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ABSTRACT 

English 

Seismic risk assessment is a major challenge in countries with a significant seismic 
hazard and a highly vulnerable built heritage, such as Italy. Especially when the risk 
needs to be analyzed at a large scale, the assessment can entail very time-consuming 
and costly studies, since it is necessary to define numerous variables that can influence 
seismic exposure and vulnerability. 
In this thesis, a mechanically based seismic fragility model has been developed for 
Italian masonry residential buildings. This model is based on the classification of the 
building stock into macro-typologies, also considering possible seismic retrofit 
measures. 
Also exposure needs to be properly assessed: artificial intelligence techniques can be 
helpful to evaluate it in a quick and efficient way. Specifically, satellite images are 
used to automatically collect building data, street view photos are extracted for each 
building and Convolutional Neural Networks are trained to recognize specific features 
of interest from pictures, particularly the same ones on which the vulnerability model 
is based. 
The following step of this work consists in combining vulnerability and exposure with 
the seismic hazard within a seismic risk calculation platform that can evaluate seismic 
damage and risk, expressed as repair or reconstruction costs, number of unusable 
buildings, casualties, and displaced people. 
This information can be important for carrying out targeted investigations and 
establishing priority criteria for seismic retrofit measures. These seismic risk 
prevention and mitigation tools can be used by emergency authorities to manage 
resources in the pre- and post-earthquake phases, as well as to select effective 
emergency response and recovery plans. 
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Italiano 

La valutazione del rischio sismico rappresenta una sfida in Paesi con una significativa 
pericolosità sismica e un patrimonio edilizio vulnerabile come l'Italia. Soprattutto 
quando il rischio deve essere analizzato su larga scala, la sua stima può comportare 
analisi costose in termini economici e di tempo, a causa della necessità di definire 
numerose variabili che possono influenzare l'esposizione e la vulnerabilità. 
In questo lavoro è stato sviluppato un modello di fragilità su base meccanica per gli 
edifici residenziali italiani in muratura. Il modello si basa sulla classificazione del 
patrimonio edilizio in macro-tipologie, simulando inoltre la possibile presenza di 
interventi anti-sismici. 
Anche l'esposizione deve essere correttamente valutata: tecniche di intelligenza 
artificiale possono rivelarsi utili per effettuare stime in modo rapido ed efficiente. In 
particolare, le immagini satellitari possono essere utilizzate per raccogliere 
automaticamente i dati degli edifici, per poi estrarre foto street view per ogni edificio 
e allenare reti neurali convoluzionali a riconoscere specifiche caratteristiche di 
interesse dalle immagini, in particolare le stesse su cui si basa il modello di 
vulnerabilità. 
La fase successiva di questo lavoro consiste nel combinare la vulnerabilità e 
l'esposizione con la pericolosità sismica all'interno di una piattaforma di calcolo in 
grado di valutare il rischio sismico, espresso come costo di riparazione, numero di 
edifici inutilizzabili, vittime e sfollati. 
Queste informazioni sono fondamentali per condurre indagini mirate e stabilire criteri 
di priorità per le misure di adeguamento sismico. Gli strumenti proposti possono essere 
utilizzati per gestire risorse nelle fasi pre e post-terremoto e per elaborare piani di 
recupero efficaci. 
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1 INTRODUCTION 

1.1. State of the problem 

Italy is historically one of the European countries with the highest seismic activity and 
related number of victims, around 160,000 in the last two centuries (with 85,000 
victims in the 1908 Messina earthquake of magnitude Mw 7.1). In the twentieth 
century, earthquakes with a value of Mw ≥ 6.5 were at least seven and, only in the last 
ten years, four events have reached or exceeded a magnitude of 6.0. 
Over the last 50 years, earthquakes forced the Italian country to sustain emergency 
management, recovery and reconstruction costs amounting to around 180 billion 
euros, of which 130 billion for earthquakes from 1968 to 2003 and 45 billion for the 
recent events of L'Aquila 2009, Emilia 2012 and Central Italy 2016. Therefore, 
without considering casualties, impairment of historical and artistic heritage, loss in 
tourist flow and the high indirect consequences on the production sector, the cost of 
Italian earthquakes can reach 3.6 billion euros per year. 
For all the reasons mentioned so far, seismic risk assessment at a territorial scale is 
widely recognized to play a crucial role in addressing emergency planning and 
mitigation policies. 
This is also in line with the “Sendai Framework for Disaster Risk Reduction 2015-
2030” (United Nations, 2015), adopted in March 2015 at the Third World Conference 
of the United Nations in Sendai (Japan), which provides indications on the measures 
to be implemented for the priority actions number 3 (investing in disaster risk 
reduction for resilience) and number 4 (enhancing disaster preparedness for effective 
response, and to "Building Back Better" in recovery, rehabilitation and 
reconstruction). The urgency to address the aforementioned issues, as well as priority 
1 (understanding disaster risk) and priority 2 (strengthening disaster risk governance 
to manage disaster risk) of the Sendai Framework called for an updating of risk 
assessments by many countries. In this regard, the Italian Civil Protection Department 
recently released the “National Risk Assessment” (DPC 2018), a document that 
provides an overview of potential major natural disasters in Italy, with a particular 
focus on seismic risk and on the seismic vulnerability assessment of the residential 
building heritage in Italy. 
In spite of the considerable progress achieved for more accurate seismic risk 
assessments, often risk management institutions (both public and private) do not have 
detailed and sufficiently articulated information that can lead to appropriate risk 
estimations. Particularly, when the aim is to carry out large-scale analyses, the 
evaluation of the total exposure prone to risk often relies on public data available at 
municipal, regional, or national scale (e.g., ISTAT national census data, cadastral data, 
etc.), which are, however, often incomplete or inaccurate. On the other hand, a more 
appropriate estimation of exposure can be hindered by the need to collect a volume of 
data that only slow and expensive surveys can provide. Moreover, even when the 
exposure is correctly assessed, it is not trivial to provide an estimate of vulnerability 
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to the buildings involved in the analysis, given the heterogeneity of residential building 
typologies at the national scale. 
This work therefore addresses the issue of faster and more accurate seismic risk 
assessments at a large scale. 

1.2. Research aims and methodology 

The aim of this thesis is to develop a systematic methodology that can lead to seismic 
risk assessments at a territorial scale. To fulfil this task, a risk calculation algorithm is 
implemented: the algorithm is meant to operate remotely, which means that no direct 
on-site survey of the area of interest is required, and automatically, meaning that 
seismic risk estimates can be elaborated for any location in Italy and without the need 
for manual input throughout the computational steps. 
Firstly, since the methodology is supposed to be valid for any place in Italy, a 
vulnerability model is developed for different Italian building typologies (with  a 
particular focus on masonry buildings), so that every building can be associated with 
an estimate of seismic vulnerability. 
With regard to exposure, the distribution of buildings in the area of interest is detected 
through satellite images, and their typology can be identified thanks to street view 
pictures. As a matter of fact, modern technologies allow us to derive quite smoothly 
street view images of buildings, and with a very wide coverage, thus simulating the 
external survey of an urban area. From the pictures collected, machine learning 
techniques (specifically, neural networks) are deployed to recognize specific features 
of buildings exposed to risk, so that it is possible to associate them with the correct 
vulnerability model previously defined. 
Lastly, a seismic risk calculation platform is developed, in order to carry out risk 
assessments for different seismic scenarios. The results provided by the platform can 
respond to the needs mentioned in the previous section, since they can give a solid 
baseline for increasing preparedness and planning mitigation actions at large scales. 

1.3. Thesis structure 

The thesis is structured as follows. Chapter 2 presents an overview of the state of the 
art regarding the topic of seismic risk assessment. In this chapter, the main methods 
for evaluating seismic hazard, vulnerability, and exposure are discussed, and 
subsequently particular focus is placed on the literature that concerns the application 
of machine learning techniques to solve earthquake engineering problems. Chapter 3 
discusses the methodology adopted to derive a vulnerability model that can describe 
the seismic behavior of buildings. Particularly, fragility curves are elaborated for 
macro-typologies of Italian residential masonry buildings. Chapter 4 proves how it is 
possible to automatically detect buildings and some of their geometrical characteristics 
from satellite images, as well as their street view pictures, and then describes the 
procedure adopted to automatically predict building features from the photos 
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previously obtained. Lastly, the structure of the risk calculation platform is presented 
in chapter 5, and some examples of possible results in terms of risk assessment that 
can be derived through the platform are shown in chapter 6.  
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2 STATE OF THE ART 

This chapter is intended to review the literature that is relevant for this thesis related 
to the field of study, pointing out all the work that has been carried out so far and 
highlighting any research gaps or shortcomings. 
The first part of this chapter is dedicated to the definition of seismic risk and of its 
components: seismic hazard, vulnerability, and exposure. Since one of the key points 
of this project is the creation of a fragility model that can be representative for Italian 
buildings at a national scale, this section pays particular attention on the methods that 
evaluate seismic vulnerability, with a focus on simplified approaches that allow the 
definition of fragility at territorial scales. Then, this chapter reviews the studies that 
have been carried out regarding the topic of seismic losses and consequences, and the 
main seismic risk calculation platforms are listed. Subsequently, the field of machine 
learning is explored. Indeed, artificial intelligence in general has proven successful in 
providing various methods that can solve particular problems related to the field of 
earthquake engineering, whether by simplifying or speeding up the solution processes, 
or by giving answers to problems that could not be addressed by classical methods. 
Furthermore, particular attention is paid to the retrieval of information about building 
taxonomy and exposure, which is indeed another main goal of this thesis. Particularly, 
new approaches that allow a remote and automatic acquisition of building data are 
presented. The chapter finally concludes with some considerations on the gaps found 
in the literature reviewed, which motivated the proposal and the development of this 
thesis. These gaps will find answers in the following chapters. 

2.1. Seismic risk 

Seismic risk can be defined as the probability of occurrence of economic, social, and 
environmental potential losses due to an earthquake within a given time period in a 
given area. It can be considered as a combination of three main parameters: hazard, 
exposure, and vulnerability. 
Seismic hazard is defined as the probability of occurrence of a seismic event at a given 
location within a given time period, typically expressed by the ratio between the level 
of seismic ground shaking (indicated by strong motion parameters such as peak ground 
acceleration PGA, peak ground velocity PGV, spectral acceleration PSA) and the 
probability of occurrence. 
Seismic vulnerability indicates the probability of expected damage suffered by a 
building when exposed to a specific seismic event. It is often represented by 
correlations between seismic input and damage probability. 
Exposure is the quantification of the number of people and buildings potentially at risk 
in case of a seismic event in the assessed area, and takes into account the value of the 
exposed assets. 
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The assessment of seismic risk can be expressed as a function of seismic hazard, 
vulnerability, and exposure. Therefore, for an appropriate estimation of seismic risk, 
it is preliminarily crucial to define these three components. The following sections 
elaborate on the definition of these three variables and describe the main methods for 
evaluating them that can be found in the literature. 

2.1.1. Seismic hazard 

Seismic hazard represents the probability that a selected strong-motion parameter 
(peak ground acceleration, velocity, spectral acceleration, etc.) is exceeded in a given 
time interval at a target location. It is related to the probability of occurrence of an 
earthquake and to the geological characteristics of the area where the event occurs. 
The intensity of an earthquake can be measured in different ways. Some of the most 
popular scales and intensity measures are here presented. 
Firstly, earthquake magnitude is an objective quantitative measure of the size and 
amplitude of an earthquake, and it can be described by several seismic magnitude 
scales. The main differences among these scales depend on which aspects of the 
seismic waves are measured and how they are measured, as well as on the purpose of 
the measurement. One of the most used scales is the local Richter magnitude scale ML 
(Richter, 1935), defined as the logarithm (base 10) of the maximum trace amplitude 
(in microns) recorded by a Wood-Anderson seismograph, measured at a distance of 
100 km from the epicenter of the earthquake. It is often adopted for local earthquakes 
up to 600 km away. Another widely used magnitude scale is the surface-wave 
magnitude MS, which is based on the amplitude of Rayleigh waves with a period of 
about 20 seconds. MS is most commonly used to describe the magnitude of shallow 
(less than 70 km focal depth), distant (farther than about 1000 km), moderate to large 
earthquakes. 
Also macro-seismic intensity is a very helpful tool for evaluating ground shaking. 
Intensity scales have been historically used, since no instruments are required and 
useful measurements can be made by an unequipped observer. They are based on the 
observed effects of the earthquake, such as damage to structures and human responses 
(Kramer, 1996). Among the different macro-seismic intensity scales, the most known 
and frequently adopted ones are the modified Mercalli intensity (MM, MMI, or MCS, 
Richter, 1958; Figure 2.1), the European macro-seismic scale EMS98 (Grünthal, 1998; 
Figure 2.2), which has replaced the Medvedev-Spoonheuer-Karnit (MSK) and 
Mercalli-Cancani-Sieberg scales for European measurements (MCS), and the Japan 
Meteorological Agency (JMA) scale. The main difference among these scales lies in 
the number and range of degrees that they propose: for example, the MM and EMS98 
scales are characterized by 12 levels, while the JMA scale has 9 levels, with a “Lower” 
and “Upper” distinction for the V and VI intensities. For a deeper insight on a 
comparison among the different macro-seismic intensity scales, reference can be made 
to specific studies (Musson et al., 2010). 
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Figure 2.1 – Modified Mercalli (MM) scale, with the description of each intensity level 

 
Figure 2.2 – European macro-seismic EMS98 scale (Grünthal, 1998) 

Furthermore, physical-mechanical parameters are extensively used to express the 
intensity of an earthquake. The most common parameter that describes the amplitude 
of ground motion is peak ground acceleration (PGA), which is defined as the 
maximum ground acceleration that occurs during an earthquake at a given location. 
PGA does not actually provide information on the dynamic behavior of structures, 
which can, however, be obtained by using response spectra. Response spectra give the 
maximum response of a system with one degree of freedom (SDOF) when subjected 
to a given input motion as a function of the natural frequency (or natural period) and 
the damping ratio of the SDOF. Response can be expressed in terms of acceleration, 
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velocity, or displacement, and their maximum values are referred to as spectral 
acceleration (Sa), spectral velocity (Sv), and spectral displacement (Sd). 
Empirical relationships between macro-seismic intensity and PGA have also been 
developed to compare macro-seismic observations with recorded ground motions. 
Since it is troublesome to propose correlation laws of general validity, most of the 
studies carried out so far take into account the seismicity of specific countries or 
geographic areas, such as the USA (Wald et al., 1999; Trifunac and Brady, 1975; 
Neumann, 1954; Hershberger, 1956; Gutenberg and Richter, 1942, 1956), Japan 
(Kawasumi, 1951), the Mediterranean region, including Italy (Margottini et al., 1992; 
Theodulis and Papazachos, 1992; Panza et al., 1997; Faccioli and Cauzzi, 2006), or 
the collection of different areas around the world (Murphy and O’Brien, 1977). 
All the measuring tools mentioned so far have given the opportunity to systematically 
collect data about earthquake intensities over the years. This has helped in the creation 
of seismic hazard maps, especially in countries with a high seismicity. In Italy, for 
example, a national probabilistic seismic hazard map known as MPS04 (Figure 2.3) 
was developed in 2004 (Stucchi et al., 2004), thanks to the Decree OPCM 3274/2003 
(OJ No. 108, May 8, 2003). It then became the reference hazard map on April 6, 2004 
(Decree PCM 3519/2006, OJ No. 105, May 11, 2006). This Italian hazard map was 
developed by the INGV Group (National Institute of Geophysics and Volcanology) in 
collaboration with Italian universities and research centers. 
 

 
Figure 2.3 - Seismic hazard map for Italy (MPS04) in terms of PGA (Peak Ground Acceleration) with a 10% 

probability of exceedance in 50 years 



State of the art 
____________________________________________________________________________________________________________________________________________________________________ 

 

 23 

The MPS04 gives the 10% probability of exceeding a given ground motion parameter 
(such as for example PGA) in 50 years, taking into account rigid soils. Seismic hazard 
was assessed for grid points at 0.05° intervals and for a finer grid at 0.02° intervals in 
latitude and longitude, covering the entire national territory (except for Sardinia and 
some smaller islands, for which ad hoc studies were required). 

2.1.2. Seismic vulnerability 

Seismic vulnerability is the tendency of a structure to be damaged and collapse when 
subjected to ground motion of a certain intensity. It depends on many factors, including 
the type of structure, quality of construction materials, construction methods, 
maintenance, and the possible presence of anti-seismic retrofit intervention. When 
performing vulnerability assessments, the aim is to determine the probability that a 
particular building will reach a given level of damage during an earthquake scenario. 
For this reason, the ground motion evaluated through one of the seismic hazard 
analyses presented before must be correlated with the damage caused to the building. 
In order to do so, among the various tools that have been developed in the field of 
seismic vulnerability, fragility models are definitely some of the most popular. 
Fragility models (expressed by fragility curves) correlate seismic intensity parameters 
(e.g. the Peak Ground Acceleration, PGA) with the probabilities of exceeding some 
damage states (DSs) of buildings, and are frequently described by lognormal 
cumulative density functions (an example of a graphic representation of fragility 
curves is shown in Figure 2.4). Many methods to derive fragility sets are found in the 
literature (Calvi et al., 2006), which are based on two main approaches: empirical, 
which calibrate fragility curves based on damage information surveyed in the 
aftermath of the event; and analytical (or mechanics-based), which define fragility 
based on structural models and analyses to simulate the seismic behavior of buildings. 
Other methods widely used are the hybrid ones, which use information from both 
empirical and analytical methods, as well as judgement-based methods, which are 
based on the statistical evaluation of information provided by teams of experts or based 
on field inspections. 
 

 
Figure 2.4 - Example of fragility curves 
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In general, there is no method that is better than the others, as they all have advantages 
and disadvantages. For example, an empirical fragility model is calibrated on specific 
areas affected by the earthquake (therefore on specific building types and on a 
particular seismic scenario) and includes a series of uncertainties on surveys and 
measurements of seismic damage and ground shaking intensity that are responsible for 
increasing the dispersion of fragility curves. On the other hand, a mechanics-based 
fragility model requires the retrieval of a significant amount of geometric and design 
information, through time-consuming surveys and cognitive studies; moreover, its 
reliability is strongly related to that of the structural models and analyses, as well as to 
the quantity and quality of the information collected. In summary, both approaches 
can lead to significantly accurate results, but often not without drawbacks or 
limitations in their implementation and use. 
Among all building typologies for which seismic vulnerability must be evaluated, 
masonry buildings make up a large portion of the world's building stock, especially in 
countries with a significant amount of historical buildings such as Italy. Seismic 
vulnerability assessment of such structures is a key issue in the context of seismic risk. 
For this reason, this thesis focuses on the vulnerability assessment of Italian residential 
masonry buildings, and therefore an insight on some methods that have proven 
successful for defining fragility curves for this building typology is presented below. 
 
2.1.2.1. Empirical and observational methods 
 
Empirical methods for vulnerability assessment are mainly based on the distribution 
of recorded damage collected and statistically analyzed during post-earthquake 
surveys. They can provide damage probability matrices (DPM), i.e., matrices 
expressing the probability of suffering a damage condition at a given seismic intensity 
for a macro-class of buildings. The first use of DPMs as a tool for the probabilistic 
prediction of damage to buildings subjected to seismic actions was realized by 
Whitman et al. (1973), after the San Fernando earthquake of 1971 (Figure 2.5). The 
use of these matrices was first introduced in Italy after the 1980 Irpinia earthquake 
(Braga et al., 1982) as a tool to perform vulnerability analysis and predict the expected 
damage. In addition, a binomial distribution was proposed as representative of the 
damage distribution for a fixed class of buildings with different macro-seismic 
intensity. In that study, buildings were divided into three vulnerability classes (A, B, 
and C) and the MSK macro-seismic scale was adopted as a reference (Kárník et al., 
1984). In subsequent Italian studies (Di Pasquale et al., 2005), the DPMs were further 
developed starting from the MCS macro-seismic scale. Specific applications of this 
method to masonry structures have also been widely used in countries and regions with 
extensive historical seismicity records (Corsanegro and Petrini, 1990; Askan and 
Yucemen, 2010; Zobin et al, 2010). 
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Figure 2.5 - Damage Probability Matrix format proposed by Whitman et al. (1973) 

However, DPMs have the major limitations of defining damage levels in a discrete 
way, and depending on a specific seismic scenario. In order to overcome this problem, 
a macro-seismic heuristic method was proposed by Lagomarsino and Giovinazzi 
(2006) to derive vulnerability curves, i.e. expected mean damage based on macro-
seismic intensity, directly from "qualitative" DPM in the European Macro-seismic 
Scale EMS98 (Grünthal, 1998), where the expected damage frequency is expressed by 
linguistic terms (e.g. "few", "most", as shown in Figure 2.6). In this case, vulnerability 
classes are associated with seismic behavior before being attributed to specific 
structural classes. The macro-seismic method was refined in 2014 (Figure 2.7) by 
Lagomarsino and Cattari (2014) with the derivation of fragility curves using peak 
ground acceleration (PGA) as an intensity measure, and finally, further developments 
of the model were presented in a recent publication (Lagomarsino et al., 2021). 
 

 
Figure 2.6 - DPM in the European Macro-seismic Scale EMS98 (Grünthal, 1998) 
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Figure 2.7 - Vulnerability curves for the EMS98 vulnerability classes (Lagomarsino and Cattari, 2014) 

Other studies developed different empirical vulnerability and fragility relationships 
from post-earthquake data, and they usually depend on the seismic scenarios from 
which damage data are retrieved (Rosti et al., 2021a; Zuccaro et al., 2021; Rota et al., 
2008; Rosti et al., 2018; Menichini et al., 2022). 
Due to the wide variety of building typologies and the lack of sufficient historical data 
on earthquake damage, surveys rarely provide a complete set of information. 
Nevertheless, this type of vulnerability assessment is representative of the physical and 
real response of exposed buildings, taking into account many variables such as ground 
motion, topography, soil-structure interaction, and structural features. 
 
2.1.2.2. Judgement-based methods 
 
Judgement-based methods have been largely used for collecting and evaluating data 
on building vulnerability and on building damage. The forms issued by the GNDT 
(National Group for Earthquake Protection), particularly the GNDT form and the 
AeDES form, allow the assessment of post-earthquake damage found during field 
inspections. These first-level forms are typically used for assessing entire urban areas, 
thus being useful for developing damage scenarios and conducting empirical 
vulnerability analyses after the data collection. 
The GNDT form is divided into two levels and covers masonry and reinforced concrete 
buildings (Benedetti and Petrini, 1984; GNDT-SSN, 1994; Ferrini et al., 2003). For 
both materials, the second-level GNDT form allows a rapid assessment of the seismic 
vulnerability of existing buildings by assigning a class to a certain number of 
vulnerability factors (Figure 2.8a). Each assigned class corresponds to a rating value 
(pi), while each vulnerability factor is assigned a weighting value (wi). The 
vulnerability index 𝐼! is then calculated as the weighted sum of the assessment values 
for all vulnerability factors. This index increases with increasing vulnerability. 
For what concerns the collection of data on observed damage after a seismic event, the 
main tool used in Italy is the on-site form AeDES (Usability and Damage in Seismic 
Emergencies, Baggio et al., 2007, 2014). The intensity and extent of seismic damage 
to structural and nonstructural elements is assessed and recorded on the form, as well 
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as the assessment of the safety and usability of the building (Figure 2.8b). The usability 
assessment of the AeDES form is categorized as follows: usable buildings that could 
be slightly damaged but are still sufficiently safe (A); usable buildings in the short 
term as long as countermeasures are taken (B); partially usable buildings (C); buildings 
that should be re-inspected (D); unusable buildings (E); and unusable buildings due to 
external risks (F). 
 

  
(a)  (b) 

Figure 2.8 - Sections from the II level GNDT form (a) and from the AeDES form (b) 

Another method to assess seismic vulnerability that involve expert judgement is the 
SAVE method (Dolce and Moroni, 2005), used for the vulnerability assessment of 
masonry structures (Strumenti Aggiornati per la Vulnerabilità sismica del patrimonio 
Edilizio e dei sistemi urbani – Updated Tools for the Seismic Vulnerability Evaluation 
of Real Estate and of Urban Systems). It is based on an upgrade of the EMS98 and 
aims to reduce the implicit uncertainties of its vulnerability classification. The SAVE 
method introduces a Synthetic Parameter of Damage (SPD) to represent the total 
damage attained. This parameter contains a first indication of the expected damage 
and is therefore representative of the seismic vulnerability. 
 
2.1.2.3. Analytical and mechanical methods 
 
Analytical (mechanical or mechanics-based) methods define a direct relationship 
between design features and the response of the structure to seismic actions. The 
damage distribution is statistically evaluated using numerical simulations of structural 
models. 
For masonry buildings, analytical methods can be applied to investigate vulnerability 
for the entire building as well as for individual parts of the building. Especially when 
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the box-like behavior is not achieved, local failures may occur, due to the lack of 
proper connections between orthogonal walls, the absence of connecting ties, 
insufficiently rigid floor diaphragms, the presence of low strength and deteriorated 
materials, and the presence of openings. Recurrent mechanisms that can occur under 
seismic loading are the overturning of masonry walls (Casapulla et al., 2016) and 
corners (Casapulla et al., 2019). 
Mechanics-based methods require simulations of the seismic response of a building 
macro-class by a prototype building or building datasets. Simulations can be based on 
either detailed modelling (Rota et al., 2010, Barbat et al., 2008; Simões et al., 2015; 
Rota et al., 2014) or simplified methods. The latter can be grouped into capacity 
spectrum-based methods, such as the U.S. Federal Emergency Management Agency 
(FEMA, 2003) HAZUS approach, collapse mechanism-based methods, including 
Vulnus by Bernardini et al. (1990), and displacement-based methods, among which 
we find the approach proposed by Calvi (1999) and its further development (MeBaSe) 
proposed by Restrepo-Velez and Magenes (2004), the SP-BELA approach (Borzi et 
al., 2008), and the DBV masonry method (Lagomarsino and Cattari, 2014). The 
simplified methods for masonry buildings cited above are discussed more in details in 
the following paragraphs. 
The mechanism-based method Vulnus (Bernardini et al., 1990; Valluzzi et al., 2009) 
performs vulnerability assessment by considering both the in-plane (IP) and out-of-
plane (OOP) response of masonry structures. Specifically, Vulnus evaluates the 
building's IP shear resistance (assuming that all masonry walls reach their maximum 
shear capacity without premature failure) and the initiation of potential OOP 
mechanisms, considering overturning, flexural failure, and vault failure, as well as a 
qualitative estimate of building vulnerability according to the second level GNDT 
form (see section 2.1.2.2). Since Vulnus is actually the method that is used in this 
thesis for the development of fragility curves for masonry buildings, the specific 
procedure proposed by Vulnus is further descried in the dedicated chapter (chapter 3), 
where the most recent application proposed by Donà et al. (2021) is presented. 
Another method based on collapse mechanisms called FaMIVE was proposed by 
D'Ayala and Speranza (2003) to evaluate the seismic vulnerability of unreinforced 
masonry (URM) buildings, based on the susceptibility of the facades to local 
mechanisms. The FaMIVE (Failure Mechanism Identification and Vulnerability 
Evaluation) method is based on a set of input parameters, most of which can be 
collected from an external survey. The procedure identifies the possible collapse 
mechanisms among those that have been observed during post-event damage detection 
surveys. A story-by-story analysis is performed to determine how many of them are 
involved in each failure mechanism, including an estimate of restraining forces 
provided by transverse walls and possible reinforcing devices, as well as frictional 
forces. For each possible mechanism, an index is calculated to express the Equivalent 
Shear Capacity (ESC) as a percentage of gravity acceleration. 
Moreover, Calvi (1999) proposed a displacement-based approach for vulnerability 
assessment of building macro-classes classified by their construction material (i.e., 
unreinforced masonry or reinforced concrete), number of floors, and level of seismic 
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design. The evaluation is based on the estimation of displacement and energy 
dissipation capacities. This methodology was further developed for masonry buildings 
by Restrepo-Velez and Magenes (2004) and called MeBaSe (Mechanics-Based 
Seismic Risk Assessment Method). MeBaSe evaluates the seismic vulnerability of 
masonry buildings classes using a displacement-based approach. The URM building 
under study is modelled in a simplified way as a single degree of freedom (SDOF) 
system, and different displacement profiles related to different failure mechanisms and 
limit states are considered. The maximum displacement for a given limit state results 
from two contributions: a yield displacement and a plastic displacement. In addition, 
the MeBaSe method includes the evaluation of a number of out-of-plane failure modes, 
in particular for simple overturning, overturning of double-leaf walls, and vertical 
flexure. In addition, the major sources of uncertainty (i.e., seismic demand, capacity 
response, and damage thresholds) are evaluated and included in the fragility 
assessment. 
Later, Borzi et al. (2008) proposed another displacement-based procedure called SP-
BELA (Simplified Pushover-Based Earthquake Loss Assessment), which was 
originally developed for deriving vulnerability curves of r.c. bare frame buildings 
designed for gravity loads only. The method was then adapted for URM buildings, 
considering the in-plane failure mode and assuming the deformed shapes associated 
with different global failure mechanisms according to Calvi (1999). In this case, a 
collapse multiplier for each story is calculated according to Benedetti and Petrini 
(1984), as also proposed by Restrepo-Vèlez and Magenes (2004). A thorough 
evaluation of out-of-plane mechanisms is not included in SP-BELA for masonry 
because the data required for this purpose are often not available at a very large scale, 
for which the method was developed. The latest developments and results of this 
method are included in Borzi et al. (2021a) for what concerns r.c. buildings. 
Specifically for masonry buildings, a simplified displacement-based mechanical 
model was developed by Lagomarsino and Cattari (2014). The method determines the 
capacity curve of a based on the pseudo-elastic period, the spectral acceleration at 
yielding, and the ultimate capacity in terms of displacement. When evaluating shear 
strength, it is assumed that all masonry piers fail simultaneously, which is reasonable 
if they have similar dimensions and the building presents regularity in plan; otherwise, 
correction coefficients are applied. Then, four limit states (LS) are determined on the 
capacity curve. The analysis is performed for the two main horizontal directions, 
assuming for the fragility analysis the most vulnerable direction, which can differ for 
different LSs and seismic intensities. 
As part of the ASSESS project 2008-2011 (Grimaz et al., 2011), two new simplified 
mechanical methods were developed to evaluate the seismic capacity of buildings 
made of reinforced concrete and masonry, respectively. Both simplified methods, 
called FIRSTEP-RC and FIRSTEP-M, provide a capacity acceleration of the building 
defined as the resistive acceleration on the ground A in the weakest principal direction 
(Gattesco et al., 2011). Specifically, the simplified procedure FIRSTEP-M allows the 
evaluation of both masonry and mixed masonry-r.c. buildings. It is assumed that only 
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the in-plane resistance of the vertical structural elements contributes to the seismic 
capacity. 
Lastly, a simplified analytical model called RE.SIS.TO was proposed by Mazzotti et 
al. (2013). This method was developed for the estimation of the collapse peak ground 
acceleration for masonry and r.c. buildings. The acceleration is evaluated based on the 
minimum ratio between shear capacity and shear demand in the weakest direction. 
 
2.1.2.4. Hybrid methods 
 
This final section is meant to give an insight on hybrid methods for evaluating seismic 
vulnerability. Among the main ones, Kappos et al. (2006) propose a method for 
deriving derivation of vulnerability and fragility curves expressed as a function of 
PGA, as well as spectral displacement (Sd) and also includes the estimation of capacity 
curves for different r.c. and URM building typologies. The vulnerability assessment 
methodology is based on the hybrid approach that combines statistical data from 
earthquake-damaged Greek buildings with processed results from nonlinear dynamic 
or static analyses. The latter allow extrapolation of the statistical data for PGAs and/or 
spectral displacements for which data are not available. Another method that combines 
post-earthquake damage statistics with mathematical models is the macro-seismic 
method proposed by Giovinazzi and Lagomarsino (2004). This macro-seismic method 
was developed starting from the definition of the EMS98 and is based on classical 
probability theory and fuzzy set theory. It allows the vulnerability assessment of 
buildings or classes of buildings. Vulnerability is defined by evaluating a vulnerability 
index V and a ductility index Q: both indices depend on the structural characteristics 
and typology of building analyzed. Damage levels are also considered according to the 
ones provided by EMS98 (0-no damage, 1-light damage, 2-moderate damage, 3-heavy 
damage, 4-very heavy damage, 5-destruction). Also Sandoli et al. (2021) provide a 
hybrid seismic fragility model for territorial-scale seismic vulnerability assessment, by 
combining expert judgement and mechanical approaches to derive typological fragility 
curves for Italian masonry residential buildings. The first one classifies Italian 
masonry buildings into five different typological classes as a function of building age, 
structural typology and seismic behavior and damage observed after the most severe 
earthquakes in Italy. The second part is based on the results of numerical analyses 
carried out on building prototypes and provides all the parameters necessary for the 
development of fragility functions. 

2.1.3. Exposure 

The exposure of an area refers to the type, quality, and quantity of assets that can be 
subjected to risk. Thus, exposure assessment involves quantifying the structures 
(buildings, infrastructures, etc.) and the number of people likely to be affected by a 
seismic event. 
In literature, we can find many definitions of the concept of “exposure”: even though 
most of them share the same key points, some differences can be perceived. For 
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example, in “Risk Assessment, Modeling and Decision Support” by Bostrom et al., 
(2008), exposure takes into account “humans, animals, property, business operations 
and other items of value whose reduction in value (loss) is a concern. In general, the 
economy and built, social and natural environments that may be affected by an 
earthquake. Similar terms include asset, inventory, and portfolio. Note that assets 
include intangibles such as intellectual property and reputation”. Furthermore, the 
“Sendai Framework for Disaster Risk Reduction 2015-2030” (United Nations, 2015) 
define exposure as “people, property, systems, or other elements present in hazard 
zones that are thereby subject to potential losses. Measures of exposure can include 
the number of people or types of assets in an area”. Another possible definition of 
exposure can be found in Fundamentals of Earthquake Engineering (Elnashai and Di 
Sarno, 2015), which states that “exposure comprises the assets that are subjected to 
the hazard; thus, it is a count of the exposed systems and their value”. 
The definitions provided above imply that, in order to properly define exposure as an 
essential component of seismic risk, it is necessary to analyze the distribution, 
structure, and socioeconomic conditions of the population residing in a given area, the 
quantity and functions of the building stock (residential, public, industrial), the 
infrastructure system, the existing activities, and the possible relationships with 
surrounding areas. It is clear that estimating exposure can be very cumbersome, 
especially in urban areas where large-scale surveys are generally expensive and require 
a lot of resources; yet it is in urban areas that most assets are at stake in the event of a 
disaster. In order to face this challenge, particularly when the aim is to survey large 
building inventories, forms for rapid visual-screening have been developed, which 
often also include the identification of structures that require more in-depth evaluation 
in the first instance. 
For example, CARTIS (Typological-Structural Characterization of the urban 
compartments) represents a valid tool to evaluate exposure at large scales. CARTIS  is 
a project carried out by the ReLUIS consortium (Network of the University 
Laboratories of Seismic Engineering) and funded by the Italian Civil Protection 
Department (DPC) which proposes a procedure that involves the construction of 
regional inventories, obtained through the typological-structural characterization of 
buildings. This project was created with the intention of investigating the national 
building panorama and identifying local building characteristics. In fact, over the 
entire national territory, building techniques have differed over the centuries, due to 
local influences, which in some cases have significantly affected the characteristics 
and quality of construction, determining substantial differences even in terms of 
response to natural phenomena such as earthquakes. Through appropriate processing, 
the data collected through the CARTIS form can provide indications for a 
regionalization of the seismic vulnerability currently used throughout the Italian 
territory (Zuccaro et al., 2016). As for 2022, the total number of municipalities 
surveyed within CARTIS amounts to 506, and it includes smaller and bigger towns in 
different regions of Italy. The use of the CARTIS form in a significant number of 
municipalities in Italy aims to improve the building taxonomy to provide a 
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regionalized characterization of the building stock and to allow more accurate risk 
assessments at the national level. 
The CARTIS form is composed of a first level sheet and a second level sheet. The first 
level sheet includes the typological-structural definition of urban compartments, called 
districts (Figure 2.9). Districts are homogeneous areas characterized by the presence 
of buildings that are similar from a typological point of view and by construction 
period. The sheet refers only to ordinary buildings, such as those mainly for housing 
and services. The characterization therefore excludes typologies attributable to 
monumental assets (religious buildings, historical buildings, etc.), special structures 
(industrial warehouses, shopping centers, etc.) or strategic structures (hospitals, 
schools, barracks, prefectures, civil protection offices, etc.), whose characteristics 
often do not fall within those of ordinary buildings. For each municipality investigated, 
the form is filled in by an expert from one of the research units belonging to the 
ReLUIS consortium. The CARTIS form is divided into the following four sections: 
- Section 0, for the identification of the municipality under examination and of the 

districts detected in it; 
- Section 1, for the identification of each typology characterizing the district of the 

municipality; 
- Section 2, for the identification of the general characteristics of the typologies under 

examination; 
- Section 3, for the characterization of the structural elements of the typologies under 

consideration. 
The identification of the prevailing typologies in each compartment is carried out with 
particular reference to the fields of Sections 2 and 3, considered fundamental in the 
characterization of different seismic behaviors: total number of floors, building age, 
characteristics of the masonry/r.c./mixed structure, characteristics of the floors, 
presence of separation joints, presence of floor infills, characteristics of the roof, and 
structural interventions. 
The second level CARTIS form (issued on 2016) goes more in-depth as it analyzes a 
particular type of building (Polese et al., 2019, Sbrogiò et. al, 2022). The filling of the 
sheets concerns both reinforced concrete and masonry buildings. Various parameters 
are defined in the sheet for the correct assessment of buildings. For masonry, the 
following are considered: type and organization of the resistant system, quality of the 
resistant system, position of the building and foundation, orientations, planimetric 
configuration, configuration in elevation, roofing, non-structural elements, among 
others. The section concerning reinforced concrete, on the other hand, includes as 
parameters: type and organization of the resistant system, distribution of infills, 
planimetric configuration, and irregularities in elevation. 
All these survey methods and projects have proven very successful in the analysis of 
exposure and vulnerability at a large scale. However, most of these ongoing projects 
still need time to collect an adequate amount of data in order to derive meaningful and 
representative results that can be extended at larger scales. 
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Figure 2.9 – Cover and first sections of the CARTIS form 

Furthermore, research has focused not only on the elaboration of methodologies for 
the evaluation of building exposure to perform risk assessments, but also on the 
definition of building taxonomy. When we talk about taxonomy, we refer to the 
practice of categorization or classification in which objects are organized into groups 
or types. Indeed, the development of a robust risk model requires a solid 
methodological foundation and consistent terminology to achieve a common 
understanding of the building stock under consideration. 
In this view, the vision of the GEM Building Taxonomy is to create a unique 
description for a building or building typology (Brzev et al., 2013; Silva et al. 2022), 
defined by several attributes. Typical attributes are material, lateral load restraint 
system, and building height. To develop this taxonomy, the GEM project set as its goal 
to review existing taxonomies, and verify it at the global level. 
Moreover, the project TABULA (Typology Approach for Building stock energy 
Assessment, 2009-1012), funded by the European program Intelligent Energy Europe, 
has the goal to create a harmonized structure of European building types (Corrado et 
al., 2014; Ballarin et al., 2014). The focus is on residential buildings, but other building 
categories are also considered. Each participating country has developed a “National 
Building Typology” consisting of a set of sample residential buildings with typical 
energy characteristics. Each building type represents a specific region or climatic zone, 
a class of construction period, and a class of building size. The elements that contribute 
to the classification of the building typology form the axes of the so-called “building 
typology matrix”. Each cell of the matrix accommodates a “building type” that is 
considered representative of the condition (climate zone/building age/size). The Italian 
building type matrix was developed for climate zone E (medium climate zone), which 
includes 4,250 Italian municipalities. In this way, a common structure for building 
typologies has been developed, based on the typical construction characteristics of the 
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national residential building stock (Figure 2.10). Moreover, two levels of building type 
retrofits are analyzed: a “typical retrofit” by applying measures that are common in 
each country, and an “advanced retrofit” by introducing measures that correspond to 
the best available technologies. The project is aimed at experts working on scenario 
analyzes and policy makers at different levels (regional, national, municipal). 
 

