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Shared Control in Robot Teleoperation With
Improved Potential Fields

Alberto Gottardi, Stefano Tortora , Elisa Tosello, and Emanuele Menegatti

Abstract—In shared control teleoperation, the robot assists the
user in accomplishing the desired task. Rather than simply exe-
cuting the user’s command, the robot attempts to integrate it with
information from the environment, such as obstacle and/or goal
locations, and it modifies its behavior accordingly. In this article,
we propose a real-time shared control teleoperation framework
based on an artificial potential field approach improved by the
dynamic generation of escape points around the obstacles. These
escape points are virtual attractive points in the potential field
that the robot can follow to overcome the obstacles more easily.
The selection of which escape point to follow is done in real time
by solving a soft-constrained problem optimizing the reaching of
the most probable goal, estimated from the user’s action. Our
proposal has been extensively compared with two state-of-the-
art approaches in a static cluttered environment and a dynamic
setup with randomly moving objects. Experimental results showed
the efficacy of our method in terms of quantitative and qualitative
metrics. For example, it significantly decreases the time to complete
the tasks and the user’s intervention, and it helps reduce the failure
rate. Moreover, we received positive feedback from the users that
tested our proposal. Finally, the proposed framework is compatible
with both mobile and manipulator robots.

Index Terms—Artificial potential fields (APFs) le2, collision
avoidance, human–robot interaction, shared control, soft
constraint satisfaction problem (CSP), teleoperation.

I. INTRODUCTION

T ELEOPERATION allows a human user to control a robotic
device through a human–machine interface (HMI) (e.g.,

a joystick). The ability to interact with remote or inaccessible
environments made this technique widespread and effective in
several applications. Examples include underwater and space
exploration, telepresence, and telesurgery [1]. In direct teleop-
eration, the user fully controls the robot via HMI: commands are
directly mapped to robot actions with no processing. However,
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the interface may have fewer degrees of freedom (DoFs) than
the controlled robot [2], [3]. Moreover, user commands may be
unreliable due to noise or disturbances, particularly in cognitive
HMIs such as electromyographic interface or brain–computer
interface (BCI) [4]. The robot workspace may be partially visible
to the user, e.g., due to camera occlusions. Finally, user skills
may be compromised by motor and/or neurological disabilities.
In all these cases, the difficulty of controlling the robotic device
increases the user workload and generates a sense of frustration
and irritation.

To alleviate these limitations, shared control [5] allows the
teleoperated robot to assist its human guide by contextualizing
the delivered commands in terms of robot state in the environ-
ment. The aim is to let users focus on their intended goal, while
robotic intelligence handles low-level control problems, such
as adjusting the robot’s trajectory or avoiding collisions with
obstacles. Shared control is effective in several applications that
require precise operations, e.g., in assembly or feeding tasks [6].
It also improves the independence of people with disabilities in
both daily-living mobility [7] and manipulation [8]. Several ap-
proaches, with different assistance types [9], have been proposed
to achieve for shared control teleoperation of robotic devices.
From these works and our own experience, we can deduce the
following requirements.

1) Intent recognition: If we assume a complete robot knowl-
edge of the intended user task, we can optimize assistance
to complete that specific assignment [10]. However, users
may want to achieve multiple goals, and the robotic system
may not know a priori users’ intentions. In this context,
an implicit interpretation of users’ intention from their
actions should exist to guarantee a natural and effective
human–robot interaction [11]. Moreover, since the user
intention prediction is generally uncertain, the shared-
controlled robot should assist the motion toward the whole
goal distribution [12].

2) Safe motion: Controlling a robotic device without damag-
ing it and its surrounding is essential to ensure safe robot
behavior in real-world applications. With no goal knowl-
edge, shared control should precisely reflect the user’s
commands: only minimal robot’s trajectory alterations
are allowed to avoid collisions. If the goal is precisely
estimated, instead, teleoperation can benefit from collision
avoidance to optimize the robot’s control in following the
shortest path to the target [13].

3) Seamless interaction: Goodrich and Schultz [14] identi-
fied ten autonomy levels for a shared-controlled robot,
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going from direct teleoperation to fully autonomous task
completion. Selecting the best control level is critical to
reducing the users’ workload while keeping them feeling
in control of the robotic device. Ideally, we should allow
smooth and dynamic transitions between autonomy levels.
In this way, at each time instant, robot control depends on
the weighted cooperation between the two agents based
on current contextual data [15].

A. Contribution

To address the requirements outlined above, we propose a
framework for real-time shared control teleoperation that inte-
grates the prediction of user’s intention with collision avoidance.
Collision avoidance is based on an improved artificial potential
field (APF) [16] method that includes the dynamic generation of
attractive points around the obstacles, called escape points. Es-
cape points generate pathways that the robot may follow to avoid
collisions. We estimate the best escape point sequence dynam-
ically during teleoperation by solving a constraint satisfaction
problem (CSP) [17] that optimizes both obstacle overcoming
and goal achievement. Our contributions are as follows.

1) a novel APF approach with improved performance com-
pared with the state-of-the-art;

2) a full framework for real-time shared control teleopera-
tion that is compatible with both mobile and manipulator
robots, both in static and dynamic environments;

3) an exhaustive and extensive comparison of our proposal
with two baseline approaches toward performance and
users’ satisfaction. Our evaluation comprises both a sim-
ulated and a complex real-world setup. Moreover, we test
our system in both a static and a dynamic environment,
the latter populated with moving and movable obstacles.

The rest of this article is organized as follows. Section II
provides an overview of the state-of-the-art for shared control
teleoperation. Section III depicts our proposal, fully detailing its
collision avoidance system based on APFs and escape points.
Section IV compares our framework with the state-of-the-art
within both a static and a dynamic environment. Section V ana-
lyzes obtained results in the static setup, while Section VI shows
the ones obtained in the dynamic scenario. Finally, Section VII
concludes this article.

