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Abstract

This thesis investigates the application of Deep Reinforcement Learning to develop human-
aware task and motion planners. Human-robot applications introduce a set of criticalities
to the problem of Task and Motion Planning. Indeed, human-robot applications are non-
determinism and highly dynamic; thus, it is necessary to compute plans quickly and adapt
to an ever-changing environment. Therefore, this thesis studied the planning problem as
a sequential decision-making problem modeled as Markov Decision Process solved via Re-
inforcement Learning. Markov Decision Processes are a possible answer to the problem of
non-deterministic and dynamic environments. Indeed, on the one hand, are stochasticmod-
els, and on the other hand, rather than computing a complete plan at the beginning of each
activity, step by step, the optimal action to perform is computed based on the current status
of the environment. In particular, it is firstly investigated the task planning and the motion
planning problems separately; subsequently, the combined problem is studied.

The proposed solutions proved to be able to compute quick and effective task plans, mo-
tion plans, task and motion plans in dynamic e non-deterministic applications like human-
robot cooperation. In all the applications, it was noticed that the agent was able to identify
hazardous situations and minimize the risk, for example, in task planning by choosing the
task with lower failure probability or in motion planning by avoiding region of space with
a high probability of collision. Furthermore, it was possible to ensure safety by combining
human-aware Task andMotion Planning with current industry safety standards.
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This is your last chance. After this, there is no turning back.
You take the blue pill, the story ends, you wake up in your
bed and believe whatever you want to believe. You take the
red pill, you stay inWonderland, and I show you how deep
the rabbit-hole goes.

Matrix, Wachowski Sisters 1
Introduction

In this Chapter, the problem of Task and Motion Planning applied to Human Robot Co-
operation is introduced, taking into consideration current trends in both the industry and
the research community. A comprehensive analysis of the state of the art of Task and Mo-
tion Planning inHumanRobot Cooperation is presented, thus in next chapters only a brief
focus on specific relevant aspects will be performed.
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1.1 Motivations

In the last decade, the number of new industrial robots installed every year has more than
doubled in Europe and the Americas, while in Asia and Australia, it has more than quadru-
pled, mainly thanks to the growth of China (source: International Federation of Robotics).
However, one of the most significant limitations that still exist today to the application of
robots in many industrial contexts and other fields, is the capability of the robot to interact
safely with humans. Indeed, since a few years ago, robots were restricted to factories and
physically separated with cages from humans since it was not possible to maintain a high
level of productivity while ensuring safety for the people. In the last years, however, a new
family of robots, the Cobots (collaborative robots), has quickly risen, opening new oppor-
tunities to develop new robotic applications. Unlike standard industrial robots, Cobots are
specifically designed to enable robots and humans to work together, taking advantage of the
potentiality of each, on one side the creativity and flexibility of humans, on the other side
the efficiency and high productivity of robots. As it is shown in Figure 1.1, various levels of
collaborations between human and robot are possible, each one requiring a different level of
intrinsic safety features (i.e., sensors and algorithms internal to the robot). However, despite
the cobots, most of the human-robot application consists either in the coexistence without
physical separation but without sharing the workspace, or sequential collaboration where
humans and robots sequentially share the same workspace, not simultaneously.

Instead, to achieve effective true collaboration between humans and robots, robots must
be able to simultaneously share the same workspace with humans, work on the same parts
with humans, and act accordingly and safely to the human partner.

Such a scenario requires the robot to choose themost appropriate action/task and be able
to move accordingly to the human, which can be modeled first as a Task Planning prob-
lem and the second as a Motion Planning problem. However, the presence of the human
introduces various difficulties. First, it is a highly dynamic environment since the human
is constantly moving within the robot workspace. Second, the environment is highly non-
deterministic since it is difficult to predict human behavior since many factors must be con-
sidered. For example, humans typically perform tasks based on personal preferences rather
than in a fixed and common manner [1]. Therefore, the robot must be able to adapt to hu-
man personal preferences. Another factor that should be considered is the mutual coupling
of robots and humans when performing tasks. For example, given a set of possible tasks
that can be performed by both robot and human, which action one should perform strictly
depends on the action the other partner is currently performing or is going to perform. Sim-
ilarly, the human and robot movements are strictly coupled since the human movements
influence the robot’s one and vice versa [2]. For example, the robotmust be able to avoid col-
lision with the human, but similarly, the human tries to avoid collision with the robot and,
at the same time, when possible, tries to minimize the possible interferences with the robot.
The human can also accidentally behave more like a disturbance to the robot for multiple.
For example, the human could perform actions that partially conflict with the robot task for
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Figure 1.1: Possible levels of collaboration comparedwith the required level of safety, source:
International Federation of Robotics

personal preferences. Finally, depending on the robot’s behavior, the human could also de-
cide to change his/her current task or movement to collaborate more effectively. However,
such behavior might conflict with future planned actions by the robot. Last but not least,
human trust in the robotic partner is a critical factor to consider [3].
On top of that, Motion Planning and Task Planning cannot always be considered inde-

pendent problems. Indeed, to evaluate the optimality of an action, it must be evaluated how
it is performed and, therefore, what movement is used. Thus, Task and Motion Planning
must be studied together in what is called TaskAndMotion Plan (TAMP).When applied to
deterministic environments, TAMP is an extremely complex problem since it requires solv-
ing simultaneously both Task Planning and Motion Planning that are NP-hard problems.
The TAMPproblem in a human-robot scenario becomes even harder since all the aforemen-
tioned criticalities must be considered, and on top of that, it is also necessary that the task
and motion plan is computed quickly to avoid excessive idle time.

In conclusion, when planning actions and movements in scenarios where humans and
robots must collaborate, the robot must compute quick and flexible plans that can adapt to
sudden variations in the environment. Therefore, in this dissertation, we have decided to
study Task Planning andMotion Planning problems as Markov Decision Processes (MDP).
MDPs introduce two advantages; first, it is a mathematical framework that easily introduces
the intrinsic stochasticity of human-robot collaborative environments. Second, in standard
planning methods, the planner computes all the plans from the starting state to the goal

15



state, eventually considering human behavior and stochasticity. However, the longer the
plan is, the less likely the human will behave as predicted, and therefore, the plan will prob-
ably fail. In this case, standard planning algorithms require the computation of a new plan
that can be a time-consuming activity. Instead, in MDPs, a policy representing the opti-
mal action for each state is computed offline. During the online phase, the robotic agent
computes the optimal action for the next time step evaluating the policy, avoiding idle times
for re-planning. Finally, Reinforcement Learning (RL), and in particular, Deep Reinforce-
ment Learning (DRL), was used to solve the studied MDPs. Indeed, in the last years, DRL
had proven the capability of solving problems that before were considered almost impossi-
ble, such as the game of Go [4]. Furthermore, DRL, since it implements Neural Networks
(NN) that are considered universal function approximators, allows the use of multiple data
sources with minimum variation in the training process. For example, it is possible to repre-
sent theMDP state as images or as vectors of discrete and continuous values andmanymore
possibilities.

1.2 State of the Art

1.2.1 Task andMotion Planning

Solving high-level complexity tasks, such as assembly tasks, requires solving two types of
problems on two distinct but deeply interconnected levels. The higher level, defined as Task
Planning (TP), aims at finding the discrete sequence of actions/subtasks necessary to com-
plete the desired task. On this level, symbolic reasoning is dominant, since the constraints of
the problem are mainly logical. For example, every action is characterized by a set of precon-
ditions that must be fulfilled to perform it and by a set of effects representing the scenario’s
evolution after the action. Meanwhile, the lower level, defined as Motion Planning (MP),
consists in finding a free collision path for the robot necessary to complete the required ac-
tion/subtask, and instead, it requires geometrical reasoning. MotionPlanning andTaskPlan-
ning are connected problems, since the solution of one problem affects the solution of the
other. Let us consider a scenario where a robot must move various objects. A Task Plan-
ning action can make unfeasible a subsequent action from the Motion Planning point of
view. For example, it could place one object interfering with another object that should be
moved afterward. Vice versa, given an action with multiple Motion Planning solutions, one
solution may reduce the execution optimality of a successive action. For example, an object
could be picked with configuration robot configurations; however, one robot configuration
may require a very long movement to reach the successive object to pick while another con-
figuration may require a shorter movement.

Therefore, those two problems need to be addressed simultaneously as a single problem
that spaces over different time scales and domains. Spacing over the time domain let switch
from the entire task execution to the single action execution. Spacing over the domains al-
lows investigating both discrete actions and continuous robot paths.
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Figure 1.2: Classification of TAMP algorithms based on their features

As shown inFigure 1.2, task andMotionPlanningmethods in literature basedondifferent
categories that are:

• how the task planner and the motion planner are integrated;

• the constraints taken into consideration;

• the level of optimality they can achieve;

• how they behave in dynamic environments.

Constraints Three possible kind of constraints can be introduced in TAMP problem:
logical, geometrical and temporal. The first two are the basic requirements for a TAMPprob-
lem, indeed the logic constraints describe the symbolic problem of the Task Planning mean-
while, the geometric constraints describe the Motion Planning problem to be solved. Some
works introduce also temporal constraints [5, 6], e.g., some tasksmight need to be performed
before a certain moment (this is a very common requirement in industrial applications) or
the duration of the execution of a task is not certain. Temporal constraints are typically dealt
by introducing the Timelines task plans [6, 7] were the plan is a sequence of synchronized
temporal behaviors.
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Task planning and Motion Planning integration There are three methods to
integrate task planner andmotion planner in literature: sequencing first, satisfaction first and
interleaved. The sequencing first approach first found a sequence of actions that satisfies
the task level constraints, and subsequently checks the Motion Planning feasibility of each
action [8, 9]. Thus, in case of a collision a new task plan solution is computed, eventually
adding information or constraints from the motion planner, example of this approach are
The satisfaction first approach instead solves theTAMPproblemwith an opposite approach:
it precomputes the motion feasibility of each action, and it exploits this information to re-
duce the set of possible Task Planning solutions. This approach is extremely powerful in
static environments, it is possible to compute offline theMotion Planning solution for each
action. Indeed, the Motion Planning problem can be computationally extremely expensive
to solve, solving it offline can reduce robot idle time due to ongoing planning. An exam-
ple of this approach is Robosynth [10] which first generates a manipulation graph whose
nodes represent robot configuration and all the possible position of the object that can be
manipulated. Subsequently, those nodes are connected by arches corresponding to feasible
motion plans. Finally, the manipulation graph combined with a semantic description of the
desired task is used by the Satisfiability Modulo Theories (SMT) to find a feasible task and
motion plan. The same approach is further expanded in [11] introducing policies to deal
with dynamic environments. Finally, the interleaved integration uses the motion planner
as a subroutine of the task planner, therefore the motion level feasibility of each task is ver-
ified only when the task is evaluated as part of the candidate solution. In [12] the authors
proposes a modification of the Planning Domain Definition Language (PDDL) [13] to in-
troduce as semantic attachment to evaluate motion feasibility during the Task Planning. In
various works, Task Planning is addressed as a tree search problem where Motion Planning
is used as an instrument to prune the tree that otherwise might be extremely big for example
as in [14].

Optimality Optimality can be achieved on different levels: action, goal and robot tra-
jectory. Action level optimization aims at finding the sequence of actions that minimize a
desired cost function based only on symbolic reasoning. Goal optimization instead aims at
achieving the optimal execution of a task introducing geometrical reasoning. For example,
let’s consider the action of picking a blue box while multiple blue boxes are available, goal
optimization aims at finding the best blue box to pick. Finally, even the robot trajectory can
be optimized. For example, the most convenient blue box should be picked with the most
efficient robotic trajectory. Typically, the level of optimality the task and motion planner
can achieve is a trade-off with the time available to compute the overall plan. However, var-
ious example of Task andMotion Planner that optimize both actions, goals and trajectories
have been developed as [15, 16] In dynamic environments, where it is necessary to compute
quickly the plan, feasibility is typically preferred over optimality.
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Execution in dynamic environment The deployment of task and motion planners
in dynamic environments introduce the necessity to develop plans that can deal with chang-
ing environments or uncertainty due to the presence of stochastic processes (e.g., a task
might have a probability of failing or there is another agent that does not behave determin-
istically). In literature, various approaches can be found, the most simple is based on online
re-planning of all the task and motion plan when unforeseen events occur. However, this
approach is very little efficient in complex environments since it would cause excessive robot
idle time. On the other hand, uncertainty can be efficiently dealt either developing contin-
gency strategies [17, 18, 19, 20] or with online geometrical reasoning. Finally, in dynamic en-
vironments, also the action duration is likely not to be deterministic, and it raises a challenge
when TAMP is applied to a scheduling problem. In those scenarios, a common approach is
based on the introduction of Timelines [21], which can effectively describe the duration of
the actions composing a plan.

1.2.2 Task andMotion Planning in Human Robot applications

An example of TAMP in dynamic environments concerning human-robot applications is
detailed in [6]. Such scenario introduces other difficulties in addition to those mentioned in
the previous sections. Indeed, the human introduces variability at both Task Planning and
MotionPlanning levels. On theTaskPlanning level, the humanmight perform the same task
differently based on, for example, personal preferences or the current action performed by
the robot. Thus, a task and motion plan previously computed may become unfeasible due
to unexpected human actions. On the Motion Planning level, it is well known that robot
motion affects human motion in human-robot shared workspaces [3]. Furthermore, the
human movements are likely to affect the robot time execution of a required action. There-
fore, a task and motion planner needs to be able to adapt to the human operator on both
Task Planning and Motion Planning levels during the task execution. Therefore, TAMP
in human-robot applications is tackled by introducing human-aware task planners and mo-
tion planners in the systems mentioned above, such as in [7, 22, 17]. In [7] Task Planning
is handled by a centralized intelligence that computes and optimizes order, scheduling, and
assignment of tasks between human and robot, taking into account temporal constraints
and duration variability. In [23] task and Motion Planning is based on identifying of both
human trajectories and human task plans. Once they are both inferred, the most effective
robotic plan is chosen among a dataset, and the next goal position is sent to the motion
planner that will generate safe robot trajectories based on the predicted human trajectory.
Few existing works address the problem of TAMP in HRC scenarios, since it is already an
extremely challenging problem without the presence of the human. Most of them usually
study the two separated problems. Thus, in Sections 1.2.3 and 1.2.4 the principal Motion
Planning and Task Planning methods applied to HRCwill be detailed.
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1.2.3 Motion Planning in Human Robot Cooperation

In literature several approaches exist to develop human awaremotion planners. They can be
divided into 3 categories:

• velocity scaling;

• reactive;

• predictive.

Velocity scaling methods first compute the motion plan not taking into consideration
the current human position. To avoid collisions, they track the human position, and scale
the trajectory velocity maintaining the geometrical path unchanged. Collision avoidance is
achieved by stopping the robot when a collision is imminent; however, in many cases, it is
only guaranteed that collisions can happen when the robot is at hold. Current industrial
safety standards follow this principle, such as the Speed and Separation Monitoring (SSM)
or the Power and Force Limiting (PFL) from the ISOTS 15066. In literature, various works
propose different scaling methods. In [24], a combination of SSM and PFL is proposed to
minimize the robot idle time. In [25], the Cartesian trajectory scaling is based on a Model
Predictive Control that maximizes the distance between the robot and the human by taking
advantage of the robot redundancy. In [26], velocity scaling is combined with the introduc-
tion of fail-safe maneuvers that allows the robot to stop, avoiding the workspace reachable
by the human in the successive instants.

Reactive methods usually deform the current motion plan based on the current human
position, typically introducing repulsive forces to avoid dynamic and fixed obstacles. One
of the first noticeable methods is the Artificial Potential Fields (APF) [27], which generates
an attractive potential field toward the desired goal and a set of repulsive potential fields for
the obstacles. Thanks to its simplicity, APF is still very popular in the fields of mobile robots
navigation [28] and unmanned aerial vehicles (UAV) [29]; however, it is not very commonly
applied to robotic manipulators. Indeed, the main drawback of APF is that it can easily fall
into local minima. Therefore, a very complex space like the joint space of a manipulator is
not particularly suited. In [30], the authors propose the Elastic Strips framework, which
performs collision avoidance by defining an elastic tunnel of free space around the candidate
starting solution computed by the preferred motion planner. The candidate solution is sub-
sequently deformed within the elastic tunnel based on a repulsive force to avoid collisions.
In [31], the author presents a newmethod for collision avoidance in dynamic environments
for manipulators based on projecting repulsive velocities in the null space of the end effec-
tor. It also imposes artificial forces on the control points of the robot links and translates
them into joint velocity constraints. Finally, in [32] a library of Movement Primitive is im-
plemented and each movement primitive describes the trajectory to perform a desired task.
Movement primitives are first learned offline and thenmodified online via repulsive forces to
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avoid collisions with obstacles, while Closed Loop Inverse Kinematics [33] is used to avoid
self-collisions.

Predictive motion planners are based on the predicting the workspace occupied by the
human in the future. The prediction is based on current human motion and/or the task
the human is performing. In [34], a library of human arms movement is developed offline
by means of Gaussian Mixture Models. Online early classification of the current human
movement, i.e., classification from unfinished trajectories, is used to predict the occupied
workspace. Therefore, a new plan is computed if the current robot motion plan is predicted
to be in collision with the human. A similar approach is used in [22], where short-term hu-
manmotions are regressed using sparse pseudo-inputGaussian process, then are used online
to compute the optimal robot trajectory. In [35], in a scenario of autonomous driving in a
crowd, a Partially Observable Markov Decision Process (POMDP) is used to predict the hu-
man goal and, therefore, to predict the human trajectory. Subsequently, a modified version
of A* is used to compute the car trajectory while avoiding the human based on the predicted
trajectory.

After the recent breakthroughs in the reinforcement learning community [36, 37], Deep
Reinforcement Learning was applied to solve Motion Planning problems in dynamic envi-
ronments. One of the most successful scenarios was navigation of mobile robots among
crowds, as shown in [38, 39, 40]. It was also applied for Motion Planning of manipulators
in dynamic environments in [41, 42]. The peculiarity of a DRL based motion planner is
that the output is not a plan composed by a list of poses the robot has to reach but only the
next action, for example, joints speed or joints acceleration.

