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Abstract: We investigate the use of prospective likelihood methods to

analyze retrospective case-control data where some of the covariates are

measured with error. We show that prospective methods can be applied

and the case-control sampling scheme can be ignored if one adequately

models the distribution of the error-prone covariates in the case-control

sampling scheme. Indeed, subject to this, the prospective likelihood

methods result in consistent estimates and information standard errors

are asymptotically correct. However, the distribution of such covariates

is not the same in the population and under case-control sampling, dic-

tating the need to model the distribution flexibly. In this paper, we

illustrate the general principle by modeling the distribution of the error-

prone covariates using the skewnormal distribution. The performance

of the method is evaluated through simulation studies, which show sat-

isfactory results in terms of bias and coverage. Finally, the method is

applied to the analysis of two data sets which refer, respectively, to a

cholesterol study and a study on breast cancer.
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Abstract: We investigate the use of prospective likelihood methods to analyze ret-

rospective case-control data where some of the covariates are measured with error.

We show that prospective methods can be applied and the case-control sampling

scheme can be ignored if one adequately models the distribution of the error-prone

covariates in the case-control sampling scheme. Indeed, subject to this, the prospec-

tive likelihood methods result in consistent estimates and information standard er-

rors are asymptotically correct. However, the distribution of such covariates is not

the same in the population and under case-control sampling, dictating the need to

model the distribution flexibly. In this paper, we illustrate the general principle by

modeling the distribution of the error-prone covariates using the skewnormal dis-

tribution. The performance of the method is evaluated through simulation studies,

which show satisfactory results in terms of bias and coverage. Finally, the method

is applied to the analysis of two data sets which refer, respectively, to a cholesterol

study and a study on breast cancer.

Keywords: Likelihood, Logistic regression, Measurement error, Regression cali-

bration, Retrospective study, Skewnormal distribution.
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1 Introduction

The problem of erroneously measuring variables is common in many scientific

areas, as, for example, in biology, epidemiology, econometrics. It has long

been recognized that ignoring the presence of measurement errors in statistical

analyses can lead to bias of estimators, reduced power of tests and inaccurate

coverage probabilities of confidence intervals (Armstrong, 2003). To alleviate

these problems, many correction techniques have been proposed, see Carroll

et al. (2006) for a detailed review.

In this paper, we take up the consideration of measurement error analysis

for population-based case-control studies. Our goal is to develop a likelihood

approach to this problem. In keeping with much of the literature in case-

control studies, we will take a prospective approach, i.e., compute maximum

likelihood estimators and make likelihood inferences ignoring the case-control

study and treating the data as if it arises from a random sampling framework.

This problem and approach, while seemingly simple, have not been considered

in detail in the literature. Our main theoretical result is to show that, if

one properly models the distribution of the error-prone covariates in the case-

control sampling scheme, then prospective likelihood estimation and inferences

are asymptotically correct.

Section 2 describes our notation, and in Section 2.2 we show a feature about

prospective approaches to case-control data, namely that the distribution of

the mismeasured covariates in the population differs from that in the case-

control sampling scheme. This suggests the need for flexible families for this

distribution in the case-control sampling scheme. While our point is quite

general, we focus here on the skewnormal family of distributions (Azzalini,

1985). Section 3 reviews the various methods we will compare.
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In Section 4, we show the new result, i.e. that if the distribution of the

error-prone covariates is properly modeled in the case-control sampling scheme,

then likelihood approaches are asymptotically valid. This point is related to a

general discussion in Carroll et al. (1995), where the Authors do not actually

consider the case of a prospective likelihood analysis of measurement error

data, and especially they do not note the essential modeling requirement.

Section 5 gives the results of simulation studies that indicate the strength

and applicability of prospective likelihood methods for measurement error

models in case-control data. Finally, Section 6 illustrates the results of the

application of our method to the analysis of two data examples. The first

refers to a study on blood cholesterol level as risk factor for coronary heart

disease, while the second one refers to a study about nutrition habits and

occurrence of breast cancer.

