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Abstra
t: Measurement error a�e
ting the independent variables inregression models is a 
ommon problem in many s
ienti�
 areas. Itis well known that the impli
ations of ignoring measurement errors ininferential pro
edures may be substantial, often turning out in unreli-able results. Many di�erent measurement error 
orre
tion te
hniqueshave been suggested in literature sin
e the 80's. Most of them requiremany assumptions on the involved variables to be satis�ed. However,it may be usually very hard to 
he
k whether these assumptions aresatis�ed, mainly be
ause of the la
k of information about the unob-servable and mismeasured phenomenon. Thus, alternatives based onweaker assumptions on the variables may be preferable, in that they of-fer a gain in robustness of results. In this paper, we provide a review ofrobust te
hniques to 
orre
t for measurement errors a�e
ting the 
ovari-ates. Attention is paid to methods whi
h share properties of robustnessagainst misspe
i�
ations of relationships between variables. Te
hniquesare grouped a

ording to the kind of underlying modeling assumptionsand inferential methods. Details about the te
hniques are given andtheir appli
ability is dis
ussed. The basi
 framework is the epidemiolog-i
al setting, where literature about the measurement error phenomenonis very substantial. The fo
us will be mainly on 
ase-
ontrol studies.Keywords: 
ase-
ontrol study, empiri
al likelihood, estimating equa-tion, kernel regression, logisti
 regression, measurement error, normalmixture, quasi-likelihood
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2 A. Guolo1 Introdu
tionMeasurement error is a widely present problem in many s
ienti�
 areas. Inparti
ular, it is a 
ommonpla
e in observational studies, su
h as those 
arriedout in environmental epidemiology (Zeger et al., 2000). Erroneous measure-ments are due to di�erent reasons, the most obvious being the ina

ura
y ofthe instruments. Other examples in
lude high 
osts of exa
t measures, the sub-je
tive nature of some variables, su
h as self-reported information and intrinsi
biologi
al variability. Measurement error is responsible for non-negligible infer-en
e problems if it is not 
orre
ted for (Armstrong, 2003). In parti
ular, it hasbeen long re
ognized that measurement error 
an bias the estimates. Furthere�e
ts are unreliable 
overage level of 
on�den
e intervals and redu
ed powerof tests.A large number of methods aiming to 
orre
t for measurement error havebeen proposed in literature sin
e the 80's. They di�er a

ording to the as-sumptions about the distribution of the unobserved variable, to the availabil-ity of additional data about the unobserved variable and to the theoreti
alba
kground of the approa
h, whi
h may be parametri
 or nonparametri
. Adetailed review is Carroll et al. (2006). Previously, a review of measurementerror 
orre
tion te
hniques in 
ase-
ontrol studies, when extra information isavailable, has been proposed by Th�urigen et al. (2000). The review of te
h-niques we provide here di�ers from the one by Th�urigen et al. (2000) in thatthe fo
us is on methods whi
h share the property of being robust against mis-spe
i�
ations of the relationships between variables. Most of these te
hniqueshave been proposed in literature during the last few years and a 
omprehen-sive overview of them is not available yet, to the best of our knowledge. Theperforman
e of these te
hniques in 
orre
ting for measurement errors has not



Se
tion 2 Notation 3been deeply investigated in appli
ations, although situations where the avail-ability of robust methods would be preferable arise very often. The most
ommon situation is avoiding estimators of parameters to be in
onsistent, asit may happen when the assumptions underlying nonrobust methods are notsatis�ed, at least approximately. To stimulate the use and the developmentof robust te
hniques to 
orre
t for measurement error a�e
ting the 
ovariates,we provide a review of the methods, through a 
lassi�
ation made up on theirunderlying theory. We do not 
onsider results about robustness against lever-age points or outliers, whi
h both are rare in this literature. We mainly referto the epidemiologi
al setting and to 
ase-
ontrol studies.The paper is organized as follows. In Se
tion 2 we de�ne the frameworkwhi
h we fo
us on and the 
orresponding notation we will adopt thereafter.Robust measurement error 
orre
tion te
hniques are des
ribed in Se
tion 3,following a 
lassi�
ation into groups whi
h share a similar theoreti
al approa
h.A dis
ussion about the appli
ability of the methods is given in Se
tion 4.2 NotationSuppose that 
ase-
ontrol data are available. Let Y be the response vari-able. In the 
ase-
ontrol setting we fo
us on, this is the 
ase-
ontrol status,or the disease status, indi
ator. Let X be the 
ovariates whi
h may be notdire
tly observed. In epidemiologi
al studies, they typi
ally represent risk fa
-tors 
ontributing to the presen
e of the disease. Instead ofX, the mismeasuredvariables W are observed. These are usually 
alled proxy variables. It may beassumed that other variables, Z, 
an be measured without error.In measurement error literature, we distinguish di�erent models relatingthe variables. The model relating the variable Y to the unobserved variables



4 A. GuoloX and the error-free variables Z is referred to as the disease model. Its densityis indi
ated by fY jXZ(yjx; z; �). In 
ase-
ontrol studies this model is typi
allythe logisti
 regression model. The interest usually fo
uses on the ve
tor ofparameters �, whi
h is the ve
tor of relative risks asso
iated with a unit 
hangein the exposure to the risk fa
tors X.The measurement error pro
ess is spe
i�ed by modelling the relationshipbetween X and W , possibly depending on Z. It is 
alled measurement errormodel. The simplest measurement error model is the 
lassi
al error modelW =X+U , where U has mean zero and varian
e equal to �2U and is independent ofX. The 
lassi
al measurement error model is an unbiased and additive errormodel, su
h that E[W jX℄ = X. An alternative model is the Berkson errormodel, whi
h typi
ally arises in laboratory studies and experimental situationsin whi
h the observed variable is 
ontrolled for. The model relates X andW as X = W + U , where U has mean zero and varian
e equal to �2U and isindependent of W . In the Berkson model E[XjW ℄ = W and W is said to bean unbiased predi
tor of X.Di�erent types of measurement error 
an arise in pra
ti
e. An impor-tant distin
tion is made between di�erential and nondi�erential measure-ment errors. The error in W is nondi�erential if no additional informa-tion on Y is 
ontained in (W;X;Z) with respe
t to (X;Z). This meansthat the 
onditional distribution of Y given (W;X;Z), fY jWXZ(yjw; x; z; �),is the same than the distribution of Y given (X;Z), fY jXZ(yjx; z; �), that is,fY jWXZ(yjw; x; z; �) = fY jXZ(yjx; z; �). In this 
ase, W is said to be a surro-gate for X. When, instead, fY jWXZ(yjw; x; z; �) 6= fY jXZ(yjx; z; �), the erroris said to be di�erential.In appli
ations, many di�erent error sour
es 
an be en
ountered. This im-



Se
tion 2 Notation 5plies that both nondi�erential and di�erential errors, with 
lassi
al or Berkson
omponents, 
an be de�ned. An a

urate spe
i�
ation of the error model,distinguishing between di�erential and nondi�erential errors with 
lassi
al orBerkson 
omponents, is 
ru
ial be
ause of the di�erent impa
ts of the errors onthe inferential results and the di�erent available 
orre
tion te
hniques. There-fore, a good identi�
ation of the error model is important for the su

essfulappli
ation of measurement error 
orre
tion te
hniques (Heid et al., 2004).These te
hniques 
an be roughly 
lassi�ed into two groups, a

ording totheir interpretation of the unobserved variables X. We de�ne a method tobe fun
tional if it makes no assumption on the unobserved variables X, thatis, they are modeled as unknown, nonrandom 
onstants (parameters). On the
ontrary, we de�ne a method to be stru
tural if it 
onsiders the X's to berandom variables. In this 
ase, the spe
i�
ation of the distribution for the X'sis needed, possibly depending on Z. This gives rise to the exposure model,whose density is indi
ated by fXjZ(xjz; Æ).The simplest way to 
orre
t for measurement error is by adopting the so-
alled regression 
alibration (RC, for short) method (Rosner et al., 1989, 1990;Carroll and Stefanski, 1990; Gleser, 1990). This is the most 
ommonly adoptedmethod to 
orre
t for measurement error in 
ovariates, mainly be
ause of thesimpli
ity of its appli
ability with existing softwares. The idea underlying themethod is the estimation of the regression of X on W and, possibly, Z onadditional data, that is, further data than the main study sample. Additionalinformation 
an be available in di�erent forms. For example, a subsample ofobservations from X 
an be re
orded for a small group of subje
ts of the mainstudy sample. It originates the internal validation data set, from whi
h theso-
alled gold standard measures of X are available. A 
ommon alternative



