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logical studies for evaluating the role of genetic susceptibility and environmental
exposure to risk factors in the etiology of rare diseases. Within this framework,
it is often reasonable to assume genetic susceptibility and environmental expo-
sure being conditionally independent of each other within families in the source
population. We focus on this setting to consider the common situation of mea-
surement error affecting the assessment of the environmental exposure. We
propose to correct for measurement error through a likelihood-based method,
by exploiting the conditional likelihood of Chatterjee, Kalaylioglu and Carroll
(2005) to relate the probability of disease to the genetic and the mismeasured
environmental risk factors. Simulation studies show that this approach pro-
vides less biased and more efficient results than that based on traditional lo-
gistic regression. The likelihood approach for measurement error correction is
also compared to regression calibration, the last resulting in severely biased
estimators of the parameters of interest.
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Section 1 Introduction 1

Measurement Error Correction in Exploiting Gene-Environment
Independence in Family-Based Case-Control Studies

Annamaria Guolo

Department of Economics, Society and Institutions, University of Verona
Via dell’Artigliere, 8, I-37129, Verona, Italy

Abstract: Family-based case-control designs are commonly used in epidemiological studies
for evaluating the role of genetic susceptibility and environmental exposure to risk factors
in the etiology of rare diseases. Within this framework, it is often reasonable to assume
genetic susceptibility and environmental exposure being conditionally independent of each
other within families in the source population. We focus on this setting to consider the
common situation of measurement error affecting the assessment of the environmental expo-
sure. We propose to correct for measurement error through a likelihood-based method, by
exploiting the conditional likelihood of Chatterjee, Kalaylioglu and Carroll (2005) to relate
the probability of disease to the genetic and the mismeasured environmental risk factors.
Simulation studies show that this approach provides less biased and more efficient results
than that based on traditional logistic regression. The likelihood approach for measurement
error correction is also compared to regression calibration, the last resulting in severely bi-
ased estimators of the parameters of interest.

Keywords: conditional likelihood, conditional logistic regression, family-based case-control
study, gene-environment independence, measurement error, regression calibration.

1 Introduction

Evaluating the influence of genetic susceptibility (G) and environmental exposure
(X) as well as gene-environment (G-X) interaction on disease risks is a topic of in-
creasing interest in epidemiologic studies. To this aim, a powerful tool is represented
by family-based case-control designs, where controls are selected from families the
cases belong to (Witte et al., 1999; Gauderman, 2002).

In this paper, we focus on a feature of particular interest in gene-environment
interaction problems, that is G-X independence within families in the source pop-
ulation. Assuming that the subject’s genetic susceptibility G, which is determined
from birth, does not affect the subject’s environmental exposure X, is often rea-
sonable especially in case of external environmental exposures, as, for example, to
pollution or radioactive substances.

Within this framework, we face the problem of error affecting the measure of the
environmental exposure for cases and controls. We propose a prospective likelihood-
based approach (Carroll et al., 2006, Chapter 8) to correct for the presence of mea-
surement error. In particular, we take advantage of the conditional likelihood of
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Chatterjee et al. (2005), which is successful in exploiting the within family G-X in-
dependence restriction. Conversely, we show that measurement error analysis based
upon conditional logistic regression (Breslow and Day, 1980, p. 247–249) can lead
to inefficient inferential results.

Moreover, we compare our approach to the method proposed by McShane et al.
(2001), a modified version of the commonly used regression calibration approach. We
show that the method, while being satisfactory in the case of no interaction models,
experiences substantial bias in the estimators of all the parameters of interest when
G-X interaction is taken into account.

The paper is organized as follows. Section 2 focuses on the problem of gene-
environment interaction in family-based case-control studies and fixes the notation
we will use throughout the paper. In addition, conditional logistic regression and
the conditional likelihood of Chatterjee et al. (2005) are introduced. The problem
of measurement error affecting the environmental exposure is presented in Section
3. Section 4 is devoted to the specification of regression calibration and of the
likelihood approach to correct for measurement error in covariates. Section 5 shows
the results of several simulation studies performed in order to compare the correction
techniques. The paper ends with the discussion in Section 6.

2 Models and Notation

Let D be the binary indicator of case, D = 1, or control status, D = 0. Let G
be the subject’s genetic factors and X be the subject’s exposure to environmental
risk factors. For simplicity of exposition, here we focus on G and X being scalar
variables, although the results can be readily extended to the multidimensional case.
Suppose that a fixed number of cases and associated controls are sampled within a
given family F in the population. Without loss of generality, we focus on the 1:1
matched study, e.g. sibling cases and controls. We assume that, within a family F ,
the prospective risk model for the disease for the jth (j = 1, 2) relative is given by
the logistic regression model

pr(Dj = 1|Gj , Xj , F ) = H {αF +m(Gj , Xj ;β)} , (1)

where H(v) = {1 + exp(−v)}−1 is the logistic distribution function, m(·) is a known
but arbitrary function and αF are family-based intercepts. Often, the multiplicative
interaction model

m(Gj , Xj ;β) = β0 + βGGj + βXXj + βGXGjXj

is of interest, where β = (β0, βG, βX , βGX)> and the exponents of the parameters in
β have the usual interpretation in terms of odds ratios.

Likelihood analysis based on (1) suffers for the Neymann-Scott problem, as the
number of nuisance parameters αF increases with the number of families. This leads
to inconsistent estimators of the parameter of interest β. The problem is generally
solved through conditioning on the number of cases within each family F , in order
to eliminate the nuisance parameters αF . This gives rise to conditional logistic
regression (Breslow and Day, 1980, p. 247–249), which has the following expression.
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Let (Dk1, Gk1, Xk1) indicate the observations for the case and (Dk2, Gk2, Xk2) those
for the control in the kth matched set, k = 1, . . . ,K. Thus, the likelihood obtained
from the density function fD|GX(Dk1, Dk2|Gk1, Gk2, Xk1, Xk2, Dk1 + Dk2 = 1;β),
k = 1, . . . ,K, is given by

LCLR(β) =
K∏
k=1

fD|GX(Dk1, Dk2|Gk1, Gk2, Xk1, Xk2, Dk1 +Dk2 = 1;β) (2)

where

fD|GX(Dk1, Dk2|Gk1, Gk2, Xk1, Xk2, Dk1 +Dk2 = 1;β) =

pr(Dk1 = 1, Dk2 = 0|Gk1, Gk2, Xk1, Xk2, Dk1 +Dk2 = 1;β) =
exp (βGGk1 + βXXk1 + βGXGk1Xk1)

exp (βGGk1 + βXXk1 + βGXGk1Xk1) + exp (βGGk2 + βXXk2 + βGXGk2Xk2)
.

