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Section 1 Introduction 1
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Abstract: In this paper the prediction of Value-at-Risk by means of models accounting for
higher moment dynamics is studied. We consider the GARCHDSK model, which allows for
dynamic skewness and kurtosis, and compare its performance with that of several widely
adopted models. The analysis is based on the study of sequences of (long and short) VaR
violations, for which the hypotheses of absence of autocorrelation and of correct coverage
rates are assessed. Both in-sample and out-of-sample results are investigated.

Keywords: VaR prediction, GARCH models, Skewness, Time-varying skewness, Time-
varying kurtosis, Financial returns.

1 Introduction

It is well known that the Basel Committee recommends the Value-at-Risk (VaR)
as a standard measure of exposure within a given portfolio (Basel Committee on
Banking Supervision, 1995, 1996). Financial institutions are left free to develop
their own internal model for VaR computation, but the Committee defines penalties
for institutions adopting models that do not satisfy some requirements. The models
for VaR computation should then be very carefully analyzed, and those implying
a reduction of capital requirements can be preferred only if the declared coverage
levels are respected.

The latter point is particularly delicate, since no particular backtesting proce-
dures are today indicated by the regulatory authorities, and also because of the
number of technical issues related to this operation (see e.g. Campbell, 2005).

In our view, even if often overlooked, the dynamics of conditional skewness and
kurtosis should be accounted for together with the standardly used time-varying
volatility, since their consideration would imply a better performance in VaR com-
putation.

In particular, while the presence of excess kurtosis in the marginal or conditional
return distributions is treated as a stylized fact in the literature, skewness has been
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quite neglected and relatively little work has been done to detect it.

Several economic theories have been offered as explanations of the the mechanism
generating the asymmetry, including leverage effects (Black, 1976, Christie, 1982),
the volatility feedback mechanism (Campbell and Hentschel, 1992), stochastic bub-
ble models (Blanchard and Watson, 1982) and investor heterogeneity (Hong and
Stein, 2003).

However, the objective of the present work is not to describe the causes of skew-
ness, but rather to investigate — through empirical analyses — the effects of condi-
tional skewness and kurtosis modeling in risk management and, in particular, on the
value at risk computation.

Within this context, we consider nine time series of stock index returns for which
the significance of the conditional asymmetry and kurtosis was studied in Grigoletto
and Lisi (2006). For these series we analyze — in terms of VaR — the performances
of two Gaussian models (a Gaussian GARCH and the Riskmetrics model), of a
non-Gaussian symmetric model (a GARCH with Student’s ¢ innovations), and of a
non-Gaussian asymmetric model (the GARCHDSK, introduced by Grigoletto and
Lisi, 2006). The GARCHDSK model, in particular, allows to describe skewness
and kurtosis of the conditional return distributions, both when they are assumed
constant and when they are time-varying.

In Grigoletto and Lisi (2006) the analyses were limited to an in-sample context
for shorter time series. Furthermore, the focus was on studying performances con-
nected to Market Risk Capital Requirements (MRCR) as a function of past VaRs
and of their violations, as defined by the guidelines of the Basel Accord on Banking
Supervision. Here, on the other hand, both in-sample analyses and out-of-sample
predictions are considered, and particular attention is dedicated to the testing of
predictive VaR accuracy. Furthermore, in order to highlight the effects of asym-
metric modeling of return time series, the Value-at-Risk is computed both for long
and short positions, as suggested by Giot and Laurent (2003). The analysis is based
on the study of sequences of VaR violations, for which the hypotheses of correct
coverage rates and of absence of autocorrelation are assessed.

The paper is organized as follows. Section 2 introduces the GARCHDSK model.
Empirical evidences, statistical significance and economic relevance of skewness are
investigated in Section 3. Concluding remarks are presented in Section 4.

2 Time-varying variance, skewness and kurtosis models

Marginal and conditional skewness can be studied by means of tests or models. The
more general test for studying skewness is probably that due to Bai and Ng (2005).

Conditional skewness can also be assessed by using suitable models for asym-
metric behavior. In this study, we propose to analyze the presence of conditional
skewness employing a GARCH-type model with innovations having a Pearson’s Type
IV (henceforth Pearsonjy ) distribution. This model represents a generalization of
the standard GARCH model because it can account for asymmetry and kurtosis in
the conditional distribution. Conditional skewness and kurtosis can be time-varying,
thus allowing to study possible dynamics in higher-order moments. In the following,
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the acronym GARCHDSK (GARCH with dynamic skewness and kurtosis) will be
used to denote this model.

Time varying skewness and kurtosis were first introduced by Hansen (1994),
who extended the ARCH framework by proposing the adoption of a conditional
generalized Student’s ¢ distribution, and modeling its parameters as functions of the
lagged errors. Approaches in which dynamics are imposed on shape parameters,
thus inducing time-varying skewness and kurtosis, have also been adopted, among
others, by Jondeau and Rockinger (2003) and Yan (2005). In other cases, higher
order moments are modeled directly. For example, Harvey and Siddique (1999)
introduce a GARCH-type expression for the conditional skewness, while Brooks et
al. (2005) use a similar representation for the kurtosis. Ledn et al. (2005) employ a
GARCH specification for both conditional skewness and kurtosis.

In the spirit of Hansen (1994), here dynamics on skewness and kurtosis are intro-
duced by modeling shape parameters, rather than directly skewness and kurtosis. As
remarked by Yan (2005), this approach is less computationally intensive and allows
skewness and kurtosis to explode, while the shape parameters remain stationary.
This is particularly useful when modeling extremal events.