6 A. Guolois 
olle
ting repli
ation data, whi
h are repli
ates of the observations from X.They 
an be obtained by the same pro
ess whi
h provides observations fromW .A

ording to the idea underlying RC, the resulting predi
tions of X ob-tained by the regression of X on (W;Z) in the additional data set are thensubstituted to the unknown values of X in the disease model. After that,standard analysis 
an be run. RC often leads to 
onsistent or approximately
onsistent estimators of the parameter of interest. However, it requires somehypotheses to be satis�ed, �rst of all that a linear homos
edasti
 relationshipbetween X and W and, possibly, Z, holds. If this is not the 
ase, RC results
ould be quite misleading.Thus, alternative te
hniques to 
orre
t for measurement error may bepreferable. An example is given by likelihood-based 
orre
tion te
hniques,whi
h have the advantage of ensuring good properties of the 
orrespondingestimators, as, for example, eÆ
ien
y and optimality, although at the notablepri
e of a bigger 
omputational burden. The appli
ation of likelihood te
h-niques requires the parametri
 spe
i�
ation of the distribution for the unob-served variable X, that is, the exposure model, together with the spe
i�
ationof the disease model and of the measurement error model previously de�ned.Let a 
lassi
al stru
ture for measurement error hold and let fW jXZ(wjx; z; 
)be the density asso
iated with this model. If n1 is the number of subje
ts onwhi
h observations (yi; wi; zi), i = 1; : : : ; n1, from the variables (Y;W;Z) arere
orded, the likelihood is given by integrating over the true and unobservedXL(�; y; w; z) = n1Yi=1 Z fY jXZ(yijxi; zi; �)fW jXZ(wijxi; zi; 
)fXjZ(xijzi; Æ)dxi; (1)where � = (�; 
; Æ)T. If the Berkson error model holds in pla
e of the 
lassi
al



Se
tion 2 Notation 7one, then the likelihood fun
tion for � is given byL(�; y; w; z) = n1Yi=1 Z fY jXZ(yijxi; zi; �)fXjWZ(xijwi; zi; 
)fW jZ(wijzi; Æ)dxi; (2)whi
h 
an be simpli�ed toL(�; y; w; z) = n1Yi=1 Z fY jXZ(yijxi; zi; �)fXjWZ(xijwi; zi; 
)dxi; (3)if we 
onsider that fW jZ(wjz; Æ) 
arries no information about the interest pa-rameter � and does not depend on X. The integrals in (1) and (3) are repla
edby a sum if X is a dis
rete random variable.Often additional information about the measurement error distribution isne
essary for parameters in (1) and (3) to be identi�able. Su
h additionalinformation may be in the form of validation data or repli
ates. Supposethat internal validation data are available. Let n2 be the dimension of theinternal validation data set, in whi
h we observe (yi; xi; zi), i = 1; : : : ; n2, from(Y;X; Z). To take a

ount of this, the likelihood in (1) is re-expressed asfollowsL(�; y; w; z) = n1Yi=1 Z fY jXZ(yijxi; zi; �)fW jXZ(wijxi; zi; 
)fXjZ(xijzi; Æ)dxin2Yi=1 fY jXZ(yijxi; zi; �)fW jXZ(wijxi; zi; 
)fXjZ(xijzi; Æ);while the one in (3) is re-expressed as followsL(�; y; w; z) = n1Yi=1 Z fY jXZ(yijxi; zi; �)fXjWZ(xijwi; zi; 
)dxi n2Yi=1 fY jXZ(yijxi; zi; �)fXjWZ(xijwi; zi; 
):Similar modi�
ations of the likelihood are de�ned to take a

ount of otheradditional data as, for example, external validation data or repli
ates(Higdonand S
hafer, 2001),(S
hafer, 2002).



8 A. Guolo3 Robust te
hniquesAs outlined in Se
tion 2, a parametri
 approa
h requires the spe
i�
ation ofsome models for all the involved variables. In parti
ular, the likelihood-basedapproa
h requires the exposure model to be spe
i�ed, whi
h is often diÆ
ultbe
ause of the la
k of observations from X. This implies that issues of modelmisspe
i�
ation naturally arise. It is well known that model misspe
i�
ation
an result in in
onsistent estimators of the model parameters (Carroll et al.,1998). Re
ently, Huang et al. (2006) suggest methods for diagnosing the ef-fe
ts of model misspe
i�
ation of the exposure distribution, by 
he
king bothformally and empiri
ally robustness properties. Alternatives to parametri
modeling whi
h retain good properties of eÆ
ien
y with respe
t to parametri
inferen
e while redu
ing sensitivity to modeling assumptions on the variablesmay be preferable. Examples are 
exible-parametri
 modeling and semipara-metri
 modeling, whi
h are illustrated in Se
tion 3.1 and Se
tion 3.2. More-over, other solutions are provided by di�erent te
hniques. We 
lassi�ed them inquasi-likelihood, estimating equations and empiri
al likelihood. Details aboutthese te
hniques are given, respe
tevely, in Se
tion 3.3, Se
tion 3.4 and Se
-tion 3.5. Robust te
hniques whi
h 
annot be in
luded in one of the previousgroups are illustrated in Se
tion 3.6.3.1 Flexible-parametri
 modeling methodsThe use of a parametri
 model with a high 
exibility in de�ning some 
om-ponents of the problem, su
h as, for example, the exposure model, has theadvantage of being easily de�ned and making inferen
e retaining a high degreeof eÆ
ien
y if 
ompared to parametri
 inferen
e. The method is suggestedby Carroll et al. (1999b). These Authors propose to use a mixture of normal



Se
tion 3 Robust te
hniques 9distributions as a 
exible spe
i�
ation for a 
omponent of the problem. In par-ti
ular, they fo
us on linear models and 
hange-point Berkson models, withnondi�erential errors and use a mixture of normal distributions to model theunobservable 
ovariate X and the measurement error, respe
tively. The mix-ture distribution is in
orporated into the likelihood fun
tion, thus summarizingdata 
ontribution for inferential pro
edures performed through a frequentistor a Bayesian approa
h. A Bayesian approa
h is adopted to obtain point es-timates and 
on�den
e intervals for all parameters of interest, using Markov
hain Monte Carlo (MCMC) for simulating from the posterior distribution ofthe parameters. The number of 
omponents in the normal mixture, indi
atedby k, is also 
onsidered an unknown parameter. A

ording to Carroll et al.(1999b), it 
an be estimated like the other parameters or it 
an be 
hosenthrough a sensitivity analysis, by evaluating how inferential results vary as afun
tion of k. The �rst solution is adopted in the linear model, while the se
ondis used in the 
hange-point Berkson model. Simulation studies are performedto 
ompare the behaviour of the likelihood based on the mixture of normals tothe method of moments and the likelihood based on the normal distribution, interms of properties of the resulting estimators. Several sampling distributionsfor the unobservable 
ovariate X are assumed, as, for example, the log �2 dis-tribution, the normal distribution and the skew normal distribution. Resultsindi
ate that the mixture method 
an outperform the one based on the normaldistribution in terms of bias of the estimators, ex
ept in situations where thedistribution of the unobservable 
ovariate is highly skewed, as, for example,when a log�2 distribution is assumed. As expe
ted, the method of momentsis the less satisfa
tory solution for a large 
lass of the assumed distributions,both in terms of bias and varian
e of the estimators.



