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Robust Techniques for Measurement Error Cor-
rection in Case-Control Studies: A Review

A. Guolo

Department of Statistical Sciences
University of Padua
Italy

Abstract: Measurement error affecting the independent variables in regression
models is a common problem in many scientific areas. It is well known that the
implications of ignoring measurement errors in inferential procedures may be sub-
stantial, often turning out in unreliable results. Many different measurement error
correction techniques have been suggested in literature since the 80’s. Most of them
require many assumptions on the involved variables to be satisfied. However, it
may be usually very hard to check whether these assumptions are satisfied, mainly
because of the lack of information about the unobservable and mismeasured phe-
nomenon. Thus, alternatives based on weaker assumptions on the variables may
be preferable, in that they offer a gain in robustness of results. In this paper, we
provide a review of robust techniques to correct for measurement errors affecting
the covariates. Attention is paid to methods which share properties of robustness
against misspecifications of relationships between variables. Techniques are grouped
according to the kind of underlying modeling assumptions and inferential methods.
Details about the techniques are given and their applicability is discussed. The basic
framework is the epidemiological setting, where literature about the measurement
error phenomenon is very substantial. The focus will be mainly on case-control

studies.
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1 Introduction

Measurement error is a widely present problem in many scientific areas. In
particular, it is a commonplace in observational studies, such as those carried
out in environmental epidemiology (Zeger et al., 2000). Erroneous measure-
ments are due to different reasons, the most obvious being the inaccuracy of
the instruments. Other examples include high costs of exact measures, the sub-
jective nature of some variables, such as self-reported information and intrinsic
biological variability. Measurement error is responsible for non-negligible infer-
ence problems if it is not corrected for (Armstrong, 2003). In particular, it has
been long recognized that measurement error can bias the estimates. Further
effects are unreliable coverage level of confidence intervals and reduced power
of tests.

A large number of methods aiming to correct for measurement error have
been proposed in literature since the 80’s. They differ according to the as-
sumptions about the distribution of the unobserved variable, to the availabil-
ity of additional data about the unobserved variable and to the theoretical
background of the approach, which may be parametric or nonparametric. A
detailed review is Carroll et al. (2006). Previously, a review of measurement
error correction techniques in case-control studies, when extra information is
available, has been proposed by Thiirigen et al. (2000). The review of tech-
niques we provide here differs from the one by Thiirigen et al. (2000) in that
the focus is on methods which share the property of being robust against mis-
specifications of the relationships between variables. Most of these techniques
have been proposed in literature during the last few years and a comprehen-
sive overview of them is not available yet, to the best of our knowledge. The

performance of these techniques in correcting for measurement errors has not
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been deeply investigated in applications, although situations where the avail-
ability of robust methods would be preferable arise very often. The most
common situation is avoiding estimators of parameters to be inconsistent, as
it may happen when the assumptions underlying nonrobust methods are not
satisfied, at least approximately. To stimulate the use and the development
of robust techniques to correct for measurement error affecting the covariates,
we provide a review of the methods, through a classification made up on their
underlying theory. We do not consider results about robustness against lever-
age points or outliers, which both are rare in this literature. We mainly refer
to the epidemiological setting and to case-control studies.

The paper is organized as follows. In Section 2 we define the framework
which we focus on and the corresponding notation we will adopt thereafter.
Robust measurement error correction techniques are described in Section 3,
following a classification into groups which share a similar theoretical approach.

A discussion about the applicability of the methods is given in Section 4.

2 Notation

Suppose that case-control data are available. Let Y be the response vari-
able. In the case-control setting we focus on, this is the case-control status,
or the disease status, indicator. Let X be the covariates which may be not
directly observed. In epidemiological studies, they typically represent risk fac-
tors contributing to the presence of the disease. Instead of X, the mismeasured
variables W are observed. These are usually called prozy variables. It may be
assumed that other variables, Z, can be measured without error.

In measurement error literature, we distinguish different models relating

the variables. The model relating the variable Y to the unobserved variables
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X and the error-free variables 7 is referred to as the disease model. 1ts density
is indicated by fy|xz(y|z,2; §). In case-control studies this model is typically
the logistic regression model. The interest usually focuses on the vector of
parameters (3, which is the vector of relative risks associated with a unit change

in the exposure to the risk factors X.

The measurement error process is specified by modelling the relationship
between X and W, possibly depending on Z. It is called measurement error
model. The simplest measurement error model is the classical error model W =
X +U, where U has mean zero and variance equal to o7 and is independent of
X. The classical measurement error model is an unbiased and additive error
model, such that E[W|X] = X. An alternative model is the Berkson error
model, which typically arises in laboratory studies and experimental situations
in which the observed variable is controlled for. The model relates X and
W as X = W + U, where U has mean zero and variance equal to o7 and is

independent of W. In the Berkson model E[X|W] =W and W is said to be

an unbiased predictor of X.

Different types of measurement error can arise in practice. An impor-
tant distinction is made between differential and nondifferential measure-
ment errors. The error in W is nondifferential if no additional informa-
tion on Y is contained in (W, X,Z) with respect to (X, Z). This means
that the conditional distribution of Y given (W, X,Z2), fyywxz(ylw,x, 2; (),
is the same than the distribution of Y given (X, Z), fy|xz(y|z, z; 3), that is,
fywxz(ylw,x,2; 6) = fyixz(y|z, z; 3). In this case, W is said to be a surro-
gate for X. When, instead, fyywxz(y\w,x,2;8) # fyixz(y|z, z; 5), the error

is said to be differential.

In applications, many different error sources can be encountered. This im-
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plies that both nondifferential and differential errors, with classical or Berkson
components, can be defined. An accurate specification of the error model,
distinguishing between differential and nondifferential errors with classical or
Berkson components, is crucial because of the different impacts of the errors on
the inferential results and the different available correction techniques. There-
fore, a good identification of the error model is important for the successful

application of measurement error correction techniques (Heid et al., 2004).

These techniques can be roughly classified into two groups, according to
their interpretation of the unobserved variables X. We define a method to
be functional if it makes no assumption on the unobserved variables X, that
is, they are modeled as unknown, nonrandom constants (parameters). On the
contrary, we define a method to be structural if it considers the X'’s to be
random variables. In this case, the specification of the distribution for the X’s
is needed, possibly depending on Z. This gives rise to the exposure model,

whose density is indicated by fx z(x|z;06).

The simplest way to correct for measurement error is by adopting the so-
called regression calibration (RC, for short) method (Rosner et al., 1989, 1990;
Carroll and Stefanski, 1990; Gleser, 1990). This is the most commonly adopted
method to correct for measurement error in covariates, mainly because of the
simplicity of its applicability with existing softwares. The idea underlying the
method is the estimation of the regression of X on W and, possibly, Z on
additional data, that is, further data than the main study sample. Additional
information can be available in different forms. For example, a subsample of
observations from X can be recorded for a small group of subjects of the main
study sample. It originates the internal validation data set, from which the

so-called gold standard measures of X are available. A common alternative
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is collecting replication data, which are replicates of the observations from X.
They can be obtained by the same process which provides observations from
wW.

