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Abstract 

Increased error-related negativity (ERN), a measure of error monitoring, has been suggested 

as a biomarker of obsessive-compulsive disorder (OCD). Additional insight into error 

monitoring is possible using time-frequency decomposition of electroencephalographic 

(EEG) data, as it allows disentangling the brain's parallel processing of information. Greater 

error-related theta is thought to reflect an error detection signal, while delta activity may 

reflect more elaborative post-detection processes (i.e., strategic adjustments). Recent 

investigations show that decreased error-related alpha may index attentional engagement 

following errors; additionally, increases and decreases in error-related beta could reflect 

motor inhibition and motor preparation, respectively. However, time-frequency dynamics of 

error monitoring in OCD are largely unknown. The present study examined time-frequency 

theta, delta, alpha and beta power in early adolescents with OCD using a data-driven, cluster-

based approach. The aim was to explore electrocortical measures of error monitoring in early 

adolescents with (n = 27, 15 females) and without OCD (n = 27, 14 females) during an 

arrowhead version of the flanker task while EEG activity was recorded. Results indicated that 

the OCD group was characterized by increased ERN and theta, as well as reduced error-

related beta power compared to participants without OCD. Greater error-related beta 

explained variance in OCD over and above the ERN and error-related theta. By examining 

separate time-frequency measures, the present study provides novel insights into the 

dynamics of error monitoring, suggesting that pediatric OCD may be characterized by 

enhanced error monitoring (i.e., greater theta power) and post-error inhibition (i.e., reduced 

beta power decrease).  
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1. Introduction 

Obsessive-compulsive disorder (OCD) is a highly debilitating psychiatric disorder 

characterized by the presence of intrusive recurrent unwanted thoughts and repetitive 

behaviors that lead to significant functional impairment (American Psychiatric Association, 

2013). The peak onset of OCD occurs in late childhood and early adolescence (Tanidir et al., 

2015) affecting approximately 3% of the pediatric population (Thomsen, 2013). Children 

usually show a pre-pubertal onset of the symptoms, but the disorder may go unrecognized for 

some time because thoughts and rituals are not recognized as irrational, and limited verbal 

skills prevent children from articulating their obsessions (Geller, Homayoun, & Johnson, 

2021). When left untreated, OCD follows a chronic course (Skoog  &  Skoog,  1999) 

resulting in an increased risk for long-term psychiatric comorbidities (Stewart et al., 2004). 

Despite this burden, the pathophysiology of OCD is still unclear. Recent research has focused 

on neural signatures of OCD to enhance our understanding of its biological correlates and to 

inform early identification and the design of novel interventions (Perera, Bailey, Herring, & 

Fitzgerald, 2019).  

Obsessions and compulsions are often related to preventing a feared outcome that 

may arise following the commission of an error that gives rise to feelings of “wrongness” 

(Nieuwenhuis, Nielen, Mol, Hajcak, & Veltman,  2005). This relates to neurocognitive 

impairments that characterize both adult and pediatric OCD, such as hyperactive error 

monitoring (e.g., De Wit et al., 2012; Liu, Gehring, Weissman, Taylor, & Fitzgerald, 2012). 

Neurobiological models of OCD consistently suggest that the activity of cortico-striatal 

circuits connecting several areas with the anterior cingulate cortex (ACC), a region associated 

with the detection of cognitive conflict and error monitoring, has a role in the etiology of this 

disorder (Milad & Rauch, 2012). Several studies showed reduced gray matter volume and 

increased brain activity following the commission of an error in the ACC and other areas 
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within error-processing networks in both adult (Grüzmann et al., 2022; Norman et al., 2019; 

Rotge et al., 2009) and pediatric samples with OCD (Gilbert, Barclay, Tillman, Barch, & 

Luby, 2018).  

To explore error monitoring, studies using electroencephalography (EEG) have 

predominantly focused on an event-related potential (ERP) called error-related negativity 

(ERN; Endrass & Ullsperger, 2014; Gehring, Goss, Coles, Meyer, & Donchin, 1993). The 

ERN is a fronto-central response-locked event-related potential (ERP) characterized by a 

negative deflection that peaks approximately 50 ms following the commission of an error 

during speeded response conflict tasks (Falkenstein, Hohnsbein, Hoormann, & Blanke, 

1991). The primary generator of the ERN has been suggested to be the ACC (Debener et al., 

2005; Fitzgerald et al., 2005). The ERN may function as an early indicator signaling the need 

for increased cognitive control to correct behavior (Weinberg, Riesel, & Hajcak, 2012; 

Weinberg et al., 2016). Individual differences in the amplitude of the ERN are thought to 

reflect threat sensitivity; namely, variation in the degree to which making mistakes is 

experienced as aversive to an individual (Hajcak & Foti, 2008; Meyer, Bress. & Hajcak 

Proudfit, 2014; Meyer, 2017; Weinberg et al., 2016).  

There is consistent evidence showing enhanced (i.e., more negative) ERN amplitudes 

in adults and children with OCD compared to controls with no history of psychopathology 

(e.g., Carrasco et al., 2013; Endrass, Riesel, Kathmann, & Buhlmann, 2014; Hajcak, Franklin, 

Foa, & Simons, 2008; Mathews et al., 2016; Nawani et al., 2018; Perera et al., 2019). This is 

supported by a meta-analysis of 40 studies that found an increased ERN across various 

populations with OCD (adults, children, subthreshold OCD), collectively suggesting that 

hyperactive neural error signals might represent part of the pathophysiology of OCD (Riesel, 

2019). Taken together, the presence of an enhanced ERN in pediatric OCD suggests that this 

measure is a promising neural correlate of OCD that is evident across development. 
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Recently, there has been a growing interest in integrating the time-frequency 

dynamics of error monitoring, in addition to the ERN. Indeed, time-frequency analysis of 

EEG activity within specific frequency bands allows the extrapolation of information that is 

not available using ERP analysis and fully leverage multiple dimensions of the signal, 

reflecting distinctive aspects of information processing (Cohen, 2014; Morales et al., 2022; 

Munneke, Nap, Schippers, & Cohen, 2015). Specifically, error monitoring can be examined 

in terms of power across several frequency bands. Greater power in the delta and theta bands 

are observed following error relative to correct responses, indicating that these frequency 

bands are both involved in error monitoring processes (Beatty, Buzzell, Roberts, & 

McDonald, 2020; Cavanagh, Cohen, & Allen, 2009; Cavanagh, Meyer, & Hajcak, 2017; Luu, 

Tucker, & Makeig, 2004; Muir, Hedges‐Muncy, Clawson, Carbine, & Larson, 2020; 

Munneke et al., 2015; Sandre & Weinberg, 2019; Trujillo & Allen, 2007). In particular, 

error-related theta is the most prominent oscillatory activity underlying the ERN and has been 

interpreted as reflecting an early error-detection signal that leads to the recruitment of greater 

cognitive control (Ullsperger, Fischer, Nigbur, & Endrass, 2014). Increased error-related 

delta activity may reflect post-detection processes, such as strategic adjustments in behavior 

(Sandre et al., 2019). 

Additionally, alpha power has been investigated in the context of error processing 

(Carp et al., 2009; Li et al., 2021; van Driel, Ridderinkhof, & Cohen, 2012). Alpha power 

represents an inverse index of cortical arousal such that task-related alpha suppression is 

thought to reflect greater attentional engagement (Freeman & Quiroga, 2012; van Ede, De 

Lange, Jensen, & Maris, 2011). A decrease in alpha power following error relative to correct 

responses has been found, suggesting that error-related alpha increases or decreases may 

reflect increased attention following error detection (Carp et al., 2009; Li et al., 2021). 

Relatively fewer studies have examined the contributions of the beta frequency band, which 
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is generated in sensorimotor areas (Tzagarakis, West, & Pellizzer, 2015), and may enable 

motor-action preparation (Wilhelm, Threadgill, & Gable, 2021, 2022). Beta oscillations are 

suppressed during action preparation (McFarland, Miner, Vaughan, & Wolpaw, 2000; 

Pfurtscheller, Pregenzer, & Neuper, 1994; Yang, Leung, Plank, Snider, & Poizner, 2015), 

while increased beta power reflects inhibition of prepared actions in multiple tasks also 

related to error monitoring (Li et al., 2021; Rosin et al., 2011; Swann et al., 2012; Wach et 

al., 2013; Wessel et al., 2016).  