 
Figure 2.10 - Example of Italian building typologies according to the TABULA project 

2.2. Assessment of seismic losses and consequences 

The correct definition of seismic hazard, vulnerability and exposure can lead to 
accurate estimates of seismic damage. However, when the aim is to assess seismic 
risk, specific correlations need to be defined in order to express damage as risk 
indicators such as impact on people (casualties and displaced people), buildings 
(economic losses and usability), cultural heritage, and social and economic disruption. 
This operation is not trivial at all, since many of these aspects include indirect (or 
consequential) losses or even losses related to people or artistic assets that can be 
difficult to quantify. 
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Nevertheless, research on the assessment of earthquake-related damage and 
consequences has been carried out, often by processing data from past seismic events. 
Since these aspects are strongly linked to the local context in terms of observed events, 
structural assets, and emergency management, a particular focus is placed here on 
Italy-specific studies. 
One of the reference events in this field in Italy was L'Aquila earthquake (2009). The 
main shaking, which occurred on April 6, caused extensive damage to buildings in the 
municipality of L'Aquila and neighboring municipalities; 309 people were killed and 
67,459 people were displaced (Mannella et al., 2017). After the earthquake, the 
usability and damage of residential buildings were assessed using the AeDES form 
(already described in section 2.1.2.2). Three classes of usability were considered in the 
reconstruction process, i.e., usable buildings (A), short-term unusable buildings (B-C), 
and long-term unusable buildings (E). The principle of "building back better " was 
applied: therefore, reconstruction included both repair and seismic strengthening. 
Reconstruction of buildings in categories B-C, i.e., buildings with light damage (Di 
Ludovico et al., 2017a) was performed before the reconstruction of building that had 
suffered severe damage (Di Ludovico et al., 2017b), so that slightly damaged buildings 
could be quickly reoccupied by people that were displaced. Technical and economic 
data were obtained for 5,775 residential buildings located in the municipality of 
L'Aquila (outside the historic center) or in one of the 63 neighboring municipalities 
belonging to the area struck by the earthquake. The repair costs processed for the 
assessment of direct damages included emergency response, demolition and debris 
removal, repair and reinforcement works, as well as safety costs, professional fees, and 
relocation costs (Del Vecchio et al., 2020; Del Vecchio et al., 2018). 
Recently, Di Ludovico et al. (2022), assuming a reference cost for a residential 
building of 1,350 €/m2 (Dolce et al., 2021), processed actual repair costs to evaluate 
probability density functions of direct economic losses, expressed as a percentage of 
total cost for r.c. and masonry buildings according to their usability and damage 
condition. Similarly, the cost for supporting the displaced population was calculated, 
including the different types of shelter established during the emergency and 
reconstruction phases. 
Furthermore, Del Vecchio et al. (2020) processed these data for damaged buildings, 
distinguishing between direct repair costs and retrofit costs, and then further 
distinguishing between direct repair costs for structural and nonstructural building 
components. A more complex earthquake-related consequence to assess is the 
business interruption in the productive sector (Donà et al., 2019), which causes 
significant losses to businesses and may also affect the national GDP (gross domestic 
product). 
Moreover, strong earthquakes have tragically shown how much they can be a threat 
for human lives. The factors affecting earthquake mortality were discussed by Coburn 
et al. (1992), particularly deaths from building collapses, which are estimated to cause 
75% of earthquake casualties. The authors propose a calculation to estimate the 
number of people killed by an earthquake, which mainly depends on the number of 
collapsed buildings (DS5), on the average number of people per building and the 
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occupancy rate at the time of the event (which can vary during the day, as well as 
weekly and seasonally), on the building type and extent of the collapse, as well as on 
the effectiveness of search and rescue efforts. The casualty estimation models 
available in the literature were reviewed by Spence and So (2011), who pointed out 
the large uncertainties that characterize this estimation. As part of the development of 
the Global Earthquake Model (GEM), estimates of human casualties at the national 
level were based on empirical casualty models at country-level (Silva et al., 2014).  
Communities are also affected by earthquakes in the form of displaced people who are 
likely to require public shelters and emergency housing. Mannella et al. (2017) used 
data on reconstruction after the L'Aquila earthquake to investigate the timing of 
assistance to the population and the return times of displaced people to their homes. 

2.3. Seismic risk calculation platforms 

Certainly, the estimation of seismic hazard, vulnerability, and exposure are of utmost 
importance when assessing seismic risk. However, it must not be forgotten that these 
three elements ultimately need to find a connection among each other in a pipeline that 
integrates them, for an appropriate seismic damage and risk analysis. 
During these years, several research groups around the world have developed 
earthquake risk assessment tools to estimate seismic damage and loss. A number of 
existing risk software applications are reviewed in Crowley et al. (2010). SELENA, 
SEismic Loss EstimatioN using a logic tree Approach (Molina et al., 2010) is a 
software tool for seismic risk and loss assessment based on the HAZUS methodology 
(National Institute of Building Sciences, 1999; FEMA, 2003). Another open-source 
earthquake hazard and risk assessment tool is the EarthQuake Risk Model (EQRM) 
(Robinson et al., 2005), developed by Geoscience Australia and applicable to the 
Australian country. In addition, Earthquake Loss Estimation Routine (ELER) 
(Hancilar et al., 2010) is a stand-alone application that provides rapid estimation of 
earthquake shaking and damage in the Euro-Mediterranean region. Two tools whose 
source code is available upon request are CEDIM (CEDIM Risk Estimation Tool) 
(Köhler et al., 2006) and Central America Probabilistic Risk Analysis (CAPRA, Gill 
et al., 2009). The CEDIM software was developed by the Center for Disaster 
Management and Risk Reduction Technology in Potsdam, Germany, but has also been 
used for damage and risk analysis in other earthquake-prone areas of the world. On the 
other hand, CAPRA is a multi-hazard damage estimation software, elaborated under a 
World Bank initiative aimed at strengthening institutional capacity for disaster risk 
assessment, understanding, and communication, with the ultimate goal of integrating 
disaster risk information into development policies and programs. CANRISK (Ploeger 
et al., 2016) is a seismic vulnerability assessment tool for buildings in Canada. The 
model combines the HAZUS method with its own method to estimate the number of 
injuries, and it is designed to test the benefits of mitigation strategies. Lastly, Mesgar 
and Jalilvand (2017) developed a scenario-based model to estimate seismic damage to 
residential buildings in Iran, focusing on the city of Sari as a case study. 



State of the art 
____________________________________________________________________________________________________________________________________________________________________ 

 

 37 

The European Centre for Training and Research in Earthquake Engineering (Eucentre) 
has also developed tools implemented in WebGIS platforms for earthquake risk and 
loss scenario assessment, with funding from the Italian Civil Protection Department. 
These platforms consider residential buildings (Faravelli et al., 2017, 2018), school 
buildings (Borzi et al., 2013; Faravelli et al., 2017, 2018), transportation network 
infrastructures (Di Meo et al., 2018; Faravelli et al., 2018), and dams (Bozzoni et al., 
2015; Bozzoni and Lai, 2017). Among the many platforms elaborated by Eucentre, the 
Italian Risk MAps (IRMA) (Borzi et al., 2021b; Figure 2.11) was specifically designed 
upon request of the Italian DPC to provide researchers with an open, common and 
verified risk assessment tool that allows implementing user-defined models of 
fragility, cost and casualties (Dolce et al., 2021). IRMA can evaluate risk by producing 
risk maps in terms of direct economic losses, unusable buildings, and casualties, both 
considering conditional damage (i.e., for a specified return period) or unconditional 
damage (i.e., for a specified time window). In addition, IRMA contains information 
on the ground shaking accelerations (ShakeMaps) of some recent and significant 
Italian earthquakes, and thus allows simulating specific seismic events. 
 

 
Figure 2.11 – User interface of the IRMA platform (Borzi et al., 2021b) 

2.4. Machine learning techniques in earthquake engineering 

Machine learning (ML) has played a central role in many areas of science, finance, 
and engineering (Xie et al., 2020; Salehi and Burgueño, 2018). By definition, ML is a 
field of research that gives computers the ability to learn without being explicitly 
programmed (Samuel, 1959). ML Algorithms can be divided into two main types: 
supervised learning and unsupervised learning. Supervised learning uses prior 
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knowledge about the labeled data set to learn a function that best approximates the 
relationship between input and labeled output in the data. On the other hand, 
unsupervised learning aims to infer the natural structure of a set of data points that 
have no target labels. Depending on the data characteristics (i.e., discrete or 
continuous) and the goals of the task, supervised learning can be further divided into 
classification and regression, while unsupervised learning includes clustering and 
dimensionality reduction. 
Previous studies have explored the applications of ML and other advanced soft 
computing tools in civil engineering, including earthquake engineering. Earthquake 
engineering is an interdisciplinary branch of engineering that describes earthquake 
hazards at the source, describes site impacts and structural response, evaluates seismic 
risk and vulnerability, and assesses seismic protection measures. The numerous topics 
covered by the branch of earthquake engineering that have been covered with the help 
of artificial intelligence (AI) in recent years can be grouped into four categories: 
seismic hazard analysis, system identification and damage detection, seismic 
vulnerability assessment, and structural control for earthquake mitigation. In seismic 
hazard analysis, ML tools are used not only to assess seismic hazard itself, but also to 
evaluate the liquefaction potential of soils and to predict lateral spreading. The second 
topic includes a collection of studies that use ML to replicate a structural system and 
predict its deterministic seismic response, as well as to detect, classify, and evaluate 
seismic damage to civil structures. Third, ML techniques have proven promising in 
seismic fragility assessment (task that typically involves multiple sources of 
uncertainty, as shown in section 2.1.2): in this field, ML methods have been used to 
develop probabilistic seismic demand models (PSDM) and parameterized fragility 
functions. The fourth topic area includes studies related to ML-equipped structural 
control systems that are meant to mitigate the adverse effects of seismic hazard. 
For what concerns the main ML methods used in the field of earthquake engineering, 
the most used are Artificial Neural Networks (ANN), Support Vector Machines 
(SVM), Response Surface Methodology (RSM), Logistic Regression (LR), Decision 
Tree and Random Forests (DT/RF), and hybrid methods that couple ANN with other 
soft computing algorithms, such as fuzzy logic and wavelet analysis. 
An ANN typically consists of three types of layers: input layer, hidden layer, and 
output layer (Perlovsky, 2000). In particular, model variables in the input layer are 
weighted and fed into the hidden layer that consists of a series of nonlinear 
relationships such as sigmoidal functions, which are further weighted and fed into the 
output layer to provide a regression or classification model. Connection weights are 
learned in the forward propagation and updated through a training process that 
minimizes the prediction error, which is typically propagated in the backward direction 
(Bishop, 2006; Murphy, 2012). On the other hand, SVM is a binary classification 
algorithm that uses kernel functions to enable an implicit mapping of the data into a 
high-dimensional feature space. Usually, an optimum margin classifier is carried out 
to construct a separating hyper-plane that maximizes the margin between the 
hyperplane and the support vectors, which comprise the data points that lie closest to 
the hyperplane (Vapnik, 1998). Furthermore, RSM was originally developed as a 
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statistical method that explores the relationship of explanatory variables of a system 
and its responses (Box and Hunter, 1957), and it has been commonly applied in various 
areas because of its simplicity, transparency, and transferability features. The main 
idea of the RSM is to conduct a series of planned experiments to obtain an optimal 
answer, using for example a second-degree polynomial model to accomplish this. Also 
LR is widely used in this field, since it represents one of the most basic methods to 
measure the relationship between the categorical dependent variable and one or more 
independent variables through a logistic distribution function. Namely, the sigmoid 
function is used to estimate the probability that a new data point belongs to one of the 
two classes (Hosmer and Lemeshow, 2000). DT, also named as classification and 
regression tree (CART), is a ML algorithm that recursively partitions the input space 
and defines a local model in each resulting region. A simple regression model can be 
fit to each sub-space in case of regression, while a class can be assigned to each 
subspace in case of classification. A cost function is applied to find the optimal 
partitioning of the data. To overcome the potential overfitting and instability issues 
associated with a single tree, RF constructs a multitude of DTs at training and outputs 
the mean predictions of individual trees (Ho, 1995). As mentioned before, ML 
methods (particularly ANNs) can be combined with other soft computing techniques 
to deal with the complexity and ambiguity in earthquake engineering problems. Such 
a combination provides integrated systems to overcome the limitations of individual 
techniques. ANNs can be for example coupled with fuzzy logic algorithms to take 
advantage of the computational capabilities from both algorithms. For instance, 
imprecise data information, such as linguistic statements, can be transformed into 
numerical data through a fuzzy logic interface in order to train an ANN and make 
decisions (Alvanitopoulos et al., 2010). Moreover, wavelet transform can analyze the 
different frequency components of an earthquake signal with varying levels of details, 
which has emerged as an effective technique that can be embedded in an ANN for 
system identification and damage detection (Adeli and Jiang, 2006; Hung et al., 2003). 
In the following paragraphs, the implementation of different ML techniques in each 
one of the earthquake engineering fields mentioned above is discussed. 

2.4.1. Machine learning in seismic hazard analysis 

In the field of seismic hazard, ground motion prediction has always received much 
interest from the scientific community. Due to the complex nature of seismic events, 
it is challenging to efficiently extract indicative features even from continuously 
acquired seismic data. This has serious implications for the performance of 
conventional seismic prediction models and hinders the development of seismology in 
general. Conventional empirical methods rely on regression analyses to derive 
attenuation equations for various measures of ground motion intensity as functions of 
source, path, and site parameters (Boore and Atkinson, 2008; Boore et al., 2014; 
Douglas, 2003) through ground motion prediction equations (GMPEs). GMPEs 
usually take into account the influence of magnitude, distance, and site effects. 
Selecting an appropriate functional form for the parameters that define a GMPE is not 
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straightforward because it requires not only appropriate identification and inclusion of 
significant independent variables, but also appropriate parametric quantification of the 
relationship between these input variables and the outcome. In this regard, AI 
techniques can be used as powerful statistical tools to overcome these problems (Jiao 
and Alavi, 2020): particularly, the recent implementation of ML methods can remove 
the limitations of these predefined mathematical structures. Studies that use ML to 
predict GMPEs benefited from the availability of the strong-motion database in 
Taiwan, Turkey (Gülkan and Kalkan, 2002), Iran (Amiri et al., 2010), Europe (Akkar 
et al., 2014), the western United States (Ancheta et al., 2014; Chiou et al., 2008), and 
Central America for induced earthquakes (Khosravikia et al., 2018). In general, a 
group of independent parameters can be identified as significant predictors of time-
domain intensity measurements, such as peak ground acceleration (PGA), peak ground 
velocity (PGV), and peak ground displacement (PGD), and frequency-domain 
measurements, such as pseudo-spectral acceleration (PSA). Significant predictors 
include earthquake moment magnitude, source-to-site distance, site average shear 
wave velocity, fault mechanism, and focal depth. Among the ML tools used in GMPEs 
is ANN (Bakhshi et al., 2014; Derras et al., 2014; Dhanya and Raghukanth, 2018; 
Güllü and Erxcelebi, 2007; Kerh and Ting, 2005; Khosravikia et al., 2019), SVR 
(Tezcan and Cheng, 2012; Thomas et al., 2017), DT and CART (Hamze-Ziabari and 
Bakhshpoori, 2018; Kaveh et al., 2016), and hybrid methods (Gandomi et al., 2011; 
Alavi and Gandomi, 2011; Mohammadnejad et al., 2012; Akhani et al., 2019). 
Significant improvements have been made in several aspects to increase the accuracy 
and generalizability of ML models in GMPEs. Particularly, of fundamental importance 
was the creation of a comprehensive ground motion database, namely the NGA Project 
(Next Generation of Ground-Motion Attenuation Models) strong motion database 
(Chiou et al., 2008), which contains 3,551 ground motion records of 173 earthquakes 
with magnitudes ranging from 4.2 to 7.9. Many works made use of the NGA database, 
which allowed a better validation and testing (Alavi et al., 2011; Alavi and Gandomi, 
2011), a separate testing procedure on a different motion database to check the 
generalization ability of the model (Gandomi et al., 2011; Thomas et al., 2016, 2017), 
and a significant improvement to ML model performance (Akhani et al., 2019; Alavi 
and Gandomi, 2011; Gandomi et al., 2011; Hamze-Ziabari and Bakhshpoori, 2018; 
Mohammadnejad et al., 2012; Thomas et al., 2016). 
In contrast to GMPEs, other studies have focused on the use of ML algorithms for 
probabilistic seismic hazard analysis. Alimoradi and Beck (2015) used principal 
component analysis PCA (Jolliffe, 2002) to extract a set of orthonormal basis vectors 
that capture the predictive variations in earthquake wave time histories. 
Not only has ground motion prediction been investigated with the help of ML 
techniques, but also soil liquefaction, since significant structural damage has been 
caused by this phenomenon during historical earthquake events (Bird et al., 2006; 
Cubrinovski et al., 2014). Particularly, research includes work that use pattern 
recognition (PR) tools to classify the occurrence or non-occurrence of soil 
liquefaction, as well as regression techniques to predict liquefaction-induced lateral 
spreading over a free surface. Traditionally, empirical approaches have used two-
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dimensional plots to visually identify the boundary curve separating liquefaction and 
non-liquefaction (Boulanger and Idriss, 2014; Idriss and Boulanger, 2006; Moss et al., 
2006). In this context, the techniques of ML can surpass these empirical studies by 
more objectively capturing the nonlinear and multidimensional relationship between 
critical inputs and soil liquefaction initiation. Significant studies in this area include 
implementations of SVM (Goh and Goh, 2007; Pal, 2006), ANN (Goh, 1994, 1996; 
Hanna et al., 2007; Juang and Chen, 1999; Ramakrishnan et al., 2008; Ülgen and 
Engin, 2007), a combination of kernel discriminant analysis with SVM (Hoang and 
Bui, 2018), a combination of ANN and RSM (Pirhadi et al., 2018), and RF (Kohestani 
and Ardakani, 2015). Another related issue of soil liquefaction is the liquefaction-
induced lateral spread: predicting the magnitude of lateral displacement during soil 
liquefaction is a complex problem. A variety of influencing factors play a role in lateral 
spreading, including earthquake magnitude, distance between fault and site, and local 
soil profile information such as soil slope and the particle sizes of liquefiable sediments 
(Bartlett and Youd, 1995). Following Youd et al. (2002), who first used multilinear 
regression (MLR) to develop predictive equations, several ML models have been 
developed to improve the prediction of lateral displacement. These models use ANN 
(Baziar and Ghorbani, 2005; Chiru-Danzer et al., 2001; Wang and Rahman, 1999), a 
hybrid neuro-fuzzy method (García et al., 2008), SVR (Oommen and Baise, 2010), RF 
(Liu and Tesfamariam, 2012), and multilayer perceptrons (MLPs) with adaptive 
neuro-fuzzy inference systems (ANFIS) (Kaya, 2016). 

2.4.2. Machine learning in seismic vulnerability assessment 

In the field of seismic vulnerability, ML methods have proved promising in facilitating 
the development of fragility curves. Especially for articulated analytical methods, time 
and effort can be saved as fewer numerical simulations are required to cover the 
distribution ranges for a large number of uncertain parameters. In this regard, many 
works have made use of RSMs, including response surface with random block effects 
(Buratti et al., 2010), dual response surface (Perotti et al., 2013), and RSM with 
polynomial basis functions (De Felice and Giannini, 2010; De Grandis et al., 2009; 
Liel et al., 2009; Pan et al., 2007; Park and Towashiraporn, 2014; Rajeev and 
Tesfamariam, 2012; Ravi Kiran et al., 2019; Ricci et al., 2013; Saha et al., 2016; Seo 
et al., 2012; Seo and Linzell, 2010, 2012, 2013; Seo and Park, 2017; Verderame et al., 
2014). Stepwise regression and other regularization algorithms also have been used in 
conjunction with RSMs to identify the most informative predictors. For example, Ebad 
Sichani et al. (2018) use a stepwise RSM to create probabilistic models to be used in 
seismic fragility analyses for dry concrete tanks that are prone to sliding, shaking, and 
swaying during seismic events. Xie and DesRoches (2019) tested regression models 
for probabilistic seismic demand analysis of California freeway bridges. In addition to 
RSMs, multi-predictor models have been developed using ANNs (Calabrese and Lai, 
2013; Lagaros et al., 2009; Lagaros and Fragiadakis, 2007; Liu and Zhang, 2018; 
Mitropoulou and Papadrakakis, 2011; Pang et al., 2014; Wang et al., 2018; Ferrario et 
al., 2017), SVM (Ghosh et al., 2018; Huang et al, 2017; Mahmoudi and Chouinard, 
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2016), Bayes classifiers (Hariri-Ardebili and Pourkamali-Anaraki, 2018), and RF 
(Mangalathu and Jeon, 2019b). 
Subsequently, Monte Carlo simulations can be used to develop multidimensional 
fragility functions. Such fragility models usually do not have an explicit mathematical 
expression and cannot be easily reproduced. To address this problem, researchers have 
used an alternative approach to compare demand to capacity and generate binary 
survival and failure samples from which additional models are trained (often using the 
LR model) to develop a parameterized fragility model. Relevant studies in this area 
have developed LR-based fragility models for: highway bridges (Dukes et al., 2018; 
Ghosh et al., 2013, 2014; Ghosh and Sood, 2016; Jeon et al., 2019; Kameshwar and 
Padgett, 2014, 2018; Mangalathu et al., 2018a, 2018b), single degree-of-freedom 
structures on liquefiable sand (Koutsourelakis, 2010), rigid blocks with safety features 
(Contento et al., 2017), and r.c. shear walls (Yazdi et al., 2016). In particular, fragility 
models based on LR are expressed through functions that explicitly quantify the 
influences of the earthquake and other significant structural parameters, enabling 
fragility analysis across multiple scales. 
Other studies have worked specifically on the refinement of machine learning tools to 
produce rapid vulnerability assessments of existing buildings, also at territorial scales. 
Particularly, Ruggieri et al. (2021) proposed a machine learning based framework 
called VULMA (VULnerability analysis using MAchine-learning), which is supposed 
to foster vulnerability analysis of existing buildings with the aim to provide an 
indication of seismic vulnerability by using available photographs properly processed. 
In order to do so, images of buildings are collected, which are then labelled and stored. 
Machine learning models are then trained for image classification, and subsequently 
for assigning a vulnerability index to the buildings that are analyzed. Cardellicchio et 
al. (2021) also created View VULMA, a dataset specifically designed to support 
vulnerability analyses of existing buildings. View VULMA is meant to be used as a 
training set for a transfer-learning-based automated tool to rapidly assess the 
vulnerability of existing buildings based on individual images. Such automatic tools 
are becoming more and more popular in the research world, and they are opening new 
scenarios in the field of vulnerability assessment procedures and risk mitigation 
strategies. 

2.4.3. Machine learning in system identification and damage detection 

The field of system identification and damage detection consists of a variety of studies 
that address problems ranging from classifying failure from laboratory tests to 
detecting structural damage using satellite imagery. The topic area of system 
identification encompasses a broad branch of studies that develop ML-based models 
to emulate a structural system and predict its seismic response. The existing literature 
applies various ML methods to data sets from laboratory tests and numerical 
simulations to determine the seismic response of both structural components and 
structural systems. First, laboratory tests on reinforced concrete structures have 
provided a source of data that allow ML to determine failure modes, strength, 
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capacities, and constitutive behavior. In this regard, many studies have focused on the 
prediction of failure modes and shear strength for beam-column connections. For 
example, Mitra et al. (2011) use LR to categorize the non-ductile shear failure of 
connections versus ductile failure of beam-column connections internally. Mangalathu 
and Jeon (2018) apply a group of ML tools such as LR, K-nearest neighbors, Bayes 
classification, SVM, and RF for classification and regression to classify failure to 
predict shear strength. A similar group of ML tools is used by Mangalathu and Jeon 
(2019a) to predict the bending, bending-shear, and shear failure modes of bridge piers. 
Furthermore, image processing algorithms involving image segmentation, feature 
extraction, and nonlinear regression analysis are developed by Lattanzi et al. (2015) to 
estimate the peak drift of bridge piers using lateral load test data. Recently, a multi-
output least squares support vector machine algorithm (MLS-SVMR) has been 
implemented by Luo and Paal (2018) to construct bilinear force-displacement 
constitutive relationships for r.c. columns. A similar study has been conducted by Luo 
and Paal (2019) to predict the drift capacity of r.c. columns using a locally weighted 
least square (SVR) approach. In addition, a group of six ML algorithms is used by 
Huang and Burton (2019) to classify the in-plane failure modes of r.c. frame structures 
with masonry infill, and 114 test results of infill frame specimens are examined. Apart 
from r.c. structures, Farfani et al. (2015) use the centrifuge test data of a soil-pile-
structure system to train, test, and validate ANN and SVM models to predict the 
dynamic properties and earthquake behavior of the pile structure. Moreover, data sets 
from dynamic cyclic tests and shake table tests are used to develop ML models for an 
actively controlled frame (Bani-Hani et al., 1999a, 1999b), a full-scale nonlinear 
viscous damper (Yun et al., 2008), and a five-story structure (Zhang et al., 2008). 
Hybrid methods combining ANN with wavelet analysis and fuzzy logic have also been 
investigated to simulate the seismic behavior of building frames (Adeli and Jiang, 
2006; Hung et al., 2003). 
A second group of studies in the area of system identification deals with datasets from 
numerical simulations where the data inputs (structural parameters and ground 
motions) and outputs (structural responses) allow ML methods to create a relational 
map that replicates the structural behavior. To this end, ANNs have proven to be an 
effective substitute for finite element modeling of civil structures since they can 
approximate complex structures without being constrained by specific shapes. Starting 
from Conte et al. (1994), who use an ANN to learn and simulate the linear elastic 
behavior of multistory buildings, ANNs have been used in the identification of a 
variety of structures, including building frames (Joghataie and Farrokh, 2008; Xu et 
al., 2004), concrete gravity dams (Karimi et al., 2010), prestressed concrete bridges 
(Jeng and Mo, 2004), embankments (Tsompanakis et al., 2009), and column splices in 
steel frames of different heights (Akbas et al., 2011). 
In the last decades, also the topic of damage detection has gained a lot of popularity, 
going so far as to include a group of studies that develop ML models to detect, classify, 
and evaluate seismic damage to structures. Firstly, several studies rely on post-
earthquake linguistic or photographic records to predict seismic damage. A major 
challenge in this case is addressing damage information in linguistic forms. To this 
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end, De Stefano et al. (1999) use ANN and Bayesian classification to predict seismic 
damage mechanisms on churches. Fuzzy logic models have been used in a variety of 
studies that convert physical descriptions of seismic damage into mathematical model 
parameters (Allali et al., 2018; Alvanitopoulos et al., 2010; Carreño et al., 2010; 
Demartinos and Dritsos, 2006; Elwood and Corotis, 2015; Silva and Garcia, 2001). 
Recently, the linguistic damage datasets from the 2014 South Napa earthquake has 
been used to develop a building damage classification method (Mangalathu and 
Burton, 2019). Moreover, the damaged r.c. column images collected after the 2010 
Haiti earthquake have been used by German et al. (2012) to develop a method that 
automatically detects spalled areas on the column surface and measures the 
characteristics of the spalls. This damage detection method has been integrated into a 
comprehensive framework that links column damage to the residual bearing capacity 
and fragility curves of r.c. structures after an earthquake (German et al., 2013; Paal et 
al., 2014). In addition, ML methods have been implemented to allow the detection and 
classification of building damage from satellite imagery and digital maps (Gong et al., 
2016; Peyk-Herfeh and Shahbahrami, 2014). Gao and Mosalam (2018) also created an 
image database called "Structural ImageNet" on which ML is applied to detect 
building damage caused by earthquakes and other natural hazards. Much of the 
existing literature uses test data to detect seismic damage to buildings. In particular, 
ANNs are often trained with respect to the reference system in its undamaged state, 
while the response data from the damaged state of the same system is fed into the same 
model. As a result, the variation of the prediction error between the two states can 
serve as a reference to quantify the structural damage in a non-parametric way (Huang 
et al., 2003; Nakamura et al., 1998). Some other studies have improved this approach 
to allow parametric quantification of structural damage, e.g., damage quantified by 
changing stiffness values (Wu et al., 2002; Xu et al., 2005). In a broader context, ANN 
models have been developed to predict the seismic response for a variety of structures 
in order to draw conclusions about their damage states. Related studies in this area 
include the rapid determination of earthquake damage to ordinary wood-frame houses 
in Japan (Molas and Yamazaki, 1995), the assessment of earthquake susceptibility of 
industrial chemical plants with different topologies (Aoki et al., 2002), the prediction 
of the damage index of r.c. frames (De Lautour and Omenzetter, 2009; Morfidis and 
Kostinakis, 2017, 2018), the evaluation of earthquake damage to concrete shear walls 
(Vafaei et al., 2013) and cantilevered structures (Vafaei et al., 2014), and lastly global 
damage classification of r.c. slab-column frames by combining ANN with SVM (Kia 
and Sensoy, 2014). ML has also been used by Burton et al. (2017), by Zhang and 
Burton (2019), and by Zhang et al. (2018) to link building seismic damage patterns to 
residual bearing capacity indices (i.e., the capacity ratio between intact and damaged 
buildings). Their proposed framework integrates seismic demand analysis, building 
component damage simulation, and residual bearing capacity estimation for both intact 
and damaged buildings. Furthermore, Ferreira et al. (2017) discuss the use of artificial 
intelligence-based techniques for seismic damage estimation as a means of improving 
the accuracy of empirical methods. To this end, damage data collected after the 1998 
earthquake in the Azores (Portugal) are used to perform a comparative analysis 
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between damage levels obtained with a classical damage formulation and an 
innovative approach based on ANNs. Harirchian et al. (2021) investigate earthquake 
susceptibility by combining six building performance variables that can be used for 
optimal prediction of damage state of reinforced concrete buildings using ANNs. For 
this purpose, a multilayer perceptron network is trained and optimized using a database 
of 484 damaged buildings from the Düzce earthquake in Turkey and two different 
databases of damaged buildings from the Nepal and Ecuador earthquakes. Hansapinyo 
et al. (2020) developed a new approach using an artificial intelligence system, called 
adaptive neuro-fuzzy inference system to predict building damage at urban scale 
considering input uncertainties. In Xu et al. (2022), an accurate real-time seismic 
damage prediction method based on machine learning algorithms and multiple 
intensity measures is proposed. 

2.4.4. Machine learning in structural control for seismic effect mitigation 

Previous studies have demonstrated the effectiveness of control devices in mitigating 
earthquake-induced structural vibrations (Housner et al., 1997). Essentially, structural 
control requires the identification and analysis of various components of the controlled 
system: this includes the assessment of actuator dynamics, of structure non-linearities, 
and of real-time measurements. Compared to conventional control methods that are 
programmed to perform a specific task, the inclusion of ML allows controllers to deal 
with nonlinear mappings, incorporate delays, and recover from partial system failure 
(Wen et al., 1995). These new methods can thus make structural control more effective 
in mitigating the adverse effects of earthquake hazards. 
Numerous studies have investigated the usefulness of ANNs in developing active 
control systems to mitigate seismic effects on buildings. For example, studies have 
elaborated a neural controller (i.e., the actuator controlled by the neural network 
instead of an ad hoc control algorithm) which learns the transfer function between the 
signal of the actuator and the output of the sensors that measure the response of the 
structure (Bani-Hani et al., 1999a, 1999b; Bani-Hani and Ghaboussi, 1998; Ghaboussi 
and Joghataie, 1995). After the neural controller is well trained, it can generate 
appropriate signals for the actuator based on the feedback from the sensors. The 
concept of this neuro-controller has been further developed in several studies that 
improve the efficiency and robustness of the active control system (Brown and Yang, 
2001; Khodabandolehlou et al., 2018; Rao and Datta, 2006; Subasri et al., 2014; Yakut 
and Alli, 2011). On the other hand, semiactive control devices can adapt to changing 
loading conditions during earthquakes similarly to fully active systems, but without 
requiring access to large energy sources. In this field, there has been a surge of interest 
in the use of ANNs. Contributions include ANN models to represent the nonlinear 
differential equations and simulate the dynamic behavior of dampers (Chang and 
Roschke, 1998), ANN models that predict the required stress at the desired force of 
dampers (Xia, 2003), as well as the use of ANNs to mimic the dynamics of the damper 
and induce the control of the seismic shaking of non-isolated and isolated structures 
(Bani-Hani and Sheban, 2006; Xu et al., 2003). In a study by Lee et al. (2006), a neuro-
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controller is trained to minimize the cost function that includes both structural 
responses and control signals, and an algorithm is used to activate the damper and 
produce the desired control force. This work has then been modified to use modal 
coordinates as inputs to the neuro-controller, which facilitate controller design (Lee et 
al., 2008). In addition, a hybrid neuro-fuzzy control strategy for dampers has been 
proposed by Xu and Guo (2008): the algorithm tackles the time delay problem using 
an ANN and reduces the response time of the control currents by fuzzy control. The 
control efficiency and robustness of the implementation of neuro-controllers for 
dampers has been further verified by Bozorgvar and Zahrai (2019) by combining the 
fuzzy inference system with ANNs. In addition to dampers, ANNs have been used to 
model elastomer isolators (Fu et al., 2016) and to control the response of a structure 
isolated by a curved surface device (Krishnamoorthy et al., 2017). 
The last sections explored the relevance of various ML techniques to earthquake 
engineering applications. It has been shown that ML techniques are able to learn and 
derive relationships between parameters, thus enabling to address various problems in 
earthquake engineering that are difficult or impossible to solve using traditional 
methods. As stated before, the blending of the two fields of ML and earthquake 
engineering is a new but increasingly dynamic area for high-impact research in which 
a wide range of topics can be explored. Despite the growing number of studies each 
year, the application of ML in earthquake engineering is still at an early stage 
compared to other disciplines. However, supported by the next generation of data 
exchange and sensor technologies, ML has great promise to revolutionize the 
earthquake engineering field. 

2.5. Automatic retrieval of building features 

Even though direct surveys represent valid tools for a complete and accurate exposure 
analysis (as presented in section 2.1.3), the fact that these are often not sustainable in 
terms of economic resources and time limits has already been pointed out. 
Therefore, some studies are trying to retrieve the same data that can be gathered 
through direct surveys with the help of new technological tools and artificial 
intelligence methods. The general concept is that these new methods are to some extent 
able to simulate expeditious surveys from the outside for individual buildings but also 
at very large scales, thus making it possible to overcome the limitations that those 
surveys often pose. Remote sensing and artificial intelligence techniques can indeed 
be used to extract building information from street or satellite imagery, in order to 
generate building inventories of cities and to provide the data needed for disaster and 
risk management planning and simulation. 
In the following sections, particular attention is paid to tools that allow the remote 
inspection of urban areas, such as OpenStreetMap and Google Street View, as well as 
previous studies for the automatic retrieval of building characteristics from images 
with the help of machine learning techniques. The studies presented below do not 
necessarily refer to projects belonging to the field of earthquake engineering or risk 
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assessment; however, they all have in common the aim of evaluating the building 
exposure of an area, or at least specific features that contribute to the definition of 
exposure, which is in any case essential in the risk calculation process. 

2.5.1. OpenStreetMap (OSM) 

OpenStreetMap (OSM) is a collaborative project that has the aim to create a freely 
editable geographic database of the world. Thousands of members around the world 
work together to create an accurate, detailed, and up-to-date map characterized by 
continuous contribution: the OSM community collects data on roads, railroads, trails, 
waterways, bicycle routes, as well as on features along the roads, such as businesses, 
buildings (private and public), parks and natural areas, land use, cultural resources, 
and recreational facilities. There are more than 43 categories and hundreds of 
individual types of data. Users can collect data using manual surveys, GPS equipment, 
aerial photography and other free sources, or use their own local knowledge of the 
area. This crowdsourced data is then made available under the Open Database License. 
Once collected, the data is entered into the database by uploading it to the project's 
website along with the appropriate attribute data. Some contributors take on the task 
of mapping entire cities, while a large number of other users contribute with 
corrections and small additions to the map. 
OpenStreetMap uses a topological data structure with four core elements (also known 
as data primitives). Firstly, nodes are points with a geographic location stored as 
coordinates (latitude and longitude) according to WGS 84. They are used to represent 
map features of no size, such as points of interest or mountain peaks. Secondly, ways 
are ordered lists of nodes that represent a polyline or a polygon if they form a closed 
loop. They are used to represent linear features such as roads and rivers, as well as 
areas such as forests, parks, parking lots, and lakes. Thirdly, relationships are ordered 
lists of nodes or paths. Examples include turn restrictions on roads, routes that span 
multiple existing paths, and areas with holes. Lastly, tags are key-value pairs which 
are used to store metadata about map objects (e.g., their type, name, and physical 
properties). Tags are not free-standing, but are always bound to an object, i.e., to a 
node, a way, or a relationship. A comprehensive ontology of map features is 
maintained on the wiki page https://wiki.openstreetmap.org/wiki/Map_features, where 
all the meanings of tags can be found. 
OpenStreetMap was developed in 2004 by Steve Coast in the United Kingdom: based 
on https://www.openstreetmap.org/stats/data_stats.html, OSM now counts more than 
8.3 million registered users (dated January 10, 2022), 7.4 billion nodes (dated January 
10, 2022), approximately 4 million map changes per day (year 2021) and 1.75 million 
different contributors (year 2021). Some examples of OSM map completeness are 
shown worldwide in Figure 2.12 and Figure 2.13. 
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Figure 2.12 - Towns, cities and villages mapped in OpenStreetMap (Moosavi, 2017) 

 

 
Figure 2.13 - Fraction of streets for each country in the OSM database (Barrington-Leigh and Millard-Ball, 2017) 

OpenStreetMap has proved to be an extremely useful tool in many academic and 
research fields. Indeed, OSM has been taken into consideration by universities and 
other research institutions, particularly in the fields of geomatics, neogeography, 
volunteered geo-information (VGI), digital cartography, participatory geoinformatics, 
and many others. This interest is mainly due to the volume and variety of data offered 
by OSM products, that can lead to a wide range of their uses. As a matter of fact, many 
publications that leverage information retrieved and gathered through OSM services 
have been issued. Some examples of papers are presented here. For instance, Albert et 
al. (2017) analyze patterns in land use in urban neighborhoods using large-scale 
satellite imagery data available from OSM, Biljecki at al. (2017) show that it is 
possible to predict the height of buildings from 2D data from their footprints and 
attributes available in OpenStreetMap, while Castagno and Atkins (2018) propose a 
method to automatically label a building roof shape from publicly available 
OpenStreetMap data. Furthermore, Fleischmann et al. (2020) present the so-called 
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Morphological Tessellation (MT), a method that derives a spatial unit named 
Morphological Cell (MC) from available data on building footprints extracted from 
OpenStreetMap and tests its informational value to capture spatial properties of urban 
form, and this led Fleischmann (2019) to develop momepy, an open-source and 
expandable Python toolkit which enables a systematic in-depth analysis of urban form, 
including a wide range of measurable features. Hecht et al. (2015) compare different 
topographic databases, including OpenStreetMap, to automatically identify building 
types. Iannelli and Dell’Acqua (2017) propose a system for large-scale, systematic 
scanning of street-level pictures intended to map height in urban buildings, starting 
from footprints retrieved from OSM, while Kang et al. (2018) combine street view 
pictures with remote sensing and OpenStreetMap images to classify façade structures. 
Maragno et al. (2020) developed and tested a methodology for heat stress vulnerability 
and risk assessment at the neighborhood scale to support designers, planners, and 
decision makers in developing and implementing adaptation strategies and measures 
at the local level, combining high-resolution spatial information and crowdsourcing 
geospatial data derived from OSM to define sensitivity, vulnerability, exposure, and 
risk indicators. Moosavi (2017) takes advantage of the urban data collections 
contained in OpenStreetMap and the advancements in machine learning methods to 
automatically investigate the hierarchical structures of urban forms. Pittore and 
Wieland (2013) propose an approach based on different imaging technologies, 
including OpenStreetMap images, and a Bayesian integration scheme to characterize 
exposure and vulnerability models, to carry out seismic risk assessments. Raimbault 
and Perret (2019) propose a method to analyze urban configurations at a large scale, 
typically for districts generated as OpenStreetMap layout samples, with 
morphogenesis models, and they compare them to real configurations according to 
morphological indicators. In another paper, Rosser et al. (2019) demonstrate that in 
urban areas OpenStreetMap building footprints can have a high-level of completeness 
and geometric similarities to official map data, making them suitable to be used to 
infer the age of buildings. Schirmer and Axhausen (2016) give an overview of 
quantitative descriptions of urban morphology, basing their work on a data model that 
can be reproducible in any study area. Their model relies on objects representing the 
built environment in the form of built structures and the connecting street networks, 
which are available in OpenStreetMap. Wang et al. (2021) present a framework for 
regional scale building information generation and gathering to support regional risk 
analyses, by acquiring different types of data from multiple sources and fusing them 
to semantically profile each building in a city. In this framework, basic information of 
individual buildings, such as address, footprint, number of stories, construction year, 
structure type, and occupancy is collected from available sources that include crowd 
sourcing platforms, such as OpenStreetMap. Wieland et al. (2012) use freely available 
georeferenced street data from OpenStreetMap as a basis for estimating building 
inventories and carrying out rapid seismic vulnerability assessments, which can be 
applied to different urban environments and be efficiently scaled depending on the 
desired level of detail. In Zhang et al. (2018), a data-driven machine learning approach 
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is proposed to measure how people perceive a place in a large-scale urban region, 
based on the road network descriptions obtained from the OpenStreetMap. 
Furthermore, OpenStreetMap-based projects are currently being developed all over 
the world. For example, the special business project “An Open-source System for 
Building-height Estimation using Street-view Images, Deep Learning, and Building 
Footprints” carried out by Ala’a Al-Habashna was released on December 8, 2020 and 
published by Statistics Canada. Within this project, an open-source system for 
automatically estimating building heights from OpenStreetMap using Deep Learning 
advanced image processing techniques and geospatial data was developed, with the 
aim of enriching the Open Database of Buildings (ODB) published by Statistics 
Canada as part of the Linkable Open Data Environment (LODE). Another example is 
represented by the European project BELICE (Building Experience to Lead Initial 
Assessment in Challenging Emergency), started in 2018. This project uses OSM data 
when census ones are missing, in order to sectorize different areas that need to be 
studied and examined for the purposes of emergency management in case of 
earthquakes. 
The fact that so many studies have used OSM maps is explained by its competitiveness 
both in terms of data completeness and update status. This can be verified through 
different metrics like the amount of road distance mapped, or the number of objects 
(points of interest, buildings, etc.) detected. The fact that these maps are globally 
crowd-sourced ensures continuous improvements and updates, and reflects things like 
neighborhood development, ongoing constructions, or even the results of recent 
natural disasters. 

