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Abstract In this paper, we present recent solutions to the problem of approximating
functions by polynomials for reducing in a substantial manner two well-known
phenomena: Runge and Gibbs. The main idea is to avoid resampling the function or
data and relies on themapped polynomials or "fake" nodes approach. This technique
turns out to be effective for stability by reducing the Runge effect and also in
the presence of discontinuities by almost cancelling the Gibbs phenomenon. The
technique is very general and can be applied to any approximant of the underlying
function to be reconstructed: polynomials, rational functions or any other basis. A
"natural" application is then quadrature, that we started recently to investigate and we
propose here some results. In the case of jumps or discontinuities, where the Gibbs
phenomenon appears, we propose a different approach inspired by approximating
functions by kernels, in particular Radial Basis Functions (RBF). We use the so
calledVariably ScaledDiscontinuousKernels (VSDK) as an extension of theVariably
ScaledKernels (VSK) firstly introduced in [18]. VSDK show to be a very flexible tool
suitable to substantially reducing the Gibbs phenomenon in reconstructing functions
with jumps [28, 55]. As an interesting application we apply VSDK in Magnetic
Particle Imaging which is a recent non-invasive tomographic technique that detects
super-paramagnetic nanoparticle tracers and finds applications in diagnostic imaging
and material science [39, 47]. In fact, the image generated by the MPI scanners are
usually discontinuous and sampled at scattered data points,making the reconstruction
problem affected by the Gibbs phenomenon. We show that VSDK are well suited in
MPI image reconstruction also for identifying image discontinuities [27].
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1 Introduction

Univariate approximation of functions and data is a well studied topic since the
antiquity (Babylon and Greece), with many different developments by the Arabs
and Persians in pre and late medieval period. The scientific revolution in astron-
omy, mainly due to Copernicus, Kepler and Galileo was the starting point for the
investigations done later on by Newton, who gave strong impetus to the further ad-
vancement of mathematics, including what is now called "classical" interpolation
theory (interested people on these historical aspects may read the nice survey by E.
Meijering [50]).

Interpolation is essentially a way of estimating a given function f : [a, b] ⊂
R → R known only at a finite set Xn = {xi, i = 0, . . . , n} of n + 1 (distinct)
points, called interpolation points The corresponding set of values is denoted by
Yn = {yi = f (xi), i = 0, . . . , n}. Then, we are looking for a polynomial p ∈ Pn, with
Pn the linear space of polynomials of degree less and equal than n. The space Pn has
finite dimension n + 1 and spanned by the monomial basis M = {1, x, x2, . . . , xn}.
Therefore, every p ∈ Pn is written as

p(x) =
n∑
j=0

aj x j . (1)

The coefficients ai are determined by solving the linear system p(xi) = yi, i =
0, ..., n. Introducing the Vandermonde matrix Vi j = (x

j
i ), the coefficient vector a =

(a0, . . . , an)t and the vector y = (y0, . . . , yn)
t , the linear system can compactly be

written as
Va = y . (2)

As well-known, the solution of the system is guaranteed if the points are distinct,
making V invertible [21, §2]. Moreover, the interpolating polynomial (1) can be
expressed at any point x ∈ [a, b] by the discrete inner product p = 〈a,x〉.

Instead of the monomial basis, we can use the cardinal basis of elementary
Lagrange polynomials. That is L = {`i, i = 0, . . . , n} where li(x) =

∏
j=0, j,i

x − xj
xi − xj

or, alternatively by the the ratio

`i(x) =
det Vi(x)

det V
(3)

where,Vi(x) is the Vandermondematrix in which we have substituted the i-th column
with the vector x = (1, x, x2, . . . , xn)T . The formula (3) is essentially the Cramer’s
rule applied to the system

V` = x

showing immediately the main property of the elementary Lagrange polynomials:
they form a set of cardinal polynomial functions, that is `i(xj) = δi j . Using the
Lagrange basis the interpolant becomes p = 〈l, y〉. Therefore, by unicity of interpo-
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lation we get

〈a,x〉 = 〈y, `〉 .

Hence, in the Lagrange basis ` the vector of coefficients a is at once y, so that in (2)
V is substituted by the identity matrix I of order n + 1.

There is another interesting formula that we can used to express the interpolant
p. As pointed out in [20, §3 Prob. 14], the interpolant at every point x can be written
in determinantal form as follows

p(x) = C · det



0 1 x · · · xn

−− − − − −

y0
y1 V
...
yn


. (4)

This expresses the interpolant as the determinant of an (n + 2) × (n + 2) matrix,
obtained by bordering the Vandermonde matrix with two vectors y, xT and the
scalar 0. The constant C appearing is (4) is a normalizing factor for expressing the
interpolant in Lagrange form, that is C = −1/det(V).

This formula can be specialized for any set of linear independent functions, say
{g0, . . . , gn} (cf. [20, §3, Prob. 15]) and in particular for the Lagrange basis L
obtaining

p(x) = − det



0 `0(x) `1(x) · · · `n(x)
−− − − − −

y0
y1 I
...
yn


, (5)

with I the identity matrix of order n + 1.
Historically, but also nowadays in different frameworks and applications, the sim-

plest way to take distinct samples xi , is to consider equally spaced points (assuming
for simplicity x0 = a and xn = b). Two well-known phenomena are related to this
choice of the interpolation points. The first one is the Runge phenomenon: when us-
ing polynomial interpolation with polynomials of high degree, the polynomial shows
high oscillations at the edges of the interval. It was discovered by Carl Runge when
exploring the behavior of errors when using polynomial interpolation to approxi-
mate also analytic functions (cf. [56]). It is related to the stability of the interpolation
process via the Lebesgue constant

Λn := max
x∈[a,b]

n∑
i=0
|li(x)| (6)
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by means of the inequality

‖ f − p‖∞ ≤ (1 + Λn)‖ f − p∗‖∞ (7)

where p∗ represents the polynomial of best uniform approximation, that is p∗ :=
infp∈Pn ‖ f − p‖∞, which uniquely exists. About the growth of the Lebesgue constant
and its relevant properties we invite the readers to refer to the great survey by L.
Brutman [19]. Here we simply recall the fundamental fact that Λn, which depends
only on the choice of the node set X , grows exponentially (with n) when the in-
terpolation points are equally spaced. Therefore it will be fundamental to look for
a different choice than the equal distribution. As well-known, this is what do the
Chebyshev points in [a, b] or the zeros of orthogonal polynomials with respect to the
interval [a, b] and a given weight function (cf. e.g. [19, 21]).

The second phenomenon and related to the Runge phenomenon is the Gibbs
phenomenon, which tells us the peculiar manner in which the Fourier series of
a piecewise continuously differentiable periodic function behaves at a jump dis-
continuity. This effect was originally discovered by Henry Wilbraham (1848) and
successively rediscovered by J. Willard Gibbs (1899) (see [42]). The phenomenon
observed that the n-th partial sum of the Fourier series has large oscillations near
the jump, which might increase the maximum of the partial sum above that of the
function itself. The overshoot does not die out as n increases, but approaches a finite
limit. The Gibbs phenomenon is the cause of unpleasant artifacts in signal and image
processing in presence of discontinuities.

The Gibbs phenomenon is also a well-known issue in higher dimensions and for
other basis systems like wavelets or splines (cf. e.g. [44] for a general overview)
and also in barycentric rational approximation [51]. Further, it appears also in the
context of Radial Basis Function (RBF) interpolation [36]. To soften the effects
of this artifact, additional smoothing filters are usually applied to the interpolant.
For radial basis function methods, one can for instance use linear RBFs in regions
around discontinuities [45, 25]. Furthermore, post-processing techniques, such as
Gegenbauer reconstruction procedure [40] or digital total variation [57], are avail-
able. This technique can be also applied in the non-polynomial setting by means of
discontinuous kernels.

This survey paper consists of 6 main sections and various subsections as follows.
In Section 2 we introduce our main idea for mitigating the Runge and Gibbs effects
based on themapped-basis approach or its equivalent form that we have termed "fake-
nodes". In the successive Section 3 we present the algorithms for choosing a suitable
map in the two instances studied in the paper. In Sections 4we show that the technique
can be applied also using rational approximation instead of polynomial, while in
Section 5 we discuss the application to quadrature. We continue then with Section
6 in which, for treating the Gibbs phenomenon we use a non-polynomial approach
based on discontinuous kernels, in particular the so-called VSDK. Finally in Section
7 we discuss the application of these VSDK to the Magnetic Particle Imaging, a new
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quantitative imaging method for medical applications. We conclude with Section 8
by summarizing the main ideas and highlighting some further developments.