10 A. GuoloAs Carroll et al. (1999b), also Carroll et al. (1999a) use a mixture of normaldistributions to model the exposure, with the aim of in
reasing robustness tomodel misspe
i�
ation. The di�eren
e is that the proposal by Carroll et al.(1999a) 
onsiders regression splines as a way to 
orre
t for measurement errors.The type of regression splines the Authors fo
us on depends on the 
onditionaldistribution of X given W . Moreover, the 
onditional distribution of X givenW is shown to depend on the marginal distribution ofX, under the assumptionof additive and normally distributed measurement error. The Authors proposeto model the distribution of X by a mixture of normal distributions, with anunknown number of 
omponents. The distribution of X is estimated by amodi�ed version of the Gibbs Sampling algorithm (Wasserman and Roeder,1997). To ensure parameter identi�ability, the measurement error varian
e isassumed to be known. If this is not the 
ase, as it usually happens in pra
ti
e,additional information is needed.The idea of using a mixture distribution is also adopted by Ri
hardson et al.(2002), within a Bayesian framework. The Authors fo
us on mixture modelswith a variable number of 
omponents for 
exibly modeling the distributionof X in Bayesian hierar
hi
al models. This suggestion was given before inRi
hardson and Green (1997), who use MCMC methods based on the reversiblejump algorithm proposed by Green (1995). Ri
hardson et al. (2002) referto epidemiologi
al 
ase-
ontrol studies, whi
h involve validation data. Thefo
us is mainly on the logisti
 disease model, where 
ovariates are a�e
tedby normal or lognormal 
lassi
al measurement errors. A key assumption ismeasurement error to be nondi�erential. The proposed method is a fun
tionalone, thus assuming that the X's are unknown parameters for whi
h a prior isneeded. This prior is given by a mixture of univariate normals with an unknown



Se
tion 3 Robust te
hniques 11number of 
omponents, k. Treating k as being unknown and integrating overits posterior distribution when estimating regression parameters of interestenhan
es the adaptivity of the mixture to heterogeneity in the underlyingdistribution of X. The prior distribution for k is 
hosen to be vague. Inparti
ular, a uniform distribution over the range 1 � 30 is used. However,the Authors suggest that in pra
ti
e the mixture rarely uses more than ten
omponents, so that k 
ould be de�ned on a smaller range without any loss of
exibility. Several simulation studies are performed to evaluate the in
uen
e ofmisspe
i�
ations of the prior distribution for X and to show the improvementof using a 
exible mixture distribution for X instead of a normal one.
In all the papers we fo
used on, the advantage of using 
exible parametri
models is well outlined. It relies upon their simple appli
ability and the ro-bustness added to the analysis. However, a 
ru
ial point is the 
hoi
e of thenumber of mixture 
omponents. It 
an be �xed as suggested by Carroll et al.(1999b), although this is obviously a matter of subje
tiveness, or it 
an be leftunde�ned, with the 
onsequent risk of overparametrising the model. If k isallowed to in
rease too mu
h, so as, for example, when it grows with the sam-ple size (Roeder and Wasserman, 1997) the 
orresponding model may be
omeuseless in pra
ti
e, making inferen
e results unreliable. In fa
t, usually thereis not information enough to allow the estimation of a large number of 
om-ponents. Thus, a modest value of k is more 
onvenient. Moreover, also undera small number of mixture 
omponents, if the resulting mixture distributionis not a good approximation of the real one, the estimators 
an be biased. Inall these 
ases a di�erent approa
h, su
h as, for example, a semiparametri
approa
h, may be preferable.



12 A. Guolo3.2 Semiparametri
 analysisAn alternative to the 
exible parametri
 modeling is the semiparametri
 ap-proa
h. It represents a response to the sensitivity of modeling assumptions,although it 
an be sometimes 
hallenging to implement. The semiparametri
approa
h has the advantage of robustness, in that it does not require the spe
-i�
ation of the distribution of X and/or of W . However, it may la
k eÆ
ien
ywith respe
t to a full likelihood approa
h, if the parametri
 spe
i�
ation ofthe model is approximately 
orre
t. This loss of eÆ
ien
y may be substantialeven for moderate sample sizesCarrollet al. (1998). Di�erent proposals in litera-ture suggest to perform a semiparametri
 analysis by allowing a nonparametri
spe
i�
ation of one or more 
omponents of the model, that is, the disease, themeasurement error and/or the exposure 
omponent.One of the �rst proposals of semiparametri
 analysis in measurement er-ror problems is the paper by Carroll and Wand (1991). It 
on
erns logisti
regression models, with nondi�erential errors on 
ovariates. A validation dataset is supposed to be available. No parametri
 assumption is made for thedistribution of the true and unobservable 
ovariate X or its surrogate W . TheAuthors develop an estimating algorithm, whi
h is based on a kernel regressionto approximate the likelihood, without modeling the distribution of X givenW . Their method provides a semiparametri
 estimate of the parameters ofthe disease model, together with an asymptoti
ally normal limit distributionof the estimators and an estimated bandwidth of the kernel regression. Inde-pendently, Pepe and Fleming (1991) 
onsider a similar problem in the 
ase ofa dis
rete random variable X.The assumption underlying the proposal by Carroll and Wand (1991) andby Pepe and Fleming (1991) is that missingness of observations from X does



Se
tion 3 Robust te
hniques 13not depend on the response Y . Robins et al. (1995) suggest a new 
lass of es-timators for the parameters of the disease model that remains 
onsistent andasymptoti
ally normally distributed even when the probability that X is miss-ing depend on the observations from Y . The pro
edure requires a validationdata 
onsisting on observations from the X, the response variable Y and theerror-free variable Z, to be available. They are needed to nonparametri
allyestimate the distribution of X, 
onditionally on Y and Z. In situation when anonparametri
 estimation of the distribution ofX given Z may be not pra
tiblebe
ause of the 
urse of dimensionality (Huber, 1985), that is, when the ve
torof error-free 
ovariates Z in
ludes more than two 
ovariates, the estimatorsremains asymptoti
ally unbiased and are 
omputationally simple. Moreover,under 
ertain 
onditions on Y and Z, the proposed 
lass of estimators 
ontainsestimators of the parameters whi
h are semiparametri
 eÆ
ient in the sense ofBegun et al. (1983). Simulation studies performed with referen
e to a logisti
disease model indi
ate that the estimators by Robins et al. (1995) is preferableto the one by Pepe and Fleming (1991), in terms of absolute relative eÆ
ien
y.Wang and Wang (1997) suggest a semiparametri
 
orre
tion te
hniqueagain based on kernel regression. The fo
us is on logisti
 regression mod-els with validation data available. The observations from X are thought tobe missing data in the main study sample, with a path of missingness whi
hdepends on (Y;W ) but not on X, that is, X is assumed to be missing at ran-dom (MAR). No distributional assumption is made on 
omponents su
h asthe sele
tion probabilities of the validation data set or the probability densityof X 
onditionally on the other variables. The paper investigates two kernelestimation methods whi
h extend the proposals by Breslow and Cain (1988)and by Reilly and Pepe (1995) when (W;Z) are 
ontinuous. The proposal by