2.5.2. Google Street View (GSV) 

Google Street View is a feature of Google Maps and Google Earth that provides 360º 
horizontal and 160º vertical panoramic views along streets. The pictures are captured 
each 10-20 meters, and they allow users to see parts of cities around the world at 
ground level. It was launched in 2007 in several cities in the United States and has 
since then expanded worldwide. The list of currently supported cities for Street View 
is available at https://www.google.com/streetview/explore/. Even though other 
possible services that offer street view pictures are available, such as for example 
Mapillary and OpenStreetCam, Google Street View remains the most widespread tool, 
especially in terms of coverage. As a matter of fact, in May 2017 Google announced 
that it had captured more than 16 million kilometers of street view imagery in 83 
countries all over the world (Figure 2.14). As far as Italy is concerned, this service has 
been available since October 29, 2008, when the cities of Rome, Milan, Florence, 
Como and the lake of Como were included. Since March 18, 2009, Street View has 
been available in Irpinia, the central part of Lazio, the western part of Lombardia, and 
the coastal part of Campania, including Naples, the Amalfi Coast, Salerno and the Irno 
Valley, as well as the cities of Avellino, Benevento (historic center only), Turin, 
Genova, Udine, Parma, Bologna, Livorno, Arezzo, Perugia, L'Aquila, Bari, Brindisi, 
Lecce, Gallipoli, Reggio Calabria, Catania, and Cagliari. Since January 21, 2010, the 
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Italian coverage of Street View has expanded exponentially: almost all the regions of 
Southern Italy (Sicilia, Sardinia, Calabria, Basilicata, Apulia, Campania, Abruzzo, and 
Molise) are available, as well as many areas of Friuli-Venezia Giulia and Veneto, in 
particular roads and motorways, part of the towns of Jesolo and Verona and the 
Venetian towns of Mestre and Marghera, and the state roads of the Marche Region. 
Since July 1, 2011, coverage has also extended to the province of Viterbo in the 
northern part of Lazio. Since November 14, 2013, the city of Venice, including the 
islands, has been completely covered. Since 2015, the coverage of Italy is total and 
also includes some closed places such as museums and commercial activities. 
 

 
 

 
 

Figure 2.14 - Google Street View worldwide coverage 
(https://en.wikipedia.org/wiki/Coverage_of_Google_Street_View) 

Street-view images have already been used for data extraction in multiple applications. 
In Smith et al. (2013), machine learning and computer vision techniques are used to 
extract information about the presence and quality of sidewalks in cities. Geometric 
context and presence of lanes are implemented within a random forest classifier to 
identify sidewalk segments from Google Street View images, in order to support urban 
planners in creating pedestrian-friendly and sustainable cities. Many studies have then 
exploited Google Street View images to gather information about building heights 
(Mou and Zhu, 2018; Díaz et al., 2016; Yuan and Cheriyadat, 2016; Zhao et al., 2019; 
Iannelli and Dell’Acqua, 2017). Cai et al. (2018) perform the quantification of street-
level urban greenery by collecting 500 street images from Google Street View and 
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other 500 images of cityscapes from vehicle-mounted cameras. Other work has used a 
considerable amount of Google Street View images to identify urban elements (Zhang 
et al., 2018) or to classify images of building façades into different utility classes 
(Laupheimar and Haala, 2018). Yan and Huang (2022) derive information on building 
height from openly available Google Street View images by using single view 
metrology. This method takes advantage of deep neural networks to extract a set of 
features – such as vanishing points, line segments, and semantic segmentation maps – 
and then estimates the height from single street view images, allowing large-scale 
estimations of building height, especially in areas in which conventional remote 
sensing data are difficult to obtain. Many other studies that leverage Google Street 
View pictures are also presented in the following sections 

2.5.3. Building detection, class and typology 

Automatic extraction of building characteristics from remote sensing data is an 
attractive research topic useful for various applications such as risk assessment and 
urban planning. One of the main goal of the research that can be found in this field is 
the automatic classification of buildings from their images (satellite images or street 
view pictures), in order to label buildings at the individual scale or more often at a 
territorial scale. 
In this framework, Kang et al. (2018) propose a method to elaborate land-use 
classification maps based on the functionality of individual buildings. The method is 
based on Convolutional Neural Networks (CNNs) that classify façade structures from 
street views in addition to remote sensing images that show roof structures. Maltezos 
et al. (2017) use a similar approach for building data extraction, yet considering 
orthoimages. Moreover, Wen at al. (2019) propose an improved Mask Region 
Convolutional Neural Network (Mask R-CNN) method that can detect bounding boxes 
of buildings and delineate them from complex backgrounds. Laupheimer and Haala 
(2018) have developed an approach for classifying images of building façades into 
different use classes using CNNs to provide semantic information for 3D city models 
in an automated way, while Llamas et al. (2017) apply CNNs to the classification of 
architectural heritage images. In addition, supervised machine learning-based methods 
are employed to identify buildings from high-resolution remote sensing images (Guo 
et al., 2016; Bezak, 2016). Hecht et al. (2015) propose a data-driven approach to 
automatically classify building footprints using pattern recognition and machine 
learning techniques, while Castagno and Atkins (2018) propose a method to 
automatically label roof shapes of buildings from publicly available data from GIS, 
using satellite imagery and airborne LiDAR data to train and test CNNs. Also 
Hermosilla et al. (2011) use high spatial resolution images and LiDAR data, in this 
case to automatically detect and localize buildings. Dubois et al. (2016) focus on the 
detection and extraction of building overlays in interferometric synthetic-aperture 
radar (InSAR) images. In particular, geometric shapes are analyzed to determine 
geometric parameters such as length, width and height. Fabris et al. (2013) use 
aerophotogrammetry (i.e., photographs taken from aircraft for land surveying) to 
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detect building roofs and therefore to retrieve information for estimating their 
structural characteristics, such as wall thicknesses and other geometric features. 
Taffarel et al. (2016) and Campostrini et al. (2018) have worked on large-scale a priori 
estimation of building parameters that cannot be measured directly from the outside of 
the buildings by elaborating values that can be measured from the outside. By using a 
Bayesian approach, the original hypotheses can be updated based on new data 
collected during the field surveys. 

2.5.4. Building height 

Another important feature that past and ongoing studies have been trying to retrieve 
automatically is building height, in terms of number of stories or meters. Elevation 
data are indeed an essential but often unavailable component for creating 3D city 
models that may allow city reconstruction, urban planning, navigation, and emergency 
management. 
There have been studies that have used image processing techniques in order to 
retrieve height information: for example, Yuan and Cheriyadat (2016) propose a 
method that integrates two widely available data sources, building footprints from 2D 
maps and street imagery, to derive building heights and façade masks. Also Biljecki 
et al. (2017) manage to create 3D city models from 2D data with machine learning 
techniques (random forests). Dìaz and Arguello (2016) estimate the average height of 
buildings from Google Street-View pictures using the single view measurement 
technique (Criminisi et al., 2000). Fully automated 3D building reconstruction from 
spaceborne point cloud data is explored by Partovi et al. (2014), in order to achieve 
high quality Digital Surface Models (DSM). Similarly, Misra et al. (2018) investigate 
the feasibility of using open DSMs, such as the AW3D30, ASTER, and SRTM 
datasets, for digital building height model extraction. Furthermore, Iannelli and 
Dell’Acqua (2017) use Deep Learning algorithms to develop a system for large-scale, 
systematic scanning of street-level images to detect the number of floors in urban 
buildings. Zhao et al. (2019) propose CBHE (Corner-based Building Height 
Estimation), a building height estimation algorithm that considers both building 
corners and roof lines from 2D maps and street view images. Also the detection of 
windows can be crucial for the computation of the number of floors: as a matter of 
fact, the detection of the rows of doors or windows can lead to a good estimate of the 
building height. In this context, Neuhausen et al. (2018) propose a system for detecting 
windows in façade images, which consists in a sliding detector that employs a cascade 
classifier to detect windows in image patches. 
Another way to retrieve information about the number of stories of a building is 
considering its shadow, which can be seen in satellite images. The shadows cast by 
buildings in urban scenes can be processed and used to estimate building heights. 
Several papers have used this technique: among others, Liasis and Stavrou (2016) use 
the spectral and spatial features of the satellite image to develop a filter to detect the 
shadows, whose length is then used to approximate the building height. Also 
Abdelrahim et al. (2017) use shadow detection along with geo-referenced information 
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to estimate the structural dimension of man-made infrastructure, as well as Kadhim 
and Mourshed (2019), who automatically estimate building heights from their 
shadows in very high resolution (VHR) multispectral images. Furthermore, Arevalo et 
al. (2006) and Saadi and Bensaibi (2014) developed an automatic building height 
detection technique based on the analysis of building shadows from Quick Bird 
imagery (high-resolution commercial Earth observation satellite). Other studies that 
use shadow detection in satellite images to estimate building heights can be found in 
Comber et al. (2012), Raju et al. (2014), and Zhou et al. (2019). 

2.5.5. Building material 

The recognition of semantic information such as building materials is also 
fundamental, particularly for the monitoring of construction progress, for building 
information modeling, and for the evaluation of vulnerability. Recent studies have 
investigated the possibility of detecting building materials from images. Specifically, 
Dimitrov and Golpavar-Fard (2014) propose an image processing-based method for 
material classification from single images, where material is classified using SVM. In 
addition, Rashidi et al. (2015) have conducted a comparative study to evaluate the 
performance of different machine learning methods (Multilayer Perceptron, Radial 
Basis Function, and SVM) for recognizing common categories of building materials. 

2.5.6. Building age 

The age of a building affects its shape and the composition of its building fabric, and 
this is crucial for drawing conclusions about its vulnerability and efficiency. 
Furthermore, determining the service life of a structure is a critical step for the 
evaluation of the possible measures that might be necessary for its maintenance. 
However, often these data are unknown. Therefore, past work has developed methods 
to recognize the age of buildings from satellite images and street view photos. 
For example, Rosser et al. (2019) present a method for automatically determining the 
building age of residential buildings, by extracting measures of neighborhood 
morphology and features from readily available topographic maps, a high-resolution 
digital surface model, and statistical boundary data. These measures are then used as 
features in a random forest classifier to derive an age category for each building. The 
use of random forests has also been coupled with airborne Light Detection and 
Ranging (LiDAR) data to predict building age (Tooke et al., 2014). The study 
proposed by Zeppelzauer et al. (2018) has even proved that the analysis of visual 
patterns at the patch level in building photographs can potentially outperform human 
evaluators in age estimation. Other studies have also shown that the large amount of 
building images accessible online via Google Street View and the rapid development 
of image processing techniques has made it possible to extract information from 
images to enrich building databases. Particularly, Li et al. (2018)  propose a method 
for building age estimation based on CNNs to extract image features and SVM to 
regress building year. Moreover, obsolescence assessment to predict the age of a 
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building is presented by Mahajan et al. (2019) using machine learning, thus reducing 
manual calculation and increasing the accuracy of predictions. 

2.5.7. Urban fabric 

Urban planning and morphology have relied for centuries on analytical cartography 
and visual communication tools to illustrate spatial patterns, conceptualize design 
proposals and compare alternatives. Besides, all the operations needed to manually 
extract features are very tedious and time-consuming. 
Nowadays, the rapid growth of remote sensing and Big Data storage capacities, 
combined with the ever-increasing computational power of modern machines, has 
enabled an evident increase in the use of ML algorithms in the field of urban studies. 
New spatial technology platforms indeed offer new perspectives for understanding, 
assessing, monitoring, and managing urban forms and developments. Moreover, the 
integration with new communication and information technologies (smartphones, GIS, 
drones, IoT, sensors, etc.) has helped to raise the level of knowledge of urban patterns 
and to address the challenges of modern cities in various domains (health, safety, 
mobility, etc.). ML Algorithms have been proposed to model urban indicators, proving 
to be more powerful than traditional methods and opening up new possibilities for the 
automatic study of urban forms on a global scale. 
As an example, urban Morphometrics (UMM) is an expanding field of urban studies 
that aims to represent and measure the physical form of cities to support evidence-
based research. Particularly, studies have shown that it is possible to capture the spatial 
properties of urban form at the plot level by exploring urban structural patterns and 
spatial order (Fleischmann et al., 2020; Boeing, 2021; Schirmer and Axhausen, 2015; 
Jumlesha et al., 2012), also with a focus on residential areas (Hecht et al., 2013). 
Also Deep Learning is leveraged to detect and analyze features in urban patterns. 
Specifically, Yao et al. (2017) use a Convolutional Neural Network (CNN) to 
recognize land use patterns in cities by applying a transfer learning-based approach to 
remote sensing images to extract and classify features. Also Albert et al. (2017) 
analyze land use patterns in urban neighborhoods using large-scale satellite imagery 
data and computer vision techniques based on deep convolutional neural networks. 
Moosavi (2017) gathers a large dataset of street networks in more than one million 
cities and villages around the world to train a deep convolutional autoencoder that 
automatically learns the hierarchical structures of urban shapes. The potential of 
machine learning algorithms in the context of object-based image analysis has also 
been explored to optimize their use for urban pattern recognition tasks (Wieland and 
Pittore, 2014; Wieland et al., 2016). 

2.6. Research gaps 

Each section of this chapter has described the state of the art of the different aspect 
that concur to the definition and the evaluation of seismic risk, particularly seismic 
vulnerability and exposure. Furthermore, specific attention has been paid to the use of 
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machine learning approaches in the fields of earthquake engineering and feature 
recognition. 
For what concerns seismic vulnerability, the research in Italy is moving towards the 
definition of fragility models that are able describe different building typologies and 
represent vulnerability at a national scale. The reason why this is considered of 
paramount importance is the need to have a better understanding of the vulnerability 
of our built stock, as well as to address national mitigation policies. This thesis is in 
line with this trend and aims to create a national fragility model for both as built and 
retrofitted masonry building typologies. 
Also the quantification and evaluation of exposure for risk assessments is one of the 
main topics that research is covering in these years. In this chapter, it has been shown 
that other studies have already tried to implement machine learning procedures to 
automatically detect buildings at territorial scales and to recognize specific building 
characteristics, in order to overcome the economic and time challenges that 
conventional surveys pose. The benefit that artificial intelligence can bring into this 
field is evidenced by the surge of works dealing with these issues in recent years. 
However, there is still the lack of a framework that can remotely and automatically 
evaluate exposure and associate buildings with their appropriate vulnerability, since 
many studies usually focus on individual features that are not adequate or sufficient 
for the definition of seismic vulnerability. Therefore, this project has the goal of 
developing and algorithm for the automatic identification of buildings and building 
features, with the help of neural networks. 
Lastly, all the information produced and gathered about seismic vulnerability and 
exposure must find a suitable collocation in a platform that performs risk calculations 
at large scales, which is indeed the final aim of this thesis. The platform needs to be 
designed so that it can take as input data the results of vulnerability and exposure 
deriving from the previous steps. For this purpose, a modular platform is here 
developed. 
The following chapters will describe in detail the novel contributions of this work. 
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3 FRAGILITY CURVES FOR ITALIAN RESIDENTIAL 
MASONRY BUILDINGS 

Seismic risk assessments require a deep knowledge about the components of this risk, 
starting from the evaluation of vulnerability of the built heritage. Here, a mechanics-
based seismic fragility model for Italian residential masonry buildings has been 
developed. This model is based on the classification of the building stock in macro-
typologies, defined by age of construction and number of stories, and it allows the 
simulation of damage scenarios and risk analyses at a territorial scale. The model is 
developed on the fragility of over 500 buildings, analyzed through the Vulnus_4.0 
software. The fragility functions are then extended on the basis of a reference model 
available in the literature, which provides fragilities on five damage states. Lastly, 
seismic retrofit interventions are simulated, in order to build mitigated fragility 
models. The results thus obtained allow the evaluation of the possible improvement in 
terms of seismic behavior brought by different retrofit interventions. 
The work presented in this chapter has been developed under the ReLUIS 2018 and 
ReLUIS 2019-2021 frameworks, and some results have already been published in 
journal and conference papers (Donà et al., 2019; Donà et al., 2020; Donà et al., 2021; 
Follador et al., 2021; Carpanese et al., 2021; Carpanese et al., 2022; da Porto et al., 
2022;  Carpanese et al., 2022). 

3.1. Method of derivation of fragility curves 

The research group of the University of Padova has been active for years on the themes 
of seismic vulnerability assessment of the built heritage, with special focus on 
vulnerability and fragility assessment of unreinforced masonry (URM) buildings in 
historical centers (Bernardini, 2000; Munari, 2009), comparison of methods for 
vulnerability assessment (Valluzzi et al., 2007), analysis and interventions on clustered 
buildings (da Porto et al., 2013), development of methods based on Bayesian inference 
for territorial analyses (Taffarel, 2016), and emergency management and structural 
interventions (Modena et al., 2010), among others. One of the outcomes of this 
research activity has been the development of a calculation tool, called Vulnus 
(Bernardini et al., 1990, Bernardini et al., 2008), initially used for the seismic safety 
checks of URM buildings by means of linear kinematic analyses, which subsequently 
evolved into a seismic vulnerability assessment tool, introducing also the fuzzy set 
theory (Bernardini and Tonon, 2004), and then updated to the latest version Vulnus_4.0 
(Valluzzi et al., 2009). 
For load-bearing URM buildings, Vulnus_4.0 processes information on building 
geometry (in plan and elevation), material properties, types of resistant system, floors 
and roof and their features, lack or presence of wall-to-wall connections and their 
effectiveness, and also other qualitative information. Based on this information, 
Vulnus_4.0 first calculates the horizontal accelerations (a) that activate the main in-
plane (IP) and out-of-plane (OOP) mechanisms, respectively through resistance 
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checks and linear kinematic analyses; then, on the basis of these values, it derives the 
IP and OOP critical triggering accelerations that, normalized to gravity acceleration g 
(a/g), define the resistance indexes I1 and I2 respectively. 
Specifically, I1 represents the shear resistance of the building in its weakest direction, 
normalized to its total weight, and is obtained by assessing the total shear resistance 
offered by wall systems in that direction. Parallel walls in each direction are analyzed 
as rigidly coupled. In the case of irregular buildings, the effects of the uneven 
distribution of stresses on the shear strength are taken into account by applying 
appropriate corrective factors to I1 (Valluzzi et al., 2009).  
I2 is a parameter that depends on the possible out-of-plane mechanisms associated with 
the vertical and horizontal masonry portions of each wall (taken one meter wide). The 
mechanisms assessed for vertical strips, whose triggering accelerations define I2', are: 
overall overturning of walls and overturning and flexural failure of the top story. Those 
for the horizontal strips, who define I2'', are: flexural and arching mechanism failure 
at the top story, overturning and flexural collapse of the arch shoulders at the top story 
and detachment of the transverse walls still at the top story. For each wall, Vulnus_4.0 
calculates the sum of I2' and I2'', whose minimum value defines I2 (Valluzzi et al., 
2009). 
Subsequently, Vulnus_4.0 computes and returns another index, I3, which takes into 
account other relevant vulnerability information, although qualitative, relating to the 
types of resistant system, floors, roof and foundations, the configuration and regularity 
in elevation of the building, the state of preservation, the presence of structural 
interventions and, furthermore, the quality of the information. Specifically, I3 is based 
on the vulnerability parameters identified by the Second Level GNDT form (Ferrini et 
al., 2003; see section 2.1.2.2. for further details on this form) and is calculated as a 
weighted average of the scores assigned to these parameters with expert judgment 
(Valluzzi et al., 2009). I3 ranges from 0 to 1, with 0 indicating a building design that 
fulfills anti-seismic criteria. 
Based on the I1, I2, and I3 indices and the Fuzzy set theory, Vulnus_4.0 finally provides 
estimates of expected seismic damage, in the form of fragility curves for incremental 
values of Peak Ground Acceleration (PGA). The Fuzzy theory is used to convert I1, I2, 
and I3 into fuzzy subsets, thus allowing the statistical evaluation of the influence of 
parameters that cannot be quantified exactly (such as those summarized by I3), and the 
uncertainties on the quantifiable parameters not carefully measured (i.e., associated 
with a poor information quality) or characterized by high variability (such as the 
material properties). Further information can be found in Valluzzi et al. (2009) and 
Munari (2009). 
In particular, Vulnus_4.0 computes three cumulative probability distributions (fragility 
curves) associated with the triggering of IP and/or OOP mechanisms. One of these 
curves, referred to as White, represents the average building vulnerability, whereas the 
other two, referred to as Lower- and Upper-Bound, define a range of vulnerability due 
to the various sources of uncertainty and therefore to the quality of information. 
These fragility curves, considering the definition of the I1 and I2 indexes, and the 
damage associated to the corresponding mechanisms, were associated with an 
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intermediate DS between the “moderate” and “severe” ones of the EMS98 scale, which 
defines the following DSs: slight damage DS1, moderate damage DS2, severe damage 
DS3, partial collapse DS4 and complete collapse DS5 (Munari, 2009). An equivalence 
of Vulnus fragility curves with a DS2-3 is a reasonable assumption considering that 
the triggering acceleration of a certain out-of-plane mechanism, assessed by linear 
analysis, is a necessary condition for the mechanism activation and the onset of 
damage (DS2), whereas the definition of the shear resistance of the building in its 
weakest direction, taking into account the overall shear capacity of all of the walls in 
that direction, can be very close to the maximum system capacity (DS3), although 
none of these two mechanisms are yet a sufficient condition to turn the out-of-plane or 
in-plane mechanism into a partial or total collapse (DS4-5). 

3.2. Macro-typologies and sampling of Italian masonry buildings 

3.2.1. Definition of building macro-typologies and representativeness criteria  

As already mentioned, territorial-level vulnerability assessments carried out on a 
mechanical basis require a substantial effort to collect the numerous data necessary for 
calibrating the various structural models and methods of analysis. Therefore, 
considering the relatively low number of buildings that can be reasonably analyzed, in 
order to obtain vulnerability results as much representative as possible, it is first 
necessary to define appropriate building macro-typologies and subsequently perform 
a representative sampling of the built heritage for each typological class, with the 
ultimate goal of deriving typological fragility curves representing the average 
vulnerability of the various classes. 
The criteria for defining macro-typologies should obviously be based on those factors 
that most influence the vulnerability; however, the parameters required to define these 
criteria should decrease as much as the extent of the analysis increases at a territorial 
level. On the contrary, the limits in acquiring knowledge of so much information on a 
large territorial scale would impair the possibility of effectively using the developed 
typological fragility curves for the sought vulnerability assessment purposes.    
To date, the main information on the building stock available for rapid vulnerability 
estimates, collected by ISTAT throughout the national territory during census, and 
returned up to the level of the single municipality, regards the type of material 
(reinforced concrete, masonry or “other”), the age of construction and the number of 
stories. Although such information may seem limited, careful use allows to rationally 
address the problem of seismic vulnerability estimates on a national scale, albeit in a 
simplified way. Indeed, the main geometric factors (such as arrangement of resistant 
systems, presence of structural irregularities and contiguous buildings), typological-
constructive factors (i.e., types of lateral resistant systems, foundations, floors and 
roofs), as well as the main material properties (weight and resistance) and construction 
details, are strongly correlated with the construction age, although they may show 
some variability. Clearly, this is due to the evolution of scientific and technological 
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knowledge, manufacturing and construction techniques, materials, as well as the 
drafting and updating of construction standards. In addition, the number of stories in 
the building is another significant information, as it is associated with the dynamic 
behavior and seismic demand of the building. 
Therefore, based on the main information provided by ISTAT and expert judgment, a 
macro-typology classification was proposed (Table 3.1) for URM buildings of the 
Italian built heritage, based on construction age and building height. In particular, the 
adopted ranges of construction ages are a compromise between the years in which a 
new census, with updated data, was carried out (i.e., 1919, 1945, 1961, 1971, 1981, 
1991, 2001, 2011), and the periods in which important changes in construction 
methods, due to technological developments and the delivery of construction 
standards, can be identified. This is a simplified classification, consistent with the 
relevant significant uncertainties; however, the resulting ages are coherent with those 
defined in AeDES form (Baggio et al., 2007; section 2.1.2.2). 
 

Table 3.1 - Macro-typologies of Italian residential URM buildings and number of sampled buildings 

Construction age Pre-1919 1919-1945 1946-1960 1961-1980 Post-1980 

No. stories (n) ≤ 2 
≥ 3 

≤ 2 
≥ 3 

≤ 2 
≥ 3 

≤ 2 
≥ 3 

≤ 2 
≥ 3 

No. sampled 
buildings 

205 80 80 80 80 

 
As regards the sampling of buildings for the various macro-typologies, i.e., the case 
studies to derive the typological fragility curves, the following criteria were 
considered. 
- Representativeness with respect to the variability of the building heritage with the 

geographical position. Indeed, in the same historical period, and especially for the 
most ancient and less industrialized ages, a great variety of construction techniques 
can be found in Italy, depending on the geographical areas (not necessarily 
corresponding to administrative boundaries). Differences and peculiarities are 
noticeable up to the municipal level; the reasons are historical, related to the 
complex morphology and climatic variability of the country, the presence of local 
building materials and other reasons of opportunity. The knowledge of this rich 
building diversity and of its significance on a territorial scale is essential for its 
appropriate inclusion in vulnerability assessment. 

- Representativeness with respect to the typological variability of the buildings, in 
terms of number of stories and global dimension (single houses, terraced houses, 
small or medium-sized apartment buildings, etc.), for each construction age. 

The first criterion, i.e., geographical representativeness, was taken into account 
through a nationwide diffused sampling, carefully selecting representative buildings 
belonging to 65 municipalities and nine regions, located in Southern, Central and 
Northern Italy. As can be seen from Table 3.1, 525 buildings were sampled in total, 
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with 80 case studies for each construction age, except for the Pre-1919 period, where 
the buildings are over 200. In this period, indeed, the local variability of construction 
practices was definitely higher than in later periods, due to the absence of any 
industrialized construction process, material and method, and to the absence of 
relevant construction manuals or standards, which started spreading in Italy during the 
first decades of the XX Century. In addition, according to ISTAT, Pre-1919 macro-
typology holds the largest share of residential masonry buildings, which corresponds 
to 30% of the total. 
Future studies on the geographical characterization of the Italian residential heritage 
will surely be useful both to improve the representativeness of the current sample and 
to define further typological classes of buildings based on their location, for more 
precise vulnerability estimates. This type of studies, which relies on the survey of the 
main typological-constructive characteristics of the built heritage at the municipal 
level, are currently underway through the CARTIS project by some research groups 
of Italian universities, in coordination with the DPC and ReLUIS (Cacace et al., 2018). 
As regards the second criterion, i.e. typological representativeness, the sampling was 
aimed at satisfying as much as possible the statistical distributions of buildings 
obtained by processing ISTAT data: distribution by number of stories, within the same 
macro-typology; distribution by number of housing units, within buildings having the 
same number of stories. In the second case, ISTAT database did not allow to process 
the information on construction ages and material types together; therefore, this 
distribution represents the variability of the total built heritage. Nevertheless, in the 
absence of other information, it was assumed to be enough representative to calibrate 
our database. Figure 3.1 and Figure 3.2 show the comparison between these ISTAT 
statistical distributions and the database of sampled buildings. 
 

 
Figure 3.1 - Distribution of buildings by number of stories (n), within each macro-typology, according to ISTAT 

data and the database of sampled buildings. (a) n ≤ 2; (b) n ≥ 3 
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Figure 3.2 - Distribution of buildings by number of housing units, per number of stories, according to ISTAT data 

and the database of sampled buildings 

3.2.2. Sampling of buildings assumed as case studies 

It is understandable that a detailed sampling of geometric, constructive and material 
information for over 500 buildings (to calibrate the various models in Vulnus_4.0) 
would be too expensive for the purpose of this project, if exclusively based on direct 
surveys. So, to create the database of case studies, various sources of information were 
used and integrated in order to obtain information as complete as possible in a 
sustainable and cost-effective way. One of the main sources of building case-studies, 
which contributed to about 50% of the database, consists in surveys directly carried 
out by the research group of the University of Padova in recent years, in the aftermath 
of seismic events, for preliminary assessment of buildings and centers, or for other 
research purposes. The integration of various information sources made it possible to 
obtain more robust global information, in relation to the many uncertainties implied in 
this study and to the possibility of using only the very specific data collected for certain 
case studies.  
In particular, for the different construction periods, the main technical architecture 
manuals (e.g., Cantalupi, 1862; Curioni, 1868; Donghi, 1905; Arosio, 1941; Ormea, 
1951; Carbonara, 1954; Guenzi, 1981; Di Sivo, 1981) and Italian construction 
standards (e.g., Italian Royal Decree RD 193/1909; RD 2089/1924; RD 640/1935; 
Italian Government, 1962; Italian Ministry of Infrastructures DM 1986; DM 1987; DM 
1996) were examined in order to identify the most recurring typological-constructive 
characteristics, as well as the typical properties of building materials for each period. 
In addition, useful information was obtained from the results of the TABULA project 
(Corrado et al., 2014; see section 2.1.3), which summarizes at national level the main 
material and constructive information by age and type of building (i.e., single houses, 
multi-family houses, terraced houses and apartment buildings) and from the “Circolare 
no. 617” (Italian Ministry of Infrastructures and Transports, 2019), which provides (in 
Table C8A.2.1) indications about material properties. 
This was essential to create a strong basis for performing the most representative 
sampling possible (relying on representative documents and expert judgments) and to 
integrate the missing information for the case studies through the reference 
information identified for each construction age. Table 3.2 summarizes the reference 
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information of each construction typology, in the form used for implementation in 
Vulnus_4.0. Type and properties of materials, type of floors, effectiveness of wall-
floor connections (represented in a simplified manner through a friction coefficient) 
and presence of tie-beams are some of the main data. 
 

Table 3.2 - Summary of reference information for each construction age 

 Pre-1919 1919-1945 

Material Stones Solid bricks Solid bricks Solid bricks 

Compressive strength [MPa] 2,6 4,0 4,0 4,0 

Tensile strength [MPa] 0,085 0,14 0,14 0,14 

Specific density [kg/m3] 2100 1800 1800 1800 

Floor type Wood Wood Wood 
Precast RC Hourdis hollow-tile 

Friction coefficient [-] 0,3 0,3 0,3 0,3 

Ring-beams No No No No 

Typical building typologies All All Single house Terraced house 
Apartment building 

 1946-1960 1961-1980 Post-1980 

Material Solid bricks Hollow bricks Hollow bricks Hollow bricks 

Compressive strength [MPa] 4,0 3,7 3,7 3,0 

Tensile strength [MPa] 0,14 0,27 0,3 0,33 

Specific density [kg/m3] 1800 1500 1500 1200 

Floor type r.c. and hollow-tile r.c. and hollow-tile r.c. and hollow-tile r.c. and hollow-tile 

Friction coefficient [-] 0,6 0,6 0,6 0,6 

Ring-beams Every floor Every floor Every floor Every floor 

Typical building typologies Single house  
Public housing 

Terraced house 
Apartment building All All 

 
Whereas for the construction age Pre-1919 the main source of geometrical schemes 
for representative buildings was constituted by direct surveys and design project for 
structural interventions, due to the very high local variability of construction practices 
(as above-mentioned), for the following ages it was possible to resort to a broader 
series of sources.  
For the period 1919-1945, many designs (with geometric, typological-constructive and 
material information) were organized in some project collection books (in Italian), 
such as “Villas - 68 Examples of villas and country houses” (Moretti, 1946), "Dwelling 
houses in Italy" (Moretti, 1947) and others. 
In the following period, 1946-1960, public housing projects became very popular, 
therefore much information was selected from the projects related to the State 
intervention plan "INA-Casa", aimed at increasing the post-war workers' occupation, 
collected in the "Ridolfi Fund" (collection of documents about the professional activity 
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of the Architect M. Ridolfi, from 1923 to 1984, preserved at the National Academy of 
Saint Luca, in Rome; some of these documents are also available online, at 
www.fondoridolfi.org). Still for the period 1946-1960, as well as for the following one, 
1961-1980, many private residential building projects were collected from the digital 
archive of the technical offices of some Italian municipalities. 
For the last construction age, Post-1980, many case studies were defined based on the 
significant information available on the websites of the leading Real Estate Agencies. 
Then, to complete the sample and meet the representativeness criteria, some projects 
were specifically searched, based on the age and type of building, and identified thanks 
to the valuable support of some engineering companies and design firms. Lastly, other 
useful documents include the many editions of the manual "Composition of the house" 
(Ceccarini, 1952 and subsequent editions up to 1985), which provide typological 
examples of Italian buildings throughout the first eight decades of the twentieth 
century. 
As an example, Figure 3.3 shows some of the typical URM buildings of the Italian 
residential heritage, for some construction periods and number of stories. 

 

 
Figure 3.3 - Examples of some representative Italian URM buildings by construction age and number of stories 

3.3. Vulnus-based seismic fragility model for moderate to severe 

damage 
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The relevant information for each case study was implemented in Vulnus_4.0. As this 
software calculates fragility on discrete points, the discrete curves were replaced with 
cumulative probability lognormal functions – typically used to describe fragility and 
defined by only two parameters, i.e., mean (µ) and standard deviation (β) – through 
the maximum likelihood method, as shown in Figure 3.4 for a case study. 
A first analysis based on these curves was aimed at assessing the adequacy of the 
database size. In particular, the effect of the sample size on the fragility curves was 
assessed by analyzing, separately for each building macro-typology, ten random 
subsets of buildings with an increasing size, equal to 25%, 50% and 75% of the 
database. Some results (for three macro-typologies) are shown in Figure 3.5, in terms 
of variation in both fragility curves and µ values, and show a clear convergence as the 
number of buildings analyzed increases; more importantly, the maximum variation 
obtained with 75% of the database is relatively small for the purposes of this study, 
proving the adequacy of the database size. 
 

 
Figure 3.4 - Example of Vulnus curves and those obtained from lognormal fit  

 
Figure 3.5 - Dependence of the fragility curves on the sample size, for three building macro-typologies 
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Then, to determine the fragility of all building macro-typologies (Table 3.1), 
associated with a DS2-3 damage, the following procedure based on the lognormal 
curves of each building was followed: 
- Step 1. Calculation of the average fragility curves for buildings classified by 
construction age (according to Table 3.1) and number of stories (from one to five) at 
individual municipality level, for all the municipalities involved in the sampling. 
- Step 2. Determination of the average fragility curves for buildings with the 
same construction age and number of stories, through the simple average of the 
previous curves obtained for individual municipalities. This step, necessary to derive 
a model of general validity within the national territory, provides the same importance 
to the various construction typologies – within each building macro-typology – 
regardless of the actual number of buildings that for practical reasons were sampled in 
each municipality. 
- Step 3. Derivation of the average fragility curves for all macro-typologies by 
weighted average of previous fragility curves (defined by period and number of 
stories), separately for cases with buildings up to and with more than two stories. The 
weights, depending on the number of stories, are those derived from ISTAT data and 
shown in Figure 3.1. This step is therefore essential to provide the fragility model with 
the characteristic of typological representativeness per macro-typology. 
These steps were repeated separately for the White, Upper- and Lower-Bound curves. 
The described procedure is shown as an example in Figure 3.6, which provides all the 
lognormal curves for the White fragility of buildings of the Pre-1919 period.  
Figure 3.7 shows the complete model, i.e. considering all the building macro-
typologies, for the White fragility. As can be seen, these macro-typologies allowed the 
definition of a fairly distributed fragility model, with probability of exceeding the 
given damage level that increases with increasing age and height of buildings. In 
particular, the greatest discontinuity in terms of fragility occurs between the periods 
1919-1945 and 1946-1960, justified by the significant evolution of technology, 
construction techniques and material performances that occurred after the Second 
World War. Furthermore, the reduction of fragility due to the reduction in building 
height is more evident for more recent periods (1961-1980 and Post-1980), and this is 
reasonable considering the lower vulnerability of the most recent and newly designed 
buildings, which emphasizes their actual dynamic behavior. 
The complete model, with the White, Upper- and Lower-Bound fragility, is shown in 
Figure 3.8, separately for each macro-typology. As can be seen, the dispersion range 
defined by the Upper- and Lower-Bound curves increases after 1946 and, in particular, 
is wider for the less vulnerable macro-typologies. This is related to a strong reduction 
in the Lower-Bound fragility, which is demonstrated by the optimal seismic behavior 
that recent URM buildings have, if properly designed and detailed for lateral loads 
(Penna et al., 2014; Sorrentino et al., 2019). The extent of dispersion is a useful 
information for territorial-scale risk assessments and, therefore, it will be taken into 
account. 
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Figure 3.6 - Procedure to define fragility models. Example of White fragility for Pre-1919 buildings 

 

 
Figure 3.7 - Vulnus model of White fragility for all building macro-typologies 
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Figure 3.8 - White, Upper- and Lower-Bound fragility of all building macro-typologies 

3.4. Multi-damage seismic fragility model 

The seismic risk management on a territorial scale requires accurate assessments of 
this risk (economic losses and casualties) to support the Civil Protection decision-
making processes; therefore, it is necessary to provide fragility models that allow 
damage simulations with fairly distributed estimates. To this end, multi-damage 
fragility models, providing the exceeding probability for multiple damage levels (from 
the slight one to the building collapse) are desirable. For this reason, the Vulnus 
fragility model presented above was extended over the entire EMS98 damage scale 
(from DS1 to DS5) by using a heuristic approach based on previous relevant studies. 
In particular, the fragility model proposed by Lagomarsino and Cattari (2014), which 
derives from the macro-seismic approach of Lagomarsino and Giovinazzi (2006), was 
taken as a reference, as it is particularly suitable for our purposes (see section 2.1.2.1). 
Indeed, it provides a distributed fragility based on the five DSs and the six vulnerability 
classes (from A to F) defined in EMS98, and therefore has general validity, referring 
to seismic performance categories rather than specific structural types. 
Specifically, this model is based on the generic vulnerability curve proposed by 
Bernardini et al. (2010), which provides the mean damage μD as a function of the 
macroseismic intensity I according to the following expression: 
 

 𝜇" = 2.5 + 3	𝑡𝑎𝑛ℎ	 .
𝐼 + 	6.25𝑉 − 12.7

𝑄 5										(0	 ≤ 	𝜇" 	≤ 5) (Eq. 3.1) 

 
In Equation 3.1, V is a vulnerability index whose values are provided in Lagomarsino 
and Cattari (2014) as confidence intervals for the six vulnerability classes, and Q is a 
ductility parameter assumed equal to 3 by the same authors. Thus, assuming the 
binomial distribution, the fragility curves can be defined on the basis of μD and I as: 
 

 
𝑝#$% =	;𝑝"$& 										(𝑘	 = 1,…5)

'

&(%

 (Eq. 3.2) 
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										(𝑘	 = 0,…5) (Eq. 3.3) 

 
where PDSk is the probability of experiencing and PLSk the probability of exceeding the 
various damage states. To obtain the related fragility curves in terms of PGA, many 
correlation laws between PGA and I are available in the literature, usually in the form: 
 
 log(𝑃𝐺𝐴) = 	 𝑐* + 𝑐+𝐼 (Eq. 3.4) 

 
In this study, the mean values of V were used for all vulnerability classes, and the 
parameters of the correlation law were assumed as c1 = 0.525 and c2 = 0.22, according 
to Margottini et al. (1992). 
The main advantage to refer to such a model is the possibility of exploiting the fragility 
distribution with respect to the damage level, which is intrinsically defined by the 
EMS98 scale for each vulnerability class. Table 3.3 reports the mean (µ) and standard 
deviation (β) values of this reference model. 