2 Mitigating the Runge and Gibbs phenomena

Let [a, b] ⊂ R be an interval, X the set of distinct nodes (also called data sites) and
f : Ω −→ R a given function sampled at the nodes with Fn = { fi = f (xi)}i=0,...,n.

We now introduce a method that changes the interpolation problem (2) without
resampling the function f . The idea rely on the so-called mapped basis approach
where themap is used tomitigate the oscillations in the Runge andGibbs phenomena.
The idea of mapped polynomials is not new. Indeed, such kinds of methods have
been used in the context of spectral schemes for PDEs.

For examples ofwell-knownmaps refer to e.g. [41, 49]. However, for our purposes,
that are devoted especially to applications when resampling cannot be performed,
we consider a generic map S : [a, b] −→ R. We investigate the conditions which
this map S should satisfy in Subsection 2.1.

Let x̂ ∈ Ŝ := S([a, b])we can compute the polynomial Pg : Ŝ −→ R interpolating
the function values Fn at the "fake" nodes SX = {S(xi) = x̂i}i=0,...,n ⊂ Ŝ defined by

Pg(x̂) =
n∑
i=0

ci x̂i,

for some smooth function g : Ŝ −→ R such that

g |SX
= f |Xn

.

Hence, for x ∈ [a, b] we are interested in studying the function

RS
f (x) B Pg(S(x)) =

n∑
i=0

ci S(x)i . (8)

The function RS
f
in (8) can be considered as an interpolating function at the

original set of nodes Xn and data values Fn, which is a linear combination of the
basis functions Sn B {S(x)i, i = 0, . . . , n}. As far as we know, a similar approach
has been mentioned in [5], without being later worked out.

The analysis of this interpolation process can be performed in the following
equivalent ways.

• The mapped bases approach on [a, b]: interpolate f on the set Xn via RS
f
in the

function space Sn.
• The "fake" nodes approach on Ŝ: we interpolate g on the set SX via Pg in the
polynomial space Πn.
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2.1 The mapped bases approach

The first question to answer is: how arbitrary is the choice of the map S?

Definition 1 We term S admissible if the resulting interpolation process admits
a unique solution, that is the Vandermonde-like matrix VS := V(S0, . . . , Sn), is
invertible.

Since the new point set in the mapped space is SX , then

det(VS) =
∏

0≤i< j≤n
(Sj − Si) , 0.

A consequence of this observation is the following proposition.

Proposition 1 The map S is admissible if and only if for any 0 ≤ i, j ≤ n, i , j we
have Si , Sj . In other words, S is injective in [a, b].

In fact, det(VS) , 0 if and only if Sj − Si , 0.

Remark 1 We point out that we can easily write

det(VS) = σ(S, X)det(V),

where V is the classical Vandermonde matrix and

σ(S, X) B
∏

0≤i< j≤n

Sj − Si
xj − xi

.

This fact presents some similarities with the so-called generalized Vandermonde
determinants that can be factored as the classical Vandermonde determinant and a
Schur function, as outlined for instance in the paper [22].

We can associate to the interpolant RS
f
also its Lagrange form

RS
f (x) =

n∑
i=0

fi`Si (x),

with, in analogy with (3),

`Si (x) B
det(VS

i (x))

det(VS)
=

∏
0≤ j≤n
j,i

S(x) − Sj

Si − Sj
, (9)

where VS
i (x) = Vi(S(x)).

Consequently, we can consider the S-Lebesgue constant ΛS
n associated to the

mapped Lagrange basis LS = {`S0 , . . . , `
S
n } and to the interpolation operator LS

n :
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Υ −→ Sn with (Υ, ‖·‖Ω) be a normed function space, which contains only real-
valued functions on Ω = [a, b]. Then, ΛS

n is the operator norm of LS
n with respect to

‖·‖Ω, that is

Λ
S
n = sup

v∈Υ
v,0

‖Ls
n(v)‖Ω

‖v‖Ω
,

and hence we can provide the sup-norm error estimator as follows:

‖ f − RS
f ‖Ω≤ (1 + Λ

s
n(Ω))E

S,?
n ( f ),

where ES,?
n ( f ) is the best polynomial approximation error in the sup-norm [53,

Theorem I.1, p. 1].
We have just seen that `i and `Si are defined as in 3 and (9), respectively. The next

Proposition proposes a rough upper bound for the S-Lebesgue constant, useful for
understanding the asymptotic behaviour of the error.

Proposition 2 For all x ∈ [a.b], x , xj , we have

`Si (x) =
βi(x)
αi︸︷︷︸
γi (x)

`i(x), (10)

with αi B
∏

0≤ j≤n
j,i

Si − Sj

xi − xj
, βi(x) B

∏
0≤ j≤n
j,i

S(x) − Sj

x − xj
.

Proof By construction `Si (xj) = `i(xj) = δi, j . Then, let x , xj , from (3) and (9) we
have that

`Si (x)
`i(x)

=
det(VS

i (x))det(V)
det(Vi(x))det(V s)

=
det(VS

i (x))
σ(S, X)det(Vi(x))

B γi(x).

We can also write

`Si (x) =
∏

0≤ j≤n
j,i

S(x) − Sj

Si − Sj
=

∏
0≤ j≤n
j,i

x − xj
xi − xj

·
xi − xj
x − xj

·
S(x) − Sj

Si − Sj
,

=
∏

0≤ j≤n
j,i

x − xj
xi − xj

∏
0≤ j≤n
j,i

S(x) − Sj

x − xj

∏
0≤ j≤n
j,i

xi − xj
Si − Sj

.

By defining

αi B
∏

0≤ j≤n
j,i

Si − Sj

xi − xj
, βi(x) B

∏
0≤ j≤n
j,i

S(x) − Sj

x − xj
,

we get formula (10) as claimed. �



8 Stefano De Marchi

As a consequence, we can bound ΛS
n from above by Λn unless a constant C(S, n)

depending on the map S and n.

Theorem 1 Letting

L = max
0≤i≤n

max
x∈[a,b],i,j

�����S(x) − Sj

x − xj

�����, D = min
0≤i≤n

min
j,i

����Si − Sj

xi − xj

����,
then

Λ
S
n ≤ C(S, n)Λn, (11)

where C = (L/D)n with Λn the classical Lebesgue constant in (6).

Proof Using Proposition 2

|`Si (x)| =
���� βi(x)αi

���� |`i(x)|.
An upper bound for |βi | is

|βi(x)| =
∏

0≤ j≤n
j,i

����S(x) − Sj

x − xj

���� ≤ ∏
0≤ j≤n
j,i

Li,

where

Li = max
x∈[a,b],i,j

�����S(x) − Sj

x − xj

�����.
Thus,

|βi(x)| ≤ Ln
i .

A lower bound for |αi | is

|αi | =
∏

0≤ j≤n
j,i

����Si − Sj

xi − xj

���� ≥ ∏
0≤ j≤n
j,i

Di = Dn
i ,

where

Di B min
j,i

�����Si − Sj

xi − xj

�����.
We then have

|`si (x)| ≤
(

Li

Di

)n
|`i(x)|.

Therefore, letting L B maxi,j Li , D B mini Di and considering the sum of the
Lagrange polynomials, we obtain

Λ
s
n ≤

(
L
D

)n
Λn.
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We conclude by setting C(S, n) = (L/D)n. �

2.2 The "fake" nodes approach

The construction of the interpolating function RS
f
is equivalent to building a polyno-

mial interpolant at the "fake" nodes, as defined in (8). Therefore, in what follows we
concisely analyze the parallelism with the polynomial interpolation problem in Ŝ.

If `i is the i-th Lagrange polynomial related to the set SX , then for x̂ ∈ Ŝ, we have

`i(x̂) =
∏

0≤ j≤n
j,i

x̂ − S(xj)
S(xi) − S(xj)

,

and the Lebesgue constant is given by

Λn(S(Ω)) = max
x̂∈S(Ω)

n∑
i=0
|`i(x̂)|. (12)

For x ∈ Ω, we observe that

`i(x̂) = `i(S(x)) =
∏

0≤ j≤n
j,i

S(x) − S(xj)
S(xi) − S(xj)

= `si (x).

