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Abstract: Asymptotic arguments are widely used in Bayesian inference, and in recent years
there has been considerable developments of the so-called higher-order asymptotics. This theory
provides very accurate approximations to posterior distributions, and to related quantities, in a
variety of parametric statistical problems, even for small sample sizes.

The aim of this contribution is to discuss recent advances in approximate Bayesian computations
based on the asymptotic theory of modified loglikelihood ratios, both from theoretical and practical
point of views. Results on third-order approximations for univariate posterior distributions, also
in the presence of nuisance parameters, are reviewed and a new formula for a vector parameter of
interest is presented.

All these approximations may routinely be applied in practice for Bayesian inference, since they

require little more than standard likelihood quantities for their implementation, and hence they may

be available at little additional computational cost over simple first-order approximations. Moreover,

these approximations give rise to a simple simulation scheme, alternative to MCMC, for Bayesian

computation of marginal posterior distributions for a scalar parameter of interest. In addition, they

can be used for testing precise null hypothesis and to define accurate Bayesian credible sets. Some

illustrative examples are discussed, with particular attention to the use of matching priors.

Keywords: Asymptotic expansion, Bayesian simulation, Credible set, Laplace approximation,

Marginal posterior distribution, Matching priors, Modified likelihood root, Nuisance parameter,

Pereira-Stern measure of evidence, Precise null hypothesis, Tail area probability.

1 Introduction

The aim of this contribution is to discuss recent advances in approximate Bayesian
computation based on the asymptotic theory of modified loglikelihood ratios and
of modified likelihood roots. This theory provides asymptotic formulae for various
posterior quantities of interest, including tail areas, quantiles and credible regions.

Higher-order approximations for posterior distributions based on modifications
of likelihood roots have been widely discussed in the Bayesian literature; see, among
others, DiCiccio et al. (1990), DiCiccio and Martin (1991), Reid (1995, 2003),
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Sweeting (1995, 1996), Skovgaard (2001), Brazzale et al. (2007), Ventura et al.
(2013), and references therein. One appealing feature of these approximations is
that they may routinely be applied in practical Bayesian inference, since they require
little more than standard likelihood quantities for their implementation, and hence
they may be available at little additional computational cost over simple first-order
approximations.

In this paper, two recent results on third-order approximations for univariate
posterior distributions based on modifications of the likelihood root are reviewed and
their use in Bayesian computation is illustrated. The first result shows that third-
order approximations give rise to a simple simulation scheme (Ruli et al., 2012),
alternative to MCMC, for Bayesian computation of marginal posterior distributions
for a scalar parameter of interest. Its main advantage, over MCMC methods, is that
samples are drawn independently and much lower computational time is needed. The
second result shows that third-order tail area approximations can be used for testing
precise null hypothesis (see Pereira and Stern, 1999, Cabras et al., 2013) and to
define accurate Bayesian credible sets. Particular attention is devoted to illustrations
with matching priors; see Ventura et al. (2013), and references therein. Indeed,
matching priors have several advantages, since they do not require the elicitation on
the nuisance parameters, neither numerical integration or MCMC simulation.

Moreover, in this paper we indicate how approximate Bayesian computations
based on modified loglikelihood ratios can be generalized for a vector parameter of in-
terest. As is the case with the approximations for univariate posterior distributions,
the proposed results are based on the asymptotic theory of modified loglikelihood
ratios and they require only routine maximization output for its implementation.

The paper is organized as follows. Section 2 reviews results and applications
of higher-order Bayesian approximations for a scalar parameter of interest, even in
the presence of nuisance parameters. Section 3 indicates how these ideas generalize
to the multiparameter case and illustrates some numerical examples. Finally, some
concluding remarks are given in Section 4.

2 Approximations for a scalar parameter of interest

Consider a sampling model f(y; θ) with scalar parameter θ ∈ Θ ⊆ IR, and let
L(θ) = L(θ; y) = exp{ℓ(θ)} denote the likelihood function based on data y. Given
a prior density π(θ) for θ, Bayesian inference is based on the posterior density
π(θ|y) ∝ π(θ)L(θ). In several applications, an approximation is often required to
an integral of the form

∫ θ0

−∞

π(θ|y) dθ = Pr(θ ≤ θ0|y) , (1)

i.e. to a tail area. The derivation of a tail area approximation is simple in the
scalar parameter setting (see, among others, Reid, 1995, 2003, Sweeting, 1995, 1996,
Skovgaard, 2001, Davison, 2003, Chap. 11, Brazzale et al., 2007, Chap. 8, and ref-
erences therein). The first step to derive a higher-order approximation for posterior
probabilities is to consider in (1) the Laplace expansion of π(θ|y), given by

π(θ|y) ∼= 1√
2π

|j(θ̂)|1/2 π(θ)

π(θ̂)
exp

{

ℓ(θ) − ℓ(θ̂)
}

, (2)

where θ̂ is the maximum likelihood estimator (MLE) of θ, j(θ) is the observed
information, and the approximation is accurate to order O(n−1) (see, e.g., Tierney
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and Kadane, 1986, Sweeting, 1995, 1996). We obtain

∫ θ0

−∞

π(θ|y) dθ ∼= 1√
2π

∫ θ0

−∞

|j(θ̂)|1/2π(θ)

π(θ̂)
exp

{

−1

2
r(θ)2

}

dθ , (3)

where r(θ) = sign(θ̂ − θ)W (θ)1/2 is the likelihood root, with W (θ) = 2(ℓ(θ̂) − ℓ(θ))
loglikelihood ratio statistic.