Time-frequency dynamics of error monitoring in OCD remain largely unexplored, 

especially in pediatric samples. Recently, increased error-related theta power during a flanker 

task was found in pediatric OCD (Suzuki et al., 2022). Adults with OCD were characterized 

by enhanced ERN and CRN as well as increased delta and theta power for both error and 

correct trials (Riesel, Kathmann, & Endrass, 2014). However, error-related alpha and beta 

power have not been assessed in OCD. Considering that adults and children with OCD are 

characterized by post-error slowing and difficulties in making trial-by-trial adjustments (e.g., 

Fitzgerald et al., 2005; Liu et al., 2012), OCD may be associated with greater error-related 

beta.  

Another question is whether the combination of the ERN and time-frequency 

measures could be used together to improve the identification of OCD.  Thus, it is important 

to determine whether ERN and spectral measures of error processing explain unique or 

overlapping variance in OCD. For instance, Riesel and colleagues (2014) found that ERN, 

CRN, delta, and theta share substantial common variance, although they did not test whether 

various error-related neural measures explained independent variance in OCD status.      

The main goal of the current work was to examine error monitoring in early 

adolescence, among individuals with and without OCD. To this end, we analyzed ERN as 

well as time-frequency power within the delta, theta, alpha, and beta band. Consistent with 
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previous literature (e.g., Hajcak et al., 2008; Riesel, 2019), the OCD group was expected to 

show larger ERN amplitude compared to controls. Regarding time-frequency measures, we 

hypothesized that participants with OCD would show greater error-related theta and delta 

power relative to control participants (Riesel et al., 2014). Considering the exploratory nature 

of this work, no a priori hypotheses were formulated regarding alpha and beta power in OCD. 

Lastly, to provide further information on the pathophysiology of OCD, an exploratory aim of 

this study was to examine whether using ERN and time-frequency measures explain unique 

variance in OCD status.  

 

2. Method 

2.1 Participants  

Participants were part of a large, multi-site longitudinal study that was funded by the 

U.S. National Institute of Mental Health (NIMH, MH106477) and aimed to examine the 

effectiveness of a computerized adaptive attention bias modification training in modifying 

neural activity associated with errors and anxiety symptoms in adolescence. The present 

study included data from a subset of participants collected at the baseline visit: 54 

participants (29 females) between the ages of 11 and 14 years (M = 12.4 years; SD = 1.09). 

For the larger project, families were recruited via a commercial mailing list, referrals, and 

other advertisements. Families were eligible to participate if they had a daughter or a son 

aged between 11 and 14 years with no known medical or developmental disability, a 

biological parent willing to participate, and the ability to read and write English.  

Participants were divided into an OCD group (n = 27, 15 females) and a healthy 

control group (n = 27, 14 females) matched for age and gender. The presence of OCD was 

determined by a trained clinical interviewer using the Schedule for Affective Disorders and 

Schizophrenia for School-Age Children (K-SADS, Birmaher et al., 2009). Table 1 includes 
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the characteristics of the sample. Both groups were characterized by mostly Caucasian 

participants (HC: n = 18; OCD: n = 18), while few participants were Hispanic (HC: n = 5; 

OCD: n = 1), African American (HC: n = 1; OCD: n = 5), Asian (HC: n = 2; OCD: n = 0) or 

belonged to other ethnic groups (HC: n = 1; OCD: n = 3). Exclusion criteria included a 

current and history of cardiovascular, neurological diseases, and other psychiatric conditions. 

Three participants with OCD were taking psychotropic medications (i.e., antidepressants, 

stimulants, mood stabilizers)1. All participants had a normal or corrected-to-normal vision 

and were naive to the purpose of the experiment. Participants were compensated for their 

participation ($20 per hour). Parents/guardians and participants provided consent and assent 

prior to participating. The present study was conducted in accordance with the Declaration of 

Helsinki and was approved by the local Ethics Committee of Florida State University and 

San Diego State University. 

 

2.2 Procedure  

Participants completed a lab visit that lasted approximately 4–5 hours that consisted 

of multiple tasks, including self-report questionnaires, and psychophysiological and 

neuroimaging tasks. Moreover, the Kiddie Schedule for Affective Disorders and 

Schizophrenia for School-Age Children – Present and Lifetime Version (KSADS; Kaufman 

et al., 1997) was used to assess current and lifetime psychiatric history in the adolescent 

participants. The KSADS is a semi-structured clinical interview with good psychometric 

properties (Birmaher et al., 2009). The KSADS was conducted with parents and participants, 

separately, by trained interviewers under supervision of experienced, Ph.D.-level clinical 

psychologists (Amir et al., 2022). Relevant to the current study, participants completed a 

flanker task while continuous EEG data were collected. Stimulus-locked ERP data from the 
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flanker task as a part of this study has been previously published elsewhere (see Santopetro, 

Kallen, Threadgill, Amir, & Hajcak, 2022).  

 

2.3 Flanker Task and behavioral data reduction  

The continuous EEG was recorded while participants completed an arrow version of 

the flanker task administered through the Presentation software (Neurobehavioral Systems, 

Inc., Albancy, CA). On each trial, five horizontally aligned arrowheads were presented for 

200 ms, followed by an ITI that varied between 2300 and 2800 ms. Half of the trials were 

compatible (“<<<<<” or “>>>>>”) and half were incompatible (“<<><<” or “>><>>”); the 

order of trials was randomly determined. Participants were instructed to respond as quickly 

and as accurately as possible using their right hand on the mouse by pressing the right mouse 

button if the central arrow was pointing to the right, and the left mouse button if the central 

arrow was pointing left. Participants completed a practice block of 30 trials to ensure 

adequate performance. The task consisted of 11 blocks of 30 trials (330 trials total). At the 

end of each block, participants received feedback based on their performance. If performance 

was 75% correct or lower, the message “Please try to be more accurate” was presented; if 

performance was above 90% correct, the message “Please try to respond faster” was 

displayed; otherwise, the message “You’re doing a great job” was shown. 

The first trial of each block and trials with no response were excluded from the 

analysis. Due to their skewness (skewness before transformation = 1.65; skewness after 

transformation = 0.33), RTs were log-transformed to produce the normal distribution required 

for analyses.   

 

2.4 Electroencephalogram recording  
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Continuous EEG was recorded during the flanker task using a 34-channel system 

(ActiCHamp system, Brain Products) placed according to the 10/20 system and two 

electrodes on the left and right mastoid, and Cz was used as the online reference. Fpz served 

as the ground electrode. Electrooculogram was recorded from electrodes placed above and 

below the right eye and two placed on the outer canthus of both eyes. The EEG was digitized 

with a sampling rate of 1000 Hz, with a low-pass fifth-order sinc filter with a half-power 

cutoff set at 100 Hz.  

 

2.5 EEG data processing  

2.5.1 Time-domain analysis 

Data were processed offline with Brain Vision Analyzer (Brain Products, Gilching, 

Germany). EEG data were referenced to the average mastoid electrodes and filtered with low 

and high filter cutoffs set at 0.01 Hz and 30 Hz, respectively. For analyses of response-related 

ERPs (i.e., ERN, CRN, and Pe), EEG segments of 1,500 ms were extracted from the 

continuous EEG, beginning 500 ms prior to responses. Data were then corrected for eye-

movements and blinks (Gratton, Coles, & Donchin, 1983). Segments containing voltage steps 

>50 µV between sample points, a voltage difference of 300 µV within a single trial, or a 

maximum voltage difference of <0.5 µV within 100-ms intervals were automatically rejected 

and additional artifacts were identified and removed based on visual inspection. ERP 

averages were created for error and correct trials and a baseline of the average activity from 

−500 to–300 ms prior to the response was subtracted from each data point. Only participants 

with at least six usable error trials were included (Olvet & Hajcak, 2009). Based on previous 

research (e.g., Klawohn, Hajcak, Amir, Kathmann, & Riesel 2020; Meyer & Klein 2018), the 

error-related negativity (ERN) and correct-related negativity (CRN) were scored as the 

average voltage in the window between 0 ms and 100 ms after response commission on error 
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and correct trials, respectively; the CRN and ERN were quantified at electrode site FCz, 

where error-related brain activity was maximal. The error positivity (Pe) was scored at 

electrode site Pz as the mean amplitude from 200 to 400 ms after errors, and the respective 

mean amplitude after correct responses was analyzed as the correct positivity (Pc). 