2 Models

2.1 Notation

Suppose that case-control data are available. Let D be the case (D = 1) or

control (D = 0) status. Let X be the set of covariates which are not directly

observed. Instead of X, the mismeasured variables W are observed. Other

variables Z can be observed with no measurement error. Suppose that D is

related to X and Z through the so-called disease model, whose density function

is fD|XZ(d|x, z; β). In case-control studies, the logistic regression model is typ-

ically used, fD|XZ(d|x, z; β) = H(β0 + xT β1)
d

{
1 − H(β0 + xT β1)

}1−d
, where

H(·) is the logistic distribution function, H(v) = {1+ exp (−v)}−1. Moreover,

let fW |XZ(w|x, z; γ) be the density function of the model relating W to X and
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Z through the so-called nondifferential measurement error model. Likelihood

methods also require an exposure model, that is, a model for the unobserved

X possibly depending on Z, whose density function is fX|Z(x|z; δ). The infer-

ential interest typically focuses on the vector of parameters β1, which explains

the influence of the unobserved X on the disease status indicator. It is well

known that if inferential analyses are performed by ignoring the presence of

measurement error, that is a naive analysis in carried out, the results can be

misleading, sometimes seriously.

2.2 Distribution of X in the case-control sampling scheme

The usual approach to the analysis of case-control data is to ignore the case-

control sampling scheme and to pretend that the data are collected according

to a prospective sampling design. In the case of no measurement error, the

equivalence between a prospective and a retrospective analysis of case-control

data is proved by Prentice and Pyke (1979) for logistic regression. This result

has been often invoked in literature to justify the use of the logistic regression

model for case-control data analysis. Carroll et al. (1995) extend the results

by Prentice and Pyke (1979) to models with missing data. They show that the

prospective analysis of case-control data often works to estimate consistently

all but the intercept parameter in the logistic models, and that in general it is

expected to work. Further, they go on to show that if a prospective analysis

yields consistent estimates, then standard errors from that analysis are at worst

conservative, and often exact. However, Carroll et al. (1995) do not show that

a prospective likelihood analysis in the type of measurement error analysis of

interest to us actually results in consistent estimation of all but the intercept

parameter.
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In the measurement error context, since X is a latent variable, care must

be taken in formulating a likelihood analysis if one wishes to pursue methods

that ignore the case-control sampling scheme. Indeed, the distribution of X

is the population does not equal that of X in the case-control sample. To

see this, consider Figure 1. We generated 10,000 observations from the scalar

variable X distributed according to a mixture of Lognormal(−2.3, 0.9) and

Lognormal(−1.5, 0.9), with mixing weights 0.8 and 0.2. We performed case-

control sampling, according to the probability of disease given by the logistic

function, pr(D = 1|X) = H(β0 + β1X), by setting β0 = −1.5 and β1 assuming

one of the values (0.5; 1.2; 2.0). Figure 1 displays the density function of X in

the population (solid line) and in the case-control sample (dashed line). The

discrepancies between the densities are evident and become greater as the value

of β1 increases. Similar results (not shown here) are obtained under different

distributions for X.

3 Correction Techniques

3.1 Regression Calibration

Regression calibration (RC, for short) is one of the most commonly used meth-

ods to correct for measurements errors (Carroll et al., 2006, Chapter 4). This

is mainly due to its simple applicability with existing packages. The idea un-

derlying the method is to replace the unknown values of X by an estimate of

the expectation of X given (W, Z), that is E[X|W, Z] = X∗, by using addi-

tional information. Then, a standard inferential process on the observations

from (D, X∗) can be run.
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3.2 Likelihood Methods

The likelihood approach for measurement error correction has received less at-

tention in the measurement error literature with respect to alternatives. This

is mainly due to its computational complexity and to the difficulties in check-

ing the parametric assumptions it requires, especially that of the unobserved

variables X. Nevertheless, some recent results have shown the advantages of

the likelihood method, mainly based on the large sample optimality properties

of the corresponding estimators (Schafer and Purdy, 1996; Küchenhoff and

Carroll, 1997).

Here we pursue the idea of ignoring the case-control sampling scheme and

applying standard likelihood methods. We will show in Section 4 that, as long

as we adequately model the distribution of X in the case-control sampling

scheme, then prospective likelihood methods lead to consistent estimation and

correct inference. From the discussion in Section 2.2, however, it is clear that

a flexible family of distributions is required.

Here is how a consistent prospective likelihood approach can be imple-

mented. Suppose that n independent observations from (D, W, Z) are avail-

able. Then, the likelihood is obtained by integrating out the product of the

model densities with respect to the unknown quantity X

L(β0, β1, γ, δ) =
n∏

i=1

∫
fD|XZ(Di|x, Zi; β0, β1)fW |XZ(Wi|x, Zi; γ)fXZ(x|Zi; δ)dx.

(1)

The integral is replaced by a sum if X is a discrete random variable.