(3)

Expression (3) is obtained by conditioning on the number of cases within each stra-
tum k, that is on Dk1 + Dk2 = 1. The method requires no assumptions on the
distribution of the risk factors in the underlying population.

Chatterjee et al. (2005) focus on the situation of G and X being independent
within families in the source population. The G-X independence within families in
the source population, while being likely to occur as, for example, for exposure to
external factors, is a weak assumption. The reason is that the assumed family-level
independence is less likely to be affected by spurious association between G and X
in the population. Indeed, the G-X independence at the population-level may be
violated as a consequence of the population stratification on variables such as age
group, ethnic background and family history (Mukherjee et al., 2007). The within-
family independence assumption, instead, is much less likely to fail because of these
factors. Chatterjee et al. (2005) point out that the assumption is the weakest in
the sibling-case-control design, in which no ethnic or family substructure may be
supposed to induce differences among siblings.

Under the family-level G-X independence assumption, Chatterjee et al. (2005)
show that conditional logistic regression (2) is inefficient. They suggest a novel
conditional likelihood that is highly efficient in exploiting the within family G-X
independence assumption. Let Gk be the unordered set of genotypes observed in
the kth matched set. By conditioning on Gk and under a rare disease assumption,
Chatterjee et al. (2005) obtain their conditional likelihood from the density function
fD|GX(Dk1, Dk2|Gk1, Gk2,Gk, Xk1, Xk2, Dk1 +Dk2 = 1;β) in the kth matched set,

LCC(β) =
K∏
k=1

fD|GX(Dk1, Dk2|Gk1, Gk2,Gk, Xk1, Xk2, Dk1 +Dk2 = 1;β), (4)
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where

fD|GX(Dk1, Dk2|Gk1, Gk2,Gk, Xk1, Xk2, Dk1 +Dk2 = 1;β) =

pr(Dk1 = 1, Dk2 = 0|Gk1, Gk2,Gk, Xk1, Xk2, Dk1 +Dk2 = 1) =
exp (βGGk1 + βXXk1 + βGXGk1Xk1)∑2

j=1{exp (βGGkj + βXXk1 + βGXGkjXk1) + exp (βGGkj + βXXk2 + βGXGkjXk2)}
.

(5)

For matched pairs where different genotypes are observed, Gk contains the in-
formation about the two observed genotypes, but no specification of the individual
genotype of the case Gk1 and the control Gk2. In fact, all the possible genotype-
exposure configurations in the kth matched set, that is
{(Gk1, Xk1), (Gk1, Xk2), (Gk2, Xk1), (Gk2, Xk2)}, are taken into account in the de-
nominator of (5). The numerator, instead, is equal to that in (3).

Chatterjee et al. (2005) show analytically that the proposed method is asymp-
totically at least as efficient as standard conditional logistic regression and confirm
these results by simulation studies.

In this paper, we investigate the problem of measurement error affecting the
subject’s exposure to an environmental risk factor X. We consider a likelihood
analysis of family-based case-control data in order to estimate the G-X interaction,
under the G-X independence assumption within families in the source population.
Within this framework, we take advantage of the method suggested by Chatterjee
et al. (2005) and compare the results to those from a measurement error version
of standard conditional logistic regression and the regression calibration method of
McShane et al. (2001).

3 Measurement Error

The problem of measurement error affecting covariates arises in many scientific areas.
It is well known that uncorrect measures of covariates can yield misleading inferential
results, the most relevant being the bias induced on the estimators. Considerable
attention has been paid on this problem in literature. Carroll et al. (2006) provide
a review of the techniques proposed to correct for measurement error.

In this paper, the focus is on measurement error affecting continuous covari-
ates. In particular, we suppose that the subject’s exposure to an environmental risk
factor X is not directly observed. Instead of X, we observe a mismeasured quan-
tity W , which is related to X according to the so-called measurement error model.
We mainly focus on a classical measurement error model, W = X + U , where
U ∼ Normal(0, σ2

u), which can be often thought as a good approximation of more
complex measurement error structures. However, the possibility of alternative mea-
surement error distributions is investigated. In particular, we take account of an
asymmetric and a multiplicative measurement error structure. We assume that the
measurement error is nondifferential, i.e. independent of the disease status D, as
reasonably holds when the exposure is assessed by an instrument.
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We evaluate two approaches to correct for measurement error affecting the ob-
servations of X, regression calibration and a likelihood-based approach. These are
briefly reviewed in the following section.

4 Correction Techniques

4.1 Regression Calibration

Regression calibration (RC, for short) is one of the most commonly used methods to
correct for measurements errors (Carroll et al., 2006, Chapter 4). This is mainly due
to its simple applicability with existing packages. The method involves two steps.
In the first one (calibration step) the unknown values of X are estimated by the
conditional expectation of X given (W,G), that is E(X|W,G) = X∗. In the second
step, conditional logistic regression is performed with X replaced by X∗.

The RC approach we consider in this paper is the one suggested by McShane et
al. (2001). While in ordinary case-control studies only controls are used within the
calibration step, McShane et al. (2001), in analyzing matched data, show that using
all the observations from cases and controls produces nearly unbiased results. They
show that their proposal generally works well, except when the covariate distribution
is highly skewed.

