


ii



CONTENTS iii

Contents

Table of Contents iii

Summary 1

Riassunto 3

Introduction 5

1 Survival Data and Theoretical Background 9

1.1 An overview on survival data . . . . . . . . . . . . . . . . . . . . . . 9

1.1.1 Survival and hazard functions . . . . . . . . . . . . . . . . . 10

1.1.2 Censoring and truncation . . . . . . . . . . . . . . . . . . . . 10

1.1.3 The counting process notation . . . . . . . . . . . . . . . . . 11

1.2 Counting processes and martingale theory . . . . . . . . . . . . . . . 13

1.2.1 Martingales . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.2 Counting processes . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.3 Asymptotic theory . . . . . . . . . . . . . . . . . . . . . . . 19

1.3 Model specification for counting processes . . . . . . . . . . . . . . . 20

1.3.1 Likelihood and partial likelihood construction . . . . . . . . . 20

1.3.2 Right-censorship . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3.3 Model specification for right-censored data . . . . . . . . . . 24

1.3.4 Maximum partial likelihood estimation . . . . . . . . . . . . 25

1.3.5 Regression models for incomplete survival data . . . . . . . . 25



iv CONTENTS

1.4 Competing risks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.4.1 Multi-state models . . . . . . . . . . . . . . . . . . . . . . . 27

1.4.2 Nonhomogeneous Markov multi-state models . . . . . . . . . 29

1.4.3 Counting process notation for multi-state models . . . . . . . 30

1.4.4 Competing risks models . . . . . . . . . . . . . . . . . . . . 31

1.4.5 Counting process representation for competing risks . . . . . 33

1.4.6 Statistical inference for the competing risks model . . . . . . 34

2 Competing Risks Modelling for Breast Cancer Chemotherapy 37

2.1 Introduction and background . . . . . . . . . . . . . . . . . . . . . . 37

2.1.1 The standard approach for regression analysis of competing risks38

2.1.2 Residuals for goodness-of-fit of the cause-specific hazard models 40

2.2 An application to breast cancer: Introduction and scope of the study .43

2.3 The regression models for the cause-specific hazards . . . . . . . . .45

2.3.1 Assumptions and preparation of the data set . . . . . . . . . . 46

2.3.2 The Cox regression models . . . . . . . . . . . . . . . . . . 48

2.3.3 Problems related to goodness-of-fit of regression models . . . 51

2.4 Competing risks analysis . . . . . . . . . . . . . . . . . . . . . . . . 58

2.5 The optimal recommended dosage at 5% risk for cardiotoxicity . . . . 60

2.5.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.6 The time-dependent cumulative dose and its interpretation . . . . . . 64

2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3 Time-varying Regression Coefficients in Relative Survival Models 69

3.1 Introduction and background . . . . . . . . . . . . . . . . . . . . . . 70

3.1.1 Relative survival . . . . . . . . . . . . . . . . . . . . . . . . 70

3.1.2 Parametric, semiparametric and nonparametric approaches . . 71

3.1.3 Dynamic extensions for the nonparametric and semiparamet-

ric settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.2 The nonparametric additive excess hazards model . . . . . . . . . . . 72



CONTENTS v

3.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2.2 The estimators . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2.3 Properties of the estimators . . . . . . . . . . . . . . . . . . . 75

3.2.4 Inferential procedures . . . . . . . . . . . . . . . . . . . . . 76

3.3 The semiparametric additive excess hazards model . . . . . . . . . . 78

3.3.1 Estimators and their properties . . . . . . . . . . . . . . . . . 78

3.3.2 The maximum likelihood approach . . . . . . . . . . . . . . 79

3.3.3 Inferential procedures . . . . . . . . . . . . . . . . . . . . . 80

3.4 Application to the TRACE data . . . . . . . . . . . . . . . . . . . . . 81

3.4.1 Description of the data . . . . . . . . . . . . . . . . . . . . . 82

3.4.2 Comparison of models and estimators . . . . . . . . . . . . . 82

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4 Goodness-of-fit for Relative Survival Models 89

4.1 Introduction and background . . . . . . . . . . . . . . . . . . . . . . 89

4.1.1 The proportional excess hazards model . . . . . . . . . . . . 90

4.2 Goodness-of-fit with cumulative martingale residuals . . . . . . . . . 91

4.3 Example from the TRACE data . . . . . . . . . . . . . . . . . . . . . 94

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5 Outlook: Time-dependent Covariates in Competing Risks Settings 97

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2 An extended illness-death model for competing risks . . . . . . . . . 99

5.3 Time-dependent covariates in the extended competing risks model . . 102

5.3.1 Internal binary time-dependent covariates . . . . . . . . . . . 103

5.3.2 The time-dependent covariate ‘duration in a state’ . . . . . . 104

Discussion 107

A R Code for Relative Survival Models 111

B Time-dependent Covariates 113



vi CONTENTS

B.1 Time-dependent covariates . . . . . . . . . . . . . . . . . . . . . . . 113

B.2 Partial model specification and likelihood construction . . . . . . . . 115

B.3 Time-dependent covariates: Survival function and predictions . . .. . 116

C The Illness-Death model 119

Bibliography 123



Summary

The thesis concerns regression models related to the competing risks setting insurvival

analysis and deals with both the case of known specific causes and the case of unknown

(even if present) specific causes of the event of interest.

In the first part, dealing with events whose specific cause is known, competing risks

modelling has been applied to a breast cancer study and some of the dynamic aspects

such as time-dependent variables are tackled within the context of the application.

The aim of the application was to detect an optimal chemotherapy dosage for differ-

ent typologies of patients with advanced breast cancer in order to control the risk of

cardiotoxicity. The attention was concentrated on the cumulative incidence probabil-

ity of getting cardiotoxicity in a well-defined time period, conditional on risk factors.

This probability was estimated as a function of the time-dependent covariate dosage.

Within the context of the application, some problems of goodness-of-fit related to time-

dependent covariates are discussed.

The previous application gave rise to investigating the role of time-dependentcovari-

ates in competing risks regression models. There exist various types of time-dependent

covariates, which differ in their random or deterministic development in time. For so-

called internal covariates, predictions based on the model are not allowed, or they meet

with difficulties. We describe a general overview of the state of the art, problems and

future directions. Moreover, a possible extension of the competing risks model, that

allows us to include a simple random binary time-dependent variable, in a multi-state

framework, is presented. Inclusion of the sojourn time of an individual in acertain

state as a time-dependent covariate into the model, is also studied.

In the second part of the thesis, dealing with events whose specific causeis unavailable,

regression models for relative survival are discussed. We study the nonparametric

additive excess hazards models, where the excess hazard is on additive form. We show

how recent developments can be used to make inferential statements about this models,
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and especially to test the hypothesis that an excess risk effect is time-varying in contrast

to being constant over time. We also show how a semiparametric additive risk model

can be considered in the excess risk setting. These two additive models are easy to fit

with estimators on explicit form and inference including tests for time-constanteffects

can be carried out based on a resampling scheme. We analyze a real dataset using

different approaches and show the need for more flexible models in relative survival.

Finally, we describe a new suggestion for goodness-of-fit of the additive and propor-

tional models for relative survival, which avoids some disadvantages of recent pro-

posals in the literature. The method consists of statistical and graphical tests based on

cumulative martingale residuals and it is illustrated for testing the proportional hazards

assumption in the semiparametric proportional excess hazards model.



Riassunto

La tesi riguarda modelli di regressione per rischi concorrenti in analisi di soprav-

vivenza, e tratta sia il caso in cui le cause specifiche di un evento sono note sia il

caso in cui tali cause sono sconosciute, pur se esistenti.

La prima parte della tesi, relativa alle cause specifiche note, presenta un’applicazione

del modello di regressione per rischi concorrenti per lo studio sul cancro della mam-

mella. Nell’ambito di questa applicazione, sono affrontati alcuni aspetti dinamici del

modello, come per esempio le variabili esplicative dipendenti dal tempo. Lo scopo

dell’applicazione è consistito nell’individuare un dosaggio chemioterapico ottimale

per diverse tipologie di pazienti con cancro della mammella, al fine di teneresotto

controllo il rischio di cardiotossicità. L’attenzione si è concentrata sulla probabili-

tà d’incidenza cumulata di sviluppare la cardiotossicità in un predeterminato perio-

do temporale, condizionatamente a determinati fattori di rischio d’interesse.Questa

probabilità è stata stimata come una funzione della variabile esplicativa dipendente

dal tempo, ‘dosaggio’. Alcuni problemi sulla bontà di adattamento del modello, in

relazione alle variabili esplicative dipendenti dal tempo, sono discussi nell’ambito

dell’applicazione.

La suddetta applicazione ha fornito uno spunto nell’esaminare il ruolo delle variabili

dipendenti dal tempo nei modelli di regressione per rischi concorrenti.Esistono di-

verse tipologie di tali variabili, che si differenziano a seconda del loro andamento

casuale o deterministico nel tempo. Nel caso delle cosiddette variabili interne,le pre-

visioni basate sul modello non sono possibili o incontrano delle difficoltà. Nella tesi

vengono descritti lo stato dell’arte, i problemi e le future direzioni di ricerca in questo

campo. Inoltre, nell’ambito dei modelli multi-stato, viene presentato un’ampliamento

del modello per rischi concorrenti che permette di includere al suo interno una varia-

bile casuale binaria dipendente dal tempo. La tesi tratta anche l’inclusione del tempo

di permanenza in un certo stato del modello come variabile esplicativa dipendente dal

tempo.
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La seconda parte della tesi, riguardante eventi le cui cause specifiche son sono disponi-

bili, discute i modelli di regressione per la sopravvivenza relativa. Viene studiato il

modello non parametrico per i rischi additivi in eccesso, nel caso in cui anche il ri-

schio in eccesso sia in forma additiva. Viene mostrato come alcuni recenti sviluppi

possono essere usati per fare inferenza relativamente a tale modello e, inparticolare,

per verificare che l’effetto di una certa variabile sul rischio in eccessosia costante, piut-

tosto che dipendente dal tempo. La tesi presenta anche un modello semiparametrico

per i rischi additivi in eccesso. I suddetti modelli, non parametrico e semiparametrico,

hanno stimatori in forma esplicita ed i test d’ipotesi sulla costanza degli effetti nel

tempo possono essere basati su uno schema di ricampionamento. Un insieme di dati

reali è stato studiato usando diversi modelli statistici al fine di evidenziarela necessità

di modelli flessibili nell’ambito della sopravvivenza relativa.

In conclusione, viene discusso un suggerimento per valutare la bontà di adattamento

dei modelli per la sopravvivenza relativa. Tale proposta consiste in teststatistici e

metodi grafici basati sui residui di martingala cumulati, e non presenta alcuni degli

svantaggi osservati nei recenti metodi offerti dalla letteratura. La proposta è illustrata

tramite la verifica dell’assunzione di proporzionalità dei rischi nell’ambito del modello

semiparametrico per i rischi proporzionali in eccesso.



Introduction

The thesis concerns regression models related to the competing risks setting insurvival

analysis. The work deals both with the case of known specific causes andwith the case

of unknown (even if present) specific causes of the event of interest.In the first case,

we discuss the competing risks model and we focus on regression for the cumulative

incidence probability. In the second case, where the event related to a certain group of

diseased patients is recorded without any cause, regression models forrelative survival

are discussed. Along all the work, attention is directed towards inferentialproblems

concerning dynamic aspects of models, such as time-dependent covariates and time-

varying regression coefficients.

The thesis consists of four chapters, which we have attempted to make self-contained.

For this reason, some basic results are recalled more times in order to be able toread

each chapter separately.

Chapter 1 provides some background theory on survival analysis, explained using the

martingale theory and counting process representation. The competing risks model is

also briefly presented within the framework of multi-state models. While Chapter 1

serves as a general background of the thesis, each of the other chapters is introduced by

a specific section, where some of the methods and literature relevant for theresearch

work of the chapter are presented.

Chapter 2 of the thesis deals with the case of events whose specific cause isknown. In

this context, within the framework of a multi-state approach (Andersen and Keiding,

2002), competing risks models and time-dependent covariates are discussed.

Competing risks modelling has been here applied to a breast cancer study. Some of

the dynamic aspects such as time-dependent variables are tackled within the context

of the application.