The parameters in (1) cannot usually be estimated without additional infor-

mation about the measurement error model. Suppose that extra information

is available in terms of internal validation data. This means that, for a small

group of m subjects, m << n, observations from (D, X, Z) are recorded. To
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take account of this, the likelihood has the following expression

L(β0, β1, γ, δ) =
n∏

i=1

∫
fD|XZ(Di|x, Zi; β, β1)fW |XZ(Wi|x, Zi; γ)fX|Z(x|Zi; δ)dx

×
m∏

j=1

fD|XZ(Dj |Xj, Zj; β0, β1)fW |XZ(Wj |Xj, Zj; γ)fX|Z(Xj |Zj; δ).

(2)

Similar modifications of the likelihood are defined to take account of other

types of additional data, for example, external validation data or replicates

(Schafer, 2002).

Carroll et al. (1999a, 1999b) and later Richardson et al. (2002), for ex-

ample, flexibly model the distribution of interest through a mixture of normal

variables. Here, we suggest to flexibly modeling the distribution of X through

the skewnormal distribution (Azzalini, 1985), X ∼ SN(µ, σ, α), which has den-

sity function

fX(x; δ) = fX(x; µ, σ, α) = (2/σ)φ {(x − µ)/σ}Φ {α(x − µ)/σ} ,

where δ = (µ, σ, α)T, µ, σ, α are, respectively, the location, the scale and the

shape parameter and φ(·) and Φ(·) are the standard normal density and dis-

tribution functions. The exposure model can be easily extended to include

error-free variables Z. Note once again that we will use this parametric family

as one possible model for the distribution of X in the case-control sampling

scheme.

As we show in Section 4, the use of the skewnormal distribution in place

of the exact distribution of X is justified as long as the skewnormal is a good

approximation of the distribution of X in the case-control sampling scheme.
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4 Theoretical Context

Let the number of cases and controls be n1 and n0 = n − n1, respectively.

Moreover, suppose that n1/n remains fixed as n → ∞. For simplicity, suppose

that there are no error-free variables Z, although the results can be easily

extended to include them. Let fX,cc(x) be the actual density function for X

in the case-control sampling scheme, and let fX(x, ξ) be a parametric family

of density functions. Then, in practice, as long as fX(x, ξ) is a good approxi-

mation of fX,cc(x), a prospective likelihood analysis of the case-control data is

legitimate. More precisely, in the Appendix we show the following result.

Theorem 1 Let πd = pr(D = d) in the population, and define β∗
0

= β0 +

log(n1/n0)− log(π1/π0). Suppose that n1/n remains fixed as n → ∞ and that

the distribution of X in the case-control sampling scheme is fX(x, ξ) for some

true parameter ξ. Let θ = (β∗
0
, βT

1
, ξT)T. Let θ̂ be the prospective likelihood

estimate of θ. Then θ̂ is consistent for θ. Further, standard error estimates

for β1 derived from prospective likelihood information-based calculations are

at worst asymptotically conservative.

5 Simulation Studies

We performed different simulation studies in order to evaluate the behaviour of

the likelihood approach to correct for measurement error affecting X, when the

distribution of X is flexibly modeled by the skewnormal (SN). The results are

compared to those derived from the likelihood approach where the distribution

of X is the actual one in the case-control sampling scheme (LIK), to those

provided by the RC method (RC) as well as to the naive results (NAIVE),

that is, the ones obtained by ignoring the presence of measurement error. Our
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interest focuses on the parameter β1.

For simplicity, suppose that the unobservable and mismeasured X is scalar.

Extensions to the multi-dimensional case are straightforward from a theoretical

point of view, while they can lead to an increased computational complexity

because of the difficulties in solving the integrals in the likelihood expression

(1) or (2). Moreover, suppose that there are no error-free variables Z.

5.1 Details

In our simulation studies we generate sets of case-control data of size n =

600. The generation is repeated 500 times. Different distributions for X are

taken into account, which are common in practice: a mixture of lognormal

distributions, Ln(µ1, σ
2

ln) and Ln(µ2, σ
2

ln), with mixing weights 0.8 and 0.2,

respectively, a χ2

1
distribution and a Weibull distribution, Weibull(µwei, σwei).

The binary outcome variable D is generated under the model

logit{pr(D = 1)|X} = β0 + β1X.

We fix (β0, β1)
⊤ = (−1.5, 0.8)⊤ and (µ1, µ2, σln, µwei, σwei)

⊤ = (−2.3,−1.5, 0.9, 1.4, 0.6)⊤.

