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NEW REGULARITY RESULTS FOR SCALAR CONSERVATION
LAWS, AND APPLICATIONS TO A SOURCE-DESTINATION

MODEL FOR TRAFFIC FLOWS ON NETWORKS\ast 
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Abstract. We focus on entropy admissible solutions of scalar conservation laws in one space
dimension and establish new regularity results with respect to time. First, we assume that the flux
function f is strictly convex and show that, for every x \in \BbbR , the total variation of the composite
function f \circ u(\cdot , x) is controlled by the total variation of the initial datum. Next, we assume that
f is monotone and, under no convexity assumption, we show that, for every x, the total variation
of the left and the right trace u(\cdot , x\pm ) is controlled by the total variation of the initial datum. We
also exhibit a counterexample showing that in the first result the total variation bound does not
extend to the function u, or equivalently that in the second result we cannot drop the monotonicity
assumption. We then discuss applications to a source-destination model for traffic flows on road
networks. We introduce a new approach, based on the analysis of transport equations with irregular
coefficients, and, under the assumption that the network only contains so-called T-junctions, we
establish existence and uniqueness results for merely bounded data in the class of solutions where
the traffic is not congested. Our assumptions on the network and the traffic congestion are basically
necessary to obtain well-posedness in view of a counterexample due to Bressan and Yu. We also
establish stability and propagation of BV regularity, and this is again interesting in view of recent
counterexamples.
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destination model, multipath approach, traffic models

AMS subject classification. 35L65

DOI. 10.1137/21M1434283

1. Introduction and main results. We organize the introduction into two
main parts: in the first one we discuss the regularity results, in the second one the
applications to a traffic model. We conclude the introduction by providing the paper
outline and recalling the main notation used in the paper.

1.1. Time regularity results for scalar conservation laws. We consider a
scalar conservation law in one space dimension,

(1.1) \partial tu+ \partial x[f(u)] = 0,

where f \in C2(\BbbR ), and for the time being we focus on the Cauchy problem obtained
by coupling (1.1) with the initial datum

(1.2) u(0, \cdot ) = u0.

The milestone paper by Kru\v zkov [33] establishes existence and uniqueness results for
so-called entropy admissible solutions of the Cauchy problem (1.1), (1.2). It also
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3020 SIMONE DOVETTA, ELIO MARCONI, AND LAURA V. SPINOLO

establishes propagation of bounded total variation (BV ) regularity: if u0 \in BV (\BbbR ),
then the entropy admissible solution u satisfies u \in L\infty (\BbbR +;BV (\BbbR )) and by using
the equation this yields u \in BV (]0, T [\times \BbbR ) for every T > 0. Since the pioneering work
of Ole\u {\i}nik [37], the investigation of the regularity properties of entropy admissible
solutions has received considerable attention: here we only refer for an overview to
the book by Dafermos [23], to the recent contributions [4, 10, 11, 21, 32, 36], and to
the references therein.

Our first regularity result establishes a uniform control on the total variation in
time of the flux function w := f \circ u evaluated at any fixed x \in \BbbR . Despite the fact
that the set \{ (t, y) : y = x\} \subseteq \BbbR 2 is negligible, the function w(\cdot , x) is well defined
owing to [23, Lemma 1.3.3]; see also Lemma 2.1 and Remark 2.2 in the following.

Theorem 1.1. Fix f \in C2(\BbbR ) with f \prime \prime \leq 0 or f \prime \prime \geq 0 and assume u0 \in BV (\BbbR ).
Let u be the entropy admissible solution of the Cauchy problem (1.1), (1.2) and set
w := f \circ u; then

(1.3) TotVarw(\cdot , x) \leq C
\bigl( 
TotVaru0, \| f \prime \| L\infty 

\bigr) 
for every x \in \BbbR .

In the previous expression, we have set w0 := f \circ u0 and \| f \prime \| L\infty :=
maxu\in [ess inf u0,ess supu0] | f \prime (u)| .

Note that, in (1.3), C(TotVaru0, \| f \prime \| L\infty ) denotes a constant only depending on
TotVaru0 and on the Lipschitz constant \| f \prime \| L\infty and in particular one can take

C
\bigl( 
TotVaru0, \| f \prime \| L\infty 

\bigr) 
=

5

2
\| f \prime \| L\infty TotVaru0

in formula (1.3). Note furthermore that, in general, we cannot control the left-hand
side of (1.3) with TotVarw0; see Remark 3.3 for a counterexample and some further
considerations. Note furthermore that in section 4.3 we exhibit a counterexample
showing that, under the same assumptions as in Theorem 1.1, the total variation of
u(\cdot , x), or more precisely of the left and right traces u(\cdot , x\pm ), can blow up in finite
time. However, the next result shows that one can establish a uniform control on the
total variation of the entropy admissible solution provided the function f is monotone.

Proposition 1.2. Fix f \in C2(\BbbR ) and u0 \in BV (\BbbR ). Assume moreover that
f \prime \geq 0 or f \prime \leq 0 on the interval [ess inf u0, ess supu0]. Then the entropy solution of
the Cauchy problem (1.1),(1.2) satisfies

(1.4) TotVaru(\cdot , x\pm ) \leq TotVaru0 for every x \in \BbbR .

In the above expression, u(\cdot , x\pm ) denote the right and left traces of u at y = x.

Note that since u \in BV (]0, T [\times \BbbR ) for every T > 0, then the traces u(\cdot , x\pm ) are
well defined owing to the general theory of BV functions; see [5]. Note furthermore
that in the statement of Proposition 1.2 we do not impose any concavity or convexity
assumption on f . Also, the counterexample in section 4.3 shows that the monotonicity
assumption in the statement of Proposition 1.2 cannot be dropped, even in the case of
a convex flux. Finally, we would like to quote [7, Lemma 4.6], which can be regarded as
a discrete version of Proposition 1.2. Note that there are several possible extensions
of Theorem 1.1 and Proposition 1.2 to initial-boundary value problems and in the
following we will see one of them in Corollary 4.2.
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REGULARITY FOR CONSERVATION LAWS AND APPLICATIONS 3021

1.2. Applications to a multipath model for traffic flows on road net-
works. The use of conservation laws in the macroscopic modeling of vehicular and
pedestrian traffic started with the works by Lighthill, Whitham, and Richards [35, 40]
and has since then flourished: we refer to [9, 13, 26] for an extended overview. In par-
ticular, since the paper by Holden and Risebro [31], several works have been devoted
to the study of conservation laws models on road networks. In this framework, one
of the main challenges is describing the behavior of the drivers at road junctions; see,
for instance, the analysis and the discussion in [14, 18, 26, 31].

In the present work we focus on the multipath approach to a source-destination
model for traffic flows on road networks. We refer to [15, 26, 28] for an extended
discussion on source-destination models, but in a nutshell the very basic feature of
these models is that drivers are divided into several populations depending on the
path they follow on the road network. On each road, the total car density is governed
by a scalar conservation law as in the classical Lighthill--Whitham--Richards (LWR)
model, whereas the rate of cars following a given path satisfies a transport equation
where the coefficient depends on the solution of the conservation law. In [15, 28] the
model was approached by relying on wave front--tracking techniques and hence one
of the main points in the analyis was the solution of the so-called Riemann problems
at road junctions, in the same spirit as in [18, 29]. In particular, in [28] Garavello
and Piccoli establish existence of a suitable notion of solution provided the data are
a small BV perturbation of an equilibrium and under further technical assumptions.
In [15] Bressan and Yu, among other things, exhibit some counterexamples that we
comment upon later.

In the present work we focus on the same multipath approach to the source-
destination model as in [16, 30]. In this approach, one focuses on paths (each of
them followed by a population of drivers) rather than on roads. Junctions apparently
disappear or, more correctly, are hidden in the fact that the equation governing the
evolution of the total car density is discontinuous at each junction. In [16] Briani
and Cristiani regard the multipath model as a system of conservation laws with dis-
continuous fluxes and discuss the theoretical properties of a related Godunov-type
numerical scheme. In the present work we approach the multipath model by relying
on the theory of transport equations with low regularity coefficients. This allows us
to provide a simple and neat formulation of the problem and in particular of the
boundary conditions in a very weak L\infty framework. By relying on results obtained in
the companion paper [25], we establish existence and uniqueness results for L\infty data
under the assumptions that the network only contains T-junctions, that is, junctions
with only one incoming road, and that the traffic is not congested. These assumptions
are obviously restrictive, but basically necessary to obtain well-posedness in view of
a counterexample due to Bressan and Yu [15]. More precisely, [15, Example 3] in-
volves a simple network consisting of two incoming and two outgoing roads where the
source-destination model has two distinct solutions, one where the traffic is congested
and one where it is not. This shows that uniqueness can be violated if we do not
require the condition that the traffic is not congested. In the present work, we focus
on a network only containing T-junctions because in this way we obtain that, at every
junction, the incoming car flux can be always absorbed by the outgoing roads. This
implies that if the traffic is not congested at t = 0, then it remains not congested and
no backward propagating queue is created. See also [27] for another recent work where
the authors restrict to T-junctions. We remark in passing that we are very confident
that our analysis could be extended to other cases where the condition that the traffic
is not congested is propagated and no backward propagating queue is created (one
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3022 SIMONE DOVETTA, ELIO MARCONI, AND LAURA V. SPINOLO

Fig. 1. Example of a road network involving T-junctions only. The network has 15 roads, 1
source, 10 destinations, and 10 paths (two of them highlighted in different colors).

could think, for instance, of cases where incoming and outgoing roads have different
maximal densities). In the present work we also establish propagation of BV regu-
larity and stability, and these results are again interesting in view of counterexamples
in [15] that we discuss in the following.

We now provide a detailed description of the multipath approach. To simplify
the exposition, we directly focus on the case of a network only containing T-junctions
like the one in Figure 1, but this introductory part and Definition 1.3 extend to more
general networks. Our network consists of a collection of h roads I1, . . . , Ih, each of
them parameterized by a bounded interval1 and running from a junction point (or
from the source) to another (or to a destination). We also work with the m paths
P1, . . . , Pm: each of them is a collection of consecutive roads starting from the source
and ending in a destination. Very loosely speaking, the basic idea underpinning the
model is that on each road the total car density is modeled by the entropy admissible
solution of a conservation law as in the classical LWR model. The percentage of
cars following a given path is instead described by a transport equation where the
coefficient on each road composing the path depends on the total car density on that
specific road. The coefficients are therefore fairly irregular (the best regularity one can
hope for is BV regularity) and, in particular, the classical method of characteristics
does not apply and one has to rely on more advanced techniques to establish well-
posedness and other properties.

To discuss the technical details, we fix a time interval [0, T ] and for every i =
1, . . . , h, we denote by \rho i the total car density on the road Ii and as in the classical
LWR model we assume that \rho i is an entropy admissible solution of the conservation
law

(1.5) \partial t\rho i + \partial x[v(\rho i)\rho i] = 0 on ]0, T [\times Ii.

In the previous expression, the velocity function v satisfies

(1.6) v \in C2(\BbbR ), v(\rho max) = 0, v \geq 0 on [0, \rho max].

1Our analysis straightforwardly extends to the case where the roads can have infinite length.
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REGULARITY FOR CONSERVATION LAWS AND APPLICATIONS 3023

Here the constant \rho max > 0 denotes the maximum possible car density, corresponding
to bumper-to-bumper packing. The flux function satisfies

(1.7) g(z) := v(z)z, g\prime > 0 on ]0, \rho \ast [, g\prime \leq 0 on ]\rho \ast , \rho max[,

where the density \rho \ast < \rho max denotes the transition between free and congested traffic.
We remark in passing that we are not making the assumption that g is concave. We
denote by \theta 1, . . . , \theta m the traffic-type functions, that is, for every k = 1, . . . ,m the
function \theta k represents the fraction of cars following the path Pk. It is governed by
the equation

(1.8) \partial t[rk\theta k] + \partial x[v(rk)rk\theta k] = 0 on ]0, T [\times Pk,

where

(1.9) rk = \rho i a.e. on ]0, T [\times Ii for every i such that Ii \subseteq Pk,

that is, rk is obtained by patching together the \rho i's. Note that by combining (1.5),
(1.8), and (1.9) we formally obtain

(1.10) \partial t\theta k + v(rk)\partial x\theta k = 0,

which is a transport equation. Note, however, that, in view of the general theory of
conservation laws [23], the best regularity one can hope for is rk \in BV (]0, T [\times Pk)
and in this framework the product v(rk)\partial x\theta k is highly ill defined since in general \partial x\theta k
is only a distribution. For every i = 1, . . . , h and k = 1, . . . ,m, we fix \rho i0 \in L\infty (Ii)
and \theta k0 \in L\infty (Pk) and we augment (1.5) and (1.8) with the initial conditions

(1.11) \rho i(0, \cdot ) = \rho i0, 0 \leq \rho i0 \leq \rho max a.e. on Ii

and

(1.12) \theta k(0, \cdot ) = \theta k0 a.e. on Pk.

Since we are focusing on a network only containing T-junctions, all the paths have
the same origin a and start with the same road I1. We fix \=\rho \in L\infty (]0, T [) and impose

(1.13) \rho 1(\cdot , a) = \=\rho , 0 \leq \=\rho \leq \rho max, a.e. on ]0, T [.

The above datum is attained in the sense of Bardos, Leroux, and N\'ed\'elec [8]; see the
discussion in section 2.3. For every k = 1, . . . ,m, we fix \=\theta k \in L\infty (\BbbR ) and we impose
the boundary condition

(1.14) \theta k(\cdot , a) = \=\theta k.

The above datum is attained in the sense of the distributional traces as in [20]; see
Definition 5.1. To conclude, we recall that \theta k represents the fraction of cars following
the path Pk and hence the physical range is
(1.15)

0 \leq \theta k0 \leq 1 a.e. on Pk \forall k = 1, . . . ,m,
\sum 

k:Ii\subseteq Pk

\theta k0 = 1 a.e. on Ii \forall i = 1, . . . , h

and

(1.16) 0 \leq \=\theta k \leq 1 a.e. on ] 0, T [ \forall k = 1, . . . ,m,

m\sum 
k=1

\=\theta k = 1 a.e. on ]0, T [.

We now provide the definition of a distributional solution of the multipath model: we
first give the technical definition and then informally discuss some heuristics.
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Definition 1.3. For every i = 1, . . . , h, k = 1, . . . ,m, fix the data \rho i0 \in L\infty (Ii),
\theta k0 \in L\infty (Pk), \=\rho , \=\theta k \in L\infty (]0, T [) and assume that \=\theta k0 and \=\theta k satisfy (1.15) and (1.16),
respectively. A distributional solution of the multipath model is a family of functions
\rho i \in L\infty (]0, T [\times Ii), \theta k \in L\infty (]0, T [\times Pk), i = 1, . . . , h, and k = 1, . . . ,m, such that

(i) for every i = 1, . . . , h, \rho i is an entropy admissible solution of (1.5), (1.11);
also, \rho 1 is an entropy admissible solution of (1.5), (1.11), (1.13), in the sense
of [8];

(ii) (1.9) holds true (that is rk is obtained by patching together the \rho i's);
(iii) \theta k is a distributional solution of the initial-boundary value problem (1.8),

(1.12), (1.14), in the sense of Definition 5.1. Also, it satisfies

(1.17) for every k = 1, . . . ,m, 0 \leq \rho i\theta k \leq \rho i,

and

(1.18) for every i = 1, . . . , h, \rho i
\sum 

k: Ii\subseteq Pk

\theta k = \rho i

a.e. on ]0, T [\times Ii.
Some remarks are here in order. First, in section 2.3 we recall the definition of

entropy admissible solution of (1.5), (1.11) and of (1.5), (1.11), (1.13). Second, the
heuristic meaning of (1.17) and (1.18) is

0 \leq \theta k \leq 1 a.e. on \BbbR + \times Pk,

m\sum 
k: Ii\subseteq Pk

\theta k = 1 a.e. on \BbbR + \times Ii,

but owing to (1.8) \theta k is not uniquely defined on the set where rk vanishes and this
is why (1.17) and (1.18) are the correct formulation. Third, providing the formal
definition of (1.8), (1.12), (1.14) requires some preliminary considerations (see section
2.5) since the functions \theta k have in general fairly low regularity (they are just L\infty 

functions) and hence their values at x = a, i.e., their values on a negligible set,
are a priori not well-defined. However, the heuristic idea is that \theta k is a solution of
the transport equation (1.10) satisfying the initial and boundary conditions (1.12)
and (1.14). To conclude, we point out that a key property of the source-destination
model is the fact that requiring that (1.10) or, more correctly, (1.8) is satisfied on the
whole path amounts to imposing flux conservation at junctions; see Lemma 5.2.