Table 3.3 - Mean (µ) and standard deviation (β) values of reference fragility model 

Vulnerability 
class 

DS1 
(slight) 

DS2 
(moderate) 

DS3 
(severe) 

DS4 
(partial collapse) 

DS5 
(complete collapse) 

µ [g] β [-] µ [g] β [-] µ [g] β [-] µ [g] β [-] µ [g] β [-] 
A 0.0420 0.5110 0.0746 0.5331 0.1204 0.5278 0.1943 0.5332 0.3449 0.5120 
B 0.0693 0.5111 0.1230 0.5331 0.1986 0.5279 0.3209 0.5358 0.5822 0.5710 
C 0.1144 0.5111 0.2030 0.5331 0.3278 0.5285 0.5305 0.5411 0.9707 0.5859 
D 0.1887 0.5110 0.3349 0.5331 0.5408 0.5288 0.8732 0.5384 1.5693 0.5715 
E 0.3112 0.5092 0.5517 0.5293 0.8883 0.5230 1.4173 0.5257 2.452 0.5448 
F 0.5088 0.4881 0.8934 0.5060 1.4175 0.4984 2.1972 0.4951 2.3782 0.5358 

 
Therefore, this reference model was calibrated on the derived Vulnus model to define 
the White, Upper- and Lower-Bound distributed fragility sets of each analyzed 
building macro-typology. The main steps of the analysis are listed below and shown 
in Figure 3.9. 
- Step 1. For each vulnerability class (from A to F), an average fragility curve 
between those of DS2 and DS3 (DS2-3) was determined, which is consistent with the 
type of fragility described by the Vulnus model. 
- Step 2. For each mechanical fragility curve of the Vulnus model (White, Upper- 
and Lower-Bound), the linear combination coefficients of the DS2-3 curves of the 
vulnerability classes were calculated, which provide the best fit of the combined curve 
on the mechanical one. To this end, a multi-objective problem was defined with the 
following aims: minimization of the absolute error between the curves, according to 
the Least Squares Method, and minimization of the relative error, expressed as the 
difference between positive and negative areas bounded by the curves. The resolution 
of this problem was carried out through the NSGA-II genetic algorithm (Deb et al., 
2002), obtaining a set of optimal solutions (or Pareto fronts). The final choice of the 
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combination coefficients was made with expert judgment, evaluating the variability of 
the two types of error in the range of optimal solutions. Clearly, the optimization 
procedure is sensitive to the assumed range of PGA, as the latter influences the 
evaluation of errors between the curves. This range was extended up to 0.8 g, which is 
a reasonable limit for the ground shaking in Italy, agreed in the project unanimously 
with the DPC. As an example, Figure 3.10 shows the best match obtained between the 
White curves of the Vulnus model and the combined DS2-3 curves of the reference 
model. Table 3.4 reports all the optimal combination coefficients calculated. 
- Step 3. Based on the parameters µ and β (Table 3.3) and the combination 
coefficients (Table 3.4) of vulnerability classes, the White, Upper- and Lower-Bound 
fragility sets, defined on all DSs from DS1 to DS5, were derived for each building 
macro-typology. 
The fragility sets thus obtained allow elaborating scenarios of distributed damage that 
can be considered as the most probable, when derived from White fragility, or extreme, 
when based on Upper- or Lower-Bound fragility. 
Furthermore, the Upper- and Lower-Bound fragility sets define the dispersion of 
vulnerability information for each building macro-typology, which depends on the 
uncertainties at the individual building level (quantified through the Fuzzy theory as 
discussed in Section 2) and on the variability and extent of the sampled building stock. 
This information is very important, because the mechanics-based fragility curves are 
generally characterized by relatively low standard deviations (β) in relation to the 
needs of large-scale vulnerability assessment. Indeed, the values of β are generally 
lower than those of empirical approaches, calibrated on extended databases of 
observed damage. However, the empirical approaches include other sources of 
uncertainty, in addition to those relating to the variability of the building stock (e.g., 
uncertainties on the damage surveys and the ground acceleration measures), and could 
therefore provide overestimates of β. 
Based on this, and considering the aim of providing a practical tool for large-scale risk 
assessments, a single fragility set for each building macro-typology, named LUW, was 
finally derived by using the main information of the White, Upper- and Lower-Bound 
fragility sets. The criterion used was to calibrate the mean fragility on that of the White 
set and the standard deviation on the maximum dispersion provided by the Upper- and 
Lower-Bound sets, thus obtaining a more suitable model to describe the fragility of 
the built heritage. The procedure is described below and shown in Figure 3.9. 
When the White probability is: 
- lower than 2.5%, fragility is assumed equal to the Upper-Bound one; 
- between 2,5% and 50%, fragility is calculated as a linear combination of Upper-

Bound (from 100% to 0%) and White (from 0% to 100%) fragility; 
- between 50% and 97.5%, fragility is calculated as a linear combination of White 

(from 100% to 0%) and Lower-Bound (from 0% to 100%) fragility; 
- greater than 97.5%, fragility is assumed equal to the Lower-Bound one. 
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Figure 3.9 - Procedure to define multi-damage fragility models and LUW model. Example for Pre-1919, n ≥ 3 

 

 
Figure 3.10 - Optimal fit of combined DS2-3 curves (reference model) on White curves (Vulnus model) 

Table 3.4 - Optimal combination coefficients of vulnerability classes of reference model fitting Vulnus model 

Building 
macro-typologies 

Upper-Bound  White  Lower-Bound 
A B C D E  B C D E  B C D E F 

Pre-1919 
≥ 3 0.38 0.62     0.86 0.14    0.27 0.73    
≤ 2  0.87 0.13    0.33 0.67     0.92 0.08   

1919-1945 
≥ 3 0.15 0.85     0.58 0.42    0.03 0.97    
≤ 2  0.62 0.38    0.13 0.87     0.62 0.38   

1946-1960 
≥ 3  0.16 0.84     0.58 0.42     0.95 0.05  
≤ 2   0.94 0.06    0.32 0.68     0.77 0.23  

1961-1980 
≥ 3   0.77 0.23    0.23 0.77     0.92 0.08  
≤ 2   0.2 0.8     0.81 0.19    0.17 0.83  

Post-1980 
≥ 3    1     0.6 0.4    0.04 0.96  
≤ 2    0.44 0.56    0.01 0.99     0.22 0.78 
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The LUW curves were first obtained by discrete points, and subsequently converted 
into lognormal curves by applying the criterion of maximum likelihood in the PGA 
range of interest, i.e. from 0 to 0.8 g. As an example, Figure 3.11 shows some 
comparisons between the proposed LUW model and the White, Upper- and Lower-
Bound fragility sets, from which it derives. Table 3.5 lists the µ and β values of the 
entire LUW model, i.e. for all building macro-typologies and DSs; the related fragility 
curves are shown in Figure 3.12. 
 

 
Figure 3.11 - Comparison between LUW curves and associated White, Upper- and Lower-Bound curves 

 
Table 3.5 - µ and β values of LUW fragility model 

Building 
macro-typologies 

DS1 DS2 DS3 DS4 DS5 

µ [g] β [-] µ [g] β [-] µ [g] β [-] µ [g] β [-] µ [g] β [-] 

Pre-1919 
n ≥ 3 0.0741 0.7414 0.1315 0.7671 0.2123 0.7759 0.3430 0.7736 0.6215 0.8090 
n ≤ 2 0.0973 0.6929 0.1726 0.7084 0.2787 0.7192 0.4507 0.7499 0.8217 0.7936 

1919-1945 
n ≥ 3 0.0854 0.7293 0.1516 0.7431 0.2447 0.7479 0.3955 0.7700 0.7168 0.8204 
n ≤ 2 0.1076 0.7388 0.1908 0.7533 0.3082 0.7474 0.4988 0.7563 0.9140 0.7924 

1946-1960 
n ≥ 3 0.1409 0.7489 0.2501 0.7780 0.4039 0.7789 0.6526 0.7975 1.1840 0.7452 
n ≤ 2 0.1613 0.7651 0.2862 0.7791 0.4625 0.7818 0.7496 0.8015 1.3660 0.6933 

1961-1980 
n ≥ 3 0.1689 0.6770 0.2996 0.7070 0.4842 0.7388 0.7855 0.7875 14.350 0.6997 
n ≤ 2 0.2067 0.7366 0.3669 0.7367 0.5913 0.7069 0.9499 0.6916 1.6930 0.6764 

Post-1980 
n ≥ 3 0.2301 0.6945 0.4083 0.7120 0.6580 0.6874 1.0550 0.6240 1.8690 0.5982 
n ≤ 2 0.3098 0.7918 0.5492 0.7429 0.8849 0.7393 14.160 0.6780 24.700 0.6132 
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Figure 3.12 - Fragility sets (from DS1 to DS5) of LUW model of all building macro-typologies 

3.5. Reliability assessment based on the observed damage 

For damage simulation and risk assessment in a given territory, it is necessary to know 
data about its building stock, in terms of belonging to a certain macro-typology and 
location, and its seismic hazard. These data can be provided by ISTAT at national level 
for what concerns the building stock, and by INGV (National Institute of Geophysics 
and Volcanology) for what concerns the hazard. The information is collected and 
organized in the IRMA platform (Borzi et al., 2021b), developed by the European 
Centre for Training and Research in Earthquake Engineering (Eucentre) in 
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collaboration with the DPC and already described in section 2.3. Particularly, IRMA 
contains information on the ground shaking accelerations (ShakeMaps) of some recent 
and significant Italian earthquakes, and thus allows simulating specific seismic events 
and calculating a posteriori damage and costs. This is a very useful tool for validating 
or even calibrating the various fragility models to be implemented in IRMA. 
Therefore, to assess the reliability of the fragility model proposed in this study, the 
model was implemented in IRMA and was applied to simulate the 2009 L'Aquila 
earthquake, obtaining the related damage scenarios. Besides being one of the most 
devastating Italian events in recent years, the L'Aquila earthquake is the most suitable 
for validation purposes, due to the completeness and reliability of data on observed 
damage and ground shaking. 
Damage data relating to this event was obtained from Da.D.O. (Dolce et al., 2019), a 
database of the DPC that collects, in a digital form, the damage information detected 
in the aftermath of Italian earthquakes. In particular, for the 2009 L'Aquila earthquake 
and afterwards, the damage surveys were based on the latest review of the AeDES 
form (Baggio et al., 2007), which has been presented in section 2.1.2.2. This form 
requires, in addition to the main information on the building (age, material, purpose of 
use, etc.), the identification of the DSs and of their extension – with respect to the 
entire building, parameter “e” – for the main structural and non-structural elements. In 
addition, a judgment on safety and usability, based on the damage detected, is required. 
The damage metric is based on the EMS98 scale but the DSs are merged as follow: 
DS0 (no damage), DS1 (slight), DS2-DS3 (moderate), DS4-DS5 (severe). As for the 
extent of damage, the metric is: e < 1/3, 1/3 < e < 2/3, e > 2/3. 
Based on the AeDES information, various methods were developed in recent years to 
define a single and equivalent level of damage per inspected building, to evaluate and 
represent damage scenarios and to support calibrations of empirical fragility models. 
In general, two methodologies can be distinguished: one is based on the weighted 
average of damage of the various building elements (Di Pasquale and Goretti, 2001; 
Lagomarsino et al., 2015), whereas the other rewards the maximum damage among 
these elements (Rota et al., 2008; Dolce and Goretti ,2015). To validate the fragility 
model, both methodologies were considered, applying the methods of Lagomarsino et 
al. (2015) and Rota et al. (2008). 
The method of Lagomarsino et al. (2015) first requires calculating the equivalent 
damage dj for the main building elements (vertical structures, floors, roof), according 
to Equation 3.5, where the coefficients of intensity di and extension ei – defining the 
possible damage suffered by a given element – are assumed as in  

Table 3.6, based on the AeDES information. Then, the overall building damage Db is 
obtained as a weighted average of the previous dj according to Equation 3.6, where the 
weights αi are given in Table 3.7. These weights vary depending on whether the 
damage survey is complete or partial (only external). In the case of partial survey but 
complete information, albeit indirect, Lagomarsino et al. (2015) suggest using both 
sets of αi and taking the highest Db. The obtained Db values were rounded to the next 
unit, and thus converted into the EMS98 scale. 
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Table 3.6 - di and ei coefficients associated with AeDES information (Lagomarsino et al., 2015) 

Damage intensity 
(AeDES) 

DS0 DS1 DS2-DS3 DS4-DS5 

di 0 1 2.5 4.5 
Damage extension 

(AeDES) 
 e<1/3 1/3<e<2/3 e>2/3 

ei  0.33 0.66 1 

 
Table 3.7 - αi weights associated with building elements (Lagomarsino et al., 2015) 

Elements (j) Complete survey Partial (external) survey 
Vertical structures 0.6 0.8 

Floors 0.2 0 
Roof 0.2 0.2 

 
The method of Rota et al. (2008) consists in converting the AeDES damage 
information into the EMS98 metric, according to Table 3.8, separately for vertical 
structures, floors and roof. Subsequently, the damage levels of all building elements 
are compared and the maximum is taken as the overall building damage. 

Table 3.8 - Convertion of AeDES damage information to EMS98 damage scale (Rota et al., 2008) 
AeDES DS0 DS1  DS2-DS3  DS4-DS5 

to    e<1/3 1/3<e<2/3 e>2/3  e<1/3 1/3<e<2/3 e>2/3 
EMS98 DS0 DS1  DS2 DS3 DS3  DS4 DS4 DS5 

 
As mentioned above, the AeDES information relating to the 2009 L'Aquila earthquake 
was analyzed according to these two methods. It is important to point out that, although 
the damage survey was extensive, it was not complete in all the municipalities affected 
by the seismic event. In addition, some AeDES forms did not provide specifications 
on the type of use and construction material of the building, therefore they were 
excluded from the creation of damage scenarios for residential masonry buildings. 
Hence, the available information was assessed with respect to the total number of 
residential buildings of each municipality (according to ISTAT information), to 
provide an indication of reliability. In particular, Figure 3.13a identifies the 
municipalities where damage surveys were available for less than 30%, between 30% 
and 90% and more than 90% of buildings. As can be seen, the municipalities near the 
epicenter were almost completely surveyed, thus providing robust and reliable 
information; moving away from the epicenter, the percentage of inspected buildings is 
clearly smaller, and information is less reliable. For the purpose of this study, the share 
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of uninspected buildings was associated with DS0. This assumption seems to be 
reasonable for the L’Aquila earthquake, where the lack of surveys may be related to 
the absence of damage on the building. However, some of these buildings may have 
suffered minor damage, not surveyed via the AeDES form, and this represents a source 
of uncertainty. Figure 3.13b shows the ShakeMap of the main event of April 6th, 2009 
(available on the INGV website). 
 

 
Figure 3.13 – (a) % of surveyed buildings of all municipalities; (b) ShakeMap of L'Aquila 2009 

Figure 3.14 shows the comparison between the simulated damage scenarios, obtained 
with the proposed fragility model, and the observed damage scenarios, elaborated with 
the above-mentioned methods. In particular, these scenarios provide the percentage of 
buildings that reach or exceed a given DS for each municipality affected by the 
earthquake. The following considerations can be drawn. 
- For all DSs, the trend of the simulated damage is similar to that of the observed 
damage; in addition, the damage values predicted by the proposed fragility model are 
substantially in-between the observed damage values measured with the two methods 
of Lagomarsino et al. (2015) and Rota et al. (2008), with the exception of some 
epicentral municipalities that show a slightly conservative damage prediction, in 
particular for DS1. 
- The two methods for measuring the observed damage reasonably led to quite 
different scenarios, as that of Lagomarsino et al. (2015) rewards average building 
damage whereas that of Rota et al. (2008) rewards the damage peaks detected in the 
building. This aspect is interesting and underlines the practical difficulty of describing 
the overall damage of a building in a univocal and simplified way (i.e., with a single 
parameter), being able also to rely on an accurate damage survey. 
- The proposed fragility model returns damage estimates that most closely resemble 
those obtained with the method that rewards maximum damage, near the epicenter 
(i.e., for high PGA values) and those obtained with the method that rewards average 
damage, moving away from the epicenter (i.e., for lower PGA values). This is due to 
the intrinsic characteristics of mechanics-based fragility, i.e. to the relatively low 
standard deviation of lognormal curves, an aspect taken into account in this study and 
mitigated using the dispersion given by the Upper- and Lower-Bound fragility curves. 
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Figure 3.14 - Simulated and observed damage scenarios of the 2009 L’Aquila earthquake 

It is worth noticing that some differences between simulated and observed damage are 
also due to the reasonable limitation of IRMA to use the PGA recorded in the centroid 
of the municipality for the whole municipal territory, which could be particularly 
limiting for larger municipalities or for any municipality having strong variations in 
soil characteristics. Finally, Figure 3.15 shows the comparisons between the most 
likely damage scenarios, simulated with the LUW model, and those obtained by 
applying the Upper- and Lower-Bound fragility models, which allow to evaluate the 
maximum expected damage interval due to the various uncertainties at stake. 
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Figure 3.15 - Comparison of damage scenarios simulated by the LUW, Upper- and Lower-Bound models. 

Although the results are encouraging, the awareness of the complexity of this study 
and the uncertainties characterizing all the steps to derive the proposed model suggest 
using it with due care, highlighting its great potential for improvement. 

3.6. Fragility curves with retrofit interventions  

The seismic events occurred in Italy during the last decades have shown the high 
vulnerability of the residential built heritage, making it necessary to plan seismic risk 
mitigation strategies at large scale. In this paragraph, the literature related to possible 
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seismic retrofit interventions is reviewed. These interventions are then simulated on a 
database of 445 buildings through Vulnus_4.0, and fragility curves are elaborated and 
processed, so that a fragility model for four different building typologies (Pre-1919, 
1919-1945, 1946-1960, and 1961-1980) is obtained for the various seismic retrofit 
possibilities. 
The database considered has already been analyzed in its as built condition in section 
3.2. Out of the 525 buildings belonging to the original database, only the ones 
associated with the older construction periods have been considered, leading to the 
selection of 445 residential masonry buildings. The most modern buildings, i.e. those 
built after 1980, have been excluded from this study since they usually show better 
design and construction details, following on one hand the improvement of masonry 
building design occurred after the Friuli (1976) and Irpinia (1980) earthquakes, and on 
the other hand, the more recent construction techniques widely available since the 
eighties, including the use of industrialized masonry units and of r.c. and hollow-tile 
rigid floors. In addition, the first specific regulation for the calculation of masonry 
structures, listing very significant construction rules to improve the overall building 
behavior (such as the presence of ring-beams, the use of rigid floors, the geometry, 
position, and arrangement of masonry walls, among the others) entered into force with 
a Ministry of Infrastructures Decree in 1987 (DM 1987). For these reasons, and 
although DM 1987 regulated the design under static loads only, the masonry buildings 
built after 1980 generally demonstrated a much better behavior than the older ones in 
recent earthquakes (Penna et al. 2014; Sorrentino et al. 2019) and, when properly 
designed according to the rules in force at that age, can be considered not to require 
any specific seismic retrofit intervention, at least at a large scale.  

3.6.1. Seismic retrofit interventions 

Before carrying out vulnerability analyses through Vulnus_4.0, possible retrofit 
interventions must be selected as the most significant and effective for each building 
macro-typology. To do this, the reference literature was taken into account together 
with direct field observations (Vettore et al., 2022; Saretta et al., 2021a,b; Valluzzi et 
al., 2021a). In particular, due to the typological similarities among buildings erected 
in time periods that are close to each other, two blocks of interventions were selected, 
one for the so-called “historical” buildings (i.e. built before 1945) and one for more 
modern buildings (i.e., built after 1945). Specifically, the interventions have been 
grouped into three categories, depending on the kind of improvement that they are 
supposed to bring: 
a) intervention to increase the strength and quality of masonry (MSN); 
b) intervention to improve the wall-to-wall and wall-to-floor connections and to 
guarantee the box-like behavior (TR, CR); 
c) interventions to increase the stiffness of the horizontal diaphragms (FLR) (Modena 
et al., 2011; Circular 2019/01/21). 
These interventions can be applied individually or they can be combined to optimize 
their effectiveness. In Table 3.9, the interventions selected for the two building macro-
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classes are shown. Four possible interventions are proposed for the two macro-
typologies of buildings designed before 1919 and between 1919 and 1945, combined 
in 4 different ways, for a total of eight possible interventions. On the other hand, the 
interventions selected for buildings designed between 1945 and 1980 are three, and 
their possible combinations lead to a total of five possible strategies. 

Table 3.9 - Selected retrofit interventions for different construction periods 

B
ef

or
e 

19
45

 individual 
interventions 

MSN1 1st stage of masonry strengthening (one intervention) 
MSN2 2nd stage of masonry strengthening (combined interventions) 
TR addition of tie-rods 
FLR stiffening of floors (light intervention) 

combined 
interventions 

MSN1+TR 1st stage of masonry strengthening + addition of tie-rods 
MSN1+FLR 1st stage of masonry strengthening + stiffening of floors 
MSN2+TR 2nd stage of masonry strengthening + addition of tie-rods 
MSN2+FLR 2nd stage of masonry strengthening + stiffening of floors 

    

A
fte

r 1
94

5  individual 
interventions 

MSN masonry strengthening (reinforced plaster) 
CR addition of confining rings 
FLR stiffening of floors (heavy intervention) 

combined 
interventions 

MSN+CR masonry strengthening + addition of confining rings 
MSN+FLR masonry strengthening + stiffening of floors 

 
In the following paragraphs, a detailed explanation of the most common interventions 
summarized in Table 3.9 and of their implementation through Vulnus software is 
given, taking into account the significant differences between the macro-typologies 
and the specific features of every single building. Due to the simplified modelling 
procedures of the software, the implementation process can be divided into two parts. 
The first part relates to the interventions that can be implemented through the available 
software options and are generally connected to changes in the mechanical parameters. 
Some of them could be implemented directly in Vulnus, even though most of them 
had to be implemented indirectly, by means of reproducing their effect on the overall 
behavior of the building. The second part of the implementation process refers to the 
improvement of qualitative building features and impact on the seismic performance, 
namely the qualitative parameters of the Second Level GNDT form (see section 
2.1.2.2). In particular, a qualitative class from A to D (where A is the best condition) 
is assigned to each one of the 11 parameter of the form, on the basis of several specific 
characteristics of the building analyzed. The improvements of each intervention have 
been investigated, and a higher qualitative class has been assigned to the parameters 
affected by the interventions, with reference to the technical manual of the form 
(Ferrini et al., 2003). 
 
3.6.1.1. Masonry strengthening and compacting 
 
To ensure a good seismic performance of a masonry building, the quality and state of 
preservation of masonry is of paramount importance. If masonry is not sufficiently 



Fragility curves for Italian residential masonry buildings 
____________________________________________________________________________________________________________________________________________________________________ 

 

 81 

strong and compact, the application of seismic actions leads to stone disaggregation or 
severe in-plane shear failure. Several techniques can be applied to improve the 
performance of masonry, depending on the typology and quality of masonry itself 
(Modena et al., 2000), as also demonstrated by recent post-earthquake field 
observations (Saretta et al., 2021a). Therefore, a careful evaluation of the as built state 
of masonry is necessary to select the most suitable intervention.  
As presented in Table 3.9, two stages of retrofit interventions on masonry are proposed 
in case of historical buildings (MSN1, MSN2), while only one stage is taken into 
consideration in case of modern buildings (MSN), because of their better as built 
performance. The first stage of masonry intervention on historical buildings (MSN1) 
considers the application of lighter or single strengthening techniques, whereas the 
second one (MSN2) implies the concurrent application of two techniques or the 
extensive implementation of an heavier single technique, to achieve the best retrofit 
results.  
The techniques to improve the quality and strength of masonry proposed in this study 
vary according to the type of masonry. For what concerns historical buildings, the 
load-bearing structure is usually composed of stone or solid brick masonry. 
Specifically, the first usually consists of rubble stones and can show an irregular 
pattern and the presence of many voids, or it is made of better shaped (ashlar) and 
coursed stone; the latter being generally of higher quality and more performing than 
the previous. Brick masonry is generally more regularly coursed. Both stone and brick 
masonry can be composed of two or three leaves, that are often not properly connected, 
particularly in the case of rubble, multi-leaf, stone masonry. Conversely, modern load-
bearing masonry buildings (built after 1945), generally use industrialized solid or 
hollow bricks and blocks or, to a smaller extent, better shaped stones.  
In case of inconsistent random stone masonry, grout injections are some of the most 
common and effective interventions (Mazzon et al., 2009; Oliveira et al., 2012; Silva 
et al., 2014; Quelhas et al., 2014). This technique consists in grouting the wall core, 
by filling the voids through a regular pattern of drilled holes. Injections are performed 
from the bottom to the top of the walls under controlled pressure, after cleaning the 
holes with water or compressed air. Nowadays, natural hydraulic lime based grouts 
are usually preferred, as their composition is more similar to that of historic mortars, 
making them more compatible with masonry, and ensuring a better homogenization 
with existing materials (Valluzzi et al., 2004; Vintzileou and Miltiadou-Fezans, 2008; 
Kalagri et al 2010; Oliveira et al., 2012;).  
Nonetheless, even in masonry composed of more regular elements (i.e. stone ashlar 
and solid brick) the mechanical characteristics (compressive and tensile strength) can 
be improved. For this masonry typology, reinforced concrete jackets made of cement 
or lime-based mortars and a steel mesh can be added (Modena et al., 2009, Figure 
3.16a). Another technology developed is the FRP (Fiber Reinforced Polymer) and 
SRG (Steel Reinforced Grout) (Figure 3.16b,c). These types of intervention consist of 
strips made of glass, carbon, aramid, or polypropylene fiber meshes and they allow to 
spread the reinforcement to the entire surface of the walls or to apply it locally 
(Tomaževič et al., 2009; Borri et al., 2011; Capozucca, 2010). As an evolution of these 
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kinds of interventions, FRCM-TRM (Fibre Reinforced Cementitious Mortar – Textile 
Reinforced Mortars) plasters can be applied on both sides of the wall, anchored by 
transversal connections (da Porto et al., 2018; Giaretton et al., 2018; Valluzzi et al., 
2021b; CNR-DT 215/2018, 2020; Borri et al. 2019, ACI 549.6R-20, 2020, De Felice 
et al., 2014; Corradi et al., 2014). Similarly to FRP strips, this type of intervention 
consists of fiber meshes, which in this case are coated in inorganic matrices based on 
lime or cement mortar. FRCM-TRM plasters can be applied on the entire surface of 
the walls; the outcome is similar to that of reinforced concrete jackets, but it comes 
with a lighter load and stiffness increase. This type of intervention is suitable also for 
more modern buildings, characterized by more regular masonry, where it is not 
necessary to fill internal voids, avoid masonry disaggregation, or improve the bond 
among different masonry leaves, but it is generally needed to produce a light but 
widespread strength increase. 
The most suitable intervention in case of masonry with multiple leaves not adequately 
connected to each other is the insertion of artificial transverse elements with an anti-
expulsion function. These can be stone or reinforced concrete elements, metal profiles, 
metal tie-rods made of smooth or threaded bars, inserted in dry or injected conditions, 
or fiber ropes or profiles which can be applied only if the masonry is consistent enough 
to ensure the coupling between the faces, and thus the overall functioning of the wall 
(Valluzzi et al., 2004; Corradi et al., 2017; Giaretton et al. 2017; Cascardi et al. 2020). 
Lastly, when the resistant elements are mostly regular and performing, but the mortar 
is of very poor quality or in a deteriorated state, it is possible to act with bed-joint 
repointing (Corradi et al., 2008). This intervention consists of removing part of the old 
mortar in the joints and replacing it with a new mortar with improved properties and 
durability. It is also possible to opt for reinforced repointing, adding steel or fiber 
reinforced polymer (FRP) bars into the newly pointed mortar joints, in order to 
increase not only the shear capacity, but also the behavior in case of relevant dead 
loads and creep phenomena (D’Ayala 1998; Valluzzi et al., 2005, Oliveira et al., 2012). 
 

  
 

 

a) b) c) 

Figure 3.16 - Reinforced concrete jackets (a) and example of application of FRP-SRG (b, c) 
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To summarize, the 1st stage masonry interventions proposed in this study, according 
to the type of masonry, includes injections on random multi-leaf stone, and the 
application of reinforced plaster or FRCM-TRM in case of stone ashlars, solid and 
hollow brick masonry. These interventions can be integrated, as 2nd stage intervention, 
with bed-joint repointing or reinforced bed-joint repointing (in case of regularly 
coursed masonry) and transversal connection elements (in case of multi-leaf stone 
masonry).  
To simulate these types of intervention through Vulnus_4.0, the corrective coefficients 
shown in Table 3.10 are applied to the mechanical characteristics of the materials 
composing the building. The coefficients are averaged on those of table C8.5.II 
available in the Italian Circular 2019/01/21 (Italian Ministry of Infrastructures and 
Transports, 2019), and depend on the type of intervention and on the construction 
material. In case of historical masonry, the first step of intervention brings a similar 
improvement for different masonry types. Instead, the implementation of more 
invasive and heavy interventions on stone masonry, characterized by values of the 
mechanical parameters lower than the ones associated to brick masonry, gives greater 
improvements, although it does not exceed the values of the mechanical characteristics 
of brick masonry. Moreover, the improvement in case of hollow brick masonry is very 
low, since the performance level in the as built state is already high. Lastly, since these 
interventions require addition of material, an average increase of masonry specific 
weight was estimated by 5% in case of stone masonry and 4% in case of solid and 
hollow brick masonry. 

Table 3.10 - Multiplicative coefficients applied by type of masonry and construction period 

Before 1945 MSN1 MSN2 
Stone masonry 1.7 2.4 
Solid brick masonry 1.5 1.8 
Tuff masonry 1.6 1.9 

After 1945 MSN 
Solid brick masonry 1.7 
Hollow brick masonry 1.3 

 
As concerns the modification of the class assigned to the GNDT qualitative 
parameters, the improvement of masonry quality is related to four parameters: 
parameter n.1 “type and organization of the resistant system”; parameter n.2 “quality 
of the resistant system”; parameter n.3 “conventional resistance”; and parameter n.11 
“state of preservation”. The parameters n.1 and n.3 are excluded from the calculation 
of the qualitative index I3 by Vulnus_4.0 because the former is considered to be 
completely integrated in the OOP index I2, and the latter in the IP index I1 (Valluzzi 
et al., 2009). For this reason, only parameters n.2 and n.11 have been modified after 
the strengthening interventions. The parameter n.2, “quality of the resistant system”, 
depends on the homogeneity of the wall fabric, and it is assigned to an A class for 
particularly good masonry structures, or in presence of masonry consolidated 
according to current seismic standards (Ferrini et al., 2003). The class of parameter n.2 
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has been thus changed to A either for MUR1, MUR2 and MUR, regardless of the as 
built masonry type and original quality class. The parameter n.11 is classified on the 
basis of the maintenance state of the masonry, and an A class is assigned to masonry 
in good condition, without visible damage, which can be also obtained after a well 
realized strengthening intervention. Therefore, also the class of parameter n.11 has 
been changed to A after the application of interventions. 
 
3.6.1.2. Improvement of connections and box-like behavior 
 
Connections between structural elements are necessary to ensure a box-like behavior 
of masonry buildings, which is the ability to act as an ensemble of all structural 
components, activating the in-plane response of the walls and resulting in a higher 
resistance of the structure to the horizontal actions caused by an earthquake.  
Wall-to-wall and wall-to-floor/wall-to-roof connections are often inadequate in 
ancient buildings (Saretta et al., 2021a,b), causing a not adequate distribution of the 
shear loads in the masonry walls and the possibility of activating out-of-plane collapse 
mechanisms. 
Interventions to improve wall-to-wall connections can be implemented by masonry 
corner reconstruction or by locally inserting steel or composite elements (Tomaževič 
et al., 1996; Moreira et al., 2012; Araújo et al., 2014; Moreira et al., 2015; Cescatti et 
al., 2016). Interventions to improve the wall-to-floor connections can be carried out, 
for example, by locally inserting inclined steel bars in grouted holes drilled in the 
masonry, or by inserting fasteners (for example steel plates) at the ends of the beams, 
anchored on the external face of the wall or injected in holes in the wall (Giuriani et 
al., 2005; Dizhur et al., 2021). The latter solution is particularly efficient in case of 
wooden floors (Figure 3.17). Nevertheless, the most effective and popular solution to 
obtain a box-like behavior is the insertion of steel tie-rods (TR) or confining rings (CR) 
(Modena et al., 2011; Modena et al., 2009). 
 

 
a) 

 
b) 

 
c) 

Figure 3.17 - Example of connection floor-to-wall (a) and of external anchors (b, c) 
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The most traditional and popular solution to obtain a box-like behavior is the insertion 
of steel tie-rods (TR) or confining rings (CR) (Modena et al., 2011; Modena et al., 
2009; Calderini et al., 2016; AlShawa et al., 2019; Podestà and Scandolo, 2019; 
Rinaldin et al., 2019). Tie-rods (TR) are steel bars connecting parallel opposite walls, 
that allows preventing the out-of-plane overturning of walls and, when placed parallel 
to façade walls, allowing a better in-plane load redistribution and behavior of piers and 
spandrel walls (Figure 3.18a). This technique is one of the most traditional, thus it is 
highly compatible and very frequently implemented in historical buildings. Usually, 
tie-rods are placed at floor level in conjunction with masonry corners or T-junctions, 
along external and internal load-bearing walls, in the two main directions of the 
building (Figure 3.18b). Tie-rods can be directly implemented in Vulnus_4.0, that 
considers the presence of this type of element. The number of ties was calculated for 
each building by placing, along each main direction of the building, an adequate 
number of rods (two rods, one per side, placed parallel to the internal partitions, and 
one rod close to the perimeter walls). 
 

 
a) 

 
 

b) 

Figure 3.18 - Positioning of tie-beams: three-dimensional scheme (b) and disposition in plan (a) 
 
As for the confining rings (CR), these have the same function of tie-rods, but they are 
applied on the external face of the walls. They consist of steel bars or bands of FRP 
(Fiber Reinforced Polymer) placed all around the buildings (CNR-DT 215/2018, 2020; 
ACI 549.6R-20, 2020). The intervention of confining rings has been considered as the 
equivalent of TR for modern buildings, useful when modern buildings are not provided 
with perimetral r.c. tie-beams or the r.c. tie-beams are very lightly (i.e., insufficiently) 
reinforced, as the result of placing the confining rings is to counteract the OOP 
mechanisms of walls and to improve the overall box-like behavior of the building. In 
this case, as Vulnus_4.0 does not explicitly consider the presence of this type of 
element, confining rings are simulated with the insertion of two tie-rods in each 
direction, in correspondence of the horizontal diaphragms of the building.  
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For the intervention to be successful, both tie-rods and confining rings need to be used 
when masonry is sufficiently compact and resistant to sustain the local force applied 
by the anchors. If this is not the case, it is necessary to apply local or global masonry 
strengthening interventions such as grout injections, reinforcement or replacement of 
individual degraded elements (Valluzzi et al., 2021b). For the purpose of this study, 
this condition was considered to be originally verified (when only TR or CR 
interventions where applied), or to be satisfied with the application of a combined 
intervention, where a global masonry strengthening intervention is also foreseen and 
applied. 
The GNDT form takes into account the presence of these elements with particular 
reference to the issue of OOP thrusts at the roof level (parameter n.9 “roof”). With 
reference to the manual (Ferrini et al., 2003), the addition of tie-rods or other confining 
elements can improve the roof of one class. Consistently with the GNDT form, the 
implementation of TR and CR interventions brings an upgrade of one class to 
parameter n.9. 
 
3.6.1.3. Strengthening and stiffening of horizontal diaphragms 
 
The horizontal diaphragms of masonry buildings have a crucial role on their seismic 
behavior, since they redistribute horizontal loads among load-bearing walls, thanks to 
sufficient stiffness and adequate connections to the vertical structure (load-bearing 
walls).  
In general, there is a significant difference among the floor typologies in historical and 
modern buildings, resulting in different kinds of floor interventions (FLR) to be 
applied in the two cases. The horizontal diaphragms in ancient buildings often do not 
satisfy stiffness and connection conditions. Indeed, in this building typology it is 
common to find timber floors made with a single planking layer, usually not connected 
to the walls. In this case, interventions should aim at decreasing the in-plan 
deformability, and at strengthening the connections between horizontal structures and 
walls, as already mentioned in the previous sub-section (Branco and Tomasi, 2014). 
The floor intervention applied in this study, in case of historical building, considers 
the presence of wooden floors and consists is wooden planking reinforcement, which 
has proven to be very successful when applied to existing timber floors, as it helps 
increasing the in-plane stiffness without overloading (Piazza et al., 2008; Valluzzi et 
al., 2008, 2010; Magenes et al., 2014; Senaldi et al., 2014). This intervention consists 
of adding single or double wooden planks over the existing one, preferably using 
tongue-and-groove joints with nails or screws as connectors placed in orthogonal 
direction or at 45° (Figure 3.19a). Other strategies may be the insertion of diagonal 
metallic belts or composite material strips (Valluzzi et al., 2007). These interventions 
can be executed on the floor intrados or on the extrados, depending on the structure 
configuration and on the presence of valuable floors or elements (da Porto et al., 2018).  
In case of modern buildings, floors are typically made of reinforced lattice joist, during 
the turn of the century steel beams, and hollow tiles, and usually completed with a 
concrete slab. The steel used as reinforcement is not always enough and, in particular, 
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during the first evolutions of steel/hollow tiles and r.c. joist/hollow tiles floor systems, 
the connection between the joists and the slab was often inadequate or even absent, as 
well as the connections to the walls are often inadequate, due to the absence or poor 
reinforcement of r.c. tie-beams along the building (Neves and Giongo, 2021; Marini 
et al., 2018). In case of poor r.c. and hollow-tile floors, a concrete slab can be replaced 
or even added (Figure 3.19b), with the insertion of adequate connections to the joists 
and to the walls around the building perimeter.  
 

 
a) 

 
b) 

Figure 3.19 - Reinforced timber floor with double planking crossed at +45° and -45° (a) and addition of 
composite slab in r.c. floors (b) 

 
Regarding the implementation phase, Vulnus_4.0 does not provide a way to implement 
intervention on the floors automatically, but it is necessary to simulate the effect of the 
intervention indirectly. Indeed, the implementation of the installation of double 
wooden planks in Vulnus_4.0 has been carried out by inserting ties to simulate the 
improved box-like behavior when floors are stiffened. Then, to further increase the 
reaction of the diaphragms in the model, the floor-to-wall friction coefficient is 
increased to take into account the improved connection brought by the intervention. 
For modern buildings, the replacement or the addition of the collaborating slab is 
simulated in Vulnus_4.0 with the insertion of adequate connections with the walls 
around the entire perimeter. In addition, the floor-to-wall friction coefficient has not 
been increased, as in the historical buildings, as it already had non-negligible values 
due to the type of simulated floors, but tie-beams have been inserted at each floor, 
when they were not already present. By doing so, the insertion of tie-beams has not 
been considered as a stand-alone intervention, because of its difficult application, 
especially at the intermediate floor levels of historical buildings (Borri et al., 2016, 
Vettore et al., 2022; Saretta et al., 2021a). Also, an average increase of floor specific 
weight has been estimated by 1.2 kN/m2, in case of newly added collaborating slabs. 
The GNDT parameters concerned by the floor improvements are n. 5 “floor” and n.9 
“roof”. The class of the parameter n. 5 is assigned based on the floor stiffness and the 
quality of the wall-to-floor connections. The interventions implemented in this study 
are attributed to an A or B class, based on the presence (class B) or absence (class A) 
of unaligned floors (Ferrini et al., 2003). Instead, parameter 9 considers stiffness and 
quality of connections, but also the presence of pushing actions, in case of heavy or 
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light roofs, and in this case the intervention leads to an improvement of only one class, 
similar to what happens for tie-rods and confining rings. 