1.2.4 Task Planning in Human Robot Cooperation

Typically, Task Planning in human-robot applications is formulated as an MDP and solved
as a reinforcement learning problem. In [1], cross-training is exploited, a technique used to
train human teams where the members iteratively switch roles between human and robot,
combined with reinforcement learning to increase the overall human-robot team perfor-
mance. In [22], instead, Q-Learning [43] is implemented; the policy is trained in a simulated
environment combined with a human-aware motion planner and a probabilistic model de-
scribing the preferred sequence of human actions. Furthermore, a specific reward function
is designed tominimize execution delays due to collision avoidance andmaximize the proba-
bility that the robot performs a task fromwhich the human can benefit. In [44], the authors
formulate the problem as a Multi Agent Reinforcement Learning problem solved with Q-
learning where one agent is the robot, and the other is the human. In detail, a Q-value func-
tion is learned for each agent; however, the human policy is trained starting from the human
preferred action sequence. Subsequently, the human develops a policy that partially adapts
to the robot and partially preserves the original preferred action sequence.

Other works model the collaborative task as a POMPD where the current human inten-
tion is modelled as a hidden latent variable of the state of the belief space [45, 46]. How-
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ever, computing the solution of POMPD is typically extremely computationally expensive.
Therefore, it is a common approach to use approximated solutions.

Finally, a different approach is introduced to consider the uncertainty of the execution
time of all the tasks. Indeed, MDP-based methods can only introduce the execution time
uncertainty in the reward function; therefore, balancing all the possible components of the
reward functions is challenging. In [6] timelines from [21] are introduced combining Task
Planning with scheduling.
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A good plan, violently executed now, is better than a perfect
plan next week.

George Patton

2
Reinforcement Learning

In this Chapter, the theoretical background of Reinforcement Learning is provided. First,
the basic fundamental concepts are provided, and a simple taxonomy of Reinforcement
Learning is described. Subsequently, themost influential model-free reinforcement learning
techniques like Temporal-Difference Learning, SARSA, or Q-learning are described. Those
techniques are the foundations of the current state-of-the-art model-free algorithm. Finally,
theDeepReinforcementLearning algorithm implemented in this thesiswill be described. In
particular, it will be studied Deep QNetworks with its extensions and Deterministic Policy
Gradient with its extension Twin Delayed Deep Deterministic Policy Gradients.
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2.1 Key Concepts

Reinforcement Learning (RL) is one of the main branches of machine learning alongside
Supervised Learning and Unsupervised Learning, Figure 2.1. Given a task to solve, the ob-
jective of Reinforcement Learning is to find the optimal strategy (the policy) based on a feed-
back signal (the reward) that allows the agent to solve the required task. Differently from
the other Machine Learning class of methods, it does not rely on a dataset of labeled exam-
ples like in Supervised Learning or unlabeled data like in Unsupervised Learning. Instead, it
must explore the environment to collect experience in a trial and error fashion. In particular,
Reinforcement Learning is based on a discrete time interaction between the agent and the
surrounding environment as shown in Figure 2.2; the agent at a timestep t performs an ac-
tion at on the environment based on the current state st, at the next timestep t+1 it receives
a reward rt+1, the feedback on the effects of the performed action on the environment, and
the new current state st+1. This framework is mathematically described as a Markov Deci-
sion Process (MDP). AMarkov Decision Process is a discrete-time stochastic control model
used to model decision-making problems in stochastic environments where the outcomes
are partially or totally dependent on the actions of a decision-making agent. An MDP is
defined as the tuple (S,A, P, r).

• S is the set of possible states that fully describe the environment.

• A is the set of possible actions the agent can perform in the environment.

• P , called transition distribution, is the distribution over the next state st+1 from the
current state st and performing an action at, therefore we canwriteP (st+1, st, at) =

Figure 2.1: Machine Learnings and its branches
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Figure 2.2: Reinforcement Learning scheme

Pr(st+1|st, at). In otherwords, it describes the dynamic of the environment that can
be stochastic or deterministic.

• r is the reward received by the agent at every transition given the current state st, the
next state st+1 and the performed action at, therefore r = R(st, at, st+1)whereR is
the designed reward function.

AnMDP has also theMarkov property, therefore the transition probability depends only
on the current state and not the history.

P(st+1|st) = P(st+1|s1, . . . , st) (2.1)

We define the trajectory τ as the sequence of states and actions

τ = (s0, a0, s1, a1, . . . ) (2.2)

and we define the cumulated discounted reward,

R(τ) =
∞∑
t=0

γtrt , (2.3)

We define the policyπ as the function thatmaps from the state domain to the action domain.
The objective is to find an optimal policy π∗ that maximize the expected reward

π∗ = argmax J(π) = argmax E
τ∼π

[R(τ)] (2.4)

25



The major components of a reinforcement learning agent are the Policy, the Value function
and theModel.

The Policy is the agent behaviour and maps from the current state st to the action space.
It can be deterministic π(at|st) = at or it can be stochastic π(st) = P(at|st).

The Value function describes how good a state or a state-action pair is, by means of the
expected cumulated reward. In particular, there are four main value functions:

• On Policy Value Function: It describes the expected cumulated reward given a state st
and if the agent acts according to the policy π.

V π(st) = E
τ∼π

[R(τ)|s0 = st] (2.5)

• On Policy Action-Value Function: It describes the expected cumulated reward given
the pair state st and the action at, and if the agent acts according to the policy π.

Qπ(st, at) = E
τ∼π

[R(τ)|s0 = st, a0 = at] (2.6)

• Optimal Value Function: It describes the expected cumulated reward given a state st
and if the policy π and the agent acts according to the optimal policy π∗ in the envi-
ronment.

V ∗(st) = E
τ∼π∗

[R(τ)|s0 = st] (2.7)

• Optimal Action-Value Function: It describes the expected cumulated reward given the
pair state st and the action at, and if the agent acts according to the optimal policy π∗

in the environment.

Q∗(st, at) = E
τ∼π∗

[R(τ)|s0 = st, a0 = at] (2.8)

The value and the action value functions have the same values when the same policy is
applied, therefore:

V π(st) = Qπ(st, π(st))

V ∗(st) = Q∗(st, π
∗(st))

(2.9)

Given the optimal action-value function it is possible to compute the optimal action a∗(s)
as:

a∗(st) = arg max
a

(Q∗(st, a)) (2.10)

All the aforementionedvalue functions canbe re-writtenbasedon theBellman equation [47].

V π(st) = E
τ∼π

st+1∼P

[r(st, at) + γV π(st+1)] (2.11)
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Figure 2.3: Classification of reinforcement learning algorithms

Qπ(st, at) = E
st+1∼P

[r(st, at) + γ E
at+1∼π

Qπ(st+1, at+1)]] , (2.12)

V ∗(st) = max
a

E
st+1∼P

[r(st, at) + γV ∗(st+1)] , (2.13)

Q∗(st, at) = max
a

E
st+1∼P

[r(st, at) + γmax
at+1

Q∗(st+1, at+1)] , (2.14)

where P is a shorthand for P(·|st, at)).
Finally, the model describes the environment, including the dynamic, i.e., given a state

and an action, how it will evolve, and the reward after each transition. The model can be
either learned or given at the beginning.

2.2 Taxonomy

In the literature, an enormous quantity of reinforcement learning methods have been devel-
oped, and they canbe classifiedbasedonmultiple characteristics as shown inFig. 2.3. Aclassi-
fication canbemadebetween those algorithms that use amodel that canbe learnedor is given
(Model-Based) and those algorithms that do not use a model of the environment (Model-
Free). Model-based algorithms use the model of the environment to predict future steps.
Typically, once themodel is learned or given, they aremuchmore sample efficient. However,
the introduction of a model has various criticalities. First, in some scenario, a model cannot
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be computed analytically, and therefore it must be learned. However, learning a model capa-
ble of representing the environment correctly can be an extremely time-consuming activity.
Second, the policy may learn to take advantage of imperfections or loopholes in the model.
Therefore, it can be troublesome to transfer the policy from a simulated environment used
in the training phase to a real scenario.

Another classification can bemade on the basis of how they compute the optimal actions.
On the one hand, we have algorithms that use an implicit policy that is defined by a learned
value function (Value-based). On the other hand, we have algorithms that directly learn an
explicit policy (Policy-based). In between these classes, we have algorithms that learn both a
value function and an explicit policy (Actor-Critic).

Algorithms can also be classified based on whether they learn from experience collected
with the current policy (On-Policy) or they learn from experience not collected with the cur-
rent policy (Off-Policy) but using a so-called behavior-policy. Off-policy algorithms have the
advantage of achieving the optimal policy, while on-policy algorithms achieve sub-optimal
policies since the policymust alsomaintain an exploratory behavior. Furthermore, off-policy
algorithms are generally more sample efficient compared to on-policy algorithms.

In the following sections, for the sake of brevity, we will focus only on the model-free
algorithms and in particular only on a family of algorithms calledTemporal Difference, since
only this family of algorithms has been used in this thesis. Model-free algorithms, mainly
include 2 families of algorithms: Monte Carlo andTemporal Differencemethods. The main
difference between those two families lies on the frequency of update of the value functions
and policy. Indeed, Monte Carlo methods updates the policy at the end of each episode,
while Temporal difference methods update the value function and the policy in a step-by-
step fashion.

2.3 Temporal-Difference methods

2.3.1 Temporal Difference Learning

Oneof themost influential techniqueswithin themodel-free algorithms isTemporal-Difference
Learning (TD) [48]. In particular, it introduces the possibility of learning from incomplete
episodes, thanks to bootstrapping, differently from Monte Carlo methods (MC), where it
is required to complete the episode before updating the value function and the policy. In
Monte Carlo methods, first, an episode is completed, all the transitions are stored, and sub-
sequently, the following update rule to all the steps is implemented:

V (st)← V (st) + α[Gt − V (st)] , (2.15)

where Gt is the actual cumulated return following the state st and α is a positive constant.
Therefore, in order to know the exact value ofGt, it is necessary to wait for the completion
of the episode.
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In Temporal-Difference instead, the cumulated return is estimated thanks to the Value
function (i.e., bootstrapping), therefore:

V (st)← V (st) + α[rt+1 + γV (st+1)− V (st)] . (2.16)

We define y as the TD-target, and δ as the TD-error.

y = rt + γV (st+1) , (2.17)

δ = rt + γV (st+1)− V (st) . (2.18)

This method is called TD(0), since it updates the value function based only on the current
reward and looks 0 steps ahead. It is a special case of more general n-step TD where n steps
are used as described in the following equation.

V (st)← V (st) + α[rt+1 + γrt+2 + γ2rt+3 + · · ·+ γn−1rt+n + γnV (st+n)] (2.19)

2.3.2 On-policy TDControl

SARSA [49] is one of the most influential applications of temporal difference to the con-
trol problem, and it applies TD(0) to learn the Q-value function in an on-policy fashion. In
particular, the update rule is:

Q(st, at)← Q(st, at) + α[rt+1 + γQ(st+1, at+1)−Q(st, at)] , (2.20)

and the control algorithm is shown in Algorithm 2.1. As it can be noticed, the update is

Algorithm 2.1 SARSA
InitializeQ(s, a)∀ s ∈ S , ∀ a ∈ A(s) andQ(terminal state, a) = 0
repeat

Initialize st
Choose an action at derived fromQ(st, a) (e.g. ϵ-greedy)
repeat for each step episode

Take action at and observe st+1 and rt+1

Choose at+1 derived fromQ(st+1, a) (e.g. ϵ-greedy)
Q(st, at)← Q(st, at) + α[rt+1 + γQ(st+1, at+1)−Q(st, at)]
st ← st+1 and at ← at+1

until st is terminal
untilConvergence is reached

performed at each time-step based on the quintuple of events (st, at, rt+1, st+1, at+1) that
gives the name to the algorithm. Similarly to TD prediction, it is possible to extend SARSA
to n-step SARSA and SARSA(λ) [50].
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2.3.3 Q-Learning

One of the major breakthrough in reinforcement learning was the implementation of TD
control in an off-policy fashion [51] introducing the following update rule:

Q(st, at)← Q(st, at) + α[rt+1 + γmax
a

Q(st+1, a)−Q(st, at)] . (2.21)

As it can be noticed the update rule in the Q-learning (2.21) differs from the update rule in
SARSA (Equation 2.20) on how the future action for the update is computed. In SARSA,
at+1 is computed based on the same behavioral policy used to explore (e.g. ϵ-greedy) mean-
while in Q-Learning the target policy is used π = max

a
Q(st+1, a).

Algorithm 2.2Q-Learning
InitializeQ(s, a)∀ s ∈ S , ∀ a ∈ A(s) andQ(terminal state, a) = 0
repeat

Initialize st
repeat for each step episode

Choose an action at derived fromQ(st, a) (e.g. ϵ-greedy)
Take action at and observe st+1 and rt+1

Q(st, at)← Q(st, at) + α[rt+1 + γmax
a

Q(st+1, a)−Q(st, at)]
st ← st+1

until st is terminal
untilConvergence is reached

Similarly to SARSAevenQ-Learning canbe extended tomultistep and to eligibility traces.

2.3.4 Double Q-Learning

Algorithms like SARSA andQ-learning are affected by an overestimation of the action-value
function, also known as themaximization bias, that caused by the target policy is obtained
via maximization (2.21). For example, in Q-learning, the policy is greedy with respect to the
action-value function, which is defined with a max operation. Therefore, a maximum over-
estimated value is used implicitly as an estimate of the maximum value, which can lead to a
significantpositive bias. Let’s consider a single stateswheremany actions canbe takenwhose
true value q(s, a) are zero, but the estimated valueQ(s, a), that is uncertain, is some distri-
bution with positive and negative values. The maximum of the true valuesmaxa q(s, a), is
zero, meanwhile, the maximum of the estimated values, maxa Q(s, a), is a positive value,
therefore a positive bias is present.

Double Q-learning [52] proposes to learn two independent estimators of the true action
value function called,Q1(s, a) andQ2(s, a). Then, in order to estimate the value function,
the maximizing action is computed with one estimatorA∗ = argmaxa Q1(s, a)while the
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estimation is computed with the remaining estimator using the maximizing action from the
first estimatorQ2(s, A

∗). The update rule for Double Q-learning became:

Q1(st, at)← Q1(st, at)+α[rt+1+γ Q2(st+1, argmax
a

Q1(st, a))−Q1(st, at)] . (2.22)

The pseudocode of Double Q-learning is shown in Algorithm 2.3

Algorithm 2.3Double Q-Learning
InitializeQ1(s, a) andQ2(s, a)∀ s ∈ S , ∀ a ∈ A(s) andQ1(terminal state, a) = 0
andQ2(terminal state, a) = 0
repeat

Initialize st
repeat for each step episode

Choose an action at derived fromQ1 andQ2 (e.g. ϵ-greedy inQ1 +Q2 )
Take action at and observe st+1 and rt+1

With 0.5 probability:
Q1(st, at) ← Q1(st, at) + α[rt+1 + γ Q2(st+1, argmax

a
Q1(st, a)) −

Q1(st, at)]
else

Q2(st, at) ← Q2(st, at) + α[rt+1 + γ Q1(st+1, argmax
a

Q2(st, a)) −

Q2(st, at)]
st ← st+1

until st is terminal
untilConvergence is reached

2.4 Function Approximations andNeural Networks

The reinforcement learning algorithms presented in Section 2.3.2 and Section 2.3.3 are also
called tabular methods since the value functions and the policy functions can be easily rep-
resented via tables. However, in most of the scenarios, the sets of states and actions are so
large that representing them via tables and array is no longer practical, and when states and
actions are continuous, tables cannot be used. For such reasons, Function Approximators
are introduced to approximate the value functions and the policy. In particular 2 great fam-
ilies of function approximators Linear and Non-Linear. Linear methods approximate the
function by the inner product between a vector of weightsw and a vector of features x.

v(s) ∼= v̂(s) = wTx(s) =
d∑

i=1

wixi(s) (2.23)

31



Figure 2.4: Scheme of a simple Neural Network

The feature vector is a vector composed by a set of basis functions chosen based on the prop-
erties of the studied problem, notable features polynomial functions, radial basis functions
and Fourier basis.

Among the various non-linear function approximation methods, the most commonly
used in RL are the Neural Networks (NNs). NNs are a computational model represented
as a directed weighted graphwhose units are calledNeurons arranged in layers firstly studied
in [53]. As shown in Figure 2.4,NNs can be divided into three parts, the first one is the input
layer (themost left one), then there is the output layer (themost right one), and finally, there
are all the hidden layers between the input and the output layer.

Each neuron is connected to some or all neurons of the subsequent layer that define some
weighting of the unit’s output at the start of the line (from left), to the unit’s input at the
end of the line. The most simple NN architecture is called FeedForward Neural Network,
where each neuron is connected to all neurons of the successive layer.

In Figure 2.5 it is shown the schematics of the calculation that takes place in each neuron
of the NN. First, a linear transformation and affine transformation, described by a set of
weightsW and a bias unit b, are applied to a vector of inputs x.

vk =
n∑

j=1

wkjxj + bk (2.24)

Subsequently, a non-linear activation functionφ(·) is applied. Therefore, the output of each
neuron is:

yk = φ(vk) . (2.25)
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Figure 2.5: Schematic representation of the calculations that take place in a neural network
neuron

The activation function denoted by ϕ(v) defines the output of a neuron in terms of the
induced local field v. Activation function are typically non-linear since it is proven that linear
activation function allow computing non-trivial problems. Some of the most commonly
used activation functions are listed in Table 2.1

2.5 Deep Q-Learning and its extensions

The first algorithm to efficiently implement Neural Networks and in particular, Deep Neu-
ral Network for function approximation, was Deep Q-Learning [36], where an agent was
trained to play 7 different Atari games using as input only the raw Atari frames. In particu-
lar, Deep Q-Learning is mainly based on Q-Learning [51], and the main contributions are
the introductionofDNNfor approximating the action-value function and the introduction
of the Experience Replay Memory for training the DNN.

First, the update rule based on the Bellman equation used as an iterative update is defined
as:

Qi+1(st, at) = E[rt+1 + γmax
a

Qi(st+1, a)|st, at] . (2.26)

Subsequently, the action-value function is approximated with neural networks described by
the weights θ,Q(s, a; θ) and called Q-network. The Q-network is trained by minimizing a
sequence of loss functions Li(θi) that changes at each iteration i,

Li(θi) = E
s,a∼ρ(·)

[
(yi −Q (s, a; θi))

2] , (2.27)
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Table 2.1: List of commonly used activation functions

Name Function

Logistic (Sigmoid) f =
1

1 + e−x

Hyperbolic tangent (Tanh) f =
e2x − 1

e2x + 1

Rectified Linear Unit (ReLU) f =

{
0 for x < 0

x for x ≥ 0

Leaky ReLU f =

{
0.01x for x < 0

x for x ≥ 0

Softmax f =
exi∑K
k=1 e

xk

for i = 1, . . . , K

where yi = E[r + γmaxa Q(st+1, a; θi−1)|st, at] is the target for the i-th iteration and
ρ(s, a) is a probability distribution over sequences s and actions a that we refer to as the
behaviour distribution (for example an ϵ-greedy strategy). Differentiating the loss function
with respect to the weights, we arrive at the following gradient:

∇θiLi(θi) = E
s,a∼ρ(·)

[(
r + γmax

a
Q(st+1, a; θi−1)−Q(st, at; θi)

)
∇θiQ(st, at; θi)

]
.

