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Abstract—Received signal Direction of Arrival (DOA) estima-
tion represents a significant problem with multiple applications,
ranging from wireless communications to radars. This problem
presents significant challenges, mainly given by a large number of
closely located transmitters being difficultly separable. Currently
available state of the art approaches fail in providing sufficient
resolution to separate and recognize the DOA of closely located
transmitters, unless using a large number of antennas and hence
increasing the deployment and operation costs.

In this paper, we present a deep learning framework for
DOA estimation under Line-of-Sight scenarios, which able to
distinguish a number of closely located sources higher than the
number of receivers’ antennas. We first propose a formulation
that maps the received signal to a higher dimensional space that
allows for better identification of signal sources. Secondly, we
introduce a Deep Neural Network that learns the mapping from
the receiver antenna space to the extended space to avoid relying
on specific receiver antenna array structures. Thanks to our
approach, we reduce the hardware complexity compared to state
of the art solutions and allow reconfigurability of the receiver
channels. Via extensive numerical simulations, we demonstrate
the superiority of our proposed method compared to state-of-the-
art deep learning-based DOA estimation methods, especially in
demanding scenarios with low Signal-to-Noise Ratio and limited
number of snapshots.

Index Terms—DOA estimation, deep neural network, sparse
representation, multiple targets.

I. INTRODUCTION

D IRECTION of Arrival (DOA) estimation has been ad-
vocated as an attractive field of research with many

applications including wireless communications, astronomical
observation, radar, and sonar [1]–[4]. In general, DOA estima-
tion addresses the problem of locating transmitting sources by
looking at the signal received by an array of antennas whose
spatial positions are known [5]. The main challenge in DOA
estimation is the difficulty of jointly developing approaches
with a minimal hardware complexity [6] in terms of receiver
costs and power consumption, while providing a desired level
of estimation precision and robustness in the presence of
multiple sources or multiple paths [7].
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Traditionally, DOA estimation algorithms focus on ideal
antenna arrays whose models often significantly vary from
realistic scenarios [8]. These approaches, referred to as model-
driven, first formulate forward parametric models that define
the transformation from signal directions to array outputs, and
then estimate the directions by exploiting the properties of
the employed array structures [9]–[11]. Recently, research on
estimating solid angle using super resolution processing has
largely focused on uniform array for which many efficient
parameter estimators have been applied. The Uniform Linear
Array (ULA) provides a simple regular array structure and
well-analyzed signal processing techniques [12], [13]. How-
ever, under the assumption of stationary sources, it generally
allows for the resolution of a number of sources smaller
than the number of antennas [14]. Some eminent model-
driven algorithms are applied to estimate DOA, such as beam-
former methods [15], maximum likelihood methods [16]–
[18], subspace-based methods [19], [20], and sparsity-inducing
methods [21]–[23]. However, these methods assume that there
are no antenna calibration errors not array imperfections, and
that the number of available snapshots is large. Hence, some
robust methods for DOA estimation in the presence of array
errors have been proposed [24]–[28]. These methods require
the knowledge of the statistics of the array model errors [24],
[25] and calibration signals with known directions [26]–
[28], but these may not be available in practice. Zhang et
al. [29], proposed an alternative iterative method, which can
simultaneously provide estimates of the DOA of signals and
calibration of the gain-phase error of each sensor. However, it
requires that at least two signals are spatially far separated
from each other. Furthermore, the performance of model-
driven methods heavily depend on the array’s aperture due
to the strict physical constraints. In addition, the distance
between adjacent elements of the antenna array should be
equal to or less than half the wavelength of the impinging
planar wavefronts. Otherwise it leads to grating lobes in
the spectrum which correspond to ambiguities in the array
manifold [6]. At the same time, to achieve DOA estimation
with a high resolution, the receiving arrays should have a
relatively large aperture [30], [31]. This implies that, to obtain
a high resolution, we require arrays with a large number of
antennas which is not always feasible. In addition, having a
Radio Frequency (RF) chain comes with high inefficiencies,
as mixers, power amplifiers, and either digital-to-analog or
analog-to-digital converters increase both the implementation
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costs and the power consumption [32]–[34]. Therefore, it is
fundamental to develop solutions that do not require a high
number of antennas.

Generally speaking, hardware is more expensive and less
scalable than software: if we need more receiver antennas to
get better DOA estimation, this increases the production and
deployment costs. Furthermore, the physical hardware is not
flexible to adjust to the requirements. Therefore, to reduce the
number of RF chains without a loss in the array aperture,
data-driven methods are an effective solution to reduce costs
and achieve better performance. In particular, we can extend
a large aperture with small Degree-of-Freedom (DOF) applied
Deep Learning (DL) to obtain better DOA estimation.

Since only a small number of channels need to be sampled
and digitized, the hardware complexity remains comparably
low while covering a large aperture, yielding to a higher
flexibility than traditional fixed channels. These approaches
fall in the domain of data-driven approaches, where solutions
make no assumption on the underlying physical array structure
but try to learn a mapping between different domains based
on the observed data.