II. RELATED WORK

In shared control, the robot assists the user to accomplish the
desired task. To simplify the intent inference problem, Losey et
al. [18] embed the robot’s actions into a low-dimensional latent
space, while Quere et al. [6] propose a constraint-based shared
control scheme to define skills, which provide support during
task execution. In general, many works focus on predefined tasks
or assume that the robot knows the user’s intent [10]. However,
in real-world applications, the user’s goal may be unknown;
thus, target prediction should exploit the user’s commands. A
hidden Markov model (HMM) is one of the most widely used
predictors for interpreting human intention while executing a
task [19]: it predicts the intent treating it as the latent state of
the model. Other techniques are based on a Bayesian network.

Tahboub [20], for example, models the intention–action–state
scenario through a dynamical Bayesian network (DBN) to facil-
itate probabilistic intention recognition. Recent solutions [12],
[21], [22] combine the prediction of user’s intention and the
generation of robot assistance into a unique framework based on
inverse reinforcement learning. For example, in [22], the shared
control problem is modeled as a partially observable Markov
decision process, while the prediction of user’s intention is
based on the maximum entropy inverse optimal control (MaxEnt
IOC) [23]. This approach showed good performance in clutter
environments, where many possible targets exist, one next to the
other.

Other works dealt with shared control by focusing on collision
avoidance. In literature, many motion planning algorithms exist
that are particularly useful in high-dimensional spaces, e.g.,
probabilistic roadmap and rapidly exploring random tree (RRT).
Some works exploit RRT for the control of a semiautonomous
robotic manipulator [24]. However, such sampling-based al-
gorithms show their full potential in offline motion planning.
APFs [25], instead, due to their low computational cost, are one
of the most widely used techniques for dynamic motion planning
in teleoperation scenarios. Conventional APF approaches have
some well-known limitations, such as getting trapped in local
minima, movement oscillations, and unreachable goals in very
clutter environments. In literature, several APF variations exist
that try to overcome these limitations. For example, navigation
functions [26] and harmonic potentials [27] have been proposed
to overcome the local minima problem. However, they sig-
nificantly increase the computational cost. In [28], movement
oscillations are reduced by computing the gradient of the poten-
tial function. In [29] and [30], collision avoidance is obtained
through a combination of potential fields and model-predictive
control. You and Hauser [10] implemented and combined a
reactive potential field, an inverse kinematics with predictive
safety filter, and a real-time sample-based motion planner based
on the RRT method.

The above works generally consider only one aspect of shared
control, either the prediction and assistance to the goal or
collision avoidance. On the other hand, only a few solutions
optimize goal-reaching and collision overcoming within the
same framework. In [31], an HMM predictor identifies user
intention, while obstacles are avoided thanks to potential fields.
More recently, in [32], a DBN for user motion prediction is
combined with a tree-based search of collision-free paths. In
this article, we present a complete shared control framework
for teleoperation, integrating prediction and assistance to the
user’s intended goal with collision avoidance. We implicitly infer
target prediction from the user’s actions through a reinforcement
learning approach. Moreover, we propose an improved potential
field method for dynamic robot motion planning that exploits
the user’s goal estimation to identify the best path to overcome
the obstacles and reach the goal. Our simulated analyses and
real-time experiments demonstrate the efficacy of our approach
in assisting the users in teleoperation while reaching some targets
in dynamic clutter environments.

In our experiments, we suppose continuous human teleoper-
ation, while the robot continuously assists the user in reaching
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the target while avoiding static and dynamic obstacles. Other
works focus on other dynamicity aspects. Broad et al. [33]
dynamically allocate control authority to the user based on a
learned model of the joint human–robot system. Reddy et al. [34]
propose an algorithm for shared autonomy that uses model-free
reinforcement learning to help human users with tasks with
unknown robot dynamics, user policies, and goal representation.
Such features can be integrated into our system to face both
system dynamics and workspace changes.

III. OUR FRAMEWORK

This section depicts our shared control framework.1 Briefly,
it integrates a goal predictor based on MaxEnt IOC with an
improved version of APF. In particular, we generate a group
of escape points around the obstacles to prevent local minima
and improve target achievement. A detailed description of the
adopted predictor follows, together with our technique for col-
lision avoidance, escape point generation, and selection.

A. Goal Prediction

We assume to have a set of N possible destinations and that
each teleoperation task conduces the robot to one and only one of
them. Only the user knows the target point, and this goal does not
change during the whole task execution. Thus, given the set of
N goals, we aim at providing an efficient assistance to complete
the task by inferring, at first, the most probable target according
to the user’s actions. We also assume that the user is aware that
the robotic intelligence handles collisions, making the user’s
commands addressed toward the target. Given this assumption,
we model the human’s behavior toward a certain goal as a
Markov decision process [35] M with policy π(u|p,pg), where
each state of M is a robot position p ∈ W in the workspace,
and u ∈ U is the user’s action. The goal destination is a robot
position pg ∈ W , and the state transition function is T (p′|p, u),
withp′ being the next robot position. The cost functionCu

g (p, u)
is defined as

Cu
g (p, u) =

{
α, d > δ

αd
δ , d ≤ δ

(1)

whered is the distance betweenp′ = T (p, u) andpg . This model
can be solved as a reinforcement learning problem through
the well-known value function method [36]. In particular, we
compute the optimal policy of M through MaxEnt IOC, and
we solve it via dynamic programming, as suggested in [22].
Knowing the optimal user’s policy and given the sequence of
robot states and user’s commands ξ0→t = {p0, u0, ṡc,pt, ut}
from the beginning of the task to time t, the probability that the
human user has chosen one specific target location pg (i.e., pgn )
among a set G = {pg1 , . . .,pgN } of available goals is estimated
as

P (pg) = p(pg|ξ0→t) =
p(ξ0→t|pg)p(pg)∑
p′
g
p(ξ0→t|p′

g)p(p
′
g)

1The GitHub repository of our framework is available at https://github.com/
Shared-control/improved-apf.git

with p(ξ0→t|pg) =
∏
t

πu
t (ut|pt,pg) (2)

where p(pg) is the prior probability of pg . p′
g , instead, is the

sum iterator at the denominator; it normalizes the product of the
probabilities at the numerator over the whole set of goals (Bayes
formula).