According to the idea underlying RC, the resulting predictions of X ob-
tained by the regression of X on (W, 7) in the additional data set are then
substituted to the unknown values of X in the disease model. After that,
standard analysis can be run. RC often leads to consistent or approximately
consistent estimators of the parameter of interest. However, it requires some
hypotheses to be satisfied, first of all that a linear homoscedastic relationship
between X and W and, possibly, Z, holds. If this is not the case, RC results
could be quite misleading.

Thus, alternative techniques to correct for measurement error may be
preferable. An example is given by likelihood-based correction techniques,
which have the advantage of ensuring good properties of the corresponding
estimators, as, for example, efficiency and optimality, although at the notable
price of a bigger computational burden. The application of likelihood tech-
niques requires the parametric specification of the distribution for the unob-
served variable X, that is, the exposure model, together with the specification
of the disease model and of the measurement error model previously defined.

Let a classical structure for measurement error hold and let fiy|x z(w|z, 2;7)
be the density associated with this model. If n; is the number of subjects on
which observations (y;, w;, z;), i = 1,...,ny, from the variables (Y, W, 7) are
recorded, the likelihood is given by integrating over the true and unobserved

X

L(QQ?J,U),Z) = H/fY\Xz(yz‘\iﬁz',Zz‘;ﬁ)fW\Xz(wi\%Zz‘W)fX\Z($z‘|Zz‘;5)d$z‘, (1)
i=1

where 0 = (3,7,d)". If the Berkson error model holds in place of the classical
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one, then the likelihood function for # is given by

L(G;y,w,z) = H/fY\Xz(yi\iEi,Zz‘;5)fx\wz($i\wi,Zz'W)fW\Z(wz‘|Zi;5)d$z', (2)
i=1

which can be simplified to

L(Q;yawaz) = H/fY\XZ(yi‘xz’aZi;ﬁ)fX\WZ(xi‘wiaZiQ'Y)dxia (3)
i=1

if we consider that fy(w|z;6) carries no information about the interest pa-
rameter [ and does not depend on X. The integrals in (1) and (3) are replaced
by a sum if X is a discrete random variable.

Often additional information about the measurement error distribution is
necessary for parameters in (1) and (3) to be identifiable. Such additional
information may be in the form of validation data or replicates. Suppose
that internal validation data are available. Let ny be the dimension of the
internal validation data set, in which we observe (y;, z;, 2;), i = 1,...,ng, from
(Y, X,Z). To take account of this, the likelihood in (1) is re-expressed as

follows

L(H;y,w,z) = H/fY\Xz(yi|$i,Zz';»3)fW\Xz(wi\$i,Zi;V)fX\Z(xﬂzz‘;5)d$z’
i=1
HfY\XZ(yi|$i,Zi;ﬁ)fW\XZ(wi\wz’,Zi;7)fX\Z($i|Zz‘;5),
i=1

while the one in (3) is re-expressed as follows

L(G;y,w,z) = H /fY\XZ(yz'\%Zz‘;5)fX\WZ($i\wi,Zi;7)d$i H fY\XZ(yz'\l‘i,Zi;ﬁ)fX\Wz($i|wz’,Zz';
i=1 i=1

Similar modifications of the likelihood are defined to take account of other

additional data as, for example, external validation data or replicates(Higdon

and Schafer, 2001),(Schafer, 2002).
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3 Robust techniques

As outlined in Section 2, a parametric approach requires the specification of
some models for all the involved variables. In particular, the likelihood-based
approach requires the exposure model to be specified, which is often difficult
because of the lack of observations from X. This implies that issues of model
misspecification naturally arise. It is well known that model misspecification
can result in inconsistent estimators of the model parameters (Carroll et al.,
1998). Recently, Huang et al. (2006) suggest methods for diagnosing the ef-
fects of model misspecification of the exposure distribution, by checking both
formally and empirically robustness properties. Alternatives to parametric
modeling which retain good properties of efficiency with respect to parametric
inference while reducing sensitivity to modeling assumptions on the variables
may be preferable. Examples are flexible-parametric modeling and semipara-
metric modeling, which are illustrated in Section 3.1 and Section 3.2. More-
over, other solutions are provided by different techniques. We classified them in
quasi-likelihood, estimating equations and empirical likelihood. Details about
these techniques are given, respectevely, in Section 3.3, Section 3.4 and Sec-
tion 3.5. Robust techniques which cannot be included in one of the previous

groups are illustrated in Section 3.6.

3.1 Flexible-parametric modeling methods

The use of a parametric model with a high flexibility in defining some com-
ponents of the problem, such as, for example, the exposure model, has the
advantage of being easily defined and making inference retaining a high degree
of efficiency if compared to parametric inference. The method is suggested

by Carroll et al. (1999b). These Authors propose to use a mixture of normal
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distributions as a flexible specification for a component of the problem. In par-
ticular, they focus on linear models and change-point Berkson models, with
nondifferential errors and use a mixture of normal distributions to model the
unobservable covariate X and the measurement error, respectively. The mix-
ture distribution is incorporated into the likelihood function, thus summarizing
data contribution for inferential procedures performed through a frequentist
or a Bayesian approach. A Bayesian approach is adopted to obtain point es-
timates and confidence intervals for all parameters of interest, using Markov
chain Monte Carlo (MCMC) for simulating from the posterior distribution of
the parameters. The number of components in the normal mixture, indicated
by k, is also considered an unknown parameter. According to Carroll et al.
(1999b), it can be estimated like the other parameters or it can be chosen
through a sensitivity analysis, by evaluating how inferential results vary as a
function of k. The first solution is adopted in the linear model, while the second
is used in the change-point Berkson model. Simulation studies are performed
to compare the behaviour of the likelihood based on the mixture of normals to
the method of moments and the likelihood based on the normal distribution, in
terms of properties of the resulting estimators. Several sampling distributions
for the unobservable covariate X are assumed, as, for example, the log x? dis-
tribution, the normal distribution and the skew normal distribution. Results
indicate that the mixture method can outperform the one based on the normal
distribution in terms of bias of the estimators, except in situations where the
distribution of the unobservable covariate is highly skewed, as, for example,
when a log x? distribution is assumed. As expected, the method of moments
is the less satisfactory solution for a large class of the assumed distributions,

both in terms of bias and variance of the estimators.
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As Carroll et al. (1999b), also Carroll et al. (1999a) use a mixture of normal
distributions to model the exposure, with the aim of increasing robustness to
model misspecification. The difference is that the proposal by Carroll et al.
(1999a) considers regression splines as a way to correct for measurement errors.
The type of regression splines the Authors focus on depends on the conditional
distribution of X given W. Moreover, the conditional distribution of X given
W is shown to depend on the marginal distribution of X, under the assumption
of additive and normally distributed measurement error. The Authors propose
to model the distribution of X by a mixture of normal distributions, with an
unknown number of components. The distribution of X is estimated by a
modified version of the Gibbs Sampling algorithm (Wasserman and Roeder,
1997). To ensure parameter identifiability, the measurement error variance is
assumed to be known. If this is not the case, as it usually happens in practice,

additional information is needed.