The aim of the application, besides illustrating the available methodology for studying

competing risks, was to detect an optimal chemotherapy dosage for different typolo-
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gies of patients with advanced breast cancer in order to control the risk of cardiotox-

icity. The attention was concentrated on the cumulative incidence probabilities for

the cause-specific events in a well-defined time period. In a multi-state approach, the

cumulative incidence probability of getting cardiotoxicity, conditional to risk factors,

was estimated as a function of the time-dependent covariate dosage. Some problems

of goodness-of-fit related to time-dependent covariates are discussed.

The application to breast cancer in Chapter 2 gave rise to investigating the role of time-

dependent covariates in competing risks regression models, and more generally, in

multi-state regression models. There exists various types of time-dependentcovariates,

which differ in their random or deterministic development in time. When some of

these are studied, predictions based on the model are not allowed, or theymeet with

difficulties. The outlook in Chapter B describe a general overview of the state of the

art, problems and future directions. Moreover, a possible extension of thecompeting

risks model, that allows us to include a simple random binary time-dependent variable,

in a multi-state framework, is presented. Inclusion of the sojourn time of an individual

in a certain state as a time-dependent covariate into the model, is also studied.

The following chapters of the thesis deal with cases where information on causes of

death, remissions, etc. is sometimes unavailable, as typically happens in population-

based and clinical observational studies with long follow-up. In some situations, this

information is recorded on medical registries but it is incomplete or misleading, be-

cause death could be only partially due to the disease of interest and it is difficult to

classify deaths due to other causes indirectly correlated with the disease ofinterest.

For this reason, the use of cause-specific survival in the framework of competing risks,

where at least two distinct alternative causes need to be specified, is problematic. The

relative survival approach provides a solution to these difficulties. It does not require

information on cause of death, while it allows to estimate patient survival corrected for

the effect of other causes of death, using the natural mortality of the underlying pop-

ulation. Indeed, relative survival describes the excess mortality for patients diagnosed

with the disease of interest, irrespective of whether the excess mortality is directly or

indirectly attributable to the disease.

In Chapter 3 within the context of relative survival, we study the additive excess haz-

ards models (Zahl, 1996), where the excess hazard is on additive form.We show how

recent developments (Scheike, 2002) can be used to make inferential statements about

the nonparametric additive excess hazards model. This makes it possible to test the

key hypothesis that an excess risk effect is time-varying in contrast to being constant



INTRODUCTION 7

over time. One problem with the fully nonparametric dynamic description is that the

model might be too big, if some covariate effects are in fact constant with time. There-

fore, we also show how a semiparametric additive risk model (McKeague and Sasieni,

1994) can be considered in the excess risk setting. This model can provide a better

and more useful summary of the data and makes a better bias/variance trade-off. We

show how these two additive models are easy to fit with estimators on explicit form

and how inference including tests for time-constant effects can be carried out based on

a resampling scheme. We analyze a real dataset using different approaches and show

the need for more flexible models in relative survival.

A parallel objective of the thesis is to assess the importance of time-varying effects

for regression models in the relative survival framework, showing theiradvantages

especially within nonparametric and semiparametric regression models. Presence of

time-varying coefficients in the model shows directly how the influence of riskfac-

tors on the excess hazard may change over follow-up time. No difficulties appear in

handling time-dependent covariates, which are treated as commonly performed in the

Aalen additive hazards model and in the Cox model.

There is a general lack of accomplished methodology for the regression diagnostics

and assessment of goodness-of-fit of additive relative survival models. The existing

theory is only sometimes implemented in public software. In Chapter 4 we describe

a new suggestion for goodness-of-fit of the additive and proportional models, which

avoids some disadvantages of recent proposals in the literature (Stare etal., 2005). It

consists of statistical and graphical tests based on cumulative martingale residuals (Lin

et al., 1993). The method is illustrated for testing the proportional hazards assumption

in the semiparametric proportional excess model (Sasieni, 1996). This approach is

very simple to implement and is known to work well in the standard survival setting.

An application based on real data is used to show how these techniques work.

Note: The application to breast cancer presented in Chapter 2 was developed jointly

with Marianne Ryberg and Dorte Nielsen, from Herlev Hospital, Universityof Copen-

hagen, Denmark, who collected the clinical data from various observational studies.
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Chapter 1

Survival Data and Theoretical

Background

About twenty years ago there was an extensive development of the theory of statistical

models based on the counting process representation in the field of survival analysis.

Nowadays, research in this area is mostly based on those developments, which have

opened new perspectives on possible extensions and alternative solutions, especially

for nonparametric and semiparametric models.

In this chapter, the general framework and some of its basic concepts andmethods

will be presented, aiming to explain the theory underlying this thesis. The principal

references for this chapter are Fleming and Harrington (1993), Andersen et al. (1993),

Therneau and Grambsch (2000) and Martinussen and Scheike (2006).

1.1 An overview on survival data

Survival analysis deals with data where the random variable under studyis the timeT ∗

from a well-defined time origin to the occurrence of a certain given event of interest.

General extensions concern the study of multiple temporal variables or multipleevents

of interest. The main feature of survival data is the presence of incompletelyobserved

survival times. Incompleteness can be of different type, the most common example

being the right censoring, which is explained in detail later.
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1.1.1 Survival and hazard functions

We consider a random survival timeT ∗ that has probability density functionf(·). The

F (·) denotes the distribution function ofT ∗. The distribution ofT ∗ is often equiva-

lently characterized by the survival function

S(t) = 1 − F (t) = P (T ∗ > t).

The hazard function, also called instantaneous rate, is defined as

α(t) =
f(t)

S(t)
= lim

h↓0
P (t ≤ T ∗ < t + h |T ∗ ≥ t)/h, (1.1)

which represents the instantaneous probability.

The survival function can be computed from the cumulative hazard function A(t) =
∫ t
0 α(s)ds or equally from the hazard function, as follows

S(t) = exp {−A(t)} = exp

{
−
∫ t

0
α(s)ds

}
. (1.2)

1.1.2 Censoring and truncation

We suppose to be unable to observe the entire survival timeT ∗. For instance, the rea-

son might be that the individual is still alive at the end of the study or the information

about his status is lost during the study period. These are examples of right-censored

times.

Let us denote byU the right-censoring time, which is the time from the origin to the

end of the study or to the exit of the subject from the study for other reasons. When

studying a group of subjects, timeU may not be observed for each individual. This is

the case whenT ∗ < U . On the other hand, when the survival time is not observed for

some individual, it means thatU < T ∗. Therefore, we defineT = min(T ∗, U) to be

the follow-up time, which is an observable variable, and the indicator function∆ =

I(T ∗ ≤ U), which is equal to 1 if the survival timeT ∗ is observed and equal to 0 if the

observation is right-censored. The observation is then the pair(T, ∆). If we suppose

to have a sample withn independent and identically distributed (i.i.d.) observations,

the observed data are the pairs(Ti, ∆i) for i = 1, . . . , n, with Ti = min(T ∗
i , Ui) and

∆i = I(T ∗
i ≤ Ui).

There exist different types of right-censoring schemes (Andersen et al., 1993, Ander-
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sen, 1998). The simplest one is called type I censorship and it happens when the study,

and then the observation of subjects, ends at a common deterministic timeue. There-

fore, the right-censoring times are nonrandom and such thatUi = ue for i = 1, . . . , n.

Type II censorship is a scheme where the study ends at the time of ther−th failure,

with r ≤ n. In this case the right-censoring times areUi = T ∗
(r) for i = 1, . . . , n,

whereT ∗
(i) are then ordered survival times, and the observed timesTi are dependent.

The most common type of right-censoring scheme is the random censorship,where

the censoring timesUi, i = 1, . . . , n, are assumed to be i.i.d. with a given probability

distribution. An important assumption in studies of survival analysis consistsin the

independent right-censoring, a situation where censoring times can be considered in-

dependent from the survival times (Kalbfleisch and Prentice, 2002). All the schemes

previously described are independent right-censoring (see Section 1.3.2).

The basic question concerning survival data is how to incorporate incomplete observed

data in order to obtain valid inference. Nonparametric and parametric inference is

straightforward in case of independent right-censoring. More details are given later in

the likelihood construction.

Another important kind of incomplete information is left-truncation (De Gruttola and

Liao, 1998). In this case individuals enter in the study, and then they are observed,

conditionally to not having experienced a certain event before the beginning of the

study. Formally, survival timesT ∗
i are left-truncated if, given the times (random or

nonrandom)Vi which represent entering into the study for each individuali, we ob-

serveT ∗
i |T ∗

i > Vi. Left-truncation is not to be confused with left-censoring. In the

latter situation all individuals, both having and not having experienced a certain event

before the beginning of the study, are observed, but for those experiencing the event

before the beginning of the study, the only available information is thatT ∗
i ≤ Vi.

1.1.3 The counting process notation

The general framework for survival data, which is given in the previous subsections,

is common to all the literature about survival analysis. During the last two decades,

the full development of the theory of martingales and counting processes has enabled

most authors to work in the field of survival analysis using the counting process rep-

resentation of the data (Fleming and Harrington, 1993, Andersen et al., 1993, Chap.

2).

Here we first present the counting process notation for complete data andthen we gen-
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eralize to the case of right-censored observations. Martingale theory willbe presented

later in Section 1.2.1.

Considert as the time scale, varying in the time interval(0, τ ]. In literature, the end-

point τ = ∞ is often considered. The survival timeT ∗ can be represented by the

counting process

N(t) = I(T ∗ ≤ t),

which assumes value zero until the jump to value one at timeT ∗. N(t) is a stochastic

process counting the number of observed events in the interval(0, t]. The martingale

associated with the counting processN(t) is defined as

M(t) = N(t) − Λ(t) (1.3)

with compensator

Λ(t) =

∫ t

0
λ(s) ds. (1.4)

M is generally called the counting process martingale. The termλ(s) is the inten-

sity process associated with the compensator,Λ(t). This last term is also called the

integrated or cumulative intensity process. The hazard in (1.1), which expresses a

deterministic function, is linked toλ(s) by

λ(t) = Y (t)α(t).

The termY (t) is often called the at-risk process. It is a stochastic process defined as

Y (t) = I(t ≤ T ∗),

which indicates the at-risk state of an individual. It is equal to the unity while the

individual is at risk, i.e., under observation before the event a timeT ∗ has occurred,

and zero afterwards. The difference betweenλ(t) andα(t) is that the latter is a deter-

ministic part, which is often modelled, while the former is a stochastic process, which

expresses when the hazard rate is observed.

The above formulation includes easily right-censored data, because it allows the mar-

tingale theory to be still valid. In this case the counting process is

N(t) = I(T ≤ t, ∆ = 1),

which is a right-continuous process with a jump to the unity only when the event is
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observed atT ∗, while the process is always equal to zero for a right-censored time.

The at-risk process isY (t) = I(t ≤ T ), indicating that an individual is at risk until

the event or the censorship occurs, and it is left-continuous and predictable.

For statistical purposes, in the counting process notation then i.i.d. observations of

a sample are the pairs of variables(Ni(t), Yi(t)), for i = 1, . . . , n, instead of the

pairs(Ti, ∆i) of the standard formulation. When analysing data, it is very common

to have tied event times. As time is assumed to be continuous and it is desirable

to assume an absolutely continuous distribution function for the survival times, it is

convenient to handle the ties, breaking them according to different approaches (Efron,

1977, Therneau and Grambsch, 2000, Chap. 2), so that the problem isreformulated

without ties. In fact, in case of no ties the theory of counting processes is kept in the

easiest form, and inference is based on the simple processNi(t) with a possible jump

of height 1.

A final remark concerns the usefulness of the counting process and martingale repre-

sentation. The decompositionN(t) = Λ(t) + M(t) can be thought of as the usual

statistical form where the observed data are equal to the sum of the model and the

error. The martingale process represents an error process, andΛ(t) =
∫ t
0 Y (s)α(s) ds

expresses the expected number of events in(0, t], which can be modelled by choosing

a regression model forλ(t), or, equivalently, a regression form forα(s). This com-

parison is also motivating the construction of residuals for goodness-of-fit methods

based on martingales. A more formal justification to this interpretation is given bythe

asymptotic theory related to martingales, reviewed later in the present chapter.

