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Abstract

The demand for income inequality estimates, referring to local areas or specific sub-

populations, is growing due to their relevance for policy-making and applied research

in regional and inequality studies. Income data are usually collected through household

surveys where local domains fall outside the prior design plan, resulting in small-sized

samples and yielding unreliable direct estimation. We cope with it by relying on Small

Area Estimation (SAE) methods. Such techniques exploit auxiliary information to bor-

row strength across areas and produce estimates of interest with an acceptable level of

uncertainty.

This dissertation aims at bringing together the world of SAE methods and the one

of inequality measurement by tackling the issues of small samples bias and not well-

behaved distributions of inequality estimators. Our approach lies within the framework

of Bayesian inference of area-level models. Two methodological proposals have been

developed in this regard: a bias correction proposal for finite population and complex

survey design setting, and a small area model based on a Beta mixture, for mapping

double-bounded and not-well behaved responses. The third and last part of this disser-

tation exposes a computational implementation, resulting in an R package, supplying a

more general tool for mapping indices and proportions using Beta-based small area mod-

els. It comes equipped with a set of diagnostics and complementary tools, visualizing

and exporting functions to assist the user in carrying out a complete analysis.





Sommario

La crescita della disuguaglianza economica negli ultimi 30 anni è documentata da una

grande mole di informazioni statistiche. Di recente è emersa l’esigenza di utilizzare,

a fini di pianificazione ed implementazione delle politiche economiche, misure di disu-

guaglianza a livello locale e/o per specifiche sottopopolazioni. Generalmente, le stime

riferite ai parametri di disuguaglianza sono ottenute mediante informazioni raccolte in

indagini campionarie. Queste non sono pianificate per la stima di indicatori a livello

locale e, dunque, presentano spesso ampiezza campionaria non sufficiente ad ottenere

stime affidabili con gli usuali stimatori basati sul disegno. Per far fronte a tale problema

si ricorre a metodi di ”stima per piccole aree”. Queste tecniche integrano stime dirette

ed informazioni ausiliarie al fine di produrre stime con un livello accettabile di errore.

Questa dissertazione ha lo scopo di connettere il mondo della stima per piccole aree con

quello della misurazione della diseguaglianza economica. Vengono affrontate le questioni

relative alla distorsione ed alle distribuzioni asimmetriche a code alte degli stimatori di

diseguaglianza con riferimento a piccoli campioni. L’approccio qui adottato si inquadra

nella cornice dell’inferenza Bayesiana per modelli definiti a livello di area. A questo

proposito, la tesi contiene due proposte metodologiche: la prima fornisce un metodo

di correzione della distorsione di alcuni stimatori di diseguaglianza nel contesto delle

popolazioni finite e delle indagini complesse, la seconda definisce un modello per piccole

aree basato su una mistura di distribuzioni Beta. Quest’ultima proposta si rivela parti-

colarmente utile nel mappare indicatori definiti sull’intervallo unitario con distribuzioni

marcatamente non Gaussiane. La terza ed ultima parte di questa dissertazione espone

una implementazione computazionale, che costituisce un pacchetto R, per la mappatura

di proporzioni ed indici definiti nell’intervallo unitario attraverso modelli per piccole

aree basati sulla distribuzione Beta. Il pacchetto include una serie di specifiche diagno-

stiche ed alcuni strumenti complementari, al fine di assistere l’utente durante l’intera

procedura di analisi.





”Chi vi credete che noi siam
Per i capelli che portiam
Noi siamo delle lucciole
Che stanno nelle tenebre”

- Franco Battiato





Ringraziamenti

Voglio ringraziare in primis Rosaria, la mia supervisor, per avermi supportato, con-

sigliato e confortato, la sua disponibilità e pazienza sono state fondamentali. La mia

coautrice Silvia Pacei ed i reviewer, Enrico Fabrizi e Nikos Tzavidis, per i suggerimenti e

l’incoraggiamento. Aldo, coautore e grande amico, per gli insegnamenti e le discussioni

sulla statistica e la restante ciurma di viale Filopanti: Beatrice, Rosamarie e Riccardo,

per le pause pranzo e le risate.

Voglio ringraziare il mio terapista, Diego, senza il quale questa tesi non sarebbe mai

stata scritta, cogliendo l’occasione per rimarcare come il problema della salute mentale

dei dottorandi sia reale e necessiti di un cambiamento sistemico del mondo della ricerca.

I miei compagni di ciclo, specialmente Anna e Jacopo S., per le sofferenze e le gioie

condivise. Cristina e Marco per l’avventura in via Manzoni e tutti i suoi avventori,
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Introduction

Overview

Our personal definition of inequality can teach us a lot about how we think and how

we intend our societies. Due to its relational dimension, a discussion about inequality

reflects a discussion about society’s structure on its whole. Recently, social transforma-

tions have caused an increasing interest on economic inequality. Such interest stems not

only from economic issues but also from its connection with social cohesion and issues

affecting the quality of life.

In this regard, the demand for living conditions data, referring to local areas or spe-

cific subpopulations, is growing. Policy makers and stakeholders need reliable estimates

at local level, in order to formulate and implement policies, to distribute resources and

to measure the effect of policy actions. In addition, such estimates may be valuable

to further deepen regional and inequality trends, as to identify which regions consti-

tute the driver of national inequality and to study spatial spillovers (Cavanaugh and

Breau, 2018). Income data are usually collected via household sample surveys which

are planned for aggregates estimation at macro level. Thus, local domains fall outside

the prior design plan, resulting in small-sized samples and yielding unreliable direct

estimation. The problem could be overcome with an ex-ante adjustment of sample sizes

but it is, in many practical situations, excluded by cost–benefit analysis.

A key solution to cope with it is to rely on Small Area Estimation (SAE) methods.

Research in this field is accelerating in recent years, with an overwhelming diversity in

new investigated problems and innovative proposed solutions (Pfeffermann, 2013). Con-

cerning SAE of income and living conditions indicators, the poverty mapping has gained

special consideration, while inequality is treated jointly as a minor appendix (Pratesi,

2016; Molina and Rao, 2010). This remarks upon a lack, given that poverty indicators

provide an insight into the lower tail of the income distribution, while inequality indi-

cators comprise by definition a full distributional evaluation. From a statistical point
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4 Main contributions of the thesis

of view, indeed, an inequality measure is nothing more than a measure of dispersion or

heterogeneity.

In this spirit, this dissertation aims at bringing together the world of small area

estimation methods and the one of inequality measurement, and makes them start a

conversation. The model-based class of SAE techniques leverages hierarchical models,

both at area level or unit (individual) level. Our approach lies within the framework

of Bayesian inference of area-level models, being less demanding with respect to data

requirements and computational issues, as well as enabling the incorporation of design-

based properties.

Main contributions of the thesis

This dissertation is organized into three main parts, structured in Chapters 1 to 3.

The first two chapters focus on the SAE of inequality measures. This involves two main

challenges, as inequality direct estimators in small areas are known to be (a) biased

and (b) unreliable due to the high variability. Bias correction and variability reduction

are faced in Chapter 1 and Chapter 2, respectively. Chapter 3, on the other hand,

provides a more broad computational proposal, by illustrating the tipsae R package.

This proposal has been developed in the context of the deep project1, with the final

aim of implementing innovative SAE methods for mapping unit interval-defined indices

and proportions. This package implements the methodological contribution provided in

Chapter 2, but it goes far beyond by supplying a more general tool for handling indices

and proportions using Beta-based small area models.

Chapter 1 includes a first contribution with a twofold aim. On one hand, it provides a

comprehensive discussion about the behavior of inequality estimators from complex sur-

veys in small samples, including issues generally addressed in a piecemeal manner, such

as bias evaluation, robustness, sampling variance estimation and distributional analysis.

On the other hand, it proposes a methodological framework for bias-correction in a finite

population setting, more specifically taking into account the complex survey design. Pre-

vious proposal in this respect, only consider iid observations framework (Deltas, 2003;

Schluter and van Garderen, 2009; Davidson, 2009; Van Ourti and Clarke, 2011). The

bias-correction proposal includes a large class of inequality measures comprising the Gini

Index, the Generalized Entropy and Atkinson families. Since the methodology is based

on Taylor’s expansions and generalized linearization method, not requiring any para-

metric assumption on income distribution, it comes out to be very flexible. Design-based

1https://povertyevidence.org/

https://povertyevidence.org/
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simulation has been carried out showing a noticeable bias reduction for all measures.

A bootstrap variance estimation proposal and a distributional analysis follow. Results

about estimators distributions show increasing positive skewness and lepto-kurtosis at

decreasing sample sizes, confirming the non-applicability of classical asymptotic results

in small samples and suggesting the development of alternative methods of inference.

Chapter 2 constitutes as the core of the dissertation, setting out a small area esti-

mation strategy for four inequality measures: Gini, Theil and two indices pertaining to

the Atkinson family. All of the them have a double-bounded support defined on the

unit interval. Two different bodies of literature unfold in this respect, revolving around

linear mixed models with suitable transformations (Rao and Molina, 2015) and Beta re-

gression models (Janicki, 2020). However, classical Gaussian or Beta regression options

fails in case of skewed and heavy-tailed estimators (Ferrante and Pacei, 2017; Migliorati

et al., 2018) such as the ones of interest. Thus, our contribution extends SAE litera-

ture in case of unit interval-defined, skewed and heavy-tailed parameters by adopting a

Beta-mixture approach. In addition, the methodological proposal deepen the analysis

on inequality estimators by deriving their approximate variance functions. Our model

comes out to outperform the Beta one, both in terms of bias and error of model-based

estimators, avoiding to highly underestimate inequality and providing reliable estimates.

Chapter 3 exposes the tipsae R package. Among the plethora of existing packages for

small area modelling, only emdi package (Kreutzmann et al., 2019) directly accounts for

unit interval responses at area-level by providing the arc-sin transformation in a Gaus-

sian setting (Schmid et al., 2017). Our package aims at filling this gap, by implementing

a full set of Beta-based small area models at area-level on unit interval-defined measures.

The implementation is carried out via Bayesian Hierarchical models, including Beta and

its mixture extensions such as Zero and/or One Inflated Beta and Flexible Beta mod-

els. Particular dependence structures can also be modelled, including spatial and/or

temporal structured priors as well as shrinkage priors for random effects. Model estima-

tion is carried out relying on Stan routine (Carpenter et al., 2017). Specific small-area

model diagnostics are produced by ad-hoc functions, facing the most relevant aspects

to deepen in a Hierarchical Bayes model, equipped with visualization tools. Moreover,

variance smoothing procedures and benchmarking procedures for model-based estimates

are implemented as complementary tools. A shiny app interface comes on top of the

implementation.

Note that Chapters 1 to 3 have been developed as three separate papers, in joint

work with M.R. Ferrante and S. Pacei (Chapters 1 and 2) and A. Gardini (Chapter 3).

Therefore, there could be some repetitions among chapters and the notation, defined
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differently in each chapter, could lead globally to some inconsistencies.



Chapter 1

Mind the Income Gap: Behavior of

Inequality Estimators from

Complex Survey Small Samples

1.1 Introduction

Income inequality measures are known to be biased in small samples (Deltas, 2003;

Breunig and Hutchinson, 2008), leading usually to an underestimation. The bias de-

pends on the variability related to the variable of interest and, for some specific measures,

also on the skewness of its distribution (Breunig, 2001). In this regard, consider that

income is well-known to be positively skewed.

Moreover, the magnitude of the bias varies depending on the inequality measure. This

aspect deserves attention given that inequality measures values are used for comparisons

across time and location. Neglecting the bias may bring out discrepancies in estimated

quantities due to different sample sizes or different underlying distributions rather than

being a true inequality gap (Breunig and Hutchinson, 2008).

Consider that the problem of observations scarcity may arise when dealing with

inequality in specific sub-populations, such as age-sex-race groups, as well as in case

of inequality mapping at great geographical levels of disaggregation. The small area

estimation, therefore, could be a main field of application. In addition, the interest for

reliable inequality estimates is growing due to the observed increment in gap and social

exclusion among regions and to their potential contribution in planning policies and

foster regional studies (Cavanaugh and Breau, 2018).

Concerning the Gini index, a large body of literature faces the bias issues, such as

Jasso (1979), Lerman and Yitzhaki (1989), Deltas (2003), Davidson (2009), Van Ourti

7



8 Section 1.1 - Introduction

and Clarke (2011) in iid samples and Fabrizi and Trivisano (2016) for the complex

survey case. However, concerning alternative measures such as Atkinson Indexes and

the Generalized Entropy (GE) measures, the literature on bias is very scarce, even in

the iid case. Some contributions are provided by Giles (2005) and Schluter and van

Garderen (2009) for the GE family and Breunig and Hutchinson (2008) for GE and

Atkinson families. The mentioned references adopt different methodological approaches

to correct or reduce bias in an iid context.

Income data are usually collected via specific household surveys, with a complex

sampling design. Generally, their designs involve stratification and selection of sampling

units in more than one stage. Thus, the survey sample selection process, together with

ex-post treatment procedures such as calibration and imputation, invariably introduces

a complex correlation structure in the data, which has to be taken into account. This

makes the development of a theoretically valid bias correction challenging.

Furthermore, the bias issue is even exacerbated in income data applications, which

are traditionally affected by the problem of extreme values (Van Kerm, 2007), since

inequality measures are highly unrobust to outliers (Cowell and Victoria-Feser, 1996).

It has been widely tested that those measures appear to be unrobust even to an in-

finitesimal amount of data contamination, especially when dealing with extreme values

on the tails. This aspect depends clearly on the type of measure we are dealing with

and it becomes even more cumbersome to handle in case of small samples.

The aim of this chapter is twofold. On one hand, we provide a comprehensive discus-

sion about the behavior of inequality estimators in small samples from complex surveys,

including issues generally addressed in a piecemeal manner such as bias evaluation, ro-

bustness, variance estimation and distributional analysis. This analysis could be valu-

able for future developments of small samples inference on such measures. On the other

hand, the aim is to propose a methodological framework for bias correction in a finite

population setting, more specifically taking into account the complex survey designs.

The set of considered measures embraces Gini Index, Atkinson Indexes and General-

ized Entropy measures, together with the Coefficient of Variation. The methodology

is based on Taylor’s expansions and generalized linearization method (Deville, 1999;

Demnati and Rao, 2004), relying on the concept of influence functions. Any parametric

assumption on income distribution is not required, providing a very flexible framework.

Our bias correction proposal is evaluated via simulations showing a noticeable bias

reduction for all the measures and leading, in some cases, to approximate unbiased

estimators. An in-depth analysis of measures sensitivities confirms the great impact

outliers have on the magnitude of estimators bias and variance.
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A preliminary definition of the considered inequality measure can be found in Sec-

tion 1.2. The bias correction strategy is set out in Section 1.3 and the bias-correction

estimation steps are detailed in Section 1.4. A design-based simulation study involving

the European Survey of Income and Living Condition (EU-SILC) income data (Guio,

2005) is provided in Section 1.5, in order to evaluate the magnitude of the bias and the

efficacy of our correction. A design-aware bootstrap for bias-corrected estimators vari-

ance is proposed in Section 1.6, while a distributional analysis involving an additional

model-based simulation follows in Section 1.7. Conclusions are drawn in Section 1.8.

1.2 Inequality Measures

The most famous inequality measure is, indeed, the Gini concentration index, em-

ployed in social sciences for measuring concentration in the distribution of a positive

random variable. There are several equivalent definitions of Gini index (Ceriani and

Verme, 2015), we will use the formulation of Sen (1997). Suppose we have a finite

population U of N(< ∞) elements labelled as {1, . . . , N}. Let zi be a characteristic of

interest, in our case income, for the i-th unit of the finite population, where zi ∈ R+,

∀i = 1, . . . , N , and a sample siid of size niid is picked through simple random sampling.

The Gini estimator is defined as

G =
2

n2
iidµ̂

∑
i∈siid

nizi −
niid + 1

niid

,

with ni denoting the rank of i-th unit and µ̂ the sample mean.

However, the estimation of alternative measures, in addition to the Gini index, may

enable a more meaningful assessment of different aspects of economic inequality. Gini

index does not allow to decompose inequality into within groups and between groups

components, moreover, it is positional (weakly) transfer sensitive, namely index varia-

tions depend on the ranks of the donor and recipients. Lastly, it constitutes a stochas-

tic dominance measure, based on a partial ordering of probability distributions: two

very different distributions - one having more inequality amongst the poor, the other

amongst the rich can have the same index value. When the distributional dominance

fails, welfare-based measures, such as Atkinson Indexes, may provide for a complete

ranking among alternative distributions, at the expense of more stringent assumptions

as to how to represent social welfare (Bellu and Liberati, 2006). Atkinson index has
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support [0,1] and is defined as

A(ε) =

⎧⎨⎩1− 1
µ̂

(
1

niid

∑
i∈siid z

1−ε
i

)1/(1−ε)

for ε ̸= 1

1− 1
µ̂

(∏
i∈siid zi

)1/niid for ε = 1.

The parameter ε expresses the level of inequality aversion, as ε increases, the index

becomes more sensitive to changes at the lower end of the income distribution.

Besides, an additive decomposable family of inequality measure is the Generalized

Entropy class. As opposed to the measures seen before, this class has the advantage

to be strongly transfer-sensitive, meaning that it reacts to transfers depending on the

donor and recipient income levels. It is based on the concept of entropy which applied

to income distributions has the meaning of deviations from perfect equality:

GE(α) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

niidα(α−1)

∑
i∈siid

[(
zi
µ̂

)α
− 1
]

α ̸= 0, 1,

1
niid

∑
i∈siid

zi
µ̂
ln zi

µ̂
α → 1,

− 1
niid

∑
i∈siid ln

zi
µ̂

α → 0.

Its parameter α sets the sensitivity of the index: a large α induces the index to be more

sensitive to the upper tail, vice versa a small α to the lower tail. GE(0) is the Mean

Log Deviation, while GE(1) is the more famous Theil index. Atkinson and Generalized

Entropy are two interrelated parametric families of measures, as a transformation of the

Atkinson Index is a member of the GE class:

A(ε) = 1− [ε(ε− 1) ·GE(1− ε) + 1]1/(1−ε).

In this chapter, we consider the estimation of both classes separately, since common

parameter values used in one family does not correspond deterministically to common

parameter values used in the other one. Lastly, we consider as inequality measure

the Coefficient of Variation, which is linked with a member of the GE family, namely

GE(2) =CV2/2. Its square has been used in some income distribution analyses, in-

cluding OECD (2011), but comparisons developed using this measure seems to be very

sensitive to top outliers (Atkinson, 2015).
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1.3 Bias Correction Proposal

The bias of inequality estimators in small samples can be due to the structure of

inequality measures as a non-linear function of estimators. The bias can be either posi-

tive or negative, depending on the characteristics of the reference variable distribution,

except for the Mean Log Deviation which has structurally negative bias; this aspect is

made clearer in the following. Among the measures with non-predictable bias direction,

Breunig (2001) shows that CV and GE(2) bias direction is negatively related to income

skewness, concerning the other measures it depends on the income dispersion. This as-

pect could be analyzed in-depth by imposing a distributional assumption on the income

variable, but this is out of scope.

Proposition 1.1. As stated by Breunig and Hutchinson (2008), for a subset of the

considered measures, i.e. the ones belonging to the GE and Atkinson families, the re-

lationship between the expectation of the sample measure of inequality θ̂ and its true

population value θ is:

E[θ̂] = θ +O

(
1

niid

)
,

with niid denoting the sample size in the iid case.

Proof. Let us consider a sample with iid elements {z1, . . . , zniid
}, drawn from a pop-

ulation via simple random sampling, where zi is the variable for the i-th unit with

expected value µ and variance σ2. Let us consider also {g(z1), . . . , g(zniid
)} with g(z)

a generic monotone transformation of the income variable, induced by g(·) : R+ → R,
that changes for each measure, having expected value γ and variance ϕ2. Considering

equation (1.2) with µ̂ =
∑niid

i=1 zi/niid and γ̂ =
∑niid

i=1 g(zi)/niid, we can easily obtain

estimator moments as µ̂ ∼ [µ, σ2/niid] and γ̂ ∼ [γ, ϕ2/niid]. Let us consider moreover

that

Cov[µ̂, γ̂] = E[µ̂γ̂]− µγ =
1

niid

(E[z · g(z)]− µγ) =
Cov[z, g(z)]

niid

.

Let us define the population value of a generic inequality measure θ as f(µ, γ), with f(·)
a generic twice-differentiable function. By expanding the inequality measure estimator

θ̂ as f(µ̂, γ̂), via Taylor’s expansion around the population values and considering its
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expected value:

E[θ̂] = θ +
1

2
fγ,γ(γ, µ)V[γ̂] + fγ,µ(γ, µ)Cov[γ̂, µ̂] +

1

2
fµ,µ(γ, µ)V[µ̂] +O(n−2

iid)

= θ +O(n−1
iid) +O(n−1

iid) +O(n−1
iid) +O(n−2

iid)

= θ +O(n−1
iid), (1.1)

where fγ = ∂f(γ,µ)
∂γ

and fγµ = ∂2f(γ,µ)
∂γ∂µ

.

Our bias-correction proposal constitutes a generalization of the framework of Bre-

unig and Hutchinson (2008), developed for iid observations, to the finite population and

full design-based setting. At the same time, we extend the proposal to a wider set of

measures comprising Gini Index. We provide a closed-form bias correction for complex

designs which allows us to avoid the use of resampling techniques and can be applied

in a distribution-free setting at once. This generalization has been developed consider-

ing Horvitz-Thompson type estimators and Ultimate Clusters and Influence Function

linearization techniques for variances and covariances estimation.

We are interested in a variety of non-linear functions of income values as inequality

measures are. Let denote with s a sample of size n, drawn using a complex sampling

design, and with p(s) the probability of selecting the particular sample s ⊂ U out of

the set of all possible samples Q, thus p(s) ≥ 0 and
∑

s∈Q p(s) = 1 . The inclusion

probability of unit k is denoted with πk, being πk =
∑

s∈Qk
p(s) with Qk the set of all

possible samples including unit k.