As a consequence, we obtain

Λ
S
n(Ω) = Λn(S(Ω)),

and
‖ f − RS

f ‖Ω= ‖g − Pn,g‖S(Ω),

which in particular implies that

‖ f − RS
f ‖Ω≤ (1 + Λn(S(Ω)))E?n (g).

Since we can suppose without loss of generality that g is a regular function, for
an appropriate choice of the map S, and hence of the nodes SX , we might improve
the results with respect to classical polynomial approximation in [a, b]. The main
difficulties are in finding a goodmap. In the next section we thus propose two receipts
for computing suitable maps that, as numerically shown later, enable us to naturally
mitigate both Runge and Gibbs phenomena.
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3 Choosing the map S: two algorithms

In this Section, we describe how, given an ordered set of interpolation nodes Xn =

{xi ∈ [a, b] | x0 = a, xn = b, xi < xi+1}, we can effectively construct suitable maps
S. We present two different ways of constructing the map S and in doing so we deal
with the Runge and Gibbs phenomenon, respectively.

Treating the Runge phenomenon. In order to prevent the appearance of the Runge
phenomenon, we construct a map S such that the resulting set of “fake" nodes SX
guarantees a stable interpolation process. The natural way is mapping Xn to the set
of ordered Chebyshev-Lobatto (CL) nodes Cn = {c0, . . . , cn} on [a, b].

Indeed, as well-known the Lebesgue constant of the CL nodes grows logarithmi-
cally with respect to n [19]. The map S on [a, b] that does this transformation, for
any x ∈ [a, b], is the piecewise interpolant as obtained by the following algorithm
that we term S-Runge.

Algorithm 1

Input: Xn.

1. Define the set of CL nodes Cn.
2. For x ∈ [xi, xi+1], i = 0, . . . , n − 1, set β1,i =

ci+1−ci
xi+1−xi

, β2,i = ci so that
S(x) = β1,i(x − xi) + β2,i .

Outputs: the vectors β1, β2 of the coefficients that define S.

Since the CL nodes are distinct, the map is admissible by construction. For
instance, if Xn = {xk = a + k · (b − a)/n, k = 0, . . . , n} is the ordered set of n + 1
equispaced nodes in [a, b], it can be analytically mapped to Cn by using the map

S(x) =
a − b

2
cos

(
π

x − a
b − a

)
+

a + b
2

. (13)

This algorithm, is robust and does not require any additional hypothesis on Xn and it
could work for scattered data or on random, nearly equispaced or well-spaced inter-
polation nodes (for the definition of well-spaced we refer to [16]). These algorithms
are also quoted in Wikipedia at [61].

Treating the Gibbs phenomenon. Let us suppose that the underlying function f
presents jump discontinuities, whose positions and magnitudes are encoded in the
set

Dm B {(ξi, di) | ξi ∈ (a, b), ξi < ξi+1, i = 0, . . . ,m, and di B | f (ξ+i ) − f (ξ−i )|}.

We assume to know the discontinuities and the related jumps. Such assumption is
not restrictive. Indeed for the one dimensional case, but also in higher dimensions,
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algorithms for detecting the discontinuity points are available, see for instance the
references [4, 54].

Near a discontinuity, the interpolant is forced to strongly vary making the Gibbs
phenomenonmore evident. The usual approach is to putmore points nearby the jumps
or use a so-called filter in order to get more accurate solution than rough Fourier
expansions (cf e.g. [25]) or acceleration techniques of the Fourier expansions based
on the ε-algorithm (see e.g. [6]).

Our strategy is very simple: we sufficiently increase the gap between the node
right before and the one right after the discontinuity, so allowing the interpolant to
become smoother. To accomplish this, we introduce a shifting parameter k > 0.

The next algorithm, that we call S-Gibbs implements this idea.

Algorithm 2

Inputs: Dm and k.

1. Letting Ai =

i∑
j=0

kdj, i = 0, . . . ,m.

2. Define S as

S(x) =
{

x, for x ∈ [a, ξ0[,
x + Ai, for x ∈ [ξi, ξi+1[, 0 ≤ i < m, or x ∈ [ξm, b].

Outputs: the values Ai .

As experimentally observed the choice of k is not critical. It suffices that in the
mapped space the so-constructed function g has no steep gradients and this can be
obtained by taking k � 1. Since the resulting "fake" nodes SX are distinct, the so
constructed map is admissible.

3.1 Numerical tests

We show via the algorithms described in the previous Section 3 that we are able to
substantially reduce the oscillating effects due to Runge and Gibbs phenomena. Our
“fake" nodes approach is compared with the resampling at Chebyshev nodes. We
note, that in many applications we unfortunately dispose of the data at equispaced
samples. It is the reason why our approach becomes relevant for the underlying idea:
mapping without resampling.

We consider the interval [−5, 5] and both equispaced and randomly distributed
intepolation nodes. Moreover, we evaluate the interpolants on a set of equispaced
points Ξ = { x̄i, i = 0, . . . , 330} and compute the Relative Maximum Absolute Error
(RMAE)
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RMAE = max
i=0,...,m

|Rs
n, f
(x̄i) − f (x̄i)|

| f (x̄i)|
. (14)

The experiments have been carried out in Python 3.6 using Numpy 1.15; see [29].

3.1.1 Application to Runge phenomenon

For this test we consider the function f1(x) = 1
e−3x+1 sampled at equispaced inter-

polation nodes En. We then compare f1 evaluated at Ξ with respect to

i. the interpolating polynomial at equispaced points En, i.e the original data
set and function values;

ii. the interpolating polynomial at CL nodes Cn and resampled function
values f1(Cn), i.e. we resample the function;

iii. the approximant built upon a polynomial interpolant at the fake nodes
S(En) corresponding to the CL,Cn obtained by the map (13), and function
values f1(En).

In Fig. 1, we show different reconstructions of f1 for a fixed number of nodes. In
Fig. 2 we show the RMAE for the function f1 varying the number of nodes while in
Fig. 3 we plot the Lebesgue functions related to the proposed methods. As pointed
out in the theoretical analysis, the behavior of the "fake" nodes in terms of Lebesgue
constant is analogous to that of the classical polynomial interpolation at CL points.
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Fig. 1 Interpolation with 13 points of the function f1 on [−5, 5] using equispaced (left), CL (center)
and "fake" nodes (right). The nodes are represented by stars, the original and reconstructed functions
are plotted with continuous red and dotted blue lines, respectively.

For more experiments and details the reader can refer to [26].
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Fig. 2 The RMAE for the function f1 varying the number of nodes. The results with equispaced,
CL and fake nodes are represented by black circles, blue stars and red dots, respectively.
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Fig. 3 Lebesgue functions of equispaced (left), CL (center) and fake CL (right) nodes.

3.1.2 Applications to Gibbs phenomenon

For the test, we consider the function with jump discontinuities at the origin

f2(x) B


−

x2

40
+ 1, x < 0,

x + 4
x + 6

, x ≥ 0,

As done in the previous subsections 3.1.1, we compare the interpolant in the three
different situations indicated in the gray box.

In Fig. 4 we display the results obtained using 20 interpolation points. We observe
that the Gibbs phenomenon affects the reconstruction obtained via resampling on
CL nodes, while it is well mitigated if using the fake nodes. In Fig. 5, we provide
the RMAE behavior of these methods. The results are quite impressive, meaning
that we are able to effectively reduce the Gibbs phenomenon by the S-Gibbs map of
Algorithm 2.

Remarks. In the presence of discontinuities, it is interesting noticing the
behaviour of the elementary Lagrange functions under the mapping approach.
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Fig. 4 Interpolation with 20 points of the function f2 on [−5, 5], using equispaced (left), CL nodes
(center) and the discontinuous map (right). The nodes are represented by stars, the original and
reconstructed functions are plotted with continuous red and dotted blue lines, respectively.
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Fig. 5 The RMAE for the function f2 varying the number of nodes. The results with equispaced,
CL and fake nodes are represented by black circles, blue stars and red dots, respectively.

In Fig. 6 we show this effect for the cubic case when there is no jump and
jump, with and without scaling. What is interesting to see is that the cardinal
functions become discontinuous in the presence of a discontinuities or jumps.
This is the idea that wewill develop in Section 6, about the use of discontinuous
kernels when treating discontinuous functions.