3.6.2. Mitigated fragility results 

The procedure presented in paragraph 3.3 and 3.4 has been repeated for each of the 
445 buildings included in the database of constructions built before 1980, and for each 
intervention considered, as described in paragraph 3.6.1. As a result, the fragility sets 
related to the building macro-typologies Pre-1919, 1919-1945, 1946-1960, and 1961-
1980, for the two height classes Low-Rise (1 and 2 stories) and Mid-Rise (3, 4 and 5 
stories), are obtained and are here listed in Table 3.11 and Table 3.12, in terms of 
median μ and standard deviation β of the lognormal cumulative fragility curve. The 
results are also graphically presented in Figure 3.20 and Figure 3.21, where the 
fragility sets are compared to the as built ones. 
The model obtained allows capturing the overall vulnerability reduction caused by the 
application of different interventions, but not the variations in individual damage states 
(e.g., reduction of severe damage but not of slighter ones). So, the fragility model 
presented in this work is considered reliable for large scale analyses, but it is 
considered to be only indicative of efficiency of the interventions, when applied at the 
detailed building scale. 
 
 

Table 3.11 - μ and β values of the fragility model for the as built and retrofitted configuration of historical 
buildings 

 

 
DS1 DS2 DS3 DS4 DS5 

µ [g] β [-] µ [g] β [-] µ [g] β [-] µ [g] β [-] µ [g] β [-] 

Pr
e-

19
19

 

AB 
n ≤ 2 0,098 0,693 0,173 0,715 0,280 0,718 0,453 0,751 0,825 0,793 
n ≥ 3 0,073 0,747 0,129 0,776 0,209 0,784 0,337 0,781 0,612 0,808 

MSN1 
n ≤ 2 0,132 0,707 0,234 0,732 0,378 0,725 0,611 0,725 1,110 0,716 
n ≥ 3 0,111 0,756 0,197 0,786 0,317 0,774 0,514 0,785 0,942 0,816 

MSN2 
n ≤ 2 0,154 0,694 0,274 0,726 0,442 0,735 0,715 0,758 1,301 0,684 
n ≥ 3 0,127 0,748 0,225 0,780 0,363 0,767 0,587 0,772 1,068 0,767 

TR 
n ≤ 2 0,112 0,740 0,198 0,768 0,320 0,755 0,517 0,766 0,948 0,804 
n ≥ 3 0,078 0,736 0,139 0,757 0,224 0,761 0,362 0,770 0,656 0,806 

FLR 
n ≤ 2 0,126 0,737 0,223 0,760 0,360 0,749 0,582 0,753 1,059 0,758 
n ≥ 3 0,091 0,681 0,162 0,702 0,262 0,706 0,424 0,735 0,770 0,774 

MSN1+ 
TR 

n ≤ 2 0,168 0,692 0,298 0,718 0,481 0,737 0,780 0,778 1,425 0,698 
n ≥ 3 0,119 0,744 0,212 0,768 0,342 0,756 0,553 0,756 1,009 0,778 

MSN1+ 
FLR 

n ≤ 2 0,205 0,702 0,365 0,703 0,588 0,683 0,945 0,677 1,685 0,670 
n ≥ 3 0,148 0,671 0,262 0,694 0,423 0,699 0,684 0,717 1,241 0,672 

MSN2+ 
TR 

n ≤ 2 0,190 0,730 0,338 0,737 0,545 0,729 0,879 0,761 1,579 0,711 
n ≥ 3 0,142 0,701 0,253 0,729 0,408 0,733 0,659 0,747 1,196 0,697 

MSN2+ 
FLR 

n ≤ 2 0,264 0,737 0,469 0,738 0,758 0,726 1,223 0,653 2,172 0,611 
n ≥ 3 0,184 0,686 0,327 0,700 0,529 0,709 0,856 0,752 1,554 0,708 
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19
19

-1
94

5  

AB 
n ≤ 2 0,107 0,753 0,190 0,767 0,307 0,765 0,496 0,785 0,910 0,813 
n ≥ 3 0,084 0,719 0,149 0,746 0,241 0,751 0,390 0,768 0,707 0,819 

MSN1 
n ≤ 2 0,142 0,705 0,253 0,733 0,408 0,742 0,660 0,764 1,197 0,712 
n ≥ 3 0,118 0,784 0,209 0,814 0,338 0,802 0,547 0,802 0,999 0,809 

MSN2 
n ≤ 2 0,162 0,701 0,287 0,734 0,465 0,754 0,753 0,791 1,373 0,694 
n ≥ 3 0,138 0,728 0,245 0,760 0,395 0,770 0,638 0,790 1,159 0,749 

TR 
n ≤ 2 0,116 0,771 0,206 0,798 0,332 0,781 0,538 0,774 0,983 0,803 
n ≥ 3 0,088 0,718 0,155 0,739 0,251 0,742 0,405 0,771 0,735 0,819 

FLR 
n ≤ 2 0,126 0,741 0,223 0,765 0,360 0,756 0,581 0,762 1,058 0,765 
n ≥ 3 0,086 0,725 0,153 0,737 0,247 0,747 0,399 0,768 0,724 0,828 

MSN1+ 
TR 

n ≤ 2 0,173 0,716 0,308 0,743 0,497 0,763 0,807 0,802 1,475 0,705 
n ≥ 3 0,123 0,743 0,218 0,775 0,353 0,762 0,570 0,764 1,038 0,773 

MSN1+ 
FLR 

n ≤ 2 0,194 0,697 0,344 0,705 0,555 0,697 0,895 0,727 1,604 0,700 
n ≥ 3 0,121 0,701 0,215 0,727 0,347 0,709 0,561 0,708 1,023 0,738 

MSN2+ 
TR 

n ≤ 2 0,191 0,745 0,339 0,755 0,548 0,750 0,884 0,780 1,586 0,711 
n ≥ 3 0,146 0,707 0,260 0,733 0,419 0,746 0,678 0,775 1,231 0,709 

MSN2+ 
FLR 

n ≤ 2 0,233 0,696 0,413 0,714 0,665 0,693 1,066 0,627 1,888 0,599 
n ≥ 3 0,143 0,687 0,253 0,713 0,409 0,717 0,661 0,732 1,199 0,683 

Table 3.12 - μ and β values of the fragility model for the as built and retrofitted configuration of modern buildings 

 

 
DS1 DS2 DS3 DS4 DS5 

µ [g] β [-] µ [g] β [-] µ [g] β [-] µ [g] β [-] µ [g] β [-] 

19
46

- 1
96

0 

AB 
n ≤ 2 0,150 0,732 0,266 0,760 0,430 0,767 0,696 0,783 1,264 0,704 
n ≥ 3 0,135 0,748 0,240 0,783 0,387 0,782 0,625 0,800 1,134 0,763 

MSN 
n ≤ 2 0,196 0,750 0,348 0,751 0,561 0,732 0,903 0,747 1,618 0,704 
n ≥ 3 0,189 0,755 0,335 0,761 0,540 0,759 0,873 0,791 1,569 0,714 

CR 
n ≤ 2 0,170 0,800 0,302 0,818 0,488 0,809 0,792 0,820 1,448 0,702 
n ≥ 3 0,138 0,737 0,244 0,771 0,395 0,775 0,637 0,790 1,157 0,748 

FLR 
n ≤ 2 0,165 0,774 0,293 0,784 0,474 0,787 0,768 0,807 1,403 0,698 
n ≥ 3 0,133 0,730 0,236 0,764 0,381 0,760 0,616 0,777 1,118 0,753 

MSN+ 
CR 

n ≤ 2 0,227 0,750 0,403 0,754 0,650 0,728 1,042 0,671 1,846 0,643 
n ≥ 3 0,192 0,759 0,340 0,767 0,549 0,756 0,886 0,778 1,590 0,711 

MSN+ 
FLR 

n ≤ 2 0,230 0,695 0,409 0,716 0,659 0,696 1,057 0,634 1,871 0,608 
n ≥ 3 0,189 0,689 0,335 0,704 0,541 0,707 0,874 0,753 1,571 0,710 

19
61

- 1
98

0 

AB 
n ≤ 2 0,208 0,739 0,369 0,741 0,595 0,716 0,956 0,699 1,703 0,679 
n ≥ 3 0,169 0,676 0,300 0,706 0,485 0,736 0,786 0,785 1,437 0,700 

MSN 
n ≤ 2 0,267 0,754 0,474 0,760 0,766 0,753 1,237 0,659 2,199 0,608 
n ≥ 3 0,200 0,691 0,354 0,694 0,571 0,680 0,919 0,691 1,644 0,683 

CR 
n ≤ 2 0,245 0,745 0,435 0,751 0,702 0,731 1,127 0,642 1,995 0,602 
n ≥ 3 0,170 0,688 0,301 0,711 0,487 0,724 0,790 0,760 1,444 0,699 

FLR 
n ≤ 2 0,233 0,689 0,413 0,707 0,665 0,690 1,066 0,627 1,888 0,599 
n ≥ 3 0,159 0,659 0,283 0,687 0,457 0,702 0,740 0,730 1,348 0,685 

MSN+ 
CR 

n ≤ 2 0,314 0,791 0,556 0,767 0,895 0,756 1,427 0,681 2,451 0,611 
n ≥ 3 0,207 0,678 0,368 0,689 0,593 0,685 0,953 0,683 1,698 0,671 

MSN+ 
FLR 

n ≤ 2 0,284 0,696 0,504 0,708 0,816 0,714 1,322 0,662 2,368 0,616 
n ≥ 3 0,196 0,646 0,349 0,657 0,562 0,655 0,906 0,681 1,621 0,682 
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Figure 3.20 - Mitigated fragility curves for TR, MSN1+TR, MSN2+TR, CR, and MSN+CR compared to the as 
built model 
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Figure 3.21 – Mitigated fragility curves for FLR, MSN1+FLR, MSN2+FLR, and MSN+FLR compared to the as 
built model 

From these results, it was possible to evaluate the overall improvement brought by 
different interventions and compare the effectiveness of similar interventions applied 
to different types of buildings. In Figure 3.22, the percentage increase of µ calculated 
for DS2 are shown as an example. From the histograms, on average, masonry 
interventions are more effective than tie-rods (or confining rings) and floor 
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interventions, particularly when applied to mid-rise buildings that, due to the higher 
masses, are subjected to higher shear actions on the walls. The smaller effectiveness 
of tie-rods and confining rings is very likely due to the fact that, when the out-of-plane 
collapses of masonry walls are hindered, than the problem turns into the inadequate 
strength of the masonry wall. Therefore, although the improvement of the former is 
significant, the latter start prevailing, and the overall damage of the building is only 
slightly improved. 
 

Historical Buildings Modern Buildings 

Pre-1919 

 

1946-1960 

 

1919-1945 

 

1961-1980

 

Figure 3.22 - Percentage of increase of µ calculated for DS2 

It is also interesting to observe that in historical buildings, the interventions on the 
floors are more effective than the single intervention of tie-rod insertion. This is 
because the intervention on the floor, as it has been conceived in this study, also 
consider the presence of diffused connections to the walls, thus improving the behavior 
towards out-of-plane actions, but only from more refined analyses a better seismic load 
redistribution among walls could emerge. Conversely, in the case of modern (post-
1945) buildings, the interventions on the floors are less effective than the insertion of 
confining rings, and this is very likely due to a combination of various effects, 
including the better as-built condition of the modern floor, the increase of masses, 
hence seismic loads, related to the addition of a new collaborating slab, and the more 
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beneficial effect of confining elements, considering the absence or low quality of the 
existing tie-beams. In the case of interventions on floors of modern buildings, it is even 
observed a general worsening of the behavior of Mid-Rise constructions, probably due 
to the unfavorable effect of the load increase, not being balanced by a sufficient 
improvement in stiffness and connections. 
Lastly, the improvement obtained by the application of combined interventions is not 
simply the sum of the improvement obtained for the two interventions applied 
separately, but it is definitely higher, due to the hindrance or delay of different collapse 
mechanisms, both in- and out-of-plane, and the overall improvement of the building 
behavior. As expected, the improvement in case of modern buildings is generally 
lower than that of historical buildings, because of the better as built condition of the 
former. 

3.7. Final remarks 

In this chapter, a methodology for the evaluation of seismic vulnerability has been 
proposed. The fragility curves presented here are suitable for the estimation of the 
vulnerability of Italian residential masonry buildings a large scales, considering both 
their as built configuration and the simulation of possible seismic retrofit interventions. 
The main difference from creating fragility curves that fit individual case studies is 
that territorial fragility models need to be representative of building categories that are 
as homogeneous as possible, and must also rely on features that are clearly identifiable 
and easy to obtain at a large scale (such as height, material, and construction period, 
i.e., the parameters that the models presented in this chapter are based on). 
These features are of key importance also for the definition of the exposure, which 
represents the quantity and value of goods (particularly buildings, in this case) and 
number of people involved in a possible seismic scenario. For example, the economic 
value of a building might differ according to the material and construction techniques, 
as well as to the age of the building itself. Moreover, the height of the buildings might 
give an indication of how many people reside there, thus expressing exposure in terms 
of human lives that can be affected by an earthquake. 
This leads to the consideration that the correct identification of specific building 
parameters is essential both for the estimation of the exposure of the area under exam, 
and also for the correct association of a vulnerability indicator. As pointed out in 
Chapter 2, however, the larger the scale, the more difficult and time-consuming it is to 
determine the exposure and the vulnerability of an area. 
In the next chapter, the automatic procedure for detecting features at territorial scale is 
presented, which thus allows not only to have an estimate of the exposure of the area 
under consideration, but also to assess its seismic vulnerability thanks to the model 
presented in this chapter.  
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4 AUTOMATIC DETECTION AND CHARACTERIZATION OF 
BUILDINGS AT A TERRITORIAL SCALE 

For a risk assessment to produce meaningful results, exposure in the area of concern 
must be reliably estimated. This first step is necessary to understand how urbanized 
the area is (how many buildings there are), as well as to identify the building 
typologies. A good estimate of exposure, especially when it is made for risk 
assessment purposes, takes into account the different use of buildings, as well as their 
construction material, construction period, etc. However, estimating exposure can be 
difficult, especially in urban areas where large-scale surveys are generally expensive 
and impractical; yet, in those areas, most assets are at stake in the event of a disaster. 
In order to achieve the goal of collecting building footprints of a specific area, as well 
as some raw information about buildings, OpenStreetMap tools can be very useful. 
Furthermore, services that offer street-level images (such as Google Street View) can 
be employed to retrieve even further information on building taxonomy. 
Subsequently, Convolutional Neural Networks can be trained and used to associate 
images of buildings to a certain category. Particularly, an algorithm used to predict the 
height, material, and construction period of a building based on its street view image 
is presented in this chapter. 

4.1. OpenStreetMap module to retrieve building footprints 

According to the research mentioned in chapter 2 (specifically, 2.5.1), 
OpenStreetMaps can be considered very useful for the automatic detection of buildings 
at a territorial scale. 
Specifically in this work, the data that can be offered by OpenStreetMap have been 
gathered through the Python package OSMnx. With OSMnx it is possible to download 
geodata from OpenStreetMap and model, project, visualize, and analyze urban 
geometries. This dependency was firstly presented in Boeing (2017) as a new tool that 
makes data collection and road network analysis simple, consistent, and automatable, 
from the perspective of graph theory, transportation, and urban planning. OSMnx 
offers five important features for researchers: the first one is the automated 
downloading of policy boundaries and building footprints; the second is the 
customized and automated downloading and creation of road network data from 
OpenStreetMap; the third is the algorithmic correction of network topology; the fourth 
is the ability to save road networks to disk as shapefiles, GraphML, or SVG files; and 
the fifth is the ability to analyze road networks, including computing routes, projecting 
and visualizing networks, and calculating metrics and topological measures. These 
scales include those commonly used in urban planning and traffic studies, as well as 
advanced scales for the structure and topology of the network. Boeing also published 
an article in 2020 where he used OSMnx to automatically download and analyze 
27,000 U.S. street networks from OpenStreetMap at the metropolitan, municipal, and 
neighborhood levels, focusing on metrics relevant to graph theory, transportation, 
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urban design, and morphology, such as structure, connectivity, density, centrality, and 
resilience. By doing that, he demonstrated that OSMnx is suitable to consistently 
perform road network analyses with extremely large sample sizes, with excellent 
network definitions and extents for reproducibility. Lastly, in another work published 
by Boeing in 2021, OSMnx and data from OpenStreetMap allowed examining street 
network patterns, orientations, and configurations for several case studies around the 
world, thus giving important information about different urban fabrics. 
OSMnx interacts with OpenStreetMap's APIs (Application Programming Interfaces), 
which are software intermediaries that allow two applications to communicate with 
each other. With OSMnx, for example, it is possible to download and model road 
networks or other networked infrastructures, as well as any other spatial geometry, 
location boundaries, building footprints, or points of interest. OSMnx relies on other 
Python packages, notably GeoPandas, which is an open source project that helps 
manage geospatial data in Python. Thanks to GeoPandas, it is possible to store OSM 
data as a GeoDataFrame, which is a data structure that organizes data in a 2-
dimensional table with rows and columns (similar to a spreadsheet) and has a specific 
column for the geometry of each object. In this way, OSMnx allows users to obtain 
maps by city name, polygon, bounding box, or point/address and network distance, 
and save them as shapefiles, GeoPackages, or GraphML. After retrieving these data, 
it becomes easier and more practical to perform topological and spatial analyses to 
automatically calculate urban indicators, visualize road networks as static maps or 
interactive leaflet web maps, and create diagrams of road networks and building 
footprints. 
These useful tools that OSMnx offers have been exploited in this project within the 
Python code explained below, which was developed to retrieve building footprints 
given a specific satellite image. 
To retrieve the desired satellite image, the script provides two input possibilities: the 
user can search a place by town/municipality, or can enter a pair of coordinates 
(latitude and longitude) and distance radius R. In the first case, the program will also 
return the centroid of the chosen town (in terms of latitude and longitude); in the 
second case, the program will extract the name of the municipality, region and country 
to which the chosen area belongs. In both cases, the package used to obtain the missing 
information is Nominatim, a tool to search OSM data by name and address (geocoding) 
and to generate synthetic addresses of OSM points (reverse geocoding). The code 
extracts the satellite image through the Static Maps service from the Mapbox API. 
Mapbox is a mapping and location cloud platform which provides tools to build 
scalable and customizable maps into websites or web-based applications. The satellite 
image retrieved through Mapbox is set to be included in a bounding box whose borders 
are represented by the minimum and maximum latitude and longitude of the selected 
area, so that all the buildings inside the municipality or within the radius can be 
visualized. 
Figure 4.1 displays two examples of satellite images: Figure 4.1a shows an image 
extracted for an entire town (Padova), while Figure 4.1b shows an area centered in the 
point (45.409605, 11.888727) with a radius R of 300 meters. 
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Padova (town level) 

 

Coordinates: (45.409605, 11.888727), 
R=300 m 

  
a) b) 

Figure 4.1 - Satellite images for a) the town of Padova, b) an area centered in the point of coordinates 
(45.409605, 11.888727) with a radius of 300 meters 

Subsequently, through the dependency OSMnx described above, it is possible to 
retrieve the footprints of all the buildings that are detected in the input area, thanks to 
the modules footprints_from_place or footprints_from_point, depending on the input 
choice. In this module, only the footprint type “building” is selected, so that the code 
only extracts the polygons associated to this type of object. The two maps in Figure 
4.2 show the building footprints related to the satellite images shown in Figure 4.1. 
Other possibilities taken into account by the OSM tags could be “amenity”, 
“boundary”, “highway”, “landuse”, and “railway”, just to mention a few. 
 

Padova (town level) 
 

Coordinates: (45.409605, 11.888727), 
R=300 m 

  
a) b) 

Figure 4.2 - Building footprints for a) the town of Padova, b) an area centered in the point of coordinates 
(45.409605, 11.888727) with a radius of 300 meters 
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This section of the code not only retrieves the building footprints, but also retains their 
floor area, their centroid (latitude and longitude) and the labels of each building. 
OpenStreetMap includes the following labels for the key “building”: 
“accommodation”, “commercial”, “religious”, “civic”, “agricultural”, “sports”, 
“storage”, “cars”, “power buildings”, “other buildings”. For each possible label, many 
sub-categories (values) are allowed. All the data obtained are stored in a 
GeoDataFrame, where each row represents a building and can be accessed and edited 
via GeoPandas. Figure 4.3 shows the building footprints from Figure 4.2b, with 
different colors according to their labels. 

 
Figure 4.3 - Building footprints and their labels for the area centered in (45.409605, 11.888727) with a radius of 

300 meters 

Figure 4.4 shows the same type of output, this time for an area centered in (45.965009, 
12.653791) with a radius R of 500 meters (located in the town of Pordenone, Friuli-
Venezia Giulia, North-East of Italy). This example is presented to prove that the 
algorithm is completely automatic and works for any set of coordinates and for radii 
with different amplitudes. 

 
Figure 4.4 - Building footprints and their labels for the area centered in (45.965009, 12.653791) with a radius of 

500 meters 
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In addition, the way in which data are stored makes it easy to filter them. As an 
example, only residential buildings among the ones detected in Figure 4.3 are shown 
in colors in Figure 4.5, while other building typologies are plotted in gray. Specifically, 
the values “building (general)”, “apartments”, “detached”, “house”, “residential”, and 
“semidetached_house” have been considered as significant ones for selecting 
residential buildings only. Again, the same procedure is shown in Figure 4.6 for the 
buildings detected in Figure 4.4. 
 

 
Figure 4.5 - Building footprints and their labels for the area centered in (45.409605, 11.888727) with a radius of 

300 meters, where only residential buildings are kept 

 
Figure 4.6 - Building footprints and their labels for the area centered in (45.965009, 12.653791) with a radius of 

500 meters, where only residential buildings are kept 

4.2. Google Street View module to retrieve street-level images 

As can be seen from what has been shown so far, OpenStreetMap allows us to obtain 
a lot of valuable information about the buildings belonging to a specific area of 
interest. It has to be noticed, however, how most of this information regards 2D 
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features (such as latitude and longitude, floor area, etc.), and even when data that 
concern other kinds of features are found, they have to be trusted by the user without 
any possibility of checking. Information about the height of buildings, the disposition 
of openings, the construction material, just to mention a few examples, simply cannot 
be derived directly from an aerial image. Fortunately, we now possess tools that make 
it possible to explore a particular area not only from above, as seen from an airborne 
image, but also in its 3D complexity: in particular, it has become simple and user-
friendly to access street view services, which provide street view images (SVIs), i.e., 
ground-level panoramic views of cities and other places. As described in chapter 2 
(section 2.5.2), among all the possible street view services, Google Street View is 
definitely the most comprehensive in the world. 
Google Street View images can add valuable information to that already obtained from 
satellite photos and OpenStreetMap. For this reason, an additional module has been 
implemented to the algorithm based on the OSMnx package described in the previous 
section, so that additional data can be saved in the GeoDataFrame. 
As said before, for each building the centroid is known. Thanks to the Google Street 
View API, it is possible to automatically obtain the façade picture of a desired 
building, given its centroid coordinates. Indeed, through the google_streetview.api 
dependency, the user can select the location where the picture has to be retrieved 
(expressed as a pair of coordinates, latitude and longitude), the size of the output 
picture, the pitch (vertical angle) and the heading (horizontal angle). Specifically, the 
angle parameters are defined as follows: 
- pitch: angle variance (up or down) from the camera's initial default pitch, which 

is often (but not always) flat horizontal (for example, an image taken on a hill will 
likely exhibit a default pitch that is not the exact horizontal). The default value is 
0, and pitch angles are measured with positive values looking up (to +90 degrees 
straight up and orthogonal to the default pitch) and negative values looking down 
(to -90 degrees straight down and orthogonal to the default pitch); 

- heading: rotation angle around the camera locus in degrees relative from true 
north. The default angle is 0, and headings are measured clockwise (+90 degrees 
is true east). 

In this work, the default size was chosen, i.e., 640x640 pixels (which is also the 
maximum size for Google Street View pictures). Also, no heading was specified: each 
time, a value is calculated that directs the camera towards the specified location (i.e., 
the façade of the building), from the point at which the closest photograph was taken. 
For what concerns the pitch, an angle of 5° was selected, so that even taller buildings 
can fit in the image taken (the default value would be 0°, which usually means flat 
horizontal). Google Street View sometimes offers the possibility to enter some closed 
places and to obtain indoor pictures of specific buildings, especially when these are 
public places or private commercial businesses that have given consent to the 
acquisition of images. However, these types of pictures are not relevant for the sake of 
this project, since only photos of façades need to be collected. Therefore, the source 
has been set to “outdoor” images only. 
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Please note that it is necessary to have a Google API key in order to access this service 
from Python. For a monthly volume range between 0 and 100,000 queries, the cost is 
0.007 USD per each Static Street View requested (i.e., 7.00 USD per 1,000 Street View 
images), even though a 200 USD Google Maps Platform credit is available each month 
for each billing account: this means that each month the user can download more than 
28,000 images without incurring any costs, and this limit has never been exceeded 
throughout the duration of this project. 
Each street view image is then saved into a folder then can be accessed later on through 
the following modules of the algorithm. In Figure 4.7, some examples of street view 
images associated to the area centered in (45.409605, 11.888727) with a radius of 300 
meters are shown, while in Figure 4.8 there are other examples of street view pictures 
associated to the area centered in (45.965009, 12.653791) with a radius of 500 m. The 
code could easily acquire the street view pictures of all the building footprints in the 
image, in a fairly short computational time. For an area where the number of buildings 
is in the range of hundreds, the computational time to perform this task is under a 
minute. 

 
Figure 4.7 - Examples of street view images obtained from the coordinates of the building footprints for the area 

centered in (45.409605, 11.888727) with a radius of 300 meters 

 
Figure 4.8 - Examples of street view images obtained from the coordinates of the building footprints for the area 

centered in (45.965009, 12.653791) with a radius of 500 meters 
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Unfortunately, even though Google Street View offers a complete coverage 
throughout the entire Italian territory, it is however true that some pictures of buildings 
might not be captured, due to the fact that there may not be a street close to the building 
that needs to be photographed. This is a limit of Google Street View: the acquisition 
of images is strictly linked to the presence of a road that can be crossed by a vehicle 
equipped with a camera. Moreover, many Google Street View images may contain 
pictures of buildings that are partially hidden or covered by obstacles, such as trees, 
vehicles, or other objects that prevent the viewer (and the algorithm that will be 
described in the following sections) from having a clear view of the building façade. 
These issues are actually very similar to the ones that an inspector may encounter 
during an actual on-site survey of an urban area (for example, the inability to access 
certain streets or buildings), and considering that our method is indeed trying to 
simulate an external survey, it is not surprising that our method has the same 
shortcomings. 

4.3. Deep Learning for the recognition of building features 

The previous sections have shown how information about building geometries can be 
obtained automatically, as well as how it is possible to retrieve street-level pictures of 
multiple buildings remotely, to simulate the process of an actual direct survey at a 
territorial scale. Clearly, just collecting images of buildings is not sufficient for 
carrying out seismic risk assessment of an area: each building must be associated to a 
certain seismic vulnerability level, so that when considering the seismic hazard and 
exposure, seismic risk can be evaluated. Even though it could be possible to 
individually observe each street view picture and assign the building to the right 
category, this operation becomes unsustainable when dealing with thousands of 
buildings. Although conducted remotely, such an activity would require an excessive 
amount of time, comparable to an on-site survey. Nevertheless, in chapter 2 
(specifically 2.5) many studies that use Artificial Intelligence for the automatic 
recognition of image features have been presented. Particularly, in the field of Deep 
Learning, Convolutional Neural Networks can be trained to identify objects and 
meaningful parts in a picture, and to associate images to a certain category. In the 
following sections, the algorithm used to predict the height, material, and construction 
period of a building based on its Google Street View image is presented. 

4.3.1. Convolutional Neural Networks (CNNs): a brief history 

Convolutional Neural Networks (ConvNets, or CNNs for short) form the backbone of 
many modern computer vision systems. Before explaining how Convolutional Neural 
Networks work, this section provide some insight into the history of CNNs themselves. 
In 1959, David Hubel and Torsten Wiesel described “simple cells” and “complex 
cells” in the human visual cortex, proposing that both types of cells are used in pattern 
recognition (Hubel and Wiesel, 1959). A simple cell responds to edges and bars with 
specific orientations, while a complex cell also responds to edges and bars, but differs 
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from a simple cell because these elements can be moved around in the scene and the 
cell still responds. This property of complex cells is called spatial invariance. In 1962, 
Hubel and Wiesel proposed that complex cells achieve spatial invariance by summing 
the output of multiple simple cells that prefer the same orientation (e.g., horizontal 
bars) but different receptive fields (e.g., bottom, middle, or top of the image). This 
concept is found throughout the human visual system and is also the fundamental basis 
of Convolutional Neural Network models (Hubel and Wiesel, 1962). 
In the 1980s, Dr. Kunihiko Fukushima was inspired by Hubel and Wiesel's work on 
simple and complex cells and proposed the model of the neocognitron. The 
neocognitron model includes components referred to as S-cells and C-cells. The S-
cells are located in the first layer of the model and are connected to the C-cells in the 
second layer of the model. During this process, the local features extracted in the lower 
stages are gradually integrated into more global features. The basic idea is to capture 
the concept “from simple to complex” and turn it into a computational model for visual 
pattern recognition (Fukushima, 1982). This concept makes it one of the earliest 
precursor to CNNs, and paved the way for further developments. 
The actual first work on modern CNNs however emerged in the 1990s, and it was 
inspired by the neocognitron. In their paper "Gradient-Based Learning Applied to 
Document Recognition" (1998), Yann LeCun et al. showed that a CNN model that 
combines simpler features into increasingly complicated features can be successfully 
applied to handwritten character recognition. In their work, a CNN called LeNet was 
trained using the MNIST database of handwritten digits (Figure 4.9). MNIST is a 
dataset that contains images of handwritten digits paired with their true labels 0, 1, 2, 
3, 4, 5, 6, 7, 8, or 9. The goal of the project was the prediction of the digit of a sample 
image, and then the update of the model's settings based on whether or not it correctly 
predicted the digit. 
 

 
Figure 4.9 - Examples of handwritten digits from the MNIST dataset 

(https://it.wikipedia.org/wiki/MNIST_database) 

Throughout the 1990s and early 2000s, researchers carried out further work on CNN 
models. Particularly, the merit for recent CNN architectures is the ImageNet 
classification competition called "ImageNet Large Scale Visual Recognition 
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Challenge (ILSVRC)". Similar to MNIST, ImageNet is a public, freely-available 
dataset of images and their corresponding true labels. Instead of handwritten digits 
labeled 0–9, ImageNet focuses on “natural images,” labeled with a variety of 
descriptors including “strawberry”, “cinema”, and “golden retriever”. The labels were 
acquired through massive manual labeling. ImageNet currently includes 14,197,122 
images (some examples are shown in Figure 4.10). The competition was launched in 
2010 and resulted in significant efforts by researchers to benchmark their machine 
learning and computer vision models on a common dataset, particularly for image 
classification. In 2012, AlexNet was the first winner of the ImageNet competition, 
since it achieved a great performance labeling pictures by drastically reducing the error 
rate. Krizhevsky et al. published the paper “ImageNet Classification with Deep 
Convolutional Neural Networks” in 2012 describing the model. Since 2012, CNNs 
have experienced a huge surge in popularity. As a matter of fact, the very next year 
ZFNet (named after its developers Zeiler and Fergus, 2014) was the new winner of the 
ImageNet LSVRC. The architecture of ZFNet was the same as AlexNet, but there were 
a few changes in the hyperparameters, which led to an even better performance of the 
algorithm. In 2014, one of the most important contributions was the introduction of a 
new architecture known as VGGNet (Symonian and Zissermann, 2015), where VGG 
stands for Visual Geometry Group (Oxford University). The Group was motivated by 
the idea that by increasing the depth of the algorithm more non-linearities can be 
modeled. The architecture won the runner-up in the ImageNet challenge in 2014. Great 
popularity was gained by VGG-16, as well as its deeper variant named VGG-19. In 
2014, Google introduced GoogLeNet (Szegedy et al., 2015), which focused on deeper 
networks but with the objective of greater efficiency to reduce memory usage and 
computational burden. Its architecture is known as Inception-v1. Inception-v3 and 
Inception-v4 were also introduced in 2015 and 2016 respectively. He et. al. (2016) 
from Microsoft Research conceived the idea of “residual blocks”, which are connected 
to each other in their architecture ResNet. ResNet won 1st place in ILSVRC and 
COCO 2015 competitions and has continued to be a popular choice for several 
applications. 
Throughout the past several years, CNNs have achieved excellent performance 
describing natural images (including the datasets ImageNet, CIFAR-10, CIFAR-100, 
and VisualGenome), performing facial recognition (including CelebA), and analyzing 
medical images (including chest x-rays, photos of skin lesions, and histopathology 
slides). The following are some applications of Convolutional Neural Networks in use 
today: 
- object recognition: in the last years, sophisticated models such as R-CNN, Fast R-

CNN, and Faster R-CNN have been developed, which are the predominant 
pipeline for many object recognition models used in autonomous vehicles, face 
recognition, and more; 

- semantic segmentation: also known as image segmentation, it indicates the task 
of clustering parts of an image that belong to the same object class. It is a form of 
pixel-level prediction, since each pixel of an image is assigned to a category; 
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- image captioning: CNNs are also used to write captions for images and videos. 
This can be used for many applications, such as activity recognition or describing 
videos and images for people who are visually impaired. 

 

 
Figure 4.10 - Example images from the ImageNet dataset (https://becominghuman.ai/transfer-learning-part-3-

datasets-and-repositories-cebc644007f4) 

4.3.2. Theory of Convolutional Neural Networks 

After this brief summary of the history of Convolutional Neural Networks, the 
technical aspects of these models will now be treated. 
A Convolutional Neural Network is a class of neural networks specialized in 
processing data with a grid-like topology, such as images. A digital image can be 
conceived as a binary representation of visual data, containing a series of pixels 
arranged in a grid pattern with pixel values that indicate the color of each pixel. CNNs 
are deep learning algorithms that can take an input image, assign meaning (learnable 
weights and biases) to different aspects or objects in the image, and distinguish 
between them. A CNN is structured so that each one of its layers is able to recognize 
simpler patterns first (such as lines and curves) and more complex patterns later (faces, 
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objects, etc.). In other words, the network can be trained to better understand the 
complexity of the image. 
A CNN usually consists of three types of layers: convolutional layer, pooling layer, 
and fully connected layer. 
The convolutional layer is the core building block of the CNN, and it carries most of 
the computational load of the network. This layer performs a dot product between two 
matrices, one matrix representing the set of learnable parameters, also called the 
kernel, and the other matrix representing a portion of the image. The kernel slides over 
the height and width of the image, creating a two-dimensional representation of the 
image, called the activation map, which indicates the response of the kernel at each 
spatial position of the image (Figure 4.11). The sliding size of the kernel is called the 
stride. Convolution takes advantage of three important ideas that have motivated 
researchers in computer vision: sparse interaction, parameter sharing, and equivariant 
representation. Trivial neural network layers use matrix multiplication with a matrix 
of parameters describing the interaction between the input and output units. This 
means that each output unit interacts with each input unit. However, in convolutional 
neural networks, the interaction is sparse. This is achieved by making the kernel 
smaller than the input. For example, an image may have millions or thousands of 
pixels, but when it is processed using the kernel, meaningful information can be 
detected in tens or hundreds of pixels. This means that fewer parameters need to be 
stored: this not only reduces the memory requirements of the model, but also improves 
the statistical efficiency. Conventionally, the first convolutional layer is responsible 
for capturing low-level features such as edges, color, gradient orientation, and so on. 
With additional layers, the architecture also adapts to the high-level features, 
understanding the images in their entirety. 
 

 
Figure 4.11 - Convoluting a 5x5x1 image with a 3x3x1 kernel to get a 3x3x1 convolved feature 

Another essential layer of CNNs is the pooling layer. The pooling layer replaces the 
output of the network at specific locations by deriving summary statistics of nearby 
outputs. This helps in reducing the spatial size of the representation, thereby 
decreasing the computational overhead required. There are several pooling functions, 
however the two most popular are max pooling and average pooling (Figure 4.12). 
Max pooling returns the maximum value from the portion of the image covered by the 
kernel. On the other hand, average pooling provides the average of all values from the 
portion of the image covered by the kernel. In all cases, pooling provides translational 
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invariance, meaning that an object is detectable regardless of where it appears in the 
image. 
The convolutional layer and the pooling layer together form the n-th layer of a 
convolutional neural network. Depending on the complexity of the images, the number 
of these layers can be increased to capture low-level details, usually at the cost of more 
computational power. 

 
Figure 4.12 - The two main types of pooling: max pooling and average pooling 

Next, the final output needs to be flattened for classification purposes. In order to 
perform this task, the third important type of layer is needed: the fully connected (FC) 
layer. Neurons in this layer have full connectivity with all neurons in the previous and 
following layer. The FC layer helps to map the representation between the input and 
the output, by converting the image into a column vector. Over a range of epochs, the 
model is able to distinguish between dominant and certain low-threshold features in 
images and classify them using classification techniques that convert a vector of 
numbers into a vector of probabilities, such as the softmax activation function. The 
softmax function is a function that turns a vector of real values into a vector of values 
that sum to 1. 
Since convolution is a linear operation and images are anything but linear, nonlinearity 
layers are often placed immediately after the convolutional layer to introduce 
nonlinearity into the activation map. There are several types of nonlinear operations, 
the best known being: the sigmoid, which takes a real-valued number and flattens it 
into a range between 0 and 1; tanh, which outputs values to the range [-1, 1]; ReLU, 
which has a threshold to zero. Compared to sigmoid and tanh, ReLU is more reliable 
and can accelerate convergence by six times. 
An example of structure of Convolutional Neural Network is shown in Figure 4.13 
(particularly, this is a CNN trained with the dataset MNIST to recognize handwritten 
digits). Another possible way of visualizing a CNN can be seen in Figure 4.14, where 
a 3D representation of the layers of a CNN is shown. This network has 1,024 nodes on 
the bottom layer, six 5x5 (stride 1) convolutional filters in the first hidden layer, 
followed by sixteen 5x5 (stride 1) convolutional filters in the second hidden layer, then 
three fully-connected layers, with 120 nodes in the first layer, 100 nodes in the second, 
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and 10 nodes in the third. The convolutional layers are each followed by a 
downsampling layer that does 2x2 max pooling (with stride 2). This representation is 
described by Harley (2015) and can be visualized interactively at 
https://www.cs.cmu.edu/~aharley/vis/. 
 

