain.

Since in what follows only the latter perspective will be considered, as it has been

explained in Chapters 3 and 4, also for the current section the discrete setting is assumed.

In the case that the dynamics represented in (7.1) are linear in both the state and the

control input, the system evolution is specified as:

xk+1 = Akxk + Bkak (7.20)

where A œ R
d◊d and A œ R

d◊p. Moreover if the matrices A and B are constant over

time, the evolution is described by:

xk+1 = Axk + Bak (7.21)

which characterises a LTI system. Its solutions are known to be exponential functions

with respect to time, whose coe�cients depend on the initial conditions. This greatly

simplifies the complexity of the problem.

As explained in the previous section, in order to define a control problem it is required to

specify a running cost and a terminal cost. If the former is given by a quadratic form of

the state and input, and the latter by a quadratic form of the state, i.e.,

cr (xk, ak, k) = x€
k Qxk + u€

k Ruk, (7.22)

cf

1
xk, k

2
= x€

k
Qfxk, (7.23)

the associated Optimal Control problem is denoted as Linear Quadratic Regulator (LQR)

(Kwakernaak and Sivan, 1972; Anderson and Moore, 1990). The matrices Q, Qf œ R
d◊d

are positive semi-definite and are designed to adjust the weights a�ecting the state

variables, while the matrix R œ R
p◊p is positive definite and is there to penalise the norm

of the control input.

For the latter specific formulation, the Optimal Control problem has an explicit solution

as a feedback law from the state, which can be written as:

aú
k = Ckxk. (7.24)



7.3 Optimal controller 113

This indeed results in a dynamic control gain for the finite-horizon scenario, in which the

Optimal Control depend on the solution of the Difference Riccati Equation (DRE), as

detailed by Reid, 1972 and Lancaster and Rodman, 1995. The Riccati equation exploits

the same principle of the Hamilton–Jacobi–Bellman equation, and indeed can be seen as

a special case of the latter for the LQR setting. In particular it is solved by constraining

the value-function, evaluated at the last point of the interval, to be equal to the terminal

cost, and then proceeding backwards in time, guaranteeing the optimality. Letting the

final instant go to infinity, the DRE becomes stationary, because the transient has a

negligible impact. Therefore in the infinite-horizon case, the optimal feedback is obtained

as the solution of the Algebraic Riccati Equation (ARE) which does not depend on time,

and it has a closed-form solution. The Optimal Control is a static feedback from the

state, which can be written as (7.24) with a constant matrix Cú œ R
p◊d.

For the infinite-horizon control problem, in which the dynamics are linear and time-

invariant, the optimal controller is given by:

ak = Cúxk, (7.25)

where

Cú = ≠
1
R + B€PB

2≠1
B€PA. (7.26)

The matrix P œ R
d◊d is the matrix defining the value-function, and it can be computed

by the following relation:

P = Q + A€PA ≠ A€PB
1
R + B€PB

2≠1
B€PA, (7.27)

which together with the conditions P = P € ≤ 0 characterizes P .

The fact that there is a well-defined and easily computable solution to the Optimal Control

problem makes the linear framework a very appealing setting in which to formalise the

minimisation of the objective functional. However, most of the meaningful problems

involve nonlinear dynamics, as underlined in Chapter 2, with the trivial example of the

pendulum.

As a matter of fact, the linear setting is so attractive that there has been a great deal of

research e�ort into how to transform a nonlinear system into a linear one. An example is

given by Feedback Linearisation. The latter is a technique to linearise a nonlinear system

exploiting the expressiveness of the controller. A change of variables and a suitable control

input is sought so that the control removes the nonlinearities in the new coordinates

(Isidori, 1995; Khalil, 2002).

Nonetheless, a more natural approach would prescribe to approximate the dynamics



114 Koopman for control

with a linearised version. Given that the dynamics are not far away from their linearised

version, it is easy to understand that the corresponding solution of the Optimal Control

problem would be a meaningful choice for the control input. This is even more true given

the fact that the nonlinear control framework yields a hard problem and often do not

provide explicit solutions.

However, the approximated system may be a good representation of the original one

only in a small neighbourhood around the point which is taken into account for the

linearisation. The Koopman operator instead provides a global linearisation of the

dynamics, and therefore can be seen as the right perspective for this purpose. It indeed

allows to retrieve a linear description, which can be used to design the controller, in

which case it is an easy task. The finite-dimensional approximation however is in general

not exact, as it has been explained in Chapter 4, therefore also the control solution will

not be optimal for the original system.

In what follows the latest techniques for addressing the control problem through the

Koopman operator are reviewed.

7.4 Koopman exact form with control

Under certain specific conditions on the dynamics, and by making use of the Koopman

operator framework, it is possible to find an exact linearisation of the controlled nonlinear

system in (7.1), which is however significantly di�erent from the simple form in (7.21).

In order to obtain an exact linearisation, it is required to keep the input matrix B (x, a)

a nonlinear function, dependent on both the state and the input.

The latter is the core result of a recent work by Iacob, Tóth, and Schoukens, 2022, which

indeed discovered that it is always possible to represent exactly the Koopman operator

in its control form through a linear parameter-varying model. Therefore the Koopman

operator can be completely characterised by the matrices A œ R
d◊d and B œ R

d◊p

corresponding to the free evolution and the input of the control, where A is a fixed

matrix and B (x, a) depends on both the state and the input. The following theorem

is a rewriting of the main results presented by Iacob, Tóth, and Schoukens, 2022. The

same result holds - with minor modifications - both for the continuous-time and the

discrete-time setting. In order to refer only to one form of the dynamics, the dependence

on time is dropped.

Theorem 7.4.1. Given a nonlinear vector field as in (7.1), write its decomposition in



7.4 Koopman exact form with control 115

the autonomous part and input-related dynamics, as:

f (x, a) = f (x, 0) + f̃ (x, a) (7.28)

with f̃ (x, 0) = 0. Consider a lifting map � : X æ R
n of class C1 so that � (f (x, 0)) œ

span {�}, then there exists a finite-dimensional lifted form, of dimension n, with the

continuous-time and discrete-time versions given below.

• Continuous-time.

�̇ (x (t)) = A� (x (t)) + B̃ (x (t) , a (t)) (7.29)

with A œ R
n◊n and B̃ : X ◊ �A æ R

n defined as

B̃ (x (t) , a (t)) =
ˆ�

ˆx
(x (t)) f̃ (x (t) , a (t)) . (7.30)

Furthermore assume that B̃ : X ◊ �A æ R
n is continuously differentiable in a (t),

continuous in x (t), satisfying B̃ (x (t) , 0) = 0 and �A is a convex set containing

the origin. Then by defining

B (x (t) , a (t)) =

⁄ 1

0

ˆB̃

ˆa
(x (t) , ’a (t)) d’ (7.31)

the controlled dynamics are completely characterised by:

�̇ (x (t)) = A� (x (t)) + B (x (t) , a (t)) a (t) (7.32)

• Discrete-time. With the additional assumption that X is convex:

� (xk+1) = A� (xk) + B̃ (xk, ak) , (7.33)

with A œ R
n◊n and

B̃ (xk, ak) =

3⁄ 1

0

ˆ�

ˆx

1
f (xk, 0) + ’f̃ (xk, ak)

2
d’

4
f̃ (xk, ak) . (7.34)

Under the same condition as above, it is possible to define

B (xk, ak) =

⁄ 1

0

ˆB̃

ˆa
(xk, ’ak) d’ (7.35)

to obtain

� (xk+1) = A� (xk) + B (xk, ak) ak (7.36)



116 Koopman for control

The integral in (7.31) provides a factorisation of B̃ such that the system can be

expressed with a linear dependence on the input - however in this formulation also the

input matrix is input-dependent.

This exact characterisation relies on the fact that exists a finite-dimensional space which

is invariant under the action of the Koopman operator, i.e., that there is an invariant

space in which the Koopman operator is finite-dimensional, as in Example 2.1.1, which is

in general a rather strict assumption. As understood from Chapter 4, this is instead a

necessary assumption when learning the Koopman from actual data. Also, the retrieved

model is linear but the input matrix depends both on the state and the control input,

making the derivation of the Optimal Control no longer straightforward. Therefore, the

most common practical implementation nowadays rely on other methods, which provide a

simpler description of the controlled system, so that the optimal input is readily available.

The main point of this chapter is to understand how to merge the control scenario with

the identification of the Koopman operator. As has also been done for autonomous

systems, the problem is formalised solely in the discrete-time perspective: this is because

the estimation needs to rely on measurements of the systems, so that the discrete-time

perspective is more natural.

Hence, from now on, only the discrete-time perspective is addressed.

7.5 Linear approximations

One of the earliest papers dealing with the control problem via the Koopman operator

linearisation is given by Brunton et al., 2016. There it is explicitly stated that the Optimal

Control law can be computed for the Koopman linearisation with minor modifications.

In particular, assuming that the d components of the state are included in the basis

functions for the observable space �, and considering that they are in the first d position

without loss of generality, the cost matrices just need to be modified as:

Q̃ =

C
Q 0

0 0

D
, Q̃f =

C
Qf 0

0 0

D
, R̃ = R. (7.37)

so that the cost yields the same expression also in the lifted space.

The latter paper relies on an earlier work by the same authors (Brunton, Proctor, and

Kutz, 2016) for the reconstruction the system. The algorithm presented there is very

similar to the EDMD approach, although a regularisation penalty on the regression

problem is added. This is done to bring out the most important features, so that the

linear span of these features is a meaningful invariant space for the Koopman operator



7.5 Linear approximations 117

to be learnt. In particular, the feature selection is performed through the Least Absolute

Shrinkage and Selection Operator (LASSO) method (Tibshirani, 1996; Tibshirani, 1997;

Shalev-Shwartz and Ben-David, 2014).

Then, through the closed-form expression for the optimal controller in the linear setting,

when using the extended matrices in 7.37, the minimiser for the cost functional is obtained.

Notice that the controller thus computed, is linear in the lifted space, but if there are

nonlinear observables, it may include nonlinear terms in the original state. The latter

approach is shown to produce a better controller than the classical linearisation method

around a fixed point.

However, there are limitations to the application of this technique. In particular, the

linearisation through Koopman operator may result in an unstable and uncontrollable

system, which makes the design of the controller less straightforward or even impossible.

Also, in the latter specific paper, only the control problem is addressed, and it is detached

from the estimation procedure. Indeed the linearisation is assumed to be given, while

solely the design of the input to control the model is discussed.

The first explicit integration of the control formulation into an identification algorithm

exploiting the Koopman framework is given by Proctor, Brunton, and Kutz, 2016, where

an extended linear model which takes into account also the input variable, as given

in (7.21). In particular, the problem can be addressed by the original DMD algorithm if

the input matrix B is known.

If the DMD procedure search for a matrix A œ R
d◊d so that:

y = Ax, (7.38)

given the observed control inputs as a =
Ë
a1 . . . am

È
, the linear control model requires

to find A œ R
d◊d and B œ R

d◊p such that:

y = Ax + Ba. (7.39)

If the matrix B is known, this problem can be addressed in the same way as DMD.

Indeed by defining

y := y ≠ Ba, (7.40)

the regression problem becomes

y = Ax, (7.41)

which indeed is solved by Dynamic Mode Decomposition, as seen in Chapter 4, Section 4.4.

Instead when B is unknown, it is necessary to learn a rectangular matrix U œ R
d◊(d+p),



118 Koopman for control

which corresponds to the finite-dimensional approximation of the Koopman operator

with control, that should approximate the relation:

y =
Ë
A B

È C
x

a

D
= U

C
x

a

D
, (7.42)

which however can still be solved by Least Squares minimisation. As done for the original

DMD algorithm, also in this framework an SVD decomposition can be exploited to deal

with the problem in a lower-dimensional subspace, with some additional refinements

resulting from the control formulation. The truncation of the SVD decomposition plays

the same role of a regularisation penalty.

The latter approach refers to the definition of the Koopman operator as in (7.19), in

which the control is not dynamically propagated, but only the next state is given as

output, as a consequence of the chosen input. This is extended and generalised by

Proctor, Brunton, and Kutz, 2018, where the prediction of the dynamics of the input

alone is also considered, so that the matrix approximating the Koopman operator is

always square, i.e., U œ R
(d+p)◊(d+p). The extended space of states and inputs yields the

following dynamical model:

C
xk+1

ak+1

D
=

C
U11 U21

U12 U22

D C
xk

ak

D
. (7.43)

It is precisely in the work by Proctor, Brunton, and Kutz, 2018 that it is made clear

that Definition 7.2.2 - which formalises the Koopman operator for controlled system -

is a general case and includes di�erent options, by characterising the input with some

dynamics of its own. The latter view comprises the one given by 7.42, by considering

the case in which the prediction for the input alone is always zero. This is equivalent

to consider just the state space as output space for prediction, returning the method

developed by Proctor, Brunton, and Kutz, 2016.

Therefore the Koopman with Inputs and Control (KIC) method proposed by Proctor,

Brunton, and Kutz, 2018 is inherently more general. In the paper is also explained how

the output space can be tuned to be any space spanned by a subset of eigenfunctions,

that may depend only on the state, on the control, or both.

As it happened for the autonomous case, the results above have been extended in the

same way EDMD extended DMD. Williams et al., 2016 considered again a dictionary of

observables in order to approximate the autonomous dynamics, yielding the same matrices

Dx and Dy already mentioned in previous chapters. In their framework, however, a

parameter-dependent matrix Ũ (a) œ R
N◊N is taken into account. Recalling the regression



7.5 Linear approximations 119

problem of EDMD detailed in (6.14) (see Chapter 6, Section 6.3) and the definition of

the Frobenius norm, the extended control version is given by:

min
Ũ

1

2

Mÿ

m=1

...D
(mú)
y ≠ D

(mú)
x Ũ

1
a(mú)

2...
2

(7.44)

where A(mú) denotes the m-th row of the matrix A. It is clear from the form of the

minimisation above that the inputs are treated as time-varying system parameters and not

as control parameters. The parameter-dependent matrix Ũ (a) is further parameterised

by a set of NA basis functions Ẫ : A æ R as:

Ũ (a) =
NAÿ

n=1

Ẫn (a) Ũn (7.45)

where Un are the coe�cients of the expansion. This is basically the same technique

exploited by EDMD in the autonomous case in order to turn the infinite-dimensional

space of observables � into a finite-dimensional one �D. The basis functions acting on

inputs should be chosen in such a way that they are able to provide a good approximation

of the control input behaviour. Both the basis function for the control and the ones

approximating the autonomous dynamics are user-defined, as originally prescribed by

the EDMD method.

Rewriting the minimisation in (7.46) with the decomposition of Ũ given in (7.45), it is

possible to obtain:

min
Ũ

1

2

Mÿ

m=1

......
D

(mú)
y ≠

NAÿ

n=1

Ẫn

1
a(mú)

2
D

(mú)
x Ũn

......

2

. (7.46)

The latter can be better visualised by defining

D
(mú)
xa :=

Ë
Ẫ1

1
a(mú)

2
D

(mú)
x Ẫ2

1
a(mú)

2
D

(mú)
x · · · ẪNA

1
a(mú)

2
D

(mú)
x

È
(7.47)

and

U :=

S
WWWWWU

Ũ1

Ũ2

...

ŨNA

T
XXXXXV

, (7.48)



120 Koopman for control

so that the summation can be turned into an inner product.

The problem in (7.46) is then simplified into

min
U

1

2
ÎDy ≠ DxaUÎ2

F , (7.49)

which makes clear the analogy with the EDMD approach. The solution is indeed given

by:

U = D†
xaDy. (7.50)

Once U has been obtained, and consequently also every Ũi, it is possible to compute

Ũ for any given value of the control input a. This yields the sought finite-dimensional

approximation of the Koopman operator, corresponding to that input value.

It should be noted that the approach by Williams et al., 2016 is considering a linear

parameter-varying model, where the input representation as basis functions is detached

from the state representation, unlike the method proposed by Iacob, Tóth, and Schoukens,

2022. However, also in this case, the obtained model is not truly LTI, therefore the design

of the optimal controller is not straightforward, and in particular is not given by the

well-known closed form.

In the next chapter, a new approach for approximating nonlinear system with control

inputs is proposed, which results from the union of the Koopman operator framework

and kernel methods as seen in Chapter 6. Although also the proposed method will yield a

parameterised description of the system, based on the very common assumption of policy

parameterisation, the derivation of the Optimal Control will be almost trivial, following

an iterative method. The algorithm envisages indeed the use of a gradient descent

procedure, in which the gradient of the value-function is directly provided. While the

approach does not exploit the explicit formula for the optimal controller, it is guaranteed

by Fazel et al., 2018; Sun and Fazel, 2021; Bhandari and Russo, 2021; Zhang et al.,

2020 that, under technical conditions, policy gradient methods converges to the optimal

solution. For example, in the case of linear systems, if the admissible class of policy

which is chosen for the problem includes also the controller in (7.25), the latter papers

guarantee that the solution of the proposed method converges to the Optimal Control.



8
Koopman Policy Gradient

This is the core chapter of this work, as it presents the main algorithm to tackle the

Reinforcement Learning paradigm through the estimation of a parameter-dependent

Koopman operator. This is achieved through a Policy Gradient algorithm in the space of

policy parameters.

After the introduction of the Reinforcement Learning setting and a remark on the

importance of the value-function, the first important result of the Chapter is presented,

which is precisely the description of the value-function through the Koopman operator.

From the latter characterisation, and exploiting the previously derived algorithm to learn

Koopman operators through kernel methods, the main approach is presented, which

consist on the extension for controlled dynamical systems. The final algorithm operates

in an online fashion, iteratively updating the control parameter every time a new datum

is available.

The contents of this chapter are based on the work by Zanini, Francesco and Chiuso,

2021a, and therefore they constitute original contributions.

8.1 Reinforcement Learning

The Reinforcement Learning framework basically pursues the same objective as the

Optimal Control problem presented in Chapter 7, with slight changes in the setting and

definitions (Recht, 2018). The usual scenario depicts an agent capable of performing

actions within an unknown environment, whose goal is to figure out how to maximise a

reward function. This is accomplished by trying di�erent actions and logging the response

and feedback given by the environment.

The latter framework of sequential decision making is formalised in Sutton and Barto,

2018 as a Markov Decision Process ÈX, A, P, r, “Í, which consists of a state-space X, an

action-space A, a transition probability P (· | ·), a reward function r (·) and a discount



122 Koopman Policy Gradient

factor “ (see also Kaelbling, Littman, and Moore, 1996; Szepesvári, 2010). The goal of

the agent is to discover a control policy fi : X æ A, which is a mapping from states to

actions, so that the performances - as measured by the reward function - are maximised

over the evolution of the system.

The dynamics are expressed through the transition probability model, which governs the

behaviour of the system, and plays the same role as the vector field on a discrete-time

system. In general the transition probability yields the conditional joint distribution of

the reward and the next state, given the current state and action, as:

P
!
xÕ, r | x, a

"
= P

!
xÕ = xÕ, r = r | x = x, a = a

"
, (8.1)

where in the equation above the underlined letters denote random variables and the

standard lower case letters a value in their respective image. Oftentimes, when time

does not play any role, it is customary to rely on the notation with the apex in order to

indicate the next state xÕ with respect to x, and the state xÕÕ following xÕ. The latter is

used also here and in the next chapter.

The performance over the trajectory is given by the return, which is the sum, weighted

by the discount factor, of the rewards over subsequent transitions. The latter is clearly a

random variable, which also depends on the action taken at each step, and on the initial

state. The standard setting in Reinforcement Learning is to consider its expectation as

the ultimate measure of performance.

In this regard a key quantity in Reinforcement Learning is the value-function, which is

the expected return, with respect to the transition probability, when starting in a certain

state x and following a specific policy fi thereafter. The latter is given by:

Vfi (x) = Efi

S
U

·ÿ

·=·0+1

“·≠·0≠1r·

T
V , (8.2)

for a system which is in state x at time ·0. The expectation is taken with respect to

the transition probability induced by the policy fi. The reward r· (·) with subscript · is

just the same reward function given by a transition · steps in the future. In general the

reward function may depend on the triplet given by the current state, the action, and

the next state.



8.1 Reinforcement Learning 123

Note that for any state x and policy fi the value-function in (8.2) can be rewritten as:

Vfi (x) =

⁄

A
fi (a | x)

⁄

X◊R

P
!
xÕ, r | x, a

"
S
Ur + “Efi

S
U

·ÿ

·=·0+2

“·≠·0≠2r·

T
V

T
V d

!
xÕ ◊ r

"
da

(8.3)

=

⁄

A
fi (a | x)

⁄

X◊R

P
!
xÕ, r | x, a

" #
r + “Vfi

!
xÕ

"$
d

!
xÕ ◊ r

"
da, (8.4)

which implies a recursion, being dependent on the value-function at the next state. The

latter expression is the integral form of the Hamilton–Jacobi–Bellman equation.

The above formulations (8.2) and (8.4) can be related to a given initial state-distribution,

instead of a specific initial state. This is a trivial generalisation which requires to

consider a further integral over the density of the initial state. In particular, the exact

expressions (8.2) and (8.4) are recovered for a ”-distribution centred in x. The latter is

the simplest case where the initial state is assumed to be given.

The value-function is a measure of how good the feedback law is, in expectation, in terms

of the generated return: this induces a partial ordering among policies, so that a better

policy yields a higher value-function, for the same initial state-distribution.

The objective of the Reinforcement Learning algorithm is then ultimately to find the policy

fiú attaining the highest score for the value-function, given an initial state-distribution

fl (x), i.e.

fiú (fl) œ arg max
fiœ�

⁄
Vfi (x)fl (x) dx, (8.5)

where the optimisation is considered over a space of admissible policies �, and the

solution may not be unique. It can be noted also how in the Optimal Control framework

the same task is being solved, where a minimisation over a functional is implied, subject

to dynamics, as in (7.3) (see Chapter 7).

The latter equation makes it clear why the value-function is such an important quantity

in Reinforcement Learning. Given the knowledge of the value-function for each state, or

for the fixed initial state-distribution, the Reinforcement Learning problem reduces to

the maximisation in (8.5). However this quantity is not readily available, but must be

computed or estimated.

Conveniently, equation (8.4) provides a formal recursive method for computing the value-

function, in which its value at the next state can be safely substituted with an estimate.

As the equation keeps being iterated providing the new estimate, the reconstruction of

the value function converges to its true value.

The latter approach works provided that the transition probabilities and the reward func-



124 Koopman Policy Gradient

tion are known, so that computations are feasible, which is a scenario usually pertaining

to the field of Dynamic Programming. Within the literature related to the latter field, the

process of computing the value-function for a certain policy is termed policy evaluation.

This step is indeed required to understand the performances of the selected policy. When

the number of states is finite, through the Bellman equation it is possible to compute the

exact value-function. Since the true value-function Vfi is the only fixed-point of (8.4), a

standard argument by Bertsekas and Tsitsiklis, 1989, relying on the Banach-Caccioppoli

theorem (Banach, 1922; Caccioppoli, 1932; Rudin, 1953), guarantees the convergence to

the true function, for any initial estimate.

However, when the the state-space is infinite, approximate solution are necessary, if

no prior knowledge on the value-function is available. Furthermore, in the usual Rein-

forcement Learning setting, the transition probabilities are not known, which makes it

mandatory to resort to approximations. The same name of policy evaluation is used in

the case that an approximation is sought, and not the exact computation.

Besides understanding the performances of a policy through the computation or the ap-

proximation of the value function, another essential task is to find a policy that performs

better than the current one, or eventually to establish optimality. This phase takes the

name of policy improvement (Bellman, 1957; Watkins, 1989).

Many successful algorithms perform sequentially a variable number of Bellman updates

for policy evaluation and a some steps of policy improvement (Howard, 1960), which go

under the name of Generalised Policy Iteration (Puterman and Shin, 1978; Kaelbling,

Littman, and Moore, 1996). A notable example is given by the value iteration algorithm

(Bertsekas, 1987), which alternates a single step for policy evaluation and one of policy

improvement.

A simple but e�ective idea for managing the policy improvement task is given by Pol-

icy Gradient methods (Sutton and Barto, 2018). This class of techniques is usually

employed when a continuous space for states and actions is considered, because many

other approaches are found to be intractable (Williams, 1988; Williams, 1992). Under

the assumption of a parameterised class of policies, the optimisation can be performed

through standard gradient ascent with respect to the value-function. Although this

framework is simple, the gradient of the value-function with respect to the parameter

characterising the policy is not given, and must be estimated. The latter is in general a

di�cult task, however the Koopman formulation of the value-function given in Chapter 6

provides a simple way to retrieve the sought gradient direction, and consequently to

iteratively find the optimal policy.



8.2 The reward as an observable 125

8.2 The reward as an observable

Discrete-time dynamical systems are defined through µ-measurable mappings acting on

a measurable space X. In particular, X is a measurable space, µ is a measure, and T is

a measurable map from X to itself which preserves the measure. The latter property

means that the system is assumed to be measure-preserving.

Stochasticity is embedded into the dynamics through a transition density function

T : X ◊ X æ R
+, so that the transition probability for every set X̃ in the ‡-algebra S

is given by:

P

1
f (x) œ X̃

2
=

⁄

X̃
T (x, y) dµ (y) , (8.6)

’X̃ œ S.

The Koopman operator for stochastic dynamical systems characterises the expectation

of the observable given as input, with respect to the transition probability function, as

described in Chapter 2, Section 2.5 and Chapter 4, Section 4.2. This means that the

operator is given by:

U [Â] (x) = E [Â (f (x))] =

⁄

X̃
T (x, y) Â (y) dµ (y) . (8.7)

In what follows, the Reinforcement Learning problem is addressed through a new pro-

cedure for estimating the value function. In particular, both the value-function and its

gradient are reconstructed from measurement of the environment dynamics, stored in

transitions pairs, and knowledge of the reward function. The Koopman operator will

prove itself a valuable tool for this objective, and even more so when formulated in its

kernel version (as presented in Chapter 6).

The latter framework is particularly suited to this task because it allows to specify

the dictionary of functions, required for approximating the Koopman operator in a

finite-dimensional space, through the definition of the kernel function. This is helpful

because it is possible to embed meaningful prior knowledge in the function hypothesis

space, according to the system that should be characterised.

The main idea of this chapter is then to learn the Koopman operator associated with

the underlying dynamics, in order to exploit the function propagation perspective, to

estimate the reward for future states. Since the latter is the only quantity of interest in

the Reinforcement Learning setting, modelling its behaviour over time is a crucial step.

In order to do that, the reward function will be treated as an observable, by relying on

the following assumption.

Assumption 8.2.1. The reward is a deterministic function of the next state only, i.e.,



126 Koopman Policy Gradient

when transitioning from state x œ X with action a œ A, the reward will depend solely on

the state that is reached xÕ, although the transition may still be stochastic.