In the calibration step, we consider W data from both cases and controls in order
to obtain the conditional expectation of X given (W,G)(McShane et al., 2001). In
particular, let Σab denote the covariance matrix between two random variables A
and B and µa denote the mean of a random variable A. In order to guarantee the
parameter identifiability, we suppose that the measurement error variance matrix
Σuu is known. Let n be the number of observations subdivided in K matched pairs,
so that n = 2K. Let (Xi,Wi, Gi) the i-th observation of (X,W,G), for i = 1, . . . , n.
The best linear approximation to E(X|W,G) is

E(X|G,W ) ≈ µ̂w +

(
Σ̂xx

Σ̂xg

)> [
Σ̂xx + Σuu Σ̂xg

Σ̂>xg Σ̂gg

](
W − µ̂w
G− µ̂g

)
,

where

µ̂x = µ̂w = W =
n∑
i=1

Wi/n; µ̂g = G =
n∑
i=1

Gi/n;

Σ̂gg = (n− 1)−1
n∑
i=1

(Gi − µ̂g)(Gi − µ̂g)>;

Σ̂xg = (n− 1)−1
n∑
i=1

(Wi − µ̂w)(Gi − µ̂g)>;

Σ̂xx =

[{
n∑
i=1

(W − µ̂w)(W − µ̂w)>
}
− (n− 1)Σuu

]
/(n− 1).

Within the calibration step we ignore the matching nature of the data. This means
that we substitute the resulting predictions of X to the corresponding unknown
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values and perform a conditional logistic regression on the matched data. Standard
errors for RC estimates are readily obtained by bootstrap.

4.2 Likelihood Methods

Within the context of family-based case-control data, let Wk1 and Wk2 be the ob-
servations from W for the case and the associated control in the kth matched set,
respectively. Then, the likelihood function is obtained starting from the joint den-
sity function of the observed quantities (D,G,W,X) over the K pairs, and then
integrating out the unobserved X (Carroll et al., 2006, Chapter 8),

L(θ) =
K∏
k=1

∫
IR2

fDGWX(Dk1, Dk2, Gk1, Gk2,Wk1,Wk2, xk1, xk2; θ)dxk1dxk2. (6)

The integral is replaced by a sum in case of discrete X.
Suppose that the relationship between D and (G,X,W ) in the kth matched set

is specified through the density function fD|GX(Dk1, Dk2|Gk1, Gk2, Xk1, Xk2, Dk1 +
Dk2 = 1;β) according to the standard conditional logistic regression, as in (3), and
under the nondifferential measurement error assumption. Then, likelihood (6) can
be rewritten as

L(θ) =
K∏
k=1

∫
IR2

fD|GX(Dk1, Dk2|Gk1, Gk2, xk1, xk2, Dk1 +Dk2 = 1;β)

fW |GX(Wk1,Wk2|Gk1, Gk2, xk1, xk2, Dk1 +Dk2 = 1; γ)
fX|G(xk1, xk2|Gk1, Gk2, Dk1 +Dk2 = 1; δ)
fG(Gk1, Gk2|Dk1 +Dk2 = 1;λ)dxk1dxk2,

where θ = (β>, γ>, δ>, λ>)>, fW |GX(·; γ) is the density function for the measurement
error model relating W to (X,G), depending on γ, fX|G(·; δ) is the density function
of the model for the mismeasured variable X given G, depending of δ and fG(·;λ) is
the density function of G, depending of λ. The expression of the likelihood can be
simplified as follows. Since it is reasonable to assume that the error in measuring X
is independent of G and that it is also independent when evaluated for the case or
for the control, then

fW |GX(Wk1,Wk2|Gk1, Gk2, Xk1, Xk2, Dk1 +Dk2 = 1; γ) =
fW |X(Wk1|Xk1, Dk1 +Dk2 = 1; γ)fW |X(Wk2|Xk2, Dk1 +Dk2 = 1; γ).

Moreover, given the G-X independence assumption within families, it follows that

fX|G(Xk1, Xk2|Gk1, Gk2, Dk1 +Dk2 = 1; δ) = fX(Xk1, Xk2|Dk1 +Dk2 = 1; δ).

Finally, the marginal density of G carries no information about the parameter of
interest β and it does not depend on X, thus it can be neglected in the likelihood
computation.

A similar expression for the likelihood can be obtained also when the conditional
likelihood of Chatterjee et al. (2005), as in (5), is considered in place of conditional
logistic regression.



The likelihood computation can be simplified by considering the environmental
exposure X for cases and controls independent within each matched family. In this
case,

fX(Xk1, Xk2|Dk1 +Dk2 = 1; δ) = fX(Xk1|Dk1 +Dk2 = 1; δ)fX(Xk2|Dk1 +Dk2 = 1; δ).

An extensive simulation study shows that the simplification is reasonable. We gen-
erated 200 matched case-control pairs from the logistic regression model, under
different values for the influence of G, X and G-X interaction on the probability of
disease. More details about the simulation design can be found in Section 5.1. For
each combination of the values for βG, βX , βGX , we tested the independence of the
exposure between the cases and the controls. The independence test is based on the
empirical copula process as proposed by Genest and Rémillard (2004). The results
of the simulation study are reported in Table 5 in Appendix A, suggesting that
modeling the covariate distributions of the cases and the controls as independent is
a reasonable approach.

When performing the likelihood analysis, some additional information, e.g. the
measurement error variance σ2

U known, is needed to guarantee the identifiability of
the parameters (Carroll et al., 2006, Section 8.1.2).

Remark 1

Within the likelihood approach, Guolo (2008) studied the connection between the
case-control sampling scheme and the possibility of model misspecification, with the
consequent risk of unreliable inferential results. The problem arises from the diffi-
culty in specifying a model for the unobserved Xs and it is also exacerbated when
handling case-control data. In fact, the distribution of the covariates in the pop-
ulation can notably differ from that under the case-control sampling scheme. The
problem can be addressed by specifying the model for X in the case-control sample
through a flexible distribution. By this way, Guolo (2008) shows that likelihood
estimation and inferences are asymptotically correct. Following Guolo (2008), we
flexibly model the distribution of X in the case-control sample through the skewnor-
mal distribution (Azzalini, 1985), X ∼ SN(µX , σX , αX), with density function

fX(x; δ) = fX(x;µX , σX , αX) = (2/σX)φ {(x− µX)/σX}Φ {αX(x− µX)/σX} ,

where δ = (µX , σX , αX)>, µX , σX , αX are, respectively, the location, the scale and
the shape parameter and φ(·) and Φ(·) represent the standard normal density and
distribution functions.

