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Abstract

The 5th Generation (5G) of communication networks is currently being deployed, promising
better than ever capacity, responsiveness, and coverage. Many new technologies, as well as
evolutions of old technologies, have been harvested to improve over the previous generation,
such as the usage of high frequencies commonly known as the Millimeter Wave (mmW) band.
These new bands, typically ranging between 6 and 100 GHz, have long been studied, trying to
overcome many of their peculiarities such as (i) low range due to high free-space propagation
loss, (ii) high susceptibility to blockage, and (iii) sparse directionality, among others.

In this thesis, we analyze and propose models that allow more in-depth studies on next-
generation networks on different levels. Aiming to improve the next-generation IEEE 802.11
standards, also known as Wireless Gigabit (WiGig), we focused mainly on full-stack network
simulations, given the higher degree of realism with respect to mathematical models, and the
much lower cost and flexibility with respect to hardware testbeds. We were able to improve and
create models ranging across almost all levels of the communication stack, from the Physical
(PHY) up to the Application (APP) layers. This allowed us to obtain a holistic view of the
mmW-based network, making us able to design and characterize better models.

Starting from the mmW channel itself, we will describe our proposals to modify well-known
channel models to improve simulation performance and extend network analysis to scenarios
that were never explored before, due to a lack of available tools. Antenna models were studied,
and, with the help of machine learning techniques, optimal configurations specific for the mmW
band were obtained. Moving towards the WiGig protocol stack, works have been done on the
optimization of Medium Access Control (MAC)-layer scheduling algorithms, specifically tailored
for quasi-periodic applications. Finally, we analyzed, characterized, and modeled eXtended
Reality (XR) traffic, one of the most prominent types of quasi-periodic applications that are
forseen to be largely used in 5G networks.
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Sommario

La prossima generazione di reti di comunicationi, conosciuta come 5G, promette di avere velocità
e coperture nettamente superiori alle reti 4G. Per ottenere queste prestazioni è stato proposto
di utilizzare sia nuove tecnologie che evoluzioni di tecniche già conosciute e studiate in passato.
La novità più acclamata è l’uso di frequenze superiori al passato che vanno dai 6 ai 100 GHz,
anche chiamate onde millimetriche, o Millimeter Wave (mmW) in inglese. Molti studi degli
anni passati si sono focalizzati su questo intervallo di frequenze, cercando di renderle utilizzabili
e superando alcune loro peculiarità, tra cui (i) la poca copertura dovuta a perdite di potenza
maggiori sulle lunghe distanze rispetto a frequenze più basse, (ii) la loro estrema facilità ad
essere bloccate da persone ed oggetti, e (iii) una forte tendenza a concentrare la potenza in
poche direzioni circoscritte.

In questa tesi analizziamo e proponiamo modelli che consentono studi più approfonditi sulle
reti di nuova generazione a diversi livelli. Con l’obiettivo di migliorare gli standard Wi-Fi di
prossima generazione, noti anche come Wireless Gigabit (WiGig), ci siamo concentrati princi-
palmente su simulazioni di rete full-stack, dato il maggior grado di realismo rispetto ai modelli
matematici da una parte, e il minor costo unito a una maggiore flessibilità rispetto a soluzioni
hardware. Siamo stati in grado di migliorare e creare modelli che spaziano su quasi tutti i
livelli dello stack di comunicazione, dal livello fisico (PHY) fino al livello applicazione (APP).
Questo ci ha permesso di ottenere una visione completa della rete mmW, rendendoci in grado
di progettare e caratterizzare modelli migliori.

Partendo dal canale mmW stesso, descriveremo le nostre proposte per modificare modelli di
canale noti per migliorare le prestazioni di simulazione ed estendere l’analisi di rete a scenari
mai esplorati prima, a causa della mancanza di strumenti disponibili. Sono stati studiati modelli
di antenne e, con l’ausilio di tecniche di machine learning, sono state ottenute configurazioni
ottimali specifiche per la banda mmW. Focalizzandosi sugli standard WiGig, sono stati fatti
lavori sull’ottimizzazione degli algoritmi di scheduling a livello MAC, pensati appositamente per
applicazioni con carattere quasi periodico. Infine, abbiamo analizzato, caratterizzato e model-
lato il traffico di realtà aumentata e virtuale (conosciuto anche come realtà estesa (XR)), una
delle applicazioni quasi-periodiche più importanti che dovrebbero essere ampiamente utilizzate
nelle reti 5G.

vii



viii



Contents

Abstract v

List of figures xii

List of tables xvii

Acronyms xix

1 Introduction 1
1.1 Simulation of Communication Networks . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Open Challenges and Research Directions . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Mathematical Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Millimeter Wave Channel Modeling 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Channel Modeling at MmWaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Analytical Channel Models . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Stochastic Spatial Channel Models . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Deterministic Channel Models . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.4 Quasi-Deterministic Channel Models . . . . . . . . . . . . . . . . . . . . . 16
2.2.5 Comparison of RT and QD Models with Measurements . . . . . . . . . . 20
2.2.6 Blockage in Millimiter Waves . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Simplification of a Stochastic SCM: 3GPP TR 38.901 . . . . . . . . . . . . . . . 28
2.3.1 An Introduction to 3GPP TR 38.901 . . . . . . . . . . . . . . . . . . . . . 28
2.3.2 Analysis and Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.3 Channel Simplification Results . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Simplification of an RT-based Channel Model . . . . . . . . . . . . . . . . . . . . 33
2.4.1 Simulation Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.2 Link-Level Performance Results . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4.3 End-to-End Performance Results . . . . . . . . . . . . . . . . . . . . . . . 42
2.4.4 Computational Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.4.5 Design Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.5 Blockage Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.5.1 Framework Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.5.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3 Antenna Array Modeling and Optimization 59
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2 Antenna Optimization: Related Works . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3 Antenna and Beamforming Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4 Framework Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

ix



3.4.1 Network Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.4.2 Data Analysis and Machine Learning . . . . . . . . . . . . . . . . . . . . . 66
3.4.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.5 Regular UPA Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.5.1 Scenario Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.6 Thinned UPA Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.6.1 Antenna Array Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.6.2 Scenario Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.6.3 Learning Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.6.4 Optimization Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.7 Antenna Array Modeling on ns-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.7.1 ns-3 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.7.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4 WiGig MAC Scheduling 85
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2.1 Available Research Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.3 IEEE 802.11ad Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3.1 Beacon Header Interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.3.2 Data Transmission Interval . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.3.3 Scheduling in IEEE 802.11ad . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4 WiGig Scheduling Framework on ns-3 . . . . . . . . . . . . . . . . . . . . . . . . 91
4.4.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.4.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.5 Mathematical Framework Description . . . . . . . . . . . . . . . . . . . . . . . . 99
4.5.1 Feasibility Check Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.5.2 Simple Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.5.3 Max-Min Fair Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.5.4 Scheduling Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5 Extended Reality Applications 113
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.2 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.3 VR Traffic: Acquisition and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.3.1 Acquisition Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.3.2 Traffic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.4 Traffic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.4.1 Distribution fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.4.2 Generative Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.5 Ns-3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.5.1 Bursty Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.5.2 Burst Generator Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.5.3 Burst Sink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.6.1 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

x



5.6.2 Use Case Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.7 XR Traffic Modeling Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.7.1 Exploiting First-Order Statistics . . . . . . . . . . . . . . . . . . . . . . . 134
5.7.2 Introducing Temporal Correlation . . . . . . . . . . . . . . . . . . . . . . 134
5.7.3 Introducing Head Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.7.4 Full Traffic Emulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.7.5 QoE-centric XR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6 Conclusion 139

References 142

List of Publications 161

xi



xii



Listing of figures

1.1 Elements Involved in the End-to-end Simulation of a Communication Network . 3

2.1 Visualization of the MoI algorithm for a second-order reflection (r = 2). . . . . . 14
2.2 Example of reflection tree for R = 2. . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Graphical representation of the QD parameters. . . . . . . . . . . . . . . . . . . . 17
2.4 CAD model of NIST’s lecture room. . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Example of comparison between measurements and ray-tracer. . . . . . . . . . . 23
2.6 Reduced multiple reflection QD model applied to RT-based channel traces with

up to 2nd order reflections. Rays with path gain below -120 dB are not shown,
to more closely resemble the dynamic range of the channel sounder. . . . . . . . 24

2.7 Comparison between CDFs of MPC path gain, absolute delay, and RMS delay
spread with and without QD model with respect to the measurements. . . . . . . 25

2.8 Results from the profiling of the 3GPP channel model described in 3GPP TR
38.901, for different square antenna arrays at the transmitter and the receiver. . 30

2.9 Computation time required to generate an instance of the channel matrix (a)
and performance gain introduced by the simplification (b), as a function of the
number of antenna elements at the gNB, for different configurations at the UE
and different combinations of simplification parameters for the channel. . . . . . 32

2.10 Cumulative Distribution and Probability Density Functions of the narrowband
SINR Γ of a scenario composed of UEs and gNBs with 16 and 64 antenna elements,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.11 Wideband results for the 3GPP TR 38.901 channel simplifications. . . . . . . . . 34
2.12 Mean Singular Value Ratio of channel matrices for a scenario with UEs equipped

with 16 antenna elements, and gNBs with 64 antenna elements. . . . . . . . . . . 34
2.13 Visual representations of our simulation scenarios. . . . . . . . . . . . . . . . . . 37
2.14 Evolution of the SINR experienced when the test RX moves in the L-Room

scenario along the path described in Fig. 2.13b. . . . . . . . . . . . . . . . . . . . 40
2.15 Cumulative Distribution Function of the SINR in different scenarios vs. R, with

γth = −∞ dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.16 Average SINR vs. γth as a function of the antenna architecture in the L-Room

scenario, with R = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.17 End-to-end performance vs. R for the L-Room scenario with an offered UDP

CBR traffic of 800 Mbps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.18 End-to-end performance vs. R and γth for the L-Room scenario with full-buffer

TCP traffic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.19 Average throughput considering γth = −∞ dB. . . . . . . . . . . . . . . . . . . . 44
2.20 Average throughput for the 800 Mbps UDP traffic considering different antenna

architectures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.21 Throughput performance for the L-Room scenario with a purely deterministic

and quasi deterministic channel model, with a UDP CBR traffic of 800 Mbps. . . 46
2.22 Simulation runtime vs. R and γth for the L-Room scenario. . . . . . . . . . . . . 47
2.23 Trade-off between the SINR performance and the speedup obtained with the

different simplification parameters for the three scenarios. . . . . . . . . . . . . . 49

xiii



2.24 Trade-off between the throughput performance and the speedup obtained with
the different simplification parameters for the three scenarios. . . . . . . . . . . . 50

2.25 Visual representation of the blockage evaluation scenario. . . . . . . . . . . . . . 54
2.26 Results of our first simple simulation campaigns. . . . . . . . . . . . . . . . . . . 55

3.1 Workflow of the proposed framework. The diagram highlights how the parameter
optimization is achieved using an ML-based emulator. . . . . . . . . . . . . . . . 65

3.2 Correlation between selected inputs and outputs. . . . . . . . . . . . . . . . . . . 66
3.3 Plots show the nRMSE as a function of the number of training samples. . . . . . 67
3.4 Representation of a one-dimensional plot obtained by fixing all the array param-

eters except one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.5 Comparison among the network performance obtained with the baseline config-

uration (blue bar), with the optimal configuration identified using the simulator
samples (orange bar) and using the emulator (green bar). . . . . . . . . . . . . . 71

3.6 Example of a generated array. Dashed lines separate the four quadrants, while
black and gray dots represent respectively the activated antennas and the array
lattice. The top-left quadrant is generated and then mirrored to the other three. 72

3.7 Correlation plot of the four input parameters vs the output metric (y-axis) and
the bound metric (color). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.8 Plot showing cross-validation scores on the nRMSE metric with increasing train-
ing size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.9 Visual representation of the activation probability of any given element from the
lattice using the optimal parameters α∗y, α∗z. Elements outside the central column
are never activated, indicating that a vertically-shaped antenna is optimal. . . . . 75

3.10 Performance comparison between different classes of antennas. . . . . . . . . . . 76
3.11 Visualization of the input configuration around the optimal value. Slices of the

input configuration are taken to show how the different parameters affect the
performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.12 Reference scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.13 Temporal evolution of the signal quality experienced by UT1. . . . . . . . . . . . 79
3.14 Comparison of the SNR/SINR CDFs for different BF schemes. . . . . . . . . . . 80
3.15 Comparison of the SNR/SINR CDFs for different phased antenna array configu-

rations at the UT side. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.16 Comparison of the SNR CDFs for different antenna element patterns. . . . . . . 81
3.17 APP-layer throughput for different inter-packet intervals. . . . . . . . . . . . . . 81

4.1 Graphical representation of sector structure in IEEE 802.11ad. . . . . . . . . . . 89
4.2 Representation of a Beacon Interval (BI). . . . . . . . . . . . . . . . . . . . . . . 89
4.3 Representation of ADDTS scheduling in IEEE 802.11ad. . . . . . . . . . . . . . . 91
4.4 Performance of the different scheduling configurations with a bursty application

with deterministic period T = 102.4 ms. . . . . . . . . . . . . . . . . . . . . . . . 94
4.5 Performance of the four scheduling configurations using a bursty application with

period equal to T = 102.4 ms, and an offered rate R for each user. . . . . . . . . 97
4.6 Average delay of the different scheduling configurations with a bursty application

with normally distributed period, with mean equal to T = 102.4 ms and standard
deviation equal to a fraction of its mean σ = ρT . . . . . . . . . . . . . . . . . . . 98

4.7 Example of allocations A1 (orange) and A2 (blue), with p2 = 2p1. . . . . . . . . . 99

xiv



4.8 Feasibility check for an infeasible pair of allocations, where A1 (blue) was a pre-
existing allocation with p1 = 1

2 , and the algorithm is checking whether a new
allocation A2 (orange) with p2 = 1

3 is compatible. . . . . . . . . . . . . . . . . . . 100
4.9 Feasibility check for a feasible pair of allocations, where A1 (blue) was a pre-

existing allocation with p1 = 1
4 , and the algorithm is checking whether a new

allocation A2 (orange) with p2 = 1
2 is compatible. . . . . . . . . . . . . . . . . . . 101

4.10 Representation of a collision between An and AN . . . . . . . . . . . . . . . . . . 105
4.11 Results for Scenario 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.12 Results for Scenario 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.1 Portion of traffic trace from Virus Popper (50 Mbps, 30 FPS). For this trace,
130–140 individual fragments make up a video frame burst. . . . . . . . . . . . . 120

5.2 Results from acquired VR traffic traces. . . . . . . . . . . . . . . . . . . . . . . . 121
5.3 Video frame distributions for Virus Popper (30 Mbps, 60 FPS). . . . . . . . . . . 122
5.4 Video frame fit qualities for the Google Earth VR – Cities application. . . . . . . 123
5.5 Comparison of the three best fitting distributions for Virus Popper (30 Mbps,

60 FPS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.6 Generalization models for the Google Earth VR – Cities application. . . . . . . . 125
5.7 Simulation results for a single user streaming the Google Earth VR – Cities

application over a Wi-Fi link. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.8 Simulation results for multiple users streaming the Google Earth VR – Cities

application over a Wi-Fi link. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

xv



xvi



Listing of tables

2.1 NIST’s Lecture Room material library. . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Characteristics of the simulated scenarios. . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Numerical results shown in Fig. 3.5. . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.2 Simulation parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.1 Simulation parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.1 Parameters of the proposed generative model. . . . . . . . . . . . . . . . . . . . . 126
5.2 List of simulation parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

xvii



xviii



Acronyms

Symbols

3DoF 3 Degrees of Freedom. 114, 117, 118
3GPP 3rd Generation Partnership Project. 1, 2, 4, 9, 10, 12, 28, 29, 28, 30, 31, 32, 33,

38, 56, 62, 63, 65, 69, 71, 78, 79, 81, 82, 139
5G 5th Generation. v, vii, 1, 12, 38, 56, 59, 60, 61, 82, 139, 141
6DoF 6 Degrees of Freedom. 114, 135

A

A-BFT Association-BeamForming Training. 89
AC Access Category. 87, 90
ADDTS Add Traffic Stream. xiv, 90, 92, 93, 95, 96
AFBW Average Fading Bandwidth. 32, 33
AIFS Arbitration Inter-Frame Space. 87
AMC Adaptive Modulation and Coding. 38
AoA Angle of Arrival. 9, 10, 16, 19, 22, 28, 29, 53
AoD Angle of Departure. 9, 10, 16, 19, 22, 28, 29, 53
AP Access Point. xxi, 86, 99, 129, 130, 132, 135
APP Application. v, vii, 5, 7, 78, 81, 93, 98, 110, 120, 129, 130, 140
AR Augmented Reality. 5, 85, 113
ARD Automatic Relevance Determination. 74
ATI Announcement Transmission Interval. 89, 90

B

B-frame Bipredictive-coded frame. 122
BF Beamforming. 60, 62, 63, 64, 77, 78, 79, 80, 81, 82, 139
BHI Beacon Header Interval. 89, 90, 93
BI Beacon Interval. xiv, 87, 88, 89, 90, 92, 93, 95, 96, 99, 101, 102, 109, 110
BS Base Station. 77, 78, 79, 80
BTI Beacon Transmission Interval. 89

C

CAD Computer-aided Design. 13, 14, 20, 22, 24, 26, 34, 35, 38
CBAP Contention-Based Access Period. 87, 88, 90, 91, 92, 93, 95, 96, 97, 99
CBR Constant Bitrate. xiii, 40, 41, 111, 120, 122, 130, 136, 140
CDF Cumulative Distribution Function. xiii, 23, 22, 40, 43, 46, 79, 122, 123, 124, 128
CI Confidence Interval. 43
CI/CD Continuous Integration and Developement. 52

D

DCF Distributed Coordination Function. 87

xix



DKED Double Knife-Edge Diffraction. 25, 26, 28
DL Downlink. 114, 117, 119, 120, 121, 135
DMG Directional Multi-Gigabit. 89, 90, 111
D-ray Deterministic Ray. 16, 17, 18, 22
DTI Data Transmission Interval. 87, 88, 89, 90, 91, 92, 108

E

E2E End-to-End. 86, 87, 111, 139
EDCA Enhanced Distributed Channel Access. 90
EM ElectroMagnetic. 13
ESE Extended Schedule Element. 90

F

FEC Forward Error Correction. 129
FoV Field-of-View. 20, 116, 117
FPS Frames Per Second. 117, 135, 137

G

gNB Next Generation Node Base. xiii, 28, 31, 33, 62
GoP Group of Pictures. 117, 122, 127
GPR Gaussian Process Regression. 69

H

HMD Head Mounted Device. 113, 114, 129, 130, 136

I

I-frame Intra-coded frame. 122
IEEE Institute of Electrical and Electronics Engineers. xiv, 1, 2, 16, 85, 86, 87, 88, 89,

90, 110, 111, 129, 140
IFI Inter-Frame Inter-arrival. 120, 122, 123, 124, 125, 126, 132
ITU International Telecommunication Union. 25

K

KED Knife-Edge Diffraction. 26, 27
KPI Key Performance Indicator. 94, 102, 107
KS Kolmogorov-Smirnov. 23, 123, 124

L

LCF Level Crossing Frequency. 32, 33
lcm least common multiple. 100
LoS Line-of-Sight. 12, 14, 27, 28, 29, 31, 36, 38, 39, 40, 51

M

MAC Medium Access Control. v, vii, 5, 7, 8, 38, 81, 85, 87, 88, 90, 91, 93, 98, 110, 140

xx



MCS Modulation and Coding Scheme. 92, 93, 96, 111, 132
METIS Mobile and wireless communications Enablers for the Twenty-twenty Information

Society. 26
MIMO Multiple Input, Multiple Output. 64, 77, 85
ML Machine Learning. 7, 60, 61, 64, 65, 66, 75, 82, 83, 112, 139
MLP Multi-Layer Perceptron. 74
mmW Millimeter Wave. v, vii, 1, 2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 16, 23, 25, 29, 38, 46,

56, 57, 59, 60, 61, 65, 77, 82, 85, 87, 88, 89, 135, 139
MoI Method of Images. 13, 14, 15, 33, 56, 139
MPC Multi Path Component. xiii, 9, 11, 12, 17, 18, 19, 22, 34, 35, 36, 39, 40, 41, 45,

47, 51, 56
MR Maximum Rate. 113
MU-MIMO Multi-User Multiple Input, Multiple Output. 63, 111

N

NIST National Institute of Standards and Technology. 13, 20, 56
NLoS Non-Line-of-Sight. 12, 29, 31, 35, 36, 38, 39, 43, 51
NN Neural Network. 61, 70
NR New Radio. 1, 2, 9, 60, 78, 79, 82, 139
nRMSE Normalized Root Mean Square Error. xiv, 48, 50, 51, 67, 68, 74
ns-3 Network Simulator 3. 2, 4, 5, 6, 7, 8, 10, 38, 40, 46, 47, 48, 50, 60, 64, 77, 82, 83,

86, 87, 88, 91, 110, 111, 126, 128, 129, 137, 139, 140

O

O2I Outdoor-to-Indoor. 31, 65, 69, 71
OFDM Orthogonal Frequency Division Multiplexing. 32, 38

P

P-frame Predictive-coded frame. 122
PBSS Personal Basic Service Set. xxi, 86
PCP Personal Basic Service Set (PBSS) Central Point. xxi, 86
PCP/AP PBSS Central Point/Access Point. 86, 89, 90, 91, 92, 93, 95, 98, 111
PDCP Packet Data Convergence Protocol. 38, 41
PDF Probability Density Function. 122, 123, 125
PHY Physical. v, vii, 4, 7, 8, 10, 85, 90, 92, 93, 96, 139

Q

QD Quasi Deterministic. xiii, 7, 11, 16, 17, 19, 20, 22, 23, 24, 22, 33, 36, 38, 39, 45,
46, 48, 51, 56, 139

QoE Quality of Experience. 5, 114, 116, 136
QoS Quality of Service. 85, 86, 87, 90, 91, 96, 110, 111, 117, 137, 140

R

RAN Radio Access Network. 1
RCS Radar Cross-Section. 27
RF Radio Frequency. 26, 59, 63, 77

xxi



RL Reinforcement Learning. 87, 112
RLC Radio Link Control. 38, 81
RRC Radio Resource Control. 38
RT Ray Tracer. xiii, 4, 9, 10, 11, 12, 13, 16, 20, 22, 35, 36, 38, 41, 46, 47, 48, 51, 56,

139
RX Receiver. 9, 13, 14, 16, 20, 22, 23, 34, 35, 36, 38, 39, 40, 41, 64, 77

S

SCM Spatial Channel Model. 4, 8, 9, 10, 11, 12, 28, 29, 56, 139
SINR Signal-to-Interference-plus-Noise Ratio. xiii, 28, 31, 33, 38, 39, 40, 41, 42, 43, 48,

51, 64, 67, 69, 71, 78, 79, 80
SIR Signal-to-Interference Ratio. 31, 32
SNR Signal-to-Noise Ratio. 55, 78, 79, 80, 81
SP Service Period. 86, 87, 90, 91, 92, 93, 95, 96, 97, 98, 99, 102, 103, 110, 111
SSW Sector Sweep. 89
STA Station. 86, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 102, 103, 111, 129, 130, 132
SVD Singular Value Decomposition. 31, 38, 64, 77, 79, 81
SVM Support Vector Machine. 70, 73
SVR Support Vector Regressor. 69, 70, 73

T

TCP Transmission Control Protocol. xiii, 41, 43, 46, 129
TDD Time Division Duplexing. 38
TSPEC Traffic Specification. 90, 91, 111
TX Transmitter. 9, 13, 14, 16, 20, 22, 36, 38, 64, 77

U

UDP User Datagram Protocol. xiii, 39, 40, 41, 42, 43, 45, 78, 119, 120, 122, 129
UE User Equipment. xiii, 28, 31, 33, 38, 62, 70, 78, 79, 80
UL Uplink. 114, 117, 119, 120, 121, 135
ULA Uniform Linear Array. 70, 80, 82
UMa Urban Macro. 30
UMi Urban Micro-cell. 65, 69, 71, 82
UPA Uniform Planar Array. 7, 59, 69, 75
UTD Uniform Theory of Diffraction. 26

V

VBR Variable Bit Rate. 87, 91, 136
VR Virtual Reality. 5, 85, 86, 93, 113, 114, 117, 118, 119, 120, 123, 126, 128, 129,

130, 132, 135, 137, 140

W

Wi-Fi Wireless Fidelity. vii, xv, 2, 85, 87, 96, 111, 118, 129, 130, 132, 140
WiGig Wireless Gigabit. v, vii, 7, 8, 85, 86, 87, 88, 93, 110, 111, 140
WLAN Wireless Local Area Network. 1, 88, 117

xxii



X

XR eXtended Reality. v, vii, 7, 8, 85, 113, 114, 115, 116, 117, 123, 125, 133, 134, 135,
136, 137

xxiii



xxiv



1
Introduction

Recent developments have paved the way towards the 5th Generation (5G) of cellular networks
and enhanced Wireless Local Area Network (WLAN) designs, to address the traffic demands
of the 2020 digital society [1]. In particular, 5G systems will support very high data rates
(with a peak of 20 Gbps in ideal conditions), ultra-low latency (around 1 ms for ultra-reliable
communications), and a 100x increase in energy efficiency with respect to previous wireless
generations [1]. To meet those requirements, the 3rd Generation Partnership Project (3GPP)
has released a set of specifications for New Radio (NR), the new 5G Radio Access Network
(RAN). Similarly, the Institute of Electrical and Electronics Engineers (IEEE) has developed
amendments to 802.11 networks, namely 802.11ad [2] and 802.11ay [3], which operate in the
Millimeter Wave (mmW) band.∗ 3GPP NR carrier frequency can be as high as 52.6 GHz for
Release 15 (even though future Releases may include extensions up to 71 GHz [4]), while IEEE
802.11ad and 802.11ay exploit the unlicensed spectrum at 60 GHz [3].

The vast amount of available spectrum at mmW frequencies will enable multi-Gbps trans-
mission rates [5], unlocking new and futuristic applications for both the business and the con-
sumer markets. Moreover, the short wavelength makes it practical to build large antenna
arrays to establish highly directional communications, thus boosting the network performance
via beamforming or spatial multiplexing [6]. Despite these promising characteristics, propaga-
tion at mmWs raises several challenges for the design and performance of the whole protocol
stack [7]. First, the communication suffers from severe path loss, which prevents long-range
omni-directional transmissions. Second, mmW links are highly sensitive to blockage from com-
mon materials e.g., brick and mortar. Third, the delay and the Doppler spread (which determine
the time and frequency selectivity of the channels) are particularly strong at these frequencies

∗The mmW band is officially considered to be the band comprising wavelength ranging from 10 to 1 mm,
i.e., frequencies between 30 and 300 GHz. Many works in the current literature still consider mmW frequencies
down to 6 GHz, and often call sub-Terahertz frequencies above 100 GHz.
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and may lead to network disconnections [8]. Finally, directional communications require the
precise alignment of the transmitter and receiver beams, hence implying an increased control
overhead for channel estimation and mobility management [9, 10].

The combination of these phenomena makes the mmW channel extremely volatile to mobile
users. Although some early performance evaluations have suggested that mmW networks can
offer orders of magnitude greater capacity than legacy systems (e.g., [11]), a deeper understand-
ing of the propagation channel is required to reliably characterize such networks. In this sense,
experimental testbeds make it possible to examine the network performance in real-world en-
vironments with extreme accuracy [12]. However, the prohibitive cost and limited flexibility of
these platforms make this approach impractical for most of the research community [13].

Network simulators are fundamental tools to assess the effectiveness of novel designs, ar-
chitectures, and algorithms for networking problems, offering the possibility to monitor the
performance of the overall system in a controlled environment, with different scenarios and pa-
rameter settings, and without the need for a real deployment. Among the many simulation tools
that have been developed so far, either commercial or open source, Network Simulator 3 (ns-3)
stands out for its modularity, flexibility, and realism while being an active open-source project.
Indeed, ns-3 provides several simulation modules which can be easily interfaced together and
extended in order to simulate even complex and realistic deployments and to account for all the
phenomena influencing the network behavior using the desired level of abstraction.

In order to provide a solid support for the research in this field, simulation tools must be
updated in parallel with the evolution of the communication technology, either by enhancing
the existing models or by adding new ones. In this regard, ns-3 is being enriched to provide
support for the simulation of the latest cellular (i.e., 3GPP NR [14]) and Wireless Fidelity
(Wi-Fi) technologies (i.e., IEEE 802.11ax [15] and 802.11ad/ay [16, 17]).

The objective of this thesis is to describe and analyze the work that has been done to
advance the state of the art in different parts of the communication stack. We discuss the
current limitations for the simulation of communication networks with ns-3 and provide some
future directions to fill the gaps. The remainder of this introductory chapter is organized as
follows: Sec. 1.1 will discuss why and how communication networks can be simulated; Sec. 1.2
will describe the main open challenges and research directions when simulating complex network
architectures; Sec. 1.3 will introduce the mathematical notation that will be used throughout
the remainder of this manuscript; Sec. 1.4 will contain the main contributions brought by our
works; finally, Sec. 1.5 will conclude the introduction, briefly describing the structure of this
thesis.

1.1 Simulation of Communication Networks
The evaluation of communication systems typically involves three different methodologies, which
have different purposes and are usually exploited jointly in order to fully understand the system
behavior, namely analytical modeling, real-world measurements, and simulation. In particu-
lar, analytical modeling provides a general characterization of the system and a preliminary
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Fig. 1.1: Elements Involved in the End-to-end Simulation of a Communication Network

evaluation, usually through the derivation of bounds and/or approximations for the system
performance. However, it may be difficult to devise mathematical models capable of captur-
ing all the relevant dynamics, and several assumptions may be needed to make these models
tractable. On the other hand, measurement campaigns on prototypes or real systems could
provide very accurate results, but they are very expensive and difficult to conduct. Sometimes
the realization of a working prototype may not even be feasible, because the required hardware
may not be available on the market. Finally, simulations consist in mimicking the system op-
erations running random experiments through a computer program, relying on one or multiple
models describing the system and the phenomena influencing its behavior, with a certain level
of abstraction. The latter is chosen according to the desired evaluation accuracy, allowing the
testing of the system performance at different scales and in different situations. Also, simula-
tions make it possible to arbitrarily set the operating conditions under which the system has
to be tested, and to reproduce them at any time. Therefore, simulation allows the comparison
of the performance of different variants of the system or different configuration options and is
consequently an important tool in network architecture and protocol design.

Nonetheless, the reliability of the evaluation results mainly depends on the quality of the
simulation models, which have to be detailed enough to include the characterization of all the
phenomena of interest, and this may be challenging when the system is too complex.

A communication network is an example of an extremely complex system, as shown in
Fig. 1.1, in which different elements impact the overall performance in different ways and at
different scales. For instance, user mobility, data traffic, and the propagation environment
may dramatically change the network behavior, thus their characterization is of fundamental
importance to obtain a proper level of accuracy [18]. To this aim, network simulators typically
provide multiple simulation modules, each focusing on the modeling of a different phenomenon,
which can be interfaced together to obtain a thorough description of the overall system. Also,
each module may provide multiple models describing the same phenomenon in different ways,
e.g., at different levels of abstraction or using different approaches.

In general, the simulation of communication networks involves both the modules implement-
ing the communication technology of interest, and other modules which take into account the
external phenomena influencing the system behavior. While the realization of standard-defined
protocol models is generally straightforward, because they are completely defined by one or
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multiple documents, the design of models to account for the external phenomena is more prob-
lematic because of their stochastic nature.

1.2 Open Challenges and Research Directions
In this section we will identify a number of open challenges that we faced while running extensive
simulation campaigns, mainly related to mmW communication networks [19], while suggesting
possible research directions that can improve the suitability of ns-3 for the simulation of com-
munication networks in different scenarios [20].

Channel Models: The channel model describes the propagation of the signal through the
surrounding environment, taking into account different factors influencing this phenomenon,
such as the carrier frequency, the spatial characteristics of the channel, the presence of blocking
objects. Given that the Physical (PHY) layer, and thus the performance of communication net-
works, strongly depends on the nature of the wireless channel, proper modeling of its behavior is
of primary importance to obtain accurate simulation results. This is particularly true for mmW
systems [21], in which the high carrier frequency and the directionality of the communications
make the propagation of the signals very sensitive to the characteristics of the environment, and
even more so for Terahertz systems [22]. Indeed, the presence of buildings, trees, or even the
rain may reflect, attenuate and refract the signals, hence their influence has to be taken into
account for proper modeling of the channel [23]. Moreover, antenna arrays will be used to over-
come the high attenuation experienced at such high frequencies by increasing the directionality
of the propagation [21]. In this context, channel models currently implemented in ns-3 (e.g.,
Friis, Okumura Hata, trace-based fading model) do not take into account the necessary charac-
teristics needed to properly model multi-antenna systems at these higher frequencies. To solve
this problem, either Ray Tracer (RT)-based simulation or stochastic Spatial Channel Models
(SCMs) should be used. While RT yields the most realistic results, it is complex to program,
debug, and calibrate as well as very computationally demanding to execute. Furthermore, it
has to be specific for a given scenario, defining the geometry of the environment, materials of
walls and obstacles, positions of receiver and transmitter. A more lightweight albeit less precise
solution can be found in stochastic SCMs. These are stochastic channel models that consider
multiple rays coming from different angles with different powers and delays, thus being able
to model complex wideband channels. Although SCMs are still much faster than ray tracers,
channels like 3GPP 38.901 [24] can act as bottlenecks given the large number of parameters
and computations, especially when large arrays are considered. This is exacerbated by the fact
that the code is rarely optimized.

Antennas: To overcome the high attenuation experienced at very high frequencies, next-
generation communication networks will use multi-antenna systems capable of directing the
transmit power in the desired direction through suitable beamforming. The ns-3 antenna
module provides single-element antenna models with isotropic, parabolic and cosine radiation
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patterns, but lacks a general model for antenna arrays which is essential for the simulation of
next-generation communication networks [25].

Vendor-Specific Protocols: In general, communication standards are needed to specify
how the information should be transmitted to the final users and transferred across the network,
containing best practices emerged from the collective experience of both academic and industry
experts. Defining the basic signaling, architectures, and protocols allows for different devices
produced by different manufacturers to work together, vastly increasing market competition
and cooperation, finally resulting in better and cheaper products. Nevertheless, not every single
part of the communication system is defined by standards in detail, allowing different vendors
to differentiate themselves from their competitors by developing better inner protocols and
processes which do not affect interoperability. One example of this is Medium Access Control
(MAC) scheduling, meaning how access points or base stations schedule communications with
or between users whenever possible. Given the complexity of the task, different optimizations
can be aimed for, such as maximimizing sum-capacity or fairness, or minimizing interference or
latency. While some standard scheduling techniques are well known, constraints given by specific
communication standards or peculiar types of traffic sources might require custom schedulers
to be designed, developed, and tested.

Applications: Application (APP) layer models are used to mimic the generation of the user
traffic. This is a very important aspect in the simulation, because it determines the load under
which the network has to operate. The usage of inappropriate and unrealistic traffic models may
lead to evaluating the system under conditions that are not representative of those encountered
in real-world scenarios, thus potentially leading to wrong conclusions. Moreover, with the
emergence of new applications (e.g., Virtual Reality (VR) and Augmented Reality (AR), self-
driving cars, tactile Internet), communication networks have to deal with several types of traffic
with very diverse characteristics, therefore a proper modeling of the behavior of the upper layers
of the protocol stack is fundamental to obtain accurate results from the simulations. While the
need for accurate application models holds for the simulation of any kind of network, in mobile
scenarios the user generally uses different interaction patterns than in wired networks. For
example, bulk transfers of data are generally uncommon, while video streaming, web browsing,
chatting and VoIP are more popular. In this regard, while ns-3 generally offers a number
of both deterministic and statistical packet sources, it lacks applications that model complex
and realistic interactions and expose Quality of Experience (QoE) metrics. There have been a
few attempts aimed at simulating video streaming, through either the parsing of traces or the
implementation of dynamic adaptive streaming over HTTP, however none of them has been
integrated in ns-3 [26, 27].

Scalability: There is a trade-off between the accuracy and the complexity of the simula-
tions. For example, the high level of detail in the scheduling of synchronization signals for
the communication stacks may yield an excessive overhead in terms of simulation complexity.
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Similarly, complex channel models may come very close to mimicking a real wireless channels,
but the sheer amount of operations needed to create a single channel between a pair of nodes
might result in excessively demanding simulations, or even make them infeasible when scaling
to multiple nodes or long simulations. Therefore, it makes sense to investigate and implement
mechanisms that allow the simulation to reduce the computation complexity, being it scheduled
events or mathematical operations, and consequently the simulation runtime. Even though it
should be noted that this approach is not always possible, finding scalable approaches where
the simulation complexity is minimized according to the simulated scenario is a worthwhile
research direction. Succeeding in this task would allow researchers to simulate more complex
and realistic scenarios more accurately, making it possible to produce results more faithful to
the real world.

Support in ns-3: Ns-3 provides different simulation modules, including multiple implemen-
tations of the aforementioned models. Just to mention a few relevant modules, the spectrum
and the propagation modules deal with the modeling of the wireless channel, the antenna
module can be extended to support different types of antenna radiation patterns, while the
application module provides several traffic generation models. While the usage of these mod-
ules is a first important step for realistic simulation scenarios, their modeling capabilities could
be improved to account for a number of factors that are important in next-generation networks.
In the following sections, we will outline our contributions to the improvements on both the ns-3
simulator and to network simulation in general, as well as highlight the subsequent research
that was made possible thanks to our newly built tools.