The idea of using a mixture distribution is also adopted by Richardson et al.
(2002), within a Bayesian framework. The Authors focus on mixture models
with a variable number of components for flexibly modeling the distribution
of X in Bayesian hierarchical models. This suggestion was given before in
Richardson and Green (1997), who use MCMC methods based on the reversible
jump algorithm proposed by Green (1995). Richardson et al. (2002) refer
to epidemiological case-control studies, which involve validation data. The
focus is mainly on the logistic disease model, where covariates are affected
by normal or lognormal classical measurement errors. A key assumption is
measurement error to be nondifferential. The proposed method is a functional
one, thus assuming that the X’s are unknown parameters for which a prior is

needed. This prior is given by a mixture of univariate normals with an unknown
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number of components, k. Treating k£ as being unknown and integrating over
its posterior distribution when estimating regression parameters of interest
enhances the adaptivity of the mixture to heterogeneity in the underlying
distribution of X. The prior distribution for £ is chosen to be vague. In
particular, a uniform distribution over the range 1 — 30 is used. However,
the Authors suggest that in practice the mixture rarely uses more than ten
components, so that k& could be defined on a smaller range without any loss of
flexibility. Several simulation studies are performed to evaluate the influence of
misspecifications of the prior distribution for X and to show the improvement

of using a flexible mixture distribution for X instead of a normal one.

In all the papers we focused on, the advantage of using flexible parametric
models is well outlined. It relies upon their simple applicability and the ro-
bustness added to the analysis. However, a crucial point is the choice of the
number of mixture components. It can be fixed as suggested by Carroll et al.
(1999b), although this is obviously a matter of subjectiveness, or it can be left
undefined, with the consequent risk of overparametrising the model. If £ is
allowed to increase too much, so as, for example, when it grows with the sam-
ple size (Roeder and Wasserman, 1997) the corresponding model may become
useless in practice, making inference results unreliable. In fact, usually there
is not information enough to allow the estimation of a large number of com-
ponents. Thus, a modest value of k£ is more convenient. Moreover, also under
a small number of mixture components, if the resulting mixture distribution
is not a good approximation of the real one, the estimators can be biased. In
all these cases a different approach, such as, for example, a semiparametric

approach, may be preferable.
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3.2 Semiparametric analysis

An alternative to the flexible parametric modeling is the semiparametric ap-
proach. It represents a response to the sensitivity of modeling assumptions,
although it can be sometimes challenging to implement. The semiparametric
approach has the advantage of robustness, in that it does not require the spec-
ification of the distribution of X and/or of W. However, it may lack efficiency
with respect to a full likelihood approach, if the parametric specification of
the model is approximately correct. This loss of efficiency may be substantial

Carroliet al. (1998) - Dyifferent proposals in litera-

even for moderate sample sizes
ture suggest to perform a semiparametric analysis by allowing a nonparametric
specification of one or more components of the model, that is, the disease, the
measurement error and/or the exposure component.

One of the first proposals of semiparametric analysis in measurement er-
ror problems is the paper by Carroll and Wand (1991). It concerns logistic
regression models, with nondifferential errors on covariates. A validation data
set is supposed to be available. No parametric assumption is made for the
distribution of the true and unobservable covariate X or its surrogate WW. The
Authors develop an estimating algorithm, which is based on a kernel regression
to approximate the likelihood, without modeling the distribution of X given
W. Their method provides a semiparametric estimate of the parameters of
the disease model, together with an asymptotically normal limit distribution
of the estimators and an estimated bandwidth of the kernel regression. Inde-
pendently, Pepe and Fleming (1991) consider a similar problem in the case of
a discrete random variable X.

The assumption underlying the proposal by Carroll and Wand (1991) and

by Pepe and Fleming (1991) is that missingness of observations from X does
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not depend on the response Y. Robins et al. (1995) suggest a new class of es-
timators for the parameters of the disease model that remains consistent and
asymptotically normally distributed even when the probability that X is miss-
ing depend on the observations from Y. The procedure requires a validation
data consisting on observations from the X, the response variable Y and the
error-free variable Z, to be available. They are needed to nonparametrically
estimate the distribution of X, conditionally on Y and Z. In situation when a
nonparametric estimation of the distribution of X given Z may be not practible
because of the curse of dimensionality (Huber, 1985), that is, when the vector
of error-free covariates Z includes more than two covariates, the estimators
remains asymptotically unbiased and are computationally simple. Moreover,
under certain conditions on Y and Z, the proposed class of estimators contains
estimators of the parameters which are semiparametric efficient in the sense of
Begun et al. (1983). Simulation studies performed with reference to a logistic
disease model indicate that the estimators by Robins et al. (1995) is preferable

to the one by Pepe and Fleming (1991), in terms of absolute relative efficiency.

Wang and Wang (1997) suggest a semiparametric correction technique
again based on kernel regression. The focus is on logistic regression mod-
els with validation data available. The observations from X are thought to
be missing data in the main study sample, with a path of missingness which
depends on (Y, W) but not on X, that is, X is assumed to be missing at ran-
dom (MAR). No distributional assumption is made on components such as
the selection probabilities of the validation data set or the probability density
of X conditionally on the other variables. The paper investigates two kernel
estimation methods which extend the proposals by Breslow and Cain (1988)

and by Reilly and Pepe (1995) when (W, Z) are continuous. The proposal by
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Breslow and Cain (1988) suggests the use of a pseudo-conditional likelihood
function in a two-stage case-control study, so that at the second stage some
X’s are observed in each stratum classified by (Y, W), where W is a categor-
ical variable. The proposal by Reilly and Pepe (1995), instead, is a modified
pseudo-likelihood approach for the case that (Y, Z, W) are all discrete variables
and X is MAR. It extends the previous works by Carroll and Wand (1991)
and Pepe and Fleming (1991). They both propose semiparametric estimators
of the parameters of interest, without modeling the conditional distribution
of X given (W, Z). Their solutions may lead to inconsistent estimators if the
missingness process of X is not independent of Y. Reilly and Pepe (1995)
extend this proposal by allowing the selection probabilities of X to depend on
Y and (W, Z), when (W, Z) are discrete.