14 A. GuoloBreslow and Cain (1988) suggests the use of a pseudo-
onditional likelihoodfun
tion in a two-stage 
ase-
ontrol study, so that at the se
ond stage someX's are observed in ea
h stratum 
lassi�ed by (Y;W ), where W is a 
ategor-i
al variable. The proposal by Reilly and Pepe (1995), instead, is a modi�edpseudo-likelihood approa
h for the 
ase that (Y; Z;W ) are all dis
rete variablesand X is MAR. It extends the previous works by Carroll and Wand (1991)and Pepe and Fleming (1991). They both propose semiparametri
 estimatorsof the parameters of interest, without modeling the 
onditional distributionof X given (W;Z). Their solutions may lead to in
onsistent estimators if themissingness pro
ess of X is not independent of Y . Reilly and Pepe (1995)extend this proposal by allowing the sele
tion probabilities of X to depend onY and (W;Z), when (W;Z) are dis
rete.Wang and Wang (1997) extend the previous works by allowing the 
ovari-ates and the surrogates to be 
ontinuous. The extension of the proposal byBreslow and Cain (1988) is obtained by using a nonparametri
 kernel estima-tion of the sele
tion probabilities of X in the validation data. The extension ofthe estimator by Reilly and Pepe (1995) is based on the nonparametri
 kernelestimation of the 
onditionally expe
ted estimating s
ore of X given (Y;W;Z).The asymptoti
 properties of the two estimators are given. The simulationstudies 
arried out by Wang and Wang (1997) to evaluate the performan
eof their proposals, under additive and non-normal measurement error, show ahigh relative eÆ
ien
y of the estimators of the parameters if 
ompared to themaximum likelihood estimator, when the modeling assumptions are in
orre
t.Another semiparametri
 approa
h to 
orre
t for measurement error whenvalidation data are available is the pseudo-likelihood analysis suggested byCarroll et al. (1993). It is de�ned for handling nondi�erential errors and mod-
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tion 3 Robust te
hniques 15i�ed so as to in
lude also di�erential errors. The method requires a parametri
formulation of the disease model and the measurement error model, whi
h 
anbe 
he
ked in the validation subsample, while the exposure model is left un-spe
i�ed. The marginal distribution of X is estimated by using a weightedaverage of the empiri
al distribution of XjY = y obtained from the 
ompletedata. This estimate is plugged into the likelihood, from whi
h the maximumpseudo-likelihood estimates of the remaining parameters 
an be obtained. Sim-ulation studies indi
ate that the approa
h gives satisfa
tory results with re-spe
t to the maximum likelihood approa
h, in terms of bias and standarderrors of the estimators. However, small sample sizes 
an a�e
t the estimationpro
ess with numeri
al instability problems due to the empiri
al distributionfun
tions whi
h are used. Moreover, modeling the relationship between Y andW by using the estimates of X may only partially re
over the informationabout the parameters of interest whi
h is 
ontained in the validation data.In other words, some information about the distribution of X in the redu
eddata might be lost. As a 
onsequen
e, maximizing the full likelihood turnsout to yield more information about the parameters than a pseudo-likelihoodapproa
h, whi
h is, of 
ourse, less eÆ
ient.Roeder et al. (1996) propose an alternative to the pseudo-likelihood methodby Carroll et al. (1993), when validation data are available. Both di�erentialand nondi�erential errors are allowed. A parametri
 formulation is given forthe disease model and for the measurement error model, whi
h 
an be 
he
kedin the validation subsample. Instead, the empiri
al distribution fun
tion of X,
al
ulated on the same validation subsample, is used as a �rst estimate of themarginal distribution ofX. The estimate is then updated by the EM algorithmor the gradient method within the estimation pro
ess of the disease model



16 A. Guoloparameters. The idea 
omes from Kiefer and Wolfowitz (1956), who treat thenuisan
e parameters x as random variables from an unspe
i�ed distribution.The estimation of the parameters is 
arried out via nonparametri
 maximumlikelihood (NPML), as suggested by Laird (1978). Simulation experimentsshow that the proposal by Roeder et al. (1996) performs at least as well as oreven better than the pseudo-likelihood method by Carroll et al. (1993), withthe amount of improvement depending on the sample size and the type ofmeasurement error.A similar idea is followed by S
hafer (2001). The Author generalizes the useof nonparametri
 maximum likelihood proposed by Laird (1978) for semipara-metri
 likelihood analysis of linear, generalized linear and nonlinear regressionmodels, where the 
ovariates are a�e
ted by nondi�erential errors. Moreover, a
onvenient 
omputational form for the data analysis is provided. The approa
his illustrated under a variety of stru
tures and types of extra information aboutthe measurement error distribution. The integral of the full likelihood (1) isapproximated by a k-node quadratureL(�; y; w; z) = KXk=1 �kfY jXZ(ykjx�k; zk; �)fW jX;Z(wkjx�k; zk; 
); (4)where �k is �kfXjZ(x�kjzk; Æ), the �k's and x�k's are known quadrature massesand nodes and � = (�; 
; Æ)T. LairdLaird (1978)'s algorithm 
an be applied forsimultaneous maximum likelihood estimation of the parameters of the diseaseand the measurement error model and for the estimation of fXjZ(x�kjzk; Æ). Thisamounts to the estimation of the quadrature masses �k and of the nodes x�k.The EM algorithm is suggested to this aim. Simulation studies indi
ate thatthis semiparametri
 approa
h retains a high degree of eÆ
ien
y with respe
t tothe full maximum likelihood inferen
e based on 
orre
t distributional assump-
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hniques 17tions and 
an outperform maximum likelihood methods based on in
orre
tdistributional assumptions.S
hafer (2002) follows an approa
h similar to S
hafer (2001) for the semi-parametri
 analysis of linear, generalized linear and nonlinear regression mod-els, where 
ovariates are a�e
ted by nondi�erential errors. Di�erent types ofextra information about the measurement error distribution are 
onsidered.The underlying idea is the evaluation of the integral (4) by a k-node Gauss-Hermite quadrature. It is evident that expression (4) has the form of a �nitemixture of densities with mixing proportions given by �k. Applying the EM al-gorithm to estimate the parameters requires the introdu
tion of k-dimensionalmultinomial random variables to identify the relevant mixture 
omponent forea
h i, whi
h are treated as missing data. The main di�eren
e with respe
t tothe previously mentioned approa
h by S
hafer (2001) is that here the numberof nodes at whi
h the integrand is evaluated is treated as a �xed quantity.That is, the approa
h 
an be thought of as an attempt of 
exible stru
turalmodeling of the exposure. This implies that the only parameters to be es-timated are the parameters of the disease model and the measurement errormodel. However, this approa
h bears some issues whi
h require further inves-tigation. First of all, there is no guarantee of numeri
al stability of the EMalgorithm. Se
ondly, there is no 
lear indi
ation about the number of nodesrequired in any situation, although 20 seems to be suÆ
ient at least in theexamples analyzed by the Author. Finally, the approa
h has been proposedin situations with a single unobservable 
ovariate. While its extension to sev-eral X 0s measured with error is theoreti
ally possible, the appli
ation may beunrealisti
 be
ause of 
omputational diÆ
ulties.Within a Bayesian framework, M�uller et al. (1997) propose to 
orre
t for



18 A. Guolomeasurement error in 
ovariates by a semiparametri
 approa
h wih
h is espe-
ially designed for handling 
ase-
ontrol data. The method fo
uses on semi-parametri
ally modeling the distribution of X. This is obtained by using amixture of normal models with a Diri
hlet pro
ess prior on the mixing measure(Antoniak, 1974; Es
obar and West, 1995). Using multivariate normal kernelsin the mixture impli
itly assumes that 
ovariates are 
ontinuous. However, theAuthors indi
ate that the appli
ation of the method to 
ategori
al 
ovariatesis possible by using di�erent distributions in pla
e of a mixture of normals.The pro
edure to estimate the parameters of the disease model is based on a
ombination of Markov 
hain Monte Carlo te
hniques. The method by M�ulleret al. (1997) is developed under the assumption of nondi�erential errors andthe availability of validation data. Simulation studies performed assuming alogisti
 disease model show that the method is robust against heteros
hedas-ti
ity over 
ases and 
ontrols, whereas it is sensitive to di�erential error. Whennondi�erential measurement errors hold, the method is preferable in terms ofbias and mean squared error to the proposal by Carroll et al. (1993). Underdi�erential measurement error, instead, the situation reverses, the method byCarroll et al. (1993) having the advantage of exhibiting a smaller bias.Later, Malli
k et al. (2002) develop semiparametri
 Bayesian methods forregression models where measurement errors follow a 
lassi
al stru
ture, aBerkson stru
ture or a 
ombination of both of them. The method suggestedby the Authors is semiparametri
 in the spe
i�
ation of both the disease modeland the exposure model. The disease model is supposed to be monotone inthe unobserved variable X and thus it is spe
i�ed through a semiparamet-ri
 monotone form. In parti
ular, a mixture of beta 
umulative distributionfun
tions is used. The distribution of the unobserved X is also semipara-
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hniques 19metri
ally modeled, by using a P�olya tree distribution (Lavine, 1992; Walkerand Malli
k, 1999). However, as the Authors suggest, 
exible semiparamet-ri
 alternatives to the P�olya distribution 
ould be used. Simulation studiesperformed under a logisti
 disease model and a 
ombination of 
lassi
al andBerkson measurement error 
omponents indi
ate a satisfa
tory behaviour ofthe proposed method with respe
t to the naive analysis and the one based onthe true simulated data for X.In e
onometri
 resear
h, Li and Hsiao (2004) re
ently proposed a semipara-metri
 approa
h to 
orre
t for 
lassi
al errors in 
ovariates in generalized linearmodels. The hypothesis of nondi�erential error is relaxed by assuming onlythat E[U jY ℄ = 0. Additional data as repli
ated measures of X are 
onsideredto be available. The proposal by Li and Hsiao (2004) does not make distribu-tional assumptions on the unobservable variable X or the measurement errors.The method is based on maximizing an asymptoti
ally 
orre
ted likelihood(ACL) fun
tion. It is a two-stage method. At the �rst stage, the distributionof X is nonparametri
ally identi�ed. This is done by using the empiri
al 
har-a
teristi
 fun
tions and trun
ated inverse Fourier transform, as suggested byLi (2002). At the se
ond stage, a semiparametri
 estimator of the parametersof interest is derived by maximizing the ACL fun
tion using the estimateddistribution of X obtained at the �rst stage. The Authors show that the ACL
onverges to the same likelihood fun
tion one would obtain with observed X.However, some future lines of resear
h are pointed out. First of all, the needof evaluating the asymptoti
 distribution and the rate of 
onvergen
e of theACL estimator. Simulation studies 
ompare the proposed ACL estimator tothe naive maximum likelihood estimator and to the 
orre
ted s
ore estimatorby Nakamura (1990), whi
h is based on the normality assumption of errors