4 Application to rational approximation

We can extend the mapped bases or "fake" nodes approach to the barycentric rational
interpolation. In particular we concentrate to the family of Floater-Hormann (FH)
rational approximants [35] combined with AAA-algorithm. We consider the family
of FH interpolants because they have shown good approximation properties for
smooth functions, in particular using equidistant nodes (cf. [15]). The idea comes
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Fig. 6 Left-right, up-down: the original cardinals on 4 nodes, the cardinals around ξ = 0, A = 1
the cardinals around ξ = 0.2, A = 1,the cardinals around ξ = 0.2, A = 5.

from the fact that our previous construction is a general pourpose machinery, a kind
of "black-box". Indeed, given a basis B for the approximation space, we can apply
the S-map approach getting a new basis, say B̃ = S ◦ B. Considering that we are not
resampling the values of the reconstructed function remains unchanged.

In [51], the AAA-algorithm has been discussed. This is a greedy algorithm to
compute a barycentric rational approximant that is named by the authors Adaptive
Antoulas–Anderson algorithm, reminding the names of the authors. This algorithm
leads to impressively well-conditioned bases, which can be used in different fields,
such as in computing conformal maps, or in rational minimax approximations (see
e.g. [8]).

Unfortunately, both FH rational interpolants and those obtained by the AAA-
algorithm, suffer of the Gibbs phenomenon when the underlying function presents
jump discontinuities. For this reasonwe try to apply the S-Gibbs algorithm tomitigate
or even better to reduce, this unpleasant effect.

We start by presenting a short overview of barycentric polynomial approximation
and the FH family of rational approximants. Then we recall the main ideas about the
AAA-algorithm and present the application of the S-Gibbs to both.

The numerical tests below will show an accurate interpolation of discontinuous
functions.
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4.1 Barycentric polynomial interpolation

As before let Xn B {xi : i = 0, . . . , n} the set of n+1 distinct nodes in I = [a, b] ⊂ R,
increasingly ordered and let f : I −→ R be known at the sample points. Again we
set Fn B { fi = f (xi) : i = 0, . . . , n}.

It is well-known (see e.g. [10]) that it is possible to write the unique interpolating
polynomial Pn; f of degree at most n of f at Xn for any x ∈ I in the second barycentric
form

Pn; f (x) =

n∑
i=0

λi
x − xi

fi

n∑
i=0

λi
x − xi

, (15)

where λi =
∏
j,i

1
xi − xj

are called weights and this formula is one of the most stable

way of evaluating Pn; f (see [43]). If the weights λi are changed to other nonzero
weights, say wi , then the corresponding barycentric rational function

Rn; f (x) =

n∑
i=0

wi

x − xi
fi

n∑
i=0

wi

x − xi

(16)

still satisfies the interpolation conditions Rn; f (xi) = fi, i = 0, . . . , n.

4.2 Floater-Hormann rational interpolation

Let n ∈ N, d ∈ {0, . . . , n}. Let pi , i = 0, . . . , n − d denote the unique polynomial
interpolant of degree at most d interpolating the d+1 points (xk, fk), k = i, . . . , i+d.
The Floater-Hormann rational interpolant is

Rn,d; f (x) =

n−d∑
i=0

λi(x)pi(x)

n−d∑
i=0

λi(x)

, where λi(x) =
(−1)i

(x − xi) · · · (x − xi+d)
,

which interpolates f at the set of nodes Xn. It has been proved in [35] that Rn,d; f has
no real poles and that it reduces to the unique interpolating polynomial of degree at
most n when d = n.
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One can derive the barycentric form of this family of interpolants as well. Indeed,
with considering the sets Ji = {k ∈ {0, 1, . . . , n − d} : i − d ≤ k ≤ i}, one has

Rn,d; f (x) =

n∑
i=0

wi

x − xi
fi

n∑
i=0

wi

x − xi

, where wi = (−1)i−d
∑
k∈Ji

j+d∏
j=k
j,i

1
|xi − xj |

.

4.3 The AAA algorithm

Let us consider a set of points XN with a large value of N (which represents the
discretization of our domain) and a function f : I −→ R. The AAA-algorithm
(cf. [51]) is a greedy technique that at the step m ≥ 0 considers the set X (m) =
XN \ {x0, . . . , xm} and constructs the interpolant

Rm; f (x) =

m∑
i=0

wi

x − xi
fi

m∑
j=0

wj

x − xj

=
n(x)
d(x)

,

by solving the discrete least squares problem for the weight vector w = (w0, . . . ,wm)

min


 f d − n




X(m)

‖w‖2 = 1,

where ‖·‖X(m) is the discrete 2-norm over X (m). The next data site is xm+1 ∈ X (m)

that makes the residual | f (x) − n(x)/d(x)| maximum with respect to x ∈ X (m). This
choice confirms the greedy nature of the process.

4.4 Mapped bases in barycentric rational interpolation

Using the ideas of mapped based approach in [26], we apply it to the Floater-
Hormann interpolants and to its approximants produced via the AAA algorithm.

First, since the interpolant Rn; f defined in (16) can be written using the cardinal
basis, that is Rn; f (x) =

∑n
j=0 fjbj(x), where

bj(x) =

wj

x − xj∑n
i=0

wi

x − xi
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is the j-th basis function, in the same spirit, we can write RS
n; f in the mapped cardinal

basis form RS
n; f (x) =

∑n
i=0 fibSi (x), where bSj (x) =

wj
S(x)−S(x j )∑n

i=0
wi

S(x)−S(xi )

is the j-th mapped

basis function.
Using the S mapping approach, a more stable interpolant may arise. Indeed, the

following result provides an upper bound for the S-Lebesgue constant that shows
this improved stability.

Theorem 2 Let Λn(Xn) = max
x∈I

n∑
j=0
|bj(x)| and ΛS

n(Xn) B max
x∈I

n∑
j=0
|bSj (x)| be the

classical and the S-Lebesgue constants, respectively. We have

Λ
S
n(Xn) ≤ CΛn(Xn),

where C =
maxk Mk

mink mk
with

Mk = max
x∈I

n∏
l=0
l,k

����S(x) − S(xl)
x − xl

���� , mk = min
x∈I

n∏
l=0
l,k

����S(x) − S(xl)
x − xl

���� .
Proof As done in the polynomial case, we should bound each basis function bSj in
terms of bj for all x ∈ I. For details see [8].

Equivalently to the abovemapped basis instance, wemay construct the interpolant
RS
n; f via the “fake” nodes approach just following the same ideas developed in Section

4.
Let R̃n;g be the barycentric rational interpolant as in (16) that interpolates, at the

set of “fake “nodes S(Xn), where the function g : S(I) −→ R interpolates the values
Fn

g |S(Xn )
= f |Xn

.

Observe that RS
n; f (x) = R̃n;g(S(x)) for every x ∈ I. Hence, we may also build RS

n; f ]

upon a standard barycentric interpolation process, thereby providing a more intuitive
interpretation of the method.

As we already observed, the choice of the mapping S is crucial for the accuracy
interpolation process. Here, we confine our attention to the case in which f presents
jump discontinuities and by using the S-Gibbs Algorithm (SGA), presented above,
we construct an effective mapping S.

4.5 A numerical example

In I = [−5, 5] we consider the discontinuous functions
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f1(x) =


e

1
x .2+1 , −5 ≤ x < −3

sin(3x), −3 ≤ x < 2
− x3

30 + 2, 2 ≤ x ≤ 5.
f2(x) =


cos(− sin(x/2)), −5 ≤ x < −2.5
tan(x/2), −2.5 ≤ x < 2
log(e−

1
x−5.1 ), 2 ≤ x ≤ 5.

We test the “fake” nodes approach with the S-Gibbs Algorithm in the framework of
FH interpolants and the AAA algorithm for approximation. We fix k = 10 in the
S-Gibbs. As observed in [26], also in this setting the choice of the shifting parameter
is non-critical as long as it is taken "sufficiently large". We evaluate the constructed
interpolants on a set of 5000 equispaced evaluation points Ξ = { x̄i = −5+ i

1000 : i =
0, . . . , 5000} and compute the Relative Maximum Absolute Error RMAE as defined
in (14, both for Rn; f and RS

n; f .

The FH interpolants

Here, we take various sets of equispaced nodes Xn = {−5 + 5i
n

: i = 0, . . . , n},
varying the size of n. The results of the RMSE interpolation errors are displayed in
Figures 4.5 and 4.5, by doubling the number of the nodes for n = 40 up to 2560.
We simply observe that the proposed reconstruction via the fake nodes approach
outperforms the standard technique.

