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1. INTRODUCTION

Riccati equations play a fundamental role in countless branches
of engineering and applied mathematics, including network
analysis, optimal control and filtering, spectral factorization,
stochastic realisation to name only a few. Monographs devoted
to the study of Riccati equations include Reid (1972); Willems
et al. (1991); Lancaster and Rodman (1995); Ionescu et al.
(1999); Abou-Kandil et al. (2003).

In particular, many reduction techniques have been proposed
in the literature for both the continuous and the discrete-time
algebraic/differential/difference Riccati equations, see e.g. Mita
(1985); Fujinaka et al. (1987); Hansson et al. (1999); Ferrante
(2004); Ferrante and Wimmer (2007); Ntogramatzidis et al.
(2015) and the references cited therein. Some of these are tai-
lored to the calculation of a specific solution (for example the
stabilizing solution of a continuous/discrete algebraic Riccati
equations), while some of them seek to determine the entire
set of solutions by solving reduced-order Riccati equations by
eliminating parts of this equation which are traditionally con-
sidered to lead to theoretical or numerical problems. An im-
portant example is the discrete-time algebraic Riccati equation
with associated extended symplectic pencil with generalized
eigenvalues at the origin or on the unit circle, Ferrante and
Wimmer (2007); Ntogramatzidis et al. (2015).

The main purpose of this paper is to determine the entire set
of Hermitian solutions of the continuous-time algebraic Riccati
equation (ARE) in the case where the associated Hamiltonian
matrix has eigenvalues on the imaginary axis. To this end, we
propose a reduction methodology whose aim is to decompose
any ARE in such a way that it can be solved in terms of a
reduced-order ARE associated with a Hamiltonian matrix with-
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out purely imaginary eigenvalues and a linear equation. As a
consequence all the (Hermitian) solutions of the original equa-
tion may be, in turn, decomposed in a part with arbitrary entries,
a part obtained by solving a linear equation and a part that can
be obtained by solving the reduced-order ARE. This task is ac-
complished by decomposing the eigenspace of the Hamiltonian
matrix associated with each purely imaginary eigenvalue as the
direct sum of two subspaces. These two subspaces give rise to
two reduction procedures which lead to a complete decompo-
sition of the family of Hermitian solutions. In terms of spectral
factorization, Hamiltonian matrices with imaginary eigenvalues
are associated with spectra having zeros on the imaginary axis.
Therefore, the corresponding spectral factorization problem is
particularly delicate, see Ferrante (2005), see also Baggio
and Ferrante (2019, 2016a,b) for the discrete-time counterpart
where the spectra have zeros on the unit circle. The associated
LQ optimal control problem is peculiar because the optimal
solution, if it exists, is not stabilizing.

This paper considers a continuous-time ARE with complex
coefficients. The reason for this is that the two reduction proce-
dures are applied for each imaginary eigenvalue of the Hamilto-
nian matrix, and at each reduction the size of the corresponding
reduced-order ARE decreases. The changes of coordinates that
yield both these decompositions are, in general, complex val-
ued, so when applying, say, the second procedure on a reduced-
order ARE obtained at the end of the first one, the coefficients
of such equation are, in general, complex.

Notation. We denote by I the set of imaginary numbers. Given
a complex vector z ∈ Cn, we denote by z̄ the complex conjugate
of z, and by z∗ the conjugate transpose of z. Given a square and
invertible complex-valued matrix M, since (M∗)−1 = (M−1)∗,
we denote by M−∗ the inverse of M∗.
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2. MAIN RESULTS

This paper is concerned with the study of the set of Hermitian
solutions of the continuous-time algebraic Riccati equation

X A + A∗ X − X B R−1 B∗ X + Q = 0, (1)
where A ∈ Cn×n, B ∈ Cn×m, Q ∈ Cn×n and R ∈ Cm×m, under the
assumptions

Q = Q∗ ≥ 0 and R = R∗ > 0.
It is well-known that the structure of the Hermitian solutions of
(1) is strictly related with the so-called Hamiltonian matrix

H =
[

A −B R−1 B∗

−Q −A∗

]
,

see e.g. Lancaster and Rodman (1995), Zhou et al. (1996) and
Ionescu et al. (1999). For example, if (A, B) is a reachable pair
and H has no eigenvalues on the imaginary axis I, the Riccati
equation (1) has a maximal solution X+ = X∗+ ≥ 0 such that the
eigenvalues of the closed-loop matrix A+ = A − B R−1 B∗ X+
are all in the left-half complex plane. We recall that all the
eigenvalues of H are mirrored with respect to the imaginary
axis, so that if λ is an eigenvalue of H, then also −λ∗ is an
eigenvalue of H.

The objective of this paper is to obtain a decomposition of (1)
whose purpose is to obtain the complete set of solutions from
the set of solutions of a reduced-order Riccati equation whose
Hamiltonian matrix has no eigenvalues on the imaginary axis.
Remark 2.1. Other more general forms of the continuous-time
algebraic Riccati equation have been considered in the litera-
ture. For example, the one associated with a LQ optimal control
problem involving a cross-penalty term S between the state and
the control evolution in the running cost of the performance
index reads as

X A + A∗ X − (S + X B) R−1 (S ∗ + B∗ X) + Q = 0.

In this case, it is required that the matrix
[ Q S

S ∗ R

]
be Hermitian

and positive semidefinite and that the matrix R be positive
definite. This equation can be re-written in the form of (1) by
considering, in place of A and Q, the matrices A − B R−1S ∗ and
Q − S R−1S ∗, respectively.