B. Artificial Potential Fields

APFs are generated in the Cartesian space of W ∈ R3 and
operate as a gradient descent search to minimize the potential
function. Assuming to know the position and geometry of the
objects in the workspace, we follow the method proposed in [16],
and we generate a repulsive field around the obstacles according
to the FIRAS function

Ur(p) =

⎧⎪⎨
⎪⎩

η
2

(
1

ρ(p) − 1
ρ0

)2

, ifρ(p) ≤ ρ0

0, ifρ(p) > ρ0

(3)

where ρ(p) represents the distance between p ∈ W and the
closest point on the obstacle, while ρ0 is the influence ray of the
obstacle. The robot kinematic is, thus, determined by applying
a force equal to the negative gradient of the potential

fr(p) = −∇Ur(p) =
η

ρ2(p)

(
1

ρ(p)
− 1

ρ0

)
∇ρ(p). (4)

The global minimum of the gradient descent search is the goal
position pg . To produce this global minimum, an attractive field
is generated around pg as a conical well

Ug
a (p) = ka‖pg − p‖ (5)

where ka > 0 is the attraction constant. The following attraction
force results:

fa(p) = −∇Ug
a (p) = ka

pg − p

‖pg − p‖ . (6)

The robot velocity due to the effect of APF is then the combi-
nation of the repulsive and attractive forces. In case of shared
control teleoperation, this velocity modifies the input velocity
vin provided by the user to reach the desired goal

vr = vin − (∇Ug
a (p) +∇Ur(p)). (7)

Given multiple goals and the predictor of Section III-A, we can
update the potential field function accounting for the probability
distribution over these goals

vr = vin −
⎛
⎝ ∑

pg∈W
P (pg)∇Ug

a (p) +∇Ur(p)

⎞
⎠ . (8)

This means that the robot will be attracted more toward that most
probable destination of the teleoperation task.

C. Improved APF With Escape Points

Despite its diffusion among the robotic community, APF
suffers from some well-known limitations. First, the robot risks
getting stuck where the potential gradient becomes zero, i.e., in
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local minima. As highlighted in Section II, variations of APF
partially solve this problem through more advanced potential
functions that ensure the gradient to be zero only in a global
minimum (e.g., the goal). The second problem of APF is that
collision avoidance is purely reactive: the robot velocity is
determined only by the distance between the robot and the
obstacles. Thus, the robot modifies its trajectory to overcome
the obstacle only when it is close to it and not in advance. We
can increase ρ0, the influence ray of the obstacles. However,
this solution may prevent the robot from reaching the goal in
cluttered environments with multiple nearby obstacles.

To overcome these limitations, we enhance APF by intro-
ducing escape points, i.e., points appropriately created around
obstacles to help their smooth overcoming while avoiding local
minima. We took inspiration from [37], extending their proposal
to a 3-D environment. In detail, given the position po ∈ W of
an obstacle and its geometry, we identify its convex vertices and
the corresponding convex edges, and we sample escape points
close to these edges with a certain density α. Then, we choose
the escape point pe ∈ W that lets the robot bypass the obstacle
better while approaching the most likely target. To perform this
selection, we solve a CSP composed of one hard and three soft
constraints. Their description is as follows.

1) C0(hard): Given the tuple < p,pe >, p and pe must be
mutually visible and the line through them must poke into
Cfree when extended outward from each of these two points,
with Cfree that portion of the robot configuration space free
from obstacles. Formally, �ppe ∈ Cfree∀ < p,pe >.

2) C1(soft): Given the set of tuples < pg, P (pg) > relating
a goal to its probability, this constraint aims to favor the
most likely target at the current time.

3) C2(soft): This constraint considers the set of tuples <
pe,

1
d(pe,p)

>, where 1
d(pe,p)

is the reciprocal of the dis-
tance between the escape point and the robot position
mapped in the interval [0, 1]. The goal is to privilege the
nearest (visible) escape point. The distance definition can
be adapted according to the use case. In our experiments,
we consider the Euclidean distance in the Cartesian space.

4) C3(soft): We have the set of tuples < pe,
1

d(pe,pg)
>,

where 1
d(pe,pg)

is the reciprocal of the distance between
the escape point and the goal mapped in [0, 1]. We should
minimize the distance between the selected escape point
and the selected goal. In addition, in this case, the distance
can be arbitrarily defined, and we exploit the Euclidean
distance as a metric.

We solve the CSP in real time. Once selected the set of escape
points that satisfy the hard constraint C0, we solve the CSP by
using a fuzzy c-semiring structure 〈[0, 1],max,min,0,1〉 [17]:
we give a preference level in [0,1] to the partial solution of
each constraint, where we consider a higher level better than the
others. Then, we obtain the preference of a global solution as
the minimal preference on all constraints, where this preference
is the optimal escape point. We generate an attractive field at the
selected escape point pe as a parabolic well

Ue
a(p) =

1

2
ke‖pe − p‖2 (9)

whereke is the attraction constant. The following attraction force
results:

fe
a(p) = −∇Ue

a(p) = ke(pe − p). (10)

Adding this force to (7), we obtain the final robot velocity

vr = vin −
⎛
⎝ ∑

pg∈W
P (pg)∇Ug

a (p) +∇Ue
a(p) +∇Ur(p)

⎞
⎠ .

(11)
To illustrate our improved-APF method, we refer to a simple

2-D scenario, and we propose four case studies where both the
robot and the goal are modeled as dots in a bidimensional space
with vin = 0. Fig. 1 shows obtained results: (a) and (b) do not
contain local minima, and the robot successfully reaches the
goal (red dot) both via APF and through our enhanced proposal.
However, escape points (blue dots) let achieve the target more
quickly by guiding the robot around the obstacle in advance. In
Fig. 1(c), the obstacles form a closed aisle: APF causes the robot
to get stuck in a local minimum. Our method, instead, lets the
robot avoid this local minimum and successfully reach the goal.
In detail, initially, the robot moves from its start configuration to
point A of Fig. 1(c) as this point is closer to the robot (in terms
of the Euclidean distance). While approaching A, B becomes
the best escape point as it is relatively close to A (thus, to the
new robot position) but closer to the target. This escape point
change lets the robot accomplish the assignment. Finally, in
Fig. 1(d), the starting point is already at a local minimum. The
classical APF does not allow the robot to exit from it, while our
method successfully reaches the goal thanks to the attraction to
the closest escape point.