 

2.5.2 Time-frequency analysis  

To conduct time-frequency analyses, EEG data were processed offline in Brainstorm 

(Tadel, Baillet, Mosher, Pantazis, & Leahy, 2011). The signal was filtered offline with low 

and high filter cutoffs set at 0.3 Hz and 30 Hz, respectively, to minimize slow drifts that 

could have adverse effects on time-frequency decomposition. Blink artifacts were corrected 

using independent component analysis (ICA) and segmented for each trial 500 ms before 

stimulus onset to 1000 ms after onset. Each epoch was baseline-corrected by subtracting the 

mean pre-stimulus voltage between −250 ms and −50 ms. Then, segments containing residual 

artifacts exceeding ±70 μV (peak-to-peak) were excluded. Four participants were not 

included in the time-frequency analysis as their brain activity was recorded from a limited 

number of electrodes. 

Time-frequency analysis was conducted using Morlet wavelet transformation on 

individual trials for each 1-Hz frequency bin between 1 and 30 Hz, using a mother wavelet at 

1 Hz with 3-s time resolution (as calculated by the full width at half maximum, FWHM). 

Time-frequency decompositions were then averaged for each participant and condition (error 

and correct trials), and the event-related spectral perturbation (ERSP) was computed as the 

change in power expressed in decibels (dB) relative to the baseline (−300 to −100 ms) in each 

frequency bin at each time point. Then, data were grand averaged across each participant for 

each condition. 
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2.6 Statistical analyses  

Statistical analyses were conducted using Rstudio (version 1.2.5001; R Core Team, 

2012), Jamovi (The Jamovi Project, 2021), and Matlab using a two-tailed ɑ = .05. 

Behavioral performance analyses were conducted using the lmer function from the 

lme4 (Bates, Mächler, Bolker, & Walker, 2015) and lmerTest packages in R (Kuznetsova, 

Brockhoff, & Christensen, 2017). Two models that included RT as the dependent variable, 

trial type (correct, error or post-error, post-correct) and group (OCD, HC) and their 

interaction as fixed effects and participant as a random effect were conducted. The models 

were re-fitted after excluding outliers, which were identified as observations with absolute 

standardized residual greater than 3 (0.01% of all trials; e.g., Ambrosini, Pezzulo, & 

Costantini, 2015).  The p-values obtained through the Satterthwaite approximation and model 

parameters were estimated using restricted maximum likelihood estimation (REML). 

Significant effects followed by Tukey HSD post-hoc tests to correct for multiple 

comparisons. 

For the time-domain data, residualized differences scores were computed to isolate 

variance specific to each measure by saving the unstandardized residuals in linear regressions 

predicting values on error trials from values on correct trials (Meyer, Lerner, De Los Reyes, 

Laird, & Hajcak, 2017). Since we were interested in examining error-related brain activity 

differences between the two groups, two separate one-way ANOVAs were used compare the 

ERNres and the Peresid across the two groups.  

Since the time-frequency dynamics related to error monitoring are not well-

established, a data-driven approach was selected for time-frequency data. A cluster-based 

permutation approach was conducted to identify trial type (error and correct trials) 

differences in event-related delta (1–3 Hz), theta (4–8 Hz), alpha (9–14 Hz) and beta (15–20 

Hz) as implemented by the FieldTrip toolbox (Oostenveld, Fries, Maris, & Schoffelen, 2011). 
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This method adequately controls type I error rate arising from conducting multiple statistical 

tests across electrodes and time points (Maris & Oostenveld, 2007). With this approach, by 

iteratively shuffling the condition labels over trials or over subjects and recomputing the 

statistics, a theoretical underlying distribution of the test statistics under the null hypothesis is 

generated by the data itself. Whenever the test statistic associated with the non-shuffled data 

falls within the distribution of the null-hypothesis test statistic values, the null hypothesis 

cannot be rejected and this would indicate that the observed data could have been randomly 

generated (Cohen, 2014; Luck, 2014). With cluster-based correction, at each iteration of the 

null-hypothesis distribution generation, the outcome is units of clusters instead of single 

pixels (i.e., electrodes; Cohen, 2014). In the present study, the differences within conditions 

(correct and error trials) were shuffled pseudo-randomly 2000 times. To obtain a ‘null’ 

distribution of effect sizes, the maximal cluster-level statistics (i.e., the sum of values across 

contiguously significant electrodes and time points at the threshold level) were extracted for 

each shuffle. For each significant cluster in the (non-shuffled) data, the cluster-corrected p-

value was computed as the statistics of the proportion of clusters in the null distribution that 

exceeded the one obtained for the cluster in question. Clusters with a pcorr < .05 were 

considered statistically significant. Cluster-based repeated measures ANOVAs were 

conducted to test within-subjects differences in event-related power changes between 

conditions (error vs. correct) and two-tailed independent samples t-tests were conducted to 

test between-groups (i.e., OCD versus HC) differences within each condition. 

Finally, to obtain time-frequency components with specific timing and location, 

power was extracted according to the significant frequency band, window, and location (i.e., 

sensors) that emerged from the between-group differences.  For logistic regression and 

correlational analyses, residualized difference scores for time-domain and time-frequency 

measures were determined by saving the unstandardized residuals in linear regressions 
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predicting values on error trials from values on correct trials. Pearson and point-biserial 

correlations between each significant time-frequency cluster measure (i.e., significantly 

different between the two groups from the cluster analysis), the ERNresid, the Peresid, 

behavioral RTs, and group status were conducted across the whole sample. Then, a logistic 

regression was conducted to examine the amount of shared variance explained by each 

significant time-frequency and time-domain measure in determining the likelihood of OCD 

diagnosis. The collinearity was tested by calculating the Variance Inflation Factors (VIF) 

with the vif function of the car package (Fox, Weisberg, & Price, 2019).  

 

3. Results 

3.1 Behavioral data 

The two groups did not differ in terms of number of errors (HC: Merr = 45.6, SDerr = 

23.2; OCD: Merr = 47.2, SDerr = 19.3; t(52) = -0.27, p = .80). Descriptive statistics of response 

times for the two groups are shown in Table 2. The first model showed that all participants 

were faster on error trials compared to correct trials (F1, 17393 = 2408.64, p < .001). Overall, 

participants with OCD were faster than healthy controls (F1,53 = 7.33, p = .009); however, this 

was qualified by a significant interaction between group and trial type (F1, 17393 = 18.75, p < 

.001), where the OCD group was faster than the HC group in error trials (Tukey post-hoc: p = 

.006) but not in correct trials (p = .171). 

Additionally, the second model showed that participants were slower to generate a 

correct response on trials that occurred after an error compared to trials that occurred after a 

correct response (F1, 17415 = 72.30, p < .001), but no group differences emerged in post-error 

slowing. No other behavioral differences emerged. 

 

3.2 ERPs 
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As shown in Figure 1, the OCD group showed a larger (more negative) ERNresid 

compared to the HC group (F1,52 = 4.11, p = .048, Cohen’s d = 0.55), while the two groups 

did not differ in the Peresid (F1,52 = 0.85, p = .360). The ERN was larger (more negative) than 

the CRN (F1,53 = 39,4, p < .001) and the Pe was larger than the Pc (more positive) (F1,53 = 

217, p < .001) across the whole sample. Table 2 illustrates descriptive statistics of all EEG 

measures.  

 

3.3 Time-frequency differences between error and correct trials  

5.3.1 Delta power (1- 3 Hz) 

The cluster-based analysis on event-related delta power showed a significantly greater 

delta power to error trials relative to correct trials (electrodes = FP1, FZ, F3, F7, FCZ, FC5, 

FC1, C3, T7, CP5, CP1, PZ, P3, P7, O1, OZ, O2, P4, P8, CP6, CP2, C4, T8, FC6, FC2, F4, 

F8, FP2, CZ; cluster F-valuemax =342479.74, pcorr < .001, time window 0 to 1000 ms; 

Cohen’s d = 1.18; Figure 2, panel a and b).  

 

3.3.2 Theta power (4 - 8 Hz) 

The cluster-based analysis on event-related theta power showed a significantly greater 

theta power to error trials relative to correct trials (electrodes = FP1, FZ, F3, F7, FCZ, FC5, 

FC1, C3, T7, CP5, CP1, PZ, P3, P7, O1, OZ, O2, P4, P8, CP6, CP2, C4, T8, FC6, FC2, F4, 

F8, FP2, CZ; cluster F-valuemax =154576.14, pcorr < .001, time window 0 to 490 ms; 

Cohen’s d = 0.84; Figure 2, panel c and d). 