For all λ ∈ C, we define the subspace of C2 n as
Eλ = ker(H − λ I),

and we recall that Eλ � {0} if and only if λ ∈ C is an eigenvalue
of H. In this case, Eλ is the eigenspace of H associated with the
eigenvalue λ. The decomposition described in this paper hinges
on a decomposition of the eigenspaces of the Hamiltonian
matrix H given in the following lemma.

Lemma 2.1. Let v =
[ v1

v2

]
with v1, v2 ∈ Cn. Let λ ∈ I. Then,

v ∈ Eλ if and only if
[ v1

0

]
∈ Eλ and

[ 0
v2

]
∈ Eλ. Moreover, a basis

matrix of Eλ is given by
[ K1 0

0 K2

]
, where K1 is a basis matrix of

the kernel of
[ A−λ I

Q

]
and K2 is a basis of the kernel of

[ −B∗

−A∗−λ I

]
.

Proof: We have v ∈ Eλ if and only if
[
−B R−1 B∗ A − λ I
−A∗ − λ I −Q

] [
v2
v1

]
= 0. (2)

Let T = [ T1 T2 ] be a unitary matrix such that the columns of
T2 form an orthonormal basis of ker Q. Thus,

Q̃ = T ∗ Q T =
[

Q̃0 0
0 0

]
, Ã = T ∗ A T =

[
Ã11 Ã12
Ã21 Ã22

]
,

where Q̃0 is non-singular. Let

Mλ =
[

Ã11 − λ I
Ã21

]
Nλ =

[
Ã12

Ã22 − λ I

]
.

Since λ∗ = −λ (which follows from λ being purely imaginary),
eq. (2) can be written as


−B R−1 B∗ Mλ Nλ
−M∗λ −Q̃0 0
−N∗λ 0 0




v2
v11
v12

 = 0,

where the vector v1 =
[ v11

v12

]
is partitioned conformably with

Q. From the third it follows that N∗λ v2 = 0. From the second
we find v11 = −Q̃−1

0 M∗λ v2. This expression can be substituted
into the first, and premultiplying both sides of the equation thus
obtained by v∗2 and taking into account that N∗λ v2 = 0 yields

−v∗2
(
B R−1 B∗ + MλQ̃−1

0 M∗λ
)

v2 = 0. (3)

Since both R−1 and Q̃−1
0 are positive definite, the quadratic

form v∗2
(
B R−1 B∗+MλQ̃−1

0 M∗λ
)

v2 is positive definite, so that (3)
yields B∗ v2 = 0 and M∗λ v2 = 0. Since we have also N∗λ v2 = 0,
we can conclude that

v2 ∈ ker
[
−B∗

−A∗ − λ I

]
= ker

[
−B R−1 B∗

−A∗ − λ I

]
,

which also implies that
[ 0

v2

]
∈ Eλ. From v11 = 0 and Nλ v12 = 0,

we also have (A−λ I) v1 = 0 and Q v1 = 0, so that
[ v1

0

]
∈ Eλ.

We now introduce two reduction procedures aimed at eliminat-
ing the eigenvalues of the Hamiltonian matrix on the imaginary
axis. The first reduction procedure is aimed at eliminating the
subspace ker

[ −B∗

−A∗−λ I

]
spanned by the columns of K2, if present.

The decomposition that emerges from this reduction procedure
allows to express the solution of the Riccati equation in terms
of an arbitrary part, a part that solves a reduced-order Riccati
equation, a part that is obtained by solving a linear equation,
and, in those situations where the solution of such linear equa-
tion is not unique, another part that solves a reduced-order
Riccati equation.

It is possible that the Hamiltonian matrix of the reduced-order
Riccati equation still contains eigenvalues on the imaginary
axis. This occurs, in particular, when the subspace ker

[ A−λ I
Q

]
spanned by the columns of K1 is not zero. In this case, the
second reduction procedure needs to be applied to this reduced-
order Riccati equation. If initially ker

[ −B∗

−A∗−λ I

]
= {0} and

ker
[ A−λ I

Q

]
� {0}, only the second procedure has to be carried

out, and we immediately obtain a reduced order Riccati equa-
tion with a Hamiltonian matrix devoid of eigenvalues on the
imaginary axis.

2.1 Reduction associated with K2

In both reduction procedures, we address the case where λ = 0
and the case where λ ∈ I \ {0} separately. Let us therefore begin
by considering λ = 0. We introduce a change of basis given by
T = [ T1 T2 ], where the columns of T1 are an orthonormal
basis for im K2 = ker

[ −B∗

−A∗−λ I

]
and T is unitary. Thus, the
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2. MAIN RESULTS

This paper is concerned with the study of the set of Hermitian
solutions of the continuous-time algebraic Riccati equation

X A + A∗ X − X B R−1 B∗ X + Q = 0, (1)
where A ∈ Cn×n, B ∈ Cn×m, Q ∈ Cn×n and R ∈ Cm×m, under the
assumptions

Q = Q∗ ≥ 0 and R = R∗ > 0.
It is well-known that the structure of the Hermitian solutions of
(1) is strictly related with the so-called Hamiltonian matrix

H =
[

A −B R−1 B∗

−Q −A∗

]
,

see e.g. Lancaster and Rodman (1995), Zhou et al. (1996) and
Ionescu et al. (1999). For example, if (A, B) is a reachable pair
and H has no eigenvalues on the imaginary axis I, the Riccati
equation (1) has a maximal solution X+ = X∗+ ≥ 0 such that the
eigenvalues of the closed-loop matrix A+ = A − B R−1 B∗ X+
are all in the left-half complex plane. We recall that all the
eigenvalues of H are mirrored with respect to the imaginary
axis, so that if λ is an eigenvalue of H, then also −λ∗ is an
eigenvalue of H.