(2.28)
Rather than computing the full expectations in the above gradient, it is often computation-
ally convenient to optimize the loss function by stochastic gradient descent.

In contrast to approaches in literature likeTD-Gammon [54] that are defined online since
the update is performedonly on the last transition, the authors used a technique called experi-
ence replay [55]. In particular, the agent experience at each time-step, et = (st, at, rt, st+1),
in a datasetD with sizeN ,D = (e0, . . . , eN), also called replay memory. Subsequently, at
each training step, a mini-batch of experience is sampled from the replay memory and used
to update the Q-function as explained in (2.28). This approach has several advantages over
standard online Q-learning. First is possible to sample the same experience multiple times
and update the weights multiple times, allowing for greater sample efficiency. Second, learn-
ing directly from consecutive samples is inefficient due to the strong correlations between
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the samples; randomizing the samples breaks these correlations and, therefore, reduces the
updates’ variance. Finally, when learning on-policy, the current parameters determine the
next data sample that the parameters are trained on; therefore it can easily fall in local min-
ima. Using experience replay memory, the behavior distribution is averaged over many of
its previous states, smoothing out the learning and avoiding oscillations or divergence in the
parameters.

In Algorithm 2.4 the complete pseudocode is shown.

Algorithm 2.4Deep Q-Learning with Experience Replay
Initialize Replay Memory with sizeD
InitializeQwith random weights θ
for episode= 1, . . . ,M

Initialize s1
for t = 1, . . . , T

With probability ϵ select at random action otherwise at = max
a

Q(st, a; θ)

Take action at and observe st+1 and rt+1

Store transition (st, at, rt+1, st+1) inD
Sample randommini-batch of transition fromD

Set yj =

{
rj if sj is terminal
rj + γmax

a
Q(sj, a; θ) if sj is terminal

Perform gradient descent step on (yi −Q(sj))
2 as shown in (2.28)

end for
end for

After the introduction of Deep Q-Learning, various extensions have been proposed to
increase performances. In the following sections, only the extension used in this paper will
be analyzed.

2.5.1 Double Deep QNetworks

Similarly to Q-learning, DQN is as well affected by the maximization bias detailed in Sec-
tion 2.3.4; indeed, the same maximization operation is performed. Therefore, in Double
DeepQ-Networks [56] a similar approach to Double Q-learning is applied. In particular, as
inDoubleQ-learning, two estimators of theQ-function are used that are represented by two
networks, the online network, described by the weights θ, to evaluate the greedy policy and
target network, described by the weights θ−, to estimate its value. InDoubleQ-learning, the
two Q functions were updated evenly and alternately used to evaluate the greedy policy and
estimate the value function. Instead, inDoubleDQN, the two networks have fixed roles, the
online network evaluates the greedy policy, and the target network estimates the value func-
tion. The update rule remains the same as DQN, with the only difference of introducing
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the target network in the computation of the target Yt

Yt ≡ rt+1 +Q(st+1, argmax
a

Q(st+1, a; θt), θ
−
t ) . (2.29)

Finally, the target networkweights areperiodicallyupdatedby copying theQ-networkweights.

2.5.2 Prioritized Experience Replay

In DQN, the experience is sampled uniformly from the replay memory; however, it is intu-
itive that some experience is more relevant than others, and therefore it should be sampled
more frequently. The Prioritized Experience Replay (PER) [57] introduces a technique to
increase the probability of sampling relevant transitions stored in the memory. In particular,
the transitions are prioritized based on the TD-error δi, and the prioritization is defined as,

pi = |δi|+ ϵ , (2.30)

where ϵ is a small positive constant to avoid that if theTD-error of a transition is equal to zero,
it will not be sampled again. The probability of sampling the i-th transition is computed as

P (i) =
pαi∑
k p

α
k

, (2.31)

whereα is the prioritizing factor, ifα = 0 the sampling is uniform. However, the prioritized
replay introduces bias because it changes the sampling distribution, and therefore changes
the solution that the estimates will converge. Therefore, importance sampling weights wi

are introduced to correct this bias.

wi =

(
1

N
· 1

P (i)

)β

(2.32)

The bias is fully compensated if β = 1; however, it was noticed that in the first stages of
the training is beneficial to have a bias. Therefore, typically β is linearly annealed from its
starting value to 1.

2.5.3 DuelingNetworks

Dueling networks were introduced in [58] to optimize the architecture of the NN used for
estimating the action-value function by explicitly separating the representation of state val-
ues and action advantages. Indeed, it was noticed that in some scenarios where actions do
not particularly affect the environment, it is more relevant to know which states are more
valuable rather than knowing the effect of an action on each state.

Dueling networks, as shown in Figure 2.6, consist in a NN that at the end splits into two
streams, one for the estimationof the value functionV (s) and the other for the estimationof
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Figure 2.6: Dueling architecture

advantage functionA(s, a) which are used to estimate the action-valueQ(s, a). We define
the weights of the common layers as θ, the weights of the layers of the advantage function
α, and the weights of the layers of the value function β. Starting from the definition of the
advantage functionA:

A(s, a) = Q(s, a)− V (s) , (2.33)

theoretically we can computeQ(s, a) as:

Q(s, a; θ, α, β) = V (s; θ, β) + A(s, a; θ, α) . (2.34)

However, it is empirically proven to have poor performances. Indeed, given a unique value
ofQ, any combination of V andAwhose sum is equal toQ is valid. Therefore, it is chosen
to impose the stream of the advantage function to have the average of the output for each
action equal to zero andQ(s, a) can be estimated as

Q(s, a; θ, α, β) = V (s; θ, β) +

(
A(s, a; θ, α)− 1

|A|
∑
a′∈A

A(s, a′; θ, α)

)
(2.35)

It is important to note that Equation 2.35 is part of the network representing theQ-function
therefore it can be trained as a standard Q-network. As the dueling architecture shares the
same input-output interfacewith standardQnetworks,we can recycle all learning algorithms
with Q networks (e.g., DDQN and SARSA) to train the dueling architecture.

2.6 ReinforcementLearningwithContinuousActionsandthePolicyGra-
dient Theorem

The algorithms described in the previous sections are value-based since the policy is defined
implicitly based on the action-value function through the max operator applied to the value
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function. Finding the maximum of the value function with discrete action states is straight-
forward, it requires evaluating the function for each possible action and picking the optimal
action. Finding the maximum of the value function with discrete action states is straight-
forward. It requires evaluating the value function for each possible action and picking the
optimal. This approach is no longer viable in continuous actions domains since an optimiza-
tion algorithm would be required to find the optimal action, which would be highly time-
consuming. Therefore, in those scenarios, the policy is defined as a differentiable function
with weights θ. The weights are updated based on the gradient of a performance measure J .

θt+1 = θ + α∇θJ(θ) (2.36)

However, multiple performance measures are available to evaluate the policy, such as:

• the start value in episodic environment, J1(θ) = V πθ(s1) = Eπθ
[v1] ,

• the average value in continuing environment, JavV (θ) =
∑
s

dπθ(s)V πθ(s) ,

• the average reward per timestep, JavR(θ) =
∑
s

dπθ(s)
∑
a

πθ(a|s)Ra
s ,

where dπθ(s) is the stationary distribution of the Markov chain under the policy πθ.
The Policy Gradient Theorem [59] gives an analytical solution for any performance mea-

sure.

Theorem 1 (Policy Gradient Theorem) For any differentiable policy πθ(a|s), for any pol-
icy objective function J = J1, JavV , JavR the policy gradient is

∇θJ(θ) ∝
∑
s

dπθ(s)
∑
a

qπ(s, a)∇θπθ(a|s)

2.7 Deterministic Policy Gradient and its extensions

The policy gradient theorem analytically defines the gradient in the case of stochastic policies.
In [60] it is proven that the policy gradient can also be obtained for any differentiable deter-
ministic policy under the same assumptions of the stochastic policy gradient. In particular,
it is also proven that the deterministic policy gradient is a particular case of the stochastic
policy gradient when the variance σ → 0. Therefore, we define the performance measure
the expected discounted reward,

J(µθ) = E
s∼ρµ

[r(s, µθ)] , (2.37)

whereρµ(s) is thediscounted state distribution andµθ is thedeterministic policyparametrized
as with the parameter vector θ. Then the Deterministic Policy Gradient Theorem states:
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Theorem 2 (Deterministic Policy Gradient Theorem) if ∇θµθ(s) and ∇aQ
µ(s, a) ex-

ist then deterministic policy gradient exist and is:

∇θJ(µθ) = E
s∼ρµ

[∇θµθ(s)∇aQ
µ(s, a)|aµθ(s)

]

Grounding on the Deterministic Policy Gradient Theorem, the off-policy actor-critic al-
gorithm calledDeterministic Policy Gradient (DPG)was developed. In particular, the critic,
the action-value functionQ, defined by the parameters θQ is learned viaQ-learning and used
to update the policy based on the Deterministic Policy Gradient Theorem. Thus, we can
rewrite the action-value function in the case of deterministic policies as

Qµ(st, at) = E [rt(st, at) + γ [Qµ(st+1, µ(st+1))]] , (2.38)

and the loss function to minimize is:

L(θQ) = E
[(
Qµ(st, at|θQ)− yt

)2]
yt = r(st, at) + γQµ(st+1, µ(st+1|θQ))

. (2.39)

2.7.1 Deep Deterministic Policy Gradient

DeepDeterministic PolicyGradient [61] (DDPG), similarly toDQN,was the first successful
implementation of nonlinear function approximation, via NN, applied to DPG.

Similar to the case of Q-learning and DQN, it is not possible to directly use NNs as func-
tion approximators because the learning process tends to be unstable. Thus, various modifi-
cations inspired by thework ofDQNare implemented, in particular replay buffer and target
network. Replay buffer is used to store the transitions (st, at, rt, st+1) and it used to sample
mini-batches and perform stochastic gradient descent on Equation 2.39, and they become:

L =
1

N

∑
i

(
Q(si, ai|θQ)− yi

)2 (2.40)

∇θµJ ≈
1

N

∑
i

∇aQ(s, a|θQ)|s=st,a=µ(st)∇θµµ(s|θµ)|s=st (2.41)

Target networks are introduced to increase stability; indeed, one of the main problems is
that the network updated Q(s, a|θQ) is also used to compute the target value. Thus simi-
larly to Double DQN, a copy of the actor and critic networks, Q′(s, a|θQ′

) and µ′(s|θµ′
)

respectively, are used for calculating the target values. The weights of these target networks
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are then updated by having them slowly track the learned networks.

θ′ ← τθ + (1− τ)θ′

µ′ ← τµ+ (1− τ)µ′

τ ≪ 1

(2.42)

In conclusion, the pseudocode of DDPG is shown in Algorithm 2.5.

Algorithm 2.5Deep Deterministic Policy Gradient

Randomly initialize critic networkQ(s, a|θQ) and actor (s|θµ)with weights θQ and θµ.
Initialize target networkQ and µwith weights θQ ← θQ, θ ← θµ

Initialize replay buffer R
for episode = 1, . . . ,M

Initialize a random process N for action exploration
Receive initial observation state s1
for t = 1, . . . , T

Select action at = µ(st|θ) +Nt according to the current policy and exploration
noise

Execute action at and observe reward rt and observe new state st+1

Store transition (st, at, rt, st+1) in R
Sample a randomminibatch of N transitions (si, ai, ri, si+1) from R
Set yi = ri + γQ(si+1, µ(si+1|θ)|θQ)
Update critic by minimizing the loss: L = 1

N

∑
i(yiQ(si, ai|θQ

′
))2

Update the actor policy using the sampled policy gradient:

∇θµJ ≈
1

N

∑
i

∇aQ(s, a|θQ)|s=si,a=θ(si)∇θµµ(s|θµ)|si

Update the target networks:

θ′ ← τθ + (1− τ)θ′

µ′ ← τµ+ (1− τ)µ′

end for
end for

2.7.2 Twin Delayed Deep Deterministic policy gradient (TD3)

Actor-critic algorithms are affected by two criticalities:

• overestimation bias of the action value function;
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• noisy policy updates caused by high variance in the estimation.

In Q-learning, the overestimation bias is caused by the maximization operator as detailed
in Section 2.3. Instead, in actor-critic algorithms where the policy update is computed via
the policy gradient theorem or the deterministic policy gradient, it is caused by the gradi-
ent; indeed, the gradient direction is a local maximizer. Noisy policy updates are caused by
the fact that when function approximators are used in the Bellman Equation, estimations
are never exactly, and each update leaves some amount of residual TD-error δ(s, a). Those,
residuals if not addressed, tend to accumulate and create high variance (noise) in the policy
updates.

In [62] a set of techniques to avoid or limit them are proposed. In order to solve the overes-
timation bias, ClippedDoubleQ-Learning for actor-critic is proposed. Two target networks
with independent weights θ1 and θ2 are learned in Clipped Double Q-Learning. However,
when computing the target y, only the target networks minimize the overestimation of the
value function, consisting of taking the minimum between the estimates.

yt = rt + γ min
i=1,2

Qθi(st+1, π(st+1)) (2.43)

In order to solve the noisy policy updates, two solutions are proposed: delayed policy up-
dates and target policy smoothing regularization. Delayed policy updates perform an update
of the policy everydupdates of the target networks; thus, it is possible to trainmore the target
networks before using their estimates to update the policy. Instead, the target policy smooth-
ing regularization introduces a regularization term in order to prevent the target networks
from overfitting. The regularization term is based on the intuition that given a state st, the
expected reward values of similar actions should be similar as well. Thus, random noise is
introduced at the action level during the target updates:

y = rt + γQθ′(st+1, π(st+1) + ϵ) ,

ϵ ∼ clip(N (0, σ),−c, c) .
(2.44)

All the aforementioned improvements are applied combined to DDPG in a new algorithm
called Twin Delayed Deep Deterministic policy gradient (TD3) shown in Algorithm 2.6.
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Algorithm 2.6 TD3

Initialize critic networks Qθ1 , Qθ2 , and actor network πϕ with random parameters
θ1, θ2, ϕ
Initialize target networks θ′1 ← θ1, θ

′
2 ← θ2, µ

′ ← µ
Initialize replay buffer B
for t = 1 to T

Select action with exploration noise a ∼ πϕ(s) + ϵ and observe reward rt and new
state st+1

Store transition tuple (st, at, rt, st+1) in B
Sample mini-batch of N transitions (st, at, rt, st+1) from B
ã← πϕ′(st+1) + ϵ ϵ ∼ clip(N (0, σ), c, c)
y ← rt + γmin

i=1,2
Qθi(st+1, ã)

Update critics θi ← argmin
i

1
N

∑
i(y −Qθi(s, a))

2

if tmod d
Update ϕ by the deterministic policy gradient:

∇ϕJ(ϕ) =
1

N

∑
i

∇aQθ1(s, a)|a=πϕ(s)∇ϕπϕ(s)

Update target networks:

θ′i ← τθi + (1− τ)θ′i
ϕ′
i ← τϕi + (1− τ)ϕ′

i

end if
end for
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To succeed, planning alone is insufficient. Onemust impro-
vise as well.

Foundation, Isaac Asimov

3
Task Planning in Non-Deterministic

Environments solved via Reinforcement
Learning

This Chapter proposes a general formulation to describe and solve task planning problems
in non-deterministic environments via Reinforcement Learning. Specifically, the Task Plan-
ning problem is formulated as a Markov Decision Process to introduce non-determinism
and enable to deal with dynamic environment effectively. The studied method is applied to
a robotic object sorting scenario to prove the efficacy of the proposed method.
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3.1 Introduction

In order to effectively cooperatewith humans, robotsmust be able to perform tasks based on
the current status of the environment, including the person, and react to unexpected events.
The unexpected events can vary from changes in the desired goal to friendly/adversarial hu-
man interaction. For example, the human can either cooperate to complete the task or per-
form a conflicting task.

Thus, in thisChapter,we study theproblemofTaskPlanning applied tonon-deterministic
and dynamic environments. Those scenarios raise a significant challenge to classic task plan-
ning algorithms. Typically, Task Planning is solved assuming the dynamic of the scenario is
entirely predictable; thus, it is possible to create a tree describing the evolution of the environ-
ment for each action performed and apply graph search algorithms to compute the optimal
plan. However, in non-deterministic environments, it is not possible to define a unique tree
to compute the optimal plan. Thus, as detailed in Section 1.2.4, different works formulate
the task planning problem as anMDP and solve it with Reinforcement Learning.

Similarly, we propose a formulation of Task Planning, and then we translate it into an
MDP. Subsequently, we apply the proposed formulation to a case study depicting an ob-
ject sorting, and we solve it via Deep Reinforcement Learning. In particular, we highlight
that the proposed formulation is general and can be applied to different task planning ap-
plications. It is scalable since, differently from standard task planning, the running time to
compute the optimal action is neglectable, even increasing the dimension of the problem.
Finally, it can effectively deal with non-deterministic environments characterized by proba-
bilistic dynamics and unexpected events.

3.2 Formulation

Let’s consider a generic Task Planning environment E populated by Nobj objects, we can
describe k-th object by its state sk that is the minimum set of attributes λk describing the
object properties.

sk = λk = ⟨λk,i⟩ with i ∈ {1, . . . , Nattr,k} and k ∈ {1, . . . , Nobj} (3.1)

The attribute λk,i is a singular value describing one and only one property of the k-th object,
and it is defined over the domainDλk,i

. For each k-th object we can define the domain of
the state Sk, representing all possible object’s states sk ∈ Sk, asDk where:

DSk
= Dλk,1

× · · · ×Dλk,Nattr,k
(3.2)

We define that two objects o and o′ are identical if and only if the sets of attributes λo and
λo′ are identical.

o = o′ ⇐⇒ λo = λo′ (3.3)
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We define that two objects belong to the same class C if they have the same state domain
DSo = DSo′

, i.e., they share the same set of properties. Finally, we define the state of the
environment, s, as the union of the state objects belonging to the environment E .

s = {sk} with k ∈ {1, . . . , Nobj} (3.4)

Analogously, it is possible to define the set of environment states S whose domain is defined
as:

DS = DS1 × · · · ×DSNobj
with k ∈ {1, . . . , Nobj} (3.5)

In the environment, a set of action A can be performed that have the effect of modifying
the environment state, described by the state transition function Γ : S × A → S. In
other words, an action a ∈ A has the effect of modifying one or more object attributes.
In non-deterministic environments, the state transition function is a probabilistic, Γ =
P(st+1|st, a), where st and st+1 two generic successive environment states.