1.2 Counting processes and martingale theory

The present section describes the basic concepts of counting processes and martingale

theory in continuous time. The entire nonparametric and semiparametric theory for

survival data and statistical modelling has relied on this theory during the lasttwo

decades. Moreover, the counting process representation allows us to generalize and

extend the original basic regression models in survival analysis, handlingthe statistical

formulation within a single comprehensive general framework. Some examples of

useful extensions are time-varying coefficients and time-dependent covariates, analysis

of residuals, multiple time scales, recurrent and multiple events.

We shall describe martingales and their properties, and formalize their connection to

counting processes. Finally, we shall illustrate the theory in the specific context of
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independent censoring (Andersen et al., 1993, Chap. 3).

1.2.1 Martingales

Our attention focuses on discrete events occurring in continuous time. Then, we con-

sider timet within a given time interval[0, τ ]. Let (Ω,F , P ) be a probability space,

whereF is aσ-field andP is a probability measure defined onF . A stochastic process

is defined as a family of random variables{Z(t), t ≥ 0} with sample pathsZ(t, ω)

for everyω ∈ Ω. The family of increasing sub-σ-fields,Ft = σ{Z(s), 0 ≤ s ≤ t}, is

called the filtration generated by the processZ.

A martingale with respect to a filtrationFt is an adapted right-continuous stochastic

processM with left-hand limits (cadlag process) which is integrable, i.e.,

E|M(t)| < ∞ for all t,

and satisfies the martingale property

E(M(t) |Fs ) = M(s) for all s ≤ t. (1.5)

Property (1.5) states that information up to the present times does not give further

information about the expected value ofM in the future timet. As the martingale

property can be written equivalently as

E(dM(t) |Ft− ) = 0 for all t > 0, (1.6)

wheredM(t) = M((t+dt)−)−M(t−), the martingaleM has zero-mean increments

given the pastFt−.

Hereafter two important properties of a martingale are described:

• A martingale has constant mean in time, because it isE(M(t)) = E(M(0)),

and if at the time origin it isM(0) = 0, then the mean of the martingale is zero,

i.e.,E(M(t)) = 0 for all t > 0 (zero-mean martingale);

• the martingale increments are uncorrelated, i.e.,

Cov(M(t) − M(t − s), M(t + u) − M(t)) = 0 for all t, s, u ≥ 0; (1.7)
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A process is a submartingale if in the property (1.5) the inequality holds, i.e.,

E(M(t) |Fs ) ≥ M(s) for all s ≤ t.

A martingale is square integrable whensupt∈[0,τ ] E(M(t)2) < ∞. If the martingale

property holds locally for a processM , thenM is called a local martingale.

In order to explain further properties and theorems related to martingales, we need

to define formally a predictable processH and a compensator. A stochastic process

H is called predictable if it is measurable with respect to theσ−algebra generated

by the adapted processes whose paths are left-continuous. In this sense, all the left-

continuous adapted processes are predictable, and also any deterministicmeasurable

function. Given a cadlag adapted processX, a compensator̃X is a predictable, cadlag

and finite variation process such thatX − X̃ is a local zero-mean martingale. If a

compensator exists, it is unique.

Our intent is to be able to write a stochastic process as the sum of a martingale and

a predictable process, in order to justify the decomposition of the counting process

mentioned in (1.3). The definitions previously introduced in the current subsection are

now needed to explain for which processes the decomposition holds. Moreformally,

the answer is contained in a crucial theorem which states the so-called Doob-Meyer

decomposition.

Theorem 1.2.1 LetX be a cadlag adapted process. ThenX has a compensator if and

only if X is the difference of two local submartingales.

For further details, see Andersen et al. (1993, Chap. 2).

As a consequence, ifX is also a local submartingale, then it has a compensator, since

X is the difference of two local submartingales,X itself and the trivial constant pro-

cess 0.

SupposeM is a local square integrable martingale. Then, by Jensen’s inequality,M2

is a local submartingale and therefore, by the just mentioned consequenceof theorem

1.2.1, it has a compensator. The compensator ofM2 is called the predictable variation

process ofM and it is denoted by〈M〉. Consequently, we have thatM2 − 〈M〉 is

a local zero-mean martingale. The predictable variation process ofM is the limit in

probability of the approximations

∑

j

E
[
(M(tj+1) − M(tj))

2 |Ftj

]
=
∑

j

Var
[
M(tj+1) − M(tj)|Ftj

]
(1.8)
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for increasingly fine partitions of the interval[0, t], 0 = t0 < t1 < · · · < tj < tj+1 <

· · · < tn = t.

A similar explanation is related to the so-called predictable covariation process〈M, M̃〉
of M andM̃ , which is the compensator of the productMM̃ , with M andM̃ being

two local square integrable martingales. In general, the predictable covariation process

is useful in the asymptotic theory to identify asymptotic covariances in the statistical

problems, since

Cov(M(s), M̃(t)) = E(〈M, M̃〉)(t), s ≤ t. (1.9)

Another important process to consider in this context is the optional variationprocess

of M , denoted by[M ]. It is the limit in probability of the sums of squares

∑

j

(M(tj+1) − M(tj))
2 , (1.10)

for increasingly fine partitions of the interval[0, t], 0 = t0 < t1 < · · · < tj <

tj+1 < · · · < tn = t. This process is defined forM being just a local martingale, and

not anymore a local square integrable martingale. WhenM has finite variation, the

optional variation process has the explicit form[M ](t) =
∑

s≤t [M(s) − M(s−)]2.

The processM2 − [M ] is a local martingale.

The process[M ], unlike 〈M〉, is not predictable. Moreover, in statistical applications

〈M〉 is determined by the model characteristics, as suggested by the approximations

in (1.8). The process[M ] may instead be computed from the data, as seen from (1.10).

Finally, if [M ] is locally integrable,〈M〉 is the compensator of[M ]. Therefore, we are

able to compute both the predictable and optional variation processes for a statistical

application on the basis of (1.10).

Our attention concentrates on statistical problems where stochastic integrals related to

a martingaleM can be computed easily. The reason is that these stochastic integrals

have a pathwise interpretation, more specifically, they are ordinary pathwise Lebesgue

integrals. A special property arises when the integrand is a predictable processH and

we integrate with respect to a local martingaleM . The resulting process
∫

HdM is a

local martingale, and its predictable and optional variation processes can be obtained

from 〈M〉 and[M ] by the formulas

〈 ∫
H dM

〉
=

∫
H2 d〈M〉

[ ∫
H dM

]
=

∫
H2 d[M ]. (1.11)
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For further details and results on martingale theory related to the statistical analysis of

survival data, see Fleming and Harrington (1993).

1.2.2 Counting processes

In the present subsection a counting process will be formally defined. The principal

results and properties will be described by applying the martingale theory from the

previous subsection to counting processes.

A stochastic processN(t) is called a counting process if it is adapted to the filtration

Ft, cadlag, almost surely finite for allt, with N(0) = 0 and with piecewise constant

paths having jumps of size 1.

Because of its definition, a counting processN(t) is a local submartingale. Therefore,

as explained in the previous subsection, it has a compensator, calledΛ. The process

Λ(t) is nondecreasing, predictable and withΛ(0) = 0. Moreover, because of the

definition of a compensator, the processM = N − Λ is a local zeromean martingale

with respect toFt. Furthermore, ifE(Λ(t) < ∞, thenM is a martingale, as it verifies

all the martingale conditions.

An important property of the counting process is that

E(N(t)) = E(Λ(t)) (1.12)

as M is a zeromean martingale. A martingale increment is defined asdM(t) =

M((t + dt)−) − M(t−), and the incrementsdN anddΛ are defined similarly. Thus,

the just mentioned property, as in general all the other properties about martingales

and counting processes, can be written in the formE(dN(t)|Ft−) = E(dΛ(t)|Ft−).

This is immediately obtained from the decomposition of the martingale increments,

dM(t) = dN(t) − λ(t)dt, and the fact thatdM(t) has zeromean.

In case we restrict our attention to the case of independent censoring and absolutely

continuous distributions for the survival times, a fundamental consequence follows.

First, we stress that the continuity gives the relation between the cumulative intensity

processΛ and the intensity processλ, expressed in (1.4). Therefore, equation (1.12)

becomes

E(dN(t)|Ft−) = λ(t)dt. (1.13)

This conclusion is obtained because the predictable processλ(t)dt is a nonrandom

term, givenFt−.
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Hereafter, we mention two important statements concerning the variance of a counting

processes martingale:

Var(dM(t)|Ft−) = d〈M〉(t), (1.14)

since Var(dM(t)|Ft−) = E[(dM(t))2|Ft−] = E[d(M2)(t)|Ft−] and d〈M〉 is the

compensator ofdM2;

Var(dM(t)|Ft−) = dΛ(t)[1 − dΛ(t)] ≈ dΛ(t). (1.15)

The explanation of (1.15) consists of two facts. First,dM(t) = dN(t)−E(dN(t)|Ft−),

i.e. the martingale increment is the difference between the counting process incre-

ment and its conditional expectation. Second,N is a process assuming only two

possible values, 0 or 1, and its definition states thatN has jumps of size 1. Hence,

Var(dM(t)) = Var(dN(t)).

The expressions in (1.14) and (1.15), if observed together, lead heuristically to assess

that

〈M〉(t) = Λ(t), (1.16)

i.e., the predictable variation process ofM is just the compensatorΛ of the count-

ing process. The following result for the optional variation process canbe formally

obtained from the martingale theory previously described (Section 1.2.1):

[M ](t) = N(t).

Moreover, equation (1.16) arises formally from noting that[M ] is locally integrable

and hence〈M〉 is its compensator.

In statistical problems we are faced with multivariate counting processes, asinference

is based on a sample of sizen. A multivariate counting processes,

N = (N1, . . . , Nj , . . . , Nn), (1.17)

is a vector of counting processes, each of them defined as previously inthe current

subsection, and such that they do not have simultaneous jumps. Each processNj

is associated with the counting process martingaleMj and the compensatorΛj , as

in (1.3), and it has all the properties and results previously described for the one-

dimensional counting processes. The additional property concerns the orthogonality

of martingales, that is the predictable covariation process is null for each pair Mj , Ml,

with j 6= l. This fact leads to the compacting matrix notation〈M〉 = Λ and[M ] =



1.2.3 Asymptotic theory 19

N .

In case of counting processes, specific expressions about stochastic integration arise

from equations (1.11) (Andersen et al., 1993, Chap. 2).

1.2.3 Asymptotic theory

Most of the asymptotic properties of estimators based on martingales in countingpro-

cess models arise from a central limit theorem for martingales. There exist many

versions of the theorem, which anyway generalize the original version given by Re-

bolledo (1980). Before illustrating the theorem, we briefly introduce some necessary

concepts.

Let us consider a vector ofk R-valued local square integrable martingales, denoted

by M (n) = (M
(n)
1 , . . . , M

(n)
k ), wheren represents the sample size. Let{M (n)(t) :

t ∈ [0, τ ]} be a sequence forn = 1, 2, . . .. For eachM (n)
h in M (n), with h = 1, . . . , k,

let M
(n)
ǫh be the corresponding martingale containing all the jumps ofM

(n)
h larger

in absolute value thanǫ. That is, all the jumps ofM (n)
h are such that|M (n)

ǫh (s) −
M

(n)
ǫh (s−)| > ǫ for s ≤ t.

An R
k-valued martingaleU is said to be Gaussian if it has continuous sample paths,

U(0) = 0, and any finite family(U(t1), . . . , U(tj)) has Gaussian distribution. The

covariance matrix ofU(t), V (t), is such that the incrementV (t) − V (s), for s ≤ t,

is positive semidefinite. Moreover, the Gaussian martingale incrementU(t) − U(s)

has a normal distributionN(0, V (t) − V (s)) and is independent of(U(l); l ≤ s) for

s ≤ t.

Theorem 1.2.2 Central limit theorem for martingales.

If (M (n)(t) : t ∈ [0, τ ]) is a sequence ofRk-valued local square integrable martin-

gales and the following conditions

〈M (n)〉(t) P→ V (t) for all t asn → ∞, (1.18)

〈M (n)
ǫl 〉(t) P→ 0 for all t, l andǫ > 0 asn → ∞ (1.19)

hold, then

M (n) D→ U asn → ∞, (1.20)

i.e., the processM (n) converges weakly to a Gaussian martingaleU with covariance

functionV . Moreover,〈M (n)〉 and [M (n)] converge uniformly on compact subsets of
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[0, τ ], in probability, toV .