The objective of this paper is to obtain a decomposition of (1)
whose purpose is to obtain the complete set of solutions from
the set of solutions of a reduced-order Riccati equation whose
Hamiltonian matrix has no eigenvalues on the imaginary axis.
Remark 2.1. Other more general forms of the continuous-time
algebraic Riccati equation have been considered in the litera-
ture. For example, the one associated with a LQ optimal control
problem involving a cross-penalty term S between the state and
the control evolution in the running cost of the performance
index reads as

X A + A∗ X − (S + X B) R−1 (S ∗ + B∗ X) + Q = 0.

In this case, it is required that the matrix
[ Q S

S ∗ R

]
be Hermitian

and positive semidefinite and that the matrix R be positive
definite. This equation can be re-written in the form of (1) by
considering, in place of A and Q, the matrices A − B R−1S ∗ and
Q − S R−1S ∗, respectively.

For all λ ∈ C, we define the subspace of C2 n as
Eλ = ker(H − λ I),

and we recall that Eλ � {0} if and only if λ ∈ C is an eigenvalue
of H. In this case, Eλ is the eigenspace of H associated with the
eigenvalue λ. The decomposition described in this paper hinges
on a decomposition of the eigenspaces of the Hamiltonian
matrix H given in the following lemma.

Lemma 2.1. Let v =
[ v1

v2

]
with v1, v2 ∈ Cn. Let λ ∈ I. Then,

v ∈ Eλ if and only if
[ v1

0

]
∈ Eλ and

[ 0
v2

]
∈ Eλ. Moreover, a basis

matrix of Eλ is given by
[ K1 0

0 K2

]
, where K1 is a basis matrix of

the kernel of
[ A−λ I

Q

]
and K2 is a basis of the kernel of

[ −B∗

−A∗−λ I

]
.

Proof: We have v ∈ Eλ if and only if
[
−B R−1 B∗ A − λ I
−A∗ − λ I −Q

] [
v2
v1

]
= 0. (2)

Let T = [ T1 T2 ] be a unitary matrix such that the columns of
T2 form an orthonormal basis of ker Q. Thus,

Q̃ = T ∗ Q T =
[

Q̃0 0
0 0

]
, Ã = T ∗ A T =

[
Ã11 Ã12
Ã21 Ã22

]
,

where Q̃0 is non-singular. Let

Mλ =
[

Ã11 − λ I
Ã21

]
Nλ =

[
Ã12

Ã22 − λ I

]
.

Since λ∗ = −λ (which follows from λ being purely imaginary),
eq. (2) can be written as


−B R−1 B∗ Mλ Nλ
−M∗λ −Q̃0 0
−N∗λ 0 0




v2
v11
v12

 = 0,

where the vector v1 =
[ v11

v12

]
is partitioned conformably with

Q. From the third it follows that N∗λ v2 = 0. From the second
we find v11 = −Q̃−1

0 M∗λ v2. This expression can be substituted
into the first, and premultiplying both sides of the equation thus
obtained by v∗2 and taking into account that N∗λ v2 = 0 yields

−v∗2
(
B R−1 B∗ + MλQ̃−1

0 M∗λ
)

v2 = 0. (3)

Since both R−1 and Q̃−1
0 are positive definite, the quadratic

form v∗2
(
B R−1 B∗+MλQ̃−1

0 M∗λ
)

v2 is positive definite, so that (3)
yields B∗ v2 = 0 and M∗λ v2 = 0. Since we have also N∗λ v2 = 0,
we can conclude that

v2 ∈ ker
[
−B∗

−A∗ − λ I

]
= ker

[
−B R−1 B∗

−A∗ − λ I

]
,

which also implies that
[ 0

v2

]
∈ Eλ. From v11 = 0 and Nλ v12 = 0,

we also have (A−λ I) v1 = 0 and Q v1 = 0, so that
[ v1

0

]
∈ Eλ.

We now introduce two reduction procedures aimed at eliminat-
ing the eigenvalues of the Hamiltonian matrix on the imaginary
axis. The first reduction procedure is aimed at eliminating the
subspace ker

[ −B∗

−A∗−λ I

]
spanned by the columns of K2, if present.

The decomposition that emerges from this reduction procedure
allows to express the solution of the Riccati equation in terms
of an arbitrary part, a part that solves a reduced-order Riccati
equation, a part that is obtained by solving a linear equation,
and, in those situations where the solution of such linear equa-
tion is not unique, another part that solves a reduced-order
Riccati equation.

It is possible that the Hamiltonian matrix of the reduced-order
Riccati equation still contains eigenvalues on the imaginary
axis. This occurs, in particular, when the subspace ker

[ A−λ I
Q

]
spanned by the columns of K1 is not zero. In this case, the
second reduction procedure needs to be applied to this reduced-
order Riccati equation. If initially ker

[ −B∗

−A∗−λ I

]
= {0} and

ker
[ A−λ I

Q

]
� {0}, only the second procedure has to be carried

out, and we immediately obtain a reduced order Riccati equa-
tion with a Hamiltonian matrix devoid of eigenvalues on the
imaginary axis.