The objective is to find a sequence of actions a, such as it is possible to reach an envi-
ronment goal state sgoal from a start state sstart while minimizing a cost function f . In
deterministic environments, the sequence of actions can be described as a tuple called the
plan P = ⟨a1, . . . , an⟩. In non-deterministic environments, the plan P cannot be com-
puted, thus it is defined the policy π : S → A that maps from states to actions such as
if iteratively applied allows to reach the goal state sgoal given any state transition described
by Γ. The policy π can be computed by solving a MDP defined by the tuple (S,A,R, P )
where state S and the action A are identical to the previous ones, the transition probabilis-
tic function P is equivalent to the probabilistic version of Γ. Finally, the reward function
R : S × A× S → R is the counterpart of the cost function f . However, f is defined over
all the planP , whileR is defined over only a single state-action-state transition. In andMDP
the objective is to maximize the cumulative discounted reward that can be interpreted as the
negative cost function.

3.3 Object Sorting Environment

We apply the aforementioned formalization to a scenario of object sortingwhere objectmust
be sorted based on a qualitative property and ordered based on a quantitative property. The
objects are randomly placed in a region of space called “clutter” and should be sorted in re-
gions called “clusters” based on the qualitative property.

Each object has 3 attributes: color, size and position; therefore the object state is defined
as:

sk = ⟨color, size, position⟩ . (3.6)

The color is the qualitative property, the size is the quantitative property and finally the po-
sition describe where the object is placed in the clutter or in the clusters. Thus, we define the
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attributes domains:

Dcolors = {colors} (3.7)
Dsizes = {sizes} (3.8)

Dpositions = Dclutter ∪

|Dcolors|−1∪
c=1

Dclusterc

 (3.9)

The positions’ domain is defined by the union of the clutter domain, i.e., all positions in
the clutter space, and the cluster domains, i.e., all the positions in the clusters, one for every
color. We assume that the number of objects to sort is variable but limited toK ,Nobj ≤ K .
Thus, the number of clutter and cluster positions is related to the maximum number of
objects. The clutter and each cluster must be able to hold all the objects in the environment,
therefore

|Dclutter| = |Dclusterc | = K . (3.10)

We assume that all clutter and clusters’ free positions are occupied by a null object that have
the peculiarity of having a null color and a null size. Thus including the null-objects, the
total amount of objects isK · |Dcolors|. The domainDsizes include all the possible sizes plus
the null size, similarly,Dcolors includes all the possible colors plus the null-color. As defined
in Section 3.2 the environment state is:

senv = {sk} with k ∈ {1, . . . , K · |Dcolors|} (3.11)

Thanks to the introduction of the null-object the dimension of the environment state senv
is independent from the number of objects in the environment as long as they are less than
or equal toK .

We assume that given a set of objects it can be required to sort only a subset of them, thus
we introduce the goal state sgoal that describeswhich objects should be sorted. The goal state
represent only the set of objects to be sorted and similarly to the environment state we desire
that its domain is independent from the current number of objects in the environment or
to be sorted. Thus, the goal state is described the target state of each cluster, similarly to the
environment state, free positions are considered occupied by the null-object.

sgoal = {sgoalc,k } with c ∈ {1, . . . , |Dcolors| − 1} and k ∈ {1, . . . , K} (3.12)

In conclusion, the state s of the Task Planning problem is derived as the tuple composed by
the environment state and the goal state.

s = ⟨senv, sgoal⟩ (3.13)

The proposed definition of the state s has the advantage of having the same domain D in-
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dependently from any number of objects, shapes, or colors as long as they are less or equal
to the predefined maximum number of objects, colors, and shapes. Therefore, the policy
function π to solve any task planning problem, within the domain, can be approximated by
one set of parameters θ. In other words, it is possible to define one single policy function to
solve all task planning problems in the domain.

We define the set of actionsA as the set of pick and place actions tomove and object from
its current position to another position.

a = move(ok, pick position, place position) . (3.14)

Assuming that one position can be occupied by only one object at time, we omit to specify
the object and identify it only based on its current position.

a = move(pick position, place position) . (3.15)

Furthermore, we assume that the objects in the cluster are placed in a tower-likemethod, i.e.,
objects are always placed in the lowest empty position, only objects from the top occupied
position can be picked, and no empty position theremay be between two objects of the same
cluster. Finally, we assume also that objects picked from the clutter can be placed only in one
of the clusters andobjects picked fromclusters canbeplaced in other clusters or in the clutter.
Thus, we define the set pick positions as:

pick positions = Dclutter ∪ {clusters} , (3.16)

meanwhile, the place positions are defined based on the pick position.{
place positions = {clusters} if pick ∈ Dclutter

place positions = Dclutter if pick ∈ {cluster}
(3.17)

Based on the action formulation, we define the state transition functions Γ. As described
earlier, the action is a pick and place and therefore the only attribute that is modified is the
position of an object. Finally, the scenario is non-deterministic and, in particular, picking an
object from some region of environments introduces a failure probability.

We compute the policyπ by solving the equivalentMDPwith same state, action and state
transition function, and we introduce the reward functionR.

For each performed state-action-state transition, a reward is given to the agent, according
to the scalar functionR defined by the following equation:

R = rmove + rempty + rstuck + rfail + rback + rdist + rsucc (3.18)

where
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• rmove is the cost of amove action;

• rempty is the cost of an empty pick: the policy decides to pick from an empty cell;

• rstuck is the cost of picking an object from a cell and placing it back to the same cell;

• rfail is the cost of a failure in terms of either localization or picking: the detection is
inaccurate, or the wrong object is moved, or the gripper fails to grasp the object;

• rback is the cost of moving an object from the top cell of one cluster to a cell of the
clutter: when the agent takes this action, even for a temporary relocation, it should be
penalized;

• rdist is the reward describing the distance between the attributes in the environment
state and the goal state. In particular, is defined as:

|Dclusters|−1∑
c=1

K∑
k=1

α · dc,k (3.19)

where alpha is a vector of coefficients describing the relative importance of each at-
tribute and dc,k is the vector of attributes distances between two elements of the clus-
ters one from the environment state and the from the goal state.

• rsucc is the reward assigned when the desired goal is achieved;

Except for rsucc, all the reward values are strictly negative.

3.4 Experimental evaluation

3.4.1 Environment

APython environment has been implemented* depicting the formulation of Section 3.2. Of
such environment, two scenarios have been considered. The former, ϵ0, is characterized by
a maximum of K = 10 objects, the color domain Dcolor = {r, b}, and the size domain
Dsize = {s,m, l}. Similarly, the latter, ϵ1, hasK = 20 objects, the color domainDcolor =
{r, g, b}, and the size domainDsize = {s,m, l}.

A Robot Operating System (ROS)-based [63] setup has been realized to validate both
the environment and the policies. It asks both a simulated and a real agent to group objects
of both ϵ0 and ϵ1 according to the color, and order each cluster depending on the size. The
agent is aUR10manipulator robot equippedwith amagnet on its end-effector. AMicrosoft
Kinect v2 perceives the workspace, detects the objects, and recognize them. Gazebo is used

*Implementation: https://github.com/iaslab-unipd/iaslab-sorting-env
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as simulator. Theworkspace is non-deterministic: a human operator can randomly add new
objects, change the status of the environment, andupdate the goal. The robotic agent should
accomplish the assigned task while dealing with these external disturbances. Moreover, it
should correctly and promptly react to the failures it may encounter. As stated in Section ??,
the environment is discretized into cells and a different failure probability is assigned to each
of them. With themain goal of testing the system, a higher failure probability is associated to
the cells closer to the robot base and farthest from the localization system. Indeed, in those
areas object detection and robot motion planning are expected to be less reliable.

3.4.2 Training

Thepolicywas trainedusing theDQN[36] implementationof theDRLStable-Baselines [64]
library, with the following extensions: Double-Q learning [65], Duelling-DQN[66] andPri-
oritized Experience Replay [67]. The implemented exploration strategy is an epsilon-greedy
one with linear decay over a window of lengthNt training steps.
Aiming at increasing the training speed, a custom-made curriculum learning strategy was

implemented. It feeds the policy with a percentage of partially solved training episodes. The
curriculum learning strategy depends on two parameters:

• the percentage of partially solved training episodes es, computed with respect to the
total number of episodes provided to the policy;

• the percentage at which the goal of the partially solved episodes gs is already achieved.

Both parameters were linearly decreased along the window. The considered environment
is characterized by tasks having a very high variability in complexity.

The complexity of an episode depends on the combination of two episode-specific param-
eters: the number of objects on the environmentKE , and the amount of them that should
be ordered KG, i.e., the number of objects that are included in the desired target clusters
configuration (withKG ≤ KE). This high variability in inter-episode complexity could be
really problematic for an effective training of the policy if all the possible combination of
those two parameters have equal distribution during the training. Indeed, the policy risks
overfitting the easiest tasks (i.e., lowKE and lowKG) thus being ineffective in solving the
hardest ones (i.e., highKE and highKG). Tominimize the risk of overfitting, bothKE and
KG were sampled from 2 triangular distributions. The former having mode equal to the en-
vironment maximum number of objectsK , while the latter having mode equals toKE , the
total objects available in the episode.

Two policies have been trained to solve ϵ0 and ϵ1, respectively. The two training exploited
the samehyperparameters, except for theminimumnumber of training stepsNt: in ϵ0,Nt =
2× 106; in ϵ1,Nt = 8× 106. Table 3.1 reports the values of all adopted hyperparameters.

Figure 3.1 and Figure 3.2 present the results obtained from the test of the two policies
trained to solve ϵ0 and ϵ1, respectively. To build those graphs, at each 50k training steps, the
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Table 3.1: DQN hyperparameters used to train the policies

hyper-parameters
Discount factor 0.92
Learning rate 10−4

Batch size 256
Update target network freq. 500
Memory size 100000
Prioritized exp. replay α 0.6
Prioritized exp. replay β 0.4
Network 2× 128ReLu
Start exploration 1.0
Final exploration 0.05

training has been stopped, themodel stored and tested overT (T = 500 for ϵ0 andT = 100
for ϵ1) episodes with respect to every combination ofKE andKG, and the results registered.
Both for ϵ0 and ϵ1, Figure 3.2a andFigure 3.2b report the average validation results of the best
model; Figure 3.1a and Figure 3.1b, instead, reports the average episode reward (plus/minus
its standard deviation) and the average success rate curves. Finally, Fig 3̇.2a and Figure 3.2b
showmore in detail the results of the testing phase obtained for the best trained policy, once
again for both ϵ0 and ϵ1. It can be noticed that the combinationswith higherKE andKG ob-
tained lower success rates, despite the higher number of training episodes visited in training,
coherently with their expected higher complexity.

3.4.3 Tests and Results

Six tests have been designed, each one aiming at highlighting a specific contribution of the
proposal.

• Test 1. KE = KG = 5. The agent is asked to sort all the available objects. For
each object ok, the pair (γm, λn) is randomly chosen from those available (see Sec-
tion 3.4.1);

• Test 2. KE = KG = 10. The assignment is the same as inTest 1 but with twice the
objects to be sorted;

• Test 3. KE = 10, KG = 5. The agent is asked to sort only 5 of the 10 available
objects. Objects’ properties are randomly chosen. Couples of objects with the same
properties exist: one object is located on a cell with high failure probability, while the
other stands on a low failure probability one;

• Test 4. KE = KG = 5. The assignment equals that of Test 1 but when the goal is
reached, a human operator adds an object, bigger than the one of the top of its target
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(a)

(b)

Figure 3.1: Average episode reward and success rate obtained for ϵ0 (a) and ϵ1 (b), respec-
tively.

stack, and asks the policy to sort it. Thus, to reach the new goal, the policy should
temporally relocate already sorted objects;

• Test 5. KE = 8,KG = 5. Objects’ properties are randomly chosen. First, the user
interferes by adding a new object without updating the goal: such object becomes an
alternative. Once the goal is reached, the user modifies the goal, asking the robot to
recheck already sorted objects;
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(a)

(b)

Figure 3.2: Average success and average reward for each possible combination of objects in
the environment,KE , and objects in the goal configuration,KG. Results obtained for ϵ0 (a)
and ϵ1 (b), respectively.
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• Test 6. KE = 8, KG = 3. Objects properties are randomly chosen, but the goal
is composed of objects of the same category, i.e., the same color. Once reached, the
target is updated including 3 other objects of another color.

As reported in Section 3.4.2, both ϵ0 and ϵ1 obtained similar results. Thus, only results of
ϵ0 follow, subdivided according to the contribution they highlight.

• Robustness to adversities. Both in Test 4 and Test 5, an external actor adds new
objects to the scene. The policy correctly faces such adversities by relocating objects
each time a goal update is requested. In all the cases, the minimum number of moves
is employed to complete the assignment. Furthermore, the trained policy proves to
successfully cope with and recover from failures occurred in both object grasping and
localization.

• Risk minimization. While performing Test 3 the policy chooses, whenever possi-
ble, to take those objects located on the lower failure probability cells. Such behavior
shows that the policy trained on the formulated environment learns to minimize the
failure risk, regardless of the criteria followed by the user.

• Scalability. Test 1 and Test 2 ask to solve the same task, but the latter requires the
manipulationof a growingnumber of objects. The capability of thepolicy to correctly
accomplish both assignments with the minimum number of moves proves the ability
of the system to scale with the increasing dimensionality of the problem.

• Generality. The proper resolution of Test 6 demonstrates that the system can gen-
eralize to increasingly complex tasks with new classification categories and ordering
priorities: no re-training is required and no computational overhead results.

Figure 3.3 shows the simulated and real execution of Test 4. In both cases, a new object is
added to the scene and the goal configuration is update. The agent adapts to the new setup
and successfully completes the new assignment. Moreover, in the real world, the robot fails
to grasp one object but it promptly recovers from it. Attached videos†, instead, show all six
tests performed in the real world.

3.5 Conclusions and future work

In this Chapter, a formulation for task planning in non-deterministic environments based
on Markov Decision Process was proposed. Subsequently, the formulation is applied to a
scenario of object sorting characterized by a non-deterministic environment due to proba-
bilistic effects of the agent actions and the interaction with a human performing friendly or
adversarial actions.

†Video: https://doi.org/10.5281/zenodo.3961813
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(a)

(b)

Figure 3.3: Video frames of Test 4: (a) Simulated solution sequence and (b) real experimen-
tal resolution. For brevity, (b) only shows frames for 7 ≤ t ≤ 13. At time t = 7, a human
operator adds a new large blue block. Once detected, the policy temporally relocates already
sorted objects to complete the task.

Experiments performed both in simulation and in the real world required the robotic
agent to sort a maximum of 20 objects, subdivided according to at most three colors, and
ordered based on a maximum of three discrete sizes. During the execution of the assigned
task, a human user interfered with the environment by adding objects and/or updating the
desired goal. Obtained results demonstrate that the system learned to adapt to unpredictable
external interventions, to recover from failures, and to correctly chose actions, whenever pos-
sible, that minimize the failure risk. Finally, the proposed system scales on the numbers of
objects and assigned goals.

As future work, to demonstrate the generality of the proposed formulation, other sorting
problems will be tested together with other DRL algorithms. Such new experiments will
allow us to extensively assess also the scalability in terms of number of properties. Finally,
partially-observable problems will be extensively investigated to push even forward the gen-
erality of the formulation.
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In preparing for battle I have always found that plans are
useless, but planning is indispensable.

Dwight D. Eisenhower

4
Deep Reinforcement Learning applied to

Motion Planning in Human Robot Shared
Workspaces

In this chapter, a method to solve the problem of motion planning in human robot shared
workspaces as a reinforcement learning problem is proposed. A brief analysis of the state art
is the presented highlighting the limitations and showing the contribution of this chapter.
The proposed method models a feedback motion planner as an MDP subsequently trained
via DRL and a novel method to model the person during the training phase. The person is
modelled via a pseudo-randomoccupancymodel that is able to achieve subject independence
andhuman task independence. Finally, the proposedmethod is evaluatedboth in simulation
and on an experimental setup, and it is combined with the current industrial safety standard
to highlight the increase of performance compared with current industry best practices.
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4.1 Introduction

Human-robot collaboration inmanufacturing is a valuable solution to increase the flexibility
of the production tasks; however, the generation of safe robot trajectories granting high pro-
ductivity is still a challenge. Aswehave detailed in Section 1.2.3,many approaches are used in
literature to solve motion planning in human-robot shared workspaces; none of them seems
to be sufficiently general to solve the problem completely. Motion planners that are based on
predicting the occupiedworkspace by the humanhave various drawbacks. First, they require
an extensive process to develop a stochastic model of the human behavior that can include
the probability of performing a task [68, 45] or occupying a specific region of space [34], or
both [22]. However, the human behavior stochastic model is subject-dependent and task-
dependent. A model describing the probability of occupying a specific region of space is
subject-dependent because it depends on the kinematic model of the person, i.e., it depends
on the body shape of the person (height, arm length, etc.). Analogously, a model describing
the probability of a task is subject-dependent because when multiple equally feasible tasks
can be performed simultaneously, human personal preferences arise. Finally, they are task-
dependent because those models require to define either the set of tasks the person can per-
form or the complete sequence of tasks that compose the manufacturing process; therefore,
they hardly deal with unexpected behavior from the human. For example, in [34] the possi-
ble set of movements the human can perform is known a priori and used to perform online
classification of the humanmovements; however, in a realistic scenario, it is unlikely to know
all the movements and all the possible methods a task can be performed. Motion planners
who develop velocity scaling strategies instead usually lack the flexibility required to be effec-
tive in environments with frequent close interaction between humans and robots, such as a
collaborative human-robot assemblyworkstation. However, these planners usually can guar-
antee the person’s safety since they abide by the current safety standard like ISO TS 15066.
Finally, reactivemotion planners can easily fall into local minima or perform excessively long
trajectories (freezing robot problem)whendeployed in cluttered environments or in the pres-
ence of many moving obstacles (e.g., humans).