Wang and Wang (1997) extend the previous works by allowing the covari-
ates and the surrogates to be continuous. The extension of the proposal by
Breslow and Cain (1988) is obtained by using a nonparametric kernel estima-
tion of the selection probabilities of X in the validation data. The extension of
the estimator by Reilly and Pepe (1995) is based on the nonparametric kernel
estimation of the conditionally expected estimating score of X given (Y, W, Z).
The asymptotic properties of the two estimators are given. The simulation
studies carried out by Wang and Wang (1997) to evaluate the performance
of their proposals, under additive and non-normal measurement error, show a
high relative efficiency of the estimators of the parameters if compared to the

maximum likelihood estimator, when the modeling assumptions are incorrect.

Another semiparametric approach to correct for measurement error when
validation data are available is the pseudo-likelihood analysis suggested by

Carroll et al. (1993). It is defined for handling nondifferential errors and mod-
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ified so as to include also differential errors. The method requires a parametric
formulation of the disease model and the measurement error model, which can
be checked in the validation subsample, while the exposure model is left un-
specified. The marginal distribution of X is estimated by using a weighted
average of the empirical distribution of X|Y = y obtained from the complete
data. This estimate is plugged into the likelihood, from which the maximum
pseudo-likelihood estimates of the remaining parameters can be obtained. Sim-
ulation studies indicate that the approach gives satisfactory results with re-
spect to the maximum likelihood approach, in terms of bias and standard
errors of the estimators. However, small sample sizes can affect the estimation
process with numerical instability problems due to the empirical distribution
functions which are used. Moreover, modeling the relationship between Y and
W by using the estimates of X may only partially recover the information
about the parameters of interest which is contained in the validation data.
In other words, some information about the distribution of X in the reduced
data might be lost. As a consequence, maximizing the full likelihood turns
out to yield more information about the parameters than a pseudo-likelihood

approach, which is, of course, less efficient.

Roeder et al. (1996) propose an alternative to the pseudo-likelihood method
by Carroll et al. (1993), when validation data are available. Both differential
and nondifferential errors are allowed. A parametric formulation is given for
the disease model and for the measurement error model, which can be checked
in the validation subsample. Instead, the empirical distribution function of X,
calculated on the same validation subsample, is used as a first estimate of the
marginal distribution of X. The estimate is then updated by the EM algorithm

or the gradient method within the estimation process of the disease model
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parameters. The idea comes from Kiefer and Wolfowitz (1956), who treat the
nuisance parameters x as random variables from an unspecified distribution.
The estimation of the parameters is carried out via nonparametric maximum
likelihood (NPML), as suggested by Laird (1978). Simulation experiments
show that the proposal by Roeder et al. (1996) performs at least as well as or
even better than the pseudo-likelihood method by Carroll et al. (1993), with
the amount of improvement depending on the sample size and the type of
measurement error.

A similar idea is followed by Schafer (2001). The Author generalizes the use
of nonparametric maximum likelihood proposed by Laird (1978) for semipara-
metric likelihood analysis of linear, generalized linear and nonlinear regression
models, where the covariates are affected by nondifferential errors. Moreover, a
convenient computational form for the data analysis is provided. The approach
is illustrated under a variety of structures and types of extra information about
the measurement error distribution. The integral of the full likelihood (1) is

approximated by a k-node quadrature

K

L(0;y,w,2) = kzlﬂkfy\xz(yk\xza 2k B) fwx,z (Wi |2y, 285 7), (4)
where 7y, is oy fx|z(2)| 2k 0), the ay’s and x3’s are known quadrature masses
and nodes and 6 = (3,7,0)". Laird"@"? (1978)°g algorithm can be applied for
simultaneous maximum likelihood estimation of the parameters of the disease
and the measurement error model and for the estimation of fx 7 (x}|2x;¢). This
amounts to the estimation of the quadrature masses o and of the nodes zj.
The EM algorithm is suggested to this aim. Simulation studies indicate that

this semiparametric approach retains a high degree of efficiency with respect to

the full maximum likelihood inference based on correct distributional assump-
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tions and can outperform maximum likelihood methods based on incorrect

distributional assumptions.

Schafer (2002) follows an approach similar to Schafer (2001) for the semi-
parametric analysis of linear, generalized linear and nonlinear regression mod-
els, where covariates are affected by nondifferential errors. Different types of
extra information about the measurement error distribution are considered.
The underlying idea is the evaluation of the integral (4) by a k-node Gauss-
Hermite quadrature. It is evident that expression (4) has the form of a finite
mixture of densities with mixing proportions given by 7;. Applying the EM al-
gorithm to estimate the parameters requires the introduction of k-dimensional
multinomial random variables to identify the relevant mixture component for
each 7, which are treated as missing data. The main difference with respect to
the previously mentioned approach by Schafer (2001) is that here the number
of nodes at which the integrand is evaluated is treated as a fixed quantity.
That is, the approach can be thought of as an attempt of flexible structural
modeling of the exposure. This implies that the only parameters to be es-
timated are the parameters of the disease model and the measurement error
model. However, this approach bears some issues which require further inves-
tigation. First of all, there is no guarantee of numerical stability of the EM
algorithm. Secondly, there is no clear indication about the number of nodes
required in any situation, although 20 seems to be sufficient at least in the
examples analyzed by the Author. Finally, the approach has been proposed
in situations with a single unobservable covariate. While its extension to sev-
eral X's measured with error is theoretically possible, the application may be

unrealistic because of computational difficulties.

Within a Bayesian framework, Miiller et al. (1997) propose to correct for
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measurement error in covariates by a semiparametric approach wihch is espe-
cially designed for handling case-control data. The method focuses on semi-
parametrically modeling the distribution of X. This is obtained by using a
mixture of normal models with a Dirichlet process prior on the mixing measure
(Antoniak, 1974; Escobar and West, 1995). Using multivariate normal kernels
in the mixture implicitly assumes that covariates are continuous. However, the
Authors indicate that the application of the method to categorical covariates
is possible by using different distributions in place of a mixture of normals.
The procedure to estimate the parameters of the disease model is based on a
combination of Markov chain Monte Carlo techniques. The method by Miiller
et al. (1997) is developed under the assumption of nondifferential errors and
the availability of validation data. Simulation studies performed assuming a
logistic disease model show that the method is robust against heteroschedas-
ticity over cases and controls, whereas it is sensitive to differential error. When
nondifferential measurement errors hold, the method is preferable in terms of
bias and mean squared error to the proposal by Carroll et al. (1993). Under
differential measurement error, instead, the situation reverses, the method by

Carroll et al. (1993) having the advantage of exhibiting a smaller bias.