Fig. 7 RMSE interpolation error for f1. Left with d = 1, right with d = 4. In blue, the standard
interpolant Rn,d . In red, the proposed interpolant Rs

n,d
.

The AAA algorithm

As the starting set for the AAA algorithm, we consider 10000 nodes randomly
uniformly distributed in I, which we denote by Xrand .

Looking at Table 1, we observe that using the AAA algorithm with starting set
S(Xrand) (indicated in the Table as AAAS), that is, constructing the approximants via
the fake nodes approach, does not suffer from the effects of the Gibbs phenomenon.
For both approximants we fix the maximum degree to 20 and to 40 (by default
100 in the algorithm) getting rational approximants of type (20, 20) and (40, 40),
respectively.
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Fig. 8 RMSE interpolation error for f2. Left with d = 1, right with d = 4. In blue, the standard
interpolant Rn,d . In red, the proposed interpolant Rs

n,d
.

f mmax AAA AAAs

f1 20 5.8E+1 1.6E-4
40 1.4E-1 2.5E-9

f2 20 4.4E+1 7.4E-8
40 8.0E-1 3.0E-12

Table 1 RMAE for AAA and AAAs approximants

Remarks. This extension of the “fake” nodes approach to barycentric rational
approximation, in particular to the family of FH interpolants, and its approximations
by the AAA algorithm for the treatment of the Gibbs phenomenon via the S-Gibbs al-
gorithm, shows that the proposed reconstructions outperform their classical versions,
by erasing distortions and oscillations.

5 Application to quadrature

We now drive our attention towards the use of mapped bases as an alternative to
standard quadrature rules as started to discuss in the ongoing paper [24].

Given f : I = [a, b] → R, we are interested in approximating

I( f ) B
∫
I

f (x) dx,

via quadrature formulae of interpolation type. To this aim we take a set of distinct
(quadrature) nodes Xn = {xi, i = 0, . . . , n} by assuming x0 = a, xn = b and n ≥ 1.

The classical quadrature of interpolation type substitutes f by its interpolant
Pn, f (·) =

∑n
i=0 ai bi(·), with bi the i-th basis element of the polynomial space Pn

(note that the most simple basis one can consider is the monomials one, that is
bi = xk) so that

I( f ) ≈ In( f ) B 〈w, f 〉 . (17)
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The vector f contains the function values fk = f (xk)while the vector of the weights
w = (w0, . . . ,wn)

ᵀ is computed by solving the moments’ system

Vᵀ w = m (18)

where V is the Vandermonde matrix so that Vi, j = bi(xj), the vector m =

(m0, . . . ,mn)
ᵀ consists of the moments mk = I(bk), k = 0, . . . , n.

Remark. The quadrature (17) is a scalar product that can be computed as the
determinant of formula (5) substituting the elementary Lagrange polynomials
with the weights and changing sing

〈w, f 〉 = det



0 −w0 −w1 · · · −wn

−− − − − −

f0
f1 I
...
fn


. (19)

5.1 Quadrature via "fake" nodes

In the mapped bases approach [26] instead of Pn; f we consider the mapped in-
terpolant PS

n; f . It comes then "natural" to construct the quadrature formulae in the
mapped basis, that is

I( f ) ≈ IS
n( f ) B 〈w

S, f 〉 .

The weights wS = (wS
0 , . . . ,w

S
n )
ᵀ are computed by solving the mapped-based system

(VS)ᵀ wS = mS ,

with mS the vector of S-mapped moments. For instance, taking the monomial basis,
the i-th S-moment is mS

i = I(S(x)
i).

Equivalently, for x ∈ I, the interpolant PS
n; f can be seen as a standard polynomial

interpolant Pn;g on the mapped set of nodes S(I) = Î. Moreover, if the map S is at
least C1 in I, letting t = S(x), for x ∈ I, we get

Ŝ(t) B
dS−1(t)

dt
=

1
S′(S−1(t))

. (20)

Thus,
I(PS

n; f , I) = I(Pn;g Ŝ, Î) . (21)
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It then follows

Proposition 3 wS
i = I(li Ŝ, Î).

Proof Considering the Lagrange basis of the polynomial interpolant so that

Pn;g(S(x)) =
n∑
i=0

f (xi)li(S(x)) =
n∑
i=0

f (xi)
∏

0≤ j≤n
j,i

S(x) − S(xj)
S(xi) − S(xj)

,

and taken into account (20) we conclude �

The following then can be easily proven.

Proposition 4 Let S be such that g is at least Cn+1(Î). Then,

ES
n ( f ) = En(g) =

g(n+1)(S(ξ))
(n + 1)!

I(ωn+1Ŝ, Î), ξ ∈ I

with ωn+1(t) =
∏n

i=0(t − ti).

Proof Indeed

ES
n ( f ) = I((g − Pn;g)Ŝ, Î) =

g(n+1)(S(ξ))
(n + 1)!

I(ωn+1Ŝ, Ĩ) ,

as claimed. �

Remark.We observe that if S is such that g is a polynomial of degree n, then
the quadrature has exactness n.

We now focus on the computation of the weights for the two maps introduced
above for S-Gibbs and S-Runge, respectively.

First, we recall that considering h(x) = 1/
√

1 − x2, the Chebyshevweight function
and Cn the CL nodes on J = [−1, 1]

I( f h, J) ≈
n∑
i=0

f (ci)wc
i (22)

where wc
i =

π
zin

with

zi =
{

2 i = 0, n
1 otherwise

We are ready to prove the following.

Theorem 3 Let Xn be the set of n + 1 equispaced points of I = [a, b] and consider
the S-Runge map



Mapped polynomials and discontinuous kernels for Runge and Gibbs phenomena 23

S(x) = − cos
(

x − a
b − a

π

)
. (23)

Then,

wS
k =

{
h
2 , for k ∈ {0, n},
h, for k = 1, . . . , n − 1.

Proof Let us now take on I = [a, b] the set of equispaced nodes Xn and the S-map
(23). Thus, S(Xn) = Cn and letting t = S(x) then li(S(x)) = li(t), i = 0, . . . , n, where
li(t) is the the Lagrange basis at the CL nodes of J = [−1, 1]. Therefore, by using
(20) and (21)

dx = Ŝ(t) dt = h(t)
b − a
π

dt,

we have
wS
i =
(b − a)
π
I(li h, J).

Finally, by observing that the quadrature rule (22) is exact for polynomials of degree
n, we get

wS
i =
(b − a)
π

n∑
j=0

li(cj)wc
j =
(b − a)
π

n∑
j=0

δi, j
π

zjn
=

b − a
zin

.

This concludes the proof. �

Remarks

1. This result turns out to be quite surprising but interesting: the weights of
the "fake" nodes quadrature, coincide with those of the trapezoidal rule
and up to the constant π

b−a with those for the wighted quadrature based on
the CL nodes in [−1, 1].

2. In the case of composite quadrature rules, the weights for the "fake" nodes
approach can be computed by applying the S-map on each subinterval.

5.1.1 Examples

We apply the "new" quadrature approach to the following test functions: a discon-
tinuous one and a Runge-type one

f1(x) =
{

sin(x), for x ≤ 0,
log(x4 + 4) + 7, for x > 0, and f2(x) =

1
4x2 + 1

.

We compute their integrals over the interval I = [−2, 2]. In Figure 9 the absolute
error between the true value of the integral and its approximation is displayed. As
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approximants we compare the standard approach on a equispaced points, the classical
quadrature on Chebyshev-Lobatto nodes and the integral computed with the "fake"
nodes approach: we use the S-Gibbs and S-Runge for f1 and f2, respectively. We
consider polynomials with degrees n = 2k with k = 1, . . . , 20. We observe that the
"fake" nodes quadrature outperforms the computation of the integral on equispaced
nodes while still competitive with the classical Gaussian quadrature based on CL
nodes.

Fig. 9 Left: approximation of the integral over I of function f1 and f2, left and right respectively.

The experiments have been carried out in Python 3.7 using Numpy 1.15. The
Python codes are available at https://github.com/pog87/FakeQuadrature.