20 A. Guolo(see Se
tion 3.4). The 
omparison is in terms of bias and standard error ofthe estimators. Results show that the ACL method outperforms the 
orre
teds
ore when the measurement error distribution is misspe
i�ed as a normal.Standard errors are larger than those of alternative methods, as a 
onsequen
eof the �rst stage nonparametri
 estimation, while bias redu
tion is substantial.This leads to a notable redu
tion in mean squared error. As expe
ted, naiveanalysis yields worse results.3.3 Quasi-likelihood methodsQuasi-likelihood is a promising alternative to the full likelihood approa
h forthe analysis of measurement error data. It has the advantage of 
ombininghigher 
exibility with a smaller 
omputational e�ort. Quasi-likelihood requiresthe spe
i�
ation of the �rst two moments, that is, of the mean and the vari-an
e, of the 
onditional distribution of Y given X and Z and not of its entiredistribution (see (Carroll et al., 2006), Se
tion 8.8). That is, one needs onlyto spe
ifyE [Y jX;Z℄ = mY (x; z; �1) and V ar [Y jX;Z℄ = gY (x; z; �1; �2): (5)The approa
h in
ludes quasi-likelihood methods for generalized linear modelsas spe
ial 
ases. Quasi-likelihood methods require that the mean and varian
efun
tions be evaluated on the observed data and not on the unobservable ones.These are given byE [Y jW;Z℄ = E [mY (�)jW;Z℄ and V ar [Y jW;Z℄ = E [gY (�)jW;Z℄+V ar [mY (�)jW;Z℄ :(6)An example is given in Carroll and Stefanski (1990). The Authors 
onsiderthe appli
ation of the quasi-likelihood method in 
ase-
ontrol studies, where
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hniques 21data are a�e
ted by nondi�erential measurement errors, whi
h 
an be 
lassi
alas well as Berkson errors. Validation data, in the form of gold standard mea-surements of X, are required. No assumption is made on the distribution of Xgiven W , but only on the �rst two moments of the measurement error givenW . The Authors propose M-estimators for the parameters of interest, startingfrom estimating equations based on Taylor series expansions of the mean andvarian
e fun
tions. Their asymptoti
 distribution is provided under di�erentadditional data s
enarios.Wang et al. (1996) 
onsider quasi-likelihood estimation under the hypoth-esis that 
orrelated repli
ates of the proxy variableW are available. A nondif-ferential and 
lassi
al additive measurement error on the 
ovariate is assumed.The Authors perform a quasi-likelihood analysis by 
omputing the mean andvarian
e fun
tions through Monte Carlo methods. The distribution of X issuggested to be 
exibly modeled by using a mixture of normals. The ap-pli
ation of the method is illustrated on a real data set. The results showthe improvement with respe
t to a RC approa
h whi
h ignores the 
orrela-tion stru
ture of repli
ates, both in terms of bias ans standard error of theparameter estimators.3.4 Estimating equationsThe use of estimating equations in measurement error problems has beenmainly studied in two variants whi
h are referred to as 
orre
ted s
ore and
onditional s
ore methods, although alternatives have been re
ently suggested.The 
orre
ted and 
onditional s
ore methods were developed starting fromthe estimating equations for regression parameters in the absen
e of measure-ment error. An estimating equation is unbiased if it has expe
tation zero. An



22 A. Guoloexample is the s
ore fun
tion, that is, the �rst derivative of the log-likelihoodfun
tion with respe
t to the parameters. Measurement error indu
es bias inestimating equations, whi
h in turn gives rise to biased estimators for the pa-rameters. Thus, the purpose is to modify the estimating equations so as toobtain unbiased estimating equations.The 
orre
ted s
ore method spe
i�es 
orre
ted s
ore fun
tions, whi
hare unbiased estimators of the s
ore fun
tion yielding the estimator onewould use if there was no measurement error. The method of 
orre
teds
ore fun
tions was studied by Stefanski (1989) and Nakamura (1990). Inthe absen
e of measurement error, 
onsider the estimate of � whi
h solvesPni=1  (yi; xi; zi; �) = 0, where n is the sample size and  (�) is the estimatingfun
tion. The fun
tion  (�) is typi
ally a likelihood s
ore fun
tion from themodel for the data without error. It is unbiased if its expe
tation is zero, thatis, E[ (Y;X; Z; �)℄ = 0. Generally, it is no longer unbiased when W repla
esX. Corre
ted s
ore fun
tions instead, say  �(y; w; z; �), have the property thatE[ �(Y;W;Z; �)℄ =  (Y;X; Z; �), where the expe
tation is with respe
t to thedistribution ofW given (Y;X; Z). The 
orre
ted s
ores are unbiased wheneverthe original s
ores are. Unbiasedness is a major requirement for 
onsisten
y ofthe estimators obtained from 
orre
ted s
ore fun
tions.The 
orre
ted s
ore method applies to generalized linear models, as, forexample, the gamma regression model with logarithmi
 link. It requires thata measurement error distribution be spe
i�ed. The normal distribution istypi
ally used for this purpose (Stefanski, 1989). Corre
ted s
ore fun
tions donot always exist and �nding them when they do is not always as easy as in thelinear 
ase. A typi
al example is logisti
 regression whi
h does not admit a
orre
ted s
ore fun
tion, ex
ept under restri
tions (Buzas and Stefanski, 1996).