1.3 Mathematical Notation

Throughout this thesis, boldface letters denote random variables while non-boldface letters
denote deterministic variables or realizations of random variables. Simple math font (e.g., a, A)
is used for both scalar and vector variables, while bold math font is used for random variables
(e.g., a, A). The function d(x1, x2) corresponds to the euclidean distance between points x1

and x2 in 3D space. Finally, the following notation and distributions for random variables are
assumed:

• X ∼ N
(
µ, σ2

)
: Normal distribution with E[X] = µ and var(X) = σ2

• X ∼ R(s, σ): Rician distribution where s, σ ≥ 0. It can be generated as X =
√
Y2 + Z2,

where Y ∼ N
(
s, σ2

)
, Z ∼ N

(
0, σ2

)
.

• X ∼ L
(
µ, σ2

)
: Laplacian distribution with E[X] = µ and var(X) = σ2

• X ∼ E(λ): Exponential distribution with E[X] = 1
λ and var(X) = 1

λ2

• X ∼ U [a, b]: Uniform distribution in the closed interval [a, b]
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1.4 Main Contributions
The collaborative work done for this thesis brings diverse contributions to the state of the art
in multiple topics. Specifically, regarding mmW channel modeling, the main contributions can
be summarized as follows:

1. Implementation, often open-source, of popular mmW channel models, such as 3GPP
TR 38.901, ray-tracing, and quasi-deterministic models;

2. Performance profiling, analysis, and optimization of mmW channel generation with differ-
ent channel models;

3. Simplification with the aim of channel generation time reduction of stochastic and deter-
ministic mmW channel models;

4. Mathematical formalization and comparison with real-world measurements of a mmW
Quasi Deterministic (QD) channel model;

5. PHY-layer evaluation of mmW channel simplifications;

6. Full-stack simulations and evaluation of mmW channel simplifications;

7. Modeling of interactions between the mmW channel and common obstacles.

Regarding antenna modeling and optimization, instead, our contributions include:

8. Machine Learning (ML)-based optimization framework for complex simulators;

9. Optimization of regular Uniform Planar Arrays (UPAs) in urban scenarios;

10. Optimization of thinned UPAs in urban scenarios;

11. Development of an ns-3 framework for antenna arrays (now part of the official ns-3.34
release) and beamforming.

Focusing on the Wireless Gigabit (WiGig) standard, and specifically on MAC scheduling,
our main contributions are:

12. Implementation of a flexible WiGig MAC scheduling framework in ns-3;

13. Full-stack performance evaluation of simple WiGig schedulers for periodic and quasi-
periodic applications;

14. Mathematical formalization of WiGig MAC schedulers;

15. Design, development, and evaluation of two complex schedulers.

Finally, to support our work on scheduling, we contributed to APP layer modeling as follows:

16. Traffic acquisition and analysis of a real eXtended Reality (XR) streaming application;
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17. Made XR traffic traces publicly available;

18. Proposed the first generative traffic model for XR applications (to the best of our knowl-
edge);

19. Developed a flexible ns-3 application interface for bursty traffic, natively supporting our
proposed XR traffic model and acquired traffic traces.

1.5 Thesis Structure
The thesis is structured as follows. After this introductory chapter, Chapter 2 will describe
our work done regarding mmW channel modeling, ranging from stochastic SCMs to ray-tracing
models, from simplifications for scalability improvements to more faithful modeling of relevant
channel behaviors, from PHY-only to full-stack simulations results.

In Chapter 3 we will propose heuristic optimizations for antenna arrays, specifically tai-
lored for urban scenarios, while describing a more geneneral optimization framework that we
developed.

Leaving the physical part of the communication systems, Chapter 4 will contain our efforts
to propose a MAC scheduling framework tailored specifically for WiGig standards, aiming
to support modern and future relevant applications. The main focus will be the support of
periodic and quasi-periodic applications, analyzing the problem both analytically and through
simulations, after briefly explaining the core scheduling mechanisms of the IEEE 802.11ad/ay
standards.

To support and better evaluate our works on scheduling, in Chapter 5 we propose traffic
models for XR traffic.

Finally, Chapter 6 will conclude this thesis, discussing the impact of what has been achieved.
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2
Millimeter Wave Channel Modeling

2.1 Introduction
Theoretical analyses and computer-aided simulations have emerged as important tools in eval-
uating the performance of novel solutions and the interplay between the mmW channel and
the deployment and protocol design. Both analysis and simulation, however, require proper
modeling of signal propagation to accurately reproduce the behavior of mmW systems [23, 28].
On one side, analytical studies model the channel using a Nakagami-m or Rayleigh distribution
(e.g., [29]). This approach, while simplifying the analysis significantly, assumes a rich multipath
channel when in fact it is sparse at mmWs [30].

Similarly, stochastic SCMs, e.g., [24] for 3GPP NR, characterize the channel as a combination
of random variables fitted from real-world measurements, providing a more realistic assessment
of the mmW network performance compared to their analytical counterparts [31]. Still, the
stochastic nature of these models may prevent researchers from evaluating the impact of the
channel dynamics in specific environments, and may respond poorly to the need for an accu-
rate characterization of the spatio-temporal evolution of the channel’s Multi Path Components
(MPCs) [32].

Conversely, RTs can be used to precisely model the propagation of mmW signals in specific
scenarios [33, 34]. Unlike analytical or stochastic models, RTs are based on the geometry of the
scenario and characterize the different propagation properties of each MPC, including time delay,
Doppler shift, polarization, Angle of Departure (AoD) at the Transmitter (TX), and Angle of
Arrival (AoA) at the Receiver (RX), thus providing higher accuracy [35]. Moreover, simulators
can use ray tracing to model the temporal and spatial evolution of the channel, a necessary
feature for a proper planning of wireless systems. However, the generation of the MPCs can
be computationally expensive, limiting the scalability of simulations. It is thus fundamental to
find a compromise between accuracy and reliability, a research challenge that, to date, has not

9



Chapter 2

yet been thoroughly addressed in the literature.
As already mentioned in Chapter 1, the mmW is particularly prone to signal blockage due

to high propagation losses, high penetration losses, and deep diffraction shadows at these high
frequencies. While some studies have been done to this regard, detailed full-stack simulations
should better analyze what happens in case of sudden blockages, and how to recover from such
an event. While stochastic models can optionally include a concept of blockage, the reality is
often more complex and thus RT-based model should be used to more accurately model reality.
We propose a tool to integrate a pre-existing RT channel model with blockers interacting with
the radio environment. This, together with our RT channel integration on ns-3, will offer the
possibility to more accurately study these phenomena.

The remainder of this chapter is structured as follows. In Sec. 2.2 we review the most
relevant analytical, stochastic, and deterministic models for the mmW channel, describing the
basic mathematics behind channel modeling, with a focus on stochastic SCMs, deterministic,
and quasi-deterministic channel models. Furthermore, our proposal for a measurement-based
quasi-deterministic model will be described in Sec. 2.2.4 and compared against measurements
in Sec. 2.2.5.

Secondly, in Sec. 2.3 we will describe and analyze the simplifications brought upon the 3GPP
TR 38.901 channel model, focusing on the PHY layer metrics.

Thirdly, moving towards (quasi-)deterministic channel models, in Sec. 2.4 we describe the
proposed simplifications to be applied to the RT-based channel, providing both PHY layer
and end-to-end metrics, as well as thorough computational performance analysis and some RT
simulation guidelines.

Fourthly, in Sec. 2.5 we will introduce a currently ongoing project, still in its early stages and
with no publications available, yet. The project addresses the problem of modeling the impact
of second-order effects on mmW channels, specifically the susceptibility of the mmW signals to
physical blockers.

Finally, Sec. 2.6 concludes the chapter, listing our main contributions and suggesting some
relevant future works.

2.2 Channel Modeling at MmWaves

The modeling of the mmW channel, in terms of propagation and fading, has been a key research
topic in recent years [23]. Multiple measurement campaigns have tried to characterize the prop-
erties of the mmW spectrum in diverse scenarios and environments (e.g., urban [5], rural [36],
and indoor [35]), and have led to the definition of different channel models.

Comprehensive reviews, discussing propagation, fading, and beamforming models can be
found in [30, 37], while [38] specifically focuses on propagation loss. These efforts have identified
the key factors for an accurate modeling of the mmW channel. First, multipath components are
sparse in the angular domain, thus an accurate model should explicitly characterize the AoA
and AoD of the different taps. Moreover, blockage at mmWs has a more remarkable impact on
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the link dynamics than at sub-6 GHz, which should be accounted for. Finally, rough surfaces
could generate more diffuse scatterers than at longer wavelengths.

The aforementioned measurement campaigns have led to different modeling approaches for
the mmW channel, which have various degrees of complexity and accuracy, and can be applied to
different contexts and evaluations. In the next paragraphs, we will review three broad families,
i.e., analytical, stochastic, and quasi-deterministic channel models.

In general, when multi-antenna systems are considered, the channel is not modeled anymore
as a complex scalar time-varying impulse response h(t, τ), but rather by a matrix H(t, τ) ∈
CU×S , with S (U) being the number of antenna array elements at the transmitter (receiver).
Each entry (i, j) in the matrix H models the channel between two specific antenna elements,
and represents the joint effect of different MPCs. Each MPC is characterized by angles of
departure and arrival, power, and delay. The interaction with the antenna arrays can be
modeled by pre- and post-multiplying H by the beamforming vectors of the transmitter and
receiver, respectively [31].

Both simulators rely on the computation of the channel matrix H to describe the channel
obtained from the MPCs provided by the RT and QD. Given M rays, with path power gain
PGm, phase shift Φm, delay τm, and angles of departure AoDm and angles of arrival AoAm,
the matrix for the carrier frequency fc is computed as [37]

H =

M∑
m=1

√
PGm ej(−2πτmfc+Φm) a∗rx(AoAm)aH

tx(AoDm), (2.1)

where arx(θ) and atx(θ) are the receiver and transmitter array responses in the 3D angle θ,
(·)∗ is the conjugate operator, and (·)H is the Hermitian operator.

2.2.1 Analytical Channel Models

MmW analytical studies generally used simplified channel models, based on propagation and a
single random variable for fading, with Rayleigh or Nakagami-m distributions [29]. Moreover,
these are usually combined with a sectorized beamforming model for directional transmissions.
This accounts for the beamforming gain G by assigning a maximum gain GM to a main lobe,
of angular width θb, and a lower gain Gm for the simplified side lobes in the complementary
angular space [39]. This simplified model limits the accuracy in the representation of the
interaction between the mmW propagation, the realistic antenna arrays, and the beamforming
strategies [23].

2.2.2 Stochastic Spatial Channel Models

An improved characterization of the mmW channel can be achieved using stochastic Spatial
Channel Models (SCMs) [40]. For stochastic SCMs, the MPCs are generated from a set of
random distributions, whose parameters are determined by statistical fits on channel measure-
ments. The channel matrix thus has a stochastic nature, with the advantage that multiple
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instances can be randomly generated for generic, large scale scenarios.
An SCM is given by a propagation loss and a fading model. The first characterizes the Line-of-

Sight (LoS) state of the link (probabilistically or with a precise description of the environment)
and the average channel gain, with different equations for the LoS and Non-Line-of-Sight (NLoS)
conditions [38].

Notable examples of stochastic channel models are those derived from the WINNER and
the WINNER-II models [41], e.g., the 3GPP TR 38.901 channel model for 5G deployments [24].
These models have been extensively used in the performance evaluations of mmW networks [42],
and are also integrated with popular network simulators [43]. The NYU channel model for
28 GHz and 73 GHz is also based on a stochastic SCM [31].

2.2.3 Deterministic Channel Models

The stochastic nature of the aforementioned channel models makes them generic: they can
model a common rural or urban scenario, but not a specific scenario (e.g., Times Square in
NYC). Therefore, they do not accurately model the interactions of the mmW signal in a pecu-
liar deployment, and cannot be used for detailed planning and capacity studies in real-world
contexts.

As discussed in Sec. 2.1, RTs can, instead, provide extremely accurate propagation results
in a given environment, provided that its characterization in the simulation is accurate enough.
With respect to stochastic channels, an RT generates the exact MPCs that arise from a direct
or reflected propagation path in the scenario [33]. Ray Tracers have thus been the basis for
several performance evaluation studies at mmWs, e.g., [34, 44].

However, while being extremely precise, RTs models are also more computationally intensive
than stochastic models for the generation of a single channel instance, especially if the number
of scattering and reflecting surfaces in the scenario is large. A number of optimizations have
been studied for RTs in general [45]. Two main aspects are generally considered when trying
to enhance the RT performance [46]: (i) reducing the number of objects on which the ray-
object intersection test has to be performed, and (ii) accelerating the ray-object intersection
test. Space division methods [47] partition the elements of the simulation space into clusters
and perform the intersection test with the clusters rather than the single objects. Transmitter-
dependent methods exploit the knowledge of the transmitter node location to pre-process the
scene and discard obstacles that are not relevant to the simulation, such as non-illuminated
elements [48], obstructed angular sectors [49], and those reached by a negligible amount of
power [50]. Similarly, receiver-dependent methods reduce the number of required operations
based on the spatial distribution of the receivers [51]. Notice that both transmitter- and receiver-
dependent methods require the pre-processing to be performed whenever the reference node
moves, thus leading to a significant overhead in dynamic environments. Other techniques speed
up the RT’s performance by either preemptively performing an exhaustive simulation to produce
a coverage map for all the receivers’ positions [52], or interpolating the metrics observed between
a grid of simulated points [53]. Finally, [54] analyzes the performance of an RT as a function of
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the number of reflections, focusing only on the mean square error with respect to measurements
in different indoor locations.

To be more precise, RT is widely used to accurately simulate ElectroMagnetic (EM) prop-
agation in an environment whose geometry is described by a Computer-aided Design (CAD)
model [55]. This technique is based on the solution of Maxwell’s equations for the far field when
the operating frequency tends to infinity, where EM waves exhibit ray-like properties, i.e., the
flow of power propagates along straight lines and reflects specularly on flat surfaces. At mmWs,
where the wavelength of the signal is much shorter than the typical size of the reflecting obsta-
cles, ray tracing can therefore be used as a first approximation to model the propagation effects,
whereas secondary effects such as diffraction, diffuse scattering, polarization, and refraction,
should also be accounted for if a better accuracy is desired.

Some of these effects can be particularly significant in the propagation of mmW signals. In
this frequency band, the shorter wavelength leads to a higher effective roughness of the surfaces,
thus increasing the amount of scattered power and, consequently, the reflection loss. The effect
is twofold: on one side, higher-order reflections are expected to be weaker and thus affect the
communication less than at lower frequency but, on the other side, proper modeling of the
scattered rays should be taken into consideration [56]. Conversely, higher penetration loss will
reduce the received power in the cluttered areas, improving frequency reuse and reducing the
cross-interference between close-by radiators. Finally, diffraction shadows are deeper at higher
frequency, making diffraction a less prominent means of propagation in the mmW band.

For the results of this thesis, we use an open-source RT developed jointly by the SIGNET
group at the University of Padova∗ and the U.S. National Institute of Standards and Technology
(NIST)†. It uses triangles described in CAD files as the basic 3D surface element units, which
can then be combined to define complex shapes.

The RT only supports specular reflections and, optionally, diffuse scattering, ignoring effects
such as diffraction, penetration, and polarization. Specifically, polarization is not considered
to further simplify the software from the Fresnel equations. Thus, reflected rays experience
a 180◦ phase rotation and a random reflection loss RL whose detailed distribution has been
experimentally characterized and is reported in the material library available at [57].

Multiple network nodes, playing the roles of TXs and RXs, are modeled as points, and can be
deployed simultaneously, allowing the calculation of interfering channels. Furthermore, trace-
based mobility is supported, making it possible to create complex scenarios with multiple base
stations and mobile users. Given N nodes and t time steps, the simulator computes a channel
instance for each time step and for each node pair. Considering a symmetric channel for a given
node pair, tN(N − 1)/2 channel instances have to be calculated.

The RT uses the Method of Images (MoI) [55], a well-known method for ray tracing originally
adapted from geometrical optics [58] to be used in computer graphics and in the early works on
channel modeling for cellular networks [59]. The Method of Images (MoI) computes specular
reflections, assumed to be independent across time and node pairs. For the simplest case, i.e.,

∗http://signet.dei.unipd.it/
†https://www.nist.gov/ctl
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RX = RX(0)

TX = P(3)

RX(1)

RX(2)

P(2)
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Fig. 2.1: Visualization of the MoI algorithm for a second-order reflection (r = 2) [55].

first order reflections, it defines the virtual image of a node, for example the RX, to be a specular
image with respect to a surface. Formally, RX(1) is the specular image of the RX, defined as
RX(0), across the surface S. The specular reflection point P(1) between the RX and the TX
coincides with the intersection of the segment

(
RX(1),TX

)
with the surface S, as shown in

Fig. 2.1.
Since triangles are used as the basic surface units of the CAD environment, Si is the plane

generated by a given triangle Ti, i = 1, . . . , T , where T is the total number of triangles of the
CAD environment, and it must be verified that P(1) is a point within the area shaped by Ti,
otherwise the reflection will not be valid and will thus be discarded. Finally, every segment of
the ray, namely

(
RX(0),P(1)

)
and

(
P(1),TX

)
, has to be checked against the remaining triangles

of the environment Tj , j = 1, . . . , T, j ̸= i for obstruction. If any segment of the ray is
obstructed, the whole ray is considered obstructed and thus discarded.

The MoI applies recursively when multiple reflections are considered, computing the n-th
virtual image of the RX, RX(n), and the respective specular reflection point P(n) as shown in
Fig. 2.1. Thus, for each ray of reflection order r > 0, r geometrical operations must be done to
compute the ray path and, if the ray is valid, each of the r+1 segments needs to be checked for
obstruction over the T − 1 triangles of the CAD environment. Summing the geometrical and
the obstruction-check operations, the number of operations per ray is thus

nray(r) = r + (r + 1)T, T ≫ 1. (2.2)

To compute all possible reflections between a given node pair, all possible paths have to be
computed and tested for obstruction. Considering increasing reflection orders, the first one to
be tested is the direct ray, i.e., the segment (RX,TX). Subsequently, all first order reflections
are computed, i.e., those rays starting from the TX, reflecting off a triangle Ti, i = 1, . . . , T

and reaching the RX. Then, second order reflections starting from the TX, reflecting first on
triangle Ti1 , i1 = 1, . . . , T and then on triangle Ti2 , i2 = 1, . . . , T, i2 ̸= i1 to finally reach the
RX, and so on up to a maximum reflection order R.

All the reflections can be encoded in a reflection tree, as represented in Fig. 2.2, where each
node of the tree corresponds to a possible ray, the node depth corresponds to the reflection
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Fig. 2.2: Example of reflection tree for R = 2 (see the visibility tree from [60]). The highlighted path of depth
d = 1 corresponds to a ray that starts from the TX node and reflects on triangle T2 before possibly reaching
the RX node.

order r starting from 0 at the root of the tree, and the path starting from the root describes
the ordered tuple of reflecting triangles to be tested. The reflection tree is a simplified concept
with respect to the visibility tree described in [60]. The added flexibility, and thus complexity,
introduced by the triangular tessellation is able to support fine details in a scene, but computing
whether all pairs of triangles are in mutual LoS requires a significant overhead and was thus not
implemented. Instead, we implement only a basic visibility algorithm, able to pre-process the
scenario and discard interactions between triangles which are trivially not in LoS. The model
discards all interactions between a given triangle Ti and all other triangles {Tj}, j ̸= i, which
are fully behind Ti, exploiting the directionality of a surface as is typical for CAD models.

The complexity of a single channel instance nch(r), then, is determined by the total number
of operations required for all the nodes of the reflection tree, where we consider the upper bound
given by the total number of triangles ignoring the visibility pre-processing step. At depth r = 0

we consider only the direct ray, at depth r = 1 we consider the T possible first-order reflections,
then, in general, at depth r ≥ 2 we consider T (T − 1)r−1 < T r possible r-order reflections.

Thus, combining the geometrical complexity nray(r) derived in (2.2) with the upper limit of
the reflection tree depth (T r), the number of operations per channel instance nch(r) considering
only reflection order r is upper bounded as

nch(r) ≤ nray(r)T
r = (r + (r + 1)T )T r. (2.3)

Then, considering the reflection order up to R, the overall number of operations nch required
by the MoI to compute a channel instance between a pair of nodes is:

nch =

R∑
r=0

nch(r) ≤
R∑

r=0

(r + (r + 1)T )T r

= T

R∑
r=0

T r + (T + 1)

R∑
r=0

rT r.

(2.4)

The first term is a truncated geometric series and the second is a special case of (truncated)
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arithmetic-geometric series, known as Gabriel’s staircase, that can be solved as follows:

nch ≤ T
TR+1 − 1

T − 1
+ (T + 1)

T (RTR+1 − (R+ 1)TR + 1)

(T − 1)2

∼ TR+1 +RTR+1 for T ≫ 1

(2.5)

thus denoting a complexity per channel instance equal to O
(
RTR+1

)
, and a total complexity

for N nodes and t time steps equal to O
(
tN2RTR+1

)
. The last step in (2.4) is justified by

considering that typical values for R and T are in the order of 1–4 and 100–10 000, respectively,
thus making T the dominating term in the formula.

2.2.4 Quasi-Deterministic Channel Models

Although RT is an extremely powerful and flexible way of modeling the wireless channel, con-
sidering only the deterministic components of a channel might not always be enough. Minute
details of the environment, unexpected objects, and even the surface roughness of some materi-
als can easily increase the complexity of the mmW channel, needing more rays which are hard
of even impossible to predict.

In Sec. 2.4, the contribution of diffuse components will be evaluated, which alone can ac-
count for up to 40% of the total received power according to measurement campaigns [35]. The
stochastic model for diffused rays is based on the specifications proposed for IEEE 802.11ay chan-
nel modeling [61] and its parameters are obtained from accurate measurement campaigns [35].
Further details are given in [62].

In this section, we will provide a step-by-step tutorial on how to generate a channel with a
QD model, with a precise and rigorous mathematical formulation.

The QD model considers as a basis a deterministic channel described in Sec. 2.2.3, which
can be computed through ray tracing for time t, given an environment geometry, and TX and
RX positions [33]. The computed Deterministic Rays (D-rays) will then be the baseline for
the multipath components randomly generated by the QD model. If present, the direct ray is
treated separately as it does not generate any diffuse component.

The QD model can be realized from the model for a first-order reflection and from it general-
ized to higher-order reflections. For reasons that will become clear later on, we define the instant
in which the direct ray should arrive at the RX (even if it is actually blocked) as t0 = t+ tdir,
where tdir = d(TX,RX)

c , and c is the speed of light. From now on we will consider a frame of
reference in the variable τ relative to time t0, where τ = 0 corresponds to t0. Given this choice,
the direct ray, if it exists, will arrive at time τ = 0, whereas the reflected D-rays will arrive at
times τ > 0.

First-order reflections In this section, we will provide a step-by-step tutorial on how to
generate a channel with a QD model, with a precise and rigorous mathematical formulation.
The pseudo-code for this algorithm is reported in Alg. 2.1, while a graphical representation of
the parameters is shown in Fig. 2.3.
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Fig. 2.3: Graphical representation of the QD parameters. The D-Ray is shown in black, while realizations of
pre- and post-cursors are shown in blue and red, respectively.

Statistics for all rays are assumed independent of their arrival time. We thus consider,
without loss of generality, a single reflected D-ray with arrival time τ0 > 0, path gain PG0, AoD
along the azimuth/elevation axes AoDaz/el,0, and AoA AoAaz/el,0. The same procedure will be
repeated for all other reflected D-rays.

A cluster can be defined as the set with a D-ray and the corresponding MPCs. The total
number of MPCs of a given cluster will be NMPC = Npre + 1 + Npost, including pre-cursors
(i.e., diffuse components that are received before the D-ray), main cursor (i.e., the D-ray), and
post-cursors (i.e., received after the D-ray). Based on some experimental evidence, we suggest
to use Npre = 3 and Npost = 16, although these numbers may vary in different locations and
for different models.

The arrival times of the MPCs are modeled as a Poisson process, meaning that their inter-
arrival times are independent and exponentially distributed. Namely, the post-cursors arrival
times τi,post are random variables generated based on inter-arrival delays ∆i,post = τi,post −
τi−1,post as follows

∆i,post|τi−1 ∼ E(λpost), (2.6)

for i = 1, . . . , Npost, where the arrival rate λpost ∼ R
(
sλpost

, σλpost

)
is a random variable itself.

With slight abuse of notation, we consider τ0,post = τ0, i.e., the time of arrival of the D-ray.
Post-cursors arrival times are then computed as

τi,post = τi−1,post +∆i,post = τ0 +

i∑
j=1

∆j,post, (2.7)

for i = 1, . . . , Npost. Please note that random parameters such as λpost should be extracted
independently for each D-ray.

Pre-cursors will be similarly generated, with the difference that (2.7) will subtract inter-
arrival delay, thus making τi,pre < τ0 for i = 1, . . . , Npre.

Since the number of pre/post-cursors was empirically extrapolated from measured data
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Algorithm 2.1 Single Reflection QD Generator
1: function GetMpcsFirstReflection(Cursor: τ0, PG0,D, AoDaz/el,0, AoAaz/el,0, Material)
2: RL← R(sRL,Material, σRL,Material)
3: PG0 = PG0,D − (RL− µRL)

4: PreCursors ← ComputePre/PostCursors(τ0, PG0, AoD/AoAaz/el,0, Material)
5: PostCursors ← ComputePre/PostCursors(τ0, PG0, AoD/AoAaz/el,0, Material)

return PreCursors, Cursor, PostCursors

6: function ComputePre/PostCursors(τ0, PG0, AoD/AoAaz/el,0, Material)
7: λ← R(sλ,Material, σλ,Material)
8: ∆i ← E(λ), i = 1, . . . , Npre/post

9: τi = τ0 ±
∑i

j=1 ∆i ▷ Add for post-cursors, subtract for pre-cursors
10: Remove pre-cursors with τi < 0, update Npre/post

11: KdB ← R(sK,Material, σK,Material)
12: γ ← R(sγ,Material, σγ,materia)

13: σs,Material ← R
(
sσs,Material

, σσs,Material

)
14: Si ← N

(
0, σ2

s,Material

)
15: PGi = PG0,dB −KdB − 10 log10(e)

|τi−τ0|
γ + 10 log10(e)Si

16: Remove MPCs with PGi ≥ PG0, update Npre/post

17: σα ← R(µσα , σσα )

18: αAoD/AoA,az/el,i ← L
(
0, σ2

α

)
19: AoD/AoAaz/el,i ← AoD/AoAaz/el,0 + αAoD/AoA,az/el,i

20: Wrap angles in az = [0, 360), el = [0, 180]

21: ϕi ← U [0, 2π)
return (τi, PGi, AoD/AoAaz/el,i, ϕi)

from [35], during the QD model generation some of them may not follow some basic assump-
tions. For example, when a D-ray has a delay τ0 close to 0, some of its generated pre-cursors
might arrive before the direct ray itself. Since this situation cannot happen in the physical
reality, rays with τi,pre < 0 are removed and Npre is consequently updated.

The path gain of the D-ray is

PG0 = 20 log10

(
λc

4πℓray

)
−RLdB , (2.8)

where λc is the wavelength of the carrier frequency, ℓray is the total ray length, and RL ∼
R(sRL, σRL) is the random reflection loss factor given by the reflecting surface’s material. If
only the deterministic part of the ray-tracer is considered, the path gain PG0,D only includes
the mean reflection loss µRL.

Once the arrival times τi are known, the path gains for the MPCs can be computed as

PGpre/post,i,dB = PG0,dB −Kpre/post,dB+

−
|τi,pre/post − τ0|

γpre/post
(10 log10 e)+

(10 log10 e)Spre/post,

(2.9)

where

• Kpre/post,dB ∼ R
(
sKpre/post

, σKpre/post

)
is a loss factor,
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• γpre/post ∼ R
(
sγpre/post

, σγpre/post

)
is the power-delay decay constant,

• Spre/post ∼ N
(
0,σ2

s,pre/post

)
is the standard deviation of the power-delay decay, where

σs,pre/post ∼ R
(
sσs,pre/post

, σσs,pre/post

)
.

While Kpre/post,dB, γpre/post, and σs,pre/post are independent across clusters, and Spre/post is
independently extracted for each MPC.

Since the main cursor is the one with the maximum PG when extracting the statistics from
the measurements, MPCs with PGpre/post,i ≥ PG0,D are removed, updating, in this case,
Npre/post.

Finally, the angle of departure in azimuth (and similarly the AoD in elevation and the AoAs
in azimuth and elevation) of the MPCs are computed as

AoDaz,i = AoDaz,0 +αAoD,az,i, (2.10)

where αAoD,az,i ∼ L
(
0,σ2

αAoD,az

)
is the angle spread. The variance is itself a random variable

independently extracted for each cluster, i.e., σ2
αAoD,az

∼ R
(
sσ2

αAoD,az
, σσ2

αAoD,az

)
.

Finally, the phase shift ϕi due to both diffusion and Doppler shift is considered U [0, 2π)
independently for each diffuse MPC.

Higher-order reflections For the nth reflection order, with n > 1, multiple heuristics can
be thought of to compute the diffuse components. Unfortunately, the measurements taken and
the models adopted to process them do not allow for a reliable confirmation of the proposed
heuristics, but an extension to higher reflection orders is nevertheless needed for inclusion in a
generic ray-tracer.

The path gain for specular rays with n reflections is extended as follows:

PG0 = 20 log10

(
λc

4πℓray

)
−

n∑
i=1

RLi,dB , (2.11)

where RLi,dB ∼ R(sRL,i, σRL,i), and (sRL,i, σRL,i) refers to the statistics associated to the
material of the i-th reflector of the given ray.

We propose two simple heuristics: a complete multiple reflection QD model and a reduced
multiple reflection QD model.

Complete multiple reflection QD model Upon the first scattering event, all compo-
nents produced – both specular and diffuse – behave as independent components and their
remaining paths are traced accordingly. We assume that every diffuse ray closely follows the
path of the main cursor and further generates Npre +Npost diffuse MPCs at each bounce. The
total number of MPCs generated by a single deterministic rays at the n-th reflection will thus
be NMPC ∼ (Npre + 1 +Npost)

n.
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Algorithm 2.2 Reduced Multiple Reflection QD Generator
1: function GetMpcsMultipleReflection(Cursor, MaterialList, MaterialLibrary)
2: CursorOutput ← Cursor
3: for Material ∈ MaterialList
4: OtherMaterialsList ← MaterialList \ {Material}
5: PreCursors, PostCursors ← ∅
6: CurrentPreCursors, CursorOutput, CurrentPostCursors ← GetMpcsFirstReflection(CursorOutput, Mate-

rial)
7: PreCursors ← Concatenate(PreCursors, OtherMaterialsReflLoss(CurrentPreCursors, OtherMaterialsList,

MaterialLibrary))
8: PostCursors ← Concatenate(PostCursors, OtherMaterialsReflLoss(CurrentPostCursors, OtherMaterial-

sList, MaterialLibrary))

return PreCursors, CursorOutput, PostCursors

9: function OtherMaterialsReflLoss(Cursors, OtherMaterialsList, MaterialLibrary)
10: for Cursor ∈ Cursors
11: for Material ∈ OtherMaterialsList
12: RL← R(sRL,Material, σRL,Material)
13: Cursor.PG ← Cursor.PG + (RL− µRL,Material)

return Cursors

Reduced multiple reflection QD model In order to reduce the exponential complexity
of the complete model, the reduced model neglects diffuse rays beyond the first order given
their multiplicatively high attenuation. Instead, only diffuse rays generated directly by the
deterministic ray are taken into account, each generated with the QD parameters associated
to the impinging reflecting surface. Moreover, we assume that every diffuse component closely
follows the main cursor, thus reflecting on the same reflectors (see Alg. 2.2). Consequently,
every reflector produces Npre+Npost diffuse components, thus yielding a maximum of NMPC ∼
n(Npre + Npost) + 1, including the deterministic ray and possible rays discarded during their
generation (see Sec. 2.2.4).

2.2.5 Comparison of RT and QD Models with Measurements

Given the structure of this QD model, every material must have a set of parameters for it to
be appropriately simulated. It follows that given the CAD file of an environment, every surface
must be associated with a material with all the necessary simulation parameters taken, for
example, from a material library.

We report in the following tables examples of material libraries from NIST’s Lecture Room,
reformulating the mean and variance provided per material [35] into the s and σ parameters
needed to generate the random parameters of the model. Measured data were taken from
different TX positions pointing towards the center of the room, where a mobile RX sounder
moved around the tables. Specifically, as shown in Fig. 2.4, considering the bottom-left corner
as the origin (x0, y0, z0) = (0, 0, 0), TX1 is positioned in (2, 3, 2.5) m, TX2 in (8, 3, 2.5) m, TX3

in (8, 17, 2.5) m, TX4 in (2, 17, 2.5) m, and the RX performs a loop around the table.
Given that the channel sounder’s TX had a limited angular Field-of-View (FoV), it was

possible to characterize different surfaces, e.g., different walls by varying the TX positions
during the measurement campaign. The model parameters per position have been reformatted
accordingly in Table 2.1. Please note that, given the geometry of the room and the limited FoV,
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Fig. 2.4: CAD model of NIST’s lecture room. The 108 RX positions from the measurement traces are shown
in red. As an example, the direct and first reflection rays generated with the RT for TX1 and the specific RX
position are shown in black and blue, respectively.

it was not possible to properly characterize some materials, in particular the floor [35]. Since no
characterization was available from the measurements, no diffuse components were generated
and the statistics for the reflection loss were copied from the ceiling, as this is the most similar
material in the available library.

Fig. 2.5 shows an example of measured channel compared to the deterministic ray-traced
channel for the scenario of Fig. 2.4. As can be seen, the direct ray is correctly identified both in
the power-delay domain and in the angular domains, while other rays only partially resemble
the measurements. This is due to (i) the approximate CAD model which may be missing some
relevant reflectors and (ii) inaccuracies in the measurements.

While delays shown in Fig. 2.5a are in good accord between measurements and RT simulation,
path gains are less precise, due to the random reflection losses experienced by the rays. Notice
also that the TX only has antennas towards the front (as shown by the antenna pattern in
Fig. 2.5b), thus, rays predicted by the RT to depart with an azimuth angle between 135° and
315° were not part of the real measurements. Most of all, though, it is easily noticeable that
there exist clusters of rays well defined in the joint path gain, delay, AoD, AoA domain, and
are missing, instead, in the channel generated by the RT. Such clusters do not arise from higher
order reflections (not shown here), but rather from diffuse MPCs, thus highlighting the need
for a valid diffuse QD model.

Figs. 2.6 and 2.7 show how the proposed QD model enhances the realism of a purely deter-
ministic channel, making it significantly more similar to the measured one. Specifically, Fig. 2.6

22



Millimeter Wave Channel Modeling
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Fig. 2.5: Example of comparison between measurements and ray-tracer, based on the channel between TX1
and the RX shown in Fig. 2.4 in the bottom left corner of the loop. In a, τabs represents the absolute delay of
each ray. b and c show the 3 dB radiation patterns of the channel sounders described in [35] approximated with
Gaussian beams. In fact, MPCs outside of these regions are not detected in the measurements.

reports an example of a specific channel instance, based on the CAD model shown in Fig. 2.4
and for the same TX/RX locations of Fig. 2.5. With respect to the RT specular reflections from
Fig. 2.5, the deterministic rays (in orange), which are generated up to second order reflections,
also include a random reflection loss component in the path gain. The diffuse rays added to the
model are plotted in blue, with sizes proportional to the respective path gain. By comparing
Fig. 2.6 with Fig. 2.5, it is clear that the D-rays alone are not able to fully model the complexity
of a real channel, and that the proposed QD model can instead play an important role in this
regard. In fact, empirically, rays are parts of clusters with small variations in the angular and
delay domains, and large variations in the power gain domain.

Furthermore, the effects of the added rays are clearly shown in Fig. 2.7, which plots the
Cumulative Distribution Functions (CDFs) of the path gain (Fig. 2.7a), the absolute delay
(Fig. 2.7b), and the RMS delay spread (Fig. 2.7c), similar to the RMS angle spread shown
in [35], for the multipath components of the scenarios. The CDFs show the combined statistics
of the mmW channel between TX1 and 108 RX positions shown in red in Fig. 2.4). Notably, it

23



Chapter 2

D-Rays QD Components

50 100 150
−130

−120

−110

−100

−90

−80

τabs [ns]

P
at

h
G

ai
n

[d
B

]

(a) Path gain vs. absolute delay

0 45 90 135 180 225 270 315 360
−45

−30

−15

0

15

30

45

AoD Azimuth [deg]

A
oD

E
le

va
ti

on
[d

eg
]

(b) AoD

0 45 90 135 180 225 270 315 360
−45

−30

−15

0

15

30

45

AoA Azimuth [deg]

A
oA

E
le

va
ti

on
[d

eg
]

(c) AoA

Fig. 2.6: Reduced multiple reflection QD model applied to RT-based channel traces with up to 2nd order
reflections. Rays with path gain below -120 dB are not shown, to more closely resemble the dynamic range of
the channel sounder.

is clear how the delays and path gains generated with the proposed QD model are significantly
closer to the real measurements with respect to purely deterministic rays alone, with CDF fit
improvements from 73 % to 86 % (i.e., Kolmogorov-Smirnov (KS) test improvements of 0.13)
for the path gain, from 86 % to 89 % (i.e., KS test improvements of 0.03) for the absolute delay,
and from 33 % to 87 % (i.e., KS test improvements of 0.54) for the RMS delay spread.

Finally, the difference in RMS delay spread, especially when the QD model is not used, can
be due to the numerous reflections from objects which are not present in the CAD model but
are instead part of the measured scenario, e.g., chairs and other small details of the room.