We consider the generic inequality measure written as a function of the mean µ and

γ = E[g(z)]. The population value for the generic inequality measure is

θ = f(µ, γ), (1.2)

with f(·) a twice-differentiable function. The related estimator in our complex survey

framework is θ̂ = f(µ̂, γ̂) in which Horvitz-Thompson estimators of the mean and γ are

plugged in, i.e.

µ̂ =

∑n
i=1wizi
N

and γ̂ =

∑n
i=1wig(zi, wi)

N
. (1.3)

where wi = 1/πi or a treated and calibrated version of it and N is the population

size. Note that results in this section hold also when employing Hajek type estimator,

i.e. with denominator N̂ =
∑n

i=1wi, since it is approximately unbiased (Särndal et al.,
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2003, pg. 182). Kakwani (1990) uses a similar approach to express inequality indices

to derive their asymptotic standard error. By simply applying a second order Taylor’s

series expansion of the sample estimator around the population values and evaluating

its expected value, the bias can be expressed as

E[θ̂ − θ] =fγ(γ, µ)E[γ̂ − γ] +
1

2
fγ,γ(γ, µ)(V[γ̂] + E2[γ̂ − γ])+

+ fγ,µ(γ, µ)(Cov[γ̂, µ̂]− µE[γ̂ − γ]) +
1

2
fµ,µ(γ, µ)V[µ̂] +O(n−2). (1.4)

Notice that µ̂ is unbiased. An alternative method for bias approximation could be the

small-σ approximation described in Ullah (2004). However, this framework requires

high order moments and cross-moments estimation when facing non-iid assumptions.

This may result quite challenging in cases of multi-stage surveys and distribution-free

settings.

1.3.1 Approximate Bias Corrections

In this subsection, we detail the design-based estimators for each inequality measure

and we provide their explicit bias formulation based on equation (1.4), defining all the

relevant quantities in Table 1.1. Let denote with n the sample size and with
√
n/(n− 1)

the standard bias-correction adjustment for the weighted variance; F (·) denotes the

cumulative distribution function of the variable of interest and lastly consider N̂i =∑
k∈swk1(nk ≤ ni). The notation 1(A) defines an indicator function, assuming value 1

if A is observed and 0 otherwise.

As regards the Gini index, we employ the alternative formulation defined by Sen

(1997) and the complex survey estimator proposed by Langel and Tillé (2013). By

considering γ and γ̂ defined as in Table 1.1 for the Gini index, its approximate bias in

small sample is

E[Ĝ−G] ∼=
2

µ
E[γ̂ − γ] +

2γ

µ3
V[µ̂]− 2

µ2
(Cov[µ̂, γ̂]− µE[γ̂ − γ]) (1.5)

=
4

µ
E[γ̂ − γ] +

2γ

µ3
V[µ̂]− 2

µ2
Cov[µ̂, γ̂],

The derivation of the approximate bias related to the weighted estimator γ̂ is not

trivial. As explained by Langel and Tillé (2013), its numerator is not composed of two

simple sums. Indeed the quantity N̂k, an estimator of the rank of unit k, is random

since its value depends on the selected sample. A heuristic solution is to consider the

approximate bias of the corresponding iid estimator, E[γ̂ − γ] = −1/niid(γ − µ/2) as
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derived by Davidson (2009) so that:

E[Ĝ−G] =
−2G

niid

+
2γ

µ3
V(µ̂)− 2

µ2
Cov(µ̂, γ̂). (1.6)

This correction is in line with Davidson (2009) and Fabrizi and Trivisano (2016) pro-

posals, whereas these are based on a first-order Taylor’s expansions and thus limited to

the first term of the right-hand side equation (1.5), ours extends it to a second-order

expansion. This translates into the fact that, while Jasso (1979), Deltas (2003) and

Davidson (2009) proposals identify the adjusted Gini in iid contexts as niid(niid−1)−1Ĝ,

our correction reconsiders the shape of the adjusted estimator with a further order of

approximation as

niid

niid − 2
(Ĝ− a), (1.7)

with a equals to the sum of the second and third term of (1.6).

The complex survey estimators of Atkinson and Generalized Entropy measures come

from Biewen and Jenkins (2006). The bias estimation of Mean Log Deviations is con-

sistent with Ferrante and Pacei (2019) and note that it is structurally negative. The

approximate bias expressions for complex survey estimators coincide, in some specific

cases, with the ones for iid estimators made explicit by Breunig and Hutchinson (2008)

due to the invariance properties related to expected values of the sum of dependent

variables. See formulas referring to Mean Log Deviation, Theil and Atkisons indexes in

Table 1.1.

1.4 Bias Estimation

In this section, we detail the estimation of the approximate bias defined in Table

1.1. Such estimation is not trivial considering that the mentioned expressions depend

on variances and covariances involving a non-linear statistic γ̂. Thus, a linearization

of γ̂ is needed in order to make it tractable and carry on variance estimation. The

linearization technique is described in Subsection 1.4.1, whereas V[µ̂], V[γ̂] and Cov[µ̂, γ̂]
have been estimated following Subsection 1.4.2. The estimation procedure is completed

by replacing µ and γ with µ̂ and γ̂.
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1.4.1 Linearization of Non-Linear Estimators

The linearization technique follows the intuition of approximating a non-linear statis-

tic with a linear function of the transformed observations. In doing so, the linear ap-

proximation can be used to measure the precision and uncertainty associated with the

statistic of interest, using well-known linear estimators of variances and covariances.

We apply the generalized linearization method (Deville, 1999; Demnati and Rao, 2004;

Osier, 2009). This method allows encompassing more non-linear statistics than the

Taylor one being, in general, more flexible and working better in case of small samples

(Osier, 2009).

In particular, this procedure as stated by Antal et al. (2011), reconciles the two

approaches introduced by Deville (1999) and Demnati and Rao (2004), both relying

on the concept of influence function (Hampel, 1974). The same method has been used

directly by Graf and Tillé (2014) to estimate the variance of some inequality measures

estimators via linearization. Following the theoretical framework of Antal et al. (2011),

we could say that a population parameter of interest θ in a population U undergoes

the influence of a unit k, which depends on an infinitesimal variation in the importance

assigned to the unit. Let us express the parameter as a functional θ = T (M) based on

a measure M(·) such that ⎧⎨⎩M(z) = w̃k z = zk ∀k ∈ s

M(z) = 0 otherwise,

with w̃k a generic weight associated to the unit k, in our case corresponding to w̃k =

wk/N . The general measure M turns to a discrete measure, leading T into a discrete

functional.

Since the functional is expressed as an explicit function of the weights assigned to

each unit, the linearized variable is merely a function of the partial derivatives with

respect to the weights:

I[T (M)]k = vk =
∂T (M)

∂w̃k

=
∂

∂w̃k

∑
i∈s

w̃ig(zi) = g(zk). (1.8)

The linearized variables for each inequality measure can be directly derived from (1.8)

by substituting the measure-specific function g(·) listed in Table 1.1.
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1.4.2 Estimation of Design Variances and Covariances

As regards the estimation of the design variances and covariances of linear and lin-

earized estimators, we consider a complex survey design involving stratification and

multi-stage selection, with both Self-Representing (SR) -included at the first stage with

probability one - and Non Self-Representing (NSR) strata. This design is consistent

with the most common income survey designs and, in general, with household surveys,

whereas firm surveys are based on a single-stage stratified sample design, also a special

case of the multi-stage selection.

First of all, we define the shape of the Horvitz-Thompson variance estimator in case

of linear (or linearized) estimators, µ̂ =
∑

i∈swizi/N when wi = 1/πi, as:

V[µ̂] =
∑
i∈s

z2i
π2
iN

2
(1− πi) + 2

∑
i∈s

∑
k∈s,i ̸=k

zi
πi

zk
πk

πik − πiπk
πikN2

,

with πik, ∀i, k ∈ U , i ̸= k denoting the second-order inclusion probabilities i.e. the

probability that the sample includes both i-th and k-th units. However generally (a)

wi ̸= 1/πi and (b) πik, ∀i, k ∈ U , i ̸= k are difficult to calculate under complex sampling

designs.

Therefore, the variance estimator to be considered constitutes an approximation

relying on simplified assumptions. Firstly, we assume that Primary Sampling Units

(PSU) are sampled with replacement, and secondly we reduce multi-stage sampling into

a single-stage process by relying on the Ultimate Clusters technique (Kalton, 1979).

Moreover, we take into account the hybrid nature of the probability scheme, blending

a variance estimator for stratified design associated with the SR strata, including a

finite population correction factor, and a typical Ultimate Cluster variance estimator

for multi-stage schemes associated with the NSR strata. The latter one is widely used in

official statistics, see Osier et al. (2013) for Eurostat procedures. Therefore, considering

without loss of generality a two-stage scheme, let µ̂ =
∑

h

∑
d

∑
i w̃hdizhdi with h stratum

indicator, d Primary Sampling Unit (PSU) indicator and i Secondary Sampling Unit

indicator (SSU), be a linear estimator for µ, its standard error estimate is as follows:
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V̂[µ̂] =
HSR∑
h=1

V[µ̂h] +

HNSR∑
h=1

V[µ̂h]

=

HSR∑
h=1

M2
h(1− fh)

s2h
mh

+

HNSR∑
h=1

nhs
2
µ̂h

(1.9)

=

HSR∑
h=1

Mh
Mh −mh

mh(mh − 1)

mh∑
i=1

(zhi − z̄h)
2 +

HNSR∑
h=1

nh

(nh − 1)

nh∑
d=1

(µ̂hd − µ̄h)
2,

with HSR self-representative and HNSR non self-representative strata, Mh the number

of resident households in strata h, mh the number of sample households in strata h,

fh = mh/Mh a finite population correction factor, nh the number of PSUs in strata

h. Consider, moreover, that z̄h =
∑mh

i=1 zhi/mh, µ̂hd =
∑md

i=1 w̃hdizhdi with i denoting

the household label and md the number of sample households in PSU d, lastly µ̄h =∑nh

d=1 µ̂hd/nh, with nh being the number of PSU in stratum h. If however nh = 1 for

some strata, the estimator (1.9) cannot be used. A solution is to collapse strata to create

“pseudo-strata” so that each pseudo-stratum has at least two PSUs. Common practice

is to collapse a stratum with another one that is similar w.r.t. the target variables of

the survey (Rust and Kalton, 1987).

Secondly, an estimator of V[γ̂] can be obtained after the linearization of γ̂, leading

to V[γ̂] ∼= V(
∑

i∈swivi/N), by adopting the same strategy used for V[µ̂] in (1.9).

Thirdly, as regards the estimation of the design covariance, let us consider that

Cov[γ̂, µ̂] =
1

2

(
V[γ̂ + µ̂]− V[γ̂]− V[µ̂]

)
. (1.10)

Thus, a possible estimator ˆCov[γ̂, µ̂] would be simply obtained by plugging in the vari-

ance estimators previously mentioned, while V[γ̂+ µ̂] could be estimated by considering

γ̂ + µ̂ =
∑

i∈swi(vi + zi)/N using (1.9).

Lastly as regards Gini index, the γ̂ bias has already been adapted to the complex

survey case by Fabrizi and Trivisano (2016), with a heuristic solution as follows

−
∑

q∈s(
∑rq

i=1wqi)
2

N2

(
γ̂ − µ̂

2

)
,

with
∑rq

i=1wqi the sum of the weights associated with the rq individuals living in house-

hold q. However, in our case we opt for −1/n(γ̂ − µ̂/2), since involving survey weights

in niid estimation could dramatically induce further bias. Thus our bias estimator for
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Gini index is

−2Ĝ

n
+

2γ̂

µ̂3
V̂[µ̂]− 2

µ̂2
ˆCov[µ̂, γ̂].

1.5 Design-Based Simulation on Bias Correction

A first design-based simulation study has been carried out to evaluate our bias cor-

rection proposal. In this simulation, the cross-section Italian EU-SILC sample (2017

wave) has been assumed as synthetic population and the 21 NUTS-2 regions have been

considered as target domains. The study is based on real income data, in order to check

whether this specific framework can work with close-to-reality data, affected by peculiar

problems (e.g. extreme values).

For comparison purposes, two simulation scenarios have been carried out. In the first

one, the original income data are employed as synthetic population while, in the second

one, an extreme values treatment is performed to circumvent non-robustness problems

and the treated dataset is specified as an alternative synthetic population. Subsequently,

we compare the results obtained after the treatment with the ones on original data to

isolate the effect of outliers when evaluating bias-correction performances (Table 1.2).

The issue of robust estimation of economic indicators based on a semi-parametric

Pareto upper tail model is well-established in literature see Brzezinski (2016) for a re-

view and Alfons et al. (2013) for a specification suitable for survey data. On the contrary,

the issue of robust treatment of outliers in the lower tail of income distribution appears

less established (Van Kerm, 2007; Masseran et al., 2019). Concerning the upper tail, we

operated a semi-parametric Pareto-tail modelling procedure using the Probability Inte-

gral Transform Statistic Estimator (PITSE) proposed by Finkelstein et al. (2006), which

blends very good performances in small samples and fast computational implementa-

tion, as suggested by Brzezinski (2016). As regards the lower tail, we used an inverse

Pareto modification of the PITSE estimator, suggested by Masseran et al. (2019). In

our simulations, the treatment has been done at a regional level to the original EU-

SILC sample and the detection of outliers has been carried out following Mohd Safari

et al. (2018) by using a Generalized Boxplot outlier detection procedure. We expect

that, when outlying observations are representative, this procedure would highly bias

the outcome and thus we do not recommend it.

From the assumed population, we repeatedly select 1,000 two-stage stratified samples,

mimicking the sampling strategy adopted in the survey itself: in the first stage, SR strata

are always included in the sample, while a stratified sample of PSU in NSR strata is
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selected; in the second stage, a systematic sample of households is drawn from each

PSU included in the first stage. We repeated the drawing for two different scenarios

involving two different sampling rates, 1,5% and 3% respectively. Results are set out

in Table 1.2 with the Average Relative Bias (ARB) and the Average Absolute Relative

Error (AARE) in percentage, calculated for the 1,000 samples and the 21 regions defined

as:

ARB =
1

21

21∑
r=1

1

1, 000

1,000∑
m=1

(
θ̂m,r

θr
− 1

)
,

AARE =
1

21

21∑
r=1

1

1, 000

( 1,000∑
m=1

⏐⏐⏐⏐ θ̂m,r

θr
− 1

⏐⏐⏐⏐),
where θr is the population value for region r and θ̂m,r is its estimate for the generic

iteration m. In our simulation setting the regional sample size ranges from 6 to 96

individuals (from 6 to 32 households) for the 1,5% sampling rate, and from 11 to 196

individuals (10 to 74 households) for the 3% sampling rate.

As clear from Table 1.2, the bias can be dramatically high for some measures esti-

mated on non-smoothed data, due to the non-robustness properties to extreme values.

It is the case of A(ε = 2), extremely sensitive to low-income values (under 100 euro per

year) which is -48% biased on average for the scenario with the smallest sample sizes.

Also GE with α = 1, 2 values are highly sensitive to high-income values being -18% and

-23% biased. Moreover, the negative correlation between sample size and bias is less

marked in case of non-treated data, since the bias depends more on whether a sample

contains extreme values or not. On the contrary, the bias correction seems to not change

in magnitude depending on the sample size and the presence of extreme values, showing

good robustness properties.

Concerning extreme value treated data results, Figure 1.1 clearly illustrates the neg-

ative correlation between sample size and average relative bias in the 21 Italian regions

for both the design-based estimator θ̂ and the bias corrected estimator θ̂corr. The re-

duction of the bias provided by the correction is noticeable for all measures, leading

to slightly biased estimates depending on the measure. Notice that the bias correction

works well for measures not particularly sensitive to extreme observations such as Gini

index, GE(0), Atk(0.5) and Atk(1). In case of CV and GE(2), the correction provides

good results, but it seems, however, to not capture all the bias components. This con-

firms the results of Breunig (2001), suggesting that the coefficient of variation squared

and GE(2) bias depends on the coefficient of skewness of the income distribution, not

considered in our bias correction. Actually, a reliable estimation of that quantity, while
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CV GE(0) GE(1) GE(2) A(0.5) A(1) A(2) G
without Extreme Value treatment

1.5%
ARB -18.2 -12.7 -17.5 -23.3 -15.3 -15.6 -48.0 -14.4

θ̂ AARE 30.0 52.9 46.4 53.5 45.9 47.4 56.8 25.6

ARB -12.1 -3.9 -8.7 -15.0 -6.3 -5.9 -41.6 0.4

θ̂corr AARE 29.3 54.4 48.0 55.7 47.5 49.4 54.6 35.5

3.0%
ARB -12.7 -6.8 -10.5 -15.8 -8.7 -8.4 -38.1 -7.3

θ̂ AARE 24.5 39.4 36.0 46.2 34.3 35.6 49.0 17.7

ARB -7.8 -1.2 -3.9 -8.0 -2.5 -2.0 -32.4 0.2
ARB (n ≥ 20) -8.3 -1.2 -3.6 -8.7 -2.3 -1.7 -30.0 -1.1

θ̂corr AARE 24.8 40.4 37.9 49.4 35.7 37.0 48.2 20.8

with Extreme Value treatment
1.5%

ARB -11.9 -13.1 -15.3 -17.0 -14.2 -14.3 -18.3 -14.2

θ̂ AARE 25.8 44.0 42.6 47.6 41.6 40.6 38.2 24.3

ARB -5.6 -3.5 -6.3 -8.7 -4.9 -4.7 -8.6 0.6

θ̂corr AARE 25.9 46.2 44.6 49.9 43.6 42.5 39.3 34.1

3.0%
ARB -7.4 -6.4 -8.3 -10.3 -7.3 -7.1 -9.4 -7.1

θ̂ AARE 19.8 31.6 31.7 37.8 30.2 29.1 27.2 16.5

ARB -2.8 -0.6 -2.2 -3.5 -1.4 -1.1 -2.8 0.3
ARB (n ≥ 20) -1.4 -0.3 -1.2 -1.5 -0.7 -0.5 -1.4 -0.9

θ̂corr AARE 20.4 33.0 33.3 40.2 31.7 30.4 28.4 19.5

Table 1.2: ARB and AARE in percentage for the 21 synthetic domains.

being straightforward in the iid case, appears cumbersome in case of weighted data

being defined on a discrete grid of values. This leads to the non-applicability of the

bias formula derived by Breunig (2001) in our case. Furthermore, the bias correction

induces a slight but negligible error increase, except for the Gini index case that presents

a relevant increase. This is due to the shape of the unbiased estimators, as described by

(1.7), where a sum of estimators is multiplied by a factor n/(n − 2), which inherently

inflates the variance by its square.

These results may constitute as valuable reference guideline when measuring inequal-

ity in small samples. When extreme values can be considered as a consequence of data
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Figure 1.1: Relative bias of non-corrected measures (grey line), and of corrected
measures (blue line) in 3% samples after extreme value treatment.

contamination, the joint application of an extreme value treatment and the bias cor-

rection may provide approximately unbiased estimates for a large class of measures.

On the other hand, when extreme values constitute representative observations, it be-

comes necessary to restrict the attention to the most robust measures such as GE with

α = 0, Atkinson index with ε = 1 and Gini Index. Another important aspect to point

out is that, in certain countries, the EU-SILC is based on registers that better cap-

ture top incomes, thus, a cross-country comparison of income inequality by effects on a

tail-sensitive measure must be another reason for caution (Atkinson, 2015).

1.6 Bootstrap Variance of Bias-Corrected Estima-

tors

Concerning inequality estimators, their variance estimation may be easily carried

out via linearization as seen in Section 1.3. Linearized variables for each measure could

be derived from (1.8) consistently with Langel and Tillé (2013) for Gini Index and

Biewen and Jenkins (2006) for Generalized Entropy and Atkinson Indexes. On the

other hand, the variance of bias corrected estimators adds a new level of complexity

since the estimator formula is no longer the classical one. Indeed, it comprises a bias

correction component that appears cumbersome to estimate via linearization since it is

inherently a result of several linearizations.

Since our main aim is to provide a general ”turn-key” solution for variance esti-

mation, we approach the issue by taking into account strategies based on resampling
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methods. Specifically, we opt for a proper design-aware bootstrap procedure as devel-

oped before by Fabrizi et al. (2011, 2020). A comprehensive review of bootstrap methods

for survey data can be found in Lahiri (2003) and an interesting comparison between

variance estimation techniques for poverty and inequality measures has been carried

out by De Santis et al. (2020). Generally, the bootstrap algorithms for complex surveys

re-sample primary units within strata, given the assumption that the number of strata

is large: few primary units are sampled from each stratum so that the sampling fraction

at the first stage is negligible (Rao et al., 1999). This assumption is, however, not sat-

isfied in small samples. An alternative solution may be to split up primary units into

multiple parts to be re-sampled, to extremes into secondary units. Thus, our strategy

selects units with a stratified single-stage design with replacement from the population

of households considering geographical macro-strata. After the drawing, a calibration

procedure has been put in place for each bootstrap sample, to adjust weights to known

gender and age classes totals similarly to the calibration procedure applied to the origi-

nal sample. The algorithm is similar to the ones proposed by Fabrizi et al. (2011), which

provides estimates close to the ones relying on linearization methods, in case of simpler

parameters.

The variance estimates versus the sample sizes are displayed in Figures 1.2 and 1.3.