Remark 2

Together with the possibility of model misspecification for X described below, the
case-control sampling scheme has some effects also on the G-X relationship. In fact,
despite the G-X independence assumed within families in the population, a G-X
dependence may hold in the case-control data as a consequence of the sampling
scheme. Consider, for example, Figure 1. In the figure, the nonparametric estimate
of the density of X conditionally on G = 0 and G = 1 in a population (left panel) of



50, 000 families and in the extracted case-control sample (right panel) is reported.
While the estimated density of X is the same for G = 0 and G = 1 in the pop-
ulation, its different behavior in the case-control sample is an evidence of the lack
of G-X independence. Actually, the case-control sampling scheme can be shown to
induce the G-X density function being different from that in the population and, in
particular, dependent on the disease status D. For details, see Appendix C. When
performing the likelihood analysis, we aim to correct for the spurious G-X associa-
tion in the case-control sample and recover the within families independence holding
in the population. To this aim, in spite of conditional logistic regression, we take
advantage of the conditional likelihood by Chatterjee et al. (2005) since it equally
includes all the combinations of gene susceptibility and environmental exposure for
the subjects independently of their disease status, as it would be expected under the
G-X independence assumption.
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Figure 1: Nonparametric estimate of the density of the environmental exposure X
in the population (left panel) of 50,000 families and in the case-control sample (right
panel) conditionally on the values of the genetic susceptibility G, G = 0 (black line)
and G = 1 (grey line). While G and X are independent in the population, they are
not independent in the case-control sampling scheme.

5 Simulation Studies

We performed extensive simulation studies in order to evaluate the behaviour of the
likelihood-based approach to correct for measurement error affecting X under the
assumption of G-X independence within families in the population. We refer both
to the measurement error generalization of conditional logistic regression (CLR)
and of the conditional likelihood (CC) of Chatterjee et al. (2005) to relate D to
(G,X). Both the methods are compared to regression calibration (RC) in the version
by McShane et al. (2001) and to the naive analysis (NAIVE), which ignores the
presence of measurement error. Several simulation scenarios are examined, allowing
for different distributions of X in the population, as well as different sample sizes



and measurement error structures.

5.1 Simulation Design

In the simulation studies we took a sample of K case-control pairs. In Section 5.3 we
will report the results referred to the simulation with K = 1, 000. Also the moderate
sample performance of the correction techniques has been examined, with K = 500.
The corresponding results are reported in Appendix B.

We simulate data for families composed of two siblings and their parents. We
suppose the gene variant of interest is a bi-allelic locus, with susceptibility allele a and
normal allele A. Let p denote the prevalence of the risk allele. By assuming Hardy-
Weinberg equilibrium holding in the population, the distribution of the genotypes G
in the population is given by pr(G|p) = p2, 2p(1−p), (1−p)2 for G = aa,Aa/aA,AA,
respectively. We focus on two different settings of interest, the dominant (Aa/aA or
aa) and the recessive model (aa) for the effect of the gene-variant.

Following the same design as Chatterjee et al. (2005), for each family F we gen-
erate a family-specific allele frequency parameter θF in order to allow for between
family variability. We first generate a normal random variable uF with mean µ and
variance σ2, and then we obtain θF belonging to the 0−1 scale as θF = euF /(1+euF ).
Choosing σ2 = 0.5 allows the ±2σ limit of the distribution of uF corresponding to
approximately 15-fold variation in allele frequency across the families. The value of
µ is chosen in order to guarantee that the marginal probability of the genotype vari-
ant of interest for the dominant and for the recessive model in the population is fixed
to 0.2. Given the allele frequency parameter θF , we simulate the parental genotypes
according to Hardy-Weinberg equilibrium, under the assumption of independence
between the two parents. Then, conditionally on the parental genotypes, the geno-
type of the siblings is simulated according to the Mendelian mode of inheritance.
The genotype information G for the siblings is mapped into a genetic covariate,
which is taken to be binary, thus indicating the presence or absence of the genetic
mutation. The siblings environmental exposure X is assumed to be independently
distributed of the genetic susceptibility within families in the source population.
Two distributions for X are taken into account: a logχ2

2 distribution and a mix-
ture of normal distributions distributions Normal(0.5, 1) and Normal(−1.5, 1), with
mixing weights 0.6 and 0.4. Within a given family F , let Xj be the environmental
exposure for the case (j = 1) or the control (j = 2). Having generated the values of
G and X, the binary disease outcome D for the siblings in each family F is drawn
from the logistic regression model

pr(Dj = 1|Gj , Xj , F ) = H (β0 + αF + βGGj + βXXj + βGXGjXj) ,

where j = 1, 2, the parameters (βG, βX , βGX)> are set equal to (log(1.3), log(1.5), 1)>

and the parameter β0 is chosen such that pr(D = 1) = 0.01. The family-specific
intercepts αF allow for heterogeneity in the probability of disease among families.
Values of αF are simulated from a standard normal distribution.

Simulation results in Section 5.3 refer to the case of a classical, i.e. linear and
additive, measurement error affecting the covariate X. We assume that W = X+U ,



where the random error U follows a normal distribution, U ∼ Normal(0, σ2
U ). Differ-

ent amounts of measurement error are considered, σ2
U ∈ {0.7, 1.0}. The performance

of the correction techniques was also examined under nonclassical measurement er-
ror structures, on a subset of the data, as follows. First, when X is generated from
a logχ2

2 distribution, we examined the performance of the correction methods under
an asymmetric measurement error, W = X + U , with U following a skewnormal
distribution with location, scale and shape parameters equal, respectively, to 0, 0.8
and 1.0. Secondly, when X is generated from a mixture of normals, we allowed W
following a multiplicative structure, W = XU , with U distributed according to a
normal variable with mean 0.8 and variance 0.25. This includes heteroschedasticity
in the measure of X.

5.2 Details

We considered 500 replicates of the simulation scheme described in Section 5.1.
Regression calibration estimates are obtained according to the algorithm de-

scribed in Section 4.1. Standard errors are obtained by the bootstrap on the matched
pairs of subjects, with 100 boostrap samples.

The measurement error analysis in (6) is based upon conditional logistic regres-
sion (2) or the conditional likelihood (4) of Chatterjee et al. (2005). The resulting
likelihood function is maximized by using the optimization procedures provided by
the R programming language (R Development Core Team, 2009). Integrals involved
in the likelihood maximization are numerically evaluated, through Gauss-Hermite
multidimensional quadrature with 14 nodes. The optimization procedure requires
initial estimates of the parameters. We chose the estimates provided by regression
calibration for (βG, βX , βGX)>, while we used the moment-based estimates on the
observations from W for the parameters involved in the distribution of X.