 

3.3.3 Alpha power (9 – 14 Hz) 

The cluster-based analysis on event-related alpha power showed a significantly 

greater alpha suppression (i.e., decreased power) to error relative to correct trials (electrodes 
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= FP1, FZ, F3, F7, FCZ, FC5, FC1, C3, T7, CP5, CP1, PZ, P3, P7, O1, OZ, O2, P4, P8, CP6, 

CP2, C4, T8, FC6, FC2, F4, F8, FP2, CZ; cluster F-valuemax =165354.29, pcorr < .001, time 

window 0 to 1000 ms; Cohen’s d = 0.75; Figure 2, panel e and f).  

 

3.3.4 Beta power (15 – 20 Hz) 

The cluster-based analysis on event-related beta power showed a significantly greater 

beta suppression (i.e., decreased power) to error relative to correct trials (electrodes = FP1, 

FZ, F3, F7, FCZ, FC5, FC1, C3, T7, CP5, CP1, PZ, P3, P7, O1, OZ, O2, P4, P8, CP6, CP2, 

C4, T8, FC6, FC2, F4, F8, FP2, CZ; cluster F-valuemax =63632.68, pcorr < .001, time 

window 0 to 538 ms; Cohen’s d = 0.72, Figure 2, panel g and h). 

 

3.4 Time-frequency differences between groups  

Cluster-based analyses on event-related theta power revealed a significantly greater 

theta power to error trials in the OCD group relative to the HC group (electrodes = FP1, FZ, 

F3, F7, FCZ, FC5, FC1, C3, T7, CP5, CP1, PZ, P3, P4, CP2, C4, FC6, FC2, F4, F8, FP2, CZ; 

cluster t-valuemax = 7658.27; pcorr = .030, time window = 0 to 346 ms; Cohen’s d = 0.67; 

Figure 3, panel a, b and c). There were no group differences in theta power to correct trials.   

Similarly, cluster-based analyses on event-related beta power revealed a significantly 

greater beta power to error trials in the OCD group relative to the HC group (electrodes = 

FP1, FZ, F3, F7, FCZ, FC5, FC1, C3, T7, CP1, PZ, P3, OZ, O2, P4, P8, CP6, CP2, C4, FC6, 

FC2, F4, F8, FP2, CZ; cluster t-valuemax = 7310.13; pcorr = .010, time window = 0 to 488 

ms; Cohen’s d = 0.78; Figure 3, panel d, e and f). There were no group differences in beta 

power to correct trials. No other group differences in time-frequency power were observed.  

 

3.5 Correlations  
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Correlations between study variables are shown in Table 3. Increased Betaresid was 

associated with slower RTs on trials that occurred after an error (i.e., post-error) and error 

trials. Greater Thetaresid was associated with faster RTs in trials that occurred after an error 

(i.e., post-error),  post-correct, and correct trials, and, only marginally, on error trials. The 

ERNresid was negatively correlated with Thetaresid and associated with faster RTs on correct 

trials, error trials, post-error, and post-correct trials. Betaresid was significantly correlated with 

Alpharesid, and Deltaresid was significantly correlated with Thetaresid. OCD group status related 

to ERN and Thetaresid and Betaresid. There were no other significant correlations among 

significant time-frequency and time-domain or behavioral measures.  

 

3.6 Logistic regression  

Results of the logistic regressions are shown in Table 4. The first regression model 

revealed that Thetaresid, but not the ERNresid, was related to increased likelihood of being 

diagnosed with OCD. That is, ERNresid accounted for overlapping variance in OCD status 

with Thetaresid, and only the latter remained a significant and independent predictor of OCD 

status. The second multiple logistic regression that included all significant measures that 

emerged from the cluster-based analyses showed that greater Betaresid, but not Thetaresid or 

ERNresid, was independently related to increased likelihood of being diagnosed with OCD. Of 

note, there was a trend evident for Thetaresid, such that greater Thetaresid was associated with a 

diagnosis of OCD. VIF values were all < 1.30, indicating low multicollinearity. 

 

4. Discussion 

The main goal of the present study was to explore error-related time-frequency brain 

dynamics in a sample of early adolescents with OCD relative to a healthy control group. 

Regarding within-groups patterns, consistent with previous literature (e.g., Cavanagh et al., 
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2017; Muir et al., 2020; Munneke et al., 2015; Sandre & Weinberg, 2019), the cluster-based 

analysis revealed increased theta and delta power on error relative to correct trials. Moreover, 

these two frequency bands had different time courses and they may reflect different processes 

relevant to error monitoring. For example, theta activity may index an initial evaluation of the 

primary response outcome (e.g., Cavanagh et al., 2009; Cavanagh & Frank, 2014), whereas 

delta power to errors may reflect more elaborative process during error monitoring (Bernat, 

Nelson, & Baskin‐Sommers, 2015; Watts & Bernat, 2018), such as the processing of higher-

level aspects of outcomes (e.g., outcome magnitude, expectancy). Along similar lines, recent 

work examining time-frequency dynamics of error monitoring in uncertain contexts has 

shown that theta power may reflect the signaling of increased need for control, whereas delta 

may reflect subsequent elaborative processing aimed at strategically adjusting behavior 

(Sandre & Weinberg, 2019).  

Moreover, in line with previous work (Li et al., 2021), participants showed a decrease 

of alpha power (i.e., desynchronization) on error relative to correct trials. Considering that 

alpha activity desynchronization is thought to index cortical arousal (van Ede et al., 2011), 

this pattern might reflect increased engagement and attentional resources needed to adjust 

subsequent behavior following the commission of an error (Carp et al., 2009; Li et al., 2021). 

Also, a beta power decrease on error relative to correct trials was observed across the whole 

sample. Considering previous work showing that beta band activity is associated with motor 

processing during a flanker task (Li et al., 2021; Wilhelm et al., 2022), this pattern is 

consistent with the possibility that beta activity may be related to motor preparation for 

subsequent trials. Indeed, individuals with greater error-related beta also had longer RTs on 

trials that followed the commission of an error (i.e., post-error trials). Future studies should 

be designed to explore the link between beta power and other ERPs associated with action 

preparation, such as the lateralized readiness potential (Dayan, Berger, & Anholt, 2014; 
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Dayan, Berger, & Anholt, 2017; Frota Lisbôa Pereira de Souza, 2021; Morand-Beaulieu, 

Aardema, O'Connor, & Lavoie, 2021; Schurger, Pak, & Roskies, 2021). 

 Consistent with previous work on the ERN-OCD relationship (e.g., Carrasco et al., 

2013; Endrass et al., 2014; Hajcak et al., 2008), the current study found that the ERN was 

potentiated among those with OCD compared to controls. In addition to a larger ERN, the 

OCD group was characterized by enhanced theta power to error but not correct trials; ERN 

amplitude and theta power were negatively correlated with each other across the whole 

sample (i.e., greater error-related theta power was associated with greater error-related 

negativity).  On the other hand, ERN was not associated with delta, alpha or beta activity. 

These results are generally consistent with previous work on ERN and theta activity in OCD 

(Riesel et al., 2014; Suzuki et al., 2022), as well as the potentially shared functional role of 

the ERN and error-related theta (e.g., Cavanagh et al., 2009). Consistent with the ERN 

topography, the theta power cluster that differed between the two groups was maximal at 

fronto-central scalp sites, providing support that these electrophysiological signatures may be 

similarly generated by the ACC (e.g., Debener et al., 2005). 

Unique to the current study, the OCD group was characterized by increased beta 

power on error (but not correct) trials, relative to the control group. Based on previous 

literature (e.g., Li et al., 2021; Wilhelm et al., 2022), this finding could indicate that 

participants with OCD are characterized by reduced motor preparation following errors (e.g., 

greater motor inhibition). Consistent with this possibility, increased error-related beta was 

associated with slower post-error RTs, linking increased beta power on error trials to 

increased behavioral inhibition on subsequent trials. Additionally, the significant beta cluster 

was maximal in parietal scalp sites, providing further support for this functional interpretation 

of error-related beta power and for the link between alterations in motor-related regions and 

OCD (de Wit et al., 2012). 
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Similar to a recent study (Suzuki et al., 2022), the present study did not find increased 

error-related delta in OCD (cf. Riesel et al., 2014). The contrast between the present findings 

and the work by Riesel et al. (2014) might lie in key methodological differences, for 

example, Riesel and colleagues extracted time-frequency measures at one scalp position in a 

priori time window, preventing the exploration of error-related effects across multiple 

locations and time points. Moreover, Riesel et al. (2014) assessed adults with OCD, while the 

present study and a recent investigation with similar results (Suzuki et al., 2022) focused on a 

pediatric sample; therefore, it could be that error-related delta dysfunctions in OCD develop 

later with increasing duration and chronicity.  