We can now state our well-posedness result. We explicitly point out that it is
an existence and uniqueness result, whereas several other results concerning traffic
models on road networks only establish existence; see, for instance, [18, 27, 28].

Theorem 1.4. Fix T > 0 and assume that v and g satisfy (1.6) and (1.7), respec-
tively. For every i = 1, . . . , h, k = 1, . . . ,m, fix the initial data \rho i0 \in L\infty (Ii), \theta k0 \in 
L\infty (Pk) and the boundary data \=\rho , \=\theta k \in L\infty (]0, T [). Assume that \=\theta k0 and \=\theta k sat-
isfy (1.15) and (1.16), respectively, and that 0 \leq \=\rho \leq \rho \ast , 0 \leq \rho i0 \leq \rho \ast . Then there is
a distributional solution of the multipath model such that 0 \leq \rho i \leq \rho \ast for every i =
1, . . . , h. Also, the solution is unique in the following sense: if \rho 1, . . . , \rho h, \theta 1, . . . , \theta m
and \rho \lozenge 1 , . . . , \rho 

\lozenge 
h , \theta 

\lozenge 
1 , . . . , \theta 

\lozenge 
m are two solutions such that 0 \leq \rho i, \rho 

\lozenge 
i \leq \rho \ast for every

i = 1, . . . , h, then

\rho i = \rho \lozenge i a.e. on ]0, T [\times Ii for every i = 1, . . . , h

and

(1.19) \rho i\theta k = \rho i\theta 
\lozenge 
k a.e. on ]0, T [\times Ii for every i : Ii \subseteq Pk and every k = 1, . . . ,m.
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Some remarks are again in order. First, the uniqueness result given by Theo-
rem 1.4 is the best one can hope for since, as pointed out before, (1.8) does not
provide any information on \theta k on the set where rk vanishes. Second, as mentioned
before, Lemma 5.2 states that distributional solutions of the multipath model satisfy
flux conservation at junctions. However, it is well-known that the flux conservation
does not suffice to select a unique solution; see the discussion in [26]. The requirement
that 0 \leq \rho i \leq \rho \ast , i.e., that the traffic is not congested, can therefore be viewed as an
admissibility criterion, which is reasonable in our framework: since the network only
contains T-junctions, if the traffic is not congested at the initial time and at the source,
one expects that it never gets congested. The next result establishes propagation of
BV regularity.

Theorem 1.5. Under the same assumptions as in the statement of Theorem 1.4,
assume furthermore that, for every i = 1, . . . , h and k = 1, . . . ,m, \rho i0 \in BV (Ii), \theta k0 \in 
BV (Pk), \=\rho , \=\theta k \in BV (]0, T [). Also, assume that, for some constant \varepsilon > 0,

\varepsilon \leq \rho i0, \=\rho \leq \rho \ast  - \varepsilon , \varepsilon \leq \theta k0, \=\theta k \leq 1, for every i = 1, . . . , h and k = 1, . . . ,m.

Then the distributional solution \rho 1, . . . , \rho h, \theta 1, . . . , \theta m of the source destination model
satisfies \rho i \in BV (]0, T [\times Ii) and \theta k \in BV (]0, T [\times Pk) for every i = 1, . . . , h and
k = 1, . . . ,m.

Note that, under the assumptions of Theorem 1.5, rk is bounded away from 0 and
hence the function \theta k is uniquely determined in view of the uniqueness result given
in Theorem 1.4. Also, by carefully tracking the proof one could establish, if needed,
an explicit bound on the total variation of \rho i and \theta k, i = 1, . . . , h, k = 1, . . . ,m, in
terms of the total variation of the data and \varepsilon . In particular, on the road I1 one has

TotVar \rho 1(t, \cdot ) \leq TotVar \rho 10 +TotVar \=\rho + | \rho 10(a+) - \=\rho (0+)| for a.e. t \geq 0,

TotVar \theta k(t, \cdot )| I1 \leq TotVar \theta k0| I1 +TotVar \=\theta k + | \theta k0(a+) - \=\theta k(0
+)| 

for a.e. t \geq 0 and k = 1, . . . ,m.

(1.20)

In the previous expression, \theta k0(a
+) and \=\theta k(0

+) denote the right limits of the functions
\theta k0 and \=\theta k at x = a and t = 0, respectively. They exist because the functions have
bounded total variation. The explicit estimates on the total variation on the roads
I2, . . . , Ih have a fairly involved expression which we do not report here. We stress,
however, that contrary to (1.20), these estimates depend on the parameter \varepsilon and their
right-hand side blows up when \varepsilon \rightarrow 0+.

Finally, it is interesting to compare Theorem 1.5 with a counterexample in [15].
More precisely, [15, Example 4] shows that, on a general network and for initial
densities that attain the value 0, one can have finite time blow-up of the total variation
even if the data have arbitrarily small total variation. To conclude, we establish the
L1-stability of the distributional solutions of the source-destination model with respect
to perturbations in the data.

Corollary 1.6. Fix T > 0 and assume that v and g satisfy (1.6) and (1.7),
respectively. For every i = 1, . . . , h, k = 1, . . . ,m, fix some sequences of initial data
\{ \rho ni0\} n\in \BbbN \subseteq L\infty (Ii), \{ \theta nk0\} n\in \BbbN \subseteq L\infty (Pk) and of boundary data \{ \=\rho n\} n\in \BbbN , \{ \=\theta nk\} n\in \BbbN \subseteq 
L\infty (]0, T [) in such a way that, for every n, 0 \leq \rho ni0 \leq \rho \ast , 0 \leq \=\rho n \leq \rho \ast and (1.15)
and (1.16) are satisfied. Also, assume that
(1.21)
\rho ni0 \rightarrow \rho i0 in L1(Ii), \theta 

n
k0 \rightarrow \theta k0 in L1(Pk), \=\rho n \rightarrow \=\rho in L1(]0, T [), \=\theta nk \rightarrow \=\theta k in L1(]0, T [)
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for every i = 1, . . . , h, k = 1, . . . ,m, as n\rightarrow +\infty . Let \{ \rho ni , \theta nk\} n\in \BbbN denote a sequence
of distributional solutions of the source-destination model with data \rho ni0, \theta 

n
k0, \=\rho 

n, \=\theta nk ,
i = 1, . . . , h, k = 1, . . . ,m. Then

\rho ni \rightarrow \rho i in L
1(]0, T [\times Ii), rnk \theta 

n
k \rightarrow rk\theta n in L1(]0, T [\times Pk)(1.22)

for every i = 1, . . . , h and k = 1, . . . ,m.

In the previous expression, \rho 1, . . . , \rho h, \theta 1, . . . , \theta m is the distributional solution of the
source-destination model with data \rho i0, \theta k0, \=\rho , \=\theta k, i = 1, . . . , h, k = 1, . . . ,m, and rnk ,
rk are obtained by patching together the \rho ni's and the \rho i's, respectively; see (1.9).

Again, it is interesting to compare Corollary 1.6 with a counterexample by Bres-
san and Yu. More precisely, Example 5 in [15] is concerned with a simple network
consisting of a single T-junction with an incoming road and two outgoing roads and
exhibits instability with respect to the weak\ast convergence. Note, however, that a key
point in the construction of [15, Example 5] is that the flux function in the incoming
and outgoing roads is not the same, whereas here we are assuming that it is the same
on every road. The source of instability in [15, Example 5] is the highly oscillatory
behavior of the functions \theta k at t = 0, which in the statement of Corollary 1.6 is ruled
out by strong convergence.

Outline. The exposition is organized as follows. In section 2 we review some
previous results that we need in the following. In section 3 we provide the proof of
Theorem 1.1. In section 4 we establish the proof of Proposition 1.2 and of Corollary 4.2
and we discuss the example of total variation blow-up. In section 5 we complete the
distributional formulation of the source-destination model and we establish the proof
of Theorem 1.4. In section 6 we give the proofs of Theorem 1.5 and Corollary 1.6.

Notation. For the reader's convenience, we collect here the main notation used
in the present paper. We denote by C(a1, . . . , a\ell ) a constant only depending on the
quantities a1, . . . , a\ell . Its precise value can vary from occurrence to occurrence.

General mathematical symbols.
\bullet a.e., for a.e.: almost everywhere, for almost every. Unless otherwise specified,
it means with respect to the standard Lebesgue measure;

\bullet BV : the space of bounded variation functions;
\bullet TotVar u: the total variation of the function u;
\bullet u(\cdot , x\pm ): the left and right traces of the function u \in BV (]0, T [\times \BbbR ) at y = x,
which are well defined owing to the general theory of BV functions (see [5]);

\bullet u\alpha , u\beta , also denoted by u(\cdot , \alpha +), u(\cdot , \beta  - ): the strong traces given by Theo-
rem 2.4;

\bullet Tr[br\theta ](\cdot , \alpha +), Tr[br\theta ](\cdot , \beta  - ): the distributional traces given by Lemma 2.11;
\bullet u(\alpha +), u(\beta  - ): the right limit of the function u \in BV (]\alpha , \beta [) at x = \alpha and
the left limit at x = \beta .

Symbols introduced in the present paper.
\bullet I1, . . . , Ih: the roads in the source-destination network;
\bullet P1, . . . , Pk: the paths in the source-destination network;
\bullet \rho i: the total car density on the road Ii;
\bullet v: the velocity function in (1.5);
\bullet \rho max: the maximum possibile car density on Ii (see (1.6));
\bullet g(\rho ) := \rho v(\rho ) (see (1.7));
\bullet \rho \ast : the threshold between free and congested traffic (see (1.7));
\bullet \theta k: the traffic-type function in (1.8);
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REGULARITY FOR CONSERVATION LAWS AND APPLICATIONS 3027

\bullet rk: the function obtained by patching together the \rho i's (see (1.9));
\bullet \rho i0, \theta k0: the initial data in (1.11) and (1.12);
\bullet \=\rho i, \=\theta k: the boundary data in (1.13) and (1.14).
\bullet d: the generic junction point. To simplify the notation, different junction
points are denoted by the same letter d.

2. Overview of previous results. In this section we collect some previous
results that we need in the following.

2.1. A regularity result for zero-divergence vector fields. We quote a
very special case of Lemma 1.3.3 in [23].

Lemma 2.1. Fix two (finite or infinite) intervals ]0, T [, ]a, b[\subseteq \BbbR . Assume that
u, z \in L\infty (]0, T [\times ]a, b[) satisfy \partial tu+\partial xz = 0 in the sense of distributions on ]0, T [\times ]a, b[.
Then u has a representative such that the map ]0, T [\rightarrow L\infty (]a, b[), t \mapsto \rightarrow u(t, \cdot ) is con-
tinuous with respect to the weak\ast topology. Also, z has a representative such that the
map ]a, b[\rightarrow L\infty (]0, T [), x \mapsto \rightarrow z(\cdot , x) is continuous with respect to the weak\ast topology.

Remark 2.2. In the following, we always use the continuous representative of the
maps t \mapsto \rightarrow u(t, \cdot ) and x \mapsto \rightarrow z(\cdot , x). In this way, the values u(t, \cdot ) and z(\cdot , x) are well
defined for every t and x, respectively.

2.2. Continuity of traces. By combining [5, Theorem 3.88] with the observa-
tion that translations are continuous with respect to the strict convergence in BV we
get the following result.

Lemma 2.3. Fix T > 0, assume that u \in L\infty \cap BV (]0, T [\times \BbbR ) and fix a sequence
\{ xn\} n\in \BbbN \subseteq \BbbR , xn \leq \=x such that xn \uparrow \=x \in \BbbR as n \rightarrow +\infty . Then u(\cdot , x\pm n ) converges in
L1(]0, T [) to u(\cdot , \=x - ). If xn \geq \=x and xn \downarrow \=x, then u(\cdot , x\pm n ) converges in L1(]0, T [) to
u(\cdot , \=x+).

2.3. Entropy admissible solutions of initial-boundary value problems
for scalar conservation laws. We now discuss the definition of entropy admissible
solution of the initial-boundary value problem obtained augmenting the conservation
law (1.1) with the initial and boundary conditions

(2.1) u(0, \cdot ) = u0, u(\cdot , \alpha ) = \=u, u(\cdot , \beta ) = u.

We restrict to the one-dimensional case because it is the one we need in the following;
however, several results we quote extend to the multidimensional setting. See the
book by Serre [43] for a general discussion on initial-boundary value problems for
conservation laws. We first quote (a particular case of) a result due to Kwon and
Vasseur [34, Theorem 1] and Panov [39, Theorem 1.1].

Theorem 2.4. Fix T > 0, a bounded interval ]\alpha , \beta [\subseteq \BbbR , and a flux function
f \in C2(\BbbR ). Assume that u \in L\infty (]0, T [\times ]\alpha , \beta [) satisfies

� T

0

� \beta 

\alpha 

\partial t\phi | u - c| + \partial x\phi sign(u - c)[f(u) - f(c)]dxdt \geq 0(2.2)

for every \phi \in C\infty 
c (]\alpha , \beta [\times ]0, T [), \phi \geq 0, c \in \BbbR ;

then there are u\alpha , u\beta \in L\infty (]0, T [) such that
(2.3)

ess lim
y\rightarrow \alpha +

� T

0

| h(u)(\cdot , y) - h(u\alpha )| dt = 0 and ess lim
y\rightarrow \beta  - 

� T

0

| h(u)(\cdot , y) - h(u\beta )| dt = 0

for h(u) := f(u) and h(u) := sign(u - c)[f(u) - f(c)], c \in \BbbR .
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3028 SIMONE DOVETTA, ELIO MARCONI, AND LAURA V. SPINOLO

In the following we will refer to f(u\alpha ) and f(u\beta ) as the strong traces of f(u);
see also Remark 2.12. Also, we will sometimes denote them by f(u)(\cdot , \alpha +) and
f(u)(\cdot , \beta  - ), respectively. Note that in the previous result the regularity of u is only
u \in L\infty (]0, T [\times ]\alpha , \beta [) and that in general one cannot replace h with the identity
in (2.3). However, this is instead possible if u \in BV (]\alpha , \beta [\times ]0, T [) owing to the
general theory of BV functions (see [5]) or when f \prime \prime > 0 or f \prime \prime < 0 (see [44]).