Se
tion 3 Robust te
hniques 23Stefanski (1989) derived 
orre
ted s
ore fun
tions for some 
ommon modelsand generally appli
able approximate 
orre
ted s
ore fun
tions. Re
ently, amethod for obtaining 
orre
ted s
ore fun
tions via 
omputer simulation wasstudied (Novi
k and Stefanski, 2002).The 
onditional s
ore method was introdu
ed by Stefanski and Carroll(1985) and developed into the usually applied formulation by Stefanski andCarroll (1987) within an important 
lass of generalized linear models. Themost important example is logisti
 regression. Carroll et al. (2006), Se
tion 7,des
ribe extensions of the method to Poisson-loglinear, gamma-inverse andother models.The 
onditional s
ore is a fun
tional method based on the theory of suÆ-
ient statisti
s, on whi
h we 
an 
ondition to eliminate the nuisan
e parame-ters x. Stefanski and Carroll (1987) assumed that the measurement errors arenormally distributed. However, the estimator 
an redu
e bias also for smalldepartures from this assumption (Huang and Wang, 2001). Stefanski andCarroll (1987) fo
us on logisti
 regression with 
lassi
al measurement error,although the method applies to other generalized linear models, provided themeasurement errors are normal and the models are in the 
anoni
al form (see(Carroll et al., 2006), Se
tion 7). They provide the 
onditional s
ore estimatorfor logisti
 regression and show that it behaves satisfa
torily in terms of eÆ-
ien
y with respe
t to the full maximum likelihood estimator whi
h, however,requires the spe
i�
ation of an exposure model (Stefanski and Carroll, 1990).For models other than logisti
 regression, the 
onditional s
ore estimatingequations are far more 
ompli
ated (see (Carroll et al., 2006), Se
tion 6.4) andtypi
ally 
omputed by means of numeri
al integration.Outside the 
onditional s
ore and the 
orre
ted s
ore formulation, other
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orre
t for measurement error have been suggested whi
h arebased on the theory of estimating equations. An example is the paper byIturria et al. (1999). The Authors derive estimators of parameters of the dis-ease model and their asymptoti
 standard errors in the polynomial regressionmodel, by referring to 
orre
ted estimating equations whi
h do not ne
essarily
ome from the s
ore fun
tion. Additive and multipli
ative measurement errorsare 
onsidered. Conditions under whi
h it is possible to estimate parametersare given. These 
onditions do not rely on distributional assumptions aboutthe X 0s, but use ratios of the W 0s, thus making the method be a robust so-lution. The method may be easily extended to general estimating fun
tions.The basi
 idea is that an estimating fun
tion 
an be expanded as a polynomial,thus allowing the proposal by Iturria et al. (1999) to be applied. Simulationstudies 
arried out to 
ompare the method and the likelihood approa
h showthat the �rst provides more reliable results whenever models for measurementerrors are misspe
i�ed. This is mainly the 
ase for skewed errors.Re
ently, Wang and Pepe (2000) fo
used on the use of estimating equationsto 
orre
t for measurement error in marginal or partly 
onditional regressionmodels for longitudinal data. Measurement errors are assumed to be nondi�er-ential. Estimating equations are 
onsidered whi
h are not ne
essarily likelihoods
ore equations. They have to be unbiased when evaluated on the 
ompletedata, that is, on observations from (Y;X; Z). The Authors propose to base theestimation of the parameters of the disease model on the expe
tation of theestimating equation for the 
omplete data 
onditioned on the available data.The estimates are derived as solutions of the resulting estimating equations.The expe
ted estimating equations (EEE, for short), as they are 
alled, yieldan estimator whi
h has the property of being equal to the maximum likelihood



Se
tion 3 Robust te
hniques 25estimator if the 
omplete data s
ores are likelihood s
ores and 
onditioning iswith respe
t to all the available data. The asymptoti
 distribution of the es-timator is derived. Its behaviour is 
ompared to the RC estimator throughsimulations studies of a logisti
 disease model, under an order one autoregres-sive model for the error pro
ess. Simulation results indi
ate that for moderatesample sizes, with large relative risk, the EEE estimator is more eÆ
ient thanthe RC estimator, while it 
an su�er from both a large bias and a large stan-dard error in small samples. This agrees with the behaviour of the maximumlikelihood estimator whi
h su�ers from bias in the presen
e of small samplesizes.As Wang and Pepe (2000), also Pan et al. (2006) fo
us on longitudinaldata, where a single 
ovariate X is assumed to be a�e
ted by measurementerror. The error is supposed to be additive and nondi�erential. The Authorsmainly refer to the transition models, that is, models where the 
onditionalmean of the response variable at the 
urrent time point is modeled as a fun
-tion of its value at the previous time and 
ovariates (see (Diggle et al., 2002),Chapter 10). Within this setting, an estimating equation approa
h is proposedby modifying the 
onditional s
ore method by Stefanski and Carroll (1987).This gives rise to the so-
alled pseudo 
onditional s
ore estimators of the dis-ease model parameters. They are shown to be 
onsistent and asymptoti
allynormally distributed. Moreover, an alternative to the pseudo 
onditional s
oreestimator is proposed, namely a semiparametri
 eÆ
ient one-step estimator.It improves the eÆ
ien
y of the pseudo 
onditional s
ore estimator, by tak-ing advantage of the expli
it expression of the eÆ
ient s
ore fun
tion for theparameters of interests. Moreover, the one-step estimator rea
hes the semi-parametri
 eÆ
ien
y bound in the presen
e of validation data. However, the
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it formulation of the eÆ
ient s
ore fun
tion whi
h the one-step estimatorrelies on does not exist for models more 
ompli
ated than the linear model,as, for example, the logisti
 transition model.3.5 Empiri
al likelihoodThe paper by Wang and Rao (2002) is the �rst example of appli
ation of em-piri
al likelihood in measurement error problems. The empiri
al likelihood,introdu
ed by Owen (1988), is useful to 
onstru
t 
on�den
e regions under anonparametri
 model. It has some advantages with respe
t to 
lassi
al meth-ods, in that it does not require the de�nition of pivotal quantities for inferen-tial purposes and provides 
on�den
e regions whi
h are range-preserving andtransformation-respe
ting (Hall and La S
ala, 1990).Wang and Rao (2002) fo
us on linear regression model, when validationdata are available. Measurement errors are assumed to be nondi�erential.The regression model is re-written in an equivalent form where unobserved
ovariatesX are substituted by E[XjW ℄. The empiri
al log-likelihood fun
tionis then evaluated starting from this formulation. To estimate the parametersof interest, the quantity E[XjW ℄ has to be repla
ed by known values derivedfrom the validation data. The idea is similar to the one underlying the RCapproa
h. This substitution leads to an estimated empiri
al log-likelihood.The Authors show that the resulting estimated empiri
al log-likelihood followsasymptoti
ally a �2 distribution and use it to de�ne 
on�den
e regions for theparameters of interest. However, su
h an approa
h 
an su�er from the 
urse ofdimensionality when the dimension ofX and hen
e ofW is large, be
ause of therequired estimation of E[XjW ℄. In this 
ase, dimension-redu
tion models maybe preferable for estimating E[XjW ℄. However, the 
orresponding asymptoti
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tion 3 Robust te
hniques 27theory has still to be developed and is an interesting �eld of future resear
h.Cui and Chen (2003) suggest a di�erent approa
h based on empiri
al like-lihood to derive 
on�den
e regions for the parameter of the disease model.The fo
us is on linear regression models, where 
ovariates are assumed to bea�e
ted by 
lassi
al and nondi�erential measurement errors. The Authors il-lustrate how to 
onstru
t empiri
al likelihood 
on�den
e regions by startingfrom a modi�
ation of the s
ore fun
tion. This adds up squared orthogonaldistan
es for ea
h data point to a hyperplane in the parameter spa
e. Su
ha s
ore fun
tion di�ers from the one from an ordinary linear model in thatthe former has more than two solutions, of whi
h only one is genuine. Thissolution is found by 
onstraining the empiri
al likelihood to a restri
ted re-gion of the parameter spa
e. The Authors evaluate the 
overage a