The measurement error is assumed to be multiplicative, W = X exp{U}, with

U ∼ Normal(0, σ2

U), as it is reasonable in many applications. Different amounts

of measurement error are considered, σU = {0.3, 0.5, 0.75}. Simulations were

performed using the R programming language (R Development Core Team,

2005), Version 2.2.1.

Both the RC and the likelihood analysis are performed by considering that

additional information is available, together with the primary data set of ob-

servations from (Y, W ). In particular, we suppose that internal validation data

have been collected, in form of observations from (Y, X, W ) for a small subset
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of the primary data. The subsample is randomly selected as the 10% of the

primary data.

The maximization of the likelihood function is performed by using the R

routine optim, which is based on the optimization algorithm by Nelder and

Mead (1965). An alternative algorithm based on the Newton-Raphson algo-

rithm gives similar results. The likelihood maximization requires numerical

evaluation of integrals. As suggested by Higdon and Schafer (2001) and by

Schafer (2002), integrals are evaluated through Gauss-Hermite quadrature. A

study (not shown here) that we performed to evaluate the accuracy of the in-

tegral evaluation with different number of Gauss-Hermite nodes indicated that

12 nodes is a satisfactory choice. Moreover, 12 nodes are sufficient to cover

the range of values of X which are simulated under the different distributions

previously summarized.

The optimization algorithm requires finding reasonable initial estimates

of parameters. We considered the naive estimators as initial estimate of the

disease model parameters (β0, β1). With respect to the exposure model we

calculated moment-based estimators of the parameters using the additional

data.

As explained in Section 4, the use of a flexible distribution as an alter-

native to the real distribution of X in the case-control sample is justified

as long as the approximation is good in the case-control sampling scheme.

In the simulation studies we performed, an empirical evaluation shows that

the skewnormal distribution is a satisfactory solution in that it is close to

the distribution of X in the case-control sampling scheme. This behaviour is

shown in Figure 2. We plotted the density function of X in the case-control

sample (solid line), derived from 10000 observations generated from a mix-
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ture of Lognormal(−2.3, 0.9) and Lognormal(−1.5, 0.9) with mixing weights

0.8 and 0.2, a χ2

1
and a Weibull(1.4, 0.6). The probability of disease is given

by logit{pr(D = 1|X)} = β0 + β1X, with (β0, β1)
T = (−1.5, 0.8)T. Then, we

estimated the skewnormal parameters on the simulated data and added the

density function of the skewnormal to the plot (dashed line). The approxima-

tion of the skewnormal density to the actual density of X in the case-control

sample is satisfactory, both for the values of β1 given here and for larger values

(results not shown).

5.2 Results

In Tables 1–3 we report the results of the simulation studies performed to

test the behaviour of the correction techniques, when X follows one of the

abovementioned distributions, mixture of lognormals, χ2

1
and Weibull, and

with three increasing amounts of measurement error.

The measurement error correction techniques we focus on are compared

with respect to bias (Bias) and standard error (s.e.) of the corresponding esti-

mators of β1. Moreover, the associated standard deviations of these quantities

are reported in parentheses. Finally, we compute the empirical coverage of

confidence intervals. The (1−α)% confidence interval is computed as β̂1±zα/2

times the estimated standard error of β̂1, where β̂1 is the estimate provided by

the adopted correction technique or the naive analysis and zα is the αth quan-

tile of the standard normal distribution. We focus on α = 0.05 and α = 0.1.

The estimated standard error of the RC estimator is computed using the boot-

strap, with 1000 bootstrap samples. For the maximum likelihood estimator,

instead, both when the actual distribution of X or the skewnormal distribution

are used to model the exposure, and for the naive estimator we refer to the
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estimated standard error provided by the Hessian matrix.

First of all, the simulation results highlight the need for correction tech-

niques in order to improve the naive analysis. In fact, the naive approach

experiences considerable bias of the estimator of β1 and nominal levels of confi-

dence intervals that overestimate the empirical coverages, sometimes seriously.

This situation is emphasized under a χ2

1
or a Weibull distribution for X and

it gets worse as the measurement error variance increases. In this cases, RC

provides less biased estimators, although they are affected by a larger vari-

ance. This variance obviously increases for larger measurement error variance.

However, outside the first scenario where X is assumed to follow a mixture

of lognormal distributions, also RC experiences poor coverages of confidence

intervals.