Definition 2.5. Fix f \in C2(\BbbR ), \alpha , \beta \in \BbbR , T > 0, \=u, u \in L\infty (]0, T [), and u0 \in 
L\infty (]\alpha , \beta [). We say that u \in L\infty (]0, T [\times ]\alpha , \beta [) is an entropy admissible solution of
the initial-boundary value problem (1.1), (2.1) if

� T

0

� \beta 

\alpha 

\partial t\varphi | u - c| + \partial x\varphi sign(u - c)[f(u) - f(c)]dxdt+

� \beta 

\alpha 

\varphi (0, \cdot )| u0  - c| dx

+

� T

0

\varphi (\cdot , \alpha )sign(\=u - c)[f(u\alpha ) - f(c)]dt - 
� T

0

\varphi (\cdot , \beta )sign(u - c)[f(u\beta ) - f(c)]dt \geq 0

(2.4)

for every c \in \BbbR and \varphi \in C\infty 
c (] - \infty , T [\times \BbbR ) such that \varphi \geq 0.

The above definition should be interpreted in the following sense: if (2.4) holds
true, then in particular (2.2) is satisfied, and hence by Theorem 2.4 the values f(u\alpha )
and f(u\beta ) are well defined and satisfy (2.3). Note that an alternative approach
to provide a definition of entropy admissible solution of (1.1), (2.1) is discussed by
Otto [38]. See also the discussion in [41].

The analysis in [8] combined with Theorem 2.4 yields existence and uniqueness
results for the entropy admissible solution of (1.1), (2.1). Also, the entropy admissible
solution satisfies the maximum principle: if \kappa \leq \=u, u, u0 \leq K a.e. for some constants
\kappa ,K \in \BbbR , then

(2.5) \kappa \leq u \leq K a.e. on ]0, T [\times ]\alpha , \beta [.

Also, if \=u, u \in BV (]0, T [) and u0 \in BV (]\alpha , \beta [), then

TotVar u(t, \cdot ) \leq TotVar u0+TotVar \=u+TotVar u+| u0(\alpha +) - \=u(0+)| +| u0(\beta  - ) - u(0+)| 

for every t > 0. In the previous expression, u0(\alpha 
+) and u0(\beta 

 - ) denote the right limit
of the function u0 at x = \alpha and the left limit at x = \beta , respectively. They are well
defined since u0 \in BV (]\alpha , \beta [). We now focus on the case f \prime \geq 0, then to obtain a
well-posed problem it suffices to assign the data at t = 0 and x = \alpha , that is,

(2.6) u(0, \cdot ) = u0, u(\cdot , \alpha ) = \=u.

More precisely, we have the following.

Proposition 2.6. Fix T > 0, a bounded interval ]\alpha , \beta [\subseteq \BbbR , and a flux func-
tion f \in C2(\BbbR ). Assume furthermore that f \prime \geq 0 on [min\{ ess inf \=u, ess inf u0\} ,
max\{ ess sup \=u, ess supu0\} ]. Then there is a unique entropy admissible solution of the
initial-boundary value problem (1.1), (2.6) such that f \prime (u) \geq 0 a.e. on ]0, T [\times ]\alpha , \beta [. In
other words, there is a unique function u \in L\infty (]0, T [\times ]\alpha , \beta ) such that f \prime (u) \geq 0 and

� T

0

� \beta 

\alpha 

\partial t\varphi | u - c| +\partial x\varphi sign(u - c)[f(u) - f(c)]dxdt+

� \beta 

\alpha 

\varphi (0, \cdot )| u0  - c| dx

+

� T

0

\varphi (\cdot , \alpha )sign(\=u - c)[f(u\alpha ) - f(c)]dt \geq 0

(2.7)

for every c \in \BbbR and \varphi \in C\infty 
c (] - \infty , T [\times ] - \infty , \beta [) such that \varphi \geq 0.

D
ow

nl
oa

de
d 

09
/1

6/
22

 to
 1

47
.1

62
.1

14
.1

38
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

REGULARITY FOR CONSERVATION LAWS AND APPLICATIONS 3029

Note that, under the same assumptions as in Proposition 2.6, if \=u \in BV (]0, T [)
and u0 \in BV (]\alpha , \beta [), then

(2.8) TotVar u(t, \cdot ) \leq TotVar u0 +TotVar \=u+ | u0(\alpha +) - \=u(0+)| for every t \geq 0.

The following result is well known and we provide the proof for the sake of complete-
ness.

Proposition 2.7. Fix T > 0, a bounded interval ]\alpha , \beta [\subseteq \BbbR , and a flux func-
tion f \in C2(\BbbR ). Assume furthermore that f \prime > 0 on [min\{ ess inf \=u, ess inf u0\} ,
max\{ ess sup \=u, ess supu0\} ] and that u \in L\infty (]0, T [\times ]\alpha , \beta [) satisfies (2.7). Then u\alpha =
\=u a.e. on ]0, T [.

Proof. We fix \lambda \in C\infty 
c (]0, T [) and a family of functions \omega \varepsilon \in C\infty 

c (\BbbR ) such that
(2.9)
\omega \varepsilon (x) = 1 if \alpha  - 1<x<\alpha + \varepsilon , \omega \varepsilon (x) = 0 if x>\alpha +2\varepsilon , \omega \prime 

\varepsilon (x) \leq 0 for every x \in ]\alpha  - 1,+\infty [.

We plug the test function \varphi \varepsilon (t, x) := \lambda (t)\omega \varepsilon (x) into (2.7) and let \varepsilon \rightarrow 0+. By relying
on Lemma 2.4 we obtain

� T

0

\lambda [sign(\=u - c) - sign(u\alpha  - c)][f(u\alpha ) - f(c)]dt \geq 0

and by the arbitrariness of \lambda this implies that [sign(\=u - c) - sign(u\alpha  - c)][f(u\alpha ) - f(c)] \geq 
0 a.e. on ]0, T [. By relying on a case-by-case analysis we can then conclude that u\alpha = \=u
a.e. on ]0, T [.

In the following we also need the next result and again we provide a sketch of the
proof for the sake of completeness.

Lemma 2.8. Under the same assumptions as in the statement of Proposition 2.6,
assume that \{ u0n\} \subseteq L\infty (]\alpha , \beta [) and \{ \=un\} \subseteq L\infty (]0, T [) are two sequences of initial
and boundary data such that

f \prime (u0n) \geq 0 a.e. on ]\alpha , \beta [, f \prime (\=un) \geq 0 a.e. on ]0, T [, for every n \in \BbbN 

and

(2.10) u0n \rightarrow u0 in L1(]\alpha , \beta [), \=un \rightarrow \=u in L1(]0, T [).

Let \{ f(u\beta n)\} be the sequences of the traces of the fluxes as in Theorem 2.4; then
f(u\beta n) converges to f(u\beta ) in L

1(]0, T [).

Sketch of the proof of Lemma 2.8. Let u be the entropy admissible solution of
the initial-boundary value problem (1.1), (2.6). By relying on (2.7) and on a suitable
choice of the test functions (in the same spirit as the one in the proof of Proposi-
tion 2.7) and by recalling Theorem 2.4 we arrive at

� T

0

sign(u\beta  - c)[f(u\beta ) - f(c)]\underbrace{}  \underbrace{}  
=| f(u\beta ) - f(c)| since f \prime \geq 0

dt

\leq 
� \beta 

\alpha 

| u0  - c| dx+

� T

0

[sign(\=u - c) - sign(u\alpha  - c)][f(u\alpha ) - f(c)]dt

\leq 
� \beta 

\alpha 

| u0  - c| dx+ 2

� T

0

| f(u\alpha ) - f(c)| dt.
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By using the celebrated doubling of variables method by Kru\v zkov [33] and recalling
that, by the same argument as in Proposition 2.7, f(u\alpha ) = f(\=u), f(u\alpha n) = f(\=un) we
arrive at

� T

0

| f(u\beta ) - f(u\beta n)| dt \leq 
� \beta 

\alpha 

| u0  - u0n| dx+ 2

� T

0

| f(u\alpha ) - f(\=un)| dt,

and owing to (2.10) this yields the convergence of f(u\beta n) to f(u\beta ).

By relying on the proof of Lemma 2.8 we also get the following result.

Lemma 2.9. Fix T > 0, a bounded interval ]\alpha , \beta [\subseteq \BbbR , and a flux function f \in 
C2(\BbbR ). Assume that u, v \in L\infty (]0, T [\times ]\alpha , \beta [) are two entropy admissible solutions in
the sense of Definition 2.5 and satisfy the inequality f \prime \geq 0 a.e. on
[min\{ ess inf v, ess inf u\} ,max\{ ess sup v, ess supu\} ]. Assume that u0 = v0 and f(\=u) =
f(\=v); then u = v a.e. on ]0, T [\times ]\alpha , \beta [.

To conclude, we assign the initial condition

(2.11) u(0, \cdot ) = u0

and, since for technical reasons we need it in the following, we give the definition of
entropy admissible solution of (1.1), (2.11).

Definition 2.10. Fix T > 0, an interval ]\alpha , \beta [\subseteq \BbbR , and a flux function f \in 
C2(\BbbR ). We say that u \in L\infty (]0, T [\times ]\alpha , \beta [) is an entropy admissible solution of (1.1),
(2.11) if

� T

0

� \beta 

\alpha 

\partial t\psi | u - c| + \partial x\psi sign(u - c)[f(u) - f(c)]dxdt+

� \beta 

\alpha 

\psi (0, \cdot )| u0  - c| dx \geq 0

(2.12)

for every \psi \in C\infty 
c (] - \infty , T [\times ]\alpha , \beta [) such that \psi \geq 0 and c \in \BbbR .

Needless to say, unless ]\alpha , \beta [= \BbbR , in general we do not expect that the entropy ad-
missible solution of (1.1), (2.11) is unique because we are not prescribing any boundary
condition.

2.4. Distributional traces for solutions of continuity equations. In the
following we quote a result that will enable us to give a meaning to the boundary
condition in (1.14). We refer to [3, 6, 17] for a general discussion about normal traces
for measure divergence vector fields. We now state a straighforward corollary of [20,
Lemma 3.3].

Lemma 2.11. Fix \alpha , \beta \in \BbbR , T > 0. Assume that r, b, \theta \in L\infty (]0, T [\times ]\alpha , \beta [) satisfy

(2.13)

� T

0

� \beta 

\alpha 

r\theta (\partial t\phi + b\partial x\phi )dxdt = 0 for every \phi \in C\infty 
c (]0, T [\times ]\alpha , \beta [).

Then there are unique functions Tr[br\theta ](\cdot , \alpha +),Tr[br\theta ](\cdot , \beta  - ) \in L\infty (\BbbR +), and [r\theta ]0 \in 
L\infty (]\alpha , \beta [) such that

� T

0

� \beta 

\alpha 

r\theta (\partial t\varphi + b\partial x\varphi )dxdt =

� T

0

\varphi Tr[br\theta ](\cdot , \alpha +)dt+

� T

0

\varphi Tr[br\theta ](\cdot , \beta  - )dt

 - 
� \beta 

\alpha 

[r\theta ]0\varphi (0, \cdot )dx, for every \varphi \in C\infty 
c (] - \infty , T [\times \BbbR ).

(2.14)
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Proof. We apply [20, Lemma 3.3] with w = r\theta and b in [20, Lemma 3.3] given by
br\theta in here and we point out that to establish [20, formula (3.6)] we do not use the
assumption that div b is a finite Radon measure.

Remark 2.12. From now on we refer to Tr[br\theta ](\cdot , \alpha +) and Tr[br\theta ](\cdot , \beta  - ) as distri-
butional traces, whereas we refer to the functions f(u\alpha ), f(u\beta ) given by Theorem 2.4
as strong traces. The reason is the following: the functions f(u\alpha ), f(u\beta ) are strong
traces in the sense that they are attained as strong limits in the L1 topology, whereas
Tr[br\theta ](\cdot , \alpha +) and Tr[br\theta ](\cdot , \beta  - ) are distributional traces and in general they are only
attained as limits in the weak\ast topology; see the discussion in [3]. Also, we recall
that in the following we will sometimes denote f(u\alpha ) and f(u\beta ) by f(u)(\cdot , \alpha +) and
f(u)(\cdot , \beta  - ), respectively.

The next result asserts that the two notions of traces coincide when they are both
defined.

Lemma 2.13. Fix \alpha , \beta \in \BbbR , T > 0, v \in C1(\BbbR ) and assume that \rho i \in L\infty 

(]0, T [\times ]\alpha , \beta [) satisfies (2.2) with u = \rho i, f(\rho i) = v(\rho i)\rho i; then

(2.15) v(\rho i)\rho i(\cdot , \alpha +) =  - Tr[v(\rho i)\rho i](\cdot , \alpha +), v(\rho i)\rho i(\cdot , \beta  - ) = Tr[v(\rho i)\rho i](\cdot , \beta  - ).

Note that the distributional traces Tr[v(\rho i)\rho i](\cdot , \alpha +) and Tr[v(\rho i)\rho i](\cdot , \beta  - ) are well
defined since by choosing c <  - \| \rho i\| L\infty and c > \| \rho i\| L\infty we deduce from (2.2) that
r = \rho i satisfies (2.13) with \theta = 1 and b = v(\rho i) and hence we can apply Lemma 2.11.

Proof of Lemma 2.13. We fix \varphi \in C\infty (]0, T [\times \BbbR ) and consider the family of test
functions \phi \varepsilon (t, x) := \varphi (t, x)[1  - \omega \varepsilon (x)][1  - \omega \varepsilon (\alpha + \beta  - x)], where \omega \varepsilon is the same as
in (2.9). We plug \phi \varepsilon into (2.13) where r = \rho i, \theta = 1, and b = v(\rho i) and then let
\varepsilon \rightarrow 0+. By using (2.3) we arrive at

� T

0

� \beta 

\alpha 

\rho i(\partial t\varphi + v(\rho i)\partial x\varphi )dxdt =  - 
� T

0

\varphi v(\rho i)\rho i(\cdot , \alpha +)dt+

� T

0

\varphi v(\rho i)\rho i(\cdot , \beta  - )dt

and by the arbitrariness of \varphi this yields (2.15).

The following result is well known and we provide the proof for the sake of com-
pleteness.

Lemma 2.14. Under the same assumptions as in Lemma 2.11, let d \in ]\alpha , \beta [. Then

(2.16) Tr[br\theta ](\cdot , d+) =  - Tr[br\theta ](\cdot , d - ).

In the above formula the functions Tr[br\theta ](\cdot , d+) and Tr[br\theta ](\cdot , d - ) are obtained
by applying Lemma 2.11 to the intervals ]d, \beta [ and ]\alpha , d[, respectively.

Proof. We fix \varphi \in C\infty 
c (] - \infty , T [\times \BbbR ); then

� T

0

� d

\alpha 

r\theta (\partial t\varphi + b\partial x\varphi )dxdt =

� T

0

\varphi Tr[br\theta ](\cdot , \alpha +)dt+

� T

0

\varphi Tr[br\theta ](\cdot , d - )dt - 
� d

\alpha 

[r\theta ]0\varphi (0, \cdot )dx

and
� T

0

� \beta 

d

r\theta (\partial t\varphi + b\partial x\varphi )dxdt =

� T

0

\varphi Tr[br\theta ](\cdot , d+)dt+
� T

0

\varphi Tr[br\theta ](\cdot , \beta  - )dt - 
� \beta 

d

[r\theta ]0\varphi (0, \cdot )dx.