With the rapid improvement of Artificial Intelligence in
various fields such as image, speech and expression recog-
nition processing [35]–[38], researchers have proposed many
DL methods to achieve DOA estimation efficiently [39]–[44].
These approaches directly learn the nonlinear relationship
between the array outputs and sources positions thanks to
their non-linearity, adaptive learning capability, and high gen-
eralization. Based on these premises, methods in [45]–[51]
also make no pre-assumptions on the physics-driven models.
In [45], the authors use a Support Vector Regression model
to learn the mapping relationship among real and imaginary
parts of array outputs and DOAs, whereas the authors in [46]
and [47] develop a Long Short-Term Memory scheme and
deep Convolutional Neural Network (CNN) respectively for
super-resolution DOA estimation with phase enhancement
learning. These DL-based methods have been confined to the
case of ULA and/or resolve up to M − 1 sources with an M -
element array. Hence, some DOA estimation methods based
on the inherent sparsity in the angular domain has raised
considerable attention. Both in [48] and [49], the authors use
classification models that divide the spatial space into many
discrete subregions, and then use the classifier networks to
estimate DOAs in each region. The aim of [48] and [49] is to
integrate Deep Neural Network (DNN) group against unknown
array imperfections and design CNN for multi-speaker DOA
estimation. A Deep Convolution Network (DCN) that learns
the inverse transformation from large training dataset can be
used to recover the clear power spectrum of signals [50]. The
authors first convert the DOA estimation problem into a sparse
linear inverse problem by introducing a spatially overcomplete
formulation. The overcomplete formulation is given as input
to the DCN. On the other hand, the overcomplete known
labels is used as output for the training process. The idea is
that, after training, the DCN is able to reconstruct the clean
overcomplete formulation starting from the noisy received
signal. However, this approach suffers from leakage effects
when the sources are off the grid, and can not effectively

resolve the sources located in the same beam. To deal with
the issue of grid mismatch, the authors of [51] propose two
classification learning models integrating the angle separation
to solve the problem of coherent DOA estimation. However,
this algorithm is only applicable for two signals. State-of-the-
art data-driven approaches cannot properly estimate the DOA
from a number of sources that is larger than the number of
antennas at the receiver array. This represents a fundamental
limit, as the number of transmitters is likely to be larger
than the number of antennas considering the ever-increasing
number of users in beyond fifth-generation (5G) networks.
Furthermore, the dependency on a specific array physical
structure limits the applicability of the solution to the different
cases.

In this paper, we propose a novel data-driven Line-of-Sight
(LOS) DOA estimation algorithm achieving good estimation
performance while reducing the deployment and operational
costs. In contrast to existing methods, we consider the special
case where all sources share the same normalized power spec-
trum [7], which is the case for many practical aerial targets in
LOS scenarios. Compared to other state-of-the-art estimators
that resort to the physical structure of the receiver array to
perform DOA estimation, our data-driven method allows to
remove the assumptions on the underlying array structure and
to detect a number of sources larger than the number of
receiver antennas. Our work is based on the intuition that,
considering the general case where the number of sources
exceeds the number M of antennas at the receiver array, the
columns of the array steering matrix are linearly correlated, so
the covariance matrix is full-ranked and the number of spanned
subspaces is M . Therefore, by extending the covariance matrix
over a larger subspace thanks to a sampling approach, we are
able to separate the signals coming for the different sources
and hence identify them. The significant contributions of our
work can be outlined as follows.

1) We propose a sampling approach thanks to which we can
increase the dimensionality of the covariance matrix to
increase the distinguishability of the multiple sources.
We refer to this matrix as the extended correlation
matrix. Our approach obtains the same effect of an
increased number of antennas, but without incurring in
higher deployment and operational costs.

2) We propose a neural network structure able to map
the received signals to the extended correlation matrix.
Thanks to our approach, we reduce the number of
antennas required to estimate DOAs and avoid relying
on specific physical structures.

3) Via extensive simulation, we demonstrate the superiority
of our proposed method in terms of DOA estimation
accuracy and generalization capability versus the Signal-
to-Noise Ratio (SNR) and number of snapshots, espe-
cially when considering closely located spatial sources.

The rest of the paper is organized as follows. In Section II,
we introduce the signal model for DOA estimation and its
sparse spatial spectrum representation same as for the refer-
ences [50], [51]. Section III describes the DNN framework
and interprets how it expends the virtual channels. Section IV
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carries out simulations to demonstrate the predominance of
the proposed method in solving multiple sources. Conclusions
are provided in Section V.

Notations: We use lower-case (upper-case) bold characters
to denote vectors (matrices). (·)H and (·)T represent the Her-
mitian and transpose operators. Furthermore, E[·] denotes the
expectation operator, vec(·) is the vectorization operator that
turns a matrix into a vector by stacking all columns on top of
the another. ⊗ and ⊙ are used to represent the Kronecker prod-
uct and Khatri-Rao product (column-wise Kronecker product).
In particular, IM denotes the M × M identity matrix, whereas
1M and 0M respectively denote the N-element column vectors
of all ones and all zeros. Additionally, j =

√
−1 represents

the imaginary unit, and ∥ · ∥ denotes l2 norm.

II. PROBLEM FORMULATION

In this section, we describe the general problem. In partic-
ular, in Section II-A, we outline the problem statement and
the general signal model. In Section II-B, we take the spatial
sparsity of the incident signals into consideration, and present
the sparse signal model.