The approach suggested by Yan (2005) involves first estimating the dynamics
of volatility. Then, conditionally on the results obtained, a model for skewness
and kurtosis can be developed using the standardized residuals. However, this two-
step procedure implies that the variability of the parameters ruling the dynamics
of skewness and kurtosis is underestimated, being computed conditionally on the
estimated volatility. For this reason, in the approach suggested here the parameters
governing the dynamics of volatility, skewness and kurtosis are estimated together,
in a single step.

Concerning the choice of the conditional distribution, in the present paper we
follow Premaratne and Bera (2001) in the use of a Pearsonyy distribution. This
distribution is flexible, in the sense that it implies a wide range of feasible skewness-
kurtosis couples. For example, the range associated with the Gram-Charlier density
studied in Jondeau and Rockinger (2001) and adopted by Leén et al. (2005) is
relatively rather limited (Yan, 2005). The Pearsonjy is also found to approximate
the generalized Student’s t distribution on a large area of the skewness-kurtosis
plane, but is computationally less demanding (see Premaratne and Bera, 2001, and
the computational techniques discussed in Heinrich, 2004).

The GARCH-type model we will use to assess skewness has the following struc-
ture:

Y = Ht+5t7 tzlv"‘v”) (1)

where p; = E(y/li—1), and €4 is such that ¢ | I;_1 ~ Pearsonyy (A, ag, v, 7).
Hence, the conditional density is defined by

07—
€ — A
- < : t> ]
Qt
Jointly, parameters A, a;, v and r; control the conditional mean, variance, skewness
and kurtosis. The parameter C; is a normalizing constant depending on a;, 14 and

(re+2)/2

f(5t | Itfl) = Cy

exp {—ut arctan <‘€t — Atﬂ . (2)

at
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ry. The distribution is symmetric for v, = 0, positively skewed for 1, < 0 and
negatively skewed for 14 > 0. For fixed 14, increasing r; decreases the kurtosis.
The Pearsonjy distribution is essentially a skewed version of the Student’s ¢ and for
vy =0,r, =g —1 and a; = /g reduces to a Student’s ¢ with g, degrees of freedom.
The normal distribution is a limit case where 14 = 0 and r; — oo.

Setting Ay = ay v4/r4 in order to have a zero mean error term, for the conditional
distribution of ¢; we have

E(el,-) = 0, (3)
a% (r% + 1/,52)
7‘? (re—1)

—4v [ ry—1
Sy = S(‘gtut—l) = T _; Tgt_’_ 20 (5)
t t

3(re — 1) [(re +6) (rf + 1) — 8]
(re =2) (re = 3) (rf + ) 7

of = Var(el;1) =

Kt = K(5t|-[t—1):

where S; and K are the conditional skewness and kurtosis coefficients, given by the
standardized third and fourth moments.

In this framework, the conditional variance o7 depends jointly on a;, v4 and ry,
whereas conditional skewness and kurtosis depend only on v; and 7. In particular, if
vy = 0 then Sy = 0 and this is why 14 can be interpreted as the “skewness parameter”.
When vy = v and r; = 7, Vt, conditional skewness and kurtosis are constant.

For a complete model specification a critical point is how to describe the dy-
namics of o2, Sy and K;. Our proposal is to define it through the evolution of the
parameters az, ¥4 and r; which, in turn, is induced by the following autoregressive
GARCH-type structure:

a? = wo 4 g @2 |+ By a? (7)
Vi =wy t+ oy 1+ 6y Vt—1, (8>
Ty =wp + oy T+ B Ti—1 (9)

with a;, 7 and 7, being moment-based estimators of a;, 14 and r; (see Stuart and
Ord, 1994, and Heinrich, 2004) defined by

Vo [16(r — 1) = 57 (7 — 2)2]

a; = 4 ) (10)
R N— (1)
V16 (7y — 1) — S2 (7 — 2)2
_ 6(Ke— SE—1)
- L : 12
" 9K, — 357 — 6 (12)

By 67, S; and K; we have denoted suitable estimates of the variance, skewness and
kurtosis coefficients. In particular, the estimates defined in (10), (11) and (12) are
“local”, in the sense that only the m more recent values of the series are used in the
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computation of &7, S; and K;. In the following, the choice of m will be based on
goodness-of-fit criteria.

Since a¢, 14 and r; depend only on past information, conditional variance, skew-
ness and kurtosis at time ¢ can be computed at time ¢t — 1.

The introduction of the constraints o, = o, = 6, = B, = 0 allows to estimate
models with constant skewness and kurtosis. However, note that for a dynamic
behavior of both conditional skewness and kurtosis, it is sufficient that at least one
of these parameters is different from zero.

Modeling a¢, 4 and r; rather than directly variance, skewness and kurtosis turns
out to be easier because the latter quantities need to satisfy nonlinear constraints
which are difficult to impose at each point in time, while the constraints concerning
a¢, ¢ and ¢ can be implemented straightforwardly.

The issue of what constraints are necessary and sufficient to ensure the stationar-
ity of the model requires further study. However, by simulations, we found that the
following conditions, besides guaranteeing the positivity of the variance and kurtosis
parameters, are sufficient for a non-explosive behavior: w, > 0, w, > 3, «;,3; > 0,
a; + B; < 1, for i = a,v,r. In particular, the constraint w, > 3 is needed to ensure
existence of the kurtosis.