The latter is a simplifying assumption which makes the derivation of the next

propositions simpler, as well as the exploitation of the Koopman framework into the

Reinforcement Learning setting. In particular, the estimation of the value-function will

follow naturally from a rewriting of the Bellman equation. The latter assumption is

actually not strictly required, but the relaxation comes at the price of a more cumbersome

description of the procedure, which essentially adds nothing of relevance.

It is also worth noticing that Assumption 8.2.1 is very mild, since the reward (or cost)

function is usually a user-defined quantity which is there to specify the goal of the

learning agent (Sutton and Barto, 2018). This is especially true in the control setting. As

evidence, recently there has been an increase interest in the task of reward design, which

would be meaningless unless the reward could be chosen (Eschmann, 2021; Devidze et al.,

2021; Ryan and Deci, 2000; Barto, Singh, and Chentanez, 2004; Schmidhuber, 1991).

And when it is not possible, and it is embedded in the system, in many cases it actually

depends only on the arrival state of the transition.

Also, since the systems dynamics are allowed to be stochastic, there is no real need to

consider a stochastic function as a reward: if the stochasticity is caused by the state

or the action, then it can be thought as part of the transition, and it will be addressed

through the Koopman operator framework. If it is independent from both the state

and the action, and it is just given by randomness in the reward function, it is useless

to the Reinforcement Learning objective. Indeed policies will be ordered through the

value-function, which involves an expectation, so that the same ordering would result

from considering directly the expectation of the reward, which is a deterministic function.

Finally, the requirement in Assumption 8.2.1 that the reward must be dependent only on

the next state is only there to make the derivation in the next section easier. Indeed for

the general case it would be su�cient to define an augmented dynamical system, whose

dynamics are autonomous and they propagate the triplet given by the current state, the

action, and the next state. In this scenario a reward which is only dependent on the

next state in the enlarged system would correspond to a reward depending on the whole

triplet in the original one. As a proof of this, the theoretical derivation is carried out

by relying on Assumption 8.2.1, but in the illustrative example the latter is violated,

and the reward, on the contrary, will depend on the current state and on the action, but

not on the next state. A theoretical derivation for this case can be found in the paper

by Zanini, Francesco and Chiuso, 2021a, from which this chapter has been drawn.



8.3 Koopman formulation of the value-function 127

8.3 Koopman formulation of the value-function

The continuous-time setting for Reinforcement Learning is very challenging, since no

algorithm can rely on the possibility of visiting the whole state-action space, even with

infinite amount of data. Therefore approximation techniques are mandatory (Sutton and

Barto, 2018; Hasselt, 2012; Hasselt and Wiering, 2007; Lazaric, Restelli, and Bonarini,

2007; Gaskett, Wettergreen, and Zelinsky, 1999; Montazeri, Moradi, and Safabakhsh,

2011). As a further di�culty, the space of admissible policies is infinite-dimensional,

being a space of functions, so that the problem is ill-posed when relying only on sample

data - as explained in Chapter 5 - although it is still well-defined if the knowledge of the

transition function is fully available.

In the literature (Sutton et al., 1999; Jonathan and Peter, 1999; Greensmith, Bartlett, and

Baxter, 2001; Ng and Jordan, 2000; Kakade, 2001; Silver et al., 2014) the latter problem

is often bypassed through the restriction to a parameterised class of policies, so that the

controller is uniquely determined by a parameter ◊ œ � µ R
l. The parameterisation and

the space of parameters � determine the set of policies that will be considered for the

optimisation problem. The latter is true both for the case of deterministic policies, and

stochastic ones. In the more general hypothesis of a stochastic policy, the distribution

over action can be written as:

ak ≥ fi◊ (xk) (8.8)

where ◊ œ � is the parameter identifying the policy. Clearly the search space of the

Reinforcement Learning framework is now constrained to be the subset of policies ��

which can be described by an element in the parameter space.

Note that the assumption above allows to consider a controlled dynamical system as an

autonomous parameterised system. This is reflected in the following equation:

xk+1 = f (xk, ak) (8.9)

= f (xk, fi◊ (xk)) (8.10)

= f◊ (xk) (8.11)

which makes it easier to address the control problem.

By restricting the space of admissible policies to ��, also the value-function can be

thought in terms of the policy parameter ◊, given that there is a one-to-one mapping.

This leads to a characterisation of the value-function geometry in the space of parameters,

which allows to solve the problem in a simple way. Indeed if the value-function turns

out to be continuous with respect to the policy parameter ◊, the gradient of the latter



128 Koopman Policy Gradient

function gives a way to improve the same policy parameter, as the final objective is

directly considered. A gradient ascent procedure it is then guaranteed to find at least

a local maximum value for the value-function, and more importantly, a locally optimal

parameter. Nonetheless, under some technical conditions given by Fazel et al., 2018; Sun

and Fazel, 2021; Bhandari and Russo, 2021; Zhang et al., 2020, which are related to

the gradient dominance property of the system under analysis, the convergence to the

global minimiser is guaranteed. Another fundamental requirement for the optimality is

of course that the optimal controller belongs to the class of admissible policies resulting

from the parameterisation.

This is exactly what is prescribed by policy gradient methods. The objective is then to

find the optimal parameter ◊ú in the parameter space, associated with the policy in �◊

for which the value-function attains the highest score, i.e.,

◊ú = arg max
◊œ�

{V◊ (x)} = arg max
◊œ�

I
E◊

C
·ÿ

·=1

“·≠1r (x· ) | x0 = x

DJ
, (8.12)

in which the expectation is taken with respect to the transition probability of the dynamics

induced by the parameter ◊, the starting time is considered to be ·0 = 0, and the horizon

· may as well be infinite.

Di�erent control parameters induce di�erent transitions probabilities, which in turn gives

di�erent values for the expectation. From (8.12) it is clear that the value-function can be

interpreted as the static reward function applied to the state, which is evolving over time

through the controlled dynamical system. This is exactly the action of the Koopman

operator describing the controlled dynamical system induced by the parameter ◊, when

given as input the reward function r (·).

Note that by restricting the admissible policies to be of the form in equation (8.8), i.e.,

a feedback from the state parameterised by ◊, the dynamical system can be thought

as an autonomous system, whose trajectories are parameterised by the same control

parameter ◊, as in (8.11). Indeed the only dependence in the dynamics would be on

the state alone. The latter is a crucial observation which will allow the extension of

the estimation procedure presented in Chapter 6 to the control setting. In particular, a

parameter-dependent Koopman operator will be estimated, in order to take into account

the e�ect of the control and to find an local optimum in the space of parameters.

Also, given that the value-function is often the only quantity of interest for many

algorithms, the fact that it can be exactly described through the action of the Koopman

operator can open up several directions for new methods that may be characterised by

di�erent properties than those derived from the state-space view; as it has been done so



8.3 Koopman formulation of the value-function 129

far with classical properties of the controlled systems (see Chapter 4).

The following proposition provides a rigorous formalisation of the idea that the value-

function can be completely characterised by the Koopman operator applied to the reward

function.

Proposition 8.3.1. Let Assumption 8.2.1 hold and let ◊ œ � be the parameter charac-

terising the policy, then the value-function V◊ associated to a Markov Decision Process

ÈX, A, P, r, “Í with horizon · , can be expressed by iterated application of the Koopman

operator U◊ associated with a measure-preserving dynamical system to the reward function,

as:

V◊ (x) =
·ÿ

·=1

“·≠1U·
◊ [r (x)] (8.13)

’x œ X, ’◊ œ �.

Proof. The rationale behind the proof is to define a transition probability function T (·, ·)

to be associated with the stochastic Koopman operator, so that the latter description

becomes equivalent to the expectation in the value-function. Once that is achieved,

the claim trivially descend from the definition of the value-function and the Koopman

operator.

Recall that the value-function is written as

V◊ (x) = ExÕ≥P(· | x, a=fiθ(x))

#
r

!
xÕ

"
+ V◊

!
xÕ

"$
, (8.14)

which gives rise to the following chain of expectations

V◊ (x) = ExÕ≥Pθ(· | x, a=fiθ(x))

Ë
r

!
xÕ

"
+ ExÕÕ≥Pθ(· | xÕ, a=fiθ(xÕ))

#
r

!
xÕÕ

"
+ V◊

!
xÕÕ, a = fi◊

!
xÕÕ

""$È

(8.15)

= ExÕ≥Pθ(· | x, a=fiθ(x))

Ë
r

!
xÕ

"
+ ExÕÕ≥Pθ(· | xÕ, a=fiθ(xÕ))

Ë
r

!
xÕÕ

"
+ ExÕÕÕ≥Pθ(· | xÕÕ, a=fiθ(xÕÕ)) [. . .]

ÈÈ
.

(8.16)

By focusing on the the very first step, it is easy to see that (8.14) corresponds to the

Hamilton-Jacobi-Bellman equation in (8.4). It is of paramount importance to understand

the first term, as the following ones can be managed in the same way through the unrolling

of the value-function given in (8.16).

Since the case of deterministic policies is straightforward and easier to understand, the

proof is split according to the nature of the policies considered.

• Deterministic policies.

In this case the policy is a deterministic function of the state. Analogously the



130 Koopman Policy Gradient

policy can be thought as a ”-distribution centred in fĩ◊ (x) which is a deterministic

function of the state.

Define the distribution over the next states given the current state and the control

parameter ◊ as

P◊ (· | x) := P (· | x, a = fĩ◊ (x)) ; (8.17)

so that the Bellman equation becomes

V◊ (x) = ExÕ≥Pθ(· | x)

#
r

!
xÕ

"
+ V◊

!
xÕ

"$
(8.18)

= ExÕ≥Pθ(· | x)

#
r

!
xÕ

"$
+ ExÕ≥Pθ(· | x)

#
V◊

!
xÕ

"$
(8.19)

The first term is given by the expectation of the reward function applied to the next

state, which should be handled by the stochastic Koopman operator given in (8.7).

This can be done by considering the transition density function that characterise

a particular dynamical system, i.e., the one giving the same distribution over the

next state as (8.17). Therefore, defining a parameterised transition as

T◊ (x, ·) = P◊ (· | x) , (8.20)

it yields f (x) = P◊ (· | x), for the stochastic vector field of the underlying system.

The latter represents the autonomous stochastic dynamics which are obtained for

the specific parameter ◊.

Hence the expectation of the current reward in (8.19) can be rewritten as

ExÕ≥Pθ(· | x)

#
r

!
xÕ

"$
= Ef(x)≥Pθ(· | x) [r (f (x))] (8.21)

=

⁄
r (f (x)) T◊ (x, f (x)) dµ (f (x)) (8.22)

= U◊ [r (x)] , (8.23)

which, as expected, only makes use of the Koopman operator, with additional

dependence on the parameter ◊.

• Stochastic policies.

When dealing with stochastic policies, the transition should also take into account

the uncertainty resulting from the randomness on the action selection, given the

current state. In this regard, define the joint distribution of the action and the

next state, conditioned on the current state, as

!
a, xÕ

"
≥ P̃◊ ((·, ·) | x) (8.24)



8.3 Koopman formulation of the value-function 131

for which it must hold that

fi◊ (x) =

⁄

X
P̃◊

!!
a, xÕ

"
| x

"
dµ

!
xÕ

"
. (8.25)

Then, marginalising over the action distribution for a specific value of the control

parameter ◊, it yields

T◊ (x, ·) =

⁄

A
P̃◊

!!
a, xÕ

"
| x

"
da (8.26)

which is the sought distribution for matching the Koopman operator description

and the expectation over the probabilities of the MDP. The same characterisation of

the expectation of current reward as the Koopman operator applied to the reward

function holds also for stochastic policies.

The construction above gives the transition probability for the first step in the chain

of expectations of the Bellman equation given in (8.16). However, repeating the same

reasoning with the transition density function for the second step it is easy to see that:

ExÕ≥Pθ(· | x)

Ë
ExÕÕ≥Pθ(· | xÕ)

#
r

!
xÕÕ

"$È
=

=

⁄ ⁄
r (f (f (x))) T◊ (f (x) , f (f (x)))dµ (f (f (x))) T◊ (x, f (x)) dµ (f (x)) (8.27)

= U◊

5⁄
r (f (x)) T◊ (x, f (x)) dµ (f (x))

6
(8.28)

= U◊ [U◊ [r (x)]] , (8.29)

which shows that the expected reward 2 steps ahead can be described by considering the

Koopman operator twice. By iterating the same reasoning for all the steps · which a�ect

the computation of the value-function, the following expression can be derived:

V◊ (x) =
·ÿ

·=1

“·≠1U·
◊ [r (x)] (8.30)

where U·
◊ indicates · subsequent applications of the same operator U◊.

Note that in the previous formulations the dependence of the Koopman operator on

the control parameter has been made explicit with the subscript notation. If ◊ is kept

fixed, the state evolves according to the dynamical system induced by the associated

control policy, therefore it can be considered as an autonomous system, with transition

density function given by (8.26), in the general case. By changing the control parameter,

and hence the policy, the dynamical system varies as well. Therefore the Koopman



132 Koopman Policy Gradient

operator itself will depend on the control parameter.

As it has already made clear by Korda and MeziÊ, 2018, and in Chapter 7, the Koopman

operator can be parameterised with actions, so that it returns the evolution of the state

when a specific action is taken, regardless of the state. The latter case corresponds to a

trivial parameterisation of control policies, in which the action - or the distribution of

actions, if the policy is stochastic - does not depend on the state. The latter is actually an

example of policy parameterisation in which � = A, although often not a good one, since

the space of admissible policies �� would be composed only of constant policies, which for

many systems do not yield satisfactory performances for the controlled dynamics. Recall

that the latter is an important issue in order to converge to the optimal controller, since

a trivial necessary conditions to achieve optimality is that the optimal policy belongs to

the search space ��. Moreover, by considering a continuous space of actions, it would be

unfeasible to learn the transition for all actions, or all parameters.

Therefore, 2 important issues emerges which need to be addressed in order to successfully

deal with parameterised control systems, and in particular to frame the setting in such a

way that the Reinforcement Learning problem can be successfully solved: the choice of

the parameterisation, and how to generalise among parameters. For both matters, kernel

methods represent a viable solution, which makes the approach presented in Chapter 6

even more remarkable, as it is suitable for addressing the control problem with only a

few modifications.

The choice of a suitable parameterisation for the control policy is actually part of the

setting in which the objective is defined and does not pertain to the learning algorithm.

The latter defines the problem to be solved, which is the maximisation of the value-

function over the class of admissible policies. However, through the proposed approach,

the explicit formulation in (8.8) is never exploited, and the regression is framed directly in

the space of parameters. This gives complete freedom of choice for the parameterisation,

so that there are no limitation on the class of policies which can be employed in order to

tackle the Reinforcement Learning problem. This can be accomplished by formulating

the problem with parameter-dependent observables in a Reproducing Kernel Hilbert

Space. This will be explained in detail in Section 8.4.

As far as generalisation over parameters is concerned, a very simple idea leads again to

the use of kernel methods, because of their interpretations as similarity measures, which

can be exploited to generalise over parameters.

To understand this, consider the parameterisation of constant policies, given by the

choice of an action that is always the same, without any dependency on the state, for

which � = A. Fixing a particular action a œ A, the dynamical system can be seen as



8.3 Koopman formulation of the value-function 133

autonomous, yielding di�erent trajectories for di�erent initial conditions. It is easy to

realise that, starting from the same initial conditions, very similar values of the chosen

action will result in very similar trajectories.

The latter turns out to be true for any parameterisation of the dynamics. In order to

make more formal the latter intuition, consider a parameterised dynamical system in

continuous time, given by:

ẋ (t) = f◊ (x (t)) . (8.31)

Then its solutions starting from x (t0) = x0, given by �
t≠t0

◊ (x0), should be similar for

similar values of ◊ œ �.

The following theorem - which holds in the general case of time-varying ordinary di�eren-

tial equations - establishes with certainty that this is the case (Coddington and Levinson,

1955).

Theorem 8.3.2 (Continuity of solutions of ODEs on parameters). Suppose f◊ (x, t) is

continuous and locally Lipschitz in x in an open set E ™ R ◊ X ◊ �. If �
t≠t0

◊
(x0) is a

solution of the initial value problem given by

Y
]
[

ẋ (t) = f
◊

(x, t)

x (t0) = x0

(8.32)

which is defined on the closed interval [i1, i2] and
1
t, �

t≠t0

◊
(x0) , ◊

2
œ E for t œ [i1, i2],

then there is a neighbourhood N0 of
Ë
t0, x0, ◊

È
œ R ◊ X ◊ � such that, for any triplet in

N0 the associated initial value problem has a solution defined on the interval [t0, i2].

Moreover, the function �
t≠t0

◊
(x0) is continuous on [t0, i2] ◊ N0.

Therefore the map going from initial conditions and parameters of the initial value

problem to the solution of the same problem is continuous with respect to parameters of

the vector field, provided the latter is continuous and locally Lipschitz. Theorem 8.3.2

can also be generalised to stochastic di�erential equation, with appropriate adjustments,

however this would require a more detailed elaboration on the subject, which is beyond

the scope of this Dissertation. Clearly the continuity property would hold for sample

paths of the solution (Mishura, Posashkova, and Posashkov, 2011; Yasinsky and Malyka,

2012; Schmelzer, 2010).

Recall that the main motivation for introducing Mercer kernels in Chapter 5 was to

restrict the hypothesis space to continuous function, with the rationale of modelling the

a priori belief that the true function has some regularity. Thanks to Theorem 8.3.2 the

same idea can be safely applied also in this case, over the space of parameters. The use



134 Koopman Policy Gradient

of a continuous kernel function to generalise over parameters which are available as data,

is a meaningful choice because the solutions are indeed known to be continuous with

respect to the control parameter. As it will be further clarified in what follows, there

is no significant distinction between states and parameters. Then the expectation of

the solution of a stochastic di�erential equation will be reconstructed through kernel

methods, learning both similarities among states - as done in Chapter 6 - and among

control parameters, in order to address the control problem.

8.4 Koopman Policy Gradient

The main contribution of this Chapter is a way to tackle the Reinforcement Learning

problem through the exploitation of the Koopman operator framework. In particular,

the Koopman operator is learned as previously done in Chapter 6 and then applied to

the reward function, in order to obtain an estimate of the value-function. However the

setting of the control problem is di�erent, as it is required to take into account changes

in the behaviour of the system, caused by the policy. The estimation procedure must be

then extended to handle controlled systems.

In lights of the reasoning above, this can be done with relative ease under the assumption

that the policy is a parameterised function of the state, therefore changing the view from

actions to policy parameters. Hence, instead of dealing with a regression for the new

input, as it is proposed in the literature reviewed in Chapter 7, the method described

below learns a Koopman operator which deals with the prediction of the next parameter.

Conveniently, the extension turns out to be particularly simple, thanks to the insights

provided by Theorem 8.3.2. The continuity of the solution of a di�erential equation

allow state and control parameter to be treated equally. Indeed the procedure given in

Chapter 6 exploited kernel methods to generalise over states, and the same generalisation

has been verified to be also meaningful with respect to control parameters. In order

to understand this better, consider a (n ≠ 1)-dimensional autonomous system with a

scalar parameter. Through the estimation algorithm based on the Koopman operator,

some kind of similarity is leveraged among states through a kernel function, in order to

generalise the estimate - see Chapter 6. Following the result of Theorem 8.3.2, a similar

kind of similarity measure could be enforced for the scalar parameter. By supposing

that the same similarity measure is meaningful for the scalar parameter, there would

be no di�erence between the depicted scenario and the estimation of an n-dimensional

autonomous system, in terms of how to manage generalisation.

The kernel approach anyway is very general and it is capable of modelling di�erent



8.4 Koopman Policy Gradient 135

similarity measures even for the same state space. Therefore, given that the kernel is

chosen appropriately, the latter can induce very di�erent generalisation over state and

parameters, reflecting the user’s prior belief. However, the procedure for the estimation

remains unchanged.

Moreover, the prediction of parameters instead of actions is particularly suited for the

problem, as in the propagations defining the value-function the control parameter is fixed,

so there is no need to predict its evolution. The task of evaluating the performance of

a specific policy fi = fi
◊

(xk) is indeed partially solved, as the control is characterised

by a fixed parameter ◊ which remains the same over the whole trajectory, so that the

"estimation" of the parameter is trivial.

The above perspective yields the following definition for a parameter-dependent observ-

able:

U [Â (x, ◊)] = Â (f (x, a ≥ fi◊ (x)) , ◊) , (8.33)

which - as done for the case of a fixed action in (7.19) - allows the definition of a parameter

dependent Koopman operator:

U◊ [Â] (x) = Â (�◊ (x)) . (8.34)

In order to capture all the possible behaviours of the underlying dynamical system for

the di�erent control parameters, it would be necessary to consider a huge dictionary

of functions {Âi (x, ◊)}N
i=1, when following standard approaches to compute a finite-

dimensional approximation of the Koopman operator (see Chapter 4). With the RKHS

approach presented in Chapter 6 instead, it is only needed to specify the kernel function,

which can be seen as a similarity measure in the state-parameter space, and the solution

of the regression problem is known to lie in the linear space of kernel sections centred in

the available data, thanks to the Representer theorem (Theorem 5.2.7). Therefore by

considering the enlarged space given by the Cartesian product of the state space and

the parameter space, Z := X ◊ �, it is possible to define a kernel which helps with the

estimation problem by leveraging similarity both in the state space and in the parameter

space. Since the Kernel approach is very general and many di�erent kind of kernels can

be defined, this method is compatible with all kinds of prior information which may be

available for the dynamics.

The proposed method gives a way to retrieve a non-parametric estimate of the value-

function, in light of Proposition 8.3.1. By following the general scheme of Policy Gradient

algorithm, a procedure to derive the optimal parameter is derived, which relies on the

assumption that the kernel function is di�erentiable with respect to the control parameter



136 Koopman Policy Gradient

◊.

Consider the extended variable z :=
Ë
x€ ◊€

È€
in the augmented state-parameter space

Z. Snapshots of the system are iteratively collected while actively interacting with the

environment, so that the setting is as close as possible to the Reinforcement Learning

paradigm. Data are gathered in the form of state-parameter pairs, given by:

zk =

C
xk

◊k

D
, (8.35)

representing the current state and the control parameter actually used in the current

transition.

The proposed method is indeed framed as an online procedure, as is customary in RL

algorithms. In general, datapoints are organised as input-output pairs, so that if M

interactions with the system has already been performed, the available data would be:

z =
Ë
z0 . . . zM≠1

È
, zÕ =

Ë
z1 . . . zM

È
(8.36)

in such a way that every point can be linked with its future value. This leads exactly

back to the setting of Chapter 6.

Given the chosen kernel function, the reward can indeed be estimated in the same

way as before, and the value-function will be simply given by the sum of the iterated

propagations, as detailed below.

An estimation of the gradient of the value-function is computed starting from the M

available datapoints, which is then used to update the control parameter, in order to

obtain the new and improved value, ◊M . The latter is then used to derive the policy

for the M -th step, which will yield a better estimation of the value function and a

new gradient. Iterating this procedure, the algorithm will converge to at least a local

maximum of the value function.

The policy gradient algorithm is presented in its two phases: policy evaluation and policy

improvement.

8.4.1 Policy evaluation

The procedure is divided in three steps to make it easier to be followed. Note that the

first step is actually not necessary (see Chapter 6, Section 6.6), however it allows to

frame the procedure in a iterative fashion that is straightforward to be propagated for

subsequent predictions.

• Compute –.



8.4 Koopman Policy Gradient 137

These are the coe�cients for the kernel section centred in z̄ which best represent

the reward observable. The projection of the reward observable onto the space

formed by the kernel sections is given by:

r̂ (·) = K (·, z̄) – (8.37)

where

– = [K (z̄, z̄)]≠1 r (z̄) . (8.38)

• Learn the approximated Koopman operator U .

By exploiting again the same RKHS formulation, the latter is given by Proposi-

tion 6.5.1:

U =
Ë
K (z̄, z̄) + ‡2

È≠1
K

!
z̄Õ, z̄

"
, (8.39)

and it maps coe�cients as — = U–, in order to approximate the reward of the next

state:

r1 (·) := r (f (·)) ƒ K (·, z̄) —. (8.40)

• Predict future rewards.

The prediction of the reward · step ahead is given by:

r̂· (z) = K (z, z̄) —· ,

where —· = U · –, or equivalently, —· = U —·≠1.

The procedure outlined above allows to compute an approximation of the value function

as:

V̂◊ (x) = K (z, z̄)
·+1ÿ

·=1

“·≠1U· – = K (z, z̄)
·+1ÿ

·=1

“·≠1—· . (8.41)

Note that the actual computation of the regression coe�cients – for the first step is

actually not needed, as already made clear in Chapter 6, Section 6.6. The introduction of

a second regression problem is not mandatory, but it is useful to understand the meaning

of the – coe�cients. Indeed the coe�cients for the first step — can be directly recovered

as:

— =
#
K

!
z, zÕ

"$≠1
r

!
zÕ

"
, (8.42)

which yields the exact values for the reward function. As outlined in Remark 6.5.2, the

invertibility of the kernel matrix does not require any additional assumption.

Note that by relying on Assumption 8.2.1, it is only needed one transition to have a

well defined gradient. Considering indeed the starting state x0 and the initialisation



138 Koopman Policy Gradient

of the control parameter ◊0, which is used to derive the policy that interacts with the

environment and move the state into x1. The estimation of the value-function and the

associated gradient make use of the state-parameter pair zÕ =
Ë
x1 ◊1

È
, which however

cannot be currently available, except by choosing an arbitrary value for ◊1. However,

since the reward will depend only on the next state, note that in equation 8.42 the

dependence on the whole augmented state is only fictitious. Therefore the algorithm can

be initialised with just the first transition yielding x0, ◊0 and x1.

The next section will discuss the case in which Assumption 8.2.1 does not apply.

8.4.2 Policy improvement

Under the assumption that the adopted Kernel is di�erentiable with respect to the control

parameter ◊, it is trivial to notice that the gradient with respect to ◊ of the value-function

estimated in the previous Section can be written as:

Ò◊V̂◊ (x) = Ò◊ [K (z, z̄)]
·+1ÿ

·=1

“·≠1—· , (8.43)

since the derived coe�cients are fixed and computed through available data, therefore

they do not depend on the chosen control parameter.

By relying on the general scheme of policy gradient methods (Sutton et al., 1999), the

update for improving the policy parameter is given by:

◊·+1 = ◊· + ÷Ò◊V̂◊ (x) , (8.44)

where ÷ is the learning rate.

The latter procedure is in general guaranteed to converge to a local maximum for the

value-function, with respect to the geometry induced by the policy parameterisation.

As already discussed, under further technical assumption the latter gradient algorithm

converges to the global optimum.