D. Shared Control Framework

Algorithm 1 depicts our resulting shared control framework.
It receives as input the initial position p of the robot and the
set G of available target destinations that it can reach, with G =
{pg1 , . . .,pgN }. Given a not null user’s velocity command, it
computes the probability distribution of the targets, as described
in Section III-A. This procedure lets predict the most probable
target destination (line 7 in Algorithm 1). Having the robot initial
position, goals, and goal probability distribution, the algorithm
initializes vAPF, the robot velocity due to the improved-APF
(line 8 in Algorithm 1). As in this phase, no obstacle is known,
only the attractive force of the most probable goal will act. Then,
the procedure searches for obstacles O = {po1 , . . .,poM } in the
scene (line 9 in Algorithm 1). If obstacles exist that occlude the
goal, namely O, an escape point pe should be found (line 13 in
Algorithm 1). Algorithm 2 details escape points generation and
selection. Briefly, we generate the set V of convex vertices of
the occluding obstacles (line 1 in Algorithm 2), filter the visible
ones (line 2 in Algorithm 2), and choose the best escape point
pe ∈ V̄ , as depicted in Section III-C (line 3 in Algorithm 2).
Once having pe, the velocity imprinted by our improved-APF
can be updated taking into consideration the repulsive forces
of existing obstacles and occluding obstacles. This means that
all obstacles, not only the occluding ones, contribute to the
generation of this repulsive force. Moreover, our escape point
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Fig. 1. 2-D simulated examples. (a) Rectangular obstacle. (b) Two rectangular obstacles. (c) and (d) Closed aisle. For every setup, figures show the robot start
position (gray dot) and the goal one (green dot). APF lets the robot reach the goal by following the blue trajectory. Our improved-APF version, instead, computes
the red trajectory thanks to the generated escape points (red dots). Our method introduces a visible improvement with respect to the state-of-the-art.

Algorithm 1: SharedControl.
Input: p, G

1: greached = false
2: vin = 0
3: while !greached do
4: while vin = 0 do
5: vin = takeUserInput()
6: end while
7: P (pg) = predictGoal(vin, p, G)
8: vAPF = improvedAPF(p, G, P (pg))
9: O = findObstaclesInScene()

10: if O �= ∅ then
11: O = findOccludingObstacles(p, G, O, P (pg))
12: if O �= ∅ then
13: pe = findEscapePoint(p, G, P (pg), O)
14: vAPF = improvedAPF(p, G, P (pg), O, O, pe)
15: end if
16: end if
17: vr = vin − vAPF

18: p = move(vr)
19: greached = isGoalReached(p, G, P (pg))
20: end while

Algorithm 2: FindEscapePoint.

Input:p, G, P (pg), O
Output:pe

1: V = generateConvexVertices(O)
2: V̄ = hardCSP(p, V)
3: pe = softCSP(p, G, P (pg), V̄)
4: return pe

is added as an attractive force, together with the attractive force
of the goal (line 17 in Algorithm 1). Finally, the robot velocity
vr is computed according to (11), and the robot moves toward
the goal according to this velocity (line 18 in Algorithm 1). The
process iterates until the goal is reached.

IV. EXPERIMENTS

To exhaustively evaluate our proposal, we provide a com-
prehensive set of experiments that compare our shared

control framework, named improved-APF in this article, with
two baselines. The first baseline is a fully teleoperated approach
called Teleoperation. The other is APF, i.e., the shared control
approach of Section III-B. It adopts APF to push users away
from obstacles, but it does not exploit any escape point. In the
experiments, a human user is asked to accomplish a picking task
by remotely controlling a robotic manipulator. We selected this
task as it appears broadly in teleoperation. Indeed, its simplicity
of use guarantees a fair comparison of the adopted control strate-
gies both when accomplishing relatively easy tasks and when
performing complex manipulations in the clutter. We tested the
systems in both a static and a dynamic environment. In the
former, goals and obstacles do not move during task execution. In
the latter, instead, targets are fixed (but can change at each trial),
while two external human users interfere friendly or adversary
with the environment by randomly moving the obstacles. A
detailed description of the two experimental setups follows,
together with the metrics and procedure used for evaluation.

A. Evaluation Setups

In both the static and the dynamic setups, a table is in front of
a manipulator robot. On it, some red cubes represent the objects
to be picked (goals fixed in the scene), while other objects of dif-
ferent color and shape serve as obstacles (fixed and/or movable).
Every object is equipped with an Apriltag fiducial marker [38]
that lets its detection. A Microsoft Kinect One [39] perceives
the workspace, detects the objects, and recognizes them. Once
detected, a picking point is computed on top of each goal. Thus,
when a target is selected, the human user guides the robot to the
picking location on its top. And once the user lets the arm reach
this location, the robot automatically concludes the picking
routine. The scene (e.g., the location of obstacles and their escape
points) is updated at 30 Hz during task execution. The robotic
agent is a six-DoF Universal Robots UR52 manipulator with a
Robotiq 3-Finger3 Adaptive Gripper attached to its end-effector.
The repulsive force generated by each obstacle acts both on the
end-effector and on all six joints—if they are within the area of
influence of the obstacle itself. The attractive forces, instead, act
only on the end-effector. The human user sees the workspace
through a camera mounted on the top back of the robot (Fig. 2

2See [Online]. Available: https://www.universal-robots.com
3See [Online]. Available: https://robotiq.com
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Fig. 2. Scene available to the human user while testing the static setup. Goal
3 is free from obstacles. Goal 1 is reachable only by passing the obstacle barrier.
Goal 2 introduces the possibility of choosing the best path: going around the
central yellow cylinder from the left or the right.