Another aim of the present work was to examine whether leveraging a combination of 

time domain (i.e., ERN) and time-frequency measures would explain unique variance in 

OCD status. In a logistic regression, greater error-related beta emerged as a significant 

predictor of OCD over and above the ERN and theta. These analyses indicate that ERN and 

error-related theta reflect overlapping variance with error-related beta, and that once the 

shared variance among these measures is accounted for, only error-related beta predicts 

OCD. Given the relatively low sample size, future studies should further explore error-related 

beta as a correlate of OCD in youth. 

On a methodological note, an advantage of the present investigation in comparison to 

previous studies is that we selected time-frequency measures (in both time and space) using a 

cluster-based analysis—which is an ad hoc data-driven method that avoids selection biases 

(e.g., selecting windows based on a priori intuition; Cohen, 2014; Luck, 2014).  

The present study has limitations worth noting. First, the sample was homogeneous in 

ethnicity; consequently, future studies will need to determine whether the current results 

generalize to more diverse samples. Second, the present study had a relatively low sample 

size, and future studies with larger samples are required to confirm these results and better 
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clarify the time-frequency dynamics of error monitoring in OCD. In addition, epochs for the 

time-frequency decomposition began 500 ms before stimulus onset and this might have 

influenced the interpretation of 1-Hz delta power. Lastly, consistent with the U.S. NIMH’s 

Research Domain Criteria (RDoC, Insel et al., 2010) framework, future studies should better 

examine associations between these neural measures and symptom dimensions (Riesel et al., 

2014) to further examine whether error-related brain activity is associated with specific OCD 

symptom dimensions.  

In conclusion, by examining separate time-frequency measures, the present study 

provided novel insights into the dynamics of error monitoring in OCD, suggesting that OCD 

may be characterized by enhanced error monitoring (i.e., greater theta power) and post-error 

inhibition (i.e., greater beta power). These results are promising as examining error-related 

theta and beta power could enhance clinical utility, both in terms of identification and for 

informing potential targets for treatment. 

 

 

DATA AVAILABILITY STATEMENT 

Data or other materials are available through correspondence with the first author. 

 

 

 

 

 

 

 

 



 22 

 

 

References 

Ambrosini, E., Pezzulo, G., Costantini, M. (2015). The eye in hand: Predicting others' behavior 

by integrating multiple sources of information. Journal of Neurophysiology, 113 (7), 

2271-2279. https://doi.org/10.1152/jn.00464.2014 

American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders 

(5th ed.).  

Amir, N., Holbrook, A., Kallen, A., Santopetro, N., Klawohn, J., McGhie, S, … Hajcak, G. 

(2022). Multiple Adaptive Attention Bias Modification Programs to Alter Normative 

Increase in the Error-Related Negativity in Adolescents. Manuscript submitted for 

publication. 

Bates, D., Mächler, M., Bolker, B., Walker, S. (2015). Fitting Linear Mixed-Effects Models 

Using lme4. Journal of Statistical Software, 67, 1–48. 

https://doi.org/10.48550/arXiv.1406.5823 

Beatty, P. J., Buzzell, G. A., Roberts, D. M., McDonald, C. G. (2020). Contrasting time and 

frequency domains: ERN and induced theta oscillations differentially predict post-error 

behavior. Cognitive, Affective, & Behavioral Neuroscience, 20 (3), 636-647. 

https://doi.org/10.3758/s13415-020-00792-7 

Bernat, E. M., Nelson, L. D., Baskin‐Sommers, A. R. (2015). Time‐frequency theta and delta 

measures index separable components of feedback processing in a gambling task. 

Psychophysiology, 52 (5), 626-637. https://doi.org/10.1111/psyp.12390 

Birmaher, B., Ehmann, M., Axelson, D. A., Goldstein, B. I., Monk, K., Kalas, C., ... Brent, D. 

A. (2009). Schedule for affective disorders and schizophrenia for school-age children 

(K-SADS-PL) for the assessment of preschool children–a preliminary psychometric 



 23 

study. Journal of Psychiatric Research, 43 (7), 680-686. 

https://doi.org/10.1016/j.jpsychires.2008.10.003 

Carp, J., & Compton, R. J. (2009). Alpha power is influenced by performance errors. 

Psychophysiology, 46 (2), 336-343. https://doi.org/10.1111/j.1469-8986.2008.00773.x 

Carrasco, M., Harbin, S. M., Nienhuis, J. K., Fitzgerald, K. D., Gehring, W. J., Hanna, G. L. 

(2013). Increased error‐related brain activity in youth with obsessive‐compulsive 

disorder and unaffected siblings. Depression and Anxiety, 30 (1), 39-46.  

https://doi.org/10.1002/da.22035 

Cavanagh, J. F., Cohen, M. X., Allen, J. J. (2009). Prelude to and resolution of an error: EEG 

phase synchrony reveals cognitive control dynamics during action monitoring. Journal 

of Neuroscience, 29 (1), 98-105. https://doi.org/10.1523/JNEUROSCI.4137-08.2009 

Cavanagh, J. F., & Frank, M. J. (2014). Frontal theta as a mechanism for cognitive control. 

Trends in Cognitive Sciences, 18 (8), 414-421. https://doi.org/10.1016/j.tics.2014.04.012 

Cavanagh, J. F., Meyer, A., Hajcak, G. (2017). Error-specific cognitive control alterations in 

generalized anxiety disorder. Biological Psychiatry: Cognitive Neuroscience and 

Neuroimaging, 2 (5), 413-420. https://doi.org/10.1016/j.bpsc.2017.01.004 

Cohen, M. X. (2014). Analyzing neural time series data: theory and practice. MIT press. 

Debener, S., Ullsperger, M., Siegel, M., Fiehler, K., Von Cramon, D. Y., Engel, A. K. (2005). 

Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic 

resonance imaging identifies the dynamics of performance monitoring. Journal of 

Neuroscience, 25 (50), 11730-11737. https://doi.org/10.1523/JNEUROSCI.3286-

05.2005 

Dayan, A., Berger, A., Anholt, G. E. (2014). Enhanced action tendencies in high versus low 

obsessive-compulsive symptoms: An event-related potential study. Psychiatry 



 24 

Research: Neuroimaging, 224 (2), 133-138. 

https://doi.org/10.1016/j.pscychresns.2014.07.007 

Dayan, A., Berger, A., Anholt, G. E. (2017). Enhanced action tendencies in obsessive-

compulsive disorder: An ERP study. Behaviour Research and Therapy, 93, 13-21. 

https://doi.org/10.1016/j.brat.2017.03.005 

de Wit, S. J., de Vries, F. E., van der Werf, Y. D., Cath, D. C., Heslenfeld, D. J., Veltman, E. 

M., ... van den Heuvel, O. A. (2012). Presupplementary motor area hyperactivity 

during response inhibition: a candidate endophenotype of obsessive-compulsive 

disorder. American Journal of Psychiatry, 169 (10), 1100-1108. 

https://doi.org/10.1176/appi.ajp.2012.12010073 

Endrass, T., & Ullsperger, M. (2014). Specificity of performance monitoring changes in 

obsessive-compulsive disorder. Neuroscience & Biobehavioral Reviews, 46, 124-138. 

https://doi.org/10.1016/j.neubiorev.2014.03.024 

Endrass, T., Riesel, A., Kathmann, N., Buhlmann, U. (2014). Performance monitoring in 

obsessive–compulsive disorder and social anxiety disorder. Journal of Abnormal 

Psychology, 123(4), 705. https://doi.org/10.1037/abn0000012 

Falkenstein, M., Hohnsbein, J., Hoormann, J., Blanke, L. (1991). Effects of crossmodal divided 

attention on late ERP components. Error processing in choice reaction tasks. 

Electroencephalography and Clinical Neurophysiology, 78(6), 447-455. 

https://doi.org/10.1016/0013-4694(91)90062-9 

Freeman, W., & Quiroga, R. Q. (2012). Imaging brain function with EEG: advanced temporal 

and spatial analysis of electroencephalographic signals. Springer Science & Business 

Media. 

Fitzgerald, K. D., Welsh, R. C., Gehring, W. J., Abelson, J. L., Himle, J. A., Liberzon, I., 

Taylor, S. F. (2005). Error-related hyperactivity of the anterior cingulate cortex in 



 25 

obsessive-compulsive disorder. Biological Psychiatry, 57 (3), 287–294. 

https://doi.org/10.1016/j.biopsych.2004.10.038 

Fox, J., Weisberg, S., Price, B. (2019). carData: companion to applied regression data sets. 

Retrieved from https://cran.r-project.org/package=carData. 