When applying the likelihood approach to error correction, instead, the

advantages are seen in all the examined situations. Consider first the likelihood

approach based on the actual distribution for X in the case-control sample. As

expected from our theory, simulations results indicate that the method globally

performs very satisfactorily, mainly if we consider the coverage of confidence

intervals as evaluation criterion. Moreover, these results do not seem to be

affected by the increasing variance of meausurement error. If we focus now on

the flexible approach we suggest to correct for measurement error, simulation

results are encouraging. The use of the skewnormal as a flexible tool to describe

the distribution of X is satisfactory in order to correct for measurement error

in all the examined situations. The method provides an estimator of β1 which

has bias and standard error comparable to those from the likelihood approach

based on the actual distribution of X. This behaviour is maintained also

under increasing values of the measurement error variance. If we consider



14 A. Guolo

the empirical coverages of confidence intervals, the method provides values

that are close to the nominal ones. They are almost always close to those

provided by the likelihood approach based on the actual distribution of X.

Small discrepancies are related to the specification of a Weibull distribution

for X, under large meausurement error variance.

6 Examples

In this section, we report the results of the application of our flexible approach

to measurement error correction in situations referred to two different data

sets. The first example refers to a cholesterol study, while the second to a

study on breast cancer.

6.1 A Cholesterol Study

The first data set refers to a study on the risk of coronary heart disease (CHD)

as a function of blood cholesterol level. These data are extracted from the

Lipids Research Clinics study, which was previously discussed by Satten and

Kupper (1993). Later, a portion of these data, involving men aged 60-70 who

do not smoke, for a total of 256 records, have been analyzed by Roeder et al.

(1996). The case status (D = 1) occurs if a subject has had a heart attack,

an abnormal exercise electrocardiogram, history of angina pectoris, and so

forth. Covariates are low-density lipoprotein (LDL) cholesterol level and total

cholesterol level (TCL). TCL may be considered as a surrogate of LDL, whose

direct measure is expensive and time consuming. The error in measuring TCL

relies in that it provides a measure of LDL plus unknown quantities of other

components as triglycerides and high density lipoprotein. According to the
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notation used above, CHD = D, X = LDL/100, W = TCL/100. Using X

as the predictor, we obtain an estimate of β1 equal to 0.656, with a standard

error of 0.336. The naive analysis, instead, provides an estimate of β1 equal

to 0.549, with a standard error of 0.313.

In examining this problem, Roeder et al. (1996) suggest that a nondiffer-

ential lognormal measurement error, that translates into a multiplicative error

in the natural scale, adequately fits the data. They correct for measurement

error by a semiparametric approach, in which the marginal distribution of X is

modeled through a nonparametric mixture distribution. In order to illustrate

the information contained in the data, they analyze a sample of data with

complete and reduced observations. The complete data are randomly selected

as the 28% of the data set. Using only the complete data, the estimate of β1

is equal to 0.943, with a standard error of 0.620. Instead, using complete and

reduced data provide an estimate equal to 0.765.

We analyzed the same data, by using the likelihood approach with the

distribution of X flexibly modeled through the skewnormal. We randomly

selected the complete data from (Y, X, W ) as the 10%, 15%, 20% and 25% of

the data set, in order to evaluate the change of the results with respect to the

amount of additional information provided. The fitted skewnormal results in

a good approximation for the distribution of X, as can be seen in Figure 3

with reference to complete data equal to 15% and 25% of the data set. Our

approach results in an estimate of β1 equal to 0.629 (s.e.= 0.388), 0.634 (s.e.=

0.336), 0.624 (s.e.= 0.378), 0.676 (s.e.= 0.346), for the four different amounts

of complete data, respectively. The estimate is close to the one based on the

LDL measures, that is 0.656. Moreover, it can be noted that the estimates only

change slightly as the amount of the complete data decreases, thus adding to
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the results a measure of robustness with respect to the amount of additional

information.

6.2 A Breast Cancer Study

The second data set we focus on refers to the NHANES-I Epidemiologic Study

Cohort (Jones et al., 1987), originally consisting of 8596 women who were

interviewed about their nutrition habits and later examined for evidence of

cancer. Carroll et al. (2006, Section 4.3) examined a portion of the data,

involving 3145 women aged 20-50, who have no missing data on the variables

of interest. The case status (D = 1) occurs in the presence of breast cancer.

There are 59 cases of breast cancer in the data. The interest focuses on the

long-term saturated fat intake, which in our notation plays the role of X.

Instead of X, a measure W is collected, which is a 24-hour recall done by

the partecipants. Together with W other variables are observed, age, poverty

index ratio, body mass index, assumption of alcohol, family history of breast

cancer, age at menarche and menopausal status. They are supposed to be

correctly measured. In our notation these variables are indicated by Z.