Fig. 3. Myo Armband gesture control: a roll of the human arm corresponds
to a robot end-effector displacement along the x-axis, a pitch is a motion along
the y-axis, and a yaw is a z movement.

shows the view available to the user). This 2-D representation
of the scenario makes the task more challenging due to missing
depth perception and aims to better pinpoint the efficacy of
shared control assistance in a nonideal working condition. From
this view, the user imprints a velocity control to the robot
end-effector via Joystick or through a Myo Armband [40]. The
former lets the human user easily move the end-effector along
the three axes. Using the latter, instead, is more challenging.
The Myo is equipped with an inertial sensor measuring linear
accelerations and angular velocities. Robot velocity commands
depend on the Myo orientation when moved by the user. As
shown in Fig. 3, a roll of the human arm corresponds to an
end-effector displacement along the x-axis, a pitch is a motion
along the y-axis, and a yaw is a z movement. Myo Armband adds
complexity to the teleoperation process; this should emphasize
the benefits of shared control.

A detailed description of the location of goals and obstacles
within both the static and the dynamic setup follows, together
with the control interface used to assist the robotic agent.

1) Static Setup: On the table, three red cubes, namely, Goal
1, Goal 2, and Goal 3, represent the objects to be picked (see
Fig. 2). Other objects of different color and shape, instead,
represent the obstacles to be avoided. We selected specific
positions for the goals, which are paradigmatic of common
situations during teleoperation. Goal 3 is free from obstacles.

Its aim is to prove that our proposal does not add complexity
to the state-of-the-art in terms of both performance and user
satisfaction (see Section IV-B). Goal 1 is hidden by an obstacle
barrier. The robot reaches it only if it steps over the obstacles.
Escape points should help this agent shorten its trajectory while
guaranteeing its smoothness (i.e., these points should encourage
the transition between the two cylinders). Finally, Goal 2 intro-
duces the possibility of choice for the user: it lets decide whether
to go around the obstacle (central yellow cylinder of Fig. 2) from
the left or the right. Depending on the agent’s direction, different
escape points will or will not be activated. In this context, the
human user can control the robotic agent via Joystick or through
the Myo Armband.

2) Dynamic Setup: We subdivide the table into three areas
(left, center, and right), and we randomly place two targets (i.e.,
two red cubes) in one of them. In the same area, two human
operators randomly add, move, or remove two obstacles (i.e.,
two yellow cylinders) by blocking or not blocking the targets.
The human user helps the robot reach the assigned goal through
the Myo Armband.

B. Evaluation Metrics

We intend to meticulously evaluate both the effectiveness of
our proposal and users’ satisfaction. To this aim, we adopt the
following objective and subjective metrics.

1) Objective Metrics: Inspired by [22], five objective metrics
measure the efficiency of our proposal as reported in the next
pages. The failure rate identifies the degree of failure, i.e., the
percentage of incomplete trials, where users do not achieve
the intended target destination. The average execution time
measures the time, on average, participants take to accomplish
a correct task. The average trajectory path analyzes the path
performed by the robotic agent to reach the target. The total
user inputs measures the number of movements performed
during each successful trial. Finally, the number of direction
changes identifies how many times participants have to change
the direction of the robot during task execution. The first three
metrics measure how effectively the participants can reach the
goals, whereas the last two evaluate their workload.

2) Subjective Metrics: We evaluate both perceived work-
load and user satisfaction while using Teleoperation, APF,
and improved-APF. We assess workload through the Hart and
Staveland’s NASA Task Load Index (TLX) [41]. It evaluates
mental, physical, and temporal demands. Moreover, it analyzes
the performance, effort, and frustration of every participant. Ten
different answer options are available to an agreement that would
be distinct enough for the respondents. It ranges from Very low to
Very high, passing through a neutral midpoint, thus offering an
accurate Likert scale that does not throw testers into confusion.
Despite the popularity of the NASA TLX, this assessment tool
has some criticisms that may limit its effectiveness in the current
application [42]. For example, the NASA TLX is affected by
prior task load, where a high workload (e.g., pure teleoperation)
appears higher after an easy task (e.g., shared control) and vice
versa. To overcome this limitation, we combine the NASA TLX
with an ad-hoc survey that aims to mitigate the differences
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TABLE I
SEVEN-POINT LIKERT SCALE SURVEY

between objective and subjective measurements of performance.
Such a survey is the seven-point Likert scale survey of Table I. It
analyzes if, when testing, users are confident in using the systems
and if they feel in control. We also investigate if the robot does
what they want and, in this case, if it accomplishes the assigned
tasks quickly and accurately. Finally, we inspect whether users
like the system and if they are satisfied with their performance.
The survey assesses satisfaction on seven-point scales, from Very
low to Very high.

C. Evaluation Procedure

To compare our system with the state-of-the-art, we asked
to a set of volunteers to test the three systems: Teleoperation,
APF, and improved-APF. Details about the static and dynamic
environments are as follows.

1) Static Setup: In the static setup, we involved 12 volunteers
(four women and eight men) aged between 28 and 58, each with
full cognitive abilities. The group consists of four nonexpert
and eight expert users, the latter with experience in robotics
but no prior exposure to our system. Based on their availability
and preference, eight volunteers performed the experiments with
both control devices, three of them used only the Joystick, and
one subject experimented only the Myo Armband. Thus, we
tested in total 11 subjects with the Joystick and nine subjects
with the Myo Armband. For each subject, we tested each control
method in random order. For each control method, participants
have to successfully pick each target of Section IV-A1 for three
times in random order. In case of nonsuccess, they repeated the
trial. Thus, the total number of attempts for each goal is three
plus the sum of failures.

2) Dynamic Setup: In the dynamic setup, we involved nine
volunteers (two women and seven men) aged between 22 and
34, each with full cognitive abilities. The group consists of three
nonexpert and six expert users. Three of them already tested our
proposal in the static environment. Volunteers have to perform a
total of 15 trials for each of the three control methods, regardless
of whether they are successful or not. All volunteers used only
the Myo Armband to control the robotic agent.

In both the static and dynamic setups, we consider one trial
successful if the robot picks the target and if, during its tra-
jectory, its end-effector, links, and joints do not collide with
the obstacles. We use successful trials to compute the objective
metrics of Section IV-B. To evaluate the failure rate, instead, we
consider the number of times the robot collides with obstacles
or picks the wrong item due to a misidentification of the goal
predictor. We discard failures due to hardware errors or user

misunderstandings, e.g., when the user misinterprets the target.
It is meaningful to consider the robot’s collisions with objects
in the environment even when using shared control methods.
Indeed, collisions may occur when both the user’s command and
goal attraction lead toward an obstacle, and the repulsive forces
are not strong enough to avoid the impact [see (7)]. Our proposal
should mitigate this limitation as the escape points attraction
forces influence the output velocity [see (11)]. Such attraction
positively contributes to the overall velocity component bringing
the robot away from collision paths.