A. General Signal Model

We consider a ULA composed by M isotropic ele-
ments with inter-element spacing d, whose antenna po-
sitions are given by d1, d2, · · · , dM . The ULA receives
L far-field uncorrelated narrowband LOS signals s(t) =
[s1(t), s2(t), · · · , sL(t)]T coming from the L distinct direc-
tions θ = [θ1, θ2, · · · , θL]T. As common in the literature on
DOA estimation [7], [23], [51], we assume that all transmitters
are located at the same distance from the receiver. This allows
us to avoid having a per-transmitter SNR value, but a single
value for all sources. The baseband data vector y(t) received
at time instant t with a total of T snapshots can be modeled
as

y(t) =

L∑
l=1

a(θl)sl(t) + n(t), t = 1, 2, · · · , T, (1)

where t ∈ N+ denotes the index of the segment at time
instant t. We assume that the elements of the noise vector
n(t) ∼ CN (0M , σ2

nIM ) are independent and identically
distributed (i.i.d.) complex Additive White Gaussian Noise
(AWGN), and that they are uncorrelated from the impinging
sources. We denote as a(θl) ∈ C(M,1) the array steering vector
corresponding to angle θl, which can be written as

a(θ) =
[
1, e−j 2π

λ dsin(θ), · · · , e−j 2π
λ (M−1)dsin(θ)

]T
, (2)

where λ = v/f is the carrier wavelength, and f and v are the
frequency and propagation speed, respectively.

Using the matrix notation, the vector of the received signals
y(t) can be expressed compactly as

y(t) = A(θ)s(t) + n(t), (3)

where A(θ) = [a(θ1),a(θ2), · · · ,a(θL)] ∈ CM×L is the
array steering matrix.

Our objective is to estimate the number and DOAs θ =
[θ1, θ2, · · · , θL] of the signals impinging on the receiver

antenna array without making any prior assumption on the
number of transmitters and without exploiting any particu-
lar antenna geometry. We particularly target the case where
L > M , hence focusing on the scenarios where state-of-the-
art solutions are unable to resolve a number of transmitters
higher than the number of receiver antennas.

We notice that our model uniquely considers a LOS channel
without accounting for possible signal reflections. However,
focusing on the field of DOA estimation, we can apply our
LOS method to aerial targets, and use the LOS scenario and
AWGN channel model to design DOA estimation algorithms
as common in the literature [7], [12]. We will focus on the
non-LOS scenario in our future works, especially targeting
radar systems on the ground or vehicle radar.

B. Signal Sparse Representation

Let us denote as Φ = [ϕ1, ϕ2, · · · , ϕK ]
T the set of discrete

directions sampled from the potential space of DOAs with
constant sampling interval ∆ϕ = ϕk+1−ϕk ∀k = 1, · · · ,K−
1. If K is large enough, the real DOAs are contained in set
Φ with moderately small quantization errors. Based on the
directions in Φ, the output y(t) of the receive antenna array
can be reformulated in an overcomplete form as [51]

y(t) =

K∑
k=1

a(ϕk)s̄k(t) + n(t), t = 1, 2, · · · , T, (4)

where s̄k(t) = sl(t) if ϕk = θl (with small quantization error),
otherwise, s̄k(t) = 0. The spatial correlation matrix R of the
received signal can be computed as

R = E
[
y(t)yH(t)

]
=

K∑
k=1

ηka(ϕk)a
H(ϕk) + σ2

nIM , (5)

where ηk = E[s̄k(t)s̄Hk (t)] represents the source power on the
kth direction ϕk. By denoting the spatial spectrum as η =
[η1, η2, · · · , ηK ]T, we notice it only has nonzero elements at
the true signal DOAs, i.e., the spatial spectrum is sparse. Then
the mth column of R can be reformulated as [51]

cm =

K∑
k=1

ηka(ϕk)a
H(ϕk)em + σ2

nIMem

=
[
a(ϕ1)a

H(ϕ1)em, · · · ,a(ϕK)aH(ϕK)em
]
η + σ2

nem

= Amη + σ2
nem,

(6)

where Am(:, k) = a(ϕk)a
H(ϕk)em, and em is an M × 1 all-

zero column vector except for a 1 at the mth location. We
denote the vectorized form of R as

c = vec(R) =
[
cT1 , c

T
2 , · · · , cTM

]T
= [A1;A2; · · · ;AM ]η + σ2

n[e1; e2; · · · ; eM ; ]

= Ãη + σ2
n1⃗n.

(7)

where 1⃗n = vec(IM ) = [e1; e2; · · · ; eM ], and Ã can be
represented as

Ã = A∗ ⊙A = [a∗
1 ⊗ a1,a

∗
2 ⊗ a2, · · · ,a∗

K ⊗ aK ] , (8)
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where with kth element being in the form

a∗
k ⊗ ak =

[
e(j

2π
λ (d1−d1)sin(ϕk), ej

2π
λ (d2−d1)sin(ϕk), · · ·

ej
2π
λ (di−dj)sin(ϕk), · · · , ej 2π

λ (dM−dM )sin(ϕk)
]T

,

i = 1, · · · ,M, j = 1, · · · ,M.