 
Figure 4.13 - Example of scheme of a CNN 

 
Figure 4.14 - 3D Convolutional Neural Network visualization (Harley, 2015) 

4.4. Database of images of Italian residential buildings 

In order to train a Convolutional Neural Network, the first step to take is to create a 
solid and consistent database of images. For this specific work, many images of Italian 
residential buildings were collected and labeled, according to the different features for 
which the CNNs needed to be trained: height, material, and construction period. The 
appropriate number of samples depends on the problem at hand and should be 
considered individually for each case. However, as a rough rule of thumb, it is 
recommended to train a CNN algorithm with a dataset of more than 5,000 samples to 
effectively generalize the problem. It must then be remembered that it is always 
possible to increase the size of the samples using data augmentation: this method aims 
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to artificially increase the size of a training dataset by creating modified versions of 
models (randomly rotating the image, adding reflections, zooming in, adding a color 
filter, etc.). Data augmentation is a commonly used approach in image processing 
applications to create variations of images that can improve the network's ability to 
recognize new images. On the web it is possible to find many datasets that are ready 
to be used for training CNNs. Some of the most popular are the following: 
- MNIST: this dataset has already been mentioned in this chapter, as it represents a 

milestone in the history of Convolutional Neural Networks. MNIST is a dataset 
of handwritten digits, which contains a training set of 60,000 examples and a test 
set of 10,000 examples (for a total of 70,000 images in 10 classes, i.e. the 10 digits 
from 0 to 9). It has a size of approximately 50 MB; 

- ImageNet: also mentioned before, this is a dataset of images that are organized 
according to the WordNet hierarchy. WordNet contains approximately 100,000 
phrases and ImageNet provides around 1,000 images on average to illustrate each 
phrase. It has a size of 150 GB; 

- COCO: large-scale dataset for object detection, segmentation and captioning. It 
contains 330,000 images (of which more than 200,000 are labeled), 1.5 million 
object instances, 80 object categories, 5 captions per image, and has a compressed 
size of 25 GB; 

- Open Images: dataset of almost 9 million URLs for images, annotated with image-
level labels spanning thousands of classes (more than 5,000). The dataset contains 
a training set of 9,011,219 images, a validation set of 41,260 images and a test set 
of 125,436 images, for a compressed size of 500 GB; 

- Street View House Numbers (SVHN): real-world image dataset similar to the 
MNIST dataset, but with more labelled data (over 600,000 images in 10 classes, 
for a size of 2.5 GB). The data has been collected from house numbers detected 
via Google Street View; 

- CIFAR-10: dataset for image classification, consisting of 60,000 images in 10 
classes, with a size of 170 MB; 

- Fashion-MNIST: a MNIST-like fashion product database, which contains 60,000 
training images and 10,000 test images (size 30 MB). Each image is in gray-scale 
and associated with a label from 10 classes. 

There are also many other datasets that take into account other types of input data. For 
example, it is possible to find datasets for the natural language processing, which is 
the application of computational techniques to the analysis and synthesis of natural 
language and speech. In this case, the dataset will not be composed by images, but 
rather by text (words, sentences, paragraphs, posts, articles, or even entire books). Also 
audio/video datasets are available online: these datasets can be composed of audios, 
sounds, tracks, music samples, speeches, and songs. 
Unfortunately, when the aim is to train a Convolutional Neural Network on a very 
specific task (e.g. on recognizing very specific features on Italian residential buildings, 
such as in this project), open source datasets are often not sufficient to perform this 
task. It is therefore required to create and structure an ad hoc dataset, in order to have 



Pietro Carpanese – Seismic risk assessment at a territorial scale based on machine learning 
____________________________________________________________________________________________________________________________________________________________________ 
 

 

 110 

the best accuracy when predicting features from images that do not belong to the 
dataset. 
There are some useful and practical ways to retrieve images from the web, so that they 
are automatically downloaded, stored and labeled according to the search parameters. 
One tool is Microsoft’s Bing Image Search API, which is part of Microsoft’s Cognitive 
Services used to bring AI to vision, speech, text, and more to apps and software. This 
solution allows the user to programmatically download images via a query. Results 
include thumbnails, full image URLs, publishing website info, and image metadata. It 
is also possible to apply sorting and filtering options that simplify finding specific 
results in image searches. Images can also be downloaded with a similar approach that 
involves Google Images: the images can be obtained through a Python code that 
gathers the URLs of images through a query. Those methods have been tested to 
retrieve pictures of buildings that meet certain characteristics and that could be used 
to train the CNNs, but again the specificity of the problem made it uneasy to take 
advantage of those tools, however fast and practical they were. Indeed, it should be 
noticed that the pictures that have to be recognized and predicted by the trained CNNs 
come from Google Street View. However, when querying pictures of buildings with 
particular features from the web, it is not always so immediate to retrieve only pictures 
that can resemble those from Google Street View. As a matter of fact, these algorithms 
might select pictures that do not have the characteristics of a street view image, i.e., 
do not look like photographs that were taken by a camera positioned at the street level. 
Many times drawings, 3D models, schemes, details, or indoor pictures were selected 
by the search algorithm, despite the fact that specific filters were applied in order to 
have only photographs. After a visual check of the images that were downloaded by 
different queries, the amount of pictures that needed to be discarded was too high, so 
it was considered more efficient to manually collect pictures. Even though this 
operation might have been more time-consuming, the creation of a robust dataset was 
deemed of primary importance for reaching the best performance in feature 
recognition, and thus to achieve the success of the whole project. 
Of course, when gathering manually pictures of buildings, it was important to make 
sure that the buildings were catalogued according to the three parameters of interest, 
and that the labels were as correct as possible. The level of reliability that could be 
achieved was regarded as fundamental. For these reasons, the following platforms 
were considered worthy of use. 

4.4.1. Images retrieved from the CARTIS web application 

Firstly, the CARTIS web portal (http://cartis.plinivs.it/backoffice/login.php, Figure 
4.15) was accessed. This platform collects all the data gathered within CARTIS 
(Typological-Structural Characterization of the urban compartments), a project that 
proposes a procedure that involves the construction of regional inventories, obtained 
through the typological-structural characterization of buildings (Zuccaro et al., 2016). 
For detailed information about CARTIS, see chapter 2 (paragraph 2.1.3). Particularly, 
the second level CARTIS forms were the ones that were used to collect pictures and 
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information about buildings in Italy. As a matter of fact, in the CARTIS web portal 
these forms are digitally entered online by each research unit who contributed and is 
still contributing to the CARTIS project (among which we find the University of 
Padova), and are then accessible to all the other units. It is directly possible to see the 
main information about the forms that are listed in the portal, such as the code of the 
form, the Region, Province, Municipality and district to which the form belongs, the 
type of building surveyed (MUR if masonry building, CAR if made of reinforced 
concrete), and the state of completion of the form (Figure 4.16). 
 

 
Figure 4.15 - Administration panel of the CARTIS web portal (http://cartis.plinivs.it/backoffice/login.php) 

 
Figure 4.16 - User interface for the second level CARTIS forms in the CARTIS web application 

After accessing the form, it is then possible to have further information about the 
building. What is interesting for the sake of this work is that, among all data inputs, it 
is possible to find information about the identification of the building, its number of 
floors, its material, and its construction period. Even more, the compiler has the 
possibility to attach a picture of the building concerned (this operation is not 
mandatory, but many compilers provided an image of the building). The images are 
usually photographs taken from the street level, which makes them suitable to be part 
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of the database of images through which the CNNs shall be trained. The pictures have 
to be downloaded one by one, and also the labels have to be associated manually: this 
makes it a long process, but the amount of images and the quality of information was 
worth the time spent. Each picture was saved with a univocal code, so that it could be 
reconducted to its labels. Table 4.1 shows the number of CARTIS forms with an 
associated picture that could be taken from the web platform. It can be seen that, out 
of the 2,625 CARTIS forms that were stored in the platform (as of May 2021), 1,264 
had an associated picture of the building. 

Table 4.1 - Number of second level CARTIS forms obtained from the CARTIS web platform 

 Italian Region N. of forms N. of forms 
with picture 

1 Abruzzo 104 66 
2 Basilicata 50 0 
3 Calabria 67 42 
4 Campania 500 35 
5 Emilia Romagna 109 55 
6 Friuli Venezia Giulia 35 0 
7 Lazio 10 0 
8 Liguria 2 0 
9 Lombardia 71 66 
10 Marche 500 392 
11 Molise 440 38 
12 Piemonte 15 13 
13 Puglia 12 1 
14 Sardegna 0 0 
15 Sicilia 104 92 
16 Toscana 232 182 
17 Trentino Alto Adige 0 0 
18 Umbria 125 110 
19 Valle D’Aosta 0 0 
20 Veneto 249 172 
 TOTAL 2,625 1,264 

 
It can be noticed that, although with different amount of pictures, most of the Italian 
Regions are covered by CARTIS forms with images of buildings. Even though some 
regions do not present any form, Regions from the same area (Northern, Central, or 
Southern Italy) are covered. This consideration is essential, since the guideline for the 
creation of the dataset was the collection of images of buildings belonging to all the 
possible areas in Italy (e.g., buildings belonging to different Regions, to zones with 
different altitudes, to different urban areas, etc.). By doing this, the representativeness 
of the Italian built stock can be maintained, and the neural networks will be able to 
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better identify images that include any kind of building that can be found in the Italian 
territory. 
For what concerns the labels that were assigned to these pictures, 956 are associated 
to MUR (masonry buildings), while the other 308 have the CAR code (reinforced 
concrete). In terms of height, the images contain 678 Low-Rise buildings (i.e., 1 or 2 
floors), and 586 Mid-Rise buildings (3 or more floors). Lastly, 597 images belong to 
the Pre-1919 period, 166 to 1919-1945, 63 to 1946-1960, 241 to 1961-1980, and 197 
to Post-1980. Figure 4.17 shows some examples of images downloaded from the 
CARTIS online platform. 
 

Height 

Low-Rise  Mid-Rise 

  

 

  

Material 

MUR (masonry)  CAR (reinforced concrete) 

  

 

  

Construction period 

Pre-1919 1919-1945 1946-1960 1961-1980 Post-1980 

     

Figure 4.17 - Examples of images downloaded from the CARTIS online database 

Furthermore, information about the Italian residential taxonomy also thanks to the 
direct surveys that had been carried out by the University of Padova within the 
CARTIS framework. In particular, the research unit of the University of Padova that 
participated in the CARTIS project worked on the Municipality of Pordenone, in the 
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Region of Friuli-Venezia Giulia (North-East of Italy) during 2018-2019, publishing 
the results of the surveys as well as further investigations in the paper by Vettore et 
al., 2020. Pordenone is a medium-sized town of about 50 thousand inhabitants and 10 
thousand buildings (9,171 residential buildings, according to ISTAT 2011), located in 
the South-West of the Region. In order to facilitate the collection and the management 
of the data that were requested by CARTIS, a georeferenced (QGIS) multi-level 
database was created. The specific attribute table (shapefile) with the fields of the 
CARTIS form allowed an efficient and rapid data entry and the integration of different 
layers, which are quite useful when dealing with this type of analysis: Google Satellite, 
CTR, historical cartographies, seismic micro-zonation maps, etc. Furthermore, 
according to the CARTIS approach, the municipality was divided into nine districts. 
According to census data (ISTAT 2011), Pordenone counts 3,532 load-bearing 
masonry buildings (39%), 3,760 r.c. structures (41%) and 1,879 of other typology 
(20%). Buildings built before 1919 prevail in the central zones, and are typically 
arranged in clusters, with more or less regular texture, from rough stones and poor 
mortar to ashlars and bricks with lime mortar, and with traditional timber floors and 
roofs. On the other hand, the most common types of buildings in the suburbs are the 
ones built in 1946-1970, made of brick walls and precast r.c. horizontal structures, 
such as precast joists (‘Varese’ type) or lightweight hollow bricks with steel bars. 
Figure 4.18 shows some examples of masonry buildings that can be found in 
Pordenone, belonging to different construction periods. For a more detailed and in-
depth explanation of the various building typologies that were detected in Pordenone, 
please refer to Vettore et al., 2020. 
 

 ≤ 3 floors > 3 floors 
 

 
Pre-1919 (a) (b) 
 

 
1919-1945 (c) (d) 
 

 
1945-1970 (e) (f) 

Figure 4.18 - Examples of masonry buildings in Pordenone: a) and b), pre-1919; c) and d), 1919-1945; e) and f), 
post-1945 

As evidenced by Figure 4.18, the extensive two-year survey that was carried out 
throughout Pordenone allowed the collection of many pictures of different kinds of 
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buildings, which are all labeled according to the CARTIS parameters (and in these 
parameters of course we can find the height, the material and the construction period). 
Not only that, but as mentioned before all the data gathered were then stored in a GIS 
file, so that all the information was geo-referenced: this means that in case some 
photographs had not been taken and saved, or some pictures were blurry or not visible 
from a street level, it was easily possible to go back to the actual building and retrieve 
the image again, from Google Street View for example, or even more conveniently 
with the Google Street View API, through the algorithm explained in paragraph 4.2. 
Thanks to this past work, it was possible to collect in a fairly short amount of time 
8,688 pictures of labeled images. The pictures are divided into the following 
categories: for what concerns their material, 2,354 belong to r.c. and 6,634 belong to 
masonry; as far as their height is concerned, 4,727 are Low-Rise buildings, while the 
remaining 3,961 are Mid-Rise buildings; lastly, considering their construction period, 
1,843 belong to Pre-1919, 52 to 1919-1945, 3,882 to 1946-1960, 1,407 to 1961-1980 
and 1,504 to Post-1980. 

4.4.2. Images retrieved from Da.D.O. 

Another source from which valuable images of buildings were collected is Da.D.O. 
(Dolce et al., 2017a, Dolce et al. 2017b, Dolce et al., 2019). Da.D.O. (Database of 
Observed Damage, http://egeos.eucentre.it/danno_osservato/web/danno_osservato) is 
a project funded by the Civil Protection Department, which coordinates its 
development and scientific content, while the IT development of the platform is carried 
out by EUCENTRE (European Centre for Training and Research in Earthquake 
Engineering). The platform was designed to collect, catalogue, and compare data on 
structural characteristics of buildings, as well as information on seismic damage of 
ordinary buildings and churches inspected during or following seismic events of 
national importance (Figure 4.19). Particularly, the contributions to the Da.D.O. - 
Ordinary Buildings section were offered by the Regions of Abruzzo, Basilicata, 
Campania, Emilia-Romagna, Friuli Venezia-Giulia, Marche, Molise, Puglia, and 
Toscana. Specifically, Da.D.O. collects and shows data related to the following Italian 
earthquakes: Friuli 1976, Irpinia 1980, Abruzzo 1984, Umbria-Marche 1987, Pollino 
1998, Molise-Puglia 2002, Emilia 2003, L’Aquila 2009, Emilia 2012, Garfagnana-
Lunigiana 2013, Mugello 2019. For each one of these earthquakes, it is possible to 
download the AeDES form for each building involved in the earthquake and surveyed 
after that (Figure 4.20). A description of the structure of the AeDES form is provided 
in chapter 2 (paragraph 2.1.3). 
In the AeDES forms, each building is labeled considering its height, material, and 
construction period, which are the three main characteristics that are sought in the 
search of images for the dataset. Furthermore, each AeDES form is associated to the 
coordinates of the buildings it is related to (in terms of latitude and longitude), which 
makes it practical to retrieve the image of the building through Google Street View, 
for example. A filter was applied so that only the forms concerning buildings that 
suffered a D0 damage were downloaded (i.e., only buildings that had no damage, in 
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order to avoid to collect images of buildings that had incurred severe damage or had 
even collapsed, thus making them not recognizable for the CNN training process). 
 

 
Figure 4.19 – User login of Da.D.O. (http://egeos.eucentre.it/danno_osservato/web/danno_osservato)  

 

 
Figure 4.20 – User interface of the Da.D.O. web portal 

After applying this filter, the following number of images was obtained for each 
earthquake survey: 2 for the Friuli 1976 earthquake; 6 for the Irpinia 1980 earthquake; 
1,152 for the Umbria-Marche 1997 earthquake; 761 for the Pollino 1998 earthquake; 
3,420 for the Molise-Puglia 2002 earthquake; 34 for the Emilia 2003 earthquake; 6,364 
for the L’Aquila 2009 earthquake; 1,784 for the Emilia 2012 earthquake; 107 for the 
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Garfagnana-Lunigiana 2013 earthquake; and lastly 99 for the Mugello 2019 
earthquake. The total number of images that could be collected thanks to the Da.D.O. 
platform is 13,792. 

4.4.3. Training, evaluation, and validation sets 

All of the sources mentioned above represent a valid and essential help for the creation 
of a wide and solid dataset. However, when dealing which such amounts of data it is 
always preferrable to check everything manually, especially when automatic 
algorithms are utilized to retrieve the pictures (e.g., Google Street View API given the 
coordinates of a building). As a matter of fact, this may lead to the acquisition of many 
labeled pictures that do not contain buildings, or where the actual building cannot be 
seen properly. This is something to be avoided, since it may interfere with the training 
of the CNNs. For this reason, all the pictures saved in the final folder have been 
verified, and some pictures have been discarded. This operation led to the selection of 
a total of 10,000 pictures of buildings that were considered suitable to build the dataset. 
As said before, each picture had been labeled according to the 3 parameters that were 
considered useful for the vulnerability assessment of buildings: height, material, and 
construction period. In this way, it was possible to create 3 different datasets with the 
same number of images. 
Moreover, not all the pictures collected in the dataset are actually used for the training 
of the CNNs. Some of the pictures are kept for the processes of validation and 
evaluation. The training set is the set of data that is used to train and make the model 
learn the hidden features and patterns in the data. In each epoch, the same training data 
is fed to the neural network architecture repeatedly, and the model continues to learn 
the features of the data. The validation set is a separate data set from the training set 
that is used to validate our model performance during training. This validation process 
provides information that allows tuning the model's hyperparameters and 
configurations accordingly: the model is trained on the training set, and at the same 
time, the model evaluation is performed on the validation set after each epoch. The 
main idea in splitting the data set into a validation set is to avoid overfitting, i.e., the 
model can classify the samples in the training set very well, but is not able to generalize 
and make accurate classifications on data it has not seen before. Lastly, the evaluation 
(or test) set is a separate data set used to test the model after training is complete. This 
provides an unbiased final performance measure of the model in terms of accuracy and 
precision. The details of these steps will be explained in the following sections. The 
splitting of the images into the 3 folders was made by sorting the images in a random 
way, so that images from different sources could be mixed to avoid the risk that all the 
images from one source could be used for the training and all the images coming from 
another source could be used only for the evaluation or validation part. After this 
randomization, 70% of the pictures was assigned to the folder “training”, while 15% 
ended up in the “validation” folder and the final 15% in the “evaluation” one. There is 
no fixed rule for deciding how many images are to be destined to the training part, and 
the percentages are usually chosen through a trial and error process, but according to 
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previous studies and to other similar datasets, this seemed to be the best solution for 
the specific case. This splitting was repeated 3 times, for the 3 different features which 
the CNNs will have to be trained on. In Table 4.2 it is possible to see the number of 
images belonging to each folder. 

Table 4.2 - Splitting of images into training, validation, and evaluation for the 3 features 

Feature Labels Training Validation Evaluation Total 

Height 
Low-Rise 4,004 856 856 

10,000 
Mid-Rise 2,998 643 643 

Material 
Masonry 4,906 1,051 1,051 

10,000 
R.C. 2,094 449 449 

Construction 
period 

Pre-1919 1,621 348 348 

10,000 
1919-1945 510 109 109 
1946-1960 2,056 440 440 
1961-1980 1,826 391 391 
Post-1980 989 211 211 

 
As can be seen, within each category the number of images is not always well 
balanced, meaning that some classes have more images that other (this is particularly 
evident when observing the number images associated to each construction period). 
Usually, the number of images used to train a neural network should be approximately 
the same, especially if each class has the same probability of being encountered (or if 
we do not know the probability of meeting each class). However, in this particular case 
we already know that some building typologies are more likely to be found, and this 
is also evidenced by the national ISTAT data (ISTAT 2011). To evaluate if the number 
of images belonging to each class was satisfying, i.e., to see if some classes did not 
include enough pictures to recognize a specific characteristic, the percentage of images 
belonging to each class in our dataset has been compared with the percentage of 
buildings that belong to the same category according to the national census ISTAT 
2011. The results of this comparison are shown in Figure 4.21. Particularly, Figure 
4.21a exhibits a good correspondence between the percentages of LowRise and 
MidRise building images utilized in our database and the percentages of LowRise and 
MidRise buildings according to ISTAT 2011. Regarding the material, ISTAT 2011 not 
only considers the distinction between masonry and r.c. buildings, but it also takes into 
account the category “other” (consisting in buildings made of steel, wooden, etc.). 
Even though the dataset did not consider this additional category, the 
representativeness of the classes “masonry” and “r.c.” is maintained, as can be seen in 
Figure 4.21b. Lastly, Figure 4.21c shows the comparison between our database and 
the ISTAT data for the construction period. This variable was indeed the most critical 
one, since our dataset contains classes with a number of images that is significantly 
lower than other classes (this is particularly evident if we compare the 1919-1945 class 
with the 1946-1960 class). However, Figure 4.21c highlights that the differences in 
our database are actually very similar to the ones reported in ISTAT, and that the 
database follows the trend observed at a national level. The main differences consist 
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in a greater proportion of Pre-1919 and 1946-1960 buildings in our dataset, at the 
expense of a lower representativeness for buildings belonging to the 1961-1980 and 
Post-1980 categories. This can be explained considering the fact that many building 
images have been retrieved from the CARTIS web database, where most of the second 
level forms had been filed for buildings belonging to historical centers (so usually 
belonging to the Pre-1919 epoch) or to expansion districts that could be representative 
of an expansion of the towns, that typically began after the Second World War. 
These observations can in any case suggest a refinement or an extension of the 
database, in order to flatten these differences. 
 

  
(a) (b) 

 
(c) 

Figure 4.21 – Comparison of building distribution between  ISTAT 2011 and our dataset considering the features 
height, material, and construction period 
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4.5. Training of the CNNs for the prediction of height, material, and 

construction period 

4.5.1. Google Colaboratory 

 
Now that the dataset is built, it can be used to train the Convolutional Neural Networks. 
All the codes used are written in Python and have been run on Google Colaboratory. 
Google Colaboratory (also known as Google Colab), product of Google Research, is 
a free Jupyter notebook environment that runs in the cloud and can be connected to 
Google Drive. As of October 2019, the Colaboratory user interface only allows for the 
creation of notebooks with Python 2 and Python 3 kernels. Python 2, however, reached 
its end of life on January 1, 2020, and is no longer supported by the Python developer 
community. Because of that, Colab is in the process of deprecating Python 2 runtimes. 
Colab allows the execution of Python codes through the browser, and is especially 
suited to machine learning and data analysis. Colab does not require any setup to use, 
while providing access free of charge to computing resources including GPUs. This is 
indeed the main reason why Colab has been used for the execution of the codes, 
because it makes it possible to run notebooks on a hosted computer that is most-likely 
better and more powerful than a local machine, leading to faster trainings of CNN 
models. In particular, Colab currently provides a Tesla T4 GPU. The only downside 
is that Colab resources, particularly the GPU usage, are not guaranteed and are not 
unlimited, and the usage limits sometimes fluctuate. This means first of all that 
notebooks run by connecting to virtual machines that have maximum lifetimes of 12 
hours, and also that notebooks will disconnect when left idle for too long, depending 
on the usage of the specific user. These rules are established in order to prioritize an 
interactive use, prohibiting actions associated with bulk compute, which would 
negatively impact other users. It is possible however to avoid this by subscribing to 
Colab Pro and Pro+, which are services offered with additional charge that do not have 
the limitations mentioned above, providing priority access to faster GPUs, longer 
running notebooks and more memory. In any case, for the neural networks that were 
trained in this study, the thresholds in term of speed and time were never met, so the 
free version of Google Colab was perfectly sufficient. Another important perk of using 
Google Colab is that it can be directly connected to Google Drive through the 
associated Google account, meaning that it is very handy to import data (such as, for 
example, the pictures of the dataset through which the CNNs are trained), as well as 
to save the final files where the weights of the neural network models are stored. It is 
also possible to import data from Github and many other sources, which makes Google 
Colab very suitable for research purposes. 
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4.5.2. Transfer learning and fine-tuning 

In this section and in the following ones, the core of the code that was used to train the 
Convolutional Neural Networks that can identify specific parameters from images of 
buildings will be addressed. The algorithms developed were actually three: one for the 
prediction of the height (number of stories), which predicts whether a building is a 
Low-Rise building (1 or 2 stories) or a Mid-Rise building (3 stories or more), one for 
the prediction of the material, which aims to predict whether a building is made of 
masonry or reinforced concrete, and the last one for the prediction of the construction 
period, where the possible age groups are: Pre-1919, 1919-1945, 1946-1960, 1961-
1980, and Post-1980. However, since the three scripts are very similar, the pipeline of 
the code will only be explained once, keeping in mind that in each case the algorithm 
is trained on the same dataset of pictures, considering though different labels (height, 
material, construction period). Nonetheless, the small differences among the three 
codes will be pointed out when necessary. 
All the three codes have been written directly in Google Colab notebooks for what 
concerns the pre-processing of the database and the training; once the models with the 
weights are saved, they are then used in separate scripts on the local machine to predict 
the label of pictures that do not belong to the dataset. Google Colab’s GPUs were in 
fact used only to speed up the training process, while when wanting to predict the 
parameters from pictures that are external to the database, this can be done outside 
Google Colab. 
As mentioned before in this chapter, machine learning offers many different 
possibilities when the aim is to recognize particular elements in pictures. Among all 
the possible options, Convolutional Neural Networks have proven to be very useful to 
perform this kind of task. Nevertheless, even the world of CNNs provides a wide range 
of different tools that can be combined so that an almost infinite spectrum of choices 
is available. This is undoubtedly a great resource for the project, but it also poses the 
question on how to formulate the problem and which solution is the best one. Since 
many times the answer is not univocal, and many different approaches can lead to 
similar results, a series of attempts have been made, in a “trial and error” perspective. 
Finally, the best results have been achieved by using the transfer learning techniques 
and by fine-tuning it. 
As a matter of fact, since so much work has already been carried out in the field of 
Convolutional Neural Networks, it has become pointless to train an entire CNN from 
scratch (i.e., with random initialization). Instead, it is common to pretrain a CNN on a 
very large dataset (e.g. ImageNet), and then use the CNN either as an initialization or 
a feature extractor for the task of interest. One of the most used Transfer Learning 
techniques is the one that leverages a CNN as a fixed feature extractor, and then fine-
tunes it. More in detail, in this work a CNN is firstly pretrained on ImageNet, then the 
last fully-connected layer is removed (where the outputs are the 1,000 scores 
associated to the classes in ImageNet). Consequently, the rest of the CNN is treated as 
a fixed feature extractor, and a linear classifier (e.g., linear SVM or softmax classifier) 
can be trained for the new dataset. It is also possible to fine-tune the weights of the 
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pretrained network by continuing the backpropagation. All the layers of the CNN can 
be fine-tuned, or some of the early layers can be kept fixed, so that only the higher-
level portion of the network is fine-tuned. This is motivated by the observation that 
the earlier features of a CNN contain more generic features (e.g. edge detectors or 
color blob detectors) that can be useful to many tasks, but the final layers of the CNN 
become progressively more specific to the details of the classes contained in the 
original dataset. In short, fine-tuning corresponds to performing “network surgery”: 
the final set of FC layers from a pre-trained CNN are removed, and then the head is 
replaced with a new set of FC layers with random initializations. 
This method has been deemed useful to perform the task of recognizing specific 
features from images of buildings. In this project, a CNN (pre-trained on ImageNet 
dataset) was taken, and was then fine-tuned to perform image classification and 
recognize classes it was never trained on. Subsequently, a fine-tuning step was 
adopted, where the idea was not only to update the CNN architecture, but also to re-
train it to learn new object classes. 
The process can be summarized in the following steps. The fully connected nodes at 
the end of the CNN were removed (i.e., where the actual class label predictions are 
made). These fully connected nodes were then replaced with initialized ones, while 
the earlier convolutional layers were kept frozen, in order to ensure that any previous 
features already learned by the CNN are not deleted. With this new configuration, only 
the new FC layers that are in the head of the CNN were trained. Lastly, the 
convolutional layers were unfrozen and another training process was carried out. 
This procedure takes advantage of a neural network whose layers have already learned 
rich and discriminative filters, while the brand new FC layers are totally random. If 
the gradient was allowed to backpropagate from these random values throughout the 
network, the features that had already been learnt would be potentially destroyed. To 
tackle this problem, the FC head is trained by itself by freezing all layers in the body 
of the network. After the FC head has started to learn patterns in our dataset, the 
training is paused, the body is unfrozen, and it is possible to continue the training. 
This fine-tuning technique has proved very powerful to obtain image classifiers on a 
custom dataset from pre-trained CNNs. The code steps are explained in detail in the 
following section. 

4.5.3. Outline of the script to train the Convolutional Neural Networks 

It is recalled that the CNNs are trained in Google Colab, in order to have a better 
performance and run the code faster. For this reason, the runtime type must be 
changed, specifically the hardware acceleration needs to be switched to GPU. It is then 
possible to check the type of device used through the snippet: 
 

from tensorflow.python.client import device_lib 
device_lib.list_local_devices() 

 
The devices are then printed, and this is an example of the output of these lines of 
code: 
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[name: "/device:CPU:0" 
 device_type: "CPU" 
 memory_limit: 268435456 
 locality { 
 } 
 incarnation: 8325539197691550422 
 xla_global_id: -1, name: "/device:GPU:0" 
 device_type: "GPU" 
 memory_limit: 14465892352 
 locality { 
   bus_id: 1 
   links { 
   } 
 } 
 incarnation: 137947544852152167 
 physical_device_desc: "device: 0, name: Tesla T4, pci bus id: 
0000:00:04.0, compute capability: 7.5" 
 xla_global_id: 416903419] 

 
In general, during this project, it has always been possible to use the Google Colab 
Tesla T4, without incurring in any time restriction. 
Afterwards, Google Drive has to be mounted in Google Colab. The folders with all the 
images of the dataset (organized in training, validation, and evaluation folders) had 
been previously uploaded in Google Drive (as zipped folders). To make Colab connect 
with Drive, these lines have to be included: 
 

from google.colab import drive 
drive.mount('/content/drive', force_remount=True) 

 
After logging in, Google Colab is allowed to navigate the Drive in which these folders 
are stored. 
Subsequently, all the necessary dependencies are imported. Particularly, TensorFlow 
plays a crucial role in this code, and many of its features are exploited. TensorFlow is 
an open source framework developed by Google researchers to run Machine Learning, 
Deep Learning and other statistical and predictive analyses. TensorFlow is 
implemented through Keras, an open-source software library that provides a Python 
interface for artificial neural networks. Among all the possible packages, the following 
ones are imported: 
- preprocessing.image, specifically ImageDataGenerator, which generates batches 

of tensor image data with real-time data augmentation, as well as other packages 
to load images; 

- VGG-16, the network that was loaded (excluding the head FC layers); 
- layers such as Dropout, Flatten, Dense, Input, Model, necessary to create the 

structure of the CNN architecture; 
- SGD optimizer (i.e., gradient descent with momentum optimizer) 
Also, other dependencies are imported, in order to manage and visualize the results. 
The main ones are: numpy, argparse, imutils, pickle, cvs, and os. All these 
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dependencies are already included in Google Colab, so there was no need to install 
them. 
Once the tools that will be used are imported, it is time to locate the folder with the 
dataset of images in Google Drive, unzip it, and then create the output folder locally 
(so that Google Colab can access it directly using its own internal memory, without 
having to connect to Google Drive each time). 
Now, it is necessary to initialize the base path to the new directory that will contain 
the images after computing the training and testing split. The list of class label names 
has to be initialized, and the batch size has to be set. The batch size is the number of 
samples that are passed through to the network at one time. In this work, the batch size 
is set to 32, as many other works suggest. The reason why this is a good amount of 
samples is related to computer memory: in fact, choosing a batch size of powers of 2 
helps because of the way computer memory works in the GPU. Batches are going to 
be vectorized and processed in parallel in GPU, and choosing a non-binary (i.e., not in 
the power of 2) batch size may result in inefficient hence poorer performance. When 
a large volume of data is involved, small inefficiencies can have a large impact on 
performance. The specific number must also be calibrated, since using the maximum 
batch size available on a GPU may not provide the best results, as batch size impacts 
learning significantly. With smaller batch sizes the estimate of gradient in each epoch 
is more noisy but it helps the algorithm to avoid local minima. It has to be however 
taken into account that small batches also make training less efficient, since cost will 
converge much more slowly. Given all these considerations, a batch size of 32 samples 
was deemed suitable for this particular project. 
Furthermore, the label encoder file path must be initialized, as well as the output 
directory to where the extracted features will be stored (in CSV file format). Moreover, 
the paths where the outputs of the model will be saved after training have to be set. 
Some functions are also defined to visualize images and results. Particularly, one 
function is intended to plot images (in case pictures are to be viewed), while another 
function is meant to plot and save the training history (in terms of accuracy and loss). 
At this point, the image pre-processing phase begins. Firstly, data augmentation is 
applied, including random rotations, zooms, translations, shears, and flips. The random 
transformations of the images are not actually added to the original training data, since 
they are performed in-place, implying that the dataset size does not increase. Of 
course, these operations concern the training set only, while for the images belonging 
to validation and evaluation data augmentation is not applied. 
After having initialized the data augmentation object, the ImageNet mean subtraction 
(in RGB order) is defined. This operation consists of a pixel-wise subtraction for all 
images, so that the data is considered centered. The reason why this step needs to be 
implemented in the process of training is that each feature should have a similar range 
of values so that gradients can be comparable. The values are [123.68, 116.779, 
103.939] and they are based on the public data from the ImageNet dataset (these three 
are indeed the mean values of the dataset). 
Subsequently, the training, evaluation, and validation generators are initialized so that 
they can load batches of images from their respective training, evaluation, and 
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validation splits. Here, the “class mode” has to be selected: “binary” is chosen when 
the CNN has to predict between only two classes, otherwise the class mode is set to 
“categorical”. In this lines of the code we find the first difference among the three 
CNNs that are trained: for predicting height and material, the class mode is binary 
(Low-Rise vs Mid-Rise, and masonry vs reinforced concrete), while for the prediction 
of the construction period the categorical mode has to be selected (the classes are 
indeed five: Pre-1919, 1919-1945, 1946-1960, 1961-1980, Post-1980). 
The following part of the code concerns the actual network surgery, which is the main 
characteristic of transfer learning. 
The VGG-16 architecture is loaded (with pre-trained ImageNet weights), omitting the 
FC layers. It is very practical to load VGG-16 as a base model, since it can be directly 
accessed through TensorFlow. Moreover, the key: 
 

include top = False 

 
allows the exclusion of the last FC layers. As previously mentioned, VGG-16 is a big 
(around 138 million parameters) but architecturally uniform and simple network, 
composed of convolutional and max pooling layers, where the input images have a 
size of 224x224x3 (Symonian and Zissermann, 2015). Particularly, it has 16 layers, 
and it is formed by convolutional layers with a 3x3 filter, s=1, same padding, and by 
max pooling layers, 2x2 filter, s=2. 
Its structure is shown below: 
 

2 conv layers: 64 filters (224x224x64) 
Pooling layer: (112x112x64) 
2 conv layers: 128 filters (112x112x128) 
Pooling layer: (56x56x128) 
3 conv layers: 256 filters (56x56x256) 
Pooling layer: (28x28x256) 
3 conv layers: 512 filters (28x28x512) 
Pooling layer: (14x14x512) 
3 conv layers: 512 filters (14x14x512) 
Pooling layer: (7x7x512) 
Fully connected layer: 4096 
Fully connected layer: 4096 
Softmax: 1000 (total number of final classes) 

 
As said before, the last FC layers are however frozen, and a new head of the model 
that will be placed on top of the base model needs to be constructed. The output of the 
base model is taken as the new input, and then Flatten, Dense, and Dropout layers are 
used to form the new head of the model. 
Flattening a tensor means to remove all of the dimensions except for one. A Flatten 
layer in Keras reshapes the tensor to have a shape that is equal to the number of 
elements contained in the tensor. This corresponds to making a 1d-array of elements. 
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Dense is used to create fully connected layers, in which every output depends on every 
input. The activation function has to be selected, and in this case the ReLU and softmax 
activation functions are chosen. ReLU (rectified linear activation function) is a linear 
function that outputs the input directly if it is positive, otherwise it will output zero. 
Softmax instead is generally used in the last output layer and it is a function that 
converts a vector of numbers into a vector of probabilities, where the probabilities of 
each value are proportional to the relative scale of each value in the vector. Lastly, the 
Dropout layer consists in randomly setting a fraction rate of input units to 0 at each 
update during training time, which helps prevent overfitting. 
This new model is then placed on top of the base model, and will become the actual 
model to be trained. 
By setting: 
 

layer.trainable = False 

 
it is possible to block the layers in the base model. Now the layers in the base model 
are frozen and they will not be updated during the first training process. 
After setting the layers as non-trainable, the model needs to be compiled. Firstly, the 
optimizer has to be defined. An optimizer is a function that modifies the attributes of 
the neural network, such as weights and learning rate. Thus, it helps in reducing the 
overall loss and improving the accuracy. In this case, a SGD (gradient descent with 
momentum optimizer) is chosen, with learning rate lr=1e-4 and momentum=0.9. 
The learning rate is a tuning parameter in an optimization algorithm that determines 
the step size at each iteration while moving toward a minimum of a loss function, while 
momentum is set to speed up the learning rate, by avoiding local minima points so that 
a global minimum is found. Going into more detail about the learning rate, this is a 
hyperparameter that controls how much the model needs to be changed in response to 
the estimated error each time the model weights are updated. Choosing the learning 
rate is challenging, as a value which is too small may result in a long training process 
that could get stuck, whereas a value which is too large may result in learning a sub-
optimal set of weights or in an unstable training process. The momentum can smooth 
the progression of the learning algorithm. When a momentum close to 1 is used, such 
as 0.9 or 0.99, the accuracy of the model on the test dataset appears to be more stable, 
showing less volatility over the training epochs. It is also possible to use decay for 
progressively reducing the learning rate (not taken into account in this work). 
Secondly, the loss function has to be selected, so that the loss is computed and the 
network is updated after every iteration until model updates do not bring any 
improvement in the desired evaluation metric. For what concerns the loss function, a 
“binary_crossentropy” is chosen when two classes have to be predicted (so, for the 
CNNs that predict height and material), while loss is set to “categorical_crossentropy” 
when there are more than two classes (in this case, when the construction period has 
to be predicted). 
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At this point, the head of the network can be trained while all the other layers are 
frozen, only updating the weights for the new FC layers, so that they can start to 
become initialized with actual learned values versus the initial pure random ones. 
All the three models have been “warmed up” through 50 epochs. For each epoch, time 
and speed are evaluated, as well as loss, accuracy, validation loss and validation 
accuracy. 
In machine learning, accuracy is one of the main metrics for evaluating classification 
models, and it is used to measure the algorithm's performance in an interpretable way. 
Accuracy represents the proportion of predictions in which the model is correct, i.e., 
the number of correct predictions over the total number of predictions. Formally, 
accuracy has the following definition: 
 
 accuracy = 

tp	+	tn
tp	+	fn	+	fp	+	tn (Eq. 4.1) 

            
where tp are the true positive, tn the true negative, fp the false positive, and fn the false 
negative (see Table 4.3). The definitions of these metrics are explained below: 

- True Positive (tp): number of predictions where the classifier correctly predicts 
the positive class as positive; 

- True Negative (tn): number of predictions where the classifier correctly 
predicts the negative class as negative; 

- False Positive (fp): number of predictions where the classifier incorrectly 
predicts the negative class as positive; 

- False Negative (fn): number of predictions where the classifier incorrectly 
predicts the positive class as negative.  

Table 4.3 - Graphic representation of the meaning of true positive, false negative, false positive and true negative 

  actual value 

  positive negative 
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d 
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positive true positive 
(tp) 

false positive 
(fp) 

negative false negative 
(fn) 

true negative 
(tn) 

 
On the other hand, loss is a number that indicates how good or bad the predictions of 
the model are. If the model's prediction is perfect, the loss is zero; otherwise, the loss 
becomes greater. The goal of training a model is to find a set of weights and biases 
that have a small average loss across all examples. 
Here the last epoch (number 50) of the first training process for the CNN that is 
supposed to predict the feature “height” is shown, including the parameters of loss, 
accuracy, validation loss and validation accuracy. 
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Epoch 50/50 
218/218 [===============] - 72s 329ms/step - loss: 0.0040 - accuracy: 0.9991 
- val_loss: 0.6683 - val_accuracy: 0.8791 

 
The following line shows the same values for the parameter “material”. 
 