Later, Mallick et al. (2002) develop semiparametric Bayesian methods for
regression models where measurement errors follow a classical structure, a
Berkson structure or a combination of both of them. The method suggested
by the Authors is semiparametric in the specification of both the disease model
and the exposure model. The disease model is supposed to be monotone in
the unobserved variable X and thus it is specified through a semiparamet-
ric monotone form. In particular, a mixture of beta cumulative distribution

functions is used. The distribution of the unobserved X is also semipara-
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metrically modeled, by using a Pdlya tree distribution (Lavine, 1992; Walker
and Mallick, 1999). However, as the Authors suggest, flexible semiparamet-
ric alternatives to the Polya distribution could be used. Simulation studies
performed under a logistic disease model and a combination of classical and
Berkson measurement error components indicate a satisfactory behaviour of
the proposed method with respect to the naive analysis and the one based on

the true simulated data for X.

In econometric research, Li and Hsiao (2004) recently proposed a semipara-
metric approach to correct for classical errors in covariates in generalized linear
models. The hypothesis of nondifferential error is relaxed by assuming only
that E[U]Y] = 0. Additional data as replicated measures of X are considered
to be available. The proposal by Li and Hsiao (2004) does not make distribu-
tional assumptions on the unobservable variable X or the measurement errors.
The method is based on maximizing an asymptotically corrected likelihood
(ACL) function. It is a two-stage method. At the first stage, the distribution
of X is nonparametrically identified. This is done by using the empirical char-
acteristic functions and truncated inverse Fourier transform, as suggested by
Li (2002). At the second stage, a semiparametric estimator of the parameters
of interest is derived by maximizing the ACL function using the estimated
distribution of X obtained at the first stage. The Authors show that the ACL
converges to the same likelihood function one would obtain with observed X.
However, some future lines of research are pointed out. First of all, the need
of evaluating the asymptotic distribution and the rate of convergence of the
ACL estimator. Simulation studies compare the proposed ACL estimator to
the naive maximum likelihood estimator and to the corrected score estimator

by Nakamura (1990), which is based on the normality assumption of errors
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(see Section 3.4). The comparison is in terms of bias and standard error of
the estimators. Results show that the ACL method outperforms the corrected
score when the measurement error distribution is misspecified as a normal.
Standard errors are larger than those of alternative methods, as a consequence
of the first stage nonparametric estimation, while bias reduction is substantial.
This leads to a notable reduction in mean squared error. As expected, naive

analysis yields worse results.

3.3 Quasi-likelihood methods

Quasi-likelihood is a promising alternative to the full likelihood approach for
the analysis of measurement error data. It has the advantage of combining
higher flexibility with a smaller computational effort. Quasi-likelihood requires
the specification of the first two moments, that is, of the mean and the vari-
ance, of the conditional distribution of Y given X and Z and not of its entire
distribution (see (Carroll et al., 2006), Section 8.8). That is, one needs only

to specify
EY|X,Z]=my(x,z;61) and  Var[Y|X,Z] = gy(z,2; 61, 5). (5)

The approach includes quasi-likelihood methods for generalized linear models
as special cases. Quasi-likelihood methods require that the mean and variance
functions be evaluated on the observed data and not on the unobservable ones.

These are given by

EYW,Z] = E[my(-)|W,Z] and Var YW, Z] = E [gy(-)|W, Z]+Var [my(-)|W, Z] .
(6)
An example is given in Carroll and Stefanski (1990). The Authors consider

the application of the quasi-likelihood method in case-control studies, where
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data are affected by nondifferential measurement errors, which can be classical
as well as Berkson errors. Validation data, in the form of gold standard mea-
surements of X, are required. No assumption is made on the distribution of X
given W, but only on the first two moments of the measurement error given
W. The Authors propose M-estimators for the parameters of interest, starting
from estimating equations based on Taylor series expansions of the mean and
variance functions. Their asymptotic distribution is provided under different
additional data scenarios.

Wang et al. (1996) consider quasi-likelihood estimation under the hypoth-
esis that correlated replicates of the proxy variable W are available. A nondif-
ferential and classical additive measurement error on the covariate is assumed.
The Authors perform a quasi-likelihood analysis by computing the mean and
variance functions through Monte Carlo methods. The distribution of X is
suggested to be flexibly modeled by using a mixture of normals. The ap-
plication of the method is illustrated on a real data set. The results show
the improvement with respect to a RC approach which ignores the correla-
tion structure of replicates, both in terms of bias ans standard error of the

parameter estimators.

3.4 Estimating equations

The use of estimating equations in measurement error problems has been
mainly studied in two variants which are referred to as corrected score and
conditional score methods, although alternatives have been recently suggested.

The corrected and conditional score methods were developed starting from
the estimating equations for regression parameters in the absence of measure-

ment error. An estimating equation is unbiased if it has expectation zero. An
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example is the score function, that is, the first derivative of the log-likelihood
function with respect to the parameters. Measurement error induces bias in
estimating equations, which in turn gives rise to biased estimators for the pa-
rameters. Thus, the purpose is to modify the estimating equations so as to

obtain unbiased estimating equations.

The corrected score method specifies corrected score functions, which
are unbiased estimators of the score function yielding the estimator one
would use if there was no measurement error. The method of corrected
score functions was studied by Stefanski (1989) and Nakamura (1990). In
the absence of measurement error, consider the estimate of S which solves

* Uy, T4, 23 B) = 0, where n is the sample size and (-) is the estimating
function. The function ¢(-) is typically a likelihood score function from the
model for the data without error. It is unbiased if its expectation is zero, that
is, E[Y(Y, X, Z; B)] = 0. Generally, it is no longer unbiased when W replaces
X. Corrected score functions instead, say ¢*(y, w, z; ), have the property that
E[W*(Y, W, Z; 3)] = (Y, X, Z; B), where the expectation is with respect to the
distribution of W given (Y, X, Z). The corrected scores are unbiased whenever
the original scores are. Unbiasedness is a major requirement for consistency of

the estimators obtained from corrected score functions.

The corrected score method applies to generalized linear models, as, for
example, the gamma regression model with logarithmic link. It requires that
a measurement error distribution be specified. The normal distribution is
typically used for this purpose (Stefanski, 1989). Corrected score functions do
not always exist and finding them when they do is not always as easy as in the
linear case. A typical example is logistic regression which does not admit a

corrected score function, except under restrictions (Buzas and Stefanski, 1996).
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Stefanski (1989) derived corrected score functions for some common models
and generally applicable approximate corrected score functions. Recently, a

method for obtaining corrected score functions via computer simulation was

studied (Novick and Stefanski, 2002).

The conditional score method was introduced by Stefanski and Carroll
(1985) and developed into the usually applied formulation by Stefanski and
Carroll (1987) within an important class of generalized linear models. The
most important example is logistic regression. Carroll et al. (2006), Section 7,
describe extensions of the method to Poisson-loglinear, gamma-inverse and

other models.