Notice that the analysis discriminates between the behavior of a region having an upper

extreme value, called ”outlier region”, see Figure 1.2, and the others. Specifically,

bootstrap CV estimates are provided for the Italian NUTS-2 regions versus the sample

sizes in Figure 1.3. It is quite interesting to notice that a small-sized extreme-valued-

affected sample has always high variances estimates across all measures. However, the

sensibility to small sizes changes depends on the measure analyzed. The more GE

parameters α increases i.e. it becomes more sensible to upper tail values, the more the

estimator variance is affected only by the presence of upper extreme values rather than

by the sample size. On the other hand, the more Atkinson ε increases becoming more

sensible to lower tail, the more its variances becomes negatively correlated to sample

sizes.

1.7 A Distributional Analysis

Literature on the probability distribution of inequality measures in small samples is

scarce. Kakwani (1990) and Thistle (1990) have studied the asymptotic distribution of

Generalized Entropy measures and Atkinson Index proving their asymptotic normality.

As regards the Gini index, results on asymptotic normality of the different estimators are
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Figure 1.2: Income distribution for each region, outlier region in orange.
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Figure 1.3: Bootstrap coefficient of variation for each inequality measures.

well-established (Giorgi and Gigliarano, 2017). Some interesting performance compar-

isons between asymptotic and bootstrap inference for inequality measures are provided

by Biewen (2002) and Davidson and Flachaire (2007).

In this section, we provide a distributional analysis divided into two parts. The

first one exploits empirical distributions from design-based simulation described in Sec-

tion 1.5, to evaluate the skewness and heavy tails at varying sample sizes. In the second

part, we performed a model-based simulation, using generated income data and unequal

probability sampling in a more controlled setting. The main aim is to study the behavior

of inequality measures at varying income distributional assumptions and, at the same

time, to fit different parametrical densities on such distributions. We considered both

mean modelling and median modelling based distributions.
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CV GE(0) GE(1) GE(2) A(0.5) A(1) A(2) G

10% η̂3 0.81 0.66 0.88 1.30 0.71 0.54 0.26 0.38
η̂4 1.16 0.91 1.60 2.87 1.06 0.57 -0.01 0.34

5% η̂3 1.00 0.94 1.19 1.80 0.96 0.74 0.40 0.54
η̂4 1.88 1.73 2.81 6.09 1.81 1.01 0.08 0.56

3% η̂3 1.00 1.07 1.27 1.90 1.04 0.83 0.49 0.58
η̂4 1.66 1.94 2.87 6.13 1.87 1.03 0.03 0.60

Table 1.3: Coefficients of skewness and excess kurtosis for empirical distributions in
design-based simulation.

1.7.1 Design-based Simulation

A brief analysis on the distribution of inequality measures is carried out, considering

samples of increasing size, in order to evaluate how quickly their distribution tends

to become symmetric. We consider regions as target domains and we keep the same

simulation setting of Section 1.5 with different sampling rates, i.e. 10% (from 36 to

607 individuals, 28 to 254 households), 5% (from 16 to 337 individuals, 14 to 131

households) and 3% (from 11 to 196 individuals, 10 to 74 households). The coefficient

of skewness η3 and excess kurtosis η4 empirical values are set out in Table 1.3 for

different sampling rates. As clear from the results, the empirical distributions tend to

become more positively skewed and leptokurtic at decreasing sample sizes. This is quite

evident for the General Entropy measures, similarly but to a lesser extent for the other

measures. The empirical distributions for each region are set out in Figure 1.4. The

failing of asymptotic normality in small samples warns us to not consider parametric

methods of inference based on such an assumption.

The empirical distributions from the bootstrap procedure, developed in Section 1.6,

have been also considered and compared with the simulation ones, showing less asymme-

try and lighter tails. This alerts us to not consider the bootstrap procedure reliable for

moments of a higher order than 2 and quantiles, generally used in building confidence

intervals.

1.7.2 Model-based Simulation

A model-based simulation has been also performed using the R package simFrame

(Alfons et al., 2010), to provide a more comprehensive study about the distribution of

inequality estimators. The use of simulated data allows us to carry on the analysis in
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Figure 1.4: Empirical distributions by regions for the 3% samples from design-based
simulation.

a more controlled setting, without potential confounding factors related to survey data

collection dynamics.

We perform a preliminary fitting on EU-SILC income data via weighted pseudo-

likelihood maximization of a plethora of suitable income distribution as Log-Normal,

Dagum, Singh-Maddala and Generalized Beta of the Second Kind (Atkinson, 2015,

pages 371-375), some goodness-of-fit results, such as AIC and BIC, are displayed in

Table 1.4. The high flexibility of the GB2 due to its four parameters allows the best

fitting in comparison to the other distributional assumptions. We decided therefore to

use the best two fittings (GB2 and log-normal ones) to generate income data, in order

to capture estimators behavior at varying distributional assumptions. We simulate two

different finite populations with size N=10,000, from Log-Normal (µ̂ = 9.64, σ̂ = 0.43)

and GB2 (â = 4.11, b̂ = 2.16 · 104, p̂ = 0.47, q̂ = 0.92) with parameters resulting by

pseudo-likelihood maximization.

Following the approach of Alfons et al. (2013), we create an auxiliary variable at-

tached to each population unit p1, . . . , pN denoting probability weights to mimick a

complex survey setting. It has been constructed taking r = 100 equally spaced values

between 1 and 10 as follows:

pi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 xi > F−1

θ ( r−1
r
)

10− 9
r−1

j F−1
θ ( j

r
) < xi ≤ F−1

θ ( j+1
r
) for any 1 ≤ j < r − 1

10 xi ≤ F−1
θ (1

r
),

with Fθ the cumulative distribution function of a Pareto distribution. From each of the
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two populations, 3,000 samples are drawn for three different scenarios involving different

sample sizes n = (20, 50, 80).

The drawing has been performed by using Midzuno’s method for unequal probability

sampling Midzuno (1952) with inclusion probabilities proportional to probability weights

p in line with Alfons et al. (2013). As a consequence, the observations with lower incomes

result to have higher inclusion probabilities and in turn lower sample weights. For each

sample, the bias-corrected estimators have been calculated using variance estimator

under the Midzuno scheme (Narasimha Prasad and Srivenkataramana, 1980).

We transform the General Entropy measure with double-bounded support such as

Theil’s Index (α = 1) and GE(α = 2) to Relative Entropy measures (RE), i.e. RE(α) =

GE(α)/max supp{GE(α)} to deal with measures defined on unique support. Lastly, we

consider only the measures defined on the unit interval such as Atkinson Indexes, Gini

coefficient and RE, and we fit three distributions for each scenario (varying n). Figure

1.5 displays how changes in family parameter values, underlying income distribution and

sample sizes, have an impact on bias-corrected estimators distributions of the Atkinson

measures. On the other hand, GE measures do not show relevant changes at varying

parameter values.

We consider the well-known Beta distribution, and some alternative distributions

defined on the unit interval such as the Simplex distribution (Barndorff-Nielsen and

Jørgensen, 1991) and L-Logistic distribution. The Simplex distribution is known to be

an alternative to Beta distribution in terms of over-dispersion control (Jørgensen, 1997),

robustness (Espinheira and de Oliveira Silva, 2020) and skewness modelling (Carrasco

and Reid, 2021). The L-Logistic distribution (Tadikamalla and Johnson, 1982) has two

parameters: the median and a shape parameter. Since the median is a natural robust

measure of the centre, the median modelling may provide an interesting alternative.

Results are set out in Table 1.5 with a goodness-of-fit evaluation via AIC and BIC

information criteria. Consider that all the distributions have the same number of param-

eters (p = 2). Goodness-of-fit EDF statistics are not included due to their unreliability

in case of parameters estimated from the data. In all the cases, robust alternative dis-

tributions provide better performance than Beta distribution. In case of log-normal

assumption, the Simplex distribution provides a greater fit. On the other hand for

the GB2 assumption, the distributions of inequality estimators present large variability

and very high kurtosis values, as displayed in Table 1.6, and thus a median-modelling

distribution such as L-Logistic seems to work better.
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AIC BIC
Log-Normal 25.75 43.34

Singh-Maddala 28.00 54.38
Dagum 27.76 54.14

GB2 -13.17 22.01

Table 1.4: Goodness-of-fit results for income distribution fitting in model-based
simulation.
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Figure 1.5: Atkinson distributions from Log-Normal income assumption (blue lines)
and GB2 income assumption (orange lines), darker palette refers to decreasing sample
sizes.

1.8 Conclusions

A strategy to correct small samples bias of inequality estimators has been proposed.

A sensitivity analysis has also been conducted to study the magnitude of the correction

and its sensibility to extreme values. The underlined heterogeneity of sensibilities and

bias across measures can guide analysts in choosing the most suitable inequality measure

depending on the context. Furthermore, this contribution may prove extremely useful in

application contexts. Indeed, the well-known Gini and Theil indexes are widely applied

in several fields for inequality and concentration estimation.

Generally speaking, measures that are structurally more sensible to values on the

tails appear to be more biased, particularly GE(α = 2) and Atkinson(ϵ = 2), reach-

ing in some cases a bias of more than -20% and more than -45%, respectively. This

problem can be circumvented, under the assumption of data contamination, via a semi-

parametric Pareto-based treatment of the tails, and bias can be corrected or reduced via

our bias correction proposal. However, when extreme values cannot be considered as a

consequence of data contamination but rather constitutes representative observations,

we suggest using the most robust measure such as GE with α = 0 and Atkinson index

with ε = 1.

Besides, a bootstrap variance estimation proposal and a distributional evaluation
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Log-Normal Population GB2 Population

AIC BIC AIC BIC
Beta

RE(1) -8719.05 -8709.23 -7369.32 -7359.50
RE(2) -10911.71 -10901.90 -9380.29 -9370.47
A(0.5) -5776.14 -5766.33 -4455.21 -4445.40
A(1) -4524.47 -4514.66 -3232.46 -3222.65
A(2) -3452.54 -3442.72 -1891.27 -1881.45

G -3487.33 -3477.51 -2772.32 -2762.50

Simplex
RE(1) -8794.90 -8785.08 -7507.13 -7497.31
RE(2) -11019.40 -11009.59 -9601.15 -9591.33
A(0.5) -5840.08 -5830.27 -4550.89 -4541.07
A(1) -4576.11 -4566.29 -3280.62 -3270.81
A(2) -3482.09 -3472.27 -1901.25 -1891.43

G -3509.29 -3499.48 -2788.63 -2778.82

L-Logistic
RE(1) -8783.11 -8773.29 -7589.79 -7579.97
RE(2) -11018.02 -11008.20 -9708.50 -9698.68
A(0.5) -5826.16 -5816.34 -4635.19 -4625.38
A(1) -4559.71 -4549.90 -3351.73 -3341.92
A(2) -3459.65 -3449.83 -1906.81 -1896.99

G -3496.99 -3487.17 -2880.50 -2870.68

Table 1.5: Goodness-of-fit results for estimator distributions fitting.

RE(1) RE(2) A(0.5) A(1) A(2) G

η̂3 1.68 2.19 1.47 1.26 0.88 0.80
logN η̂4 4.50 8.02 3.37 2.38 1.03 0.77

η̂3 3.45 4.63 2.83 1.98 0.71 1.50
GB2 η̂4 19.87 32.92 14.39 7.61 0.46 4.07

Table 1.6: Mean values of skewness and kurtosis coefficients of the empirical distri-
butions from model-based simulation.

of the corrected design-based estimators have been developed. Results about the in-

equality estimators distributions show increasing positive skewness and lepto-kurtosis

at decreasing sample sizes, confirming the non-applicability of Gaussian assumption in

small samples. As regards measures defined on the unit interval, the model-based simu-

lations shows that alternative robust distributions have a better goodness-of-fit, paving

the way to the development of alternative parametric methods of inference when dealing



30 Section 1.8 - Conclusions

with inequality in small samples.

A further direction of research includes the extension of this framework to other

widely used inequality measures, such as those based on quintiles.



Chapter 2

Put Inequality on the Map: Small

Area Model using a Beta Mixture

2.1 Introduction

The issue of widespread economic inequality characterizes the current global predica-

ment and has a central role in political and economic discourse. The demand for in-

equality estimates referring to specific subpopulations is growing, policymakers and

stakeholders need them in order to formulate and implement policies, distribute re-

sources and measure the effect of policy actions. On the other hand, such estimates

may be valuable in order to further deepen some research trends in regional and in-

equality studies, for instance, to identify which regions constitute the driver of national

income inequality and to study spatial spillovers (Moser and Schnetzer, 2017; Márquez

et al., 2019). For a recent review on spatial inequality, see Cavanaugh and Breau (2018).

Economic inequality is conventionally measured on equivalent disposable income

data. Generally, such data are collected via household sample surveys which are planned

for aggregates estimation at macro level, being rarely available at local level. Thus, local

domains fall outside the prior design plan, resulting in small-sized samples and yielding

unreliable direct estimation (i.e. with large error). For instance, the Survey of Income

and Living Conditions (EU-SILC), which provides information on income for the whole

set of European countries, is able to provide reliable estimates only at NUTS-2 as the

maximum level of disaggregation. The problem could be overcome by increasing sur-

vey sample size, but it is often excluded by cost–benefit analysis. A solution to cope

with it is to rely on Small Area Estimation (SAE) techniques. Such techniques exploit

auxiliary information to borrow strength across areas and produce estimates of interest

31
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with an acceptable level of uncertainty. The model-based class of SAE techniques lever-

ages hierarchical models, both at area level or unit (individual) level, producing reliable

estimates when models are correctly specified and informative auxiliary variables are

available without error. For a review, see Rao and Molina (2015) and Tzavidis et al.

(2018).

In literature, only a few contributions relate to the small area estimation of inequal-

ity indicators, since in this context poverty has special consideration and inequality

is treated as a minor appendix (Molina and Rao, 2010; Pratesi, 2016). Fabrizi and

Trivisano (2016) deal with Gini index estimation, while Tzavidis and Marchetti (2016)

include Gini index and Quantile Share Ratio and, lastly, Marchetti and Tzavidis (2021)

consider Gini and Theil indexes. All of them mostly focus on the Gini index and never

treat more than two measures at a time.

Inequality can be seen as a multifaceted concept, embracing diverse objective and

subjective assessments on the characteristics of income distribution. It can be measured

via a plethora of statistical indicators, all of them with different axiomatic properties and

featuring varying sensitivities to extreme values and income transfers that could reduce

inequality. Thus, the point of concurrently producing estimates of various indicators

could provide a comprehensive overview of the phenomenon.

In this spirit, we propose a small area estimation strategy for a set of four income

inequality measures. In addition to Gini index, we consider the Relative Theil in-

dex, particularly appealing due to its additive decomponsability property, which allows

expressing inequality as the sum of between and within components. Moreover, we con-

sider the entire family of Atkinson measures, which stands apart from other descriptive

measures by explicitly incorporating a welfare evaluation of inequality implications and

enabling for a complete ordering of income distributions. All the measures considered

varies between 0 (case of perfect equality) and 1 (perfect inequality), having double

bounded support, where degenerate cases 0 and 1 have probability very close to zero

also in a small sample context. Our approach lies within the framework of Bayesian in-

ference of area-level models, being less demanding with respect to data requirements and

computational issues, as well as enabling the incorporation of design-based properties.

Concerning unit interval defined responses, most of the small area literature at area-

level is dedicated to proportions. This strand gathers linear mixed models with suitable

transformations (Rao and Molina, 2015) and Beta regression models (Janicki, 2020).

For the first body, we recall Marhuenda et al. (2013) and Esteban et al. (2012, 2020),

providing Fay-Herriot model (i.e. with Gaussian assumptions) extensions to compo-

sitional, spatial and/or temporal structures. Whereas the body of literature based on
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Beta regression, comprises mostly univariate proposals in Liu et al. (2007), Bauder et al.

(2015) and Fabrizi and Trivisano (2016). Multivariate versions can be found in Souza

and Moura (2016) by using copula functions and in Fabrizi et al. (2011); zero and/or

one inflated extensions are adopted in Wieczorek et al. (2012) and Fabrizi et al. (2020).

Inequality design-based estimators have peculiar characteristics; their behaviour in

complex survey small samples have been investigated in Chapter 1, showing highly

skewed and heavy-tailed distributions at decreasing sample sizes. Besides, Gaussian or

Beta regression options fail in case of skewed and heavy-tailed estimators such as the

ones of interest, for the Beta case see Bayes et al. (2012) and Migliorati et al. (2018).

The inadequacy of Fay-Herriot models, in case of not well-behaved distribution, is par-

ticularly established; some proposals face this issue by adopting alternative likelihoods

in case of responses with infinite or positive support at area-level: we mention skew-

normal (Ferraz and Moura, 2012; Ferrante and Pacei, 2017), skew-t (Moura et al., 2017)

and log-normal likelihoods (Slud and Maiti, 2006; Fabrizi et al., 2018). Moreover, a Fay-

Herriot model may fit values outside the variable support and potential transformations

may affect interpretability.

Our proposal involves incorporating an alternative likelihood assumption by adopt-

ing a Beta mixture-based approach, whose performances are compared with a Beta

regression proposal. Specifically, we assume as sampling distribution the Flexible Beta,

proposed by Migliorati et al. (2018). The Flexible Beta distribution is a mixture of two

Beta random variables, particularly interesting for the purpose of small-area estimating

inequality measure due to its superior flexibility, given its four parameters structure.

Indeed, Beta distribution has good properties, being able to adapt to different shapes,

but its two parameters structure hinders further flexible modelling. Eventually, we

derive the approximate variance function of each inequality estimator, analyzing how

their mean and variance are tied together and whether such interrelation differs among

measures.

Our contribution has therefore multiple levels. On one hand, we provide a com-

prehensive discussion about inequality and its SAE by considering a set of multiple

measures. Secondly, we deepen the analysis of inequality estimators by deriving their

approximate variance functions, which may be useful for further modelling. Thirdly, our

methodological proposal extends small area literature in the case of unit interval-defined,

skewed and heavy-tailed estimators. Our model comes out to outperform the Beta one,

both in terms of bias and error of target estimators, avoiding to highly underestimate

inequality and providing reliable estimates.

The chapter is organized as follows. Inequality measures and their estimators are
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defined and described in Section 2.2, together with a proposal of sampling variance

estimation. Section 2.3 defines the proposed Beta and Flexible Beta small area models.

An application on EU-SILC income data is unravelled in Section 2.4 and a design-based

simulation can be found in Section 2.5, in order to evaluate the frequentist properties

of model-based estimators. Conclusions are drawn in Section 2.6.

2.2 Inequality Measures

In this section, we describe the inequality measures considered and their estimator

in complex survey case. Such estimators are known to be biased in small samples, often

leading to underestimation. Therefore, we adopt the bias-corrected estimators proposed

in Chapter 1. Their simulation results lead us to assume that our bias-corrected estima-

tors are approximately unbiased or slightly biased depending on the domain sample size.

Ultimately, in Subsection 2.2.1, their variance estimation is set out and their estimates

are commented.

The most famous inequality measure is the Gini index, measuring concentration in

the distribution of a positive random variable; among its several equivalent definitions,

we adopt the formulation of Sen (1997). Suppose we are dealing with a finite population,

denoted with U , of N(<∞) elements, and let a sample Siid of size n be randomly drawn

from U . Let z ∈ R+ be a characteristic of interest, in our case equivalent disposable

income, which is observable for each unit in Siid. The iid Gini estimator is defined as

G =
2
∑

i∈Siid
ziri

n2µ̂
− n+ 1

n
,

with ri the rank of the i-th unit and µ̂ the sample mean. Let us suppose, moreover,

that a sample S is drawn from U through a complex selection scheme e.g., involving

stratification and multi-stage selection, as in the case of survey data. This involves un-

equal inclusion probabilities across units, thus a weighted estimator should be adopted,

as proposed by Langel and Tillé (2013):

Gw =
2
∑

i∈S wizi(N̂i − wi/2)

N̂2µ̂
− 1,

with wi denoting sampling weights attached to unit i, N̂ =
∑

k∈S wk, µ̂ =
∑

k∈S wkzk/N̂ ,

and N̂i =
∑

k∈S wk1(rk ≤ ri). The notation 1(A) defines an indicator function, assum-

ing value 1 if A is observed and 0 otherwise. The weights could be the inverse of the

inclusion probabilities or a treated and calibrated version of them. We adopted its
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bias-corrected version proposed in Chapter 1 as follows

Gadj =
ñ

ñ− 2

[
Gw − 2γ̂

µ̂3
V[µ̂] +

2

µ̂2
Cov[µ̂, γ̂]

]
,

with ñ =
∑

k∈S 1(wk ̸= 0) and γ̂ =
∑

i∈S wizi(N̂i − wi/2)/N̂
2.

Despite its fame, the Gini index has some drawbacks. First of all, it is a stochas-

tic dominance measure, enabling only for partial ordering of probability distributions.

Namely, this index is able to determine which distribution precedes the other in the

ordering only among certain pairs of probability distributions. Secondly, it does not

allow for decomposability into within and between components. Thirdly, it is weakly

(positional) transfer sensitive which means that, in case of income transfers, the index

varies depending on the donor and recipients ranks.

The Relative Theil index, instead, is additive decomposable and has the advantage to

be strongly transfer-sensitive, meaning that the measure reacts to transfers depending

on the donor and recipient income levels. It is an entropy-based measure and is set up

as the relative formulation of the more famous Theil index i.e. scaled on the maximum

of its support (log n). Its estimator in the iid case is defined as follows

R =
1

n log(n)

∑
i∈Siid

zi
µ̂
log

(
zi
µ̂

)
.

In the complex survey case, the Horwitz-Thompson type estimator for the Theil index

has been considered in its bias-adjusted formulation of Chapter 1. This has been adapted

to the relative case by replacing the superior bound of its support with its population

value, in order to not induce further bias, as follows

Tadj =
1

N̂

∑
i∈S

wi
zi
µ̂
log

zi
µ̂
+

Cov[µ̂, ϖ̂]

µ̂2
−
(
ϖ̂

µ̂3
+

1

2µ̂2

)
V[µ̂]

Radj =
Tadj
logN

with ϖ̂ =
∑

i∈S wizi log zi/N̂ .