The variance estimates for the likelihood estimators are obtained using the sand-
wich method. Let `(θ) be the log-likelihood for θ obtained from (6) and let θ̂ be the
maximizer of `(θ). Then, the sandwhich estimator of the covariance matrix for θ̂ is

cov(θ̂) = K−1 J−1
k (θ)Ik(θ)J−1

k (θ)
∣∣
θ=θ̂

,

where

Jk(θ) = K−1
K∑
k=1

∂2

∂θ∂θT
`k(θ)

and

Ik(θ) = K−1
K∑
k=1

∂

∂θ
`k(θ)

(
∂

∂θ
`k(θ)

)T
.

See, for example, Carroll et al. (2006, Section A.6.1).

5.3 Results

The simulation results, performed under both the specifications of X, are sum-
marized in Tables 1-2, under a classical measurement error structure, for both the
recessive and the dominant genetic model. They refer, respectively, to X distributed



as a logχ2
2 distribution and as a mixture of normals. The simulation results under

nonclassical errors are reported in Tables 3-4, under the recessive genetic model.
In each table, the estimates of βG, βX , βGX , the estimated standard errors of the
parameter estimators and the empirical coverages of confidence intervals at nominal
level equal to 0.95 are reported.

First, the simulation results highlight that the naive approach provides estima-
tors for all the parameters of interest which are notably more biased than alterna-
tives, under all the examined measurement error structures. Moreover, the empirical
coverage of their resulting confidence intervals is very low and far from the nominal
level. In case of classical measurement error, the results become worse as the amount
of measurement error increases, under both the recessive and the dominant genetic
variant. The use of RC only slightly outperforms the naive analysis, again retain-
ing high levels of bias of the estimators and poor empirical coverage of confidence
intervals. In particular, this situation is quite dramatic for the estimation of the
interaction parameter βGX , see, for example, Table 1. This result is in marked con-
trast to the results of McShane et al. (2001), who pointed out the good performance
of the method, both in terms of bias and mean squared error of the estimators. This
difference may stem from the fact that McShane et al. (2001) do not consider inter-
action models. Their method is successful when interaction is not present, otherwise
leading to biased results. This conjecture is confirmed by a simulation study (100
replicates) of K = 500 matched case-control pairs, performed under the assumption
of no G-X interaction, that is, under βGX = 0 (see Table 6 in Appendix A). In this
case, in fact, RC works quite well. For simplicity, only the results for a recessive
genetic variant under a classical measurement error model with σ2

U = 1 are reported,
although simulation conclusions hold more generally.

Correcting for the presence of measurement error through a likelihood-based ap-
proach within the conditional likelihood framework provides some advantages with
respect to the naive analysis or to regression calibration. For example, consider the
bias reduction for the estimators of βGX and the related improvement of the empir-
ical coverages of confidence intervals under different measurement error structures.
However, results are still far from being satisfactory. In particular, while correcting
for the measurement error affecting the estimate of βX , the approach experiences
severe bias of the estimator of βG. Similarly, the empirical coverage of confidence
intervals is far from the nominal level. According to this performance, the pres-
ence of the measurement error affecting X has repercussions on the estimators of
parameters related to other variables, mainly to G. This can be thought of as a con-
sequence of the spurious G-X relationship introduced by the case-control sampling
and that the likelihood approach based on CLR cannot correct for, see Remark 2
in Section 4.2. Conditional logistic regression cannot recover the within families
independence holding in the population while estimating the parameters, because it
takes into account only the observed gene susceptibility and environmental exposure
for each subject of the case-control sample.

Conversely, when adopting the measurement error generalization of CC, all the
combinations of gene susceptibility and environmental exposure of the pairs of rela-
tives are taken into account independently of the subjects’ disease status, as it would
be expected under the G-X independence assumption. Thus, the likelihood analysis



provides more satisfactory results than the alternative based on CLR. According
to the examined simulation studies, the measurement error generalization of CC
properly corrects for errors affecting X, while at the meantime accounting for reper-
cussions on the other covariates. The most remarkable result is the dramatic bias
reduction of the estimators of the parameters βG and βGX which can be obtained
by relying on CC in place of CLR. See, for example, Table 1 and Table 2. This per-
formance, together with a sensible reduction of the standard error of the estimates,
turns out in empirical coverages of confidence intervals which are very close to the
0.95 nominal level. The satisfactory behavior of the likelihood approach based on
CC is maintained under different measurement error structures and magnitude, as
well as in case of rare or common genetic mutation.

The moderate sample performance of the methods in correcting for measurement
errors, for K = 500 matched case-control pairs, is summarized in Tables 7-8 in Ap-
pendix B. The relative performance of the methods substantially recovers that with
K = 1, 000 matched case-control pairs, dictating the likelihood approach within CC
framework as the preferable solution. The main difference is an expected increased
value of the estimated standard error of the parameter estimators. Within a like-
lihood approach, a slightly increased bias of the estimators is a consequence of the
finite sample distribution of the maximum likelihood estimators.

6 Conclusions

In this paper, we have investigated the measurement error problem in the context
of family-based case-control studies about the role of genetic susceptibility and en-
vironmental exposure on the risk of rare disease. We have focused on the weak
assumption of gene-environment independence within families in the source popu-
lation. This is a much weaker assumption than the independence at the population
level and, at the meantime, very likely to be satisfied, for example in case of external
environmental risk factors.