Epoch 50/50 
218/218 [===============] - 79s 363ms/step - loss: 0.0079 - accuracy: 0.9984 
- val_loss: 1.2033 - val_accuracy: 0.7921 

 
Lastly, the values of loss and accuracy for the last epoch of training of the 
“construction period” feature are shown below. 
 
Epoch 50/50 
218/218 [===============] - 60s 276ms/step - loss: 0.0670 - accuracy: 0.9752 
- val_loss: 2.8876 - val_accuracy: 0.5163 

 
The testing generator is now reset and the network is evaluated after fine-tuning just 
the network head. This can be done by calculating parameters such as precision, recall, 
and F1-score. Precision (also called positive predictive value) is the fraction of relevant 
instances among the retrieved instances, while recall (also known as sensitivity) is the 
fraction of relevant instances that were retrieved. These two parameters can be 
indicated through the formulas: 
 

 precision = 
tp

tp + fp
 (Eq. 4.2) 

   
        recall = 

tp
tp + fn

 (Eq. 4.3) 

 
where tp indicates the true positives, fp the false positive, and fn the false negatives 
(see Table 4.3). 
The F1-score combines precision and recall of a classifier into a single metric by taking 
their harmonic mean. It can be computed through: 
 

 F* = 
2

precision-1 + recall-1
 = 2

precision · recall 
precision + recall

 = 
tp

tp + 1
2 (fp + fn)

 (Eq. 4.4) 

 
Figure 4.22, Figure 4.23, and Figure 4.24 show the evaluation of these measures after 
training the network head only, as well as the graphs of loss and validation throughout 
this training process. 
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Figure 4.22 - Precision, recall, and F1 score for the parameter "height" after the warmup training 

 

 
Figure 4.23 - Precision, recall, and F1 score for the parameter "material" after the warmup training 

 

 
Figure 4.24 - Precision, recall, and F1 score for the parameter "construction period" after the warmup training 
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After allowing the FC Layers to warm up, it is already possible to obtain an accuracy 
of 86% for the height CNN, an accuracy of 79% for the material CNN, and lastly 52% 
for the construction period one. The first two CNNs already show a quite respectable 
accuracy, which goes even evidently above 80% in the case of the “height” parameter. 
However, the construction period CNN shows an accuracy value that drops to almost 
50%: that is of course due to the fact that in this case the CNN is not trained to 
recognize only two categories (where a 50% accuracy would not be satisfactory), but 
it has to predict a label among five possible ones. Also, it must be remembered that 
the size of the dataset stays the same for the three CNNs (the CNNs are indeed trained 
using the same dataset of building pictures), but while for height and material these 
pictures are labeled according to two possible categories, for the parameter 
“construction period” the labels are five, making the number of support images less 
for some categories, particularly with regards to the 1919-1945 and Post-1980 
construction periods (see Table 4.2). Furthermore, compared to height and material, 
the identification of the construction period of a building is definitely more 
challenging, and many times even a visual inspection and a detailed survey might fail 
to correct classify the age of a building. While material and height are usually (even 
though not always) very clear characteristics that can be easily pointed out just looking 
at a building façade, the identification of the construction period is often based on 
smaller details and takes into account features that often overlap between consecutive 
epochs. This peculiarity will be further discussed at the end of this chapter, where 
examples for some case study areas are presented. 
Now that the head FC layers have been trained and initialized, it is time to unfreeze 
the final set of convolutional layers and make them trainable. Only the final 
convolutional block of VGG-16 is unfrozen (not the rest of the network), which means  
the last three convolutional layers and the last max pooling layer. The model then 
needs to be recompiled, and also this time a SGD optimizer is used. The model is 
therefore trained again, fine-tuning both the final set of convolutional layers along with 
the new set of FC layers. The number of epochs is set to 20, in order not to overfit. 
Below it is possible to see the second “unfrozen” training process, where the values of 
loss, accuracy, validation loss and validation accuracy are shown for the last epoch, 
i.e., the 20th one. 
 
Height: 
 
Epoch 20/20 
218/218 [===============] - 73s 335ms/step - loss: 0.0024 - accuracy: 0.9991 
- val_loss: 0.6722 - val_accuracy: 0.8920 

 
Material: 
 
Epoch 20/20 
218/218 [===============] - 81s 370ms/step - loss: 0.0081 - accuracy: 0.9977 
- val_loss: 1.3393 - val_accuracy: 0.7894 
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Construction period: 
 
Epoch 20/20 
218/218 [===============] - 62s 286ms/step - loss: 0.0595 - accuracy: 0.9791 
- val_loss: 3.1972 - val_accuracy: 0.5177 

 
The graphs of accuracy and loss are shown also for this new training in Figure 4.25, 
Figure 4.26, and Figure 4.27. 
 

 
Figure 4.25 - Precision, recall, and F1 score for the parameter "height" after the unfrozen training 

 

 
Figure 4.26 - Precision, recall, and F1 score for the parameter "material" after the unfrozen training 
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Figure 4.27 - Precision, recall, and F1 score for the parameter "construction period" after the unfrozen training 

After the second part of this training process, we can observe a slight but still 
significant increase in the accuracy of the CNN that is supposed to predict the 
parameter “height”, while the accuracy for the features “material” and “construction 
period” do not exhibit strong fluctuations compared to the previous results (when only 
the FC layers were trained). Overall, the parameters of precision, recall, F1-score, and 
accuracy appear promising and suitable to be used for feature prediction of residential 
buildings, thus leading to appropriate seismic risk assessments. 
At this point, the model can be saved to disk (in this case, in Google Drive), so that it 
is possible to recall it when we want to predict the labels of brand new images. Once 
the model is saved in Google Drive, it can be easily exported to the local machine. 
From this point on, the scripts have been written and executed on the local machine, 
without using Google Colab anymore. 
Three codes have been written in order to predict the height, the material and the 
construction period of images of buildings, given the weights that were previously 
computed as a result of the CNN trainings. Of course, each code will access the 
specific output model. The main packages that are installed and imported for these 
three codes are load_model, dependency imported from tensorflow.keras specifically 
to read the weights of each neural network model, cv2 (OpenCV) to open and visualize 
images, as well as other standard packages such as os, numpy, and matplotlib. 
Firstly, the image of the building whose feature is to be predicted must be loaded and 
preprocessed. Particularly, the image needs to be scaled for output purposes: it is 
necessary to switch from RGB to BGR (since OpenCV loads images in BGR), and 
most importantly the picture has to be resized to 224x224 pixels (to be consistent with 
the images on which the CNN had been trained on). The image is then converted to 
floating points, and a mean subtraction is applied (the same that was applied in the 
preprocessing phase before training the CNN, with the values [123.68, 116.779, 
103.939]). These preprocessing steps are fundamental, since when a prediction script 
does not provide satisfactory results, most of the times this is due to improper 
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preprocessing. Typically, having color channels in the wrong order or forgetting to 
perform mean subtraction can lead to unfavorable results.  
Now that the image is correctly preprocessed and read, it is possible to predict its class 
label, by loading the fine-tuned model and then performing inference to extract the top 
prediction. This operation can be repeated for multiple buildings, in particular for all 
the buildings belonging to the area of interest and whose pictures have been collected 
through the Google Street View API, as explained in section 4.2. The information of 
each building detected inside the area is already stored in a GeoDataFrame: the 
prediction for height, material and construction period can be easily added to this 
spreadsheet in Python, so that each building also has this data associated with it. Figure 
4.28 shows some examples of outputs of the three CNNs that have been trained.  
 

HEIGHT 

    

MATERIAL 

    

CONSTRUCTION PERIOD 

    

Figure 4.28 - Examples of outputs of the three CNNs for the parameters height, material, and construction period 
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Particularly, pictures of buildings have been retrieved from Google Street View 
(pictures on which the CNNs had not been trained before), and on the top left of the 
image it is possible to see the best prediction made by each model, with the score 
associated to the label. Examples of different buildings are shown, considering the 
three features (height, material, and construction period) and different categories that 
can be recognized. For what concerns material, MUR stands for masonry, while CAR 
stands for reinforced concrete. 

4.5.4. Comparison of the CNN predictions with an on-site survey 

Other than the internal validation of the Convolutional Neural Networks, that can be 
assessed at each epoch of the training process, and the evaluation (testing) that can be 
performed at the end of the training, it can also be useful to compare the predictions 
of the CNNs on height, material, and construction period with data collected manually 
during surveys, which can be considered accurate enough for reliable comparison. 
As mentioned in section 4.4.1, an extensive survey was conducted during 2018-2019 
in the Municipality of Pordenone by the University of Padova, under the CARTIS 
framework. The data gathered can be leveraged to evaluate whether the neural 
networks return correct results or not. 
In the following images, some comparison are shown between the manual survey of 
Pordenone and the predictions of the CNNs, for the three parameters height, material, 
and construction period. Actually, the direct survey carried out in Pordenone allowed 
the collection of much more detailed information about the residential buildings that 
compose the urban fabric: for the purposes of this comparison, however, the data have 
been brought back to the categories that the CNNs can recognize. 
Figure 4.29, Figure 4.30, and Figure 4.31 show an example of comparison between 
the manual survey and the CNN predictions for a central area of Pordenone, right to 
the north of the historical city center. Particularly, Figure 4.29 focuses on the height 
of the buildings, where green indicates Low-Rise buildings (1-2- stories), while red 
indicates Mid-Rise buildings (3 stories or more). Secondly, Figure 4.30 compares the 
results in terms of material: the footprints in blue represent reinforced concrete 
buildings, while the ones in brown represent masonry buildings. Lastly, Figure 4.31 
compares the predictions for the construction period of buildings, where each color 
corresponds to one of the possible age categories. The buildings shown in gray are not 
residential buildings, or their picture could not be retrieved through the Google Street 
View algorithm. Therefore, the model could not make predictions for the specific 
building. 
Figure 4.32, Figure 4.33, and Figure 4.34 show the same types of comparison for 
height, material and construction period, but for a different neighborhood in Pordenone 
(in the northern part of the town, west of the hospital “Santa Maria degli Angeli”). 
 
 
 
 



Automatic detection and characterization of buildings at a territorial scale 
____________________________________________________________________________________________________________________________________________________________________ 

 

 135 

HEIGHT 

Direct survey CNN predictions 

  

(a) (b) 

 

Figure 4.29 - Comparison between direct survey (a) and CNN predictions (b) for the parameter "height", for 
Pordenone city center 

 
 

MATERIAL 

Direct survey CNN predictions 

  

(a) (b) 

 

Figure 4.30 - Comparison between direct survey (a) and CNN predictions (b) for the parameter "material", for 
Pordenone city center 
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CONSTRUCTION PERIOD 

Direct survey CNN predictions 

  

(a) (b) 

 

Figure 4.31 - Comparison between direct survey (a) and CNN predictions (b) for the parameter "construction 
period", for Pordenone city center 

 
 

HEIGHT 

Direct survey CNN predictions 

  
(a) (b) 

 

Figure 4.32 - Comparison between direct survey (a) and CNN predictions (b) for the parameter "height", for 
Pordenone northern area 

 



Automatic detection and characterization of buildings at a territorial scale 
____________________________________________________________________________________________________________________________________________________________________ 

 

 137 

MATERIAL 

Direct survey CNN predictions 

  

(a) (b) 

 

Figure 4.33 - Comparison between direct survey (a) and CNN predictions (b) for the parameter "material", for 
Pordenone northern area 

 
 

CONSTRUCTION PERIOD 

Direct survey CNN predictions 

  

(a) (b) 

 

Figure 4.34 - Comparison between direct survey (a) and CNN predictions (b) for the parameter "construction 
period", for Pordenone northern area 
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The pictures compared above are shown to have a visual representation of the 
similarities and differences between the direct survey and the predictions made by the 
algorithm for some representative areas in Pordenone. However, since both projects 
take into account the whole town of Pordenone, it is possible to compare the two 
methods at a larger scale, i.e., at municipality level. Before showing the results of this 
comparison, some considerations need to be made. First of all, in this work it is 
assumed that the survey conducted in Pordenone gives the correct data for each single 
building. Even though this might be very close to reality, given the effort and the time 
spent for the project, it is not possible to ignore the fact that in such extensive surveys 
some human errors can occur: whether it is the misidentification of some building 
characteristics (leading to their incorrect labeling), the wrong classification of 
residential buildings versus commercial or industrial ones, or even the incorrect data 
entry in the GIS file where the information was stored. Secondly, as can be noticed (to 
a certain extent) in the figures shown before, sometimes the footprints derived through 
OpenStreetMap do not match exactly the ones drawn in the manual survey. This is 
particularly evident when many close aggregates (clusters) can be found in the same 
area. This is due to the fact that the survey carried out in Pordenone mainly took into 
account house numbers, so each polygon corresponds to a different property. On the 
other hand, the building footprints elaborated by OSM originate from the roof shapes 
that can be detected from satellite images. For this reason, OSM is not able to separate 
clusters of residential buildings, and it usually catalogues them as one relationship 
element (since they are often described as a complex polygon with holes inside). This 
makes the building-by-building comparison slightly more difficult, since many times 
a one-by-one association cannot be made. In any case, the matching between buildings 
from the two different sources was performed considering the centroids of buildings, 
so that each building detected by the OSM algorithm was associated with the building 
found in the direct survey shapefile, whose centroid was the closest to the OSM 
building. Once again, this can however represent a source of errors when analyzing 
the two building samples. 
Nevertheless, keeping in mind all these assumptions, Figure 4.35 shows the 
percentages of correct and wrong predictions of the three CNNs, when compared to 
the direct survey carried out in Pordenone (Figure 4.35a for the feature “height”, 
Figure 4.35a for the material, and Figure 4.35c for the construction period). 
As can be observed from the three pie charts in Figure 4.35, the correspondence 
between CNN predictions and on-site survey is very good for material and height, 
while it seems to worsen for the construction period. Particular attention can be paid 
to Figure 4.35b, which shows a correct classification of the material of the residential 
buildings in Pordenone that reaches 76%. These results are perfectly in line with the 
graphs that were shown in the previous section, where the accuracy of the CNNs for 
height and material was significantly higher than the accuracy of the CNN that was 
trained to recognize the construction period. The reasons why this happens have 
already been discussed (i.e., different number of possible labels, less clear-cut 
distinctions among categories, etc.). 
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(a) (b) (c) 

Figure 4.35 – Percentages of correct and wrong predictions of the CNNs for the parameters height (a), material 
(b), and construction period (c) for the Municipality of Pordenone, when compared to the direct survey 

However, while the predictions for height and material can either be right or wrong (0 
or 1), the correctness of the classification of the age of a building can be evaluated 
differently. Indeed, it would not make sense to treat in the same way a prediction that 
is wrong only by one period (e.g., labeling a Pre-1919 building as a 1919-1945 
building) and a prediction that mistakes the age of a building by many decades or even 
centuries (e.g., labeling a Pre-1919 building as a Post-1980 one). This consideration is 
even more meaningful if we keep in mind that the aim of this step is to associate each 
building with the correct fragility set, which relies also on the construction period 
parameter. Of course, if the construction period predicted by the CNN is very far from 
the actual one, the fragility model will describe the building behavior in a complete 
inadequate manner; however, if the error consists only of one construction period, the 
fragility curves might give only slightly inaccurate results, without being entirely 
unrepresentative. This observation is perfectly in line with the results presented in 
Chapter 3, where fragility curves for residential masonry buildings have been 
presented. When the misassociation of a building with its construction period only 
consists in one class difference, this might lead to a slight overestimation or 
underestimation of its seismic behavior (in terms of probability of reaching a certain 
damage state) that is not supposed to entirely compromise the results of a risk 
assessment. This is evident when considering the curves shown in Chapter 3 in Figure 
3.12, for example, as well as their parameters presented in Table 3.5. 
Following this consideration, Figure 4.36 displays the correct predictions versus the 
wrong predictions for the parameter “construction period” in the town of Pordenone, 
where the number of epochs deviating from the actual label is differentiated. 
For example, if a Post-1980 is labeled as a Pre-1919 building, this will fall into the “4 
epochs difference” slice; if a 1919-1945 building is labeled as a Post-1980 building, 
this will be included in the “3 epochs difference” slice, and so on. Figure 4.36 shows 
that the percentage of mislabeled building images decreases as the error in terms of 
“number of epochs” increases. As a matter of fact, most of the images that did not 
receive a correct prediction for this parameters are actually associated with the next or 
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previous epoch (“1 epoch difference”). Among all the wrong predictions (that 44% in 
red in Figure 4.35c), the “1 epoch difference” error represents the 51.4%. This is 
indeed a promising result, since it suggests that even when the CNN does not label a 
building correctly, it still associates it with a construction period that will not 
drastically change the taxonomy of the area under consideration, thus giving a good 
estimate in terms of exposure and vulnerability. This is particularly true for masonry 
buildings, as it has been shown in chapter 3 when presenting a fragility model for 
macro-typologies associated with the same construction periods. For r.c. buildings the 
errors can be considered more or less critical according to the year of seismic 
classification of the concerned municipality. 
 

 
Figure 4.36 – Percentages of correct predictions and predictions with 1, 2, 3, or 4 epochs difference for the 

Municipality of Pordenone, when compared to the direct survey 

Even though these considerations lead to the assumption that the code works well, the 
prediction errors encountered still leave room to further improvements. With CNNs, 
it is usually very difficult to establish a priori how much the parameters of accuracy 
can be raised, but previous studies and past works have shown that some techniques 
can indeed improve the performance of these neural networks. Some examples of 
strategies and expedients are discussed below. 
First of all, the image dataset on which the CNNs are trained might be modified. Since 
in this case the transfer learning technique is used, it could be possible to take 
advantage of bigger pre-trained models. However, since this work makes use of the 
ImageNet database, which is one of the biggest and most popular ones, it is hard to 
think of a possible improvement in this regard. Nevertheless, the custom dataset also 
might be refined, particularly by increasing the dataset size or by performing data 
augmentation. 
Furthermore, the algorithm itself could be checked and some modifications might be 
made. For example, it would be interesting to train the neural networks for different 
number of epochs (both for the warm up training and the unfrozen training). Although 
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the number of epochs used in this work are considered sufficient to make the models 
stable, and usually the performance of a neural network does not experience great 
changes after a certain epoch, this option should not be discarded. Furthermore, 
meaningful improvements might be reached by tuning parameters such as learning rate 
and batch size. This option has already been investigated in this work, since many 
trials have been conducted before reaching the values presented in this chapter, but of 
course new combinations might be explored. In addition, it would be possible to try 
different loss functions and see how they affect the overall performance of the 
networks. Moreover, in this project a SGD (stochastic gradient descent) optimizer was 
chosen, but a different optimizer might be used. As a matter of fact, other possibilities 
are available in literature, such as the Adam optimizer, which uses techniques like 
momentum and adaptive learning rates for faster training. There are indeed many other 
optimizers to choose from and experiment with. Lastly, it would be interesting to 
improve the network architecture or even to try new ones, other than the VGG16 
chosen in this study.  
Besides possible improvements and future developments that may be included in this 
work, also further analyses of the results might be carried out. 
For example, comparisons across specific sets of buildings could be made, meaning 
that each building could be individually considered and the predictions on height, 
material, and construction period should be compared with the data collected 
manually. This can lead to a better estimation of how much an incorrect classification 
may affect the assessment of exposure and vulnerability, which could lead to an 
overestimation or underestimation of seismic damage and risk. 
In particular, a focus should be placed on the construction period parameter, which is 
the one that encounters the highest rate of incorrect predictions. In this way, it could 
be possible to understand how much this error (which for Pordenone reaches 44%) can 
affect subsequent risk assessments. 
As mentioned above, all the analyses and comparisons made so far apply to the town 
of Pordenone, and one might think that the error could change considerably if another 
area is chosen. Although this might be true and of course other towns should be 
considered in order to further validate the neural network predictions, it should be 
pointed out that the image database on which the three CNNs have been trained takes 
into account photos of buildings from all Italian regions, considering larger and smaller 
municipalities, which are located at the seaside or in mountain areas. For this reason, 
it is expected that the comparisons are similar for other areas or towns, since the 
algorithm is intended to work with the same degree of accuracy for every place in 
Italy. However, in order to prove that this is indeed true, it would be undoubtedly 
interesting to run the code for municipalities with different characteristics (both in 
terms of exposure and vulnerability). 
What needs to be pointed out, however, is the great benefit that this procedure brings 
when compared to traditional surveys, especially in terms of time. For the specific case 
of the town of Pordenone, which counts more than 8’000 residential buildings, the 
algorithm is able to process satellite images, retrieve Google Street View pictures of 
each building, and classify them according to height, material, and construction period 
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in around 2 hours (using a personal laptop, without any additional CPU or GPU). 
Moreover, all the process is completely automatic, meaning that once the place name 
“Pordenone” is typed at the beginning of the program, the script does not require any 
other input from the user. This was indeed the goal that was intended to be pursued: 
having an automatic and fast method that could replace a direct survey in determining 
specific building features. The same results took weeks to be achieved through the 
traditional survey that was carried out in Pordenone, months if we consider the time 
that was required to digitalize all the data collected in the field. 
After these considerations and comparisons, the complete maps of Pordenone with the 
predictions for height (Figure 4.37), material (Figure 4.38) and construction period 
(Figure 4.39) for each residential building identified within the municipality are 
shown. Since the area of concern is quite extensive, especially with respect to the maps 
shown before, the detail of the representation will probably be lost. However, these 
maps are more intended to show that the algorithm is able to manage and plot areas of 
considerable size: of course, when these maps are opened as a shapefile, their 
visualization is more convenient since it is possible to zoom in and out according to 
the query needs. 
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Figure 4.37 - CNN predictions for the parameter "height" for the whole Municipality of Pordenone 
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Figure 4.38 - CNN predictions for the parameter "material" for the whole Municipality of Pordenone 
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Figure 4.39 - CNN predictions for the parameter "construction period" for the whole Municipality of Pordenone 
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5 SEISMIC RISK CALCULATION PLATFORM 

This chapter presents the structure of the seismic risk calculation platform developed 
in this thesis, which allows the combination of vulnerability and exposure with the 
seismic hazard of the area of interest, in order to evaluate seismic damage and risk. 
Damage is expressed as the probability of reaching or overcoming a certain damage 
state: when assessing damage at a territorial scale, it is then possible to identify the 
buildings or areas which are more prone to seismic damage. Risk can then be derived 
from damage and is usually represented by the possible losses in terms of different 
indicators, such as repair or reconstruction costs, number of unusable buildings or 
dwellings, victims, injuries, and displaced people. 
This tool might be used for prevention and mitigation of seismic risk by emergency 
authorities and institutions to manage resources in the aftermath of an earthquake and 
to select effective emergency measures and recovery plans. 

5.1. Structure of the platform 

In this chapter, the structure of the platform elaborated to compute seismic damage 
and seismic risk is described. The code is divided in multiple sections or modules, 
namely the hazard module, the vulnerability module, and lastly the exposure module, 
containing the consequence matrices that translate damage into risk indicators. As all 
the other codes developed within this thesis, also the damage and risk calculation 
algorithms were written in Python. 
As said in chapter 4, all the results in terms of building characteristics (mainly 
geometries, labels, and predictions of height, material, and construction period) can be 
saved as a shapefile and then visualized in software that supports this type of file 
format (such as, for example, QGIS). A shapefile can also be easily re-imported in 
another Python script, since Python possesses packages that allow reading geofiles. 
This means that the information gathered through the scripts described in chapter 4 
can be conveniently retrieved and used in the seismic risk assessment platform. The 
structure is illustrated below in details. 
Firstly, all the necessary dependencies need to be imported. Pandas is imported for 
recollecting the shapefiles with all the building geometries, and for reading the 
GeoPandas spreadsheets where all the data about buildings are stored. Moreover, the 
lognorm function is imported from the scipy.stats package: this dependency is 
fundamental, considering that we are going to deal with fragility curves that follow 
lognormal cumulative distributions for what concerns seismic vulnerability. The 
package geopy.distance is also imported, as it represents a helpful tool to calculate 
distances (in meters or kilometers) between two different geographical points. This 
operation is used in multiple parts of the script, especially when having to associate a 
location to a seismic hazard parameter. Lastly, numpy and math are imported, to 
perform the main mathematical operations (such as creating arrays or rounding output 
values). 
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After having imported the shapefile with all the information about the area analyzed, 
as it was saved from the previous script, this new script is able to access the data and 
store them in a GeoDataFrame: essentially, the risk assessment module receives as 
input data the output data of the previous modules. From now on, the actual 
computation begins, starting from the assessment of the seismic hazard of the area 
under consideration, followed by the association of a fragility set for evaluating the 
seismic vulnerability of each building in the area, and completed by the last module 
that takes into account exposure and consequence matrices. The final output of this 
platform is represented by risk indicators such as economic losses, casualties, and 
impact in terms of usability of buildings and displaced people. Each module is 
explained and discussed in the following sections. 

5.2. Seismic hazard module 

The first component of risk that is considered by the platform is seismic hazard. The 
hazard model used in this application is based on the Italian Seismic Hazard map 
(MPS04) developed by Istituto Nazionale di Geofisca e Vulcanologia (INGV) and 
adopted at national level with a Civil Protection Ordinance (OPCM 3519/2006; see 
section 2.1.1). It is the official Italian hazard model (Stucchi et al., 2004, 2011) and 
provides the seismic action (elastic response spectrum) for 10,751 points of a mesh of 
5×5 km covering all the Italian territory. Particularly, MPS04 provides the values of 
ag (maximum horizontal acceleration), FO (maximum value of the amplification 
factor for the horizontal acceleration spectrum), and Tc* (reference value for 
determining the beginning of the plateau in the horizontal acceleration spectrum), 
taking into consideration nine return periods (Tr = 30, 50, 72, 101, 140, 201, 475, 975, 
2475 years). 
The MPS04 grid point closest to the area of interest is selected by the algorithm. 
Ideally, a particular MPS04 point could be associated with the centroid of each 
building detected in the area. However, since the points in the MPS04 map are 5 km 
distant, it very uncommon for buildings belonging to a small area or a municipality to 
be referred to different points. Therefore, the code computes the nearest point in the 
MPS04 grid to the central point of the area of interest (whether it is an area where 
specific coordinates are selected or the centroid of a municipality). The association to 
different MPS04 points would make sense only if we were considering a wider area, 
such as an Italian Province or Region. 
Within the hazard module, the platform requires the user to indicate if the damage 
computation should be performed in terms of conditional or unconditional damage. 
Conditional damage expresses the expected damage for a specific ground motion (in 
this case, for a specific PGA). The user is asked to enter the desired return period Tr, 
which is associated with a particular PGA value for the nearest point of the grid to the 
location of interest. On the other hand, unconditional damage does not take into 
account only one return period (thus one value of ground motion), however it 
represents the combination of multiple levels of ground motion (for various Tr values), 
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taking into account the annual probability of reaching those levels. When computing 
unconditional damage, an observation time window is chosen (e.g., the next 50 years), 
and all the possible earthquake scenarios that can occur in the selected time are taken 
into consideration. Every scenario must be included with its own probability of 
occurrence in the observation time, as follows: 
 

 𝑝 = 1 −	𝑒.)
/0
/12 (Eq. 5.1) 

 
where p is the probability that an earthquake with return period Tr occurs in the 
observation time. The PGA and its probability of occurrence in the time window 
selected is calculated for each one of the nine return periods. 
In this work, the type of soil was also taken into account for the calculation of seismic 
hazard. Specifically, the paper by Forte et al. (2019) was considered. Indeed, that work 
provides maps of seismic classification of near-surface soils for Italy that take into 
account two sources of information: site-specific measurements and large-scale 
geological maps. The soil maps were obtained by creating a database of available site-
specific surveys covering (unevenly) the entire national territory. From this database, 
twenty geo-lithological complexes are identified using the available geologic maps, 
and the surveys are grouped as a function of the geo-lithological complex. The 
distribution of measured VS,30 and VS,eq are then estimated, and medians and 
standard deviations of such distributions are assumed to be representative of the 
corresponding complexes. VS,30 represents the time-averaged shear-wave velocity 
(VS) to a depth of 30 meters, while VS,eq derives from a slight modification of the 
VS,30 parameter when considering depths of the bedrock which are less than 30 m. 
The statistics of these investigations are used to derive the large-scale soil maps. To 
make the results of the study available, a stand-alone software called SSC-Italy has 
been developed, and it is publicly downloadable at http://wpage. 
unina.it/iuniervo/SSC-Italy.zip. The results provided by Forte et al. (2019) give a 
percentage of soil A, soil B, soil C, soil D, and soil E for each Italian municipality. 
The description of the different types of soils is presented in Table 5.1. 
Despite not being adequate substitutes of site-specific studies such as microzonation 
and local site response analyses, the data provided can be useful for large-scale seismic 
risk studies. In this project, the percentages of different types of soils for each Italian 
municipality are derived from Forte et al. (2019) and are saved in an excel file. 
Subsequently, the Python code retrieves information on the municipality to which the 
study area belongs (this information has in fact already been extracted from the OSM 
code described in chapter 4) and associates it with the correct percentages of soil type. 
The Italian Technical Standards for Constructions (DM 17/01/2018, S.O. No. 8 G.U. 
20/02/2018, Italian Ministry of Public Works, 2018) provide guidelines on how to 
consider this component of hazard by supplying stratigraphic amplification 
coefficients. These coefficients can be indeed used to calculate the amplification of the 
ground motion due to soil characteristics. By doing so, it is possible to work with a 
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more precise parameter that indicates seismic hazard, which takes into consideration 
the conformation of the area. 

Table 5.1 - Description of soil types according to Italian code (Ministry of Public Works, 2018) 

Soli Type Description 

Soil A rocky or very rigid soils 

Soil B soft rocks and deposits of very dense coarse-grained soils or very consistent 
fine-grained soils 

Soil C deposits of medium dense coarse-grained soils or medium consistent fine-
grained soils, with a depth of more than 30 m 

Soil D deposits of poorly dense coarse-grained soils or poorly consistent fine-
grained soils, with a depth of more than 30 m 

Soil E soils with characteristics like those defined for categories C or D, with a 
depth not exceeding 30 m 

5.3. Seismic vulnerability module 

Now that the seismic hazard parameter is defined, vulnerability comes into play. As 
already stated several times, this work defines vulnerability models making use of 
fragility curves. The vulnerability module has thus the primary function of loading the 
fragility curves: for what concerns residential masonry buildings, a detailed 
description of the vulnerability models that have been developed has already been 
given in chapter 3. Particularly, the fragility curves presented in Table 3.5 are recalled 
in case evaluations on buildings in their as built state are to be made; on the other hand, 
the fragility curves shown in Table 3.11 and Table 3.12 are used when seismic retrofit 
interventions are taken into consideration. At the current state of this work, the 
Convolutional Neural Networks can recognize the height, material, and construction 
period of a building (see chapter 4); unfortunately, they cannot determine whether or 
not a building has undergone seismic mitigation. Therefore, in this project all the 
buildings detected are considered in their as built configuration, assuming that none of 
them has ever experienced a retrofit intervention. As far as reinforced concrete is 
concerned, we relied on fragility curves from literature. In particular, the model 
presented in Rosti et al. (2021b) has been deemed reliable and appropriate for this type 
of analyses on r.c. buildings. The reason why the Rost et al. model has been chosen is 
that the fragility curves presented in that paper have already been used and validated 
within the Italian National Risk Assessment document (DPC, 2018) together with the 
model for masonry described in this thesis, and it has thus been considered eligible for 
the following large-scale analyses. In Rosti et al. (2021b), empirical fragility curves 
for reinforced concrete buildings are derived, based on post-earthquake damage data 
collected in the aftermath of earthquakes occurred in Italy during the period 1976-
2012. These data are made available through the online platform Da.D.O., which has 
already been described in the previous chapters. Among all the earthquake databases, 
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only the Irpinia 1980 and L’Aquila 2009 ones are considered for further elaborations, 
as they are the only two that possess an adequate level of completeness for the purposes 
of the work. The PGA is evaluated from the ShakeMaps provided by the INGV, and 
six damage levels (from DS0 to DS5) are used for fragility analyses, according to 
EMS98. The damage levels are obtained from observed damage collected during post-
earthquake inspections through existing conversion rules, considering damage to 
vertical structures and infills. Fragility curves for two vulnerability classes (C2 and D), 
further subdivided into three classes of building height (Low-Rise, with 1 or 2 stories, 
Medium-Rise, with 3 or 4 stories, and High-Rise, with 5 stories or more), are obtained. 
In Rosti et al. (2021b), vulnerability class C2 includes r.c. buildings designed for both 
gravity and seismic (Pre-1980) loads, while D refers to r.c. buildings with seismic 
design Post-1980. For this reason, the buildings belonging to construction periods 
before 1980 have been associated to C2 fragility curves; on the other hand, r.c. 
buildings belonging to Post-1980 have been associated with D fragility curves. 
Furthermore, the CNNs developed and described in chapter 4 are not able to 
distinguish between buildings with 3-4 stories and buildings with 5 stories or more 
(the neural networks can only categorize Low-Rise buildings, with 1 or 2 stories, and 
Mid-Rise buildings, with 3 stories or more). For this reason, only the Low-Rise and 
the Medium-Rise fragility curves have been taken into account; the High-Rise 
category has not been used in this work in order not to overestimate seismic 
vulnerability. The median and standard deviation of the curves used within this project 
for reinforced concrete buildings are shown in Table 5.2. 

Table 5.2 - µ and β values of the fragility model from Rosti et al. (2021b) 

Building 
macro-typologies 

DS1 DS2 DS3 DS4 DS5 

µ [g] β [-] µ [g] β [-] µ [g] β [-] µ [g] β [-] µ [g] β [-] 

Pre-1919 
n ≥ 3 0.1260 0.6930 0.2500 0.6930 0.3970 0.6930 0.8060 0.6930 0.9310 0.6930 
n ≤ 2 0.2130 0.7900 0.5180 0.7900 0.8570 0.7900 1.3880 0.7900 1.6460 0.7900 

1919-1945 
n ≥ 3 0.1260 0.6930 0.2500 0.6930 0.3970 0.6930 0.8060 0.6930 0.9310 0.6930 
n ≤ 2 0.2130 0.7900 0.5180 0.7900 0.8570 0.7900 1.3880 0.7900 1.6460 0.7900 

1946-1960 
n ≥ 3 0.1260 0.6930 0.2500 0.6930 0.3970 0.6930 0.8060 0.6930 0.9310 0.6930 
n ≤ 2 0.2130 0.7900 0.5180 0.7900 0.8570 0.7900 1.3880 0.7900 1.6460 0.7900 

1961-1980 
n ≥ 3 0.1260 0.6930 0.2500 0.6930 0.3970 0.6930 0.8060 0.6930 0.9310 0.6930 
n ≤ 2 0.2130 0.7900 0.5180 0.7900 0.8570 0.7900 1.3880 0.7900 1.6460 0.7900 

Post-1980 
n ≥ 3 0.2530 0.9950 0.7740 0.9950 1.4170 0.9950 2.6820 0.9950 7.3860 0.9950 
n ≤ 2 0.4220 0.9510 1.1630 0.9510 1.8220 0.9510 3.0240 0.9510 4.4580 0.9510 

 
After entering all the fragility curves into the Python script (for masonry and reinforced 
concrete), in terms of 𝜇 and 𝛽, those curves need then to be associated to building 
typologies, according to material, period, and height. This is done by applying a filter 
to the GeoDataFrame, so that each building is paired with its correct fragility curves. 
As already mentioned, the fragility curves used in this work are expressed as a function 
of PGA [g], where each curve represents the probability of reaching or exceeding a  
particular damage state (DS1, DS2, DS3, DS4, and DS5). It is therefore possible to 
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read the y-value defined by the curves for the specific value of PGA that has just been 
computed, and the algorithm can calculate the probability of occurrence for each 
damage state. A graphic representation of this procedure can be seen in Figure 5.1. In 
this way, it is possible to assess what is the likelihood for a building to experience a 
damage state in case an earthquake of a particular intensity occurs. 
 

 
Figure 5.1 – Example of definition of the probability of occurrence for each damage state, given a PGA of 0.2g 

This operation is repeated for all the residential buildings in the case study area for 
which it was possible to retrieve a street view image and predict the parameters of 
height, material, and construction period: in other words, the damage is calculated for 
all the buildings that could be associated with a vulnerability model (fragility set). 
From the probability values of each damage state, it is also possible to calculate the 
average damage, as: 
 

 
𝐷𝑆3 =;𝑖	 ∙

'

&(*

	𝐷𝑆& (Eq. 5.2) 

 
where DSM is indeed the average damage and DSi represents the probability of 
occurrence of a damage state. Each damage state is then multiplied by a coefficient i 
that goes from 1 (light damage) to 5 (complete collapse). This indicator allows a 
synthetic representation of damage, suggesting which is the mean damage that a 
building would incur considering a specific PGA. 

5.4. Exposure module and consequence matrices 

Now that damage is evaluated for each building in the study area, losses can be 
assessed. When dealing with earthquakes, there are three main categories of losses that 
should be considered, both form a scientific point of view and for civil protection and 
emergency management purposes. 
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Firstly, direct economic losses can be assessed. In order to do so, the economic value 
of the buildings must be estimated. In this work, a default average value of 1,350 €/m2 

was chosen for masonry and reinforced concrete buildings. Consequently, in order to 
compute the economic loss that a building may undergo, each damage state is 
associated with a fraction of the total reconstruction cost. Specifically, Table 5.3 shows 
the coefficients that represent these percentages, also called damage ratios. For 
example, for the repair of a building that has reached a DS3 (severe damage), the cost 
would be 30% of the total reconstruction cost. The value of buildings and the damage 
ratios were calibrated on the actual repair costs that were monitored in the 
reconstruction process following the Italian earthquake of L’Aquila 2009 (Di 
Ludovico et al., 2017a, b, already described in section 2.2). 
By multiplying each one of the five damage ratios by the probability of occurrence of 
the corresponding damage state, it is possible to find a repair cost ratio (RCR) for each 
damage state. This number represents the percentage of loss due to a particular damage 
state. Adding together the five partial RCRs, a total RCR can be obtained, describing 
the most probable loss rate for a building. Ultimately, the total RCR can be multiplied 
by the total value of the building, thus obtaining the most likely economic loss due to 
the PGA under consideration. When this operation is reiterated for all the buildings in 
the area of interest, a value of possible economic loss can be estimated: this can be 
done for a neighborhood, district, or even municipality. 

Table 5.3 – Damage ratios: percentages used for the computation of economic losses 

Damage level 
Damage ratios 
(% of total cost) 

DS1 2 
DS2 10 
DS3 30 
DS4 60 
DS5 100 

 
Furthermore, the number of casualties is another important risk indicator that needs to 
be considered, especially when dealing with the deployment of emergency services 
during the rescue phase. As for the economic value of buildings, the human exposure 
has to be assessed. This is in fact quite simple when we consider an entire municipality, 
since there are many sources from which the number of total population can be 
retrieved. In this work, the ISTAT (2011) data were used: even though they do not 
refer to the current year, they have proven to be reliable when considering population 
and family statistics. However, when we perform risk analyses on a smaller area, 
which may not be defined by political or administrative boundaries, it might not be 
trivial to estimate the amount of population that belongs there. In order to have an 
approximation of the number of people that might live in a fraction of municipality, 
the population density was calculated from ISTAT, and then the number of people was 
calculated based on the total built up area. By doing so, the number of people living in 
a particular building can be estimated, and the total number of people belonging to the 
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area of interest can be assessed. At this point, the number of injuries or fatalities can 
be evaluated. Also for this risk indicator, some coefficients can be associated to each 
damage state, as a percentage of people. 
As described in Dolce et al. (2019), there are several references for estimating expected 
fatalities after earthquakes. The original idea of Coburn and Spence (1992) has been 
further developed and updated by several authors based on the local context and taking 
into account observational data after significant earthquakes worldwide (Spence and 
So, 2011). An example for Italy can be found in Zuccaro and Cacace (2011). In any 
case, all the works emphasize the high uncertainty of these estimates, due to several 
factors that can influence the actual impacts (presence of occupants in different times 
of the day and year, damage and mechanisms of partial or total collapse of the 
buildings, effectiveness of rescue measures, etc.). The likelihood of injury or death to 
building occupants is generally evaluated as a function of the level of damage suffered 
by the building. It is assumed that the ratio of injuries and deaths is significant only 
for damage levels DS4 and DS5, the most severe. Table 5.4 lists the standard 
coefficients for fatalities and injuries, where the values were calibrated using the 
literature cited above. It was assumed that the number of fatalities is equal to the one 
percent of people living in buildings that have reached damage level DS4 (very severe 
damage) plus the ten percent of people living in buildings that have reached a DS5 
(collapse). The calculation for the injured follows a similar method, with different 
percentages for DS4 and DS5. 