Another perspective on inequality is depicted by the family of Atkinson Indexes.

They provide for an explicit value judgement by incorporating in the measurement a

social welfare function, regulated by a parameter ε. Under this normative approach,

the index value has clear meaning, quantifying the amount of welfare loss of the current

inequality level: a value of 0.30 means that “if incomes were equally distributed then

we should need only the 70% of the present national income to achieve the same level
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of social welfare” (Atkinson, 1970). They can be seen, therefore, as measures of dis-

tributional inefficiency. Moreover, they satisfy a multiplicative decomposition property

(La Vega et al., 2008) and may provide for a complete ranking among alternative dis-

tributions, i.e. being able to determine the ordering among every pair of distributions,

and thus to establish a ranking among the full set of distributions. This happens at

the expense of more stringent and subjective assumptions on the choice of the welfare

utility function to adopt (Bellú and Liberati, 2006). Under a concave utility function

(whose concavity level is regulated by ε), the estimator of Atkinson index in the iid case

is defined as

A(ε ̸= 1) = 1− 1

µ̂

(
1

n

∑
i∈Siid

z1−ε
i

)1/(1−ε)

A(ε = 1) = 1− 1

µ̂

( ∏
i∈Siid

zi

)1/n

,

with ε ≥ 0. The parameter ε denotes the level of inequality aversion: at increasing

values of ε, the index becomes more sensitive to changes at the lower end of the in-

come distribution and vice versa. We consider specifically the two indexes referring to

ε = {0.5, 1} values, which incorporate nice robustness properties, showing at the same

time different sensitivities. The estimator referred to complex survey case (Biewen and

Jenkins, 2006) is

Aw(ε ̸= 1) = 1− 1

µ̂

(
1

N̂

∑
i∈S

wiz
1−ε
i

)1/(1−ε)

Aw(ε = 1) = 1− 1

µ̂
exp

{∑
i∈S wi log zi

N̂

}
.

We adopted their bias-corrected versions defined in Chapter 1 as follows

Aadj(ε ̸= 1) = Aw(ε) + [1− Aw(ε)]×

×
[
ε · V[ϱ̂]
2(1− ε)2

[µ̂− µ̂Aw(ε)]
2ε−2 +

V[µ̂]
µ̂2

− Cov[ϱ̂, µ̂]

µ̂2−ε(1− ε)
[1− Aw(ε)]

ε−1

]
Aadj(ε = 1) = Aw(ε) + [1− Aw(ε)]

[
V[ι̂]
2

+
V[µ̂]
µ̂2

− Cov[ι̂, µ̂]

µ̂

]

with ϱ̂ =
∑

i∈S wiz
1−ε
i /N̂ and ι̂ =

∑
i∈S wi log zi/N̂ .
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2.2.1 Design Variance Estimation

The sampling variances of complex survey estimators has been estimated from the

data following a two steps strategy as in Fabrizi et al. (2011). As a first step, we

performed a proper bootstrap procedure developed taking into account the complex

sampling design (Fabrizi et al., 2020), using 1,000 bootstrap samples. Secondly, the raw

estimates have been smoothed via a Generalized Variance Function (GVF) approach in

order to reduce the sampling error induced by small sample sizes.

The definition of a GVF smoothing model needs assumptions on the shape of the

variance function for such inequality estimators. Thus, in the spirit of what was done

by Fabrizi and Trivisano (2016) for the Gini index, we derived the variance function

of Relative Theil and Atkinson index (for any ε) under specific simplifying conditions,

such as the usual log normality assumption of income variable. Gini index result, as

well as our following derivations for the other measures, has been directly incorporated

in the GVF model.

Before moving to the variance function derivation, let us introduce the partition of

the population U into D small domains, such as each domain d has population size

Nd, with N =
∑D

d=1Nd, and samples Siid and S are subsequently partitioned into D

subsamples of size nd and ñd respectively, for d = 1, . . . , D, with n =
∑D

d=1 nd and

ñ =
∑D

d=1 ñd.

Proposition 2.1. Under the assumption of log-normality of income, let us consider the

j-th individual in domain d, whose level of income is zjd variable. As a consequence,

log(zjd) ∼ N (µd, φ
2
d), iid at varying j = 1, . . . , nd. The simple random sampling (srs)

estimator of Atkinson index for domain d, denoted with Ad(ε), has variance function

V[Ad(ε)] ∼=
2θAd (ε)

2

nd

exp{−2θAd (ε)}, (2.1)

where θAd (ε) denotes the population value of the index.

Proof. Under the mentioned assumptions, the population value of Atkinson index in

domain d, for any ε ≥ 0 and ̸= 1 is

θAd (ε) = 1− exp{−εφ2
d/2}, (2.2)
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with φ2
d estimated by s2d =

1
nd−1

∑nd

j=1[log(zjd)− µ̂d]
2. By applying the normal distribu-

tion theory, V[sd] ∼=
φ2
d

2nd
and using the delta method:

V[Ad(ε)] = V
[
1− exp

{
− εs2d

2

}]
∼=
ε2φ4

d

2nd

exp{−εφ2
d}

∼=
2θAd (ε)

2

nd

exp{−2θAd (ε)}, (2.3)

where equation (2.3) is obtained by McLaurin expanding (2.2), so that φ2
d
∼= 2θAd (ε)/ε.

Note that this result can be easily generalized to the case ε = 1.

Proposition 2.2. Under Proposition 2.1 assumptions, the srs estimator of Relative

Theil Index, for domain d, Rd has variance function

V[Rd] ∼=
2θRd

2

nd

, (2.4)

where θRd denotes its population value.

Proof. Similarly to Proposition 2.1 proof, the Relative Theil index is defined in a log-

normal income population as

θRd =
1

log(nd)

(
E[z · log(z)]

E[z]
− log(E[z])

)
=

φ2
d

2 log(nd)
. (2.5)

Since the moments involved in the previous expression are

E[z] = exp

{
µd +

φ2
d

2

}
(2.6)

E[z · log(z)] =
∫ +∞

0

z log(z)
1

z
√
2πφ2

d

exp

{
− [log(z)− µd]

2

2φ2
d

}
dx

=

∫ +∞

−∞
t exp{t} 1√

2πφ2
d

exp

{
− (t− µd)

2

2φ2
d

}
dt

= (φ2
d + µd) exp

{
µd +

φ2
d

2

}
, (2.7)

where the last step (2.7) involves equation 3.462.6 in Gradshteyn and Ryzhik (2014).

Considering that φ2
d is estimated by s2d and V[sd] ∼=

φ2
d

2nd
, by applying delta method the

result follows

V[Rd] = V
[

s2d
2 log(nd)

]
∼=

φ4
d

2 log2(nd)nd

=
2θRd

2

nd

(2.8)
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where equation (2.8) is obtained by (2.5) considering that φ2
d = 2θRd log(nd).

Since Proposition 2.1 and 2.2 has been derived under specific simplifying assump-

tions, we need to ensure their validity in our context. Thus, we tested them on our

bias-corrected estimators for complex survey, namely Aadj, Gadj and Radj, through a

Monte Carlo simulation. We used EU-SILC data, described in detail in Section 2.4, as

synthetic population by considering 21 NUTS-2 Italian regions as domains of interest. In

order to circumvent non-robustness, we treated income data by using a semi-parametric

Pareto and inverse-Pareto tail modelling procedure using the Probability Integral Trans-

form Statistic Estimator (PITSE) proposed by Finkelstein et al. (2006) and Masseran

et al. (2019). We draw 1,000 samples by mimicking EU-SILC complex scheme, stratified

with two-stage selection. Then we compared Monte Carlo variances with Proposition

2.1 and 2.2 results, showing very high correlations: 0.79 for Gini index, 0.92 for Atk(1),

0.86 for Atk(0.5) and 0.99 for Relative Theil. The empirical results, as expected, clearly

underestimate the variances in comparison with the Monte Carlo ones, since the effect

of the design is ignored. However, the relationship is strongly linear and by fitting a re-

gression with Monte Carlo variances as response and the empirical ones as explanatory,

intercepts are zeros and slopes end up to be 2.04 for Relative Theil, 2.23 for Atk(0.5),

2.27 for Atk(1) and 4.68 for Gini index. The strong linear dependence and proportion-

ality and, at the same time, the non-negligible underestimation, leads us to consider

appropriate the implementation of a GVF model.

In the following, the GVF model setting is unravelled, by considering also the Gini

index variance derived by Fabrizi and Trivisano (2016) under the same assumptions of

Propositions 2.1 and 2.2, defined approximately for domain d as

V(Gd) ∼=
θGd

2
(1− θGd

2
)

nd

, (2.9)

with θGd its population value.

Consider that under a complex survey scheme, the sample S may be less informative

than a sample of the same size ñd under srs, being S affected by dependency across

observations. The effective sample size, i.e. the srs equivalent sample size, is a proxy

of the information carried by the sample and can be estimated for S. Let us suppose

it corresponds to ψind · ñd for any considered index ind, with ψind > 0 denoting a

deflating factor induced by the dependence. The latter quantity can be alternatively

defined as the inverse of the design effect deffind, i.e. the ratio between the design-based

variance of a generic index estimator and its srs variance, which measures the amount

of variance inflation induced by the complex selection process. Let denote with V̂[·]boot
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the raw bootstrap estimator with large error, being yd a generic inequality estimator,

among Aadj(ε), Gadj and Radj, defined for domain d whose population values is θd. The

numerator of its variance function is generically defined by f(θd). A GVF model is set

up by assuming that

V[yd] =
f(θd)

ψind · ñd

.

Therefore, we introduce the following smoothing model estimated via generalized least

squares

f(yd)

V̂[yd]boot
= ψindñd + ϵd,

where ϵd denotes zero-mean heteroskedastic residuals. The smoothed estimator comes

from (2.1), (2.4), (2.9) by replacing θd with yd and nd with ñd · ψ̂ind, where ψ̂ind is the

gls estimate. The pseudo R2 for the smoothing models are respectively, 0.78 for Gini

index, 0.72 for Atkinson (ε = 1) index, 0.67 for Atkinson (ε = 0.5) index and 0.48 for the

Relative Theil index. The latter result is due to the instability of the ratio f(yd)/V̂[yd]boot
in case of values close to zero of both the numerator and the denominator.

Results of Propositions 2.1 and 2.2 show a very different structure for the variance

function of Atkinson and Relative Theil indexes with respect to the Gini index and to

the proportion ones. A comparison plot can be found in the Appendix. As opposed to

the proportion and Gini index cases, the Atkinson and Relative Theil variance functions

are both monotonically increasing, as clear from (2.2) and (2.5). Thus, higher values of

θd correspond to higher log income dispersion, inevitably leading to an increase of the

index variability. The explosive trend of Relative Theil variance is related to its explosive

connection with log income population variance (2.5). Moreover, notice that the variance

function of Atkinson index in (2.1) does not directly depend on its parameter ε, being

fixed for the whole parametric family. This does not happen for the Generalized Entropy

parametric family, as shown in the Appendix.

The precision estimates obtained for NUTS-3 Italian regions, employing EU-SILC

data (described in Section 2.4), are analyzed in terms of the coefficient of variation

(CV). ISTAT guidelines state that CV should not exceed 15% for domains and 18% for

small domains in case of released estimates, otherwise, this serves as an indication to

perform small area estimation (Eurostat, 2013). Let us consider it as a rule of thumb,

since not all the domains are equivalent, being associated with different population

rates. However, in our case Relative Theil and Atkinson (ε = 0.5, 1) indexes show very

similar CV distributions, with medians slightly lower than 18%, ranging totally from
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6% to 54%. This means that half of the domains has non-reliable estimates. On the

other hand, the CV of Gini index is significantly lower, confirming the great robustness

properties of the index, ranging from 3% to 27%, with 7 domains having out-of-bound

CV. This motivates us to employ a small area model.

2.3 Small Area Models

We propose a Beta mixture model for small area estimation by adopting a Bayesian

framework, from now on we name it Flexible Beta (FB) model as in Migliorati et al.

(2018). In order to evaluate its performance, we compare the estimation results with

those obtained by the well known Beta small area model. We start describing the Beta

one in Subsection 2.3.1, then we set out our proposal in Subsection 2.3.2, models are

completed by the prior setting in Subsection 2.3.3 and their Bayesian estimation is

detailed in Subsection 2.3.4.

2.3.1 The Beta Model

Let us consider the Beta distribution with mean-precision parametrization (Ferrari

and Cribari-Neto, 2004), such that a generic random variable Beta distributed is denoted

with Y ∼ Beta(µϕ, (1− µ)ϕ), and has probability density function

fB(y;µ, ϕ) =
Γ[ϕ]

Γ[µϕ]Γ[(1− µ)ϕ]
yµϕ−1(1− y)(1−µ)ϕ−1, 0 < y < 1.

Mean and variance are respectively

E[Y ] = µ, V[Y ] =
µ(1− µ)

ϕ+ 1
, (2.10)

with 0 < µ < 1 and ϕ > 0. A classical Beta small area model for yd, denoting the

direct estimator of a generic inequality measure and xd a set of P covariates for domain

d, constitutes as a hierarchical model with two levels. The sampling level models the

conditional distribution of the direct estimator as

yd|θd, ϕd
ind∼ Beta(θdϕd, (1− θd)ϕd), ∀d.

In this case, E[yd|θd, ϕd] = θd is the target parameter and is estimated via a logit

regression at the linking level, i.e. logit(θd)|β, vd = xT
dβ + vd, with vd|σ2

v
ind∼ N (0, σ2

v)

being an area specific random effect.
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In literature, a small area Beta model uses to assume ϕd as known, in parallel with the

known sampling variance assumption of the classical Fay-Herriot model, in order to allow

identifiability. Being usually employed for proportions, this parametrization extremely

simplifies the posterior geometry, given that, in this case, the variance structure is

V[yd|θd, ϕd] = θd(1 − θd)/nd under a binomial process. Thus, by combining it with

(2.10), ϕd + 1 can be seen as the effective sample size under a complex survey scheme.

Its estimation is carried out considering the design effect, so that ϕd + 1 = ñdψind =

ñd/deffind.

Different approaches have been adopted in small area context for the estimation of

deffind:

• estimation as a unique parameter across all areas within the hierarchical model,

such as in Bauder et al. (2015) and Souza and Moura (2016) in case of proportions,

• separate estimation via a variance smoothing model of a common parameter across

all areas, as in Fabrizi et al. (2011, 2016) and Fabrizi and Trivisano (2016) similar

to the one applied in Subsection 2.2.1,

• separate estimation of a set of parameters varying across all areas through the

methodology proposed by Kish (1992), based only on design weights, as in Wiec-

zorek et al. (2012) and Liu et al. (2007). Kalton et al. (2005) found this approxi-

mation reasonably accurate for proportions between 0.2 and 0.8.

We decided to tackle the problem from a different perspective, by assuming the

sampling variance as known, rather than ϕd, and we estimate it separately via a two-

step procedure as in Subsection 2.2.1. This decision has been taken for several reasons.

Firstly, a direct estimation of ϕd within the model appears cumbersome to carry on, due

to the complex structure of the variance functions defined in Propositions 2.1 and 2.2,

leading to a tricky and intractable parametrization. In second place, the known variance

assumption is a standard approach across different small area models. This preserves

the set of assumptions and data inputs across different models, favouring consistency

of diagnostic measures, such as the goodness-of-fit ones, and allowing for performance

comparison and model selection.

2.3.2 The Flexible Beta Model

The Flexible Beta distribution, introduced by Migliorati et al. (2018), is a mixture of

two Beta random variables with different locations and a common dispersion parameter.



Chapter 2 - Put Inequality on the Map 43

Its p.d.f. is

fFB(λ1, λ2, ϕ, p) = p · fB(y;λ1, ϕ) + (1− p) · fB(y;λ2, ϕ),

with 0 < λ2 < λ1 < 1 distinct ordered means, in order to avoid label switching prob-

lems, 0 < p < 1 mixing coefficient and ϕ common dispersion parameter. This mixture

extends the variety of shapes of Beta distribution in terms of bimodality, asymmetry

and tail behavior. Besides, it ensures that each component is distinguishable, being

computationally tractable (Migliorati et al., 2018).

Our small area model proposal for yd includes, at sampling level, the Flexible Beta

as likelihood assumption:

yd|λ1d, λ2d, ϕd, p
ind∼ FB(λ1d, λ2d, ϕd, p), ∀d.

In this case, the expected value and dispersion parameters of the mixture components

vary across areas, while the mixing proportion p remains fixed. Let us denote with η

the entire set of parameters, namely η = (λ1d, λ2d, ϕd, p). In line with Migliorati et al.

(2018), the parametrization considered in order to carry on estimation is

yd|η ∼ FB(w̃d + λ2d, λ2d, ϕd, p),

with w̃d = λ1d − λ2d > 0 denoting the distance between mixture components. Under

such model, the expected value and variance are defined respectively as

E[yd|η] = θd = λ2d + p · w̃d, (2.11)

V[yd|η] =
θd(1− θd) + p(1− p)w̃2

dϕd

ϕd + 1
. (2.12)

At the linking level, we model the mean of the lowest component with a logit regres-

sion, by preserving the Gaussian random effect assumption, as follows

logit(λ2d)|β, vd = xT
dβ + vd (2.13)

vd|σ2
v

ind∼ N (0, σ2
v) ∀d.

As opposed to the FB regression proposed by Migliorati et al. (2018) and to the classical

Beta regression, the linear predictor does not model directly the mean but rather a mix-

ture component mean λ2d, which in this case can be seen as a pure location parameter.

Being θd our parameter of interest, we assume it as a result of the combination of



44 Section 2.3 - Small Area Models

a location component and a deviation from it, caused by the intrinsic skewness of the

sampling distribution, as in (2.11). Since we are generally dealing with right-skewed

distributions, we assume the lower mixture component mean as the pure location pa-

rameter (λ2d) and parameters p and w̃d as the ones able to capture such deviations. If

θd was modelled through a logit regression, the relation among parameters would imply

θd = logit−1(xT
dβ + vd), letting the linking level parameters masking such effect. On

the other hand, in our case, we consider the location λ2d to be directly modelled at

the linking level, separating (2.11) and (2.13) and letting p and w̃d free to account for

area-specific deviations. In this way, our location-modelling approach unleashes θd esti-

mation. This is confirmed by the fact that, when θd is rigidly modelled through a logit

regression, its estimate is basically overlapping the one of the Beta model in Section

2.3.1 and estimation time is higher.

The modelling of a location parameter different from the mean at the linking level

is well-established in small area literature, we recall zero or zero/one inflated Beta

(Wieczorek et al., 2012; Fabrizi et al., 2016), and skew-normal models (Ferraz and

Moura, 2012; Ferrante and Pacei, 2017).

Similarly to the Beta model, the sampling variance V[yd|η] is assumed to be known

and replaced by a refined estimate V̂[yd], as shown in Subsection 2.2.1. The conditioning

is not emphasized on the refined estimate to underline the fact that it is not a model

estimate but rather an independent one (survey estimate), treated as a given value in a

small area model. As a consequence, the dispersion parameter is not directly estimated

and can be obtained from (2.12) as

ϕd|θd, p, w̃d =
θd(1− θd)− V[yd|η]
V[yd|η]− p(1− p)w̃2

d

. (2.14)

Since estimation requires a variation independent parametrization, we decided to

leave λ2d, ϕd, and p free to assume any value of their support and to constrain w̃d, as in

the following Proposition.

Proposition 2.3. Under FB model and the assumptions of Proposition 2.1, let us

consider ϕd and its relation with the other parameters defined in (2.14). In order to

preserve its bounded support, i.e. ϕd > 0, w̃d has to be constrained such that⎧⎨⎩w̃d <
√

V[yd|η]
p(1−p)

if θd < c

w̃d >
√

V[yd|η]
p(1−p)

if θd > c
(2.15)

with c being a threshold that varies according to nd and the measure considered: is equal
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to nd/(nd + 2) for Relative Theil index, 1/2 × (
√
4nd + 1 − 1) for Gini index and does

not have closed form for Atkinson index.

Proof. By imposing ϕd > 0 on (2.14), the solution comes out to be

V[yd|η] ∈
(
min

{
θd(1− θd), p(1− p)w̃2

d

}
,max

{
θd(1− θd), p(1− p)w̃2

d

})
. (2.16)

Without loss of generality, we consider the case

V[yd|η] < θd(1− θd), (2.17)

substituting V[yd|η] in (2.17) with (2.1), (2.4) and (2.9), we obtain three inequalities on

θd. The generic result for each inequality is denoted with θd < c, where c depends on nd

and differs for any measure. After splitting the problem into two cases, namely θd < c

and θd > c, we solve equation (2.16) for w̃d obtaining (2.15).

To understand the behaviour of the previous constrains within our inferential prob-

lem, we evaluated them considering the case nd = 2, as a degenerate case with maximum

variance. Indeed, a lower sample size does not allow for inequality measurement. We

numerically derive the minimum of c, being 0.50 for Relative Theil index, 0.84 for Atkin-

son indexes and 1 for Gini index. Discarding Gini index being always θGd < 1, observing

θd > c is totally implausible for the considered income inequality measures. Indeed,

those values correspond to far-fetched values of log income variable dispersion that,

following (2.2) and (2.5), equals to φ2
d > 0.69 for Relative Theil index, φ2

d > 3.71 for

Atkinson indexes. To be clear, a log-normal fitting on 2017 EU-SILC equivalent dispos-

able income done in Chapter 1, shows φ̂2 = 0.18. Therefore, we opt to consider only

the case θd < c in Proposition 2.3; the same reasoning could be easily done in case of

proportions, where θd < c holds for any nd > 1.