2.2.6 Blockage in Millimiter Waves

With respect to the first project report, we further extended the literature review on signal
blockage characterization, especially in light of the implementation of a new software able
to process ray-traced channels to include obstructions (see Sec. 2.5 for further details). Our
experience on this software guided our review of the current state of the art, trying to find
works and standards describing reliable model(s) to be recreated in our simulator, rather than

24



Millimeter Wave Channel Modeling
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Fig. 2.7: Comparison between CDFs of MPC path gain, absolute delay, and RMS delay spread with and without
QD model with respect to the measurements.

focusing on theoretical or measurement-focused works.

ITU Recommendations We found several International Telecommunication Union (ITU)
Recommendations focusing on complex channel propagation, also in the mmW band. Specifi-
cally:

• Recommendation ITU-R P.526 [63]: it mainly discusses signal propagation over long
ranges, where the Earth curvature and buildings might create strong diffractions, making
the diffracted path one of the strongest components, at least for sub-6 GHz communica-
tions. It provides simple formulas to compute the Fresnel zones by approximating the
complex Fresnel integral

F (ν) =

∫ ν

0

ej
πs2

2 ds

generally used in diffraction calculations, and practical models for automated diffraction
loss calculation of a generic path (based on the Bullington model [64]). The Recommen-
dation includes detailed formulas and pseudo-algorithms, which should make a practical
implementation fairly easy. Unfortunately, it is not specifically tailored to mmW com-
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munications, nor does it include typical higher-frequency propagation phenomena such as
human blockage, often modeled using Double Knife-Edge Diffraction (DKED).

• Recommendation ITU-R P.833 [65]: it provides practical models for both single vegetation
obstructions (mainly using DKED, referencing the model in [63] for detailed diffraction
formulas) and woodlands (based on stochastic models). Depolarization and dynamic ef-
fects (e.g., wind on vegetation causing highly dynamic fading) are also described. The
frequency ranges from 30 MHz to 100 GHz, making the model suitable for mmWave
communication. Furthermore, the Recommendation incorporates several tables with pa-
rameters for different types of vegetation, allowing the end user to diversify the vegetation
in a given scenario.

• Recommendation ITU-R P.1238 [66]: it mostly describes stochastic models for indoor
propagation for frequencies between 300 MHz and 450 GHz. The possibility of modeling
specific environments using ray-tracing is also discussed. Specifically, given the nature
of the wireless channel in indoor environments, the Recommendation suggests to also
include diffraction to properly characterize the channel. Sec. 9 discusses the effects that
moving objects in the room might have on the channel, together with a stochastic model
accounting for human interaction over long periods of time.

• Recommendation ITU-R P.1410 [67]: it provides a very detailed measurement-based
model for terrestrial broadband radio access systems operating in a frequency range from
3 to 60 GHz. It also refers to [65] to include an accurate vegetation model. Furthermore, it
describes reflection, scatter loss, and diffraction with ready-to-use formulas for implement-
ing a Radio Frequency (RF) ray-tracing software. Finally, it includes stochastic models
for transmission-through-buildings and precipitation loss.

• Recommendation ITU-R P.2040 [68]: it provides an overview of building materials and
their effects on propagation, specifically transmission and reflection losses. Electric param-
eters for many common building materials are also included, allowing the user to include
this level of details into a ray-tracing software, and while designing a CAD environment.

METIS project Another prominent source of models was provided by the Mobile and wire-
less communications Enablers for the Twenty-twenty Information Society (METIS) project, as
summarized in the following items.

• METIS Channel Models [69]: Sec. 6 shows a step-by-step algorithm to implement an
RT-like map-based channel model. Specifically, Step 7 of Sec. 6 discusses the Knife-Edge
Diffraction (KED) model and provides equations to compute it precisely. Step 10 pro-
vides two alternative methods for multiple diffractions: a first option uses Berg’s recursive
model [70], while a second possibility is given by Uniform Theory of Diffraction (UTD)
formulas. Step 11 discusses isotropic scattering and scattering from large rough surfaces
(e.g., buildings facades). Furthermore, Secs. 8.2 and 8.3 give further guidelines for the
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correct usage of the map-based and the hybrid METIS Models, as well as technical details
about the map-model scenario in Appendix C. In the appendices, some relevant scenar-
ios are also discussed, such as a body blocking scenario (Appendix A.4.3), and detailed
propagation scenarios (Appendix B).

• METIS Simulation Guidelines [71]: Secs. 4 and 9 list a number of simulation scenarios.
Sec. 9.2 is especially interesting. Specifically, a scenario called “Dense urban information
society” is described, together with traffic models, user distribution and mobility, and
base station deployment options.

3GPP Model Notably, the 3GPP channel model [24] refers to the METIS project for propos-
ing a map-based hybrid channel model, using [69] for the deterministic component of the channel,
and adding its stochastic model based on random clusters of rays. The standard also suggests
a number of references to compute the different propagation interactions, such as free-space
LoS [72], geometry and power computation of specular reflections [73], diffraction geometry [74]
and power computation [75], wall penetration geometry [76], and power computation [73]. The
METIS project [69] is also referenced to for the computation of scattering upon small objects,
considering both isotropic scattering and Radar Cross-Section (RCS) scattering.

The 3GPP channel model [24] also includes possible blockage models. It proposes a stochas-
tic blockage model (Blockage model A) where random rectangular regions are blocked, also
considering temporal and spatial correlation for completeness. It also suggests a geometric
blockage model (Blockage model B) where rectangular screens are deployed, specifying their
relative dimensions and mobility patterns. In both cases, a KED at four edges is defined, using
the arctan approximation for the diffraction loss.

Scientific literature Looking through scientific conference proceedings, journals, and
Ph.D. dissertations, we found several works on the topic, although harder to implement and
usually very specific and hardly generalizable.

We explored a Ph.D. dissertation focusing on radio channel simulation [77], even though its
extremely theoretic formulation makes it hard to extract a practical low-complexity computa-
tional model. Still, the author assesses the validity of the KED model when the obstacle is
narrow enough, using specific solvers for Maxwell’s equations.

In [78], the authors show measurements taken at 10.5 GHz in which a metal cylinder affects
the radio channel similarly to a human body. This result justifies the usage of such a simple
model in practical simulations rather than modeling a detailed person, a significantly harder
task to perform and with a much higher computational cost.

The authors of [79] define virtual scattering centers to model scattering from a vehicle. Thus,
rather than introducing a complex model with a high polygon count, they propose to reduce
the complexity of simulations involving cars by only considering a few key points producing
scattering, e.g., wing mirrors.
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In [80], the authors describe the KED model in detail. Related work [81] further explores the
impact of human blockage on the channel model specifically proposed for IEEE 802.11ad [82],
based on measurements at 60 GHz.

In [83] the authors propose a low-complexity Fourier-based model for modeling human block-
age, which produces a shadowing loss closer to the Fresnel formulas for DKED than the simpler
arctan model.

Furthermore, the authors in [84] analyze accurate measurements of human body blockage
at 60 GHz and showed that, when an obstacle is close to the path of the direct ray, it also
creates a strong reflected ray, thus acting as a 2-ray propagation model. Electrical parameters
for the three persons performing the experiment were estimated and provided. The authors
also modified the DKED model to better fit the measurements, although the proposal can
hardly be generalized, as the model varies as a function of the separation distance between the
communicating nodes: however, numerical results are given for distances equal to 4, 6, and 8 m.

Unfortunately, the literature did not provide any reference to the effect of obstructions on
reflected rays. We might try to fill this gap by studying ourselves the impact of modeling
obstructions and diffractions also for secondary rays; we will investigate whether this makes
sense, also in view of the higher computational complexity expected to perform such task.

2.3 Simplification of a Stochastic SCM: 3GPP TR 38.901

In this section, we investigate whether it is possible to simplify the structure of the widely
used 3GPP stochastic SCM [24] without compromising the accuracy with respect to the orig-
inal model, used as a baseline. First, we profile the computational complexity of the model
in Sec. 2.3.2 and show that the computations with complex values related to the generation
of steering vectors are the main factor that affects the time to generate an instance of the
SCM channel. We then proceed to simplify these calculations by removing clusters and sub-
paths (i.e., spatial components of the channel) and comparing the performance of the baseline
and simplified models in Sec. 2.3.3. We show that some metrics (e.g., the distribution of the
Signal-to-Interference-plus-Noise Ratio (SINR) in a typical 3GPP scenario [24]) are not (or only
marginally) affected by this simplification, while the channel generation time reduces by up to
12.5 times. We also highlight the limitations that such a simplification introduces, and give
insights on when it may be legitimate to use the simplified version of the model.

2.3.1 An Introduction to 3GPP TR 38.901

The entry (i, j) of the channel matrix at a given tap delay is given by the combination of N

clusters, which model different angular components of the channel between the two transceivers.
The power of each cluster is modeled through an exponential power delay profile, which depends
on the delay with which each of the different clusters arrives at the receiver. Therefore, the LoS
path (if present) is the strongest cluster, associated to the minimum delay, followed by several
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reflections. Additionally, each cluster can be modeled by the superposition of M subpaths∗,
which are distributed with certain statistics around the AoA and AoD of the cluster.

A single realization of the matrix H depends on the combination of large scale and fast fading
parameters. The first have an impact on the power delay profile, the angular distribution, the
relative strength of the LoS component with respect to the NLoS reflections, and the shadowing.
Large scale parameters generally depend on the scenario that is being modeled. Fast fading,
instead, models small variations in the channel, e.g., the Doppler spread introduced by the
user mobility. The actual parameters may vary in different SCMs, and are generally expressed
through random distributions that fit data collected in measurement campaigns.

2.3.2 Analysis and Profiling

In order to proceed with the simplification of the model, an initial analysis is necessary to under-
stand which are the most computationally demanding steps in the channel generation process.
To remove the dependency on the implementation as much as possible and decouple the model
complexity from the implementation inefficiencies, a 3GPP-compliant [24, 85] network simula-
tor was designed and optimized. With this tool, we verified experimentally that the channel
matrix generation takes up to 90% of the simulation time (the remaining overhead is given by
the scenario definition, user mobility, beamforming vector computations, statistical computa-
tion, among others). Although the performance is implementation-dependent, analyzing how
the computation of the different parts contributes to the overall simulation time allows drawing
general conclusions.

When antenna arrays are considered, the channel model can no longer be expressed through
a time-varying scalar impulse response. Rather, as discussed in Sec. 2.3.1, the channel response
is enclosed in a matrix that associates each of the S elements of the transmitting array, to
each of the U elements of the receiving array. As channel models generate a number of rays
coming from different directions, a way to translate such directionality into the definition of the
channel matrix is needed. Considering a narrow-band signal and a small-aperture antenna, the
incoming signal seen from the point of view of any given antenna element will be a phase-shifted
copy of the original signal. Steering vectors are used to represent this phase shift over all array
elements and are thus composed of complex phase shifts. Please note that this concept is valid
for clusters incoming (or departing) from any direction and for arbitrary arrays. As mmW
use cases are expected to be mainly focused on arrays with tens or hundreds of antennas, the
code has been optimized for such scenarios, partially degrading the performance when a small
number of antennas (e.g., one at both transmitter and receiver) is used.

Our profiling highlights that the computations related to steering vectors and their combina-
tion are the most time-consuming part of the generation of an instance of the matrix representing
the 3GPP channel, as reported in the Computations entry in Fig. 2.8. For a channel with a single
element (i.e., H ∈ C1×1), the computation takes 79.42% of the time. This percentage increases

∗The 3GPP specifications refer to subpaths as rays.

29



Chapter 2

2.07 ms 4.74 ms 67.7 ms

0

20

40

60

80

100

1 × 1 1 × 256 16 × 4096
0

20

40

60

80

100

Number of antennas elements [RX × TX]

T
im

e
[%

]

Computations
Random Variables
Other

Fig. 2.8: Results from the profiling of the 3GPP channel model described in 3GPP TR 38.901, for different
square antenna arrays at the transmitter and the receiver. We report the percentage of different tasks related to
the channel matrix generation, and the absolute execution time above each bar. The Computations term only
includes operations related to steering vectors, whose complexity increases with the channel matrix’s size. As
the size of the channel matrix increases, operations with complexity proportional to its size dominate over the
overall generation time.

up to 90.38% for the largest antenna array configuration we consider (i.e., 16 × 4096).∗ The
generation of random variables, such as the cluster powers, the delays, the sub-paths’ angles, the
phase shifts, and the AoA/AoD coupling, is instead negligible, particularly when large arrays
are considered (0.27% for the 16 × 4096 configuration). On the contrary, the code overhead,
composed of sub-routine calls and all other operations, is significant and does not considerably
depend on the array size.

As the Computations entry is related to the generation and combination of the steering
vectors, it is proportional to the number of clusters and subpaths that are generated and
combined: the richer the channel, the slower this computation. For example, as reported
in Fig. 2.8, a channel with a single entry would take up to 1.64 ms to perform the computations
for a total of 2.07 ms, while for the largest antenna configuration, yielding the largest channel
matrix, computations take 61.19 ms for a total of 67.7 ms.

2.3.3 Channel Simplification Results

As shown by the analysis in Sec. 2.3.1, reducing the number of clusters and subpaths can be
beneficial in terms of simulation time. Nevertheless, changes in the channel model may affect
or even compromise its reliability, depending on the application. In this section, we analyze
the effects of the simplification on the network statistics obtained from the network simulator
described in Sec. 2.3.2. The models with the original number of clusters and sub-paths were
considered as baselines with which to compare the effects of the simulations, i.e., we do not
provide in this thesis a direct comparison with ground truth measurements. Thanks to the

∗Notice that the dependence between the number of antenna elements and the Computations entries is not
linear, as MATLAB introduces optimizations for large matrices.
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flexibility of our simulator, it was possible to perform the tests on different configurations of the
3GPP channel model while keeping the same settings for the cellular scenario. For this study, a
3GPP-compliant Urban Macro (UMa) downlink scenario is considered [24]. Similar results can
also be obtained for other scenarios.

The 3GPP channel model differentiates among three states of the channel, namely LoS, NLoS,
and Outdoor-to-Indoor (O2I). Different channel states correspond to a different number N of
clusters, whereas the number of sub-paths per cluster M = 20 is kept fixed for all propagation
conditions. As per [24], NLoS = 12 clusters are present in LoS, NNLoS = 20 in NLoS, and
NO2I = 12 in O2I channel conditions, in short N = 12/20/12.

We followed two complementary simplification strategies: on one hand, reducing the number
of clusters, and on the other hand, reducing the number of sub-paths per cluster. Indeed, it
was possible to vary the latter from M = 20 to M = 1, corresponding to a cluster with only the
main path and no sub-paths. On the contrary, in [24], the azimuth and elevation angle spreads
are specified only for some specific cluster configurations, and cannot be trivially interpolated
to extract the parameters for the configurations that are excluded from the model. Therefore,
this limits the extension of our simplification to clusters. Specifically, the channel model was
complete enough to allow only a maximum reduction down to NLoS = 8, NNLoS = 8, NO2I = 8,
besides the default one.

Considering the different contributions to the computational complexity discussed in Sec. 2.3.2,
the speed-up factor should be proportional to the reduction of the overall number of clusters
and/or sub-paths. However, several additional aspects need to be taken into account, making
the dependence on the number of clusters and sub-paths not necessarily linear. Particularly,
decreasing N for one channel state will contribute proportionally to the number of users that
are in that propagation condition. In the considered scenario, which follows the specifications
in [24], 80% of the users, being indoor, are in O2I conditions, making NO2I the most significant
term to reduce. Moreover, depending on the implementation and on the initial access policy,
one may need to consider only the users who are connected to a Next Generation Node Base
(gNB), adding a further layer of complexity to these considerations. In our simulator, the at-
tachment is purely based on the combination of pathloss and shadow fading, and the channel
is computed only for the users that successfully connect to a gNB.

We evaluated the various (N,M) configurations for different array sizes, two for the User
Equipments (UEs) and five for the gNBs, to test our approach in multiple settings. Array sizes
were chosen following typical values found in the literature, and scenarios with both single- and
multi-antenna UEs were tested. In Figs. 2.9a and 2.9b, the generation time and speed-up factors
with respect to the baseline configuration N = 12/20/12 are shown. The generation time of a
single channel matrix was reduced by a factor up to 12× for a single-antenna UE, going from
18.75 ms to 1.49 ms. Note that, according to the aforementioned considerations on the channel
state distribution, the speed-up factor is not necessarily proportional to the reduction of the
number of clusters.

We evaluated the effects of the simplifications on (i) the narrowband SINR, given its rela-
tion with channel capacity; (ii) the wideband Signal-to-Interference Ratio (SIR); and (iii) the
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Fig. 2.9: Computation time required to generate an instance of the channel matrix (a) and performance gain
introduced by the simplification (b), as a function of the number of antenna elements at the gNB, for different
configurations at the UE and different combinations of simplification parameters for the channel.

distribution of the singular values of the channel matrix, to show how spatial multiplexing is
affected by our channel simplification. Defining Prx,t,r, PN and Itot,t,r as the powers of the
received signal, the noise and the interfering signals, respectively, the narrow-band SINR, com-
puted after the optimal Singular Value Decomposition (SVD)-based SISO beamforming, can be
expressed as

Γt,r =
Prx,t,r

PN + Itot,t,r
, (2.12)

where Prx,t,r = Ptx,t w
T
t,rHt,rwr,t, with Ptx,t the transmit power of device t, wi,j the beam-

forming vector used by device i to communicate with device j ; PN = N0BF , with N0 the
noise power spectral density, B the communication bandwidth, and F = 10

NF
10 the noise figure

of the receiver; Itot,t,r =
∑

m̸=t Ptx,m wT
m,∗Hm,rwr,t, with wi,∗ used with abuse of notation to

indicate the beamforming vector used by device i to transmit towards a connected device, or 0

if i is not transmitting.
The wide-band SIR is defined as

ξ(f) =
|Hrx,t,r(f)|2∣∣∣∑Ninterf

i=1 Hinterf,i(f)
∣∣∣2 , (2.13)

where Hrx,t,r(f) is the receiver’s channel frequency response and Hinterf,i(f) are the channel
frequency responses from the Ninterf interfering base stations to the receiver.

For the wideband case, following [86], we consider two metrics that measure the impact of
fading on the performance of the system. The Level Crossing Frequency (LCF) is defined as the
fraction of Orthogonal Frequency Division Multiplexing (OFDM) subcarriers∗ in which the SIR
ξ(f) (as a function of frequency) crosses a given threshold ξth in the upward (or equivalently

∗In our scenario, we consider a total bandwidth of 100 MHz, with subcarrier spacing equal to 60 kHz, as
specified by the 3GPP for calibration at 30 GHz [24].
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Fig. 2.10: Cumulative Distribution and Probability Density Functions of the narrowband SINR Γ of a scenario
composed of UEs and gNBs with 16 and 64 antenna elements, respectively.

downward) direction. The Average Fading Bandwidth (AFBW) is defined as the average width
(in kHz) of contiguous chunks of the overall bandwidth for which the envelope of ξ(f) stays
below a given threshold ξth.

Results show that narrow-band statistics are not affected by the channel simplification
(Fig. 2.10), whereas the wide-band ones are only slightly affected by it. It is interesting to
notice how, considering N = 12/20/12, M = 20 as the baseline, removing clusters almost does
not affect the AFBW (Fig. 2.11a) while, on the contrary, the removal of sub-paths does not
significantly affect the LCF (Fig. 2.11b). From Fig. 2.12 it can be noted that the mean ratio of
the singular values of the channel matrices, while being the most diverging metric shown, still
does not significantly differ from the baseline. The first singular value of the baseline model,
however, is 14% smaller than that of the simplified channel. In any case, differences between
the baseline and the most simplified channel (i.e., N = 8/8/8,M = 1) only have a minor effect
on most metrics while speeding up the simulation by a factor of 10.

Thus, as shown by these results, reducing the number of clusters and sub-paths to the
minimum allowed by the parameters found in [24] does not significantly change the system
performance, while obtaining significant reduction of the computations. Unfortunately, it is not
possible to push the simplification even further, while following the constraints of the parameters
in the 3GPP specifications.

2.4 Simplification of an RT-based Channel Model

The accuracy of the MoI-based ray-traced channels – especially when considering the QD model –
comes at a high computational cost, which may limit the scalability of the simulations, especially
when considering a very large number of devices. In this perspective, the main objective of this
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work is to evaluate how channel simplifications affect the results of link-level and network-level
simulations while speeding up the overall simulation runtime. In this section, we present two
techniques that were designed with this objective in mind [32]:

• Maximum Reflection Order Reduction. The overall computational complexity of a simu-
lation of N TX/RX nodes lasting t time steps in a scenario composed of T triangles when
considering up to R reflections is O

(
tN2RTR+1

)
. In this approach, t and N are simu-

lation parameters set by the user, T is determined by the CAD model of the simulated
environment, while the maximum reflection order R for the ray tracing depends on the
channel model. Understanding how different values of R affect the lower- and higher-layer
performance metrics of the network with respect to the model complexity is the core of
the first simplification strategy proposed in this work.

• MPC Thresholding. The second technique aims at reducing the number of rays between
a pair of nodes. Specifically, given a set of M rays connecting two nodes, we propose and
evaluate a selection criterion that decreases the number of MPCs to M ′ < M , to reduce

34



Millimeter Wave Channel Modeling

the overall simulation time. This operation is applied on a time-step basis.

The rationale behind both strategies is to decrease the number of MPCs by removing the least
significant ones, i.e., those with the lowest power, as they are expected to provide a limited
contribution to the overall received signal strength.

Maximum Reflection Order Reduction Each reflection of the MPCs on a surface is
associated to a partial power loss and an increased path length, translating into a higher path
loss. Namely, from (2.11), the path gain for a ray reflected on r surfaces is

PGdB = 20 log10

(
λc

4π
∑r

i=1 ℓi

)
−

r∑
i=1

RLi,dB, (2.14)

where ℓi is the length of the segment associated with the i-th reflection. The summation is
decomposed into two terms to underline the different contributions: both the path length
and the reflection losses degrade the path gain when the reflection order increases. Therefore,
it is reasonable to assume that MPCs that bounce across multiple scattering surfaces have
a low contribution to the overall received power, and can be omitted from the RT compu-
tations. Setting the maximum reflection order to R′ < R, the RT complexity is decreased to
O
(
tN2R′TR′+1

)
< O

(
tN2RTR+1

)
with significant savings in terms of computation time, given

the super-exponential dependency of the complexity on R.

MPC Thresholding Besides the reflection order, there are other elements that contribute
to reducing the MPC path gain. For example, even if R is small, in large scenarios surfaces that
are located far from the TX and RX nodes are associated to MPCs with longer path lengths
(i.e., the first term in (2.14)). As the path gain from these scatterers is much smaller than
that from close-by reflecting surfaces, it is possible to prune them from the list of MPCs to
compute. At the same time, it is possible that some MPCs can be pruned regardless of the
distance between the signal source and the detector, if the path gain falls below a minimum
threshold as a result of an excessive reflection loss (i.e., the second term in (2.14)), e.g., when
the signal propagates in NLoS.

For these MPCs, the path gain plays a key role and can thus be used as an indicator to
perform the selection of the most significant rays. Specifically, the selection is performed at
each time step considering a threshold γth in dB units, according to the following rules:

• the strongest ray is identified, regardless of whether it is obstructed, and the corresponding
path gain PGstrong, dB is computed;

• all the other MPCs are identified. Note that PGi,dB < PGstrong, dB for every MPC i.

• the selection is carried out discarding every MPC i such that PGi,dB−PGstrong, dB < γth.

While being more general than the previous approach, as it identifies directly the weakest,
least significant rays, this strategy requires the computation of all the geometric paths in order
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Tab. 2.2: Characteristics of the simulated scenarios. Other important simulation parameters are the bandwidth
B = 400 MHz, and the noise figure NF = 9 dB. All nodes of a given scenario transmit with the same power Ptx

and carrier frequency fc.

Indoor1 L-Room Parking Lot

Time steps t 3 133 3 831 13 579
LoS 3 3 3

NLoS 7 3 3
Environment Indoor Indoor Outdoor

RX speed 1.2 m/s 1.2 m/s (1.2, 4.17) m/s
Interferer 7 3 3

T 12 16 755
PTX 20 dBm 20 dBm 30 dBm
fc 60 GHz 60 GHz 28 GHz

to obtain the path gain list. However, this method, which removes (M − M ′) rays, eases the
load on the subsequent RT operations, i.e., the obstruction check, reducing by a factor of M−M ′

M

the complexity of each time step. In fact, following the same logic as in Sec. 2.2.3 for every ray
of reflection order r, after the r geometrical operations required to compute the path of the ray,
none of the (r+1)T obstruction checks are performed if the ray is discarded. Updating (2.4) with
r ≥ 0 instead of r+(r+1)T operations per ray, the complexity can be reduced to O

(
tN2RTR

)
and thus by a factor up to T . Note that, whereas this approach achieves a constant factor
improvement, T can be in the order of tens to thousands, depending on the details included in
the CAD file and on the adopted triangulation, thus dominating the complexity expression.

Absolute thresholding can also be used to limit the number of extremely weak rays similarly
to the previous technique. This approach can be useful when considering high values for R, low
values for γth, and especially when using the QD model. In this case, setting a conservative
threshold Γth, every MPC i such that PGi < Γth is discarded.

The complexity of the RT can be significantly reduced thanks to the removal of MPCs and
to the reduction of the maximum reflection order R. On the other hand, these simplifications
degrade the accuracy of the simulation results at the different levels of the network stack. In the
remainder of this thesis, we will quantify this trade-off for three realistic propagation scenarios.
The overall end-to-end network performance and the runtime of the simplified RT settings will
be compared with those of the complete, non-simplified channel traces.

2.4.1 Simulation Scenarios

This section reports the details of an extensive performance evaluation aimed at understanding
the impact that the simplifications introduced in Sec. 2.4 have at different layers of the protocol
stack. We first describe the scenarios and tools used for the performance evaluation (Sec. 2.4.1),
then the link and higher layer performance (Secs. 2.4.2 and 2.4.3, respectively), and conclude
with the computational performance given by the simplifications (Sec. 2.4.4) and guidelines for
the most efficient design configurations (Sec. 2.4.5).

Three representative scenarios with distinctive features have been selected to make the per-
formance evaluation as general as possible. Their main characteristics are hereby described and
summarized in Table 2.2. Without loss of generality, only downlink channels are considered.
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Fig. 2.13: Visual representations of our simulation scenarios. Distances are measured in meters.
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1. Indoor1: The most basic scenario, with a rectangular room (see Fig. 2.13a) of size 10 m×
19 m × 3 m. The TX is positioned close to the ceiling at (5, 0.1, 2.9) m. The RX, at
height 1.5 m, moves away from the TX at a speed of 1.2 m/s along a straight line. This
scenario was deliberately designed to be simple, to analyze the propagation characteristics
simulated by the RT focusing on the received power pattern when different simplifications
are used;

2. L-Room: An L-shaped hallway (see Fig. 2.13b). A static TX, placed at (0.2, 3, 2.5) m,
transmits to the reference RX that moves away from it at a speed of 1.2 m/s across
the corridor. The shape of the room is such that the RX is in NLoS condition for a
significant portion of the path. In order to analyze the impact of interference on the
network performance, a second TX, placed at (8, 18.8, 2.5) m and acting as interferer,
communicates with an RX at (9, 3, 1.5) m. Furthermore, the shape of the room plays an
important role when comparing the proposed simplification techniques, as it may create
blind spots where little or no signal is received;

3. Parking Lot: The only outdoor scenario, representing a parking area of about 120 m×70 m
enclosed by buildings (see Fig. 2.13c). The reference TX, located at (40, 55, 3) m, transmits
from an access point placed at 3 m height on a building to the RX, which moves initially
at a speed of 1.2 m/s, and then starts driving at a speed of 4.17 m/s to exit the parking
lot. Moreover, an interfering TX at (55,−13, 3) m communicates with its RX placed at
the center of the parking lot at (20, 15, 1.5) m. By far the largest scenario, it makes it
possible to analyze the effect of the simplifications in terms of time savings when the CAD
file contains a large number T of triangles, and parked vehicles allow for an investigation
of both LoS and NLoS conditions. Moreover, the reference RX moves at a much higher
speed than in the previous scenarios, as in a basic vehicular scenario.

The statistical quantities used by the QD model mentioned in Sec. 2.2.4, namely the reflection
loss RL, the rician factor K, the inter-arrival times τ , the power-delay decay constant γ, and
the power-delay decay standard deviation S, for the Indoor1 [35] and Parking Lot scenarios, are
obtained from detailed measurement campaigns.∗

For each scenario, the RT and QD model softwares described in Sec. 2.2.3 have been used to
generate the channel instances at 60 or 28 GHz for the specified devices and mobility patterns
sampled every 5 ms. These traces were then integrated in a custom MATLAB simulator [32, 87]
to evaluate metrics at the link layer (e.g., the SINR), and with the mmW module [19] of the
ns-3 network simulator [88] to investigate the performance of the full protocol stack.

Ns-3 configuration For ns-3, we extended the channel model implementation described
in [43] to account for a generic channel matrix computed, in this case, as expressed in (2.1)†.
In the performance evaluation, this channel model has been combined with the 3GPP-like

∗Material libraries for the environments presented in this thesis (and more) can be found in [57]
†The implementation can be found at https://github.com/signetlabdei/qd-channel.
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protocol stack of the 5G mmW module for ns-3 [19], which features physical and MAC layers
with an OFDM-based frame structure, dynamic Time Division Duplexing (TDD), Adaptive
Modulation and Coding (AMC), and several scheduler implementations. The channel model
implementation influences the protocol stack performance through an error model that maps the
SINR to the capacity of the physical layer. Besides, the UEs and base stations protocol stacks
are completed by 3GPP Radio Link Control (RLC) and Packet Data Convergence Protocol
(PDCP) layers, together with a realistic control plane based on the Radio Resource Control
(RRC) layer which supports mobility-related procedures [89]. We consider two configurations
for the uniform planar antenna arrays: large arrays, comprising 8×8 elements for the TXs and
4×4 elements for the RXs, and small arrays, comprising 2×2 elements for both TXs and RXs.
All the arrays feature omni-directional elements spaced by λ/2. The planes on which all planar
arrays lie are parallel to the y-z plane with a fixed orientation throughout the simulation. The
beamforming is based on the SVD of the channel matrix Ht,r, i.e., the beamforming vector
wt,r is the eigenvector associated to the largest eigenvalue of Ht,r [90]. Finally, thanks to the
integration with ns-3, it is possible to equip the UEs with the TCP/IP stack and applications
which connect to remote servers in the Internet.

The results shown in the following sections are benchmarked, unless stated otherwise, with
the most complete and accurate baseline possible, where very conservative simplifications are
introduced which produce negligible differences with respect to the measurements [35], allowing
us to consider these baselines as equivalent to the actual measurements. Specifically, we set a
maximum reflection order R = 3 for the Parking Lot scenario, and R = 4 for the others (to
consider several reflections of the MPCs), a relative threshold γth = −∞ (thus implying that
no MPCs are discarded, regardless of their power level at the detector), a conservative absolute
threshold Γth = −200 dB, a large antenna array configuration, only deterministic rays (i.e.,
no QD model), and a User Datagram Protocol (UDP) stream with an offered traffic equal to
800 Mbps.

2.4.2 Link-Level Performance Results

The first step towards proper protocol design is gaining a deep understanding of how the pro-
posed ray-tracing simplifications impact the link-level performance of the network, neglecting, at
this stage, the effects at the upper layers. In this perspective, we are interested in investigating
how the strategies described in Sec. 2.4 result in different SINR regimes.

SINR evolution From Fig. 2.14a, which plots the temporal evolution of the SINR experi-
enced when the RX moves in the L-Room scenario along the path described in Fig. 2.13b, we
see that the impact of R is certainly non-negligible: the trend of the SINR visibly changes when
progressively reducing the number of reflections per MPC. Moreover, we see that the SINR
evolves consistently with the mobility of the RX. The SINR indeed drops by more than 30 dB
when the RX loses the LoS (position B in Fig. 2.13b), while the SINR degradation experienced
at time t = 3.4 s (position A in Fig. 2.13b) is due to the interference from TXinterf . Rapid
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Fig. 2.14: Evolution of the SINR experienced when the test RX moves in the L-Room scenario along the path
described in Fig. 2.13b.

fluctuations within the SINR trace are then due to the fact that different MPCs travel different
paths. At 60 GHz, where the wavelength is as short as λ = 5 mm, even small variations of the
path length between the direct ray and the reflected ones from the back wall (behind the TX),
side walls, ceiling, and floor of the room, may result in strong fading. Fig. 2.14a also shows that
the impact of R is particularly evident when the RX operates in NLoS: in this region, in fact,
the received power drops to zero when first-order (R = 1) and second-order (R = 2) reflections
are removed (positions C and D in Fig. 2.13b, respectively).

Impact of interference For completeness, in Fig. 2.14b we compare the metrics from the
MATLAB (solid lines) and ns-3 (dots) simulations. The lower bound (red line) assumes an
always-on interferer, while the upper bound (blue line) assumes an interference-free channel.
On the other hand, ns-3 models a realistic transmission pattern for the primary and interferer
links, which could occupy the channel in overlapping, partially overlapping, or non-overlapping
time intervals. Therefore, for each time interval, the SINR generated by the ns-3 simulations
is lower and upper bounded by the two other curves, with the ns-3 SINR much closer to the
upper bound when the two transmitters use non-overlapping slots for communications with their
receivers. We observe that the SINR, after steadily decreasing until time 17 s, starts increasing
again. This happens because the TXinterf is pointing its beam towards its own receiver RXinterf,
and as RXref approaches TXinterf it becomes less and less aligned with the interfering beam,
which makes the interfering power actually decrease as a result.

SINR distribution Fig. 2.15 further investigates the impact of parameter R on the SINR,
reporting its CDF for the three scenarios described in Sec. 2.4.1 as a function of R. In the
L-Room scenario, the shape of the CDF of the SINR changes significantly when varying the
value of R. This has eventually an impact on the capacity and packet error rate simulated at
the physical layer. Specifically, reducing the number of MPCs of the channel may imply that
the rays are not able to reach the RX position with sufficiently high power, thus resulting in
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Fig. 2.17: End-to-end performance vs. R for the L-Room scenario with an offered UDP CBR traffic of 800 Mbps.

a complete outage: for example, the CDF terminates at SINR ≃ −10 dB for R = 1 and at
SINR ≃ −23 dB for R = 2. On the other hand, both the Indoor1 and the Parking Lot scenarios
are able to preserve the LoS for the whole duration of the simulation, thereby making it possible
for the signal to propagate with a minor impact on the received power even when limiting the
number of reflections R per MPC. Notice that the 20 dB gap of SINR between the Parking Lot
and Indoor1 configurations is due to the larger distance between the TX and the RX, and to
the reflecting surfaces (e.g., buildings) in the outdoor scenario.

Impact of array size on the SINR Finally, in Fig. 2.16 we plot the SINR vs. the relative
threshold γth as a function of the antenna size at the TX and the RX. As expected, the SINR
increases when increasing the number of antenna elements, which increases the beamforming
gain. Also, while the impact of R severely affects the SINR in the L-Room scenario, increasing
the relative threshold γth to reduce the number of MPCs to be processed by the RT results in
negligible deterioration at the link level, while speeding up the simulation, as will be discussed
in Sec. 2.4.4.
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Fig. 2.18: End-to-end performance vs. R and γth for the L-Room scenario with full-buffer TCP traffic.

2.4.3 End-to-End Performance Results

Many of the conclusions we derived from the link-level performance in Sec. 2.4.2 can be extended
to the end-to-end metrics, i.e., throughput and delay at the PDCP layer. Statistics have been
collected at this layer since they can easily profile both UDP and Transmission Control Protocol
(TCP) traffic and are very close to the application layer performance, without the addition of
extra delays due to the specific architecture of the simulation scenario. In this section we study
three types of traffic, namely full-buffer TCP traffic and UDP traffic with a Constant Bitrate
(CBR) of 100 Mbps and 800 Mbps. The latter was chosen to be the default for the results
shown in this section, unless stated differently. Both throughput and delay are averaged over
100 ms windows.

Throughput and delay evolution with UDP traffic Fig. 2.17 reports end-to-end
metrics over time for the L-Room scenario as a function of the maximum number of reflections
R. First of all, we notice that the 800 Mbps data rate for UDP was chosen to saturate the
channel capacity, as the physical layer only supports 630 Mbps of peak rate. The interference
starts to impact the UDP performance at 7 s, followed by a rapid performance degradation
when the direct ray is lost in point B (see Fig. 2.13), at about 9.65 s. Between point B and
point C (11.33 s), the signal is still strong enough to allow for some transmissions, resulting,
however, in a rapid increase of the delay of received packets due to buffering and retransmissions.
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When RXref gets closer to TXinterf (i.e., around 17 s), as already observed (see the discussion
about Fig. 2.14) the misalignment of the interfering signal results in a slight increase of the
SINR, which allows to transmit the enqueued packets producing some non-zero throughput and
a reduction of the delay (even though the transmission conditions remain quite severe and the
performance is rather poor). We also observe that this effect is visible only for R ≥ 3, since more
simplified models have too few reflections, thus failing to reach the final part of the corridor.

Throughput and delay analysis with TCP traffic Fig. 2.18a shows the corresponding
simulations using a full-buffer TCP traffic stream, which reaches a peak rate of 536 Mbps. As
expected, sudden jumps in the channel quality lead to sudden performance drops in TCP. This
is the case in point A at 3.415 s (see Fig. 2.13), where the strong first-order rays of TXinterf are
received by RXref, at the beginning of the interfering regime at about 7 s, when the direct ray
is lost in point B at 9.65 s, and finally when the strong first-order reflections are lost in point
C at 11.33 s.