6 Discontinuous kernels

Interpolation by kernels, mainly by radial kernels known as Radial Basis Functions
(RBF), are suitable tools for high-dimensional scattered data problems, solution of
PDES, machine learning, image registration. For an overview of the topic we refer
the reader to the monographs [60, 34] and references therein. Our interest is now
confined to the approximation of data with discontinuities. Indeed, based on recent
studies onVariably Scaled Kernels (VSKs) [18, 55] and their discontinuous extension
[28], we use discontinuous kernel functions that reflect discontinuities in the data as
a basis. These basis functions, referred to as Variably Scaled Discontinuous Kernels
(VSDKs), enable us naturally to interpolate functions with given discontinuities.

6.1 A brief introduction to RBF approximation

We start by introducing some basic notation and results about RBF interpolation.
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Let XN = {xi, i = 1, . . . , N} be a set of distinct data points (data sites or nodes)
arbitrarily distributed on a domain Ω ⊆ Rd and let FN = { fi = f (xi), i = 1, . . . , N}
be an associated set of data values (measurements or function values) obtained
by sampling some (unknown) function f : Ω −→ R at the nodes xi . We can
reconstruct f by interpolation, that is by finding a function P : Ω −→ R satisfying
the interpolation conditions

P(xi) = fi, i = 1, . . . , N . (24)

This problem (24) has unique solution provided P ∈ span{Φε(·, xi), xi ∈ X}, where
Φε : Ω ×Ω −→ R is a strictly positive definite and symmetric kernel. Notice that Φ
depends on the so-called shape parameter ε > 0 which allows to change the shape of
Φ, making it flatter (or wider) as ε → 0+ or spiky and so more localized as ε → +∞.
This has important consequences in error analysis and stability of interpolation by
RBF (cf. e.g. [58]).

The resulting kernel-based interpolant, denoted by Pε,XN, can be written as

Pε,XN (x) =
N∑
k=1

ckΦε(x, xk), x ∈ Ω. (25)

The interpolation problem (24) in matrix form becomes Aε ∈ RN×N with (Aε)ik =
Φε(xi, xk), i, k = 1, . . . , N . Then, letting f = ( f1, . . . , fN )ᵀ the vector of data values,
we can find the coefficients c = (c1, . . . , cN )ᵀ by solving the linear system Aεc = f .
Since we consider strictly positive definite and symmetric kernels, the existence and
uniqueness of the solution of the linear system is ensured.More precisely, the class of
strictly positive definite and symmetric radial kernels Φε can be defined as follows.

Definition 2 Φε is called radial kernel if there exists a continuous function ϕε :
[0,+∞) −→ R, depending on the shape parameter ε > 0, such that

Φε(x, y) = ϕε(‖x − y‖2), (26)

for all x, y ∈ Ω.

Remark. The notation (26) provides the "dimension-blindness" property of
RBF. Hence, once we know the function ϕ and compose it with the Euclidean
norm, we get a radial kernel.

In Table 2 we collect some of the most popular basis functions ϕwhich are strictly
positive definite. The Gaussian, Inverse Multiquadrics and Matérn (M0) are globally
supported, while the Wendland (W2) and Buhmann (B2) are locally supported.

To Φε we can associate a real pre-Hilbert space HΦε (Ω)

HΦε (Ω) = span{Φε(·, x), x ∈ Ω},
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Kernel ϕ(r)

Gaussian C∞ (GA) e−ε
2r 2

Inverse MultiquadricsC∞ (IM) (1 + r2/ε2)−1/2

MatérnC0 (M0) e−εr

WendlandC2 (W2) (1 − εr)4+ (4εr + 1)

BuhmannC2 (B2) 2r4 log r − 7/2r4 + 16/3r3 − 2r2 + 1/6

Table 2 Examples of strictly positive definite radial kernels depending on the shape parameter ε.
The truncated power function is denoted by (·)+. W2 and B2 are compactly supported radial basis
functions

with Φε as reproducing kernel. This space will be then equipped with the bilinear
form (·, ·)HΦε (Ω). Thenwe define the associate native spaceNΦε (Ω) ofΦε as the com-
pletion ofHΦε (Ω)with respect to the norm | |·| |HΦε (Ω), that is | | f | |HΦε (Ω) = | | f | |NΦε (Ω)
for all f ∈ HΦε (Ω). Formore details, as already quotes, see themonographs [34, 60]).

The accuracy of the interpolation process can be expressed, for instance, in terms
of the power function. The power function is a positive function given as the ratio of
two determinants (cf. [23])

PΦε,XN (x) B

√
det(Aε(YN+1))

det(Aε(XN ))
. (27)

where Aε(XN ) is the interpolation matrix related to the set of nodes XN and the
kernelΦε and Aε(YN+1) the matrix associated to the setYN+1 B {x}∪XN, x ∈ Ω.

The following pointwise error bound holds.

Theorem 4 Let Φε ∈ C(Ω × Ω) be a strictly positive definite kernel and XN ⊆ Ω a
set of N distinct points. For all f ∈ NΦε (Ω) we have

| f (x) − Pε,XN (x) | ≤ PΦε,XN (x) ‖ f ‖NΦε (Ω), x ∈ Ω.

Remarks.Weobserve that this Theorem bounds the error in terms of the power
function which depends on the kernel and the data points but is independent
on the function values.

This theorem is a special instance of [60, Theorem 11.3, p. 182] where the
fill-distance

hXN ,Ω := sup
x∈Ω

min
xk ∈XN

‖x − xk ‖ ,

is used instead of the power function.
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6.2 From RBF to VSK interpolation

The choice of the shape parameter ε is a crucial computational issue in RBF inter-
polation leading to instability effects without a clever choice of it. This is usually
done by analyzing the behaviour of some kind of errors (like the Root Mean Square
Error) versus the conditioning of the interpolation matrix (cf. e. g. [38, 52]) and so
many techniques has been developed in order to overcome such problems. Many of
these techniques allow to choose the best shape parameter based on a "trade-off"
between conditioning and efficiency. There are approaches based on the choice of
well-conditioned bases, like in the RBF-QR method for Gaussians [37] or in the
more general setting discussed in [30].

In the seminal paper[18] the authors introduced the so called Variably Scaled
Kernels (or VSKs) where the classical tuning strategy of finding the optimal shape
parameter, is substituted by the choice of a scale function which plays the role of a
density function. More precisely [18, Def. 2.1]

Definition 3 Letting I ⊆ (0,+∞) and Φε a positive definite radial kernel on Ω × I
depending on the shape parameter ε > 0. Given a scale function ψ : Ω −→ I, a
Variably Scaled Kernel Φψ on Ω is

Φψ(x, y) B Φ1((x, ψ(x)), (y, ψ(y))), (28)

for x, y ∈ Ω.

Defining then the map Ψ(x) = (x, ψ(x)) on Ω, the interpolant on the set of nodes
Ψ(XN ) B {(xk, ψ(xk)), xk ∈ XN } with fixed shape parameter ε = 1 (or any other
constant value c) takes the form

P1,Ψ(XN )(Ψ(x)) =
N∑
k=1

ckΦ1(Ψ(x),Ψ(xk)), (29)

with x ∈ Ω, xk ∈ XN .
By analogywith the interpolant in (25), the vector of coefficients c = (c1, . . . , cN )ᵀ

is determined by solving the linear system Aψc = f , where f is the vector of data
values and (Aψ)ik = Φψ(xi, xk) is strictly positive definite because of the strictly
positiveness of Φψ .

Once we have the interpolant P1,Ψ(XN ) on Ω × I, we can project back on Ω the
points (x, ψ(x)) ∈ Ω × I. In this way, we obtain the so-called VSK interpolant Vψ
on Ω. Indeed, by using (28), we get

Vψ(x) B
N∑
k=1

ckΦψ(x, xk) =
N∑
k=1

ckΦ1(Ψ(x),Ψ(xk)) = P1,Ψ(XN )(Ψ(x)). (30)

The error and stability analysis of this varying scale process onΩ coincides with the
analysis of a fixed scale kernel onΩ×I (for details and analysis of these continuous
scale functions see [18]).
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6.3 Variably Scaled Discontinuous Kernels (VSDK)

To understand the construction of a VSDK let start from the one dimensional case.
Let Ω = (a, b) ⊂ R be an open interval, ξ ∈ Ω and the discontinuous function
f : Ω −→ R

f (x) B
{

f1(x), a < x < ξ,
f2(x), ξ ≤ x < b,

where f1, f2 are real valued smooth functions for which exist finite the limits
lim
x→a+

f1(x), lim
x→b−

f2(x) and f2(ξ) , lim
x→ξ

f1(x) .