As a consequence, the range of w̃d is defined as

w̃d ∈
(
0,min

{
1− λ2d

p
,

√
V[yd|η]
p(1− p)

})
, (2.18)

where the upper bound of its support has a double vinculum. The first term, on λ2d, can

be seen as a support vinculum, since it allows θd to be upper bounded, i.e. θd < 1. The

second one follows from Proposition 2.3 and clearly takes into account the fact that the

imposed sampling variance (given p) has to constrain the distance between the mixture
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components. Thus, following (2.18), the distance has been modelled as

w̃d = w ·max supp{w̃d} = w ·min

{
1− λ2d

p
,

√
V[yd|η]
p(1− p)

}

unleashing parameter w free to vary in (0, 1), being common across the areas. The

underlying assumption implies that, for any given domain, the different determinations

of each direct estimator pertain to two latent groups, one of which displays a greater

mean than the other, for any given set of covariates. Parameter w retains the meaning

of distance between the regression functions of the two groups and it can be called the

normalized distance (Migliorati et al., 2018).

The underlined parametrization is variation independent without penalizing the in-

terpretability of the parameters. Moreover, the target parameter defined in (2.11) can

be rewritten as

θd|λ2d, p, w = λ2d + p · w ·min

{
1− λ2d

p
,

√
V[yd|η]
p(1− p)

}
, (2.19)

being a sum between the location parameter λ2d and a second term depending on λ2d,

the sampling variance, the mixing parameter p and the normalized distance w. This

shape permits to grasp an alternative interpretation of w as a factor that regulates the

impact of sampling variance on θd (given p). Indeed, due to the different scale, usually

(1− λ2d)/p >
√

V[yd|η]/
√
p(1− p). Note that the structure of θd is quite similar to its

corresponding parameter in case of skew-normal likelihood (Moura et al., 2017; Ferrante

and Pacei, 2017). In this case, the expected value is the sum of the location parameter

and another component that depends on the known sampling variance and a skewness

parameter.

Given the above considerations, as long as the sampling variances decrease, and

presumably area sample sizes increase, the conditional distribution of direct estimator

yd stretches to a Beta distribution:

yd|η
nd→+∞∼ Beta(θdϕd, (1− θd)ϕd). (2.20)

The expected value tends to the linear predictor and ϕd → θd(1 − θd)/V̂[yd] − 1 as in

(2.10). Moreover, it is well known that a Beta distribution with large shape parameters,

i.e. low variance, converges to a normal distribution. Therefore, it is possible to state

that, as the sampling variance tends to 0, our sampling model tends asymptotically to

the Gaussian one. Also when p → 0, p → 1 or w → 0, (2.20) is verified, as common in
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degenerate mixture models (Fruhwirth-Schnatter et al., 2019).

To summarize, the parameter to be estimated in FB model are the ones related to

the linear predictor β and the random effect variance σv, the mixing coefficient p and

the normalized distance between mixture components w. Parameters p and w adjust

the predictor depending on the magnitude of its sampling variance, guaranteeing a more

flexible mean modelling and shrinkage. This can be seen as the main characteristic of

the FB small area model.

2.3.3 Prior Distributions

The following weakly-informative priors complete the Beta model:

β ∼ Np(0,Σ) (2.21)

σv ∼ Half-N (0, ν2), (2.22)

where Σ is a diagonal matrix with diagonal 10× 1p. Considering the scale of the logit

transformation, ν2 = 1 can be seen as quite a non-informative option. As regards FB

model, the prior choice includes, in addition to (2.21) and (2.22),

p ∼ Unif(0, 1) and w ∼ Unif(0, 1). (2.23)

In order to foster convergence or avoid convergence problems, in some specific cases,

e.g. when dealing with a few areas, we recommend using a slightly informative prior for

the mixing coefficient such as p ∼ Beta(2, 2), being able to avoid the boundaries of its

support but still being very close to a uniform distribution.

2.3.4 Model Estimation

We estimate the model by adopting a Hierarchical Bayes (HB) approach. This ap-

proach to inference has several benefits in the SAE context (Rao and Molina, 2015,

section 10), as to easily manage non-Gaussian distributional assumptions and to cap-

ture the uncertainty about all target parameters through the posterior distribution.

The FB model falls within the definition of a finite mixture, thus it could be seen

as an incomplete data model where the allocation of observations to each mixture com-

ponent is an unknown and latent component. In this case, a Bayesian approach based

on Markov Chain Monte Carlo (MCMC) techniques is particularly suitable for poste-

rior exploration. Specifically, the fitting was carried out by implementing the no-U-turn

sampler (Hoffman et al., 2014), an adaptive variant of Hamiltonian Monte Carlo (HMC)
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algorithm via Stan language (Carpenter et al., 2017). The HMC exploits differential

geometry properties of the posterior distribution, in order to improve MCMC efficiency

(Betancourt, 2017). We performed estimation by using 4 chains, each with 5,000 itera-

tions, discarding the first 2,000 as warm-up.

Within the HB framework, we assume a quadratic loss and define as point predictor

of θd its posterior expected value, namely

θ̂HB
d = E[θd|data] ∀d, (2.24)

hereafter named model-based estimate. The posterior variance of the target parameter

is used to describe its uncertainty.

An important property of the Fay-Herriot model is that, under the assumption of

known random effect variance in HB context, the predictors are the outcome of a shrink-

age process in between the direct estimate yd and the synthetic estimate, being bounded.

Predictors tend towards yd when sampling variance is small in comparison with model

variance, and towards synthetic estimate when it goes the other way round. In case of

Beta assumption, predictors are not bound. However, Janicki (2020) proved its asymp-

totic behavior, showing that it tends towards yd when sampling variance goes to zero,

and towards the synthetic estimate, in this case logit−1(xT
d β̂), when model variance

goes to zero. The first property, also known as design consistency, has been proved

for the Beta model also by Fabrizi et al. (2020), relying on asymptotic Gaussianity.

Thus, given the asymptotical behavior of our model in (2.20), we can state that the

design-consistency property is preserved also under the FB model.

2.4 Application on EU-SILC Data

We are interested in estimating inequality in Italian NUTS-3 regions using EU-SILC

data. Given the high level of uncertainty of the direct estimates, described in Sub-

section 2.2.1, we employ small area models considering both Beta and FB likelihoods.

We estimate four separate univariate models for each likelihood, referring to the four

different inequality measures. A survey data description directly follows, while auxiliary

variables, from other sources, are set out in Subsection 2.4.1. Eventually, model results

are compared in Subsection 2.4.2.

The EU–SILC survey (Guio, 2005) collects cross-sectional and longitudinal microdata

on income, poverty, social exclusion and living conditions in a timely manner. The sur-

vey is conducted in each country by the National Institute of Statistics and coordinated

by Eurostat, guaranteeing consistent methodology and definitions across all EU member
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states. The sampling design involves a rotational panel lasting four years, where each

year one-quarter of all respondents is newly introduced. As regards the Italian sample,

provided by ISTAT, the survey units (households), are sampled according to a complex

survey scheme involving stratification and two-stage selection. The first-stage units

are municipalities, stratified accordingly to the demographic size, the ones with great

size are considered as self-representative units and form a take-all stratum. Within the

selected primary units, households are drawn randomly as secondary sampling units.

In our case, we concentrate on the 107 NUTS-3 Italian domains by using the 2017

wave. The sample comprises 22,226 households and 48,819 corresponding individuals.

The domain size ranges from a minimum of 32 to a maximum of 2,536 individuals;

with 25th, 50th and 75th percentiles respectively as 196, 314, 612 (from 18 to 1,270

households; with percentiles 86, 138, 275).

2.4.1 Auxiliary Variables

The possible determinants of income inequality within European regions have been

identified by Perugini and Martino (2008). According to them, the main ones are human

capital endowment, labour market performances, economic development and industrial

specialization and demographic structure.

A small area model does not have causal inference ambitions, but rather it requires

auxiliary information to be accurately known, without error, at population level. There-

fore, we must restrict the choice to accessible data: census and registry office data as

well as tax forms data, publicly available. As a human capital endowment proxy, we cal-

culated the ratio between the number of people aged 15–64 with a high school diploma

or higher level of education, and the number of people within the same age class with

compulsory education level, based on the 2011 Italian population census data. Fabrizi

and Trivisano (2016) refer to this indicator as to the people-in-higher-education ratio.

The demographic structure is explained by areal population density and aged depen-

dency ratios. Moreover, as suggested by Perugini and Martino (2008), we used the

percentage of resident foreigners (immigrants) and the male/female resident foreigners

ratio as indirect measures of economic development.

Concerning fiscal archives data, we included average taxable income claimed by pri-

vate residents, percentage of residents aged more than 15 filling tax forms and percent-

age of residents with income lower than/greater than double national median filling

tax forms. These variables measure the affluence of income earners in the area and

are adopted as indirect proxies of labour market performances (Fabrizi and Trivisano,

2016).
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Beta FlexBeta
Atk(0.5) looic -572.2 -595.7

(se) (18.9) (17.4)
acvr % 43.2 51.1

Atk(1) looic -404.6 -425.5
(se) (18.6) (17.7)

acvr % 41.6 46.0
Relative Theil looic -966.8 -992.3

(se) (16.9) (15.6)
acvr % 36.9 47.3

Gini looic -388.3 -392.3
(se) (21.3) (20.5)

acvr % 38.5 38.3

Table 2.1: The looic and related standard error as well as average cvr for each
model and each measure.

Lastly, in order to provide strongly correlated information, we add the correspond-

ing inequality measures calculated on a discrete scale given the income classes declared

by tax forms. Note that those measures are estimated on market income (i.e. income

before taxes and transfers), while our target variable is the disposable income instead

(after taxes and transfers). We obtain raw estimates of market income inequality, legit-

imately greater than our response due to the redistributive power of taxes and transfers

on income distribution. This happens despite the missing component of variability

within income classes, not captured by our market income inequality estimators. All

the auxiliary variables were standardized before being incorporated in the models, in

order to harmonize the scale, and subjected to preliminary variable selection to avoid

multicollinearity.

2.4.2 Results

The model estimation has been carried out and posterior draws have been validated

through MCMC diagnostics, showing good chain mixing and quick convergence for any

measure. A models comparison has been also performed through specific model diag-

nostics. Concerning goodness-of-fit and model comparison, the looic measure, based on

leave-one-out cross-validation (Vehtari et al., 2017), and its standard error have been

used. The looic is preferred over the most classical DIC and AIC measures, since it

is fully Bayesian, using the entire posterior distribution, is invariant to parametrization

and works for singular models.

In order to evaluate model-based estimators performances in comparison with direct

estimators, the Coefficient of Variation Reduction measure (Ferrante and Pacei, 2017)
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Figure 2.1: Coefficient of variation reduction for each model and each measure.

is used to calculate the precision improvement:

cvrHB
d = 1− V[θd|data]

1
2 · yd

V̂[yd]
1
2 · E[θd|data]

∀d,

using predictors and their posterior variances for any HB model. This constitutes a

frequently used measure for small area model evaluation. However, comparison between

CV of model-based and design-based estimators might sometimes be spurious since the

former could be design biased even when the model is correctly specified (Ferrante and

Pacei, 2017).

Diagnostics for each model, looic and cvr, averaged among all domains (acvr),

are displayed in Table 2.1, while the full distribution of cvr is displayed in Figure

2.1. Results show better goodness-of-fit and coefficient of variation reduction for the

Flexible Beta model with respect to the Beta one. This holds for all measures with the

exception of Gini index, where diagnostics do not vary significantly between models. The

main point is that, following the distributional analysis of Chapter 1, the Gini index

estimator has the most well-behaved distribution in small samples, in comparison with

other measures, presenting only light skewness and lepto-kurtosis. As a consequence,

the employment of a mixture model seems to be irrelevant for any improvement of the

estimates.

The FB model allocates greater density on the right-hand tail of estimator distribu-

tion, being able to better capture it. This aspect is clear from density plots in Figure

2.2, displaying direct estimates versus model-based estimates of Beta and FB models

in the 107 domains. Notice that any data point refers to a domain, being the expected

values of different posterior distributions as in (3.2), thus let us consider them as global
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distributions, not related with domain-specific posteriors. The FB model-based esti-

mates tend to be greater than Beta model ones as clear from scatterplots in Figure 2.2,

capturing the right-hand tail of the distribution and avoiding underestimating inequal-

ity, as it will be more intelligible in Section 2.5. The Gini index case shows, again, large

similarities across the two models.
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Figure 2.2: Densities of model-based estimates versus direct estimates and scatter-
plot of model-based estimates with bisector line
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Figure 2.3: Posterior means distributions of the mixture components expected val-
ues, weighted for E[p|data], in comparison with direct estimates and Flexible Beta
model-based estimates

Deep diving on FB estimates, Figure 2.3 displays posterior means distributions of

mixture components expected values λ1d and λ2d, ∀d, weighted for E[p|data], in com-

parison with direct estimates and Flexible Beta model-based estimates. The posterior

means of the mixing coefficient are 0.83 for both Atkinson indexes, 0.85 for Relative

Theil and 0.63 for Gini index, due to its more symmetric distribution. Notice that for

all measures except for the Gini index, the second mixture component, embracing lower

inequality values, has less weight, and helps to model inequality estimators by shifting

the first component (and overall) mode towards the centre of the distribution.
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Figure 2.4: Shrinking process for each measure in Beta and Flexible Beta models:
bisector in black, coloured linear regression line
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The shrinking process is displayed in Figure 2.4 for each model. It appears distinctly

that estimates are more shrunk in the case of Beta model, as highlighted by the dis-

tance between linear regression and bisector lines. Moreover, a property that should

be desirable for any small area model is the consistency among direct estimates and

model-based ones, namely direct estimates outliers should not be completely pushed

towards the opposite tail as model estimates. This consistency property does not hold

in case of Beta models, having 2 or 3 top outliers pushed towards the lowest values of

the distribution. This is due to the strong impact that auxiliary variables have on the

outcome and to the little flexibility of the model. On the contrary, the FB model keeps

its model estimates consistent with their input ones, operating overall less shrinkage.

Another desirable property is the design consistency, i.e. (ŷd − θHB
d ) → 0 as long as

ñd increases. This property hold for all models, as clear from Figure 2.5. Notice that

the magnitude of residuals for Beta models is relevant for domains with smaller sample

sizes and strongly unbalanced on positive residuals. This makes sense, given the strong

shrinkage operated on high outliers.

2.5 Design-Based Simulation

A design-based simulation study has been carried out to evaluate the frequentist

properties of the FB model-based estimators in comparison with the Beta ones. We

consider the Italian EU-SILC sample as synthetic population and the 14 metropolitan

cities and the remaining 21 administrative regions as synthetic domains. In order to

deal with a sufficient number of areas, assuring at the same time high variability of

direct estimates (i.e. keeping synthetic population sufficiently large), we pool 2009,

2013 and 2017 EU-SILC waves as independent and separate populations with a total

of 105 domains. The study is not based on generated data under some specific income

distributional assumption, since the aim is to check whether this framework can work

with close-to-reality income data, affected by peculiar problems, e.g. extreme values.

From each synthetic subpopulation, S = 1, 000 samples have been extracted by mim-

icking complex EU-SILC design, with stratification, multi-stage selection and distinction

between self-representative and non-self-representative strata. We adopted three differ-

ent scenarios for simulation, the first two involve different sampling rates, respectively

3% and 5%. Note that observations included in 3% samples have been selected from

those of 5% samples to attenuate the effect of sampling variability. The third scenario

consists of running the simulation on 5% samples with smoothed income data, where
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an extreme values treatment (evt) has been performed as previously described in Sub-

section 2.2.1 (Finkelstein et al., 2006; Masseran et al., 2019). The drawn is done at the

household level, with a total of extracted individuals in each domain ranging respec-

tively from 9 to 115 (median equals 31) for 3% and from 9 to 228 (median equals 63)

for 5%.

Bias-corrected inequality estimators have been calculated for any extracted sample,

and a suitable set of covariates have been selected among the ones cited in Subsection

2.4.1. Covariates have been calculated at the corresponding geographical detail for the

105 synthetic domains. At a lower level of geographical disaggregation, such as in this

case (NUTS-2 regions), the correlation among covariates and between covariates and

response is stronger in comparison with our application setting (NUTS-3 regions). This

is coherent since raw estimates are measured at macro level, inducing less error. For

any iteration s = 1, . . . , S, Beta and FB model has been estimated with a fixed set of

covariates. The sole distinction with the setting adopted in Section 2.4 regards the prior

of mixing coefficient p in (2.23), substituted with p ∼ Beta(2, 2), in order to speed up

convergence and save computational time.

Considering the generic model-based estimate at iteration s for domain d as θ̂HB
ds and

the corresponding population value θd, we define Relative Bias (RB), Absolute Relative

Bias (ARB), Mean Squared Error (MSE), Relative Mean Squared Error (RMSE) and

Average Effect (AEFF) as follows:

RB(θ̂HB
d ) =

1

S

S∑
s=1

(
θ̂HB
ds

θd
− 1

)
,

ARB(θ̂HB
d ) =

⏐⏐⏐⏐ 1S
S∑

s=1

(
θ̂HB
ds

θd
− 1

)⏐⏐⏐⏐,
MSE(θ̂HB

d ) =
1

S

S∑
s=1

(θ̂HB
ds − θd)

2,

RMSE(θ̂HB
d ) =

MSE(θ̂HB
d )

θ2d
,

AEFF(θ̂HB) =

√ ∑D
d=1 MSE(yd)∑D

d=1 MSE(θ̂HB
d )

.

Lastly, we consider the frequentist coverage of credible intervals defined by the α/2 and

1− α/2 quantiles of the posterior of θd,

Coverage1−α(θ̂
HB
d ) =

1

S

S∑
s=1

1(θd ∈ [Qα/2[θds|data], Q1−α/2[θds|data]]),



Chapter 2 - Put Inequality on the Map 57

whereQπ[θds|data] denotes the posterior quantile of order π of θds. The nominal coverage

probability 1− α is chosen to be equal to 0.95.

Simulations results are fully described for any setting in Table 2.2. RB, ARB, RMSE

and Coverage are reported on average over the 105 simulations domains, showing that

FB estimators outperform the Beta ones.

Focusing on estimates reliability, both Beta and Flexible Beta models perform sig-

nificantly better than direct estimators: RMSE and AEFF show a great error reduction

for all measures. Among them, the FB estimators perform better than the Beta ones

in all the cases. Considering bias and variance components of the error, the first one

shows a noticeable decrease in the case of FB estimators, as confirmed by ARB and

RB values in Table 2.2, concerning both magnitude and direction. This confirms the

clues of inequality underestimation under a Beta model, notwithstanding the measure

adopted, and shows that the FB model consistently reduces this underestimation. The

bias improvement is at the expense of a slight variance increase, but the bias-variance

trade-off favors the FB model, as notable from RMSE and AEFF.

The full distribution of MSEs of direct and model-based estimators related to the

different domains is depicted by boxplots in Figure 2.6. Firstly, all distributions show

heavy right-tails, with several outlier domains having great error levels. Again, the error

reduction induced by both small area models is noticeable, allowing estimators to borrow

strengths across areas. Specifically, while RMSEs, displayed in Table 2.2, indicate on

average a moderate error improvement for the FB model, the full distributions show a

great reduction in case of outlier domains. This reduction, as clear from the bottom row

plots of Figure 2.6, takes place in case of domains with the smallest sized samples. The

greatest MSE reduction regards the Relative Theil Index, the lowest the Gini index.

Moreover, notice that, except for the Gini index, the MSE of Beta estimators does not

decrease at increasing sampling rate, having substantially identical distribution for 3%

and 5% scenarios, whereas the MSE of FB estimators diminishes at increasing rates.

We can deduce that the first one has the bias as predominant component of the MSE,

being invariant to sampling rate. On the other hand, the second one is dominated by

the variance which, in a finite population context, highly depends on the sampling rate.

Flexible Beta models produce credible intervals that exhibit a noticeable better per-

formance in terms of coverage, in some cases outperforming Beta intervals coverage

by more than 10% on average. Its trend over the sample sizes is displayed in Figure

2.7. While FB coverage rates converge to their nominal level in correspondence to 50

individual-sized samples, the Beta ones converge near 100 sized samples in case of Gini

Index, near 130/150 in case of Atkinsons and Relative Theil Indexes.
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Figure 2.6: MSE for each area. Plots on the top row show direct estimators values
versus model-based estimators ones, while bottom row plots zoom-in model-based
results versus sample sizes
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The similarity among Beta and FB model-based estimates, in case of Gini index is

confirmed also in simulation. Nevertheless, the FB model has higher coverage in case of

small samples. Concerning different simulation settings, the Relative Theil direct esti-

mators show noticeably high bias in case of extreme value treated setting in comparison

with other settings. This could be due to a failure of preliminary bias correction on

direct estimators; indeed, input estimators does not satisfy unbiasedness, not allowing

for comparability. The extremely low coverage of both model-based estimators is indeed

justified by the high bias. Generally speaking, the performance gap between Beta and

FB models increases at decreasing sampling rates/sizes and with no smoothed data.

This denotes a progressive failure of the Beta model under the mentioned conditions,

as clear from how fast its diagnostics get worse at varying settings.

2.6 Conclusions

The reduction of inequalities, both within and between countries, is a prerequisite

for achieving the Sustainable Development Goals of the 2030 Agenda for Sustainable

Development, adopted by all United Nations Member States. At regional level, an

increase of disparities within regions has been observed, whereas regional disparities

between European countries are gradually decreasing. Several low-growth regions exist

within EU member states and, among the richest states, it is possible to find areas

characterised by high levels of poverty and inequality (often post-industrial or rural

ones). In this context, inequality indicators at a regional-level breakdown would allow

to shift towards a more comprehensive and multifaceted view of territorial convergence

in the EU and to better understand causal mechanisms, essential for regional-targeted

policies.

In this study, we propose a SAE model that aims at obtaining reliable estimates

of the most common inequality indicators: the Gini index, the Relative Theil index

and two Atkinson indexes defined for two different values of the inequality aversion
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parameters. By considering that inequality estimators are unit-interval defined, skewed

and heavy-tailed, we propose a FB small area model. The results are really encouraging

as the estimates we obtain outperform in different ways the most common Beta small

area model, generally used for parameters defined on the unit interval.