The second step is to change the variable of integration from θ to r = r(θ).
A motivation for considering such a transformation is that, in terms of r2, the
quantity exp(−r2/2) is the kernel of the standard normal density N(0, 1). Note that
the Jacobian is dr(θ)/dθ = −ℓ′(θ)/r(θ), with ℓ′(θ) score function. We obtain

π(r|y) ∼= 1√
2π

exp

{

−1

2
r2 + log b(r)

}

,

where the positive quantity

b(r) = |j(θ̂)|1/2π(θ)

π(θ̂)

r(θ)

ℓ′(θ)

is regarded as a function of r, and thus we have

∫ θ0

−∞

π(θ|y) dθ ∼= 1√
2π

∫ r0

−∞

exp

{

−1

2
r2 + log b(r)

}

dr , (4)

where r0 = r(θ0).
The last step is again a change of variable, from r to r∗ = r∗(θ) = r−r−1 log b(r),

so that

−(r∗)2 = −r2 + 2 log b(r) −
(

r−1 log b(r)
)2

.

The Jacobian of the transformation and the third term in −(r∗)2 contribute only
to the error of (4), and it can be shown that (see, e.g., DiCiccio and Martin, 1991,
Sweeting, 1995, 1996, Severini, 2000, Chap. 2)

∫ θ0

−∞

π(θ|y) dθ =̇
1√
2π

∫ r∗
0

−∞

exp

{

−1

2
(r∗)2

}

dr∗ = Φ(r∗0) , (5)

where Φ(·) is the standard normal distribution function,

r∗0 = r∗(θ0) = r0 +
1

r0
log

q0
r0

, (6)

with q0 = q(θ0) and

q(θ) =
r

b(r)
= ℓ′(θ)|j(θ̂)|−1/2π(θ̂)

π(θ)
,

and the symbol ”=̇” indicates that the approximation is accurate to order O(n−3/2),
i.e. to third order.

The tail area approximation (5) holds only for a scalar parameter θ. Now let us
assume that θ = (ψ, λ), where ψ is a scalar parameter of interest and λ is a (d− 1)-
dimensional nuisance parameter. Consider the marginal posterior distribution

πm(ψ|y) =

∫

π(ψ, λ|y) dλ . (7)
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Applying the Laplace expansion to (7), we obtain (see, e.g., Tierney and Kadane,
1986, Reid, 1995, 2003)

πm(ψ|y) =̇
1√
2π

|jp(ψ̂)|1/2 exp{ℓp(ψ) − ℓp(ψ̂)} |jλλ(ψ̂, λ̂)|1/2

|jλλ(ψ, λ̂ψ)|1/2
π(ψ, λ̂ψ)

π(ψ̂, λ̂)
, (8)

where ℓp(ψ) = logL(ψ, λ̂ψ) is the profile loglikelihood for ψ, with λ̂ψ constrained
MLE of λ given ψ, jp(ψ) = −∂2ℓp(ψ)/∂ψ2 is the observed information correspond-
ing to the profile loglikelihood, and jλλ(ψ, λ) is the (λ, λ)-block of the observed
information j(ψ, λ). Note that the approximation (8) depends on simple likelihood
quantities evaluated at (ψ̂, λ̂) and at (ψ, λ̂ψ).

Expression (8) has the same structure as (2), and thus it is readily integrated
to give approximate posterior probabilities. More precisely, paralleling the scalar
parameter case, it can be integrated as follows (see DiCiccio et al., 1990, DiCiccio
and Martin, 1991, and Reid, 2003)

∫ ψ0

−∞

πm(ψ|y) dψ =̇
1√
2π

∫ ψ0

−∞

|jp(ψ̂)|1/2 exp{ℓp(ψ) − ℓp(ψ̂)} |jλλ(ψ̂, λ̂)|1/2

|jλλ(ψ, λ̂ψ)|1/2
π(ψ, λ̂ψ)

π(ψ̂, λ̂)
dψ

=
1√
2π

∫ rp(ψ0)

−∞

exp

(

−1

2
r2p

)

rp
|jp(ψ̂)|1/2

ℓ′p(ψ̂)

|jλλ(ψ̂, λ̂)|1/2

|jλλ(ψ, λ̂ψ)|1/2
π(ψ, λ̂ψ)

π(ψ̂, λ̂)
drp

=
1√
2π

∫ rp(ψ0)

−∞

exp

(

−1

2
r2p + log b(rp)

)

drp , (9)

where rp = rp(ψ) = sign(ψ̂ − ψ)[2(ℓp(ψ̂) − ℓp(ψ))]1/2 is profile likelihood root and

b(rp) = rp
|jp(ψ̂)|1/2

ℓ′p(ψ̂)

|jλλ(ψ̂, λ̂)|1/2

|jλλ(ψ, λ̂ψ)|1/2
π(ψ, λ̂ψ)

π(ψ̂, λ̂)
.