By adding the above expressions, recalling (2.14), and using the arbitrariness of the
test function \varphi we arrive at (2.16).
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2.5. Well-posedness of the initial-boundary value problem for nearly
incompressible vector fields in one space dimension. We now quote some
results from [25] we need in the following. We first recall that b \in L\infty (]0, T [\times ]\alpha , \beta [) is
a nearly incompressible vector field if there is a function \rho \in L\infty (]0, T [\times ]\alpha , \beta [), \rho \geq 0,
such that \partial t\rho + \partial x[b\rho ] = 0. We refer to [24] for an extended discussion on (possibly
multidimensional) nearly incompressible vector fields. We assume that b \geq 0 and
consider the initial-boundary value problem

(2.17)

\biggl\{ 
\partial t[\rho \theta ] + \partial x[b\rho \theta ] = 0,
\theta (0, \cdot ) = \theta 0, \theta (\cdot , \alpha ) = \=\theta ,

where the boundary condition is attained in the sense of [25, Definition 2.7], that is,
by requiring that

(2.18) Tr[b\rho \theta ](\cdot , \alpha +) = \=\theta Tr[b\rho ](\cdot , \alpha +).

The above distributional traces are well defined owing to Lemma 2.11; see also the
discussion in [25, section 2.3]. By combining Theorem 1.2, Corollary 1.3, and Remark
6.2 in [25] we arrive at the following result.

Theorem 2.15. Fix T > 0 and a bounded from below interval ]\alpha , \beta [\subseteq \BbbR . Let
b \in L\infty (]0, T [\times ]\alpha , \beta [) be a nearly incompressible vector field with density \rho and as-
sume furthermore that b \geq 0. For every \theta 0 \in L\infty (]\alpha , \beta [) and \=\theta \in L\infty (]0, T [) there
is a distributional solution \theta \in L\infty (]0, T [\times ]\alpha , \beta [) of the initial-boundary value prob-
lem (2.17) satisfying

(2.19) \| \theta \| L\infty \leq max\{ \| \theta 0\| L\infty , \| \=\theta \| L\infty \} .

Also, the solution is unique in the following sense: if \theta a, \theta b \in L\infty (]0, T [\times ]\alpha , \beta [) are
two different solutions, then \rho \theta a = \rho \theta b a.e. on ]\alpha , \beta [\times ]0, T [. Finally, we have a
comparison principle: if \theta 01 \geq \theta 02 and \=\theta 1 \geq \=\theta 2, then the corresponding solutions
satisfy \rho \theta 1 \geq \rho \theta 2 a.e. on ]\alpha , \beta [\times ]0, T [.

Note that the uniqueness result in Theorem 2.15 is the best one can hope for
since the equation at the first line of (2.17) does not provide any information on \theta 
on the set where \rho vanishes. Concerning the regularity of the solution, by combining
Proposition 1.4 and Theorem 1.5 in [25] we get the following result.

Theorem 2.16. Under the same assumptions as in the statement of Theorem 2.15,
assume furthermore that \=\theta \in BV (]0, T [) and \theta 0 \in BV (]\alpha , \beta [). Then there is a solution
\theta of (2.17) such that \theta \in BV (]0, T [\times ]\alpha , \beta [) and

TotVar \theta (t, \cdot ) \leq TotVar \=\theta +TotVar \theta 0 + | \theta 0(\alpha +) - \=\theta (0+)| for a.e. t \in ]0, T [.

Also, for every x \in ]\alpha , \beta ] there is \~\theta x \in L\infty (]0, T [) such that

Tr[b\rho \theta ](\cdot , x) = Tr[b\rho ](\cdot , x)\~\theta x a.e. on ]0, T [,

TotVar \~\theta x \leq C(TotVar \theta 0,TotVar \=\theta , | \theta 0(\alpha +) - \=\theta (0+)| ).

In the above expression, \theta 0(\alpha 
+) and \=\theta (0+) denote the right limits of the functions

\theta 0 and \=\theta at x = \alpha and t = 0, respectively. They are well defined because the functions
are of bounded total variation by assumption.
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3. Proof of Theorem 1.1. We now provide the proof of Theorem 1.1. Through-
out the proof, we denote by u the entropy admissible solution of the Cauchy prob-
lem (1.1), (1.2) and use the notation w = f \circ u. The exposition is organized as follows.
In section 3.1 we establish some preliminary results and in section 3.2 we complete
the proof. We always focus on the case f \prime \prime \leq 0. The case f \prime \prime \geq 0 follows by recalling
that if u satisfies (1.1), then z(t, x) := u(t, - x) satisfies

\partial tz + \partial x[ - f(z)] = 0.

Also, without loss of regularity we can assume that f \prime \prime < 0. The general case f \prime \prime \leq 0
can be recovered by considering the sequence f\varepsilon (u) := f(u)  - \varepsilon u2 and then passing
to the \varepsilon \rightarrow 0+ limit by arguing as in Step 3D of section 3.2.

3.1. Preliminary results.

Lemma 3.1. Assume that \gamma :]t1, t2[\rightarrow \BbbR is a C1 curve across which u is dis-
continuous. Fix \tau \in ]t1, t2[ and assume that there is a neighborhood \scrU of

\bigl( 
\tau , \gamma (\tau )

\bigr) 
such that there are continuous extensions of the entropy admissible solution u to
\scrU \cap \{ (t, x) : x \leq \gamma (t)\} and \scrU \cap \{ (t, x) : x \geq \gamma (t)\} . If \gamma \prime (\tau ) \not = 0, then

(3.1) lim
t\rightarrow \tau +

w(t, \gamma (\tau )) \leq lim
t\rightarrow \tau  - 

w(t, \gamma (\tau )) provided w := f \circ u

and, in particular, the above limits are well defined. If \gamma \prime (\tau ) = 0, then w is continuous
at (\tau , \gamma (\tau )).

We point out that, by assumption, \tau is neither the starting nor the final point of
the curve \gamma .

Proof of Lemma 3.1. We set

u - := lim
x\rightarrow \gamma (\tau ) - 

u(t, x), u+ := lim
x\rightarrow \gamma (\tau )+

u(t, x),

and note that the above limits exist since u(\tau , \cdot ) \in BV (\BbbR ). The Rankine--Hugoniot
condition gives

(3.2) f(u+) - f(u - ) = \gamma \prime (\tau )[u+  - u - ].

Also, the Lax admissibility condition yields f \prime (u - ) \geq f \prime (u+) and by the condition
f \prime \prime < 0 this implies u - \leq u+.

By recalling the condition defining \scrU , we conclude that the limits limt\rightarrow \tau +

w(t, \gamma (\tau )) and limt\rightarrow \tau  - w(t, \gamma (\tau )) both exist. If \gamma \prime (\tau ) > 0, then

lim
t\rightarrow \tau +

w(t, \gamma (\tau )) = f(u - ), lim
t\rightarrow \tau  - 

w(t, \gamma (\tau )) = f(u+)

and by using the condition (3.2) we arrive at (3.1). If \gamma \prime (\tau ) < 0 the analysis is similar.
If \gamma \prime (\tau ) = 0, then w is continuous at (\tau , \gamma (\tau )).

Lemma 3.2. Assume u0 \in C\infty 
c (\BbbR ). Fix x \in \BbbR and a time interval ]0, T [ and

assume that u is of class C1 in a neighborhood of every point (t, x) except for a finite
number of points (\tau 1, x), . . . , (\tau \ell , x). We also assume that, for every r = 1, . . . , \ell , the
entropy admissible solution u satisfies the assumptions of Lemma 3.1 for a suitable
C1 curve \gamma r :]t1r, t2r[\rightarrow \BbbR such that \tau r \in ]t1r, t2r[ and \gamma r(\tau r) = x. Then

(3.3) sup
0\leq t1<t2<\cdot \cdot \cdot <tp\leq T

p - 1\sum 
\alpha =1

\bigl[ 
w(t\alpha +1, x) - w(t\alpha , x)

\bigr] + \leq C(TotVarw0).

In the previous expression, [\cdot ]+ denotes the positive part and w0 := f \circ u0.
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Note that, owing to the fact that w(\cdot , x) is smooth outside \tau 1, . . . , \tau \ell , in computing
the supremum in (3.3) we can assume without loss of generality that the sampling
points do not coincide with any discontinuity point, that is, t\alpha \not = \tau r, for every \alpha =
1, . . . , p and every r = 1, . . . , \ell . This yields that the value w(t\alpha , x) is well defined.

Proof of Lemma 3.2. We fix a sampling t1, . . . , tp and by relying on the above
observation we assume without loss of generality that t\alpha \not = \tau r for every \alpha = 1, . . . , p
and every r = 1, . . . , \ell . To establish (3.3) we use the theory of so-called generalized
characteristics and we refer to [23] for a comprehensive introduction. The rest of the
proof is organized according to the following steps.

Step 1: we establish some properties of generalized characteristics that we need in
the following. We term \xi  - t and \xi +t the minimal backward and the maximal backward
characteristics emanating from the point (t, x); see [23, Theorem 10.2.2]. We apply [23,
Theorem 10.3.1] and we conclude that, for every t \in \BbbR +, \xi 

 - 
t and \xi +t are a left and

a right contact, respectively, in the sense of [23, Definition 10.2.5]. By applying [23,
Formula (11.1.10)] in virtue of the fact that f \prime \prime < 0, we conclude that \xi  - t and \xi +t are
shock-free, in the sense of [23, Definition 10.2.4]. We apply [23, Theorem 11.1.1] and
conclude that, for every t \in \BbbR +, \xi 

 - 
t and \xi +t are segments with constant slope.

Next, we fix \alpha = 1, . . . , p, we recall that t\alpha \not = \tau r, for every r = 1, . . . , \ell , and by
using [23, Theorem 11.1.3] we conclude that \xi  - t\alpha \equiv \xi +t\alpha . Owing to [23, Theorem 10.2.2]
we conclude that there is a unique backward characteristic emanating from the point
(t\alpha , x) and we denote it by \xi t\alpha : \BbbR + \rightarrow \BbbR . We recall that, by the previous analysis, \xi t\alpha 
is shock-free, in the sense of [23, Definition 10.2.4]. Finally, we apply [23, Theorem
11.1.1] and we conclude that u (and henceforth w) is constant along \xi t\alpha .

Step 2: we set

(3.4) E - :=
\bigl\{ 
t \in ]0, T [: \xi  - t (0) \leq x

\bigr\} 
, E+ :=

\bigl\{ 
t \in ]0, T [: \xi +t (0) \geq x

\bigr\} 
,

we point out that ]0, T [= E - \cup E+ and we establish the following property: the
maps t \mapsto \rightarrow \xi  - t (0) and t \mapsto \rightarrow \xi +t (0) are monotone nonincreasing on E - and monotone
nondecreasing on E+, respectively.

We show that t \mapsto \rightarrow \xi +t (0) is monotone nondecreasing on E+; the proof of the other
claim is analogous. Assume by contradiction that there are t1, t2 \in E+, t1 < t2, such
that \xi +t1(0) > \xi +t2(0). Owing to Step 1, \xi +t1 and \xi +t2 both have constant slope. Since

t1 < t2 and \xi +t1(0) > \xi +t2(0), then \xi t1 and \xi t2 must cross at some s < t1. Since, by Step

1, \xi +t1 and \xi +t2 are both shock-free, this contradicts [23, Corollary 11.1.2] and hence
concludes the proof of the claim.

Step 3. Since ]0, T [= E - \cup E+, then

(3.5) sup
0\leq t1<t2<\cdot \cdot \cdot <tp\leq T

p - 1\sum 
\alpha =1

\bigl[ 
w(t\alpha +1, x) - w(t\alpha , x)

\bigr] + \leq S1 + S2 + S3,

where S1 is the supremum of the sum over the \alpha 's such that t\alpha +1 and t\alpha both belong
to E - , S2 is the supremum of the sum over the \alpha 's such that t\alpha +1 and t\alpha both belong
to E+, and S3 is the supremum of the sum over the \alpha 's such that t\alpha +1 \in E - and
t\alpha \in E+, or vice versa.

We first control the term S1 in (3.5). We fix \alpha such that t\alpha +1, t\alpha \in E - . We
recall that owing to Step 1 the backward characteristics emanating from (t\alpha , x) and
(t\alpha +1, x) are both unique and that the function w is constant along \xi t\alpha +1

and \xi t\alpha .
This implies

[w(t\alpha +1, x) - w(t\alpha , x)]
+ = [w(\xi t\alpha +1(0)) - w(\xi t\alpha (0))]

+ \leq | w0(\xi t\alpha +1(0)) - w0(\xi t\alpha (0))| .
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Next, we sum all the above contributions for t\alpha , t\alpha +1 \in E - and we recall that the
map t \mapsto \rightarrow \xi  - t (0) is monotone on E - . This implies that when summing we are never
computing twice the same interval and hence we eventually arrive at

(3.6) S1 \leq TotVarw0.

By analogous considerations S2 \leq TotVarw0.
Step 4: we control the term S3. We fix \alpha and, just to fix the ideas, we assume

that t\alpha +1 \in E+, t\alpha \in E - . We set

s\alpha := sup\{ s \leq t\alpha +1 : s \in E - \} .

Next, we point out that\bigl[ 
w(t\alpha +1, x) - w(t\alpha , x)

\bigr] + \leq 
\bigl[ 
w(t\alpha +1, x) - lim

s\rightarrow s+\alpha 

w(s, x)
\bigr] +

+
\bigl[ 
lim

s\rightarrow s+\alpha 

w(s, x) - lim
s\rightarrow s - \alpha 

w(s, x)
\bigr] +

+ [ lim
s\rightarrow s - \alpha 

w(s, x) - w(t\alpha , x)
\bigr] +
.

We now separately consider two cases. If w(\cdot , x) is continuous at s\alpha , then the second
term in the above sum vanishes. If w(\cdot , x) is not continuous at s\alpha , then s\alpha must
coincide with one of the discontinuity points \tau 1, . . . , \tau \ell . We can then apply Lemma 3.1
and owing to (3.1) we conclude that also in this case the second term in the above
sum vanishes. This yields\bigl[ 
w(t\alpha +1, x) - w(t\alpha , x)

\bigr] + \leq 
\bigl[ 
w(t\alpha +1, x) - lim

s\rightarrow s+\alpha 

w(s, x)
\bigr] +

+ [ lim
s\rightarrow s - \alpha 

w(s, x) - w(t\alpha , x)
\bigr] +

and we can control the above terms by arguing as in Step 3. This yields

S1 + S2 + S3 \leq C(TotVar w0)

and owing to (3.5) concludes the proof of (3.3).

3.2. Proof of Theorem 1.1. We proceed according to the following steps.
Step 1: we show that (3.3) implies (1.3). This establishes (1.3) provided u(\cdot , x)

has the same regularity as in the statement of Lemma 3.2. To deduce (1.3) from (3.3)
we recall that if u(\cdot , x) has the same regularity as in the statement of Lemma 3.2,
then

(3.7) TotVarw(\cdot , x) = sup
0\leq t1<t2<\cdot \cdot \cdot <tp\leq T

p - 1\sum 
\alpha =1

| w(t\alpha +1, x) - w(t\alpha , x)| .

Next, we point out that

p - 1\sum 
\alpha =1

[w(t\alpha +1, x) - w(t\alpha , x)]
+ =

p - 1\sum 
\alpha =1

[w(t\alpha +1, x) - w(t\alpha , x)]
 - + w(tp, x) - w(t1, x)

and by plugging the above expression into (3.7) and using (3.3) we arrive at

(3.8) TotVarw(\cdot , x) \leq C(TotVarw0).