Estimates for the w;, a; and (; (i = a,v,r) parameters are obtained by maxi-
mizing the log-likelihood function

n 2 S0 — A\ 2 S — A
Z{log@ - Tt; log [1+ <€ta t) ] — v arctan (Eta t>} , (13)
t t

t=1

where é; = y; — [i. The estimate [i; is computed in a first step of the procedure,
by estimating a suitable ARMA model, which in the present context represents a
very weak correlation structure or even reduces to a constant. Since parameters
at, v and r; are functions of w;, o; and 3; (i = a,v,r), expression (13) can be
maximized with respect to these latter. In principle, maximum likelihood can also
be used to estimate the parameter m in the definition of a;, 7y and 7. However, this
would imply a large computational burden. Hence, the choice of m will be based on
goodness-of-fit considerations (see the next section).

3 Empirical results

3.1 In-sample results

We now apply the previous methodology to the daily returns, adjusted for split and
dividends, of 9 major international stock indexes, namely the indexes CAC40, DAX,
FTSE100, MIB30, SMI, Dow Jones, Nasdaq, S&P500, Nikkey225.

The time series refer to different periods but all end on March 10, 2007. However,
in order to be able to make subsequent out-of-sample predictions, only the subseries
ending on December 13, 2005 are considered for model building. These subseries are
composed by a number of observations between 1547 and 4023 (Table 1).

Most of the series present some abnormal values that do not seem to belong to
the standard dynamics, and were thus replaced with the mean of the data. All the
analyses were conducted on these outlier-adjusted time series.
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Sample skewness and kurtosis coefficients are given in Table 1: all indexes have
negative skewness and severe excess kurtosis. Only the Nikkey225 index has positive,
but very small, skewness. These results are consistent with other findings in the
literature (e.g. Cont, 2001, Belaire-Franch and Peir6, 2003, Kim and White, 2004,
and Peir6, 2004).

Series n S’u Ku BNO05, S’C KC BNO05,.
CAC40 3977 -0.103 5.798 0.393 -0.366 5.336  0.083
DAX 3792 -0.117 6.204 0.326 -0.124 3.974 0.130

Dow Jones 4023 -0.223 7.548  0.227 -0.348 4.731  0.002
FTSE100 5483 -0.264 6.362 0.046  -0.208 3.941  0.008
MIB30 1547 -0.189 6.608 0.410  -0.419 4.237  0.003
Nasdaq 4023 -0.174 7.638 0.278  -0.412 4.316  0.000
Nikkey225 3926 0.038 5.098 0.691 -0.053 4.578 0.616
SMI 3797 -0.200 6.861  0.177  -0.280 3.915  0.000
S&P500 4023 -0.103 6.767  0.504 -0.345 4.759  0.002

Table 1: Symmetry tests for index returns. Columns S, and K,, give the empirical
skewness and kurtosis coefficients for the observed series; columns S, and K, give
the same indices for the standardized residuals of a TGARCH(1,1) model; columns
BNO05, and BNO05, give the p—values for the Bai and Ng (2005) test for uncondi-
tional and conditional asymmetry, respectively.

As a starting point, we looked for unconditional skewness by applying the Bai and
Ng (2005) test and, as a benchmark, the asymptotic standard test. The p—values
for the null hypothesis of symmetry, reported in Table 1, show that the Bai and Ng
test accepts the symmetry, at the 5% level of significance, in 8 cases on 9, with a
p—value of 0.0464 for the FTSE100.

These analyses indicate that no clear evidence of unconditional asymmetry was
found in the considered time series.

As a second step, conditional skewness of the series is investigated by applying the
Bai and Ng test to the residuals of a GARCH(1,1) model accounting for asymmetric
effects (TGARCH). For the moment we will assume skewness to be constant.

Table 1 shows that results about the statistical significance of the conditional
skewness are quite different from those on the marginal distributions and show more
evidence of asymmetry. In particular, at the 5% significance level, the null hypothesis
of symmetry is rejected in 6 cases on 9 by the BNO05. test. The Nikkey225 index is
the only one for which the test clearly agrees on accepting conditional symmetry.

The presence of significant conditional skewness was further investigated by esti-
mating GARCHDSK models, as defined in Section 3, assuming constant conditional
skewness and kurtosis. This amounts to imposing «,, = 8, = o, = 5, = 0, thus ob-
taining a subset of models that we will indicate with GARCHSK. The Kolmogorov-
Smirnov goodness-of-fit test described below led us to the choice of m = 10 in the
definition of a;, 7y and 7.

The maximum likelihood parameter estimates, with their asymptotic standard
deviations and t-statistics, are given in Table 2. The results indicate that conditional
skewness is statistically significant for all series except Nikkey225. Table 3 lists the
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Parameter Estimate Std. err. ¢-stat. Parameter Estimate Std. err. ¢-stat.