2.1 Reduction associated with K2

In both reduction procedures, we address the case where λ = 0
and the case where λ ∈ I \ {0} separately. Let us therefore begin
by considering λ = 0. We introduce a change of basis given by
T = [ T1 T2 ], where the columns of T1 are an orthonormal
basis for im K2 = ker

[ −B∗

−A∗−λ I

]
and T is unitary. Thus, the

subspace im K2 in the new basis is written as im
[

I
0

]
. In other

words, T ∗ K2 =
[

I
0

]
.

In this case, −A∗ K2 = λK2 = 0 implies that

T ∗ A T =
[

0 0
A21 A22

]
. (4)

Moreover, since B∗ K2 = 0, we have T ∗ B =
[ 0

B2

]
. Consider

the decomposition of X̃ = T ∗X T and Q̃ = T ∗Q T into block
matrices whose sizes are compatible with the decomposition in
(4), i.e.,

X̃ =
[

X11 X12
X∗12 X22

]
, Q̃ =

[
Q11 Q12
Q∗12 Q22

]
.

It follows that (1) can be written with respect to this basis as

[
X11 X12
X∗12 X22

] [
0 0

A21 A22

]
+

[
0 A∗21
0 A∗22

] [
X11 X12
X∗12 X22

]

−
[

X11 X12
X∗12 X22

][
0
B2

]
R−1[ 0 B∗2 ]

[
X11 X12
X∗12 X22

]
+

[
Q11 Q12
Q∗12 Q22

]
= 0.

This equation is equivalent to the three equations

X12 A21 + A∗21X∗12 − X12 B2 R−1 B∗2 X∗12 + Q11 = 0 (5)

X12 A22 + A∗21X∗22 − X12 B2 R−1 B∗2 X22 + Q12 = 0 (6)

X22 A22 + A∗22X∗22 − X22 B2 R−1 B∗2 X22 + Q22 = 0. (7)

We notice the following facts:

• None of these equations depend on X11. Thus, X11 is
arbitrary.
• Equation (7) is a reduced-order continuous-time ARE. Its

solution does not depend on equations (5-6). If this equa-
tion does not admit solutions, the original Riccati equation
has no solutions. Notice that this equation may still be
associated with a Hamiltonian matrix with eigenvalues on
the imaginary axis due to the presence of K1. In this case,
the second reduction procedure needs to be applied to this
equation.
• Once X22 is computed from (7), we can substitute it into

(6), which then becomes a linear equation in X12:

X12 AX22 = −A∗21 X22 − Q12,

where the matrix AX22

def
= A22−B2 R−1 B∗2 X22 is the closed-

loop matrix relative to the subsystem 22. Let

Γ
def
= −A∗21 X22 − Q12,

so that the latter can be written as
X12 AX22 = Γ.

This equation admits solutions if and only if

ker AX22 ⊆ ker Γ. (8)

If this condition is not satisfied, (6) does not admit so-
lutions, and the original Riccati equation does not admit
solutions. If (8) is satisfied and AX22 is not singular, (6)
has only one solution X̂12 = Γ A†X22

. It is sufficient to
check whether this solution also satisfies (5). If it does
not, the original Riccati equation does not admit solutions,
while if the only solution X̂12 of (6) also solves (5), we

have parameterized the solutions of the algebraic Riccati
equation into [

X11 X̂12
X̂∗12 X22

]

where X11 is arbitrary, X22 is the solution of a reduced-
order Riccati equation and X̂12 is the only solution that
satisfies simultaneously (6) and (5).

We may also have the case in which X12 AX22 = Γ admits
infinite solutions. The set of its solutions is parameterized
as

X12 = X̂12 + K ∆,
where X̂12 = Γ A†X22

and im∆∗ = ker A∗X22
. By substitution

of X12 = X̂12+K ∆ into (5) we obtain a new reduced-order
Riccati equation in K, which reads as

K Â21 + Â∗21 K∗ − K ∆ B2 R−1 B∗2 ∆
∗ K∗ + Ω = 0, (9)

where Â21
def
= ∆ (A21 − B2 R−1 B∗2) X̂∗12 and

Ω
def
= X̂12 A21 + A∗21 X̂∗12 − X̂12 B2 R−1 B∗2 X̂∗12 + Q11.

Example 2.1. Consider (1) with the following matrices:

A =


0 −6 0
−2 −1 0
0 0 0

 , B =


5
6
0

 , Q = diag{0, 16, 0}, R = 1.

It is easy to see that the Hamiltonian matrix has eigenvalues on

the imaginary axis, and in particular at zero. We have K2 =


0
0
1

.
We change coordinates using the orthogonal matrix

T =


0 1 0
0 0 1
1 0 0

 ,

and we obtain

T ∗ A T =


0 0 0
0 0 −6
0 −2 −1

 , T ∗ B =


0
5
6

 , T ∗ Q T =


0 0 0
0 0 0
0 0 16

 .

We therefore define

A21 =

[
0
0

]
, A22 =

[
0 −6
−2 −1

]
, B2 =

[
5
6

]
, Q22 =

[
0 0
0 16

]
.

We compute the solution of the reduced-order Riccati equation
that corresponds to the matrices A22, B2,Q22,R. Its associated
Hamiltonian matrix now does not have eigenvalues on the
imaginary axis, and we obtain

X22 =

[
4.5033 −4.4565
−4.4565 4.9991

]
.