For these reasons, Fig. 2.18b highlights a slightly positive correlation between the average
throughput and the maximum reflection order R, although only a 9% increase is observed with
γth = −∞ dB, going from 246 Mbps for R = 1 to 268 Mbps for R = 4. In general, instead,
delay statistics do not show a clear trend in the reflection order, nor in the relative threshold,
probably due to the extra complexity created by retransmissions and queues. An example is
shown in Fig. 2.18c where most statistics follow a very similar trend, separating only towards
extreme values of delay, corresponding to the portion of the scenario after point B, i.e., when
the direct ray is lost. Notice that the CDFs for the delay do not reach 1 since windows where
no packets were received were considered to have infinite average delay.

Unlike for the UDP case at 800 Mbps, TCP decreases the congestion window when strong
interference affects the communication for both the reference and the interfering streams. For
this reason, packets sent during the interfering regime do not always collide with each other.
The reduced interference greatly increases the perceived SINR, as explained in Sec. 2.4.2 for
Fig. 2.14b, thus triggering transmissions even after point B for R ≥ 2. Although not shown
here, similar conclusions can be drawn for UDP traffic at 100 Mbps, which is able to transmit
after point B as well, sending data at a rate that depends on the small scale fading affecting
the communication.

Throughput analysis for different scenarios and antenna array configurations
The average throughput for different configurations is shown in Fig. 2.19, including the 95%
Confidence Interval (CI). The Indoor1 scenario shows virtually no variations across different
values of R for all the three types of traffic considered. Minor variations can only be observed for
the Parking Lot and L-Room scenarios. For the latter, the NLoS regime sets apart simulations
with R ≤ 2 from those with R ≥ 3, not being able to exploit the last part of the path with
lower interference and thus showing slightly lower performance.

Similar results are shown in Fig. 2.20, where two sets of antenna configurations are considered.
When smaller antenna arrays, and thus smaller antenna gains, are simulated, the average per-
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Fig. 2.19: Average throughput considering γth = −∞ dB.
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Fig. 2.20: Average throughput for the 800 Mbps UDP traffic considering different antenna architectures.

formance of the system decreases for all scenarios. The largest performance hit is experienced
by the Parking Lot scenario, since the stronger path loss experienced as a result of the larger
propagation distances involved in the outdoor scenario can be mitigated by the antenna gain.
The performance drop observed in Fig. 2.20 can be also due to stronger interference. Smaller
arrays, in fact, are not able to create narrow beams, making TXinterf interfere more strongly
with RXref. Moreover, we see that, even though a larger beam pattern would capture more rays
than it would be possible in the case of narrower beams (that typically only absorb the strongest
rays), both small and large antenna arrays show a minor impact of the reflection order R on the
system performance, e.g., for the L-Room case, the throughput changes as little as 4% when
R is reduced from 4 (our baseline) to 1. In fact the reflected rays do not contribute much to
the overall received power budget, and can be pruned with minimal performance degradation.
Small throughput variations are also experienced when increasing γth from −∞ (our baseline)
to −15 dB, except when R ≥ 2 in the L-Room and Parking Lot scenarios, i.e., when reflected
rays may still carry significant power.

Throughput analysis with and without QD model Finally, a comparison between
a purely-deterministic and a quasi-deterministic channel with the QD model described in
Sec. 2.2.4 is shown in Fig. 2.21. Results are given for R = 4 (to consider as many detectable
reflections of the MPCs as possible) and γth = −∞ (thus implying that no MPCs are discarded,
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Fig. 2.21: Throughput performance for the L-Room scenario with a purely deterministic and quasi deterministic
channel model, with a UDP CBR traffic of 800 Mbps.

regardless of their power level at the detector), to analyze the most complete and accurate
baseline possible, where very conservative simplifications are introduced in the ray tracing com-
putation. In general, from Fig. 2.21a it is possible to notice that the added random rays from
the QD model tend to (i) increase the average received power and (ii) increase the frequency
and amplitude of power fluctuations due to small scale fading, which is considered independent
across subsequent time steps of 5 ms at a speed of 1.2 m/s. These fluctuations can also affect
the end-to-end performance, making it significantly less stable.

To further study these random fluctuations, the CDF of the standard deviation of the through-
put over 100 ms windows has been computed. To do so, we first computed the average through-
put over 5 ms sub-windows, i.e., the sampling period chosen for the ray-traced channel, and
subsequently the standard deviation over 20 consecutive sub-windows. This approach captures
the deviation of the throughput over short time intervals, where it can be considered roughly
constant. Computing the standard deviation over the whole simulation, in fact, would yield a
misleading metric, given the extreme differences over the almost 20 s long scenario. Fig. 2.21b
shows how an increasing number of rays tends to increase the standard deviation of the through-
put due to an increased small scale fading, especially when a QD model with random diffuse
components is considered: the gap is as large as 10% when transitioning from R = 1 to R = 4.
This effect should be taken into account when evaluating the performance of protocols for mmW
communications which adapt to the channel conditions, e.g., TCP [7].

2.4.4 Computational Performance

The simulation techniques proposed in Sec. 2.4 offer a trade-off between the simulation speedup
given by the lower complexity, and a corresponding loss of accuracy. Secs. 2.4.2 and 2.4.3
analyzed in depth the impact of the simplifications on the network metrics at two distinct
levels. Here, we compare the proposed simplifications from a computational complexity point
of view, and then draw guidelines on the optimal combination of parameters that maximizes
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Fig. 2.22: Simulation runtime vs. R and γth for the L-Room scenario. The total simulation campaign runtime
(c) accounts for an RT simulation (a) and 100 sequential ns-3 simulator runs (b). A purely-deterministic channel
and a quasi-deterministic channel are considered.

the accuracy.

Simulation time For completeness, we need to distinguish the different contributions to the
total simulation campaign runtime Tcamp required by a campaign of network simulations. The
first is the RT runtime TRT, required by the RT to generate the MPCs for the channel matrix
(Fig. 2.22a). The second contribution, Tns, is due to the network simulator (either MATLAB or
ns-3 in this work), which includes the computation of the channel matrix with the RT data and
what can be considered as simulation overhead (Fig. 2.22b). Usually, a simulation campaign
aiming at proving a new result requires running simulations multiple times with different random
seeds (i.e., Monte Carlo analysis), for a total number of simulations in the order of thousands.
Running such simulations over tens of parallel processes is equivalent to running only hundreds
of simulations sequentially, thus requiring a total of about Tcamp = TRT +100Tns to first obtain
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the RT traces, and then re-use them for the whole simulation campaign (Fig. 2.22c).
Fig. 2.22 shows the RT, the ns-3, and the corresponding total simulation campaign runtime,

for the L-Room scenario. The figure compares the impact on the computational complexity of
the simplification introduced by the reduction of the maximum order of reflection R. We con-
sider the two extreme values of γth, i.e., −15 dB and −∞ dB, and compare a purely-deterministic
channel with a quasi-deterministic channel that includes the random diffuse components intro-
duced by the QD model. First, it can be observed that R has the greatest impact on the
runtime: the RT runtime TRT increases by more than 2 orders of magnitude when increasing R,
and the ns-3 runtime Tns experiences a similar effect. The impact of the QD model is clearly
visible in Fig. 2.22b and Fig. 2.22c. Nevertheless, in this case increasing γth to −15 dB can
effectively reduce the gap between the runtime with and without QD model, for every reflection
order. However, whether and how this combination of parameters, while speeding up the ray
tracer, affects the accuracy of the simulations will be discussed in the following paragraphs.

Accuracy metric To summarize the conclusions from Secs. 2.4.2 and 2.4.3 quantitatively,
we compare the network performance of the simplified models and the baseline considering the
Normalized Root Mean Square Error (nRMSE), computed as [87]

nRMSE =
RMSE
σx̂

=

√
1
N

∑N
n=1 (xn − x̂n)

2

σx̂
, (2.15)

where x is the metric with the configuration of interest, x̂ is the baseline metric, and σx̂ repre-
sents the standard deviation of the baseline metric. This metric evaluates the distance between
each baseline-simplified pair of a given simulated metric in the time domain. As in [87], we
compare it with a speedup metric, defined as the factor by which the overall simulation Tcamp

runtime is reduced compared to the baseline. For the remainder of this section, we will consider
0.05 as the maximum acceptable value for the nRMSE, meaning that we deem acceptable an
RMSE equal to 5% of the standard deviation of the considered metric.

Link-Level Performance The variations of the SINR due to the simplifications are shown
in Fig. 2.23. In general we notice that markers with the same shape (same R) tend to increase
with increasing steepness as the relative threshold increases, thus showing diminishing returns
for the largest value of γth.

For the Indoor1 scenario (Fig. 2.23a), significant deviation from the baseline occurs with
R = 1, and with γth = −15 dB. Nevertheless, for all the considered cases, the nRMSE is smaller
than 0.07, confirming what was anticipated in Sec. 2.4.2, i.e., that only minor changes take
place even with the most aggressive simplifications. Within the maximum accepted nRMSE it
is possible to accelerate the simulator up to a factor of almost 6 with an nRMSE equal to 0.048
choosing R = 1, γth = −25 dB.

Good performance is also obtained in the L-Room scenario (Fig. 2.23b). In this case, choosing
γth < −15 dB and R > 1 makes it possible for the nRMSE to remain below 0.05, but an overall
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Fig. 2.23: Trade-off between the SINR performance and the speedup obtained with the different simplification
parameters for the three scenarios. The dashed black line at nRMSE=0.05 represents the maximum acceptable
value for the nRMSE. As in Sec. 2.4.2, results and runtimes for the link-level MATLAB simulator have been
considered.
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Fig. 2.24: Trade-off between the throughput performance and the speedup obtained with the different simpli-
fication parameters for the three scenarios. As in Sec. 2.4.3, for the throughput ns-3 has been considered.

speedup of a factor of 9.2 is obtained with R = 2 and γth = −40 dB. In this case, using R = 1

even with γth = −25 dB might still be acceptable, with an nRMSE of only 0.057 but a speedup
factor equal to 14.3.

Finally, good performance is also obtained in the Parking Lot scenario (Fig. 2.23c), with a
behavior extremely similar to the L-Room scenario but with significantly higher speedup factors
due to the higher complexity of this scenario. In fact, for γth < −15 dB the nRMSE stays below
the 0.05 threshold while the campaign runs orders of magnitude faster. Specifically, choosing
R = 1 with γth = −25 dB yields an nRMSE of 0.017 with a speedup factor of more than 2000.

End-to-End Performance Fig. 2.24 reports the nRMSE of the throughput vs. the speedup
for end-to-end simulations. Similarly to what happened for the link-level performance, γth shows
diminishing returns especially for the L-Room and Parking Lot scenarios.

Fig. 2.24a shows that virtually no variation occurs when introducing simplifications in the
Indoor1 scenario. This suggests that setting R = 1 and γth = −15 dB can speed up the
simulation by a factor of almost 4 with negligible accuracy loss with respect to the baseline
configuration.

Good results are obtained also for the L-Room scenario in Fig. 2.24b, and with R = 2 and
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γth = −25 dB it is possible to gain a 3.9 speedup factor with an nRMSE of 0.033, or even a 5.1
speedup if an nRMSE of 0.054 is still accepted using R = 1.

Conversely, the end-to-end simulations for the Parking Lot scenario are much more severely
affected by the simplifications introduced in this thesis. In fact, Fig. 2.24c shows that the
proposed simplifications are not able to achieve a significant speed-up without sacrificing the
fidelity of the results, unlike in the previous scenarios.

2.4.5 Design Guidelines

Without focusing on the exact numbers, that are specific to the scenarios and the simulation
tools employed in this work, it is still possible to draw some general guidelines for an efficient
use of RT simulations. In particular, we do not only focus on link-level metrics, as generally
considered in literature studies, but also identify which combination(s) of simplifications affect
the system-level performance (which typically drives network design choices).

Scenario. The simulation scenario plays a key role in the simplification choice. Specifically,
when considering indoor LoS simulations, the secondary rays can be neglected with good ap-
proximation and very significant time savings. When considering also NLoS conditions in indoor
scenarios, instead, less flexibility should be expected, although it is still possible to considerably
reduce the runtime with a minor accuracy loss. Finally, outdoor scenarios should be treated
carefully, as aggressive simplifications may have detrimental effects on the fidelity of the sim-
ulations. Nevertheless, a working point can usually be identified which offers a significant
speedup.

Simplification Strategy. Although their effect can vary substantially depending on the
considered scenario, some general considerations can be drawn regarding the simplification tech-
niques. The link-level metrics, such as the SINR, benefit, in terms of runtime, more from a
reduction of the maximum reflection order than from an increase of the MPC threshold. Con-
versely, full-stack metrics, such as end-to-end throughput and delay, are more transparent to ray
tracer’s simplifications. In any case, an aggressive thresholding policy leads to a performance
degradation that is not justified by a corresponding speedup improvement. Finally, end-to-end
results require a balanced use of both simplification techniques to achieve an optimal working
point. In particular, for the L-Room scenario we showed that considering more than two reflec-
tions, i.e., R = 3 or R = 4, would not decrease the nRMSE significantly, while in turn reducing
the speedup gain by a factor of 2. At the same time, for the Parking Lot scenario, it may be
fundamental to decrease γth below −25 dB to maintain a good trade-off between accuracy and
speedup, even though an nRMSE below the 0.05 threshold could be guaranteed only setting
γth = −∞. Conversely, for the Indoor1 scenario even the most aggressive simplifications would
not virtually affect the RT accuracy. In light of this, setting R = 2 and a relative threshold
γth ∈ [−40,−25] dB consistently yields a good balance of accuracy and speedup in almost all
cases, and for this reason it is the suggested configuration. Moreover, end-to-end evaluations of
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protocols that adapt to the channel behavior should consider combining the ray tracing process
with a QD model.

2.5 Blockage Modeling
One of the main outputs of this work revolves around the ability to introduce and study blockage
in ray-traced scenarios. To do so, we started designing and building a software tool able to
perform this exact task which we call Blockage Manager.

The software should support different geometries and mobility patterns for specific blockers,
allowing both deterministic blockage scenarios and randomized campaigns, e.g., for future large-
scale studies. Clearly, multiple arbitrary blockers should be supported at once, together with
their effects on the wireless channel, meaning that blockers might also introduce diffraction,
refraction, diffusion, and even further reflections.

The availability and our knowledge of the NIST-UniPD open source qd-realization soft-
ware [91] suggests that traces from this software should natively be supported by the Blockage
Manager software. Furthermore, to simplify the user interaction with the software, minimal
amount of code should be required to set up a simulation.

The software assumes that channel traces have already been obtained, and thus post-processes
them based on the desired blockage environment. For the time being, the software is a work
in progress and the code is thus currently undisclosed. We will make sure to publish a public
version of it as soon as we have a stable and usable version, together with a related publication.

2.5.1 Framework Overview

From our work on qd-realization, we learned some important lessons. Specifically:

1. MATLAB is expensive and thus not meant for open-source projects;

2. A solid testing framework is key to robustly extend and update a complex and potentially
large software project;

3. Modularity and a consistent code quality is key for maintenance and upgradeability.

Regarding Item 1, we decided to build the Blockage Manager software from scratch based on
Python 3, one of the most common programming languages for open-source projects. While it
may not represent the best performing option, it is extremely convenient, simple, and flexible,
and solutions exist to run scientific python code faster. In general, we prioritized flexibility and
maintainability, given the research-oriented objectives of this software.

Regarding Item 2, we understood that MATLAB lacks a robust and flexible native testing
framework, and it is especially hard to continuously test a MATLAB-based software. Instead,
there exist several widely-used testing frameworks for Python, among which we chose pytest.
Being easy to use, flexible, and widely supported, we found it to work well for our purposes. We
built a unit testing framework, currently consisting of over 100 tests covering 100% of the code
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base. Furthermore, we set up a Continuous Integration and Developement (CI/CD) pipeline
based on CircleCI∗, which allows us to fully test our code base every time we upload updates
to GitHub.

Finally, Item 3 was addressed by creating solid and flexible modules using the object-oriented
paradigm.

The different modules of the Blockage Manager software are described in the following para-
graphs.

Geometry After looking for existing Python geometry modules, we found that none existed
with the desired features. Specifically, since the software is based on ray-traced channels, it needs
to handle ray geometry, and thus needs at least the notions of Point, Vector, Line, and Segment.
These objects need to interact, while distances, projections, and collisions need to be computed
against other common objects (e.g., canonical 3D shapes, triangles, etc.). All of this, of course,
has to be implemented in a user-friendly manner to minimize code writing and maximize clarity.
Optimization will then be beneficial to improve the computational performance.

Ray This module organizes the information provided by a ray-tracer, such as delay, path gain,
phase, and the actual path (i.e., the vertices of the ray-traced path). It also offers a simple
interface to consistently compute AoDs and AoAs. Notice that, for the correct import and
usage of the Blockage Manager software, extttqd-realization should also export visualization
files, namely, MpcCoordinates.

Scenario We defined a Scenario interface, which subclasses have to implement. This was
done in an attempt to generalize the definition of a scenario, in principle allowing for the
possibility to support different ray-tracing formats in the future. The interface defines common
methods to import/export traces in the target format, as well as to access and update sets
of rays between nodes. The Scenario interface was extended into QdRealizationScenario,
which is specifically able to handle channel traces for multiple users and timesteps.

Notice that QdRealizationScenario supports the version of extttqd-realization used in [92],
not the current master branch. Specifically, JSON outputs are currently not supported, but
could be easily included in the future.

Obstacles We also defined a common Obstacle interface to handle obstructions, diffraction,
and other effects that a generic obstacle will impose over Rays from the imported Scenario.

We already implemented a simple obstacle, namely SphereObstacle, which incorporates a
fixed transmission loss affecting the path gain (while the phase is left unaffected).

Mobility Models A user can move an Obstacle during a simulation by using Mobili-
tyModels. Each obstacle will then update its position based on such model, thereby pro-
viding an accurate and temporally-correlated mobility and making the channel temporally

∗https://circleci.com/
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Fig. 2.25: Visual representation of the blockage evaluation scenario, inspired by [84]. The blue line represents
the direct ray between the two nodes, the dotted red line represents the path taken by the obstacle.

consistent. The MobilityModel interface was extended into a number of common models,
such as the ConstantPositionMobilityModel, the ConstantVelocityMobilityModel, the
ConstantAccelerationMobilityModel, the WaypointMobilityModel (the Obstacle will move
linearly between a list of given Points at the given speed and will optionally remain stationary
at the arrival point for a given pause duration), and the RandomWaypointMobilityModel (sim-
ilar to WaypointMobilityModel, but waypoints, velocities, and pauses are randomly generated
with distributions given by the user).

Environment The Environment class handles:

1. A Scenario object;

2. A list of Obstacles.

It represents the core of the Blockage Manager software, where Obstacles interact with
pre-computed Rays.

2.5.2 Example

We tested our framework in a scenario inspired by [84].
Specifically, we created an empty 14×7×3 m room with static nodes in positions p1 =

(1, 3, 1.6) and p2 = (9, 3, 1.6), as shown in Fig. 2.25. We simulated the channel qd-realization [57]
considering reflection orders 0 (only direct ray), 1 (up to first-order reflections), and 2 (up to
second-order reflections).

We then imported the channel trace into the Blockage Manager software, configuring a
SphereObstacle moving from pstart = (4, 3.7, 1.6) downwards at 0.3 m/s, and sampled the
channel every 3.4 ms for 1500 samples, for a total of about 5 s of simulation time. Given the
simplicity of the proposed simulation, we considered a sphere with a diameter of 30 cm at the
same height of both the transmitter and the receiver, in an attempt to emulate the size of the
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Fig. 2.26: Results of our first simple simulation campaigns.

human body. We also set the obstacle’s transmission loss to 15 dB (soft blockage) and +∞ dB
(hard blockage) to show the flexibility of the described framework and compare the results.

The channel traces are processed with a simple link-layer simulator considering a single omni-
directional antenna for each node, with a noise figure of 9 dB at the receiver, and a transmitted
power of 20 dBm at 60 GHz over a bandwidth of 2.16 GHz.

Simulation results are shown in Fig. 2.26. From left to right, we consider a baseline scenario
with reflection order equal to 0, 1, and 2. For each scenario, we show the temporal evolution of
the received power considering no blockage, a soft blocker, and a hard blocker.

When no blockage is considered (blue line), the received power, and thus the Signal-to-Noise
Ratio (SNR), is constant throughout the whole simulation time. Since a different number of
rays is considered in each scenario, the baseline received power differs in the three proposed
scenarios.

For the leftmost scenario in Fig. 2.26, when only the direct ray is present, a hard blocker
disrupts the connection for about 300 time steps, i.e., the time required for the sphere, i.e., the
blocker, to pass through the direct ray between the two nodes. In fact, the yellow dotted line
representing the SNR in case of a hard blocker disappears just after t = 500, since SNRdB = −∞.
On the other hand, a soft blocker introduces a 15 dB attenuation on obstructed rays, resulting
in just a 15 dB decrease of the SNR.

Considering also first reflections from the side walls, the floor, and the ceiling, the effect of
the blockage event is not as strong as in the previous cases, as shown in the central scenario
in Fig. 2.26. In fact, the hard blocker does remove the direct ray, but the reflected paths are
still able to reach the user, resulting in an overall attenuation of only 5.5 dB. Similarly, the soft
blocker increases the path loss of the direct ray by 15 dB, but combined with the reflected rays
results in an overall 4.5 dB attenuation.

Finally, the rightmost scenario in Fig. 2.26 includes also second order reflections, which were
found in [92] to be sufficient to accurately model most mmWave scenarios. The effects are similar
to the previous scenario in which only first order reflections were considered. The additional
reflections, though, introduce an additional source of channel variability, decreasing the received
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power by 9 and 7 dB, respectively for the hard and the soft blockers. Furthermore, toward the
end of the simulation, one of the second order reflections is blocked, resulting in a lower power
loss.

Notice the unnatural sharp transitions between LoS and NLoS. Our current simplified model
does not take into account smooth transitions, as it applies the transmission loss of a given
obstacle whenever it is obstructing a ray.

2.6 Conclusions
Performance evaluation is a fundamental part of the design of 5G mmW networks. To that end,
an accurate channel model allows researchers to generate reliable simulation results, that can
qualitatively and quantitatively describe what can be expected when using real devices. In this
chapter, we analyzed how widely used channel models can be improved to better describe the
reality and optimized for better performance by simplifying them. The usage of large antenna
arrays, however, requires an accurate representation of the spatial dimension of the channel, for
example through RTs, which can model the propagation of the different multipath components
of a mmW signal based on the geometry of the scenario.

Specifically, with respect to more detailed channel models, in Sec. 2.2.4 we introduced a math-
ematical formulation for a class of mmW channels, i.e., the QD models, that can closely simulate
the propagation of rays in a specific environment calibrated on real-world channel measurements.
We provided a step-by-step tutorial on how such models can be implemented, including the pa-
rameters and random distributions obtained from a NIST measurement campaign [35]. We
then compared the results that can be obtained with an open source implementation of the
model with the real measurement traces, showing significant improvements with respect to a
fully deterministic channel model in mimicking reality. We want to highlight the fact that since
our original publication on this topic [62], more measurement campaigns have been performed,
thus releasing more material libraries for a set of new scenarios openly available [91].

We then proceeded to the analysis of a stochastic SCM: the 3GPP TR 38.901. The thorough
profiling partially reported in this thesis highlights how such a complex channel may require
a very significant computational overhead, thus possible simplifications were suggested and
studied to understand their effects on common simulation scenarios. Unfortunately, the simpli-
fication was constrained by the structure of the 3GPP model itself, as discussed in Sec. 2.3.3
and [32], although the proposed approach showed a significant performance improvement with
little to no behavioral changes.

Transferring this knowledge to (quasi-) deterministic channel models, the impact of different
simplifications on both the physical layer and the end-to-end network performance has been
numerically evaluated for different scenarios, applications, and antenna array configurations.
Notably, after introducing the RT method based on the MoI, and the parameters influencing
its computational complexity, we discussed two strategies which aim at avoiding computations
for MPCs which do not contribute significantly to the overall received power. The first limits
the maximum reflection order, while the second removes MPCs with a path gain which is much
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smaller than that of the strongest ray. We then showed that the optimal trade-off is achieved
when neglecting third-order (and beyond) reflections, and multipath components with path gain
lower than -40 dB compared to the strongest ray, further discussed in [87, 92]. We believe that
the insights that resulted from the extensive profiling and performance evaluation can guide
researchers in designing accurate, yet scalable, simulations of mmW networks.

Finally, we gave an overview of our Blockage Manager software, which will allow us and
fellow researchers to better study the effect of blockage on mmW communications. Although
the work is still in its early stages, we believe that it will be able to help us produce novel and
interesting research.

Strong of the knowledge we obtained from these experiments, we propose some promising
future research directions.

Regarding improvements to mmW channel models:

1. Better analyze peculiar, although relevant, channel states, e.g., human blockage, self-
blockage, user terminal rotation. Not only some of them lack standard or even popular
models, but their effects on end-to-end performance has not been fully analyzed.

2. Always analyze and contain the additional channel complexity introduced by the added
features.

3. Study network performance of a scenario with and without obstacles, to fully assess their
impact on communication and test whether the current state of the art is able to withstand
these non-ideal conditions. Obstacle randomization, in terms of quantity, type, shape, and
mobility will help us creating large campaigns with a richer and more realistic simulation
environment.

Secondly, on improving the scalability of mmW simulations:

1. Better analyze the impact of simplifications on directionality. Most of the proposed meth-
ods rely on reducing the multipath components of the channel, thereby preventing the
model from being used for the evaluation of techniques that, in reality, exploit channel
sparsity to form multiple simultaneous beams in independent angular directions (e.g.,
hybrid beamforming);

2. Investigate optimization techniques that can automatically tune the simplification param-
eters to obtain the maximum speedup while minimizing accuracy degradation;

3. Compare end-to-end measurements in actual mmW deployments with full-stack simula-
tions at different degrees of simplification.
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3
Antenna Array Modeling and Optimization

3.1 Introduction
Massive UPAs operating in the mmW frequency range will be adopted in the 5th generation
of mobile networks (5G) as the key enablers to meet the challenging requirements of the new
standard. Large antenna arrays can compensate for the propagation and penetration losses at
such high frequencies thanks to beamforming techniques, synthesizing 3D beams that can focus
the transmitted power towards specific users [21], increasing the antenna gain and thus increas-
ing the received power. Furthermore, beamforming can help exploit the unique propagation
characteristics of the mmW channel, such as spatial sparsity, to reduce the interference among
users and improve the channel coherence time [93].

On the other hand, directional communications make it inherently more difficult to handle
mobile scenarios, making it necessary to keep the alignment between the transmitter and receiver
beams [9], introducing more overhead. Directivity is even more critical when experiencing
sudden blockage events. In this case, the pair of communicating devices should either store
backup links or find a new connection on the fly, increasing the overhead and complexity of
beam management operations.

The combination of these phenomena may seriously affect the quality experienced by mobile
users. In this context, it is necessary to implement a detailed performance evaluation to identify
and address the weakest points of the technology across the full communication stack. Cellular
networks are extremely complex systems, highly correlated with hidden factors that may impact
the overall performance at different scales. Usually, the different parts of the system, i.e., the
antenna system, the RF components, the cellular protocol stack, etc., are designed using a block-
level approach, developing each block independently of the others. However, this methodology
may lead to undesired behaviors and even sub-optimal performance, since the possible side
effects among the components may have a strong impact on the overall system. This problem can
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be solved using system-level simulation tools, which represent an accurate and cheap solution
to evaluate the overall performance before the actual deployment and to adjust the design of
each component accordingly. Indeed, simulation enables large scale evaluations, allowing the
user to decide the degree of abstraction required by the desired analysis [20].

These ambitious goals require a novel approach to antenna design, optimization, and simula-
tion. Antenna arrays can no longer be designed and optimized without considering the network
topology: in addition to the common antenna design goals, such as decreasing the side-lobe level
or maximizing the directivity, more global, network-oriented requirements need to be taken into
account. Such requirements dramatically increase the complexity of the optimization problem,
as it moves from the bare electromagnetic to the network domain. As both antenna prototyping
and network deployment tests are prohibitively expensive for both academia and most industry,
electromagnetic and network simulators are often employed. In [25], the accurate modeling of
antennas in network simulators was proved to be decisive, further confirming that design and
optimization need to carried out jointly.

Heuristic simulation-based optimization is generally not feasible, as such detailed simulators
are both time and computationally expensive. Indeed, the large number of iterations needed
by optimization algorithms prevents the use of simulations requiring hours (or even days) of
running time.

The remainder of this chapter will be structured as follows: in Sec. 3.2 we briefly describe
relevant works related to antenna optimization and modeling, followed by an introduction of
antenna array modeling in Sec. 3.3.

In Sec. 3.4 we propose and evaluate an ML framework that can mimic a given simulator and
allows us to approximate any network optimization objective in a reduced amount of time. Two
antenna optimizations will be proposed in Secs. 3.5 and 3.6.

Then, in Sec. 3.7 we will showcase an open-source and publicly available∗ framework for
full-stack 5G NR-compliant simulations, based on the popular open-source ns-3. While other
5G NR simulators already exist, to the best of our knowledge we propose a simulator that
has unique features, such as (i) a ray-tracing based channel model for mobile users, improving
the spatio-temporal coherence over the previous stochastic channel models [43], (ii) a flexible
antenna module, comprising of multiple parametric antenna elements as well as a generic inter-
face for phased antenna arrays, and (iii) a Beamforming (BF) module. This work builds upon
a pre-existing full-stack 5G NR mmW simulator [19], a popular tool developed jointly by the
University of Padova and NYU-Wireless. Thanks to the integration with ns-3, this simulator
features a detailed implementation of the TCP/IP stack, together with several traffic and mo-
bility models, allowing the community to analyze and compare full-stack behaviors of different
physical and protocol setups.

Finally, we will draw our conclusions in Sec. 3.8.

∗https://github.com/signetlabdei/ns3-mmwave-antenna

60

https://github.com/signetlabdei/ns3-mmwave-antenna


Antenna Array Modeling and Optimization

3.2 Antenna Optimization: Related Works

Recently, ML techniques have started to be applied as a tool to solve many kinds of problems.
Also in the communication field, there exist many works adopting learning-oriented approaches
to address complex transmission issues. Particular attention has been gathered by the new
database proposed in [94], as it lays the premises for a common research ground.

One common application of ML is parameter estimation, where great results were achieved
even where the most sophisticated classical techniques failed. An example can be found in [95],
where the authors try to estimate the downlink channel starting from samples of the uplink
channel. While well-known signal processing techniques (e.g., the Wiener filter) were not able
to perform a good estimate, the ML approach proposed by the authors yielded very good results.

Another common approach is the encoding of the channel representation through autoen-
coders [96]. Autoencoders are an unsupervised learning algorithm, and as such they do not
need labeled data but can learn autonomously. The idea behind this technique is to train two
Neural Networks (NNs), one performing the encoding of the input data, the second trying to
decode it. The layer between the two should contain, in our case, a useful and extremely com-
pressed representation of the channel. This can be applied at many levels, starting from the
pure, physical channel model, to the entire transmitter-channel-receiver chain [97]. This allows
obtaining either encoders/decoders, transmitter/receiver chains or channel models that have a
much lower computational complexity.

ML has been successfully applied also at the network layer. Innovative ideas and proposals
have challenged even the most resilient classical paradigms such as the ISO/OSI architecture [98].
These new approaches started showing their potential in the increasingly heterogeneous network
scenarios, e.g., when facing the high data load and quality of experience required for video
streaming [99].

Moreover, the authors in [100] use Deep NNs to optimize the allocation algorithm in a wireless
resource management problem. The proposed concept is similar to the one described in our
work, as a learning tool is used to approximate a complex input-output function. However,
the authors also include the optimization step into the learning process and use many more
training samples to accommodate the needs of their deep architecture. For our work, instead,
it is crucial to use as few samples as possible as we aim to speed up the optimization process
by approximating very slow simulators, making the data acquisition the main bottleneck.

In the literature, many research activities have been focusing on the study of mmW mobile
environments while in parallel a lot of works have studied in the past the problem of beam-
forming and antenna array optimization. However, there are no conclusive works focused on
antenna optimization for mmW mobile scenarios.

At high frequencies, such as in the mmW bands, where strong attenuations are present,
quantifying the actual antenna gain obtained due to the radiation pattern is fundamental to
precisely evaluate any mmW system. In a previous work [25], realistic antenna radiation patterns
have been studied and precisely characterized, motivated by the need to properly capture mmW
propagation behaviors and understand the achievable performance in 5G cellular scenarios. As
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it is customary, antenna patterns were modeled as the superposition between the single element
radiation pattern and the array factor. The latter term is a function used to characterize the
effects of the entire array, while the former is used to quantify how the power of each antenna
element is irradiated in all directions. The work shows how the single element radiation pattern
affects the network performance, thus highlighting how optimization of this further parameter
is not only possible but also required.

Finally, regarding the specific problem of thinned arrays, several works exist on their op-
timization at the antenna level. A reference for the general theory and results can be found
in [101]. On the optimization side, [102] and [103] apply genetic algorithms to the activation
mask of the array to further lower the side-lobe level. Nevertheless, as mentioned above, none
of these works consider network metrics in the antenna design. Some works, such as [104], ex-
plicitly employ thinning for interference reduction, but they do not rely on simulated network
statistics that allow achieving ad hoc optimizations, tailored to the network characteristics. This
is due to the high complexity of the network simulators, which would be added to the already
high computational load of the electromagnetic simulation. Here is where our framework can
prove useful, providing an agile emulator that can be used to speed up complex optimization
tasks, resulting in reasonable execution time.

3.3 Antenna and Beamforming Modeling

Antenna Array Model Phased antenna arrays can have extremely diverse geometries,
from which their BF capabilities are derived. While it would be possible to create a generic
class for arbitrary phased arrays, some geometries (e.g., uniform linear and planar arrays)
are extremely popular and deserve specialized methods. For this reason, we created a generic
interface for phased antenna arrays, specifying the polarized element field pattern, the locations
of the elements (from which it is possible to compute the phase difference experienced by each
antenna element for a transmitting or receiving signal), and the BF vector (the phase shifts and
amplifications applied to every single element necessary to obtain the desired beam shape).

For this work, we considered the model described in the 3GPP specifications TR 38.901 [24].
The standard describes a uniform planar array, meaning that antenna elements are equal and are
placed in an equally-spaced M ×N rectangular lattice with vertical spacing dV and horizontal
spacing dH , which form a panel. In our implementation we consider the simpler case of vertically
polarized elements and only a single-panel configuration.

Antenna Element Model Phased antenna arrays are composed of multiple antenna ele-
ments capable of radiating and receiving electromagnetic signals. Every antenna element has
a specific radiation and polarization pattern due to its specific design. Different antennas are
needed in different contexts, e.g., directional elements can be used in multi-sector devices (e.g.,
gNBs), while quasi-isotropic antennas may be used for devices with no preferred communicating
direction (e.g., UEs with a single-antenna panel).
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A large number of antenna element designs exist in practice, leading us to creating a generic
interface allowing users to add their own antenna models. In general, it is possible to create
antenna elements with pattern measured from real devices to further increase the simulation
accuracy. For this thesis, we implemented three of the most common antenna element models,
with directivity pattern in dBi DdB in the θ (inclination) and ϕ (azimuth) directions:

• Isotropic antenna element
DdB(θ, ϕ) = 0

• 3GPP antenna element [24]

Dv,dB(θ) = −min

{
12

(
θ − 90◦

θ3dB

)2

, SLAV

}

Dh,dB(ϕ) = −min

{
12

(
ϕ

ϕ3dB

)2

, Amax

}

DdB(θ, ϕ) = GE,max −min {−(Dv,dB(θ) +Dh,dB(ϕ)), Amax}

where the side-lobe attenuation in the vertical direction SLAV = 30 dB, the maximum
attenuation Amax = 30 dB, the vertical and horizontal 3 dB beamwidths are respectively
θ3dB = ϕ3dB = 65◦, and the maximum directional gain of the antenna element is GE,max =

8 dBi.

• Cosine antenna element

DdB(θ, ϕ) = Gmax + 20 log10

(
cosαh

(
ϕ

2

)
cosαv

(
90◦ − θ

2

))
,

where the exponents αh/v can be computed from the beamwidths BWh/v as αh/v =
−3

20 log10 cos
BWh/v

4

, and the maximum gain Gmax can be computed from the directivity for-

mula found in [105].

Beamforming Model Multiple BF architectures exist, which are commonly divided into
three main categories, namely analog, digital, and hybrid. In analog architectures, a network
of phase shifters is used to connect the antenna elements to a single RF chain, enabling a
passive control of the beam by acting on the elements’ phases. In digital architectures, instead,
each antenna element is connected to an independent RF chain to provide digital control of
the BF using baseband processing. The presence of multiple RF chains enables Multi-User
Multiple Input, Multiple Output (MU-MIMO) operations, i.e., independent data streams can
be transmitted and received simultaneously, possibly serving multiple users at the same time.
Finally, hybrid architectures represent a middle ground between analog and digital approaches,
in which the array is divided into multiple sections, each including multiple elements connected
to an independent RF chain.
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Although digital and hybrid architectures have the potential to achieve higher spectral ef-
ficiencies, several technological and economic issues still make analog BF a valuable choice,
also due to its relatively low complexity. For this reason, in this work we consider the analog
architecture and leave the study of the other two categories as future work.