8.5 Illustrative example for control

In this section the applicability of the proposed approach as an actual algorithm is

illustrated through some simple numerical simulations. In particular both policy eval-

uation and policy improvement task will be addressed, in order to tackle the general

Reinforcement Learning problem. Therefore the following examples focus on showing the

convergence of the whole procedure to the optimal parameter ◊ú yielding the optimal



8.5 Illustrative example for control 139

policy within the prescribed policy class.

A controlled discrete-time stochastic dynamical system is considered, whose evolution is

given by:

xk+1 = f (xk, ◊k) + wk, (8.45)

in which the noise represents the model disturbance, and it is assumed to be Gaussian

distributed, i.e. wk ≥ N
!
0, ‡2

"
.

The theoretical derivation of the approach covered the general case of an d-dimensional

state and a l-dimensional parameter. However, for the purpose of facilitating the

illustration of the results, scalar parameter will be considered in this section.

In the classical setting of LQR problems, the cost would be a strictly positive and

quadratic function of the state. In order to match the latter setting through the definition

of a reward function, this is defined as the inverse of the cost. In this way the reward

function is still positive, and the best performing policy would be the one maximising

the reward. The latter is also made explicitly dependent on the policy parameter, as

r (x, ◊) =

3...x ≠ x(r)
...

2
+ ‹ Î◊Î2

4≠1

. (8.46)

A regularisation term explicitly dependent on the policy parameter, given by ‹ Î◊Î2, has

been added, which can be interpreted as a control cost.

The environment is initialised in state x0, with the control parameter ◊0, which can be

selected as arbitrary values. At every time-step the agent experience a transition from

the current state xk to a new state xk+1, according to the dynamics in (8.45) with the

current parameter ◊k, and receives the corresponding reward.

At the current time k, and assuming that the starting time is k0 = 0, k state-parameter

pairs are available to the agent from past transitions, as well as the next state xk+1 and

the k rewards r1, . . . , rk+1.

The latter knowledge is exploited in order to compute the kernel matrices K (z, z) and

K (zÕ, z) which are necessary for the derivation of the approximation of the Koopman

operator in (8.39). In particular, the experienced data are gathered as:

z =

C
x0 x1 . . . xk≠1 xk

◊0 ◊1 . . . ◊k≠1 ◊k

D
(8.47)

for the input locations, and

zÕ =

C
x1 x2 . . . xk xk+1

◊1 ◊2 . . . ◊k ◊k

D
(8.48)



140 Koopman Policy Gradient

for the output locations.

Note that in the last entry for zÕ, the value of the parameter was kept fixed to ◊k. This

is clearly due to the fact that the value ◊k+1 is unknown, since it relies on the new

value-function for which the kernel matrices are necessary. As discussed earlier, if the

reward depends only on the next state, as in Assumption 8.2.1, the latter value of the

parameter is irrelevant, since the prediction of the next parameter does not play any role,

and only the mapping from Z to X is sought. If instead the reward is also dependent on

the parameter ◊, as in (8.46), the last entry actually plays a role, and there are di�erent

viable options for setting it. The one considered in (8.48) relies on the assumption that

the proximity parameter ÷ is small, so that ◊k+1 is actually very close to ◊k. This is

indeed a very common assumption in Reinforcement Learning (Bhatia, Altosaar, and Gu,

2017; Schulman et al., 2015; Schulman et al., 2017). Moreover, it makes sense to predict

the dynamics under the fixed parameter ◊k as it is the one characterising the current

behaviour of the state-transition function.

The computation of the kernel matrices and the subsequent derivation of the kernel form

of the Koopman operator allows to recover the regression coe�cients —· , for · = 1, . . . , · .

Then, as prescribed by the theory, the calculation of the gradient of the kernel function

with respect to ◊ allows to determine the steepest descent direction of the value-function.

Given that the current transition have already been performed, the objective of the agent

is now to select the best parameter with respect to the new state xk+1, which is known.

By performing the gradient step, the new parameter ◊k+1 becomes available, and it will

replace the last entry in the matrix zÕ in computations for future steps. Indeed, the new

transition will be stored and the current time moved, so that the new parameter for the

current transition will appear as ◊k also in z for the next transition.

The issue of exploration is a key element in Reinforcement Learning (Stadie, Levine, and

Abbeel, 2015; Tang et al., 2017; Houthooft et al., 2016; Burda et al., 2018; Osband et al.,

2016). It can be regarded as a "curiosity bias" for the agent, which is allowed not to

blindly trust the current estimate of the value function, but try di�erent parameters

instead, which may result in a better understanding of the dynamics.

This is true also for the proposed procedure, since the reconstruction through a non-

parametric method could cause the emergence of local minima, which may significantly

a�ect the gradient direction, slowing down the procedure. Moreover, if the kernel function

K (·, ·) is an even function with respect to ◊, then the initial gradient would be zero for

symmetry reasons, and thus would remain so indefinitely. This is true e.g. for the RBF

kernel, which has no has no preferential direction.

The latter can be visualised by thinking of a 2-dimensional Gaussian kernel in the plane



8.5 Illustrative example for control 141

with axis x and ◊. If there is no modification of the parameter on the first step, i.e.

◊0 = ◊1, it is easy to understand that the next point will always be taken in ◊ = ◊0 = ◊1,

because a linear combination of the radial kernel sections does not yield any gradient in

the ◊ direction.

To overcome this problem the gradient ascent in (8.44) has been modified with an additive

white noise perturbation given by ’ ≥ N
!
0, ‡2

◊

"
.

In the following examples, the Gaussian kernel has been chosen as the basis for the kernel

approximation of the Koopman operator, which jointly considers state and parameter, as:

K (z, z̃) = exp
1
≠Í Îz ≠ z̃Î2

2
. (8.49)

Both linear and nonlinear dynamics have been considered for the numerical evaluation of

the proposed approach, nonetheless, for both experiments the following parameters are

kept fixed:

÷ = 0.5; ‹ = 5 ◊ 10≠4; ‡ = 0.1; ‡◊ = 0.1; x0 = 0; ◊0 = 0. (8.50)

The kernel hyper-parameter Í and the regularisation parameter ‡ in the kernel formulation

of the Koopman operator are optimised by maximising the log-marginal likelihood, i.e.

(‡, Í) = arg max
)
log

!
P

!
r̂1 (z) | z, zÕ

""*
(8.51)

= arg min

;
1

2
r̂1 (z)€ Ÿ‡,Ír̂1 (z) +

1

2
log |Ÿ‡,Í|

<
(8.52)

where Ÿ‡,Í =
#
K (z, z) + ‡2

$≠1
, and the minimisation refers to the prediction of the

first step. For subsequent predictions the hyper-parameters are kept fixed. In par-

ticular, optimisation of hyper-parameters takes place at specific time-instants, i.e. at

k = 10, 50, 100, 200, 400, because performing the computation of the optimal parame-

ters at every time-step would become computationally cumbersome, while not yielding

performance advantages, since it may take a significant amount of points to change the

minimum of the optimisation.

Conveniently, the hyper-parameter tuning does not make the algorithm any slower,

thanks to automatic di�erentiation. The cheap gradient principle (Kakade and Lee, 2018;

Griewank and Walther, 2008) states that evaluating the gradient provably requires at

most a small constant factor more arithmetic operations than the function itself. By

searching for the maximum of the log-likelihood, it is necessary to evaluate the gradient

of the reconstructed value-function with respect to the parameters, which nonetheless

yield the same computational cost. This leads to an overall complexity of O
!
cM3

"
, in



142 Koopman Policy Gradient

which the constant c depends on how many times the hyper-parameters are updated,

and on the required precision of the convergence of the gradient descent procedure at

each optimisation subroutine. By keeping these numbers constant with respect to the

number of training samples, the computational order of the procedure will remain the

same. The latter means that the optimisation should not be performed at every step,

because that would increase the computational complexity of a factor M . Note however

that the optimal hyper-parameters will not change significantly when adding a single

snapshot to a batch of many. Therefore for most tasks it is still meaningful to perform the

optimisation in a fixed number of steps, which can be also adjusted while the algorithm

is running.

8.5.1 Linear example

The Linear Quadratic Regulator (LQR), as underlined in Chapter 3, is an important

benchmark for Reinforcement Learning, since it is a well-studied class of problems for

which the exact solution is available, as explained in Chapter 7. Therefore the first simple

numerical simulation is built upon this classical framework.

The dynamics are then linear in both the state and the control, as:

f (x, ◊) = Ax + Bfi◊ (x) (8.53)

in which the input is made explicitly dependent on the control parameter ◊, and in

particular is parameterised as an a�ne function of the state, i.e.,

fi◊ (x) = ◊
1
x ≠ x(r)

2
, (8.54)

which defines the class of admissible policies.

The objective of the algorithm is then to find the best parameter ◊ú, for which the value

function attain the highest value, when input functions as in (8.54) are considered.

It is worth noticing that in the case of a linear dynamics and reward in (8.46), the

value-function is a quadratic function over the whole Z space, as for the Linear Quadratic

Regulator. However, its maximum in � depends on the time horizon · .

The following parameters are considered for the presented simulations:

A = 0.9; B = 0.1; x(r) = 5. (8.55)

Figure 8.1 and 8.2 show the behaviour of the control parameter when the proposed









146 Koopman Policy Gradient



9
Uncertainty propagation

This is the last chapter of this Dissertation and therefore it is rightly devoted to fine-tuning

details and properties of the proposed approach, which has been introduced in the previous

chapter. In particular, a gap between the presented theory and a standard assumption

in simulation will be filled, through the characterisation of a link between the noise

a�ecting the state dynamics, and the one a�ecting the observable dynamics. Moreover,

an interesting property of the proposed algorithm is discussed in what follows, i.e., the

possibility of propagating also the covariance description of the estimated observable, in

such a way that confidence intervals around the estimate can easily be provided. The

latter feature may be used to quantifying the uncertainty of the reconstruction and to

mitigate the e�ect of model bias, supporting the idea that the proposed approach presents

many di�erences with standard model-based algorithms.

This Chapter is drawn from the work by Zanini, Francesco and Chiuso, 2022, and

therefore it presents original contributions.

9.1 Model-based or model-free?

The field of Reinforcement Learning is often divided into two di�erent paradigms: model-

based and model-free RL (Sutton and Barto, 2018).

The former is the closest to the Optimal Control problem (Recht, 2018), since it often

assumes the knowledge of the reward function, which is regarded as a design variable. The

outline of a model-based algorithm usually envisages the estimation of the environment,

so that predictions of the transitions are available. This knowledge is then used to model

the future behaviour of the system, making the problem of maximising the value-function

or minimising the overall cost over a class of admissible policies well-defined. For in-

stance, in order to tackle a linear time-invariant control problem as defined in (7.21) (see

Chapter 7, Section 7.3), a model-based algorithm would first estimate the matrices A



148 Uncertainty propagation

and B characterising the system, and then compute the associated optimal controller

with equation (7.24) based on the latter estimates (Dean et al., 2020; Li and Todorov,

2004; Tu and Recht, 2019a).

A Dynamic Programming solver is the prototypical example of a model-based algorithm.

Actually most algorithms fall into this category, and among them also the procedure

presented in Chapter 8, as well as MuZero algorithm by Schrittwieser et al., 2020, which

indeed shares the same principle.

The model-free perspective instead is guided by a direct mapping from actions to rewards,

so that the performances of a certain policy are considered to be the direct consequences

of the actions, without modelling the propagation provided by the environment. For

instance, in the same problem of a linear time-invariant controlled system, a model-free

algorithm would estimate from data the gradient of the value-function, and then at every

step, improve the parameter with gradient ascent (Tu and Recht, 2019a).

Examples of model-free algorithm are instead given by SARSA (Rummery and Niranjan,

1994; Sutton, 1995; Singh et al., 2000; John, 1994; Seijen et al., 2009; Hasselt, 2011),

Q-learning (Watkins, 1989; Watkins and Dayan, 1992; Jaakkola, Jordan, and Singh, 1993;

Tsitsiklis, 1994), and actor-critic methods (Witten, 1977; Barto, Sutton, and Anderson,

1983; Sutton, 1984; Degris, White, and Sutton, 2012; Williams, 1988; Williams, 1992).

The main distinction between the two paradigms refers strictly to whether, during learn-

ing or action selection, the agent uses predictions about the response of the environment.

Regardless it being the pair of next state and reward, the expected next reward, or the

full joint distribution of state and reward, either way a prediction is necessary, therefore

the algorithm will be model-based.

These two sub-classes of Reinforcement Learning, model-free and model-based approaches,

both yield strengths and weaknesses.

The model-free perspective may seem at first more tailored to the Reinforcement Learning

problem, as it addresses the problem of maximising the return in a direct way, with-

out having to learn a model of the environment. However algorithms following this

perspective usually su�er from sample ine�ciency. This means that learning is slow,

so that it takes many samples from the environment to converge to a good solution.

The asymptotic behaviour is instead usually considered to be better with respect to

model-based algorithms, as they do not su�er from model bias (Tu and Recht, 2019b).

The latter issue stems from relying on the model that has been learnt, which - especially

in the case of long term predictions - may result in a very inaccurate estimate. This is

of course a feature of model-based methods only. Learning a model of the environment

however allows for a compact representation of the dynamics and it is the reason behind



9.1 Model-based or model-free? 149

their sample e�ciency. In fact, model-based methods have proven to be better under a

low data regime and specific dynamic frameworks, as shown by Dean et al., 2020; Zheng

et al., 2021.

The environment is modelled through its transition function, therefore the identification

steps which is required to estimate its action on the agent is framed as the reconstruction

of a function, with noisy data available. The latter is related with supervised learning,

in which the overfitting issue is a pervasive and well-known problem (Everitt, 2002;

Burnham and Anderson, 2002; Shalev-Shwartz and Ben-David, 2014). In the latter field,

it has undoubtedly proved a good practice to restrain the representational capacity of the

hypothesis class through a regulariser. The same di�culty translates to the Reinforcement

Learning setting, in which the learned model should probably not be treated as correct,

but its prediction capabilities should be mitigated, in order to improve performances on

the environment (Arumugam et al., 2018). Indeed the model is represented through a

function approximator, so the setting is actually the same. However predictions coming

from the model are usually claimed with full confidence by the di�erent model-based

algorithms, leading to the aforementioned model bias issue.

By considering a Bayesian perspective, and tackling the regression problem through

Gaussian Processes, this problem can be circumvented by considering the whole posterior

distribution over functions, and not just the estimate. This would give an idea of the

level of uncertainty in the model, and would allow to retrieve confidence intervals for

the estimate. The same result is actually achieved by Deisenroth and Rasmussen, 2011,

in which the Reinforcement Learning problem is framed through a Bayesian point of

view. In particular, the same assumption on parameterised policies is considered, however

kernel methods are there used to learn a true model of the environment, thus predicting

state transitions, and not relying on the reward samples. In contrast to the latter work,

the proposed procedure instead relies only on the reward, and thanks to this it can be

extended to handle also the case in which its analytic expression is not provided to the

learner. This extension will be presented in this chapter, which indeed is able to deal

with the actual Reinforcement Learning setting. As already hinted in Chapter 1, the

proposed approach can be regarded as a halfway procedure between the model-based

and the model-free perspective. Undoubtedly, the Koopman operator does learn a model

of the environment, however the targets of the regression are the value of the reward for

the transition, and not the state. Moreover, the ability of propagating uncertainty for

the prediction of future rewards, may help in mitigating the model bias issue, revealing

the peculiar nature of the proposed "model-based" algorithm.

Note how the procedure highlighted in Chapter 8 is already framed in the correct way so



150 Uncertainty propagation

that the full distribution can be propagated. This is the main contribution of this last

part of the Dissertation, in which a refined assumption on the measurement noise is also

considered.

9.2 Posterior propagation through Koopman operators

In the illustrative examples for the proposed procedure, both for estimation (in Chapter 6,

Section 6.7) and control (see Chapter 8, Section 8.5), the classic assumption of a Gaussian

noise in the state dynamics was considered. However, for the theoretical derivation of the

kernel formulation of the Koopman operator, and most importantly for Proposition 6.5.1

(see Chapter 4, Section 6.5), the noise model which has been taken into consideration

was:

Â (y) = Â (f (x)) + Á, (9.1)

where Á was assumed to be Gaussian, which is an additive noise in the observable

dynamics, and not in the state-transition function.

The latter gap is filled in this chapter, since the case with the Gaussian additive noise in

the state dynamics is addressed from the next section, and it is linked with the noise

in the observable dynamics. Also, the problem of propagating the covariance of the

estimated observable is considered, which makes it possible to obtain confidence bounds

on the estimation of the value-function.

Hence, in what follows, the usual assumption of a Gaussian noise in the state dynamics

is considered. From the usual disturbance model in the state, a characterisation for noise

in the evolution of the observable is retrieved, so that the estimation technique provided

in Chapter 6 can still be applied.

Consider the standard assumption on the noise a�ecting the flow of a generic discrete-time

dynamical system, whose evolution is characterized by:

xk+1 = f (xk) + wk, (9.2)

where the transition map goes from the state space X in itself and the additive noise

process wk, which is assumed to be i.i.d. zero-mean Gaussian wk ≥ N
!
0, ‡2Id

"
, models

the stochasticity in the dynamics.

The main aim of the present chapter is to precisely characterise the estimator of Â· (x0) :=

E [Â (x· )] so that it is possible to derive uncertainty bounds. This result can be obtained

in a Bayesian estimation framework, so that the estimate will be characterized by the

mean and variance of the posterior distribution, for a generic scalar-valued function



9.2 Posterior propagation through Koopman operators 151

Â (·). The connection with the kernel formulation of the Koopman operator introduced

in Chapter 4 is therefore evident.

The estimator derived in this chapter will again rely on data coming from the true system,

corresponding to snapshots of the evolution in (9.2), i.e. by pairs {xi, xÕ
i}

M
i=1, so that

xÕ
i = f (xi) + w,

in which the training points do not necessarily have to be taken consecutively along a

single trajectory; each xi can represent an arbitrary location, provided that the corre-

sponding output location is also available.

In order to present the contents of this chapter in simpler way, the strategy for propagat-

ing the uncertainty in the estimation of the observable is divided into two subsection.

Firstly it is assumed that the observable Â (·) to be propagated is known, i.e. its analytic

expression is available. Note that this is the case for the first step of the propagation in

the setting considered so far. Indeed in the previous chapters the observable is taken

to be the reward of the Reinforcement Learning problem, which has been considered to

be given. It should be noted that in the last subsection (Subsection 9.2.3) a method to

deal with unknown rewards will be presented, which is able to achieve basically the same

performances although exploiting only the observations of the reward Â (xÕ), without the

knowledge of the analytic expression of the function. The latter is indeed the true setting

of the Reinforcement Learning problem.

Secondly, the case of a stochastic observable is addressed, in which the combined un-

certainty of the dynamics and the observable should be propagated. In particular the

proposed approach models the iterative propagation of the observable as a Gaussian

Process, so that the covariance it is easy to handle. This is the case for all steps after

the first of the propagation in the setting considered in the previous chapters.

9.2.1 Known observable

Recall that the Koopman operator describes a generic system in terms of the evolution

of a function Â (·), so that the observable evolution can be considered, consisting of Â (·)

applied to (9.2), i.e.:

Â (xk+1) = Â (f (xk) + w) = Â (f (xk)) + Á̃ (9.3)

ƒ Â (f (xk)) + Á, (9.4)

in which the last equality express the noise acting in the state dynamics w as an additive

noise Á̃ in the observable dynamics which may have an arbitrary distribution. The



152 Uncertainty propagation

approximate inequality instead defines ‘, which is a Gaussian approximation of the noise

a�ecting the observable dynamics. The latter is a zero-mean Gaussian noise, with the

variance depending on the derivative of the observable. The precise characterisation is

given in the following proposition.

Proposition 9.2.1. Considering the approximation in (9.4), the estimate of the Koopman

Operator in a Reproducing Kernel Hilbert Space is given by:

\Â (f (·)) = K (·, x) [K (x, x) + V [Á]]≠1 Â
!
xÕ

"
, (9.5)

where Á is zero-mean Gaussian distributed with variance

V [Á] = ‡2 ˆ

ˆa
Â (a)

----
a=xÕ

ˆ

ˆa
Â (a)

----
€

a=xÕ

. (9.6)

Proof. The distribution of the noise Á is derived from a I order Taylor expansion, which

corresponds to the linearisation of equation (9.3), defining the approximation in (9.4).

The latter is computed as follows:

Â1 (x) = Â (f (x) + w) (9.7)

= Â (f (x)) +
ˆ

ˆa
Â (a)

----
a=f(x)

w + O
1
w2

2
(9.8)

ƒ Â
!
xÕ

"
+

ˆ

ˆa
Â (a)

----
a=xÕ

w, (9.9)

in which the approximation comes from the fact that higher-order terms in the noise

are neglected, and that the last expression is computed in xÕ instead of f (x), which are

assumed to be close enough.

This allows to characterise the distribution of the noise in the observable dynamics as

Á̃ ≥ N

A
0, ‡2 ˆ

ˆa
Ân (a)

----
a=xÕ

ˆ

ˆa
Ân (a)

----
€

a=xÕ

B
. (9.10)

As detailed in Chapter 6, and following the derivation by Rasmussen and Williams,

2006, the estimate of the Koopman operator in a Reproducing Kernel Hilbert Space is

equivalent to the maximum a posteriori estimator for Â (f (·)) under a Gaussian prior on

Â (f (·)) ≥ N (0, K (·, ·)).

Since the observable observations Â (xÕ) are considered as training outputs corresponding

to the input locations provided by x, the conditional expectation given the latter data



9.2 Posterior propagation through Koopman operators 153

can be computed as:

\Â (f (·)) = K (·, x) [K (x, x) + V [Á]]≠1 !
Â

!
xÕ

"
≠ E [Á]

"
, (9.11)

according to the approximate model which considers an additive Gaussian disturbance in

the observable dynamics, given by Á.

Note that the estimator obtained in (9.11) is precisely the sought function Â̂1 (·),

whose posterior distribution is completely characterised by the Gaussian approximation

given by Á. This step was simple, as the observable itself does not inject noise in the

transition, being deterministic.

It turns out then that the resulting observable is modelled as a Gaussian Process,

equipped with a covariance description, so that the derivation of confidence bound is

straightforward. However, in order to iterate the process and to get an estimate of

Â2 (·), the required computations are now di�erent, as the observable that needs to be

propagated is intrinsically stochastic. The latter point would not be an issue if only

the expectation of the estimator were to be considered, as done so far and explained

in Chapter 8, Section 8.2. Nonetheless the primary aim of this chapter is to derive a

way of propagating the posterior distribution, therefore also the covariance needs to be

taken into account. The latter is addressed in the next subsection, where the generic

n-th step would be considered, with n > 1. Since each subsequent estimator Ân (·) will

be modelled as a Gaussian Process, so the propagation is the same for all step.

9.2.2 Estimated observable

The Bayesian reconstruction of Â1 (·) resulted in a distribution over functions, whose

uncertainty must be properly considered in the propagation over the evolution of the

dynamics. As will be proven later, in Proposition 9.2.2, the iterated observables will all

be described by Gaussian Processes: this makes it possible to handle all the steps above

the first one equally, enclosing them together in a single discussion for a generic n-th

step, with n > 1.

Note indeed that Ân (·) is still an observable, though a stochastic one, which describes

the function of interest Â (·) after n iterations of the state transition function.

Let Â̂n (·) denote its conditional expectation given data {x, xÕ}, and denote by �n its

corresponding conditional variance, so that:

Y
]
[

Â̂n (·) = E [Ân (·) | x, xÕ]

�n = V

Ë
Ân (·) ≠ Â̂n (·)

È
,

(9.12)



154 Uncertainty propagation

which characterises the full distribution under the Gaussian assumption.

Although the observable for the n-th step is stochastic, the same linearisation as in (9.4)

is considered, in which however the Gaussian approximation of the additive noise acting

on observables will take a di�erent form. The observable dynamics for the n-th step is

given by:

Ân (xk+1) = Â (f (xk) + w) = Â (f (xk)) + Á̃n (9.13)

ƒ Â (f (xk)) + Án (9.14)

which in fact holds for n Ø 1.

Note indeed that the generic noise which achieves the equality in (9.13) is di�erent at

each step n, because it depends on the particular observable Ân (·), which in general is

di�erent for each propagation index. The latter means that:

Á̃n ”= Á̃ñ (9.15)

’n ”= ñ.

In turn, also the Gaussian approximation in (9.14) in general will change with the

time-step n, i.e.

Án ”= Áñ (9.16)

’n ”= ñ.

Since the true observable Ân (·) is not available for n Ø 1, but only its estimator given

by the conditional expectation Â̂n (·), the induced observable dynamics are modelled as

follows:

Â̂n (xk+1) = Ân (f (xk)) + Ẫn (f (xk)) (9.17)

ƒ Ân (f (xk)) + Ẫn (xk+1) + Án¸ ˚˙ ˝
En(xk+1)

(9.18)

where (9.17) defines Ẫn (f (·)), which is the di�erence between the true function and the

conditional expectation given data; and the last approximate equality comes again from

the Gaussian approximation of the actual noise, though this time it includes also the

uncertainty provided by the stochasticity of the observable.

Note that the model for the observable dynamics thus obtained matches the original

framework given in (9.4). Therefore the same approach as in the previous subsection

can be applied, provided that the noise En (·) is adequately characterised. The latter

is composed of the sum of the uncertainty coming from the observable, and the noise



9.2 Posterior propagation through Koopman operators 155

characterising the dynamics. These are both modelled as Gaussian: the former because

is the error of a Gaussian process estimator, hence it distribution is Gaussian; the latter

because of the usual approximation that has been taken from the beginning. Moreover

they are here assumed to be independent, so that their sum is still Gaussian distributed

(Lemons, Langevin, and Gythiel, 2002), and in particular it holds that:

V [En (xk+1)] = V

Ë
Ẫn (xk+1)

È
+ V [Án] = �n (xk+1) + Án. (9.19)

As explained before, the characterisation provided by equation (9.19) allows to iterate

the same procedure outlined in Proposition 9.2.1 for steps greater than 1, resorting to

the measurement model in (9.18).

Proposition 9.2.2. Consider the measurement model in (9.18), which is satisfied by

evaluations of the stochastic observable given by Â̂n (xk+1), for all n Ø 1. Then the

estimate of the next observable Ân+1 (·) = Ân (f (·)), based on data {x, xÕ}, obtained

through the kernel formulation of the Koopman operator, is given by:

Y
]
[

Â̂n+1 (·) = K (·, x) [K (x, x) + V [En]]≠1 Â̂n (xÕ)

V [Ân+1 (·)] = K (·, ·) ≠ K (·, x) [K (x, x) + V [En (xÕ)]]≠1 K (x, ·)
(9.20)

Proof. The proof follows the same lines as Proposition 9.2.1, however the measurement

model in (9.18) must be considered.