Before testing, we inform the users if they will use teleop-
eration or shared control. No explanation is given about the
difference between the two shared control systems. We only
explain that shared control helps users in collision avoidance
overxyz. Besides seeing the scene from the camera, no feedback
on robot movements is provided to the user. This choice is
intentional since we want to figure out if the robot behavior
is perceived as natural or not. Before recording the trials, users
perform a couple of training runs to get accustomed with both
control systems and devices. This is done because we want to
minimize the learning effect during task execution.

Upon completing all trials for one control method, users
complete the short surveys of Section IV-B. Then, they test the
other systems. Volunteers can review their answers if the current
system makes them change their opinion about the previous
ones. They can also add comments and explanations.

D. Statistical Analysis

We applied a Kolmogorov–Smirnov test to check if the results
of the objective and subjective metrics come from a normal
distribution. Since we found that the results are not normally
distributed (Kolmogorov–Smirnov test, p < 0.05), we applied a
nonparametric Friedman’s test, with repeated measures between
the subjects, to analyze the significant impact of the control
methods on the objective metrics. Through a nonparametric
Kruskal–Wallis test, instead, we evaluated a significant impact
of the control methods on the subjective metrics. Upon signif-
icance, we performed a multiple post-hoc comparison between
the control methods with two-sided Mann–Whitney test and
Bonferroni correction. Effects are deemed significant if the
p-value is less than or equal to 0.05.

V. RESULTS OBTAINED IN THE STATIC SETUP

This section illustrates the results obtained for each of the
objective and subjective metrics detailed in Section IV in the
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TABLE II
FAILURE RATE OBTAINED IN THE STATIC SETUP

For each control device, the first column depicts the total failures occurred during the experiments, divided by goal. The second column shows the corresponding failure rate.

Fig. 4. Average execution time (left column), total user inputs (center column), and direction changes (right column) needed to reach each goal in the static setup.
The first row depicts the results obtained when using the Joystick interface. The second row collects performance obtained through the Myo Armband. Gray circles
represent the average results of each of the tested subjects. * indicates that p < 0.05; ** is for p < 0.01.

static evaluation setup (videos of performed experiments are
available online4).

A. Objective Metrics

All the objective metrics results are grouped based on the
goal.

1) Failure rate: Table II showcases the total number of
failures that occurred during the experimental evaluation
for each goal, together with their corresponding failure
rate. Both for the joystick and the Myo Armband, our
framework outperforms both Teleoperation and APF. In
particular, when using the Joystick, our system reduces
the failure rate to about a third compared with its counter-
parts (showing a failure rate of 2.3% only). As expected,
the number of failures increases for the Myo Armband,
particularly for Goal 2. Nevertheless, also in this more
challenging condition, our proposal halved the number
of failures, reducing the failure rate from 18.2% of the

4Videos at https://www.youtube.com/watch?v=WkMB-4fMR3M

Teleoperation to 6.9% with improved-APF. With respect
to the participants, the failures are generally equally dis-
tributed with an average failure rate across subjects of
11.5 ± 11.2% for Teleoperation, 8.0 ± 6.9% for APF, and
5.1 ± 4.8% for improved-APF, again showing that our
proposal allows a safer control of the robotic device.

2) Average execution time (see Fig. 4, left): A signifi-
cant impact of the control method on the execution
time is found for all the goals with both the Joy-
stick (Goal 1 p = 0.000, Goal 2 p = 0.017, Goal 3
p = 0.000) and the Myo Armband (Goal 1 p = 0.000,
Goal 2 p = 0.005, Goal 3 p = 0.000). As shown in
Fig. 4, our framework resulted to be generally faster
than the other two systems for all the goals. A statisti-
cally significant improvement in the completion time is
obtained by the improved-APF when reaching Goal 1
with respect to both Teleoperation (Joystick p = 0.000,
Myo p = 0.002) and APF (Joystick p = 0.000, Myo p =
0.004). Indeed, it does not get trapped in a local mini-
mum, and escape points help the robot to overcome the
barrier in less time than the other methods. In addition,
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for Goal 2, the improved-APF is on average faster than the
competitors, with a statistically significant difference with
respect to APF (Joystick p = 0.007, Myo p = 0.018), but
not with respect to Teleoperation. Nevertheless, most of
the failures obtained with Teleoperation and APF happens
exactly when reaching this target. Thus, even if execution
times are similar, our framework is shown to be safer.
Finally, to reach Goal 3, no escape point is generated, and
the performance of improved-APF and APF is equivalent
(Joystick p = 1.000, Myo p = 1.000). This outcome high-
lights the important consideration that our proposal does
not add complexity to the state-of-the-art.

3) Total user inputs (see Fig. 4, center): The second column
of Fig. 4 shows the total number of user inputs obtained
in both the Joystick (upper figure) and Myo experiments
(lower figure). A significant impact of the control method
on total user inputs is found for all the goals with both
the Joystick (Goal 1 p = 0.000, Goal 2 p = 0.000, Goal
3 p = 0.000) and the Myo Armband (Goal 1 p = 0.000,
Goal 2 p = 0.000, Goal 3 p = 0.000). The improved-
APF outperformed the Teleoperation in reaching Goal 1
(Joystick p = 0.000, Myo p = 0.000), Goal 2 (Joystick
p = 0.009, Myo p = 0.003), and Goal 3 (Joystick p =
0.003, Myo p = 0.000). Significantly better performance
are obtained by improved-APF also with respect to APF
overall for Goal 1 (Joystick p = 0.000, Myo p = 0.002)
and Goal 2 (Joystick p = 0.000, Myo p = 0.003). We
can infer that this metric is strictly correlated with the
average execution time: a trial lasted longer when the
user sent many commands. This also means that more
robot assistance results in fewer total user inputs, possibly
reducing the workload.