Table 5.4 - Percentages used for the computation of casualties (fatalities and injuries) 

Damage level Fatalities 
(% of people) 

Injuries 
(% of people) 

DS1 0 0 
DS2 0 0 
DS3 0 0 
DS4 1 5 
DS5 10 30 

 
Lastly, a section of the code is dedicated to the evaluation of the usability of buildings 
and the consequent number of displaced people. Table 5.5 shows the coefficients that 
relate damage states to building impact, i.e., the percentage of damaged buildings that 
corresponds to the selected impact. In this work, each damage state can be associated 
with different outcomes in terms of usability: the building can be considered usable, 
not usable in a short or in a long time span, or collapsed. These outcomes are related 
to the damage states according to particular percentages, which sum up to 100% for 
each damage state. 
In this way, it is possible to assess what will be the state of a building after a seismic 
event of given PGA, and thus predict the condition of an area or town in terms of 
usability. Going even deeper, it is possible to have an estimate of how many displaced 
people there may be after the earthquake, which will lead to a better understanding of 
how many safety workers and infrastructures should be deployed for such an 
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emergency. In order to compute this indicator, people living in buildings that are 
considered collapsed or not usable in a short or long time span are counted as 
displaced, while people belonging to usable buildings are not counted in. The sum of 
all the displaced people can give an important information on the impact of the 
earthquake, when the aim is to take care of homeless people in the aftermath of the 
event. 

Table 5.5 - Percentages used for the computation of building usability 

Damage 
level 

Usable 
(%) 

Not usable in a 
short time span 

(%) 

Not usable in a 
long time span 

(%) 

Collapsed 
(%) 

DS1 100 0 0 0 
DS2 60 40 0 0 
DS3 0 40 60 0 
DS4 0 0 100 0 
DS5 0 0 0 100 

 
The general framework described in this last section is graphically summarized in 
Figure 5.2, where the main steps that lead from the definition of damage to the 
assessment of the different risk indicators are shown. 

 
Figure 5.2 - General framework for risk assessment 

Although the information that can be retrieved from this procedure are fundamental 
for the definition of risk, it has to be reminded that these are only partial indicators, 
and that many other factors should be taken into account (such as indirect economic 
losses, just to cite one). However, since the focus of this work is put on residential 
buildings, direct economic losses, casualties and impact can already give a good 
representation of risk at a territorial scale. 
In this chapter, the architecture of the platform and the different modules that compose 
the platform itself have been presented. In the following chapter, some real case studies 
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will be shown, where this procedure is applied to different areas in Italy. Damage maps 
will be produced in terms of conditional and unconditional damage, as well as risk 
maps expressing the risk indicators mentioned in this chapter.  
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6 RESULTS 

This chapter presents all possible results that can be derived within the scope of this 
thesis project. As a matter of fact, what is presented below is the outcome of the 
combination of all the findings that have been discussed in the previous chapters. 
Results can be provided both in terms of conditional damage or risk (i.e., considering 
a specific return period, thus a single seismic intensity) and unconditional damage or 
risk (i.e., for a time window). The outcomes are presented mainly through damage or 
risk maps, but also through histograms, pie charts, and tables. Additionally, this 
chapter is supposed to highlight the versatility and automation of the procedure: for 
this reason, different case study areas in terms of geographic locations and territorial 
scales are presented. Moreover, other works and tools are used to validate the 
procedure and the platform developed in this thesis: specifically, on site damages 
surveys are compared to the predictions of damage made by the algorithm, while risk 
indicators are compared with the result provided by an external platform for risk 
assessment. Lastly, a simulation of the effect of different seismic mitigation strategies 
is performed, in order to understand the possible benefit of seismic retrofit at a 
territorial scale. 

6.1. Damage maps 

The damage maps presented in this section are intended to show what is the probability 
of reaching the possible damage states (from DS1, slight damage, to DS5, collapse) 
for each building identified in a specific area. Moreover, following the calculation 
presented in Equation 5.2, it is also possible to visualize the average damage of each 
building. These maps are presented at a local scale up to a municipality scale. In 
addition, the results provided in terms of average damage are then compared with the 
results of a project carried out after the 2016 Central Italy earthquakes, where the 
seismic damage of the buildings in the Municipality of Castelsantangelo sul Nera 
(Province of Macerata, Marche Region) was surveyed on site and a damage state was 
associated to each building. This validation gives an indication on the quality of the 
estimates provided by the prediction algorithm, highlighting its strengths and 
weaknesses. 

6.1.1. Conditional damage maps 

As mentioned in chapter 5, conditional damage is a representation of damage that takes 
into account only one return period, thus one ground motion intensity (in this case, one 
value of PGA expressed in g). In the following maps, some examples of conditional 
damage are shown in the Municipality of Pordenone for a return period of 475 years. 
Regarding the PGA that was taken into account to run the simulations, the point 
belonging to the MPS04 grid that was closer to the center of the area under 
investigation was used (see chapter 5 for more details on the seismic hazard maps that 
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were used in this project). Moreover, the type of soil of the area was also taken into 
consideration, according to the maps provided by Forte et al. (2019). For Pordenone, 
the soil is deemed to consist of 79% soil B, and 21% soil C. As a result of all these 
considerations, the PGA associated to a return period of 475 years (i.e., for a seismic 
scenario that has 10% probability of exceedance in 50 years) for the areas of interest 
is 0.2381 g. All the simulations on conditional damage are then run assuming this value 
of PGA, for the whole Municipality of Pordenone. 
As an example, Figure 6.1 and Figure 6.3 show the probability of reaching or 
exceeding a certain damage state for Pordenone city center and Pordenone northern 
area, respectively. These areas are the same presented in chapter 4 (from Figure 4.29 
to Figure 4.34). The damage states DS1 (slight damage), DS3 (severe damage), and 
DS5 (collapse) are shown. As can be seen, for a seismic scenario with a return period 
of 475 years most of the buildings have a probability of reaching a DS1 that exceeds 
50%, including a consistent amount of buildings that exhibit a probability higher that 
75%. This is particularly evident for Pordenone central area, where the configuration 
of the area is heterogeneous with many vulnerable buildings. On the other hand, 
predictions seem more homogeneous within Pordenone northern area, due to the 
greater similarity of the buildings. For what concerns the maps related to DS3, it is 
still possible to detect some buildings that have a probability of more than 25% of 
reaching this damage state, and only very few of them exceed 50%. With respect to 
the DS5 maps, no building appears to have a probability which is higher than 25% of 
reaching collapse, both in Pordenone center and in Pordenone northern area. 
Figure 6.5 shows the same type of results for the whole Municipality of Pordenone. 
Even though with this kind of visualization the level of detail might get lost, it is still 
possible to identify the area of the town which may be more prone to seismic damage, 
and the degree of probability of reaching the different damage states. 
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Figure 6.1 - Damage maps DS1, DS3, and DS5 for Tr = 475 years in Pordenone city center 
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Figure 6.2 - Average damage map for Tr = 475 years in Pordenone city center 
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Figure 6.2, Figure 6.4, and Figure 6.6 show the maps that express the average damage 
calculated with Equation 5.2, as explained in chapter 5. Figure 6.2 and Figure 6.4 show 
a predominant damage equal to DS2 (moderate damage), despite a considerable 
amount of buildings associated to an average damage of DS1 and DS3. When looking 
at the map in Figure 6.6, it is possible to see that in the historical center of Pordenone 
most of the buildings have an average damage equal to DS3 and even DS4 in some 
cases, while in other parts of the town it is more likely to incur lower damage levels, 
such as DS1 or DS2. 
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Figure 6.3 - Damage maps DS1, DS3, and DS5 for Tr = 475 years in Pordenone northern area 
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Figure 6.4 - Average damage map for Tr = 475 years in Pordenone northern area 
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Figure 6.5 - Damage maps DS1, DS3, and DS5 for Tr = 475 years in the Municipality of Pordenone 
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Figure 6.6 - Average damage map for Tr = 475 years in the Municipality of Pordenone 
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6.1.2. Unconditional damage maps 

Other simulations are then performed for the same areas (Pordenone city center, 
Pordenone northern area, and the whole Municipality), this time for unconditional 
damage. When dealing with unconditional damage, all the available return periods 
need to be taken into account, also considering their probability of occurrence within 
the time window of prediction (see chapter 5). In this case, a time window of 50 years 
has been selected. The PGAs associated with the different return periods for the areas 
considered are displayed in Table 6.1. Also in this case, the composition of soil for the 
town of Pordenone was taken into consideration. 
 

Table 6.1 – PGAs associated with each return period for the town of Pordenone 

Return period [years] PGA [g] 
30 0.0668 
50 0.0865 
72 0.1034 
101 0.1224 
140 0.1425 
201 0.1673 
475 0.2381 
975 0.2982 
2475 0.3860 

 
Compared to conditional damage maps shown in the previous section (relating to a 
return period of 475 years), the unconditional damage maps shown below exhibit a 
lower degree of damage, in terms of percentage of exceedance of different damage 
states (Figure 6.7, Figure 6.9, and Figure 6.11) and also in terms of average damage 
(Figure 6.8,Figure 6.10, and Figure 6.12). Particularly, for a time window of 50 years 
only few buildings seem to have a probability of reaching a DS1 greater than 50%, 
while most of the buildings are in the 25-50% range. As already noticed before, also 
Figure 6.11 shows that the historical buildings in the city center of Pordenone are the 
most likely to reach a DS1, while for other parts of the town the probability of reaching 
this damage state decreases. When considering higher damage states such as DS3 and 
DS5, no building appears to have a probability to reach these DSs that falls out of the 
0-25% range. 
With respect to the average damage maps, it is possible to see that most of the buildings 
are associated with a DS1 damage, with some exceptions falling into DS2. This is 
particularly evident in Figure 6.12, where most of the buildings are associated with a 
DS1, other than the ones in the city center, which are mostly associated with a DS2. 
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Figure 6.7 - Damage maps DS1, DS3, and DS5 for a time window of 50 years in Pordenone city center 
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Figure 6.8 - Average damage map for a time window of 50 years in Pordenone city center 
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Figure 6.9 - Damage maps DS1, DS3, and DS5 for a time window of 50 years in Pordenone northern area 
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Figure 6.10 - Average damage map for a time window of 50 years in Pordenone northern area 
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Figure 6.11 - Damage maps DS1, DS3, and DS5 for a time window of 50 years in the Municipality of Pordenone 
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Figure 6.12 - Average damage map for a time window of 50 years in the Municipality of Pordenone 
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6.1.3. Damage maps validation 

In order to have a validation of the results presented so far, the work carried out by 
Valluzzi et al. (2021a) was leveraged. In this study, framed within the 2019-2021 
DPC-ReLUIS Project with the financial support of the China-Italy International 
Research Centre for Protection of Historical Architectures and Cultural Relics 
(CIPAR), Guangzhou University, over 2’300 case studies (i.e., structural 
units/buildings) belonging to 20 villages struck by the 2016 Central Italy earthquake 
were analyzed by a multi-level survey procedure proposed by the University of 
Padova. The damage was studied in terms of local macro-seismic intensity and 
calculated by comparing the influence of several features such as configuration, 
building aggregation, geometric and architectural details, horizontal and vertical 
structural components, and materials. For the sake of this comparison, one of the 
villages is examined in detail, namely Castelsantangelo sul Nera (Province of 
Macerata. Marche Region), and the results in term of EMS98 damage that were 
surveyed and reported in Valluzzi et al. (2021a) are then compared with the predictions 
of damage derived from the algorithm developed in this thesis (in terms of average 
damage).  
Castelsantangelo sul Nera was founded in the 13th century as a walled village on a hill 
on the border between the dominions of Visso, to which it belonged, and Norcia. It is 
situated at 780 meters above sea level on the flank of Mount Cornaccione. According 
to Vettore et al. (2022), 147 structural units (SUs) can be identified in Castelsantangelo 
sul Nera. Of these, the six churches are excluded from the statistics, as well as 33 
buildings that were not evaluated due to their secondary nature (garages and rural 
warehouses, demolished buildings or ruins) or because they were inaccessible at the 
time of the surveys. This led to the identification and survey of 108 SUs, focused on 
retrieving information on agglomeration shape, masonry quality, horizontal structures, 
structural interventions, and damage level. The town of Castelsantangelo sul Nera was 
repeatedly hit by the seismic swarm that began on October 26, 2016. 
For this work, the definition of damage levels is essential to compare the DSs surveyed 
with the ones predicted by the risk calculation platform. Primarily, the PGA that 
caused damages in Castelsantangelo sul Nera needs to be correctly identified, so that 
the simulation can be as close as possible as the real scenario surveyed on site. This 
step already poses some problems, as it is not always so obvious to assess the exact 
level of PGA that is experienced by a building. This is due to multiple reasons: first, 
seismographs are sparse and not always close to the epicenter of the earthquake (or to 
the area under analysis); second, site and soil effects can deeply influence the intensity 
of ground motion, even within short distances; then, this case presents an even more 
challenging issue, since as mentioned before the damage suffered by buildings was not 
caused by a single earthquake, but by a seismic swarm, that might have caused an 
accumulation of damage in the buildings. For the reasons cited above, it is clear that 
is not so trivial to associate a damage level with a univocal PGA. Nonetheless, some 
official sources have been leveraged in order to obtain a value of PGA which could be 
as close as possible as the real ground shaking experienced by the buildings in 
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Castelsantangelo sul Nera in 2016. In this study, the PGA was obtained through an 
interpolation of the ShakeMaps (Russo et al., 2022) considering the centroid of 
Castelsantangelo sul Nera and referring to the most severe event among the three main 
events (August 24, October, 26, and October 30, 2016). Following this procedure, the 
value of PGA that was associated with the Municipality of Castelsantangelo sul Nera 
was equal to 0.541 g. 
Another difference that can be noticed between the two different methodologies of 
damage evaluation (direct survey vs prediction) is that the detection of the buildings 
is not always the same. Even though most of the times the shapes and the floor areas 
do not have significant differences, occasionally the subdivision of buildings might 
not be comparable. This difference between the algorithm and a direct survey has also 
been addressed in chapter 4: while the automatic algorithm relies on satellite images 
(thus on the identification of roof shapes), a direct survey might be more precise and 
identify more structural units. Due to this further division, sometimes the level of 
damage cannot be unambiguously comparable between the two methods. 
Moreover, it has to be recalled that the algorithm can associate a building with a 
specific damage state by computing its average damage. The value (which usually has 
a decimal part) needs then to be converted into an integer number that indicates the 
damage state. In this work, this has been carried out by rounding the average damage: 
this operation however might lead to incorrect estimates of damage, especially when 
the average damage falls between two damage limits. For the same reason, it is very 
hard (if not impossible) to catch the extreme damage levels, i.e., DS0 (no damage) and 
DS5 (collapse). This is again due to the fact the algorithm calculates the damage level 
as an average damage, meaning that it takes into consideration all the possible damage 
states that a PGA might lead to, with their own probabilities. It is therefore difficult to 
obtain a value that can be rounded to 0 or to 5, since there is always a percentage of 
slight, moderate, or severe damage that pulls these extreme cases towards the middle 
of the EMS98 scale. 
Bearing in mind these considerations, it is nonetheless possible to compare the damage 
states surveyed on site after the earthquake with the predictions made by the algorithm. 
Figure 6.13 shows the two damage maps one next to the other: Figure 6.13a refers to 
the direct survey, while Figure 6.13b is related to the results provided by the algorithm 
(rounded average damage). Although the two maps already highlight similarities and 
differences between the two methods, it is perhaps easier to visualize the same results 
in the form of pie charts, where each slice represents the percentage of buildings 
associated with a damage state. This is indeed presented in Figure 6.14, where Figure 
6.14a regards the direct survey, while Figure 6.14b refers to the predicted damage. 
First, it is possible to notice what has already been mentioned about the prediction of 
extreme damage levels (DS0 and DS5), since Figure 6.14b exhibits neither. Other than 
this difference, the percentages of the other damage states seem comparable and of the 
same order. 
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Surveyed damage Predicted damage 

  
(a) (b) 

Figure 6.13 – Damage in Castelsantangelo sul Nera assessed during a direct survey (a) and predicted by the 
algorithm (b) 

Surveyed damage Predicted damage 

  
(a) (b) 

Figure 6.14 – Percentages of damage states in Castelsantangelo sul Nera assessed during a direct survey (a) and 
predicted by the algorithm (b) 

Even when the damage is not properly identified, it is however useful to see how much 
the algorithm is wrong compared to the direct survey, i.e., of how many damage states 
the algorithm is mistaken. Figure 6.15 shows indeed that while 67% of buildings are 
associated with the same damage level of the direct survey by the algorithm, even in 
the cases where the damage state is not correctly identified the error is one class of 
damage (23%) or two classes (only 10%). No more than a difference of two damage 
states has been encountered in this validation example. 
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Figure 6.15 - Percentages of correct predictions and predictions with 1 or 2 damage states difference for the 

Municipality of Castelsantangelo sul Nera when compared to the direct survey 

6.2. Risk maps 

Another important output of this project is the elaboration of seismic risk maps. The 
process implemented in the risk platform has been explained in detail in chapter 5: 
here only the key concepts are recalled. In summary, the damage maps created (of 
which some examples have been shown in the previous section) can be used to 
elaborate risk maps through consequence matrices that relate damage to possible 
losses. The losses that can be computed are economic losses (i.e., reconstruction and 
repair cost), human losses (i.e., casualties), impact on buildings (i.e., usability), and 
displaced people. All these indicators are of extreme importance and utility when civil 
protection institutions have to face emergencies, because they give an idea of how 
much workforce needs to be deployed to deal with the crisis. Furthermore, these results 
are very useful even in the absence of an actual seismic event, as they can predict the 
effect of particular scenarios and therefore help with the operations of preparedness 
and prevention. 
In the following sections, conditional and unconditional risk maps are presented (along 
the same line of the damage maps presented above). These maps will focus on 
economic losses, usability of buildings, and displaced people. Moreover, a validation 
is presented, where the results of this project in terms of risk are compared to the ones 
derivable from IRMA (Italian Risk MAps), the online platform developed by Eucentre 
already described in section 2.3. The results provided by this platform have a similar 
form to that of the platform described in this thesis, so it was possible to compare the 
outputs and point out similarities and differences between two platforms that have the 
same purpose, i.e., the definition of risk. Lastly, considering the fact that in chapter 3 
not only fragility curves for the as built configuration have been presented, but also 
mitigated ones taking into account several retrofit strategies, it is possible to simulate 
the implementation at a local scale of different seismic retrofit interventions, so that 
their benefit can be assessed. This step may prove very useful in case that more 
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vulnerable areas need to be retrofitted at a diffuse scale, since this output can provide 
guidance on how to intervene and what degree of effectiveness could be expected. 

6.2.1. Conditional risk maps 

The conditional risk maps presented in this section reflect the conditional damage 
maps shown in paragraph 6.1.1. Also in this case, all the simulations have been 
conducted assuming a PGA that has a return period of 475 years. For the Municipality 
of Pordenone, this means a PGA of 0.2381 g. 
First, the risk maps that represent the possible economic losses for such a seismic 
scenario are displayed. Figure 6.16, Figure 6.17, and Figure 6.18 show the economic 
losses for the central area of Pordenone, the northern area of Pordenone, and for the 
whole Municipality, respectively. These maps highlight the different ranges of repair 
or reconstruction costs for each building belonging to that area. Unlike damage maps, 
where only seismic hazard and seismic vulnerability come into play, in this case also 
exposure plays an important role. As a matter of fact, the risk indicator of economic 
losses is really the combination of the hazard to which the building is subjected, the 
building vulnerability, and its exposure, defined as the total cost of the building 
depending on its total area (as explained in chapter 5). The effect of exposure can be 
seen in these maps, since it is possible to notice how smaller buildings are usually in 
the lower ranges of economic losses, while bigger buildings are more likely to belong 
to the higher ranges. Clearly, looking at these maps, it is impossible to separate the 
influence of exposure from the influence of vulnerability: the same level of economic 
losses might be attained by smaller buildings that possess a higher vulnerability, as 
well as by bigger buildings with a lower vulnerability level. Of course, also seismic 
hazard plays a crucial role in the assessment of economic losses: however, given the 
fact that in this work the whole Municipality of Pordenone was associated with a single 
value of PGA, the effect of hazard is not relevant in these maps. Nonetheless, if two 
areas in Italy were to be compared, the difference between the seismic hazard of the 
two places would be fundamental and would greatly affect the estimated economic 
losses. 
Figure 6.18 gives an overall view of the possible economic losses in the whole town 
of Pordenone. Once again, being the map at a town scale, it might not be possible to 
distinguish each and every building, but this representation can give a general idea of 
the severity of economic losses in different areas or neighborhoods of the town. It can 
be seen that the historical city center might suffer the most significant losses in the 
whole town: this is due to the vulnerability and exposure of the buildings that belong 
to that area. 
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Figure 6.16 – Economic losses for Tr = 475 years in Pordenone city center 

 
 

 

 

Figure 6.17 - Economic losses for Tr = 475 years in Pordenone northern area 
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Figure 6.18 - Economic losses for Tr = 475 years in the Municipality of Pordenone 

Furthermore, risk maps that show the impact on buildings (i.e., usability) can be 
produced. These maps intend to display whether a building is still supposed to be 
usable after the earthquake, or whether on the other hand it is no longer usable (the 
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possibilities are: unusable in a short period, unusable in a long period, or collapsed). 
Figure 6.19 and Figure 6.20 show these results for different areas in Pordenone, while 
Figure 6.21 refers to the whole Municipality. The outputs only give as options “usable” 
or “unusable in a long period”: this is due to the fact that unusability in a short period 
is an intermediate state which has a very low probability of occurrence (see the values 
presented in Table 5.5 in chapter 5, which are used by the risk platform to compute the 
impact on buildings). For the same reason, it is very difficult to catch the collapsed 
building, since it is an extreme condition that the percentages used do not seem to 
capture. 
 

 

 

Figure 6.19 - Usability of buildings for Tr = 475 years in Pordenone city center 

 
 

 

 

Figure 6.20 - Usability of buildings for Tr = 475 years in Pordenone northern area 
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Figure 6.21 - Usability of buildings for Tr = 475 years in the Municipality of Pordenone 

Nevertheless, looking at Figure 6.21 it is clear how the historical center would be 
completely unusable in a long period in case an earthquake with a return period of 475 
years occurred: this strongly highlights the high vulnerability of that neighborhood. 
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Another important risk indicator that can be evaluated is the number of displaced 
people. As explained in chapter 5, this parameter is calculated by estimating the 
possible number of residents in each building (from the total number of citizens in the 
town and considering the density of population), and then considering whether the 
building is usable or not in the aftermath of the earthquake under consideration. This 
can give an estimation of the number of people who might need a temporary or 
permanent shelter and who might need assistance from the civil protection 
organizations. Figure 6.22, Figure 6.23, and Figure 6.24 show the results of this 
evaluation for the town of Pordenone. 
 

 

 

Figure 6.22 - Displaced people for Tr = 475 years in Pordenone city center 

 

 

Figure 6.23 - Displaced people for Tr = 475 years in Pordenone northern area 
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Figure 6.24 - Displaced people for Tr = 475 years in the Municipality of Pordenone 

Figure 6.24 points out that in most buildings of the historical center the number of 
people per building that might be displaced exceeds the value of 30. To give an order 
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of magnitude, the total number of displaced in Pordenone after an earthquake with 
return period 475 years exceeds the value of 5,000. 

6.2.2. Unconditional risk maps 

Following the structure presented in section 6.1.2., some analyses of unconditional 
risk have been carried out. Also in this case, a time window of 50 years has been 
selected, and the risk indicators of economic losses, impact and displaced people are 
shown below. Figure 6.25, Figure 6.26, and Figure 6.27 show the economic losses that 
can be produced by all the possible earthquakes that may occur in 50 years.  
 

 

 

Figure 6.25 - Economic losses for a time window of 50 years in Pordenone city center 

 

 

 

Figure 6.26 - Economic losses for a time window of 50 years in Pordenone northern area 
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Figure 6.27 - Economic losses for a time window of 50 years in the Municipality of Pordenone 

As can be seen, the range of losses is slightly lower than the one resulting from a 
conditional analysis for a return period of 475 years. This is due to the fact that the 
effects of all the earthquakes that can happen in a selected time window are scaled by 
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their probability of occurrence in that interval: that is to say, earthquakes with very 
high return period (e.g., 2475 years) are indeed included in the computation of risk 
with great values of PGA, however the probability of occurrence of such earthquakes 
is very low in a time frame of 50 years. 
The same aspect is noticeable in the results referring to usability (Figure 6.28, Figure 
6.29, and Figure 6.30) and displaced people (Figure 6.31, Figure 6.32, and Figure 
6.33). Even more in these two last cases, the unconditional risk computation fails to 
detect any unusable buildings or displaced people in 50 years in the town of 
Pordenone. 
 

 

 

Figure 6.28 – Usability of buildings for a time window of 50 years in Pordenone city center 

 

 

 

Figure 6.29 - Usability of buildings for a time window of 50 years in Pordenone northern area 
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Figure 6.30 - Usability of buildings for a time window of 50 years in the Municipality of Pordenone 
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The reason why this occurs is because the earthquakes that have more weight in an 
unconditional evaluation of risk are the ones that have very low return periods, thus 
very low PGAs. Even though they contribute to the increase of the economic losses 
(even slight damages produce repair costs), they might not lead to unusable buildings, 
therefore no displaced people are predicted. 
 

 

 

Figure 6.31 - Displaced people for a time window of 50 years in Pordenone city center 

 

 

 

Figure 6.32 - Displaced people for a time window of 50 years in Pordenone northern area 
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Figure 6.33 - Displaced people for a time window of 50 years in the municipality of Pordenone 
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6.2.3. Risk maps validation 

As stated before, also for what concerns risk estimates an evaluation was performed. 
In order to do so, the values of the considered risk indicators provided by the risk 
calculation platform developed in this thesis have been compared with the ones 
available in IRMA (Borzi et al. 2021b, described in section 2.3). The seismic hazard 
used in the platform is the MPS04 hazard model developed by the INGV, which is the 
same hazard model that is implemented within the platform described in this project. 
IRMA can also take into account the distribution of different soils across Italy 
according to the study of Forte et al. (2019), which is the same considered in our 
platform. IRMA then allows the users to upload different vulnerability databases as 
well as different sets of fragility curves on the platform. For what concerns seismic 
vulnerability, the fragility curves described in chapter 3 (masonry fragility curves) and 
chapter 5 (reinforced concrete fragility curves) have been given as vulnerability inputs; 
these curves were the same utilized in the risk platform of this project. The main 
difference between the two platforms relies on the definition of exposure: while for 
the platform of this work exposure is taken into account considering building by 
building (evaluated from satellite images and online maps and then assessed through 
Convolutional Neural Networks as described in chapter 4), IRMA on the other hand 
defines exposure from the national data provided by ISTAT, the Italian National 
Institute of Statistics. ISTAT, however, supplies data at a national, regional, provincial, 
or municipal level at most: this means that the IRMA platform is not able to give results 
that consider territorial scales which are smaller than the municipal scale. With regard 
to the typology of results, as well as the platform here developed, also IRMA combines 
the different exposure databases with all possible sets of fragility curves, so that the 
user can create maps with conditional damage (i.e., the return period is selected) or 
unconditional damage (i.e., an observation time window is selected). These maps can 
be converted into risk maps with consequence matrices, which are the same used in 
this work (see chapter 5). This makes the outputs of the two platforms easily 
comparable. 
In this validation phase, the town of Pordenone was chosen as a case study. As already 
mentioned, it is not possible to compare the result that our platform provides for each 
building, since IRMA gives aggregate results at a municipality level, therefore the 
outputs of the two platforms were compared in an aggregate way, considering the 
entire Municipality. 
Since exposure is the component of risk that is calculated differently by the two 
platforms, a preliminary evaluation of exposure is carried out. The results of this 
evaluation are presented in Table 6.2: it is recalled that these analyses only take into 
account residential buildings. As can be seen, there is a considerable difference 
between the total area of buildings detected, and consequently between the building 
total values (the value in IRMA is around 40% of the one in the risk platform). This is 
mainly due to the fact that the data provided by ISTAT is described as “area of 
dwellings occupied by residents”, while our platform takes into account the whole area 
of a building as detected in OpenStreetMap, and then multiplies the area by the number 
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of floors identified according to the prediction of the CNN concerning the height. This 
may lead to an underestimation of the total built up area in the IRMA platform, and 
therefore to a different evaluation of exposure in terms of economic value. On the other 
hand, the number of people detected by the two platforms is essentially the same, due 
to the fact that both platforms make use of ISTAT data to retrieve this exposure 
parameter. 

Table 6.2 - Difference of exposure in Pordenone between the risk calculation platform and IRMA 

Exposure IRMA Risk calculation 
platform 

Ratio 
[%] 

Total building area 2,251,608 5,424,185 41.51% 
Total building value 3,039,670,800 € 7,322,650,039 € 41.51% 
Number of people 49,982 49,569 99.17% 

 
Prosecuting on with the comparison in terms on risk, the case of conditional risk for 
an earthquake of return period equal to 475 years was considered. The results are 
shown in Table 6.3. As can be seen, the expected economic losses take on different 
values between the two platforms, where the losses predicted by IRMA are almost half 
of the losses expected according to our platform: this is clearly due to the difference 
in the definition of building exposure highlighted in Table 6.2. Also the number of 
victims and injuries show some differences, which might seem surprising since the 
values of exposure in terms of number of people is perfectly comparable between the 
two platforms. This however comes from the different approach that the two platforms 
have: while IRMA considers the Municipality as a whole, thus calculating the possible 
casualties at a municipality scale, our platform performs the same computation at a 
building level. This can lead to differences in approximation and rounding that result 
in significant differences. 
Table 6.3 - Difference of conditional risk (Tr=475 years) in Pordenone between the risk calculation platform and 

IRMA  

Risk indicators IRMA Risk calculation 
platform 

Ratio 
[%] 

Economic losses 476,306,009 € 919,712,000 € 51.79% 
Victims 238 395 60.25% 
Injuries 767 1763 43.51% 

 
The same comparison has been carried out for the unconditional risk, considering a 
time window of 50 years. The values and ratios are shown in Table 6.4. In this case, 
the two platforms return results that are very similar and, most importantly, stand in 
the same order of magnitude. It is indeed important to recall that the purpose of these 
platforms, especially when they are dealing whit larger scales such as municipality 
scales, is mainly to provide results that can reflect the actual outcomes of possible real 
seismic scenarios, bearing in mind that these results need to be read at a territorial 
scale. 
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Table 6.4 - Difference of unconditional risk (time window 50 years) in Pordenone between the risk calculation 
platform and IRMA 

Risk indicators IRMA Risk calculation 
platform 

Ratio 
[%] 

Economic losses  264,401,256 €  283,920,370 € 93.13% 
Victims  93  62 150.00% 
Injuries  302  332 90.96% 

6.2.4. Risk assessment in case of retrofitted scenarios 

The last section of this chapter is dedicated to the simulation of possible retrofit 
strategies in the buildings in Pordenone, in order to assess their effectiveness. In order 
to carry out these analyses, the retrofitted fragility models presented in chapter 3 have 
been used. It is recalled that the fragility curves developed in this project only refer to 
masonry buildings: for this reason, reinforced concrete buildings have always been 
considered in their as built state, while the vulnerability of masonry buildings has been 
modified according to the type of intervention implemented. 
Here the selected interventions are briefly listed (they are also summarized in Table 
3.9 in chapter 3): for masonry buildings belonging to Pre-1919 and 1919-1945 
construction periods, two stages of masonry strengthening have been assumed (MSN1 
and MSN2), the addition of tie-rods (TR) and the stiffening of floors (FLR). For 
buildings belonging to 1946-1960, 1961-1980, and Post-1980 only one stage of 
masonry strengthening has been considered (MSN, comparable to the MSN2 of the 
previous construction periods), as well as the addition of confining rings (CR) and the 
stiffening of floors (FLR). Combined interventions carried out on masonry walls and 
on horizontal diaphragms or connections have also been considered, such as 
MSN1+TR, MSN+FLR, MSN2+TR/CR, and MSN2+FLR. The simulations were run 
in the risk platform for the whole town of Pordenone without changing any parameter 
other than the fragility curves, in order to assess their pure effect on risk indicators. 
Figure 6.34 shows the results for economic losses, victims, and injuries in the town of 
Pordenone after an unconditional risk analysis with a time window of 50 years. Each 
histogram shows as the first bar the risk indicator value for the case in which all the 
buildings are in their as built configuration, while the following bars show the same 
risk indicator in case that all the masonry buildings in Pordenone underwent that 
specific retrofit intervention. The same results can also be visualized through 
histograms that present the economic losses, victims, and injuries as a percentage of 
the initial as built configuration. This histograms are shown in Figure 6.35. From these 
graphs it is possible to perceive the level of effectiveness (and benefit, to a certain 
extent) of the different retrofit strategies. For example, the addition of tie-rods (TR) 
usually is less effective, reducing economic losses by 8%, victims by 16% and injuries  
by 14% compared to the as built state. The most effective intervention includes the 
two stages of masonry strengthening and the stiffening of floors (MSN2+FLR). This 
intervention, in a time span of 50 years, may lead to a decrease of economic losses of 
48% compared to the as built condition, as well as 77% less victims and 59% less 
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injuries. Clearly, these considerations are not sufficient to carry out proper cost-benefit 
analysis: for example, although the addition of tie-rods does not seem very effective, 
it is however true that this kind of retrofit strategy is usually the less expensive one, 
and it is also one of the easiest one to be implemented, especially at a large scale. In 
order to perform evaluations that can actually be helpful for a targeted mitigation plan 
at a territorial scale, the costs of interventions need also to be taken into account, as 
well as the different targets that interventions may have. 
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Figure 6.34 - Effect on economic losses, victims, and injuries for different retrofit strategies in Pordenone (50 
years) 
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Figure 6.35 - Effect on economic losses, victims, and injuries for different retrofit strategies in Pordenone (50 
years) as percentage of the as built configuration 

  



Conclusions and future developments 
____________________________________________________________________________________________________________________________________________________________________ 

 

 197 

7 CONCLUSIONS AND FUTURE DEVELOPMENTS 

7.1. Conclusions 

This thesis explored the possibility of performing seismic risk analyses in a remote 
and automatic way. 
First, a review of the state of the art in the field of earthquake engineering is presented, 
with particular focus on seismic fragility assessment and the use of machine learning 
techniques for the evaluation of exposure. The literature review has shown that some 
research gaps are still existing, particularly the need for a national fragility model that 
can be representative for all the possible Italian building typologies, as well as for a 
methodology to remotely and automatically evaluate exposure and associate buildings 
with their appropriate vulnerability. This thesis directly addresses these issues and is 
suggesting solutions to overcome them. 
The first part of this thesis is indeed dedicated to the derivation of a fragility model for 
Italian residential masonry buildings of general validity within the national territory. 
The model can describe not only masonry buildings in their as built condition, but also 
takes into account the possible variation of fragility in case seismic retrofit 
interventions are applied to the same buildings. The model has proven to be 
representative for the Italian building typologies: this is justified by the validation 
performed by comparing the model output estimates with the real damage surveys 
carried out after L'Aquila earthquake in 2009. The success in the elaboration of this 
fragility model has proven that is reasonable to develop large scale vulnerability 
models, and that these can also give indications on the level of mitigation that retrofit 
intervention can bring to buildings. 
As for the automatic identification and categorization of buildings in order to define 
exposure, this work has shown that it is possible to detect buildings at a territorial scale 
from satellite images and online map services with a very good level of detail. 
Furthermore, street view images can be utilized to remotely retrieve pictures of 
buildings, thus simulating an external direct survey. These tools are fundamental for a 
rapid evaluation of exposure at large scale, since they drastically reduce costs and time 
necessary for the surveys. Subsequently, Deep Learning techniques, particularly 
Convolutional Neural Networks, have proven to be successful in the correct 
identification of specific building features, such as height, material, and construction 
period. Although these are just basic data regarding the building configuration, they 
are however fundamental for the definition of the exposure, as well as for the 
association of a correct fragility model to the building itself. This gives a considerable 
help in surveying buildings automatically, for the purpose of large-scale risk estimates. 
The outputs of the models and methods developed in this thesis are ultimately used 
within a seismic risk calculation platform, which was specifically developed for the 
purposes of this project. This platform includes different modules that eventually 
provide damage and risk estimates: the results produced seem very promising, also 
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considering the good match with past real case scenarios and with other risk 
calculation tools. 
Lastly, the final part of this thesis has given an insight of another potential of this work: 
thanks to the development of mitigated fragility curves, it is possible to assess the 
economic benefit that a retrofit strategy can bring at a territorial scale. When this result 
is integrated with the cost of the interventions, as well as with all the consequences 
that the mitigation can bring, it is then possible to carry out cost-benefit analysis and 
select the best strategy for an effective mitigation plan. 
All these considerations suggest that the whole methodology developed within this 
thesis can represent a valid tool for civil protection, insurance companies, and any 
other public or private organization involved in risk management. Indeed, the tool 
provided by this work can not only assess seismic damage and risk for specific 
earthquake scenarios, but gives also the possibility to make forecasts and projections 
over varying time windows. The results that this platform can offer give important 
indications on how many human and economic resources are expected to be deployed 
in the emergency phases after different earthquake scenarios: this information is 
usually not known by the above-mentioned authorities and agencies. Moreover, these 
results can also assist emergency planners in making sure that even in case of 
earthquakes that lead to the interruption of almost all the urban functions, the urban 
settlement can still preserve its strategic emergency functions, its accessibility and the 
connection with the territorial context. 

7.2. Future developments 

Since this work is composed by different interconnected modules, it also leaves space 
to improvements and future developments. 
First of all, even though the developed fragility model has proven its robustness at a 
national level, it is however true that a better representation of vulnerability could be 
given by different models calibrated on specific geographical areas. Therefore, future 
studies will aim to refine the macro-typological classification, with particular attention 
to geographical representativeness, in order to provide several regional model that can 
be more representative of the built stock at a local scale. The goal is indeed to develop 
increasingly reliable territorial-scale damage assessment tools, necessary for risk 
management purposes. Moreover, the same methodology for deriving fragility curves 
for residential masonry buildings could be adapted to other building typologies, i.e., 
consisting of other materials, such as residential r.c. buildings, or even belonging to 
completely different building classes, such as industrial buildings, schools, churches 
and religious buildings, monumental buildings, etc. In these cases, of course the 
software or tools used to perform the analyses should be appropriate for the building 
typology under consideration. There is already research that is working towards this 
direction, and this suggests a possible integration or adaptation of the external work 
within the platform developed in this project, in order to attain a more exhaustive 
vulnerability assessment of the whole built stock. 
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The steps that concern the automatic identification of building features are also open 
to further developments. Preliminarily, the database of buildings used to train the 
neural networks can be increased but most importantly improved, selecting only the 
most representative building pictures for recognizing the specific features. This could 
lead to better results in terms of accuracy when training the Convolutional Neural 
Networks. Furthermore, other neural networks that detect additional features might be 
developed, particularly for the characteristics that influence seismic vulnerability and 
for which specific fragility models have been built on. The same procedure could be 
implemented also for other building typologies, so that particular features that are 
meaningful for the definition of their seismic vulnerability are recognized. As a 
possible extension of this work, when parameters are impossible to be retrieved from 
pictures that only show the external façade of a building, statistical methods (such as 
Bayesian methods) might be developed to associate unknown variables to distributions 
of known parameters. 
Finally, deeper studies on consequence matrices that correlate damage to risk 
indicators are to be carried out. Research is putting a lot of focus on this topic, since 
institutions are asking for more precise estimations of the possible losses caused by 
earthquakes. The evaluation of these data and coefficients is not trivial at all, since it 
requires considerations on many aspects that contribute to the definition of losses 
caused by a seismic event and that are often inherently affected by uncertainties. 
In conclusion, the same framework and the same platform could serve as a basis for 
the assessment of other natural risks, such as floods, landslides, windstorms, etc., 
taking into account the proper refinements to include appropriate hazard and 
vulnerability models, as well as an ad hoc evaluation of exposure. 
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