By specialising the latter observable dynamics for the available data, it holds:

Â̂n+1 (x) = Â̂n
!
f

!
xÕ

""
+ En

!
xÕ

"
, (9.21)

in which all the uncertainty is captured by the additive noise En (xÕ). The proof is

trivially concluded by writing down the MAP estimator for the next observable Ân+1 (·),

when the following Gaussian prior is considered:

Ân+1 (·) ≥ N (0, K (·, ·)) (9.22)

so that the Gaussian Process regression framework can be exploited.

The last thing left to do is to characterise the overall noise approximated by the

term En (·) in (9.18). In this regard it should be noted that the covariance of the

posterior of the observable is given by the Gaussian Process regression framework, which

is well-known, therefore the only term left out is the one coming from the stochasticity



156 Uncertainty propagation

of the state dynamics, i.e., Án. The latter is again approximated through a I order Taylor

linearisation as:

Án =
ˆ

ˆa
Â̂n (a)

----
a=xÕ

w. (9.23)

Its expectation is clearly 0, which also justifies the expression in (9.20). It variance,

which is actually used in the propagation, is instead given by:

V

5
ˆ

ˆa
Â̂n (a)

----
a=xÕ

w

6
= ‡2

V

5
ˆ

ˆa
Â̂n (a)

----
a=xÕ

6
+

+ ‡2
E

5
ˆ

ˆa
Â̂n (a)

----
a=xÕ

6
E

5
ˆ

ˆa
Â̂n (a)

----
a=xÕ

6€

. (9.24)

The latter Gaussian approximation of the noise a�ecting the state dynamics completes

the description of the proposed approach for the propagation of any observable along

with its II order characterisation as a Gaussian Process.

For a generic step, formulas in (9.20) gives the conditional expectation and the variance

of the same observable when propagated through the state dynamics, taking into account

all sources of uncertainty in the process. Clearly, by evaluating the very same expressions

for the available data xÕ, new synthetic observations becomes available, also with their

covariance, so that the method can be iterated indefinitely in time.

9.2.3 Dealing with an unknown reward function

It is often the case, in Reinforcement Learning problems, that the agent directly collects

evaluations of the reward while no explicit knowledge of the reward function is available.

Nonetheless, in previous chapters and also in the method proposed in the earlier subsec-

tions, the explicit analytic expression of the reward function is required.

On closer inspection, however, it can be seen from the previous subsection that in order

to propagate the observable for the next step, only the knowledge of the observable at

the previous step is required, as given in (9.20), which is nonetheless estimated from

observations. Moreover, in the first step, the explicit knowledge of the observable is only

used to characterise the approximation of the noise Á in (9.10), through its derivative.

Therefore, if there was a way to approximate the latter derivative, then the procedure

could run seamlessly only relying on samples of the reward function and not on its explicit

formulation.

It turns out that this can actually be achieved by iteratively updating an estimate of the

derivative, switching between two formulations of the derivative of the first propagation

of the observable.



9.2 Posterior propagation through Koopman operators 157

Recall indeed the derived formula for the first observable, which yields:

Â̂1 (·) = K (·, x) [K (x, x) + �0]≠1 Â
!
xÕ

"
, (9.25)

in which only the derivative of Â (·) is employed, and it appears only in �0. The derivative

of Â̂1 (·) can be computed from its kernel formulation, as:

ˆ

ˆa
Â̂1 (a)

----
a=x

=
ˆ

ˆa
K (a, x)

----
a=x

[K (x, x) + �0]≠1 Â
!
xÕ

"
, (9.26)

and it is specialised for the available data x. Note that this expression gives an indirect

relation between the derivative of the original observable and the derivative of its first

propagation.

The latter can be also obtained through the chain rule, which allows to obtain another

relationship between the same quantities, as:

ˆ

ˆa
Â1 (a)

----
a=x

=
ˆ

ˆa
Â (a)

----
a=f(x)

ˆ

ˆb
f (b)

----
b=x

(9.27)

ƒ
ˆ

ˆa
Â (a)

----
a=xÕ

ˆ

ˆb
f (b)

----
b=x

, (9.28)

which is again specialised for the available data {x, xÕ}.

These two formulations can give rise to an iterative procedure that empirically appears to

have as its only fixed point the actual derivative of the observable, in the following way.

First, the sought derivative of the observable, computed in the output locations, should

be initialise to an arbitrary value, e.g. Â̇ (xÕ) = 1. With the latter initialisation, some

(possibly wrong) values for the first propagation of the observable in the input locations

can be computed through equation (9.25). These can be entered in the second formulation,

equation (9.28), in order to obtain new value for the sought derivative of the observable.

In fact under the assumption that the matrix ˆ
ˆbf (b)

---
b=x

is invertible the latter equation

can be used to compute the new values as:

ˆ

ˆa
Â (a)

----
a=xÕ

ƒ
ˆ

ˆa
Â1 (a)

----
a=x

5
ˆ

ˆb
f (b)

----
b=x

6≠1

, (9.29)

so that a new matrix �0 can be computed with the new estimate of the derivative of the

observable, and the procedure iterated.

It might seem that the requirement of the knowledge of the analytic expression of

the observable has simply been replaced with the constraint of having access to the

state-transition function f - which would be a di�erent, if not more restrictive, setting.



158 Uncertainty propagation

However, there is a simple way of estimating the state dynamics, by making use of the

proposed procedure. It is su�cient to take as observable the identity function, so that

the estimation of the composition will actually turn out to yield the state-transition

function. Although the procedure has explicitly been derived to avoid this step, which

would be equal to estimate a model of the environment, it has been experimentally

proved that there is a low sensitivity for the reconstructed derivative with respect to the

estimated state-transition function. This means that a rough estimate may be enough for

the procedure to converge to good values, and the latter can be surely provided by the

presented method, taking the identity function as observable, which can be computed as

a sort of 0-th step.

9.3 Illustrative example for uncertainty propagation

In this section a simple example is set up, in order to empirically evaluate the proposed

procedure.

The latter is given by some nonlinear dynamics, which are one-dimensional for the sake

of illustration:

xk+1 = f (xk) + w = ≠x
3/2
k + w; (9.30)

where w ≥ N
!
0, ‡2

"
is taken as the standard additive Gaussian noise in the state

dynamics, with ‡ = 0.1.

The state-transition function is clearly stable in the interval [≠1, 1] and x(e) = 0 is a

trivial equilibrium point.

The reward function, which corresponds to the observable which should be propagated,

has been considered to be:

r (x) = exp
1
≠ ÎxÎ2

2
. (9.31)

The function clearly penalises deviations from 0, therefore the system is naturally evolving

towards its highest value.

In the following example only the estimation step for the value-function will be addressed,

as it is clear from Chapter 8 that there is no di�erence in the actual algorithm for the

procedure which takes care also of control. It is just required to extend the state-space

with an augmented space of state and parameters, estimate the value function in that

space, and take the gradient ascent with respect to that estimation.

The system considered in this simple example can then be thought as an already controlled

dynamics, i.e. expressing the closed-loop under a particular policy, so that only the

policy evaluation step will be performed. The policy selecting the actions is assumed to

be stabilising, so that the state remains bounded.



9.3 Illustrative example for uncertainty propagation 159

The method outlined above has been implemented by means of a Radial Basis Function

kernel, i.e.:

K (x, x̃)›,Í = › exp
1
≠Í Îx ≠ x̃Î2

2
, (9.32)

for which the hyper-parameter has been optimised in the following fashion:

• The tuple hps =
!
›, Í, ‡2

"
containing also the regularisation parameter ‡2 - which

should be an estimate of ‡2 - is optimised by minimising the log-marginal likelihood

for the problem of estimating the state-transition function - the so-called 0-th step

- as:

hpsú = arg min
hps

;
1

2
xÕ€Ÿhpsx

Õ +
1

2
log |Ÿhps|

<
(9.33)

with Ÿhps =
Ë
K (x, x)›,Í + ‡̂IM

È≠1
.

Recall that this step is not mandatory for the main procedure if the explicit

knowledge of the reward is available; on the other hand, the latter is a necessary

phase if the method relying only on samples from the observable dynamics must be

exploited, as explained in Section 9.2. Note therefore that this does not burden the

computational complexity of the algorithm.

• A new optimisation for each propagation step is performed for the main procedure,

in which however the regularisation parameter is kept fixed at the value found at

the previous point. The hyper-parameters of the kernel function are optimised

again through log-marginal likelihood with a modified regulariser, which takes into

account the actual noise a�ecting each step:

›ú, Íú = arg min
›,Í

;
1

2
xÕ€Ÿ

(En)
›,Í xÕ +

1

2
log

---Ÿ(En)
›,Í

---
<

(9.34)

for the n-th step, with Ÿ
(En)
›,Í =

Ë
K (x, x)›,Í + V [En (xÕ)]

È≠1
.

The regularisation parameter ‡ acting inside V [En] has been kept fixed because the

joint optimisation with the other hyper-parameters did not lead to a significant increase

of performances, and in this way the computational burden is lighter. Moreover, the

numerical procedure adopted for jointly optimise the di�erent parameter has been found

to be less robust, leading to some numerical errors for some initialisations.

The implementation relies on the GPyTorch library (Gardner et al., 2018) in Python,

which has been extended with an original feature to handle the heteroskedatic noise

model when En (·) is involved. Indeed, since the noise depends on the observable, it takes

a di�erent variance at di�erent location of the state space. Therefore it is necessary to









10
Conclusion

In the present work, a new methodology is presented to address the Reinforcement Learn-

ing paradigm, which exploits the Koopman operator, and in particular its formulation in

Reproducing Kernel Hilbert Space. The latter approach is built on discrete observations

of the reward function of the system. Therefore, first of all, an analysis on the optimal

step-size for the discretisation of a continuous-time dynamical system is carried out, with

particular reference to the Riemann approximation for the value-function of a Langevin

system with quadratic cost. Numerical simulations showed that the same trade-o� applies

to general nonlinear dynamics. Then, the theoretical connections between the Koopman

operator framework and kernel methods are deeply explored, from a perspective which

has not been considered in the current literature. The benefits of the formulation of

the Koopman operator in Reproducing Kernel Hilbert Spaces are also made explicit by

illustrative examples. This procedure is then applied to the Reinforcement Learning

setting, which is the natural scenario given that the performance of the policy is de-

scribed by the propagation of the reward alone. Explicit derivation of the value-function

through the Koopman operator is addressed in detail, and the validity of the approach is

assessed in numerical simulations. Confidence intervals are easily recovered provided the

uncertainty about the reconstruction of the reward for future steps is correctly propagated.

The way the Reinforcement Learning problem is tackled in this Dissertation is through the

estimation of the value-function. The latter is indeed a crucial quantity in Reinforcement

Learning, through the knowledge of which it is possible to recover the optimal policy

for the given setting. One of the key results of this work is a formal derivation of the

value-function in terms of the Koopman operator. By learning how the reward function

is propagated through time under the action of the environment and on the selected

policy, the Koopman operator easily allows to directly characterise the value-function. In

fact, even if the Koopman operator gives a comprehensive description of the dynamical



164 Conclusion

system under analysis, the latter framework allows the algorithm to be specialised for the

evolution of a particular function: the reward. This deviates from the classical model-

based approach, in which the state-transition function is estimated. The distinctive

feature of the Koopman operator is that describes the dynamical system through the

evolution of functions, allowing to focus on the evolution of a specific one. That is why

this approach can be placed in between the model-based perspective and the model-free

one. It certainly is a model-based approach, as it relies on predictions of the reward for

future steps in order to recover the value-function. Nonetheless it directly addresses the

estimation of the composition of the reward and the state-transition function, unlike most

model-based algorithms. Clearly, if the dynamics of the system are extremely simple with

respect to the composition of the reward and transition function, this approach may be

at a disadvantage. It is therefore recommendable in cases where the transition function

is hard to estimate and the reward is smooth, or can be designed as such. The proposed

approach indeed does not need an estimate of the state-transition function, which can

be arbitrarily complex. By directly addressing the evolution of the reward instead, this

procedure is guaranteed to estimate what is really needed, avoiding reconstructing a

simplistic model of a very complex system, thus not being a�ected by the model bias

problem, which is certainly one of the greatest drawbacks for model-based methods. This

di�culty is even more mitigated by the easily computable confidence intervals, which is

a feature that only a few methods in model-based Reinforcement Learning can boast.

Moreover, by selecting a reward function which is smooth enough, the composition will

be a smooth function as well, so that the regularity imposed by kernel methods is actually

suitable for the estimation problem.

Another major contribution of this Dissertation is indeed a formal derivation of the

Koopman operator in RKHS, which removes the considerable problem of having to

select a dictionary of function that should meaningfully approximate the evolution of the

observable. By resorting to kernel methods, the latter step is substituted with the choice

of the kernel, which is a well-known framework which has proved flexible enough to be

used in many identification scenarios. If there is no prior information on the system,

which can be for instance derived by physical principles, there is no way to select a

suitable dictionary of function. There are instead many works on how to select a kernel

function, based on the kind of prior knowledge it induces. The final estimate of the

value-function is given by a linear combination of kernel sections centred on available

datapoints, so that its generalisation capabilities and limitations are the same as for

standard kernel methods. Moreover, oftentimes the reward function can be regarded as a



165

free variable, to be designed so that the agent will learn to perform a specific given task.

This would allow to design a reward function that complies with the prior information

induced by the kernel, or conversely to select a kernel which is suitable to identify the

evolution of the chosen reward function. By contrast, this is impossible when dealing

with the state transition function, which leaves no room for intervention.

The major drawback of this procedure is the computational complexity, which cor-

responds to the one of kernel methods. In light of this, there are already a number

of methods in the vast literature on this topic which can be implemented to partially

overcome this limitation. One possible extension of the contents in this work would be

to design a dimensionality reduction method based on the properties of the Koopman

operator. The peculiarity of dealing with a linear operator makes the interpretation of

its spectrum immediate, so that a meaningful choice can be made of the subspace in

which the dynamics are approximated.

The other important result is the characterisation of the trade-o� in the choice of

the step-size for the discretisation of a continuous-time system, along with the deriva-

tion of the optimal value in the case of a limited budget of datapoints. Although the

analysis holds only for the case of linear system, it has been shown empirically that a

similar trade-o� is also exhibited by general nonlinear systems. The characterisation of

the order in which the optimal step-size scales with the data budget is an important

finding, especially if the latter holds approximately for general unknown nonlinear system.

The optimal step-size can indeed be inferred from numerical simulations using a small

data budget, in such a way that an approximately optimal step-size is available for the

actual experiment with at full capacity. This fundamental trade-o� concerning stochastic

dynamical systems has been neglected from the literature, but it has great impact on

the estimation of any quantity related with the dynamics. A meaningful follow up of

this work would be to extend the analysis to standard system identification, in which

the performance of the reconstruction of the actual dynamics should be investigated

with respect to the sampling time. Another interesting line of research would be to

understand if a similar reasoning applies also to di�erent estimation techniques for the

value-function, like the Temporal Di�erence method, which is one of the most successful

in Reinforcement Learning.



166 Conclusion



A
Appendix

A.1 The Riemann Sum Approximation

The Riemann sum approximation is a standard argument that is reproduced here for

completeness. Let g : [0, T ] æ R be a continuously di�erentiable function. Assume that

the task is to approximate the integral
s T

0 g(t)dt using the Riemann sum over N = T/�t

elements,
qN≠1

k=0 �t g(k�t).

The di�erence is readily computed up to first order as follows:

D =

⁄ T

0
g (t) dt ≠

N≠1ÿ

k=0

�t g (k�t) (A.1)

=
N≠1ÿ

k=0

⁄ (k+1)�t

k�t
g (t) ≠ g (k�t) dt (A.2)

Æ
N≠1ÿ

k=0

⁄ h

0
gÕ (kh) t + O

1
t2

2
dt (A.3)

=
1

2

N≠1ÿ

k=0

1
gÕ (k�t) �t2 + O

1
�t3

22
(A.4)

A naive bound is obtained as D Æ 1
2N�t2 ÎgÕÎŒ + O

!
N�t3

"
. Translated to a squared

error, this explains the dependency O
!
N2�t4

"
= O

!
T 2�t2

"
.

In the case of discounting, let g(t) = “tf(t) and gÕ(t) = “t (f(t) + f Õ(t)). Hence, the

previous display leads to the bound

D Æ
1

2

N≠1ÿ

k=0

“k�t
1
�t2Îf(t) + f Õ(t)ÎŒ + O(�t3)

2
(A.5)

=
�t2(1 ≠ “N�t) Îf(t) + f Õ(t)ÎŒ

2(1 ≠ “�t)
+ O(�t3) . (A.6)



168 Appendix

Overall, the squared error is now O

3
�t4

1
1 ≠ “T

22
/

1
1 ≠ “�t

22
4

= O
!
�t2/ log (1/“)

"
.

Note that this alone does not explain the improvement of the order from �t2 to �t4,

which requires that also f(t) is decaying fast enough.

A.2 Moment Calculations

Recall that the solution of the SDE in (3.9), with x (0) = 0, takes the following form:

x (t) = ‡

⁄ t

0
ea(t≠s)dW (s) . (A.7)

A significant part of finding the mean-squared error of the Monte-Carlo estimator is the

computation of the moments E
#
x2 (t)

$
,E

#
x4 (t)

$
and E

#
x2 (s) x2 (t)

$
when s Æ t.

Lemma A.2.1. Let x(t) be the solution of (3.9). The second moment of the state

variable is

E

Ë
x2(t)

È
=

‡2

2u

1
e2ut ≠ 1

2
. (A.8)

The forth moment yields:

E

Ë
x4 (t)

È
=

3‡4

4u2

1
e2ut ≠ 1

22
(A.9)

Assuming that s Æ t, it holds:

E

Ë
x2(s)x2(t)

È
=

‡4

4u2
(e2us ≠ 1)e2ut

Ó
(e≠2us ≠ e≠2ut) + 3(1 ≠ e≠2us)

Ô
. (A.10)

Proof. The proof is divided in three steps.

1. Starting with the second moment E
#
x2 (t)

$
.

E

Ë
x2 (t)

È
= ‡2e2ut

E

C3⁄ t

0
e≠usdW (s)

42
D

= ‡2e2ut
⁄ t

0
e≠2usds =

‡2

2u
(e2ut ≠ 1)

(A.11)

The calculation makes use of the Itô isometry, which can be stated as:

E

C3⁄ t

0
z(s)dW (s)

42
D

= E

5⁄ t

0
z(s)2ds

6
, (A.12)

for any stochastic process z (·) adapted to the filtration induced by the Wiener



A.2 Moment Calculations 169

process W (·).

2. Next, compute E
#
x4 (t)

$
through Itô’s integral. Define y (t) :=

s t
0 e≠ubdW (b), so

that dy (t) = e≠utdW (t). Thus,

df (y (t)) = f Õ (y (t)) dy (t) +
1

2
f ÕÕ (y (t)) (dy (t))2 (A.13)

= f Õ (y (t)) e≠utdw (t) +
1

2
f ÕÕ (y (t)) e≠2utdt, (A.14)

for any f (·).

By choosing f (y) = y4:

f Õ (y) = 4y3 and f ÕÕ (y) = 12y2. (A.15)

Therefore, by integration and taking the expectation:

E [f (y (t))] = E

5⁄ t

0
f Õ (y (b)) e≠ubdW (b)

6
+

1

2
E

5⁄ t

0
f ÕÕ (y (b)) e≠2ubdb

6
(A.16)

= E

S
U

⁄ t

0
4

A⁄ b

0
e≠uvdw (v)

B3

e≠ubdW (b)

T
V

¸ ˚˙ ˝
=0

+
1

2
E

S
U

⁄ t

0
12

A⁄ b

0
e≠uvdW (v)

B2

e≠2ubdb

T
V

(A.17)

= 6E

S
U

⁄ t

0

A⁄ b

0
e≠uve≠ubdW (v)

B2

db

T
V (A.18)

= 6

⁄ t

0
E

S
U

A⁄ b

0
e≠uve≠ubdW (v)

B2
T
V db (Itô isometry) (A.19)

= 6

⁄ t

0

⁄ b

0
e≠2uve≠2ubdvdb (A.20)

=

⁄ t

0
e≠2ub 1

2u

1
1 ≠ e≠2ub

2
db (A.21)

=
3

4u2

1
1 ≠ e≠2ut

22
(A.22)

From (A.7) it holds x (t) = ‡euty (t) so that the second part of the lemma follows.



170 Appendix

3. Lastly, E
#
x2 (s) x2 (t)

$
is computed for s Æ t:

E

Ë
x2 (s) x2 (t)

È
= ‡4e2u(s+t)

E

C3⁄ s

0
e≠ubdW (b)

42 3⁄ t

0
e≠ubdW (b)

42
D

(A.23)

= ‡4e2u(s+t)
E

C3⁄ s

0
e≠ubdw (b)

42 3⁄ s

0
e≠ubdw (b) +

⁄ t

s
e≠ubdw (b)

42
D

(A.24)

= ‡4e2u(s+t)

I
E

C3⁄ s

0
e≠ubdw (b)

44
D

¸ ˚˙ ˝
(i)

+E

C3⁄ s

0
e≠ubdw (b)

42
D
E

C3⁄ t

s
e≠ubdw (b)

42
D

¸ ˚˙ ˝
(ii)

J

(A.25)

Note that (i) has been computed before. For (ii) it holds:

E

C3⁄ s

0
e≠ubdW (b)

42
D

=

⁄ s

0
e≠2ubdW (b) (A.26)

=
1

2u
(1 ≠ e≠2us) (A.27)

and

E

C3⁄ t

s
e≠ubdw (b)

42
D

=

⁄ t

s
e≠2ubdW (b)

=
1

2u

1
e≠2us ≠ e≠2ut

2
.

Therefore, assuming s Æ t, it holds that (it is necessary to use Itô integration in

this case):

E

Ë
x2 (s) x2 (t)

È
= ‡4e2u(s+t)

;
1

4u2

1
1 ≠ e≠2us

2 1
e≠2us ≠ e≠2ut

2
+

3

4u2

1
1 ≠ e≠2us

22
<

(A.28)

=
‡4

4u2
(e2ut ≠ 1)e2us

Ó
(e≠2ut ≠ e≠2us) + 3(1 ≠ e≠2ut)

Ô
, (A.29)

which concludes the proof.

A.3 Computation of the Mean-Squared Error

In the following the proofs of Theorems 3.3.1 and 3.3.6 are presented in detail, along

with the precise characterisation of the mean-squared error for the finite-horizon and



A.3 Computation of the Mean-Squared Error 171

discounted setting.

A.3.1 Finite-horizon, undiscounted

The proof of Theorem 3.3.1 is as follows.

Proof. First note that

E

Ë
V̂M (�t)

È
=

�t

M

Mÿ

i=1

N≠1ÿ

k=0

E

Ë
x2

i (k�t)
È

= �t
N≠1ÿ

k=0

E

Ë
x2(k�t)

È
, (A.30)

where, to ease the notation, x(t) = x1(t). Next, expand the mean-squared error as

E

Ë
(V̂M (�t) ≠ VT )2

È
= E

Ë
V̂ 2

M (�t)
È

≠ 2VTE

Ë
V̂M (�t)

È
+ V 2

T (A.31)

=
�t2

M2
E

S
U

A
Mÿ

i=1

N≠1ÿ

k=0

x2
i (k�t)

B2
T
V ≠ 2VT E

Ë
V̂M (�t)

È
+ V 2

T (A.32)

=
�t2

M2

Mÿ

i,j=1

N≠1ÿ

k,l=0

E

Ë
x2

i (k�t)x2
j (l�t)

È
≠ 2VT E

Ë
V̂M (�t)

È
+ V 2

T (A.33)

=
�t2

M

N≠1ÿ

k,l=0

E

Ë
x2(k�t)x2(l�t)

È
+

M2 ≠ M

M2
E

Ë
V̂M (�t)

È2
≠ 2VTE

Ë
V̂M (�t)

È
+ V 2

T .

(A.34)

For the last equality, note that E

Ë
V̂M (�t)

È2
= �t2 qN≠1

k,l=0 E
#
x2(k�t)

$
E

#
x2(l�t)

$
. It

now remains to compute the expressions with the summation. By Lemma A.2.1 the

second moment of the state variable is:

E

Ë
x2(t)

È
=

‡2

2u

1
e2ut ≠ 1

2
. (A.35)

Assuming that s Æ t, the forth moments can be derived from the same lemma as:

E

Ë
x2(s)x2(t)

È
=

‡4

4u2
(e2us ≠ 1)e2ut

Ó
(e≠2us ≠ e≠2ut) + 3(1 ≠ e≠2us)

Ô
. (A.36)

Note that by symmetry, a similar expression follows for s Ø t.

Using these expressions, for the expected cost it holds

VT =

⁄ T

0
E

Ë
x2(t)

È
dt =

‡2

2u

⁄ T

0

1
e2ut ≠ 1

2
dt =

‡2

2u

A
e2uT ≠ 1

2u
≠ T

B
. (A.37)

Note that a similar expression was previously obtained in (Bijl et al., 2016, Theorem 3).



172 Appendix

Next, the expected estimated cost is given by:

E

Ë
V̂M (�t)

È
= �t

N≠1ÿ

k=0

E

Ë
x2(k�t)

È
=

‡2�t

2u

N≠1ÿ

k=0

1
e2uk�t ≠ 1

2

=
‡2�t

2u

C
1 ≠ e2uT

1 ≠ e2u�t
≠ N

D
(A.38)

Lastly, it remains to compute the summation:

�t2

M

N≠1ÿ

k,l=0

E

Ë
x2(k�t)x2(l�t)

È
=

2�t2

M

N≠1ÿ

k<l

E

Ë
x2(k�t)x2(l�t)

È
+

�t2

M

N≠1ÿ

k=0

E

Ë
x4(k�t)

È

=
‡4T

3
�t2

1
e2uT ≠ 1

2 1
8e2u�t + 3e2uT + 1

2
+ T 2

1
e2u�t ≠ 1

22
≠ 2�tT

1
e2u�t ≠ 1

2 1
e2u�t + 5e2uT

24

4u2B�t
!
e2u�t ≠ 1

"2

(A.39)

The last equality is a cumbersome calculation that involves nested geometric sums. The

result has been verified using symbolic computation. Finally it remains to collect all

terms to get the final result.