As highlighted in Section 1.2.3, recent works [38, 39, 40] investigate the use of DRL for
motion planning, primarily formobile robot navigation in a dynamic environment. In these
works, the environment in which the mobile robot moves is considered to be populated by
decision-making agents (the humans) that try their best to avoid collisions with the robot
by adopting social rules or the policy that is being trained in a self play fashion, or collision
avoidance protocols specifically designed, such as ORCA [69]. However, those approaches
to model the human can hardly be applied to human-robot shared workspace in an indus-
trial scenario. First, the implemented collision avoidance protocols and the social rules are
designed for social navigation, ormobile robotics cannot be used as industrial roboticmanip-
ulators. Second, it is impossible to apply the policy to the human that is currently trained
because the robot and the human have very different kinematic models (e.g., different de-
grees of freedom). Furthermore, while it is commonly accepted in social navigation to adopt

56



a discrete action space model, this choice would not be appropriate for robotic manipula-
tors, especially for industrial manipulators. A low level of accuracy and vibrations caused by
discontinuities in control commands would negatively affect the resulting motion.

In this chapter is to develop a human-aware motion planner for a scenario of human-
robot co-existence that does not suffer from the limits of the methods mentioned above
while including their strength. In detail, it aims to develop a motion planner that is subject-
independent, task-independent, and ensures safety. Therefore, it is investigated the usage
of a feedback motion planner based on DRL for human-robot co-existence (i.e., workspace
sharing) combinedwith a pseudo-randomhuman occupancymodel and combinedwith the
current industrial safety standard SSM.

Specifically, the proposed approach models the feedback motion-planning problem as
a Markov Decision Process and applies DRL to learn a policy capable of approximating
the optimal feedback motion planner defined by the reward function. The human-task
independence and subject-independence are given by training the DRL through a pseudo-
random occupancy volume that models the human occupancy in the work area. Such occu-
pancymodel does not represent a specific set of human tasks (i.e., set of predefined patterns),
that are characterized by high levels of heteroscedasticity [70], thus, challenging to correctly
model. In contrast, the proposed pseudo-random occupancy model can address the prob-
lem of describing a large set of possible human tasks, including the high variance in their
execution by people, in a compact way. In other words, theDRL is trained using a dataset of
possible occupancy volumes that have been designed to map the possible interaction modal-
ities statistically. Similarly, it is human-subject independent because the occupancy model
can also model the space occupied by people with different body sizes. Finally, the occu-
pancy model considers the human not as a decision-making agent, i.e., he/she acts indepen-
dently from the robot, and he/she does not try to avoid collisions, and it makes the proposed
method robust to avoid hazardous situations for the operators. In other words, the DRL
learns how to avoid the operator also when he/she displays hazardous behaviors, e.g., mov-
ing towards the robot when it is moving. The pseudo-random occupancy volume models
the human as a variable radius cylinder that moves across the workspace. The human direc-
tion is chosen randomly. Meanwhile, the speed and the radius are defined by parametric
functions whose parameters are sampled at each episode.

It is also introduced a novel formulation MDP action to enhance smooth robot trajecto-
ries. A common approach in literature is to model actions as joint speed references for the
robot controller; however, there is no guarantee that the controller will be able to reach the
reference valuewithin a single timestep of theMDP. Instead, we propose to define the action
as a parametric continuous trajectory of the duration of a single timestep. It is also proven
that it is possible to guarantee the kinodynamic feasibility of the parametric trajectory, im-
posing the joint limits.

A technique to boost the policy training, based on the discretization of the goal space
during the training phase, is also proposed. The goal space is discretized as a 3D uniform
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grid and the policy is trained only on the element of the 3D grid. After that, the policy
is interpolated over the discretized goal space in order to reach any goal in the continuous
space.

The trained policy is straightforwardly applied to the experimental scenario (i.e., without
fine-tuning it), showing the efficacy and robustness of the proposed approach. Finally, it
is shown that the proposed method is compatible with current safety standards and that it
outperforms current industry best practices by increasing the efficiency of the cooperation
between humans and robots. In particular, Speed and Separation Monitoring (SSM) from
the ISO TS 15066 was implemented on top of the proposed feedback motion planner and
of a standard motion planner.

4.2 Problem Formulation

4.2.1 Context

Consider a simulated environment where the agent (i.e., a robotic manipulator) needs to
reach a set of targets placed in its workspace while avoiding collisions with fixed obstacles
and human agents. Human agents are assumed to be performing an action independently
from the robotmotion, therefore the considered problems fit in the class ofmoving obstacles
avoidance. Within this class of problems there is no collaboration between the human and
the robot, therefore the robot simply needs to ensure that it will not enter into the volume
occupied by the human, regardless from the action he/she is performing. This assumption
freed us to from the need to model the human task, allowing us to simply model his/her vol-
ume occupancy as a vertical variable-radius cylindermoving in the sharedworkspace (i.e., the
minimumradius cylinder fully containing the human shape, augmentedwith a proper safety
factor). Furthermore, to endorse the independence of the robot task from the human task,
both the motion laws and the changes in the cylinder radius are defined as pseudo-random.

4.3 Methodology

The proposed methodology consists in developing a simulated environment to train via
DRL an agent (i.e., the robot) to perform a reaching task while avoiding collisions with a hu-
man. The adopted simplified humanmodel consists in a pseudo random volume occupancy
model, in particular the volume occupied by the human is modeled as a cylinder, whose ra-
dius and speed are defined by pseudo-random functions as shown in (4.2) and (4.1). The
actions of theMDP are modeled as parametric trajectories whose coefficient are bounded in
order to guarantee kinodynamic feasibilty. The agent will be trained to reach targets defined
by sampling the desired continuous target region. If the user-target does not belong to the
discrete training set, it is then computed by a first-order interpolate of the policy computed
on the closest training targets.
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4.3.1 HumanOccupancyModel

Let’s consider an industrial scenariowhere a robot has to performapick&place taskwhile hu-
man co-workers share the same workspace performing parallel unknown tasks not synchro-
nized with the robot. The main difficulty of such scenario is that the human movements
can be hardly predictable, so it is extremely complex to define a model closely representing
the human behavior in the specific scenario. Furthermore, the absence of knowledge about
the task the human is performing makes it almost impossible to acquire a dataset of human
movements to develop a stochastic model of the behavior.

Thus, a synthetic dataset of the human behavior is developed by sampling deterministic
trajectories from pseudo-random functions. Such choice allows training the agent without
the risk of biasing the policy due to the incompleteness or unbalanceness of an acquired
dataset. On the one hand, this solves the problem of incompleteness because the number
of possible sampled trajectories is extremely high within the range of trajectories described
by the pseudo-random functions. On the other hand, it solves the problem of unbalance-
ness since the coefficients can be sampled either uniformly or with any desired distributions,
therefore is possible to balance the dataset as desired. It isworth to notice that the pseudo ran-
dom functions used to create the synthetic dataset have a very simple formulation compared
to the approaches used in literature, considerably reducing the required effort for developing
a new training environment. Using a synthetic dataset of human trajectories takes inspira-
tion from various works in literature in the field of reinforcement learning where agents that
share cooperative or adversarial objectives with humans are not trained with data based on
humans— e.g., competitive games are trained against themselves in a so-called self-play fash-
ion like in AlphaGo Zero [4] andOpenAI Five [71]. Specifically, self-trained AlphaGo Zero
achieves better results against human players than the predecessor Alpha Go that was previ-
ously trained with a dataset of real matches. Looking at works related to navigation/motion
planning, in [40, 39] “non-human” movement were used in training. In both cases, the
policy was successfully transferred to real world scenarios. In particular, in [39] a combina-
tion of handcrafted strategies and the policy were used to control the human agents, while
in [40] the human agents were controlled with ORCA (hand-crafted protocol for collision
avoidance of mobile robots).

The human ismodelled as a cylindrical variable radius collision volumemoving in the hor-
izontal plane with a variable speed. Both the velocity and the radius are defined by 2 pseudo-
random functions approximating all the possible velocity and radius values combinations
the human can reach in the proposed scenario.

The module of the velocity is defined as follows:

v(t) =
vmax + vmin

2
+ 0.5vr sin(2πf

v
r t+ ϕv

r1
)+

0.3vr sin(6πf
v
r t+ ϕv

r2
) + 0.2vr sin(8πf

v
r t+ ϕv

r3
) .

(4.1)
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(a) (b)

(c) (d)

Figure 4.1: Examples of trajectories from the human occupancy model. The blue shaded
region represents the workspace occupied during the trajectory, and the colored dots the po-
sition of the center of the cylinder. The color of the dot represents the time of the trajectory.

In particular, vmin and vmax are respectively theminimumand themaximumwalking speed,
vr is a randomvaluewithin thewalking speed range, f v

r is a random frequencywithin a range
and ϕv

r1
, ϕv

r2
, ϕv

r3
are random phases. If the velocity value is below the minimum velocity

it is set to zero and if it is above vmax is set to vmax . The human at the beginning of each
episode starts from a randomposition andwalks along a straight line toward a random target
position; it has a small probability to stand still for the entire episode. When the human is
within a distance tolerance from the target position, a new random target position is chosen,
however it has a small probability to stop on the last position for the rest of the episode.

60



The cylinder radius function is defined, similarly to the velocity function, as:

r(t) =
rmax + rmin

2
+ 0.5rr sin(2πf

r
r t+ ϕr

r1
)+

0.3rr sin(6πf
r
r t+ ϕr

r2
) + 0.2rr sin(8πf

r
r t+ ϕr

r3
) .

(4.2)

Inparticular, rmin and rmax are theminimumandmaximumvalues amongwith the radius is
clipped, rr is a randomvalue in the radius range, f r

r is a random frequencywithin a range and
ϕr
r1
, ϕr

r2
, ϕr

r3
are random phases. The pseudo-random functions used to model the human

velocity and radius have the property to be continuous and to be composed by high and low
frequency fluctuations in order tomimic the variability of the humanmovement. Figure 4.1
shows four examples of trajectories and the occupied workspace by the human occupancy
model applied to the experiment in Section 4.4.1.

Thehuman state is defined as theCartesianpositionof thehuman (x, y), the speed (vx, vy)
and its radius r.

sh =


x
y
vx
vy
r

 (4.3)

The proposed humanmodel complies with theMarkov property required tomodel the envi-
ronment as anMDP, therefore it assumes that the cylinder speed and radius (i.e., the human
speed and space occupied) do not depend on the history of the state i.e., they depend neither
on the history of robot behavior nor on the history of the human behavior. Indeed, we can
write the evolution of the next human state from its current human state only as:

s′h =


xh

yh
ẋh

ẏh
rh

 =


x(t) + vx(t)∆t
y(t) + vy(t)∆t

vx(t+ 1)
vy(t+ 1)
r(t+ 1)

 . (4.4)

As it can be noticed, the proposed human model makes the policy training independent
from the human operator and from the task he is performing. Indeed, the velocity function
is suitable to generate an infinite number of different velocity profiles, all compatibles with
human movements. Moreover, the radius function is suitable to represent humans with
different shape and dimensions representing possible different tasks (e.g., walking, carrying
object etc.) or just unpredictable actions. Thus, the proposed human occupancy model
allows to obtain a policy effective not only on a small of set predetermined situations but
generally effective, in any human-robot shared workspace application.
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4.3.2 Action Formulation

Common state-of-the-art approaches define the action at that a robot performs to reach a
target either as an instantaneous joint speed command or a change in joint speed (i.e., an
average joint acceleration). The former does not consider the initial position and velocity
of the agent: the robot controller ensures their continuity over time. The latter guarantees
continuity with the initial conditions but does not include the joint position and velocity
limits. Eventually, based on the reward function formulation, the agent may learn not to
exceed them.

Differently from the literature, given the trajectory τ that the robot has to follow to reach
a target, we propose to model at as the parametric sub-trajectory τt ∈ τ to be performed
during the t-th time step, with t ∈ [0, T ] and∆x the duration of the time step itself. Thus,
τ is defined as the following concatenation of sub-trajectories τt:

τ = {τ0, τ1, . . . , τT} = {a0, a1, . . . , aT} . (4.5)

If the agent has nDegrees of Freedom (DOFs), each sub-trajectory τt is a vector of n sub-
trajectories, one per joint. Thus,

at =

a
0
t
...
ant

 (4.6)

To ensure each joint sub-trajectory is continuous and observes the joint limits, we model
it as a polynomial function with the form

ant =
N∑
i=0

ctn,ix
i N ≥ 2, 0 ≤ x ≤ ∆x. (4.7)

whereN is the degree of the polynomial function, and ctn,i is the i-th coefficient of the poly-
nomial function, defined at time step t for then-thDOF.To guarantee position and velocity
continuity, theminimumdegree of the polynomial function is equal to 2. It is theminimum
requirement to create feasible trajectories. Nevertheless, it is possible to set higher-order joint
position time derivatives.

Polynomial functions provide multiple advantages:

• We can easily decide the grade continuity and smoothness of the final trajectory by
imposing the degree of the polynomial function.

• We can control not only the acceleration but also higher time derivatives of the posi-
tion, such as jerk and snap.

• It is easy to compute the maximum and minimum joint position (and its derivatives)
to check compliance with the limits.
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As a result,

at =

a
0
t
...
ant

 =

 c
t
0,Nx

N + ct0,N−1x
N−1 + · · ·+ ct0,1x+ ct0,0

...
ctn,Nx

N + ctn,N−1x
N−1 + · · ·+ ctn,1x+ ctn,0

 . (4.8)

Imposing the starting conditions of each sub-trajectory (e.g., initial position and velocity),
we can write:

at =

 ct0,Nx
N + ct0,N−1x

N−1 + · · ·+ ct0,2x
2 + q̇t0x+ qt0

...
ctn,Nx

N ++ctn,N−1x
N−1 + · · ·+ ctn,2x

2 + q̇tnx+ qtn

 . (4.9)

The action vector at becomes the vector of coefficients ct:

ct =
[
ct0,N , c

t
0,N−1, . . . , c

t
n,N , c

t
n,N−1, . . .

]
. (4.10)

Without loss of generality, we can drop the subscript t:

c = [c0,N , c0,N−1, . . . , cn,N , cn,N−1, . . . ] . (4.11)

We still cannot guarantee the compliance with the joint limits. To overcome this limitation,
we define a set of inequalities for each DOF qn. Taking into consideration a generic DOF q,
the following system results:

qmax ≥ cNx
N + cN−1x

N−1 + · · ·+ c2x
2 + q̇x+ q ≥ qmin

q̇max ≥ NcNx
N−1 + (N − 1)cN−1x

N−2 + · · ·+ 2c2x+ q̇ ≥ q̇min

q̈max ≥ N(N − 1)cNx
N−2 +N(N − 1)(N − 2)cN−1x

N−3 + · · ·+ 2c2 ≥ q̈min

...
(4.12)

The goal is finding the range of values of c for which (4.12) is satisfied for the duration x of
the sub-trajectory, with 0 ≤ x ≤ ∆x. For this computation to be unambiguous, the poly-
nomial function must be at most one degree higher than that of the boundary conditions
(e.g., if the initial conditions are position, velocity, and acceleration, the degree of the starting
condition is 2, and that of the polynomial function should be at most equal to 3). To ver-
ify that the joint limits are verified, it is necessary to compute the maximum and minimum
values parametric over c. Computing the maximum and minimum of a function requires
computing the roots of the derivative, and in our case they must be computed analytically
since are parametric with respect to c. Therefore, to ensure their analytic computation, the
degree of the polynomial functionmust be atmost equal to 5meaning a derivative of order 4
(the Abel-Ruffini Theorem states that there is no solution in radicals to general polynomial
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equations of degree five or higher with arbitrary coefficients.).
For simplicity, we solve the system for a second degree polynomial functionwith position,

velocity, and acceleration as the starting conditions. The same approach can be applied to
more complex scenarios. In this context, c2 becomes the only unknown coefficient, and we
can refer to it as c. Therefore, (4.12) evolves into

qmax ≥ cx2 + q̇x+ q ≥ qmin

q̇max ≥ 2cx+ q̇ ≥ q̇min

q̈max ≥ 2c ≥ q̈min

with 0 ≤ x ≤ ∆x . (4.13)

Starting from
qmax ≥ cx2 + q̇x+ q ≥ qmin with c ̸= 0 , (4.14)

we verify the maximum and minimum values by analytically computing the roots of the
derivative parameterized with respect to c as

x = − q̇

2c
. (4.15)

We replace this value in (4.14):

qmax ≥ c
q2

4c2
− q̇2

2c
+ q ≥ qmin if 0 ≤ − q̇

2c
≤ ∆x , (4.16)

and obtain the following result:

q2 − 2q̇2

4(qmax − q)
≤ c ≤ q2 − 2q̇2

4(qmin − q)
if 0 ≤ − q̇

2c
≤ ∆x . (4.17)

The condition 0 ≤ − q̇
2c
≤ ∆x lets check the value is within the joint limits only if it

maximum/minimum falls within the duration of a time step∆x. According to the values
of q̇, such a condition becomes:{

− q̇
2c
≤ ∆x ∪ c < 0 if q̇ ≥ 0

− q̇
2c
≤ ∆x ∪ c > 0 if q̇ < 0

(4.18)

To ensure that the value at the end of the time step is still within the joint limits, we also
impose

qmax ≥ c∆x2 + q̇∆x+ q ≥ qmin . (4.19)

The result follows:

qmax − q̇∆x− q

∆x2
≥ c ≥ qmim − q̇∆x− q

∆x2
. (4.20)
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For the second and third inequalities of (4.13) instead the derivative has no roots and there-
fore it is only necessary to verify that at x = ∆x the joint limits are not exceeded. In conclu-
sion, we can write the following system of inequalities.

c ≤ q2−2q̇2

4(qmin−q)

{
− q̇

2c
≤ ∆x ∪ c < 0 if q̇ ≥ 0

− q̇
2c
≤ ∆x ∪ c > 0 if q̇ < 0

c ≥ q2−2q̇2

4(qmax−q)

{
− q̇

2c
≤ ∆x ∪ c < 0 if q̇ ≥ 0

− q̇
2c
≤ ∆x ∪ c > 0 if q̇ < 0

c ≤ qmax−q̇∆x−q
∆x2

c ≥ qmim−q̇∆x−q
∆x2

q̇max−q̇
2∆x

≥ c ≥ q̇min−q̇
2∆x

q̈max

2
≥ c ≥ q̈min

2

(4.21)

As a result, the acceptable values of cwill be in the range

cmax =max

(
q2 − 2q̇2

4(qmin − q)
,
qmax − q̇∆x− q

∆x2
,
q̇max − q̇

2∆x
,
q̈max

2

)
≥ c ≥

min

(
q2 − 2q̇2

4(qmax − q)
,
qmin − q̇∆x− q

∆x2
,
q̇min − q̇

2∆x
,
q̈min

2

)
= cmin

. (4.22)

Finally, the policy outputs an action a ∈ [−1, 1] and c is computed as:

c =
cmax + cmin

2
+ a

cmax − cmin

2
(4.23)

4.3.3 State and Reward

We define the state vector s of the proposedMDP as the concatenation of the agent state sa,
the state of each i-th human shi

and the agent’s target position st.

s =


sa
sh0

. . .
shn

st

 (4.24)

The reward function r takes into account 3 objectives:

• reaching the target position;

• avoiding collisions;
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• minimizing the required actions;

The reward function is therefore the sumof a distance reward rd, a collision reward rc and
an action reward ra denoted as:

rd = −cd||xagent − xtarget||2 , (4.25)

rc =

{
−cc if collision
0 if no collision

, (4.26)

ra = −ca||c||2 . (4.27)

In particular, xagent and xtarget are the agent and target Cartesian positions; cd, cc, ca are
positive constants and a is the agent action. The training episode terminates successfully if
the Cartesian distance between target and agent is below a threshold value dt and the agent
is not in collision. In this case, a positive success reward rs is added.

r =

{
rd + rc + ra + rs if success
rd + rc + ra if not success

(4.28)

4.3.4 Policy Interpolation

Given a set of targets defined over a continuous space (e.g., reaching any position within a
certain region of space), a possible solution is to train the policy over goals sampled from a
distribution defined over that space. However, this solution has the drawback of requiring a
lot of samples in order to train sufficiently everywhere in the space. A more sample efficient
solution, is instead to train over a limited number of sampled goals and to interpolate the
policy on these sampled goals. In this paper a linear interpolation on the sampled training
goals arranged as an evenly spaced 3Dgrid is implemented, as shown in Figure 4.2. The black
dots represent the training targets, meanwhile the red dot is the desired goal position pg. The
first step to compute the policy value πg is to find the smallest cube, whose vertexes are the
training targets, that include the desired goal position (the cubewith reddotted edges). Then
the policy value in pg (namely πg) is computed as a linear interpolation on an evenly spaced
grid, i.e., trilinear interpolation, described in (4.29):
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Figure 4.2: 3Dgrid of training targets (black dots) with a target goal (red dot), the red dotted
square is the smallest cube, with as vertices the training target, that include the desired goal
position pg.