The next step is to consider a change of variable from rp to r∗p = r∗p(ψ) = rp −
r−1
p log b(rp), so that −(r∗p)

2 = −r2p + 2 log b(r)− (r−1
p log b(rp))

2. Since the Jacobian
of the transformation and the third term in −(r∗p)

2 contribute only to the error of
(9), it can be shown that

∫ ψ0

−∞

πm(ψ|y) dψ =̇
1√
2π

∫ r∗p(ψ0)

−∞

exp

(

−1

2
(r∗p)

2

)

dr∗p = Φ
(

r∗p(ψ0)
)

, (10)

where

r∗p = r∗p(ψ) = rp(ψ) +
1

rp(ψ)
log

qB(ψ)

rp(ψ)
, (11)

is a modification of the profile likelihood root, with

qB(ψ) = ℓ′p(ψ) |jp(ψ̂)|−1/2 |jλλ(ψ, λ̂ψ)|1/2

|jλλ(ψ̂, λ̂)|1/2
π(ψ̂, λ̂)

π(ψ, λ̂ψ)
.

Formula (10) gives an explicit expression for the posterior quantiles, and 1−Φ(r∗p(ψ0))
is the Bayesian survivor probability.

Moreover, from r∗p(ψ) or, equivalently, from (r∗p(ψ))2, it is possible to define a
credible interval for ψ. In particular, an accurate asymptotic credible interval for ψ
can be computed as

CI =
{

ψ : |r∗p(ψ)| ≤ z1−α/2
}

, (12)
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where z1−α/2 is the (1−α/2)-quantile of the standard normal distribution. Note that
(12) is an equi-tailed credible interval for ψ. Note also that from (10) the median
posterior estimator (MPE) of (7) can be computed as the solution ψ̂∗ in ψ of the
estimating equation r∗p(ψ) = 0.

2.1 The special case of approximations with matching priors

When the particular class of matching priors for posterior quantiles is considered in
(7) (see Tibshirani, 1989), the marginal posterior distribution for ψ can be expressed
as (see Ventura et al., 2009, 2013)

πm(ψ|y) ∝ Lmp(ψ) πmp(ψ) , (13)

where Lmp(ψ) = Lp(ψ)M(ψ) is the modified profile likelihood for a suitably de-
fined correction term M(ψ) (see, among others, Severini, 2000, Chap. 9, Pace and
Salvan, 2006), and πmp(ψ) ∝ iψψ.λ(ψ, λ̂ψ)1/2 is the corresponding matching prior,
with iψψ.λ(ψ, λ) = iψψ(ψ, λ)− iψλ(ψ, λ)iλλ(ψ, λ)−1iλψ(ψ, λ) partial information, and
iψψ(ψ, λ), iψλ(ψ, λ), iλλ(ψ, λ), and iλψ(ψ, λ) blocks of the expected Fisher informa-
tion i(ψ, λ) from ℓ(ψ, λ). The matching prior πmp(ψ) has the advantages that it does
not require the elicitation on the nuisance parameters, neither numerical integration
or MCMC simulation in order to compute the marginal posterior distribution (13)
for ψ.

Accurate tail area probabilities are computable by direct integration of (13). In
particular, in Ventura and Racugno (2011) it is shown that (10) holds with r∗p(ψ)
given by the modified profile likelihood root of Barndorff-Nielsen and Chamberlin
(1994); see also Barndorf-Nielsen and Cox (1994), and Severini (2000, Chap. 7).
More precisely, the quantity r∗p(ψ) has the form (11), with qB(ψ) = qp(ψ), where

qp(ψ) =
ℓ′p(ψ)

jp(ψ̂)1/2
iψψ.λ(ψ̂, λ̂)1/2

iψψ.λ(ψ, λ̂ψ)1/2
1

M(ψ)
. (14)

When using (14), the credible interval (12) for ψ coincides with an accurate
higher-order likelihood-based confidence interval for ψ with approximate level (1−α).
Following Sweeting (1999), this credible interval is an invariant third-order Bayes-
confidence interval. Moreover, the MPE coincides with the frequentist estimator
defined as the zero-level confidence interval based on r∗p(ψ) (Skovgaard, 1989). Such
estimator has been shown to be a refinement of the maximum likelihood estimator
ψ̂ (see Pace and Salvan, 1999, Giummolé and Ventura, 2002). Finally, following
Ventura et al. (2013), it can be shown that the marginal posterior distribution for
ψ given by (13) can also be written, to second-order, in the following form

πm(ψ|y) ∝̃ exp

(

−1

2
r∗p(ψ)2

)
∣

∣

∣

∣

sp(ψ)

rp(ψ)

∣

∣

∣

∣

, (15)

where sp(ψ) = ℓ′p(ψ)/jp(ψ̂)1/2 is the profile score statistic. A remarkable advantage
of this approximation is that its expression automatically includes the matching
prior, without requiring its explicit computation.