If we approximate f on some set of nodes, say X ⊂ Ω, the presence of a jump
will result in unpleasant oscillations due to the Gibbs phenomenon. The idea is
then to approximate f at X by interpolants of the form (30) with the main issue of
considering discontinuous scale functions in the interpolation process. The strategy
is that of approximating a function having jumps by using a scale function that has
jumps discontinuities at the same positions of the considered function.

To this aim, take α, β ∈ R, α , β,S =
{
α, β

}
and the scale function ψ : Ω −→ S

ψ(x) B
{
α, x < ξ,
β, x ≥ ξ.

which is piecewise constant, having a discontinuity exactly at ξ as the function f .
Thenwe considerΦε a positive definite radial kernel onΩ×S, possibly depending

on a shape parameter ε > 0 or alternatively a VSK Φψ on Ω as in (28). For the sake
of simplicity we start by taking the function ϕ1 related to the kernel Φ1 that is

ϕ1(‖Ψ(x) − Ψ(y)‖2) = ϕ1(‖(x, ψ(x)) − (y, ψ(y))‖2) =

= ϕ1

(√
(x − y)2 + (ψ(x) − ψ(y))2

)
,

so that

ϕ1(‖Ψ(x) − Ψ(y)‖2) =
{
ϕ1(|x − y |), x, y < ξ or x, y ≥ ξ,
ϕ1(‖(x, α) − (y, β)‖2), x < ξ ≤ y or y < ξ ≤ x,

noticing that ϕ1(‖(x, α) − (y, β)‖2) = ϕ1(‖(x, β) − (y, α)‖2).
Then, consider the setXN = {xk, k = 1, . . . , N} of points ofΩ and the interpolant

Vψ : Ω −→ R which is a linear combination of discontinuous functions Φψ(·, xk)
having a jump at ξ.

• if a < xk < ξ

Φψ(x, xk) =
{
ϕ1(|x − xk |), x < ξ,
ϕ1(‖(x, α) − (xk, β)‖2), x ≥ ξ,

• if ξ ≤ xk < b
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Φψ(x, xk) =
{
ϕ1(|x − xk |), x ≥ ξ,
ϕ1(‖(x, α) − (xk, β)‖2), x < ξ.

By this construction we can give the following definition that extends the idea
when we have more than one jump.

Definition 4 Let Ω = (a, b) ⊂ R be an open interval, S = {α, β} with α, β ∈
R>0, α , β and let D = {ξj, j = 1, . . . , `} ⊂ Ω be a set of distinct points with
ξj < ξj+1 for every j. Let ψ : Ω −→ S the scale function defined as

ψ(x) B
{
α, x ∈ (a, ξ1) or x ∈ [ξj, ξj+1), where j is even,
β, x ∈ [ξj, ξj+1), where j is odd,

and
ψ(x) |[ξ`,b) B

{
α, ` is even,
β, ` is odd.

The kernel Φψ is then called a Variably Scaled Discontinuous Kernel on Ω.

For the analysis of the VSDKs introduced in Definition 4 we can not rely on some
important and well-known results of RBF interpolation due to the discontinuous
nature of these kernels. Therefore we may proceed as follows.

Let Ω andD be as in Definition 4 and n ∈ N. We define ψn : Ω −→ I ⊆ (0,+∞)
as

ψn(x) B


α, x ∈ (a, ξ1 − 1/n) or x ∈ [ξj + 1/n, ξj+1 − 1/n) j is even,
β, x ∈ [ξj + 1/n, ξj+1 − 1/n) j is odd,
γ1(x), x ∈ [ξj − 1/n, ξj + 1/n) j is odd,
γ2(x), x ∈ [ξj − 1/n, ξj + 1/n) j is even,

(31)

ψn(x) |[ξ`+1/n,b) B

{
α, ` is even,
β, ` is odd,

where γ1, γ2 are continuous, strictly monotonic functions so that

lim
x→ξj+1+1/n

γ1(x) = γ2(ξj − 1/n) = β, lim
x→ξj+1+1/n

γ2(x) = γ1(ξj − 1/n) = α.

FromDefinition 4, it is straightforward to verify that ∀x ∈ Ω the following pointwise
convergence result holds

lim
n→∞

ψn(x) = ψ(x).

We point out that for every fixed n ∈ N the kernel Φψn is a continuous VSK, hence
it satisfies the error bound of Theorem 4. For VSDKs instead we have the following
results whose proofs can be found in the paper [28].

Theorem 5 For every x, y ∈ Ω, we have

lim
n→∞
Φψn (x, y) = Φψ(x, y),

where Φψ is the kernel considered in Definition 4.
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Corollary 1 Let HΦψn (Ω) = span{Φψn (·, x), x ∈ Ω} be equipped with the bilinear
form (·, ·)HΦψn (Ω) and let NΦψn (Ω) be the related native space. Then, taking the
limit of the basis functions, we obtain the space HΦψ (Ω) = span{Φψ(·, x), x ∈ Ω}
equipped with the bilinear form (·, ·)HΦψ (Ω) and the related native space NΦψ (Ω).

We get an immediate consequence for the interpolantVψ too.
Corollary 2 Let Ω, S and D be as in Definition 4. Let f : Ω −→ R be a discon-
tinuous function whose step discontinuities are located at the points belonging to
D. Moreover, let ψn and ψ be as in Theorem 5. Then, considering the interpolation
problem with nodes XN = {xk, k = 1, . . . , N} on Ω, we have

lim
n→∞
Vψn (x) = Vψ(x),

for every x ∈ Ω.

To provide error bounds in terms of the power function, we should first define
the equivalent power function for a VSDK Φψ on a set of nodes XN . From (27), we
immediately have

PΦψ,X(x) =

√
det(Aψ(YN+1))

det(Aψ(XN ))
.

From Theorem 5 and Corollary 1, we may define the power function for a discon-
tinuous kernel as

PΦψ,XN (x) = lim
n→∞

PΦψn ,XN (x) , ∀x ∈ Ω.

Finally, we can state the error bound for interpolation via VSDKs.
Theorem 6 Let Φψ be a VSDK on Ω = (a, b) ⊂ R, and XN ⊆ Ω consisting of N
distinct points. For all f ∈ NΦψ (Ω) we have

| f (x) − Vψ(x)| ≤ PΦψ,XN (x)‖ f ‖NΦψ (Ω), x ∈ Ω.

Proof For all n ∈ N and x ∈ Ω, since the VSK Φψn is continuous, from Theorem 4,
we get

| f (x) − Vψn (x)| ≤ PΦψn ,X(x)‖ f ‖NΦψn (Ω).

Then, taking the limit n→ ∞ and recalling the results of this subsection, the thesis
follows. �

6.4 VSDKs: multidimensional case

VSDKs rely upon the classical RBF bases, therefore as noticed are "dimension-blind"
which make them a suitable and flexible tool to approximate data in any dimension.
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However, in higher dimensions, the geometry is more complex, so we must pay
attention in defining the scale function ψ on a bounded domain Ω ⊂ Rd .

We consider the following setting.

(i) The bounded set Ω ⊂ Rd is the union of n pairwise disjoint sets Ωi and
PΩ = {Ω1, . . . ,Ωn} forms a partition of Ω.

(ii) The subsetsΩi satisfy an interior cone condition and have a Lipschitz boundary.
(iii) Let α1, . . . , αn ∈ R and Σ = {α1, . . . , αn}. The function ψ : Ω → Σ is constant

on the subsets Ωi , i.e., ψ(x) = αi for all x ∈ Ωi . In particular, ψ is piecewise
constant on Ω and discontinuities appear only at the boundaries of the subsets
Ωi . We further assume that αi , αj if Ωi and Ωj are neighboring sets.

A suitable scale function ψ for interpolating f via VSDKs on Ω ⊂ Rd can be
defined as follows.

LetΩ ⊂ Rd satisfies the assumptions (i)–(iii) above. We define the scale function
ψ : Ω −→ S as

ψ |Ωi
B αi . (32)

Definition 5 Given the scale function (32) the kernelΦψ defined by (28) is a Variably
Scaled Discontinuous Kernel on Ω.

Remarks.In Definition 5 we choose a scale function which emulates the prop-
erties of the one-dimensional function of Definition 4. The difference is that
the multidimensional ψ could be discontinuous not just at the same points as f ,
but also on other nodes. That is all the jumps of f lye along (d−1)-dimensional
manifolds γ1, . . . , γp which verify

γi ⊆

n⋃
i=1

∂Ωi \ ∂Ω, ∀i = 1, . . . , p.