Step 2. We establish (1.3) under the further assumption that u is smooth ouside
(a) a finite number of C1 curves, the so-called shocks, across which u has a jump
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discontinuity. At every point (\tau , \gamma (\tau )) belonging to the shock curve the assumptions
of Lemma 3.1 are satisfied; (b) a finite number of points where two shocks interact
(i.e., they intersect). We assume (a) and (b) and apply the coarea formula to each
shock curve (or more precisely, to the C1 function parameterizing each shock curve)
and conclude that the hypotheses of Lemma 3.2 hold true for every x \in \BbbR \setminus N , where
N is a negligible set. Owing to Step 1, this implies that estimate (3.8) holds true for
every x \in \BbbR \setminus N . Next, we recall Lemma 2.1 and the fact that the total variation is
lower semicontinuous with respect to weak\ast convergence: this implies that (3.8) holds
true for every x \in \BbbR .

Step 3: we conclude the proof of Theorem 1.1.
Step 3A: we point out that, owing to the chain rule for BV functions (see, for

instance, [5, Theorem 3.96]), the fact that (3.8) holds for every x \in \BbbR yields (1.3).
Step 3B: by relying on a standard truncation and mollification argument, we

construct a sequence \{ u0n\} n\in \BbbN \subseteq C\infty 
c (\BbbR ) such that

(3.9) u0n \rightarrow u0, TotVaru0n \rightarrow TotVaru0 as n\rightarrow +\infty .

Step 3C: we apply the Schaeffer regularity theorem [42]. In particular, we apply
the results by Dafermos [22] and we recall that since the flux function f satisfies
f \prime \prime < 0, then the entropy admissible solution u of (1.1), (1.2) does not have contact
discontinuities. By using [22, section 3] we conclude that from the sequence \{ u0n\} n\in \BbbN 
we can construct a second sequence \{ z0n\} n\in \BbbN \subseteq C\infty 

c (\BbbR ) such that (3.9) holds true
and furthermore the entropy admissible solution un of the Cauchy problem obtained
by coupling (3.9) with the condition u(0, \cdot ) = z0n satisfies conditions (a) and (b) in
Step 2. Note that un satisfies (1.3).

Step 3D: we conclude the proof. We recall that the semigroup of entropy ad-
missible solutions of (1.1), (1.2) is L1 stable with respect to the initial data; see [23,
Formula (6.2.9)]. We conclude that the sequence un constructed in Step 3C con-
verges to the entropy admissible solution u of the Cauchy problem (1.1), (1.2) in
L1(]0, T [\times \BbbR ). This implies that, up to subsequences, for almost every x \in \BbbR , un(\cdot , x)
converges to u(\cdot , x) in L1(]0, T [) and hence, by the lower semicontinuity of the to-
tal variation with respect to the L1 strong convergence, w(\cdot , x) satisfies (1.3). Fi-
nally, we recall Lemma 2.1 and the fact that the total variation is lower semicontin-
uous with respect to weak\ast convergence: this implies that (1.3) is satisfied for every
x \in \BbbR .

Remark 3.3. By relying on the proof of Theorem 1.1 one realizes that if the
initial datum u0 is continuous, then one can control the left-hand side of (1.3) with
TotVar w0. This is, however, not true in general: as a counterexample one can consider
the Burgers' equation

(3.10) \partial tu+ \partial x
\bigl( 
u2

\bigr) 
= 0

and couple it with the Riemann-type initial datum

(3.11) u0(x) :=

\biggl\{ 
 - 1, x < 0,
1, x > 0.

Note that in this case TotVarw0 = 0; however, the solution of the Riemann prob-
lem (3.10), (3.11) is a rarefaction and (1.3) fails.
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4. Further results on the time \bfitB \bfitV regularity of entropy admissible
solutions.

4.1. Proof of Proposition 1.2. In the following, just to fix the ideas, we assume
f \prime \geq 0 on [ess inf u0, ess supu0], the proof in the case f \prime \leq 0 is analogous. We first
establish (1.4) in the case of wave front--tracking approximate solutions and then we
pass to the limit.

4.1.1. Wave front--tracking approximation. For the reader's convenience we
briefly recall the construction of the wave front--tracking approximation. First, we fix
\nu \in \BbbN and we consider the conservation law

(4.1) \partial tu
\nu + \partial x[f

\nu (u\nu )] = 0,

where f\nu is the piecewise affine approximation of f defined by interpolating the values
of f and setting

f\nu (u) :=
u - 2 - \nu j

2 - \nu 
f(2 - \nu (j + 1)) +

2 - \nu (j + 1) - u

2 - \nu 
f(2 - \nu j) if u \in [2 - \nu j, 2 - \nu (j + 1)], j \in \BbbZ .

Next, we fix u\nu 0 : \BbbR \rightarrow 2 - \nu \BbbZ with bounded variation and compact support and we
assign the initial datum

(4.2) u\nu (0, \cdot ) = u\nu 0 .

We then define the wave front--tracking approximate solution as the entropy admissible
solution of the Cauchy problem (4.1), (4.2). Note that u\nu attains values in 2 - \nu \BbbZ and
that, for every t > 0, the function u\nu (t, \cdot ) is piecewise constant. Note furthermore that
the discontinuity points of u\nu are contained in the graphs of finitely many Lipschitz
continuous curves (the so-called fronts) xj , j = 1, . . . , N , and that the assumption
f \prime \geq 0 yields dxj/dt \geq 0 for every j = 1, . . . , N . We finally recall that there are only
finitely many times at which a collision between two or more different fronts occurs.
More precisely, we say that two fronts xi and xj collide at the time \=t if

(4.3) xi(\=t) = xj(\=t) and \exists \varepsilon > 0 : xi(t) \not = xj(t) \forall t \in ]\=t - \varepsilon , \=t[.

We now establish (1.4) in the case of wave front--tracking approximate solutions.

Lemma 4.1. Fix f \in C2(\BbbR ), \nu \in \BbbN , and term u\nu the wave front--tracking approx-
imate solution with initial datum u\nu 0 . If f \prime \geq 0 on the interval [ess inf u0, ess supu0],
then

(4.4) TotVar u\nu (\cdot , x) \leq TotVar u\nu 0 for every x \in \BbbR .

Proof. We denote as before by xj , j = 1, . . . , n, the wave fronts and we point out
that

(i) since dxj/dt \geq 0 for every j = 1, . . . , N , then for every but countably many
x \in \BbbR there is a unique time tj such that xj(tj) = x;

(ii) by removing (if needed) a further finite set of x's we can assume that no
collision between different fronts occurs at time tj ;

(iii) for the same x as in point (i) we have u\nu (t, x+) = u\nu (t, x - ) for every but
finitely many t \in ]0,+\infty [.

Fix \=x satisfying properties (i), (ii), and (iii) above and consider the function G\nu 
\=x :

]0,+\infty [\rightarrow \BbbR defined by setting G\nu 
\=x(t) := G\nu 

\=x,1(t) +G\nu 
\=x,2(t), where

(4.5)
G\nu 

\=x,1(t) = TotVar] - \infty ,\=x[u
\nu (t, \cdot ) and G\nu 

\=x,2(t) = TotVar]0,t[u
\nu (\cdot , \=x) + | u\nu (t+, \=x) - u\nu (t - , \=x)| .
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Assume for a moment that we have shown that G\nu 
\=x is a monotone nonincreasing

function; then this yields (4.4) since

TotVar u\nu (\cdot , \=x) \leq lim
t\rightarrow \infty 

G\nu 
\=x(t) \leq lim

t\rightarrow 0+
G\nu 

\=x(t) = TotVar] - \infty ,\=x[ u
\nu 
0 \leq TotVar u\nu 0 .

We are thus left to show that G\nu 
\=x is a monotone nonincreasing function. To this end,

we point out that, by construction, the functions G\nu 
\=x,1, G

\nu 
\=x,2 and therefore G\nu 

\=x are
piecewise constant. Also, G\nu 

\=x,1 is a monotone nonincreasing function: more precisely,
it can only diminish at times when an interaction between wave fronts occurs on the
interval ]  - \infty , \=x[. Since discontinuities of G\nu 

\=x,2 can only occur at a point tj as in
item (i) above, to conclude it suffices to show that for every j = 1, . . . , N we have
G\nu 

\=x(t
 - 
j ) = G\nu 

\=x(t
+
j ). To this end, we point out that

G\nu 
\=x,1(t

+
j ) - G\nu 

\=x,1(t
 - 
j ) = - | u\nu (tj , \=x+) - u\nu (tj , \=x

 - )| ,
G\nu 

\=x,2(t
+
j ) - G\nu 

\=x,2(t
 - 
j ) =| u\nu (tj , \=x+) - u\nu (tj , \=x

 - )| .
(4.6)

In particular G\nu 
\=x(t

 - 
j ) = G\nu 

\=x,1(t
 - 
j ) + G\nu 

\=x,2(t
 - 
j ) = G\nu 

\=x,1(t
+
j ) + G\nu 

\=x,2(t
+
j ) = G\nu 

\=x(t
+
j ). This

establishes (4.4) for every \=x \in E for some suitable set E such that \scrL 1(\BbbR \setminus E) = 0.
We are left to show that actually (4.4) holds for every x \in \BbbR : to this end, we recall
Lemma 2.3 and the lower semicontinuity of the total variation with respect to the
L1-convergence and we conclude that

TotVar u\nu (\cdot , x+) \leq lim inf
xn\uparrow x

TotVar u\nu (\cdot , xn) \leq TotVar u0,

TotVar u\nu (\cdot , x - ) \leq lim inf
yn\downarrow x

TotVar u\nu (\cdot , yn) \leq TotVar u0
(4.7)

for suitable sequences \{ xn\} n\in \BbbN , \{ yn\} n\in \BbbN \subseteq E.

Proof of Proposition 1.2. Given u0 \in BV (\BbbR ) we fix a family \{ u\nu 0\} \subseteq BV (\BbbR )
with compact support attaining values in 2 - \nu \BbbZ such that u\nu 0 \rightarrow u0 in L1(\BbbR ) and
TotVar u\nu 0 \rightarrow TotVar u0 as \nu \rightarrow 0+ (see [12, Lemma 2.2]). Let u\nu be the corresponding
family of wave front--tracking approximate solutions with initial datum u\nu 0 . By the
analysis in [12, Chapter 6] we infer that u\nu \rightarrow u in L1

loc(]0,+\infty [\times \BbbR ). This implies
that u\nu (\cdot , x) \rightarrow u(\cdot , x) in L1

loc(]0,+\infty [) for a.e. x \in \BbbR . Since for a.e. x \in \BbbR we have
u(\cdot , x+) = u(\cdot , x - ), then by combining Lemma 4.1 with the lower semicontinuity of
the total variation we get
(4.8)

TotVar u(\cdot , x) \leq lim inf
\nu \rightarrow \infty 

TotVar u\nu (\cdot , x)
(4.4)

\leq lim inf
\nu \rightarrow \infty 

TotVar u\nu 
0 = TotVar u0 for a.e. x \in \BbbR 

By using the same approximation argument as in the proof of Lemma 4.1 we conclude
that the above estimate holds for every x \in \BbbR .

4.2. Initial-boundary value problems. Theorem 1.1 and Proposition 1.2
have several extensions to initial-boundary value problems. Here we only explicitly
discuss the extension we need in the proof of Theorem 1.5 and of Corollary 1.6.

Corollary 4.2. Fix f \in C2(\BbbR ), \=u \in BV (]0, T [), u0 \in BV (]\alpha , \beta [). Assume
furthermore that f \prime \geq 0 on the interval [min\{ inf \=u, inf u0\} ,max\{ sup \=u, supu0\} ]. Let u
be the unique entropy admissible solution of the initial-boundary value problem (1.1),
(2.6). Then
(4.9)
TotVar u(\cdot , x\pm ) \leq TotVar u0 +TotVar \=u+ | u0(\alpha +) - \=u(0+)| for every x \in ]\alpha , \beta [.
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In the above expression, we denote by u0(\alpha 
+) and \=u(0+) the right limit of u0 and \=u

at x = \alpha and t = 0, respectively.2

Under the same assumptions as in Corollary 4.2, the trace at x = \beta of the entropy
admissible solution of the initial-boundary value problem (1.1), (2.6) is well defined
and we denote it by u\beta . By using the lower semicontinuity of the total variation with
respect to the strong convergence we conclude that

(4.10) TotVar u\beta \leq TotVar u0 +TotVar \=u+ | u0(\alpha +) - \=u(0+)| .

Remark 4.3. Even if we do not explicitly discuss it, Theorem 1.1 extends to initial-
boundary value problems and provides a control of TotVarw(\cdot , x) for every x \in ]\alpha , \beta [.
As in the case of the Cauchy problem, if f \prime changes sign we cannot hope for a control
on the total variation of u: for a counterexample, we refer to the construction detailed
in section 4.3, which also applies to initial-boundary value problems.

Proof of Corollary 4.2. We only provide a sketch of the proof, which is based on
the same argument as the proof of Proposition 1.2. The key point is the construction
of the wave front--tracking approximation of the initial-boundary value problem (1.1),
(2.6). We fix \nu \in \BbbN and \=u\nu :]0, T [\rightarrow 2 - \nu \BbbZ , we assign the boundary datum

(4.11) u\nu (\cdot , \alpha ) = \=u\nu ,

and we construct the entropy admissible solution of the initial-boundary value prob-
lem (4.1), (4.2), (4.11). To construct the wave front--tracking approximation, the main
difference with respect to the Cauchy problem is that we have to define the solution
of the initial-boundary value problem obtained by coupling (4.1) with the data

(4.12) u\nu (\cdot , \alpha ) = ub, u\nu (0, \cdot ) = ui,

where ub, ui \in 2 - \nu \BbbZ satisfy (f\nu )\prime (u\pm b ) \geq 0, (f\nu )\prime (u\pm i ) \geq 0. We term z the entropy
admissible solution of the Cauchy problem obtained by coupling (4.1) with the initial
datum

u\nu (0, x) :=

\biggl\{ 
ub, x < \alpha ,
ui, x > \alpha .

We claim that the restriction of z to ]\alpha , \beta [ is the entropy admissible solution of the
initial-boundary problem (4.1), (4.12). To see this we have to verify (2.7). First,
we point out that z satisfies the entropy inequality inside the domain [0, T [\times ]\alpha , \beta [,
namely

(4.13)

� T

0

� \beta 

\alpha 

| z - c| \partial t\phi +sign(z - c)[f\nu (z) - f\nu (c)]\partial x\phi dxdt+
� \beta 

\alpha 

\phi (0, \cdot )| ui - c| dx \geq 0

for every c \in \BbbR and every \phi \in C\infty 
c (] - \infty , T [\times ]\alpha , \beta [) such that \phi \geq 0. Next, we claim

that

(4.14)
\bigl[ 
sign(ub  - c) - sign(z\alpha  - c)

\bigr] \bigl[ 
f\nu (z\alpha ) - f\nu (c)

\bigr] 
= 0, a.e. on ]0, T [.