Example 1: Nonlinear regression. Models for data with continuous response
values, i.e. linear and nonlinear regression with normal and non-normal errors, are
nowadays widely used in many fields (see, e.g., Davison, 2003). In a nonlinear
regression model the responses y1, . . . , yn are related to explanatory variables xi as

yi = µ(xi;β) + σ εi , i = 1, . . . , n , (16)
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where xi is a known p×1 vector, the unknown parameters are the p×1 vector β and
the scale parameter σ > 0, µ(xi;β) is the mean function, and the εi are independent
and generated from a known continuous density function f(·). If εi ∼ N(0, 1),
this model is usually called the nonlinear regression model, and it is widely used,
especially for dose-response curves in bioassays. A more general form is

yij = µ(xi;β) + σi εij , i = 1, . . . ,m , j = 1, . . . , ni , (17)

where m is the number of design points xi, ni is the number of replicates at design
points, yij represents the response of the jth experimental unit at the ith design
point, and the εij are N(0, 1) variates. Moreover, σ2

i = σ2V (xi;β, g), where σ2 and
the q × 1 vector g are variance parameters and V (·) is a given function.

Brazzale et al. (2007, Sect. 5.4) discuss a study on a radioimmunoassay (RIA)
taken to estimate the concentrations of a drug in samples of porcine serum. The
experiment consists of 16 observations made at eight different drug levels with two
replications at each level. The data are available in the data frame ria of the lnreg
package: count (y) represents the observed percentage of radioactive gamma counts,
and conc (x) the drug concentration (ng/ml). The concentration-response relation-
ship is modeled by means of the four-parameter logistic function

µ(x;β) = β1 +
β2 − β1

1 + (x/β4)2β3

, x ≥ 0 ,

and the variance of the associated error distribution may be captured by a power-of-
the-mean variance function, i.e. V (xi;β, g) = µ(xi;β)g, where g is a scalar variance
parameter.

The computation of πm(ψ|y) can be performed using the profile method available
for objects of class nlreg, of the library HOA (Brazzale et al., 2007). Figure 1 (left)
gives the plot of the posterior distribution (15 ) and of the first order approximation

πIm(ψ|y) ∼ N(ψ̂, jp(ψ̂)−1)

for the parameter of interest ψ = g. The corresponding third-order and first-order
asymptotic 95% equi-tailed credible intervals are (−0.02, 2.92) and (1.06, 3.13), re-
spectively. These credible intervals can be easily computed from the output of the
profile method as shown in Figure 1 (right).

2.2 Tail area approximations for Bayesian simulation

Starting from higher-order tail area approximations from (7), it is possible to develop
a sampling scheme that give rise to an accurate computation of marginal posterior
densities, and related quantities, such as posterior summaries (Ruli et al., 2012).

The implementation of the higher-order tail area approximation (HOTA) sam-
pling scheme is available at little additional computation cost over simple first-order
approximations, and it has the advantage over MCMC methods that samples are
drawn independently in much lower computation time.

Starting from (7), the simulation algorithm can be summarized as follows. For
t = 1, . . . , T :

[1 ] draw zt ∼ N(0, 1);

[2 ] find ψt as the solution of r∗p(ψt) = zt.
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Figure 1: RIA data. Left: Posteriors πm(ψ|y) (solid line) and first-order approximation
πI

m(ψ|y) (dashed line) for ψ = g. Right: r∗p(ψ) (bold line), rp(ψ) (solid line) and Wald
(dashed line) statitics; the horizontal lines are the quantiles ±z0.975.

We obtain a sample (ψ1, . . . , ψT ) from the marginal density πm(ψ|y).
Note that the main computational effort involved in the HOTA scheme is the

solution of the equation r∗p(ψt) = zt for each sample value zt of r∗p(ψ). A numerical
procedure is usually required in order to solve this equation (see Ruli et al., 2012).

The HOTA simulation procedure is essentially an inverse method of sampling and
it gives independent samples from (7) by inverting the cumulative distribution func-
tion approximation (10). In this respect, it has an obvious advantage over MCMC
methods which usually requires more attention from the practitioner. Moreover,
HOTA is almost automatically obtained from likelihood quantities, which opens the
possibility of doing Bayesian inference with maximum likelihood routines.

Example 1: Nonlinear regression (cont). The computation of the posteri-
ors (13) and πIm(ψ|y) with the HOTA algorithm is illustrated in Figure 2 for the
parameters g and β1. The overall computation time was 4 seconds.