In detail, πijk is the values of the policy in the trained target pijk, i.e., setting target position
in st equal to pijk; (px, py, pz) is the distance vector between the desired goal position pg and
the training target p000 and l is the cube side length.

4.4 Experiments and Results

4.4.1 The scenario

The proposedmethod was applied to the following real-world application (Figure 4.8a). An
anthropomorphic manipulator (UR10) must reach, from a home position, a target (the
sphere) randomly placed inside a box-shaped region of space having dimensions 1.0×0.4×
0.4m (i.e., goal space)while oneperson (the cylinder)walks in andoutof the robotworkspace.
A simulated environmentmatching thedescribed applicationwasdeveloped (Figure 4.3b).

Following the formulation proposed in Section 4.3.1 a Human Occupancy model was in-
cluded, the state vector s composed as in (4.30) and the reward function defined as (4.28).
In particular, the agent state sa is defined as the robot joints position and joints speed, the
human state sh is defined as in (4.3) and the target state st is defined as the target Cartesian
coordinates.

s =

sash
st

 =


robot joint positions
robot joint speeds

human position (x, y)
human speed (ẋ, ẏ)

human cylinder radius
target position (x, y, z)

 (4.30)

We chose the action as a second order polynomial function for each joint, thus we can write,
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based on Section 4.3.2:

a =

c1x
2 + q̇0x+ q0

...
c5x

2 + q̇5x+ q5

 (4.31)

ci =
cmax,i + cmin,i

2
+ a

cmax,i − cmin,i

2
a ∈ [−1, 1] (4.32)

The other relevant parameters of the environment are detailed in Tab 4.1.

Table 4.1: List of all environment parameters

Environment parameters
action type joint speed command

command frequency 50Hz
distance threshold dt 0.1m
max. joint speed ±1 rad/s

min. robot human speed vmin 0.3m/s
max. human speed vmax 1.0m/s
min. human radius rmin 0.2m
max. human radius rmax 0.5m

success reward rs 20
collision reward cc 5
distance reward cd 1
action reward ca 0.1

4.4.2 Training and Software architecture

Among thedifferent reinforcement learning aDeepDeterministic policyGradient (DDPG) [61]
implemented by the library Stable-Baselines [64] has been used. The only difference, com-
pared to the DDPG, implemented in [61] is the introduction of Prioritized Experience Re-
play Memory to increase the sample efficiency. The hyperparameters are detailed in Ta-
ble 4.2.

Figure 4.3a shows the system architecture* developed for training on the simulated envi-
ronment is ROS and can be divided in 3 parts:

• Stable-BaselinesTheDRL library Stable-Baselines handle the Reinforcement Learn-
ing algorithm and communicate exclusively with the environment description (hu-
mancyl_robot) by sending the agent actions at each timestep and receiving the corre-
sponding rewards ri and states transition si+1.

*code available at: https://github.com/giorgionicola/rl_gazebo
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(a) The software architecture developed for the
training phase. The DRL algorithm was im-
plemented by using the library Stable-Baselines
while the training environment is fully ROS
based written in Python 3 and C++

(b) Image of the simulated environment in
Gazebo physics simulator

Figure 4.3: The simulated environment developed to train the policy

• humancyl_robot The environment description. Its main functionalities are: i) ob-
serving the environment (i.e., the physics simulation) and computing the state from
the observations ii) publishing the agent action (i.e., the robot joint speed commands)
to the robot controller iii) defining the behaviour of all the non-agent elements of the
simulation (e.g., the human movements) iv) advancing and resetting the simulation.

• Gazebo Gazebo is the physics simulator of the environment. As it can be noticed in
Figure 4.3a, the physics simulation includes controllers for both the robot and the
human and a set of plugins to add the required functionalities to the environment
(ROS services for collision detection, setting and asking joint positions and velocities).
Finally, Gazebo services and messages allows to control the simulation (start, pause,
reset, advance n steps).

The training results are detailed in Figure 4.4, where the evolutions of the average episode
reward, the success rate, the collision rate and the time-over rate (i.e., the percentage of time
the episode ended without either collisions or the robot reaching the target) are shown. The
aforementioned curveswere obtained by testing the policy every 5×104 steps on 20 episodes
per target, for a total of 1080 test episodes. The training phase required 47 hours on a pc
with CPU Intel(R) Core(TM) i7-7700HQ and a GPU Nvidia GeForce GTX 1050. The
hyperparameters were chosen based on a grid search training the agent for a limited time,
500k steps. The grid search was limited to a small subset of the hyperparameters and for the
remaining defaults values were used. The grid search was limited only to the learning rates,
the mini-batch size and the ratio between rollout steps and training steps.
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Table 4.2: List of DDPG hyper-parameter

Hyper-parameters
Training steps 4× 106

Training episode length 5 s = 250 steps
Discount rate 0.99

Actor learning rate 10−3

Critic learning rate 10−4

Memory size 2× 105

Minibatch size 128
Target update factor τ 0.001

Rollout steps 60
Training steps 1
Policy Network 400× 10ReLU
Critic Network 400× 10ReLU

Ornstein-Uhlenbeck µ 0.0
Ornstein-Uhlenbeck θ 0.3
Ornstein-Uhlenbeck σ 0.15

4.4.3 Simulated validation

The simulated validation focused on answering four questions:

• What are the success and collision rate on the training targets?

• Howmuch the overall success rate decreases introducing interpolated policy?

• Does an episode ended for time-over mean that the agent is stuck and cannot reach
the desired target or it means that more time is required?

• Is the policy able to generalize over different human trajectories not described by the
pseudo-random functions in (4.1) and (4.2)?

• Does the human speed have effects on the success rate?

• Is the policy able to generate continuous smooth trajectories?

In order to answer the first question, the policy has been tested 100 times on each trained
target position, for a total of 5400 test episodes. The policy achieved an overall success
rate of 91.76%. It should be noticed that an episode is accounted as successful only if the
robot reaches the target without any collision. A deeper analysis is shown in Figures and
Figure 4.5 and Figure 4.6, representing the success rate and the collision rate for each target.
Both images are three horizontal slices of the target region at the 3 different targets heights
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Figure 4.4: Learning curves: upper figure shows the episode reward; lower figure shows suc-
cess rate, collision rate and time-over rate

(z = 0.8, 1.0, 1.2). It can be noticed that the policy has high success rates and low collision
rates everywhere but two regions of space:

• the lower right corner at height z = 0.8.

• the upper left corner at height z = 0.8.

Such results can be easily explained by pointing out that those two regions are the most
difficult to reach. Indeed, the first one is extremely close to the table while the second is
almost in the center of the human workspace, so it is the region with the highest probability
of intersecting a human trajectory.

In order to answer the second question, the interpolated policy was tested over 5000 ran-
dom targets. The result, in Table 4.3, shows that the success rate slightly decreases, moving
from 91.76% to 89.74%. Such result confirms that the decrease in success rate is minimum
compared to the benefit of passing from a discrete goal state to a continuous goal state. From
a qualitative point of view the usage of the interpolated policy has caused the positive effect
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Figure 4.5: Analysis of the success rate for each training target
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Figure 4.6: Analysis of the collision rate for each training target
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of making the robot movements less jerky and smoother. The weighted average over the 8
surrounding training targets might indeed cause a regularization effect on the policy, thus
reducing spikes in the policy function, explaining the empirical observations.

Table 4.3: Results of the interpolated policies

Time [s] Success rate Collision rate Time-over rate
5.0 89.74% 5.5% 4.76%
25.0 92.6% 6.18% 1.22%

The source of the so-called Time-over rate was investigated. Such parameter account for
the episodes where the robot fails to reach the target within the defined time limit, but it suc-
cessfully avoids collisions for the whole episode duration. Indeed, it might happen that the
human interferes with the robot movements for more than 5 seconds, for example standing
still in the area of the target for a long period of time. From Table 4.3 it can be noticed that
by increasing the test episode length from 5 seconds to 25 seconds the time-over rate drops
to 1.22%, the success rate raises to 92.6%, while the collision rate does not increase signifi-
cantly. This result shows that, in a limited number of cases, the policy required more time
to find a free path to the target due to the characteristics of those specific episodes.

We tested the robustness of the proposed approach to different functions used to model
the human velocity and radius. In particular, instead of using the pseudo-random func-
tions shown in (4.1) and (4.2) they were set fixed to a random value at the beginning of each
episode. Even in this case, the policy was tested 100 times for each target for a total of 5400
episodes and no significant variation of the success rate was observed.

Subsequently, it was analyzed the effect of the human speed on the success rate of the
trained policy. The policywas tested in 3 caseswhere the human speedwas fixed at 3different
values (0.25m/s, 0.5m/s, 1m/s) for 1000 episodes. No significant variation of the success
rate was observed, showing that the policy was able to successfully generalize over the range
of the human speed used in training.

Finally, to verify if the policy was able to generate continuous and smooth trajectories an
example of a trajectory performed by the robot is reported in Figure 4.7. It can be noted the
absence of any discontinuity at joint position and joint velocity.

4.4.4 Experimental Validation

The experimental setup developed to assess the in-field capabilities of the proposed approach
is depicted inFigure 4.8a andFigure 4.8b. Inparticular, the latter shows themainROSnodes
required to interface and interconnect the hardware devices with the trained DRL model.
Differently from the simulated environment, the position of the target and the state (i.e., po-
sition, velocity and radius) of the human-occupied cylindrical volume are no longer a-priori
known, thus those quantities need to be estimated. To do so, an RGB-D camera (Microsoft
Kinect v.2) was integrated in the system, and its pose with respect to the global reference
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Figure 4.7: Example of a trajectory obtained with the trained policy.

frame calibrated using the easy_handeyeROS package [72]. For each experiment, the tar-
get is defined by placing in a random location within the goal space region a balloon, hanged
to the roof, with an AprilTag marker attached on. Once positioned, an AprilTag detector
node [73] estimates the target 3D position from the RGB image and the pointcloud pro-
vided, at each time frame (30Hz), by the Kinect.

The human occupied volume, modeled as a variable-radius moving cylinder, is estimated
fromtheKinectRGB-D images according to an internally-developedhuman trackingpipeline
relying a single-camera improved version of [74] (HiROS macro-block in Figure 4.8b). For
this work, HiROS has been configured to be composed by three subsequent nodes: i) a con-
figurable ROS wrapper for OpenPose, ii) a 3D projector, and iii) a safety bounding volume
extractor. The former (i) takes as input the RGB image and estimates the 2D position of
25 human body key-points defined by the OpenPose body_25model, most of them coinci-
dent with the principal human joint centers. Those key-points, identified in the 2D image
coordinates, are then projected by the following node (ii) in the 3D space through the depth
image and expressed with respect to the global reference frame. Finally, the last node (iii)
computes the so-called human safety-bounding volume, i.e., the minimum volume (m) con-
taining all the 3Dkey-points of the detected person, thus well representing the volume occu-
pied by the person itself. The computation is based on an SVD approach which computes
the minimum-volume bounding box, then translated into a vertical cylinder containing the
bounding box, multiplied by a safety factor of 1.1 . Following this approach, the radius of
the safety cylindrical volume, the 3D absolute position and velocity of its centroid, and the
target position are computed in real time at approximately 30Hz.
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(a) The physical experimental setup composed
by a robot UR10 (the agent), a balloon with an
AprilTag representing the target and a RGB-D
camera Kinect
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(b) The software architecture. The Policy re-
ceives as input the joints state, the target and
human positions, and it produces as output the
joint speed command that are sent directly to the
Robot Controller

Figure 4.8: The experimental setup used to evaluate the policy

4.4.5 Results

The policy was tested on a total of 16 experimental runs each time with a random target po-
sition. In the first 8 runs, without the human interfering with the robot, the success rate was
100%. In the remaining 8 runs the human interfered with the robot, in particular, human
interference with the robot consisted in walking/standing between the robot and the target
or walking in proximity of the target. The policy was able to successfully complete the task
in 7/8 runs, in the failed run however, the robot successfullymanaged to avoid collisionwith
both the human and the fixed obstacles, like in all other experimental runs. There are various
explanations to this result, first of all the behaviour of the human in simulation and the real
world is different. Indeed, in simulation the human does not react to the robot’s movements
even in case of an imminent collision,meanwhile the real person, even if instructed appropri-
ately to avoid the robot as minimum as possible, instinctively reacts to the robotmovements
avoiding collision when it is perceived as almost sure. However, such explanation would
confirm the strength of the conservative approach in the design of the human occupancy
model used in training. Secondly, it is possible that collisions were not experienced due to
the limited number of experiments with respect to the high number of simulated episodes.

During the experimental evaluation, the following robot behaviors were noticed. First,
the robotwas able to recognize if the humanwaswalking toward it and, in that case, the robot
was able to maintain a safety distance from the person by moving in the opposite direction.
Second, when the human was standing between the robot and the target, the robot moved
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away from the person and it also started tomove towards a zone not reachable by the human.
Thismeans that the policy gave priority to avoid any possible collisionwith the human rather
than minimizing the distance from the target.

The average computation time of the interpolated policy with a CPU Intel(R) Core(TM)
i7-7700HQ and a GPU Nvidia GeForce GTX 1050 is 6.9 ms that is an acceptable value
compared to the upper control frequency limit given by the maximum frame rate of the
Kinect camera of 30Hz.
Finally, it was noticed that the robot movements were less smooth in the real experiment

compared to the simulated one. The authors believe that there are multiple reasons: first,
the UR10 robot controller and the simulated one are not identical; second, in the simulated
environment there are no delays andmeasurement noises from the human tracking systems.
Indeed, there are no delays because all the required computations are performed while the
simulation is paused and themeasurements are not noisy because the human tracking system
is modelled as ideal.

4.4.6 The Policy Combinedwith industrial safety standards

In order to demonstrate the applicability of the proposed approach in a real scenario, the
method has been tested along safety standards. Specifically, a velocity scaling based on Speed
and Separation Monitoring (SSM) from the ISO TS 15066 (as implemented in [75]) has
been deployed. The velocity scaling introduces a speed override factor that decreases the
joint speed commands according to two factors: i) the distance between the human and the
robot; ii) the robot speed towards the person. The velocity scaling decreases the trajectory
execution till completely stopping when the distance between the robot and the person are
below a minimum safety distance. Therefore, it guarantees that collision between human
and robot can happen only when the robot is hold, and it is appliable to any themotion plan
regardless from the algorithm used to compute the plan. As a remark, once SSM is used, the
quality of a feedback motion planner relies on the actual intervention of SSM. Intuitively,
more SSM reduces the speed, less performing the motion planner is.

Among themost commonmotion planners, we selectedRRT* [76] (Optimal Rapidly ex-
ploring Random Tree) as the benchmark for our methodology. Both the policy and RRT*
have been tested on the same set of 30 human trajectories, performed by three people, con-
sisting of a person crossing the robot workspace and passing between the robot and its target.
For both RRT* and the policy, the same minimum safety distance of 0.3mwas set.
In both cases, no collisions were experienced, and the person did not have to modify

his/her trajectory to avoid the robot. However, some differences can be noticed looking
at the speed override and at the total time required to reach the target as shown in Table 4.4.
In particular, it can be easily noticed that the required time to reach the target is lower for
the policy. This result can be explained by looking at the amount of time the safety override
factor was below 50 (i.e., robot at 50% of the maximum speed) and was equal to 0 (i.e., the
robot is hold). In both cases, the policy spent less time at reduced speed or stationary because
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Figure 4.9: Comparison of the values safety override factor for the trained policy (blue) and
a non-human aware motion planner like RRT* (orange). When the safety override is equal
to 0 the robot is at rest and when it is equal to 100 the robot is at full speed.

the trajectory computed by the policy actually avoided the person meanwhile, the trajectory
computedwithRRT* did not avoid collisions, thus, it needed towait for the person tomove
away from the robot trajectory. Furthermore, in about 30% of the cases the safety override
factorwith the policy did not reach zero, differently fromRRT*where it always reached zero.