More precisely, if we are able to choose PΩ so that

p⋃
i=1

γi =

n⋃
i=1

∂Ωi \ ∂Ω,

then f and ψ have the same discontinuities. Otherwise, if

p⋃
i=1

γi ⊂

n⋃
i=1

∂Ωi \ ∂Ω,

then ψ is discontinuous along
⋃n

i=1 ∂Ωi \
(
∂Ω ∪

⋃p
i=1 γi

)
, while f is not.

The theoretical analysis in the multidimensional case is done along the same path
of the one-dimensional setting. The idea is to consider continuous scale functions
ψn : Ω −→ I ⊆ (0,+∞) such that ∀x ∈ Ω the limits hold
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lim
n→∞

ψn(x) = ψ(x),

and
lim
n→∞
Vψn (x) = Vψ(x).

We omit this extension and all the corresponding considerations which are similar
to those discussed above for the one-dimensional setting, while we state directly the
error bound.

Theorem 7 Let Φψ be a VSDK as in Definition 5. Suppose that XN = {xi, i =
1, . . . , N} ⊆ Ω have distinct points. For all f ∈ NΦψ (Ω) we have

| f (x) − Vψ(x)| ≤ PΦψ,XN (x)‖ f ‖NΦψ (Ω), x ∈ Ω.

Proof Just refer to Theorem 6 and considerations made above. �

For the characterization of the native spaces for the VSDKs (if the discontinuities
are known) and Sobolev-type error estimates, based on the fill-distance, of the
respective interpolation scheme the reader must refer to the very recent paper [27].

7 Application to MPI

As we already observed, interpolation is an essential tool in medical imaging. It is
required for example in geometric alignment or registration of images, to improve the
quality of images on display devices, or to reconstruct the image from a compressed
amount of data. In Computerized Tomography (CT) and Magnetic Resonance Imag-
ing (MRI), which are examples of medical inverse problems, interpolation is used in
the reconstruction step in order to fit the discrete Radon data into the back projection
step. Similarly in SPECT for regridding the projection data in order to improve the
reconstruction quality while reducing the acquisition computational cost [59]. In
Magnetic Particle Imaging (MPI), the number of calibration measurements can be
reduced by using interpolation methods, as well (see the important paper [46]).

In the early 2000s, B. Gleich and J.Weizenecker [39], invented at Philips Research
in Hamburg a new quantitative imaging method called Magnetic Particle Imaging
(MPI). In this imaging technology, a tracer consisting of superparamagnetic iron
oxide nanoparticles is injected and then detected through the superimposition of
different magnetic fields. In common MPI scanners, the acquisition of the signal
is performed following a generated field free point (FFP) along a chosen sampling
trajectory. The determination of the particle distribution given the measured voltages
in the receive coils is an ill-posed inverse problem that can be solved only with proper
regularization techniques [47].

Commonly used trajectories in MPI are Lissajous curves [48], which are para-
metric space-filling curves of the square Q2 = [−1, 1]2. More precisely, by using
the same notations in [31, 32], let n = (n1, n2) ∈ N

2 be a vector of relatively prime
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integers and ε ∈ {1, 2}, the two-dimensional Lissajous curve γnε : [0, 2π] → Q2 is
defined as

γnε (t) B (cos(n2t), cos(n1t − (ε − 1)π/(2n2))) .

The curve γnε is called degenerate if ε = 1, and non-degenerate if ε = 2. The Padua
points of degree n are a degenerate Lissajous curve which have generating curve
γPad(t) = (− cos((n + 1)t),− cos(nt)), t ∈ [0, π] (see also [11, 14]).
The set of Lissajous node points associated to the curve γnε is given by

LSn
ε B

{
γnε (

πk
εn1n2
) : k = 0, . . . , 2εn1n2 − 1

}
. (33)

We define also the index set Γ2n B

{
(i, j) ∈ N2

0 : (i/2n1)+ ( j/2n2) < 1
}
∪{(0, 2n2)}

which give the cardinality of the set, that is

#LSn
ε =
(εn1 + 1)(εn2 + 1) − (ε − 1)

2
.

Fig. 10 Left: The degenerate curve γ(5,6)1 . Right: the non-degenerate curve γ(5,6)2

To reduce the amount of calibration measurements, it is shown in [46] that the
reconstruction can be restricted to particular sampling points along the Lissajous
curves, i.e., the Lissajous nodes LS(n)2 introduced in (33). Furthermore, by using a
polynomial interpolation method on the Lissajous nodes the entire density of the
magnetic particles can then be restored (cf. [31]). As noticed, these sampling nodes
and the corresponding polynomial interpolation are an extension of the theory of the
Padua points (see [11, 14] and also https://en.wikipedia.org/wiki/Padua_points).

If the original particle density has sharp edges, the polynomial reconstruction
scheme on the Lissajous nodes is affected by the Gibbs phenomenon. As shown
in [25], post-processing filters can be used to reduce oscillations for polynomial
reconstruction in MPI. In the following, we demonstrate that the usage of the VSDK
interpolation method in combination with the presented edge estimator effectively
avoids ringing artifacts in MPI and provides reconstructions with sharpened edges.
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7.1 An example

As a test data set, we consider MPI measurements conducted in [46] on a phan-
tom consisting of three tubes filled with Resovist, a contrast agent consisting of
superparamagnetic iron oxide. By the proceeding described in [46] we then obtain
a reconstruction of the particle density on the Lissajous nodes LS(33,32)

2 (due to the
scanner available, as described in [46] ). This reduced reconstruction on the Lis-
sajous nodes is illustrated in Figure 11 (left). A computed polynomial interpolant of
this data is shown in Figure 11 (middle, left). In this polynomial interpolant some
ringing artifacts are visible The scaling function ψ for the VSDK scheme is then
obtained by using the classification Algorithm [27] with a Gaussian function for the
kernel machine. The resulting scaling function is visualized in Figure 11 (middle,
right). Using the C0-Matérn (M0) kernel (see Table 2) for the VSDK interpolation,
the final interpolant for the given MPI data is shown in in Figure 11 (right).

Fig. 11 Comparison of different interpolation methods in MPI. The reconstructed data on the
Lissajous nodes LS(33,32)

2 (left) is first interpolated using the polynomial scheme derived in [31]
(middle left). Using a mask constructed upon a threshold strategy described in [27] (middle right)
the second interpolation is performed by the VSDK scheme (right).

8 Conclusion and further works

We have investigated the application of the polynomial mapped bases approach
without resampling for reducing the Runge and Gibbs phenomena. The approach
shows to be a kind of black-box that can be applied in many other frameworks. We
indeed have applied it to barycentric rational approximation and quadrature.We have
also studied the use of VSDK, a new family of variable scaled kernels, particularly
effective in the presence of discontinuity in our data. A particular applications of
VSDK is the image reconstruction fromdata coming fromMPI scanners acquisitions.

Concerning the work in progress and the future works

• In the 2d case, we have results on discontinuous functions on the square, using
polynomial approximation at the Padua points or tensor product meshes. In
Figure 12 we show the results of the interpolation of a discontinuous function
along a disk of the square [−1, 1]2, where the reconstruction has been done
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by interpolation on the Padua points of degree 60 on the left. On the right
we show the same reconstruction where the points that do not fall inside the
disk are mapped with a circular mapping. The mapping strategy indeed reduce
the Gibbs oscillations, but outside the disk we can not interpolate bu we can
approximate by least-squares, because of the "fake Padua" points that are not
anymore unisolvent.

Fig. 12 Left: interpolation with Padua points of degree 60 of a function with a circular jump. Right:
the same by mapping circularly the PD points, and using least-squares "fake-Padua"

• Again in 2d but also in 3d we can extract the so called Approximate Fekete Points
ofDiscrete Leja sequences (cf. [13]) on various domains (disk, sphere, polygons,
spherical caps, lunes and other domains). These points are numerically computed
by numerical linear algebra methods and extracted from the so called weakly
admissible meshes (WAM). For details aboutWAMs, refer to fundamental paper
[12]

Finally we are working in improving the error analysis and finding more precise
bounds for the Lebesgue constant(s). Among the applications of this approach we
are interested to image registration in nuclear medicine and the reconstruction of
periodic signals.
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