Based on the HOTA posterior, the 0.95 HPD for g is (0.14,3.03). While, for
the parameter β1, the 0.95 HPD based on the HOTA posterior and πIm(ψ|y) are
(1.05,2.46) and (1.42,2.18), respectively.

Example 2: Censored regression. This example is discussed in Ruli et al.
(2012); see also the references therein. The dataset consists on temperature accel-
erated life tests on electrical insulation in n = 40 motorettes. Ten motorettes were
tested at each of four temperatures in degrees Centigrade (150◦, 170◦, 190◦ and
220◦), the test termination (censoring) time being different at each temperature.
The model is (Ruli et al., 2012)

yi = β0 + β1xi + σǫi, i = 1, . . . , n ,

where yi is the log10(failuretime) with time in hours, xi = 1000/(temperature+273.2)
and ǫi are independent standard normal errors. Reordering the data so that the first
m observations are uncensored, with observed log-failure times yi, and the remaining
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Figure 2: RIA data and HOTA algorithm. Left: Posteriors πm(ψ|y) (solid line) and first-
order approximation πI

m(ψ|y) (dashed line) for ψ = g. Right: Posteriors πm(ψ|y) (solid
line) and first-order approximation πI

m(ψ|y) (dashed line) for ψ = β1.

n−m are censored at times ui, the loglikelihood function for θ = (β0, β1, σ) is

ℓ(θ) = −m log σ− 1

2σ2

m
∑

i=1

(yi− β0 − β1xi)
2 +

n
∑

i=m+1

log

{

1 − Φ

(

ui − β0 − β1xi
σ

)}

,

For (β0, β1, τ), with τ = log σ, the non-informative prior π(β0, β1, τ) ∝ 1 is assumed.
The posterior distribution π(β0, β1, τ |y) does not have a closed form expression and
direct integration is not possible in order to compute πm(ψ|y) and related quantities,
where ψ is one of the parameters of the model. Therefore numerical or analytical
approximations are needed.

−2.0 −1.5 −1.0 −0.5

0.
0

0.
5

1.
0

1.
5

2.
0

τ

π(
τ|

y)

MCMC
HOTA

Figure 3: Censored regression: HOTA and MCMC marginal posterior distributions
for the parameter τ .

Figure 3 illustrates the HOTA and MCMC marginal posterior distributions of
τ . The HOTA sampling scheme and MCMC give similar results. The same pattern
holds also for the other parameters (not shown here). Table 1 gives some summary
statistics (mean, standard deviation, 2.5 percentile, median, 97.5 percentile and 0.95
HPD credible set) calculated over the three marginal posterior distributions. The
results based of the two methods are in good agreement.

For the computation with HOTA, grids of 50 points were chosen for all the pa-
rameters and the total number of simulations was T = 105. The overall computation
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Method Posterior Mean St Dev. Q0.025 Median Q0.975 0.95 HPD

MCMC πm(τ |y) -1.24 0.201 -1.60 -1.253 -0.811 (-1.616, -0.832)
HOTA πm(τ |y) -1.24 0.202 -1.601 -1.251 -0.808 (-1.624, -0.837)

MCMC πm(β0|y) -6.204 1.117 -8.57 -6.139 -4.149 ( -8.413, -4.01)
HOTA πm(β0|y) -6.191 1.128 -8.596 -6.134 -4.13 (-8.475, -4.038)

MCMC πm(β1|y) 4.409 0.518 3.461 4.382 5.512 (3.425, 5.47)
HOTA πm(β1|y) 4.401 0.521 3.459 4.37 5.521 (3.398, 5.443)

Table 1: Numerical summaries of the MCMC and HOTA marginal posterior distri-
butions.

time on a laptop with 4 GB RAM was 1.8 seconds, while for MCMC with 106 simu-
lations after thinning every 10, total 105 observations with low autocorrelation the
computation time was 95 seconds.

2.3 Tail area approximations for a measure of evidence

Suppose we are interested in testing the precise (or sharp) null hypothesis H0 : ψ =
ψ0 versus H1 : ψ 6= ψ0. In order to avoid the Jeffreys-Lindley paradox, the measure
of evidence (EV ) of the full Bayesian significance test (FBST) of Pereira and Stern
(1999, 2001) can be considered; see also Madruga et al. (2001, 2003) and Pereira et
al. (2008).

Following Cabras et al. (2013), consider the set

T (y) =
{

ψ : πm(ψ|y) ≥ supψ0
πm(ψ|y)

}

.