Within this framework, we suggest to correct for measurement error affecting
the exposure to environmental risk factors through a likelihood-based approach.
Simulation studies show that this solution is much more preferable to regression
calibration. Regression calibration, in fact, is successful only in case of no G-X
interaction models, otherwise yielding very biased results. Likelihood analysis is
shown to provide notable efficiency advantages in terms of inferential results if the
assumption of G-X independence within families is properly exploited. This goal
is achieved by basing the analysis on the conditional likelihood of Chatterjee et al.
(2005) in place of the standard conditional logistic regression. In fact, while the
former results in almost no bias of the estimators, the latter fails to exploit the
G-X independence assumption and suffers from notable effects of the measurement
error on all the parameters of interest. This behavior occurs under different frame-
works, namely different measurement error structure, recessive or genetic variants,
moderate or large sample sizes. The reason of the success of basing measurement
error analysis on the conditional likelihood by Chatterjee et al. (2005) is related to
the treatment of the G-X relationship in the case-control sample. While the analy-



sis based on conditional logistic regression does not exploit the G-X independence
within families, the approach based on the conditional likelihood of Chatterjee et
al. (2005), instead, attacks this problem directly by treating cases and controls in a
symmetric way and allowing for all the possible gene susceptibilities for the subjects.
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A Simulation studies: preliminary results

Table 5 contains the results of a simulation study performed in order to evaluate the
p-value of the empirical copula test of independence (Genest and Rémillard, 2004) of



the environmental exposure between cases and controls, for βG ∈ {log(1.3), log(1.8), log(2.3)},
βE ∈ {log(1.5), log(2.0), 1.0} and βGX ∈ {1.0, 1.5, 2.0}. Values from X are simulated
from a mixture of normal distributions, as in Section 5.1. The large values of the
p-values provide an empirical justification for modeling the covariate distributions
for cases and controls as independent, see Section 4.2.

Table 6 summarizes the results of the simulation study performed in order to
evaluate the behavior of the correction methods under no gene-environment inter-
action in the population. In this case, both RC and the likelihood approach within
CLR framework seem to perform well, while they generally do not under nonzero
gene-environment interaction.

B Simulation studies: moderate sample performance

Tables 7-8 report the results of simulation studies performed in order to examine the
moderate sample performance of the NAIVE approach, regression calibration and
likelihood analysis, within both conditional logistic regression or the conditional like-
lihood by Chatterjee et al. (2005). We consider 500 replicates of K = 500 matched
case-control pairs, under both the recessive and the dominant genetic model, accord-
ing to X following a logχ2

2 distribution or a mixture of normals. The focus is on the
classical measurement error model, with σ2

U ∈ {0.7, 1.0}. Results globally recover
the main findings derived from the simulation study of 500 replicates of K = 1, 000
matched case-control pairs, see Section 5.3. As expected, as the sample size reduces,
the estimated standard errors of the parameter estimators increase and the bias of
the likelihood estimators slightly increases.

C Gene-environment relationship in the case-control sample

The G-X independence assumed within families in the source population may not
hold in the case control data because of the sampling scheme. To show this, make
the following definitions. Let pd = nd/n be the proportion of subjects with D = d in
the sample and let τ be the indicator of whether or not a subject has been selected in
the case-control sample, so that τ = 1 if (D,W ) are observed and τ = 0 otherwise.

The G-X restriction within each family F in the population implies that the
joint density of (G,X) can be factorized as follows

fGX|F (Gi, Xj) = fG|F (Gi|F )fX|F (Xj |F ),

where indices i and j refer to the i-th and the j-th subject of the family, i allowed to
be equal to j, independently of the family components’ disease status. In the case-
control sample, instead, the density function of (G,X) can be shown (see Guolo,
2008, Appendix A) to be equal to

fGX|τ=1,F (Gi, Xj |τ = 1, F ) =
1∑
d=0

pdfGX|F,D(Gi, Xj |F,D).

The dependence of each term of the previous sum on D does not allow the joint den-
sity of (G,X) being factorized in a component dependent on G, say fG|F,D(Gi|F,D),



and a component dependent of X, say fX|F,D(Xj |F,D). The factorization is achiev-
able, instead, at the population level. The reason is that the population substructure
induced by the disease status D is not included in the family substructure. In this
situation, in fact, the G-X independence would be maintained. Conversely, the two
partitions induced by the disease status and by the family groups intersect. This
implies that the G-X independence within families is lost in the case-control sample.



βG βX βGX

Bias S.e. Coverage Bias S.e. Coverage Bias S.e. Coverage

Recessive model

σ2
U = 0.7

NAIVE 0.497 0.183 0.236 -0.147 0.047 0.116 -0.504 0.090 0.000
RC 0.383 0.269 0.774 -0.081 0.086 0.932 -0.381 0.168 0.320
CLR 0.254 0.249 0.792 0.002 0.079 0.961 0.129 0.254 0.972
CC -0.029 0.260 0.967 0.013 0.079 0.969 0.067 0.211 0.967

σ2
U = 1.0

NAIVE 0.576 0.178 0.091 -0.181 0.043 0.014 -0.592 0.080 0.000
RC 0.442 0.263 0.646 -0.099 0.083 0.836 -0.447 0.156 0.120
CLR 0.324 0.259 0.706 0.004 0.085 0.965 0.137 0.288 0.981
CC -0.029 0.275 0.975 0.017 0.086 0.975 0.077 0.236 0.977

Dominant model

σ2
U = 0.7

NAIVE 0.506 0.178 0.189 -0.146 0.054 0.223 -0.509 0.086 0.000
RC 0.384 0.261 0.742 -0.081 0.099 0.938 -0.384 0.161 0.248
CLR 0.246 0.244 0.811 0.007 0.091 0.944 0.118 0.231 0.970
CC -0.039 0.249 0.950 0.023 0.092 0.954 0.062 0.196 0.968

σ2
U = 1.0

NAIVE 0.590 0.174 0.055 -0.180 0.049 0.057 -0.596 0.077 0.000
RC 0.444 0.255 0.628 -0.099 0.095 0.876 -0.449 0.150 0.098
CLR 0.319 0.252 0.735 0.011 0.099 0.951 0.130 0.263 0.976
CC -0.040 0.264 0.941 0.028 0.100 0.947 0.074 0.221 0.967

Table 1: Bias, estimated standard error (S.e.) and empirical coverage of confidence
interval at nominal level 0.95 for the estimators of βG, βX and βGX , obtained from
the naive analysis (NAIVE), regression calibration (RC), conditional logistic regres-
sion (CLR) and conditional likelihood of Chatterjee et al. (2005) (CC). Results
based on 500 replicates of K = 1, 000 matched case-control pairs, under recessive or
dominant genetic model. Classical measurement error with variance σ2

U ∈ {0.7, 1.0}.
X distributed as a logχ2

2 in the source population. True values of the parameters:
βG = log(1.3) = 0.262, βX = log(1.5) = 0.405, βGX = 1.000.