CAC40 Nasdaq
Wa 0.214 0.073 2.92 Wa 0.147 0.039 3.73
Qq 0.075 0.009 7.60 Qq 0.085 0.006 12.84
Ba 0.914 0.011 83.12 Ba 0.905 0.007 135.1
Wy 1.801 0.678 2.65 wy 3.389 0.872 3.88
W 11.46 2.109 5.43 W 11.09 1.888 5.87
DAX Nikkey225
Wa 0.191 0.056 3.37 Wa 0.195 0.057 3.44
Qq 0.101 0.010 9.66 Qq 0.081 0.009 8.58
Ba 0.888 0.010 83.01 Ba 0.906 0.010 87.12
Wy 1.386 0.479 2.89 Wy 0.307 0.252 1.21
W 9.602 1.587 6.05 W 6.859 0.906 7.56
Dow Jones SMI
Wa 0.052 0.013 3.78 Wa 0.163 0.049 3.32
Qq 0.051 0.005 9.52 Qq 0.097 0.012 8.02
Ba 0.938 0.005 170.6 Ba 0.886 0.013 64.71
Wy 0.867 0.299 2.89 wy 2.212 0.587 3.76
W 7.042 0.909 7.74 W 9.365 1.502 6.23
FTSE100 S&P500
Wa 0.141 0.046 3.03 Wa 0.083 0.024 3.47
Qq 0.074 0.009 8.39 Qq 0.098 0.011 9.31
Ba 0.915 0.010 88.85 Ba 0.891 0.011 80.28
Wy 3.138 0.913 3.44 Wy 0.891 0.315 2.82
W 14.39 2.512 5.73 W 7.168 1.016 7.05
MIB30
Wa 0.112 0.045 2.49
Qq 0.088 0.013 6.73
Ba 0.899 0.013 68.67
Wy 1.782 0.729 2.44
W 7.829 1.934 4.05

Table 2: ML estimates of GARCHSK model parameters (constant conditional sym-
metry and kurtosis), asymptotic standard errors and ¢-statistics.

conditional skewness an kurtosis implied by models estimated in Table 2 and shows
that all indexes are negatively skewed with the Nikkey225 having the smallest coef-
ficient. Again, the absolute conditional skewness entailed by the models is generally
greater than the marginal one.

The model introduced in Section 2 also allows to investigate the presence of
dynamic, rather than constant, conditional skewness.

Table 4 lists the estimated parameters and shows that for 7 indexes the parameter
«,, is significant implying that both skewness and kurtosis are time varying. For all
these models, the Ljung-Box test at lag 15 on standardized squared residuals accepts
the hypothesis of no residual correlation.

In order to check goodness of fit, we applied the Kolmogorov-Smirnov test to
assess the uniformity of the values F'(&|I;_1), t = 1,...,n, where F(-|I;_1) denotes
the c.d.f. corresponding to the density defined in (2), and F(-|I;_1) is obtained by
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GARCHSK GARCHDSK

Series S K Sav  Kaw
CAC40 -0.212 3.78 -0.288 3.71
DAX -0.219 399 -0.264 3.99

Dow Jones -0.239 4.59 -0.321 4.50
FTSE100 -0.253 3.62 -0.269 3.60

MIB30 -0.390 4.52 -0.354 3.40
Nasdaq -0.407 4.02 -0.408 4.02
Nikkey225 -0.089 4.56 0.00  4.55
SMI -0.365 4.17 -0.404 4.02

S&P500 -0.237 454 -0.329 4.23

Table 3: Conditional skewness and kurtosis implied by the GARCHSK and
GARCHDSK models (in the latter case the average conditional skewness and kur-
tosis are given).

substituting the ML parameter estimates in the c.d.f. definition. Table 5 lists the
test p-values for each series. The p-values for other models, described in the next
section, are also shown. At the standard 5% significance level, the null is accepted
for all models, suggesting that the GARCHDSK models are appropriate.

In summary, the results on the nine analyzed time series indicate that there
are no strong evidences of unconditional skewness, which seems to be more the
exception than the rule. On the contrary, conditional skewness appears to be more
widespread. In particular, there are clear indications of dynamic skewness that,
if modeled, may allow for a more realistic description of the evolution of financial
quantities of interest.

3.2 Value-at-Risk prediction and model validation

In the previous section skewness was analyzed mainly from a statistical viewpoint, by
looking at its statistical significance. In this section we mean to study the economic
and financial importance of skewness by analyzing its role in risk modeling and
examining the out-of-sample performance of GARCHDSK models in this context.

With this purpose, for the nine stock indexes the time-varying Values-at-Risk
{VaR;} were computed, using GARCHDSK and some alternative models, in order
to compare them. Market Value-at-Risk is a crucial component of most risk analyses
and management systems in financial and insurance industries. It measures how the
market value of an asset, or of a portfolio of assets, of value P is likely to decrease
over a certain time period under normal market conditions. It is typically used
by security houses or investment banks to measure the market risk of their asset
portfolios, but is actually a very general concept that has broad application. It is
well known that VaR is a high quantile of the profit/loss distribution which defines
a bound such that the loss over a fixed holding period is less than this bound with
probability 1 — a.

We computed time-varying VaR; by using the GARCHDSK models estimated in
the previous subsection, the Riskmetrics approach with the usual smoothing param-
eter A = 0.94 (see Alexander, 2001), a Gaussian GARCH(1,1) and a GARCH(1,1)
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Parameter Estimate Std. err. t¢-stat. Parameter Estimate Std. err. t¢-stat.