Frota Lisbôa Pereira de Souza, A. M. (2021). Electroencephalographic correlates of 

obsessive-compulsive disorder. In N. A. Fineberg, & T. W. Robbins (eds.), The 

Neurobiology and Treatment of OCD: Accelerating Progress. Current Topics in 

Behavioral Neurosciences (vol. 49, pp. 169-199). Springer, Cham. 

Gehring, W. J., Goss, B., Coles, M. G., Meyer, D. E., Donchin, E. (1993). A neural system for 

error detection and compensation. Psychological Science, 4(6), 385-390. 

https://doi.org/10.1111/j.1467-9280.1993.tb00586.x 

Geller, D. A., Homayoun, S., Johnson, G. (2021). Developmental considerations in obsessive 

compulsive disorder: comparing pediatric and adult-onset cases. Frontiers in 

Psychiatry, 12, 678538. https://doi.org/10.3389%2Ffpsyt.2021.678538 

Gilbert, K. E., Barclay, M. E., Tillman, R., Barch, D. M., Luby, J. L. (2018). Associations of 

observed performance monitoring during preschool with obsessive-compulsive disorder 

and anterior cingulate cortex volume over 12 years. JAMA Psychiatry, 75 (9), 940-948. 

10.1001/jamapsychiatry.2018.1805 

Gratton, G., Coles, M. G., Donchin, E. (1983). A new method for off-line removal of ocular 

artifact. Electroencephalography and Clinical Neurophysiology, 55(4), 468-484. 

https://doi.org/10.1016/0013-4694(83)90135-9 

Grützmann, R., Kaufmann, C., Wudarczyk, O. A., Balzus, L., Klawohn, J., Riesel, A., ... 

Kathmann, N. (2022). Error-Related Brain Activity in Patients With Obsessive-

Compulsive Disorder and Unaffected First-Degree Relatives: Evidence for Protective 



 26 

Patterns. Biological Psychiatry Global Open Science, 2 (1), 79-87. 

https://doi.org/10.1016/j.bpsgos.2021.07.001 

Hajcak, G., & Foti, D. (2008). Errors are aversive: Defensive motivation and the error-related 

negativity. Psychological Science, 19 (2), 103-108. https://doi.org/10.1111/j.1467-

9280.2008.02053.x 

Hajcak, G., Franklin, M. E., Foa, E. B., Simons, R. F. (2008). Increased error-related brain 

activity in pediatric obsessive-compulsive disorder before and after treatment. American 

Journal of Psychiatry, 165 (1), 116-123. https://doi.org/10.1176/appi.ajp.2007.07010143 

Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., ... Wang, P. (2010). 

Research domain criteria (RDoC): toward a new classification framework for research 

on mental disorders. American Journal of Psychiatry, 167(7), 748-751. 

https://doi.org/10.1176/appi.ajp.2010.09091379 

Kaufman, J., Birmaher, B., Brent, D., Rao, U. M. A., Flynn, C., Moreci, P., ... Ryan, N. (1997). 

Schedule for affective disorders and schizophrenia for school-age children-present and 

lifetime version (K-SADS-PL): initial reliability and validity data. Journal of the 

American Academy of Child & Adolescent Psychiatry, 36 (7), 980-988. 

https://doi.org/10.1097/00004583-199707000-00021 

Klawohn, J., Hajcak, G., Amir, N., Kathmann, N., Riesel, A. (2020). Application of attentional 

bias modification training to modulate hyperactive error-monitoring in OCD. 

International Journal of Psychophysiology, 156, 79-86. 

https://doi.org/10.1016/j.ijpsycho.2020.07.005 

Kuznetsova, A., Brockhoff, P.B., Christensen R. H. B. (2017). lmerTest Package: Tests in 

Linear Mixed Effects Models. Journal of Statistical Software, 82, 1–26. 

https://doi.org/10.18637/jss.v082.i13 



 27 

Li, Q., Hu, N., Li, Y., Long, Q., Gu, Y., Tang, Y., Chen, A. (2021). Error-induced adaptability: 

Behavioral and neural dynamics of response-stimulus interval modulations on posterror 

slowing. Journal of Experimental Psychology: General, 150(5), 851. 

https://doi.org/10.1037/xge0000978 

Liu, Y., Gehring, W. J., Weissman, D. H., Taylor, S. F., Fitzgerald, K. D. (2012). Trial-by-trial 

adjustments of cognitive control following errors and response conflict are altered in 

pediatric obsessive compulsive disorder. Frontiers in Psychiatry, 3, 41. 

https://doi.org/10.3389/fpsyt.2012.00041 

Luck, S. J. (2014). Online Chapter 13: The mass univariate approach and permutation statistics 

(An introduction to the event-related potential technique). MIT Press Online: MIT press. 

Luu, P., Tucker, D. M., Makeig, S. (2004). Frontal midline theta and the error-related negativity: 

neurophysiological mechanisms of action regulation. Clinical Neurophysiology, 115 (8), 

1821-1835. https://doi.org/10.1016/j.clinph.2004.03.031 

Mathews, C. A., Perez, V. B., Roach, B. J., Fekri, S., Vigil, O., Kupferman, E., Mathalon, D. H. 

(2016). Error-related brain activity dissociates hoarding disorder from obsessive-

compulsive disorder. Psychological Medicine, 46 (2), 367-379. 

10.1017/S0033291715001889 

Maris E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG-and MEG-data. 

Journal of Neuroscience Methods, 164 (1), 177-190. 

https://doi.org/10.1016/j.jneumeth.2007.03.024 

Meyer, A., Bress, J. N., Proudfit, G. H. (2014). Psychometric properties of the error‐related 

negativity in children and adolescents. Psychophysiology, 51 (7), 602-610. 

https://doi.org/10.1111/psyp.12208 



 28 

Meyer, A. (2017). A biomarker of anxiety in children and adolescents: A review focusing on the 

error-related negativity (ERN) and anxiety across development. Developmental 

Cognitive Neuroscience, 27, 58-68. https://doi.org/10.1016/j.dcn.2017.08.001 

Meyer, A., Lerner, M. D., De Los Reyes, A., Laird, R. D., Hajcak, G. (2017). Considering ERP 

difference scores as individual difference measures: Issues with subtraction and 

alternative approaches. Psychophysiology, 54 (1), 114-122. 

https://doi.org/10.1111/psyp.12664 

Meyer, A., & Klein, D. N. (2018). Examining the relationships between error-related brain 

activity (the ERN) and anxiety disorders versus externalizing disorders in young 

children: Focusing on cognitive control, fear, and shyness. Comprehensive Psychiatry, 

87, 112-119. https://doi.org/10.1016/j.comppsych.2018.09.009 

McFarland, D. J., Miner, L. A., Vaughan, T. M., Wolpaw, J. R. (2000). Mu and beta rhythm 

topographies during motor imagery and actual movements. Brain Topography, 12 (3), 

177–186. https://doi.org/10.1023 

Milad, M. R., & Rauch, S. L. (2012). Obsessive-compulsive disorder: beyond segregated 

cortico-striatal pathways. Trends in Cognitive Sciences, 16 (1), 43-51. 

https://doi.org/10.1016/j.tics.2011.11.003 

Morales, S., Bowers, M. E., Leach, S. C., Buzzell, G. A., Fifer, W., Elliott, A. J., Fox, N. A. 

(2022). Time–frequency dynamics of error monitoring in childhood: An EEG study. 

Developmental Psychobiology, 64 (3), e22215. https://doi.org/10.1002/dev.22215 

Morand-Beaulieu, S., Aardema, F., O'Connor, K. P., Lavoie, M. E. (2021). Lateralized readiness 

potentials and sensorimotor activity in adults with obsessive-compulsive disorder. 

Progress in Neuro-Psychopharmacology and Biological Psychiatry, 104, 110061. 

https://doi.org/10.1016/j.pnpbp.2020.110061 



 29 

Muir, A. M., Hedges‐Muncy, A., Clawson, A., Carbine, K. A., Larson, M. J. (2020). 