4) Number of direction changes (see Fig. 4, right): Regarding
the number of direction changes, again a significant impact
of the control method is found for all the goals with both
the Joystick (Goal 1 p = 0.000, Goal 2 p = 0.000, Goal
3 p = 0.000) and the Myo Armband (Goal 1 p = 0.000,
Goal 2 p = 0.000, Goal 3 p = 0.000). Data are very
illustrative: when assisted, users modify the direction of
the robot a fewer number of times, trusting the intervention
of the robot assistance. Thus, more robot assistance results
not only in fewer user inputs but also in fewer direction
changes. For example, focusing on data obtained using
the Myo interface when reaching Goal 1, users change
the robot direction for 15 times in Teleoperation, while
improved-APF needs not much more than five direction
changes (p = 0.000). Indeed, during the tests, users were
more cautious when in full teleoperation and imprinted
small discrete commands to the robot for fear of damaging
it and its surroundings. In shared control, instead, users’
control was continuous as they knew they had collision
avoidance support. However, even if shown to be better
than Teleoperation, APF does not improve the perfor-
mance significantly, while our framework does for all the
goals and control methods. These results prove the good-
ness of improved-APF: users can aim straight at the goal
without worrying about the obstacles in the environment.

This outcome should make users less stressed when using
our system.

5) Average trajectory path: Fig. 5 shows both the 2-D and 3-D
average trajectories obtained with both the Joystick and
the Myo Armband. When using Teleoperation, all users
adopted the same strategy with both control interfaces:
they preferred to take a very safe path away from obstacles.
For example, to reach Goal 1, they usually raised up the
robot at the beginning of the task and then moved toward
the target. To reach Goal 2, they first moved far away from
the occluding yellow cylinder, and then, they reached the
destination. This may explain the higher completion time
and the number of commands required. On the other hand,
the keypoint that distinguishes our proposal with respect
to APF is visible in the 3-D graphs: when reaching Goal
1, improved-APF performs a trajectory that is closer to the
barrier as it correctly exploits the generated escape points,
similarly to what is shown in Fig. 1. APF does not employ
escape points, and it needs to stay farther away from the
barrier because of the repulsive forces of the obstacles.

Given a static environment, it is worth mentioning that we
could have forced the users to follow some predefined trajecto-
ries to reach each goal and see how the users follow these specific
paths assisted by our proposal. Nevertheless, such a limitation
would have limited one of the requirements for an ideal shared
control system: the seamless interaction (see Section I). We want
our users to be and feel in control as much as possible, leaving
them the high-level decision of which path to take to reach the
destination point. We believe that forcing the movement along
a predefined trajectory would reduce this feeling. In addition,
not imposing restrictions makes the system more suitable for
applications in dynamic environments with movable obstacles.

B. Subjective Metrics

Upon completing all trials for one control method, users
filled out the two questionnaires of Section IV-B. Fig. 6 shows
obtained results. For both control interfaces, users perceive APF
as the worst system, particularly when using the joystick. They
do not feel in Control (versus Teleoperation p = 0.008) because
the robot does not act as they Want (versus Teleoperation p =
0.002, versus improved-APF p = 0.025) and they are not able
to reach the target Quickly (versus improved-APF p = 0.005).
Indeed, potential fields push the robot away from obstacles,
and users perceive this behavior as an unplanned motion. This
outcome is confirmed by the analysis of the Performance (versus
improved-APF p = 0.033) and Frustration (versus improved-
APF p = 0.018): users feel on average three or four times more
frustrated than with our proposal. Focusing again on Control and
Expectation, Teleoperation obtained in general the best evalua-
tion, since the user is fully controlling the robot. Nevertheless,
our proposal is perceived similarly, with differences that are
not statistically significant. Interestingly, some users commented
that they preferred the Teleoperation at the beginning, by sending
small discrete commands slowly conducing the robot away from
obstacles, than relying on a system that they did not know.
However, thanks to the training trials performed before the
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Fig. 5. Average 2-D and 3-D trajectories obtained with (a, b) Joystick and (c, d) Myo in the static setup.

experiment, users understood how shared control works and
begin to trust the system, particularly in the more challenging
control condition with the Myo. Their levels of Effort (Joystick,
Teleoperation versus improved-APF p = 0.022) and Frustration
(Myo, Teleoperation versus improved-APF p = 0.047) decrease
accordingly. In terms of Accuracy and Speed, our proposal is
perceived better than the Teleoperation, and significantly better
than APF. Generally, users are more confident on the usage of the
joystick, and this attitude makes them more confident also when
performing the teleoperation tasks. On the other hand, the Myo
Armband is less known. As a result, improved-APF is essential
to speed up the task execution while maintaining a good level
of accuracy. The NASA Performance outcome supports these
results (Joystick, APF versus improved-APF p = 0.033). Never-
theless, improved-APF significantly reduces the workload even
in a simple control condition, like when using the joystick, as
highlighted by the reduced Mental Demand required to the users
while using our framework (versus Teleoperation p = 0.023).

VI. RESULTS OBTAINED IN THE DYNAMIC SETUP

This section summarizes the outcomes obtained in the dy-
namic evaluation setup. Figs. 7 and 8 show the results of
the objective and subjective metrics, respectively, obtained by
the participants with the three control methods. To deal with
the variability introduced by random changes of the scene in

the dynamic setup, all the objective metrics for each subject are
normalized by the sum of their values in all the successful trials.