CAC40 Nasdaq
Wa 0.242 0.085 2.83 Wa 0.147 0.039 3.73
Qg 0.062 0.007 7.97 Qg 0.084 0.007 12.85
Ba 0.925 0.009 103.9 Ba 0.905 0.007 135.07
Wy 4.069 1.611 2.52 wy 3.389 0.872 3.88
o, 0.218 0.048 4.54 a, - - -
Wy 14.63 3.598 4.06 Wy 11.090 1.888 5.87
DAX Nikkey225
Wa 0.166 0.053 3.11 Wa 0.195 0.057 3.44
Qg 0.087 0.009 9.22 Qg 0.081 0.009 8.58
Ba 0.903 0.009 93.83 Ba 0.906 0.010 87.12
wy 2.151 0.705 3.04 wy 0.306 0.252 1.21
o, 0.239 0.056 4.22 a, - - -
Wy 10.58 1.997 5.29 Wy 6.859 0.906 7.56
Dow Jones SMI
Wa 0.058 0.017 3.41 Wa 0.176 0.057 3.08
Qg 0.054 0.006 8.80 Qg 0.085 0.011 7.73
Ba 0.935 0.007 138.4 Ba 0.897 0.012 74.7
Wy 1.658 0.551 3.00 Wy 3.918 1.215 3.221
a, 0.280 0.068 4.10 a, 0.224 0.052 4.33
Wy 8.064 1.334 6.05 Wy 11.77 2.485 4.73
FTSE100 S&P500
Wa 0.155 0.047 3.28 Wa 0.079 0.027 2.85
Qg 0.063 0.006 9.21 g 0.076 0.008 9.17
Ba 0.923 0.008 113.5 Ba 0.913 0.008 106.6
wy 4.656 1.20 3.85 wy 2.296 1.192 1.92
ay, 0.210 0.041 5.13 a, 0.275 0.061 4.47
Wy 16.86 3.119 5.40 Wy 9.431 2.533 3.72
MIB30
Wa 0.410 0.253 1.61
Qg 0.072 0.010 6.85
Ba 0.913 0.011 83.5
wy 23.59 19.38 1.21
Qay, 0.153 0.071 2.14
Wy 35.87 21.99 1.63

Table 4: ML estimates of GARCHDSK model parameters (time-varying conditional
skewness and kurtosis), asymptotic standard errors and ¢-statistics.

with Student’s ¢ innovations.

An analysis of the one-day-ahead 1% VaR for these series and models can be
found in Grigoletto and Lisi (2006). They compared nominal and observed VaR
coverages and showed, by using the Kupiec LR test (Kupiec, 1995), that only for
the GARCHDSK models they are not significantly different, at the 5% significance
level.

However, since in real situations VaR models are used to deliver out-of-sample
predictions, a deeper evaluation of out-of-sample performances of VaR is now con-
ducted, for the same indexes and for the period going from December 13, 2005 to
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Riskmetrics GARCH-N GARCH-t GARCHDSK

CAC40 0.427 0.044 0.450 0.090
DAX 0.183 0.003 0.339 0.182
Dow Jones 0.028 <0.001 0.364 0.243
FTSE100 0.033 0.049 0.022 0.104
MIB30 0.002 <0.001 0.006 0.415
Nasdaq <0.001 <0.001 <0.001 0.295
Nikkey225 0.174 0.005 0.768 0.658
SMI 0.056 0.002 0.040 0.117
S&P500 0.011 <0.001 0.297 0.090

Table 5: p-values for the Kolmogorov-Smirnov goodness-of-fit test.

March 10, 2007. This period was not considered for model fitting and includes 317
working days.

Moreover, in order to evidence the effects of conditional asymmetry, we computed
VaR for both long and short positions. We assume the portfolio value at time ¢ is
P, and the profits and losses over h time units are represented by the log-returns of
the portfolio, ryp = log(P;/P;—p), with distribution F},. Then, following Giot and
Laurent (2003), the VaR for long position VaR; is defined by

VaR, = —P,_), [F; ()], (14)

This represents the point of view of traders who bought assets, and are mainly con-
cerned with the possibility that prices decrease. On the contrary, portfolio managers
who have short positions, i.e. who sell assets, lose money when prices increase. This
is represented by VaR for short position, VaRg, defined by

VaR, = P,y [F} (1 —a)]. (15)

When the distribution of r;; is not constant over time, VaR is also time-varying.
In the following, we will assume to have a unitary position (P = 1) in a portfolio
defined by each index.

Let us now turn to the problem of computing the return predictive distributions.
In the present framework, it is very difficult to determine analytically the distri-
bution of future observations and of their volatility, skewness and kurtosis, when
an arbitrary prediction horizon (h > 1) is considered. We therefore resort to the
bootstrap technique, extending the approach proposed by Pascual et al. (2006) in
the context of GARCH models. Our goal is to estimate the distribution of y;, a2, v
and r¢, fort =n+1,n+2,..., conditionally on the available observations yi, ..., yn.
Once the parameters (w;, oy, 5;), © = a,v,r, have been estimated, it is possible to
define bootstrap forecasts through the recursions

Ax2 oA A %2 A Ax2
ay* = Wq+ g a2 + @a assy
A~ oA A —x% ~ %

Vg = Wytoay Vi g+ ?u Vi1,
S R ok

TP o= O+ Gp T+ 6T,

Nk Ak

~x Nk Ax) Ak Ak ok
y; ~ Pearsonry (At = (af 4 /ﬁ)ﬂt»”taﬁ) )
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fort =n+1,n+42,..., and where a}?, 7} and 7} have the same definitions as a?, 7
and 7, but concern
~x Yt if ¢ S n
yt = Ak f
Yy i t>n
The recursions are initialized by setting a*?, 2, and 7 as suitable functions of the
observed series, so that the state of the process at the end of the observation period

is taken into account. In particular, a? may be written as

oo
2 _ wa _7 _92 ' _ wa
ay 1_aa_ﬂa+aajz;)ﬁa (at—]—l 1—Oéa—,8a> )

and analogous expressions hold for v4 and r;. On the grounds of this result we set

o = o

A %2 a A~ Aq _92 a

an = =+ Qg E ﬁé (a’njl - 5 ) ’
j=0 - ﬁa

_1_&a_ﬁa 1_(35(1

and similarly for 2% and 7. It should be noted that, since a2, 2, , and 7}, are
observable, no variability is involved in their prediction.