Our findings provide a basis for further research focused on multiple directions.

Firstly, it would be worthwhile to further study the shrinking process in the FB model,

by investigating the asymptotic behaviour of its estimator when model variance tends

to zero. Secondly, the set of inequality measures should be properly complemented by

quantile-based inequality indexes that, by focusing on distribution tails, are able to cap-

ture different aspects of the income distribution with respect to concentration indexes.

Quantile-based indexes are not defined on the unit interval support and thus their es-

timation has to rely on different likelihood assumptions. Lastly, given the longitudinal

nature of the EU-SILC survey, a model extension in this sense naturally follows, by

considering subsequent waves at the same time.
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Measure Scenario Est. Type ¯ARB% R̄B% ¯RMSE% AEFF ¯Cov. 95%
Atk(1) evt

de 1.44 13.99
B 9.90 -3.06 2.10 2.21 87.00
FB 8.78 -0.22 1.81 2.65 89.70

5%
de 2.00 19.48
B 11.15 -2.46 2.44 2.46 84.98
FB 9.38 -0.12 2.04 2.97 90.28

3%
de 3.89 32.77
B 11.49 -2.17 2.61 3.07 85.82
FB 9.12 -0.74 2.33 3.54 91.50

Atk(0.5) evt
de 1.69 15.87
B 9.56 -2.75 1.96 2.50 87.64
FB 8.41 -0.23 1.67 2.95 91.19

5%
de 2.40 21.90
B 10.85 -2.41 2.35 2.60 85.25
FB 8.85 -0.04 1.85 3.34 92.07

3%
de 4.78 34.72
B 11.06 -2.42 2.47 3.14 86.30
FB 8.67 -1.28 2.08 3.79 93.01

Relative Theil evt
de 9.69 18.73
B 12.55 -6.52 3.59 1.94 70.72
FB 9.71 -3.72 3.31 2.22 73.31

5%
de 3.63 27.87
B 12.30 -5.02 3.21 2.36 81.79
FB 7.69 -0.80 1.90 3.75 92.84

3%
de 7.48 39.90
B 12.71 -4.82 3.38 2.62 80.76
FB 8.32 -3.33 2.55 3.44 90.68

Gini evt
de 2.58 4.75
B 4.60 -1.06 0.53 2.85 91.50
FB 4.43 -0.28 0.50 3.01 93.23

5%
de 3.29 7.43
B 5.10 -0.58 0.69 3.16 91.23
FB 4.90 0.68 0.67 3.33 93.04

3%
de 6.20 9.02
B 6.21 -5.19 0.99 2.75 89.84
FB 5.79 -4.80 0.92 2.89 92.09

Table 2.2: ARB, RB, RMSE, AEFF jointly with the coverage of direct estimators
(de), and model-based estimators concerning Beta (B) model and Flexible Beta (FB)
model.





Chapter 3

The tipsae package: Tools for

mapping Indices and Proportions in

Small Area Estimation

3.1 Introduction

The growing demand for timely and reliable statistical estimates leads to extensive

exploitation of survey data at an increasingly greater level of disaggregation. However,

domains or areas of study are often different from the ones for which the survey was

originally planned, leading to possibly unreliable direct estimates due to observations-

poor samples. Small Area Estimation (SAE) tackles this problem by providing a set of

indirect estimation techniques, relying on external information, which borrow strength

across areas and increase the efficiency of the estimates. Indirect estimators based on

explicit regression models are labelled model-based estimators and assume a relation-

ship between the target variable and explanatory variables, which remains constant

across areas. Classical small area models embrace two basic linear mixed models: the

Fay–Herriot model and the Battese-Harter-Fuller model, which are foundational for the

strand of area-level models and unit-level models, respectively (Rao and Molina, 2015).

While the former relates area-specific target quantities to area covariates, the second

one relates individual observations of the underlying variables of interest to individual

covariates.

Hereafter, we focus on area-level models due to their practical convenience. They

require, in fact, only data aggregated at the area-level, avoiding both computational

and data disclosure issues. In area-level contexts, a well-established body of literature

is concentrated on Gaussian models. However, many quantities of interest have specific

63
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features that are not considered in the Gaussian setting and need to be accounted for,

such as a bounded or double bounded support and distributions markedly skewed or

heavy-tailed. Specifically, we focus on unit interval responses, common in SAE modelling

because of the growing need for rates and proportions releases in official statistics, such

as Head-Count Ratio for poverty mapping or Health Insurance Coverage rates. Not to

mention the treatment of other measures of interest defined in (0,1) or [0,1], such as

some inequality measures (e.g., Gini index).

In this regard, two different bodies of literature revolve around linear mixed models

with suitable transformations (Rao and Molina, 2015) and Beta regression models (Jan-

icki, 2020). For the first approach, we recall the works by Marhuenda et al. (2013, 2014),

Morales et al. (2015), and Esteban et al. (2012, 2020) that provide Fay-Herriot exten-

sions to deal with proportions. The second strand focus on classical Beta regression,

both in the univariate case (Liu et al., 2007; Bauder et al., 2015; Fabrizi and Trivisano,

2016; Giovinazzi and Cocchi, 2021) and in the multivariate ones (Fabrizi et al., 2011;

Souza and Moura, 2016), considering also zero and/or one inflated extensions (Wiec-

zorek et al., 2012; Fabrizi et al., 2016, 2020). Lastly, a Beta mixture approach in SAE

has been proposed in Chapter 2.

By considering the SAE field as a whole, there is a clear imbalance between a plethora

of methodological proposals defined in academic literature and the tight circle of meth-

ods actually used in official statistics and applied researches. A bridge-building process

between methodological and applied fields is needed, involving collaboration, dissemi-

nation, and development of user-friendly tools to facilitate tough steps. With the latter

aim, several routines for SAE have been released by developer teams of R, SAS, SPSS, and

STATA. Our focus is on R routines (R Core Team, 2021) due to flexibility and availability

reasons as well as for the equipment of complementary tools. Several R packages have

been developed to implement SAE tools, and in the following, we attempt to provide a

clear overview focusing on model-based methods.

In general, the most complete released packages are:

• sae (Molina and Marhuenda, 2015). It implements a wide range of small area

methods from a frequentist perspective, including both area-level and unit-level

models.

• emdi (Kreutzmann et al., 2019). It allows making inference on both area-level

and unit-level models in a frequentist framework, providing model diagnostics,

plots, and exporting tools.
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• mcmcsae (Boonstra, 2021). It comprises hierarchical area and unit-level models

estimated via Markov Chain Monte Carlo (MCMC) simulation, allowing for spatial

and temporal dependencies. It includes different prior settings, model diagnostics,

and posterior predictive checks functions.

Among listed packages, only the emdi package directly accounts for unit interval re-

sponses at area-level by providing the arc-sin transformation in a Gaussian setting

(Schmid et al., 2017). Thus, while a Fay-Herriot model for unit interval responses

may be implemented via existing packages, Beta-based small area models lack proper

implementations.

The tipsae package aims at filling this gap by implementing Beta-based small area

models specified at the area-level on measures that can assume values in (0, 1), [0, 1),

(0, 1], and [0, 1] intervals. We decided to operate in a Bayesian fashion in order to exploit

the advantages brought by approaching this inferential framework via MCMC methods.

For instance, it is possible to easily manage non-Gaussian assumptions, incorporate

structured random effects, obtain straightforward estimates for out-of-sample areas,

and capture the uncertainty about all target parameters through posterior inference.

Nowadays, several tools are available to implement Bayesian models with probabilistic

languages: our choice falls on Stan (Carpenter et al., 2017), that can be easily employed

to fit statistical models within R packages thanks to the tools provided by the rstantools

package (Gabry et al., 2020).

The main features of the tipsae package are listed in the following:

• It includes a variety of area-level models based on the Beta likelihood. Besides

the standard Beta-regression model, Zero and/or One Inflated Beta (ZOIB) and

Flexible Beta models can be chosen. Moreover, particular dependence structures

can be modelled, including spatial and/or temporal random effects.

• It implements an efficient Hamiltonian Monte Carlo (HMC) fitting algorithm and

customized parallel computing imported from rstan (Stan Development Team,

2020). We also tested other languages that build MCMC samplers, and Stan

turned out to be the most efficient one for Beta regression models, which are

particularly tricky to handle due to the non-orthogonality between location and

scale parameters.

• The stanfit S4 object produced by the rstan package can be exploited to check

convergence, monitor sampler diagnostics, and, lastly, perform an exhaustive pos-

terior analysis, relying on existing tools such as loo (Vehtari et al., 2020) and
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bayesplot (Gabry and Mahr, 2021) packages. In this way, users familiar with

posterior predictive checks can carefully assess the model performance.

• Specific diagnostics for small area models are produced by ad-hoc functions, facing

the most relevant aspects to deepen within the SAE framework. We implemented

both visualization tools for graphical assessments and functions that easily export

the final results. Moreover, variance smoothing routines and benchmarking pro-

cedures are also provided, remarking that, to the best of our knowledge, the first

tool is not available in any existing SAE package.

• To further facilitate the workflow for non-expert users of R, a Shiny application

(Chang et al., 2021) with an intuitive graphical user interface can be launched

through the runShiny tipsae() function. The application assists the user in

carrying out a complete SAE analysis, exploiting all the main features of the

tipsae package.

The package is freely available at the repository https://github.com/silviadenicolo/

tipsae and can be installed through the following command.

R> devtools::install_github("silviadenicolo/tipsae")

The chapter is organized as follows: covered models and implemented methodology

are set out in Section 3.2, the datasets made available in the package are presented in

Section 3.3, while Section 3.4 provides a step-by-step description of inputs and outputs of

the available functions. Lastly, Section 3.5 contains some concluding remarks, discussing

possible extensions that could be supplied.

3.2 Methodology

In this section, the theory behind the statistical methods implemented in the tipsae

package is summarized. The main aspects are those related to the area-level models for

indices and proportions that can be estimated using the function fit sae().

From now on, we consider a finite population of sizeN that is partitioned intoD small

areas having sizes N1, . . . , ND. We are interested in estimating a generic measure defined

on the unit interval that we denote as θd, d = 1, . . . , D. To this aim, a random sample

of size n is drawn from the whole population using a possibly complex survey design,

obtaining sub-samples of sizes n1, . . . , nD, specified for each domain. Among them, we

define the first D̃ domains, with D̃ ≤ D as the ones actually observed, i.e., with nd > 0.

The observations recorded at the individual level are aggregated to produce the direct

https://github.com/silviadenicolo/tipsae
https://github.com/silviadenicolo/tipsae
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estimates yd, that are stored in the vector y and are the observed determinations of

the direct estimator Yd for a quantity of interest θd, with d = 1, . . . D̃. The Bayesian

area-level model is specified for Yd, including also a set of auxiliary variables xd, which

are assumed to be available for each domain.

The details about the statistical models that can be set through the argument

likelihood are discussed in Section 3.2.1. Furthermore, a small area model usually

includes also random effects in the linear predictor. The random effect part, hereafter

indicated with ed, can incorporate either a temporal and/or a spatial dependency struc-

ture, as will be discussed in Section 3.2.2, devoted to the prior specification settings.

In addition, different prior assumptions can be specified for the unstructured random

effects, allowing for robust and shrinking priors.

In small area models, the dispersion parameters are generally assumed as given and

previously estimated from the data. Separate estimation could involve a smoothing

procedure to refine the sampling variances estimates and reduce their errors. Section

3.2.3 describes the proposed algorithms to carry out this step if required. Eventually,

Section 3.2.4 outlines the main aspects of posterior inference: we will mainly focus on

the out-of-sample treatment, diagnostics, and goodness-of-fit tools employed to validate

or select the models and, lastly, the benchmarking procedures complementing SAE

analysis.

3.2.1 Area-Level Models: Likelihoods

The statistical models available in tipsae are set out in the following subsections,

whereas a comprehensive overview of the key quantities under each model is provided in

Table 3.1. In particular, we specify the response support, the conditional expectation,

constituting the predictor for θd, the conditional variance, allowed parametrizations, and

the out-of-sample predictor (denoted with θoosd ). From now on, η indicates the vector

of all the model parameters.

3.2.1.1 The Beta Model

Let us consider the mean-precision parametrization of the Beta random variable

(Ferrari and Cribari-Neto, 2004): in this case, if Y ∼ Beta(µϕ, (1 − µ)ϕ), then its

probability density function is

fB(y;µ, ϕ) =
Γ (ϕ)

Γ (µϕ) Γ ((1− µ)ϕ)
yµϕ−1(1− y)(1−µ)ϕ−1, y ∈ (0, 1),
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where µ ∈ (0, 1) is the location parameter and ϕ ∈ (0,+∞) is the dispersion one. In

SAE context, the Beta regression area-level model is usually specified as

Yd|µd, ϕd
ind∼ Beta (µdϕd, (1− µd)ϕd) ,

logit (µd) = xT
dβ + ed, d = 1, . . . , D;

where β is the vector of regression coefficients and ϕd is the area specific dispersion

parameter, usually assumed to be known to guarantee identifiability. Recalling the ex-

pression of V [Yd|η] from Table 3.1, it can be shown that, when the target response is a

proportion, the parameter ϕd is related to the effective sample size, i.e., the correspond-

ing sample size under simple random sampling (Janicki, 2020). For a more complete

explanation of those aspects, we refer to the discussion in Section 3.2.3. On the other

hand, if a generic indicator (e.g., Gini index) is considered, the meaning of ϕd becomes

less clear. For this reason, we let the user specify the model parametrization (argument

type disp), choosing between:

• "neff" option, namely an estimate of the effective sample size ϕd +1 is provided;

• "var" option, in which an estimate of the sampling variance of the direct esti-

mator i.e., V̂[Yd], is used. In this case, the parameters ϕd are retrieved using the

relations in Table 3.1, replacing V [Yd|η] with V̂[Yd], and substantially changing

model parameterization.

3.2.1.2 The Flexible Beta Model

When the distribution of the response is characterized by heavy tails and/or high

skewness, the standard Beta regression could fail in properly modelling Yd (Bayes et al.,

2012; Migliorati et al., 2018). To improve the model performances in these conditions,

the standard Beta distribution can be replaced by the Flexible Beta distribution. The

Flexible Beta small area model has been proposed in Chapter 2. It is defined as a

mixture of two Beta random variables having a common dispersion parameter ϕd:

Yd|λ1d, λ2d, ϕd, p
ind∼ p Beta (λ1dϕd, (1− λ1d)ϕd)+

+ (1− p) Beta (λ2dϕd, (1− λ2d)ϕd) ,

logit (λ2d) = xT
dβ + ed, d = 1, . . . , D.

In this case, only the direct estimator variance (i.e., disp type = "var") can be used

as input to determine the dispersion parameter of the model. Therefore, ϕd is expressed
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as a function of the sampling variances and other model parameters (see the expres-

sion of V [Yd|η] in Table 3.1). The Flexible Beta distribution is characterized by four

parameters: this enhances the model flexibility, if compared to the standard Beta dis-

tribution, leading to better performances in modelling not well-behaved measures and,

consequently, reducing the bias of model-based estimators.

3.2.1.3 The Zero-One Inflated Beta Model

The supports of Beta and Flexible Beta models do not include the extremes 0 and

1. However, in some applications, zero and one values are observed, and a model able

to encompass them is required. Therefore, following Wieczorek et al. (2012), we include

in the package the ZOIB model, specified as:

Yd|µd, ϕd, p
z
d, p

o
d

ind∼ pzd1{Yd = 0}+ pod1{Yd = 1}+

+ (1− pzd − pod)Beta (µdϕd, (1− µd)ϕd)1{0 < Yd < 1}

logit (pzd) = xT
dβ

z
p, logit (pod) = xT

dβ
o
p,

logit (µd) = xT
dβ + ed, d = 1, . . . , D;

where pzd and pod denote the probabilities of observing zero and one values, respectively.

They are modelled by means of a logit regression model having coefficients βz
p and βo

p.

The notation 1{A} defines the indicator function that assumes value 1 if the event A is

observed, and 0 otherwise. The user can specify a model that accounts both for zeroes

and ones setting likelihood = "Infbeta01"; however, simpler versions inflating only

the ones or the zeroes are also available ("Infbeta1" and "Infbeta0", respectively).

Relevant quantities for each version of the ZOIB model are listed in Table 3.1, having

defined αd = pzd+ p
o
d and ζd = pod/αd. For further details, see Ospina and Ferrari (2010).

3.2.2 Prior distributions

To facilitate practitioners, standard wide-range prior distributions are assumed for

the parameters included in the model. Starting from the priors for the regression co-

efficients, we decided to follow the default prior specification strategy of the popular

rstanarm package (Goodrich et al., 2020). Firstly, auxiliary variables are standardized

in order to avoid issues related to possibly different magnitudes. Thus, posterior results

for the regression coefficients must be interpreted accordingly. A weakly informative
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prior for the intercept β0 is specified:

β0 ∼ N (0, 2.52),

and independent normal priors are also assigned to the coefficients related to standard-

ized covariates:

βj
ind∼ N (0, 2.52), j = 1, . . . , p.

Note that the same prior setting is also assumed for coefficients βz
p and βo

p involved in

ZOIB models.

As regards the Flexible Beta model, we additionally specify the following priors for

the mixing probability p and the differences between the means of mixture components:

p ∼ Beta(2, 2),

λ1d − λ2d|p, λ2d ∼ Unif

(
0,min

{
1− λ2d

p
,

√
V(Yd|η)
p(1− p)

})
,

following equations (2.18) and (2.23).

The priors for the random effects are discussed in the following: the case of unstruc-

tured random effects is faced in Section 3.2.2.1, spatially structured random effects are

described in Section 3.2.2.2, and temporal random effects in Section 3.2.2.3.

3.2.2.1 Unstructured Random Effects

The basic assumption on the random effect is ed = vd, where vd is an unstructured

area-specific random effect accounting for deviations from the synthetic predictor. We

propose three different strategies to specify its prior distribution, that can be chosen

through the prior reff argument of fit sae(). Firstly, a zero-mean normal prior with

scale σv is considered ("normal" option, default), putting a half-normal prior for σv, in

line with Gelman (2006):

vd|σv
ind∼ N

(
0, σ2

v

)
, d = 1, . . . , D;

σv ∼ Half-N (0, 2.52).

The choice of such half-normal prior is usually weakly informative if compared to the

scale of the random effects.

When covariates have poor explanatory power, in some domains, it is possible to
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observe large deviations of the predicted value from the observed one, requiring more

flexible handling of random effect through a robust prior. Among those proposed in

the literature, we implement the one introduced by Figueroa-Zúñiga et al. (2013), and

previously considered in the small area framework by Fabrizi et al. (2016). It consists of

a Student’s t prior with exponential hyperprior for degrees of freedom ν and half-normal

hyperprior for the scale σv ("t" option):

vd|ν, σv
ind∼ t (ν, 0, σv) , d = 1, . . . , D;

ν ∼ Exponential(0.1);

σv ∼ Half-N (0, 2.52).

The notation t (ν, 0, σv) indicates a Student’s t distribution with ν degrees of freedom,

location parameter equal to 0, and scale σv.

In other cases, the variability of the small area parameters may not require the

inclusion of a random effect term in presence of very informative covariates (Datta

et al., 2011b). Therefore, the variance gamma shrinkage prior introduced by Brown and

Griffin (2010) and implemented in a small area application by Fabrizi et al. (2018) is

included as a prior choice for vd ("VG" option). This option enables for shrinking to 0 the

random effects related to a subset of the areas by mimicking the behaviour of a spike-

and-slab prior. Following Fabrizi et al. (2018), we propose a general hyperparameters

choice that induces a prior variance of the random effects equal to 0.5:

vd|ψd, λ
ind∼ N

(
0,
ψd

λ

)
, d = 1, . . . , D;

ψd
ind∼ Gamma(0.5, 1), d = 1, . . . , D;

λ ∼ Gamma(2, 1).

It can be noted that the independent ψd are local scales, whereas λ is a global precision

hyperparameter.

3.2.2.2 Spatially Structured Random Effects

Setting the argument spatial error equal to TRUE, we let the user add a spatially

structured effect sd to the linear predictor, leading to the formulation ed = vd + sd. For

the vector s = (s1, . . . , sD), we assume an intrinsic conditional autoregressive (ICAR)

prior (Besag et al., 1991), i.e., an improper prior proportional to:

s|σs ∝ exp

{
− 1

2σ2
s

sT K̃−
s s

}
,
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where K̃− is the generalized inverse of a singular precision matrix. To describe its struc-

ture, we first define K = D−W, where D is a diagonal matrix containing the number of

connections for each area and W is the adjacency matrix (the generic entry [w]ij is 1 if

area i and j are adjacent and 0 otherwise). Following Freni-Sterrantino et al. (2018), the

actual precision matrix K̃ is obtained with a scaling procedure aimed at reducing the

impact of the structure on the prior variability, keeping into consideration the possible

presence of G ≥ 1 disconnected graphs in the model (e.g., islands). Note that G − 1

dummy variables are added to the linear predictor in order to obtain island-specific

means, placing a sum-to-zero constraint on the random effects related to the same is-

land. Islands defined by singleton areas are also allowed, even if they do not constitute a

graph counted in G. Lastly, a half-normal prior is fixed for the hyperparameter σs. For

further details on the implementation of ICAR priors in Stan, see Morris et al. (2019).

To include a spatially structured random effect, an object of class SpatialPolygons-

DataFrame (from the sp package, Bivand et al., 2013) is required as input of the

spatial df argument, carefully checking that the order of its rows and the order of

the data input are coherent.

3.2.2.3 Temporally Structured Random Effects

If multiple observations of the target indicator are available for different time periods,

a suitable model can be specified, in order to borrow strength from time repetitions.