(9)

Comparing (3) and (6), the new vector c can be regarded
as a single-snapshot received data vector corresponding to
a single-snapshot source vector η, where σ2

n1⃗n becomes a
deterministic term. The distinct columns of Ã act as the virtual
array manifold of an extended array aperture. Clearly, the
purpose of sparse representation is to recover the continuous-
valued DOAs {θk}Kk=1, i.e., the reconstructed sparse spatial
spectrum η can be expressed as follows

η ≈ ÃHc. (10)

As a result, the ⊙ product can generate the so-called difference
co-array (investigated in detail in [21], [22], [52]), which can
increase the DOF of ULA to 2(M−1). This advantage allows
us to estimate more than M signals with only M antennas.

Figures 1(a) and 1(b) show the reconstructed spatial spec-
trum (10) of L = 3 sources and L = 11 sources, respectively.

We observe that, when the adjacent angular signals get
closer and L increases, the spatial spectrum obtained with
M = 8 antennas has no peak along the true directions. Hence,
the algorithm is not able to detect multiple closely spatial
sources. On the other hand, increasing the number of antennas
allows for improved distinguishability of the different sources,
however coming at the price of increased hardware complexity,
implementation costs, and power consumption. To overcome
the limitations imposed by a reduced number of antenna
elements and starting from R, we use a regression learning
model to recover an η extended over the space obtained with
a number M ′ > M of antennas. Notice that, this requires
that the angle of signals are not less than a beamwidth [50].
Accordingly, we aim to resolve the multiple closely sources
while improving the DOA estimation precision.

III. LEARNING NETWORKS FOR DOA ESTIMATION

In this section, we present our method for super-resolution
DOA estimation. We first present the intuition behind our
approach in Section III-A. Then, we present our learning-based
approach in Section III-B.

A. Intuition Behind Our Learning-Based Approach

The main purpose of our work is to allow for the estimation
of a number of sources higher than the number of receiver
antennas. To achieve our goal, it is fundamental to obtain a
signal representation able to separate signal contributions from
different transmitters. Thus, the non-linear mapping between
the low dimension covariance matrix and its extended version
in the an overcomplete form as in (4) allows us to project
the phases obtained from the covariance matrix into a higher
dimensional space. In this way, we are able to increase the
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(a) Spatial spectrum with L = 3.
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(b) Spatial spectrum with L = 11.

Fig. 1. Reconstructed spatial spectrum of M = 8 and M = 64. (a) L = 3.
(b) L = 11.

resolution of the received signal and distinguish a number of
sources higher than the number of receiver antennas. When the
DOA are known, we can obtain the extended representation
space (4). However, when these are not known, we do not
know the space in which we need to project the received
signal. Our DNN-based approach serves this purpose, i.e.,
learning the mapping between received signal and its extended
representation.

B. DNN Learning Framework

The formulation derived in the previous section allow us
to formulate a novel methodology to estimate a number of
DOA larger than the number of receiver antenna elements. The
idea is to learn the mapping from the received signals spatial
covariance matrix to the extended covariance matrix. Notice
that we do not obtain the DOAs estimates out of the learning
algorithm, as selecting the number of outputs constraints the
number of sources we are able to estimate. Therefore, thanks to
our approach, we do not need to make any assumption on the
number of users. We propose a supervised DL approach, with
the proposed DNN structure shown in Fig. 2. The supervised
learning approach operates in two phases:
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• Learning Phase: Starting from a set of known signals and
their true DOA, we compute their correlation matrix and
their reconstructed spatial spectrum in (10). These two
matrices represent the input and the output of the DNN,
respectively. In this way, the DNN can learn the inherent
mapping between the received signal and their extended
spatial spectrum.

• Testing Phase: We use a second set of known signals
(testing set) to verify the effectiveness of the learning
structure in estimating DOA of unknown locations.

The variability of the DNN input is significantly affected by
the variability of signal waveforms. To limit it, we follow the
guidelines of [45], [48], [51]. We compute the array covariance
matrix and reformulate the off-diagonal upper right matrix
elements as an input vector to the DNN [48] as

r̂ = [real(r̃), imag(r̃)], (11)

with

r̃ = [R1,2,R1,3, · · · ,R1,M ,R2,3, · · · ,R2,M , · · · ,RM−1,M ],
(12)

where Ri,j represents the (i,j)th element of R. Before feeding
it to the DNN, r̃ should be normalized to prevent neurons
inactivation. The Gaussian normalized r̂ is given by

r =
r̂ − µr

σr
, (13)

where (µr,σr) are the statistical mean and standard devia-
tion of r̂, respectively. We denote the corresponding desired
covariances matrix as R′, and r′ is the desired concate-
nated real/imaginary parts off-diagonal upper right covari-
ance matrix. The output of the DNN is the extended semi-
manufactured covariance matrix r′. During the training stage,
we are able to construct this matrix thanks to our knowledge on
the number of sources and their exact location. During testing
instead, we need to reconstruct DOA starting from the DNN
output. Consequently, we reconstructed the covariance matrix
R′ according to the real/imaginary part in (11). Ultimately,
the DOA estimates are obtained via amplitude interpolation
within the most significant peaks of the reconstructed spectra
by (9) and (10).
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Fig. 2. Supervised learning framework of the DNN.