Once B bootstrap replications (75, a;2, 0,7 )i, i = 1,..., B, have been obtained,
the predictive distributions of y;, a?, 14 and 7; can easily be computed for each
time t = n 4+ 1,... of interest. This is most simply achieved by considering the
empirical distribution of the B replications. Suitable transformations of (a;2, 7, 7})
immediately lead to the prediction of volatility, skewness and kurtosis.

The present approach can easily be extended to consider the uncertainty due to
parameter estimation, although we will not pursue this goal here.

We will now consider the assessment of performance in VaR computation, for
several models. Since the late 1990’s a variety of tests have been proposed to measure
the VaR accuracy and validate underlying models (e.g. Kupiec, 1995, and Christof-
fersen, 1998). The literature highlighted three main features that a good VaR model
should have:

i) unconditional coverage property: for correctly specified models, the number of
expected VaR violations must not be (statistically) different from the observed
violations (i.e. nominal and observed coverages don’t have to differ significantly);

ii) independence property: VaR violations, concerning the same coverage rates, but
observed at different dates, must be independent;

iii) properties i) and ii) should hold even when several coverage rates are considered
simultaneously.

Berkowitz and O’Brien (2002) showed that properties i) and ii) are satisfied when
the process associated to VaR violations is a martingale difference or a weak white
noise. Property iii) is a generalization of the two previous ones, since it requires that
i) and ii) hold not only at a given coverage rate, but for the whole distribution.
Recently, Hurlin and Tokpavi (2007) proposed a multivariate portmanteau test
based on the weak white noise property of the process of VaR violations. This test
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is able to jointly validate this hypothesis, for a finite set of coverage rates; e.g.,
properties i) and ii) can be assessed jointly for levels 1% and 5%, rather than for a
single level.

In order to study the validity of the VaR models considered, some of the tests
previously described have been applied to the processes of VaR violations for the
nine time series under study. In particular, we considered

e the Kupiec test for assessing property i), at the 1% nominal level;

e the Christoffersen test to jointly study properties i) and ii), at the 1% nominal
level;

e the Hurlin and Tokpavi test to jointly investigate properties i) and ii), consid-
ering the 1% and 5% levels at the same time; the validity of property iii) was
therefore examined, to some extent.

The last test is also suitable when considering both long and short VaR at the same
time. Results concerning the Kupiec, Christoffersen and Hurlin and Tokpavi tests
are reported in Tables 6, 7 and 8-11, respectively.

In order to interpret the results, it should first be noted that the variability of
the out-of-sample period, for the time series analyzed here, is always smaller than
the variability observed in-sample; the ratio between the variances observed in the
in- and out-of-sample periods ranges, for the different series, between 1.5 and 2.9.
This explains why even the Gaussian model gives generally acceptable results. As
a consequence we see that, for example, for the traditional 1-day-ahead 1% long
VaR, both the Kupiec and the Christoffersen tests almost always accept, at the 5%
significance level (the Riskmetrics for MIB30 being an exception), the null of correct
coverage and independence from past violations (Tables 6 and 7).

However, if we consider the whole set of results for 1- and 5-day-ahead long and
short VaR, only for the GARCHDSK model the null hypothesis is never rejected,
whereas all other models show some cases where the null is not accepted at the 5%
significance level.

To study in more depth the performance of the considered models, the Hurlin
and Tokpavi test has also been applied in two different ways: first, the 1% and
5% levels on the same tail (i.e. concerning VaR; or VaR,) were jointly investigated
(Tables 8 and 9); then, the test was applied considering the 1% or 5% levels on both
tails at the same time (Tables 10 and 11).

Results relative to the Hurlin and Tokpavi test are less systematic, also because
the test can be applied only if at least one violation occurs. The symbol “-”, used
in the tables, means that there were no violations and thus the p-value could not
be computed. When considering a single tail (Tables 8 and 9) for the GARCHDSK
model this situation takes place only once. Apart from this, for the 1-day-ahead VaR
(Table 8) the test rejects the null hypothesis only in the case of long VaR computed
for the FTSE100 series. For 5-day-ahead VaRs (Table 9), instead, all models show
problems. This is supposedly due to the fact that existing violations most of the
time concern both the levels considered, thus defying the hypothesis of uncorrelation
between “hits” at different levels.
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When the test is applied in order to jointly account for the performance of long
and short 1% 1-day-ahead VaR (Table 10), the null hypothesis is always accepted
only for GARCHDSK. Again, the performance of all models is worse when a 5 day
predictive horizon is taken into account (Table 11).