βG βX βGX

Bias S.e. Coverage Bias S.e. Coverage Bias S.e. Coverage

Recessive model

σ2
U = 0.7

NAIVE 0.367 0.195 0.536 -0.105 0.043 0.314 -0.361 0.095 0.058
RC 0.247 0.283 0.932 -0.058 0.074 0.944 -0.247 0.169 0.692
CLR 0.277 0.258 0.814 0.012 0.066 0.950 0.298 0.266 0.908
CC -0.039 0.232 0.952 0.028 0.067 0.948 0.103 0.180 0.970

σ2
U = 1.0

NAIVE 0.448 0.195 0.336 -0.136 0.042 0.086 -0.448 0.085 0.002
RC 0.301 0.274 0.886 -0.076 0.072 0.874 -0.310 0.154 0.450
CLR 0.369 0.285 0.732 0.016 0.074 0.950 0.402 0.367 0.948
CC -0.054 0.254 0.956 0.032 0.074 0.944 0.158 0.205 0.960

Dominant model

σ2
U = 0.7

NAIVE 0.370 0.192 0.510 -0.110 0.049 0.382 -0.354 0.090 0.038
RC 0.262 0.276 0.928 -0.062 0.085 0.954 -0.247 0.156 0.666
CLR 0.245 0.255 0.844 0.004 0.075 0.954 0.306 0.244 0.862
CC -0.084 0.230 0.940 0.026 0.077 0.956 0.135 0.175 0.920

σ2
U = 1.0

NAIVE 0.453 0.186 0.314 -0.142 0.046 0.156 -0.441 0.081 0.002
RC 0.319 0.268 0.866 -0.079 0.082 0.900 -0.310 0.144 0.374
CLR 0.328 0.271 0.782 0.007 0.082 0.952 0.415 0.308 0.878
CC -0.110 0.247 0.948 0.031 0.085 0.958 0.196 0.207 0.912

Table 2: Bias, estimated standard error (S.e.) and empirical coverage of confidence
interval at nominal level 0.95 for the estimators of βG, βX and βGX , obtained from
the naive analysis (NAIVE), regression calibration (RC), conditional logistic regres-
sion (CLR) and conditional likelihood of Chatterjee et al. (2005) (CC). Results
based on 500 replicates of K = 1, 000 matched case-control pairs, under recessive or
dominant genetic model. Classical measurement error with variance σ2

U ∈ {0.7, 1.0}.
X distributed as a mixture of normals in the source population. True values of the
parameters: βG = log(1.3) = 0.262, βX = log(1.5) = 0.405, βGX = 1.000.



βG βX βGX

Bias S.e. Coverage Bias S.e. Coverage Bias S.e. Coverage

Asymmetric measurement error structure

NAIVE 0.113 0.208 0.895 -0.104 0.051 0.461 -0.388 0.103 0.048
RC -0.026 0.470 0.998 -0.056 0.130 0.988 -0.285 0.272 0.888
CLR 0.169 0.244 0.867 0.004 0.073 0.956 0.119 0.221 0.972
CC -0.030 0.240 0.940 0.014 0.073 0.952 0.053 0.181 0.966

Table 3: Bias, estimated standard error (S.e.) and empirical coverage of confidence
interval at nominal level 0.95 for the estimators of βG, βX and βGX , obtained from
the naive analysis (NAIVE), regression calibration (RC), conditional logistic re-
gression (CLR) and conditional likelihood of Chatterjee et al. (2005) (CC). Results
based on 500 replicates of K = 1, 000 matched case-control pairs, under recessive ge-
netic model and asymmetric measurement error structure. X distributed as a logχ2

2

in the source population. True values of the parameters: βG = log(1.3) = 0.262,
βX = log(1.5) = 0.405, βGX = 1.000.

βG βX βGX

Bias S.e. Coverage Bias S.e. Coverage Bias S.e. Coverage

Multiplicative measurement error structure

NAIVE 0.389 0.192 0.494 -0.029 0.056 0.888 -0.147 0.129 0.712
RC -0.609 0.611 0.932 0.005 0.138 0.994 -0.064 0.365 0.990
CLR 0.285 0.252 0.794 0.007 0.064 0.966 0.131 0.203 0.954
CC -0.008 0.230 0.948 0.021 0.064 0.944 0.035 0.161 0.956

Table 4: Bias, estimated standard error (S.e.) and empirical coverage of confidence
interval at nominal level 0.95 for the estimators of βG, βX and βGX , obtained from
the naive analysis (NAIVE), regression calibration (RC), conditional logistic regres-
sion (CLR) and conditional likelihood of Chatterjee et al. (2005) (CC). Results
based on 500 replicates of K = 1, 000 matched case-control pairs, under recessive
genetic model and multiplicative measurement error structure. X distributed as
a mixture of normals in the source population. True values of the parameters:
βG = log(1.3) = 0.262, βX = log(1.5) = 0.405, βGX = 1.000.



βGX = 1.0 βGX = 1.5 βGX = 2.0

βX βX βX

βG log(1.5) log(2.0) 1.0 log(1.5) log(2.0) 1.0 log(1.5) log(2.0) 1.0

log(1.3) 0.612 0.499 0.355 0.530 0.546 0.484 0.365 0.430 0.308

log(1.8) 0.349 0.241 0.729 0.331 0.529 0.589 0.516 0.436 0.446

log(2.3) 0.571 0.416 0.558 0.522 0.461 0.516 0.559 0.568 0.378

Table 5: P-values of the test of independence of environmental exposure X be-
tween cases and controls, obtained from K = 200 simulated matched case-control
pairs, for βG ∈ {log(1.3), log(1.8), log(2.3)}, βE ∈ {log(1.5), log(2.0), 1.0} and
βGX ∈ {1.0, 1.5, 2.0}, under recessive genetic model.