Dimensions of anxiety and depression and neurophysiological indicators of error‐

monitoring: Relationship with delta and theta oscillatory power and error‐related 

negativity amplitude. Psychophysiology, 57 (9), 603-624. 

https://doi.org/10.1111/psyp.13595 

Munneke, G. J., Nap, T. S., Schippers, E. E., Cohen, M. X. (2015). A statistical comparison of 

EEG time-and time–frequency domain representations of error processing. Brain 

Research, 1618, 222-230. https://doi.org/10.1016/j.brainres.2015.05.030 

Nawani, H., Narayanaswamy, J. C., Basavaraju, S., Bose, A., Agarwal, S. M., 

Venkatasubramanian, G., Reddy, Y. J. (2018). Enhanced error related negativity 

amplitude in medication-naïve, comorbidity-free obsessive compulsive 

disorder. Psychiatry Research, 262, 373-377. 

https://doi.org/10.1016/j.psychres.2017.09.010 

Nieuwenhuis, S., Nielen, M. M., Mol, N., Hajcak, G., Veltman, D. J. (2005). Performance 

monitoring in obsessive-compulsive disorder. Psychiatry Research, 134 (2), 111-122. 

https://doi.org/10.1016/j.psychres.2005.02.005 

Norman, L. J., Taylor, S. F., Liu, Y., Radua, J., Chye, Y., De Wit, S. J., ... Fitzgerald, K. (2019). 

Error processing and inhibitory control in obsessive-compulsive disorder: A meta-

analysis using statistical parametric maps. Biological Psychiatry, 85 (9), 713-725. 

https://doi.org/10.1016/j.biopsych.2018.11.010 

Olvet, D. M., & Hajcak, G. (2009). The stability of error‐related brain activity with increasing 

trials. Psychophysiology, 46 (5), 957-961. https://doi.org/10.1111/j.1469-

8986.2009.00848.x 

Oostenveld, R., Fries, P., Maris, E., Schoffelen, J. M. (2011). FieldTrip: open source software 

for advanced analysis of MEG, EEG, and invasive electrophysiological data. 



 30 

Computational Intelligence and Neuroscience, 2011. 

https://doi.org/10.1155/2011/156869 

Perera, M. P. N., Bailey, N. W., Herring, S. E., Fitzgerald, P. B. (2019). Electrophysiology of 

obsessive compulsive disorder: a systematic review of the electroencephalographic 

literature. Journal of Anxiety Disorders, 62, 1-14. 

https://doi.org/10.1016/j.janxdis.2018.11.001 

Pfurtscheller, G., Pregenzer, M., Neuper, C. (1994). Visualization of sensorimotor areas 

involved in preparation for hand movement based on classification of mu and central 

beta rhythms in single EEG trials in man. Neuroscience Letters, 181 (1-2), 43– 46. 

https://doi.org/10.1016/0304-3940(94)90556-8 

Riesel, A., Kathmann, N., Endrass, T. (2014). Overactive performance monitoring in obsessive–

compulsive disorder is independent of symptom expression. European Archives of 

Psychiatry and Clinical Neuroscience, 264 (8), 707-717. https://doi.org/10.1007/s00406-

014-0499-3 

Riesel, A. (2019). The erring brain: Error‐related negativity as an endophenotype for OCD—A 

review and meta‐analysis. Psychophysiology, 56 (4), e13348. 

https://doi.org/10.1111/psyp.13348 

Rotge, J. Y., Guehl, D., Dilharreguy, B., Tignol, J., Bioulac, B., Allard, M., ... Aouizerate, B. 

(2009). Meta-analysis of brain volume changes in obsessive-compulsive disorder. 

Biological Psychiatry, 65 (1), 75-83. https://doi.org/10.1016/j.biopsych.2008.06.019 

Rosin, B., Slovik, M., Mitelman, R., Rivlin-Etzion, M., Haber, S. N., Israel, Z., ... Bergman, H. 

(2011). Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. 

Neuron, 72 (2), 370-384. https://doi.org/10.1016/j.neuron.2011.08.023 



 31 

Sandre, A., & Weinberg, A. (2019). Neither wrong nor right: Theta and delta power increase 

during performance monitoring under conditions of uncertainty. International Journal of 

Psychophysiology, 146, 225-239. https://doi.org/10.1016/j.ijpsycho.2019.09.015 

Santopetro, N. J., Kallen, A. M., Threadgill, A. H., Amir, N., Hajcak, G. (2022). Blunted 

Flanker P300 Demonstrates Specificity to Depressive Symptoms in Females during 

Adolescence. Research on Child and Adolescent Psychopathology, 50(4), 537-548. 

https://doi.org/10.1007/s10802-021-00876-z 

Schurger, A., Pak, J., Roskies, A. L. (2021). What is the readiness potential?. Trends in 

Cognitive Sciences, 25 (7), 558-570. https://doi.org/10.1016/j.tics.2021.04.001 

Skoog, G., & Skoog, I. (1999). A 40-year follow-up of patients with obsessive-compulsive 

disorder. Archives of General Psychiatry, 56 (2), 121-127. 10.1001/archpsyc.56.2.121 

Stewart, S. E., Geller, D. A., Jenike, M., Pauls, D., Shaw, D., Mullin, B., Faraone, S. V. (2004). 

Long‐term outcome of pediatric obsessive–compulsive disorder: a meta‐analysis and 

qualitative review of the literature. Acta Psychiatrica Scandinavica, 110 (1), 4-13. 

https://doi.org/10.1111/j.1600-0447.2004.00302.x 

Suzuki, T., Gu, P., Grove, T., Hammond, T., Collins, K., Pamidighantam, P., ….Tso, I. F. 

(2022). Abnormally Enhanced Midfrontal Theta-Band Activity During Response 

Monitoring in Youth with Obsessive-Compulsive Disorder. Preprint. 

https://doi.org/10.31234/osf.io/ua8wd 

Swann, N. C., Cai, W., Conner, C. R., Pieters, T. A., Claffey, M. P., George, J. S., . . . Tandon, 

N. (2012). Roles for the pre-supplementary motor area and the right inferior frontal 

gyrus in stopping action: Electrophysiological responses and functional and structural 

connectivity. NeuroImage, 59 (3), 2860–2870. 

https://doi.org/10.1016/j.neuroimage.2011.09.049 



 32 

Tanidir, C., Adaletli, H., Gunes, H., Kilicoglu, A. G., Mutlu, C., Bahali, M. K., ... Uneri, O. S. 

(2015). Impact of gender, age at onset, and lifetime tic disorders on the clinical 

presentation and comorbidity pattern of obsessive-compulsive disorder in children and 

adolescents. Journal of Child and Adolescent Psychopharmacology, 25 (5), 425-431. 

https://doi.org/10.1089/cap.2014.0120 

Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D., Leahy, R. M. (2011). Brainstorm: a user-

friendly application for MEG/EEG analysis computational intelligence and neuroscience. 

Hindawi, 2011, 1-13. https://doi.org/10.1155/2011/879716 

The Jamovi Project (2021). jamovi (Version 1.6) [Computer Software]. Retrieved from 

https://www.jamovi.org 

Thomsen, P. H. (2013). Obsessive–compulsive disorders. European Child & Adolescent 

Psychiatry, 22 (1), 23-28. https://doi.org/10.1007/s00787-012-0357-7 

Trujillo, L. T., & Allen, J. J. (2007). Theta EEG dynamics of the error-related negativity. 

Clinical Neurophysiology, 118 (3), 645-668. https://doi.org/10.1016/j.clinph.2006.11.009 

Tzagarakis, C., West, S., Pellizzer, G. (2015). Brain oscillatory activity during motor 

preparation: effect of directional uncertainty on beta, but not alpha, frequency band. 

Frontiers in Neuroscience, 9, 246. https://doi.org/10.3389/fnins.2015.00246 

Ullsperger, M., Fischer, A. G., Nigbur, R., Endrass, T. (2014). Neural mechanisms and temporal 

dynamics of performance monitoring. Trends in Cognitive Sciences, 18 (5), 259-267. 

https://doi.org/10.1016/j.tics.2014.02.009 

van Driel, J., Ridderinkhof, K. R., Cohen, M. X. (2012). Not all errors are alike: theta and alpha 

EEG dynamics relate to differences in error-processing dynamics. Journal of 

Neuroscience, 32 (47), 16795-16806. https://doi.org/10.1523/JNEUROSCI.0802-

12.2012 



 33 

Van Ede, F., De Lange, F., Jensen, O., Maris, E. (2011). Orienting attention to an upcoming 

tactile event involves a spatially and temporally specific modulation of sensorimotor 

alpha-and beta-band oscillations. Journal of Neuroscience, 31 (6), 2016-2024. 

https://doi.org/10.1523/JNEUROSCI.5630-10.2011 

Wach, C., Krause, V., Moliadze, V., Paulus, W., Schnitzler, A., Pollok, B. (2013). Effects of 10 

Hz and 20 Hz transcranial alternating current stimulation (tACS) on motor functions and 

motor cortical excitability. Behavioural Brain Research, 241, 1-6. 

https://doi.org/10.1016/j.bbr.2012.11.038 

Watts, A. T., & Bernat, E. M. (2018). Effects of reward context on feedback processing as 

indexed by time‐frequency analysis. Psychophysiology, 55 (9), e13195. 

https://doi.org/10.1111/psyp.13195 

Weinberg, A., Riesel, A., Hajcak, G. (2012). Integrating multiple perspectives on error-related 

brain activity: The ERN as a neural indicator of trait defensive reactivity. Motivation and 

Emotion, 36 (1), 84-100. https://doi.org/10.1007/s11031-011-9269-y 

Weinberg, A., Meyer, A., Hale‐Rude, E., Perlman, G., Kotov, R., Klein, D. N., Hajcak, G. 