4 Conclusions

This paper has focused on the issue of empirical evidence concerning in- and out-of-
sample Value-at-Risk computation for time series of financial returns. Nine series
of daily stock index returns have been analyzed, with the objective to compare
the performance of several widely used models with that of the GARCHDSK, a
GARCH-type model which allows to take into account both skewness and kurtosis.
A characteristic feature of this approach is that skewness and kurtosis are allowed to
evolve dynamically. This is done by assuming Pearson’s Type IV errors and defining
suitable dynamics for the distribution parameters. The dynamic structure depends
on moment-based estimators.

Our results indicate that for the considered series there are no strong evidences of
unconditional asymmetry which, therefore, does not appear to be a common feature
of financial returns.

Different conclusions are drawn with respect to conditional skewness, which was
found to be significantly present in eight of the nine stock index returns analyzed.
In particular, in seven of the eight cases, we found significant time-varying skewness
and kurtosis. These findings are consistent with those of studies by, among others,
Brooks et al. (2005), Leén et al. (2005) and Cappuccio et al. (2006).

To investigate the economic importance of a correct modeling of skewness, differ-
ent models were compared with respect to the computation of the 1- and 5-day-ahead
long and short 1% Value-at-Risk. The analyses were carried out taking into account
also a predictive perspective, that is in an out-of-sample framework.

The out-of-sample period, including 317 working days, was not particularly tur-
bulent and its variability was always lower than that of the in-sample period. This
is why also standard models, which usually perform poorly in this context, yield
adequate results.

Even in this situation, however, the VaR computation with the GARCHDSK
model resulted to be best. This confirms that skewness is important not only from
a statistical point of view, but also from a financial perspective, particularly in risk
management.
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CACA40 1d long 1d short | 5d long 5d short
GARCH-N 0.977 0.013 0.602 0.013
GARCH-¢ 0.977 0.013 0.977 0.013

Riskmetrics 0.304 0.519 <0.001 0.051
GARCHDSK 0.159 0.159 0.495 0.159

DAX 1d long 1d short | 5d long 5d short
GARCH-N 0.304 0.169 0.304 0.169
GARCH-t 0.977 0.013 0.977 0.169

Riskmetrics 0.304 0.304 0.002 0.005
GARCHDSK | 0.325 0.159 0.945 0.945
Dow Jones 1d long 1d short | 5d long 5d short
GARCH-N 0.601 0.519 0.601 0.519
GARCH-t 0.519 0.169 0.977 0.519
Riskmetrics 0.133 0.304 0.005 0.017
GARCHDSK | 0.977 0.977 0.977 0.169

FTSE100 1d long 1d short | 5d long 5d short
GARCH-N 0.601 0.169 0.304 0.169
GARCH-t 0.977 0.013 0.601 0.169

Riskmetrics 0.133 0.304 0.017 0.017
GARCHDSK | 0.963 0.508 0.963 0.508

MIB30 1d long 1d short | 5d long 5d short
GARCH-N 0.304 0.169 0.304 0.170
GARCH-t 0.602 0.013 0.977 0.169

Riskmetrics 0.018 0.977 0.005 0.018
GARCHDSK 0.977 0.519 0.977 0.602

Nasdaq 1d long 1d short | 5d long 5d short
GARCH-N 0.601 0.304 0.601 0.977
GARCH-t 0.601 0.169 0.601 0.977

Riskmetrics 0.304 0.304 0.002 0.002
GARCHDSK | 0.977 0.133 0.977 0.304
Nikkey225 1d long 1d short | 5d long 5d short
GARCH-N 0.601 0.169 0.304 0.013
GARCH-t 0.169 0.013 0.977 0.013
Riskmetrics 0.304 0.1699 <0.001 0.519
GARCHDSK | 0.995 0.176 0.585 0.176

SMI 1d long 1d short | 5d long 5d short
GARCH-N 0.977 0.013 0.601 0.013
GARCH-¢ 0.519 0.013 0.977 0.013

Riskmetrics 0.051 0.519 <0.001 0.017
GARCHDSK | 0.512 0.166 0.512 0.610

S&P500 1d long 1d short | 5d long 5d short
GARCH-N 0.601 0.601 0.304 0.602
GARCH-t 0.519 0.169 0.977 0.601

Riskmetrics 0.052 0.134 <0.001 0.002
GARCHDSK 0.977 0.304 0.977 0.978

Table 6: p-values for the Kupiec test for the 1- and 5-day-ahead long and short 1%
VaR (1d long, 1d short, 5d long and 5d short, respectively).
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CAC40 1d long 1d short | 5d long 5d short
GARCH-N 0.960 0.046 0.816 0.046
GARCH-t 0.960 0.046 0.960 0.046

Riskmetrics 0.533 0.796 <0.001 0.046
GARCHDSK | 0.369 0.369 0.777 0.369

DAX 1d long 1d short | 5d long 5d short
GARCH-N 0.533 0.387 0.533 0.387
GARCH-t 0.960 0.046 0.960 0.387

Riskmetrics 0.533 0.099 0.004 0.387
GARCHDSK | 0.559 0.369 0.959 0.959
Dow Jones 1d long 1d short | 5d long 5d short
GARCH-N 0.816 0.796 0.816 0.796
GARCH-t 0.796 0.387 0.960 0.796
Riskmetrics 0.282 0.533 0.015 0.796
GARCHDSK | 0.960 0.960 0.960 0.387

FTSE100 1d long 1d short | 5d long 5d short
GARCH-N 0.816 0.387 0.099 0.387
GARCH-t 0.960 0.046 0.091 0.387