βG βX βGX

Bias S.e. Coverage Bias S.e. Coverage Bias S.e. Coverage

X distributed as a logχ2
2

NAIVE 0.010 0.133 0.900 -0.168 0.052 0.120 0.002 0.065 0.950
RC -0.008 0.193 0.940 -0.095 0.101 0.910 0.003 0.126 0.955
CLR 0.025 0.150 0.920 0.034 0.105 0.920 -0.002 0.129 0.950
CC 0.011 0.149 0.940 0.038 0.099 0.930 -0.008 0.114 0.950

X distributed as a mixture of normals
NAIVE 0.001 0.134 0.960 -0.137 0.047 0.220 -0.008 0.059 0.970

RC -0.004 0.136 0.980 -0.077 0.062 0.760 -0.003 0.076 0.950
CLR 0.016 0.142 0.960 0.024 0.083 0.950 -0.015 0.101 0.970
CC 0.005 0.136 0.950 0.022 0.077 0.950 -0.013 0.088 0.960

Table 6: Bias, estimated standard error (S.e.) and empirical coverage of confidence
intervals of nominal level 0.95 for the estimators of βG, βX and βGX , obtained from
naive analysis (NAIVE), regression calibration (RC), conditional logistic regression
(CLR) and conditional likelihood of Chatterjee et al. (2005) (CC). Results based
on 100 replicates of K = 500 matched case-control pairs, under recessive genetic
model and no G-X interaction. Classical measurement error with variance σ2

U = 1.
X distributed as a logχ2

2 or as a mixture of normals in the source population.
True values of the parameters: βG = log(1.3) = 0.262, βX = log(1.5) = 0.405,
βGX = 0.000.



βG βX βGX

Bias S.e. Coverage Bias S.e. Coverage Bias S.e. Coverage
Recessive model

σ2
U = 0.7

NAIVE 0.506 0.260 0.512 -0.140 0.066 0.425 -0.509 0.128 0.057
RC 0.386 0.407 0.952 -0.074 0.125 0.956 -0.380 0.248 0.678
CLR 0.260 0.364 0.867 0.017 0.113 0.967 0.144 0.374 0.985
CC -0.034 0.369 0.952 0.027 0.113 0.969 0.070 0.300 0.972

σ2
U = 1.0

NAIVE 0.583 0.253 0.366 -0.175 0.061 0.170 -0.597 0.113 0.002
RC 0.445 0.397 0.916 -0.092 0.121 0.934 -0.446 0.229 0.468
CLR 0.329 0.379 0.811 0.021 0.133 0.968 0.158 0.467 0.975
CC -0.036 0.394 0.963 0.033 0.124 0.972 0.079 0.341 0.972

Dominant model
σ2

U = 0.7
NAIVE 0.516 0.254 0.473 -0.145 0.076 0.519 -0.507 0.123 0.042

RC 0.387 0.387 0.922 -0.078 0.145 0.972 -0.386 0.235 0.656
CLR 0.244 0.356 0.870 0.013 0.130 0.956 0.167 0.355 0.975
CC -0.041 0.356 0.950 0.028 0.132 0.962 0.072 0.282 0.966

σ2
U = 1.0

NAIVE 0.598 0.248 0.311 -0.180 0.070 0.292 -0.593 0.110 0.002
RC 0.447 0.379 0.888 -0.096 0.140 0.948 -0.452 0.219 0.420
CLR 0.312 0.373 0.825 0.015 0.143 0.961 0.197 0.417 0.976
CC -0.049 0.385 0.952 0.034 0.146 0.963 0.089 0.327 0.972

Table 7: Bias, estimated standard error (S.e.) and empirical coverage of confidence
interval at nominal level 0.95 for the estimators of βG, βX and βGX , obtained from
the naive analysis (NAIVE), regression calibration (RC), conditional logistic regres-
sion (CLR) and conditional likelihood of Chatterjee et al. (2005) (CC). Results
based on 500 replicates of K = 500 matched case-control pairs, under recessive or
dominant genetic model. Classical measurement error with variance σ2

U ∈ {0.7, 1.0}.
X distributed as a logχ2

2 in the source population. True values of the parameters:
βG = log(1.3) = 0.262, βX = log(1.5) = 0.405, βGX = 1.000.



βG βX βGX

Bias S.e. Coverage Bias S.e. Coverage Bias S.e. Coverage
Recessive model

σ2
U = 0.7

NAIVE 0.358 0.279 0.772 -0.106 0.062 0.574 -0.337 0.137 0.340
RC 0.242 0.429 0.986 -0.054 0.107 0.970 -0.233 0.253 0.896
CLR 0.258 0.381 0.906 0.012 0.094 0.962 0.414 0.431 0.988
CC -0.072 0.335 0.962 0.028 0.096 0.958 0.141 0.265 0.978

σ2
U = 1.0

NAIVE 0.440 0.271 0.636 -0.138 0.058 0.318 -0.427 0.122 0.090
RC 0.298 0.416 0.978 -0.072 0.104 0.958 -0.298 0.232 0.776
CLR 0.374 0.419 0.864 0.015 0.102 0.968 0.553 0.572 0.986
CC -0.119 0.417 0.970 0.033 0.104 0.960 0.204 0.316 0.980

Dominant model
σ2

U = 0.7
NAIVE 0.373 0.273 0.740 -0.111 0.070 0.618 -0.347 0.128 0.250

RC 0.260 0.409 0.984 -0.062 0.124 0.968 -0.232 0.233 0.896
CLR 0.237 0.373 0.890 0.005 0.107 0.952 0.377 0.380 0.966
CC -0.110 0.333 0.952 0.027 0.110 0.962 0.167 0.258 0.952

σ2
U = 1.0

NAIVE 0.456 0.266 0.598 -0.142 0.066 0.402 -0.436 0.115 0.058
RC 0.316 0.397 0.968 -0.080 0.120 0.944 -0.295 0.216 0.784
CLR 0.353 0.404 0.860 0.009 0.116 0.962 0.493 0.475 0.988
CC -0.127 0.363 0.954 0.033 0.120 0.970 0.233 0.308 0.968

Table 8: Bias, estimated standard error (S.e.) and empirical coverage of confidence
interval at nominal level 0.95 for the estimators of βG, βX and βGX , obtained from
the naive analysis (NAIVE), regression calibration (RC), conditional logistic regres-
sion (CLR) and conditional likelihood of Chatterjee et al. (2005) (CC). Results
based on 500 replicates of K = 500 matched case-control pairs, under recessive or
dominant genetic model. Classical measurement error with variance σ2

U ∈ {0.7, 1.0}.
X distributed as a mixture of normals in the source population. True values of the
parameters: βG = log(1.3) = 0.262, βX = log(1.5) = 0.405, βGX = 1.000.
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