The conditional score is a functional method based on the theory of suffi-
cient statistics, on which we can condition to eliminate the nuisance parame-
ters x. Stefanski and Carroll (1987) assumed that the measurement errors are
normally distributed. However, the estimator can reduce bias also for small
departures from this assumption (Huang and Wang, 2001). Stefanski and
Carroll (1987) focus on logistic regression with classical measurement error,
although the method applies to other generalized linear models, provided the
measurement errors are normal and the models are in the canonical form (see
(Carroll et al., 2006), Section 7). They provide the conditional score estimator
for logistic regression and show that it behaves satisfactorily in terms of effi-
ciency with respect to the full maximum likelihood estimator which, however,

requires the specification of an exposure model (Stefanski and Carroll, 1990).

For models other than logistic regression, the conditional score estimating
equations are far more complicated (see (Carroll et al., 2006), Section 6.4) and

typically computed by means of numerical integration.

Outside the conditional score and the corrected score formulation, other
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proposals to correct for measurement error have been suggested which are
based on the theory of estimating equations. An example is the paper by
Iturria et al. (1999). The Authors derive estimators of parameters of the dis-
ease model and their asymptotic standard errors in the polynomial regression
model, by referring to corrected estimating equations which do not necessarily
come from the score function. Additive and multiplicative measurement errors
are considered. Conditions under which it is possible to estimate parameters
are given. These conditions do not rely on distributional assumptions about
the X's, but use ratios of the W's, thus making the method be a robust so-
lution. The method may be easily extended to general estimating functions.
The basic idea is that an estimating function can be expanded as a polynomial,
thus allowing the proposal by Iturria et al. (1999) to be applied. Simulation
studies carried out to compare the method and the likelihood approach show
that the first provides more reliable results whenever models for measurement

errors are misspecified. This is mainly the case for skewed errors.

Recently, Wang and Pepe (2000) focused on the use of estimating equations
to correct for measurement error in marginal or partly conditional regression
models for longitudinal data. Measurement errors are assumed to be nondiffer-
ential. Estimating equations are considered which are not necessarily likelihood
score equations. They have to be unbiased when evaluated on the complete
data, that is, on observations from (Y, X, Z). The Authors propose to base the
estimation of the parameters of the disease model on the expectation of the
estimating equation for the complete data conditioned on the available data.
The estimates are derived as solutions of the resulting estimating equations.
The expected estimating equations (EEE, for short), as they are called, yield

an estimator which has the property of being equal to the maximum likelihood
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estimator if the complete data scores are likelihood scores and conditioning is
with respect to all the available data. The asymptotic distribution of the es-
timator is derived. Its behaviour is compared to the RC estimator through
simulations studies of a logistic disease model, under an order one autoregres-
sive model for the error process. Simulation results indicate that for moderate
sample sizes, with large relative risk, the EEE estimator is more efficient than
the RC estimator, while it can suffer from both a large bias and a large stan-
dard error in small samples. This agrees with the behaviour of the maximum
likelihood estimator which suffers from bias in the presence of small sample

sizes.

As Wang and Pepe (2000), also Pan et al. (2006) focus on longitudinal
data, where a single covariate X is assumed to be affected by measurement
error. The error is supposed to be additive and nondifferential. The Authors
mainly refer to the transition models, that is, models where the conditional
mean of the response variable at the current time point is modeled as a func-
tion of its value at the previous time and covariates (see (Diggle et al., 2002),
Chapter 10). Within this setting, an estimating equation approach is proposed
by modifying the conditional score method by Stefanski and Carroll (1987).
This gives rise to the so-called pseudo conditional score estimators of the dis-
ease model parameters. They are shown to be consistent and asymptotically
normally distributed. Moreover, an alternative to the pseudo conditional score
estimator is proposed, namely a semiparametric efficient one-step estimator.
It improves the efficiency of the pseudo conditional score estimator, by tak-
ing advantage of the explicit expression of the efficient score function for the
parameters of interests. Moreover, the one-step estimator reaches the semi-

parametric efficiency bound in the presence of validation data. However, the
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explicit formulation of the efficient score function which the one-step estimator
relies on does not exist for models more complicated than the linear model,

as, for example, the logistic transition model.

3.5 Empirical likelihood

The paper by Wang and Rao (2002) is the first example of application of em-
pirical likelihood in measurement error problems. The empirical likelihood,
introduced by Owen (1988), is useful to construct confidence regions under a
nonparametric model. It has some advantages with respect to classical meth-
ods, in that it does not require the definition of pivotal quantities for inferen-
tial purposes and provides confidence regions which are range-preserving and
transformation-respecting (Hall and La Scala, 1990).

Wang and Rao (2002) focus on linear regression model, when validation
data are available. Measurement errors are assumed to be nondifferential.
The regression model is re-written in an equivalent form where unobserved
covariates X are substituted by E[X|WW]. The empirical log-likelihood function
is then evaluated starting from this formulation. To estimate the parameters
of interest, the quantity F[X|W] has to be replaced by known values derived
from the validation data. The idea is similar to the one underlying the RC
approach. This substitution leads to an estimated empirical log-likelihood.
The Authors show that the resulting estimated empirical log-likelihood follows
asymptotically a x? distribution and use it to define confidence regions for the
parameters of interest. However, such an approach can suffer from the curse of
dimensionality when the dimension of X and hence of W is large, because of the
required estimation of E[X|W]. In this case, dimension-reduction models may

be preferable for estimating F[X |WW]. However, the corresponding asymptotic
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theory has still to be developed and is an interesting field of future research.
Cui and Chen (2003) suggest a different approach based on empirical like-
lihood to derive confidence regions for the parameter of the disease model.
The focus is on linear regression models, where covariates are assumed to be
affected by classical and nondifferential measurement errors. The Authors il-
lustrate how to construct empirical likelihood confidence regions by starting
from a modification of the score function. This adds up squared orthogonal
distances for each data point to a hyperplane in the parameter space. Such
a score function differs from the one from an ordinary linear model in that
the former has more than two solutions, of which only one is genuine. This
solution is found by constraining the empirical likelihood to a restricted re-
gion of the parameter space. The Authors evaluate the coverage accuracy and
Bartlett correctability of the confidence regions derived from this approach.
Simulation studies are performed to compare the behaviour of the proposed
empirical likelihood confidence region to that based on the asymptotic normal
distribution of the estimators of the parameters. The results show that the
empirical likelihood-based method provides confidence regions with better cov-
erage and shorter lenghts than the normal approximation counterpart. This

improvement is already notable for small or moderate sample sizes.