We first feed the DNN with the input vectors r to extract the
principal components in the original input, and then enlarge
it to the extended space via hidden layers, i.e., (r, r′) are
the training sample set. The number of hidden layers and
the number of neurons in each layer are chosen to reach the
trade-off between the nonlinear capacity and the overfitting
risk of the DNN. The outputs of the pth layer are formulated
as follows

op =

{
σ(zp) = σ(W p × o(p−1) + bp), p = 1, 2, · · · , P − 1;

W p × o(p−1) + bp, p = P ;
(14)

with

σ(x) = ReLU(x) =

{
x, x ≥ 0;

0, x < 0.
(15)

where W p and bp represent the weight matrix and bias vector
corresponding to the pth layer, P is the number of dense
layers, and σ(·) is the nonlinear activation functions. We
adopt the Rectified Linear Unit (ReLU) as nonlinear activation.
To ensure fast convergence of the learning algorithm in the
training phase, we use the least mean square error (MSE)
between the output oP and the desired r′ as the loss function

J(W , b, r, r′) = ||oP − r′||2, (16)

Notice that MSE represents a suitable criterion for our
learning objective. Indeed, we want to compute an output
matrix that resembles as much as possible the target matrix,
thus lowering the reconstruction error. The weight matrices
and bias vectors are then updated based on the backpropagated
gradients [53] of the loss function with respect to the variables

(W , b) = min
W ,b

1

D

D∑
i=1

J(W , b, r, r′), (17)

where D denotes the batch size. The gradients can be com-
puted by mathematical derivations under the recursion rela-
tions. The weight and bias vectors are then updated using their
gradients as follow

W p = W p − µ(
∂J(W , b, r, r′)

∂W p
);

bp = bp − µ(
∂J(W , b, r, r′)

∂bp
);

(18)

where µ is the learning rate. Once trained, the network can
be used to predict r′ that corresponds to a new measurement
vector oP in near real time. An updating algorithm called
adaptive moment estimation (Adam) is used to optimize the
parameters of the neural networks [54].

IV. NUMERICAL RESULTS

In this section, we show via numerical results the superiority
of our method over state-of-art machine learning-based DOA
estimation methods [50], [51]. We first outline our method-
ology in Section IV-A. We then present results obtained in a
simplified scenario in Section IV-B, and focus on root mean
squared error over estimates in Sections IV-C and IV-D. We
then show the effect of multiple sources in Section IV-E.
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A. Methodology

We use machine learning framework Tensorflow v.2.7.0, and
compute the gradients using its embedded tools. The DNN
training is based on Python 3.7 and Adam optimizer with 1000
epochs. In order to prevent over-fitting, we use dropout with
0.95 ratio at each nonlinear layer. In the following simulations,
we use a ULA with M = 8 physical antenna to receive signals,
and apply an extended M ′ = 64 dimensional virtual channel
to estimate DOAs. Moreover, we assume d = 0.05m, and
λ = 0.1m.

To optimize our model, we investigate different number
layers and batch size values. We generate data set with a
fixed snapshot value of 200 and varying SNR from −10 dB
to 20 dB. We collect 5000 samples on training stage and 1000
samples on testing stage. We set the input size to 56 as the
length of sampled covariance matrix R, and the output size
to 4096 as the length of extended sampled matrix. TABLE I
shows the MSE of the training loss for different number of
layers and batch size. From results, we see that a higher
number of layer or larger batch size is not a good approach.
Indeed, having too many layers may cause the neural network
to be over-representative with respect to the actual mapping
between the covariance matrix and the extended space. This
leads to worst performance.

TABLE I
LOSS (MSES) OF TRAINING PROCESS

Layers Batch Size
10 20 40 80 160 320 640 1280 2560 5120

1 120.42 108.03 103.32 94.68 86.37 84.37 79.18 75.43 73.10 72.05
2 112.15 111.55 105.37 102.40 104.68 89.89 79.03 73.79 76.12 72.58
3 119.75 108.68 108.66 107.64 104.73 102.80 80.05 78.91 71.98 70.07
4 106.61 116.60 106.65 104.91 100.23 105.75 85.40 85.10 81.98 74.66
5 118.77 108.88 116.46 104.57 102.40 102.99 103.38 100.56 98.07 80.77
6 158.00 119.26 113.94 100.47 103.48 105.73 101.74 101.95 93.51 100.01
7 150.51 157.47 117.72 108.36 104.19 106.27 104.36 102.68 101.41 100.80
8 170.38 151.29 146.30 148.87 153.07 115.87 105.14 102.52 101.77 101.57

Figure 3 shows the DOA estimation RMSE vs. SNR for
different batch size, whereas Fig. 4 shows the DOA estimation
RMSE vs. SNR for different number of hidden layers. We
consider SNR values from −10 dB to 20 dB with a step of
5 dB. By looking at results, we observe that we achieve the
best performance when the number of layers is approximately
three. We instead notice that a higher batch size generally
brings advantages up to a certain extent. Indeed, doubling it
from 2560 to 5120 does not bring considerable advantages.