A.3.2 Finite-horizon, discounted

Lemma A.3.1 (Finite-horizon, discounted). In the finite-horizon with a discount factor

“ œ (0, 1] setting, the mean-squared error of the Monte-Carlo estimator is

MSET (�t,B, “) = E1(�t, T, u, “) +
E2(�t, T, u, “)

B
, (A.40)



A.3 Computation of the Mean-Squared Error 173

where

E1(�t, T, u, “) = C1(T, “, u)‡4
�t2 + C2(T, “, u)‡4

�t3 +

3
1

144
+ C3(T, “, u)

4
‡4

�t4 + O(�t5) ,

(A.41)

E2(�t, T, u, “) =
‡4T + “T C4(T, “, u)

log(“)(u + log(“))(2u + log(“))2�t
+ “T O(1) , (A.42)

C1(T, “, u) =
“2T

1
e2uT ≠ 1

22

16u2
, (A.43)

C2(T, “, u) =
“T

1
e2uT ≠ 1

2 1
“T

1
e2uT (2u + log(“)) ≠ log(“)

2
≠ 2u

2

48u2
, (A.44)

C3(T, “, u) =
‡4“T

5
“T

1
e2uT (2u + log(“)) ≠ log(“)

22
≠ 4u

1
e2uT (2u + log(“)) ≠ log(“)

26

576u2
,

(A.45)

C4(T, “, u) is some finite constant of (T, “, a) that includes a factor of “T . (A.46)

Proof. The proof follows the similar computations as those in the previous proof with a

new expected cost as follows. In particular, using Lemma A.2.1, it holds

VT =

⁄ T

0
“t
E

Ë
x2(t)

È
dt =

‡2

2u

A
“T e2uT ≠ 1

log(“) + 2u
≠

“T ≠ 1

log(“)

B
(A.47)

Furthermore, the expected estimated cost is given by:

E

Ë
V̂M (�t)

È
=

‡2�t

2u

N≠1ÿ

k=0

“k�t
1
e2uk�t ≠ 1

2
=

‡2�t

2u

A
1 ≠ “T e2uT

1 ≠ “�te2u�t
≠

1 ≠ “T

1 ≠ “�t

B
.

(A.48)

Finally, the sum containing the forth order cross-moments is

�t2

M

N≠1ÿ

k,l=0

“�t(l+k)
E

Ë
x2(k�t)x2(l�t)

È
=

2�t2

M

N≠1ÿ

k<l

“�t(l+k)
E

Ë
x2(k�t)x2(l�t)

È
+

+
�t2

M

N≠1ÿ

k=0

“2k�t
E

Ë
x4(k�t)

È
.

While not impossible to calculate on paper, a written derivation is beyond the scope of

this work. Instead, one can rely on symbolic computation to obtain the expression and

corresponding Taylor approximations.



174 Appendix

A.3.3 Infinite-horizon

In what follows it is presented the proof of Theorem 3.3.6.

Proof. The proof relies on the decomposition provided in (3.31). It only remains to

compute the following cross term.

E

Ë
V̂M (�t) ≠ VT

È
VT,Œ (A.49)

=
‡4

2u

A
“T

log(“)
≠

“T e2uT

log(“) + 2u

B C
�t

2u

A
1 ≠ “T e2uT

1 ≠ “�te2u�t
≠

1 ≠ “T

1 ≠ “�t

B
≠

1

2u

A
“T e2uT ≠ 1

log(“) + 2u
≠

“T ≠ 1

log(“)

BD

(A.50)

=
‡4“2T

1
e2uT ≠ 1

2 1
log(“)

1
e2uT ≠ 1

2
≠ 2u

2

8u2 log(“) (2u + log(“))
�t +

+
‡4“T

1
2u + log(“) ≠ e2uT log(“)

2 1
2u

1
“T e2uT ≠ 1

2
+ “T log(“)

1
e2uT ≠ 1

22

48u2 log(“) (2u + log(“))
�t2 + O(�t3) .

(A.51)

Thus, the mean-squared error MSEŒ(�t,B, T, “) = E

Ë
(V̂M (�t) ≠ VŒ)2

È
is obtained by

combining the above computation with (3.29) and Lemma A.3.1.

A.4 Vector case analysis

In this section, the proofs for the analysis of the vector case are provided.

A.4.1 Finite-horizon, undiscounted

The proof of Theorem 3.3.4 is detailed below.

Proof. Consider the d-dimensional system that the solution of the trajectory of x(t) is

x(t) = ‡

⁄ t

0
eÃ(t≠s)dW (t) . (A.52)

Since Ã is a diagonalisable matrix, it is possible to decompose Ã as Ã = P ≠1D̃P , where

P is a invertible matrix (not necessarily orthogonal) and D̃ is a diagonal matrix whose

diagonal entries (⁄1, · · · , ⁄n) corresponds to the eigenvalues of the matrix Ã. Thus it is

possible to decompose the matrix exponential of Ã as:

eÃt = P ≠1eD̃tP . (A.53)



A.4 Vector case analysis 175

Define the diagonalised process x̃ (·) as:

Px (t) = P‡

⁄ t

0
eÃ(t≠s)dW (s) (A.54)

= ‡PP ≠1
⁄ t

0
eD̃(t≠s)PdW (s) (A.55)

= ‡

⁄ t

0
eD̃(t≠s)dW̃ (s) =: x̃ (t) (A.56)

where W̃ (s) is a Wiener process (with dependent components when P is not orthogonal).

This implies that x (·) = P ≠1x̃ (·).

To see x̃i(t) clearly, denote P = [pij ]ni,j=1, and x̃i(t) = („
(i)
1 (t), · · · , „

(i)
n (t))€, then „

(i)
l (t) =

qn
j=1 plj‡

s t
0 e⁄l(t≠s)dW

(i)
j (s) for each l œ {1, · · · , n}. Specifically, in the latter expression,

W
(i)
j (s) are independent Wiener processes for di�erent i or j. Correspondingly, x̃(t) =

(„1(t), · · · , „n(t))€, and „l(t) =
qn

j=1 plj‡
s t

0 e⁄l(t≠s)dWj(s) for each l œ {1, · · · , n},

where Wj(s) are independent Wiener processes for di�erent j. By trace operation, we

can rewrite V̂M (�t) as follows:

V̂M (�t) =
1

M

Mÿ

i=1

N≠1ÿ

k=0

�tx (tk)€ Q̃x (tk) (A.57)

= Tr

A
1

M

Mÿ

i=1

N≠1ÿ

k=0

�tx̃ (tk)€ P ≠€Q̃P ≠1x̃ (tk)

B
(A.58)

= Tr
1
P ≠€Q̃P ≠1V̂M (�t)

2
, (A.59)

where V̂M (�t) = 1
M

qM
i=1

qN≠1
k=0 �tx̃ (tk) x̃ (tk)€ œ R

n◊n.

Similarly, VT = Tr
1
P ≠€Q̃P ≠1VT

2
, where VT =

s T
0 E

Ë
x̃(t)x̃(t)€

È
dt. Therefore, the

MSET (�t,B) can be written as

MSET (�t,B) = E

51
V̂M (�t) ≠ VT

22
6

(A.60)

= E

5
Tr

1
P ≠€Q̃P ≠1

1
V̂M (�t) ≠ VT

222
6

. (A.61)

For the sake of notation, denote matrix P ≠€Q̃P ≠1 =: G = [glj ]nl,j=1 and V̂M (�t) ≠ VT =:

C = [clj ]nl,j=1. Noting the fact that

MSET (�t,B) = E

S
WU

Q
aÿ

l,j

gjlclj

R
b

2
T
XV =

ÿ

l1,j1,l2,j2

gj1l1gj2l2E [cl1j1
cl2j2

] , (A.62)



176 Appendix

it is su�cient to find MSET by only computing E [cl1j1
ci2j2

].

The following expectations are introduced, which will be used in further computations.

For any s Æ t:

E

5⁄ t

0
e⁄1(t≠b)dW (b)

⁄ s

0
e⁄2(s≠b)dW (b)

6
=

e⁄1t+⁄2s

⁄1 + ⁄2

1
1 ≠ e≠(⁄1+⁄2)s

2
; (A.63)

E

5⁄ s

0
e⁄1(s≠b)dW (b)

⁄ s

0
e⁄2(s≠b)dW (b)

⁄ t

0
e⁄3(t≠b)dW (b)

⁄ t

0
e⁄4(t≠b)dW (b)

6

= e(⁄1+⁄2)s+(⁄3+⁄4)t
5

1

(⁄1 + ⁄2)(⁄3 + ⁄4)

1
1 ≠ e≠(⁄1+⁄2)s

2 1
1 ≠ e≠(⁄3+⁄4)s

2
+

+
1

(⁄1 + ⁄3)(⁄2 + ⁄4)

1
1 ≠ e≠(⁄1+⁄3)s

2 1
1 ≠ e≠(⁄2+⁄4)s

2
+

+
1

(⁄1 + ⁄4)(⁄2 + ⁄3)

1
1 ≠ e≠(⁄1+⁄4)s

2 1
1 ≠ e≠(⁄2+⁄3)s

2
+

+
1

(⁄1 + ⁄2)(⁄3 + ⁄4)

1
1 ≠ e≠(⁄1+⁄2)s

2 1
e≠(⁄3+⁄4)s ≠ e≠(⁄3+⁄4)t

26
; (A.64)

⁄ T

0
E

5⁄ t

0
e⁄1(t≠b)dW (b)

⁄ s

0
e⁄2(≠b)dW (b)

6
dt =

e(⁄1+⁄2)T ≠ 1 ≠ (⁄1 + ⁄2)T

(⁄1 + ⁄2)2
. (A.65)

By using the definitions of V̂M (�t) and VT , it is trivial to see that for any l, j œ {1, · · · , n}

it holds:

clj =
1

M

Mÿ

i=1

N≠1ÿ

k=0

�t„
(i)
l (k�t)„

(i)
j (k�t) ≠

⁄ T

0
E [„l(t)„j(t)] dt (A.66)

=
�t‡2

M

Mÿ

i=1

N≠1ÿ

k=0

A
nÿ

–=1

pl–

⁄ k�t

0
e⁄l(k�t≠s)dW (i)

– (s)

B A
nÿ

–=1

pj–

⁄ k�t

0
e⁄j(k�t≠s)dW (i)

– (s)

B
≠

≠ ‡2
⁄ T

0
E

CA
nÿ

–=1

pl–

⁄ t

0
e⁄l(t≠s)dW–(s)

B A
nÿ

–=1

pj–

⁄ t

0
e⁄j(t≠s)dW–(s)

BD
dt (A.67)

=
nÿ

–=1

pl–pj–

S
WU

�t‡2

M

Mÿ

i=1

N≠1ÿ

k=0

A⁄ k�t

0
e⁄l(k�t≠s)dW (i)

– (s)

B A⁄ k�t

0
e⁄j(k�t≠s)dW (i)

– (s)

B
≠

≠ ‡2
⁄ T

0
E

53⁄ t

0
e⁄l(t≠s)dW–(s)

4 3⁄ t

0
e⁄j(t≠s)dW–(s)

46
dt

T
XV+

+
ÿ

– ”=—

pl–pj—

C
h‡2

M

Mÿ

i=1

N≠1ÿ

k=0

A⁄ k�t

0
e⁄l(k�t≠s)dw(i)

– (s)

B A⁄ k�t

0
e⁄j(k�t≠s)dw

(i)
— (s)

BD
,

(A.68)



A.4 Vector case analysis 177

where the last equation is due to the fact that for – ”= — it holds:

E

53⁄ t

0
e⁄l(t≠s)dW–(s)

4 3⁄ t

0
e⁄j(t≠s)dW—(s)

46
= 0 . (A.69)

Thus, for any l1, l2, j1, j2 œ {1, · · · , n}, the cross expectations are as follows:

E [cl1j1
cl2,j2

] =
nÿ

–=1

pl1–pj1–pl2–pj2–‡4I1 (M, �t, T, ⁄l1 , ⁄j1
, ⁄l2 , ⁄j2

, –) +

+
nÿ

– ”=—

pl1–pj1–pl2—pj2—‡4I2 (M, �t, T, ⁄l1 , ⁄j1
, ⁄l2 , ⁄j2

, –, —) +

+
nÿ

– ”=—

pl1–pj1—pl2–pj2—‡4I3 (M, �t, T, ⁄l1 , ⁄j1
, ⁄l2 , ⁄j2

, –, —) , (A.70)

where

I1 (M, �t, T, ⁄l1 , ⁄j1
, ⁄l2 , ⁄j2

, –) (A.71)

= E

IC
�t

M

Mÿ

i=1

N≠1ÿ

k=0

A⁄ k�t

0
e⁄l1

(k�t≠s)dW (i)
– (s)

B A⁄ k�t

0
e⁄j1

(k�t≠s)dW (i)
– (s)

B
≠

≠
⁄ T

0
E

53⁄ t

0
e⁄l1

(t≠s)dW–(s)

4 3⁄ t

0
e⁄j1

(t≠s)dW–(s)

46
dt

D
◊

◊

C
�t

M

Mÿ

i=1

N≠1ÿ

k=0

A⁄ k�t

0
e⁄l2

(k�t≠s)dW (i)
– (s)

B A⁄ k�t

0
e⁄j2

(k�t≠s)dW (i)
– (s)

B
≠

≠
⁄ T

0
E

53⁄ t

0
e⁄l2

(t≠s)dW–(s)

4 3⁄ t

0
e⁄j2

(t≠s)dW–(s)

46
dt

DJ
, (A.72)

and

I2 (M, �t, T, ⁄l1 , ⁄j1
, ⁄l2 , ⁄j2

, –, —) (A.73)

= E

IC
�t

M

Mÿ

i=1

N≠1ÿ

k=0

A⁄ k�t

0
e⁄l1

(k�t≠s)dW (i)
– (s)

B A⁄ k�t

0
e⁄j1

(k�t≠s)dW (i)
– (s)

B
≠

≠
⁄ T

0
E

53⁄ t

0
e⁄l1

(t≠s)dW–(s)

4 3⁄ t

0
e⁄j1

(t≠s)dW–(s)

46
dt

D
◊

◊

C
�t

M

Mÿ

i=1

N≠1ÿ

k=0

A⁄ k�t

0
e⁄l2

(k�t≠s)dW
(i)
— (s)

B A⁄ k�t

0
e⁄j2

(k�t≠s)dW
(i)
— (s)

B
≠

≠
⁄ T

0
E

53⁄ t

0
e⁄l2

(t≠s)dW—(s)

4 3⁄ t

0
e⁄j2

(t≠s)dW—(s)

46
dt

DJ
(A.74)



178 Appendix

and

I3 (M, �t, T, ⁄l1 , ⁄j1
, ⁄l2 , ⁄j2

, –, —) (A.75)

= E

IC
�t

M

Mÿ

i=1

N≠1ÿ

k=0

A⁄ k�t

0
e⁄l1

(k�t≠s)dW (i)
– (s)

B A⁄ k�t

0
e⁄j1

(k�t≠s)dW
(i)
— (s)

BD
◊

◊

C
�t

M

Mÿ

i=1

N≠1ÿ

k=0

A⁄ k�t

0
e⁄l2

(k�t≠s)dW (i)
– (s)

B A⁄ k�t

0
e⁄j2

(k�t≠s)dW
(i)
— (s)

BDJ
. (A.76)

Note that W
(i)
– and W

(i)
— are independent for – ”= —.

By using the expectations (A.63) and (A.65), the expression I2 (M, �t, T, ⁄l1 , ⁄j1
, ⁄l2 , ⁄j2

, –, —)

can be written as

I2 (M, �t, T, ⁄l1 , ⁄j1
, ⁄l2 , ⁄j2

, –, —) (A.77)

=

S
U �t

(⁄l1 + ⁄j1
)

Q
a 1 ≠ e(⁄l1

+⁄j1)T

1 ≠ e(⁄l1
+⁄j1)�t

≠
T

�t

R
b ≠

1

(⁄l1 + ⁄j1
)2

1
e(⁄l1

+⁄j1)T ≠ 1 ≠ (⁄l1 + ⁄j1
)T

2
T
V ◊

◊

S
U �t

(⁄l2 + ⁄j2
)

Q
a1 ≠ e(⁄l2

+⁄j2)T

1 ≠ e(⁄l2
+⁄j2)h

≠
T

�t

R
b ≠

1

(⁄l2 + ⁄j2
)2

1
e(⁄l2

+⁄j2)T ≠ 1 ≠ (⁄l2 + ⁄j2
)T

2
T
V .

(A.78)

In the following computations, constants that are not depending on �t, T or B will be

denoted as C̄ and C(⁄l1 , ⁄j1
, ⁄l2 , ⁄j2

).

The expectation I1 (M, �t, T, ⁄l1 , ⁄j1
, ⁄l2 , ⁄j2

, –) is computed exactly the same way as in

the proof of Theorem 3.3.1 by using the expectation results (A.63) and (A.64). Notice that

the expectation result (A.63) (when s = t) has the same order in t as the expectation (A.8).

Moreover, the two expectations (A.64) and (A.10) have the same orders in s and t. Thus,

I1 (M, �t, T, ⁄l1 , ⁄j1
, ⁄l2 , ⁄j2

, –) has the same orders in �t, T and B as the scalar MSE,

i.e.:

I1 (M, �t, T, ⁄l1 , ⁄j1
, ⁄l2 , ⁄j2

, –) =
1
C̄1 + C1 (⁄l1 , ⁄j1

, ⁄l2 , ⁄j2
) O(T )

2
T 2

�t2 +

+O(�t3) +
1
C̄2 + C2 (⁄l1 , ⁄j1

, ⁄l2 , ⁄j2
) O(T )

2 T 5

�tB
+ O

3
1

B

4
(A.79)



A.4 Vector case analysis 179

The expectation I2 (M, �t, T, ⁄l1 , ⁄j1
, ⁄l2 , ⁄j2

, –, —) can be computed directly and yields:

I2 (M, �t, T, ⁄l1 , ⁄j1
, ⁄l2 , ⁄j2

, –, —) =

1
e(⁄l1

+⁄j1)T ≠ 1
2 1

e(⁄l2
+⁄j2)T ≠ 1

2
�t2

4 (⁄l1 + ⁄j1
) (⁄l2 + ⁄j2

)
+ O(�t3)

(A.80)

=

3
1

4
T 2 + C3(⁄l1 , ⁄j1

, ⁄l2 , ⁄j2
)O(T 3))

4
�t2 + O(�t3) .

(A.81)

The expectation I3 (M, �t, T, ⁄l1 , ⁄j1
, ⁄l2 , ⁄j2

, –, —) can be computed as follows:

I3 (M, �t, T, ⁄l1 , ⁄j1
, ⁄l2 , ⁄j2

, –, —) (A.82)

=
�t2

M

nÿ

k=0

1
e(⁄l1

+⁄l2)k�t ≠ 1
2 1

e(⁄j1
+⁄j2)k�t ≠ 1

2
�t2

(⁄l1 + ⁄l2) (⁄j1
+ ⁄j2

)
+

+
�t2

M

ÿ

k<q

e⁄l1
k�t+⁄l2

q�t+⁄j1
k�t+⁄j2

q�t

(⁄l1 + ⁄l2) (⁄j1
+ ⁄j2

)

1
1 ≠ e≠(⁄l1

+⁄l2)k�t
2 1

1 ≠ e≠(⁄j1
+⁄j2)k�t

2
+

+
�t2

M

ÿ

k<q

e⁄l1
q�t+⁄l2

k�t+⁄j1
q�t+⁄j2

k�t

(⁄l1 + ⁄l2) (⁄j1
+ ⁄j2

)

1
1 ≠ e≠(⁄l1

+⁄l2)k�t
2 1

1 ≠ e≠(⁄j1
+⁄j2)k�t

2

(A.83)

=
1
C̄4 + C4 (⁄l1 , ⁄j1

, ⁄l2 , ⁄j2
) O(T )

2 T 5

�tB
+ O

3
1

B

4
. (A.84)

Thus, the final result is obtained by the expression of MSE in (A.62), (A.70) and the above

computations. Again, one can rely on symbolic computation to obtain the expression

and corresponding Taylor approximations.

The extension from Theorem 3.3.4 to the discounted finite-horizon results can be

done in the same way as in the proof above (and adding the discount factor “ in V̂M ) by

using the expectation cost for any ⁄1 and ⁄2:

⁄ T

0
“t
E

5⁄ t

0
e⁄1(t≠b)dW (b)

⁄ s

0
e⁄2(≠b)dW (b)

6
dt =

1

(⁄1 + ⁄2)

A
“T e(⁄1+⁄2)T ≠ 1

log (“) + (⁄1 + ⁄2)
≠

“T ≠ 1

log (“)

B
.

(A.85)

A.4.2 Corollary for infinite-horizon, discounted

In the following the proof for Corollary 3.3.7 is detailed.

Proof. The proof follows a similar argument as the proof of Theorem 3.3.4 and the proof



180 Appendix

of Theorem 3.3.6.

Continuing from (A.70), in infinite-horizon discounted setting, it holds:

I1 (M, �t, T, ⁄l1 , ⁄j1
, ⁄l2 , ⁄j2

, “, –) (A.86)

= E

IC
�t

M

Mÿ

i=1

N≠1ÿ

k=0

“k�t

A⁄ k�t

0
e⁄l1

(k�t≠s)dW (i)
– (s)

B A⁄ k�t

0
e⁄j1

(k�t≠s)dW (i)
– (s)

B
≠

≠
⁄ Œ

0
“t
E

53⁄ t

0
e⁄l1

(t≠s)dW–(s)

4 3⁄ t

0
e⁄j1

(t≠s)dW–(s)

46
dt

6
◊

◊

C
�t

M

Mÿ

i=1

N≠1ÿ

k=0

“k�t

A⁄ k�t

0
e⁄l2

(k�t≠s)dW (i)
– (s)

B A⁄ k�t

0
e⁄j2

(k�t≠s)dW (i)
– (s)

B
≠

≠
⁄ Œ

0
“t
E

53⁄ t

0
e⁄l2

(t≠s)dW–(s)

4 3⁄ t

0
e⁄j2

(t≠s)dW–(s)

46
dt

6<
, (A.87)

and

I2 (M, �t, T, ⁄l1 , ⁄j1
, ⁄l2 , ⁄j2

, “, –, —) (A.88)

=

S
U �t

(⁄l1 + ⁄j1
)

Q
a 1 ≠ “T e(⁄l1

+⁄j1)T

1 ≠ “�te(⁄l1
+⁄j1)�t

≠
1 ≠ “T

1 ≠ “�t

R
b ≠

1

(⁄l1 + ⁄j1
)

A
1

log (“)
≠

1

log (“) + ⁄l1 + ⁄j1

BT
V ◊

◊

S
U �t

(⁄l2 + ⁄j2
)

Q
a 1 ≠ “T e(⁄l2

+⁄j2)T

1 ≠ “�te(⁄l2
+⁄j2)�t

≠
1 ≠ “T

1 ≠ “�t

R
b ≠

1

(⁄l2 + ⁄j2
)

A
1

log (“)
≠

1

log (“) + ⁄l2 + ⁄j2

BT
V ,

(A.89)

and

I3 (M, �t, T, ⁄l1 , ⁄j1
, ⁄l2 , ⁄j2

, “, –, —) (A.90)

= E

IC
�t

M

Mÿ

i=1

N≠1ÿ

k=0

“k�t

A⁄ k�t

0
e⁄l1

(k�t≠s)dW (i)
– (s)

B A⁄ k�t

0
e⁄j1

(k�t≠s)dW
(i)
— (s)

BD
◊

(A.91)

◊

C
�t

M

Mÿ

i=1

N≠1ÿ

k=0

“k�t

A⁄ k�t

0
e⁄l2

(k�t≠s)dW (i)
– (s)

B A⁄ k�t

0
e⁄j2

(k�t≠s)dW
(i)
— (s)

BDJ
.

(A.92)

Through similar arguments as in proof of Theorem 3.3.4, it is possible to conclude that

I1 (M, h, T, ⁄l1 , ⁄j1
, ⁄l2 , ⁄j2

, –) has the same orders in �t, B and T as the MSE result in

Theorem 3.3.6.

Moreover, let Ci(⁄l1 , ⁄j1
, ⁄l2 , ⁄j2

, “, T ) denote some constants that depend on ⁄l1 , ⁄j1
, ⁄l2 , ⁄j2

, “, T .



A.4 Vector case analysis 181

Then:

I2 (M, �t, T, ⁄l1 , ⁄j1
, ⁄l2 , ⁄j2

, “, –, —) (A.93)

= ‡4“2T (C1(⁄l1 , ⁄j1
, ⁄l2 , ⁄j2

, “, T ) + C2(⁄l1 , ⁄j1
, ⁄l2 , ⁄j2

, “, T )�t) +

+ ‡4“T
1
C3(⁄l1 , ⁄j1

, ⁄l2 , ⁄j2
, “, T )�t2 + C4(⁄l1 , ⁄j1

, ⁄l2 , ⁄j2
, “, T )�t3

2
+

+ ‡4
3

1

144
+ “T C5(⁄l1 , ⁄j1

, ⁄l2 , ⁄j2
, “, T )

4
�t4 + O(�t5) , (A.94)

and

I3 (M, �t, T, ⁄l1 , ⁄j1
, ⁄l2 , ⁄j2

, “, –, —) (A.95)

=
�t2

M

N≠1ÿ

k=0

1
e(⁄l1

+⁄l2)k�t ≠ 1
2 1

e(⁄j1
+⁄j2)k�t ≠ 1

2
�t2“2k�t

(⁄l1 + ⁄l2) (⁄j1
+ ⁄j2

)
+

+
�t2

M

ÿ

k<q

e⁄l1
k�t+⁄l2

q�t+⁄j1
k�t+⁄j2

q�t

(⁄l1 + ⁄l2) (⁄j1
+ ⁄j2

)

1
1 ≠ e≠(⁄l1

+⁄l2)k�t
2 1

1 ≠ e≠(⁄j1
+⁄j2)k�t

2
“(k+q)�t +

+
�t2

M

ÿ

k<q

e⁄l1
q�t+⁄l2

k�t+⁄j1
q�t+⁄j2

k�t

(⁄l1 + ⁄l2) (⁄j1
+ ⁄j2

)

1
1 ≠ e≠(⁄l1

+⁄l2)k�t
2 1

1 ≠ e≠(⁄j1
+⁄j2)k�t

2
“(k+q)�t

(A.96)

= C6 (⁄l1 , ⁄j1
, ⁄l2 , ⁄j2

, “, T )
T 5

�tB
+ O

3
1

B

4
. (A.97)

The Corollary is proved by combining the above results.