The saturated fat is measured with considerable error (Beaton et al., 1979;

Wu et al., 1986). This led to considerable controversy as regards its use to

assess breast cancer risk (Prentice et al., 1989; Willett et al., 1987). Moreover,

in the NHANES data there is no information enough to adequately describe

the measurement error structure. By using external validation data, where

the measurement error is assumed additive on a logarithmic scale, Carroll et

al. (2006, Section 4.3) suggest that the measurement error variance can be set

equal to 0.171. Furthermore, they estimate that over 75% of the variance of the

24-hour recall is made up by measurement error. A naive analysis performed
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by Carroll et al. (2006, Section 4.3) turns out in a negative logistic regression

coefficient of saturated fat, equal to -0.97 (s.e.= 0.29). This results agrees with

the nonparametric density estimate of the risk factor computed for cases and

controls, which indicates a protective effect of higher levels of saturated fat in

the diet (Figure 4). However it is in opposition with one popular hypothesis

on the influence of saturated fat in diet. With respect to variables Z, only

the age and menopausal status are significant predictors of risk. Carroll et

al. (2006, Section 4.3) correct for measurement error in X through regression

calibration. Their estimate of the influence of saturated fat in the diet is equal

to -4.67 (s.e.= 2.26), with a 95% confidence interval ranging from -10.37 to

-1.38.

We analyzed the same data, by using the likelihood approach with the

distribution of X flexibly modeled through the skewnormal. We assume that

the measurement error variance is known and equal to 0.171. The analysis

provides an estimate of the influence of saturated fat on risk cancer equal to

-3.26 (s.e.= 1.59). This estimate indicates a negative effect of saturated fat

intake on the risk of breast cancer, smaller and less variable than the one

provided by RC. The associated 95% confidence interval ranges from -6.39 to

-0.14. With respect to variables Z, our analysis indicates that the age, the

poverty index ratio, the body mass index and the menopausal status of the

subjects are significant predictors of risk.

7 Conclusions

We have investigated the use of prospective likelihood methods in the analy-

sis of case-control data with measurement error affecting a covariate X. We

showed that properly modeling the distribution of the mismeasured covariates



18 REFERENCES

in the case-control sampling scheme results in asymptotically valid inferences.

Because of the fact that the distribution of X in the population differs from

that in the case-control sampling scheme, we proposed to use flexible families

of distributions for X, illustrating with the skewnormal family of distributions.

Simulations indicate that the prospective likelihood approach can work

very well in terms of corrections for bias and achieving nominal confidence

levels. The method not surprisingly works better than such standard devices

as regression calibration. Thus, properly constructed, likelihood analysis of

case-control studies subject to covariate measurement error is a viable option.
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A : Proof of Theorem 1

A.1 Prospective Formulation

To prove the asymptotic validity of the method, make the following definitions.

Let fX|D(·) be the density of X given D. Let pd = nd/n, πd = pr(D = d),

β∗
0

= β0 + log(n1/n0) − log(π1/π0). Let fX,cc(x) =
∑

1

d=0
pdfX|D(x|D = d) be

the density function of X in the case-control study.

According to the methodology, we parameterize the density of X in the

case control study as fX,cc(x) = fX(x, ξ).

The prospective loglikelihood function, in which we explicitly indicate the

dependence on the data for clarity, is

L(β∗
0
, β1, ξ; d, w) = log

(∫
H{β∗

0
+ m(x, β1)}

d[1 − H{β∗
0

+ m(x, β1)}]
1−d

×fW |X(w|x)fX(x, ξ)dx
)
,

where m(·) is a known and arbitrary function of β1 and x. The most common

choice is m(x, β1) = xT β1. Let θ = (β∗
0
, βT

1
, ξT)T. The score function is

U(θ) = n−1

n∑

i=1

∂

∂θ
L(β∗

0
, β1, ξ; Di, Wi).

A major condition for the prospective method to consistently estimate θ

is Ecc{U(θ)} = 0, where Ecc(·) is expectation in the case-control sampling
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scheme. Specifically, we must show

0 =
1∑

d=0

pdE

{
∂

∂θ
L(β∗

0
, β1, ξ; d, W )|D = d

}

=
∫ 1∑

d=0

pdfW |D(w|D = d)
∂

∂θ
L(β∗

0
, β1, ξ; d, w)dw. (3)

A.2 Proof of (3)

Showing (3) directly algebraically as in Carroll et al. (1995) is complex.

Instead, our approach is to define a new ”pretend” study that is an actual

prospective study, and show that the expectation of the derivative of the log-

likelihood in this alternative sampling framework is exactly the right hand side

of (3), which hence equals zero by properties of likelihood functions.