3.6 Further techniques

Further approaches which make no distributional assumption on the involved
variables were proposed in literature, although they can not be classified into

one of the previous groups. They are summarized below.

e Cook and Stefanski (1994) develop a simulation-extrapolation method

(SIMEX, for short), which is a functional simulation-based method to



28

A. Guolo

correct for measurement error affecting the covariates. It has been fur-
ther developed by Stefanski and Cook (1995), Carroll et al. (1996) and
Wang et al. (1998). The method is robust in that it does not make
distributional assumptions on the unobserved variables X. The idea
underlying SIMEX is that the effect of the measurement error can be
determined by simulation. The method develops in two steps. The first
one is a resampling-like stage, in which data sets with additional mea-
surement error are generated starting from the original one. For each
data set the naive estimate of the parameters is obtained, so that the
trend of the estimates versus the variance of the extra error terms can
be established. The corrected estimators of the parameters are obtained
in the second stage by extrapolating this trend back to the case of no
measurement error. Carroll et al. (1996) investigate the asymptotic dis-
tribution of the SIMEX estimator. They show that it is asymptotically
normally distributed and provide methods to consistently estimate the
variance. Later, Fung and Krewski (1999) propose a comparison be-
tween RC and SIMEX estimators, by means of a computer simulation in
a logistic regression framework. Their study shows that RC and SIMEX
estimators generally exhibit a satisfactory and similar performance in
terms of bias, mean squared error and coverage of confidence intervals.
When a Berkson measurement error model in highly correlated predic-
tors holds, however, the SIMEX method seems to be preferable. On the
other hand, RC has the nontrivial advantage to be a simpler and less

computationally intensive method.

Haukka (1995) suggests to correct for covariate measurement error in

generalized linear models by using bootstrap techniques. The method
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is referred to as two-stage bootstrap, because both the primary and the
validation data are resampled. It requires validation data to be avail-
able. At the first stage, a bootstrap sample is taken from the validation
data set. It is used to estimate the parameters of the measurement error
model relating X to the proxy variables W and to the error-free covari-
ates Z. A bootstrap sample is then taken from the primary data. This
sample is used to estimate the parameters of interest, with X replaced
by the predicted values obtained in the regression at the previous stage.
Bootstrap sampling generally involves 50 — 100 replications. The em-
pirical distribution of the estimator is used for making inference on the
parameters. The method is illustrated under the assumption of contin-
uous linear measurement errors, although extensions to other measure-
ment functions require only slight modifications of the procedure. The
nonparametric nature of the method turns out in a nontrivial gain in
robustness, if compared to simpler approaches as, for example, RC. In
fact, simulation studies, performed in the logistic regression framework,
showed that the method is a valid alternative to the RC, although it
can lead to larger confidence intervals, especially in situations where the
distribution of the errors is asymmetric. Despite of this, the principal dis-
advantage of Haukka (1995)’s method relies in its computational burden

connected with the intensive application of the bootstrap technique.

e Lee and Sepanski (1995) propose an estimation method which is compu-
tationally simpler than semiparametric and nonparametric methods de-
scribed in Section 3.2, both for linear and nonlinear disease models. The
method relies neither on distributional assumptions nor on specifications

of the equations relating the measured variable W to the true variable
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X, thus obtaining considerable gain in robustness. Additive measure-
ment errors are considered and they are allowed to affect the covariates
as well as the dependent variable. The method is based on replacing the
regression function of Y on (X, 7) by a wide-sense conditional expecta-
tion, or least squares projection, of the regression function on functions
of W (Chamberlain, 1982). The underlying idea is that the original re-
gression function can be projected onto a finite-order polynomial of W.
This wide-sense conditional expectation can be estimated from valida-
tion data using the ordinary least squares method. After replacement of
the original regression function by this conditional expectation, nonlin-
ear least squares can be used to estimate the parameters. The choice of
the polynomial for the projection space is arbitrary. Simulation studies
performed by the Authors suggest that few polynomials of low degree

are good enough even for highly nonlinear functions.

In econometrics, Chesher (2000) notes that, to the first order of ap-
proximation, the bias implied by measurement errors can be determined
by a functional of the marginal distribution of the mismeasured variable
W. The suggested correction technique, which follows Chesher (1991), is
based on the construction of a nonparametric estimate of the functional
of the distribution of WW. The assumptions of independence between X
and the errors U and of nondifferential errors are needed. Monte Carlo
experiments, performed both when the measurement errors are normally
and non-normally distributed, indicate that the proposed method can
substantially reduce bias in estimators, if compared to a naive approach.
Moreover, in linear and polynomial models, the method can be combined

with the classical instrumental variables procedure, thus improving the
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efficiency of both approaches.

e Sepanski (1994) suggest to correct for measurement error in a class of
models including the generalized linear models by an approach strictly
related to RC. It is a semiparametric RC method, requiring a validation
data set consisting of exact measures of X. It applies to nondifferen-
tial measurement error which are not necessarily classical and additive.
The underlying idea is the substitution of the unobserved X's by the
estimates of E[X|WW] obtained from a nonparametric kernel regression in
the validation data. Once the unknown X's are replaced by these esti-
mates, a standard analysis can be performed. The parallelism with RC is
evident. However, this method gives rise to a gain in robustness against
deviations from the linear relationship between X and W underlying the
original RC idea, when this relationship does not hold. Moreover, the
Authors provide the asymptotic distribution of the regression parameter
estimators and discuss the choice of the bandwidth parameter, involv-
ing higher-order expansions for the covariance matrix of the corrected
estimators. Although the focus is on nonparametric kernel regression
to estimate E[X|WW], the Authors suggest that other smoothing tech-
niques could be used, including local linear kernel smoothing, lowess,
spline smoothing and generalized additive models. Simulation studies
carried out to compare the method against parametric alternatives, as,
for example, RC, indicate that it has a comparable performance, which

in some cases is also better, mainly under multiplicative error structures.

e Another approach which can be related to RC is suggested by Pierce and

Kellerer (2004). The Authors propose to adjust for errors in covariates
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by using a nonparametric assessment of the true covariate distribution.
Their proposal can be used within the RC approach. In fact, the ex-
pected value of X given W, which is needed in the RC procedure, can be
nonparametrically derived, although it involves a deconvolution which
is difficult to carry out directly. However, with multiplicative and log-
normal measurement errors, the Authors derive simple but accurate ap-
proximations for the k-th order moment of X given W, with k =1,2,...
. These approximations depend only on the first and second derivatives
of the logarithm of the density of W and the coefficient of variation of

W given X. Both classical and Berkson errors are considered.