Then, the Pereira and Stern posterior evidence EV in favor of H0 can be computed
as (see Figure 4)

EV = 1 − Pr(ψ ∈ T (y)|y) . (18)

The null hypothesis H0 is accepted whenever EV is large enough. Using (10), a
simple and accurate higher-order approximation of (18) is

EV =̇ 1 + Φ(r∗p(ψ0)) − Φ(r∗p(ψ
∗

0)) , (19)

where ψ∗

0 is such that πm(ψ∗

0 |y) = πm(ψ0|y). With respect to the original definition
of EV (Pereira and Stern, 1999), (19) is simpler to compute, in particular when the
dimension of the nuisance parameter is large. When in particular matching priors are
assumed (see Subsection 2.1), the approximation (19) presents the further advantage
that it does not require the elicitation of the prior on the nuisance parameter.

Note that

Φ(r∗p(ψ0)) − Φ(r∗p(ψ
∗

0)) =̇

∫ ψ∗

0

ψ0

πm(ψ|y) dψ

= Pr(ψ ∈ T (y)|y) = 1 − EV , (20)

gives the posterior probability of the HPD credible interval (ψ0, ψ
∗

0).

Example 1: Nonlinear regression (cont). Suppose that for the RIA data we
are interested in testing H0 : ψ = 1 versus H0 : ψ 6= 1, for ψ = g. The Pereira and
Stern posterior evidence in favor of H0 is illustrated in Figure 5 for the marginal
posterior distribution (15) and for the first-order approximation πIm(ψ|y).
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ψ
ψ0 ψ∗

0

π
(ψ

|y
) π(ψ0|y)

Figure 4: The EV measure of evidence for the precise hypothesis H0 : ψ = ψ0 is the shaded
area.

g

0 1 2 30 1 2 3

pi(psi0|y)

pi^I(psi0|y)

Figure 5: RIA data. Posteriors πm(ψ|y) (solid line) and πI
m(ψ|y) (dashed line) for ψ = g.

The EV measure of evidences for the precise hypothesis H0 : ψ = 1 are the dashed areas.

The computation of (18) for the HOTA posterior distributions gives EV = 0.26
to third-order, i.e. when using (19), and EV = 0.04 to first-order. The inferential
conclusions about H0 are quite different, with the first-order statement which is very
unsatisfactory. This illustrates an important advantage of third-order asymptotics
with respect to first-order results.

Example 2: Censored regression (cont). Suppose that for the data on tem-
perature asselerated life tests we are interested in testing H0 : ψ = 0.2 versus
H0 : ψ 6= 0.2, for ψ = g. The computation of (18) for the HOTA posterior distri-
bution gives EV = 0.035 to third-order, i.e. when using (19), and EV = 0.21 to
first-order. Even in this example, the first-order statement is unsatisfactory.
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3 Approximate Bayesian computation for multidimensional

parameters

Suppose that θ ∈ Θ ⊆ IRd, with d > 1. In a similar way to Section 2, we study the
approximations based on modifications of the loglikelihood ratios. As in the scalar
parameter case, the derivation of these approximations can be based of the following
three steps (see Skovgaard, 2001):

Step 1: computation of the Laplace approximation of π(θ|y);

Step 2: change of the variable of integration from θ to rm = rm(θ), such that for the

loglikelihood ratio we have W (θ) = 2
(

ℓ(θ̂) − ℓ(θ)
)

= rT

mrm;

Step 3: change of the variable of integration from rm to a more accurate version of the
form r∗m = r∗m(θ) = rm − δ(rm), with δ = δ(rm) chosen to satisfy rT

mδ(rm) =
log g(rm) for a suitably defined term g(rm), so that

(rm − δ)T (rm − δ) = rT

mrm − 2 log g(rm) +O(n−2)

is asymptotically χ2
d.

In order to compute Step 2, we need to reach a statistic rm = rm(θ) for which
rT

mrm = W (θ). Let us consider the signed root loglikelihood ratio transformation
rm(θ) defined in Sweeting (1995, 1996); see also Sweeting and Kharroubi (2003) and
Kharroubi and Sweeting (2010).

Let θ = (θ1, . . . , θd) = (θi, θ(i+1)), where θi = (θ1, . . . , θi) is the vector of the

first i components of θ and θ(i+1) = (θi+1, . . . , θd). Let θ̂
(i+1)
θi be the partial MLE

of θ(i+1) given θi, and let θ̂j,θi be the jth component of (θi, θ̂
(i+1)
θi ), for j > i. The

signed root loglikelihood ratio transformation is thus given by

rm(θ) = (rm1, . . . , rmd) , (21)

with

rmi = sign(θi − θ̂i,θi−1)
{

2
[

ℓ
(

θi−1, θ̂
(i)

θi−1

)

− ℓ
(

θi, θ̂
(i+1)

θi

)]}1/2
, (22)

for i = 1, . . . , d. Notice that rmi is a function of the first i components θi =
(θ1, . . . , θi) of θ, for i = 1, . . . , d. It follows that rm(θ) is a one-to-one data-dependent
trasformation of θ and, following Sweeting (1995, 1996), we have that (21) is such
that exp

{

−1
2r

T

mrm
}

= L(θ)/L(θ̂). Moreover, rm(θ) is asymptotically multivariate

standard normal to O(n−1/2) (Sweeting, 1995).