Another primary metric is the time complexity. TABLE II
gives the comparison between loss and time complexity for
different numbers of hidden layers and batch size. We see
that time complexity grows with the number of hidden layers
and batch size. In addition, batch size has higher impact on
time complexity than the number of layers.

Thus, considering time and previous results, we select the
most effective batch size as 640. From Fig. 4(a), we see that
in almost all the cases the best number of hidden layers is 2
when the batch size is 640. Therefore, we use these values in
successive evaluations.

To identify the optimal size K of the spatial grid, we
further conducted extended simulations. We divide the spatial
directions from −10◦ to 10◦ into 201, 67, 41, 29, 23 and 19
grids. Figure 5 shows the estimation RMSE for different K.
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Fig. 3. RMSE of DOA estimation versus SNR under different number of
hidden layers.
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Fig. 4. RMSE of DOA estimation versus SNR under different batch size.

Based on these results, we use K = 201 in the following
investigations.

B. Spatial Spectrum and DOA Estimates

In this section, we compare our approach with two data-
driven methods [50], [51] and MUSIC algorithm [55]. We
firstly conduct experiments on two signals (i.e., L = 2) to
validate the feasibility of DOA estimation on virtual channels
by DNN.1 We consider signals impinging on the receiver array
from directions −0.7◦ and 4.0◦, respectively. We consider 20
dB SNR and 20 snapshots. Figure 6(a) shows the original

1Considering that the beamwidth of RF channels is about 12.7◦, when two
signals impinging from the spatial scope are less than 12.7◦ apart, then the
sparse spatial spectrum algorithm in Section II is not available.
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TABLE II
TIME COMPLEXITY OF TRAINING PROCESS (MIN)

Layers Batch Size
10 20 40 80 160 320 640 1280 2560 5120

1 10.01 9.93 10.35 10.15 10.26 10.50 11.12 12.32 14.62 18.09
2 10.46 10.46 10.38 10.66 10.77 11.09 11.75 13.09 15.28 18.04
3 10.52 10.54 10.83 10.90 11.02 10.97 11.80 12.77 14.54 18.68
4 10.85 10.67 10.91 10.82 10.70 10.78 11.46 12.88 14.61 18.74
5 10.40 10.41 10.48 10.56 10.99 10.93 11.24 12.78 14.68 19.19
6 10.65 10.84 10.78 10.82 10.91 11.01 12.86 13.76 14.91 19.94
7 10.57 10.79 10.64 10.85 10.91 11.16 11.70 13.04 15.41 21.12
8 11.18 11.20 10.98 10.90 11.03 11.36 11.90 13.31 16.11 21.97
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Fig. 5. RMSE of different spatial grids.

(i.e., M = 8), desired (i.e., M = 64), and learned (i.e.,
M ′ = 64) covariance matrices. We observe that the original
real/imaginary parts are polluted by noise, whereas the desired
one shows the benefits of using a larger number of antennas.
After DNN training, we see that the reconstructed covariance
matrix is close to the desired covariance matrix. Observing the
corresponding spatial spectra in Fig. 6(b), the two close signals
can affect the DOA estimation accuracy in methods [50]
and [51], whereas our approach provides precise estimation
and provides hence superior performance. We also notice the
superiority compared to MUSIC. Lastly, we apply MUSIC on
top of our learning-based framework. We see that it precisely
locates the two sources. However, it comes at the cost of prior
knowledge on the number of sources to estimate.

To evaluate the DOA estimation accuracy, we perform
10000 runs and compute the Root Mean Squared Error
(RMSE) of DOA estimates. The RMSE can be obtained as

RMSE =

√√√√ 1

HK

H∑
h=1

||θ̂h − θ||2, (19)

where θ̂h is the estimation results in the hth test, θ is the
true source direction set, H is the number of Monte-Carlo
simulations and K is the number of signals. To simplify
results visualization, Fig. 7 shows 100 DOA estimates and
the corresponding estimation error of two sources, where the
first source has random direction θ1 from the set [−5◦,−0.5◦],
whereas the second source has random direction θ2 from the
set [0.5◦, 5◦]. The circles represent the true DOAs, and the
points represent the results of algorithms. We observe that the
DOA estimates obtained via our approach well match the true
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Fig. 6. DOA estimation of two sources.

values and most of the estimation errors are smaller than 0.5◦.
Methods in [50] and [51] fail to always recover the spatial
spectrum since they are not robust enough when two signals
are close to each other. Especially in method [50], the small
spikes in the spatial spectrum degrade the DOA estimation
precision. Looking at results we see that some of the signal
realizations incur in worst estimation performance. However,
this is uniquely due to the randomness of the signals impinging
on the receiver array. Results show that our learning based
method achieves the better estimation performance. Compared
to MUSIC, our method achieves comparable results. However,
compared to learning MUSIC, our method does not require
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Fig. 7. DOA estimates of two sources and corresponding errors.

the number of sources as preliminary knowledge. Therefore,
in later results, we focus on the sparse reconstructed spectrum
rather than the constructed MUSIC spectrum.

To fully compare methods, we record the time needed for
every methods in TABLE III. The estimation time represents
the time needed to recombine covariance matrix, post process-
ing, or spectral peak searching. We notice that our methods
requires a higher time compared to [51] and [50]. However,
it comes with the great benefit of better estimation and does
not need prior knowledge on the number of sources to locate.