Consider a random sample from the population, but let δ = 1 mean that

(D, W ) are observed while δ = 0 means that they are not. Suppose that a

correctly specified parameterized model fX|δ=1(x, ξ, |δ = 1) is available for the

density function of X given δ = 1. The probability of observing (D, W ) is

pr(δ = 1|D, W, X) = pr(δ = 1|D) =
pd/πd

p0/π0 + p1/π1

∝ pd/πd.

Marginally, in this sampling scheme,

pr(δ = 1) =
1∑

d=0

πdpr(δ = 1|D = d){p0/π0 + p1/π1}
−1.

Because

H{β0 + m(x, β1)}
d = exp[d{β0 + m(x, β1)}][1 − H{β0 + m(x, β1)}],

an easy calculation shows that the observed data satisfy

pr(D = 1|X, W, δ = 1) = H{β∗
0

+ m(X, β1)}.
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Further, with a slight abuse of notation, since W is independent of D given

X, and since δ depends only on D, we have that

fDXW |δ=1(d, x, w|δ = 1) = pr(D = d|W, X, δ = 1)fW |X,δ=1(w|x, δ = 1)fX|δ=1(x|δ = 1)

= pr(D = d|X, δ = 1)fW |X(w|x)fX|δ=1(x|δ = 1)

= H{β∗
0

+ m(x, β1)}
d[1 − H{β∗

0
+ m(x, β1)}]

1−dfW |X(w|x)

fX|δ=1(x|δ = 1).

However,

fX|δ=1(x, ξ, |δ = 1) =
1∑

d=1

fDX,δ=1(d, x, δ = 1)/pr(δ = 1)

=
1∑

d=1

pr(δ = 1|D = d, X)fX|D(x|d)pr(D = d)/pr(δ = 1)

=
1∑

d=1

(pdπd)fX|D(x|d)πd

=
1∑

d=1

pdfX|D(x|d) = fX(x, ξ).

In other words, fX(x, ξ) is the properly parameterized version of

fX|δ=1(x|δ = 1) in this alternative sampling scheme. Collecting terms, we

see that

fD,X,W |δ=1(d, x, w|δ = 1)

= H{β∗
0

+ m(x, β1)}
d[1 − H{β∗

0
+ m(x, β1)}]

1−dfW |X(w|x)fX(x, ξ),

and thus

fD,W |δ=1(d, w|δ = 1) =
∫

H{β∗
0

+ m(x, β1)}
d[1 − H{β∗

0
+ m(x, β1)}]

1−d

×fW |X(w|x)fX(x, ξ)dx

= exp{L(β∗
0
, β1, d, w, ξ)}. (4)
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Because this is a proper likelihood function of observed data in the parameters

θ = (β∗
0
, βT

1
, ξT)T, it follows that

0 = E

{
∂

∂θ
L(β∗

0
, β1, ξ; D, W )|δ = 1

}

. (5)

However, because δ is a function of D alone and is independent of W given D,

fD,X,W |δ=1(d, x, w|δ = 1) = fW |D,δ=1(w|d, δ = 1)pr(D = d|δ = 1)

= fW |D(w|d)pr(D = d|δ = 1)

= pdfW |D(w|d), (6)

the last step following from some detailed algebra. Thus, (5) means that

0 =
∫ 1∑

d=0

fW |D(w|d)
∂

∂θ
L(β∗

0
, β1, ξ; d, w)dw, (7)

which is the same as (5), and hence (7) shows (3).

A.3 Inference

For inference, two steps are required. The first is the basic information equality.

That is, we need to show that

−IF =
1∑

d=0

pdE

{
∂2

∂θ∂θT
L(β∗

0
, β1, ξ; d, W )|d

}

(8)

= −
1∑

d=0

pdE

{
∂

∂θ
L(β∗

0
, β1, ξ; d, W )

∂

∂θT
L(β∗

0
, β1, ξ; d, W )|d

}

where IF is the Fisher information matrix. However, in the alternative sam-

pling framework, because (4) is a proper likelihood function, we must have

that

E

{
∂2

∂θ∂θT
L(β∗

0
, β1, ξ; D, W )|δ = 1

}

−E

{
∂

∂θ
L(β∗

0
, β1, ξ; D, W )

∂

∂θT
L(β∗

0
, β1, ξ; D, W )|δ = 1

}

.
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Now apply (6) to show that equation (8) holds in the actual case-control sam-

ple.