Analog BF is achieved by controlling amplitude and phase shift of each antenna element of
the phased array; this corresponds to assigning a complex number to each element, which is
often identified as a BF vector. Several algorithms exist to compute such vectors, each affecting
the directivity pattern in a unique way. Some try to maximize the gain in given directions, some
try to suppress side lobes, some try to regulate the beamwidth, some others try to optimize the
performance for a given channel estimate, and some others even try to also take into account
the interference generated to other users.

In general, two main approaches exist: those based on a channel estimate, and those based
on BF codebooks.

For the first approach, we implemented an algorithm originally proposed in [106] based
on the Multiple Input, Multiple Output (MIMO) Maximum Ratio Transmission scheme, in
which the optimal weight vectors correspond to the singular vectors associated with the largest
singular values of the SVD of the estimated channel matrix. For a perfect channel estimate
in interference-free environments, this method ensures optimal performance. Unfortunately,
good channel estimates are hard and expensive to obtain, especially when dealing with large
antenna arrays. The SVD decomposition is itself an expensive operation, and sending feedback
information comprises a difficult trade-off between accuracy and overhead. For this work, we
assume that the channel matrix is perfectly known, thus posing the BF algorithm in ideal
conditions.

For the second approach, we implemented a generic interface for codebooks, allowing the
user to create custom ones (for the sake of our evaluation, we used the tool available at ∗).
We also implemented a file-based codebook, allowing to create complex codebooks using other
custom and highly-specialized softwares, avoiding the computation of sophisticated algorithms
in ns-3. As a first step, the implemented codebook-based BF computes the SINR for every
pair of TX/RX BF vector, choosing the pair with the best performance. The advantages
over the previous approach are many, in particular, no channel estimation nor complex matrix
decomposition is performed and the only feedback needed is the index corresponding to the best
performing BF codeword. On the other hand, exhaustive search among all possible codeword
pairs may be inefficient, while reducing the search to a subset of codewords might yield sub-
optimal performance. We leave a more realistic and standard-compliant beam-management
implementation and evaluation as future work.

3.4 Framework Description
The objective of the proposed framework is to speed up simulation-based optimization in the
presence of slow simulators. Optimization based on simulated data requires several iterations,

∗https://github.com/signetlabdei/codebook-file-generator
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Fig. 3.1: Workflow of the proposed framework. The diagram highlights how the parameter optimization is
achieved using an ML-based emulator.

each with a different input configuration, for the optimization strategy to steer toward the
optimal value. The major constraint is the simulation time∗, which makes a brute-force approach
infeasible. The goal of our framework is to require a small number of simulations to learn the
input-output relationship through ML algorithms, which are orders of magnitude faster to
evaluate. A key advantage is that, after the preliminary database creation, the optimization
of the selected antenna parameters can be achieved in a negligible amount of time, even when
testing different optimization goals. In fact, we remark that once the emulator is trained, the
optimization of multiple objective functions can be done instantaneously.

Although the idea is broadly applicable, our focus here is on antenna optimization over
network-level metrics for mmW systems. We consider this use case as a testbed and we report
the results of this particular optimization later in the chapter. The diagram in Fig. 3.1 shows
how the parameter optimization can be achieved through the ML-based emulator, which only
requires a single training phase done using a dataset of simulated data. More details on the
different parts of the proposed workflow will be given in the subsequent sections.

In order to assess the validity of this framework, three main questions have to be answered:

Q.1 Is it possible to emulate a complex network simulator with a learning tool, and which
learning tool can achieve the best emulation accuracy?

Q.2 How many train and test samples are needed for the chosen learning paradigm to converge
and to be robustly evaluated?

Q.3 Does the achieved precision allow an optimization that is accurate enough to be useful?

The remainder of this section is devoted to addressing these problems.

3.4.1 Network Simulator

To test the framework, we need some data to learn from. A custom simulator was built in order
to efficiently obtain results from such complex simulations. Simulation parameters are 3GPP
standard compliant [24, 107], using the Urban Micro-cell (UMi) scenario with no O2I losses.

∗Simulation times vary remarkably depending on the type of simulation and the accuracy required. It is not
unlikely for a single run to require hours or even days.
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Fig. 3.2: Correlation between selected inputs and outputs.

3.4.2 Data Analysis and Machine Learning

The dataset was created with the simulator introduced in Sec. 3.4.1.
Given that our goal is to show the capabilities of the framework and not the optimization

itself, the simulator has been simplified to obtain a good number of samples in a reasonable
amount of time. It should be clear that such a rich database would correspondingly require
more time when using a complex, thus more realistic simulation.

As usual in ML when dealing with new datasets, the initial phase is devoted to the analysis
of the gathered data. A proper preprocessing, e.g., normalizing the inputs and removing the
linearly correlated features, can boost the learning performance. The scatter plot showing the
relation between the inputs and the outputs is reported in Fig. 3.2. Note that, even though the
visual inspection of the data through different representations can help identify some hidden
trends, its effectiveness is limited both by the high dimensionality of the problem and by the
scarcity of available samples. Therefore, in general, it is not possible to rely on this kind of
data analysis for optimization.

The objective of the learning algorithm is to learn the underlying function mapping the input
antenna configuration to the output network metrics, for example

f : Rn →Rm

x 7→y
(3.1)

where x is the vector of the n input antenna parameters, f represents the simulator, computing
the output network statistics from a given antenna configuration, and, finally, y is the vector
of the m considered network metrics. Therefore, the learning algorithm (emulator) learns an
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(a) SINR5 (b) SINR

Fig. 3.3: Plots show the nRMSE as a function of the number of training samples. Multiple runs are performed,
showing mean (line) and 95% confidence interval (shadowed area) for each algorithm.

approximation f̂ of the simulator’s underlying function f , thus trying to mimic it.
Considering a scalar output y, the prediction or emulation error is then computed as the

difference between the prediction of the emulator ŷ and the corresponding simulator output y.
In order to assess this, we define the nRMSE as

nRMSE =

√√√√ 1

N

N∑
i=1

(
yi − ŷi

yi

)2

, (3.2)

where N is the number of samples of the test set. This parameter allows for a fair comparison
among metrics on different scales, as the normalization yields a percentage of standard error
with respect to the simulated value. Note that SINR values are first converted to linear units.

An effective way to address questions Q.1 and Q.2 is reported in Fig. 3.3, related to the
scenario described in Sec. 3.5, where the performance of the selected algorithms is evaluated
for increasing training sizes. We recall that increasing the number of training samples is always
beneficial for learning, improving both emulation accuracy and stability. However, it affects
the dataset creation time, going against the purpose of the framework. From the comparison of
Figs. 3.3a and 3.3b, it emerges that different emulation accuracies can be achieved for different
metrics and that some learning algorithms predict a given metric better than others. This
suggests that the choice of the technique should be made specifically for each metric. Eventually,
this choice should also be made considering the number of available samples, as more complex
algorithms, e.g., random forest, may outperform more basic ones when trained with enough
samples.

Moreover, note that the performance of linear regression quickly saturate, while more complex
algorithms achieve a lower error before converging. Saturation is expected even with the most
powerful algorithms since data obtained from the simulator is inherently noisy (e.g., the number
of Monte Carlo simulations is never infinite, thus statistics are not perfect). Instead, the reason
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Fig. 3.4: Representation of a one-dimensional plot obtained by fixing all the array parameters except one. The
plot makes it possible to visually compare the emulator fit with the simulator samples. In this case, an 8 × 8
array was used with dy = 0.5λ horizontal spacing, while the vertical spacing dz is varying. The emulator is still
trained in all 4 inputs simultaneously, justifying the suboptimal fit towards higher values of dz .

why simpler algorithms tend to saturate earlier and with higher errors is because they are too
simple to describe the inherent properties of the underlying function f . This concept can be
easily seen in Fig. 3.4, where we visually compare the emulator fit with the simulator samples.

As expected, the nRMSE decreases as the training size increases, but at different rates for
different algorithms. The trade-off between the number of samples and the emulation precision
has to be taken into account when selecting the algorithm. The achieved nRMSE can be
quite low, namely about 3.2% and 5.7% for SINR and SINR5, respectively. Finally, it can be
observed that the two estimated metrics in Fig. 3.3 present different behaviors and performance
for different outputs. Furthermore, in general, we observed that it is not possible to have a
universally valid list of best algorithms, as this is very much dependent on the simulator, the
scenario, and even the considered metric. As a basic approach, once the error achieves a target
threshold, the emulator can be used for the optimization and the simulator can be stopped.

3.4.3 Optimization

The proposed framework is optimization agnostic, meaning that most standard numerical opti-
mization techniques can be equally used. Clearly, the learned representation is just an approxi-
mation of the real-world performance: while the simulator tries to reproduce reality via random
experiments, the emulator tries to approximate the input-output relationship of the simulator
via a black-box approach, adding a level of abstraction that further distances it from the real
world.

Since in general our models are not required to be differentiable, nor would we have an
explicit derivative for most of them, gradient-based techniques are hardly usable. Some of the
inputs could also be categorical or discrete (e.g., the number of antennas in each dimension).
Furthermore, we are not posing any constraint on the convexity (or concavity) of the underlying
function. For these reasons, gradient-based optimization algorithms would not even be desirable.
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On the other hand, since a global optimum is typically desired, gradient-free global optimiza-
tion algorithms exist that satisfy all these requirements (e.g., genetic algorithms or simulated
annealing). Nowadays most scientific-oriented programming languages have optimization li-
braries, implementing several algorithms. As briefly explained in Sec. 3.4, Fig. 3.4 shows the
noisiness of the training data. Thus, finding the maximum values over the raw data might not
be the best choice, while numerically finding a global maximum over a smooth model might be
a better choice, provided that the model is not underfitting. In the next section, we show the
results obtained for the antenna optimization.

3.5 Regular UPA Optimization
In this section, we will discuss our results when trying to optimize the most common antenna
array geometry, the regularly spaced rectangular UPA. We will first describe the simulation
scenario in Sec. 3.5.1, and then discuss the related results in Sec. 3.5.2.

3.5.1 Scenario Description

A custom simulator was built in order to efficiently obtain results from such complex simulations.
Simulation parameters are 3GPP standard compliant [24, 107], using the UMi scenario with no
O2I losses.

The variable parameters of the scenarios are listed here:

• the antenna spacing dz, dy in the vertical and horizontal directions, respectively;

• the number of antenna elements nz, ny ∈ {1, 2, . . . , N} in the vertical and horizontal
directions, respectively. The total number of antenna elements is fixed to N = 64, in
order to obtain a fair comparison between different configurations. Thus, nz and ny are
the integer divisors of N and are deterministically related through nz = N/ny.

For each configuration, we collect network-level metrics such as the average SINR
(
SINR

)
and the 5th percentile of the SINR (SINR5).

In this section, results are validated using a test set of 300 samples, while the training set
is composed of 700 samples, that were proved to be large enough for this setup to obtain good
testing accuracy (see Sec. 3.4.2). The test set size is kept fixed, to allow a simplified presen-
tation of the framework while guaranteeing a proper result validation. Therefore, concerning
question Q.2 from Sec. 3.4, only the training set size is taken into account.

Several learning techniques [108] have been analyzed and tested. However, only results for
linear regression, Gaussian Process Regressions (GPRs), random forests and Support Vector
Regressors (SVRs) are hereby reported.

• Linear regression is the most basic class of regression algorithms. Despite its simplicity,
many versions and adaptations have been created, able to solve non-trivial problems. It
is often considered as a baseline for more powerful algorithms.
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• GPRs consider data as if it were sampled from a Gaussian stochastic process, trying to
minimize the log-marginal-likelihood during the fit;

• Random forests are ensembles of decision trees, that approximate stepwise the target
function;

• SVRs are derived from the Support Vector Machine (SVM) classification algorithm. Among
all the typical kernels, the Gaussian one performed best and is used here.

One of the main advantages of linear regression is that, due to its simplicity, it is fast to
train and easily interpretable, i.e., the analysis of the coefficients leads to some insights on the
importance of the different inputs and their correlation. On the other hand, random forests
and SVRs are black-box algorithms, meaning that results are hardly interpretable. Given their
popularity, Neural Networks (NNs) have been tested as well. However, the lack of a large
dataset has been found to be problematic for a stable convergence and they have thus been
discarded from this study.

3.5.2 Results

The optimization phase shows the significant advantages of this framework. As previously stated,
we remark that the proposed framework can be used for optimization in a wide set of scenarios,
beyond that of cellular network design, used here as an example. As the optimization is done
jointly on all the input parameters, the hyperspace where it operates can be extremely vast
and complex. These features, along with the complexity of the search of the global maximum,
require a very large number of evaluations. The gain of the framework can then be measured
comparing the number of entries necessary for the database creation with the number of function
evaluations needed by the optimization. This is because, due to the typical complexity of a
simulator, the time required to obtain the database far exceeds that of the training and the
optimization itself. In terms of time costs, the training itself is negligible and, once trained, the
predictions are instantaneous.

Another aspect to take into account is that, although significant, the database creation in our
framework is an overhead that is needed only once, as it does not depend on the optimization
goal. The same emulator, providing almost instantaneous iterations, can be used with different
optimization objectives, without requiring long simulation-based iterations.

For our example, given the data analysis initially done (partially shown in Fig. 3.2), we use
as the objective function

maximize SINR

s.t. SINR5 > 6 dB
(3.3)

where the constraint on the worst UEs (identified with SINR5) has been introduced in order to
guarantee some degree of fairness and coverage to all the UEs in the network.
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Fig. 3.5: Comparison among the network performance obtained with the baseline configuration (blue bar), with
the optimal configuration identified using the simulator samples (orange bar) and using the emulator (green bar).

The optimization results obtained within the scenario described in the previous section are
presented in Table 3.1 and Fig. 3.5. Results show that in the proposed scenario, a baseline
setup consisting of 8×8 arrays with λ/2 spacing in both directions performs significantly worse
than the optimized ones. The other two configurations represent the optimum obtained over
the collected dataset (Opt. Simulator, made of 1000 randomly sampled points in the four-
dimensional space described in Sec. 3.4) and the global optimum obtained using our framework
(Opt. Emulator). They both identified a 64×1 configuration (vertical Uniform Linear Array
(ULA)), but respectively with 0.825λ and 0.734λ spacing. Results show a ∼ 3 dB improvement
over the trivial baseline. Although in this case the results are really close (both inputs and
outputs), two facts are important: firstly, we discussed in Sec. 3.4 that significantly fewer than
1000 samples would have been enough, a far lower number than required by a brute force
optimization; secondly, as more inputs are considered, the input space will not be sampled
enough to find a good setup, making emulation even more important.

Having computed 1000 samples while the optimization required more than 12000 function
evaluations, we obtain a speedup factor of 12× with respect to brute force evaluation. A key
advantage of our approach is the possibility of changing the objective functions of the optimizer,
which would be easily and quickly done with the emulator, without having to retrain it.

Tab. 3.1: Numerical results shown in Fig. 3.5.

SINR SINR5 SINR50 SINR95

Baseline 20.52 4.91 20.26 36.99
Opt. Simulator 23.24 7.25 23.18 39.27
Opt. Emulator 23.49 7.47 23.45 39.64
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Fig. 3.6: Example of a generated array. Dashed lines separate the four quadrants, while black and gray dots
represent respectively the activated antennas and the array lattice. The top-left quadrant is generated and then
mirrored to the other three.

3.6 Thinned UPA Optimization
As in Sec. 3.5, a 3GPP compliant simulator was used to extract network-level metrics, such as
SINR statistics, based on a Monte Carlo approach. Specific environment parameters follow the
3GPP standards [24, 107] based on the UMi scenario with no O2I losses.

The goal of this study is to understand whether irregular thinning is a desirable property in
an array. In Sec. 3.6.1 we describe the adopted irregular thinning approach, while in Sec. 3.6.2
we list the parameters to be optimized. Finally, in Sec. 3.6.4 we will discuss the optimization
results obtained from our framework.

3.6.1 Antenna Array Generation

To simplify both the implementation and the optimization, thinning is defined by means of
an activation mask over a regular lattice of dummy antennas. Namely, a large antenna array
lattice is created but only some of the antennas are turned on (see Fig. 3.6). Thus, all the
antenna elements have approximately the same element pattern and thinned arrays are more
easily parameterized.

The activation mask is randomly produced at each iteration of the Monte Carlo simulation
as follows. First, the lattice is split into four quadrants. Then, starting from the center of the
lattice, a probability profile f(∆y,∆z) = fy(∆y)fz(∆z) is defined, where ∆y and ∆z are the
distances of the antenna elements from the center of the lattice in the horizontal and vertical
dimensions, respectively. Considering a single quadrant, each element i = 1, . . . , Nquadrant in
position (yi, zi) is assigned a value vi = ui · f(yi, zi), where {ui} are i.i.d. uniform random
variables defined in the interval [0, 1]. Finally, the elements with the largest values vi are chosen
and the sample quadrant is mirrored over the other three, to force a realistic symmetry. In this
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Fig. 3.7: Correlation plot of the four input parameters vs the output metric (y-axis) and the bound metric
(color). From here it is already possible to see the importance of the antenna shape parameters for the system
performance, giving a hint on the optimal parameters found by a good emulator.

thesis, a probability profile following an exponential decay fy(∆y) = e−αy∆y (and analogously
for fz) is chosen.

3.6.2 Scenario Parameters

Specific values and ranges were chosen based on our previous experiences (Sec. 3.5), to optimize
the positioning of 64 antenna elements over a given lattice. Results shown in Sec. 3.6.4 are
based on a fixed lattice with 100×99 antenna elements spaced apart by dy, dz. Regarding the
generation of the activation mask, the probability profile is parameterized by αy, αz ∈ [−1, 10].
Values are chosen to allow a very wide range of possibilities, including extremely sparse ones.
Please note that increasing values of α tend to push active antennas together towards the center,
while negative values tend to push them towards the outer edges of the lattice.

3.6.3 Learning Methods

The problem we are facing is a numerical regression on synthetic, noisy data.
Several algorithms were tested, but only a selected subset will be hereby described. The

performance of the different techniques is evaluated using 5-fold cross-validation, and, as we are
interested in keeping the training set as small as possible, the comparison is made for different
training set sizes. Thus, it is possible to know the accuracy of the emulation, based on the
number of available samples.

• Linear regression is the most basic class of regression algorithms. Despite its simplicity,
many versions and adaptations have been created, able to solve non-trivial problems. It is
often considered as a baseline for more powerful algorithms. Adding a ridge regularization
to the linear regression helps avoid overfitting the training data by imposing a penalty on
the size of the weights.

• Random forests are ensembles of decision trees, that approximate stepwise the target
function;
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Fig. 3.8: Plot showing cross-validation scores on the nRMSE metric with increasing training size.

• SVRs are derived from the SVM classification algorithm. Among all the typical kernels,
the Gaussian one performed best and is used here.

• Automatic Relevance Determinations (ARDs) directly derive from Bayesian Ridge Regres-
sion, but includes a sparsity assumption in the priors which stabilizes the weights;

• Multi-Layer Perceptron (MLP) is a well-known architecture that should be able to approx-
imate any function. Nevertheless, MLPs generally require (i) long and computationally-
demanding hyperparameter tuning and (ii) large datasets.

The performance is evaluated using the nRMSE metric, as in Sec. 3.5. Results are reported in
Fig. 3.8.

3.6.4 Optimization Results

The algorithms described is Sec. 3.6.3 were evaluated for increasing dataset sizes. During the
creation of the dataset, monitoring the learning performance as the number of available samples
increases can help find a plateau of the learning process, allowing to stop the simulations when
the required precision is achieved. In fact, the prediction performance is fundamentally limited
by the noise in the given dataset, mainly caused by the limited number of Monte Carlo iterations.
As the prediction residuals are symmetrically distributed around zero, this should not affect the
generalization performance of the model. Based on the comparison of the described algorithms
in Fig. 3.8, we decided to use Random Forests for our emulator as they give the best results
even with as few as 500 data points.

The objective function chosen for this problem optimizes the average performance of the
given network (mean SINR) while imposing a minimum coverage level, corresponding to a
lower bound to the 5th percentile of the SINR as follows

maximize SINR

subject to SINR5 > 6 dB
, (3.4)
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Fig. 3.9: Visual representation of the activation probability of any given element from the lattice using the
optimal parameters α∗

y , α∗
z . Elements outside the central column are never activated, indicating that a vertically-

shaped antenna is optimal.

and it is the same one proposed in (3.3) in Sec. 3.5.
Given the description from Sec. 3.6.1, it should be noted that the outcome of this optimization

problem does not yield the best possible antenna for the given scenario, but rather a family
of antennas following a probability distribution obtained for the optimal parameters α∗y, α∗z,
together with the optimal lattice spacing d∗z, d∗y.

For comparison, we consider as the baseline antenna an 8×8 UPA with dz = dy = 0.5λ

spacing. Also, we compare the results with the optimal antenna previously found in Sec. 3.5,
given by a vertical linear array of 64 elements, with dz = 0.796λ.

The ML-based optimization framework suggests as the optimal parameters α∗z = 9.02, α∗y =

0.20, d∗z = 0.761, d∗y = 0.866. To better understand what these parameters suggest, Fig. 3.9
shows the probability that any given antenna in the lattice is active, together with the corre-
sponding probability profiles. It can be easily noted that the activation probability indicates
that vertical antennas tend to perform better than any other configuration, similarly to what
was found in our previous work where the 64×1 configuration was identified as optimal.

As these results do not identify a specific antenna, but rather a family of antennas, in
Fig. 3.10 we show a comparison between (i) two specific antennas used as references, (ii) antennas
generated using non-optimized (i.e., randomly selected) input parameters, and (iii) antennas
generated using the optimal ones. Note that, while the antennas from the optimal family
do not perform equally, they always achieve significantly better performance with respect to
the baseline and to the other configurations and closely approach the optimal antenna found
in Sec. 3.5, often improving over the SINR5 although not over the SINR. Though the input
parameters optimized by the framework do not directly identify a specific antenna configuration,
they allow to drastically reduce the search space to a much narrower area, that can be further
explored using more traditional, time-consuming techniques.
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Fig. 3.10: Performance comparison between different classes of antennas. Gray dots are obtained choosing
300 antennas generated from non-optimized input configurations from the input space described in Sec. 3.6.2.
Red dots, instead, show 30 antennas, all generated with the optimal input configuration. Blue and red triangles
represent the baseline and the optimal antenna found in Sec. 3.5, respectively.

Fig. 3.11: Visualization of the input configuration around the optimal value. Slices of the input configuration
are taken to show how the different parameters affect the performance. It is clear that the antenna shape
parameters αy , αz play a more important role than the lattice-related parameters dy , dz .

76



Antenna Array Modeling and Optimization

Finally, we can study the sensitivity of our optimal point with respect to the four input
parameters in Fig. 3.11. As expected, α∗y is chosen to be large, forcing the antenna to be
vertical. Instead, while a large value of α∗z would push the elements towards the center to make
it less sparse, it would also tend to make the antenna more rhomboidal. The optimization was
thus able to find the largest possible value for the vertical sparsity that still allowed all antennas
to be strictly vertical. Given the preference for a vertical antenna, the horizontal spacing d∗y
is the parameter with the least effects on the network performance. The vertical spacing d∗z is
instead similar to the one previously found.

3.7 Antenna Array Modeling on ns-3

Typically, antenna and Beamforming (BF) design is carried out as an independent task, by
means of real-world experiments or link-level simulations, without considering it as part of the
overall system optimization. However, the solutions obtained with this approach may not be
able to achieve optimal system-level performance, because they are designed without considering
the interactions between the antenna systems and the higher layers of the protocol stack.

To go beyond this standalone block-level design perspective, new tools able to properly
consider all the relevant aspects of the cellular system are required. For instance, the authors
of [109] verified the importance of carrying out system-level simulations for the design of an
8×2 hybrid beamformer, since the cross effects between the different system blocks may have
a strong impact on the overall performance. In [110], the authors present novel antenna array
and BF solutions for mmW MIMO systems based on lens antennas, and evaluate the end-to-end
performance through system level simulations based on ray-tracing. Also, in [111] the authors
investigate the possibility of co-designing the antennas and the RF blocks in the front-end
using a system-level platform. Although these works tackle antenna and/or BF design with a
system-level approach, they make use of closed-source software or unavailable tools, specifically
developed for a single application.

In this section, we propose new models for the end-to-end performance evaluation of antenna
and BF designs targeted for mmW cellular systems. Thanks to the integration with ns-3, these
models allow users to evaluate the impact of novel antenna and BF solutions on the end-to-end
system behavior. Sec. 3.3 describes the antenna array model, Sec. 3.3 describes the antenna
element model, while Sec. 3.3 describes the BF model.

3.7.1 ns-3 Simulation Setup

We carried out a simulation campaign to evaluate the performance of different antenna and
BF configurations. To this aim, we used the ns-3 mmW module extended with the proposed
modeling framework. The scenario we considered is similar to the Parking Lot scenario described
in Sec. 2.4.1, and is also reported in Fig. 3.12. It models a parking lot with multiple cars
(between 1.2 and 2.25 m high) and buildings. Two mmW Base Stations (BSs) providing cellular
coverage are placed on the front face of two buildings at a height of 3 m and are oriented with a
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Fig. 3.12: Reference scenario.

bearing angle in the direction normal to the wall and with a downtilt of 12◦ with respect to the
horizon. Two users, UT1 and UT2, both at a height of 1.5 m, are connected to the respective
BS. During the simulation, UT1 leaves the main building walking at 1.2 m/s up to point A
and then starts driving towards the exit of the parking lot at 4.2 m/s, while UT2 stands still
at the center of the scenario. The channel was ray-traced every 5 ms considering up to 2nd

order specular reflections and diffuse scattering, but ignoring diffraction effects. More details
on the ray-traced scenario can be found in [92]. The same type of BF schemes is used by all
nodes of the scenario. We assume perfect channel knowledge for SVD BF, computed for every
received and transmitted packet. Instead, to assess the impact of realistic mobility on this type
of scenario, codebook-based BF is only updated to find the best codeword pair for each TX/RX
node pair every {10, 100, 1000} ms.

Codebooks have been generated ensuring that adjacent beams cross at 3 dB below the max-
imum directivity and with no tapering across antennas. The system operates at 28 GHz with
a bandwidth of 400 MHz, and is configured with NR numerology index 2. The downlink traffic
is generated by a remote server which transmits UDP packets to the users at a constant rate.
Table 3.2 summarizes the parameters used in our evaluation.

To evaluate the communication performance, we considered both link-level and end-to-end
metrics, including SINR and SNR experienced by UT1, respectively showing the performance
with and without the interference from the second cell, and APP layer throughput.
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Fig. 3.13: Temporal evolution of the signal quality experienced by UT1.

3.7.2 Simulation Results

In this section, we present and comment the results obtained. Unless explicitly stated, we
consider the baseline simulation to have 4×2 arrays for the UEs, 3GPP antenna elements for
the BSs, and codebook-based BF with 100 ms beam alignment, in addition to the parameters
shown in Table 3.2.

In Fig. 3.13, we reported the temporal evolution of the SNR and SINR experienced by UT1.
During the first part of the simulation, the SNR stays always above 50 dB and decreases as the
user walks away, but the presence of interference strongly affects the channel quality, as shown
by the behavior of the SINR. At time instant A, the user starts driving towards the exit of the
parking lot. Shortly after 20 s and 30 s, some of the parked cars temporarily block the line
of sight, making the channel quality suddenly drop. From time instant B to time instant C,
both the SNR and the SINR show an oscillating behavior caused by the presence of multiple
reflections with similar path losses from the surrounding cars. The last part of the simulation
is characterized by multiple blockage events due to the cars parked in the bottom part of the
parking lot. During this phase, the SNR and SINR exhibit similar behavior since the user is no
longer subject to the inference caused by the communication between BS2 and UT2.

Tab. 3.2: Simulation parameters.

Frequency 28 GHz
Bandwidth 400 MHz
Channel sampling period 5 ms
NR numerology index 2
Transmission power 30 dBm
Noise figure 9 dB
BS array size 8×2
UE array size {1×2, 4×2, 4×2}
BS element pattern {Isotropic, 3GPP, Cosine}
UE element pattern Isotropic
BF algorithm {SVD, Codebook}
Codebook BF period {10, 100, 1000} ms
APP packet size 1490 bytes
Inter-packet interval {10, 1000} µs
RLC mode Acknowledge Mode (AM)

79



Chapter 3

Codebook SVD
10 ms 100 ms 1 s

−20 0 20 40 60

0.0

0.2

0.4

0.6

0.8

1.0

SNR [dB]

−20 0 20 40 60

0.0

0.2

0.4

0.6

0.8

1.0

SINR [dB]

Fig. 3.14: Comparison of the SNR/SINR CDFs for different BF schemes.
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Fig. 3.15: Comparison of the SNR/SINR CDFs for different phased antenna array configurations at the UT
side.

Fig. 3.14 shows the CDFs of SNR and SINR experienced by UT1 with different BF configura-
tions. We can notice that the SVD approach guarantees the best performance in terms of SNR,
as supported by the theory, but not always when considering the SINR, i.e., when interference
is considered. Since SVD BF does not account for interference when computing the BF vec-
tors, while codebook BF does so when probing the different codeword pairs, the performance
gap between the two approaches is reduced and SVD may even be suboptimal, as shown in
Sec. 3.7.2. Moreover, it can be seen that the value of the refresh rate used to update the weight
vectors affects the behavior of the codebook-based algorithm, providing better performance for
more frequent updates. Due to the geometry of the environment and the mobility, diminishing
returns are clearly visible when reducing the beam alignment period from 100 ms to 10 ms
making the extra overhead unnecessary.

Fig. 3.15 shows a comparison between different array sizes for the UEs. Clearly, the most
complex configuration represented by a 4×2 array is able to achieve the highest performance for
both SNR and SINR. This is due to the higher antenna gain obtained with the larger antenna
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Fig. 3.16: Comparison of the SNR CDFs for different antenna element patterns.
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Fig. 3.17: APP-layer throughput for different inter-packet intervals.

array, but also to the reduced interference due to the higher directivity. On the other hand,
considering vertical 4-element ULAs results in a very similar performance in the interference-
free scenario, but vastly different performance when considering the interfering cell. In fact, a
vertical array is only able to produce directivity with cylindrical symmetry around the vertical
axis. Being both BSs at the same height, a good BF codeword able to improve the received
power will also be likely to increase the downlink interference from the second cell. On the other
hand, when orienting the linear array horizontally, the cylindrical symmetry will also rotate over
the horizontal axis. In this case, the geometry of the environment and the positioning of the
BSs make it less likely to incur strong interference.

Fig. 3.16 evaluates the impact of the element radiation pattern on the SNR experienced by
the user. Isotropic elements radiate equal power in all directions, and therefore provide a low
directional gain, but are able to cover a wide area. On the contrary, elements characterized by
the 3GPP pattern have high directivity but small beamwidth, which implies that the transmit-
ted power is focused in a small portion of the space. The best performance is achieved with the
cosine pattern set to have a 3 dB beamwidth of 120◦, thus obtaining a maximum gain Gmax =

5.7 dBi, as this represents a good compromise between directivity and beamwidth.
Fig. 3.17 shows the average throughput achieved by UT1 and UT2 at the APP layer. With an

inter-packet interval of 10 µs, the network is highly loaded and the scarcity of radio resources may
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prevent the recovery of the lost packets, e.g., by means of MAC and RLC layer retransmissions.
In this situation, the choice of the BF algorithm may have a strong impact on the end-to-
end performance, especially in the presence of user mobility. Indeed, as shown in Fig. 3.17,
the higher channel gain provided by the SVD-based algorithm allows UT1 to achieve higher
throughput, while there is no benefit for UT2 since it stays in the same position during the
entire simulation. Instead, with a higher inter-packet interval, the codebook-based algorithm
achieves the same performance as the SVD, since the recovery mechanisms at the MAC and
RLC layers are able to compensate for the lower channel quality.

3.8 Conclusions
In this chapter, an innovative framework has been presented that makes the joint optimization of
multiple parameters a reality, needing just a fraction of the time that is currently required when
directly employing a simulator [112, 113]. As simulators are generally computationally complex
and time-consuming, the key idea is to bypass them using a fast emulator, obtained through ML
techniques. After a long, initial database creation, any objective function can be optimized in a
matter of minutes or even seconds. The effectiveness of this methodology has been proved using
a network simulator, which requires a long time to compute the network metrics for specific
antenna configurations, thus representing the perfect testbed for our framework.

In the first part of this work, our framework found a vertical ULA to be the optimal con-
figuration, confirmed by empirical results on a large database, showing a ∼ 3 dB improvement
over the baseline. Furthermore, we discussed about how our methodology can obtain this op-
timization over 10 times faster with respect to common simple optimization techniques. A key
advantage of our approach is the possibility of changing the objective functions of the optimizer,
which would be easily and quickly done with the emulator, without having to retrain it.

In the second part of this work, thanks to the antenna parameterization chosen in this study,
our framework was able to explore much more complex configurations than regularly spaced
planar arrays. Returning an optimized family of antennas rather than a specific configuration
successfully reduces the search space of possible configurations, making it possible to further
refine it with more precise simulations. Overall, in both studies based on a 3GPP-compliant
UMi scenario with static users, the optimizer suggests that vertical linear arrays are the optimal
configuration.

We then presented a modeling framework for the end-to-end evaluation of 5G mmW cellular
networks which is compliant with the 3GPP NR specifications [114]. Our work extends the
capabilities of the ns-3 mmW module presented in [19] by providing (i) a ray-tracing based
channel model for mobile users, which improves the spatio-temporal coherence over the pre-
vious stochastic channel [43], (ii) a flexible antenna module, comprising multiple parametric
antenna elements as well as a generic interface for phased antenna arrays, and (iii) a BF mod-
ule supporting different algorithms for the computation of the optimal BF vectors. Using this
framework, we evaluated the performance achieved by different antenna configurations and BF
schemes in a realistic simulation scenario. Our results show that inaccurate antenna and BF
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designs may provide sub-optimal channel gains and affect the performance of the higher layers.
Future research directions for the optimization framework call for further studies on how to

reduce the number of required training samples, in order to further reduce the dataset creation
overhead. Moreover, a second aspect would be to increase the accuracy of the emulators,
possibly resorting to more complex ML techniques. The range of applicability of the framework,
concerning both the complexity of the involved simulator and the number of parameters to be
optimized, is left for future studies with different problems. Finally, understanding how to
automatize the whole process of data acquisition, formulating a stopping criterion related to
the emulator’s accuracy, periodically re-train the emulator, and optimize the objective function
would create a more usable software, while also solving non-trivial problems that would need
to be heuristically solved by hand otherwise.

Regarding the antenna models in ns-3, the proposed framework can be extended in multiple
ways, e.g., with better support to antenna polarization and rotation, with a more realistic
beam-management implementation to account for the overhead introduced by beam search
operations, and it should be validated with real-world measurements to ensure the correctness
and credibility of the model. We want to highlight the fact that our model has been integrated
in the official release of the ns-3 software starting from version ns-3.34.

Clearly, merging the two main proposals together could also be of interest, i.e., optimizing the
antenna parameters based on end-to-end metrics extracted from full-stack simulations, using
our antenna module implemented in ns-3.
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4
WiGig MAC Scheduling

4.1 Introduction
Wi-Fi is nowadays present in many devices and is common in households, offices, public in-
stitutions, and transportation. Over more than 20 years, many amendments have been made
to the original standard, updating both the PHY and MAC layers to provide higher bit-rate,
robustness, and Quality of Service (QoS).

Indoor Wi-Fi networks have had a key role in the digital revolution of the last two decades,
as wireless technologies paved the way toward the design of applications for work settings (e.g.,
smart metering, remote control) and house entertainment (e.g., AR, VR, XR). From a technical
point of view, these new applications also changed the infrastructure requirements, with higher
required data rate, lower delay thresholds, and brand new classes of QoS constraints.

To face these challenges, moving to the mmW spectrum has proven to be a valuable al-
ternative to the widespread sub-6 GHz spectrum used by legacy wireless architectures, given
the abundant bandwidth available in the former frequency range. On the downside, given the
higher carrier frequency, mmW transmission suffers from an increased propagation loss, as well
as deeper diffraction shadows, and higher penetration and reflection losses, making communi-
cation more difficult and less stable.

On the other hand, these characteristics allow for extreme spatial reuse, e.g., transmissions
in different rooms will hardly interfere with each other unlike in legacy Wi-Fi. Moreover, the
short wavelength makes it possible to use antenna arrays with tens of elements packed in a
small area, making it possible to counteract the increased path loss by focusing the radiated
power into directive beams, thus increasing the overall antenna gain. While this further reduces
interference even where users share the same area and improves spatial reuse, it also creates the
problem of directional deafness, worsens the hidden node problem, and makes mobility more
complex to handle.

85



Chapter 4

In an effort to create a common playground for researchers and manufacturers, the IEEE
devised specific amendments to update the PHY and MAC layers in what is known as WiGig,
first with 802.11ad [16] in 2012 and now with 802.11ay [17]. By taking advantage of techniques
such as channel bonding and MIMO, and by introducing novel features to the protocol stack,
the latest standard can provide data rates over 100 Gbps [115].

In particular, WiGig standards introduced a new contention-free strategy to access the trans-
mission medium at specific time intervals, referred to as Service Periods (SPs). A Station (STA)
can request SPs to the Personal Basic Service Set (PBSS) Central Point/Access Point (PCP/AP)
asking for a specific duration and periodicity. A detailed overview of such procedure will be
later described in Sec. 4.3.3.

This new access strategy can be useful for applications with stringent QoS requirements,
i.e., throughput, delay, and jitter, which may be heavily affected by legacy, contention-based
channel access mechanisms. Moreover, applications such as video streaming or VR can generate
periodic traffic, whose performance with contention-based channel access can degrade, given
the uncertain availability of resources from one time interval to another. Fortunately, WiGig
provides specific scheduling mechanisms to directly support periodic applications with tight
QoS constraints.