TABLE III
COMPUTATIONAL COMPLEXITY

Train time (s) Test time (s) Estimation time (s)
Method [50] 115.1059 0.0297 13.7025
Method [51] 229.8324 0.0414 0.04203

Learning MUSIC 533.78 0.4398 65.1950
Proposed Method 533.78 0.4398 44.0019

C. RMSE versus SNR
In order to verify the performance of the proposed method,

we investigate the DOA estimation accuracy vs. SNR. The
SNR of the training dataset is varied from -10 dB to 20 dB
with a step of 5 dB. We consider two different scenarios.
In the first scenario, the SNR of the validation and training
datasets are equal. That is, the SNR of validation is matched
by the training datasets. In the second scenario, the SNR of the
validation dataset is different from that of the training dataset,
and is varied from -12 dB to 18 dB with a step of 5 dB, i.e.
the SNR of validation is mismatched. In both scenarios, we
fix the number of snapshots to 300. We use the average RMSE
of all incident signals to calculate the statistic performance of
all methods. As a benchmark value, we use the Cramer-Rao
lower Bound (CRB) [56]. The CRB has been widely used
to investigate the performance limit of unbiased parameter
estimators. Figure 8 shows the results for scenario 1. The
improved performance of the proposed estimator at low and
moderate SNR is evident compared to data-driven methods
in [50], [51].
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Fig. 8. RMSE vs. SNR with matched training-testing SNR.

To analyze the generalization capability of our algorithm to
SNR, Fig. 9 shows the statistical RMSE of DOA estimation for
scenario 2. We can see that the performance of our proposed
method outperforms existing algorithms even though there is
an SNR mismatch between training dataset and validation
dataset. Our proposed method hence has higher generalization
capability with respect to SNR mismatch.

To better show the impact of mismatched SNR on the
estimation RMSE, we generate testing data with a SNR
difference of [0 : 5 : 30] dB with respect to the 20 dB baseline
data. The 0 dB in Fig.10 represents the situation where the
test data matches the training data, whereas 30 dB denotes a
30 dB difference between training and testing data. As the
mismatched SNR increases, the method has worse perfor-
mance. However, we notice that our proposal maintains the
best performance for each mismatched SNR value.

D. RMSE versus Snapshot
In this section we test the generalization capability with

respect to the number of snapshots. We consider two different
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scenarios, where in both scenarios the SNR is 10 dB. In the
first scenario, the number of snapshots of the validation dataset
matches with that of the training dataset, i.e., goes from 50 to
350 with a step of 50. As shown in Fig. 11, thanks to virtual
channels, our proposed method shows a smaller RMSE than
methods in [50], [51]. The corresponding RMSE values are
smaller than 0.2◦ as the number of snapshot is increasing.

In the second scenario, the number of snapshot of the
validation dataset mismatches with that of the training dataset,
and is varied from 30 to 330 with a step of 50. Figure 12 shows
the RSME vs. number of snapshots in the second scenario. We
observe that performance are comparable with those in Fig. 11.
Our proposed method hence also has generalization capability
with respect to s mismatched number of snapshots.

E. Multiple Sources

In this section, we consider multiple closely located sources.
The main drawback of the method in [51] lies in the limitation
of extending to the case of more than two targets. Thus, we
neglect [51]. We first reconstruct the spectrum of multiple
closely located targets. Figure 13(a) shows the covariance
matrices, where the upper figure is from physical channels,
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Fig. 11. RMSE vs. SNR with matched training-testing number of snapshots.
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the middle figure is our desired covariance matrix, and the
lower figure is the one obtained via our method.

We consider signals impinging form the spatial scope of
[−30◦, 30◦]. We consider a grid of sectors with size 0.1◦,
i.e., K = 601 sectors in total with θ1 = −30◦, θ2 =
−29.9◦, · · · , θK = 30◦. For the training set, the source num-
ber L is set as {5, 10, 15, 20, 25} and the angular separation
between targets set as 2◦. For L = 5, the corresponding first
direction are randomly generated in the range of [−4◦,−3◦].
For lager number of sources (L = 10, 15, 20, 25), the first
direction are randomly chosen in the range of [−9◦,−8◦],
[−14◦,−13◦], [−19◦,−18◦], and [−24◦,−23◦], respectively.
The SNR is set as 0 dB, and the number of snapshots is fixed
at 20. Then 20000 groups of data set are used for training, and
another 10000 groups are chosen for validation. We compare
our proposed method with the method in [50]. We see that the
original real/imaginary parts are polluted by noise, whereas
thanks to DNN the distortion in the learned one is mitigated
and resembles the desired one. In addition, Fig. 13(b) shows
the spectrums of 10 signals from directions in [−8.5◦, 9.5◦]
with a step of 2◦, where red lines indicate the true signal
locations. We see that there are undistinguishable peaks of
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Fig. 13. DOA estimation of ten sources.

green lines due to the close targets location. To obtain clear
peaks out of method [50], we implement Arithmetic Mean
Filter (AMF) [57] on the output vector of spatial spectrum η

γl =
1

Q

l+Q
2∑

q=l−Q
2

γq, (20)

where Q denotes the number of averaged points. After smooth-
ing, it obtains obvious peak around the actual signal. Our
approach instead does not require any smoothing filter.