The weak convergence refers to the space{D([0, τ ])} of theR
k-valued cadlag func-

tions on[0, τ ], with the Skorohod topology as defined in Billingsley (1968). The the-

orem assesses that the jumps ofM (n) become negligible asn → ∞, and thus the

process has asymptotically continuous sample paths, and the predictable variation pro-

cess, which is equal to the compensator in case of counting processes, converges in

probability to a deterministic function.

By the application of Theorem 1.2.2 to the martingales or to functionals of martingales

in the counting process setting, it is possible to determine the asymptotic distributions

of many estimators and use these results for defining tests of hypotheses and confi-

dence intervals.

1.3 Model specification for counting processes

In this section the model specification is presented within the counting processsetting,

first in the case of complete data, and then for right-censored survivaltimes. In order

to illustrate how the likelihood function is constructed, we describe the simplest case

of a single uncensored survival time and then we generalize to a random sample of

survival data. Moreover, it is shown how to accommodate the likelihood function

to incomplete information due to right-censorship. When a regression model for the

hazard function is desired, the likelihood is then a function of the regression parameters

in the distribution of survival times, besides the parameters in the distribution ofright-

censored times.

1.3.1 Likelihood and partial likelihood construction

As a first step, the simple case of a single complete observation is considered. Let

T ∗ be the survival time in[0, τ ] with density functionfθ depending on a parameter

θ, which might have finite or infinite dimension. Thus, we denote byαθ(t) the cor-

responding hazard function. The counting processN associated withT ∗ is univariate

and the compensatorΛθ(t) =
∫ t
0 λθ(s)ds =

∫ t
0 Y (s)αθ(s)ds represents the cumula-

tive intensity process, withY (t) = I(T ∗ ≥ t) being the at-risk process.
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The likelihood function forθ up to timet is given by

L(θ, t) =
∏

s≤t,s∈[0,τ ]

(λθ(s))∆N(s) exp

(
−
∫ t

0
λθ(u)du

)
, (1.21)

where∆N(t) = N(t) − N(t−).

The likelihood computed up to the entire interval[0, τ ] is

L(θ) =
∏

t

{
Y (u)αθ(u)

}∆N(u)
exp

(
−
∫ τ

0
Y (u)αθ(u)du

)

= αθ(T ∗) exp

(
−
∫ T ∗

0
αθ(u)du

)
,

(1.22)

which reduces to the density function atT ∗, sinceL(θ) = αθ(T ∗)Sθ(T ∗) = fθ(T ∗).

We now generalize the previous case to a multivariate counting process foruncensored

survival data. LetT ∗
1 , . . . , T ∗

n be independent survival times with hazard functions

αθ
i , i = 1, . . . , n. N = (N1, . . . , Nn) is the associated multivariate counting process

with intensity processλθ = (λθ
1, . . . , λ

θ
n). The likelihood function forθ is then given

by

L(θ) =
n∏

i=1

∏

t

(λθ
i (t))

∆Ni(t) exp

(
−

n∑

i=1

∫ τ

0
λθ

i (u)du

)
. (1.23)

Similarly to above the likelihood can be written as

L(θ) =
n∏

i=1

αθ
i (T

∗
i ) exp

(
−

n∑

i=1

∫ T ∗

i

0
αθ

i (u)du

)
, (1.24)

since, recalling the independence of survival times, it verifies

L(θ) =
n∏

i=1

αθ
i (T

∗
i )Sθ

i (T ∗
i ) =

n∏

i=1

fθ
i (T ∗

i ).

If the statistical model is specified by regression on covariates, we need toobserve the

(T ∗
i , Xi), for i = 1, . . . , n. TheXi is the covariate vector for individuali. Assume that

T ∗
1 , . . . , T ∗

n are independent conditionally on the covariates inX = (X1, . . . , Xn),

and that the conditional distribution ofT ∗
i |Xi has hazardαθ

i (t) which depends on a

parameterθ. Moreover, suppose that the marginal distribution ofX, Pφθ depend on

a nuisance parameterφ and onθ. Therefore, each compensatorΛi(·) associated with

the counting processNi(·) depends only on the parameter of interestθ. The likelihood
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function for the parameters(θ, φ) can be factorized in the form

L(θ, φ) = L0(θ, φ)Lτ (θ), (1.25)

whereL0(θ, φ) = Pφθ(X). The remaining factorLτ (θ) is the partial likelihood forθ

and is given by (1.23), or equivalently by (1.24). It represents the conditional distri-

bution of theT ∗
i |X, i = 1, . . . , n, evaluated atT ∗

1 , . . . , T ∗
n . If the distribution ofX

depends only onφ, that isL0(θ, φ) = L0(φ), thenLτ (θ) is a full likelihood forθ for

each givenφ in its parameter space.

In the literature there exist various regression models for the hazard function, syntheti-

cally written asαθ
i (t) = g(t, θ, xi) with xi being the observed values ofxi. Essentially

they differ with respect to the link functiong(·) between hazard and covariates. The

most common examples are the multiplicative and additive hazards models, where

the link functionsg(·) are, respectively, in multiplicative or additive form. For these

models, inference is simply based on the (partial) likelihoodLτ (θ) whereαθ
i (t) is

substituted by its regression formg(t, θ, xi).

1.3.2 Right-censorship

This section illustrates briefly how the counting process modifies in the presence of

right-censorship and it serves as an introduction to the following section about model

specification for right-censored data.

Given (T ∗
1 , . . . , T ∗

n) independent survival times, we consider a multivariate process

N
∗ = (N∗

1 , . . . , N∗
n) adapted to the filtrationF∗

t on the probability space(Ω,F∗, P ).

The simplest situation is when the filtration is the natural one generated by the counting

process itself, i.e.,F∗
t = Nt = σ(N(s) : s ≤ t), while in regression models, the

filtration F∗
t may also incorporate information about covariates. When we are faced

with incomplete (right-censored) survival data, the counting processN
∗ can not be

completely observed. Therefore, partially observed counting processes are defined as

Ni(t) =

∫ t

0
Ci(u)dN∗

i (u), i = 1, . . . , n, (1.26)

and called right-censored counting processes, where

Ci(t) = I(t ≤ Ui)

is the so-called individual right-censoring process (Ui is the time of censorship for
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individual i).

The right-censoring processC1(t), . . . , Cn(t) are not adapted to the filtrationF∗
t and

for this reason we consider the enlarged filtration

G∗
t = F∗

t ∨ σ(Ci(u); i = 1, . . . , n; u ≤ t),

so thatC1(t), . . . , Cn(t) are adapted and predictable with respect toG∗
t . Moreover, for

any individuali eitherN∗
i or Ci is not fully observed. Hence, the filtrationG∗

t can not

be fully observed and therefore, we need to work with a reduced filtrationFt, which is

generated by the observed data.

Given N , the corresponding intensity processλ with respect toFt might be dif-

ferent from the one associated with the entire counting processN
∗, λ

∗, since it

may be changed by the right-censoring mechanism. When this does not occur, i.e.,

λ
∗(t) = λ(t), then we have independent right-censoring. A formal definition of in-

dependent right-censoring is given by Andersen et al. (1993, Chap. 3): The right-

censoring mechanism leading to the observable counting processN generated by the

Ci is said to be independent if the compensator ofN
∗ with respect toG∗

t is equivalent

to the compensatorλ∗ with respect toF∗
t .

The intensity processes for subjects being at risk at any timet are unchanged by the

modified filtrationG∗
t due to right-censoring. However, our interest is on the intensity

processλ of the observedN with respect toFt. If Ci(t)λ
∗
i (t), for i = 1, . . . , n, are

predictable with respect toFt, then it follows from the previous definition of right-

censoring that the intensity processes ofN with respect toFt are

λi(t) = Ci(t)λ
∗
i (t). (1.27)

In other words, when the right-censoring is independent, the information carried by

the right-censoring processCi(t) does not modify the intensity process forN at time

t. The interpretation is that the risk set, containing individuals being at risk just before

a certain timet, is representative of what the sample of individuals would have been

without censoring.

Let Y ∗
i = I(t ≤ T ∗

i ) be the risk indicator forN∗. Independent right-censoring modi-

fies the risk indicator so that

Yi(t) = Ci(t)Y
∗
i (t) = I(t ≤ Ti), (1.28)
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with Ti = min(T ∗
i , Ui) being the observed right-censored survival time for individual

i. Therefore for the intensity process, we haveλi(t) = Yi(t)αi(t), with αi(t) being

the hazard function for individuali in an independent right-censoring scheme.

1.3.3 Model specification for right-censored data

In this section we describe the likelihood function under the assumption of independent

right-censoring and we keep the same notation used in Section 1.3.2.

Consider a right-censored counting processN , with functionsNi(t) as in (1.26), the

at-risk indicatorsYi(t) for i = 1, . . . , n, defined as in (1.28). Suppose a model for

the hazard functionαθ(t) is specified depending on a parameterθ. Therefore, the

intensity process associated with the right-censored counting processNi(t) is given in

(1.27) and it depends also onθ, sinceλθ
i (t) = Yi(t)α

θ
i (t).

The likelihood function can be constructed starting from the factorizationL(θ, φ) =

Lu
τ (θ, φ)Lc

τ (θ), similarly to what was done in (1.25) for uncensored observations. The

first factorLu
τ (θ, φ) may contain information about the additional parameterφ related

to the distribution of the censoring variablesUi or/and the distribution of a possible

covariate vectorX. The second factor is the likelihood forθ and has the form

Lc
τ (θ) =

n∏

i=1

{∏

t

(λθ
i (t))

∆Ni(t) exp

(
−
∫ τ

0
λθ

i (u)du

)}

=
n∏

i=1

αθ
i (Ti) exp

(
−

n∑

i=1

∫ Ti

0
αθ

i (u)du

)
,

(1.29)

with Ti = min(T ∗
i , Ui) being the observed time for individuali. The expression of

Lc
τ (θ) in (1.29) represents a partial likelihood forθ, and contains the terms related to

the distribution of the right-censored survival timesTi, i = 1, . . . , n.

Presence of independent right-censoring does not alter the form of the partial likeli-

hood forθ, as it can be noted comparing expressions in (1.29) and (1.24). If the first

factorLu
τ (θ, φ) does not depend on the parameter of interestθ, thenLc

τ (θ) corresponds

to a full likelihood forθ at each fixedφ in its parameter space and the right-censoring

mechanism is said to be noninformative forθ.
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1.3.4 Maximum partial likelihood estimation

The basic inference based on the maximum partial likelihood estimator is presented

in this section. The theory is valid for i.i.d. observations of counting processesNi(t),

i = 1, . . . , n, under independent right-censorship, but can also be used in a more gen-

eral context. In this section we assume thatθ is ap-dimensional parameter.

The log-partial likelihood function forθ can be written as

lcτ (θ) =
∑

i

{∫ τ

0
log(λθ

i (t))dNi(t) −
∫ τ

0
λθ

i (t)dt

}
,

which yields thep-dimensional score function

Uτ (θ) =
∑

i

{∫ τ

0

∂

∂θ
log(λθ

i (t))dNi(t) −
∫ τ

0

∂

∂θ
λθ

i (t)dt

}
.

The maximum likelihood estimator forθ is given as a solution to the equationUτ (θ) =

0. It can be proved that there exists a consistent estimatorθ̂, and thatn1/2(θ̂ − θ0) is

asymptotically normally distributed with covariance matrixI−1(θ0) , whereθ0 is the

true parameter value. The information matrixI has elements

Ij,l(θ0) = E
(
− ∂2

∂θj∂θl
lcτ (θ)

)
, j, l = 1, . . . , p,

evaluated atθ0. The asymptotic covariance matrix may be estimated by the observed

information atθ̂, Î(θ̂), with elements

Îj,l(θ0) = n−1
∑

i

{
−
∫ τ

0

∂2

∂θj ∂θl
log(λ∗

i (s))dNi(s) +

∫ τ

0

∂2

∂θj ∂θl
λ∗

i (s)ds

}
.