Riskmetrics 0.079 0.533 0.025 0.387
GARCHDSK 0.960 0.788 0.960 0.788

MIB30 1d long 1d short | 5d long 5d short
GARCH-N 0.533 0.387 0.533 0.387
GARCH-¢ 0.816 0.046 0.960 0.387

Riskmetrics 0.047 0.960 0.015 0.387
GARCHDSK | 0.960 0.796 0.960 0.816

Nasdaq 1d long 1d short | 5d long 5d short
GARCH-N 0.816 0.533 0.816 0.960
GARCH-t 0.816 0.387 0.816 0.960

Riskmetrics 0.533 0.533 0.005 0.960
GARCHDSK | 0.960 0.282 0.960 0.533
Nikkey225 1d long 1d short | 5d long 5d short
GARCH-N 0.816 0.387 0.533 0.046
GARCH-t 0.387 0.046 0.960 0.046
Riskmetrics 0.533 0.387 0.001 0.046
GARCHDSK | 0.970 0.397 0.805 0.397

SMI 1d long 1d short | 5d long 5d short
GARCH-N 0.960 0.046 0.816 0.046
GARCH-t 0.796 0.046 0.960 0.046

Riskmetrics 0.049 0.796 <0.001 0.046
GARCHDSK | 0.790 0.382 0.790 0.822

S&P500 1d long 1d short | 5d long 5d short
GARCH-N 0.816 0.816 0.533 0.816
GARCH-t 0.796 0.387 0.960 0.816

Riskmetrics 0.125 0.282 <0.001 0.816
GARCHDSK 0.960 0.533 0.960 0.960

Table 7: p-values for the Christoffersen test for the 1- and 5-day-ahead long and
short 1% VaR (1d long, 1d short, 5d long and 5d short, respectively).
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Index GARCH-N GARCH-t Risk. GARCHDSK
CAC40 long <0.001 <0.001 <0.001 0.225
short - - 0.824 0.605
DAX long 0.559 0.985 0.371 0.980
short 0.495 - 0.389 -
Dow Jones long 0.464 0.175 0.026 0.093
short 1 1 1 0.987
FTSE100 long 0.059 <0.001 0.234 <0.001
short 1 - 0.922 0.910
MIB30 long 0.766 0.102 0.342 0.997
short 1 - <0.001 0.903
Nasdaq long 1 0.991 0.131 1
short 0.999 1 0.994 0.908
Nikkey225  long 0.997 1 0.994 0.597
short 0.172 - 0.591 0.079
SMI long <0.001 0.094 0.005 0.448
short - - 0.969 0.249
S&P500 long 0.784 0.657 0.665 0.997
short 1 1 0.987 0.999

Table 8: p-values for the Hurlin and Tokpavi test; the test concerns two levels on
a single tail (a7 = 0.01 and ae = 0.05, or a3 = 0.95 and as = 0.99) and a 1 day
predictive horizon.

Index GARCH-N GARCH-t Risk. GARCHDSK
CAC40 long <0.001 <0.001 0.056 <0.001
short - - 0.999 0.529
DAX long 0.005 <0.001 0.010 0.001
short <0.001 <0.001 0.756 <0.001
Dow Jones long <0.001 0.006 <0.001 <0.001
short 1 — 1 0.499
FTSE100 long <0.001 <0.001 <0.001 <0.001
short 0.187 1 0.472 0.765
MIB30 long 0.007 <0.001 0.002 <0.001
short 0.999 - 0.999 0.999
Nasdaq long <0.001 0.010 0.131 <0.001
short 0.956 1 1 0.987
Nikkey225  long 0.312 <0.001 0.644 0.001
short - - 1 1
SMI long <0.001 <0.001 <0.001 <0.001
short - - 0.934 1
S&P500 long <0.001 <0.001 0.001 0.004
short 0.979 1 <0.001 0.857

Table 9: p-values for the Hurlin and Tokpavi test; the test concerns a single tail
(y = 0.01 and ag = 0.05, or a3 = 0.95 and ay = 0.99) and a 5 day predictive
horizon.
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Index GARCH-N GARCH-t Risk. GARCHDSK
CAC40 - - 0.003 0.998
DAX 0.997 - 0.862 0.999
Dow Jones 0.998 0.998 0.772 0.998
FTSE100 0.977 - 0.989 0.399
MIB30 0.999 - 0.008 0.998
Nasdaq 0.998 0.998 0.998 0.998
Nikkey225 0.998 - 0.998 0.421
SMI - - 0.230 0.998
S&P500 0.998 0.998 0.998 0.998

Table 10: p-values for the Hurlin and Tokpavi test; the test concerns both tails
(ov; = 0.01 and g = 0.99) and a I day predictive horizon.

Index GARCH-N GARCH-t Risk. GARCHDSK
CAC40 - - 0.003 <0.001
DAX 0.999 0.998 0.862 0.998
Dow Jones 0.226 - 0.771 1
FTSE100 <0.001 <0.001 0.989 <0.001
MIB30 0.997 - 0.008 0.421
Nasdaq 0.803 <0.001 0.998 0.998
Nikkey225 - - 0.998 -

SMI - - 0.230 0.998
S&P500 0.611 <0.001 0.998 0.998

Table 11: p-values for the Hurlin and Tokpavi test; the test concerns both tails
(o; = 0.01 and g = 0.99) and a 5 day predictive horizon.
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