DOA estimation can be obtained by searching the peaks in
the overcomplete spatial spectrum, and this can be obtained by

setting a threshold value above which signals represent peaks.
Our work focuses on developing DOA estimation algorithms
under optimal threshold selection. However, there are various
imperfections in array systems and neural networks due to
non-ideal antenna manufacture and neural network design that
cause the output normalized power spectrum of all sources not
necessarily being the same. Figure 14 illustrates the spectrum
of 5 signals, while the method [50] detects 10 targets rather
than 5 targets. The detectable number of targets mismatch the
true number of targets in method [50].
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To avoid biases due to fixed inter-source spacing, Fig. 15
shows the spatial spectrum with L = 10, where signals are
distributed over random locations. Also in this case, we see
that method [50] detects several fake peaks, while ours do not.
Thus, our method provides better results also when sources are
randomly separated in space.

-30 -20 -10 0 10 20 30

(
o
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o
rm

a
li

ze
d

 S
p

ec
tr

u
m

True Method [50] Proposed

Fig. 15. Spatial spectrum of ten random sources.

Figure 16(a) shows the estimation of 100 DOA randomly
distributed in space, together with the corresponding estima-
tion error.

We see that our proposed method produces more precise
DOA estimates for different directions compared to other
methods. Therefore, we see its robustness and generalization to
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Fig. 16. DOA estimates of random distributed sources.
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random sources distances. To assess the performance obtained
by our method under different threshold values, we evaluate
the difference between the real number of sources and the
estimated one. Figure 17 shows the number of wrongly esti-
mated sources vs. the threshold value and compares the results
obtained with our method with that in [50]. We see that the

(a) True DOA

(b) Method in [50]

(c) Our method

Fig. 18. DOA estimates to different sources number.

estimation accuracy is highest for threshold 0.8 for the method
in [50], while for our proposed method, the optimal threshold
is 0.7. Furthermore, in this simulation, we still observe that
the robustness of our proposed methods is better than the
method in [50]. Furthermore, we notice that at threshold 0.9
both methods attain worst performance. This is due to the fact
that this threshold value is too high, and causes the estimation
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methods to miss some peaks.
In Fig. 18, we show how the proposed method behaves when

the testing data contains a different number of signals from
the training data. The 50000 long validation set is divided
into 5 segments, each of which contains 5, 10, 15, 20, and 25
signals, respectively. Figure 18(a) shows the true directions,
whereas Fig. 18(b) shows the DOA estimation results from
method [50]. We consider closely located sources instead of
randomly distributed ones to highlight the separation capability
of our method. We see that the performance of the method
in [50] suffers significant degradation when L > 5 and the
spatial angular separation is small between multiple targets.
This is caused by the inherent hardware property. On the
other hand, the DOA estimates of our proposed method well
match their true values in Fig. 18(c). This implicates that our
method can resolve more sources than the number of degrees
of freedom provided by the physical antennas and the virtual
difference co-array.

We also investigate the RMSE performance of our method
considering a larger number of closely located sources. The
comparison results between the proposed estimator and the
method in [50] are provided in Fig. 19. We see that the
proposed method provides low RMSE for a varying number
of sources compared to method in [50].
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Fig. 19. RMSE of estimation versus different sources number.

We observe that performance degradation is common in
method [50] when the number of source is higher than the
DOF. Due to the large array aperture, the DOA estimation with
sparse prior based on [50] faces the challenge of extracting
enough features from small angle separation. This leads to the
number of peaks of spatial spectrum being not equal to the
true number of sources. After we eliminate the mismached
number of sources, the RMSE of method in [50] decreases
0.5◦ directly. Both before and after eliminating the wrong
sources, our proposed method has been shown to adapt well
to multiple sources and consistently offers better performance
than the method in [50] to estimate the angle of closely spaced
targets. However, in practice, it is unknown if the estimated
number of sources equals the true number of sources. These
results illustrate the importance of flexibility in the array
design provided by our deep learning framework under the

condition that the physical structure of the array is not been
changed.

V. CONCLUSION

In this paper, we proposed a generalized DNN framework
for DOA estimation of LOS scenarios that achieves higher
number of DOFs by extending virtual channels, which can
make up for the drawbacks of spatial recovery algorithms and
some data-driven methods. Compared with state-of-art data-
driven methods, the proposed method aims to provide a large
aperture with a reduced hardware complexity and allowing
reconfigurability. We first convert the DOA estimation problem
into a sparse representation method. Then the architecture
designing and learning procedure of DNN are illustrated.
Note that DNN-based learning models usually involve com-
plicated nonlinear transformations of the parameters obtained
through nonconvex optimization. Lastly, numerical simulations
indicate that the proposed method can even resolve more
sources than the number of antenna and achieve effective DOA
estimation using a reduced number of circuit chains. Also, the
algorithm equally outperforms excellent in the accuracy and
generalization capability in all considered scenarios, when the
SNR is small, or alternatively, when the number of snapshots
is small.
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