1.3.5 Regression models for incomplete survival data

We describe briefly some essential regression models using the counting process rep-

resentation. Letλθ(t) be the intensity process associated with the counting process

N(t), with t ∈ [0, τ ], andθ the parameter of interest. LetX(t) be a vector of co-

variates, possibly time-dependent. A regression model for the intensity processλθ(t)

may be specified by choosing a functional form for the hazard functionαθ(t), since

λθ(t) = Y (t)αθ(t) and the at-risk indicatorY (t) does not depend on any parame-

ter. The two most common classes of regression models are based on an additive or

multiplicative form, and are called additive hazards models and multiplicative hazards
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models, respectively.

Example 1.3.1 An additive hazards model is a nonparametric model specified by the

following form for the intensity process (Aalen, 1980)

λβ(t) = Y (t)XT (t)β(t), (1.30)

whereX(t) = (X1(t), ..., Xp(t)) is a p-dimensional vector of covariates. In this

model, known as the additive Aalen model, the parameter of interestθ is simply the

locally integrablep-dimensional parameterβ = (β1(t), ..., βp(t)).

Inference for this model is usually made on the cumulative regression coefficient

B(t) =
∫ t
0 β(s)ds, and it is based on the counting process martingale decomposition

N(t) =

∫ t

0
X(s)β(s)ds + M(t).

Estimators for the cumulative regression coefficientB(t) can be obtained either by

least square methods for multiple linear regression (Aalen, 1980) or by maximum par-

tial likelihood methods (Sasieni, 1992, Greenwood and Wefelmeyer, 1991).

The multiplicative hazards models are semiparametric models, where the effectsof

covariates on the hazard function follow a multiplicative scale. The most famous ex-

ample of this class is the proportional hazards model, known also as the Cox model.

Example 1.3.2 In the Cox model (Cox, 1972), the intensity process is specified as

follows

λθ(t) = Y (t)α0(t) exp(XT (t)β), (1.31)

whereθ = (α0, β) with α0 being a nonparametric locally integrable function and

β = (β1, . . . , βp) being thep-dimensional vector of regression coefficients.X(t) is

here thep-dimensional vector(X1(t), ..., Xp(t)) of covariates. The parameterλ0(t) is

denoted as the baseline hazard function.

Given i.i.d. observations(Ni(t), Yi(t), Xi(t)), i = 1, . . . , n, in the time interval[0, τ ],

inference for the Cox model is based on the well-known partial likelihood function

(Cox, 1972) forβ

L(β) =
∏

t

∏

i

(
exp(XT

i (t)β)

S0(t, β)

)∆Ni(t)

, (1.32)
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with

S0(t, β) =
∑

i

Yi(t) exp(XT
i (t)β).

The expression in (1.32) is found by replacing the so-called cumulative baseline hazard

A0(t) =
∫ t
0 α0(u)du with its estimator in the likelihood function forθ (1.29), where

the intensity processλθ(t) has the regression form (1.31).

Another example of multiplicative hazards models is an extension of (1.31) in Example

1.3.2, where the regression coefficients are allowed to vary over time so that are of the

form β(t). For an introduction to this model, see Martinussen and Scheike (2006,

Chap. 6) and references therein.

Recently, regression models that combines the multiplicative and additive intensity

models, have been proposed in the literature, leading to a more general setting where

both the Cox model and the additive Aalen model are included as special cases. This

combination has been studied following various approaches, the most relevant being

the ones by Lin and Ying (1995), Martinussen and Scheike (2002) and Scheike and

Zhang (2002).

1.4 Competing risks

In this section a general overview of multi-state models is presented as a framework

for the competing risks setting. In the literature, there exists an alternative approach

to competing risks, denoted as latent failure times approach, which assumes acertain

number of potential failure times for each individuals. There is a vast literature on this

latter approach, especially in applied areas other than biostatistics. A completepicture

of the latent failure times approach for competing risks is given by Tsiatis (1998) and a

brief discussion about problems of nonidentifiability of the survival distribution related

to this approach is found in Tsiatis (1975).

1.4.1 Multi-state models

A multi-state model is a model for a stochastic process in continuous time with a finite

number of states. Generally, a time origin is given and set equal to 0. Individuals

under study are observed in time and they can experience one or multiple events, each

one corresponding to a state of the process. The states might representdifferent as-

pects of the history of individuals, according to the problem studied. For example,
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in biomedicine, they can be different causes of death from a certain disease, distinct

phases of the disease, clinical symptoms or marginal side-effects.

There is a vast literature in this field, and various multi-state models are presented in

applied contexts (Courgeau and Lelièvre, 1992, Commenges, 1999). The general the-

ory is presented in Andersen and Keiding (2002), Andersen et al. (1993) and Hougaard

(1999, 2000). Various modelling approaches within the multi-state setting, related in-

ference and softwares are reviewed in Meira-Machado et al. (2007).

Hereafter a formal description of a multi-state model is presented. This modelconsists

of a stochastic process, denoted here by{Z(t), t ∈ [0, τ ]}, with right-continuous paths

and finite state spaceS = {0, 1, . . . , k}. Let (Ω,F , P ) be the reference probability

space, whereF is the filtration generated by the processZ(t).

The distribution of the process is determined by the matrixP (s, t), for s, t ∈ [0, τ ], of

transition probabilities between states

Phl(s, t) = P (Z(t) = l|Z(s) = h,Fs−) h, l ∈ S s ≤ t, (1.33)

or, equivalently, by the matrixQ(t) of transition intensities

αhl(t) = lim
∆t→0

Phl(t, t + ∆t)

∆t
h, l ∈ S, h 6= l, t ∈ [0, τ), (1.34)

which are supposed to exist. Theαhh, for h ∈ S, are defined asαhh = −∑h 6=l αhl,

since the sum of the probabilitiesPhl overl = 0, 1, . . . , k must be equal to one.

The initial distribution of the process is denoted byπh(0), for everyh ∈ S, and repre-

sents the probability to be in the stateh at the time origint = 0. The state probabilities

are defined by the sum of the transition probabilities over the origin states, weighted

by the initial distribution, i.e.,αl(t) =
∑

h∈S Phl(0, t)πh(0), for l ∈ S andt ∈ [0, τ ].

A stateh is absorbing whenαhl,h 6=l(t) = 0 for all t ∈ [0, τ ] andl ∈ S, otherwise it is

a transient state.

The multi-state model is built by associating statistical models to the transition in-

tensitiesαhl(t) in (1.34). Most models treated in the literature are associated with

the intensity transitions of a nonhomogeneous Markov process. The homogeneity as-

sumption is present if the transition intensities are constant in time and thereforethe

matrix Q is independent of time. Otherwise, that is whenαhl(t) depends ont, the

process is nonhomogeneous. The Markov property states that

Phl(s, t) = P (Z(t) = l|Z(s) = h,Fs−) = P (Z(t) = l|Z(s) = h),
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i.e.,αhl(t) depends on the historyFt only through the current state at timet.

Example 1.4.1 The simplest multi-state model is associated with a process with a sin-

gle transient state 0 and a single absorbing state 1. In this situation, the survival time

T of an individual represents the time from the origin (state 0) to the occurrence of a

certain event (state 1). The survival probability is then given by the transition proba-

bility of still being in state 0 at timet, i.e.,S(t) = P00(0, t) = exp
{
−
∫ t
0 α(s)ds

}
,

with a single transition intensityα01(·) = α(·).

The transition intensityα(·) is the hazard function defined in (1.1) at the beginning

of the chapter. Hence, a statistical model can be chosen forα(·), under some general

assumption. The Cox model (Example 1.3.2) is the simplest example of a regression

model for the intensity transitionα(·), under the assumption of a nonhomogeneous

Markov process.

1.4.2 Nonhomogeneous Markov multi-state models

For a Markov model, explicit expressions for the transition probabilities canbe found

by solving forward Kolmogorov differential equations (Sidney, 1992).They are func-

tions of the transition intensities, and therefore of the hazard functions of the model.

We introduce here the integrated intensitiesAhl(t) =
∫ t
0 αhl(s)ds, which are simply

the cumulative hazards functions defined in Subsection 1.1.1. We use the notation

dAhl instead ofαhl to denote the entries ofQ, referring to a more general context than

absolutely continuousAhl.

An important instrument for statistical inference is the so-called product integral rep-

resentation for the transition probabilities

P (s, t) =
∏

u∈(s,t]
(I + Q(u)), (1.35)

whereI is the identity matrix, and the product integral is defined by

∏
u∈(s,t]

(I + Q(u)) = lim
max |tv−tv−1|→0

∏
(I + Q(tv) − Q(tv−1)),

wheres = t0 < t1 < · · · < tn = t is a partition of[s, t]. The theory about this

representation is thoroughly explained in Andersen et al. (1993).

To understand the idea behind the product integral representation, let us consider the

case when theAhl are step functions. The corresponding process is then a Markov
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chain in discrete time. The transition matrixP (s, t) can be written as the product of

transition matrices at each jump time betweens andt, since the limit is obtained at

the finite partition constructed from the jump times. The representation (1.35) can be

considered as a generalization of this example to an infinitesimal fine partition.

When a Markov regression multi-state model is suitable, particular care needs to be

taken when many states are present. In this last situation, all the transitions between

states need to be modelled by regression of the corresponding transition intensities.

The consequence is that a large number of regression coefficients mustbe estimated,

and that there is the demand for a sufficiently large size sample of individuals. This

problem requires less attention for a regression competing risks model, whichwill be

described in the next section.

1.4.3 Counting process notation for multi-state models

Before introducing the competing risks model as a particular multi-state model, we

briefly mention the counting process notation. We assume a nonhomogeneuous multi-

state model based on a Markov processZ(t). We considern independent observa-

tions from this process over the time interval[0, τ ] and denote them byZi(t), for

i = 1, . . . , n. Moreover, we assume here independent right censoring or left trunca-

tion.

Hence, the counting process representation leads to defining the multivariatecounting

processN = {Nhl, h 6= l}, as in (1.17). Here

Nhl =
n∑

i=1

Ni,hl(t), (1.36)

whereNi,hl(t) is the process associated with individuali, which counts the number

of observed direct transitions of the processZi(t) from the stateh to the statel. N

has intensity processλ = {λhl, h 6= l}, where each element has the formλhl(t) =

Yh(t)αhl(t). The at-risk processYh(t) represents the number of individuals at risk in

stateh at timet−, and it is given by

Yh(t) =
n∑

i=1

Yi,h(t), (1.37)
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with Yi,h(t) = I(Zi(t−) = h). The processαhl(t) is defined as

αhl(t) =
n∑

i=1

αi,hl(t), (1.38)

whereαi,hl(t), for i = 1, . . . , n, is the intensity process of the transition from the

stateh to l for individual i. An important fact to underline is thatαhl(t), for h 6= l,

represent the transition intensities defined in (1.34), and they depend on the historyFt

only through their dependence on the current stateh.

Statistical inference for a general Markov multi-state model is here neglected, as it will

be illustrated in the special case of the competing risks model. For further theory we

refer to Andersen et al. (1993, Chap. 4).

1.4.4 Competing risks models

In this section the competing risks model will be formally presented, while the under-

standing of its usefulness and its practical use will be widely discussed in anapplied

framework in Chapter 2.

A competing risks model is in the class of Markov multi-state models. We refer to the

notation already used in Section 1.4.1. Consider a stochastic process{Z(t), t ∈ [0, τ ]},

with right-continuous pathsZ(t+) = Z(t), and finite state spaceS = {0, 1, . . . , k}.

The state0 is the only transient state, while the remaining states{1, . . . , k} are absorb-

ing. Usually, in an epidemiological context, the absorbing states representdifferent

types of events, or different causes of the event under study is due to. By definition of

the states inS, only the transition probabilities from the state 0 to the states{1, . . . , k}
are positive, and therefore considered in a competing risks model. Each of these tran-

sitions represents the occurrence of the event due to causeh, with h ∈ {1, . . . , k}
(here we choose to indicate the absorbing states and the causes with the samenota-

tion). Moreover, given a realization of the processZ(t), only one of these transitions

is observed.

The distribution ofZ(t) is regulated by the transition matrix

P (s, t) = {Phl(s, t), h, l ∈ S} ,

where the positive transition probabilities areP0h(s, t) = P (Z(t) = h |Z(s) = 0) ,

with h ∈ {1, . . . , k} ands < t. The transition intensities are called cause-specific
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Figure 1.1: Competing risks model withk different causes of the event under study.

hazard functions and equal to

αh(t) = lim
∆t→0

P (t ≤ T ∗ < t + ∆t, Z(T ∗) = h|T ∗ ≥ t)

∆t
, h = 1, . . . , k, (1.39)

whereT ∗ denote the survival time. Note that here the definition is simplyαh(t) =

α0h(t).