(2016). Error‐related negativity (ERN) and sustained threat: Conceptual framework and 

empirical evaluation in an adolescent sample. Psychophysiology, 53 (3), 372-385. 

https://doi.org/10.1111/psyp.12538 

Wessel, J. R., Ullsperger, M., Obrig, H., Villringer, A., Quinque, E., Schroeter, M. L., . . . Klein, 

T. A. (2016). Neural synchrony indexes impaired motor slowing after errors and novelty 

following white matter damage. Neurobiology of Aging, 38, 205–213. 

https://doi.org/10.1016/j.neurobiolaging.2015.10.014 

Wilhelm, R. A., Threadgill, A. H., Gable, P. A. (2021). Motor Preparation and Execution for 

Performance Difficulty: Centroparietal Beta Activation during the Effort Expenditure for 



 34 

Rewards Task as a Function of Motivation. Brain Sciences, 11 (11), 1442. 

https://doi.org/10.3390/brainsci11111442 

Wilhelm, R. A., Threadgill, A. H., Gable, P. A. (2022). Motivated for movement: Beta 

activation over the motor cortex resulting from intrinsic and extrinsic motivators. 

Psychophysiology, e14120. https://doi.org/10.1111/psyp.14120 

Yang, L., Leung, H., Plank, M., Snider, J., Poizner, H. (2015). EEG activity during movement 

planning encodes upcoming peak speed and acceleration and improves the accuracy in 

predicting hand kinematics. IEEE Journal of Biomedical and Health Informatics, 19 (1), 

22–28. https://doi.org/10.1109/JBHI.2014.2327635 

 
 

footnotes:  

1The results of the statistical analyses did not differ based on the inclusion of these three 
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Tables 

Table 1. Demographic variables for the group with obsessive-compulsive disorder (OCD) 

and the healthy control group (HC). 

 HC group (n = 27) OCD group (n = 27) p 

Age  12.3 (1.10) 12.6 (1.03) .31 

Sex (% female) 51.85 55.56 .79 

Ethnicity  

% of Caucasian 

participants 

66.67  66.67  .77 

Note. Age is expressed in mean (standard deviation). 
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Table 2. Descriptive statistics of behavioral and EEG measures for the group with obsessive-

compulsive disorder (OCD) and the healthy control group (HC). 

 HC group (n = 27) OCD group (n = 27) 

RTs correct (ms) 463 (78.3) 434 (60.5) 

RTs error (ms) 348 (67.7) 328 (54.0) 

RTs post-error (ms) 471 (84.8) 442 (70.0) 

RTs post-correct (ms) 447 (76.3) 416 (59.1) 

ERN at FCz (μV) 1.58 (8.15) -0.36 (9.23) 

CRN at FCz (μV) 5.30 (5.62) 7.00 (7.40) 

Pe at Pz (μV) 16.2 (7.94) 15.8 (10.6) 

Pc at Pz (μV) -0.98 (4.81) 0.73 (4.98) 

Theta error trials (between-groups cluster) (dB) -0.17 (0.80) 0.38 (0.89) 

Theta correct trials (between-groups cluster) (dB) -0.73 (0.39) -0.70 (0.37) 

Beta error trials (between-groups cluster) (dB) -0.39 (0.70) 0.38 (1.21) 

Beta correct trials (between-groups cluster) (dB) 0.56 (0.62) 0.65 (0.53) 

Time-frequency within-subjects clusters Error trials Correct trials 

Delta (dB) 0.17 (0.34) -0.15 (0.19) 

Theta (dB) -0.34 (0.76) -0.86 (0.43) 

Alpha (dB) -0.57 (0.84) 0.05 (0.78) 

Beta (dB) 0.09 (1.0) 0.66 (0.56) 
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Table 3. Bivariate and point-biserial correlations of EEG measures and behavioral data.  

 Delta Theta Alpha Beta ERN Pe RTs 

correct 

RTs 

error 

RTs 

post-

error 

RTs post-

correct 

Group 

Delta   -           

Theta   0.29* -          

Alpha   0.24 0.22 -         

Beta  -0.17 0.05 0.46* -        

ERN  -0.20 -0.42* 0.16 0.05 -       

Pe -0.03 -0.04 -0.08 -0.25 0.12 -      

RTs 

correct 

-0.08 -0.38* 0.05 0.23 0.37* -0.05 -     

RTs error -0.27 -0.26 0.31* 0.46* 0.44* -0.21 -.73* -    

RTs 

post-

error 

-0.09 0.39* 0.16 0.28* 0.34* -0.08 0.92* 0.77* -   

RTs 

post-

correct 

-0.11 -0.39* 0.04 0.26 0.35* -0.09 0.99* 0.71* 0.90* -  

Group 0.07 0.32* 0.20 0.36* -0.27* -0.10 -0.26 -0.19 -0.28* -0.23 - 

 

Note. All EEG measures are reported in residualized difference scores and reflect error-

related activity. ERN = error-related negativity; Pe = error positivity; RTs = response times; 

Group, 0 = HC, 1 = OCD. *p <.05.  
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Table 4. Results of the logistic regression analysis predicting diagnostic status (OCD, HC) 

from the ERN and theta and beta power to error trials. 

Measure  Prediction of diagnostic status (OCD, HC) 

 R2 χ2 OR 95% CIOR p 

Model 1      

 .19 7.90    

ERNresid   .98 -.13-.10 .72 

Thetaresid   2.74 .08-1.90 .03 

Model 2      

 .41 18.1    

ERNresid   0.96 0.84-1.09 .48 

Thetaresid   2.40 0.91-6.31 .08 

Betaresid   4.83 1.38-16.83 .01 

Note. Logistic regression was used to predict the dichotomous dependent variable diagnosis 

of OCD (0 = absent, 1 = present); The Nagelkerke R2 and χ2 statistics are reported for the 

logistic regression models. CI = confidence intervals; OR = odds ratio. Model 1. logistic 

regression predicting diagnostic status from the ERN and theta power; Model 2. logistic 

regression predicting diagnostic status from both time-frequency measures that emerged as 

significant from the cluster-based analyses (beta and theta power) and the ERN.  
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Figure captions  

 

 

Figure 1. (Panel a) Response-locked event-related potential (ERP) waveforms for the 

difference between error and correct trials (ΔERN) in the OCD group (red line) and HC 

group (black line). (Panel b) Topographic map of activity (error minus correct) in the ERN 

time-window (i.e., 0-100 ms) in the OCD group. (Panel c) Topographic map of activity (error 

minus correct) in the ERN time-window (i.e., 0-100 ms) in the HC group.  
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Figure 2. (Panel a, c, e, g) Mean event-related time-frequency power (a: delta; c: theta, e: 

alpha; g: beta) of each participant averaged over the significant electrodes and time points for 

correct and error trials. Each circle represents one participant. (Panel b, d, f, h) Time course 

of grand-average event-related time-frequency power (b: delta; d: theta, f: alpha; h: beta) of 

participants averaged over the marginally significant electrodes for correct (red line) and 

error (black line) trials. Shaded areas represent ± standard error of the mean (SEM) and the 

gray box represents the significant time window. 
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Figure 3. (Panel a and d) Mean event-related theta (panel a) and beta (panel d) power of each 

participant in the OCD group and the HC group averaged over the significant electrodes and 

time points for error trials. Each circle represents one participant (Panel b and e) Time course 

of grand-average event-related theta (panel b) and beta (panel e) power averaged over the 

significant electrodes for error trials in the OCD group (red line) and the HC group (black 

line). Shaded areas represent ± standard error of the mean (SEM); the gray box represents the 

significant time window. (Panel c and f) Topography of the mean difference between groups 

in event-related theta (panel c) and beta (panel f) power (dB; OCD group minus HC group) 

averaged over the significant time points for error trials.   **p < .01. 

 