Table 4.4: Comparison between the Policy combined with SSM and RRT* combined with
SSM, mean time plus standard deviation

Time Safety override< 50 Safety override= 0
Policy 5.74± 1.04 s 0.21± 0.2 s 1.30± 0.73 s
RRT* 8.082± 1.65 s 1.42± 0.69 s 4.30± 1.82 s

In Figure 4.9 an example of the safety override factor for the Policy and RRT* in the stud-
ied scenario is shown. As it can be noticed not only the total time required and the amount
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of time spent at reduced/zero speed is lower but also the safety override factor increases faster
for the policy.

In conclusion, the policy combinedwith industrial safety standard like SSM from ISOTS
15066 is able to completely avoid collisions, and it ismore efficient than the current industrial
standard based on non-human aware motion planner plus a safety standard like SSM.

4.5 Conclusions and future works

In this chapter, aDRLbasedmotion planning approach for human-robot sharedworkspace
applications is proposed. Suchmethodology, compared tomost of themethods in literature,
does not require any a-priori knowledge about the human behavior. Furthermore, it is pro-
posed a novel formulation of the MDP action. The action is defined as a parametric poly-
nomial function at the joint level, whose coefficients are computed by the policy. It demon-
strated that for any polynomial trajectory with degree 5 or lower, it is possible to compute
the range of coefficients that guarantee the trajectory not to exceed the joint limits, if it exists.
The policy has been trained on a simulated environment on a limited number of targets and
subsequently, by means of trilinear interpolation of the policy over the discretized training
goal region, the robot proved to be capable to reach any target within such region showing a
neglectable performance drop. The tests on the simulated environment shown success rate
close to 92%. The policy has been successfully applied to the real world experimental setup
without retraining or fine-tuning, highlighting the generality and robustness of the method-
ology proposed. Finally, in order to prove that the proposed approach can be applied in real
world scenarios, it was combined with the current industrial safety standard and compared
with a standard motion planner with the same safety standards. The comparison showed
that in both cases no collision occurred, however, the proposed motion planner was able to
reach the target faster and required less intervention of the safety measures, proving that the
proposed approach is more effective than the current industrial best practice.

At the current stage, one of the limits of the proposedmethod is that the maximum num-
ber of people sharing the robot workspace must set during the training phase. The next step
of our research will aim at removing the aforementioned prerequisite. A possible solution
could be deploying a policy for each person inside the robot workspace and then averaging
the action based on the distance betweenhuman and robot. Another possible solution could
be to develop a policy based on recurrent neural networks such as in [39]. The grid-based
interpolation of the policy will be substituted with an interpolation over a low discrepancy
sequence of the training targets, such as the Halton sequence, in order to avoid that the pol-
icy learns undesired spatial patterns. Finally, the model will be extended, the human colli-
sion bounding volume will be substituted with a more realistic model and the robot will be
trained to perform more complex task (e.g., pick and place or inspection of products) and
also cooperative tasks such as object hand-over. The authors also plan to use the proposed
method as a tool to simulate and study the effects of human robot cooperation onmanufac-
turing processes. For example, the model could be used to evaluate in simulation the robot
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execution time in human-robot shared workspace scenarios.
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Noplan of operations extendswith any certainty beyond the
first contact with the main hostile force.

Helmuth vonMoltke the Elder

5
Feedback Task andMotion Planning in
Human-Robot Cooperative Scenario

In the previous Chapters, Task Planning and Motion Planing have been studied as separate
problems. In this Chapter, instead, we combineMotion Planning with Feedback Task Plan-
ning. The motion planning is grounded on the results from Chapter 4. Meanwhile, the
Task Planning compared with Chapter 3 divide the symbolic information of a task from its
geometrical information. In this Chapter, we analyze how to properly use the geometric
information in a non-deterministic and dynamic environment.
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5.1 Introduction

The previous chapters proposedmethods to perform task planning in non-deterministic en-
vironments in the presence of humans, Chapter 3, and compute safe motion plans, Chap-
ter 4. In this Chapter, instead, we present a method to combine both motion planning and
task planning. Indeed, as described in Chapter 1, task planning and motion planning in
human-robot cooperative scenarios should be studied as a unique problem.

Let’s consider the same scenario of object sorting proposed in Chapter 3. In that scenario,
the robotwas required to sort a set of desired objects, and in particular, multiple objects with
the same attributes were available to solve the same task (e.g., two small red cubes were avail-
able, and only one was requested). In those cases, the policy chose which category of object
(i.e., set of attributes) to pick and which object to pick among the ones with the same at-
tributes. In other words, the policy was required to solve simultaneously both the symbolic
level (i.e., choose the class of equivalent objects to pick) and the geometric level (i.e., choose
one object within the class). In many robotic applications, the solution to the geometric
level of the task planning is determined as the task that is considered optimal from the mo-
tion planner’s point of view. In Chapter 2, a different approach was implemented. The task
feasibility was encoded as a failure probability in the transition probability function, and the
trajectory’s quality was introduced in the reward function as a mathematical function. That
formulation provided a good level of abstraction of the motion planning, simplifying the
simulating environment. However, as the scenario becomes more complex (e.g., introduc-
ing other agents), it becomes impractical to describe the outcome of the motion planning
routine for the desired task in terms of state transition probability and the reward functions.
Therefore, in those complex cases, it becomes necessary to completely simulate the chosen
task, including the motion planning execution.

In this Chapter, we propose to decouple the symbolic and the geometric problems. The
symbolic level is solved as in Chapter 3; meanwhile, the geometric problem is solved by ex-
tending the approach to motion planning described in Chapter 4. As in Chapter 4, the
motion planning problem is defined as a sequential decision-making problem described by
anMDP and solved via DRL, and an actor-critic algorithm is used to train the motion plan-
ning policy. The feedback task plane is performed, evaluating the learned critic function
with respect to the various tasks and choosing the one that maximizes it. Indeed, the critic
function is trained to fit the expected cumulative reward that, on the one hand, is the ob-
jective function the policy has to maximize; on the other hand, it describes the quality of
solution provided by the policy and, in our case, the quality of the trajectory. For example,
low values of expected reward mean high chances of a collision or that it may require a very
long trajectory. Thus, choosing the task that maximizes the expected cumulative reward of
themotion planning is chosen the taskwith the overall best solution. Furthermore, the critic
function can be easily evaluated online, allowing tomodify the selected task online based on
the current environment status.
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5.2 Feedback Task Planning

Let’s consider a symbolic task that can be completed by performing one task a goal t among
a set of geometric tasks T , for example in a pick&place activity the robot instead of picking
a specific object might be required to pick one object that has certain properties and multi-
ple objects satisfy the desired properties. Thus, the problem is to select the optimal goal t∗
among T that maximize a fitness function f .

t∗ = argmax
t

f(t) t ∈ T T = [t0, . . . , tn] (5.1)

The main difficulty of the problem formulated is that f in most of the cases is not straight-
forwardly dependent from the geometric task, meanwhile it is function of the motion plan
P(t) to reach t. Thus, in order to find the optimal task, it is necessary to compute the opti-
mal motion plan for each task and then choose the best one.

t∗ = argmax
t

f(P∗(t)) t ∈ T T = [t0, . . . , tn] (5.2)

After modelling the motion planning problem as an MDP like in Chapter 4 we use as fit-
ness function the expected cumulative discounted reward Therefore we define the vectorR
composed by the expected cumulative discounted reward composed for each geometric task
ti:

R = [Rt0 , . . . , Rtn ] . (5.3)

Then we select the optimal task as:

t = argmax
t

R . (5.4)

To compute R we use a critic function that in actor-critic algorithms is learned during the
training phase. The critic function can be modeled as the Value function V (s) or as the
Action-Value functionQ(s, a), and we can computeR as:

R = V (s) = Q(s, π(s)) (5.5)

In order to evaluate theRwith respect to the tasks we define the state s as the concatenation
of the state of the environment, that includes the agents and eventual dynamic obstacles, and
the task state, i.e., the task position.

st =

[
senv
stask

]
(5.6)
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Thus, the vectorR becomes:

R = [Rt0 , . . . , Rtn ] = [Q(st0 , π(st0)), . . . , Q(stn , π(stn))] =

= [V (st0), . . . , V (stn)]
, (5.7)

Theoretically, the same approach can be applied to policy learned with any reinforcement
learning algorithm, not only to those based on actor-critic. However, it would require to
acquire a dataset of trajectory for each task with to learn the critic function, described either
asQ(s, a) or V (s). Instead, in actor-critic algorithm the expected reward is already learned
during the training phase, thus it can be directly applied.

The feedback task plane is not implemented during the training phase, otherwise it would
cause an effect similar to the maximization bias affecting Q-learning as described in Sec-
tion 2.3.4. In standard Q-learning, the maximization bias causes the agent to take subop-
timal actions both in training and in testing, because theQ-function is overestimated thanks
to the maximization operator used to estimate the target value. Analogously, the feedback
task plane is performed with a greedy strategy with respect to the expected reward via a max-
imization operator. If the feedback task plane was applied during the training, the policy
would be affected by a bias. Indeed, once some tasks are found to be easier, those tasks will
be chosen more frequently independently if they are really optimal.

This bias has two negative effects. First, the policy will perform extremely well on the
tasks that are easier because they are chosen more frequently, instead, it will perform badly
on harder tasks since not it was not collected enough experience. Second, it affects also the
training of Q-value function, since the agent collects more training samples on the success-
fully solved tasks, meanwhile it collects few training samples on the tasks that are not solved
yet. Thus, it causes that the estimation ofR is accurate for the successfully solved tasks and
inaccurate for the others. We defined this problem as the task maximization bias. It should
be noticed, that the task maximization bias does not have the effect of learning only to solve
the goals that are easier and therefore, that could be the optimal choice. Instead, it biases the
policy training on those goals that have already at least a partial solution. Let’s consider the
limit case where a policy and a critic function are pre-trained to solve only the targets that
in reality are suboptimal. If we start the training of the policy and implement the feedback
task plane, only the suboptimal tasks that already trained would be chosen, meanwhile, the
policy would not train on the other tasks that in reality are optimal.

Summarizing, the task maximization bias can cause overfitting on suboptimal tasks al-
ready solved and underfitting on optimal tasks that are not solved yet and could be optimal.
In conclusion, to avoid the taskmaximization bias the policy is trainedwithout feedback task
plane, instead the tasks are sampled from a uniform distribution.
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Figure 5.1: The scenario represents a human-robot cooperative pick and place application.
The human performs a set of tasks in s cyclic manner, moving from a home position to the
red cubes and to the blue cubes. The robot moves to the red and blue cubes from a home
position or from one of the red/blue cubes

5.3 Experiments

In this section, the online feedback task plan is applied to a human-robot cooperative sce-
nario combined with the feedback motion planner developed in Chapter 4. Firstly, the
human-robot cooperative application is described, and it is formalized into an MDP. The
formulation of the state of the action and the reward function is described. Subsequently,
it is described the pipeline used to simulate a person performing pick and place tasks. The
pipeline included firstly acquisition of human movements via a motion capture system, the
conversion to a library of Probabilistic Movement Primitives, and a set of data augmenta-
tion techniques to avoid overfitting during the training. Afterward, the training phase is
described, including the DRL algorithm used and the curriculum learning strategy imple-
mented. Therefore, the training results are presented and an extensive evaluation of the feed-
back task planner is presented.

5.3.1 Scenario

The studied scenario is a human-robot cooperative pick and place application shown in Fig-
ure 5.1. In such scenario the human moves in a cyclic manner from a home position to
a random red cube and then to the dock station represented as the blue cube, the human
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can also perform the task in the opposite direction (dock→cube→home). Meanwhile, the
agent, an anthropomorphic robot (UR10), is trained to reach any cube and all the docking
stations. The agents can start frommultiple positions: 1) a home position, out of the human
workspace; 2) from a red cube; 3) from a docking station (blue cubes).

Similarly to the works presented in Chapter 4 and Chapter 3 the training is performed in
a simulated environment. In particular, a human model is introduced, and its movements
are based on a dataset of pick and place trajectories.

The dataset of trajectories performed by the humanwas acquired via a IMU (InertialMea-
surementUnit) basedmotion tracking system. In particular, a set ofXsensMTAwindawere
used, and the IMU readings were obtained via [77]. The IMU readings after an optimized
inverse kinematics algorithms performed by the simulatorOpenSim [78, 79] were converted
in joint angles of the developed 18DoFs human model. Subsequently, the joint trajectories
are converted to a library of Probabilistic Movement Primitives.

An episode finishes under the following circumstances:

• Collision: a collision between robot and human or between robot and environment;

• Success: the robot end effector is within a distance of 0.1m from the target, the an-
gle between the end effector axes and a vertical line is below 0.2 radiant and the end
effector speed is below 0.1m/s;

• Timeout: the simulation lasts 10 seconds without experiencing collisions, an unfeasi-
ble trajectory or success.

Unlikemostworks, a specific simulatorwas developed instead of using a physics simulator
like Mujoco [80], Gazebo [81], or PyBullet [82]. Indeed the simulators mentioned above
are physics simulators, while in a motion planning application, it is necessary to simulate
only the kinematics and to perform the collision detection. For this reason, the kinematic
simulation was developed in Python 3, and the collision detection was performed with the
library GPU-Voxels [83].

We present the relevant parameters of the environment in Table 5.1.

5.3.2 State, Action and Reward

The state vector s is defined as the concatenation of the robot joint position and speed, the
human joints position and speed and the target position:

s =


robot joints position
robot joints speed

human joints position
human joints speed
target position

 . (5.8)
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We chose the action as a second order polynomial function for each joint, thus we can write,
based on Section 4.3.2:

at =

c
t
1x

2 + q̇0x+ q0
...

ct5x
2 + q̇5x+ q5

 (5.9)

cti =
ctmax,i + ctmin,i

2
+ a

ctmax,i − ctmin,i

2
a ∈ [−1, 1] (5.10)

In this scenario only the first 5 joints of the robot UR10 are controlled, the last joint, that
correspond to the rotation along the tool axis, is set constant to zero since it has no influence
on the successful completion of an episode.

We define the reward function shown in (5.11) as the sum of a distance reward rd, an end
effector orientation reward rθ, a collision reward rc, a reward for every timestep rstep and
finally a reward for successfully finishing an episode rsuccess. In detail, the distance reward
rd and the reward for end-effector orientation rθ and are proportional to the variation of
distance/orientation from the target value (cube/docking station position for rdist and end
effector axis vertical orientation for rθ). The collision reward is a constant negative reward
whenever a collision is detected. Similar to the collision reward, the unfeasible trajectory
reward is a negative constant value obtained when one of the robot joints exceed the posi-
tion/velocity limit. At each time step elapsed, a constant negative reward rstep to encourage
the agent to complete the task as fast as possible. When the end effector is within a tolerance
distance dtcp speed from the target, a negative reward proportional to the tcp speed is added
to promote the agent to reach the target with speed equal to zero. Finally, if the episode
terminate successfully, a positive reward rsuccess is added.

r = rd + rθ + rc + rstep + rtcp speed + rsuccess (5.11)

with

rd = cd(d− dold) rθ = cθ(θ − θold)

rc =

{
−cc if collision
0 if no collision

rstep = −cstep

rtcp speed =

{
−ctcp speedvtcp speed if d ≤ dtcp speed

0 if d > dtcp speed

rsuccess =

{
csuccess if success
0 if no success

Wewould like topoint out thedesignof thedistance reward rd of the angle reward rθ. Typ-
ically, the reward function used for solving a reaching task is modelled as a negative reward,
proportional to the distance. However, this formulation has 2major disadvantages, first it is
possible that in some scenario the agent, in order to minimize negative rewards, learns how
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Table 5.1: List of all environment parameters

Environment parameters
command frequency 20Hz
distance threshold dt 0.1m
angle threshold θt 0.2 rad
max. joint speed ±0.5 rad/s
success reward csuccess 1
collision reward cc −1
distance reward cd 0.5
angle reward cθ 0.5
step reward cstep 0.02
joint tcp speed ctcp speed −1

to stop prematurely the episode “committing suicide”. Indeed, in environments where the
positive rewards are very sparse and negative rewards are very common, the agent can easily
learn actions that cause the episode to end prematurely to collect as little as possible negative
rewards. Second, two trajectories with the same duration and same length can have different
cumulated reward based on the amount of time spent at different distances. Therefore, it
induces in the agent the knowledge that spending an amount of time close to the target is
better than spending the same amount of time far from the target. However, in our scenario
such behaviour is not desirable since it would encourage the robot to spend time in proxim-
ity of the of target even if it is not reachable because of the presence of the human, increasing
the chances of a collision. Our formulation, instead, model the reward for the distance and
the orientation of the tool as a positive reward proportional to the decrease of distance/angle
toward the target position/orientation. Thus, on one hand, the agent is encouraged tomove
towards the target to collect positive rewards even in environments where negative rewards
are predominant; on the other hand, the cumulated reward of the distance is no longer de-
pendent from the amount of time spent at different distances. Indeed, when the agent is not
moving, it does not receive any positive or negative reward.

All the relevant environment parameters including reward coefficient are shown in Ta-
ble 5.1.

5.3.3 Human Trajectory Acquisition andData Augmentation

Inorder to simulate themovements of a human in the training environment, a humanmodel
with 18 Degrees of Freedom (DoFs) is introduced, shown in Fig. 5.2. The developed model
has the following DoFs:

• 2 translational and 1 rotational at the pelvis;

• 3 rotational between pelvis and abdomen;
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Figure 5.2: The 18 DoFs human model implemented

• 2 rotational between the sternum and each clavicle;

• 4 rotational per arm, divided as 3 in the shoulder and 1 in the elbow.

Subsequently, a dataset of a person performing a set of tasks in the studied scenario is
acquired and used to create a library of Probabilistic Primitives Movements (ProMP) [84]
that represents all the tasks the human performs in the scenario.

During the training phase, the human randomly selects a task from the library and gener-
ates a trajectory by sampling the ProMP library. To prevent the agent from overfitting the
acquired dataset of trajectories, data augmentation was applied by:

• changing the trajectory execution time;

• adding variable random pause between consecutive tasks;

• exploiting the redundancy of the human arm to maintain the hand trajectory while
modifying the elbow position;

• random starting position of the human, in other words the episode can start with the
human that has already partially completed the selected task;

• reverting human trajectory, i.e., executes the trajectory in the opposite direction.