Regarding the practical design, handling multiple periodic traffic streams can be problematic,
especially when traffic flows with different periodicities coexist. In this case, it is necessary
to anticipate collisions among different periodic allocations and either adjust them or, in the
worst case, reject new incompatible requests. Furthermore, upon receiving a new request, the
scheduler needs to decide whether to rearrange the previously allocated resources to improve
fairness and efficiency, or to maintain the original schedule and then best accommodate the new
request, in order not to perturb the pre-existing streams but potentially reaching a suboptimal
resource allocation. Moreover, SPs are subject to a number of constraints, described in Sec. 4.5,
which need to be accounted for when designing and optimizing scheduling algorithms.

Considering all these aspects, in this chapter we propose two main contributions:

1. An End-to-End (E2E) framework to manage distinct traffic flows based on the require-
ments provided by the WiGig standards, taking care of the admission and scheduling of
new allocation requests. To do so, we extend the module described in [116], which inte-
grates into ns-3 the new features of 802.11ad, and publicly release the source code to the
research community.

2. We address both admission control and resource allocation for multiple periodic traffic
sources, following the constraints given by the WiGig standards. Specifically, we cast the
periodic scheduling problem within the WiGig allocation framework and design a simple
and efficient algorithm to check for the feasibility of a new request. We then propose a
simple admission control algorithm with limited scheduling capabilities, as well as a more
elaborate and optimized strategy to increase the admission rate and, possibly, the fairness
among independent flows.

The remainder of this chapter will be structured as follows: in Sec. 4.2 we will report the
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relevant state of the art regarding IEEE 802.11 performance and scheduling, with a focus on
WiGig standards; then, in Sec. 4.3 we will give a brief overview of the IEEE 802.11ad standard
specifically, focusing especially on the scheduling aspect; after that, in Sec. 4.4 we will describe
our work regarding the implementation in ns-3 of a flexible scheduling framework on top of the
previously existing IEEE 802.11ad module [116, 117]; our simulation campaigns suggested us
to better study the mathematics behind periodic scheduling in WiGig, described in Sec. 4.5;
finally, Sec. 4.6 will conclude the chapter, also indicating some relevant research directions.

4.2 State of the Art
The optimization of Wi-Fi’s MAC layer procedures has been investigated in the literature,
even before WiGig standards were introduced. Most of these works, however, mainly focus on
Contention-Based Access Periods (CBAPs) and do not consider the possibility of using SPs.
Starting from 802.11ad, the possibility of allocating contention-free resources gained further
momentum, considering also the directional characteristic of mmW channels. An attempt to
prioritize the traffic injected in the network was made for IEEE 802.11e, where four Access
Categories (ACs) were introduced. Based on which category they belong to, packets with
higher priority use a shorter Arbitration Inter-Frame Space (AIFS) and thus they wait less
before being transmitted. A study of 802.11e contention-based prioritization mechanisms was
provided in [118].

A mathematical framework to analyze E2E metrics in 802.11-based systems was proposed
in [119], to compare throughput and average packet delay in scenarios where the nodes are
equipped with advanced antenna systems. It also accounts in detail for the characteristics of
the Distributed Coordination Function (DCF), for which a theoretical performance analysis was
carried out in Bianchi’s seminal work on IEEE 802.11 performance analysis [120].

Likewise, the authors in [121] presented a detailed analytical model to assess the performance
of CBAPs in 802.11ad, taking into account a directional channel model and the presence of
scheduled SPs. Yet, the model lacked the details about how to schedule such SPs for certain
types of relevant applications, such as periodic ones.

A seminal study on the use of Reinforcement Learning (RL) to solve the problem of jointly
scheduling CBAPs and SPs in 802.11ad is in [122], where ns-3 was used to assess how the
algorithm could decrease the Data Transmission Interval (DTI) occupancy while guaranteeing
state-of-the-art QoS performance.

In general, in the context of WiGig networks, little work has been done on the scheduling
of contention-free time resources. Moreover, to the best of our knowledge, little to no work in
the literature faces the problem of periodic scheduling with all the constraints introduced by
WiGig standards. The authors of [123, 124], for example, study the case where all SPs are
allocated at the beginning of each Beacon Interval (BI), while the rest of the interval is left for
a single CBAP. In [125] they propose an accurate mathematical analysis of the performance of
a realistic Variable Bit Rate (VBR) traffic source in the presence of channel errors when using
a periodic resource allocation scheme. How to schedule multiple allocations at once, however,
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has not been detailed.
On the other hand, the problem of periodic scheduling has been studied for real-time compu-

tation and task scheduling, where the goal is to complete some tasks before a certain deadline
while minimizing resource utilization. For example, the authors of [126] proposed a schedul-
ing algorithm to dynamically assign priorities, capable of achieving full processor utilization.
In [127], the authors tried to schedule safety-critical periodic tasks with precedence constraints,
distributed over multi-processor systems using an adapted deadline-first approach, while the
authors of [128] used simulated annealing to optimize a similar problem. Finally, [129] found a
low-overhead optimal solution (from a resource utilization point of view) assuming that tasks
have a fixed resource requirement.

All these approaches, however, cannot be directly used in WiGig systems, either because
they are not compliant with the constraints imposed by the resource allocation procedures (i.e.,
granularity of the allocation periods, BI boundaries), or because they cannot exploit the flexibil-
ity of the WiGig standards (e.g., the dynamic allocation of Tblk). Part of this work contributes
to fill this gap by proposing admission control and scheduling algorithms that account for the
specific features of mmW WLANs.

Other works in the literature consider different aspects of the DTI. For example, [130] derives
the theoretical maximum throughput for CBAPs when two-level MAC frame aggregation is used.
Beamforming is also considered in [131], which proposes a joint optimization of beamwidth se-
lection and scheduling to maximize the effective network throughput, while other works, though
not specifically concerning IEEE 802.11ad, deal with transmission scheduling for mmW com-
munications [132].

4.2.1 Available Research Tools

Although commercial devices supporting the IEEE 802.11ad standard are currently available,
manufacturers do not provide tools to access low-level functionalities, although some alternatives
exist (e.g., [133]) and some work has been done to that regard [134, 135, 136, 137, 138, 139, 140,
141, 142]. Ultimately, it is more flexible, timely, and cost-effective, albeit being arguably less
realistic, to simulate the behavior of such devices.

In particular, significant effort has already been done implementing the IEEE 802.11ad stan-
dard into ns-3 [117], a popular open-source network-level simulator. The last release of the
simulator also supports quasi-deterministic channel modeling based on ray-tracing, making sim-
ulations extremely accurate and realistic at the cost of a long preliminary channel generation
phase, although some works already tried to improve this aspect [87]. While the implementa-
tion already covers most parts of the standard, it is still missing the scheduling mechanisms
necessary for this project. The authors of [117] are also working on the implementation of the
IEEE 802.11ay amendment [143], making their work even more valuable.

With these powerful tools, it will be possible to further advance the state of the art, create a
comprehensive performance evaluation of available algorithms and further improve upon them
once the weak points are clearly identified.
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Fig. 4.1: Graphical representation of sector structure in IEEE 802.11ad.
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Fig. 4.2: Representation of a Beacon Interval (BI).

4.3 IEEE 802.11ad Overview
To introduce the main concepts and nomenclature of IEEE 802.11ad, in this section we provide
a short summary of the standard [144], while referring to other sources for more details [2].

Being a mmW-based standard, directional communication with all the added overhead and
the possibility of spatially multiplexing users are included in the amendment. To simplify beam
management, both the PCP/AP and the STAs divide their surrounding space into sectors as
shown in Fig. 4.1. STAs and PCP/AP will then need to keep beam alignment, which increases
the signaling overhead.

Fig. 4.2 shows that in IEEE 802.11ad time is divided in BIs, the unit time interval used by
the devices to organize association, beamforming, and data transmission procedures, of about
100 ms. Each BI is further divided into Beacon Header Interval (BHI) and DTI, briefly described
in the following sections.

4.3.1 Beacon Header Interval

The PCP/AP does most of the managing, such as beaconing, beamforming training, and schedul-
ing, during the BHI. This period can last hundreds of microseconds up to a few milliseconds,
and is further divided into three subintervals: Beacon Transmission Interval (BTI), Association-
BeamForming Training (A-BFT), and Announcement Transmission Interval (ATI).

The BTI is used to send Directional Multi-Gigabit (DMG) Beacons to announce the network,
give the basic synchronization and BI structure information, start the beamforming training
with new stations, and, if needed, do some basic traffic management. Beacons are sent over the
different sectors, covering all possible directions to maximize coverage for untrained STAs.

After receiving a DMG Beacon during the BTI, new STAs can use the A-BFT to complete
the basic beamforming training by sending Sector Sweep (SSW) frames in different sectors.
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Beam alignment is completed once the PCP/AP responds with an SSW Feedback.
Finally, advanced scheduling mechanisms setup and further network management can be

done during the optional ATI.

4.3.2 Data Transmission Interval

The DTI is mainly used for the actual data transmission, but it can also be used to improve
communication links and for further scheduling. The DTI comprises Contention-Based Access
Periods (CBAPs) and Service Periods (SPs), which can appear in arbitrary combinations and
are scheduled during the BHI.

Transmission in CBAP follows the rule of Enhanced Distributed Channel Access (EDCA),
slightly modified to account for directional transmission, in which STAs compete with each
other in order to transmit their data.

Instead, SPs are scheduled contention-free intervals that are dedicated to exclusive transmis-
sion between a pair of STAs∗ to guarantee QoS. The standard also allows for spatial sharing,
meaning that multiple pairs of STAs with low cross-interference can be scheduled in the same
SPs. This, however, comes at the cost of increased overhead since interference measurements
must periodically take place.

4.3.3 Scheduling in IEEE 802.11ad

IEEE 802.11ad allows for great flexibility in the scheduling of radio resources, but we will hereby
describe only some of these possibilities in their simplest form.

We want to stress the fact that, unlike in traditional contention-based medium access, sched-
uled SPs guarantee QoS. ACs introduced in 802.11e, in fact, only allow for stochastic traffic
prioritization according to the DiffServ paradigm, which ceases to work in congested networks.
For this reason, allocated traffic is especially important for those applications with strict QoS
constraints. Instead, more realistic applications, such as data transfer or asynchronous bursty
traffic, can simply rely on CBAP.

As shown in Fig. 4.3, a STA can set up an allocation by sending an Add Traffic Stream
(ADDTS) Request frame to the PCP/AP during the DTI and embedding a DMG Traffic Spec-
ification (TSPEC) element. The DMG TSPEC element is created by the requesting STA and
comprises information such as the allocation period, the minimum and maximum allocation
duration, and the pseudo-static flag, which allows for persistent allocations over multiple con-
secutive BIs, among others.

Based on its admission policy, the PCP/AP will either reject or accept the request, immedi-
ately notifying the requesting STA via an ADDTS Response. If accepted, the allocation is made
effective by including it in the Extended Schedule Element (ESE) transmitted in the next DMG
Beacons, which will contain details such as the effectively allocated period duration and the SP
start time. In this way, STAs not involved in the communication will not create interference

∗A PCP/AP also contains a STA, i.e., a logical entity that is a singly addressable instance of a MAC and
PHY interface to the wireless medium [144].
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Fig. 4.3: Representation of ADDTS scheduling in IEEE 802.11ad.

and will be able to switch to power-saving mode. Otherwise, the PCP/AP can either reject or
propose a change in the DMG TSPEC. A STA can later update the DMG TSPEC by sending
another ADDTS Request with the updated element and follow again the same procedure.

Allocating the right duration to SPs is clearly a trade-off between QoS traffic, which needs
resources to fulfill the minimum requirements imposed by the application, and elastic traffic,
which still needs resources even though with less stringent requirements. Since resource avail-
ability, as well as channel quality, are time-varying, the standard supports SP extension and
truncation services, which let the stations keep transmitting and/or relinquishing the unused
occupied channel. Still, these features bring extra overhead and should thus be used carefully.

As mentioned in Sec. 4.2, a mathematical model for preliminary allocation of SP for VBR
flows is presented in [125], which helps determine how to set the TSPEC parameters to meet QoS
requirements while minimizing the amount of allocated time. Unfortunately, SPs are assumed
to be placed at the beginning of the DTI, which is not possible in general for applications with
tight delay constraints. For example, for virtual or augmented reality services, latencies should
be below 20 ms to avoid motion sickness.

4.4 WiGig Scheduling Framework on ns-3

In this section, we describe the design choices and assumptions necessary to implement our
scheduling framework on top of the 802.11ad ns-3 module [116], with a focus on MAC layer
mechanisms.

Our work [145] mainly focused on the design and implementation of a generic scheduling in-
terfaces, called DmgWifiScheduler, that implements the scheduling features for the MAC entity
of the PCP/AP. Starting from this class, we extended it to create the PeriodicWifiScheduler,
a simple scheduler for the allocation of periodic resources. Moreover, to study how a contention-
based-only approach affects the overall QoS, we also created the CbapOnlyWifiScheduler, forc-
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Tab. 4.1: Simulation parameters

MCS 4 (fixed) APP period (TAPP) T
Max A-MSDU size 7 935 B Packet size 1 448 B
Max A-MPDU size 262 143 B Traffic direction Uplink
BI duration (TBI) T Simulation duration 10 s
SP period (TSP) T Independent runs 30
Network protocols IPv4/UDP T 102.4 ms

ing STAs to transmit only over CBAP by allocating the entire DTI as such.
Even though the performance evaluation, presented in Sec. 4.4.2, considers only allocations

with the same period and application requirements for all STAs, scheduled starting from the
beginning of the DTI back to back as long as they fit, it is crucial to elaborate on the design
choices that lead to this framework.

Thus, PeriodicWifiScheduler includes the following assumptions:

• Only SP allocations with period equal to an integer fraction of a BI are supported, while
the standards also support periods multiple of the BI.

• If the period is t = TBI/p, the request is accepted only if the available time in the DTI can
accommodate exactly p SPs, commonly referred to as allocation blocks, each distanced
by t. For example, if p = 4, the number of blocks per BI must be exactly 4.

• A STA can send an ADDTS Request to reduce the duration of the allocation, while the
increase is not supported as it possibly requires a major reorganization of the DTI.

• Once an allocation is accepted, the SPs duration and blocks starting time cannot be
changed by the scheduler, even if the DTI structure changes as a consequence of subsequent
requests from other STAs.

• All the time that is not reserved by SPs will be allocated as CBAP.

These constraints allowed us to validate our results in a clear setting with firm requirements.

4.4.1 Simulation Setup

The network scenario consists of a single PCP/AP in the center of a room, surrounded by STAs
with perfect channel conditions, with simulation parameters listed in Table 4.1.

To emulate periodic traffic, we implemented a periodic application that generates periodic
packet bursts, whose size and period can be set as a parameter of the application, with every
single packet being of size 1 448 B. Traffic is generated by the STAs and sent to the PCP/AP.

Since we expect CBAP-only scheduling to yield good performance when a small amount of
traffic is sent over the network, and the SP scheduling to show its full potential for highly loaded
networks, we defined the normalized offered traffic which we refer to as η. By varying η in (0, 1],
we control the traffic injected in the network, equally distributed among the number of stations.

For instance, in a scenario with N = 4 STAs transmitting using Modulation and Coding
Scheme (MCS) 4 with a nominal PHY rate of R4 = 1155 Mbps, for η = 0.5 the aggregate
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average offered traffic should be ηR4 = 577.5 Mbps, and thus each STA will generate about
ηR4/N ≈ 144 Mbps.

Note that with η = 1, the offered PHY rate would be exactly 1 155 Mbps, thus overloading
the network. In fact, a portion of each BI is always reserved for the BHI where STAs are not
allowed to transmit information, reducing the overall network capacity. On the other hand,
η = 0 would translate in no traffic injected into the network. For this reason, in Sec. 4.4.2 we
will show results for traffic loads η ∈ [0.01, 0.9].

In all our simulations, the period of all periodic applications TAPP, the period of all scheduled
SPs TSP, and the duration of the BI TBI are all the same, and thus simply noted as T = 102.4 ms.
Based on the value of η, the number of packets making up a burst is constant as well, and they
are all generated at the beginning of each application period.

The duration of each SP is computed based on the MCS and the application rate for the full
transmission burst to fit exactly into the SP. The minimum and maximum duration fields in the
ADDTS Request are thus equal, meaning that the request is either accepted by the PCP/AP
guaranteeing the exact amount of resources necessary to serve its application, or rejected, and
the rejected STA will remain silent for all the simulation.

If the ADDTS Response for a given STA is accepted, its application will start randomly
over a period T , and thus, by default, will not be aligned with the beginning of its assigned
SPs. To fully take advantage of the scheduling concept, however, application and SPs should
be aligned to yield the best possible performance. To do so, the APP layer has to be aware
that the transmission will happen over a WiGig network as well as the details of the scheduled
SPs, requiring some information exchange with the MAC layer. This might be possible for
some types of applications running on specific hardware, e.g., VR headsets and, in general, for
high-end hardware running applications that require tight delay constraints. For this reason,
we defined a smart mode which, if activated, makes the application start at the beginning of
the first allocated SP, thus assuming a cross-layer interaction and alignment. Nonetheless, this
does not take into account applications with non-deterministic periods, which could lose the
alignment in the following SPs.

We compare the performance of four scheduling configurations, namely:

• CBAP-only: all STAs transmit during the CBAP.

• SP Config. #1: the smart start mode is enabled. STAs are also allowed to transmit in
the CBAP if necessary.

• SP Config. #2: smart start is disabled and STAs cannot transmit in the CBAP.

• SP Config. #3: smart start is disabled and STAs are allowed to transmit in the CBAP
if necessary.

The performance evaluation of the proposed scheduling schemes has been carried out in three
distinct scenarios.

• First scenario: four STAs transmit at different values of η using a deterministic application
with period T .
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Fig. 4.4: Performance of the different scheduling configurations with a bursty application with deterministic
period T = 102.4 ms.

• Second scenario: all applications offer the same APP layer rate of R = 50, 100, 200 Mbps
with a deterministic period of T , varying number of STAs up to 10.

• Third scenario: four STAs transmit a heavy traffic load (η = 0.75) using applications with
random period. Periods are independently sampled one after the other Ti = N (µ, σ2),
where µ = T and σ = ρT , calling ρ the period deviation ratio. Thus, for a given STA,
bursts will occur at times tk = t0 +

∑k
i=1 Ti.

4.4.2 Simulation Results

In this section, we evaluate the performance of the different configurations considering a number
of packet-based Key Performance Indicators (KPIs). First of all, the average delay takes into
account only successfully received packets. For some relevant scenarios we also show the packet
jitter [146], defined as the average absolute delay variation among successive packets. The ag-
gregated throughput is also considered as a metric for network utilization, sometimes normalized
by the amount of aggregated offered traffic. Finally, all metrics also show the 95% confidence
intervals computed as 1.96 σruns√

Nruns
.
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First Scenario Fig. 4.4 shows the results for the first proposed scenario, where we compare
the four scheduling configurations against traffic load, considering a deterministic application,
as described in Sec. 4.4.1.

In Fig. 4.4a we show the average delay for this scenario. Note that an increasing η directly
translates into an increased burst size, since more packets have to be delivered in a given
period T , thus increasing the achievable average delay.

When the scheduling of SPs is not allowed, CBAP-only offers almost ideal delay performance
for low traffic loads, which however degrades for higher loads and even becomes unstable for
η > 0.8.

Instead, SP configuration #1, i.e., using smart start, is clearly the optimal strategy and
represents a lower bound for all other configurations, since packets are sent immediately and
back-to-back.

SP configuration #2, where smart start is not used and STAs with scheduled SPs are not
allowed to access the CBAP, shows an almost constant average delay of about 51.2 ms = T/2.
It can be proven that an application with period T with a uniformly distributed start time,
which can only transmit during an SP of the same periodicity T and with a duration equal
to what is needed to transmit the packet burst, has an expected average delay of exactly T/2,
irrespective of the traffic load or the number of transmitting nodes. In fact, application bursts
will happen either (i) sometime during the ongoing SP, so that the next SP will also be needed
to finish sending the whole burst causing a large increase of the average delay, or (ii) outside
an SP, thus needing to wait for the start of the next SP but being able to send the whole burst
at once.

Finally, for SP configuration #3, where smart start is not used but STAs with scheduled
SPs are allowed to also access the CBAP, the performance is lower bounded by the CBAP-only
scheduling and upper bounded by SP configuration #2. In fact, application bursts can either
start during an ongoing SP or a CBAP and thus have to be split among different SPs or CBAPs.
For low traffic loads η, traffic will mostly be sent during the CBAP, mimicking the CBAP-only
scheduler’s performance. Instead, considering node k, as η increases, SPs allocated for nodes
̸= k will prevent it from freely transmitting over the whole BI, forcing it to either wait for
its next SP or to concur with an increasingly busy and shorter CBAP, getting closer to the
behavior (and the performance) of SP configuration #2. Contrary to what happens for the
CBAP-only scheduler, though, the PCP/AP has a way to control the traffic flow by rejecting
ADDTS Requests, preventing the traffic from becoming unstable even for higher loads, at the
cost of possibly denying some STAs to transmit.

In Fig. 4.4b we show the jitter performance for the first scenario. Again, as expected, CBAP-
only scheduling shows an increasing jitter with an increasingly loaded network and becomes
unstable for η > 0.8, while SP configuration #1 shows constant jitter irrespective of the traffic
load, always lower than any other scheduling schemes.

Similar to what happened for the average delay, SP configuration #2 has to account for two
opposing trends. Note that bursts starting during the CBAP will have extremely low jitter since
they will be sent entirely during the next SP. On one hand, a lower η translates to shorter SPs,
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making it more likely for application bursts to start during a CBAP. Bursts starting during a
CBAP will be sent entirely during the next SP, resulting in a low jitter, while those starting
during an SP will have to be split among two consecutive SPs, making one packet increase the
jitter significantly. On the other hand, a lower η also reduces the burst size and, conversely, the
number of packets composing the burst, making the single packet with higher delay variation
weigh more in the average and thus affecting the jitter. This second effect appears to be
predominant and thus the jitter decreases as the traffic load increases.

SP configuration #3 shows higher jitter than CBAP-only for lower values of η, since other
nodes’ SPs possibly interfere with the transmission of a full uninterrupted burst, while higher
values of η show a decreasing jitter. This suggests that as the CBAP is reduced to leave space
for the allocated SPs, nodes will be forced to use it less in favor of their allocated SPs, where
transmissions are ensured and more stable but at the cost of a higher delay.

Finally, we show the aggregated throughput normalized by the offered traffic in Fig. 4.4c.
Clearly, all SP configurations can fully allocate the BI, resulting in unit normalized throughput.
The only exception to this is SP configuration #3: allowing allocated users to also exploit the
CBAP resources might prevent new users from transmitting in a timely fashion. In fact, for high
traffic loads, not only is the CBAP greatly reduced, but allocated STAs also contend for those
resources, starving new users who might want to transmit non-QoS traffic or, as it happens in
this case, send an ADDTS Request to schedule additional SPs, an event that clearly cannot
happen when allocated users do not exploit CBAP resources.

Instead, the CBAP-only scheduler can only withstand the traffic demand for η ≤ 0.8, then,
as also noted for other metrics, the Wi-Fi contention mechanism loses its effectiveness making
the traffic unstable and starting to lose packets.

Second scenario In Fig. 4.5 we show the performance for the second scenario, where a fixed
application rate was considered with a varying number of users.

Clearly, since MCS 4 was used with a PHY rate of 1 155 Mbps, for rates R = 50 and 100 Mbps,
all scheduled SP allocations were able to meet the offered data rate (see Figs. 4.5a and 4.5b).
Only SP configuration #3 was not fully able to support the full 1 Gpbs as previously discussed
for the first scenario. Furthermore, also the CBAP-only case was unable to meet the aggregate
demand since 1 Gbps of offered traffic or more corresponds to η > 0.8 and, as suggested by the
results shown for the first scenario, is thus unstable.

Regarding the average delay performance shown in Figs. 4.5d to 4.5f, similar results to the
first scenario can be observed.

Using only the CBAP yields good performance for low traffic loads, which in this case corre-
sponds to a lower number of users, while it remains unstable for high traffic loads.

Instead, while SP configuration #1 is the lower bound achievable by any configuration con-
sistently across all cases, SP configuration #2 is the upper bound for all SP configurations. As
the offered traffic load increases, i.e., as more STAs transmit with higher application rates R,
SP configuration #3 tends to have the same performance as SP configuration #2, as less CBAP
is available.
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Fig. 4.5: Performance of the four scheduling configurations using a bursty application with period equal to
T = 102.4 ms, and an offered rate R for each user.

Third scenario Fig. 4.6 shows the average delay for the third proposed scenario, where we
compare the four scheduling strategies considering a load of η = 0.75 and an application with
random period against its period deviation ratio ρ, as described in Sec. 4.4.1. Note that ρ = 0

coincides with a deterministic application.
As expected, the CBAP-only case is not affected by the random periodicity of the application.
Similar to the first scenario, SP configuration #3 shows worse performance than the CBAP-

only scheduler, as users can only transmit in their own SPs or during the CBAP. Since the
applications are not synchronized with the SPs to begin with, also in this case the performance
is not affected by the random periodicity of the application.

On the other hand, SP configuration #1, appears to be optimal only for almost-deterministic
applications, i.e., for extremely low values of ρ. In fact, smart start only synchronizes the
application with the first allocated SP, meaning that if an application has a random period,
bursts starting from the second one will be out of sync. Since we allowed STAs to use the
CBAP for SP configuration #1, as ρ increases, performance gets worse reaching the same
average delay as SP configuration #3, where cross-layer alignment is not enabled.
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Fig. 4.6: Average delay of the different scheduling configurations with a bursty application with normally
distributed period, with mean equal to T = 102.4 ms and standard deviation equal to a fraction of its mean
σ = ρT .

Even worse, SP configuration #2 shows by far the worst behavior. Not only is its performance
bad for the deterministic case, but since STAs are only allowed to transmit during their own
SPs and the SP duration was computed to be exactly the time required to send the whole
burst, the random periodicity of the application further worsens the performance. In fact, if
one period is longer than T , part of an SP might never be used, although the average traffic
will still require all SPs to be fully utilized. The more random the application, the more likely
this event, possibly leaving more and more portions of SPs not utilized.

Results Overview To summarize, the simulation results show that when the network load
is low, contention-based channel access is capable of yielding overall good performance, but as
the amount of offered traffic increases, average delay and jitter are quickly affected. Instead,
SP scheduling shows its full potential only when cross-layer information is exchanged between
the APP and the MAC layer, allowing the application to synchronize with the scheduled SPs.

Furthermore, we showed that if (i) the application and the SP allocations share the same
period T , (ii) STAs can only transmit during their own SPs, (iii) the SP duration coincides
with the time required to transmit the burst, and (iv) the application start time is uniformly
distributed over a period T , then the average delay is equal to T/2, irrespective of the burst
size, the number of users, or the network traffic load.

On top of this, SP scheduling allows the PCP/AP to accept and reject incoming traffic flows,
allowing better control of the network even in the most intensive traffic regimes, thus being able
to ensure to a limited number of users the required amount of resources without making the
transmission unstable, unlike contention-based access alone.

Finally, we showed that small amounts of randomness in the period duration can easily favor
the simpler contention-based access over the more complex SP scheduling, but further studies
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Fig. 4.7: Example of allocations A1 (orange) and A2 (blue), with p2 = 2p1.

need to be done as the setup was extremely simple.

4.5 Mathematical Framework Description

Based on [144], STAs can request the Access Point (AP) to reserve periodic transmission inter-
vals by sending a control frame containing the required periodicity (p) and the minimum and
maximum duration of each allocation ([Tmin, Tmax]). The AP advertises the allocated SPs to
the STAs at each BI, specifying the starting time, duration, and periodicity of each block. The
allocation needs to comply with a number of constraints:

1. Periodicity (p) can only be an integer multiple (p ∈ N) or an integer fraction (p−1 ∈ N)
of a BI (TBI), thus the block periodicity interval will be Tp = p TBI;

2. Allocation blocks cannot be scheduled across the BI boundaries;

3. The allocated block duration Tblk should fall in the range [Tmin, Tmax] specified in the
resource request.

A more detailed description of the constraints imposed by the standard can be found in [144]
and [147].

Since this work is focused on allocation algorithms for periodic traffic sources, we neglect
the CBAPs, which is present in each BI for asynchronous traffic. In addition, to compare the
scheduling algorithms in challenging conditions, we assume that the allocated resources will
be maintained indefinitely, so that the channel load increases progressively as new resource
reservations are accepted. For the sake of simplicity and clarity, we also assume that the
allocation blocks of a given accepted request are not fractioned into multiple disjoint intervals
(i.e., each SP will consist of a single time interval of duration Tblk). Furthermore, for ease of
analysis, we consider a strict periodicity constraint, which prevents the scheduler from changing
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(b) Scheduling step 1.

t20,end > tmax

t20,start

tmin

(c) Scheduling step 2.

Fig. 4.8: Feasibility check for an infeasible pair of allocations, where A1 (blue) was a pre-existing allocation
with p1 = 1

2
, and the algorithm is checking whether a new allocation A2 (orange) with p2 = 1

3
is compatible.

the starting time of already allocated blocks, while the block duration Tblk can be freely changed
within the interval [Tmin, Tmax].

We denote by An = (tn0,start, T
n
p , T

n
blk) the allocation for the n-th traffic stream, where tn0,start

is the starting epoch, Tn
p is the period, and Tn

blk is the allocated duration of each individual
block. Therefore, the allocation consists of a sequence of blocks, where the k-th block of the
n-th traffic stream takes the interval bnk =

(
tnk,start, t

n
k,end

)
, with

tnk,start = tn0,start + kTn
p ;

tnk,end = tn0,start + kTn
p + Tn

blk ;
(4.1)

for k = 0, 1, 2, . . . . A graphical example is shown in Fig. 4.7.
Following this definition we can say that, given N distinct allocations A1, . . . , AN , they are

jointly periodic over a period

T 1,...,N
p = lcm

(
T i
p, . . . , T

N
p

)
, (4.2)

where lcm indicates the least common multiple of the periods. Note that, since all block periods
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Fig. 4.9: Feasibility check for a feasible pair of allocations, where A1 (blue) was a pre-existing allocation with
p1 = 1

4
, and the algorithm is checking whether a new allocation A2 (orange) with p2 = 1

2
is compatible.

are integer multiples or fractions of TBI, the lcm can always be properly defined [148] as

lcm
(a
b
,
c

d

)
=

lcm(a, c)

gcf(b, d)
, (4.3)

where gcf is the greatest common factor.

Given the periodicity of the allocation patterns, a new allocation AN should start within
a time interval TN

p since the beginning of the BI. Moreover, a necessary requirement for ad-
mission is that in an interval of duration T 1,...,N

P , no block bNh overlaps with any block bnk ,
n ∈ {1, , . . . , N − 1}, ∀h, k ≥ 0.

The remainder of this section is structured as follows: in Sec. 4.5.1 we will illustrate an
algorithm to efficiently check whether a new allocation is compatible with a pre-existing schedule,
in Sec. 4.5.2 we will present a simple scheduling algorithm, and finally in Sec. 4.5.3 we will
describe in detail a more complex algorithm that aims at minimizing the rejection of new
allocations under the strict periodicity assumption.
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Algorithm 4.1 Feasibility check under strong periodicity conditions (see Figs. 4.8 and 4.9).
1: function FeasibilityCheck({A1, . . . , AN−1} (fixed), AN (new allocation), [tmin, tmax])
2: Compute T 1,...,N

p

3: tN0,start ← tmin ▷ Fig. 4.8a
4: while tN0,end < tmax

5: Check for collisions in
[
tmin, tmin + T 1,...,N

p

)
6: if no collisions
7: tfeas ← tN0,start return AN is feasible with starting time tfeas ▷ Fig. 4.9
8: else
9: Allocation block h ∈ AN collides with allocation block k ∈ Ai, for some i ∈ 1, . . . , N − 1
10: ∆t← tik,end − tNh,start

11: tN0,start ← tN0,start + ∆t

return AN is not a feasible allocation ▷ Fig. 4.8

4.5.1 Feasibility Check Algorithm

This feasibility check can be performed as described in Alg. 4.1, whose arguments consist of
the existing allocations A1, . . . , AN−1, the new request AN and a search interval [tmin, tmax].
For reasons that will be clear later, we assume that the existing allocations cannot be changed,
while for AN only tN0,start can be modified, keeping the period TN

p and the block duration TN
blk

fixed. Based on these input values, the aim of the procedure is to find the earliest feasible
starting time tNfeas such that a block of duration TN

blk fits in the search interval.
To do so, starting from tmin, the algorithm progressively shifts the starting time by an interval

∆t (described in Alg. 4.1) until either all feasibility conditions are met, or tN0,end > tmax, in which
case the allocation AN with block duration TN

blk is rejected.
A trivial example involves A1, i.e., the first received allocation request from a STA. In this

case, Alg. 4.1 is invoked with tmin set to the start time of the first BI following the reception of
the request, and tmax = T 1

p to guarantee the periodicity. Since no previous allocated SPs exist,
A1 is immediately accepted with tfeas = tmin. It is important to highlight that, however, by
choosing specific combinations of input parameters, Alg. 4.1 can be used also by more advanced
scheduling schemes, as explained later.

Given any feasible starting time tfeas, it is useful to compute the rightmost boundary of the
allocation, i.e., the largest interval [tfeas, tlim] that would still make bN0 ∈ [tfeas, tlim] and, in turn,
AN feasible, even for larger values tN0,start and TN

blk. This boundary can be computed by finding
the minimum distance between each bh ∈ AN and each bk ∈ An, n ̸= N . The final results
will be the minimum measured distance. A graphical illustration of how the algorithm behaves
when the new request is infeasible is shown in Fig. 4.8, while a new feasible request is shown in
Fig. 4.9.

Following this definition and the above numerical example, the first allocation request to be
generated, i.e., A1, will find itself in the optimal condition where tfeas = tmin and tlim = tmax.

In general, multiple feasible intervals may exist. To find an exhaustive list, we can iterate
Alg. 4.1 with tN0,start initialized to the start time of the BI, and progressively updated at each
iteration with the value of tlim found in the previous execution. This procedure continues until
the shift of tN0,start leads to an infeasible allocation. We define the list of feasible intervals
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(which depend on TN
blk) as IN =

{
IN1 , . . . , INM

}
, where INm =

[
tNm,feas, t

N
m,lim

]
, m = 1, . . . ,M (see

Fig. 4.9c). Hence, the new allocation AN can be fitted in any of these intervals, considering all
previous allocations. A good scheduling algorithm should then assess which interval yields the
best overall performance, possibly trying to optimize a target KPI.

4.5.2 Simple Scheduler

The first scheduler that we propose assumes that the block duration and periodicity of already
accepted traffic streams cannot be varied. Then, a new request AN with a block duration of
TN
blk ∈ [TN

min, T
N
max] can be accepted only if there exists a feasible interval in IN with a duration

of at least TN
min. Therefore, the maximum amount of available resources that can be allocated

to AN is determined by the longest feasible interval, or by TN
max, whichever is smaller; tN0,start

and TN
blk need to be set accordingly. We can already notice that, using this simple first-come-

first-served approach, the latest requests are highly disadvantaged if the first ones require large
fractions of the time resources. In the long term, as we will see in Sec. 4.5.4, this could lead not
only to poor fairness performance, but also to a very low admission rate.

4.5.3 Max-Min Fair Scheduler

A more flexible approach consists in dynamically adapting the duration of the allocated intervals
within the admissible range, Tn

blk ∈ [Tn
min, T

n
max], ∀n = 1, . . . , N , in order to distribute time

resources among all traffic streams in a fairer manner.
Consider the following parameterized block duration:

Tn
blk(r) = Tn

min + rn(T
n
max − Tn

min), rn ∈ [0, 1] . (4.4)

We consider a scheduler to be fair if rmin = minn{rn} cannot be increased without breaking
the limits imposed by some allocation under the strict periodicity constraint (see Sec. 4.5).
The scheduling algorithm, then, should assign the largest possible SP to each allocation, while
respecting all the constraints.∗

To fit a new traffic stream, the pre-existing allocations will thus have to either maintain or
reduce their block duration, depending on whether and how the new allocation collides with
them. This will lead to a lower rejection rate with respect to the Simple Scheduler (Sec. 4.5.2),
and more fairness among requests distributed in time.

The proposed algorithm is here presented in two parts: the first part describes how the
allocation scheme works (Sec. 4.5.3), while the second part describes the fairness paradigm
(Sec. 4.5.3).

Allocation Algorithm

Differently from the simple scheduler, this scheduler can change the block duration within the
range imposed by the requesting STA, i.e., Tn

blk ∈ [Tn
min, T

n
max]. To reduce the rejection rate, we

∗Note that if Tn
min = Tn

max, rn has no meaning. For simplicity, this case has not been included in this study.
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Algorithm 4.2 Max-min fair scheduling.
1: function MaxMinFairScheduling(A1, . . . , AN , T 1,...,N

p )
2: Compute IN considering Tn

blk = Tn
min∀n = 1, . . . , N

3: for all IN
m = [tfeas, tlim]Nm ∈ IN

4: tN0,start ← tfeas

5: Set rN such that TN
blk = min

{
TN
max, tlim − tfeas

}
▷ (4.4)

6: for all An, n = 1, . . . , N − 1
7: for all (block k ∈ An) ∈ T 1,...,N

p

8: if block k collides with AN

9: Update r∗n, r∗N , tN∗
0,start ▷ Sec. 4.5.3

10: if r∗n < rn
11: Add/update An to a list C of colliding allocations
12: Memorize rn,prev ← rn

13: Update rn, rN , tN0,start

14: for all An ∈ C
15: Compute ∆t = tlim − tn0,start for An given AN ▷ see Sec. 4.5
16: Tn

blk ← min {Tn
blk(rn,prev),∆t} ▷ Try to improve the allocation duration if AN has been further reduced

17: Compute allocation score sm ← minn=1,...,N rn

return The configuration which maximizes the allocation score {sm}

check the feasibility of a new allocation AN (Sec. 4.5.1) by assuming that all existing allocations
are shrunk to their minimum, i.e., Tn

blk = Tn
min for n = 1, . . . , N . If AN is infeasible even under

these conditions, then the allocation cannot be granted without disattending the requests of
some previously accepted flow. Therefore, AN is rejected. Conversely, if AN is feasible, it gets
accepted, and in a later step the algorithm will try to increase the resource utilization of all
allocations fairly.