A.4.3 The case when Ã is a general stable matrix

Lemma A.4.1 (MSE when Ã is a general stable matrix). Let Ã be a stable d ◊ d matrix

with distinct eigenvalues ⁄1, · · · , ⁄m and corresponding multiplicities q1, · · · , qm. There

exist some constants {C̄i}
m
i=1, C̄0 and Cj(⁄1, · · · , ⁄m, “, T ), such that the mean-squared

error of the Monte-Carlo estimator in different setting satisfies:

1. Finite-Horizon undiscounted setting:

MSET œ

S
WU

mÿ

i=1

qiC̄iMSET (�t,B, ⁄i),

C1(⁄1, · · · , ⁄m, T )‡4T 2
�t2 +

1
C̄2 + C3(⁄1, · · · , ⁄m, T )O(T )

2
‡4T 2n+3

B�t
+ O(�t3) + O(

1

B
)

T
XV ,

(A.98)



182 Appendix

where MSET (�t,B, ⁄i) is the mean-squared error of the Monte-Carlo estimator in

Theorem 3.3.1 by replacing the drift u by ⁄i.

2. Finite-Horizon discounted setting:

MSET œ

S
WU

mÿ

i=1

qiC̄iMSET (�t,B, “, ⁄i),

C4(⁄1, · · · , ⁄m, “, T )‡4“2T T 2
�t2 + C5(⁄1, · · · , ⁄m, “, T )‡4“T

�t3 + C6(⁄1, · · · , ⁄m, T )‡4
�t4 +

+
(C7(⁄1, · · · , ⁄m, “, T )) ‡4T 2n≠1

B�t
+ O(�t5) + O(

1

B
)

T
XV , (A.99)

where MSET (�t,B, “, ⁄i) is the mean-squared error of the Monte-Carlo estimator

in Lemma A.3.1 by replacing the drift u by ⁄i.

3. Infinite-Horizon discounted setting:

MSEŒ œ

S
WU

mÿ

i=1

qiC̄iMSEŒ(�t,B, “, ⁄i),

(C8(⁄1, · · · , ⁄m, “, T ) + C9(⁄1, · · · , ⁄m, “, T )�t)‡4“2T +

+
1
C10(⁄1, · · · , ⁄m, “, T )�t2 + C11(⁄1, · · · , ⁄m, “, T )�t3

2
‡4“T + C12(⁄1, · · · , ⁄m, T )‡4

�t4 +

+
(C13(⁄1, · · · , ⁄m, “, T )) ‡4T 2n≠1

B�t
+ O(�t5) + O(

1

B
)

T
XV , (A.100)

where MSEŒ(�t,B, “, ⁄i) is the mean-squared error of the Monte-Carlo estimator

in Theorem 3.3.6 by replacing the drift u by ⁄i.

Proof. It is possible to understand that the proof of Lemma A.3.1 is based on the proof

of Theorem 3.3.1 when adding a discount factor “, and the proof of Theorem 3.3.6 is

based on the proof of Lemma A.3.1 with the decomposition (3.31). By using the same

flow direction, it is su�cient to show the result in case (1) and the results in case (2) and



A.4 Vector case analysis 183

(3) follows. Consider the decomposition of MSET in finite-horizon undiscounted setting:

MSET = E

Ë
(V̂M ≠ VT )2

È
(A.101)

= E

51
V̂M ≠ E

Ë
V̂M

È
+ E

Ë
V̂M

È
≠ VT

22
6

(A.102)

= E

Ë
V̂ 2

M

È
≠ E

Ë
V̂M

È2

¸ ˚˙ ˝
Part1

+
1
E

Ë
V̂M

È
≠ VT

22

¸ ˚˙ ˝
Part2

(A.103)

Before the analysis of Part1 and Part2, the following mean-squared error notations is

introduced for the finite-horizon undiscounted scalar case with drift ⁄i:

MSET (�t,B, ⁄i) = Var(�t, ⁄i) + Approximation(�t,B, ⁄i) , (A.104)

where Var(�t, ⁄i) = E

Ë
V̂ 2

M

È
≠E

Ë
V̂M

È2
and Approximation(�t,B, ⁄i) =

1
E

Ë
V̂M

È
≠ VT

22
.

For Part1:

E

Ë
V̂ 2

M

È
=

�t2

M

ÿ

i,j,k,l

E

Ë
xi(k�t)€Q̃xi(k�t)xj(l�t)€Q̃xj(l�t)

È

=
�t2

M2

ÿ

i,j,k,l

5
E

Ë
xi(k�t)€Q̃xi(k�t)

È
E

Ë
xj(l�t)€Q̃xj(l�t)

È
+ 2Tr

1
Q̃E

Ë
xi(k�t)xj(l�t)€

È22
6

= �t2
ÿ

k,l

E

Ë
x(k�t)€Q̃x(k�t)

È
E

Ë
xj(l�t)€Q̃x(l�t)

È
+

+
2�t2

M

ÿ

k

Tr
1
Q̃E

Ë
x(k�t)x(k�t)€

È22
+

4�t2

M

ÿ

k<l

Tr
1
Q̃E

Ë
x(k�t)x(l�t)€

È22
,

(A.105)

where the second equality is based on Isserlis’ theorem and the trace operation.

Notice that E

Ë
V̂M

È2
= �t2 q

k,l E

Ë
x(k�t)€Q̃x(k�t)

È
E

Ë
x(l�t)€Qx(l�t)

È
, thus:

E

Ë
V̂ 2

M

È
≠ E

Ë
V̂M

È2
(A.106)

=
2�t2

M

ÿ

k

Tr
1
Q̃E

Ë
x(k�t)x(k�t)€

È22
+

4�t2

M

ÿ

k<l

Tr
1
Q̃E

Ë
x(k�t)x(l�t)€

È22
.

(A.107)

To analyze the above expression, decompose the matrix Ã by its Jordan form, i.e.

Ã = P ≠1JP for some invertible matrix P and J = diag(Ji, · · · , Jm), where Ji is the

Jordan block corresponding to the eigenvalue ⁄i.



184 Appendix

Notice that eJ(k�t≠s) = diag(eJ1(k�t≠s), · · · , eJm(k�t≠s)), where:

eJi(k�t≠s) = e⁄i(k�t≠s)

Q
cccccca

1 k�t ≠ s (k�t≠s)2

2! · · · (k�t≠s)qi≠1

(qi≠1)!

0 1 k�t ≠ s · · · (k�t≠s)qi≠2

(qi≠2)!
...

. . .
. . . · · ·

...

0 0 · · · · · · 1

R
ddddddb

. (A.108)

Combining with the fact that for any k, l, it holds:

E

Ë
x(k�t)x(l�t)€

È
=

⁄ k�t·l�t

0
eÃ(k�t≠s)eÃ€(l�t≠s)ds (A.109)

=

⁄ k�t·l�t

0
P ≠1eJ(k�t≠s)PP €eJ€(l�t≠s)P ≠€ds , (A.110)

and it is possible to conclude that for any k Æ l, Tr
1
Q̃E

Ë
x(k�t)x(l�t)€

È2
is a linear

combination of L1,i,j and L2,i,j for all i, j, where:

L1,i,j := C1,i,j

⁄ k�t

0
e(⁄i(k�t≠s)+⁄j(l�t≠s))ds (A.111)

= C1,i,j
e⁄ik�t + e⁄j

⁄i + ⁄j

1
1 ≠ e≠(⁄i+⁄j)k�t

2
; (A.112)

L2,i,j := C2,i,j

⁄ k�t

0
e(⁄i(k�t≠s)+⁄j(l�t≠s))(k�t ≠ s)q̃i(l�t ≠ s)q̃j ds , (A.113)

in which C1,i,j , Ci,j are some constants and q̃i œ {0, · · · , qi ≠ 1}, q̃j œ {0, · · · , qj ≠ 1}.

Concerning the integral in L2,i,j , as q̃i + q̃j Æ n ≠ 1, the following inequality holds:

⁄ k�t

0
e(⁄i(k�t≠s)+⁄j(l�t≠s))(k�t ≠ s)q̃i(l�t ≠ s)q̃j ds

Æ T n≠1
⁄ k�t

0
e(⁄i(k�t≠s)+⁄j(l�t≠s))ds . (A.114)

This is true because of

Tr
1
Q̃E

Ë
x(k�t)x(l�t)€

È22
=

ÿ

i1,j1,i2,j2

ÿ

k,l

Ÿ

l1,l2œ{1,2}

Ll1,i1,j1
Ll2,i2,j2

, (A.115)

and all the terms are nonnegative.

Dropping all terms that include L2,i,j factor and only include the L2
1,i,i with k = l terms,

one can find the lower bound of Part1. That is to say, the lower bound of part 1 is
qm

i=1 qiC̄iVar(�t, ⁄i).



A.4 Vector case analysis 185

The upper bound of Part1 can be obtained by replacing all L1,i,j factors by L2,i,j and

using the bound given in (A.114). This leads to the following expression for the upper

bound of Part1:

1
C̄2 + C3(⁄1, · · · , ⁄m, T )O(T )

2
‡4T 2n+5

B�t
+ O(

1

B
) . (A.116)

For Part2, let g(t) = E

Ë
x(t)€Q̃x(t)

È
on [0, T ]. Then E

Ë
V̂M

È
is the left Riemann sum

approximation of g(t), and by the property of Riemann approximation:

---E
Ë
V̂M

È
≠ VT

--- ¥ 2�tTg(T ) + O(�t2) , (A.117)

where

g(T ) = Tr
1
Q̃E

Ë
x(T )x(T )€

È2
= ‡2Tr

A
Q̃

⁄ T

0
eÃ(t≠s)eÃ€(t≠s)ds

B
, (A.118)

which is a constant depends on ⁄1, · · · , ⁄m, T . Thus:

(E
Ë
V̂M

È
≠ VT )2 ¥ C1(⁄1, · · · , ⁄m, T )‡4T 2

�t2 + O(�t3) , (A.119)

which has the same order in �t as the scalar case in finite-horizon undiscounted setting.

Hence the result in (A.98) is obtained by combining the bound in Part1 and the approxi-

mation in Part2.

As explained in the beginning of this proof, in the finite-horizon discounted setting similar

arguments as in the proof of (A.98) will be followed to obtain result (A.99).

For the infinite-horizon discounted setting, the corresponding part 1 in the MSEŒ

is the same as the part 1 in MSET of (A.99). Part2 is approximated by using the

decomposition (3.31) and the fact that

Vt,Œ =

⁄ Œ

T
“t
E

Ë
x(t)€Q̃x(t)

È
dt = “T C(“, T, ⁄1, · · · , ⁄m) . (A.120)

To verify VT,Œ is O(“T ), one can find the bounds of VT,Œ by using similar arguments in

the above proof of (A.98) and the following inequality:

⁄ t

0
e(⁄i+⁄j)(t≠s)(t ≠ s)q̃i+q̃j ds Æ tn≠1

⁄ t

0
e(⁄i+⁄j)(t≠s)ds =

tn≠1

(⁄i + ⁄j)

1
e(⁄i+⁄j)t ≠ 1

2
.

(A.121)

Then the components in
s Œ

T “t
E

Ë
x(t)x(t)€

È
dt is lower bounded by

s Œ
T

“t

(⁄i+⁄j)

1
e(⁄i+⁄j)t ≠ 1

2
dt

and upper bounded by
s Œ

T
“ttn≠1

(⁄i+⁄j)

1
e(⁄i+⁄j)t ≠ 1

2
dt. Through the approximation of in-



186 Appendix

complete gamma function when T is large, it holds:

⁄ Œ

T

“ttn≠1

(⁄i + ⁄j)

1
e(⁄i+⁄j)t ≠ 1

2
dt ¥

“T T n≠1

(⁄i + ⁄j)

1
e(⁄i+⁄j)T ≠ 1

2
. (A.122)

By noting that:

VT,Œ = Tr

3
Q̃

⁄ Œ

T
“t
E

Ë
x(t)x(t)€

È
dt

4
, (A.123)

it is possible to show that VT,Œ = “T C(“, T, ⁄1, · · · , ⁄m).

This result leads to the fact that Part2 is given by:

(C8(⁄1, · · · , ⁄m, “, T ) + C9(⁄1, · · · , ⁄m, “, T )�t) ‡4“2T +
1
C10(⁄1, · · · , ⁄m, “, T )�t2 +

+ C11(⁄1, · · · , ⁄m, “, T )�t3
2

‡4“T + C12(⁄1, · · · , ⁄m, T )‡4
�t4 + O(�t5) , (A.124)

which coincides with Var(�t⁄i) in the infinite-horizon discounted scalar case. The results

in (3) then follows.



References

Abbasi-Yadkori, Yasin and Csaba Szepesvári (June 2011). “Regret Bounds for the

Adaptive Control of Linear Quadratic Systems”. In: Proceedings of the 24th Annual

Conference on Learning Theory. Ed. by Sham M. Kakade and Ulrike von Luxburg.

Vol. 19. Proceedings of Machine Learning Research. Budapest, Hungary: PMLR,

pp. 1–26 (Cited in page 37).

Agarwal, R.P. and V. Lakshmikantham (1993). Uniqueness And Nonuniqueness Crite-

ria For Ordinary Differential Equations. Series In Real Analysis. World Scientific

Publishing Company (Cited in page 22).

Aït-Sahalia, Yacine (2002). “Maximum likelihood estimation of discretely sampled di�u-

sions: A closed-form approximation approach”. English (US). In: Econometrica 70.1,

pp. 223–262 (Cited in page 51).

Alon, U. (2006). An Introduction to Systems Biology: Design Principles of Biological

Circuits. Chapman & Hall/CRC Mathematical and Computational Biology. Taylor &

Francis (Cited in page 100).

Anderson, Brian D. O. and John B. Moore (1990). Optimal Control: Linear Quadratic

Methods. Prentice-Hall, Inc. (Cited in page 112).

Arbabi, Hassan and Igor MeziÊ (2017a). “Ergodic Theory, Dynamic Mode Decomposition,

and Computation of Spectral Properties of the Koopman Operator”. In: SIAM Journal

on Applied Dynamical Systems 16.4, pp. 2096–2126 (Cited in pages 58, 59).

— (Dec. 2017b). “Study of dynamics in post-transient flows using Koopman mode

decomposition”. In: Phys. Rev. Fluids 2 (12), p. 124402 (Cited in page 7).

Aronszajn, N. (1950). “Theory of Reproducing Kernels”. In: Transactions of the American

Mathematical Society 68.3, pp. 337–404 (Cited in page 74).

Arumugam, Dilip, David Abel, Kavosh Asadi, Nakul Gopalan, Christopher Grimm,

Jun Ki Lee, Lucas Lehnert, and Michael L. Littman (2018). “Mitigating Planner

Overfitting in Model-Based Reinforcement Learning”. In: CoRR abs/1812.01129 (Cited

in page 149).

Axler, S.J., H.H. Schaefer, M.P. Wol�, M.P.H. Wol�, F.W. Gehring, and K.A. Ribet

(1999). Topological Vector Spaces. Graduate Texts in Mathematics. Springer New

York (Cited in page 76).

Bagheri, Shervin (2013). “Koopman-mode decomposition of the cylinder wake”. In:

Journal of Fluid Mechanics 726. QC 20131125, pp. 596–623 (Cited in page 83).

Bahl, Srikhar, Mustafa Mukadam, Abhinav Gupta, and Deepak Pathak (2020). “Neural

dynamic policies for end-to-end sensory motor learning”. In: Advances in Neural

Information Processing Systems 34 (Cited in page 36).



188 References

Baird, Leemon C (1994). “Reinforcement learning in continuous time: Advantage up-

dating”. In: Proceedings of 1994 IEEE International Conference on Neural Networks

(ICNN’94). Vol. 4. IEEE, pp. 2448–2453 (Cited in page 36).

Baker, G.L. and J.A. Blackburn (2008). The Pendulum: A Case Study in Physics. OUP

Oxford (Cited in page 16).

Banach, Stefan (1922). “Sur les opérations dans les ensembles abstraits et leur application

aux équations intégrales”. fre. In: Fundamenta Mathematicae 3.1, pp. 133–181 (Cited

in page 124).

Barto, Andrew, Satinder Singh, and Nuttapong Chentanez (Jan. 2004). “Intrinsically

motivated learning of hierarchical collections of skills”. In: Proceedings of the 3rd

International Conference on Developmental Learning (Cited in page 126).

Barto, Andrew G., Richard S. Sutton, and Charles W. Anderson (1983). “Neuronlike

adaptive elements that can solve di�cult learning control problems”. In: IEEE

Transactions on Systems, Man, and Cybernetics SMC-13.5, pp. 834–846 (Cited in

page 148).

Baumeister, Johann (1987). Stable Solution of Inverse Problems. Advanced Lectures in

Mathematics. Vieweg+Teubner Verlag Wiesbaden, pp. VIII, 256 (Cited in page 65).

Bayes, Thomas (1763). “An essay towards solving a problem in the doctrine of chances”.

In: Philosophical Transactions of the Royal Society of London 53, pp. 370–418 (Cited

in page 92).

Bellman, Richard (1957). Dynamic Programming. Dover Publications (Cited in pages 108,

124).

— (1954). “The theory of dynamic programming”. In: Bulletin of the American Mathe-

matical Society 60.6, pp. 503 –515 (Cited in page 108).

Berger, Erik, Mark Sastuba, David Vogt, Bernhard Jung, and Heni Ben Amor (Mar. 2015).

“Estimation of perturbations in robotic behavior using dynamic mode decomposition”.

English (US). In: Advanced Robotics 29.5. Publisher Copyright: 2015 Taylor & Francis

and The Robotics Society of Japan., pp. 331–343 (Cited in page 59).

Berlinet, Alain and Christine Thomas-Agnan (2004). Reproducing Kernel Hilbert Spaces

in Probability and Statistics. Springer New York, pp. XXII, 355 (Cited in page 66).

Bertalan�y, Ludwig (1962). “General Systems”. In: General system year book 7-8 (Cited

in page 11).

Bertsekas, Dimitri P. (1987). Dynamic Programming: Deterministic and Stochastic Models.

USA: Prentice-Hall, Inc. (Cited in page 124).

Bertsekas, Dimitri P. and John N. Tsitsiklis (1989). Parallel and Distributed Computation:

Numerical Methods. USA: Prentice-Hall, Inc. (Cited in page 124).



References 189

Bhandari, Jalaj and Daniel Russo (Apr. 2021). “On the Linear Convergence of Policy

Gradient Methods for Finite MDPs”. In: Proceedings of The 24th International

Conference on Artificial Intelligence and Statistics. Ed. by Arindam Banerjee and Kenji

Fukumizu. Vol. 130. Proceedings of Machine Learning Research. PMLR, pp. 2386–

2394 (Cited in pages 120, 128).

Bhatia, Abhishek, Jaan Altosaar, and Shixiang Gu (2017). “Proximity-constrained rein-

forcement learning”. In: Advances in Neural Information Processing Systems (Cited in

page 140).

Bijl, Hildo, Jan-Willem van Wingerden, Thomas B Schön, and Michel Verhaegen (2016).

“Mean and variance of the LQG cost function”. In: Automatica 67, pp. 216–223 (Cited

in pages 37, 171).

Bintu, Lacramioara, Nicolas E Buchler, Hernan G Garcia, Ulrich Gerland, Terence Hwa,

Jané Kondev, and Rob Phillips (2005). “Transcriptional regulation by the numbers:

models”. In: Current Opinion in Genetics & Development 15.2. Chromosomes and

expression mechanisms, pp. 116–124 (Cited in page 100).

Bousquet, Olivier and André Elissee� (2002). “Stability and Generalization”. In: Journal

of Machine Learning Research 2.Mar, pp. 499–526 (Cited in page 73).

Bradtke, Steven (1992). “Reinforcement Learning Applied to Linear Quadratic Regu-

lation”. In: Advances in Neural Information Processing Systems. Ed. by S. Hanson,

J. Cowan, and C. Giles. Vol. 5. Morgan-Kaufmann (Cited in page 37).

Bradtke, Steven J. and Michael O. Du� (1994). “Reinforcement learning methods for

continuous-time Markov decision problems”. In: Advances in Neural Information

Processing Systems (Cited in page 36).

Breiman, Leo (1996). “Heuristics of instability and stabilization in model selection”. In:

The Annals of Statistics 24.6, pp. 2350 –2383 (Cited in page 73).

Breschi, V., A. Sassella, and S. Formentin (2022). “On the Design of Regularized Explicit

Predictive Controllers From Input-Output Data”. In: IEEE Transactions on Automatic

Control, pp. 1–7 (Cited in page 6).

Brockman, Greg, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie

Tang, and Wojciech Zaremba (2016). “Openai gym”. In: arXiv preprint arXiv:1606.01540

(Cited in pages 48, 49).

Brunton, Steven L., Bingni W. Brunton, Joshua L. Proctor, and J. Nathan Kutz (Feb.

2016). “Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear

Dynamical Systems for Control”. In: PLOS ONE 11.2, pp. 1–19 (Cited in page 116).



190 References

Brunton, Steven L. and J. Nathan Kutz (2019). Data-Driven Science and Engineering:

Machine Learning, Dynamical Systems, and Control. 1st. USA: Cambridge University

Press (Cited in page 17).

Brunton, Steven L., Joshua L. Proctor, and J. Nathan Kutz (2016). “Discovering governing

equations from data by sparse identification of nonlinear dynamical systems”. In:

Proceedings of the National Academy of Sciences 113.15, pp. 3932–3937 (Cited in

page 116).

BudiöiÊ, Marko, Ryan Mohr, and Igor MeziÊ (2012). “Applied Koopmanism”. In: Chaos:

An Interdisciplinary Journal of Nonlinear Science 22.4, p. 047510 (Cited in pages 58,

83).

Burda, Yuri, Harrison Edwards, Amos Storkey, and Oleg Klimov (Oct. 2018). “Ex-

ploration by Random Network Distillation”. In: arXiv e-prints, arXiv:1810.12894,

arXiv:1810.12894 (Cited in page 140).

Burnham, K.P. and D.R. Anderson (2002). Model selection and multimodel inference: a

practical information-theoretic approach. Springer Verlag (Cited in page 149).

Bátkai, András, Marjeta Fijavz, and Abdelaziz Rhandi (Jan. 2017). Positive Operator

Semigroups. Vol. 257. Birkhäuser (Cited in page 105).

Caccioppoli, Renato (1932). “Sugli elementi uniti delle trasformazioni funzionali: un

teorema di esistenza e di unicità ed alcune sue applicazioni”. it. In: Rendiconti del

Seminario Matematico della Università di Padova 3, pp. 1–15 (Cited in page 124).

Cao, Tongyi and Akshay Krishnamurthy (2020). “Provably adaptive reinforcement

learning in metric spaces”. In: Advances in Neural Information Processing Systems

34 (Cited in page 37).

Carli, Francesca Paola, Tianshi Chen, and Lennart Ljung (2017). “Maximum Entropy

Kernels for System Identification”. In: IEEE Transactions on Automatic Control 62.3,

pp. 1471–1477 (Cited in page 84).

Cerone, V., D. Regruto, and M. Abuabiah (2017). “Direct data-driven control design

through set-membership errors-in-variables identification techniques”. In: 2017 Amer-

ican Control Conference (ACC), pp. 388–393 (Cited in page 6).

Cesa-Bianchi, Nicolò, Yishay Mansour, and Ohad Shamir (July 2015). “On the Complexity

of Learning with Kernels”. In: Proceedings of The 28th Conference on Learning Theory.

Ed. by Peter Grünwald, Elad Hazan, and Satyen Kale. Vol. 40. Proceedings of Machine

Learning Research. Paris, France: PMLR, pp. 297–325 (Cited in page 102).

Chaloner, K. and I. Verdinelli (1995). “Bayesian experimental design: A review”. In:

Statistical Science 10.3, pp. 273–304 (Cited in page 37).



References 191

Chen, Kevin K., Jonathan H. Tu, and Clarence W. Rowley (2012). “Variants of Dynamic

Mode Decomposition: Boundary Condition, Koopman, and Fourier Analyses”. English.

In: Journal of Nonlinear Science 22.6. Communicated by P. Newton., pp. 887–915

(Cited in page 83).

Chen, Tianshi (2018). “On kernel design for regularized LTI system identification”. In:

Automatica 90, pp. 109–122 (Cited in page 84).

Chen, Tianshi, Martin Skovgaard Andersen, Lennart Ljung, Alessandro Chiuso, and

Gianluigi Pillonetto (2014). “System identification via sparse multiple kernel-based

regularization using sequential convex optimization techniques”. English. In: IEEE

Transactions on Automatic Control 59.11, pp. 2933–2945 (Cited in page 84).

Chen, Tianshi, Tohid Ardeshiri, Francesca P. Carli, Alessandro Chiuso, Lennart Ljung,

and Gianluigi Pillonetto (Apr. 2016). “Maximum Entropy Properties of Discrete-Time

First-Order Stable Spline Kernel”. In: Automatica 66.C, 34–38 (Cited in page 84).

Chen, Tianshi and Lennart Ljung (2015). “On kernel structures for regularized system

identification (I): a machine learning perspective”. In: IFAC-PapersOnLine 48.28.

17th IFAC Symposium on System Identification SYSID 2015, pp. 1035–1040 (Cited in

page 84).

Chiuso, A., T. Chen, L. Ljung, and G. Pillonetto (2014). “On the design of multiple

kernels for nonparametric linear system identification”. In: 53rd IEEE Conference on

Decision and Control, pp. 3346–3351 (Cited in page 84).

Coddington, A. and N. Levinson (1955). Theory of Ordinary Differential Equations.

International series in pure and applied mathematics. McGraw-Hill Companies (Cited

in page 133).

Das, Suddhasattwa and Dimitrios Giannakis (June 2019). “Delay-Coordinate Maps and

the Spectra of Koopman Operators”. In: Journal of Statistical Physics 175.6, pp. 1107–

1145 (Cited in page 86).

Das, Suddhasattwa and Dimitrios Giannakis (2020). “Koopman spectra in reproducing

kernel Hilbert spaces”. In: Applied and Computational Harmonic Analysis 49.2,

pp. 573–607 (Cited in page 86).

Dean, Sarah, Horia Mania, Nikolai Matni, Benjamin Recht, and Stephen Tu (Aug. 2020).

“On the Sample Complexity of the Linear Quadratic Regulator”. In: Foundations of

Computational Mathematics 20.4, pp. 633–679 (Cited in pages 37, 148, 149).

— (2018). “Regret bounds for robust adaptive control of the linear quadratic regulator”.

In: Advances in Neural Information Processing Systems 31 (Cited in page 37).

Degris, Thomas, Martha White, and Richard S. Sutton (2012). “O�-Policy Actor-Critic”.

In: Proceedings of the 29th International Coference on International Conference on



192 References

Machine Learning. ICML’12. Edinburgh, Scotland: Omnipress, 179–186 (Cited in

page 148).

Deisenroth, Marc Peter and Carl Edward Rasmussen (2011). “PILCO: A Model-Based and

Data-E�cient Approach to Policy Search”. In: Proceedings of the 28th International

Conference on International Conference on Machine Learning. ICML’11. Bellevue,

Washington, USA: Omnipress, 465–472 (Cited in page 149).