Therefore, the competing risks model is built by specifying all the cause-specific haz-

ard functions, and it is represented by the diagram shown in Figure 1.1. Auseful ref-

erence for understanding the model, its applications and related problems is Andersen

et al. (2002).

It is important to stress an aspect concerning the terminology used in the compet-

ing risks setting: The name ‘risk’ should refer to a transition probability, hence the

phrasing ‘competing risks’ referring to the competing probabilities of experiencing

different causes of the event, while the name ‘rate’ is appropriate for describing the

cause-specific hazard.

A very informative way to illustrate the behaviour of competing risks over time is by
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the transition probabilities from the state0 to the remaining absorbing states. Each

of these functions is called the cumulative incidence probability for causeh, or also

cumulative incidence function, and its explicit expression is

P0h(t) =

∫ t

0
S(u−)αh(u)du, h = 1, . . . , k, (1.40)

where the marginal survival functionS(t) = P (T > t) is

S(t) = P00(0, t) = exp(−
k∑

h=1

∫ t

0
αh(s)ds). (1.41)

P0h(t) represents the probability of experiencing the event from causeh before timet

and it depends on all the cause-specific hazardsα1(t), . . . , αk(t) through the survival

functionS(t) in (1.41).

A regression competing risks model can be constructed via different regression models

for the cause-specific hazards. Regression models for two cause-specific hazards can

have different and common covariates, as well as different or common parameters.

1.4.5 Counting process representation for competing risks

The model introduced above can be described by the multivariate counting process

N = {Nh(t), h = 1, . . . , k} where

Nh(t) = I(T ∗ ≤ t, Z(T ∗) = h)

counts the number of observed failures from causeh. The associated intensityλ(t) has

componentsλh(t) = Y (t)αh(t) for h = 1, . . . , k, whereαh(t) is the cause-specific

hazard defined in (1.39).

Note that for a general multi-state model the risk indicator was previously defined as

Yh(t) = I(Z(t−) = h), for h ∈ { . . . , k}. In the competing risks model instead, the

risk indicatorY (t) does not depend on any cause (or, equivalently, any state of the

processZ(t)), since 0 is the only state where an individual can be at risk and the initial

distribution of the Markov processZ(t) is π0(0) = 1.

From the martingale decomposition we obtain that thek-dimensional martingale can

be written asM(t) = N(t) − Λ(t), where thek-dimensional cumulative intensity

processΛ(t) = {Λh(t) =
∫ t
0 λh(u)du, h = 1, . . . , k} is the compensator ofN .
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1.4.6 Statistical inference for the competing risks model

For inferential purposes, the attention is concentrated on the cumulative incidence

probabilities defined in (1.40). There exist different approaches forestimating the cu-

mulative incidence probability. The standard approach, which will be explained later

in this section, consists of estimating all the cause-specific hazards and thencombining

them in order to estimateP0h(0, t) (Aalen and Johansen, 1978, Fleming, 1978a,b, An-

dersen et al., 1993). Regression analysis for competing risks data is performed by con-

structing a single regression model for each cause-specific hazard function. Therefore,

estimates of the cause-specific hazards depend on the estimated regression coefficients

of each cause-specific model.

Alternative approaches, which are not treated here, attempt to specify directly a regres-

sion model for the cumulative incidence probability. They are based on the so-called

subdistribution hazards (Gray, 1988, Fine and Gray, 1999, Scheike and Zhang, 2004,

Fine, 2001, Scheike et al., 2007). A parallel approach was proposedby Andersen et al.

(2003).

In order to describe the standard approach for estimatingP0h, we need to extend the

notation of Section 1.4.5 to the case of ann i.i.d. sample ofk-dimensional counting

processes(Ni1, . . . , Nik). For this purpose we refer to the general counting process

notation for a multi-state model illustrated in Section 1.4.3. Similarly to equations

(1.36) and (1.37), we denote here

N•h(t) =
n∑

i=1

Nih(t), (1.42)

with Nih = Ni,0h, and

Y•(t) =
n∑

i=1

Yi(t),

whereYi(t) is the at-risk indicator for individuali.

We then have the decomposition

dNih(t) = Yi(t)dAh(t) + dMih(t), (1.43)

whereAh =
∫

αh(u)du, for h = 1, . . . , k, are the cause-specific cumulative hazard

functions, andMih is the martingale associated withNih. Formula (1.43) suggests that
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a natural estimator forAh is

Âh(t) =

∫ t

0

J(s)

Y•(s)
dN•h(s), (1.44)

whereJ(t) = I(Y•(t) > 0) with the convention that0/0 = 0. The Nelson-Aalen

type estimators in formula (1.44) are determined as the solution to estimating equation

based on martingales (Aalen, 1975, 1978). These estimators can also be obtained as

nonparametric maximum likelihood estimators (Andersen et al., 1993, Chap. 4).

We now return to the cumulative incidence probabilities, which can be synthesized

into the transition probability matrixP (0, t) of the Markov process. Since we are

in a competing risks setting, the matrixP (0, t) has elementsP0h ∈ (0, 1), for h =

0, 1, . . . , k, on the first row,Phh = 1 for h = 1, . . . , k, and zero otherwise. Using the

product integral representation in (1.35), the transition matrix can then be written as

P (0, t) =
∏

u∈(0,t]

(I + dA(u)) , (1.45)

whereA is the matrix of cause-specific cumulative hazard functions. The first rowin

A is (A00, A1, . . . , Ah, . . . , Ak), with A00 = −∑k
h=1 Ah, and all the other entries are

zero. Relation (1.45) suggests that an estimator ofP (0, t) is

P̂ (0, t) =
∏

u∈(0,t]

(
I + dÂ(u)

)
, (1.46)

where Â is the matrix constructed from the Nelson-Aalen estimatorsÂh given in

(1.44). The first row inÂ is (Â00, Â1, . . . , Âh, . . . , Âk), with Â00 = −∑k
h=1 Âh,

and all the other entries are zero. The estimator in (1.46) is referred to as aprod-

uct limit estimator ofP (0, t), and it is generally called the Aalen-Johansen estimator

(Aalen and Johansen, 1978). For a discussion on the variance of this estimator we refer

to Martinussen and Scheike (2006, Chap. 10) and Andersen et al. (1993, Chap. 4).

Maximum likelihood estimation under the competing risks model can be based on

the likelihood function for the multivariate counting processN = (N1, . . . , Nk) with

intensity processλ = (λ1, . . . , λk), as in Section 1.4.5. We consider the intensity

processλθ(t) depending on a parameterθ, but in order to simplify the notation, we

write simplyλ(t). In the case of complete observations, the likelihood function forθ
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up to timet is proportional to

L(θ, t) =
∏

h

∏

s≤t

(λh(s))dN•h(s) exp

{
−
∫ t

0
λ•(s)ds

}
, (1.47)

whereλ•(t) =
∑k

h=1 λh(t), anddN•h =
∑

dNih. The log-likelihood function is

then equal to

l(θ, t) =
∑

h

[∫ t

0
log(λh(s)) dN•h(s) −

∫ t

0
λh(s) ds

]
.

When we have incomplete observations, and we assume independent right-censoring,

then the likelihood function in (1.47) is referred to as a partial likelihood function. A

general expression for the partial likelihood on the entire interval[0, τ ] is

L(θ) =
n∏

i=1

exp

{
−
∫ Ti

0
λ•(s)ds

} k∏

h=1

λh(Ti)
I(Zi(Ti)=h).

In this case the full likelihood would also contain terms corresponding to the distribu-

tion of the censoring times.



Chapter 2

Competing Risks Modelling for

Breast Cancer Chemotherapy

The competing risks modelling offers a rich set of solutions for several practical prob-

lems in biostatistics. In this chapter we shall present a regression model for the com-

peting risks analysis of patients treated for advanced breast cancer. The aim of the

application is to detect the optimal chemotherapy dosage for different typologies of

patients with advanced breast cancer in order to control the risk of cardiotoxicity. The

conditional cumulative incidence probability of getting cardiotoxicity is estimated as

a function of the time-dependent covariate ‘dosage’. We shall describethe standard

approach for studying competing risks and the problems related to its enforceability.

We shall also show problems, difficulties and some proposals about how to handle

time-dependent covariates.

The application and its results presented in this chapter are based on the paper Ryberg

et al. (2008).

2.1 Introduction and background

In the framework of multi-state models (Andersen and Keiding, 2002), explained in

Section 1.4 of the thesis, a competing risks model has a transient state, called ‘0’, and

a certain numberk of absorbing states. Transitions from the state ‘0’ to thek ending

states, each one representing the event happening from causeh, with h = 1, . . . , k, are

regulated by the cause-specific hazardsα1(t), . . . , αh(t), . . . , αk(t). As the likelihood

function for right-censored survival times depends on these cause-specific hazards,
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models based on competing risks can be formulated by their specification. Thus, in-

ferential procedures are straightforward and estimators related to the classical hazard

models described in Section 1.3.5 can also be applied in the competing risks models.

2.1.1 The standard approach for regression analysis of competing risks

When the purpose of the study is to investigate the dependence of each transition prob-

ability on possible covariates, a regression analysis of competing risks datais required.

In this section, we describe the standard approach (Andersen et al., 2002) for a basic

competing risks model, within the framework of multi-state models. This method-

ology is based on the general background presented in Section 1.4. Theapproach

consists of simple regression models for each cause-specific hazard, which are then

combined together through the transition probabilities of a well-defined random pro-

cess. For a competing risks model the process is Markovian, i.e., the cause-specific

hazardsαh(t), for h = 1, . . . , k, depend only on the state occupied by the process at

time t. In analysing the model related to causeh, where the failure time is due to the

causeh, failures due to the competing causes are treated as censored observations.

The attention is concentrated on the cumulative incidence probabilities for the cause-

specific events in the time period(0, t]. From equation (1.40), these transition proba-

bilities can be written as

P0h(0, t; X) =

∫ t

0
S(u−; X)αh(u; X)du, h = 1, . . . , k, (2.1)

where

S(t; X) = P00(0, t; X) = exp

(
−

k∑

h=1

∫ t

0
αh(u; X)du

)
(2.2)

is the marginal survival probability as in (1.41). Conditioning onX underlines the

dependence of the transition probabilities on the covariates through the cause-specific

hazards, on which specific regression models are built. InS(t; X), the addendsAh(t; X) =
∫ t
0 αh(u; X)du, for h = 1, . . . , k, are the cumulative cause-specific hazards from the

regression models.

Given the observed data, the cumulative incidence probabilityP0h(0, t; X) is esti-

mated by the Aalen-Johansen type estimator (Aalen and Johansen, 1978, Borgan,

1998), derived from the product-integral representation for the transition probability

matrix of the Markov process under study (see equation (1.46)). In order to compute

easily the Aalen-Johansen type estimator, it is necessary first to estimate each cumula-
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tive cause-specific hazard through a regression model.

Let β̂h, h = 1, . . . , k, be the vectors of parameter estimates in the regression models

for the cause-specific hazards. CallingXh the covariate vector in theh cause-specific

hazard model, for eachh = 1, . . . , k, the estimated increments of thek cumulative

cause-specific hazards can be written as

dÂh(t; Xh) = dÂh0(t, β̂h)exp
{

XT
h β̂h

}
, h = 1, . . . , k. (2.3)

Note that some of the covariates considered in the regression analyses can be common

to different specific models.

We denote byth1, . . . , thj , . . . , thKh
the times when events of typeh are observed, for

h = 1, . . . , k. Kh is the total number of observed events of typeh. Then,Âh0(t, β̂h)

for h = 1, . . . , k are the Breslow estimators of the baseline cumulative cause-specific

hazards, i.e.,

Âh0(t, β̂h) =
∑

thj≤t

dN•h(thj)

S
(0)
h (thj , β̂h)

, h = 1, . . . , k, (2.4)

wheredN•h(thj), defined in (1.42), is the number of events of typeh which occurred

at timethj . The quantityS(0)
h (t, β̂h) is defined as

S
(0)
h (t, β̂h) =

n∑

i=1

exp
{

XT
h,iβ̂h

}
Yi(t), h = 1, . . . , k,

with Yi(t) the indicator for patienti at risk at timet−, andXh,i contains the covariate

values for individuali.