In line with the results of the evaluation in the static envi-
ronment, the proposed approach generally improved the task
performance. A significant impact of the control method is found
for the execution time (p = 0.001) and the number of direction
changes (p = 0.000). In particular, improved-APF significantly
helps the subjects decreasing the execution time with respect
to Teleoperation (p = 0.001), while no significant reduction
is found using the state-of-the-art APF approach (p = 0.097).
When in pure teleoperation, almost all the participants tend
to stop controlling the robot for fear of collisions, while the
objects are moved by the operators, increasing the task comple-
tion time. In addition, they have to manually replan the robot
trajectory to reach the desired target. On the other hand, when
assisted by a shared control system, minimal adjustments of
the robot motion are required since the collision avoidance
is autonomously handled by the robotic system, significantly
reducing the number of direction changes (Teleoperation ver-
sus APF p = 0.000, versus improved-APF p = 0.000) and the
overall user’s workload. However, due to the purely reactive
characteristic of the conventional APF, it requires more user
intervention to complete the task in case of complex objects
configurations (e.g., obstacles placed nearby the target or close to
the robotic gripper). On the other hand, the real-time generation
and selection of the escape points allow the robot to modify
in advance its trajectory to pass over the obstacles without any
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Fig. 6. Seven-point Likert scale and NASA TLX results survey for (a, b) Joystick and (c, d) Myo in the static setup. * indicates that p < 0.05; **, instead, is for
p < 0.01.

Fig. 7. Normalized average execution time, user inputs, and direction changes
obtained in the dynamic setup. Gray circles represent the average results of each
of the tested subjects. * indicates that p < 0.05; ** is for p < 0.01.

user intervention, significantly reducing the number of required
direction changes (versus APF p = 0.015) and contributing to
increasing users’ Satisfaction (versus APF p = 0.023). These
results are paralleled by the positive perception of the proposed
improved-APF by the users: they report a significant reduction
of both mental demand (versus Teleoperation p = 0.006) and
physical demand (versus Teleoperation p = 0.046), which in-
stead is not obtained with APF.

TABLE III
FAILURE RATE OBTAINED IN THE DYNAMIC SETUP

The first column depicts the total failures occurred during the experiments, while the
second column shows the corresponding failure rate.

As might be expected, the execution of the task in a dynami-
cally changing environment represents a more challenging task
with respect to the experiments in the static setup. This aspect
is highlighted by the higher number of failures. As shown in
Table III, the participants failed more than one-third of the
trials when in pure teleoperation, with a failure rate that is
double the one obtained in a static scenario. The introduction
of repulsive forces from the objects helps reducing the failures
due to obstacle collisions from 34.8% to 24.4%. Nevertheless,
also, in these experiments, the improved-APF further reduced
the failure rate to 16.3%, which may explain the significant
reduction of the users’ sense of frustration while using our
system (versus Teleoperation p = 0.019), but not with the APF
(versus Teleoperation p = 0.424).

In addition to the above results, improved-APF proves to be
overall preferred by users: in a dynamic environment, users
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Fig. 8. (a) and (b) Seven-point Likert scale and NASA TLX results survey for Myo in the dynamic setup. * indicates that p < 0.05; **, instead, is for p < 0.01.

feel more Confident with our system. (versus Teleoperation p =
0.007, versus APF p = 0.007) and require a significantly lower
Effort to complete the task (versus Teleoperation p = 0.001,
versus APF p = 0.007). We believe that the advances proposed
in this article significantly contribute to increasing the Usability
(versus Teleoperation p = 0.011, versus APF p = 0.021) of our
shared control framework with respect to both pure teleoperation
and state-of-the-art approach.

VII. CONCLUSION

In this article, we proposed a framework for real-time shared
control teleoperation that integrates the prediction of users’
intention with a collision avoidance system. The latter is an
improved version of APF that involves the dynamic generation
of attractive points around the obstacles, named escape points.
They help the robotic agent achieving the desired goal while
preventing getting stuck on local minima. The best sequence of
escape points is dynamically estimated during the teleoperation
routine by solving a constrained problem that optimizes obstacle
avoidance and target achievement. We demonstrated the good-
ness of our proposal when compared with a fully teleoperated
approach and a classical APF. In a static setup, adopted objective
metrics state that our proposal is faster and has a lower failure
rate. Moreover, users need fewer input commands to reach
intended targets as well as fewer changes of robot direction.
Although users objectively performed better in all tests when
using our system, a few of them felt little in control. In their
opinion, the robot moved as they did not expect. This aspect
can be explained by the intervention of potential fields pushing
the robot away from obstacles. In these cases, the robot move-
ments were sometimes perceived as incoherent with the user’s
command, even if they were following the optimal trajectory
to safely reach the goal. Interestingly, similar outcomes were
obtained by Javdani et al. [22]. In their work, subjects started
preferring the shared control over direct teleoperation after they
learnt and understood what the robot was doing to help them
achieving the goal. Thus, we believe that more practice using
our system and/or including a proper real-time feedback of the

robot behavior would greatly enhance the system’s usability and
user’s satisfaction. Finally, in a dynamic setup, the robotic agent
proved to adapt to environment changes and faced unexpected
interferences. Significant improvement of task performance,
reduced users’ effort, and higher satisfaction when using our
collision avoidance system in a randomly changing scenario
confirm that our approach is independent of the setup and can
be easily exploited in unknown environments. As follow-up,
we will investigate the performance of our proposal to handle
collisions with continuously moving objects (e.g., agents in
motion), which were not considered in the present experimental
setup. Moreover, we will further explore uncertainties in the
scene and human movements. In the first case, we will investigate
online replanning techniques while acting in the belief space.
Such methods are well known for partially observable task and
motion problems, as proposed by Garrett et al. [43]. In the second
case, we will exploit a human motion predictor [11].

In the current implementation and evaluation, we
considered only 2-D and 3-D translations of the robotic
device. Without loss of generality, the proposed method can
be extended to include rotations, e.g., the orientation of the
end-effector. If the user can control only the robot position,
the APF will be computed in the configuration space of the
manipulator, expanding (11) so that the forces are applied
at the robot joints through both linear and angular Jacobian
matrices [44]. If the user has control over the robot orientation,
the cost function in (1) should also consider the minimization
of the angular distance between the gripper orientation and the
goal orientation (e.g., grasping pose). We will also let the robot
choose the best grasping point while manipulating an object. To
this aim, we will provide it with a knowledge base collecting
datasets of grasping points as depicted in [45]. Finally, we
will add further generality to our manipulation routine by
considering the Riemannian motion policies [46]. Other future
works will include tests with other control interfaces, such
as BCI, and other robotic devices, such as mobile robots or
powered wheelchairs. We aim to make our framework usable
by any application in which a human has to control a robot to
complete a task.
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