In this framework, a second subscript must be added in the notation: Ydt indicates

the direct estimator for area d at time t = 1, . . . , T , whereas edt is the random effect

component in the linear predictor. The user can choose to add a temporal random effect

udt to the unstructured one (edt = vd + udt) setting spatial error = TRUE. If both

temporal and spatial random effects are declared in fit sae(), then a spatio-temporal

model is fitted, removing the unstructured random effect (edt = sd + udt).

As prior for the sequence of random effects {udt}t, we specify a random walk prior of

order 1, assuming independence among the areas (Rao and Molina, 2015). It represents

a flexible prior that can be defined recursively as:

udt|ud,t−1, σu ∼ N
(
ud,t−1, σ

2
u

)
, t = 2, . . . , T ;

implicitly assuming a uniform improper prior on ud1. Sum-to-zero constraints are placed

for each area-specific time sequences, to guarantee the identifiability of all the parameters

in the linear predictor. Even then, a half-normal prior is fixed for the hyperparameter

σu and the contribution of the correlation structure to the prior variability is mitigated
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by adopting a scaling procedure (Riebler et al., 2016).

3.2.3 Data Pre-Processing

Before stepping into estimation, we propose an elective function for refining raw

variance estimates, which are inputs of our models. It can be useful both for reducing

their sampling error and estimating the effective sample size parameter ϕd + 1. The

smoothing() function implements three methods, all yielding refined estimates of either

variance or ϕd+1, to account for indicators with different variance functions. The output

estimates are ready to be used as known parameters in an area-level model, and they

need to be added to the analysed data.frame.

Let us consider that, under simple random sampling, a general variance function has

the following structure:

Vsrs [Yd] =
f(θd)

nd

,

where nd is the sample size. Note that if the target quantity is a proportion, then f(θd) =

θd(1 − θd). However, when dealing with complex survey designs, the selection process

invariably introduces a correlation structure in the data. In this way, the information

actually available may be lower than the one provided by a sample of the same size

under simple random sampling. In order to formalize this concept, we need to introduce

the effective sample size ñd. It can be estimated as ñd = nd/deff, where deff is the

design effect, defined as the ratio between the complex design-based variance Vcd [Yd]

and Vsrs [Yd]. Clearly, under simple random sampling ñd equals nd.

All the three implemented methods enable the estimation of the effective sample

sizes, whereas "ols" and "gls" also perform a variance smoothing procedure. The

argument method allows to choose among:

• "kish", implementing an area-specific design effect estimation proposed by Kish

(1992). It employs solely the design weights and requires an additional data frame

as input of the survey data argument, whose structure is specified in Subsection

3.4.3. The specific design effect is estimated as:

deffd = nd ·
∑
h∈d

W 2
dh

ndh

where h refers to a generic sampling unit in area d (e.g., the household). In-

dicating with subscript c the generic individual in sampling unit h, we define
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Wdh = N̂dh/N̂d, N̂dh =
∑

c∈hwdhc, N̂d =
∑

h∈dwdh and nd =
∑

h∈d ndh. We de-

note with wdh and ndh the design weight and the sample size of unit h in area d,

respectively; while wdhc is the individual design weight. Thus, the design-based

variance can be defined as

Vcd [Yd] =
f(θd)

nd

deffd, (3.1)

while ϕd + 1 = ñd = nd/deffd. This method has already been used in small area

context by Wieczorek and Hawala (2011) and Liu et al. (2007). Kalton et al. (2005)

found this approximation accurate for proportions ranging between 0.2 and 0.8.

• "ols", implementing a variance smoothing model using a Generalized Variance

Function approach, as in Fabrizi et al. (2011) and Fabrizi and Trivisano (2016).

Considering the design-based variance as

Vcd [Yd] =
f(θd)

nd

deff,

the smoothing procedure is based on the assumption that the design effect does

not vary across areas. By assuming V̂raw[Yd] as a raw estimator of complex survey

variance with large error, let us specify the following smoothing equation:

f(Yd)

V̂raw[Yd]
= ψnd + ϵd,

where ψ = 1/deff and ϵd are zero-mean and homoscedastic residuals. The model is

estimated using ordinary least squares via the gls() function from nlme package

(Pinheiro et al., 2021), providing the smoothed dispersion parameters defined as

ϕ̂d + 1 = ψ̂nd and the refined estimate as V̂[Yd] = f(yd)/(ϕ̂d + 1).

• "gls", extending the "ols" method in case of heteroskedasticity of the error

component ϵd of equation (3.1). The default method assumes only heteroskedastic

error with a power variance function on absolute fitted values (see Pinheiro et al.,

2021, for further details).

3.2.4 Posterior Inference

We are interested in making posterior inference on θd. Since we are not dealing with

conjugate models, not even conditionally, the posterior inference is carried out through

MCMC draws. As a point estimate, the optimal Bayes estimator of θd under quadratic
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loss is considered, i.e., the posterior mean. We indicate it with the notation:

θ̂HB
d = E[θd|y] d = 1, . . . D. (3.2)

The point estimates can be complemented with uncertain measures like the posterior

standard deviation and credible intervals, determined by the quantiles of the posterior

distribution. The generic method summary() applied on as S3 object of class fitsae

produces by default point estimates (posterior mean and median) and credible intervals

(at 95% and 50% levels) for predictors, basic model parameters, and random effects.

3.2.4.1 Out-of-Sample Treatment

The package provides an automatic out-of-sample prediction. This feature is available

for all considered likelihood, except for Flexible Beta, since in this specific case, θd

depends on its sampling variance, which is not available in case of out-of-samples.

Recalling that θoosd , d = D̃, . . . , D denotes the out-of-sample target quantity, their

predictors are reported in Table 3.1. Note that they depend on ed: when spatial and

temporal dependencies are defined, sd and udt gain information from the assumed corre-

lation structure, whereas vd is always drawn from a zero-mean distribution, contributing

only to the posterior variability of θoosd . Exploiting the MCMC estimation framework,

it is possible to obtain a sample from the posterior of θoosd by combining the samples

drawn from the posterior of the involved parameters. Eventually, the point predictor de-

fined in (3.2) holds also for out-of-sample observations, together with the other posterior

summaries.

3.2.4.2 Diagnostics and Goodness-of-fit Tools

The method summary() returns, in addition, goodness-of-fit and model validation

diagnostics, as well as SAE-specific diagnostics. In the following, we provide a brief

theoretical overview of such measures.

One of the main advantages of estimating models within the Bayesian framework

is the plethora of tools that allow investigating model performances. Among the most

relevant ones, we can find those relying on the posterior predictive distribution, that

we denote with Y •
d |y, d = 1, . . . , D. Area-specific Bayesian P-values (BPd) under the

following discrepancy measure (You and Rao, 2002; Fabrizi et al., 2011) are computed:

BPd = P [Y •
d > yd|y] , d = 1, . . . , D. (3.3)
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In absence of systematic deviations, the expected Bayesian p-value is 0.5, whereas values

near 0 or 1 highlight issues of over-estimation and under-estimation, respectively.

Information criteria are widely used in Bayesian inference to compare models with dif-

ferent specifications, e.g., diverse distributional assumptions, random effects structures,

or covariates. Following Vehtari et al. (2017), we consider the approximate leave-one-

out cross-validation information criterion (LOOIC) computed using Pareto-smoothed

importance sampling. It can be retrieved through the loo package and is provided

together with the approximate standard errors for estimated predictive errors.

Stepping into SAE-specific diagnostics, the standard deviation reduction (SDRd)

indicator is commonly used to assess the decrease of uncertainty associated with the

employment of a small area model. It is obtained evaluating

SDRd = 1−

√
V [θd|y]

E[V [Yd|η] |y]
, d = 1, . . . , D, (3.4)

where the denominator is defined in this way when type disp = "neff", taking into

account the fact that V [Yd|η] has a posterior distribution to be summarized. Conversely,

if type disp = "var", the denominator is replaced by V̂ [Yd]. This diagnostic has to be

considered with caution when performing model selection since it does not account for

the design bias of different model-based estimators, which could be relevant even when

the model is correct.

A measure of distance between direct and model-based estimators may be useful

to detect when model and data evidence differ significantly and for models compari-

son purposes. We adopted a normalized Euclidean distance weighted for the standard

deviations of direct estimators, similar to the one mentioned by Morales et al. (2015):

(
1

D̃

D̃∑
d=1

(yd − θ̂HB
d )2

V [Yd|η]1/2

)1/2

.

On the same wave, a Confidence Interval Rate (CIR) can be set up, by constructing

the confidence intervals for direct estimators, and by counting the times model-based

estimators fall within such intervals:

CIR =
1

D̃

D̃∑
d=1

1{θ̂HB
d ∈ (yd − 1.96× V [Yd|η]1/2 , yd + 1.96× V [Yd|η]1/2)},

using a Gaussian approximation and a confidence interval level of 95%.
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Lastly, the Shrinking Bound Rate (SBR) is computed:

SBR =
1

D̃

D̃∑
d=1

1{θ̂HB
d ∈ (p∗d, yd)}, (3.5)

where p∗d = exp(xT
dβ)/

[
1 + exp(xT

dβ)
]
is the synthetic estimate of θd. In fact, in the

standard Fay-Herriot model, the shrinking process is clearly identified by the shape of

the best linear unbiased predictor, for known values of β and σ2
v such as,

γdyd + (1− γd)p
∗
d with γd =

σ2
v

σ2
v + V[Yd|η]

.

Beta regression models do not provide a closed form predictor, since the conditional

distribution of θd, ∀d = 1, . . . , D does not belong to a standard family. Janicki (2020)

shows that, in a Beta regression model with standard diffuse priors, θ̂HB
d converges to

the direct estimate as V[Yd|η] −→ 0 and the synthetic estimates as σ2
v −→ 0. The first

property has also been proved by Fabrizi et al. (2020). However, θ̂HB
d is not bounded by

its convergence limits, conjecturing Yd < θ̂HB
d < p∗d will hold only for V[Yd|η] sufficiently

small (Janicki, 2020). Thus, checking whether model estimates fit inside the bound,

could yield important insights into the shrinking process and estimators consistency.

3.2.4.3 Benchmarking Procedure

The benchmark() function gives the chance to perform a benchmarking procedure on

model-based estimates. The need for benchmarking arises since model-based estimates

may widely differ from direct estimates and, consequently, model estimates aggregates

may widely differ from corresponding direct estimates. However, latter quantities refer

to a larger geographical area or a larger socio-demographic group whose target domains

are a subset of, and, therefore, are considered to be reliable. This feature may introduce

drawbacks in many situations (e.g., when small area estimates are used to allocate

funding), and exact benchmarking is required to avoid surpluses or shortfalls (Zhang

and Bryant, 2020). When adopting a benchmarking approach, model-based estimates

are constrained to direct estimates of supra-domain sets.

Existing methods generally address the benchmark issue as a constraint to be im-

posed. The difference in between various methods is about the way such constraints are

interpreted and incorporated in the estimation. Some methods estimate the small area

models and then modify the resulting point estimators to satisfy the benchmarking con-

straints as a two-step procedure (Datta et al., 2011a). Other methods treat benchmarks

as vincula on the underlying small area parameters or on their point estimators which
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are directly incorporated into the probabilistic structure of the small area model, either

in a revised likelihood or in the prior distributions (Pfeffermann et al., 2014; Ranalli

et al., 2018; Zhang and Bryant, 2020). By considering only Bayesian benchmarking

methods, when models yield a full posterior distribution for all unknown quantities af-

ter benchmarking, they end up being categorized as fully Bayesian. While methods such

as the one we adopted, which derive posterior distributions without benchmarking and

separately benchmark point estimates, do not fall within this definition. An up-to-date

review can be found in Zhang and Bryant (2020).

In our non-fully Bayesian approach, widely explained by Datta et al. (2011a), point

estimates from a Bayesian model, estimated via the fit sae() function, are adjusted to

obtain a new set of estimates that satisfies the constraints. Benchmarking could solely

target the point estimators (single benchmarking) or, alternatively, also the ensemble

variability (double benchmarking). Furthermore, an estimate of the overall posterior

risk is provided, aggregated for all areas. This value is only yielded when in-sample

areas are treated and a single benchmarking is performed.

The considered benchmarking procedures require the definition of a set of area-

specific weights, which in the case of proportions are defined as wd = Nd/
∑D

j=1Nj,

where Nd is the population size for area d. The benchmark is indicated with B, and it

could be the reliable direct estimate referring to a larger area or a prespecified value from

another data source or, eventually, B =
∑D

d=1wdYd, if the aim is to perform internal

benchmarking. The function allows performing three different benchmarking methods,

according to the argument method.

• The "ratio"method provides benchmarked estimates θ̂BM
d that minimize the pos-

terior expectation of the weighted squared error loss. The benchmarked estimates

are

θ̂BM
d = θ̂HB

d +
B −

∑
dwdθ̂

HB
d

s
rd, (3.6)

where rd = θ̂HB
d , and s =

∑
dwdθ̂

HB
d . Datta et al. (2011a) provide also the

posterior risk for the whole set of benchmarked estimates:

∑
d

wd

rd

[
V[θd|y] +

(B −
∑

dwdYd)
2

s2
r2d

]
. (3.7)

• The "raking" method provides the benchmarked estimate in (3.6) and the pos-

terior risk (3.7) with rd = 1 and s = 1.
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• The "double" method extends this procedure accounting for a further bench-

mark on the weighted ensemble variability. The simultaneous constraints are∑
dwdθ̂

BM
d = B and

∑
dwd(θ̂

BM
d −B)2 = H, where H is a prespecified value of the

estimators variability taken from other sources. The expression of the resulting

benchmarked estimate is:

θ̂BM
d = B +

√ H∑
dwd

(
θ̂HB
d −

∑
dwdθ̂HB

d

)2
(
θ̂HB
d −

∑
d

wdθ̂
HB
d

)
.

Note that the benchmarking procedure can be performed in case of temporal or spatio-

temporal models by specifying multiple time-period benchmarks.

3.3 Datasets

In SAE field, data typically come from multiple sources. Direct estimators and their

sampling variances typically result from survey data, aggregated at area-level, while

covariates come from census and/or administrative/register sources. As a consequence,

explanatory variables, aggregated at area level, are required to be defined at population

level i.e., without error, and potentially correlated with the target variable. In order to

outline the workflow of tipsae package, its functions are illustrated in Section 3.4 and

applied to an example dataset, released within the package. The whole dataset is named

emilia and consists of a panel on poverty mapping concerning 38 health districts within

the Emilia-Romagna region, located in North-East of Italy, with annual observations

recorded from 2014 to 2018. We built it starting from model-based estimates and related

CV freely available on Emilia-Romagna region website 1. Since it is used for illustrative

purposes only, such estimates are assumed to be unreliable direct estimates, requiring a

SAE procedure.

We considered the Head-Count Ratio estimates as direct ($hcr) and its associated

variance as sampling variance ($vars). A fake standardized covariate $x has been gen-

erated. We also provide area sample sizes ($n), population sizes ($pop), province iden-

tification ($prov), years ($year) and health district name ($id). The emilia dataset

can be loaded as follows.

R> library(tipsae)

R> data("emilia")

R> head(emilia)

1https://statistica.regione.emilia-romagna.it/documentazione/pubblicazioni/

documenti_catalogati/stima-poverta-2009-2018-distretti-sociosanitari-province-emilia-romagna

https://statistica.regione.emilia-romagna.it/documentazione/pubblicazioni/documenti_catalogati/stima-poverta-2009-2018-distretti-sociosanitari-province-emilia-romagna
https://statistica.regione.emilia-romagna.it/documentazione/pubblicazioni/documenti_catalogati/stima-poverta-2009-2018-distretti-sociosanitari-province-emilia-romagna
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data
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Figure 3.1: Flowchart that describe the structure of the tools implemented in the
tipsae package.

id prov year hcr vars n x pop

1 CASALECCHIO DI RENO BO 2014 0.0404 9.090478e-05 42 -0.2624 108261

2 CITTA’ DI BOLOGNA BO 2014 0.0825 6.404001e-05 285 -0.0008 371151

3 IMOLA BO 2014 0.1033 3.120275e-04 49 -0.0522 130007

4 PIANURA EST BO 2014 0.0633 1.025764e-04 190 -0.4007 154213

5 PIANURA OVEST BO 2014 0.0625 1.562500e-04 10 -0.2277 80951

6 PORRETTA TERME BO 2014 0.1276 6.643609e-04 26 -0.4434 56428

A cross-sectional subset concerning a single year (2016) is taken from emilia, for non-

temporal models illustration purpose: it is named emilia cs and can be loaded as

follows.

R> data("emilia_cs")

3.4 Workflow

In this section, a typical flow of a SAE analysis is outlined with step-by-step in-

structions, showing the potentials of tipsae tools. As illustrated with a flowchart in

Figure 3.1, the package is structured into three parts that relate to: model building and

fitting ( , Section 3.4.1), diagnostics and results displaying ( , Section 3.4.2), and com-

plementary tools for SAE analysis ( , Section 3.4.3). Figure 3.1 displays also the possible

connections with external functions, drawn with dashed arrows, useful to further exploit

the produced objects.
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3.4.1 Model Building and Fitting

The first step of the workflow represents the core of our package, concerning the

estimation of models with the diverse extensions and parametrizations defined in Section

3.2. The sole function fit sae() allows users to construct personalized models and fit

them using Stan routines, called up through the sampling function of rstan package.

It also allows customized parallel computing when the model runs on multiple chains.

A simple parallelization can be set out using the following command, which imposes a

number of R processes equal to the number of CPU cores.

R> options(mc.cores=parallel::detectCores())

It is also possible to change the default options for parallelization using the function

setDefaultClusterOptions() from parallel package. For further details, see rstan

guidelines.

A complete list of the input arguments of the fit sae() function is specified in

Table 3.2, and a first example of model fitting on the emilia cs dataset is provided.

Firstly, we consider model default options: a Beta likelihood and a Gaussian prior for

unstructured random effects. Since emilia cs dataset contains the sampling variance

as a measure of dispersion, disp direct must be fixed equal to "var", setting a mean-

variance parametrization. Moreover, argument domains size has to be specified for

having visual design consistency diagnostics in the subsequent plotting function.

The estimation can be done in practice by running the fit sae() function as follows.

For the sake of reproducibility, we set seed=0.

R> fit_beta <- fit_sae(formula_fixed = hcr ~ x,

+ data = emilia_cs,

+ domains = "id",

+ type_disp = "var",

+ disp_direct = "vars",

+ domain_size = "n",

+ seed = 0)

Note that further arguments, concerning sampling function options, can be addi-

tionally specified. In particular, we mention those related to HMC algorithm setting

such as iter, allowing to set the number of iterations per chain (default equal to 2000),

warmup, determining the number of iterations per chain to be discarded as warm-up pe-

riod (default iter/2), chains, fixing the number of independent Markov chains (default

4).

Different models can be estimated relying on diverse assumptions, being subsequently

compared with each other. For example, we assume a Flexible Beta likelihood and a
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Argument Short description Default

formula fixed formula object specifying the fixed regression part. -

data data.frame containing all relevant quantities. -

domains data column name displaying domains names. If
NULL (default) the domains are denoted with a pro-
gressive number.

NULL

type disp Parametrization of the dispersion parameter. The
choices are variance ("var") or ϕd + 1 ("neff") pa-
rameter.

"neff"

disp direct data column name displaying given values of sam-
pling dispersion for each domain.

-

domain size data column name indicating domain sizes (op-
tional).

NULL

likelihood Sampling likelihood to be used. The choices are
"beta", "flexbeta", "Infbeta0", "Infbeta1" and
"Infbeta01".

"beta"

prior reff Prior distribution of the unstructured random effect.
The choices are: "normal", "t", "VG".

"normal"

spatial error Logical indicating whether to include a spatially
structured random effect.

FALSE

spatial df Object of class SpatialPolygonsDataFrame with
the shapefile of the studied region. Required if
spatial error = TRUE.

NULL

temporal error Logical indicating whether to include a temporally
structured random effect.

FALSE

temporal variable data column name indicating temporal variable. Re-
quired if temporal error = TRUE.

NULL

adapt delta HMC option: target average proposal acceptance
probability. See Stan documentation.

0.95

max treedepth HMC option: maximum allowed tree depth for each
transition. See Stan documentation.

10

init HMC option: initial values setting. The choices are:
"0", "random", or manual setup via list or function.
See Stan documentation.

"0"

... Further inputs for the sampling function.

Table 3.2: Input arguments for function fit sae.
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Position Name Short description

1 model settings List summarizing all the assumptions of the model:
sampling likelihood, presence of intercept, dispersion
parametrization, random effects priors and possible struc-
tures.

2 data obj List containing input objects including in-sample and out-
of-sample relevant quantities.

3 stanfit stanfit object, outcome of sampling function containing
full posterior draws. For details, see rstan documentation.

4 pars interest Vector containing the names of parameters whose posterior
samples are stored.

5 call Image of the function call that produced the fit sae ob-
ject.

Table 3.3: Components of fitsae objects.

variance gamma shrinking prior for the unstructured random effect, in order to propose

a more flexible model for the data. Given the increasing complexity of model assump-

tions, more HMC iterations are required, together with a higher proposal acceptance

probability (adapt delta).

R> fit_FB <- fit_sae(formula_fixed = hcr ~ x,

+ data = emilia_cs,

+ domains = "id",

+ type_disp = "var",

+ disp_direct = "vars",

+ domain_size = "n",

+ likelihood = "flexbeta",

+ prior_reff = "VG",

+ adapt_delta = 0.99,

+ iter = 8000,

+ seed = 0)

Warnings:

1: There were 10 divergent transitions after warmup. See

http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup

to find out why this is a problem and how to eliminate them.

2: Examine the pairs() plot to diagnose sampling problems

The fit sae() function returns an S3 object of class fitsae, being a list of relevant

items that are listed in Table 3.3. The core element is the $stanfit object, incorporating
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posterior draws and raw MCMC information to be extracted, whereas the remaining

elements only provide details about the function call and model settings.