In the competing risks model, in order to estimate the probabilityP00 of being alive at

time t without experiencing any event due to thek causes, we can use the the Kaplan-

Meier type estimator (Kaplan and Meier, 1958)

P̂00(0, t; Xh, h = 1, . . . , k) =
∏

tj≤t

{
1 −

k∑

h=1

dÂh(tj ; Xh)

}
. (2.5)

It is computed using the estimated incrementsÂh of the cumulative cause-specific

hazards, given in (2.4), forh = 1, . . . , k. It is important to note that the product is

computed at timestj , which are times when an event of any type happens.

In the competing risks setting the interest is often addressed to the study of one specific

of the k possible causes, let it beh, and to the corresponding cumulative incidence

probability. The cumulative incidence probability for the cause-h event can then be
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estimated by the Aalen-Johansen type estimator, by plug-in of all thek estimated in-

crements of the cumulative cause-specific hazards and the estimated marginal survival

probability:

P̂0h(0, t; X) =
∑

0<thj≤t

P̂00 (0, thj−; X) dÂh(thj ; Xh). (2.6)

We underline that this estimator works correctly in case all the covariates aretime-

independent in the considered time interval(0, t]. A time-dependent covariate can also

be included when it is already defined at the time origin, since it can then be considered

a deterministic path (Kalbfleisch and Prentice, 2002, Chap. 5).

2.1.2 Residuals for goodness-of-fit of the cause-specific hazard models

In case the standard approach in subsection 2.1.1 is applied, the goodness-of-fit for the

competing risk model relies on the diagnostics for each cause-specific hazard model.

In this section we limit our attention on the basic ideas for the residuals in the Cox

model (Example 1.3.2), even though they are also used elsewhere. We briefly summa-

rize the theory concerning the different types of residuals used later onin the current

chapter within the application to breast cancer. A general reference for this section is

Therneau and Grambsch (2000, Chap. 4).

Martingale residuals

The martingale process for the individuali, in case of a Cox model, is written as

Mi(t) = Ni(t) −
∫ t

0
Yi(s) exp

{
XT

i (s)β
}

λ0(s)ds, (2.7)

whereXi(·) is the possibly time-dependentp-dimensional covariate vector for indi-

vidual i. The martingale residual process is then defined as

M̂i(t) = Ni(t) −
∫ t

0
Yi(s) exp

{
XT

i (s)β̂
}

dΛ̂0(s), (2.8)

whereΛ̂0(t) estimates the cumulative baseline intensity process andβ̂ is the vector

of the maximum partial likelihood estimates of the regression coefficients. The term

Λ̂i(t) =
∫ t
0 Yi(s) exp

{
XT

i (s)β̂
}

dΛ̂0(s) estimates the compensator of the counting

processNi(t) and represents the estimated cumulative intensity for individuali in the

Cox model.
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The martingale residuals are defined as the martingale residual processesat the end of

the study. Formally they are

M̂i(∞) = Ni(∞) − Λ̂i(∞), for i = 1, . . . , n. (2.9)

We can write them more synthetically aŝMi = Ni − Λ̂i.

When the hazard function follows a Cox model, in case of no time-dependentcovari-

ates, the martingale residual for individuali takes the form

M̂i = Ni − exp
{

XT
i β̂
}∫ ∞

0
Yi(t)dΛ̂0(t), (2.10)

whereXi is the covariate vector for individuali. It represents the difference between

the observed number of events for subjecti (Ni) and the expected number of events

conditional to the observed data.

The following properties are essential to understand the practical use ofthese residuals:

• ∑n
i=1 M̂i = 0, i.e. the sum of martingale residuals, given the estimateβ̂, is

equal to zero;

• E(M̂i) = 0, i.e. the expected value of each residual is equal to zero at the true

parameterβ;

• Cov(M̂i, M̂j) = 0 for i 6= j, i.e. the residuals at the true parameterβ are

uncorrelated.

Schoenfeld residuals(Schoenfeld, 1982)

We consider thep-dimensional score process over subjects

U(β, t) =
n∑

i=1

∫ t

0
{Xi(s) − E(β, s)}dMi(s), (2.11)

whereE(β, s) = S1(β, t)/S0(β, t), with S0(β, t) =
∑n

i=1 Yi(t) exp
{
XT

i (t)β
}

and

S1(β, t) =
∑n

i=1 Yi(t)Xi(t) exp
{
XT

i (t)β
}

. From the estimating equation for the

Cox model, the observed score process is then equivalent to

U(β̂, t) =
n∑

i=1

Ui(β̂, t) =
∑

i

∫ t

0

{
Xi(s) − E(β̂, s)

}
dM̂i(s).

From the martingale residual decomposition dM̂i(t) = dNi(t) − dΛ̂i(t) and the ex-
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pression of the estimator of the cumulative baseline hazard, it is easy to verify that,

when there are no ties for the failure times, it is also

U(β̂, t) =
∑

i

∫ t

0

{
Xi(s) − E(β̂, s)

}
dNi(s).

The observed score process is piecewise constant over time and it has jumps in cor-

respondence with failure times. Therefore, Schoenfeld residuals come from the idea

of splitting U(β̂,∞), the observed score process at the end of the study, in the time

intervals identified by the failure timest1, . . . , tk, . . . observed from the data. The

Schoenfeld residual at the failure timetk is then

sk =

∫ tk

tk−1

∑

i

{
Xi(s) − E(β̂, s)

}
dNi(s). (2.12)

The residualsk in (2.12) is really ap-dimensional vector, becauseUi(β̂, t) is a p-

dimensional process with componentsUij(β̂, t) =
∫ t
0{Xij(s) − E(β̂, s)}dNi(s) for

the covariatesj = 1, . . . , p.

Notice that Schoenfeld residuals in (2.12) are still valid in case of a time-dependent co-

variate. In case of no ties, their computation is easy and can be based on thefollowing

expression

sk = X(k)(tk) − E(β̂, tk)

for each failure timetk, whereX(k)(tk) is thep-dimensional covariate vector at time

tk for the subject who experienced a failure attk.

Cumulative residuals

Cumulative residuals (Lin et al., 1993, Wei, 1984) are used to test variousassumptions

in the Cox model, such as the functional form of covariates, the proportionality of

the hazards and misspecification of the link function. They are therefore expressed as

different functionals of the residualŝMi(t) in (2.8).

The simplest functional of residuals is the observed score function depending on time,

U(β̂, t) =
n∑

i=1

∫ t

0
Xi(s)dM̂i(s).

The cumulative martingale residuals, given by each componentUj(β̂, t) for j = 1, . . . , p,

are useful in checking the proportional hazards assumption.
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Other types of cumulative residuals are obtained by considering a two-dimensional cu-

mulative residual process depending both on time and on covariate values (Lin et al.,

1993, 2000), or by partial sums of the estimated residuals depending only on the co-

variate values as illustrated later in Section 2.3.3.

2.2 An application to breast cancer: Introduction and scope

of the study

Breast cancer has become a major health problem over the last 50 years and world-

wide, it is the fifth most common cause of cancer death. The anthracycline based on

Epirubicin is among the most commonly used antitumour chemotherapy with activity

against a wide spectrum of cancer diseases (Tormeys, 1975, Goldin etal., 1985). Nev-

ertheless, it was demonstrated that its antitumour effect is set off against itscardiotoxic

side effects such as cardiomyopathy and congestive heart failure (CHF)(Brambilla

et al., 1986). The risk of cardiotoxicity after anthracycline-based treatment has been

shown to depend on the cumulative dose administered to patients and seems to in-

crease in case of some risk factors such as preexisting cardiac diseaseor previous

irradiation against the heart (Swain et al., 2003). As the median survivalfor patients

with advanced breast cancer is short, a 5% risk for development of CHFis generally

accepted and it is estimated to correspond to a total dose of 950 mg/m2 of Epirubicin

(Ryberg et al., 1998). In previous medical studies, this recommended cumulative dose

was determined by the Kaplan-Meier estimator as a function of the cumulative dose

only (Swain et al., 2003, Ryberg et al., 1998). Thus, this statistical analysis ignored

both the effect of time and the competing risk of dying from advanced cancer. The

application of the competing risks method to this problem, presented in this chapter,

has compensated for the missing aspects, taking both the cardiotoxicity and mortality

rates into account.

The general scope of the study was to assess an optimal recommended totaldose taking

the following aspects into account: history of the dose administration during thetreat-

ment period, concurrent risk of dying of advanced cancer and possible predictors for

cardiotoxicity. Investigation on possible predictors for development of CHF has been

of primary interest because they have allowed discriminating between recommended

cumulative doses for different groups of patients.

A well-defined cohort of 1097 patients treated with an Epirubicin based chemotherapy

for advanced breast cancer admitted to Herlev Hospital (Denmark) has been retrospec-
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Treatment time schedule
Days of administration and doses per day Frequencies
Epi day 1 and day 8: 60mg/m2 every 4 weeks 70
Epi day 1 and day 8: 70mg/m2 every 4 weeks 181
Epi day 1: 130mg/m2 every 3 weeks 164
Epi day 1: 130mg/m2 every 6 weeks + CTX 49
Epi day 1: 100mg/m2 every 3 weeks 514
Epi day1 and day 8: 45mg/m2 every 4 weeks + Vindesine 54
Epi day1 and day 8: 65mg/m2 every 4 weeks + Cisplatin 65

Treatments
Type Frequencies
Epirubicin 929
Epirubicin + Vindecine 54
Epirubicin + Cisplatin 65
Epirubicin + CTX 49

Table 2.1: The complete treatment based on Epirubicin. Some groups underwent addi-
tional chemotherapy (CTX, Vindesine, Cisplatin). The time schedule varies according
to days of administration and doses per day.

tively analysed during a period of twenty years (from November 1983 to November

2003). The patients had no evidence of cardiac disease or a history of myocardial

infarction before starting the chemotherapeutic treatment. The women in the study

followed different treatment regimes for Epirubicin. Some of them received an ad-

ditional chemotherapy. Information about type of treatments and time scheduleare

shown in Table 2.1. However, because of the seriousness of the advanced cancer stage

and the collateral symptoms, almost all patients deviated from their schedule.

Hereafter we explain the aims of the present study in greater details and the overview

of the corresponding statistical methods appropriately applied. In the nextsection,

these statistical methods together with problems related to their applicability shall be

discussed, placed side by side with numerical results.

The first aim of the study was to investigate which predictors were significant for

developing CHF. The second aim was to estimate the conditional probability of de-

veloping CHF within a certain time interval, as a function of epirubicin cumulative

dose (and of other prognostic factors), taking also the possibility of dyingfrom breast

cancer into account. In order to evaluate this probability, a competing risks model

with two causes was suitable. Cardiotoxicity was the event of primary interestand

mortality from breast cancer was the competing event. Figure 2.1 shows graphically

the competing risks model as a multi-state model with two possible ending events. In
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the framework of competing risks, the possibilities for a patient along the follow-up

time are to be alive with no sign of CHF, to develop cardiotoxicity and to die from

breast cancer without cardiotoxicity. These three states must be taken intoconsidera-

tion when a patient’s risk for cardiotoxicity is estimated, as well as when the riskof

dying from breast cancer is evaluated. Follow-up time was from start of the epirubicin

treatment until patients either developed cardiotoxicity, died without cardiotoxicity or

left the study alive without cardiotoxicity.

The competing risk model depends on both the cause-specific hazardsαc(t) andαd(t),

as observed from Figure 2.1. Thus, as the probability of developing CHFwithin a cer-

tain time interval depends on cumulative dose through both the mortality rate from

breast cancer and the cardiotoxicity rate, the statistical analysis was carried out in two

steps. In the first one (corresponding to the first aim), both of the two competing event

rates were estimated through regression analyses, considering the possible effect of

cumulative dose and other prognostic factors. In the second step (corresponding to the

second aim), the estimated rates were used to evaluate the cumulative incidenceprob-

ability for CHF, i.e. the probability of developing CHF within a certain time interval.