From now on, we use the superscript ∗ to indicate the parameter values at the end of the
execution of the algorithm. We recall that, based on the strict periodicity assumption, the
starting times of the already allocated blocks cannot change.

Note that, given a set of feasible allocations, reducing any rn (and, in turn, Tn
blk) still yields a

valid configuration. Similarly, a valid configuration for AN with tN0,start and rN ≥ 0 will remain
valid if tN∗0,start ≥ tN0,start and tN∗end = tN∗0,start + TN

blk(r
∗
N ) ≤ tNend. We thus consider the following

constraints:

r∗n ≤ rn, ∀n ≤ N ; (4.5a)
tN∗0,start ≥ tN0,start; (4.5b)

tN∗end ≤ tNlim. (4.5c)

The algorithm starts by considering the first feasible interval IN1 , which ensures a valid
configuration when rn = 0, ∀n ≤ N . The new request is temporarily accepted with tN0,start =

tN1,feas and maximum possible rN , such that TN
blk(rN ) = min

{
TN
max, tlim − tfeas

}
.

Then, the algorithm tries to re-balance the resource allocation by increasing all {rn, ∀n ≤
N} to their previous values. Given that feasible intervals IN were computed considering all
allocations with minimum duration, though, setting tN0,start = tN1,feas may (or may not) create a
collision with a generic Ai when setting ri ≥ 0 back to its previous value.

On the other hand, thanks to the information given by tlim, we can always choose rN such
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Tn
min

Tn
blk(rn)

TN
min

TN
blk(rN )

tnk,start tNh,start
tlim

Fig. 4.10: Representation of a collision between An and AN .

that the new allocation does not collide with a previous one, on the right.
Collisions can be found iteratively over each block of each previous allocation in a joint

period.
If for a certain block bnk ∈ An and a block bNh ∈ AN we have

tnk,start + Tn
blk(rn) ≥ tNh,start, (4.6)

then the two allocations are in conflict, as shown in Fig. 4.10. In this case, tN∗0,start, r∗N , and r∗n
have to be updated following the constraints in (4.5), as described in Sec. 4.5.3.

The constraints (4.5), the existence of a non-empty set of feasible intervals, and the iterative
nature of the problem ensure that the algorithm will stop in a finite time with a valid configura-
tion. Since each feasible interval INm ∈ IN has one locally fairest configuration, the exhaustive
search described in Alg. 4.2 is able to find the globally fairest configuration.

Optimally fair allocation

In this section, we will discuss how fairness can be achieved given a pair of colliding allocations
An, n ∈ {1, . . . , N − 1}, and AN . In Sec. 4.5.3 we explained how such a collision can be found,
e.g., between blocks bnk and bNh . For the sake of clarity, in this section we will drop the notation
for the specific colliding blocks.

In order to fully exploit the available resources, looking at Fig. 4.10, we force tN0,start = tnend
and tNend ≤ tlim. In this way we make AN start right after An, still respecting the limits imposed
by tlim.

While possibly not being optimal, this is still a sensible choice for a greedy approach that tries
to maximize the fairness of the current configuration. By doing so and imposing rn = rN = r∗,
what we call the fairness equation, and by noting that r∗ ≤ 1 should hold, we have that

r∗ = min

{
1,

tlim − tn0,start − Tn
min − TN

min

(Tn
max − Tn

min) +
(
TN
max − TN

min

)}. (4.7)

We mention again that the edge case where Tmin = Tmax has not been included in this
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preliminary study. We call r∗ the fair allocation ratio, and note that if r∗ < 1, it must be that
tNend = tlim, whereas if r∗ = 1 in general tNend ≤ tlim by construction.

Depending on the initial conditions of the problem, there is a number of different cases which
have to be properly managed in order to obtain a fair distribution of resources.

First of all, if rn ≤ r∗, following (4.5a), it means that previous adjustments do not make
it possible for An to obtain more resources while still ensuring a valid configuration, and thus
r∗n = rn. Furthermore, since we assume that a collision happens between An and AN with this
configuration, AN has to be delayed by setting tN∗0,start = tn0,start + Tn

blk(r
∗
n) > tN0,start.

In case also rN ≤ r∗, allocation AN cannot be extended either. Since both allocations have
rn, rN ≤ r∗, they will both surely fit in the feasible interval. If, instead, rN > r∗, then AN can
obtain r∗N ≥ r∗n, i.e., TN∗

blk = min
{
TN
blk(rN ), tlim − tN∗0,start

}
.

On the other hand, if 1 ≥ rn > r∗, the block duration must be reduced so that r∗n = r∗. Then,
if also rN > r∗, both allocations must be trimmed and are fairly allocated, i.e., r∗n = r∗N = r∗ < 1.
It follows from (4.7) that tN∗end = tlim and tN∗0,start > tN0,start.

Finally, if rN ≤ r∗ < rn ≤ 1, and therefore rN < 1, (4.7) implies that tNend = tlim. Since
AN cannot be extended without possibly reducing the allocation ratio of other allocations,
tN∗0,start = tN0,start and r∗N = rN . Given that, by assumption, tnend > tN0,start, the duration of An

needs to be reduced so that Tn∗
blk = tN∗0,start − tn0,start < Tn

blk.

4.5.4 Scheduling Performance

In this section, we evaluate the algorithms described in Sec. 4.5. The proposed schedulers have
been implemented in Python, only focusing on their capabilities of allocating communication
resources to the different traffic streams. The simulations do not consider full stack details,
which will be investigated in future works, and their aim is thus to highlight the fundamental
characteristics of each algorithm.

We shape the offered traffic based on three parameters, namely: the average allocation request

Tavg =
Tmin + Tmax

2
; (4.8)

the interval ratio
ρ =

Tmin

Tmax

∈ (0, 1); (4.9)

and the load factor
λ =

Tavg

Tp

. (4.10)

Note that, for a given average allocation request Tavg, a low interval ratio ρ corresponds to very
flexible allocations, while ρ = 1 corresponds to rigid allocations where Tmin = Tmax, although
this last case is not considered in this thesis. Furthermore, for a fixed Tavg, both Tmax and Tmin

become a function of ρ, e.g., Tmax(ρ).
The proposed algorithms are compared in two different simulation scenarios:
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Fig. 4.11: Results for Scenario 1.

• Scenario 1: all traffic streams are homogeneous, i.e., all requests have the same parameters.
Specifically, we consider the case with periodicity Tp = TBI

3 , load factor λ = 0.1, and
ρ ∈ (0.05, 1). The impact of different periodicities and load factors is also discussed.

• Scenario 2: multiple non-homogeneous applications coexist in the same network, thus
generating traffic streams with different characteristics. We analyze a scenario where
traffic streams can be of class C1 or C2, with periodicity TC1

p = TBI

3 and TC2
p = TBI

5 ,
respectively. Both classes have load factor λ = 0.1 and interval ratio ρ = 0.1.

Based on their design criteria, we expect the two algorithms to differ mainly with respect to
three Key Performance Indicators (KPIs), namely the acceptance rate of new requests, the fair-
ness among accepted allocations, and the average scheduled block duration. The performance
of the algorithms in Scenario 1 is shown in Fig. 4.11 (note that, given the discrete nature of
the problem and the deterministic behavior of the proposed algorithms, the plots cannot be
smoothed by running multiple repetitions).

The first metric is the acceptance rate (Fig. 4.11a), defined as the ratio between the number
of accepted allocation requests and the maximum number of acceptable requests. To compute
this achievable upper bound, since all allocations share the same parameters we ignore the strict
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periodicity assumption and calculate how many allocations with minimum duration Tblk = Tmin

can fit in a period Tp, which is equal to Nmax(ρ) =
⌊

Tp

Tmin(ρ)

⌋
and shown as a red, dashed line

in the figure. The acceptance rates can thus be normalized in the interval [0, 1], where 1 means
that the scheduler reaches the peak acceptance rate.

As expected, the simple scheduler suffers from a lower acceptance rate than the max-min fair
one, even though, starting from ρ = 0.5, the two algorithms tend to behave similarly. In fact,
more rigid allocations do not give enough flexibility to the max-min fair scheduler to perform
its optimization, thus yielding similar performance to the much simpler simple scheduler.

The second metric is Jain’s Fairness Index [149] (Fig. 4.11b), defined as:

J =
(
∑

n xn)
2

n ·
∑

n(xn)2
, (4.11)

where only accepted allocations are counted and xn can be either the block duration Tn
blk or

the block duration ratio rn. If the {xn} are all equal, then J (x) = 1. On the other hand, the
more dissimilar the values of {xn}, the closer the metric to its minimum J (x) = 1

N .
Based on the results plotted in Fig. 4.11b, both algorithms behave very fairly with respect to

the accepted allocations. Note that, the larger ρ, the higher the rigidity of the resource requests
and, in turn, the larger the fairness among accepted flows, considering that, in this scenario,
they are homogeneous.

The third metric, shown in Fig. 4.11c, offers a different perspective considering the average
normalized block duration Tblk/Tmax(ρ). As expected, the simple scheduler shows an oscillating
trend, due to the rigid and discrete allocation policy. In fact, if the portion of DTI left by the
previous allocations is less than Tmin(ρ), no additional requests can be accepted (we recall that,
in this scenario, all requests have the same parameters). On the other hand, the max-min fair
scheduler will try to reduce all allocations down to their minimum duration in order to avoid
rejecting new ones, granting more accepted allocations at the cost of an overall lower block
duration.

Finally, the two most discriminating metrics, namely the average normalized block duration
and the acceptance rate, are plotted against each other in Fig. 4.11d. In general, the simple
scheduler tends to favor a higher average block duration for a lower acceptance rate, while
the max-min fair scheduler tends to favor the acceptance rate at the cost of a lower average
block duration, as expected. Both algorithms are able to ensure high fairness to the accepted
allocations, generally well above 0.85.

Similar behaviors were also observed for load factors λ ∈ {0.025, 0.4}, not shown here. As
expected, higher loads tend to have more pronounced variability in both the average block
duration and the fairness granted to the accepted allocations. Interestingly, regardless of the
load factor, for values of the interval ratio larger than ρ ≈ 0.5, the two algorithms tend to
have very similar performance due to the more rigid allocation requests that do not allow the
max-min fair scheduler to exploit its agility.

Scenario 2 allows us to analyze the impact of allocations with different periodicities on the
overall network performance, as a function of the probability P (C1) that a request C1 is offered
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(a) First allocation is of class C1.
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(b) First allocation is of class C2.
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(c) Variability of scheduled allocations.
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(d) BI occupancy ratio.

Fig. 4.12: Results for Scenario 2.

to the system.
Since allocations with different periods coexist, it is mandatory to decide how many alloca-

tions should be offered to the schedulers, as this will affect how the acceptance rate is normalized.
To this end, we define the minimum occupancy of category Ci as Oi

min = T i
min/T

i
p. Allocations

are offered to the schedulers as long as the cumulative minimum occupancy does not exceed
the value 1.

In Figs. 4.12a and 4.12b we show the biasing effect of the first accepted allocation on the
proposed schedulers. Clearly, the simple scheduler suffers from a strong and symmetric effect,
meaning that once the first allocation is scheduled with maximum duration, it will be harder for
subsequent allocations with a different period to fit the constrained BI, making the scheduler
favor allocations with the same period. On the other hand, it is significantly harder to interpret
the behavior of the more complex max-min fair scheduler. From further results, not shown here
due to lack of space, it is possible to notice that allocations with a lower average BI occupancy
are favored, with a slight preference towards those with lower values of Tp and Tmin. As also
shown here, in fact, allocations with lower values of Tp, such as C2 with respect to C1, tend to
fragment the BI more, making it harder to then fit allocations with different periodicity and
higher Tmin.
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To further confirm this biasing behavior, we show the variability ν among the scheduled
allocations, defined as

ν1,2 =
min{|C1|, |C2|}
max{|C1|, |C2|}

, (4.12)

where |Ci| represents the number of accepted allocations of category Ci. This metric takes
values in [0, 1], where a value of 0 means that only allocations of a single type have been
accepted, while a value of 1 means that the same number of allocations of both categories have
been accepted. Results are shown in Fig. 4.12c, which confirms that the simple scheduler favors
a more homogeneous BI allocation, while the max-min fair scheduler shows once again more
flexibility, being able to fairly accommodate requests from different classes, as shown by the
higher variability of the accepted allocations.

Finally, we studied how efficiently the two algorithms are able to use the radio resources by
measuring the BI occupancy ratio, i.e., the ratio between scheduled and unscheduled air time.
It can be noticed that, while the simple scheduler accepts fewer requests, it is able to use almost
all available resources. This is due to the fact that the scheduler tends to accept homogeneous
allocations, allowing them to be packed more efficiently in the BI. On the other hand, the max-
min fair scheduler successfully fits multiple allocations of both types, but the constraints on
the periodicity and the minimum block duration Tmin prevent it from fully utilizing the whole
BI when a mixture of the two types of sources is presented. Nonetheless, it ensures very high
occupancy ratios, always above 95% for this example.

4.6 Conclusions
In this chapter, we briefly described the main characteristics of the WiGig standards, mainly
focusing on the MAC layer and especially on the newly introduced scheduling mechanisms
by IEEE 802.11ad, allowing different types of traffic to coexist and potentially improving the
performance of QoS-sensitive applications [147]. As shown in Sec. 4.2, some research has already
been done in this direction but lacks a common and realistic testing ground, making it unclear
whether the assumptions may hold.

We then presented an open-source scheduling framework for WiGig based on the ns-3 im-
plementation of the IEEE 802.11ad standard [145] [150]. We implemented two schedulers, one
based on contention-based channel access, the other based on periodic SP allocations, and com-
pared their performance on three different scenarios. Results show that SP scheduling is able to
surpass contention-based channel access and yield the best performance only when cross-layer
information between the MAC and APP layers is exchanged. Moreover, adding even small
amounts of randomness to the periodic application results in great performance degradation for
periodic SP scheduling, making contention-based access the preferred option in most cases.

Lastly, strong of the results obtained from the first simple simulation campaigns, we presented
a mathematical framework for periodic scheduling in WiGig-compatible devices, attempting to
design more solid and better performing schedulers. We proposed two heuristic algorithms, sim-
ple and max-min fair schedulers, and accurately described their inner workings [151]. Finally,
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we assessed their performance in two different scenarios, showing that the max-min fair sched-
uler tends to trade the portion of resources allocated to each single station for a much higher
acceptance rate, contrary to the simple scheduler’s behavior, while both schedulers obtained a
high value of Jain’s fairness index for the accepted allocations.

Even working in a simplified setting without considering further sources of complexity from
other parts of the communication stack, it was possible to notice that both the design and the
evaluation of WiGig-specific scheduling algorithms for periodic sources is non-trivial and can
show unexpected results. In fact, while the formalization of the problem is rather straightfor-
ward, scheduling algorithms often have to deal with many hard-to-predict edge cases, which
greatly increase the difficulty of designing a general algorithm.

Work is currently being done to implement the schedulers derived from our mathematical
framework of Sec. 4.5 into our ns-3 simulation framework of Sec. 4.4, allowing to better evaluate
the E2E performance of the designed schedulers, especially in non-ideal conditions and non-ideal
CBR periodic traffic.

Having created some tools that can be easily worked upon, we propose some research direc-
tions:

1. From the STA point of view, a DMG TSPEC has to be formulated in order to send
the relevant information about the characteristics of the traffic stream to the PCP/AP.
The definition of this information element is important to obtain the required resources,
and it should thus be studied and optimized depending on the QoS requested by the
application. Specifically, the application can give information about the details of the
traffic flow (periodicity and block size, among others), although the final block duration
will also depend on the channel state and the uncertainty about the application traffic
flow itself. Two main contributions should be better studied:

(a) Channel quality prediction is essential to dynamically adapt the scheduled resources
among users. Given the significant differences in channel dynamics of IEEE 802.11ad
with respect to sub-6 GHz Wi-Fi and to the peculiarity of packet exchanges during
SPs, new MCS adaptation mechanisms could be proposed to maximize the commu-
nication efficiency, while improving channel prediction.

(b) Most relevant applications that could be supported by WiGig are almost CBR, al-
though not quite. Both periodicity and block sizes are often not constant, requiring
to find a good balance between allocating extra resources (which may be unused)
and potentially reducing the final user experience due to insufficient resources.

2. Understanding how the current state of the art performs in a realistic simulator will allow
understanding the strong and weak points of the proposals in realistic settings. With
a flexible simulation platform like the one we propose, algorithms from the state of the
art can be implemented and finally be fairly compared against each other, giving further
insights and possibly improving them with respect to their weak points.
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3. Our studies can be easily transferred to the future IEEE 802.11ay standard, which will
add further complexity on top of the already existing one, by introducing channel bonding
and MU-MIMO. Even more complex schedulers will then have to be designed, but starting
from the solid ground of the proposed work further improvements will be possible.

4. Whenever heuristic algorithms are not sufficient to obtain satisfying results, or when
the complexity of the problem is excessive for a simple algorithm to be conceived, ML
techniques, and specifically RL algorithms could come in handy. Scheduling algorithms
can indeed benefit from this modern approach, possibly leading to better performance.
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5.1 Introduction
After several years of innovations, the technology is finally ready for applications such as VR,
AR and Maximum Rate (MR) to go mainstream (in the following we will use the term XR as a
general expression to consider all these distinct interaction modes). According to some estimates,
by 2025 there will be over 200 million people using XR for immersive gaming experience and 95
million enjoying live events in this novel way [152]. This immediately translates in increasing
sales of devices and headsets dedicated to experience this new type of contents, with an esti-
mated shipment of these devices in the order of tens of millions in the coming decade, generating
billions in revenue for all the fields in which this technology will be deployed [153, 154, 155].

Although it all started from the entertainment and video gaming arenas, where players
could immerse in a virtual 3D world, now we can see XR applied in various fields, such as
building or landscape design, real estate, marketing, and healthcare, opening up the possibility
of learning new concepts and training employees for difficult situations in a completely different
way [156, 153, 157, 158, 159, 160]. Automotive companies, for example, are using VR to cut the
time that leads to the physical model of a new product from weeks to days [155]. Regarding
the general retail market, instead, VR can give customers realistic experiences with products,
allowing them to easily consider different options and configurations [153] and thus increasing
sales and decreasing product returns.

The peculiarity of this new class of contents, besides the wide range of use cases, is that the
end user does not passively receive the information, but acts on it, possibly affecting the future
behavior of the application itself. Hence, the traffic flow to and from the content provider is
highly dependent on the interaction with the virtual environment in which the user is immersed.

In this paper, we will focus on examples related to the video gaming world (even though
equivalent conclusions can be drawn for different XR applications), where the user interacts
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with the application using a keyboard or joypad, and the results of such actions are immediately
seen on the PC or TV screen. Through Head Mounted Devices (HMDs), when playing with
videogames supporting VR, users can also react by moving their heads, causing the application
to stream distinct portions of the environment depending on where the head is pointing [161].

Even though traditionally gaming software ran on devices which needed to respect several
hardware constraints to generate high-quality images, now the paradigm is shifting towards a
cloud approach [162, 163]. This can be extended to all other use cases besides gaming, and for
this reason, we can refer to this new paradigm as Cloud XR. By moving the computing and
graphical processing units into the cloud, less powerful devices can be used to fully exploit this
new technology. This would benefit not only in terms of the actual cost of an HMD (which still
plays a huge role in promoting the adoption by new users) but also in the final QoE. Having
all the computing resources self-contained in the device would mean not only a higher weight
and volume, but also concerns in terms of heat and battery life [154, 159].

This shift towards cloud infrastructures requires the optimization of current communication
systems, to fully support distributed XR services. To this end, we need accurate models of the
applications that generate these data flows and, to the best of our knowledge, no previous work
has addressed this problem so far.

In this work we try to fill this gap by proposing a traffic model that emulates an XR appli-
cation, while also sketching a roadmap to guide researchers in the development of more precise
models, using ours as a baseline.

To further understand what are the steps that most influence the XR performance, it is
useful to describe a common end-to-end XR architecture [152, 159]. First, we can start from
the collection and processing of sensory and tracking information, delegated to an ad hoc device.
Then, this information is sent to an XR server to compose the viewport, i.e., what is actually
shown to the user. This process includes 2D/3D media encoding and the generation of additional
metadata (including the scene description). The device’s presentation engine at the client side,
after receiving and decoding the information stream, generates the images to display. These
images are derived from the decoded signals, the rendering metadata, and other information, if
applicable. Finally, video and audio tracks associated with the current pose are generated by
synchronizing and spatially aligning the rendered media. These steps need to be accomplished
with minimal delay to guarantee adequate QoE.

In fact, the motion-to-photon latency, i.e., the time from an action (e.g., a head movement)
to the update of what is shown on the display, must be below 20 ms to avoid the so called
cybersickness, associated to disorientation and dizziness [164, 152, 165, 166, 167, 168]. Following
this physiological constraint, several industry players pose the network requirements, in terms
of latency, in the range of 5–10 ms [164, 169, 152, 154, 159]. Also in terms of the gaming
QoE, it has been demonstrated that for first-person shooters, racing games, and team soccer
matches, application latency directly impacts the results of competitive e-sports and, if not
properly addressed, would lead to abandoning the game [162]. This translates into stringent
constraints both in Downlink (DL) and in Uplink (UL), considering that not only the content
must be streamed as soon as it is required, but also the user movements need to be promptly

114



Extended Reality Applications

notified to the server. For this reason, the software that collects each movement input must
consider all 6 Degrees of Freedom (6DoF), tracking both translations and rotations in the three
perpendicular axes (based on the VR device, some may consider only rotational motion, i.e.,
3 Degrees of Freedom (3DoF)). To take immersive mobile experience to the next level, many
improvements will be required in head, body, and even gaze tracking [157].

It is also important to distinguish between processing latency, associated with computation
and rendering, and network latency. Rendering complex gaming images can be quite demanding,
and the delay introduced by these operations can be larger than that caused by network services,
which further motivates the need to offload these functions to proper cloud infrastructures [162].

Besides delay-related issues, an additional problem consists in the bursty nature of the XR
traffic, meaning that the throughput measured over short time windows could be much higher
than its long-term average value [159], which can be the case for an application that period-
ically generates collections of packets to refresh the viewport. Another aspect impacting the
throughput is that, in order for the technology to be as close as possible to human vision, we
will need a higher spatial and temporal resolution of the content presented to the user than
currently possible (i.e., 3D 360° 8196×4096 resolution at 90 Hz and beyond display refresh
rate) [164, 157, 159].

The core technology that is expected to guarantee the satisfaction of all these requirements, by
paving the way for an optimized distribution of processing capabilities, is 5G. Many players have
already invested in 5G for the rising of XR, for operations at both sub-6 GHz and mmWave [158,
157, 170, 171].

Nonetheless, even though some efforts have also been devoted by standard bodies to the
redaction of technical reports [164, 169], at the present time researchers are limited by the
lack of precise traffic models representing the stream to/from an XR server. Having these
models would allow the research community to design telecommunication solutions that could
reduce the delay contribution related to the network, while also considering all the processing
steps. For this reason, we propose a generative model for XR traffic sources, obtained from real
application traces, and we also delineate a roadmap of the necessary steps to further improve it
with additional features able to cope with the aforementioned problems, i.e., motion-to-photon
latency, burstiness, capacity.

While in Sec. 5.2 we summarize the current state of the art in the XR arena, Sec. 5.3 is
devoted to the description of the acquisition setup that we used to collect about 70 GB of data
for a total of more than 4 hours of traced traffic time using different VR applications, both
from the hardware and from the software point of view. We will also describe each of these
applications and illustrate how we analyzed the dataset. The model obtained from this analysis
will be presented in Sec. 5.4, and its end-to-end validation, along with some example use cases,
are discussed in Sec. 5.6. Finally, in Sec. 5.7 we propose a roadmap to extend our baseline
model with additional increasingly complex features, and Sec. 5.8 concludes the paper.
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5.2 State of the Art

A seminal conceptual model that describes the human and technical elements creating the
participatory environments of virtual reality systems was proposed in [172], dating back to
1994. This demonstrates that the interest in the definition of common models for the study of
this framework started even before the technology was ready, or even invented.

Despite the research interest in this field, to the best of our knowledge little work has been
done on the creation of generative traffic models in XR contexts, while the focus was put
on different aspects of the technology. In particular, a huge effort has been devoted to the
creation and validation of practical systems that use immersive technology to interact with the
world in different ways. An example can be found in [173], which describes a system for the
interactive analysis of large datasets with time-dependent data, realized on a multi-processor
parallel machine in order to guarantee a smooth user experience. Instead, in [174] the authors
developed a proof-of-concept system, combining Oculus Rift HMD and the Phantom Premium
1.5 High Force haptic device with the goal of demonstrating the feasibility of combining HMD
and haptics in one system. Also, XR solutions have been tested for purposes of architectural
design [175] and for providing virtual performance instructions and feedback on users that want
to play a real piano [176].

From a more technical perspective, a complete overview of the latest developments on im-
mersive and 360◦ video streaming can be found in [161], where the author aims at providing
a complete overview on four of the most important challenges in this field, namely: omnidirec-
tional video coding and compression, subjective and objective QoE and the factors that can
affect it, saliency measurement and FoV prediction, and adaptive streaming of immersive 360◦

videos. As stressed in [161], finding a proper way to measure the user’s QoE may be difficult.
This is especially important with respect to the design of telecommunication infrastructures able
to optimize the experience of the user, and to guarantee constant and stable service quality.

For this reason, a lot of effort has been devoted to creating network solutions for the max-
imization of the quality of the delivered content. In [177], for example, the authors proposed
a scheme for uplink delivery of tile-based VR video over cellular networks. In particular, they
formulate resource allocation as a frequency- and time-dependent non-deterministic polynomial
NP-hard problem, and propose three distinct algorithms to solve it. Instead, in [178] the au-
thors consider a QoE-driven transmission of VR 360◦ contents in a multi-user massive MIMO
wireless network. Specifically, in this scenario multiple users in the cell are requesting the same
content, and the goal is to optimize the reception of such information through a stable scheme
for the transmission of the viewport tiles. In this work, they also try to allocate the power in
order to guarantee a consistent delivery rate for each stream.

The impact of latency on the overall experience of the user has been mentioned in Sec. 5.1,
along with the importance of tracking the movements of the user in applications with strict
delay requirements. The authors of [179] used a real VR head-tracking dataset to maximize
the quality of the delivered video chunk under low-latency constraints. In that case, a deep
recurrent neural network was designed for the prediction of the users’ FoV (allowing to cluster
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those with overlapping FoV) while information on the future content and the users’ locations
was used as input of a proactive physical-layer multicast transmission scheme.

A key solution to the latency problem would be to rely on the capabilities of 5G and edge
cloud, exploiting what has been referred to as Cloud XR in Sec. 5.1. Indeed, in [180] the authors
demonstrated that 5G and edge cloud are necessary to sustain the requirements of applications
such as VR gaming.

All these solutions, however, lack a model capable of generating data flows that can easily be
associated with a real XR application. The approach of [177] consisted in using 240 frames of
each 8K 360◦ uncompressed video sequence available from [181]. In that case the author applied
the HVEC Kvazaar encoding procedure, setting the frame rate to 25 Frames Per Second (FPS)
and the Group of Pictures (GoP) size to 8, and using a constant tiling scheme, ideal for the
purpose of their work. Despite the high level of details implemented in such a model, the use
of a trace-based flow is limiting per se, considering also the limited portion of the video that
they selected. Having an offline encoding strategy is another drawback, that in our framework
has been overcome by integrating the rendering server in the processing pipeline.

Also in [178], the simulation setup from the point of view of the VR architecture was defined
in order to highlight the features of the algorithms proposed by the authors, and the nature of
the traffic flow (e.g., average frame size, inter and intra-frames correlation, inter-frame interval,
etc.) was not taken into account.

Cloud gaming [182] was identified as a closely related problem, where a remote server renders
and streams a video to a client with limited computational resources, which only feeds basic
information to the rendering servers, such as keys pressed and mouse movements. The main
difference with the problem under analysis is given by the more restrictive QoS constraints
of XR applications, mainly due to the limits imposed by motion sickness. Furthermore, in
cloud gaming, client and server are often in different WLANs, making it harder to obtain
reliable measurements of packet generation times. In fact, due to the specific constraints and
requirements of XR applications, we expect the rendering server to be in a local network rather
than being remotely accessed via the Internet.

Most works in the literature focus on network performance and limitations of cloud gam-
ing [183], and we could find only two main contributions addressing traffic analysis and mod-
eling. The authors of [184] provide a simple traffic analysis for three different games played
on OnLive, a cloud gaming application that was shut down in 2015. The analysis focuses on
packet-level statistics, such as packet size, inter-packet time, and bit rate. They measured the
performance of the streaming service under speed-limited networks, showing an evident frame
rate variability. In [185], the authors tried to model the traffic generated by two games, also
played on the OnLive platform. In particular, they recognized that video frames were split into
multiple fragments, and re-aggregated them before studying their statistics. A number of DL
and UL data flows were recognized, and characterized in terms of application packet data unit
size and packet inter arrival time. Unfortunately, correlation among successive video frames
was not modeled and the analysis referred to a single game played with an average data rate of
about 5 Mbps.
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Regarding the problem of tracking the movements of the users, in [179] the authors fed the
recurrent neural network with the 3DoF traces from [186], tracking the pose of 50 different
users watching a catalog of 10 HD 360◦ videos from YouTube (60 seconds long, 4K resolution,
30 FPS, FoV of 100◦ × 100◦). Having a generative model that creates such a dataset based on
statistical studies on a collection of different traces would have greatly aided the training of the
neural network used in [179]. Also, finding a dataset that represents well the problem that we
want to solve is usually not feasible, and this may further limit the research outcomes.

As a consequence, our goal is to provide the community with a tool for the automatic
generation of such traces. A preliminary version of this work was proposed in [187], and here
we extend it with the acquisition of longer and more heterogeneous traces, that now include
realistic interaction with several VR applications. This extension also allowed a more detailed
and thorough validation of the model. Besides making both the model and the traces public,
we also propose a possible roadmap for making the framework as complete and detailed as
possible, highlighting the most important contributions that would benefit researchers aiming
at the design of ad hoc network protocol optimizations for this new type of traffic sources.

5.3 VR Traffic: Acquisition and Analysis
In this section, we describe our basic traffic modeling work. Specifically, in Sec. 5.3.1 we describe
our acquisition setup and the VR applications that we acquired, then in Sec. 5.3.2 we analyze
the raw traffic traces, and the different streams composing them, both in terms of content and
in terms of statistics.

5.3.1 Acquisition Setup

For the rendering server, we used a desktop PC equipped with an Intel Core i7 processor,
32 GB of RAM, and an NVIDIA GeForce RTX 2080 Ti graphics card. For the headset, instead,
we used an iPhone XS enclosed in a VR cardboard, which allows a realistic interaction with
the applications. The two nodes were connected via Wi-Fi to improve the user’s freedom of
movement, at the cost of a slightly less stable channel and of possible interference from other
surrounding devices.

VR applications were thus run on the rendering server and streamed to the headset using
the application RiftCat 2.0 (on the server), and VRidge 2.7.7 (on the phone).∗ This setup
allows the user to play VR games on the SteamVR platform for up to a maximum of 10 minutes
continuously, enough to obtain traffic traces to be analyzed (note that this limit is given by the
free version of VRidge, and is absent in the premium version). Many settings can be tuned in
this application, such as the display resolution, the frame rate (either 30 or 60 FPS), the target
data rate (i.e., the data rate the application will try to consistently stream to the client, which
can be set from 1 to 50 Mbps), the video encoder (NVIDIA NVENC was used), and the video
compression standard (H.264 was chosen), among other advanced settings.

∗riftcat.com/vridge
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As opposed to [187], we acquired traces while realistically interacting with available VR
applications using mouse, keyboard, and head movements. Our setup only allowed us to interact
with 3DoF, i.e., the user was seated and only head rotations were sensed by the headset. In any
case, in order to increase the realism of the collected traces, the user was not required to limit
the type of movements, but could freely interact with the application of interest. To simplify
the analysis of the traffic stream, audio was not activated.

For this purpose, we selected three popular VR applications targeting different types of
interactions. Specifically:

• Minecraft: an extremely popular game, with the Vivecraft plugin enabling room-scale
or seated VR experiences. The user can explore the virtual environment by walking or
swimming, and interact with the virtual world by cutting trees, digging holes, crafting
tools, etc.

• Virus Popper: during this fast-paced educational game, many cartoony-looking viruses
swarm a virtual room, and the user has to attack them with cleaning tools for survival.

• Google Earth VR – Tour: the VR version of Google Earth, allowing a user to explore the
world with satellite imagery, 3D terrain of the entire globe, and 3D buildings in hundreds
of cities around the world. The SteamVR application also enables tours, teleporting the
user all around the world every few seconds.

• Google Earth VR – Cities: in this case, a more interactive experience is provided, allowing
the user to fully explore cities or landmarks for as long as they want.

Please note that Google Earth VR was used in two different ways, thus allowing us to analyze
two different versions of the same application.

To capture streamed packets, we ran Wireshark, a popular open-source packet analyzer, on
the rendering server. The traffic analysis was performed at 30 and 60 FPS for target data rates
of {10, 20, 30, 40, 50} Mbps and for all 4 applications with a resolution of 1920×1080, for a
total of over 70 GB of PCAP traces and 4 hours of analyzed VR traffic. Our dataset containing
the processed VR traffic traces can be found within our software and can be easily reused, as
later described in Sec. 5.6.

5.3.2 Traffic Analysis

As described in [187], we were able to partially reverse engineer both the DL and UL streams,
and thanks to the help of RiftCat’s developers, we are now able to reliably process the raw
traffic traces. We found that UDP sockets over IPv4 are used and both UL and DL streams
contain several types of packets. Specifically, the UL stream contains packets such as syn-
chronization, video frame reception information, and frequent small head-tracking information
packets, whereas the DL stream contains synchronization, acknowledgment, and video frame
packet bursts.
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Fig. 5.1: Portion of traffic trace from Virus Popper (50 Mbps, 30 FPS). For this trace, 130–140 individual
fragments make up a video frame burst.

To improve the stream quality, the RiftCat team developed a custom version of the ENet
protocol∗, a relatively thin, simple and robust network communication layer on top of UDP,
which offers reliable, in-order packet delivery.

In Fig. 5.1 we show a visual representation of a slice of bidirectional VR streaming. The
plot shows the main data streams in both DL and UL, giving an idea of how this transmission
works.

Most of the traffic is concentrated in DL and is made up of packet bursts encoding video
frames. Video frame fragments were consistently found to be 1320 B long in all acquired traces,
with a data size (the UDP payload) of 1278 B. The last packet of the burst also has the same
size as the others, suggesting that padding has been used in order to simplify the protocol,
although this biases the frame size distribution to be discrete.

The second most noticeable traffic stream is the UL head tracking information, which the
headset acquires and sends to the rendering server to update the viewport to be rendered. The
head tracking payload was identified to be either 192 B or 97 B long, sometimes changing over
the course of a single traffic trace, although the reason why different packet sizes were found is
unclear.

Finally, smaller packets in both UL and DL, with payloads of respectively 21 B and 10 B,
were identified to contain feedback on the reception of video frames, which is probably used in
the streaming protocol to decide whether or not to retransmit some frames.

By reverse-engineering the bits composing the UDP payload of video frames, it was possible
to identify a recurring set of bits suggesting a 31 B APP layer header and allowing us to identify
some key fields, such as (i) the frame sequence number, (ii) the number of fragments composing
the frame, (iii) the fragment sequence number, (iv) the total frame size, and (v) a checksum.
This information allowed us to reliably process and aggregate video frames.

∗Available: https://github.com/nxrighthere/ENet-CSharp
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Fig. 5.2: Results from acquired VR traffic traces.

Given the settings of the streaming application (i.e., frame rate and target data rate), it is
clear that a CBR video encoding is performed in the background. In Fig. 5.2a we show the
performance of the video encoder, almost always exceeding the target rate (though by only 5–
10%). A simple explanation of this behavior might be the underestimation of header sizes in the
computations of the CBR encoder, such as the header of the custom ENet protocol. Notably,
both frame rates behave similarly across all four applications, with stable performance.

Figs. 5.2b and 5.2c show the low overhead due to non-video DL and UL transmissions (includ-
ing head tracking), respectively. Specifically, non-video DL traffic only accounts for 3–5 kbps
while UL traffic for about 135–150 kbps, with 60 FPS traces consistently showing higher rates
with respect to 30 FPS ones, probably due to the doubled amount of feedback. Only two out of
our forty traces show different rates, possibly due to some imperfection in the streaming. In any
case, these traffic flows are much lower than the target rates and appear constant, irrespective
of the data rate or the application. This consideration lead us to the decision of ignoring them,
focusing only on modeling the DL video traffic.