3.4.2 Diagnostics and Results Displaying

After the MCMC drawing, a careful check on algorithm convergence is required,

in order to validate posterior results. With this aim, our suggestion is to exploit the

plethora of diagnostic methods implemented for stanfit objects within the bayesplot

package. For example, the following code generates the trace-plots related to the fit -

beta model, as in Figure 3.2, useful to visually inspect the convergence of the chains to

a unique stationary distribution.

R> library(bayesplot)

R> post_beta <- as.array(fit_beta$stanfit, pars = c("beta0","beta"))

R> mcmc_trace(x = post_beta)

beta0[1] beta[1]
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Figure 3.2: Traceplots of the parameters β0 and β1 of the Beta regression model.

The stanfit object also provides useful visual diagnostics to deepen the warnings

printed by Stan, such as those about the maximum tree depth and divergent transitions

after the warm-up period.

However, small area diagnostics are required at this stage, in order to check whether

results meet specific properties which turn out to be desirable in such context. Peculiar

diagnostic measures can be obtained through summary() method applied on fitsae

objects. Besides the printed output, the method produces an object of class summary -

fitsae which contains relevant information for posterior inference. Argument probs

allow specifying the quantiles of interest to be visualized as posterior summary measures.

The logical argument compute loo allows deciding whether loo information criterion

should be computed or not.

R> summ_beta <- summary(fit_beta)

Warnings:
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Some Pareto k diagnostic values are too high.

See help(’pareto-k-diagnostic’) for details.

R> summ_beta

Summary for the SAE model call:

fit_sae(formula_fixed = hcr ~ x, domains = "id", disp_direct = "vars",

type_disp = "var", domain_size = "n", data = emilia_cs, seed = 0)

----- S.D. of the random effects: posterior summaries -----

mean sd 2.5% 25% 50% 75% 97.5%

sigma_v 0.267 0.055 0.168 0.23 0.263 0.299 0.388

----- Fixed effects coefficients: posterior summaries -----

mean sd 2.5% 25% 50% 75% 97.5%

(Intercept) -2.428 0.060 -2.550 -2.467 -2.428 -2.387 -2.309

x 0.253 0.061 0.135 0.213 0.253 0.293 0.372

--------------- Model diagnostics summaries ---------------

Min. 1st Qu. Median Mean 3rd Qu. Max.

Residuals -0.016 -0.004 0.002 0.004 0.011 0.032

S.D. Reduction -0.100 0.197 0.254 0.240 0.318 0.390

Bayesian p-value 0.172 0.339 0.459 0.461 0.555 0.785

Shrinkage Bound Rate: 100 %

LOO Information Criterion:

Estimate SE

elpd_loo 87.719 3.629

p_loo 17.787 2.546

looic -175.439 7.259

If printed, the produced summary displays:

• Posterior summaries about the fixed effect coefficients and the scale parameters

related to unstructured and possible structured random effects.

• Model diagnostics summaries of (a) model residuals; (b) standard deviation re-

ductions computed using (3.4); (c) Bayesian P-values obtained approximating the

(3.3) with the MCMC samples.

• Shrinking Bound Rate, defined in (3.5).

• LOO information criteria and related diagnostics from the loo package.
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3.4.2.1 What Can Be Accidentally Done with a summary fitsae Object

The summary fitsae object contains additional valuable elements for further explo-

ration. For instance, the $loo element consists of the whole object of class loo which

may be employed in external functions, such as the ones provided by loo package e.g.

for model comparison, as follows.

R> summ_FB <- summary(fit_FB)

Warnings:

Some Pareto k diagnostic values are too high.

See help(’pareto-k-diagnostic’) for details.

R> library(loo)

R> loo_compare(list("beta" = summ_beta$loo, "flexbeta" = summ_FB$loo))

elpd_diff se_diff

flexbeta 0.0 0.0

beta -6.9 2.9

The output shows that the Flexible Beta model has a significantly higher expected log

pointwise predictive density for a new dataset, gaining in prediction power with respect

to the default model.

Another element that can be employed in external functions to assess model goodness

of fit is $y rep, an array with values generated from the posterior predictive distribution,

enabling the implementation of posterior predictive checks through the bayesplot pack-

age. The observed data, required for the checks, can be extracted through $direct est

element. The following code allows comparing the empirical densities of generated sam-

ples under the considered models, reported in Figure 3.3.

R> library(ggplot2)

R> ppc_dens_overlay(y = summ_beta$direct_est, yrep = summ_beta$y_rep[1:100,]) +

+ ggtitle("Beta likelihood")

R> ppc_dens_overlay(y = summ_FB$direct_est, yrep = summ_FB$y_rep[1:100,]) +

+ ggtitle("Flexible Beta likelihood")

Lastly, all the posterior summaries related to random effects are stored in the $raneff

element, being a list of data.frame objects, one for each type: $unstructured, $temporal,

and $spatial. Such outputs may be exploited to produce meaningful plots, e.g., the

caterpillar plot of Figure 3.4, created via the following code.

R> ggplot(summ_beta$raneff$unstructured, aes(x = reorder(Domains, mean))) +

+ geom_point(aes(y = mean)) +

+ geom_linerange(aes(ymin = ‘2.5%‘, ymax = ‘97.5%‘)) +

+ geom_hline(yintercept = 0, lty = 2) +

+ ylab("Random effect") + xlab("") +

+ theme_bw(base_size = 12) +

+ theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1))
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Figure 3.3: The empirical densities from posterior predictive samples (yrep) versus
the observed data one (y).
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Figure 3.4: Caterpillar plot of unstructured random effects from Beta regression
model.

3.4.2.2 Ad-Hoc Plot Functions

Our package comes equipped with ad-hoc functions for visual diagnostic tools. The S3

object summary fitsae can be used as input for plot() and density() visual methods

as well as for map() function.

The generic method plot() provides, in a grid (default) or sequence, (a) a scatterplot

of direct estimates versus model-based estimates, visually capturing the shrinking pro-

cess, (b) a Bayesian P-values histogram, (c) a boxplot of standard deviation reduction

values, and, if areas sample sizes are provided as input in fit sae(), (d) a scatterplot of

model residuals versus sample sizes, in order to check for design-consistency i.e., as long
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as sizes increase residuals should converge to zero. The following code line produces

Figure 3.5.

R> plot(summ_beta)

0.04

0.08

0.12

0.04 0.08 0.12

Direct est.

H
B

 e
s
t.

0

2

4

6

0.00 0.25 0.50 0.75 1.00

Bayesian p-values

-0.1

0.0

0.1

0.2

0.3

0.4

S
.D

. 
R

e
d

u
c
tio

n

-0.01

0.00

0.01

0.02

0.03

0 100 200

Domain sample size

R
e

s
id

u
a

ls

Figure 3.5: plot() method visual outcome.

The method density() provides, in a grid (default) or sequence, the density plot

of direct estimates versus HB model estimates and the density plot of standardized

posterior means of the random effects versus standard normal, in order to check for

Gaussian assumption. Figure 3.6 is produced as the output of the following command.

R> density(summ_beta)

Lastly, the map() function enables the investigation of the analysed phenomenon by

accounting for its geographical dimension, if it exists. More in detail, a SpatialPolyg-

onsDataFrame object from the sp package should be provided as input in spatial -

df argument. The spatial id domains argument must receive as input the name of

spatial df variable containing area denominations, in order to correctly match the

areas. If such names match the ones provided through the original dataset, no extra

arguments are required. Otherwise, the match names argument should receive an en-

coding two-columns data.frame: the first with the original data coding (domains) and
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Figure 3.6: density() method visual outcome.

the second one with corresponding spatial df object labels. The feature to be dis-

played on the map can be defined in quantity argument, choosing among HB model

estimates HB est, direct estimates Direct est, posterior standard deviations SD, and

benchmarked estimates Bench est when a benchmark fitsae class object is given as

input (see Section 3.4.3). The following code loads the Emilia-Romagna health districts

shapefile and produces the maps in Figure 3.7, with model-based estimates and their

posterior standard deviations.

R> data("emilia_shp")

R> map(x = summ_beta,

+ spatial_df = emilia_shp,

+ spatial_id_domains = "NAME_DISTRICT")

R> map(x = summ_beta,

+ spatial_df = emilia_shp,

+ quantity = "SD",

+ spatial_id_domains = "NAME_DISTRICT")
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Figure 3.7: map() function visual outcome.
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3.4.2.3 Take-Home Function

Lastly, summary fitsae object provides target parameters posterior and model-based

estimates, visually accessible through the function extract() as follows.

R> HB_estimates <- extract(summ_beta)

R> head(HB_estimates$in_sample)

Domains Direct est. HB est. sd 2.5%

1 CASALECCHIO DI RENO 0.0469 0.05511808 0.009143088 0.03696825

2 CITTA’ DI BOLOGNA 0.0681 0.06668932 0.008168604 0.05040972

3 IMOLA 0.0692 0.06723489 0.011631916 0.04467289

4 PIANURA EST 0.0636 0.06621838 0.009554082 0.04787149

5 PIANURA OVEST 0.0685 0.08465454 0.013695722 0.05789687

6 PORRETTA TERME 0.1174 0.09035749 0.019929132 0.05449263

25% 50% 75% 97.5%

1 0.04897258 0.05504724 0.06121161 0.07330119

2 0.06132649 0.06695005 0.07234576 0.08205602

3 0.05913559 0.06721644 0.07501379 0.09011058

4 0.05944194 0.06623004 0.07286028 0.08465238

5 0.07552132 0.08449351 0.09385837 0.11194273

6 0.07645193 0.08868046 0.10297773 0.13293759

The function returns an object of class estimates fitsae, being a list of two data

frames, distinguishing between $in sample and $out of sample areas, which gathers

domains name, direct and HB estimates, as well as posterior summaries of parameters

θd, ∀d.
A function for exporting such results in csv format is directly accessible, with name

export(). This function requires an estimate fitsae object and a character string

naming the output file (argument file). It is also possible to indicate whether to

export both in and out of sample areas results (default, type="all"), or only in or out

of sample areas, ("in" or "out", respectively), as follows.

R> export(HB_estimates,

+ file = "results.csv",

+ type = "all")

Additional arguments of write.csv() function from utils package can be further indi-

cated.

3.4.3 Complementary Tools

Complementary tools for small-area analysis provided by the package are the smooth-

ing and benchmarking functions. The smoothing() function allows for data pre-processing

of sampling variance estimates and retrieving effective sample sizes, as described in
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Section 3.2.3. After its usage, output results have to be incorporated in the dataset

used as input of the fit sae function. The smoothing() function requires as input

the data including the direct estimates, whose variable name has to be specified in

direct estimates argument, the method to be used among "ols", "gls" and "kish"

(method), and the specification of a variance function f(θ), through var function ar-

gument. The default option (NULL) for f(θ) match the proportion case, being equal

to θ(1 − θ), while for other measures it can widely differ, for instance, the Gini index

variance can be approximated to f(θ) = θ2(1 − θ2) (Fabrizi and Trivisano, 2016) and

therefore the following object has to be provided in var function argument:

R> gini_variance <- function(x){ x^2 * (1 - x^2) }

If method "ols" or "gls" is chosen, the function requires the raw variance estimates

(raw variance argument), areas sample sizes (areas sample sizes), and, possibly, ad-

ditional covariates (additional covariates), all of them being column names of the

data.frame provided to the data argument. On the other hand, method "kish" re-

quires the domain names (area id, as column name in data) and the specification of

an additional dataset (survey data), defined at sampling unit level (e.g., households).

Such dataset must include sampling weights (weights), unit sizes (sizes) and domain

names (survey area id), in order to allow for matching. The output is an object of

smoothing fitsae class, being a list of vectors including dispersion parameters esti-

mates: both the variance and ϕ̂d + 1. If "ols" or "gls" method has been selected, the

list incorporates also an object of class gls from nlme package, ready to be further

explored through nlme additional tools.

R> smoo <- smoothing (emilia_cs,

+ direct_estimates = "hcr",

+ area_id = "id",

+ raw_variance = "vars",

+ areas_sample_sizes = "n",

+ var_function = NULL,

+ method = "ols")

R> smoo

Proportions variance function specified.

Generalized least squares fit by REML

Model: as.formula(paste0("y ~ -1", str))

Data: regdata

AIC BIC logLik

481.1331 484.3549 -238.5666

Coefficients:

Value Std.Error t-value p-value

n 2.888026 0.1825709 15.81866 0
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Standardized residuals:

Min Q1 Med Q3 Max

-1.5003066 -0.3865189 0.4100642 0.7766002 3.1200482

Residual standard error: 127.9598

Degrees of freedom: 38 total; 37 residual

R> emilia_cs$smoo_phi <- smoo$phi

R> emilia_cs$smoo_vars <- smoo$vars

The benchmark() function implements benchmarking procedures, described in Sec-

tion 3.2.4.3, on model-based estimates provided by indicating a summary fitsae object,

given a vector of areas weights (share), in our case the population shares, a benchmark

value (bench), and a method among "raking", "ratio" and "double" (method). When

the double benchmarking method is selected, the user must also indicate a second bench-

mark through the H argument, corresponding to the ensemble variability. The output

is an object of class benchmark fitsae, being a list including the vector of benchmark

estimates, the posterior risk, and relevant information about the call. A benchmark -

fitsae object may be used as input for map() function, in order to spatially display

benchmarked estimates, extract() or export() functions. The first option is included

in the following code, whose visual output is in Figure 3.8.

R> shares <- emilia_cs$pop / sum(emilia_cs$pop)

R> bmk <- benchmark(summ_beta,

+ bench = 0.13,

+ share = shares,

+ method = "raking")

R> map(x = bmk,

+ spatial_df = emilia_shp,

+ spatial_id_domains = "NAME_DISTRICT")
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Figure 3.8: Benchmarked estimates plotted through map() function.
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Benchmarking can be done on the whole set of areas (default option) or even on

a subset of them. In the latter case, the vector containing the names of the consid-

ered areas has to be indicated through the areas argument. Moreover, the function

automatically takes out-of-sample estimates if they are involved in the benchmarking

procedure. Benchmark estimates and posterior risk are stored within an object of class

benchmark fitsae and can be accessed through $bench est and $post risk elements,

as shown below.

R> subset <- c("RIMINI", "RICCIONE", "RUBICONE",

+ "CESENA - VALLE DEL SAVIO")

R> pop <- emilia_cs$pop[emilia_cs$id %in% subset]

R> shares_subset <- pop/sum(pop)

R> bmk_subset <- benchmark(summ_beta,

+ bench = 0.13,

+ share = shares_subset,

+ method = "raking",

+ areas = subset)

R> bmk_subset$bench_est

[1] 0.1416332 0.1311741 0.1344299 0.1210718

R> bmk_subset$post_risk

[1] 0.0003528578

For temporal models, a benchmark can be specified only for one time period at a time,

indicated in the time argument.

3.4.4 Spatio-Temporal Examples

As explained in Section 3.2, it is possible to fit models that incorporate a spatial

dependency structure, a temporal dependency structure or even both of them. The

first extension, useful when the domains of interest are geographical entities, relaxes

the assumption of spatial independence. Commonly, the boundaries across areas are

arbitrarily set, and thus it can be reasonable to assume that the quantities of interest

belonging to neighbouring areas are correlated. This can happen when dealing with data

where the spatial dimension is relevant, e.g., agricultural, environmental, economic and

epidemiological analyses. A spatial extension can be implemented through the fit -

sae() function by switching to TRUE the spatial error argument and supplying an

object of class SpatialPolygonsDataFrame in spatial df argument, being careful to

include it ordered as the data object.

When dealing with panel data, such as the emilia dataset, a temporal depen-

dency structure has to be taken into account due to the presence of repeated measures

across time. It is possible to implement a temporal model by switching to TRUE the
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temporal error argument and by providing the name of the dataset temporal variable

in temporal variable argument.

Note that if a spatio-temporal model is required, the domain records should keep the

same ordering within each recorded time in the data object. Hence, it is possible to

re-order the shapefile accordingly, using the following commands.

R> data("emilia")

R> data("emilia_shp")

R> emilia_shp_ord <- emilia_shp[match(unique(emilia$id),

+ emilia_shp$NAME_DISTRICT),]

The following code allows estimating a spatio-temporal model under a Beta likelihood.

In presence of structured random effects within the model, our suggestion is to increase

the max treedepth argument above 10, to improve the mixing of the HMC algorithm.

After estimating the model, the fitsae object can be explored through summary()

method.

R> fit_ST <- fit_sae(formula_fixed = hcr ~ x,

+ domains = "id",

+ disp_direct = "vars",

+ type_disp = "var",

+ domain_size = "n",

+ data = emilia,

+ spatial_error = TRUE,

+ spatial_df = emilia_shp_ord,

+ temporal_error = TRUE,

+ temporal_variable = "year",

+ max_treedepth = 15,

+ seed = 0)

R> summ_ST <- summary(fit_ST)

R> summ_ST

Summary for the SAE model call:

fit_sae(formula_fixed = hcr ~ x, domains = "id", disp_direct = "vars",

type_disp = "var", domain_size = "n", data = emilia,

spatial_error = TRUE, spatial_df = emilia_shp_ord,

temporal_error = TRUE, temporal_variable = "year",

max_treedepth = 15, seed = 0, iter = 2000)

----- S.D. of the random effects: posterior summaries -----

mean sd 2.5% 25% 50% 75% 97.5%

sigma_t 0.104 0.022 0.061 0.090 0.104 0.12 0.148

sigma_s 0.297 0.055 0.205 0.259 0.292 0.33 0.418

----- Fixed effects coefficients: posterior summaries -----
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mean sd 2.5% 25% 50% 75% 97.5%

(Intercept) -2.273 0.016 -2.305 -2.284 -2.273 -2.261 -2.242

x 0.123 0.020 0.084 0.109 0.123 0.136 0.163

--------------- Model diagnostics summaries ---------------

Min. 1st Qu. Median Mean 3rd Qu. Max.

Residuals -0.024 -0.006 0.001 0.002 0.009 0.036

S.D. Reduction 0.113 0.372 0.456 0.445 0.517 0.677

Bayesian p-value 0.076 0.314 0.465 0.475 0.608 0.978

Shrinkage Bound Rate: 100 %

LOO Information Criterion:

Estimate SE

elpd_loo 484.699 8.332

p_loo 47.063 4.892

looic -969.398 16.664

In case of temporal or spatio-temporal object, it is possible to select the year of

interest for map plotting via map() or when performing benchmarking as follows:

R> shares <- aggregate(emilia$pop, list(emilia$year),

+ function(x) x/sum(x))

R> shares <- as.vector(t(shares[,-1]))

R> bmk_st <- benchmark(summ_ST,

+ bench = 0.09,

+ share = shares[1:38],

+ method = "raking",

+ time = "2014")

3.5 Conclusions and Future Developments

The tipsae package is a dedicated tool for mapping proportions and indicators de-

fined on the unit interval, widely used to measure, for instance, unemployment, edu-

cational attainment and also disease prevalence. To the best of our knowledge, it is

the first package implementing Beta-based small area methods, particularly indicated

for unit interval responses. Such methods, developed within a Bayesian framework,

come equipped with a set of diagnostics and complementary tools, visualizing and ex-

porting functions. The features of the tipsae package assist the user in carrying out a

complete SAE analysis through the entire process of estimation, validation and results

presentation, making the application of Bayesian algorithms and complex SAE methods
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straightforward. A Shiny application with a user-friendly interface can be launched to

further simplify the process.

Additional features to be integrated in future releases could be, firstly, the implemen-

tation of shrinking priors for the regression coefficients, useful for variable selection when

several covariates are employed. Secondly, the Beta zero and/or one inflated version al-

ready implemented could fail when very few zero or one values are observed. Thus, a

possible extension could comprise further flexible alternatives. Lastly, other directions

may focus on model extensions for variance shrinking (You and Chapman, 2006; Suga-

sawa et al., 2017), able to relax the assumption of known dispersion parameter, and for

covariates measured with error (Arima et al., 2015).
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Figure A.1: Variance functions with nd = 1 for each measure in comparison with
the proportion case

The following proposition derives the approximate variance function for the entire

family of Relative Entropy measure, for α ̸= 0, 1. When α = 1, the resulting measure

coincides with the Relative Theil index, whose variance function has been obtained in

Proposition 2.2 .

Proposition A.1. Under Proposition 2.1 assumptions, the srs estimator of Relative

Entropy Index Rd(α) with α ̸= 0, 1, for domain d, has variance function

V[Rd(α)] ∼=
2θRd (α)

2

nd

exp{2θRd (α)(nα−1
d − 1)},

with θRd (α) its population value.

Proof. Similarly as Propositions 2.1 and 2.2 proofs, the population value of the Relative

Entropy index θRd (α) ∀α ̸= 0, 1 under log-normal income assumption is defined as

θRd (α) =
1

nα−1
d − 1

(
E[zα]
E[z]α

− 1

)
=

1

nα−1
d − 1

(
exp

{
φ2
d

2
α(α− 1)

}
− 1

)
, (A.1)
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with φ2
d estimated by s2d =

1
nd−1

∑nd

j=1[log(xjd)− µ̂d]
2. By applying the normal distribu-

tion theory, V (sd) ∼=
ϕ2
d

2nd
and using the delta method:

V[Rd(α)] = V
[

1

nα−1
d − 1

(
exp

{
s2dα(α− 1)

2

}
− 1

)]
∼=

φ4
d

2nd

exp{φ2
dα(α− 1)} α

2(α− 1)2

(nα−1
d − 1)2

∼=
2θRd (α)

2

nd

exp{2θRd (α)(nα−1
d − 1)}, (A.2)

where (A.2) is obtained by McLaurin expanding (A.1) so that

φ2
d
∼=

2θRd (α)(n
α−1
d − 1)

α(α− 1)
.
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