Since the Hamiltonian matrix of (A22, B2,Q22,R) does not have
eigenvalues at zero, the closed-loop matrix of this subsystem,
AX22 , is non-singular. We can therefore compute X12 as

X12 = (−A∗21 X22 − Q12)︸���������������︷︷���������������︸
=0

A−1
X22
= 0.

Notice that this solution satisfies (5). It follows that

X = T


0 0 0
0 4.5033 −4.4565
0 −4.4565 4.9991

 T ∗ =


4.5033 −4.4565 0
−4.4565 4.9991 0

0 0 0


is a symmetric positive semidefinite solution of (1).
Example 2.2. Consider (1) with the following matrices:
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A =


−2 −1 0
−2 0 −1
0 0 0

 , B =


1
2
0

 ,

Q =


0 0 0
0 4 2
0 2 1

 , R = 1.

It is easy to see that the Hamiltonian matrix has a double
eigenvalue at zero, but its geometric multiplicity is 1, since

ker H = span
{[

0 0 0 0 0 1
]�}

. We have K2 =


0
0
1

, while K1

is empty. We change coordinates using the orthogonal matrix

T =


0 1 0
0 0 1
1 0 0

 ,

and we obtain

T ∗ A T =


0 0 0
0 −2 −1
−1 −2 0

 , T ∗ B =


0
1
2

 , T ∗ Q T =


1 0 2
0 0 0
2 0 4

 .

We therefore define

A21 =

[
0
−1

]
, A22 =

[
−2 −1
−2 0

]
, B2 =

[
1
2

]
,

Q11 = 1, Q12 =
[

0 2
]
, Q22 =

[
0 0
0 4

]
.

We compute the solution of the reduced-order Riccati equation
for the matrices A22, B2,Q22,R, whose Hamiltonian matrix now
does not have eigenvalues on the imaginary axis, and we obtain

X22 =

[
0.4960 −0.7034
−0.7034 1.5143

]
.

Since the Hamiltonian matrix of (A22, B2,Q22,R) does not have
eigenvalues at zero, the closed-loop matrix of this subsystem,
AX22 , is non-singular. We can therefore compute X12 as

X12 = (−A∗21 X22 − Q12) A−1
X22
=
[

0.7121 −0.4047
]
.

However, a direct substitution shows that this solution does not
satisfy (5). It follows that the original Riccati equation does not
admit Hermitian solutions.

Let us now consider the case of λ ∈ I \ {0}. We introduce a
change of basis T = [ T1 T2 T3 ], where T1 = K2 is a basis
matrix for ker

[ −B∗

−A∗−λ I

]
, T2 = T 1 and T3 is such that T is

invertible. With this choice, matrix T is not, in general, unitary.
It is easy to see that

T ∗ A T−∗ =


λ I 0 0
0 λ̄ I 0

A31 A32 A33

 , T ∗ B =


0
0
B3

 .

We can partition in this new basis Q and the solution X of the
Riccati equation conformably as

T ∗ Q T−∗ =


Q11 Q12 Q13
Q∗12 Q22 Q23
Q∗13 Q∗23 Q33

 , T ∗ X T−∗ =


X11 X12 X13
X∗12 X22 X23
X∗13 X∗23 X33

 .

Since λ is purely imaginary, we have λ+λ̄ = 0, so that, replacing
these partitioned matrices into (1) yields the 6 equations

X13A31 + A∗31X∗13 − X13B3R−1B∗3X∗13 + Q11 = 0 (10)

2λ̄X12 + X13A32 + A∗31X∗23 − X13B3R−1B∗3X∗23 + Q12 = 0 (11)

X13A33 + λ̄X13 + A∗31X33 − X13B3R−1B∗3X∗33 + Q13 = 0 (12)

X23A32 + A∗32X∗23 − X23B3R−1B∗3X∗23 + Q22 = 0 (13)

X23A33 + λX23 + A∗32X33 − X23B3R−1B∗3X33 + Q23 = 0 (14)

X33A33 + A∗33X33 − X33B3R−1B∗3X33 + Q33 = 0. (15)
Notice that X11 and X22 do not appear in these equations.
Thus, their values are completely arbitrary. Notice also that the
last equation depends only on X33, and has the structure of a
reduced-order Riccati equation, associated with the closed-loop
matrix

AX33 = A33 − B3 R−1 B∗3 X33.

It follows that (12) can be written as
X13 (AX33 + λ̄ I) = −A∗31 X33 − Q13.

This equation admits solutions if and only if ker(AX33 + λ̄ I) ⊆
ker(−A∗31 X33 − Q13). If it does not admit solutions, the original
Riccati equation does not have solutions. The set of its solutions
is parameterized in terms of the matrix K13 as X13 = X̂13 +
K13 ∆13, where ∆13 (AX33 + λ̄ I) = 0. Replacing this set of
solutions into (10), we obtain a reduced-order Riccati equation
in K13 which reads as

K13 Â13 + Â∗13 K∗13 − K13 ∆13 B3 R−1 B∗3 ∆
∗
13 K∗13 + Ω1 = 0,

where Â13
def
= ∆13 (A31 − B3 R−1 B∗3 X̂∗13) and

Ω1 = X̂13 A31 + A∗31 X̂∗13 − X̂13B3 R−1 B∗3 X̂∗13 + Q11.

Likewise, (14) can be re-written as
X23 (AX33 + λ I) = −A∗32 X33 − Q23.