To see this, we recall that, since (f\nu )\prime \geq 0, then f\nu (z\alpha ) = f\nu (ub) and by a case-by-
case analysis we arrive at (4.14). Next, we fix a parameter \varepsilon > 0 and set \eta \varepsilon := 1 - \omega \varepsilon ,
where \omega \varepsilon \in C\infty (\BbbR ) is the same family as in (2.9). We then fix a test function

2These limits exist owing to the BV regularity of u0 and \=u.
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\varphi \in C\infty 
c (] - \infty , T [\times ] - \infty , \beta [), plug the test function \phi \varepsilon (t, x) := \varphi (t, x)\eta \varepsilon (x) into (4.13),

and let \varepsilon \rightarrow 0+. By using the fact that

� T

0

� \beta 

\alpha 

sign(z  - c)[f\nu (z) - f\nu (c)]\eta \prime \varepsilon \varphi dxdt

\rightarrow 
� T

0

sign(z\alpha  - c)[f\nu (z\alpha ) - f\nu (c)]\varphi (\cdot , \alpha )dt as \varepsilon \rightarrow 0+

and recalling (4.14) we arrive at (2.7).
Once we have constructed the wave front--tracking approximation, the proof fol-

lows the same argument as the proof of Proposition 1.2, with the only difference that
the term G\nu 

\=x,1 in (4.5) should be replaced by

G\nu 
\=x,3(t) := TotVar]\alpha ,\=x[ u

\nu (t, \cdot ) + | \=u\nu (t+) - u\nu (t, \alpha +)| +TotVar]t,+\infty [ \=u
\nu .

4.3. An example of total variation blow-up for \bfitu (\cdot , 0). In this section we
exhibit an explicit counterexample showing that if f \prime (u) can change sign, then the
total variation of the entropy admissible solution u(\cdot , 0) can blow up in finite time,
even if the initial data (in the case of the Cauchy problem) or the initial and boundary
data (in the case of the initial-boundary value problem) have bounded total variation.
More precisely, we have the following result.

Proposition 4.4. There are r > 0 and u0 \in BV (\BbbR ) such that the entropy admis-
sible solution of the Cauchy problem obtained by coupling the Burgers' equation (3.10)
with the initial datum u(0, \cdot ) = u0 and the entropy admissible solution of the initial-
boundary problem obtained by coupling (3.10) with the conditions

u(0, \cdot ) = u0, u(\cdot , - r  - 1) = 0, u(\cdot , 1) =  - 1

satisfy TotVar u(\cdot , 0)| ]0,2 - 3[ = +\infty .

4.3.1. Construction roadmap. We consider the Burgers' equation (3.10) and
we first provide a heuristic discussion of the basic ideas underpinning the contruction
of the counterexample. The key point in the analysis is the construction of a map
\gamma :]0, T [\rightarrow \BbbR , T > 0 to be determined in the following, which exhibits the following
features (see Figure 2 for a representation):

\bullet the curve \gamma crosses the vertical axis x = 0 infinitely many times;
\bullet there is a function u - :]0, T [\rightarrow \BbbR such that (i) u - (t) \sim 1; (ii) u - (t) and
u+(t) =  - 1 satisfy the Rankine--Hugoniot conditions

(4.15) u - (t)
2  - u+(t)

2 = \gamma \prime (t)[u - (t) - u+(t)] \Leftarrow \Rightarrow \gamma \prime (t) = u - (t) - 1.

Since in the case of convex fluxes the Lax entropy admissible conditions boil
down to the inequality u - (t) \geq u+(t), the equality (4.15) dictates that \gamma is
an (entropy admissible) shock curve between u - (t) (on the left) and  - 1 (on
the right).

Assume for a moment that \gamma is indeed the shock curve of the solution u of a Cauchy
problem; then the total variation of u(\cdot , 0) must blow up: indeed, u is close to 1
on the left of \gamma and equal to  - 1 on the right. Since \gamma crosses the vertical axis
x = 0 infinitely many times, then u(\cdot , 0) oscillates infinitely many times between
a value close to 1 and the value  - 1, and hence its total variation must blow up.
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Fig. 2. A solution u of the Burgers equation with TotVaru(\cdot , 0) = +\infty .

.

To construct the initial datum u0 of this Cauchy problem, we proceed as follows.
First, we recall that, in the subsets of the (t, x) plane where u is regular, u is
constant along the characteristic lines, which have speed 2u. Next, we consider
the line \xi t with slope 2u - (t) and passing through the point (t, \gamma (t)) and we define
it on the interval [0, t] since we want to focus on backward characteristics. Since
u - (t) = 1 + \gamma \prime (t) owing to (4.15), then the backward characteristic passing through
(t, \gamma (t) - ) is

(4.16) \xi t(s) = 2[1 + \gamma \prime (t)]s+ \gamma (t) - 2[1 + \gamma \prime (t)]t, s \in [0, t].

By enforcing suitable conditions on \gamma , we get that if t1 \not = t2, then \xi t1 and \xi t2 do
not cross. In this way we can ``pull back"" the values of u - (t) to the initial time and
define the initial datum u0 in such a way that u0(\xi t(0)) = u - (t). We can then eas-
ily enforce the condition TotVaru0 < +\infty and extend the construction to define an
initial-boundary value problem. This ``backward construction"" is somewhat reminis-
cent of the analysis in [1, 2]; see also [23] for a general discussion about characteristics
for conservation laws.

4.3.2. Technical details. We now provide the detailed construction of the
counterexample, which is achieved in several steps.

Step 1: construction of the ``building blocks"" of the curve \gamma . The curve \gamma is
constructed by alternatively patching together suitably rescaled ``right curved"" and
``left curved"" blocks. We first construct the right curved building block. We fix a
parameter \varepsilon < 1 and we set

(4.17) \^\gamma \varepsilon : [0, \varepsilon ] \rightarrow \BbbR , \^\gamma \varepsilon (t) =
1

2\varepsilon 
t3  - 3

2
t2 + \varepsilon t.
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Note that
(4.18)

\^\gamma \varepsilon (0) = 0, \^\gamma \varepsilon (\varepsilon ) = 0, \^\gamma \prime \varepsilon (0) = \varepsilon , \^\gamma \prime \varepsilon (\varepsilon ) =  - \varepsilon 
2
, \^\gamma \varepsilon \geq 0, \^\gamma \prime \prime \varepsilon \leq 0 on [0, \varepsilon ].

Step 2: analysis of backward characteristics. We recall (4.16) and we point out
that

(4.19)
\partial \xi t
\partial t

(s) = 2\gamma \prime \prime (t)[s - t] - \gamma \prime (t) - 2,

which yields

(4.20) \gamma \prime \prime (t) < 0 =\Rightarrow \partial \xi t
\partial t

(s) < 0 for s \in ]s0(t), t], where s0(t) = t+
\gamma \prime (t) + 2

2\gamma \prime \prime (t)
.

Let us focus on the case \gamma = \^\gamma \varepsilon : we have \gamma \prime \prime (t) = 0 if and only if t = \varepsilon and \gamma \prime \prime (t) < 0
if t \in [0, \varepsilon [. If t = \varepsilon , then \partial \xi t/\partial t =  - \^\gamma \prime \varepsilon (\varepsilon ) - 2 < 0 for every s \in \BbbR . If t \in [0, \varepsilon [, then

s0(t)=t+
\^\gamma \prime 
\varepsilon (t) + 2

2\^\gamma \prime \prime 
\varepsilon (t)

\leq t+ sup
t\in [0,\varepsilon [

\^\gamma \prime 
\varepsilon (t) + 2

2\^\gamma \prime \prime 
\varepsilon (t)

\^\gamma \prime \prime 
\varepsilon \leq 0, \^\gamma \prime 

\varepsilon > - 2

\leq t+
inft\in [0,\varepsilon [ \^\gamma 

\prime 
\varepsilon (t) + 2

inft\in [0,\varepsilon [ 2\^\gamma \prime \prime 
\varepsilon (t)

(4.17)

\leq t+
1

 - 6
= t - 1

6
.

Summing up, we conclude that

(4.21)
\partial \xi t
\partial t

< 0 for every t \in [0, \varepsilon ] and s > t - 1

6
.

Finally, we define the left curved building block as  - \^\gamma \varepsilon (t). Note that the speed of the
minimal backward characteristic through (t, - \^\gamma \varepsilon (t)

 - ) is 2[1  - \^\gamma \prime \varepsilon ] and, since \^\gamma \prime \prime \varepsilon \leq 0,
then the backward characteristics do not intersect, namely

(4.22)
\partial \xi t
\partial t

< 0 for every t \in [0, \varepsilon ] and s \leq t.

Step 3: we define the shock curve \gamma . We set

\gamma (t) :=

\infty \sum 
n=3

( - 1)n\^\gamma \varepsilon n(t - \tau n)1In(t),(4.23)

\varepsilon n := 2 - (n+1), In := [2 - 3  - 2 - n, 2 - 3  - 2 - (n+1)[, \tau n := 2 - 3  - 2 - n.

In the above expression, 1In denotes the characteristic function of the interval In.
Note that the intervals In are disjoints and hence the above series converges since it is
locally finite. Note furthermore that \gamma is obtained by patching together infinitely many
C\infty arcs and that at the junction points both the functions and its first derivatives
match, hence \gamma \in C1(]0, 2 - 3[). We now consider the backward characteristics with
final point (t, \gamma (t) - ), and we recall (4.16), (4.21), and (4.22). Since 2 - 3 < 1/6, we
conclude that the map t \mapsto \rightarrow \xi t(0) is strictly decreasing (and henceforth injective) on
[0, 2 - 3[. Owing to (4.16) and to the fact that \gamma \in C1, it is also continuous, and hence
the image of the interval [0, 2 - 3[ is an interval, which we term ]  - r, 0]. The exact
expression of the number r > 0 could be explicitly computed but is not relevant here.
We term \varphi :]  - r, 0] \rightarrow [0, 2 - 3[ the inverse of the map t \mapsto \rightarrow \xi t(0). We can now define
the initial datum u0 : \BbbR \rightarrow \BbbR by setting

(4.24) u0(x) :=

\left\{   0, x <  - r,
1 + \gamma \prime (\varphi (x)),  - r < x < 0,
 - 1, x > 0.
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Note that

(4.25) TotVaru0 \leq 5 +

\infty \sum 
n=3

�
In

| \gamma \prime \prime (t)| dt = 5 +

\infty \sum 
n=3

2 - (n+2) < +\infty .

Step 4: we show that the entropy admissible solution of the Cauchy problem
obtained by coupling (3.10) with (4.24) satisfies TotVar u(\cdot , 0) = +\infty . The entropy
admissible solution u is given by

(4.26) u(t, x) =

\left\{   0, x < limy\rightarrow  - r+ \xi \varphi (y)(t),
1 + \gamma \prime (\varphi (y)), x = \xi \varphi (y)(t), x < \gamma (t),
 - 1, x > \gamma (t).

In other words, u is identically equal to  - 1 for x > \gamma (t), and it is transported along the
characteristic lines (4.16) for x < \gamma (t). Note that by construction the characteristics
do not intersect on the set x < \gamma (t). We then get

(4.27) TotVar u(\cdot , 0) \geq 
\infty \sum 

n=3

| u(\sigma n+1, 0) - u(\sigma n, 0)| , \sigma n = 2 - 3  - 3

2
2 - (n+1).

Note that \sigma n is the middle point of the interval In and that (\sigma n, 0) is a continuity
point for u. Note furthermore that if n is odd, then u(\sigma n, 0) =  - 1. If n is even,
u(\sigma n, 0) = 1 + \gamma \prime (\varphi (x)), for some x \in ]  - r, 0]. Since 1 + \gamma \prime (\varphi (x)) > 0, then by
using (4.27) we conclude that

TotVar u(\cdot , 0) \geq 
\infty \sum 

n=3, n odd

1 = +\infty 

and this concludes the analysis of the Cauchy problem.
Step 5: extension to the initial-boundary value problem. By restricting the

function u in (4.26) to the strip ] - r  - 1, 1[ we get a solution of the initial boundary
value problem obtained by coupling (3.10) with the initial datum (4.24) and the
boundary data u(t, - r  - 1) \equiv 0, u(t, 1) \equiv  - 1.

5. The multipath model: Distributional formulation, existence, and
uniqueness results.

5.1. Distributional formulation of the initial-boundary value problem
(1.8), (1.12), and (1.14). We now complete the definition of distributional so-
lution of the multipath model. We first need some preliminary remarks: fix rk \in 
L\infty (]0, T [\times Pk) and assume that \theta k \in L\infty (]0, T [\times Pk) satisfies

(5.1)

� T

0

� \beta 

\alpha 

rk\theta k(\partial t\phi + v(rk)\partial x\phi )dxdt = 0 for every \phi \in C\infty 
c (]0, T [\times Pk).

By applying Lemma 2.11 with b = v(rk) and ]\alpha , \beta [= Pk we define the initial value
[rk\theta k]0 and the distributional trace Tr[v(rk)rk\theta k](\cdot , a+), where we recall that a is the
starting point of the path Pk. Also, assume that rk is obtained by patching together
the \rho i's as in (1.9) and that each \rho i is an entropy admissible solution of (1.5), that
is, it satisfies (2.2) with f(\rho i) = v(\rho i)\rho i. Then owing to Theorem 2.4 the trace
v(rk)rk(\cdot , a+) is attained as a strong limit in the L1 topology.
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Definition 5.1. Assume that rk satisfies (1.9), where each \rho i is an entropy ad-
missible solution of (1.5), (1.11). We term \theta k \in L\infty (\BbbR +\times Pk) a distributional solution
of the initial-boundary value problem (1.8), (1.12), and (1.14) if \theta k satisfies (2.13) with
b = v(rk) and furthermore

Tr[v(rk)rk\theta k](\cdot , a+) = \=\theta kv(rk)rk(\cdot , a+),(5.2)

[rk\theta k]0 = \theta k0\rho i0 on Ii, for every i such that Ii \subseteq Pk.

We have the next lemma.

Lemma 5.2. Assume that rk satisfies (1.9), where each \rho i is an entropy admis-
sible solution of (1.5), (1.11). Assume furthermore that \theta k \in L\infty (]0, T [\times Pk) is a
distributional solution of (1.8), (1.12), (1.14). Under (1.15), (1.16), the following
conditions are equivalent:

(i) (1.18) is satisfied a.e. on ]0, T [\times Ii, for every i;
(ii) we have the equality

(5.3) g(\rho j+1)(\cdot , d+)
(1.7)
= v(\rho j+1)\rho j+1(\cdot , d+) =

\sum 
k:Ij+1\subseteq Pk

Tr[v(\rho j)\rho j\theta k](\cdot , d - )

at every junction point d. In the above expression d is the final point of the
road Ij entering the junction and the starting point of the road Ij+1 exiting
the junction.

Proof of Lemma 5.2. Step 1: we establish the implication (i) =\Rightarrow (ii). We
apply (1.18) on the road Ij+1 and obtain the second of the equalities

v(\rho j+1)\rho j+1(\cdot , d+)
(2.15)
=  - Tr[v(\rho j+1)\rho j+1](\cdot , d+)

(1.18)
=  - 

\sum 
k:Ij+1\subseteq Pk

Tr[v(rk)rk\theta k](\cdot , d+)

(2.16)
=

\sum 
k:Ij+1\subseteq Pk

Tr[v(rk)rk\theta k](\cdot , d - ),

and owing to (1.9) this yields (5.3).
Step 2: we establish the implication (ii) =\Rightarrow (i). We argue by induction. First,

we show that (1.18) holds on ]0, T [\times I1. To this end, we set z :=
\sum m

k=1 \theta k and we
point out that, owing to (1.15) and (1.16) and to the linearity of the equation for \theta k,
z is a solution of the initial-boundary value problem

(5.4)

\biggl\{ 
\partial t[\rho 1z] + \partial x[v(\rho 1)\rho 1z] = 0,
z(0, \cdot ) = 1, z(\cdot , a) = 1,

where we recall that a is the initial point of the interval I1. Owing to (1.5), z \equiv 
1 is a solution of the above initial-boundary value problem. We can then apply
Theorem 2.15 with ]\alpha , \beta [= I1, b = v(\rho 1) and by the uniqueness part we conclude
that (1.18) holds true on ]0, T [\times I1.