Dellnitz, Michael and Oliver Junge (2002). “Chapter 5 - Set Oriented Numerical Methods

for Dynamical Systems”. In: Handbook of Dynamical Systems. Ed. by Bernold Fiedler.

Vol. 2. Handbook of Dynamical Systems. Elsevier Science, pp. 221–264 (Cited in

page 19).

Dellnitz, Michael, Stefan Klus, and Adrian Ziessler (2017). “A Set-Oriented Numerical

Approach for Dynamical Systems with Parameter Uncertainty”. In: SIAM Journal

on Applied Dynamical Systems 16.1, pp. 120–138 (Cited in page 19).

Devidze, Rati, Goran Radanovic, Parameswaran Kamalaruban, and Adish Singla (2021).

“Explicable Reward Design for Reinforcement Learning Agents”. In: Advances in

Neural Information Processing Systems. Ed. by M. Ranzato, A. Beygelzimer, Y.

Dauphin, P.S. Liang, and J. Wortman Vaughan. Vol. 34. Curran Associates, Inc.,

pp. 20118–20131 (Cited in page 126).

Dill, K.A. and S. Bromberg (2011). Molecular Driving Forces: Statistical Thermodynamics

in Biology, Chemistry, Physics, and Nanoscience. Garland Science (Cited in page 100).

Dinuzzo, Francesco (2015). “Kernels for Linear Time Invariant System Identification”.

In: SIAM Journal on Control and Optimization 53.5, pp. 3299–3317 (Cited in page 84).

Doya, Kenji (2000). “Reinforcement learning in continuous time and space”. In: Neural

computation 12.1, pp. 219–245 (Cited in page 36).

Droge, Greg and Magnus Egerstedt (2011). “Adaptive time horizon optimization in model

predictive control”. In: Proceedings of the American Control Conference, pp. 1843–

1848 (Cited in page 36).

Du, Ding-Zhu, Panos M. Pardalos, and Weili Wu (2009). “History of optimizationHistory

of Optimization”. In: Encyclopedia of Optimization. Ed. by Christodoulos A. Floudas

and Panos M. Pardalos. Boston, MA: Springer US, pp. 1538–1542 (Cited in page 66).

Dunford, N., J.T. Schwartz, W.G. Bade, and R.G. Bartle (1958). Linear Operators:

General theory. Linear Operators. Interscience Publishers (Cited in page 67).

Einsiedler, M. and T. Ward (2017). Functional Analysis, Spectral Theory, and Applications.

Graduate Texts in Mathematics. Springer International Publishing (Cited in page 76).



References 193

Elissee�, Andre, Theodoros Evgeniou, and Massimiliano Pontil (Dec. 2005). “Stability

of Randomized Learning Algorithms”. In: Journal of Machine Learning Research 6,

55–79 (Cited in page 73).

Eschmann, Jonas (2021). “Reward Function Design in Reinforcement Learning”. In:

Reinforcement Learning Algorithms: Analysis and Applications. Ed. by Boris Belousov,

Hany Abdulsamad, Pascal Klink, Simone Parisi, and Jan Peters. Cham: Springer

International Publishing, pp. 25–33 (Cited in page 126).

Everitt, Brian (2002). The Cambridge dictionary of statistics. Cambridge, UK; New York:

Cambridge University Press (Cited in page 149).

Fazel, Maryam, Rong Ge, Sham Kakade, and Mehran Mesbahi (July 2018). “Global

Convergence of Policy Gradient Methods for the Linear Quadratic Regulator”. In:

Proceedings of the 35th International Conference on Machine Learning. Ed. by Jennifer

Dy and Andreas Krause. Vol. 80. Proceedings of Machine Learning Research. PMLR,

pp. 1467–1476 (Cited in pages 37, 120, 128).

Feinberg, Vladimir, Alvin Wan, Ion Stoica, Michael I. Jordan, Joseph E. Gonzalez,

and Sergey Levine (2018). “Model-Based Value Estimation for E�cient Model-Free

Reinforcement Learning”. In: CoRR abs/1803.00101 (Cited in page 6).

Formentin, S. (2012). Direct Data-driven Control System Design: Theory and Applications.

Advances in mechatronics. Trauner (Cited in page 6).

Fraenkel, A.A., Y. Bar-Hillel, and A. Levy (1973). Foundations of Set Theory. ISSN.

Elsevier Science (Cited in page 25).

Fréchet, M. (1907). “Sur les ensembles de fonctions et les opérations linéaires.” French.

In: C. R. Acad. Sci., Paris 144, pp. 1414–1416 (Cited in page 28).

Fukumizu, Kenji, Le Song, and Arthur Gretton (Dec. 2013). “Kernel Bayes’ Rule: Bayesian

Inference with Positive Definite Kernels”. In: Journal of Machine Learning Research

14.1, 3753–3783 (Cited in pages 78, 86).

Gard, T.C. and T.C. Gard (1988). Introduction to Stochastic Differential Equations.

Monographs and textbooks in pure and applied mathematics. M. Dekker (Cited in

page 31).

Gardner, Jacob R., Geo� Pleiss, David Bindel, Kilian Q. Weinberger, and Andrew Gordon

Wilson (2018). “GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with

GPU Acceleration”. In: CoRR abs/1809.11165 (Cited in page 159).

Gardner, Timothy S., Charles R. Cantor, and James J. Collins (Jan. 2000). “Construction

of a genetic toggle switch in Escherichia coli”. In: Nature 403.6767, pp. 339–342 (Cited

in page 100).



194 References

Gaskett, Chris, David Wettergreen, and Alexander Zelinsky (1999). “Q-Learning in

Continuous State and Action Spaces”. In: Advanced Topics in Artificial Intelligence.

Ed. by Norman Foo. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 417–428

(Cited in page 127).

Gaspard, Pierre (1998). Chaos, Scattering and Statistical Mechanics. Cambridge Nonlinear

Science Series. Cambridge University Press (Cited in page 18).

Georgiou, Tryphon T. and Anders Lindquist (2013). “The Separation Principle in Stochas-

tic Control, Redux”. In: IEEE Transactions on Automatic Control 58.10, pp. 2481–

2494 (Cited in page 37).

Giannakis, Dimitrios (2017). “Data-driven spectral decomposition and forecasting of

ergodic dynamical systems”. In: Applied and Computational Harmonic Analysis (Cited

in page 85).

Goldstine, H.H. (2012). A History of the Calculus of Variations from the 17th through the

19th Century. Studies in the History of Mathematics and Physical Sciences. Springer

New York (Cited in page 66).

Gowers, Timothy, June Barrow-Green, and Imre Leader, eds. (2010). The Princeton

Companion to Mathematics. Princeton: Princeton University Press (Cited in page 26).

Greensmith, Evan, Peter Bartlett, and Jonathan Baxter (2001). “Variance Reduction

Techniques for Gradient Estimates in Reinforcement Learning”. In: Advances in Neural

Information Processing Systems. Ed. by T. Dietterich, S. Becker, and Z. Ghahramani.

Vol. 14. MIT Press (Cited in page 127).

Griewank, Andreas and Andrea Walther (2008). “2. A Framework for Evaluating Func-

tions”. In: Evaluating Derivatives. Other Titles in Applied Mathematics. Society for

Industrial and Applied Mathematics, pp. xxi + 426 (Cited in page 141).

Gu, Shixiang, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine (2016). “Continuous

Deep Q-Learning with Model-Based Acceleration”. In: Proceedings of the 33rd Inter-

national Conference on International Conference on Machine Learning - Volume 48.

ICML’16. New York, NY, USA: JMLR.org, 2829–2838 (Cited in pages 6, 37).

Guého, Damien, Puneet Singla, and Manoranjan Majji (2021). “Time-Varying Koopman

Operator Theory for Nonlinear Systems Prediction”. In: 2021 60th IEEE Conference

on Decision and Control (CDC), pp. 2294–2299 (Cited in page 22).

Haaser, N.B. and J.A. Sullivan (1971). Real Analysis. The University series in mathematics.

Van Nostrand Reinhold Company (Cited in page 28).

Halmos, Paul R. (1950). Measure Theory. D. Van Nostrand Company, Inc., New York,

pp. xi+304 (Cited in page 28).



References 195

Hasselt, Hado van (2012). “Reinforcement Learning in Continuous State and Action

Spaces”. In: Reinforcement Learning. Ed. by Marco A. Wiering and Martijn van

Otterlo. Vol. 12. Adaptation, Learning, and Optimization. Springer, pp. 207–251

(Cited in page 127).

Hasselt, Hado van and Marco A. Wiering (2007). “Reinforcement Learning in Continuous

Action Spaces”. In: 2007 IEEE International Symposium on Approximate Dynamic

Programming and Reinforcement Learning, pp. 272–279 (Cited in page 127).

Hasselt, Hado Philip van (2011). “Insights in reinforcement rearning : formal analysis and

empirical evaluation of temporal-di�erence learning algorithms”. PhD thesis. Utrecht

University, Netherlands (Cited in page 148).

Hemati, Maziar S., Matthew O. Williams, and Clarence W. Rowley (2014). “Dynamic

mode decomposition for large and streaming datasets”. In: Physics of Fluids 26.11,

p. 111701 (Cited in page 83).

Hewitt, E. and K. Stromberg (1965). Real and Abstract Analysis. Springer (Cited in

page 28).

Hirsch, Morris W. and Stephen Smale (1974). Differential equations, dynamical systems,

and linear algebra. Pure and applied mathematics 60. San Diego: Academic Press. XI,

358 (Cited in page 106).

Houthooft, Rein, Xi Chen, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and

Pieter Abbeel (2016). “VIME: Variational Information Maximizing Exploration”. In:

Advances in Neural Information Processing Systems. Ed. by D. Lee, M. Sugiyama,

U. Luxburg, I. Guyon, and R. Garnett. Vol. 29. Curran Associates, Inc. (Cited in

page 140).

Howard, R. A. (1960). Dynamic Programming and Markov Processes. Cambridge, MA:

MIT Press (Cited in page 124).

Iacob, Lucian Cristian, Gerben Izaak Beintema, Maarten Schoukens, and Roland Tóth

(2021). “Deep Identification of Nonlinear Systems in Koopman Form”. In: 2021 60th

IEEE Conference on Decision and Control (CDC). Austin, TX, USA: IEEE Press,

2288–2293 (Cited in page 18).

Iacob, Lucian Cristian, Roland Tóth, and Maarten Schoukens (2022). Koopman Form of

Nonlinear Systems with Inputs (Cited in pages 114, 120).

Isidori, Alberto (1995). Nonlinear Control Systems, Third Edition. Communications and

Control Engineering. Springer (Cited in page 113).

Jaakkola, Tommi, Michael I. Jordan, and Satinder P. Singh (1993). “Convergence of

Stochastic Iterative Dynamic Programming Algorithms”. In: Proceedings of the 6th



196 References

International Conference on Neural Information Processing Systems. NIPS’93. Denver,

Colorado: Morgan Kaufmann Publishers Inc., 703–710 (Cited in page 148).

James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani (2013). An Intro-

duction to Statistical Learning: with Applications in R. Springer (Cited in page 52).

Jech, T.J. (2008). The Axiom of Choice. Dover Books on Mathematics Series. Dover

Publications (Cited in page 25).

Je�erys, William H. and James O. Berger (Aug. 1991). “Sharpening Ockham’s razor on

a Bayesian strop”. In: (Cited in page 73).

Jiang, Nan, Alex Kulesza, Satinder Singh, and Richard Lewis (2016). “The dependence

of e�ective planning horizon on model accuracy”. In: Proceedings of the International

Joint Conference on Artificial Intelligence (Cited in page 36).

John, George H. (1994). “When the Best Move Isn’t Optimal: Q-Learning with Ex-

ploration”. In: Proceedings of the Twelfth AAAI National Conference on Artificial

Intelligence. AAAI’94. Seattle, Washington: AAAI Press, p. 1464 (Cited in page 148).

Jonathan, Baxter and Bartlett Peter (1999). “Direct gradient-based reinforcement learn-

ing”. In: Journal of Artificial Intelligence Research (Cited in page 127).

Kaelbling, L. P., M. L. Littman, and A. W. Moore (1996). “Reinforcement learning:

A survey”. In: Journal of Artificial Intelligence Research 4, pp. 237–285 (Cited in

pages 122, 124).

Kakade, Sham M (2001). “A Natural Policy Gradient”. In: Advances in Neural Information

Processing Systems. Ed. by T. Dietterich, S. Becker, and Z. Ghahramani. Vol. 14.

MIT Press (Cited in page 127).

Kakade, Sham M. and Jason D. Lee (2018). “Provably Correct Automatic Subdi�erentia-

tion for Qualified Programs”. In: Proceedings of the 32nd International Conference

on Neural Information Processing Systems. NIPS’18. Montréal, Canada: Curran

Associates Inc., 7125–7135 (Cited in page 141).

Kallenberg, Olav (2002). Foundations of modern probability. Second. Probability and its

Applications (New York). Springer-Verlag, New York, pp. xx+638 (Cited in page 31).

Kamien, Morton I and Nancy L Schwartz (1971). “Su�cient conditions in optimal control

theory”. In: Journal of Economic Theory 3.2, pp. 207–214 (Cited in page 107).

Kawahara, Yoshinobu (2016). “Dynamic Mode Decomposition with Reproducing Kernels

for Koopman Spectral Analysis”. In: Advances in Neural Information Processing

Systems. Ed. by D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett. Vol. 29.

Curran Associates, Inc. (Cited in page 85).

Khalil, H.K. (2002). Nonlinear Systems. Pearson Education. Prentice Hall (Cited in

page 113).



References 197

Kim, Jeongho, Jaeuk Shin, and Insoon Yang (2021). “Hamilton-Jacobi Deep Q-learning

for deterministic continuous-time systems with Lipschitz continuous controls”. In:

Journal of Machine Learning Research 22 (Cited in page 36).

Kirk, D.E. (2004). Optimal Control Theory: An Introduction. Dover Books on Electrical

Engineering Series. Dover Publications (Cited in pages 107, 108).

Klus, Stefan, Feliks Nüske, Sebastian Peitz, Jan-Hendrik Niemann, Cecilia Clementi,

and Christof Schütte (2020). “Data-driven approximation of the Koopman genera-

tor: Model reduction, system identification, and control”. In: Physica D: Nonlinear

Phenomena 406.132416 (Cited in page 32).

Klus, Stefan, Ingmar Schuster, and Krikamol Muandet (2020). “Eigendecompositions of

Transfer Operators in Reproducing Kernel Hilbert Spaces”. In: Journal of Nonlinear

Science 30.1, pp. 283–315 (Cited in page 86).

Kober, Jens, J. Andrew Bagnell, and Jan Peters (2013). “Reinforcement Learning in

Robotics: A Survey”. In: International Journal of Robotics Research 32.11, pp. 1238–

1274 (Cited in page 4).

Koopman, B. O. (1931). “Hamiltonian Systems and Transformation in Hilbert Space”. In:

Proceedings of the National Academy of Sciences 17.5, pp. 315–318 (Cited in pages 7,

18).

Korda, Milan and Igor MeziÊ (2018). “On Convergence of Extended Dynamic Mode

Decomposition to the Koopman Operator”. In: Journal of Nonlinear Science 28,

pp. 687–710 (Cited in page 58).

Korda, Milan and Igor MeziÊ (2018). “Linear predictors for nonlinear dynamical systems:

Koopman operator meets model predictive control”. In: Automatica 93, pp. 149–160

(Cited in pages 111, 132).

Krauth, Karl, Stephen Tu, and Benjamin Recht (2019). “Finite-time Analysis of Approx-

imate Policy Iteration for the Linear Quadratic Regulator”. In: Advances in Neural

Information Processing Systems 32, pp. 8514–8524 (Cited in page 37).

Kress, Rainer (1989). “Tikhonov Regularization”. In: Linear Integral Equations. Berlin,

Heidelberg: Springer Berlin Heidelberg, pp. 243–258 (Cited in page 71).

Kurebayashi, Wataru, Sho Shirasaka, and Hiroya Nakao (Nov. 2016). “Optimal Param-

eter Selection for Kernel Dynamic Mode Decomposition”. In: Proceedings of The

International Symposium on Nonlinear Theory and Its Applications. Vol. 370. NOLTA,

pp. 370–373 (Cited in page 85).

Kusse Bruce, R. and A. Westwig Erik (2006). “Solutions to Laplace’s Equation”. In:

Mathematical Physics. John Wiley & Sons, Ltd. Chap. 11, pp. 424–490 (Cited in

page 26).



198 References

Kwakernaak, Huibert and Raphael Sivan (1972). Linear Optimal Control Systems. John

Wiley & amp; Sons, Inc. (Cited in page 112).

Kühner, Viktoria (2019). “What can Koopmanism do for attractors in dynamical systems?”

In: Journal of Analysis 29.2, 449–471 (Cited in page 105).

Lamprecht, Ingolf and A. I. Zotin, eds. (2019). Thermodynamics and Regulation of

Biological Processes. Berlin, Boston: De Gruyter (Cited in page 100).

Lan, Yueheng and Igor MeziÊ (2013). “Linearization in the large of nonlinear systems and

Koopman operator spectrum”. In: Physica D: Nonlinear Phenomena 242, pp. 42–53

(Cited in page 105).

Lancaster, Peter and L Rodman (1995). The Algebraic Riccati Equation. Oxford University

Press (Cited in page 113).

Lasota, A. and M.C. Mackey (2013). Chaos, Fractals, and Noise: Stochastic Aspects of

Dynamics. Applied Mathematical Sciences. Springer New York (Cited in page 105).

Lazaric, Alessandro, Marcello Restelli, and Andrea Bonarini (2007). “Reinforcement

Learning in Continuous Action Spaces through Sequential Monte Carlo Methods”.

In: Advances in Neural Information Processing Systems. Ed. by J. Platt, D. Koller,

Y. Singer, and S. Roweis. Vol. 20. Curran Associates, Inc. (Cited in page 127).

Le Ngo, Anh Cat, John See, and Raphael C.-W. Phan (2017). “Sparsity in Dynamics of

Spontaneous Subtle Emotions: Analysis and Application”. In: IEEE Transactions on

Affective Computing 8.3, pp. 396–411 (Cited in page 59).

Lee, E.B., L. Markus, Karreman Mathematics Research Collection, Society for Industrial,

and Applied Mathematics (1967). Foundations of Optimal Control Theory. SIAM

series in applied mathematics. Wiley (Cited in page 107).

Lee, Jaeyoung and Richard S. Sutton (2021). “Policy iterations for reinforcement learning

problems in continuous time and space — Fundamental theory and methods”. In:

Automatica 126 (Cited in page 36).

Lefschetz, Solomon (1963). Differential equations: Geometric theory. Second edition. Pure

and Applied Mathematics, Vol. VI. Interscience Publishers, a division of John Wiley

& Sons, New York - London, pp. x+390 (Cited in page 106).

Lele, Sanjiva K. and Joseph W. Nichols (2014). “A second golden age of aeroacoustics?”

In: Philosophical Transactions of the Royal Society A: Mathematical, Physical and

Engineering Sciences 372.2022, p. 20130321 (Cited in page 59).

Lemons, D.S., P. Langevin, and A. Gythiel (2002). An Introduction to Stochastic Processes

in Physics. Johns Hopkins Paperback. Johns Hopkins University Press (Cited in

page 155).



References 199

Lewis, Frank L., Draguna Vrabie, and Kyriakos G. Vamvoudakis (2012). “Reinforcement

Learning and Feedback Control: Using Natural Decision Methods to Design Optimal

Adaptive Controllers”. In: IEEE Control Systems Magazine 32.6, pp. 76–105 (Cited in

page 36).

Li, Weiwei and Emanuel Todorov (Oct. 26, 2004). “Iterative Linear Quadratic Regulator

Design for Nonlinear Biological Movement Systems.” In: ICINCO (1). Ed. by Helder

Araújo, Alves Vieira, José Braz, Bruno Encarnação, and Marina Carvalho. INSTICC

Press, pp. 222–229 (Cited in page 148).

Lindquist, Anders (1990). “Linear Stochastic Systems (Peter E. Caines)”. In: SIAM

Review 32.2, pp. 325–328 (Cited in page 36).

Liu, Han, Kathryn Roeder, and Larry Wasserman (2010). “Stability Approach to Regu-

larization Selection (StARS) for High Dimensional Graphical Models”. In: Proceedings

of the 23rd International Conference on Neural Information Processing Systems -

Volume 2. NIPS’10. Vancouver, British Columbia, Canada: Curran Associates Inc.,

1432–1440 (Cited in page 73).

Ljung, L. (1999). System Identification: Theory for the User. Prentice Hall information

and system sciences series. Prentice Hall PTR (Cited in page 52).

Luketina, Jelena, Nantas Nardelli, Gregory Farquhar, Jakob Foerster, Jacob Andreas,

Edward Grefenstette, Shimon Whiteson, and Tim Rocktäschel (July 2019). “A Survey

of Reinforcement Learning Informed by Natural Language”. In: Proceedings of the

Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19.

International Joint Conferences on Artificial Intelligence Organization, pp. 6309–6317

(Cited in page 4).

Lutter, Michael, Shie Mannor, Jan Peters, Dieter Fox, and Animesh Garg (2021). “Value

iteration in continuous actions, states and time”. In: Proceedings of the International

Conference on Machine Learning (Cited in page 36).

Mangasarian, O. L. (1966). “Su�cient Conditions for the Optimal Control of Nonlinear

Systems”. In: SIAM Journal on Control 4.1, pp. 139–152 (Cited in page 107).

Mann, Jordan and J. Nathan Kutz (2016). “Dynamic mode decomposition for financial

trading strategies”. In: Quantitative Finance 16.11, pp. 1643–1655 (Cited in page 59).

Marconato, Anna, Maarten Schoukens, and Johan Schoukens (Oct. 2016). “Filter-based

regularisation for impulse response modelling”. In: IET Control Theory & Applications

11 (Cited in page 84).

Mauroy, Alexander and Igor MeziÊ (2012). “On the use of Fourier averages to compute

the global isochrons of (quasi)periodic dynamics”. In: Chaos: An Interdisciplinary

Journal of Nonlinear Science 22.3, p. 033112 (Cited in page 105).



200 References

Mauroy, Alexandre (2021). “Koopman Operator Framework for Spectral Analysis and

Identification of Infinite-Dimensional Systems”. In: Mathematics 9.19 (Cited in page 7).

Mauroy, Alexandre and Jorge M. Gonçalves (2020). “Koopman-Based Lifting Techniques

for Nonlinear Systems Identification”. In: IEEE Transactions on Automatic Control

65.6, pp. 2550–2565 (Cited in pages 53, 60, 61, 63, 84, 90, 99).

Mauroy, Alexandre and Igor MeziÊ (2016). “Global Stability Analysis Using the Eigen-

functions of the Koopman Operator”. In: IEEE Transactions on Automatic Control

61.11, pp. 3356–3369 (Cited in page 105).

Mauroy, Alexandre, Igor MeziÊ, and Je� Moehlis (2013). “Isostables, isochrons, and

Koopman spectrum for the action-angle representation of stable fixed point dynamics”.

In: Physica D: Nonlinear Phenomena 261, pp. 19–30 (Cited in page 105).

Mauroy, Alexandre, Igor MeziÊ, and Susuki Yoshihiko, eds. (2020). The Koopman Operator

in Systems and Control: Concepts, Methodologies, and Applications. Springer Cham,

pp. XXIII, 556 (Cited in pages 7, 15, 18–20, 26, 30, 51, 109, 110).

Mauroy, Alexandre and Aivar Sootla (Dec. 2017). “Geometric properties of isostables

and basins of attraction of monotone systems”. English. In: IEEE Transactions on

Automatic Control 62.12, pp. 6183–6194 (Cited in page 105).

McShane, E. J. (1989). “The Calculus of Variations from the Beginning Through Optimal

Control Theory”. In: SIAM Journal on Control and Optimization 27.5, pp. 916–939

(Cited in page 107).

Meinshausen, Nicolai and Peter Bühlmann (2010). “Stability Selection”. In: Journal of

the Royal Statistical Society, Series B 72, pp. 417–473 (Cited in page 72).

Mendelson, Shahar and Joseph Neeman (2010). “Regularization in kernel learning”. en.

In: Ann. Statist. 38.1, pp. 526–565 (Cited in page 67).

MeziÊ, Igor (2013). “Analysis of Fluid Flows via Spectral Properties of the Koopman

Operator”. In: Annual Review of Fluid Mechanics 45.1, pp. 357–378 (Cited in pages 58,

83).

— (Aug. 2005). “Spectral Properties of Dynamical Systems, Model Reduction and

Decompositions”. In: Nonlinear Dynamics 41, pp. 309–325 (Cited in pages 58, 105).

MeziÊ, Igor (2015). “On applications of the spectral theory of the Koopman operator in

dynamical systems and control theory”. In: 2015 54th IEEE Conference on Decision

and Control (CDC), pp. 7034–7041 (Cited in page 105).

— (2020). “Spectrum of the Koopman Operator, Spectral Expansions in Functional

Spaces, and State-Space Geometry”. In: Journal of Nonlinear Science 30.5, pp. 2091–

2145 (Cited in page 7).



References 201

MeziÊ, Igor and Andrzej Banaszuk (2004). “Comparison of systems with complex be-

havior”. In: Physica D: Nonlinear Phenomena 197, pp. 101–133 (Cited in pages 18, 59,

105).

MeziÊ, Igor and Stephen Wiggins (1999). “A method for visualization of invariant sets of

dynamical systems based on the ergodic partition”. In: Chaos: An Interdisciplinary

Journal of Nonlinear Science 9.1, pp. 213–218 (Cited in page 105).

Mishura, Yu, S Posashkova, and S Posashkov (2011). “Continuous dependence of solutions

of stochastic di�erential equations driven by standard and fractional Brownian motion

on a parameter”. In: Theory of Probability and Mathematical Statistics 83, pp. 111–126

(Cited in page 133).

Mohr, Ryan and Igor Mezi’c (2014). “Construction of eigenfunctions for scalar-type

operators via Laplace averages with connections to the Koopman operator”. In: arXiv:

Spectral Theory (Cited in page 59).

Montazeri, Hesam, Sajjad Moradi, and Reza Safabakhsh (2011). “Continuous state/action

reinforcement learning: A growing self-organizing map approach”. In: Neurocomputing

74.7, pp. 1069–1082 (Cited in page 127).

Moore, G.H. (2012). Zermelo’s Axiom of Choice: Its Origins, Development, and Influence.

Dover books on mathematics. Dover Publications (Cited in page 67).

Müller, David, Andreas Otto, and Günter Radons (June 2017). “From dynamical systems

with time-varying delay to circle maps and Koopman operators”. In: Physical Review

E 95 (6), p. 062214 (Cited in page 22).