This equation admits solutions if and only if ker(AX33 + λ I) ⊆
ker(−A∗32 X33 − Q23). If it does not admit solutions, the original
Riccati equation does not have solutions. The set of its solutions
is parameterized in terms of the matrix K23 as X23 = X̂13 +
K23 ∆23, where ∆23 (AX33 + λ I) = 0. Replacing this set of
solutions into (10), we obtain a reduced-order Riccati equation
in K13 which reads as

K23 Â23 + Â∗23 K∗23 − K23 ∆23 B3 R−1 B∗3 ∆
∗
23 K∗23 + Ω2 = 0,

where Â23
def
= ∆23 (A32 − B3 R−1 B∗3 X̂∗23) and

Ω2 = X̂23 A32 + A∗32 X̂∗23 − X̂23B3 R−1 B∗3 X̂∗23 + Q22.

2.2 Reduction associated with K1

Consider the case λ = 0. We introduce a change of basis in
Cn given by T = [ T1 T2 ], where T1 is an orthonormal basis
for K1 and T is unitary. Thus, the subspace im K1 in the new
basis is written as im

[
I
0

]
. Since (A − λ I) K1 = 0, we have also

A K1 = λK1 = 0, which can be written in the new basis as

(T ∗AT ) (T ∗K1) = λ T ∗K1 = 0. (16)

Partitioning T ∗AT as
[ A11 A12

A21 A22

]
, (16) becomes

[
A11 A12
A21 A22

] [
I
0

]
= λ

[
I
0

]
= 0,

which leads to A11 = λ I = 0 and A22 = 0. Thus, in the new
basis

Ã = T ∗AT =
[

I λ A12
0 A22

]
=

[
0 A12
0 A22

]
.

From Q K1 = 0 and the fact that Q is Hermitian, we find that
Q̃ = T ∗Q T = diag{0,Q22}.
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A =


−2 −1 0
−2 0 −1
0 0 0

 , B =


1
2
0

 ,

Q =


0 0 0
0 4 2
0 2 1

 , R = 1.

It is easy to see that the Hamiltonian matrix has a double
eigenvalue at zero, but its geometric multiplicity is 1, since

ker H = span
{[

0 0 0 0 0 1
]�}

. We have K2 =


0
0
1

, while K1

is empty. We change coordinates using the orthogonal matrix

T =


0 1 0
0 0 1
1 0 0

 ,

and we obtain

T ∗ A T =


0 0 0
0 −2 −1
−1 −2 0

 , T ∗ B =


0
1
2

 , T ∗ Q T =


1 0 2
0 0 0
2 0 4

 .

We therefore define

A21 =

[
0
−1

]
, A22 =

[
−2 −1
−2 0

]
, B2 =

[
1
2

]
,

Q11 = 1, Q12 =
[

0 2
]
, Q22 =

[
0 0
0 4

]
.

We compute the solution of the reduced-order Riccati equation
for the matrices A22, B2,Q22,R, whose Hamiltonian matrix now
does not have eigenvalues on the imaginary axis, and we obtain

X22 =

[
0.4960 −0.7034
−0.7034 1.5143

]
.

Since the Hamiltonian matrix of (A22, B2,Q22,R) does not have
eigenvalues at zero, the closed-loop matrix of this subsystem,
AX22 , is non-singular. We can therefore compute X12 as

X12 = (−A∗21 X22 − Q12) A−1
X22
=
[

0.7121 −0.4047
]
.

However, a direct substitution shows that this solution does not
satisfy (5). It follows that the original Riccati equation does not
admit Hermitian solutions.

Let us now consider the case of λ ∈ I \ {0}. We introduce a
change of basis T = [ T1 T2 T3 ], where T1 = K2 is a basis
matrix for ker

[ −B∗

−A∗−λ I

]
, T2 = T 1 and T3 is such that T is

invertible. With this choice, matrix T is not, in general, unitary.
It is easy to see that

T ∗ A T−∗ =


λ I 0 0
0 λ̄ I 0

A31 A32 A33

 , T ∗ B =


0
0
B3

 .

We can partition in this new basis Q and the solution X of the
Riccati equation conformably as

T ∗ Q T−∗ =


Q11 Q12 Q13
Q∗12 Q22 Q23
Q∗13 Q∗23 Q33

 , T ∗ X T−∗ =


X11 X12 X13
X∗12 X22 X23
X∗13 X∗23 X33

 .

Since λ is purely imaginary, we have λ+λ̄ = 0, so that, replacing
these partitioned matrices into (1) yields the 6 equations

X13A31 + A∗31X∗13 − X13B3R−1B∗3X∗13 + Q11 = 0 (10)

2λ̄X12 + X13A32 + A∗31X∗23 − X13B3R−1B∗3X∗23 + Q12 = 0 (11)

X13A33 + λ̄X13 + A∗31X33 − X13B3R−1B∗3X∗33 + Q13 = 0 (12)

X23A32 + A∗32X∗23 − X23B3R−1B∗3X∗23 + Q22 = 0 (13)

X23A33 + λX23 + A∗32X33 − X23B3R−1B∗3X33 + Q23 = 0 (14)

X33A33 + A∗33X33 − X33B3R−1B∗3X33 + Q33 = 0. (15)
Notice that X11 and X22 do not appear in these equations.
Thus, their values are completely arbitrary. Notice also that the
last equation depends only on X33, and has the structure of a
reduced-order Riccati equation, associated with the closed-loop
matrix

AX33 = A33 − B3 R−1 B∗3 X33.