In practice, asymptotic inference would be based on assuming the asym-

potic distribution of n1/2(θ̂ − θ) given by

n1/2(θ̂ − θ)
d
∼ Normal(0, I−1

F
). (9)

Because of (8), Carroll et al. (1995, Section 4.1) show that for a positive

semidefinite matrix Λ, the asymptotic covariance matrix of θ̂ is I−1

F
(IF−Λ)I−1

F
,

and thus at worst prospectively derived information-based standard errors are

asymptotically conservative.



Table 1: Bias, standard error and coverages of confidence intervals for β1 based

on 500 replications, for σU = 0.3. The true value for β1 is 0.8.

Mix-Lognormals NAIVE RC LIK SN

Bias -0.142 (0.395) 0.012 (0.493) 0.020 (0.450) 0.010 (0.437)

s.e. 0.369 (0.056) 0.499 (0.085) 0.438 (0.062) 0.436 (0.060)

90% 0.854 0.928 0.914 0.910

95% 0.938 0.960 0.964 0.960

χ2

1
NAIVE RC LIK SN

Bias -0.086 (0.097) -0.058 (0.115) 0.005 (0.102) 0.011 (0.103)

s.e. 0.087 (0.007) 0.097 (0.013) 0.102 (0.008) 0.103 (0.008)

90% 0.684 0.770 0.906 0.906

95% 0.752 0.866 0.956 0.954

Weibull NAIVE RC LIK SN

Bias -0.209 (0.197) -0.108 (0.232) 0.013 (0.244) 0.011 (0.321)

s.e. 0.192 (0.011) 0.233 (0.023) 0.253 (0.014) 0.251 (0.015)

90% 0.682 0.864 0.907 0.904

95% 0.790 0.916 0.958 0.947



Table 2: Bias, standard error and coverages of confidence intervals for β1 based

on 500 replications, for σU = 0.5. The true value for β1 is 0.8.

Mix-Lognormals NAIVE RC LIK SN

Bias -0.277 (0.327) 0.153 (0.592) 0.003 (0.490) 0.012 (0.539)

s.e. 0.312 (0.048) 0.592 (0.120) 0.485 (0.072) 0.495 (0.087)

90% 0.718 0.917 0.918 0.894

95% 0.826 0.949 0.964 0.950

χ2

1
NAIVE RC LIK SN

Bias -0.244 (0.089) -0.149 (0.118) 0.008 (0.114) 0.016 (0.117)

s.e. 0.075 (0.007) 0.100 (0.015) 0.111 (0.010) 0.115 (0.011)

90% 0.118 0.522 0.902 0.894

95% 0.162 0.612 0.938 0.942

Weibull NAIVE RC LIK SN

Bias -0.415 (0.148) -0.166 (0.260) 0.035 (0.306) 0.008 (0.316)

s.e. 0.149 (0.012) 0.243 (0.036) 0.288 (0.019) 0.276 (0.024)

90% 0.124 0.778 0.884 0.865

95% 0.218 0.882 0.944 0.931



Table 3: Bias, standard error and coverages of confidence intervals for β1 based

on 500 replications, for σU = 0.75. The true value for β1 is 0.8.

Mix-Lognormals NAIVE RC LIK SN

Bias -0.518 (0.234) 0.200 (0.793) -0.012 (0.590) 0.099 (0.721)

s.e. 0.224 (0.048) 0.748 (0.176) 0.563 (0.105) 0.610 (0.169)

90% 0.254 0.890 0.928 0.896

95% 0.346 0.946 0.972 0.937

χ2

1
NAIVE RC LIK SN

Bias -0.440 (0.076) -0.277 (0.131) 0.013 (0.123) 0.015 (0.137)

s.e. 0.057 (0.007) 0.101 (0.021) 0.123 (0.012) 0.129 (0.017)

90% 0.002 0.232 0.898 0.884

95% 0.002 0.282 0.932 0.927

Weibull NAIVE RC LIK SN

Bias -0.606 (0.105) -0.193 (0.308) -0.017 (0.316) -0.072 (0.328)

s.e. 0.097 (0.012) 0.277 (0.057) 0.331 (0.028) 0.308 (0.034)

90% 0.002 0.748 0.912 0.870

95% 0.002 0.826 0.970 0.920
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Cholesterol data
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Figure 3: Density function of Ldl (solid line) and of the skewnormal fitted
using a 15% or a 25% validation data sample (dashed lines): Cholesterol data.
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Figure 4: Density estimates of logarithm of the saturated fat for cases (solid
line) and controls (dashed line): NHANES data.
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