ura
y andBartlett 
orre
tability of the 
on�den
e regions derived from this approa
h.Simulation studies are performed to 
ompare the behaviour of the proposedempiri
al likelihood 
on�den
e region to that based on the asymptoti
 normaldistribution of the estimators of the parameters. The results show that theempiri
al likelihood-based method provides 
on�den
e regions with better 
ov-erage and shorter lenghts than the normal approximation 
ounterpart. Thisimprovement is already notable for small or moderate sample sizes.3.6 Further te
hniquesFurther approa
hes whi
h make no distributional assumption on the involvedvariables were proposed in literature, although they 
an not be 
lassi�ed intoone of the previous groups. They are summarized below.� Cook and Stefanski (1994) develop a simulation-extrapolation method(SIMEX, for short), whi
h is a fun
tional simulation-based method to
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orre
t for measurement error a�e
ting the 
ovariates. It has been fur-ther developed by Stefanski and Cook (1995), Carroll et al. (1996) andWang et al. (1998). The method is robust in that it does not makedistributional assumptions on the unobserved variables X. The ideaunderlying SIMEX is that the e�e
t of the measurement error 
an bedetermined by simulation. The method develops in two steps. The �rstone is a resampling-like stage, in whi
h data sets with additional mea-surement error are generated starting from the original one. For ea
hdata set the naive estimate of the parameters is obtained, so that thetrend of the estimates versus the varian
e of the extra error terms 
anbe established. The 
orre
ted estimators of the parameters are obtainedin the se
ond stage by extrapolating this trend ba
k to the 
ase of nomeasurement error. Carroll et al. (1996) investigate the asymptoti
 dis-tribution of the SIMEX estimator. They show that it is asymptoti
allynormally distributed and provide methods to 
onsistently estimate thevarian
e. Later, Fung and Krewski (1999) propose a 
omparison be-tween RC and SIMEX estimators, by means of a 
omputer simulation ina logisti
 regression framework. Their study shows that RC and SIMEXestimators generally exhibit a satisfa
tory and similar performan
e interms of bias, mean squared error and 
overage of 
on�den
e intervals.When a Berkson measurement error model in highly 
orrelated predi
-tors holds, however, the SIMEX method seems to be preferable. On theother hand, RC has the nontrivial advantage to be a simpler and less
omputationally intensive method.� Haukka (1995) suggests to 
orre
t for 
ovariate measurement error ingeneralized linear models by using bootstrap te
hniques. The method
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tion 3 Robust te
hniques 29is referred to as two-stage bootstrap, be
ause both the primary and thevalidation data are resampled. It requires validation data to be avail-able. At the �rst stage, a bootstrap sample is taken from the validationdata set. It is used to estimate the parameters of the measurement errormodel relating X to the proxy variables W and to the error-free 
ovari-ates Z. A bootstrap sample is then taken from the primary data. Thissample is used to estimate the parameters of interest, with X repla
edby the predi
ted values obtained in the regression at the previous stage.Bootstrap sampling generally involves 50 { 100 repli
ations. The em-piri
al distribution of the estimator is used for making inferen
e on theparameters. The method is illustrated under the assumption of 
ontin-uous linear measurement errors, although extensions to other measure-ment fun
tions require only slight modi�
ations of the pro
edure. Thenonparametri
 nature of the method turns out in a nontrivial gain inrobustness, if 
ompared to simpler approa
hes as, for example, RC. Infa
t, simulation studies, performed in the logisti
 regression framework,showed that the method is a valid alternative to the RC, although it
an lead to larger 
on�den
e intervals, espe
ially in situations where thedistribution of the errors is asymmetri
. Despite of this, the prin
ipal dis-advantage of Haukka (1995)'s method relies in its 
omputational burden
onne
ted with the intensive appli
ation of the bootstrap te
hnique.� Lee and Sepanski (1995) propose an estimation method whi
h is 
ompu-tationally simpler than semiparametri
 and nonparametri
 methods de-s
ribed in Se
tion 3.2, both for linear and nonlinear disease models. Themethod relies neither on distributional assumptions nor on spe
i�
ationsof the equations relating the measured variable W to the true variable
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onsiderable gain in robustness. Additive measure-ment errors are 
onsidered and they are allowed to a�e
t the 
ovariatesas well as the dependent variable. The method is based on repla
ing theregression fun
tion of Y on (X;Z) by a wide-sense 
onditional expe
ta-tion, or least squares proje
tion, of the regression fun
tion on fun
tionsof W (Chamberlain, 1982). The underlying idea is that the original re-gression fun
tion 
an be proje
ted onto a �nite-order polynomial of W .This wide-sense 
onditional expe
tation 
an be estimated from valida-tion data using the ordinary least squares method. After repla
ement ofthe original regression fun
tion by this 
onditional expe
tation, nonlin-ear least squares 
an be used to estimate the parameters. The 
hoi
e ofthe polynomial for the proje
tion spa
e is arbitrary. Simulation studiesperformed by the Authors suggest that few polynomials of low degreeare good enough even for highly nonlinear fun
tions.� In e
onometri
s, Chesher (2000) notes that, to the �rst order of ap-proximation, the bias implied by measurement errors 
an be determinedby a fun
tional of the marginal distribution of the mismeasured variableW . The suggested 
orre
tion te
hnique, whi
h follows Chesher (1991), isbased on the 
onstru
tion of a nonparametri
 estimate of the fun
tionalof the distribution of W . The assumptions of independen
e between Xand the errors U and of nondi�erential errors are needed. Monte Carloexperiments, performed both when the measurement errors are normallyand non-normally distributed, indi
ate that the proposed method 
ansubstantially redu
e bias in estimators, if 
ompared to a naive approa
h.Moreover, in linear and polynomial models, the method 
an be 
ombinedwith the 
lassi
al instrumental variables pro
edure, thus improving the
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hniques 31eÆ
ien
y of both approa
hes.� Sepanski (1994) suggest to 
orre
t for measurement error in a 
lass ofmodels in
luding the generalized linear models by an approa
h stri
tlyrelated to RC. It is a semiparametri
 RC method, requiring a validationdata set 
onsisting of exa
t measures of X. It applies to nondi�eren-tial measurement error whi
h are not ne
essarily 
lassi
al and additive.The underlying idea is the substitution of the unobserved X's by theestimates of E[XjW ℄ obtained from a nonparametri
 kernel regression inthe validation data. On
e the unknown X 0s are repla
ed by these esti-mates, a standard analysis 
an be performed. The parallelism with RC isevident. However, this method gives rise to a gain in robustness againstdeviations from the linear relationship between X and W underlying theoriginal RC idea, when this relationship does not hold. Moreover, theAuthors provide the asymptoti
 distribution of the regression parameterestimators and dis
uss the 
hoi
e of the bandwidth parameter, involv-ing higher-order expansions for the 
ovarian
e matrix of the 
orre
tedestimators. Although the fo
us is on nonparametri
 kernel regressionto estimate E[XjW ℄, the Authors suggest that other smoothing te
h-niques 
ould be used, in
luding lo
al linear kernel smoothing, lowess,spline smoothing and generalized additive models. Simulation studies
arried out to 
ompare the method against parametri
 alternatives, as,for example, RC, indi
ate that it has a 
omparable performan
e, whi
hin some 
ases is also better, mainly under multipli
ative error stru
tures.� Another approa
h whi
h 
an be related to RC is suggested by Pier
e andKellerer (2004). The Authors propose to adjust for errors in 
ovariates



32 A. Guoloby using a nonparametri
 assessment of the true 
ovariate distribution.Their proposal 
an be used within the RC approa
h. In fa
t, the ex-pe
ted value of X givenW , whi
h is needed in the RC pro
edure, 
an benonparametri
ally derived, although it involves a de
onvolution whi
his diÆ
ult to 
arry out dire
tly. However, with multipli
ative and log-normal measurement errors, the Authors derive simple but a