It follows that (12) can be written as
X13 (AX33 + λ̄ I) = −A∗31 X33 − Q13.

This equation admits solutions if and only if ker(AX33 + λ̄ I) ⊆
ker(−A∗31 X33 − Q13). If it does not admit solutions, the original
Riccati equation does not have solutions. The set of its solutions
is parameterized in terms of the matrix K13 as X13 = X̂13 +
K13 ∆13, where ∆13 (AX33 + λ̄ I) = 0. Replacing this set of
solutions into (10), we obtain a reduced-order Riccati equation
in K13 which reads as

K13 Â13 + Â∗13 K∗13 − K13 ∆13 B3 R−1 B∗3 ∆
∗
13 K∗13 + Ω1 = 0,

where Â13
def
= ∆13 (A31 − B3 R−1 B∗3 X̂∗13) and

Ω1 = X̂13 A31 + A∗31 X̂∗13 − X̂13B3 R−1 B∗3 X̂∗13 + Q11.

Likewise, (14) can be re-written as
X23 (AX33 + λ I) = −A∗32 X33 − Q23.

This equation admits solutions if and only if ker(AX33 + λ I) ⊆
ker(−A∗32 X33 − Q23). If it does not admit solutions, the original
Riccati equation does not have solutions. The set of its solutions
is parameterized in terms of the matrix K23 as X23 = X̂13 +
K23 ∆23, where ∆23 (AX33 + λ I) = 0. Replacing this set of
solutions into (10), we obtain a reduced-order Riccati equation
in K13 which reads as

K23 Â23 + Â∗23 K∗23 − K23 ∆23 B3 R−1 B∗3 ∆
∗
23 K∗23 + Ω2 = 0,

where Â23
def
= ∆23 (A32 − B3 R−1 B∗3 X̂∗23) and

Ω2 = X̂23 A32 + A∗32 X̂∗23 − X̂23B3 R−1 B∗3 X̂∗23 + Q22.

2.2 Reduction associated with K1

Consider the case λ = 0. We introduce a change of basis in
Cn given by T = [ T1 T2 ], where T1 is an orthonormal basis
for K1 and T is unitary. Thus, the subspace im K1 in the new
basis is written as im

[
I
0

]
. Since (A − λ I) K1 = 0, we have also

A K1 = λK1 = 0, which can be written in the new basis as

(T ∗AT ) (T ∗K1) = λ T ∗K1 = 0. (16)

Partitioning T ∗AT as
[ A11 A12

A21 A22

]
, (16) becomes

[
A11 A12
A21 A22

] [
I
0

]
= λ

[
I
0

]
= 0,

which leads to A11 = λ I = 0 and A22 = 0. Thus, in the new
basis

Ã = T ∗AT =
[

I λ A12
0 A22

]
=

[
0 A12
0 A22

]
.

From Q K1 = 0 and the fact that Q is Hermitian, we find that
Q̃ = T ∗Q T = diag{0,Q22}.

Let us also introduce the partitioning

X̃ = T ∗X T =
[

X11 X12
X∗12 X22

]
, B̃ = T ∗B =

[
B1
B2

]
.

The Riccati equation in this new basis reads as
X̃ Ã + Ã∗ X̃ − X̃ B̃ R−1 B̃∗ X̃ + Q̃ = 0.

The partitioned structure of the Riccati equation leads to the
following three equations:

−(X11B1 + X12B2) R−1 (B∗1X11 + B∗2X∗12) = 0

(X11A12 + X12A22) − (X11B1 + X12B2) R−1 (B∗1X12 + B∗2X∗22) = 0

(X∗12A12 + X22A22) + (A∗12X12 + A∗22X22)

−(X∗12 B1 + X22B2) R−1 (B∗1X12 + B∗2X∗22) + Q22 = 0.

The first yields X11B1 + X12B2 = 0, which once substituted into
the second yields X11A12 + X12A22 = 0. These two equations
can be written together as

[
A∗12 A∗22
B∗1 B∗2

] [
X11
X∗12

]
= 0.

On the other hand, since the first elimination procedure has
already been carried out, the nullspace of the matrix

[
A∗

B∗

]
=


0 0

A∗12 A∗22
B∗1 B∗2


is the origin. This implies that the submatrices X11 and X12 are
zero. Therefore, the third equation can be written as

X22A22 + A∗22X22 − X22B2 R−1 B∗2X∗22 + Q22 = 0,

which is a reduced-order Riccati equation.

We now consider the case where λ ∈ I\{0}. Let T = [ T1 T2 T3 ]
be a change of coordinates in Cn, where T1 = K1 is a basis
matrix of ker

[
A−λ I

Q

]
and T2 = K1. We find

T−1A T =


λ I 0 A13
0 λ̄ I A23
0 0 A33

 , T−1Q T =


0 0 0
0 0 0
0 0 Q33

 .