Munos, Rémi (2006). “Policy gradient in continuous time”. In: Journal of Machine

Learning Research 7 (Cited in page 36).

Munos, Rémi and Paul Bourgine (1997). “Reinforcement learning for continuous stochastic

control problems”. In: Advances in neural information processing systems 10 (Cited in

page 36).

Narici, L. and E. Beckenstein (2010). Topological Vector Spaces. Chapman & Hall/CRC

Pure and Applied Mathematics. CRC Press (Cited in pages 24, 68).

Ng, Andrew Y. and Michael Jordan (2000). “PEGASUS: A Policy Search Method for Large

MDPs and POMDPs”. In: Proceedings of the Sixteenth Conference on Uncertainty in

Artificial Intelligence. UAI’00. Stanford, California: Morgan Kaufmann Publishers

Inc., 406–415 (Cited in page 127).

Nikod˝m, Otton Martin (1930). “Sur une généralisation des intégrales de M. J. Radon”.

In: Fundamenta Mathematicae 15, pp. 131–179 (Cited in page 28).

Oppenheim, A.V., A.S. Willsky, and I.T. Young (1983). Signals and Systems. Prentice-

Hall signal processing series. Prentice-Hall (Cited in page 65).



202 References

Osband, Ian, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy (2016). “Deep

Exploration via Bootstrapped DQN”. In: Advances in Neural Information Processing

Systems. Ed. by D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett. Vol. 29.

Curran Associates, Inc. (Cited in page 140).

Pavliotis, G.A. (2014). Stochastic Processes and Applications: Diffusion Processes, the

Fokker-Planck and Langevin Equations. Texts in Applied Mathematics. Springer -

New York (Cited in pages 30, 55).

Phillips, Rob, Jane Kondev, and Julie Theriot (Nov. 2008). Physical Biology of the Cell.

New York: Garland Science, Taylor & Francis Group (Cited in page 100).

Piga, Dario, Simone Formentin, and Alberto Bemporad (2018). “Direct Data-Driven Con-

trol of Constrained Systems”. In: IEEE Transactions on Control Systems Technology

26.4, pp. 1422–1429 (Cited in page 6).

Pillonetto, G., A. Chiuso, and G. De Nicolao (Feb. 2011). “Prediction error identification

of linear systems: a nonparametric Gaussian regression approach”. In: Automatica 47,

pp. 291–305 (Cited in page 84).

Pontryagin, L.S., V.G. Boltyanskii, R.V. Gamkrelidze, E.F. Mishchenko, and D.E. Brown

(1962). The Mathematical Theory of Optimal Processes. International series of mono-

graphs in pure and applied mathematics. Wiley - New York (Cited in page 107).

Proctor, Joshua L., Steven L. Brunton, and J. Nathan Kutz (2016). “Dynamic Mode

Decomposition with Control”. In: SIAM Journal on Applied Dynamical Systems 15.1,

pp. 142–161 (Cited in pages 117, 118).

— (2018). “Generalizing Koopman Theory to Allow for Inputs and Control”. In: SIAM

Journal on Applied Dynamical Systems 17.1, pp. 909–930 (Cited in pages 109, 111, 118).

Prugove�ki, E. (1971). Quantum Mechanics in Hilbert Space. Pure and applied mathe-

matics : a series of monographs and textbooks. Academic Press (Cited in page 67).

Puterman, Martin L. and Moon Chirl Shin (1978). “Modified Policy Iteration Algorithms

for Discounted Markov Decision Problems”. In: Management Science 24.11, pp. 1127–

1137 (Cited in page 124).

Racanière, Sébastien et al. (2017). “Imagination-Augmented Agents for Deep Reinforce-

ment Learning”. In: Proceedings of the 31st International Conference on Neural

Information Processing Systems. NIPS’17. Long Beach, California, USA: Curran

Associates Inc., 5694–5705 (Cited in page 6).

Rantzer, Anders (2001). “A dual to Lyapunov’s stability theorem”. In: Systems & Control

Letters 42.3, pp. 161–168 (Cited in page 105).



References 203

Rasmussen, Carl Edward and Christopher K. I. Williams (2006). Gaussian processes for

machine learning. Adaptive computation and machine learning. MIT Press, pp. I–

XVIII, 1–248 (Cited in pages 86, 92, 93, 152).

Recht, Benjamin (2018). “A Tour of Reinforcement Learning: The View from Continuous

Control.” In: CoRR abs/1806.09460 (Cited in pages 121, 147).

Reid, W.T. (1972). Riccati Differential Equations. Mathematics in science and engineering:

a series of monographs and textbooks. Academic Press (Cited in page 113).

Renardy, M. and R.C. Rogers (2004). An Introduction to Partial Differential Equations.

Texts in Applied Mathematics. Springer - New York (Cited in page 26).

Riesz, F. (1907). “Sur une espèce de géométrie analytique des systèmes de fonctions

sommables.” French. In: C. R. Acad. Sci., Paris 144, pp. 1409–1411 (Cited in page 28).

Rowley, Clarence W., Igor MeziÊ, Shervin Bagheri, Philipp Schlatter, and Dan S. Hen-

ningson (2009). “Spectral analysis of nonlinear flows”. In: Journal of Fluid Mechanics

641, 115–127 (Cited in pages 59, 83).

Royden, H.L. and R.H. L (1988). Real Analysis. Mathematics and statistics. Macmillan

(Cited in page 26).

Rudin, Walter (1953). Principles of mathematical analysis. McGraw-Hill Book Company,

Inc., New York-Toronto-London, pp. ix+227 (Cited in page 124).

— (1987). Real and Complex Analysis, 3rd Ed. USA: McGraw-Hill, Inc. (Cited in page 67).

Rummery, G. A. and M. Niranjan (1994). On-Line Q-Learning Using Connectionist

Systems. Tech. rep. TR 166. Cambridge, England: Cambridge University Engineering

Department (Cited in page 148).

Ryan, Richard M. and Edward L. Deci (2000). “Intrinsic and Extrinsic Motivations:

Classic Definitions and New Directions”. In: Contemporary Educational Psychology

25.1, pp. 54–67 (Cited in page 126).

Sabatier, P.C. (1987). “A FEW GEOMETRICAL FEATURES OF INVERSE AND

ILL-POSED PROBLEMS”. In: Inverse and Ill-Posed Problems. Ed. by Heinz W. Engl

and C.W. Groetsch. Academic Press, pp. 1–18 (Cited in page 65).

Schaefer, H. H. (1966). Topological Vector Spaces. Macmillan New York (Cited in page 29).

Schechter, E. (1996). Handbook of Analysis and Its Foundations. Elsevier Science (Cited

in page 69).

Schmelzer, Bernhard (2010). “On solutions of stochastic di�erential equations with

parameters modeled by random sets”. In: International Journal of Approximate

Reasoning 51.9. Imprecise probability in statistical inference and decision making,

pp. 1159–1171 (Cited in page 133).



204 References

Schmidhuber, J. (1991). “Curious model-building control systems”. In: [Proceedings] 1991

IEEE International Joint Conference on Neural Networks, 1458–1463 vol.2 (Cited in

page 126).

Schölkopf, Bernhard, Ralf Herbrich, and Alex J. Smola (2001). “A Generalized Representer

Theorem”. In: Proceedings of the 14th Annual Conference on Computational Learning

Theory and and 5th European Conference on Computational Learning Theory. COLT

’01/EuroCOLT ’01. Berlin, Heidelberg: Springer-Verlag, 416–426 (Cited in pages 66, 69,

70, 86).

Schölkopf, Bernhard, Patrice Simard, Alex Smola, and Vladimir Vapnik (1997). “Prior

Knowledge in Support Vector Kernels”. In: Advances in Neural Information Processing

Systems. Ed. by M. Jordan, M. Kearns, and S. Solla. Vol. 10. MIT Press (Cited in

page 73).

Schrittwieser, Julian et al. (Dec. 2020). “Mastering Atari, Go, chess and shogi by planning

with a learned model”. In: Nature 588.7839, pp. 604–609 (Cited in pages 6, 148).

Schulman, John, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz (July

2015). “Trust Region Policy Optimization”. In: Proceedings of the 32nd International

Conference on Machine Learning. Ed. by Francis Bach and David Blei. Vol. 37.

Proceedings of Machine Learning Research. Lille, France: PMLR, pp. 1889–1897

(Cited in page 140).

Schulman, John, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov (2017).

“Proximal Policy Optimization Algorithms.” In: CoRR abs/1707.06347 (Cited in

page 140).

Seijen, Harm van, Hado van Hasselt, Shimon Whiteson, and Marco Wiering (2009). “A

theoretical and empirical analysis of Expected Sarsa”. In: 2009 IEEE Symposium on

Adaptive Dynamic Programming and Reinforcement Learning, pp. 177–184 (Cited in

page 148).

Selvi, Daniela, Dario Piga, Giorgio Battistelli, and Alberto Bemporad (2021). “Optimal

direct data-driven control with stability guarantees”. In: Eur. J. Control 59, pp. 175–

187 (Cited in page 6).

Shah, Rajen D. and Richard J. Samworth (Jan. 2013). “Variable selection with error

control: another look at stability selection”. In: Journal of the Royal Statistical Society

- Series B 75.1, pp. 55–80 (Cited in page 73).

Shalev-Shwartz, Shai and Shai Ben-David (2014). Understanding Machine Learning -

From Theory to Algorithms. Cambridge University Press, pp. I–XVI, 1–397 (Cited in

pages 85, 117, 149).



References 205

Silver, David, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin

Riedmiller (June 2014). “Deterministic Policy Gradient Algorithms”. In: Proceedings

of the 31st International Conference on Machine Learning. Ed. by Eric P. Xing and

Tony Jebara. Vol. 32. Proceedings of Machine Learning Research 1. Bejing, China:

PMLR, pp. 387–395 (Cited in page 127).

Silver, David et al. (Jan. 2016). “Mastering the game of Go with deep neural networks

and tree search”. In: Nature 529.7587, pp. 484–489 (Cited in page 4).

Sinclair, Sean R., Siddhartha Banerjee, and Christina Lee Yu (2019). “Adaptive dis-

cretization for episodic reinforcement learning in metric spaces”. In: Proceedings of

the ACM Conference on Measurement and Analysis of Computing Systems (Cited in

page 37).

Singh, Satinder, Tommi Jaakkola, Michael L. Littman, and Csaba Szepesvári (Mar. 2000).

“Convergence Results for Single-Step On-Policy Reinforcement-Learning Algorithms”.

In: Machine Learning 38.3, pp. 287–308 (Cited in page 148).

Söderström, T. and P. Stoica (1988). System Identification. USA: Prentice-Hall, Inc.

(Cited in page 52).

Sootla, Aivar and Alexandre Mauroy (2017). “Geometric Properties of Isostables and

Basins of Attraction of Monotone Systems”. In: IEEE Transactions on Automatic

Control 62.12, pp. 6183–6194 (Cited in page 105).

Stadie, Bradly C., Sergey Levine, and Pieter Abbeel (2015). “Incentivizing Exploration

In Reinforcement Learning With Deep Predictive Models”. In: CoRR abs/1507.00814

(Cited in page 140).

Stodden, V., F. Leisch, and R.D. Peng (2014). Implementing Reproducible Research.

Chapman & Hall/CRC The R Series. Taylor & Francis (Cited in page 72).

Strogatz, Steven H. (2000). Nonlinear Dynamics and Chaos: With Applications to Physics,

Biology, Chemistry and Engineering. Westview Press (Cited in page 15).

Sun, Wei (2015). “Stability of machine learning algorithms”. PhD thesis. Purdue Univer-

sity (Cited in page 72).

Sun, Wei, Junhui Wang, and Yixin Fang (2013). “Consistent Selection of Tuning Pa-

rameters via Variable Selection Stability”. In: Journal of Machine Learning Research

14.107, pp. 3419–3440 (Cited in page 73).

Sun, Yue and Maryam Fazel (2021). “Learning Optimal Controllers by Policy Gradient:

Global Optimality via Convex Parameterization”. In: 2021 60th IEEE Conference

on Decision and Control (CDC). Austin, TX, USA: IEEE Press, 4576–4581 (Cited in

pages 120, 128).



206 References

Susuki, Yoshihiko and Igor MeziÊ (2014). “Nonlinear Koopman modes and power sys-

tem stability assessment without models”. In: 2014 IEEE PES General Meeting |

Conference & Exposition, pp. 1–1 (Cited in page 105).

Sutton, Richard S (1995). “Generalization in Reinforcement Learning: Successful Examples

Using Sparse Coarse Coding”. In: Advances in Neural Information Processing Systems.

Ed. by D. Touretzky, M.C. Mozer, and M. Hasselmo. Vol. 8. MIT Press (Cited in

page 148).

Sutton, Richard S. and Andrew G. Barto (2018). Reinforcement Learning: An Introduction.

Second. The MIT Press (Cited in pages 4, 5, 121, 124, 126, 127, 147).

Sutton, Richard S, David McAllester, Satinder Singh, and Yishay Mansour (1999). “Policy

Gradient Methods for Reinforcement Learning with Function Approximation”. In:

Advances in Neural Information Processing Systems. Ed. by S. Solla, T. Leen, and

K. Müller. Vol. 12. MIT Press (Cited in pages 127, 138).

Sutton, Richard Stuart (1984). “Temporal Credit Assignment in Reinforcement Learning”.

AAI8410337. PhD thesis (Cited in page 148).

Szepesvári, Csaba (2010). Algorithms for Reinforcement Learning. Synthesis Lectures on

Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers (Cited in

page 122).

Taira, Kunihiko, Steven L. Brunton, Scott T. M. Dawson, Clarence W. Rowley, Tim

Colonius, Beverley J. McKeon, Oliver T. Schmidt, Stanislav Gordeyev, Vassilios

Theofilis, and Lawrence S. Ukeiley (2017). “Modal Analysis of Fluid Flows: An

Overview”. In: AIAA Journal 55.12, pp. 4013–4041 (Cited in page 83).

Takeishi, Naoya (Nov. 2019). “Kernel Learning for Data-Driven Spectral Analysis of

Koopman Operators”. In: Proceedings of The Eleventh Asian Conference on Machine

Learning. Ed. by Wee Sun Lee and Taiji Suzuki. Vol. 101. Proceedings of Machine

Learning Research. PMLR, pp. 956–971 (Cited in page 85).

Tallec, Corentin, Léonard Blier, and Yann Ollivier (2019a). “Making Deep Q-learning

methods robust to time discretization”. In: International Conference on Machine

Learning (ICML). 97, pp. 6096–6104 (Cited in page 36).

— (2019b). “Making Deep Q-learning methods robust to time discretization”. In: In-

ternational Conference on Machine Learning (ICML). 97, pp. 6096–6104 (Cited in

page 49).

Tang, Haoran, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan Duan, John

Schulman, Filip De Turck, and Pieter Abbeel (2017). “#Exploration: A Study of

Count-Based Exploration for Deep Reinforcement Learning”. In: Advances in Neural

Information Processing Systems 30: Annual Conference on Neural Information Pro-



References 207

cessing Systems 2017, December 4-9, 2017, Long Beach, CA, USA. Ed. by Isabelle

Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N.

Vishwanathan, and Roman Garnett, pp. 2753–2762 (Cited in page 140).

Theodoridis, Sergios and Konstantinos Koutroumbas (2009). Pattern Recognition, Fourth

Edition. Academic Press (Cited in page 85).

Tibshirani, Robert (1996). “Regression Shrinkage and Selection via the Lasso”. In: Journal

of the Royal Statistical Society (Series B) 58, pp. 267–288 (Cited in page 117).

— (1997). “The lasso Method for Variable Selection in the Cox Model”. In: Statistics in

Medicine 16.4, pp. 385–395 (Cited in page 117).

Todorov, Emanuel, Tom Erez, and Yuval Tassa (2012). “Mujoco: A physics engine for

model-based control”. In: 2012 IEEE/RSJ international conference on intelligent

robots and systems. IEEE, pp. 5026–5033 (Cited in pages 48, 49).

Tsitsiklis, John N. (Sept. 1994). “Asynchronous Stochastic Approximation and Q-

Learning”. In: Journal of Machine Learning Research 16.3, 185–202 (Cited in page 148).

Tu, Jonathan H., Clarence W. Rowley, Dirk M. Luchtenburg, Steven L. Brunton, and

J. Nathan Kutz (2014). “On dynamic mode decomposition: Theory and applications”.

In: Journal of Computational Dynamics 1.2, pp. 391–421 (Cited in pages 7, 51, 59, 61,

84).

Tu, Stephen and Benjamin Recht (2018). “Least-squares temporal di�erence learning for

the linear quadratic regulator”. In: International Conference on Machine Learning.

PMLR, pp. 5005–5014 (Cited in page 37).

— (June 2019a). “The Gap Between Model-Based and Model-Free Methods on the Linear

Quadratic Regulator: An Asymptotic Viewpoint”. In: Proceedings of the Thirty-Second

Conference on Learning Theory. Ed. by Alina Beygelzimer and Daniel Hsu. Vol. 99.

Proceedings of Machine Learning Research. PMLR, pp. 3036–3083 (Cited in pages 5,

37, 148).

— (June 2019b). “The Gap Between Model-Based and Model-Free Methods on the Linear

Quadratic Regulator: An Asymptotic Viewpoint”. In: Proceedings of the Thirty-Second

Conference on Learning Theory. Ed. by Alina Beygelzimer and Daniel Hsu. Vol. 99.

Proceedings of Machine Learning Research. PMLR, pp. 3036–3083 (Cited in page 148).

Vaidya, Umesh and Prashant G. Mehta (2008). “Lyapunov Measure for Almost Every-

where Stability”. In: IEEE Transactions on Automatic Control 53.1, pp. 307–323

(Cited in page 105).

Veillard, Antoine, Daniel Racoceanu, and Stephane Bressan (2011). “Incorporating Prior-

Knowledge in Support Vector Machines by Kernel Adaptation”. In: 2011 IEEE 23rd



208 References

International Conference on Tools with Artificial Intelligence, pp. 591–596 (Cited in

page 73).

Vogel, Curtis R. (1987). “An Overview of Numerical Methods for Nonlinear Ill-Posed

Problems”. In: Inverse and Ill-Posed Problems. Ed. by Heinz W. Engl and C.W.

Groetsch. Academic Press, pp. 231–245 (Cited in page 65).

Wahba, Grace (2003). “An introduction to reproducing kernel hilbert spaces and why

they are so useful”. In: IFAC Proceedings Volumes 36.16. 13th IFAC Symposium on

System Identification (SYSID 2003), Rotterdam, The Netherlands, 27-29 August,

2003, pp. 525–528 (Cited in page 9).

— (1983). “Bayesian "Confidence Intervals" for the Cross-Validated Smoothing Spline”.

In: Journal of the Royal Statistical Society. Series B (Methodological) 45.1, pp. 133–

150 (Cited in page 11).

Wang, Haoran, Thaleia Zariphopoulou, and Xun Yu Zhou (2020). “Reinforcement Learn-

ing in Continuous Time and Space: A Stochastic Control Approach”. In: Journal of

Machine Learning Research 21.198, pp. 1–34 (Cited in page 37).

Watkins, C. J. C. H. (1989). “Learning from Delayed Rewards”. PhD thesis. King’s

College, Oxford (Cited in pages 124, 148).

Watkins, Christopher J. C. H. and Peter Dayan (May 1992). “Q-learning”. In: Machine

Learning 8.3, pp. 279–292 (Cited in page 148).

Wiggins, S. (2003). Introduction to Applied Nonlinear Dynamical Systems and Chaos.

Texts in Applied Mathematics. Springer - New York (Cited in page 15).

Willems, J.L. (1970). Stability Theory of Dynamical Systems. Major Issues in History.

Wiley Interscience Division (Cited in page 106).

Williams, Matthew O., Maziar S. Hemati, Scott T.M. Dawson, Ioannis G. Kevrekidis, and

Clarence W. Rowley (2016). “Extending Data-Driven Koopman Analysis to Actuated

Systems”. In: IFAC-PapersOnLine 49.18. 10th IFAC Symposium on Nonlinear Control

Systems NOLCOS 2016, pp. 704–709 (Cited in pages 118, 120).

Williams, Matthew O., Ioannis G. Kevrekidis, and Clarence W. Rowley (2015). “A

Data-Driven Approximation of the Koopman Operator: Extending Dynamic Mode

Decomposition”. In: Journal of Nonlinear Science 25.6, pp. 1307–1346 (Cited in pages 7,

51, 59, 84, 93).

Williams, Matthew O., Clarence W. Rowley, and Ioannis G. Kevrekidis (2015). “A

kernel-based method for data-driven koopman spectral analysis”. In: Journal of

Computational Dynamics 2.2, pp. 247–265 (Cited in pages 85, 86).

Williams, R. J. (1992). “Simple statistical gradient-following algorithms for connectionist

reinforcement learning”. In: Machine Learning 8, pp. 229–256 (Cited in pages 124, 148).



References 209

Williams, Ronald J. (1988). Toward a theory of reinforcement-learning connectionist

systems. Tech. rep. NU-CCS-88-3. Northeastern University, College of Computer

Science (Cited in pages 124, 148).

Williamson, Robert and Ludvik Janos (1987). “Constructing metrics with the Heine-Borel

property”. In: (Cited in page 69).

Witten, I. H. (1977). “An Adaptive Optimal Controller for Discrete-Time Markov Envi-

ronments”. In: Information and Control 34, pp. 286–295 (Cited in page 148).

Yasinsky, V. K. and I. V. Malyka (Nov. 2012). “Parametric continuity of solutions to

stochastic functional di�erential equations with poisson perturbations”. In: Cybernetics

and Systems Analysis 48.6, pp. 846–860 (Cited in page 133).

Yildiz, Cagatay, Markus Heinonen, and Harri Lähdesmäki (2021). “Continuous-time

Model-based Reinforcement Learning”. In: International Conference on Machine

Learning. PMLR, pp. 12009–12018 (Cited in page 36).

Zanini, Francesco and Alessandro Chiuso (2021a). “Data-Driven Control of Nonlinear

Systems: Learning Koopman Operators for Policy Gradient”. In: 2021 60th IEEE

Conference on Decision and Control (CDC), pp. 6491–6496 (Cited in pages 121, 126).

— (2021b). “Estimating Koopman operators for nonlinear dynamical systems: a nonpara-

metric approach”. In: IFAC-PapersOnLine 54.7. 19th IFAC Symposium on System

Identification SYSID 2021, pp. 691–696 (Cited in page 83).

— (2022). “Value function estimation in Reinforcement Learning: a Koopman operator

approach.” In: [ACCEPTED AT] 2022 61th IEEE Conference on Decision and Control

(CDC), pp. 6491–6496 (Cited in page 147).

Zanini, Francesco, Vincent Zhang, Johannes Kirschner, Junxi Zhang, Alex Ayoub,

Masood Dehghan, and Dale Schuurmans (2023). “Managing temporal resolution in

continuous value estimation: a fundamental trade-o�”. In: [TO APPEAR AT] The

Eleventh International Conference on Learning Representations, ICLR 2023, Kigali

Rwanda, May 1-5, 2022 (Cited in page 35).

Zermelo, E. (1904). “Beweis, daß jede Menge wohlgeordnet werden kann. (Aus einem an

Herrn Hilbert gerichteten Briefe)”. In: Mathematische Annalen 59, pp. 514–516 (Cited

in page 25).

Zhang, Hao, Clarence W. Rowley, Eric A. Deem, and Louis N. Cattafesta (2019). “Online

Dynamic Mode Decomposition for Time-Varying Systems”. In: SIAM Journal on

Applied Dynamical Systems 18.3, pp. 1586–1609 (Cited in page 22).

Zhang, Kaiqing, Alec Koppel, Hao Zhu, and Tamer Ba�ar (2020). “Global Convergence

of Policy Gradient Methods to (Almost) Locally Optimal Policies”. In: SIAM Journal

on Control and Optimization 58.6, pp. 3586–3612 (Cited in pages 120, 128).



210 References

Zheng, Yang, Luca Furieri, Maryam Kamgarpour, and Na Li (June 2021). “Sample

Complexity of Linear Quadratic Gaussian (LQG) Control for Output Feedback

Systems”. In: Proceedings of the 3rd Conference on Learning for Dynamics and

Control. Ed. by Ali Jadbabaie, John Lygeros, George J. Pappas, Pablo Parrilo,

Benjamin Recht, Claire J. Tomlin, and Melanie N. Zeilinger. Vol. 144. Proceedings of

Machine Learning Research. PMLR, pp. 559–570 (Cited in page 149).


	Sommario
	Abstract
	Contents
	Notation
	Introduction
	Koopman operator
	A linear framework
	Definition of the Koopman operator and main properties
	Eigendecomposition
	Duality
	Koopman for stochastic dynamical system

	Temporal resolution
	Discrete samples from a continuous process
	Policy evaluation in continuous LQR
	Monte Carlo estimation

	Characterizing the Mean-Squared Error
	Finite-horizon, undiscounted
	Discounted cost
	Infinite-horizon setting

	Towards nonlinear systems: a numerical study
	Linear Quadratic Systems
	Nonlinear systems


	Learning Koopman from data
	From discrete samples to discrete systems
	Discrete-time Koopman operator
	Finite-dimensional approximations
	Eigendecomposition of finite-dimensional approximations

	Data-driven approximations
	DMD
	EDMD


	Kernel methods and RKHS
	An infinite-dimensional problem
	A finite-dimensional solution
	The regularised LS
	Definition of RKHS
	Spectral characterisation of RKHS
	RKHS and Gaussian Processes

	Learning Koopman operators in RKHSs
	Kernel sections as dictionary of observables
	Koopman & Kernels
	A dual view of EDMD and DMD
	From Koopman to kernels
	From kernels to Koopman
	Duality in RKHS
	Illustrative example for estimation

	Koopman for control
	The control framework
	Koopman operator for controlled systems
	Optimal controller
	Koopman exact form with control
	Linear approximations

	Koopman Policy Gradient
	Reinforcement Learning
	The reward as an observable
	Koopman formulation of the value-function
	Koopman Policy Gradient
	Policy evaluation
	Policy improvement

	Illustrative example for control
	Linear example
	Nonlinear example


	Uncertainty propagation
	Model-based or model-free?
	Posterior propagation through Koopman operators
	Known observable
	Estimated observable
	Dealing with an unknown reward function

	Illustrative example for uncertainty propagation

	Conclusion
	Appendix
	The Riemann Sum Approximation
	Moment Calculations
	Computation of the Mean-Squared Error
	Finite-horizon, undiscounted
	Finite-horizon, discounted
	Infinite-horizon

	Vector case analysis
	Finite-horizon, undiscounted
	Corollary for infinite-horizon, discounted
	The case when  is a general stable matrix


	Bibliography