Berry et al. (2002) suggest a robust approach to the analysis of measure-
ment error data, where robustness is related to misspecification of the
disease model and not on the exposure model, as commonly adopted.
The Authors propose a flexible nonparametric estimation of the regres-
sion function, by using smoothing splines or regression P-splines, within
a Bayesian framework. The posterior distribution of the parameters of
interest may be obtained from two algorithms. The first one, the so-
called iterative conditional modes, uses a componentwise maximization
routine to find the mode of the posterior distribution, while the second is
a fully Bayesian method based on Monte Carlo Markov Chain techniques
to generate observations for the posterior distribution. Although the last
is computationally more difficult than the first one, it is preferable in that
it allows exploring the posterior distribution, rather then only finding the
mode. Simulation studies performed to evaluate the potential of the cor-
rection technique by Berry et al. (2002) with respect to alternatives show

that it is competitive in efficiency with similar approaches performed in
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the frequentist framework, as, for example, the method by Carroll et al.
(1999a). The normal distribution for the additive measurement error
and for the exposure variable is assumed, although simulation studies
show that small departures from this assumption only slightly modify

the results.

e Jiang and Turnbull (2004) base statistical inference in measurement error
models on the so-called indirect method. This is an approach to inference
which has been exploited in econometrics (Gouriéroux et al., 1993) as a
robust alternative to likelihood-based procedures. The indirect method is
based on the search of an intermediate statistic as a functional of the em-
pirical distributon function. The intermediate statistic typically follows
an asymptotic normal distribution, but it is not necessarily a consistent
estimator of the parameter of interest. An example is the naive estima-
tor. Jiang and Turnbull (2004) focus on the indirect method to suggest
a consistent estimator of the disease model parameter without requiring
parametric assumptions on the distribution of (X, W), thus obtaining a
notable gain in robustness of results. Moreover, only the first moment is
specified for the disease model. The assumption of nondifferential errors
and the availability of validation data is needed. A consistent estimator
of the parameter of interest is found starting from the naive solution and
its asymptotic distribution is derived. The application of the method is
evaluated within a logistic framework and compared to that of RC. Re-
sults outline the improvement of the indirect method in estimating the
parameter of interest, mainly in situations where assumptions required

by RC are not satisfied.
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e Tsiatis and Ma (2004) propose a class of semiparametric estimators,

which are called locally efficient semiparametric estimators, within the
functional measurement error setting. This class is derived by defining es-
timating equations for the parameters of the disease model. The estimat-
ing equations are obtained from the efficient score derived as the residual
after projecting the score vector with respect to the disease model pa-
rameters onto the tangent space for the distribution of X. Tsiatis and
Ma (2004) show that the residual has mean zero even under misspeci-
fied distributions for X. This allows one to form estimating equations
for the parameters of the disease model which yield to consistent and
asymptotically normally distributed estimators. Moreover, if the model
for X is correctly specified, the resulting estimator is semiparametric ef-
ficient. The assumption underlying the method of known measurement
error distribution may be relaxed if additional data are available to esti-
mate the unknown parameters of the distribution. Simulation studies are
performed to evaluate the behaviour of the proposed estimator, under a
quadratic logistic disease model and two measurement error structures,
the first having normally distributed errors while the second having ex-
ponentially distributed errors. Results show that, in both of the cases,
the proposed locally efficient estimator is robust against misspecification
of the distribution of X. If compared to the RC estimator, the locally
efficient estimator is preferable in terms of bias and empirical coverage

of confidence intervals.
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4 Discussion

We have provided a review of techniques to correct for measurement error in
covariates which represent solutions to the sensitivity to assumptions typical
of parametric approaches. Different solutions have been proposed in literature,
which may be more or less challenging to implement. Some of them combine a
parametric and a nonparametric spefication of relationships between variables,
while other methods face the problem by adopting a totally nonparametric ap-
proach. Although solutions are variously developed, they share characteristics
of robustness against model misspecifications, the principal being the misspec-
ification of the exposure model. However, in all cases, this advantage does
not come without costs. The higher price to pay for it is the possible loss in
efficiency relative to parametric models if they are approximately correct.
Furthermore, some computational problems related to the difficulties in
implementing most of the suggested methods are non-negligible. Focus, for
example, on semiparametric techniques. The proposed methods in this group
share the common approach of nonparametrically estimating one of the rela-
tionships between variables, that is, the disease, the measurement error or the
exposure model. Although these modifications are applied to the likelihood
function given in (1), problems related to a full likelihood approach may still
be present, like difficulties in the maximization procedure and in the evaluation
of the involved integrals. Usually numerical methods or analytical approxima-
tions are required and the associated computational effort tends to increase
in case of high-dimensional models. If this is the case, alternative solutions
may be preferable. From a strictly practical point of view, the most feasible
solutions seem to be those based on the idea underlying RC, the so-called semi-

parametric RC methods. Starting from the simplest technique to correct for
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measurement error, i.e. regression calibration, a nonparametric modification

yields a gain in robustness, without affecting the feasibility of the approach.

Other solutions, as for example estimating equations, in spite of a well
known underlying theory, may be less attractive because of difficulties in ap-
plication, which are not necessarily computational difficulties. As it can be
seen from the paper by Wang and Pepe (2000), deriving unbiased estimating
equations for the parameters is very often a nontrivial problem, mainly in sit-
uations with matched or unmatched case-control data. In this case, in fact, if
one starts from a formulation like the one in (1), for example, it is not possi-
ble to obtain estimating equations and estimators of parameters in an explicit
form. Moreover, bias correction can be hardly achieved. Further investigation

in this area seems to be needed.

Empirical likelihood is a powerful tool for inference in nonparametric set-
tings. The methods suggested by Wang and Rao (2002) and Cui and Chen
(2003), which apply empirical likelihood in measurement error problems, seem
to be promising in terms of robustness properties, nevertheless studies are re-
stricted to linear regression models at the moment. Although the attention
of this review has been mainly focused on models appropriate to handle case-
control data, we have mentioned the previous works on empirical likelihood in
order to highlight the fact that, on the basis of the promising results, extensions

to more general models may be an interesting field of further investigations.

Most of the proposals reviewed here heve been developed under the as-
sumption of nondifferential measurement errors. The possibility for differential
measurement errors, instead, has been rarely examined. Although a nondif-
ferential assumption is appropriate in many situations, mainly through a good

experimental design, sometimes it may not be appropriate in case-control stud-
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ies. In fact, when the possibility of select or recall bias arises, as it is typical
in case-control studies, thus measurement error can depend on the disease
status, that is, it can be differential. In this situation, many of the existing
techniques to correct for measurement errors are not applicable. This suggests
the need for further research to extend correction methods developed under
the assumption of nondifferential errors to the situation of differential errors.

A common feature of methods examined here is their application to prob-
lems where just a single covariate is affected by measurement error. Additional
error-free covariates may be considered. The main reason relies on the com-
putational effort required by a more extensive analysis, which may become
quite cumbersome. As the dimension of X increases, the extension of most of
the procedures is not straightforward and their application may become less
attractive. An example is the augmented complexity of integrals which have
to be evaluated in semiparametric methods. Thus, further investigations are
needed in this area. The research for extension of the existing methods to
higher dimensions of unobserved covariates and/or their surrogates is required
so as to make them suitable for more realistic problems. These may involve
more than one covariate affected by measurement error, with the possibility of

some correlation patterns among errors.
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