Partitioning B and X in the new basis as

T−1B =


B1
B2
B3

 and T−1X T =


X11 X12 X13
X∗12 X22 X23
X∗13 X∗23 X33

 ,

we can substitute these partitioned matrices in the Riccati
equation written in the new basis. Recalling that λ + λ̄ = 0,
from the submatrices in position (1, 1) we obtain the equation

−(X11B1 + X12B2 + X13B3)R−1(B∗1X11 + B∗2X∗12 + B∗3X∗13) = 0,

which gives

B∗1X11 + B∗2X∗12 + B∗3X∗13 = 0. (17)

It follows that the equation in position (1, 2) becomes 2 λ̄ X12 =
0, so that X12 = 0. The equation in position (2, 2) becomes

−(X12B1 + X22B2 + X23B3)R−1(B∗1X12 + B∗2X∗22 + B∗3X∗23) = 0,

which gives

B∗1X12 + B∗2X∗22 + B∗3X∗23 = 0. (18)
Taking into account that X12 = 0, the term in position (2, 3)
yields

X22 A23 + X23 A33 + λ X23 = 0. (19)
Likewise, the term in position (1, 3) yields

X11 A13 + X13 A33 + λ̄ X13 = 0. (20)
Writing (17) and (20) together gives

[
A∗13 A∗33 + λ I
B∗1 B∗3

] [
X11
X∗13

]
= 0.

Since X∗12 = 0, we can rewrite the same equation as

[
A∗13 A∗23 A∗33 + λ I
B∗1 B∗2 B∗3

] 
X11
X∗12
X∗13

 = 0.

On the other hand, carrying out the procedure for the elimina-
tion of K1 after the elimination of K2 has been carried out means
that ker

[
−B∗
−A∗−λ I

]
= {0}, so that in this basis

ker



−B∗1 −B∗2 −B∗3
0 0 0
0 −2 λ I 0
−A∗13 −A∗23 −A∗33 − λ I


= {0}.

Since X12 = 0, it follows that X11 and X13 are both zero.

Writing (18) and (19) gives
[

A∗23 A∗33 + λ̄ I
B∗1 B∗3

] [
X22
X∗23

]
= 0.

Since X∗12 = 0, we can rewrite the same equation as

[
A∗13 A∗23 A∗33 + λ I
B∗1 B∗2 B∗3

] 
X12
X22
X∗23

 = 0.

Since λ is an eigenvalue of H, such is also λ̄. It follows that
ker
[
−B∗
−A∗−λ̄ I

]
= {0}, which can be re-written as

ker



−B∗1 −B∗2 −B∗3
−2 λ̄ 0 0

0 0 0
−A∗13 −A∗23 −A∗33 − λ̄ I


= {0}.

Since X12 = 0, we obtain X22 = 0 and X23 = 0. With these
results, the equation in position (3, 3) becomes

X33A33 + A∗33X33 − X33B3R−1B∗3X33 + Q33 = 0. (21)

It follows that the solution of the original Riccati equation is

T


0 0 0
0 0 0
0 0 X33

 T−1,

where X33 is a solution of the reduced-order Riccati equation
(21).
Example 2.3. Consider (1) with the following matrices:

A =



0 6 0 0
3 0 0 0
0 −1 0 10
0 0 −10 0


, B =



0
5
−1
0


, Q = diag{1, 0, 0, 0}, R = 1.

It is easy to see that the Hamiltonian matrix has double eigen-
values on the imaginary axis, and in particular at ±10 i. Let



6880	 L. Ntogramatzidis  et al. / IFAC PapersOnLine 53-2 (2020) 6875–6880

λ = 10 i. We have ker
[ −B∗

−A∗−λ I

]
= {0} and ker

[ A−λ I
Q

]
� {0}.

Thus, we need to perform the second reduction, which is rel-
ative to K1. To this end, we find that a basis for ker

[ A−λ I
Q

]

is given by [ 0 0 1 i ]�, so that with the change of coordinate
matrix

T =
1
√

2



0 0
√

2 0
0 0 0

√
2

1 1 0 0
i −i 0 0


we obtain

Ã = T−1A T =



10 i 0 0 −
√

2/2
0 −10 i 0 −

√
2/2

0 0 0 6
0 0 3 0


and Q̃ = T−1 Q T = diag{0, 0, 1, 0}, so that

A13 = A23 =
[

0 −
√

2/2
]
, A33 =

[
0 6
3 0

]

and Q33 = diag{1, 0}. Finally, we have

B̃ = T−1 B =



− 1
√

2

− 1
√

2
0
5


,

so that B3 =
[

0
5

]
. The reduced-order Riccati equation (21)

admits 4 solutions. Indeed, defining

a =
3 +
√

34
25

, b =
2
√

3 (3 +
√

34)

25
, c =

1
25

√
34 +

34
√

34
3
,

we obtain two real solutions

X1,2
33 =

[
a ±b
±b ±c

]
.

Defining

d =
3 −
√

34
25

, e =
2 i
25

√
3 (
√

34 − 3), f =
i

25

√
34 (
√

34 − 3)
3

,

we obtain the complex solutions

X3,4
33 =

[
d ±e
±e ∓ f

]
.

For each of these solutions Xi, j
33, we can build X̃i, j = diag{0, 0, Xi, j

33},
and we have that in the original basis

Xi, j = T X̃i, j T−1 =


Xi, j

33 0 0
0 0 0
0 0 0


are all the solutions of (1).

3. CONCLUSION

In this paper we have developed a methodology aimed at de-
composing the continuous-time ARE associated with a Hamil-
tonian matrix with imaginary eigenvalues. This decomposition
allows to compute the corresponding solutions and to under-
stand their structure. In particular, we have shown that all the
solutions may be constructed by suitably combining some free
parameters, the solution of a linear equation and the solutions
of a reduced-order ARE whose Hamiltonian matrix has no
purely imaginary eigenvalues. Future work includes the design

of a robust algorithmic framework to deliver the entire set of
Hermitian/symmetric solutions of the continuous-time Riccati
equation.
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