Next, we fix i = 2, . . . , nk, assume that (1.18) holds true on ]0, T [\times Ij for j =
1, . . . , i  - 1, and, under (5.3), show that it holds true on ]0, T [\times Ii. To this end, we
term d the junction point between the road Ii - 1 and the road Ii, that is, d is the final
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point of the road Ii - 1 and the initial point of the road Ii. We recall (1.9) and point
out that

Tr

\left[  \sum 
k:Ii\subseteq Pk

v(\rho i)\rho i\theta k

\right]  (\cdot , d+) =
\sum 

k:Ii\subseteq Pk

Tr[v(\rho i)\rho i\theta k](\cdot , d+)

(2.16)
=  - 

\sum 
k:Ii\subseteq Pk

Tr[v(\rho i - 1)\rho i - 1\theta k](\cdot , d - )
(2.15),(5.3)

= Tr[v(\rho i)\rho i](\cdot , d+)

and by recalling definition (2.18) this implies that the function
\sum 

k:Ii\subseteq Pk
\theta k attains

the boundary condition 1. We can then repeat the same argument as before on the
interval Ii and conclude that (1.18) holds true on ]0, T [\times Ii.

5.2. Proof of Theorem 1.4. We first establish existence, then uniqueness.

5.2.1. Existence. We fix a path Pk and we term I1, . . . , Ink
the consecutive

roads composing the path Pk. We now construct the solutions \rho 1, . . . , \rho nk
and \theta k. We

argue inductively: first, we construct the solution on I1. Next, we assume that we
have constructed a solution on the road I1, . . . , Ij and we construct it on Ij+1.

Construction of the solution on I1. To construct \rho 1, we apply Proposi-
tion 2.6 with \=u = \=\rho , u0 = \rho 10 and f(u) := uv(u). We conclude that there is an entropy
admissible solution of (1.5), (1.11), (1.13) such that 0 \leq \rho \leq \rho \ast and we recall that,
owing to (1.7), the point \rho \ast is the point where the function u \mapsto \rightarrow v(u)u attains its
maximum. Next, we apply Theorem 2.15 with ]\alpha , \beta [= I1 and b = v(\rho 1) and conclude
that there is a solution of (1.8), (1.12), (1.14) defined on I1. Since 0 \leq \=\theta k \leq 1 and
0 \leq \theta k0 \leq 1, then by the comparison principle given in Theorem 2.15 we get (1.17)
on ]0, T [\times I1. To conclude the existence proof on I1, we are left to establish (1.18) on
]0, T [\times I1. To this end, we can argue as in Step 2 of the proof of Lemma 5.2.

Inductive step. We assume that we have constructed the solution on I1, . . . , Ij
and we construct it on Ij+1. More precisely, we assume that we have constructed the
functions \rho 1, . . . , \rho j and the function \theta k on I1, . . . , Ij . We also assume that 0 \leq \rho i \leq 
\rho \ast , for every i = 1, . . . , j, and that (1.17) and (1.18) are both satisfied on ]0, T [\times Ii,
for every i = 1, . . . , j. We term d the junction point, that is, d is the final point of the
road Ij and the initial point of the road Ij+1. We proceed according to the following
steps.

Step 1: we show that

(5.5) 0 \leq 
\sum 

k:Ij+1\subseteq Pk

Tr[v(\rho j)\rho j\theta k](\cdot , d - ) \leq v(\rho \ast )\rho \ast a.e. on ]0, T [.

To establish (5.5) we recall that, by the inductive assumption, (1.17) is satisfied on
]0, T [\times Ij . Also, owing to the specific structure of the network,

\{ k : Ij+1 \subseteq Pk\} \subseteq \{ k : Ij \subseteq Pk\} 

and owing to the inequality v \geq 0 this yields

0 \leq v(\rho j)\rho j
\sum 

k:Ij+1\subseteq Pk

\theta k \leq v(\rho j)\rho j
\sum 

k:Ij\subseteq Pk

\theta k
(1.18)
= v(\rho j)\rho j

(1.7)

\leq v(\rho \ast )\rho \ast .

By a small modification of the proof of [25, Lemma 6.1] one can show that the above
inequalities yield (5.5).
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Step 2: we construct the function \rho j+1. We combine (1.7) and (5.5) and we
conclude that there is a unique function \=\rho j+1 \in L\infty (]0, T [) such that
(5.6)

0\leq \=\rho j+1\leq \rho \ast , v(\=\rho j+1)\=\rho j+1
(1.7)
= g(\=\rho j+1) =

\sum 
k:Ij+1\subseteq Pk

Tr[v(\rho j)\rho j\theta k](\cdot , d - ), a.e. on ]0, T [.

Next, we apply Proposition 2.6 with ]\alpha , \beta [= Ij+1, \=u = \=\rho j+1 and we term \rho j+1 the
entropy admissible solution such that 0 \leq \rho j+1 \leq \rho \ast .

Step 3: we define the function \theta k on Ij+1. By combining the fact that (1.17) is
satisfied on Ij with the inequality v \geq 0 and recalling that by assumption Ij+1 \subseteq Pk

we get

0 \leq v(\rho j)\rho j\theta k \leq v(\rho j)\rho j
\sum 

k:Ij+1\subseteq Pk

\theta k

and again by a small modification of the proof of [25, Lemma 6.1] this implies

(5.7) 0 \leq Tr[v(\rho j)\rho j\theta k](\cdot , d - ) \leq 
\sum 

k:Ij+1\subseteq Pk

Tr[v(\rho j)\rho j\theta k](\cdot , d - )
(5.6)
= g(\=\rho j+1).

We now set

(5.8) \theta kb :=

\left\{   
Tr[v(\rho j)\rho j\theta k](\cdot , d - )

g(\=\rho j+1)
if g(\=\rho j+1) \not = 0,

0 if g(\=\rho j+1) = 0 .

Note that, owing to (5.7), 0 \leq \theta kb \leq 1. To define \theta k on Ij+1 we apply Theorem 2.15
with ]\alpha , \beta [= Ij+1, b = v(\rho j+1), \rho = \rho j+1, and \=\theta = \theta kb, and we term \theta k the solution
of (2.17). By applying the comparison principle, we get that (1.17) is satisfied on
Ij+1. The equality (1.18) is established in Step 5.

Step 4: we show that \theta k is a solution of (1.8) on I1 \cup I2 \cup \cdot \cdot \cdot \cup Ij+1. First, we
point out that

(5.9) Tr[v(\rho j+1)\rho j+1](\cdot , d+)
(1.7),(2.15)

=  - g(\rho j+1)(\cdot , d+)
Proposition 2.7

=  - g(\=\rho j+1).

Next, we set Pk,j := I1 \cup I2 \cup \cdot \cdot \cdot \cup Ij and Pk,j+1 := Pk,j \cup Ij+1. We recall that by the
inductive assumption \theta k is a solution on Pk,j , which implies that

� T

0

�
Pk,j

rk\theta k(\partial t\phi + v(rk)\partial x\phi )dxdt =

� T

0

Tr[v(\rho j)\rho j\theta k](t, d
 - )\phi (t, d)dt(5.10)

for every \phi \in C\infty 
c (]0, T [\times Pk,j+1),

where we recall that rk is obtained by patching together \rho 1, . . . , \rho j ; see (1.9). On the
other hand, since by definition \theta k is a solution of the initial-boundary value problem
on Ij+1, then

� T

0

�
Ij+1

\rho j+1\theta k(\partial t\phi + v(\rho j+1)\partial x\phi )dxdt =

� T

0

Tr[v(\rho j+1)\rho j+1\theta k](t, d
+)\phi (t, d)dt

=

� T

0

Tr[v(\rho j+i)\rho j+1](t, d
+)\theta kb\phi (t, d)dt

(5.8),(5.9)
=  - 

� T

0

Tr[v(\rho j)\rho j\theta k](t, d
 - )\phi (t, d)dt

(5.11)
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for every \phi \in C\infty 
c (]0, T [\times Pk,j+1). This implies that

� T

0

�
Pk,j+1

rk\theta k(\partial t\phi + v(rk)\partial x\phi )dxdt =

� T

0

�
Pk,j

rk\theta k(\partial t\phi + v(rk)\partial x\phi )dxdt

+

� T

0

�
Ij+1

\rho j+1\theta k(\partial t\phi + v(\rho j+1)\partial x\phi )dxdt
(5.10),(5.11)

= 0 for every \phi \in C\infty 
c (]0, T [\times Pk,j+1),

that is, \theta k is a solution of (1.8) on Pk,j+1 = I1 \cup I2 \cup . . . Ij+1.
Step 5: we establish (1.18). Note that at the junction point d between the road

Ij and the road Ij+1 we have

Tr[v(\rho j+1)\rho j+1](\cdot , d+)
(5.9)
=  - g(\=\rho j+1)

(5.6)
=  - 

\sum 
k:Ij+1\subseteq Pk

Tr[v(\rho j)\rho j\theta k](\cdot , d - )

and owing to Lemma 5.2 this yields (1.18).

5.2.2. Uniqueness. We now establish the uniqueness part in the statement of
Theorem 1.4. We fix a path Pk, term I1, . . . , Ink

the consecutive roads composing
Pk, and assume that there are two solutions \rho 1, . . . , \rho nk

, \theta k and \rho \lozenge 1 , . . . , \rho 
\lozenge 
nk
, \theta \lozenge k . We

want to show that \rho 1 = \rho \lozenge 1 a.e. on ]0, T [\times I1, . . . , \rho nk
= \rho \lozenge nk

a.e. on ]0, T [\times Ink
and

that \rho i\theta k = \rho \lozenge i \theta 
\lozenge 
k a.e. on ]0, T [\times Ii for every i = 1, . . . , nk. We argue inductively and

proceed according to the following steps.
Step 1: we establish the identities \rho 1 = \rho \lozenge 1 and \theta k = \theta \lozenge k on ]0, T [\times I1. Since \rho 1

and \rho \lozenge 1 are both entropy admissible solutions of the initial-boundary value problem
(1.5), (1.11), (1.13) such that 0 \leq \rho 1, \rho 

\lozenge 
1 \leq \rho \ast , the identity \rho 1 = \rho \lozenge 1 follows from the

uniqueness part of Proposition 2.6. Next, we recall that \theta k and \theta \lozenge k are both solutions
of the initial-boundary value problem\biggl\{ 

\partial t[\rho 1\theta ] + \partial x[v(\rho 1)\rho 1\theta ] = 0,
\theta (0, \cdot ) = \theta k0, \theta (\cdot , a) = \=\theta k

and hence the identity \rho 1\theta k = \rho 1\theta 
\lozenge 
k follows from the uniqueness part in Theorem 2.15.

Step 2: we assume that \rho i = \rho \lozenge i and \rho i\theta k = \rho i\theta 
\lozenge 
k on ]0, T [\times Ii for every i =

1, . . . , j and we establish the identities \rho j+1 = \rho \lozenge j+1 and \rho j+1\theta k = \rho j+1\theta 
\lozenge 
k a.e. on

]0, T [\times Ij+1. We term d the junction point between Ij and Ij+1. We recall that by
assumption both \theta k and \theta \lozenge k satisfy (1.18) on ]0, T [\times Ii for every i = 1, . . . , nk. We apply

Lemma 5.2, recall that \rho j = \rho \lozenge j , \rho j\theta k = \rho j\theta 
\lozenge 
k on ]0, T [\times Ij , and from (5.3) we deduce

that Tr[v(\rho j+1)\rho j+1](\cdot , d+) = Tr[v(\rho \lozenge j+1)\rho 
\lozenge 
j+1](\cdot , d+) a.e. on ]0, T [. Owing to the first

equality in (5.9), this yields the identity g(\rho j+1)(\cdot , d+) = g(\rho \lozenge j+1)(\cdot , d+) a.e. on ]0, T [,

where g is the same as in (1.7) and the traces g(\rho j+1)(\cdot , d+) and g(\rho \lozenge j+1)(\cdot , d+) are

attained in the sense of (2.3). Since by assumption \rho j+1, \rho 
\lozenge 
j+1 \leq \rho \ast , then owing to

Lemma 2.9, this implies that \rho j+1 = \rho \lozenge j+1 a.e. on ]0, T [\times Ij+1. Next, we recall that

\rho j\theta k = \rho j\theta 
\lozenge 
k a.e. on ]0, T [\times Ij , we apply (2.16) and recall (2.18), and we conclude that

\theta k and \theta \lozenge k are both solutions of the initial-boundary value problem\biggl\{ 
\partial t[\rho j+1\theta ] + \partial x[v(\rho j+1)\rho j+1\theta ] = 0,
\theta (0, \cdot ) = \theta k0, \theta (\cdot , d) = \theta kb,

where \theta kb is the same as in (5.8) with \=\rho j+1 replaced by g(\rho j+1)(\cdot , d+). By the unique-
ness part in the statement of Theorem 2.15 we conclude that \rho j+1\theta k = \rho j+1\theta 

\lozenge 
k a.e.

on ]0, T [\times Ij+1.
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Remark 5.3. Definition 1.3, Definition 5.1, and Lemma 5.2 extend to the case
of more general networks than those considered in the present paper, i.e., networks
containing other types of junctions than T-junctions. By arguing as in the proof
of Theorem 1.4 one can show that if the density functions \rho 1, . . . , \rho h are assigned,
then one can construct the functions \theta 1, . . . , \theta m satisfying Definition 5.1 and these
functions are unique in the sense of (1.19). What is missing in the general case is that
nothing guarantees that condition (1.18), or equivalently the junction condition (5.3),
is satisfied.

6. Propagation of regularity and stability for the source-destination
model.

6.1. Proof of Theorem 1.5. By the uniqueness part in Theorem 1.4 it suffices
to show that the solution of the distributional source-destination model constructed
in section 5.2.1 satisfies Theorem 1.5. In particular, in the proof we show that, under
the assumptions of Theorem 1.5, rk is bounded away from 0 for every k = 1, . . . ,m
and hence the function \theta k is uniquely determined. We fix k = 1, . . . ,m, consider the
path Pk, and as in section 5.2.1 term I1, . . . , Ink

the consecutive roads composing Pk.
Step 1: we establish the regularity estimates on \rho 1. We recall that \rho 1 is obtained

by applying Proposition 2.6, and by recalling (2.8) we arrive at

(6.1) TotVar \rho 1(t, \cdot ) \leq TotVar \=\rho +TotVar \rho 10+| \=\rho (0+) - \rho 10(a+)| for every t \in ]0, T [,

where we have used Lemma 2.1 to define the function \rho 1(t, \cdot ) for every t. By apply-
ing the chain rule for BV functions (see, for instance, [5, Theorem 3.96]) and using
(1.5), we deduce from (6.1) a control on the total variation of the measure \partial t\rho 1 on
]0, T [\times ]\alpha , \beta [ and conclude that \rho 1 \in BV (]0, T [\times ]\alpha , \beta [). Next, we recall the assump-
tions on the data and (2.5) and we conclude that

(6.2) 0 < \varepsilon \leq \rho 1 \leq \rho \ast  - \varepsilon a.e. on ]0, T [\times I1.