Paralleling the derivation of the tail area approximations discussed in Section 2,
as a first step let us consider the Laplace approximation of π(θ|y), i.e.

π(θ|y) ∼= (2π)−d/2|j(θ̂)|1/2π(θ)

π(θ̂)
exp

{

ℓ(θ) − ℓ(θ̂)
}

= (2π)−d/2|j(θ̂)|1/2π(θ)

π(θ̂)
exp

{

−1

2
W (θ)

}

. (23)

The second step in approximating the tail area probability is to change the variable
of integration from θ to the statistic rm = rm(θ) given in (21). The Jacobian matrix
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drm/dθ is lower triangular (Sweeting, 1995, 1996), and in particular it holds

∣

∣

∣

∣

drm
dθ

∣

∣

∣

∣

=

d
∏

i=1

∣

∣

∣

∣

∣

∣

ℓi

(

θi, θ̂
(i+1)
θi

)

rmi

∣

∣

∣

∣

∣

∣

, (24)

where ℓi(θ) is the ith component of the score vector ∂ℓ(θ)/∂θ, i = 1, . . . , d. The last
step is again a change of variable. Following Skovgaard (2001), we perturb rm to
r∗m = r∗m(θ) = rm− δ(rm), with δ(rm) chosen to satisfy rT

mδ(rm) = log g(rm), so that

−(rm − δ(rm))T (rm − δ(rm)) = −rT

mrm + 2 log g(rm) +O(n−2) . (25)

A differentiable transformation of this kind may be written explicitly by choosing

δ(rm) = log g(rm)
d log g(rm)/drm

(d log g(rm)/drm)T rm
.

Actually, in order to compute (25), we only need the existence of δ(rm) to cal-
culate

w∗

m = w∗

m(θ) = rT

mrm − 2 log g(rm(θ)) , (26)

with

g(rm(θ)) = |j(θ̂)|1/2 π(θ)

π(θ̂)





d
∏

i=1

∣

∣

∣

∣

∣

∣

ℓi

(

θi, θ̂
(i+1)
θi

)

rmi

∣

∣

∣

∣

∣

∣





−1

. (27)

The asymptotic distribution of w∗

m is χ2
d with relative error O(n−1) in a large de-

viation region (see Skovgaard, 2001). To obtain a statistic which generalizes the
scalar version (6), Skovgaard (2001) suggests to use the asymptotically equivalent
approximation

w∗∗

m = w∗∗

m (θ) = rT

mrm

(

1 − log g(rm)

rT

mrm

)2

. (28)

Note that, for d = 1, the quantity g(θ) reduces to g(θ) = r(θ)/q(θ), and thus we
have w∗∗(θ) = (r − (1/r) log g(θ))2 = (r∗)2.

Example 3: Normal distribution. Consider a random sample y = (y1, . . . , yn)
from a N(µ, σ2) distribution, with θ = (µ, σ2) unknown. In the following we assume
two different prior distributions of θ, that are the improper prior π1(θ) ∝ 1/σ2

and the normal-gamma prior π2(θ). In this case, all the quantites involved in the
computation of w∗ and w∗∗ are easy to compute.

Let 0 < α < 1. Paralleling the scalar parameter case, the goal is to study
a credible region (CR) such that it has approximately 100(1 − α)% coverage in
repeated sampling, improving standard first-order approximations. In the following,
we focus on the credible region

CR =
{

θ : w∗∗ ≤ χ2
d;1−α

}

, (29)

based on w∗∗, on equivalently on w∗. This region can be interpreted as the extension
to the multidimensional case of the set (12). To judge the coverage quality of CR,
a simulation study based on 10000 Monte Carlo trials has been performed. Table 2
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π1 π2

1 − α 0.90 0.95 0.99 0.90 0.95 0.99

n = 10 n = 10

CRN 0.7280 0.7830 0.8685 0.5905 0.6470 0.7402
CRL 0.8540 0.9130 0.9770 0.7871 0.8688 0.9578
CR 0.9075 0.9510 0.9925 0.9020 0.9517 0.9904

n = 15 n = 15

CRN 0.7615 0.8280 0.900 0.6698 0.7302 0.8189
CRL 0.8485 0.9225 0.984 0.8276 0.8992 0.9738
CR 0.8935 0.9500 0.990 0.9050 0.9544 0.9916

n = 30 n = 30

CRN 0.8275 0.889 0.9495 0.7688 0.8250 0.9031
CRL 0.8775 0.936 0.9840 0.8606 0.9242 0.9824
CR 0.8980 0.948 0.9875 0.9023 0.9533 0.9888

n = 50 n = 50

CRN 0.8630 0.9240 0.9730 0.8160 0.8761 0.9436
CRL 0.8965 0.9435 0.9890 0.8791 0.9346 0.9836
CR 0.9045 0.9525 0.9890 0.9011 0.9514 0.9897