Considering R the target data rate and F the application frame rate, the average video frame
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Fig. 5.3: Video frame distributions for Virus Popper (30 Mbps, 60 FPS).

size is expected to be close to the ideal S = R/F , as shown in Fig. 5.2d. Note that the x-axis
reports the measured data rate rather than the target data rate, i.e., the average data rate
estimated from the acquired traces, which differs slightly from the target rate, as shown in
Fig. 5.2a.

Furthermore, Fig. 5.2e shows that the average Inter-Frame Inter-arrival (IFI) time perfectly
matches the expected 1/F , equal to 33.3̄ ms for 30 FPS traces and 16.6̄ ms for 60 FPS traces.

Moving to the analysis of the Probability Density Functions (PDFs), it is important to know
that in a collection of packets associated to a video source, we can usually distinguish Intra-
coded frames (I-frames) (sometimes called keyframes), Predictive-coded frames (P-frames), and
Bipredictive-coded frames (B-frames). While I-frames are compressed similarly to simple static
pictures, P-frames exploit the temporal correlation of successive frames to reduce the compressed
frame size. B-frames, instead, can exploit the information from both previous and subsequent
frames, further improving the compression efficiency at the cost of non-real-time transmission.
All the details associated with these compression techniques are regulated by standards like
H.264 [188].

Interestingly, Fig. 5.3a shows that the frame size distribution is unimodal rather than mul-
timodal, as would be expected considering the different compression levels of the I, P, and B
frames generated by a typical H.264 encoder. As confirmed by the RiftCat team, the reason
for such a smooth frame size distribution is that the encoder makes use of the H.264 Periodic
Intra Refresh compression scheme where the reference image used to predict (and compress)
the frames in a GoP, rather than being the first image as in H.264, is instead obtained from con-
secutive vertical slides taken from all the frames in the GoP. This results in a reduced variance
of the frame size, making the encoded video stream almost CBR.

As already mentioned, VRidge simplifies the transmission by discretizing some units. Fig. 5.3a
shows a clear staircase CDF for the video frame size, suggesting that video frames have been
padded as the underlying distribution is indeed discrete, with a distance between consecutive
stairs of 1278 B, i.e., the UDP payload of packets containing fragments of video frames.

Similarly, the IFI time also appears to be discretized with a millisecond precision around the
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(a) Video frame size fit quality.
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(b) IFI fit quality.

Fig. 5.4: Video frame fit qualities for the Google Earth VR – Cities application. Fit quality is measured using
the KS test (lower is better). Box plots show median (red), 1st and 3rd quartiles (box), minimum and maximum
(whiskers) of the KS test with a given distribution, while markers show the exact values for the different traces.

mean 1
F , as seen in Fig. 5.3b, although some noise due to, e.g., variable rendering and encoding

time, wireless channel condition, transmission queue state, transmission times, just to mention
a few, smooths the CDF.

5.4 Traffic Model
Following the analysis of Sec. 5.3.2, in this section we will describe the proposed model for VR
traffic based on the collected VR traffic traces.

The analysis presented in the previous section reveals that both packet sizes and IFI times
appear to be discrete in the collected data traces. However, such granularity is likely due
to specific design choices of the communication protocols used by the considered applications,
rather than being a native characteristic of the XR services. Therefore, we believe it is more
suitable to use continuous random variables to model the size of the data blocks generated
by the XR application and the time between them. By doing so, we free our model from the
specific constraints of this streaming application, with no loss of generality (as the discrete case
can always be obtained from the continuous one), and in fact making it easier to accommodate
other (non-discrete) cases in our framework if needed.

5.4.1 Distribution fitting

Given the extremely large number of samples per trace (200–600 s at 30 or 60 FPS), common
quality of fit statistical tests yield poor performance due to the discretized distributions. Intu-
itively, while the PDF of discrete and continuous distributions takes completely different forms,
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Fig. 5.5: Comparison of the three best fitting distributions for Virus Popper (30 Mbps, 60 FPS). The KS test
is also shown, where lower values indicate a better fit.

the CDF of a discretized distribution is simply a staircased version of the related continuous
distribution. In that case, the goodness of fit can be tested by comparing the CDFs, for example
using the KS test [189], defined as:

KS = sup
x

|Fe(x)− Ft(x)| , (5.1)

where supx is the supremum of the set of distances, Fe(x) is the empirical CDF of the acquired
data, and Ft(x) is the CDF of the target distribution. The KS test will thus be used to score
the quality of fit, where values closer to zero indicate a better parameter estimation.

To fit and evaluate the best probability distributions for our data, we used the popular SciPy
library [190]. We tested 15 of the most common continuous univariate distributions available in
the scipy.stats package, evaluating their performance on both frame size and IFI on our traffic
traces. Note that the SciPy library performs a maximum likelihood estimation of the parameters
of the distribution, including location and scale, and applies them to all continuous distributions
by transforming the random variable X into (X− loc)/scale. Given the exceptional accordance
between expected values and computed averages (see Figs. 5.2d and 5.2e) and considering the
proposed generative model (described in Sec. 5.4.2), we fixed the location parameter to the
expected value (i.e., R/F for the frame size and 1/F for the IFI), fitting only the scale and the
remaining parameters. A selection of distributions is shown in Fig. 5.4.

We found that the Student’s t and Logistic distributions, closely followed by the Laplace,
Gaussian, and Cauchy distributions, were the best fitting ones in almost all traces for both
frame size and IFI. Fig. 5.5 shows how similar the fitted distributions actually are. Although
the Student’s t distribution performs slightly better than the Logistic one in the slight majority
of the collected traces, in our case the Logistic distribution was the best choice. In fact, the
third parameter of the Student’s t distribution is only able to yield minuscule improvements over
the Logistic distribution, which only needs two parameters. Furthermore, if custom simulators
need to manually implement the desired random stream, the Student’s t distribution is very

124



Extended Reality Applications

30 FPS 60 FPS Fit

0 20 40 60

0.08

0.1

0.12

0.14

0.16

Measured rate [Mbps]F
it

te
d

vi
de

o
fr

am
e

si
ze

di
sp

er
si

on

(a) Video frame size model.
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Fig. 5.6: Generalization models for the Google Earth VR – Cities application. Individual points show the scale
parameter of the Logistic model fitted on the acquired data, while the dashed red lines attempt to generalize
the model to intermediate target data rates.

hard to reproduce [191], while the Logistic distribution requires a simple transformation. This
is the case when common libraries for random number generation cannot be used, such as in
our implementation described in Sec. 5.6.

As a reference, we use SciPy’s definition of a logistic distribution, with PDF in its standard-
ized form as follows:

f(x) =
e−x

(1 + e−x)2
. (5.2)

To shift or scale the distribution, the location and scale parameters are used as previously
described.

5.4.2 Generative Model

Now that we characterized and fitted the statistical distributions of the 40 acquired traces, we
want to define a generative model which would allow a user to synthesize XR traffic at will,
be it for analysis or simulation purposes. As already discussed in the previous section, in this
chapter we propose a simple generative model, that only attempts to capture the statistical
distributions of video frame size and Inter-Frame Inter-arrivals (IFIs), leaving higher-order
statistical descriptions for future work.

We define the dispersion as the ratio of the scale over the location parameter, attempting to
find a common value for both frame rates, since absolute values are likely to differ by a constant
factor (see Figs. 5.2d and 5.2e). While data aggregation is doable for frame sizes (as shown, for
example, in Fig. 5.6a), data for IFI did not allow us to do so. As shown in Fig. 5.6b, in fact,
data for 30 and 60 FPS behaves differently, making it impossible for us to create a single model
for this parameter. This implies that our model will only be able to generalize over data rates,
whereas 30 and 60 FPS are the only supported frame rates, and modeling and testing different
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Algorithm 5.1 Generative model for XR traffic
1: function GenerativeModel(AppName, FrameRate, DataRate)
2: FsAvg = DataRate / FrameRate
3: IfiAvg = 1 / FrameRate
4: α, β, γ, δ, ϵ = GetParameters (AppName) ▷ see Table 5.1
5: FsDispersion = α · DataRateβ

6: FsScale = FsDispersion · FsAvg
7: if FrameRate == 60
8: IfiDispersion = γ
9: else if FrameRate == 30
10: IfiDispersion = δ · DataRateϵ

11: else
12: Error: only 30 and 60 FPS supported
13: IfiScale = IfiDispersion · IfiAvg

values would require new data for the corresponding frame rate.
After carefully studying the acquired traffic traces, we propose to generalize the scale param-

eters for both video frame size and IFI time with a power law, namely:

y = axb. (5.3)

Furthermore, as Fig. 5.6b suggests, the 60 FPS IFI fits for all applications resulted in |b| < 10−4,
suggesting a constant behavior, irrespective of the data rate. In that case, we thus assumed a
constant fit (a corner case of power law with b = 0) by computing the average value across all
tested target data rates.

As can clearly be observed from the collected data, the proposed model has been extracted
from acquisitions between about 10 and 50 Mbps, thus using it beyond these limits is not
advisable since no data in our possession can validate the quality of the synthetic traces.

We let different applications have separate models, obtaining a data set of 10 traces per
application (half at 30 FPS, half at 60 FPS). The parameters for all applications can be found
in Table 5.1 and the generative algorithm is summarized in Alg. 5.1.

5.5 Ns-3 Implementation
To properly model and test the performance of VR traffic over a simulated network, a flexible
application framework has been implemented in ns-3 and made publicly available [192]. The
framework is based on the ns-3.33 release and aims at providing a novel additional traffic model,
easily customizable by the final user.

Tab. 5.1: Parameters of the proposed generative model. Each VR application is characterized by five parameters:
two for the frame size dispersion DFS = αxβ , one for the 60 FPS IFI dispersion DIFI = γ, two for the 30 FPS
IFI dispersion DIFI = δxϵ.

α β γ δ ϵ

Virus Popper 0.1784 -0.2403 0.03721 0.01433 0.1764
Minecraft 0.1857 -0.1872 0.07133 0.02419 0.2267
GE VR – Tour 0.2554 -0.2031 0.03468 0.01056 0.2756
GE VR – Cities 0.2597 -0.2539 0.03457 0.008953 0.3119
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The proposed framework allows the user to send packet bursts fragmented into multiple pack-
ets by BurstyApplication, later re-aggregated at the receiver, if possible, by BurstSink. Since
the generation of packet bursts is crucial to model a wide range of possibilities, a generic Burst-
Generator interface has been defined. Users can implement arbitrary generators by extending
this interface, and three examples have been provided and will be described in Sec. 5.5.2. Finally,
each fragment comprises a novel SeqTsSizeFragHeader, which includes information on both
the fragment and the current burst, allowing BurstSink to correctly re-aggregate or discard a
burst, yielding information on received fragments, received bursts, and failed bursts.

More details on the implementation and the rationale behind these applications will be given
in the following sections.

5.5.1 Bursty Application

Inspired by the acquired traffic traces described in Sec. 5.3.1, BurstyApplication periodically
sends bursts of data divided into multiple smaller fragments of (at most) a given size. Since burst
size and period statistics can be quite general, the generation of the burst statistics is delegated
to objects extending the BurstGenerator interface, later described in Sec. 5.5.2. BurstyHelper
is also implemented to simplify the generation and installation of BurstyApplications with
given BurstGenerators to network nodes and examples are provided.

Each fragment carries a SeqTsSizeFragHeader, an extension of SeqTsSizeHeader which
adds the information on the fragment sequence number and the total number of fragments
composing the burst, on top of the (burst) sequence number and size as well as the transmission
time-stamp. After setting a desired FragmentSize in bytes, the application will compute how
many fragments will be generated to send the full burst to the target receiver, although the last
two fragments may be smaller due to the size of the burst not being a multiple of the fragment
size, and the presence of the extra header.

Traces notify the user when fragments and bursts are sent, while also keeping track of the
number of bursts, fragments, and bytes sent, making it easier to quickly compute some simple
high-level metrics directly from the main script of the simulation.

5.5.2 Burst Generator Interface

A generic bursty application can show extremely different behaviors. For example, an applica-
tion could send a given amount of data periodically in a deterministic fashion, or the burst size
or the period could be random with arbitrary statistics, successive bursts could be correlated
(e.g., the concept of GoP for video-coding standards such as H.264 [193]), and even the burst
size and the time before the next burst might be correlated.

To accommodate for the widest range of possibilities, a BurstGenerator interface has been
defined. Classes extending this interface must define two pure virtual functions:

1. HasNextBurst: to ensure that the burst generator is able to generate a new burst size and
the time before the next burst (also called next period in the remainder of this section);
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2. GenerateBurst: yielding the burst size of the current burst as well as the next period, if
it exists.

Three classes extending this interface are proposed and briefly discussed in the remainder of
this section, allowing users to generate very diverse statistics without the need to implement
their own custom generator in most cases.

Simple Burst Generator Inspired from OnOffApplication, SimpleBurstGenerator de-
fines the current burst size and the next period as generic RandomVariableStreams. Users
are thus able to model arbitrary burst size and next period distributions, by: using the dis-
tributions already implemented in ns-3; implementing more distributions; or simply defining
arbitrary CDFs for EmpiricalRandomVariables.

Limitations for this generator lie in the correlation of the generated random variables: burst
size and next period are independently drawn as are successive bursts.

VR Burst Generator VrBurstGenerator is a direct implementation of the model proposed
in Sec. 5.4, where bursts model video frames.

Similar to the RiftCat software described in Sec. 5.3.1, this generator makes it possible to
choose a target data rate and a frame rate.

While traces were taken at specific frame rates and target data rates, the proposed model at-
tempts to generalize them, although without any knowledge on the quality of the generalization
beyond the boundaries imposed by the streaming software.

To generate the frame size and the next period, LogisticRandomVariable and Mixture-
RandomVariable have been implemented in ns-3.

A validation of the proposed model based on this burst generator will be discussed in Sec. 5.6.

Trace File Burst Generator Finally, users might want to reproduce in ns-3 a traffic trace
obtained by a real application, generated by a separate traffic generator, or even manually writ-
ten by a user (e.g., for static debugging/testing purposes). For these reasons, TraceFileBurst-
Generator was introduced, taking advantage of CsvReader to parse a csv-like file declaring a
(burst size, next period) pair for each row. Once traces are imported, the generator will sequen-
tially yield every burst, returning false as output to TraceFileBurstGenerator::HasNextBurst
after the last row of the trace file is yielded, thus stopping the BurstyApplication.

A StartTime can be set as an attribute, allowing the user to control which part of the file
trace will be used in the simulation. This can be especially useful when the total simulation
duration is shorter than the traffic trace, making it possible to decouple users by setting different
start times.

Several VR traffic traces using different frame rates and target data rates are available [192]
in the described format for a total of over 90 minutes of processed acquisitions, comprising
some relevant metadata as part of the commented header. Interested readers can thus simulate
real VR video traffic in their ns-3 simulations, or expand the analysis performed in Secs. 5.3.2
and 5.4.
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5.5.3 Burst Sink

An adaptation of the existing PacketSink, called BurstSink, is proposed for the developed
bursty framework. This new application expects to receive packets from users equipped with
BurstyApplications and tries to re-aggregate fragments into packets.

While the current version of PacketSink is able to assemble byte streams with SeqTsSize-
Header, there are two reasons why BurstSink was created, specifically (i) to stress the depen-
dence of this framework on UDP rather than TCP sockets, as the acquisitions suggested, thus
expecting individual fragments sent unreliably rather than a reliable byte stream, and (ii) to
trace the reception at both the fragment and the burst level.

The application implements a simple best-effort aggregation algorithm, assuming that (i)
the burst transmission duration is much shorter than the next period, and (ii) all fragments
are needed to re-aggregate a burst. Specifically, fragments of a given burst are collected, even
if unordered, and, if all fragments are received, the burst is successfully received. If, instead,
fragments of subsequent bursts are received before all fragments of the previous one, then
the previous burst is discarded. Information on the current fragment and burst can easily be
recovered from SeqTsSizeFragHeader, allowing the application to verify whether a burst has
been fully received or not. If needed and suggested by real-world applications, future works
might also introduce the concept of APP layer Forward Error Correction (FEC).

Traces notify the user when fragments are received and when bursts are successfully received
or discarded, together with all the related relevant information. Furthermore, similarly to
the BurstyApplication, also the BurstSink application keeps track of the number of bursts,
fragments, and bytes received.

5.6 Simulation Results
To further test the validity of the proposed model, we implemented it on top of ns-3, a popular
open-source full-stack simulation software, and made it publicly available together with the
processed VR traffic traces in CSV format.∗ Further details on the implementation of this traffic
model on ns-3 can be found in [187].

To test our model, we set up simulation campaigns where multiple users equipped with HMDs
communicate with a central Wi-Fi AP, using a wireless connection based on the IEEE 802.11ac
standard. The central AP also acts as rendering server, generating one VR stream for each re-
ceiving STA of the scenario. Transmissions randomly start within the first second of simulation,
avoiding that different streams start at the same time.

We show results for traffic streams imported directly from the acquired traces as well as for
our model. Since a single trace is available for each parameter combination (i.e., application,
frame rate, data rate), for a fixed parameter combination the traffic flows will all come from
the same trace, although different 60 s windows are sampled to further decouple different users.
Instead, simulations running our proposed model have been repeated twice: one with the target

∗Available in the ns-3 app store: https://apps.nsnam.org/app/bursty-app/, Release v1.0.0
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data rate submitted to VRidge when acquiring the corresponding trace, and one with the
empirical data rate measured directly from the acquired traces (the two rates differ slightly, as
can be seen from Fig. 5.2a). This information can also be found directly into the metadata of
the acquired traces, made available in CSV format together with our model.

5.6.1 Model Validation

Exhaustive simulation campaigns have been run for all four applications and five data rates
at both 30 and 60 FPS, each repeated 10 times to obtain solid average statistics. Confidence
intervals are not shown as they are extremely tight. Additional simulation parameters are shown
in Table 5.2.

In the following section, plots will show burst-level rather than fragment-level metrics, which
in case of a video stream are much more informative and bring a more realistic perspective on
the quality perceived by the user. In fact, in this case we are more interested in the performance
regarding full video frames rather than single packets, and thus all packets from a burst will
have to be collected before the HMD will be able to process and show the frame to the user.

To validate our proposed model, we simulate a scenario as similar as possible to our acqui-
sition setup, where a rendering server transmits the VR stream to a single user. Note that
the Wi-Fi connection is able to withstand hundreds of megabits-per-second, thus a single user
transmitting up to 50 Mbps is largely underutilizing the channel, allowing us to obtain unbiased
results with respect to the limits of the channel capacity. We simulated all 40 combinations of
parameters (4 applications, 5 data rates, 2 frame rates), although we only show results for the
10 related to the Google Earth VR - Cities application in Fig. 5.7.

In Fig. 5.7a we show the average throughput obtained by the 3 simulation campaigns in the
10 parameter sets. Clearly, both 30 and 60 FPS runs obtain similar results, since this metric
disregards the frame rate. In fact, both models targeting the nominal rate (shown with dots
and circular markers) are perfectly superimposed on the main diagonal. Simulations using the
original traffic traces, instead, tend to have a slightly higher throughput (solid line with cross
markers), as was expected by looking at Fig. 5.2a. Since data rate, frame size, and, conversely,
latency are correlated, we matched our model’s data rate with the empirical one, as shown by
the dashed line with square markers. As the flexibility of our model allows us to choose an
arbitrary target rate, we can see a perfect match in the computed average throughput.

In Fig. 5.7b, instead, we show the average frame delay measured from the APP layer of the
AP to the APP layer of the STA. Processing, encoding/decoding and other technical delays

Tab. 5.2: List of simulation parameters

Parameter Value Parameter Value

Duration 60 s RTS/CTS Disabled
Distance 1 m MCS VHT MCS 9
Mobility Fixed Channel Width 160 MHz
IP v4 Guard Interval Duration 400 ns
Transport UDP Fragment Size 1472 B
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Fig. 5.7: Simulation results for a single user streaming the Google Earth VR – Cities application over a Wi-Fi
link. The statistics refer to fully received frames rather than to single fragments.

must be added to obtain the full motion-to-photon latency, and thus the network delay should
remain below 5–10 ms, as mentioned in Sec. 5.1. The most noticeable difference with respect
to the previous figure is that the two frame rates are clearly separated. This is because our
reference application, described in Sec. 5.3.2, allows us to choose a target data rate, trying
to maintain a CBR transmission during the whole duration of the stream. This translates
into frame sizes which depend directly on the frame rate, following the formula S = R/F

as described in Sec. 5.3.2. Since the channel capacity for these simulations is kept constant,
doubling the frame rate halves the frame sizes which, in turn, halves the average video frame
delay. As expected, the model using the target rate slightly underestimates the average frame
delay, which depends on the real application throughput, always slightly lower than the one
empirically computed from the traffic traces. Instead, similarly to the average throughput,
setting the model to the trace’s empirical rate yields an almost perfect match with the VR
traces we acquired. Finally, notice that the average frame delay always remains below 3 ms,
well below the bound suggested by the industry experts [164, 169, 152, 154, 159].

To complete this analysis, in Fig. 5.7c we report the 95th percentile delay performance of
our simulations. This metric is important as it gives an idea of the worst-case performance of
the network. In fact, only ensuring average performance is not enough to obtain a smooth and
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appreciable user experience, since frequent stutters in the streamed video might easily ruin the
interactivity of the application and even disorient the user. Ensuring that the 95th percentile of
the delay is within acceptable bounds allows for a more fluid and overall better experience. In
the case under analysis, it can be easily seen that both models using target and empirical rate
slightly underestimate the frame delay of the acquired traces. It is likely that the fitted Logistic
distribution is not able to fully grasp the minute details of the traffic trace, making our model
unable to match the real traffic.

Note that, while these results are bound to the specifications of the network under analysis
(e.g., MCS, channel width, guard interval duration, fragment size, presence of RTS/CTS, Wi-Fi
standard, mobility, environment) the framework that we proposed is general. This suggests that
it can be used to study a variety of more or less complex scenarios and network architectures
with different sets of parameters, assessing how they affect the end-to-end performance.

To conclude, it appears that our model is indeed able to reliably predict average statistics,
while it could still be improved to better mimic slightly more advanced and specific features.
These refinements will be pursued in our future work.

5.6.2 Use Case Example

Finally, we propose a simple example use case for our VR traffic generator. We consider a VR
arena setting, where multiple users are attached directly to a single AP streaming wirelessly.
We assume that each user requests a 50 Mbps stream and observe how many STAs can be
supported by an arena with an analogous setup.

As expected, we notice again from Fig. 5.8 that our model needs to be calibrated against the
empirical rate of the acquired trace to yield reliable results. In fact, from Fig. 5.8a we can see
that the average throughput of the calibrated model perfectly matches the throughput of the
traffic trace up to at least 8 users, where the network is able to support more than 400 Mbps.

In Fig. 5.8b it is possible to see an unstable network condition, when 8 users are trying to
stream simultaneously. It appears that the slightly higher throughput required by the trace
and the empirical rate model with respect to the target rate model is enough to push the
network to its limit, resulting in a sudden increase of the average frame delay, at both 30 and
60 FPS. Focusing on the 30 FPS simulations, the plot shows that up to 6 users can be supported
within the 5 ms bound, while 7 users slightly exceed this limit, and finally 8 users make the
network unstable and are thus pushed over the 10 ms limit for both the trace and the model
using the empirical rate. It is important to notice that the more unstable the network, the
worse the prediction accuracy of our model. This is probably due to the simplifications that
we introduced, such as the Logistic distribution and the uncorrelated samples for both the IFI
time and frame size stochastic processes. Similarly, at 30 FPS, up to 7 users can be supported,
but an additional user makes the system highly unstable and with poor prediction performance
from our model.

Finally, in Fig. 5.8c we show the results for the 95th percentile of the delay. Similarly to
the average delay, this metric also shows the instability of the network for 8 users with much
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Fig. 5.8: Simulation results for multiple users streaming the Google Earth VR – Cities application over a Wi-Fi
link. The statistics refer to fully received frames rather than to single fragments.

worse performance. Focusing on 30 FPS, the system is able to keep the delay below the 5 ms
bound only when no more than 2 users are present, whereas up to 5-6 users can be served
if a 10 ms delay is still deemed acceptable. Instead, at 60 FPS up to 6 users can be served
while keeping the network delay within 5 ms, while the 10 ms limit is only surpassed when the
network becomes unstable with 8 users.

These counterintuitive conclusions come from the fact that the application fixes a data rate,
not a quality of experience. This means that doubling the frame rate results in halving the
frame size, thus reducing the perceived image quality of the streamed application, which turns
into an almost halved delay. Fixing a constant bit rate thus results in higher frame rates yielding
lower latencies, at the cost of a lower image quality.

In general, there is good accordance between the results predicted by the calibrated model
and the traffic traces, while the uncalibrated model often shows overly optimistic results. When
the traffic in the network increases too much and the network becomes unstable, the three
simulations diverge significantly, making our synthetic traces less reliable, although this is a
corner case that might be of lesser interest.
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5.7 XR Traffic Modeling Roadmap

Starting from the model described in the previous sections, in the following we propose an end-
to-end framework to evaluate network solutions, tailored for XR applications. The goal is to list
and detail the tasks required for the construction of such a framework, in order to encourage
researchers in this field to advance with their work the state of the art, using our baseline as a
valid starting point.

While Sec. 5.7.1 is devoted to highlighting our contributions, in Secs. 5.7.2, 5.7.3 and 5.7.5
we set down each additional task, describing how they can lead to the optimization of network
protocols.

5.7.1 Exploiting First-Order Statistics

The model proposed in this thesis, despite its basic functionalities, represents a solid foundation
on top of which future works can iterate to develop more sophisticated strategies. In particu-
lar, we designed an open-source, highly customizable setup (described in Sec. 5.3) to acquire
traffic traces by sniffing the packets traveling on the local network where the experiments were
conducted.

At this stage, packets are generated following first-order statistics, sampling the size and
inter-frame interval from the distribution fitted on the collected data (see Sec. 5.3.2). As a
consequence, with this model we can emulate the creation of application frames that replicate
the strategy implemented by the rendering server used in our experiments. While this model
is already useful for some applications, it lends itself to several interesting extensions, which
capture other important features of the statistics of XR traffic. As an example, in the rest of
this section we discuss the importance of studying the correlation between different packets and
of understanding how the movements of the user impact the generated traffic as two key areas
of future improvement for our model.

5.7.2 Introducing Temporal Correlation

More advanced studies can be carried out to improve the model with additional features. One
important aspect to elaborate on is the correlation among subsequent frames, or even within a
specific group of frames.

As mentioned in Sec. 5.3.2, when compressing a video stream both intra-frame and inter-
frame compression techniques could be exploited, and this influences not only the structure
of the packets since the type of compression greatly influences the frame size, but also the
strategy to inject them into the network. It is also possible that some manufacturers use
advanced coding techniques such as Periodic Intra Refresh, as was explained in Sec. 5.3.2 for
the streaming application used for our analysis, or more advanced standards such as H.265 [194]
using different compression techniques. In that case, the importance of temporal correlation
might decrease, although further analysis should be carried out to ensure this.
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It should be clear, by now, that the availability of a model capable of generalizing how such
frame sequences are created, independently of the technical setup, is important, and the fact
that each manufacturer may use its own policy represents an additional challenge. In addition,
having a model that integrates and generalizes the temporal correlation among frames would
allow researchers to elaborate strategies to guarantee a certain level of latency and throughput,
for example by giving different priorities and scheduling options to different types of packets.

For applications with constant delay requirements and high values of FPS, a solution could
be to buffer (at the device side or at the rendering server) specific packets associated with
keyframes, in order to improve the encoding process. This would require stable network perfor-
mance and an application capable of communicating directly with the network, e.g., exploiting
cross-layer solutions, to be aware of any change of the link quality that would trigger specific
countermeasures or improvements, if applicable.

5.7.3 Introducing Head Tracking

A further improvement of the model should exploit the information on movement tracking, in
particular related to the head, for all 6DoF. In this case, sniffing the packets traveling through
the network might not be enough, and we thus need to gather information from different sensors
(e.g., gyroscope, accelerometer and compass), that could be integrated into the device used to
interact with the virtual world.

With respect to VRidge, the software that we used to make our phone acting as a VR
headset and our PC as a rendering server, the developers provide an API for this purpose.∗

By connecting to the head tracking endpoint, the software provides positional, rotational, or
combined data, and even the possibility of modifying phone tracking data in real time before it
is used for the rendering step.

This is important because, by aligning the motion trace with the traffic generated by the
application, it can be determined whether there is correlation between a certain movement
of the user and the corresponding drop in the reception of packets, or other network-related
events. For example, knowing the direction of the physical movement of the user might help
mmW wireless systems (such as 802.11ad/ay) keep beam alignment between the AP and the
user device, thus limiting the risk of abrupt connection interruptions if the line of sight is lost.

It is to be highlighted that this approach could benefit every communication infrastructures
that can be used to deliver XR content, as user tracking data can be exploited at different layers
of the protocol stack.

5.7.4 Full Traffic Emulator

The last step to further increase the fidelity (but also the complexity) of the traffic model is
to fully characterize and emulate all the different information sub-flows and how they interact
with each other. For example, as shown in Fig. 5.1 and explained in Sec. 5.3.2, the VR stream

∗https://github.com/RiftCat/vridge-api
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comprises both DL and UL messages containing information such as video frames, head tracking
information, and feedback.

A full-blown emulator would send all this information to and from the user, reacting accord-
ingly whenever a packet is lost or corrupted, or when communication delays are present. This
level of detail requires a much more in-depth analysis of the transmission protocol of a real
XR application, understanding all the consequences of erratic and unexpected behaviors of the
network.

Such a precise model would be extremely useful when running large simulation campaigns
as it would give the most accurate and reliable results. However, the amount of work required
to analyze and reproduce a realistic behavior would be extremely high.

5.7.5 QoE-centric XR

As highlighted thoroughly in the previous paragraphs, the final goal of all these approaches is
to guarantee high-level performance to the final user. In particular, in the XR domain, we tend
to measure the performance in terms of overall satisfaction of the customers, referred to as QoE,
and, to the best of our knowledge, there is no standardized way to evaluate these metrics.

In our case, besides the quality of the shown image, also the latency of the communication
between the HMD and the rendering server can make a difference (especially if the latter is
in the cloud), considering that cybersickness has a huge impact on the user experience. For
this reason, researchers should be encouraged to design algorithms that guarantee stable and
constant performance, taking into account that the traffic in the network varies depending on
the application and user activity.

Moreover, since in a common scenario we have different users, there may be a need to support
different traffic categories at the same time in the same network. This requires a system able
to fairly distribute resources among the flows, where learning algorithms could be implemented
to orchestrate every operation, either from a network or from an application perspective.

Given a certain condition of the user, or other available information, the algorithm could
predict the QoE trend and act accordingly in case of an anticipated performance drop. At this
point on the roadmap, the network design should focus on the user, trying to guarantee a stable
experience also when VBR flows are considered. In fact, in a CBR flow (much easier to handle
from a network point of view), the perceived image quality can be affected in case of a scene
with a large amount of action and details. In this case, it may be difficult to fit everything
at a fixed rate and, as a consequence, the user experiences a downgrade in terms of quality.
This further highlights the need for novel solutions, able to tackle these problems by trading off
system complexity and QoE.

5.8 Conclusions

In this chapter we described the current state of the art regarding the telecommunication
aspects needed to support high-quality XR streaming, mainly focusing on the challenges needed
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to obtain faithful traffic models that the community could use to test protocols and optimize
networks.

We then proceeded to acquire over 4 hours of VR traffic, study in detail this type of traffic,
and propose a model to generate synthetic traffic traces, while also making freely available to
the community both our implementation and the VR dataset [187, 195].

Finally, we show some results on the predictive power of our model, while also acknowledging
its weak points. Furthermore, we provided an example use case where multiple users coexist
in the same network, naively sharing radio resources up to its collapse. Further work could
better study effective scheduling strategies for XR traffic streams, possibly coexisting with
other applications in the same network while also ensuring robustness in case of fluctuating
channel quality. Also, the model could be tested and validated for higher values of FPS, by
collecting and analyzing additional traces at 90 FPS or higher. All the tasks that we think are
necessary to build a complete framework for traffic generation have been listed in Sec. 5.7 and
represent possible future directions for this work.

The proposed ns-3 framework for bursty applications is publicly available and open source [192],
together with the implementation of the proposed traffic model and the actual traffic traces ex-
perimentally obtained. We also attempted to generalize the model to arbitrary target data rates
and frame rates, allowing users to experiment with arbitrary application-level settings that suit
their specific research. The model has been built upon a framework to simulate bursty appli-
cations in ns-3, where burst size and period can be customized with little additional code, and
traces for burst-level metrics collections allow the user to better analyze a complex application
QoS.

With this contribution, we hope to pave the way for the research community to start working
towards the optimization and support of this specific type of traffic, given the extreme interest
from the main standard bodies and the most prominent telecommunication industries.
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6
Conclusion

In this thesis, we discussed about previous limitations for the simulation of communication
networks, the advancements that we proposed, and future research directions to further enhance
the current state of the art in multiple topics. We invite the reader to consult the previous
chapters for a per-topic discussion of relevant future research directions, and report here only
the main conclusions drawn by our works.

After a general introduction to the topics discussed in this thesis, in the second chapter we
focused mostly on channel modeling, aiming towards simulation scalability on one side and
better mmW channel modeling on the other. We first analyzed and proposed simplifications to
improve the performance of the stochastic SCM described in 3GPP TR 38.901, obtaining a sig-
nificant channel generation speedup with little behavioral changes, in terms of both narrowband
and wideband channel modeling. Then, after briefly introducing the theory of radio frequency
RTs based on the Method of Images, we discussed about two simplification approaches specific
for this type of channel modeling. After analyzing both PHY layer and E2E performance, we
found that there is indeed a tradeoff between computational complexity and reliability, giving
some rules of thumb on how to set there parameters depending on the scenario under analysis.
Finally, with respect to more detailed channel models, we introduced a mathematical formula-
tion for a class of mmW channels, i.e., the QD models, that can closely simulate the propagation
of rays in a specific environment calibrated on real-world channel measurements. We provided
a step-by-step tutorial on how such models can be implemented, and then compared the model
against measurements. We also briefly introduced a work in progress software where blockage
at mmW can be modeled and then studied with appropriate tools, such as full stack simulators.

In the third chapter, we instead analyze antenna arrays, a topic tightly linked with mmW com-
munications, from both an optimization perspective and a modeling perspective. We propose
an ML-based optimization framework allowing us to jointly optimize many antenna parameters
at once in just a fraction of the time that would be required otherwise. Our findings suggest
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that vertical linear arrays provide the best performance in urban scenarios, significantly better
than square or rectangular planar arrays. We then presented a modeling framework for the
end-to-end evaluation of 5G mmW cellular networks which is compliant with the 3GPP NR
specifications. We propose additions to ns-3 such as (i) a ray-tracing based channel model for
mobile users, which improves the spatio-temporal coherence over the previous stochastic chan-
nel [43], (ii) a flexible antenna module, comprising multiple parametric antenna elements as
well as a generic interface for phased antenna arrays, and (iii) a BF module supporting different
algorithms for the computation of the optimal BF vectors. This work gives great flexibility
to the final user and thus allows for a plethora of new and more complex simulations, which
exploiting all the communication modules already implemented in ns-3 will be able to yield E2E
performance to more realistic systems.

In the fourth chapter, we started by briefly describing the main characteristics of the WiGig
standards, with focus on the MAC layer. We gave some details about the scheduling mecha-
nisms introduced by IEEE 802.11ad, allowing different types of traffic to coexist and potentially
improving the performance of QoS-sensitive applications. We then proposed an open-source
framework for WiGig periodic scheduling based on ns-3. We tested our framework by imple-
menting two simple schedulers and testing their performance with different types of network
traffic. Results show that the new scheduling mechanism proposed by WiGig standards is
able to outperform the typical Wi-Fi contention-based channel access, but only when precise
cross-layer information between the MAC and APP layers is exchanged. Moreover, even tiny
variations over the perfectly CBR behavior of the application traffic result in significant per-
formance degradation, suggesting that some extra resources might need to be allocated to
retain the desired performance. Lastly, we presented a mathematical framework for periodic
scheduling in WiGig networks, the the objective of designing more solid and better performing
schedulers. We studied if and how multiple periodic allocations, possibly with different peri-
odicities and requirements, can be scheduled together with a strong periodicity requirement,
needed to eliminate possible jitter in the communication. We proposed, described, and tested
two scheduling algorithms based on this framework, showing that they have almost opposite
behaviors: one aims at a high traffic flow allocation acceptance rate, the other maximizes the
resources allocated to each single station. We showed the complexity behind the design of these
algorithms, as well as the benefits that can be obtained by properly tuning them.

Finally, in chapter five, we describe our work trying to model a VR application traffic flow.
After setting up an acquisition system, we recorded and analyzed hours of VR traffic streaming,
studying its details and proposing a model to generate synthetic traffic traces, while also making
freely available to the community both our implementation and the VR dataset. We proposed
an ns-3 framework for bursty application in order to support VR-like traffic types, automatically
handling the fragmentation and re-aggregation at the two ends of the communication system.
This allows users to implement their own model, other than using our own or our VR traffic
dataset. We propose a way to generalize our model to arbitrary target data rates at both 30 and
60 FPS, giving lots of freedom to the user for their own simulations. With this work, we hope
to pave the way for the research community to start working towards the optimization and
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support of this specific type of traffic, given the extreme interest from the main standard bodies
and the most prominent telecommunication industries.

The telecommunication community is currently observing the deployment of 5G networks
around the world, fruit of a decade-long collaboration between worldwide universities, research
centers, and big industries, all jointly collaborating and investing in research for this common
goal. Researchers are already discussing about future evolutions of this technology, also known
as beyond 5G, as well as the next generation of communications networks: 6G.
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