We term d the second extremum of I1, we recall that g is given by (1.7), we ap-
ply (4.10), and by using the chain rule forBV functions we conclude that g(\rho 1)(\cdot , d - ) \in 
BV (]0, T [). Owing to (6.2), this yields

(6.3) 0
(1.7)
< v(\varepsilon )\varepsilon \leq g(\rho 1)(\cdot , d - ) \leq v(\rho \ast  - \varepsilon )[\rho \ast  - \varepsilon ].

Step 2: we establish the regularity estimates for \theta k on I1. We apply Theorem 2.16
with ]\alpha , \beta [= I1 and b = v(\rho 1) and we conclude that \theta k \in BV (]0, T [\times I1). Also, owing
again to Theorem 2.16, there is \~\theta k \in BV (]0, T [) such that

(6.4) Tr[v(\rho 1)\rho 1\theta k](\cdot , d - ) = \~\theta kTr[v(\rho 1)\rho 1](\cdot , d - )
(2.15)
= \~\theta kg(\rho 1)(\cdot , d - ) a.e. on ]0, T [

and that

(6.5) \varepsilon \leq \~\theta k \leq 1 a.e. on ]0, T [.

Step 3: we deal with the junction d. We have
(6.6)

g(\rho 2)(\cdot , d+)
(2.15)
=  - Tr[v(\rho 2)\rho 2](\cdot , d+)

(5.3)
=

\sum 
k:I2\subseteq Pk

Tr[v(\rho 1)\rho 1\theta k](\cdot , d - )
(6.4)
= g(\rho 1)(\cdot , d - )

\sum 
k:I2\subseteq Pk

\~\theta k.
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On the one hand, by (6.5) we trivially have
\sum 

k:I2\subseteq Pk

\~\theta k \geq \varepsilon . On the other hand, by
linearity z :=

\sum 
k:I2\subseteq Pk

\theta k solves\Biggl\{ 
\partial t (\rho 1z) + \partial x (v(\rho 1)\rho 1z) = 0 on ]0, T [\times I1,
z(\cdot , a) =

\sum 
k:I2\subseteq Pk

\theta k, z(0, \cdot ) =
\sum 

k:I2\subseteq Pk
\theta 0k

and hence Theorem 2.16 yields the existence of \~z \in BV (]0, T [) such that

Tr

\left[  v(\rho 1)\rho 1 \sum 
k:I2\subseteq Pk

\theta k

\right]  (\cdot , d - ) = \~zTr[v(\rho 1)\rho 1](\cdot , d - )
(2.15)
= \widetilde zg(\rho 1)(\cdot , d - ) a.e. on ]0, T [.

The linearity and the uniqueness of the distributional traces and (6.3) imply

\~z =
\sum 

k:I2\subseteq Pk

\~\theta k a.e. on ]0, T [
(1.15), (1.16)

=\Rightarrow \varepsilon \leq \~z =
\sum 

k:I2\subseteq Pk

\~\theta k \leq 1 a.e. on ]0, T [

and owing to (6.3) and (6.6) this yields

(6.7) \varepsilon 2v(\varepsilon ) \leq g(\rho 2)(\cdot , d+) \leq v(\rho \ast  - \varepsilon )[\rho \ast  - \varepsilon ].

Also, owing to (6.6), g(\rho 2)(\cdot , d+) \in BV (]0, T [). We now recall the construction in Step
2 of section 5.2.1 and in particular that the boundary datum \=\rho 2 for \rho 2 is the unique
function comprised between 0 and \rho \ast such that g(\=\rho 2) = g(\rho 2)(\cdot , d+) a.e. on ]0, T [. By
using (6.7) and the chain rule for BV functions we infer that \=\rho 2 \in BV (]0, T [). Also,
\~\varepsilon \leq \=\rho 2 \leq \rho \ast  - \varepsilon for a suitable constant \~\varepsilon > 0 which could be explicitely computed
if needed. Next, we recall the construction in Step 3 of section 5.2.1 and, by using
formula (5.8) and recalling that g(\=\rho 2) is bounded away from 0, we conclude that the
boundary datum for \theta k at d is

(6.8) \theta kb =
Tr[v(\rho 1)\rho 1](\cdot , d - )

g(\=\rho 2)

and, owing to (6.3) and (6.7), this yields \theta kb \in BV (]0, T [) and \=\varepsilon \leq \theta kb \leq 1 for
some suitable constant \=\varepsilon which could be explicitly computed, if needed. We can
repeat the argument at Step 1 and Step 2 and conclude that \rho 2 \in BV (]0, T [\times I2),
\theta k \in BV (]0, T [\times I2).

Step 4: by iterating the argument at the previous steps we conclude that, for
every i = 1, . . . , nk, \rho i \in BV (]0, T [\times Ii) and \theta k \in BV (]0, T [\times Ii). To conclude that
actually \theta k \in BV (]0, T [\times Pk) we apply a ``gluing theorem"" for BV functions; see [5,
Corollary 3.89].

6.2. Proof of Corollary 1.6. By the uniqueness part of Theorem 1.4 it suffices
to establish the stability of the solution constructed in section 5.2.1. We fix k =
1, . . . ,m and as in section 5.2.1 we term I1, . . . , Ink

the consecutive roads composing
the path Pk.

Step 1: we show that \rho n1 \rightarrow \rho 1 in L1(]0, T [\times I1). To this end, it suffices to recall
the stability of the entropy admissible solutions of initial-boundary value problems
with respect to perturbations in the data; see, for instance, [19, Theorem 4.3]. Owing
to Lemma 2.8 we also have

(6.9) g(\rho n1 )(\cdot , d - ) \rightarrow g(\rho 1)(\cdot , d - ) in L1(]0, T [),

where d denotes the second extremum of the interval I1.
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Step 2: we show that \rho n1 \theta 
n
k \rightarrow \rho 1\theta k in L1(]0, T [\times I1).

Step 2A: we show that there is a sequence \theta nk solving the initial-boundary value
problem

(6.10)

\biggl\{ 
\partial t[\rho 

n
1 \theta 

n
k ] + \partial x[v(\rho 

n
1 )\rho 

n
1 \theta 

n
k ] = 0,

\theta nk (0, \cdot ) = \theta nk0, \theta nk (\cdot , a) = \=\theta nk

on ]0, T [\times I1 such that \theta nk
\ast 
\rightharpoonup \theta k weakly\ast in L\infty (]0, T [\times I1), where \theta k is a solution of

the initial-boundary value problem (1.8), (1.12), (1.14). To this end, we recall that
\theta nk is constructed in section 5.2.1 by applying Theorem 2.15, and by (2.19) this yields
an L\infty bound on \theta nk in terms of \| \theta nk0\| L\infty and \| \=\theta nk\| L\infty . Owing to (1.15) and (1.16)
we conclude that \| \theta nk\| L\infty is uniformly bounded and hence weakly\ast converges (up
to subsequences) to some limit function \theta k. By using Step 1 we can pass to the
limit in the distributional formulation of (6.10) and conclude that \theta k is a solution
of (1.8), (1.12), (1.14).

Step 2B: we show that \rho 1(\theta 
n
k )

2 \ast 
\rightharpoonup \rho 1(\theta k)

2 weakly\ast in L\infty (]0, T [\times I1). Owing to
the proof of [25, Proposition 3.11], (\theta nk )

2 is a solution of the initial-boundary value
problem (6.10) with \theta n0k and \=\theta nk replaced by (\theta n0k)

2 and (\=\theta nk )
2, respectively. Also,

\| (\theta nk )2\| L\infty is uniformly bounded because so is \| \theta nk\| L\infty and hence, up to subsequences,
(\theta nk )

2 weakly\ast converges in L\infty (]0, T [\times I1) to some limit function \gamma . Since \rho n1 \rightarrow \rho 1
strongly in L1(]0, T [\times I1) by Step 1, this implies that \rho n1 (\theta 

n
k )

2 \ast 
\rightharpoonup \rho 1\gamma weakly\ast in

L\infty (]0, T [\times I1). By passing to the limit in the distributional formulation we get that
\rho 1\gamma is a solution of (6.10) with \theta n0k and \=\theta nk replaced by (\theta 0k)

2 and (\=\theta k)
2, respectively.

Since by [25, Proposition 3.11] \rho 1(\theta k)
2 is a solution of the same initial-boundary value

problem, then by the uniqueness part of Theorem 2.15 we have \rho 1\gamma = \rho 1(\theta k)
2.

Step 2C: we conclude the proof of Step 2. We recall that \rho n1 \rightarrow \rho 1 strongly in

L1(]0, T [\times I1) owing to Step 1: by Step 2A, this implies that \rho 1\theta 
n
k

\ast 
\rightharpoonup \rho 1\theta k weakly\ast in

L\infty (]0, T [\times I1) and henceforth weakly in L2(]0, T [\times I1). By Step 2B, it also implies that

(\rho 1\theta 
n
k )

2 \ast 
\rightharpoonup (\rho 1\theta k)

2 weakly\ast in L\infty (]0, T [\times I1) and henceforth weakly in L2(]0, T [\times I1).
We conclude that \rho 1\theta 

n
k \rightarrow \rho 1\theta k strongly in L2(]0, T [\times I1) and henceforth strongly in

L1(]0, T [\times I1).
Step 3: we show that \=\rho n2 \rightarrow \=\rho 2 strongly in L1(]0, T [), where \=\rho n2 and \=\rho 2 are

the boundary data for \rho n2 and \rho 2, respectively. We recall that, by the construction
in section 5.2.1, \=\rho 2 is the function confined between 0 and \rho \ast such that

g(\=\rho 2) =
\sum 

k:I2\subseteq Pk

Tr[v(\rho 1)\rho 1\theta k](\cdot , d - ),

where d is the second extremum of I1. Hence, to establish the convergence \=\rho n2 \rightarrow \=\rho 2 it
suffices to show that Tr[v(\rho n1 )\rho 

n
1 \theta 

n
k ](\cdot , d - ) \rightarrow Tr[v(\rho 1)\rho 1\theta k](\cdot , d - ) strongly in L1(]0, T [)

for every k = 1, . . . ,m.
Step 3A: we show that Tr[v(\rho n1 )\rho 

n
1 \theta 

n
k ](\cdot , d - )

\ast 
\rightharpoonup Tr[v(\rho 1)\rho 1\theta k](\cdot , d - ) weakly\ast in

L\infty (]0, T [). Owing to [3, Proposition 3.2] and to the proof of [20, Lemma 3.3],
\| Tr[v(\rho n1 )\rho n1 \theta nk ]\| L\infty is uniformly bounded in terms of \| \rho n1\| L\infty and \| \theta nk\| L\infty and hence
up to subsequences converges weakly\ast in L\infty (]0, T [) to some function \delta . By recalling
Step 1 and Step 2 and passing to the limit in the definition of distributional trace we
get that \delta = Tr[v(\rho 1)\rho 1\theta k].

Step 3B: by recalling Step 2B we can repeat the same argument as in Step
3A and conclude that Tr[v(\rho n1 )\rho 

n
1 (\theta 

n
k )

2](\cdot , d - ) \ast 
\rightharpoonup Tr[v(\rho 1)\rho 1(\theta k)

2](\cdot , d - ) weakly\ast in
L\infty (]0, T [).
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Step 3C: owing to the trace renormalization property given by [25, Theorem 4.2]
we have\bigl( 

Tr[v(\rho n1 )\rho 
n
1 \theta 

n
k ](\cdot , d - )

\bigr) 2 [25, Theorem 4.2]
= Tr[v(\rho n1 )\rho 

n
1 (\theta 

n
k )

2](\cdot , d - )Tr[v(\rho n1 )\rho n1 ](\cdot , d - )
(2.15)
= Tr[v(\rho n1 )\rho 

n
1 (\theta 

n
k )

2](\cdot , d - )g(\rho n1 )(\cdot , d - ).

Owing to Step 3B and (6.9) this yields that
\bigl( 
Tr[v(\rho n1 )\rho 

n
1 \theta 

n
k ](\cdot , d - )

\bigr) 2
weakly\ast converges

in L\infty (]0, T [) to
\bigl( 
Tr[v(\rho n1 )\rho 

n
1 \theta 

n
k ](\cdot , d - )

\bigr) 2
and by recalling Step 3A and repeating the

same argument as in Step 2C it implies that Tr[v(\rho n1 )\rho 
n
1 \theta 

n
k ](\cdot , d - ) strongly converges

in L1(]0, T [) to Tr[v(\rho 1)\rho 1\theta k](\cdot , d - ).
Step 4: owing to Step 3, we can repeat the same argument as in Step 1 and

conclude that \rho n2 \rightarrow \rho 2 in L1(]0, T [\times I2). Next, we recall that, by the analysis in
section 5.2.1, \theta k is defined on ]0, T [\times I2 by solving an initial-boundary value problem
analogous to (5.8) and with boundary datum \theta kb given by (5.8). We now want to show
that \rho n2 \theta 

n
k \rightarrow \rho 2\theta k. Note that to repeat the same argument as in Step 2 it suffices to

show that

(6.11) \theta nkbg(\=\rho 
n
2 ) \rightarrow \theta kbg(\=\rho 2), (\theta nkb)

2g(\=\rho n2 ) \rightarrow (\theta kb)
2g(\=\rho 2), in L

1(]0, T [).

Step 4A: we establish the first convergence result in (6.11). It suffices to recall
that, owing to (5.8), \theta kbg(\=\rho 2) = Tr[v(\rho 1)\rho 1\theta k](\cdot , d - ), and then recall Step 3C.

Step 4B: we establish the second convergence result in (6.11). We want to apply
the Lebesgue dominated convergence theorem. First, we recall that | \theta nkb| \leq 1 owing
to (5.7) and we conclude that \| (\theta nkb)2g(\rho n2 )(\cdot , d+)\| L\infty is uniformly bounded. We are
left to establish the a.e. pointwise convergence. First, we recall Step 3C and conclude
that, up to subsequences, Tr[v(\rho n1 )\rho 

n
1 \theta 

n
k ](t, d

 - ) converges to Tr[v(\rho 1)\rho 1\theta k](t, d
 - ) and

g(\=\rho n2 (t)) converges to g(\=\rho 2(t)) for a.e. t \in ]0, T [. We fix a t \in ]0, T [ such that the above
convergence results hold true and we distinguish between two cases. If g(\=\rho 2(t)) \not = 0,
then for n sufficiently large

(\theta nkb(t))
2g(\=\rho n2 (t)) =

\Bigl( 
Tr[v(\rho n1 )\rho 

n
1 \theta 

n
k ](t, d

 - )
\Bigr) 2

g(\=\rho n2 (t))
\rightarrow 

\Bigl( 
Tr[v(\rho 1)\rho 1\theta k](t, d

 - )
\Bigr) 2

g(\=\rho 2(t))

= (\theta kb(t))
2g(\=\rho 2(t)) as n\rightarrow +\infty .

If g(\=\rho 2(t)) = 0 we argue as follows: since | \theta nkb(t)| \leq 1, then | (\theta nkb(t))2g(\=\rho n2 (t))| \leq 
g(\=\rho n2 (t)) and hence it converges to 0 as n\rightarrow +\infty . This concludes the proof of the a.e.
pointwise convergence and hence of Step 4.

Step 5: by iterating the argument at the previous steps we establish the desired
stability result.
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