urate ap-proximations for the k-th order moment of X given W , with k = 1; 2; : : :. These approximations depend only on the �rst and se
ond derivativesof the logarithm of the density of W and the 
oeÆ
ient of variation ofW given X. Both 
lassi
al and Berkson errors are 
onsidered.� Berry et al. (2002) suggest a robust approa
h to the analysis of measure-ment error data, where robustness is related to misspe
i�
ation of thedisease model and not on the exposure model, as 
ommonly adopted.The Authors propose a 
exible nonparametri
 estimation of the regres-sion fun
tion, by using smoothing splines or regression P-splines, withina Bayesian framework. The posterior distribution of the parameters ofinterest may be obtained from two algorithms. The �rst one, the so-
alled iterative 
onditional modes, uses a 
omponentwise maximizationroutine to �nd the mode of the posterior distribution, while the se
ond isa fully Bayesian method based on Monte Carlo Markov Chain te
hniquesto generate observations for the posterior distribution. Although the lastis 
omputationally more diÆ
ult than the �rst one, it is preferable in thatit allows exploring the posterior distribution, rather then only �nding themode. Simulation studies performed to evaluate the potential of the 
or-re
tion te
hnique by Berry et al. (2002) with respe
t to alternatives showthat it is 
ompetitive in eÆ
ien
y with similar approa
hes performed in
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hniques 33the frequentist framework, as, for example, the method by Carroll et al.(1999a). The normal distribution for the additive measurement errorand for the exposure variable is assumed, although simulation studiesshow that small departures from this assumption only slightly modifythe results.
� Jiang and Turnbull (2004) base statisti
al inferen
e in measurement errormodels on the so-
alled indire
t method. This is an approa
h to inferen
ewhi
h has been exploited in e
onometri
s (Gouri�eroux et al., 1993) as arobust alternative to likelihood-based pro
edures. The indire
t method isbased on the sear
h of an intermediate statisti
 as a fun
tional of the em-piri
al distributon fun
tion. The intermediate statisti
 typi
ally followsan asymptoti
 normal distribution, but it is not ne
essarily a 
onsistentestimator of the parameter of interest. An example is the naive estima-tor. Jiang and Turnbull (2004) fo
us on the indire
t method to suggesta 
onsistent estimator of the disease model parameter without requiringparametri
 assumptions on the distribution of (X;W ), thus obtaining anotable gain in robustness of results. Moreover, only the �rst moment isspe
i�ed for the disease model. The assumption of nondi�erential errorsand the availability of validation data is needed. A 
onsistent estimatorof the parameter of interest is found starting from the naive solution andits asymptoti
 distribution is derived. The appli
ation of the method isevaluated within a logisti
 framework and 
ompared to that of RC. Re-sults outline the improvement of the indire
t method in estimating theparameter of interest, mainly in situations where assumptions requiredby RC are not satis�ed.



34 A. Guolo� Tsiatis and Ma (2004) propose a 
lass of semiparametri
 estimators,whi
h are 
alled lo
ally eÆ
ient semiparametri
 estimators, within thefun
tional measurement error setting. This 
lass is derived by de�ning es-timating equations for the parameters of the disease model. The estimat-ing equations are obtained from the eÆ
ient s
ore derived as the residualafter proje
ting the s
ore ve
tor with respe
t to the disease model pa-rameters onto the tangent spa
e for the distribution of X. Tsiatis andMa (2004) show that the residual has mean zero even under misspe
i-�ed distributions for X. This allows one to form estimating equationsfor the parameters of the disease model whi
h yield to 
onsistent andasymptoti
ally normally distributed estimators. Moreover, if the modelfor X is 
orre
tly spe
i�ed, the resulting estimator is semiparametri
 ef-�
ient. The assumption underlying the method of known measurementerror distribution may be relaxed if additional data are available to esti-mate the unknown parameters of the distribution. Simulation studies areperformed to evaluate the behaviour of the proposed estimator, under aquadrati
 logisti
 disease model and two measurement error stru
tures,the �rst having normally distributed errors while the se
ond having ex-ponentially distributed errors. Results show that, in both of the 
ases,the proposed lo
ally eÆ
ient estimator is robust against misspe
i�
ationof the distribution of X. If 
ompared to the RC estimator, the lo
allyeÆ
ient estimator is preferable in terms of bias and empiri
al 
overageof 
on�den
e intervals.
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ussion 354 Dis
ussionWe have provided a review of te
hniques to 
orre
t for measurement error in
ovariates whi
h represent solutions to the sensitivity to assumptions typi
alof parametri
 approa
hes. Di�erent solutions have been proposed in literature,whi
h may be more or less 
hallenging to implement. Some of them 
ombine aparametri
 and a nonparametri
 spe�
ation of relationships between variables,while other methods fa
e the problem by adopting a totally nonparametri
 ap-proa
h. Although solutions are variously developed, they share 
hara
teristi
sof robustness against model misspe
i�
ations, the prin
ipal being the misspe
-i�
ation of the exposure model. However, in all 
ases, this advantage doesnot 
ome without 
osts. The higher pri
e to pay for it is the possible loss ineÆ
ien
y relative to parametri
 models if they are approximately 
orre
t.Furthermore, some 
omputational problems related to the diÆ
ulties inimplementing most of the suggested methods are non-negligible. Fo
us, forexample, on semiparametri
 te
hniques. The proposed methods in this groupshare the 
ommon approa
h of nonparametri
ally estimating one of the rela-tionships between variables, that is, the disease, the measurement error or theexposure model. Although these modi�
ations are applied to the likelihoodfun
tion given in (1), problems related to a full likelihood approa
h may stillbe present, like diÆ
ulties in the maximization pro
edure and in the evaluationof the involved integrals. Usually numeri
al methods or analyti
al approxima-tions are required and the asso
iated 
omputational e�ort tends to in
reasein 
ase of high-dimensional models. If this is the 
ase, alternative solutionsmay be preferable. From a stri
tly pra
ti
al point of view, the most feasiblesolutions seem to be those based on the idea underlying RC, the so-
alled semi-parametri
 RC methods. Starting from the simplest te
hnique to 
orre
t for



36 A. Guolomeasurement error, i.e. regression 
alibration, a nonparametri
 modi�
ationyields a gain in robustness, without a�e
ting the feasibility of the approa
h.Other solutions, as for example estimating equations, in spite of a wellknown underlying theory, may be less attra
tive be
ause of diÆ
ulties in ap-pli
ation, whi
h are not ne
essarily 
omputational diÆ
ulties. As it 
an beseen from the paper by Wang and Pepe (2000), deriving unbiased estimatingequations for the parameters is very often a nontrivial problem, mainly in sit-uations with mat
hed or unmat
hed 
ase-
ontrol data. In this 
ase, in fa
t, ifone starts from a formulation like the one in (1), for example, it is not possi-ble to obtain estimating equations and estimators of parameters in an expli
itform. Moreover, bias 
orre
tion 
an be hardly a
hieved. Further investigationin this area seems to be needed.Empiri
al likelihood is a powerful tool for inferen
e in nonparametri
 set-tings. The methods suggested by Wang and Rao (2002) and Cui and Chen(2003), whi
h apply empiri
al likelihood in measurement error problems, seemto be promising in terms of robustness properties, nevertheless studies are re-stri
ted to linear regression models at the moment. Although the attentionof this review has been mainly fo
used on models appropriate to handle 
ase-
ontrol data, we have mentioned the previous works on empiri
al likelihood inorder to highlight the fa
t that, on the basis of the promising results, extensionsto more general models may be an interesting �eld of further investigations.Most of the proposals reviewed here heve been developed under the as-sumption of nondi�erential measurement errors. The possibility for di�erentialmeasurement errors, instead, has been rarely examined. Although a nondif-ferential assumption is appropriate in many situations, mainly through a goodexperimental design, sometimes it may not be appropriate in 
ase-
ontrol stud-
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tion 4 Dis
ussion 37ies. In fa
t, when the possibility of sele
t or re
all bias arises, as it is typi
alin 
ase-
ontrol studies, thus measurement error 
an depend on the diseasestatus, that is, it 
an be di�erential. In this situation, many of the existingte
hniques to 
orre
t for measurement errors are not appli
able. This suggeststhe need for further resear
h to extend 
orre
tion methods developed underthe assumption of nondi�erential errors to the situation of di�erential errors.A 
ommon feature of methods examined here is their appli
ation to prob-lems where just a single 
ovariate is a�e
ted by measurement error. Additionalerror-free 
ovariates may be 
onsidered. The main reason relies on the 
om-putational e�ort required by a more extensive analysis, whi
h may be
omequite 
umbersome. As the dimension of X in
reases, the extension of most ofthe pro
edures is not straightforward and their appli
ation may be
ome lessattra
tive. An example is the augmented 
omplexity of integrals whi
h haveto be evaluated in semiparametri
 methods. Thus, further investigations areneeded in this area. The resear
h for extension of the existing methods tohigher dimensions of unobserved 
ovariates and/or their surrogates is requiredso as to make them suitable for more realisti
 problems. These may involvemore than one 
ovariate a�e
ted by measurement error, with the possibility ofsome 
orrelation patterns among errors.A
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