Table 2: Normal distribution: Empirical coverage probabilities of credible regions,
for several values of α and n.

gives the empirical frequentist coverages for (1 − α) posterior credible regions (29)
in comparison to the first-order credible regions

CRN =
{

θ : (θ − θ̃)T j(θ̃)(θ − θ̃) ≤ χ2
d;1−α

}

, (30)

where θ̃ is the posterior mode and j(θ̃) = −∂ log π(θ|y)/(∂θ∂θT ), and the likelihood-
type credible regions

CRL =

{

θ : −2 log
π(θ|y)
π(θ̃|y)

≤ χ2
d;1−α

}

. (31)

From Table 2 we note that, for every n, (29) clearly improves on (30) and (31).
Larger sample sizes would show, as one would expect, rather little differences be-
tween the results of all the procedures. Finally, remark that the results of the simu-
lation study do not change (results not reported here) when inverting the parameter
order in the signed root loglikelihood ratio transformation (21).

Example 4: Gamma distribution. Consider a random sample y = (y1, . . . , yn)
from a Gamma distribution, with both the shape and scale parameters unknown. Let
θ = (log σ, log κ), with σ scale parameter and κ shape parameter. In the following,
we assume two different prior distributions of θ, that are the flat prior π1(θ) ∝ 1
and π2(θ) ∝ N(µ, 10) ×N(µ, 10), where µ is a given hyperparameter.

As in the previous example, to judge the coverage quality of CR, a simulation
study based on 2000 Monte Carlo trials has been performed. Table 3 gives the em-
pirical frequentist coverages for 0.95 posterior credible regions (29) in comparison to
the first-order credible regions CRN and CRL. From Table 3 we note that, for every
n, (29) clearly improves on (30) and (31). Moreover, note that also in this example
the results of the simulation study do not change (results not reported here) when
inverting the parameter order in the signed root loglikelihood ratio transformation
(21). Finally, observe that there is some degradation in the coverage accuracy for
parameter values in regions of low prior density.
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π1 π2(µ = 0) π2(µ = 3)

1 − α 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99

n = 5 n = 5 n = 5

CRN 0.8188 0.7991 0.8801 0.7642 0.8288 0.9040 0.6630 0.7324 0.8374
CRL 0.8405 0.9084 0.9755 0.8624 0.9265 0.9837 0.7787 0.8659 0.9594
CR 0.9018 0.9500 0.9895 0.9166 0.9612 0.9933 0.8753 0.9338 0.9864

n = 10 n = 10 n = 10

CRN 0.8188 0.8779 0.9445 0.8281 0.8868 0.9495 0.7764 0.8381 0.9215
CRL 0.8748 0.9336 0.9832 0.8826 0.9385 0.9854 0.8402 0.9115 0.9764
CR 0.9028 0.9519 0.9893 0.9084 0.9564 0.9908 0.8866 0.9424 0.9872

Table 3: Gamma distribution: Empirical coverage probabilities of credible regions,
for several values of α and n.
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Figure 6: Calcium data: credible regions for (β1, β2).

Example 5: Nonlinear regression. Let us consider a nonlinear regression model
of the form (17), with µ(xi;β) = β1(1 − exp(−β2xi)) and with σ2

i = 0.29. Davison
(2003, Sect. 10.1) discusses this model for the calcium data, i.e. data on the calcium
uptake on time by cells that has been in hot calcium suspension, with ni = 3, for
i = 1, . . . , 9.

Figure 6 gives the contours of several credible regions for (β1, β2), i.e. CRN
(Wald), CRL (W(Chi2)), the 95 HPD credible region (W(Exact)), CR based on w∗

m

(W*) and on w∗∗

m (W**), and CR based on w∗

m (W*(Rev)) and on w∗∗

m (W**(Rev))
when inverting the parameter order in the signed root loglikelihood ratio transfor-
mation (21). The posterior probabilities of CRN is 0.9129, of CRL is 0.9478, and of
CR is 0.95133. These results indicate that the accuracy of CR is very high.
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4 Remarks

This paper aims to outline how approximate computational tools may have a role to
play in the modern era of Bayesian statistics, where high computationl power allows
the use of stochastic simulation techniques to obtain exact (i.e. simulation consistent)
answers. In problems with a large number of nuisance parameters or to obtain
credible regions for a vector parameter, approximate Bayesian computations based
on loglikelihood ratios provide important quantities of the posterior distribution with
very little computational effort, in a fraction of the time required for a full simulation
approach. Moreover, sensitivity and influence analyses may also be carried out
quickly within this framework (see, e.g., Ruli et al., 2012, and Ventura et al., 2013).

A key feature of the approximations discussed and developed in this paper is that
they do not require the calculation of loglikelihood derivatives beyond the second
order for their implementation. Although the approximations described in this paper
are derived from asymptotic considerations, they perform extremely well in moderate
or even small sample situations. On the other hand, the approximations are only
available in regular models (see Kass et al., 1990), for precise regularity conditions.
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