In order to create new human movements with same hand trajectory and different elbow
position, a set of via points are created and the corresponding ProMP is conditioned to pass
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through those points. Such approach allows to greatly enlarge the set of human trajectories
while maintaining the properties of the original movements.

5.3.4 Training

As detailed, in Section 5.2 the reinforcement algorithmmust be actor-critic and among this
class of algorithms it was chosen TD3 [62] (see Section 2.7.2 for a detailed description of
the algorithm) despite the fact that it uses as critic function, and therefore, is more compu-
tationally expensive to select the goal since also the policy must be evaluated for each goal.
However, TD3 not only is one of the state of the art algorithms, but also it addressed the
problem of bias overestimation of the critic function as detailed in Section 2.6, thus it is
the algorithm that provide the most accurate estimate of the true critic function. However,
differently from the original implementation, as exploration strategy it was implemented Pa-
rameter Space Noise [85].

In order to facilitate the training and increase its speed, a curriculum learning strategy was
developed. As detailed in Section 5.3.1, the agent is trained to reach any cube/dock starting
from any cube/dock or a home position. Thus, at the beginning of each episode, a random
target and a random starting position are sampled. The curriculum learning strategy de-
veloped consists in starting each episode with the distance between the robot and the target
sampled from a triangular distribution. The triangular distribution is defined between 0 (i.e.,
the robot is on the target) and 1 (i.e., the robot is in the sampled starting position). At the be-
ginning of the training phase, the distribution has the mode close to 0 (i.e., the robot is close
to the target), the lower limit equal to the mode and the upper limit equal to 1. During the
first 500k training steps, the mode of the distribution move progressively toward the upper
limit until they are equal. In the successive 500k training steps the lower limit moves toward
the upper limit until after 1million steps from the beginning of the distribution collapse to
a single the value of 1, and therefore, the robot start the episode exactly on the sampled start-
ing position. The implemented strategy, allows reducing the difficulty of the episodes and
therefore allowing the agent to experience successful episodes even with low-quality policies.

In Table 5.2 the main TD3 hyperparameters used are reported.
The training results are detailed in Figure 5.3, where the evolution of the average episode

reward is shown. The aforementioned curves were obtained by testing the policy every 50×
104 steps on 200 random episodes. It can be observed that the agent was able to achieve a
success rate of 75% after 2 × 106 steps. The failures were divided as follows, collision rate
25% and timeout rate 0%.

5.3.5 Feedback Task Planner Evaluation

Toprove the effectiveness of the feedback task plane, first was tested similarly to Section 5.3.4
on 1000 episodes allowing the robot to choose between a randomnumber of random targets
(between 2 and 3). The results showed an increase of the success rate from 75% to 90%. In
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Table 5.2: List of TD3 hyper-parameters

Hyper-parameters
Training steps 4× 106

Training episode length 20 s = 400 steps
Discount rate 0.99
Actor learning rate 10−4

Critic learning rate 10−4

Memory size 5× 105

Minibatch size 64
Target update factor τ 0.001
Policy training frequency 3
Parameter space noise σ 0.5

Figure 5.3: Evolution of the average episode reward during the training
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order to prove that the proposed method is more effective than a simple heuristic like, for
example, the distance, a set of specific tests were developed with the objective to highlight
specific behaviors learned by the agent during the training. The tests, briefly summarized
in Table 5.3, aim at verifying that the selection of the task based on the critic function is
able to choose the optimal task, with a trade-off between the probability of colliding with
the human and the required time to reach a target, i.e., the distance. For each test, a set of
two possible tasks are available to the robot meanwhile the human can either stand still in
proximity of one of the available goals to the robot (case studies 1 and 2, type: Static), or
he/she performs amovement that will interfere with the robot movement toward one of the
available goals (case studies 3 and 4, type: Dynamic).

Table 5.3: Summary of the tests

Case study Type Robot start Robot goals Human start Human goal
1 Static cube5 {cube0, cube4} cube4 None
2 cube2 {cube0, cube1} cube1 None
3 Dynamic cube5 {cube0, cube1} cube3 dock1
4 cube3 {cube1, dock0} dock1 cube0

• Case study 1We start with a trivial proof of concepts in terms of human interference.
We want to prove that if both targets are reachable with different degree of human in-
terference, the closest target that alsominimize the human interference will maximize
the expected reward, and it will be chosen.
The robot starts from cube5 and should move towards one of the targets of {cube0,
cube4}. At the same time, the human’s hand is stationary in proximity of cube4, thus
both cube0 and cube4 are reachable without collisions, however cube0 requires the
robot to cross with the human differently from cube0. We expect the robot to select
and reach cube4 since it is the closest and it minimizes interferences with the human.
As shown in Figure 5.4, already at time step t = 0, the robot perceives that cube4 is
much easier to reach compared to cube0. The Q-value of cube4 keeps increasing until
the robot successfully reaches it, meanwhile, the expected reward for cube0 decreases
since the robot get closer to the human, therefore it is more likely to have a collision.

• Case study 2 In this experiment, it is verified that the agent is able to choose the target
not only based on the distance as a simple heuristic. Instead, it is able to evaluate the
risk of collision and prefer targets that further but less hazardous.
The robot starts from cube2 and is assigned to {cube0, cube1}. At the same time, the
human’s right hand is steady on cube1. Therefore, cube0 is totally free, meanwhile
cube1 it is almost completely covered by the human and to reach it the robot must
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Figure 5.4: Case study 1.

come very close to the human with a very high risk of colliding if the human starts
moving. It should be remembered that the robot does not know that the human will
stand still indefinitely, instead it expects him/her to start moving again sooner or later.
As the human is occupying cube1 (that is the optimal target in terms of distance), the
robot should automatically select cube0 and move toward it.

As shown in Figure 5.5, at the beginning the robot is very close to the human thus
it is perceived a high risk of collision and both expected rewards have very low values.
However, cube0 since it is completely free, has an expected reward slightly higher, and
it is chosen. As the robot moves toward cube0 circumventing the human, cube1 is ex-
tremely close, and it is perceived that it is reachable and therefore is chosen (t = 13).
However, eventually cube0 is recognized a safer option indeed the expected reward be-
tween t = 13 and t = 45 keeps increasing, thus it is chosen even if is the furthest.
The overall length of the trajectory is 1.2 s (60 steps) and the agent spend 0.62 s in
the attempt of reaching cube1. We consider the overall duration of the trajectory sat-
isfying.

• Case study 3 In this case, it was studied if the robot is able to select the correct task
even if the person ismoving. In a dynamic scenario, we expect that the target to chosen
changes over the time based on the current level of interference between the robot and
the person.

The robot starts from cube5 and is assigned to {cube0, cube1}. At the same time, the
human’s right arm moves from cube3 to dock1. The human movement is chosen to
obstruct for a certain amount of time one of the robot targets, in particular cube0
that is the closest target that otherwise would be chosen. Furthermore, the human
movement require the robot to perform collision avoidance to reach any of the targets.
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Figure 5.5: Case study 2.

cube1.
As shown in Figure 5.6, at t = 0, the robot the human’s right arm occludes cube1
that is the closest target, therefore the furthest target, cube0, is chosen. At the same
time, the human starts moving toward the robot to reach dock1. To avoid the oper-
ator, the robot extends its trajectory, and the expected reward decreases. At t = 10,
the robot has completely avoided the human’s arm, which in turn has reached dock1,
and resumes its trajectory towards cube0. At this point, cube0 and cube0 are both free
and at similar distances from the robot and therefore they both have extremely sim-
ilar expected rewards. At t = 20, has gotten closer enough to both targets that the
difference in distance is evident and it chooses the closest one, cube0, until it reaches
it.

• Case study 4 In this last test, we want to stress that even in dynamic environment,
the task choice is based on the human motion and on a trade-off between the target
distance and the level of possible interference.
The robot starts from cube3 and is assigned to {cube1, dock0}, at the same time, the
human’s right armmoves from dock1 to cube0.
As shown in Figure 5.7, at the beginning, the robot starts moving towards the closest
goal cube1, indeed, even if partially occluded by the human, it is possible that it will be
freed. Once the human startmoving toward cube0, it completely obstructs the robot’s
path to cube1 and at t = 10 the robot changes target, choosing dock0 that is further
but free. Soon after the human reaches cube0 and he/she does not obstruct cube1
anymore, however, the agent does not choose again cube0 even if it is the closest target.
Instead, the robot keeps moving toward dock0. Indeed, cube0 is a hazardous target
since it is very close to both the hand and the abdomen of the human, therefore if
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Figure 5.6: Case study 3.

he/she resumes moving, the robot has very little space tomaneuver to avoid collisions.
Such reasoning is confirmed by the fact that at t = 21, the expected reward for dock0
is much higher than the expected reward for cube1. In this case study, the robot is able
to prefer safety to distance from the target.

5.4 Conclusions

In this chapter was proposed a novel method to integrate geometric task planning and mo-
tion planning. Grounding on the work of Chapter 4, the motion planning problem is mod-
eled as anMDP, and the expected cumulative discounted reward is used to select the optimal
geometric task. The expected cumulative discounted reward is computed using a critic func-
tion represented as NN and learned during the agent training phase. Thus, the expected cu-
mulative reward is computed quickly, and the geometric task can be selected at a very high
frequency. Subsequently, the approach was applied to a simulated human-robot coopera-
tive scenario. In this scenario, both the human and the robot perform pick and place tasks
while sharing the sameworkspace. The humanmovements in the simulation are based on an
acquired dataset of human trajectories performing the samepick andplace tasks. The dataset
is converted into a library of probabilistic movement primitives and combined with custom-
made data augmentation techniques to prevent the policy from overfitting. The robot was
able to learn an effective policy to reach any target from any starting position, achieving an
overall success rate of 75%. Finally, we tested the feedback task plane. First, when the agent
can choose between multiple random geometric tasks, the success rate increases from 75%
to about 90%. Second, we studied a set of specific case studies to analyze how the geometric

95



Figure 5.7: Case study 4

tasks were selected. In particular, it was noticed that the agent was able to select tasks that
minimized the probability of collisions or, when it was safe, the closest target.

The proposedmethodhas shownpromising results in a highly complex scenario; however,
it cannot completely avoid collisions. Onepossible solution couldbe an extensivefine-tuning
of the reward function. Otherwise, similarly toChapter 4, it is possible to combine thepolicy
with the current state of the art of industrial safety standards like the Speed and Separation
Monitoring or the Power and Force Limitation from the ISOTS 15066. Another limitation
of the proposed solution is that the policy cannot dealwithmultiple peoples, and it is tailored
to a specific human partner represented by a human model with unique dimensions (e.g.,
height or arm’s length). The first problem could be solved by introducing a formulation
of the state of the MDP with multiple humans, like in Chapter 4. Otherwise, it could be
computed the action for every human, and the performed action is a weighted average of
the actions computed previously. To introduce the possibility of generalizing over human
models, the human state could be redefined by introducing the model’s dimensions (e.g.,
links dimensions). Otherwise, the state could include different data sources like, for example,
pointclouds.

Finally, in this work, the plan of the symbolic task is assumed given and not modifiable.
However, even the symbolic task planner should take into consideration geometric informa-
tions. Therefore, we also plan to use the information of the expected cumulative reward
frommotion planner also to choose among symbolic tasks.
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And where does the newborn go from here? The net is vast,
and infinite.

Ghost in the Shell (1995), Mamoru Oshii

6
Conclusions and Future Works

6.1 Conclusions

This thesis studied the problems of Task planning, Motion planning and Task and Motion
planning indynamic andnon-deterministic environments,withparticular attention tohuman-
robot cooperation. All those problems have been solved as sequential decision-making prob-
lems described asMarkovDecision Processes. Indeed,MarkovDecision Processes allowdeal-
ing with the two main criticalities of human-robot cooperation, non-determinism, and dy-
namic environments. On the one hand, non-determinism is considered, since Markov De-
cision Processes can effectively describe environments characterized by stochastic dynamics.
On the other hand, they can easily handle dynamic environments since they compute the
optimal action step by step instead of planning over a finite horizon or the complete task
like classic motion planning or task planning techniques. Finally, Reinforcement Learning,
particularly Deep Reinforcement Learning, was used to solve the studied Markov Decision
Processes. Indeed, in the last decade, the combination of Deep Learning with Reinforce-
ment Learning has allowed solving problems that before considered almost impossible, like
the game of Go or achieving superhuman performances in most of the games of the Atari
benchmark. Reinforcement Learning relies on a trial and error approach to solve the prob-
lems; however, in most scenarios, it is not feasible or safe to allow the robot directly to learn
themost effective policy in the actual scenario, for example, the robot could collide and dam-
age or even worse injure the human partner in human-robot application. Thus, for each of
the studied problems, a simulated environment was developed to train the agent safely.

In Chapter 3, Task Planning in non-deterministic environments was studied. First, a gen-
eral formulation of the Task Planning problem was proposed, and then it was applied to
solve a sorting problem characterized by friendly and adversarial events and probabilistic ex-
ecution of the planned actions. In particular, the friendly and adversarial events represent
the possible outcomes of the interaction of a human partner in the same environment. The
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human in such a scenario might be collaborating with the robot at completing the sorting
task, or might be executing an unrelated task conflicting with the current task assigned to
the robot. The proposed method was tested on multiple applications and transferred to a
real-world application. It proved to be able to avoid actions with low success probability
and react to unpredicted events without idle time like standard task planners that require
computing a new plan.

In Chapter 4, Reinforcement Learning was used to develop a Feedback Motion Planner
to allow a human and industrial robotmanipulator to share the sameworkspace. The robot,
after extensive training in the simulated environment, was able to avoid collision and at the
same time perform a reaching task in almost the totality of the cases without collisions. The
formulation allowed the robot to generate continuous and smooth trajectories and guaran-
teed the trajectory feasibility concerning the joint limits (position, velocity, acceleration, etc.).
Thus, it was no longer necessary to verify that the robot trajectories were dynamically fea-
sible. The learned policy was successfully transferred from the simulated environment to
the real-world application, highlighting the solution’s robustness. Finally, the learned policy
was combinedwith current state o the art industrial safety standards to enhance the system’s
safety. The proposed solution proved to be more effective than current industry best prac-
tices.

Chapter 5 presents an application of combinedTask andMotion Planning based onRein-
forcement Learning, studying the problemof geometrical reasoning in dynamic and stochas-
tic environments. Indeed, in many applications, choosing the optimal geometric task that
solves the desired symbolic task is achieved by planning the solution for every symbolic task
and then choosing the one that maximizes the desired metric. However, it is often non-
practical in dynamic environments since it requires excessive computation time, and heuris-
tics are often used even if they provide suboptimal solutions. Thus, it was solved themotion
planning problem with a feedback motion planner trained via Deep Reinforcement Learn-
ing, similarly to Chapter 3. Subsequently, the expected reward, learned during the training
phase as a Neural Network, is used to select the geometric task based on the current state of
the environment. The proposed approach allows reducing computation time to select the
geometric task at the level that is possible to select it at a very high frequency. When com-
bined with the proposed feedback motion planner, it is also possible to change the task on
the fly smoothly. Furthermore, a novel formulation of the action based on parametric func-
tions was proposed. The approach was successfully applied to a simulated human-robot
cooperation scenario involving a human and a robot performing pick and place activity in
proximity. The studied application highlighted the capability of the proposed approach to
deal with highly non-deterministic, cluttered, and high dynamics environments.

In conclusion, a methodology to solve task andmotion planning in human-robot cooper-
ative applications, based on Deep Reinforcement Learning. The proposed method was able
to solve studied problems when the expected human behavior was known, like in Chapter 5,
and when it was unknown, like in Chapters 3 and 4. Deep Reinforcement Learning proved
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to be a highly flexible method capable of solving a wide variety of problems, even with very
different formulations. For example, in Chapters 3 and 5, it was used to solve motion plan-
ning problems described by continuous actions and states, while in Chapter 4, it was used
to solve task planning problems with discrete actions and states.

6.2 FutureWorks

As future works, it would be interesting to investigate some open questions. First of all, the
human behavior (motion or task execution) was considered independent of robot behavior
in all the studied scenarios. This choice introduced a conservative approach; for example, in
motion planning applications, the robot was also trained to avoid collisions even when the
person performed dangerousmovements (i.e., high risk of collision). However, when people
cooperate, they can adapt to each other to achieve a higher common goal, for example, the
overall assembly time in an industrial assembly. For example, humans can adapt movements
tominimize the risk of colliding or avoid interfering; similarly, they can choose which task to
execute based on the task the other people are performing. A model describing the human-
robot interaction atmotion and task levels is necessary to introduce the reciprocal adaptation
between humans and robots. Nevertheless, the study of human-robot interaction on the
motion and task levels is still an open problem. For example, in [44], a method integrates
an adaptive human behavior based on defining it as a combination of following their habits
and performing the optimal action for the common task. However, the proposed model is
arbitrary and does not guarantee to be general. Human-robot in interaction in motion has
been studied in various works [3]. Typically, those works analyzed the overall effect on the
joint task, described bymetrics like the idle time or the time to complete the task, or analyzed
the level of trust in the robot based on different movement strategies. However, no analysis
on how human movements are affected by robot movement is proposed. Instead, in [86]
the same problem is studied in the case of human-human cooperation. However, there is no
guarantee that the studied solution can be transferred to a human-robot application.

In this thesis, only model-free were implemented; however, it could be interesting to in-
vestigate other reinforcement learning methods like Model-Based or Hierarchical methods.
The Model-Based methods typically can reduce the required training time thanks to the in-
troduction of models to predict the dynamics of the environment. Hierarchical Reinforce-
mentLearningpromises to solvemore complexproblems and to reuse the knowledge learned
in related problems thanks to hierarchical policies. Indeed, while Reinforcement Learning
focuses on learning a policy to solve a single task, Hierarchical Reinforcement Learning fo-
cuses on decomposing single tasks in subtasks, each one solvedwith a specific policy. Related
problems can share some subtasks, and therefore, it is possible to reuse the policy for the spe-
cific subtask.

To conclude, theproposed approach to task andmotionplanning is consideredpromising.
On the one hand, we expect that newmethods from the field of Human-Robot Interaction
will help describe humanbehavior in human-robot scenarios. The description of an adaptive

99



human behavior will enable to achieve true collaboration between humans and robots, sim-
ilarly to human-human collaboration. On the other hand, the reinforcement learning com-
munity continuously develops newmethods (e.g., algorithms, exploration strategies, etc.) to
solve problems faster and more challenging problems. Thus, in the future, we will be able
to solve problems that nowadays either require too much training time or are not solvable
because too complex.
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