Finally, when this probability was fixed equal to 5%, it was possible to determinethe

corresponding value of the cumulative dose in order to find the optimal recommended

total dosage.

Figure 2.1:Competing risks model with two causes

2.3 The regression models for the cause-specific hazards

The influence of the Epirubicin cumulative doses along the treatment period and other

prognostic factors on both the cardiotoxicity rate and the mortality rate from breast

cancer, was investigated by Cox regression models (Cox, 1972) (see Example 1.3.2 in

Section 1.3.5) separately for each one of the two rates. When modelling the cardiotox-
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icity rate (i.e. development of CHF), the event time was considered right-censored for

patients who died without having cardiotoxicity. On the contrary, when modeling the

mortality rate, the event of interest was death without cardiotoxicity; therefore, event

times for the patients who developed CHF were right-censored.

The choice of distinct regression parameters for the covariates in the two regression

models was due to the fact that covariates are expected to influence the two rates dif-

ferently.

2.3.1 Assumptions and preparation of the data set

The preparation of the data was nontrivial and computer expensive, but essential, espe-

cially for treating the cumulative treatment dose as a time-dependent covariatein the

regression analyses.

In the data set the information for each patient consisted in the number of dose in-

jections, date of the last injection, total dose administrated, date of entry in the study,

treatment duration, presence of cardiotoxicity and the possible date of its development,

date of death or last seen.

Patients followed different treatment schedules (Table 2.1) and, as mentioned in Sec-

tion 2.2, each woman had deviation with respect to the dose schedule, but theexact

information about the single doses was not available. For this reason, we assumed

that the patient was given the same dose amount at each injection, calculatedas her

total dose divided by the number of injections. Moreover, each individual had its own

treatment period and her time schedule could also deviate from the protocol because

of missing or additional injections, but information about the exact times of injections

was not available. Therefore, different functions corresponding tothe three different

time schedules, were implemented in order to calculate the assumed dates of injections

for each patient. As an example, let us explain the computation of the dates of dose

administration for a patient who should have followed the time schedule ’day 1 and

day 8 every 4 weeks’. Figure 2.2 can simplify the understanding of the elaboration.

We defineri anddi the number of injections and the total treatment duration of pa-

tient i, respectively. If the patient was following exactly the right time schedule, the

intervalsI(l)
i andI

(s)
i in Figure 2.2 should have been of length 4 weeks and 8 days, re-

spectively. In our situation doctors were unable to follow the protocol in allthe cases.

Therefore, we decided to find the lengths of the intervalsI
(l)
i andI

(s)
i by keeping the

ratioI
(s)
i /I

(l)
i equal to the one of the schedule (8/28). In case ofri > 2, if ri was even,
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the function(di − 8)/ [(ri/2) − 1] was used to assume the length ofI
(l)
i , while if ri

was odd, the functiondi/ [(ri − 1)/2] was computed. Length ofI(s)
i was obtained by

I
(l)
i · 8/28. In caseri was equal to 2, the length ofI

(s)
i was set equal todi andI

(l)
i was

empty.

Figure 2.2:The intervalI(s) between two single dose injections and the intervalI(l)

of the first treatment cycle for a patient how followed exactly the time schedule’day 1
and day 8 every 4 weeks’.

These last computations led to represent the information of each patient about Epiru-

bicin dosage by a vector containing history of cumulative doses at every timeof ad-

ministration from the date of entry in the study to the date of end of treatment, event

or censoring. Note that in our data the treatment period can be shorter or equal to the

follow-up period. Thus, cumulative dose of epirubicin (mg/m2) was considered as a

time-dependent variable in both the regression models. Statistical analysis in case of

time-dependent covariates needs a special formulation of the data. The counting pro-

cess form is a very useful instrument to represent information on these covariates in

the dataset. The entire follow-up period of a subject is split in risk intervals,which

are built on the time points where the covariate changes its value. In our application,

the cumulative dose is an increasing step function, with jumps at the end of each risk

interval. Each subject is then represented by a set of observations, one for each risk

interval. Intervals are defined as left-open so that covariate history is a predictable

process and the event or censoring coincides with the upper bound of the interval, as

for the risk indicator in the counting process notation.

The dataset was adjusted for presence of ties (Therneau and Grambsch, 2000, Chap.

2) and overlapping of date of event and date of ending treatment. When thelatter case
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happened, dates were translated by 0.5 days. This was done in order to be able to

evaluate information about the time-dependent dose at the end of the treatment in the

Cox models.

Covariates involved in the study and measured at start of treatment were age, perfor-

mance status (PS), number of sites affected by the tumour, type of complete treat-

ment (single drug or additional treatments), predisposition to cardiac diseases, previ-

ous treatment for breast cancer either in an adjuvant setting or for relapse (antihor-

monal therapy, or chemotherapy), adjuvant or extensive radiotherapy and palliation

radiotherapy (local skin metastases, thoracic spine, mediastinum).

2.3.2 The Cox regression models

Out of 1097, 125 patients developed CHF while in 10 patients the information about

the CHF development was either missing or uncertain. The number of patients who

died was equal to 1032. There was presence of missing values for some covariates.

Care needs to be taken when information about the event due to a certain causeh is

missing for some patients. In this case, estimates in all the cause-specific regression

models would need to be computed ignoring patients with missing information on

the event from causeh. Otherwise, we may overestimate the observed number of

events from causes other thanh, in studies where patients can experience multiple

events. In our study, we ignored 10 patients with missing information about theCHF

development in both the Cox regression models.

We study the problem under the independent right-censoring assumption.In order

to investigate the best statistical model for the cardiotoxicity rate, detailed analyses

were performed to evaluate, in the following order, the appropriate functional form for

the continuous variables, which covariates were significant risk factors, whether the

proportional hazards assumption in the Cox model was correct and a possible stratifi-

cation. The same analyses were also performed for finding a correct regression model

for the mortality rate for breast cancer, taking presence of cardiotoxicityinto account

by censoring.

The correct functional form was investigated for the covariates age and cumulative

dose. For testing the correct functional form, graphical methods basedon martingale

residuals and smoothing splines were used (Therneau et al., 1990). In both the Cox

models forαc(t) andαd(t), results showed that no transformations of the functional

form of the cumulative dose and age were necessary.
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Separate procedures based on backward and forward algorithms were used to select the

group of covariates significant at the 5% level. Interactions between each covariate and

the cumulative dose were also considered when applying these procedures. Likelihood

ratio tests were performed in order to decide whether to include the interactionterm

between a covariate and the cumulative dose into the model, besides the single effect

of the covariate.

The proportionality of the hazards was investigated by graphical methods and by tests

of hypothesis based on Schoenfeld residuals (Grambsch and Therneau, 1994). Pres-

ence of non-constant coefficients in the model indicates that the effect of some covari-

ates on the hazard may vary over time, thus violating the assumption of proportionality.

In the model for the cardiotoxicity rate, the global test and the univariate test of non-

proportionality for each covariate were not significant. In the model for the mortality

rate, proportionality of the hazard did not hold for performance status, which was then

used as a stratification factor. Moreover, since the effect of the cumulative dose was

found to vary over time, a time-varying coefficient (Scheike, 2004) was used. There-

fore, follow-up was split in three time intervals and the cumulative dose was studied

separately in each time interval using different coefficients in the model. The three

time intervals were the first three months after the start of treatment, the following

three months and from the seventh month onwards.

In the final Cox model, the cardiotoxicity hazard function for individuali was:

αc,i(t; Xc) = αc0(t) exp {Xc,1i(t)β1 + Xc,2iβ2 + Xc,3iβ3 + Xc,4iβ4 + Xc,5iβ5

+Xc,6iβ6 + (Xc,1i(t) ∗ Xc,6i)β7} ,

where the unspecified nonnegative functionαc0(t) is the baseline hazard for cardiotox-

icity andXc is the covariate vector with componentsXc,l, l = 1, . . . , 6, defined to be,

respectively, time-dependent cumulative dose of epirubicin, disposition toheart dis-

ease, previous antihormonal treatment for relapse, irradiation against thoracic spine,

age, and previous chemotherapy (CMF) for relapse. Thelth covariate of individuali

is specified asXc,li, wherel = 1, . . . , 6. A significant interaction was found between

cumulative dose,X1, and CMF for relapse,X6.

In the second Cox model, the mortality hazard function for individuali was:

αd,i(t; Xd) = α
(k)
d0 (t; X9) exp {Xd,1i(t)βj(t) + Xd,5iβ11 + Xd,7iβ12 + Xd,8iβ13} ,

where the vectorXd contains the covariatesXd,l, for l = 1, 5, 7, 8, 9. CovariatesXd,7,
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Xd,8 andXd,9 are defined to be, respectively, previous adjuvant chemotherapy, pres-

ence of more than one tumour site and performance status. Variation of the effect of

cumulative dose in time is represented by the different coefficientsβj(t), j = 8, 9, 10,

such that

βj(t) =





β8 if 0 < t ≤ 91.31

β9 if 91.31 < t ≤ 182.62

β10 if t > 182.62.

The stratification factor,X9 in our application, divides the subjects into disjoint groups,

each of which has a distinct baseline hazard function but common values for the re-

gression coefficients. If individuali belongs to stratum(k), thenα
(k)
d0 (t; X9) is her

baseline hazard function for mortality.

Results about the two Cox regression models are synthesized in Table 2.2. As in our

application the main interest is on the effect of the Epirubicin dose, description of the

results focuses on this covariate and it is given separately for the two rates.

The rate of cardiotoxicity was shown to depend log-linearly on the cumulativedose,

with different effects for patients with or without CMF for relapse. This difference

is due to the significant interaction term between cumulative dose and CMF forre-

lapse. In the group of patients who did not receive CMF for relapse, thecardiotoxicity

rate had an increase of 40% each time the cumulative dose increased by 100mg/m2,

holding the other covariates constant. Thus, from a cumulative dose of 600 mg/m2

to a level of 900 mg/m2 the rate was increased 2.72 fold. For the group of patients

who received CMF for relapse instead, an increase of 100 mg/m2 in the cumulative

dose was associated with a 91.5% (exp {β1 + β7}) increase in the cardiotoxicity rate

(Table 2.2). Therefore, presence of CMF for relapse, in addition to its own effect,

raised the effect of increasing dose on the CHF rate. This is shown in Figure 2.3,

which illustrates the interpretation of the interaction term. The two lines in Figure 2.3

represent the logarithm of cardiotoxicity rate for patients with CMF for relapse and

patients without CMF treatment. The slopes of the lines represent the different effects

of cumulative dose for the two groups of patients. For doses below 928 mg/m2, pa-

tients who received CMF had a lower cardiotoxicity rate compared to patients without

CMF. On the contrary, the picture was inverted at doses higher than 928 mg/m2. E.g.

at an epirubicin dose equal to 950 mg/m2, the hazard was 7.3% higher for patients

with CMF than for patients without CMF. Both the estimated regression coefficients

about CMF and its interaction with dose were needed in order to calculate this hazard

(exp {β6 + β7(9.5 − 5)}). Because of the significant interaction term in the model,
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Predictors for the cardiotoxicity rate
Variable β Robust se(β) Exp (β) P -value
Cumulative dose (100 mg/m2) 0.334 0.073 1.396 <0.0001
Disposition to heart disease 1.102 0.209 3.010 <0.0001
Previous antihormonal treatment 0.628 0.214 1.873 0.0033
Irradiation against thoracic spine 0.734 0.251 2.084 0.0035
Age 0.025 0.010 1.025 0.012
CMF for relapse at cumulative dose 500 mg/m2 -1.350 0.697 0.259 0.053
(CMF for relapse) * (Cumulative dose (100 mg/m2)) 0.316 0.121 1.371 0.0092

Predictors for the mortality rate
Variable β Robust se(β) Exp (β) P -value
Cumulative dose (100 mg/m2)
(during the first three months of follow-up) -1.047 0.164 0.351 <0.0001
Cumulative dose (100 mg/m2)
(during the fourth, fifth and sixth months) -0.504 0.061 0.604 <0.0001
Cumulative dose (100 mg/m2)
(from the seventh month on) -0.106 0.016 0.900 <0.0001
Age 0.012 0.004 1.012 0.0026
Adjuvant CMF 0.254 0.078 1.289 0.0011
Number of sites >1 0.721 0.077 2.056 <0.0001

Table 2.2:Estimates in the Cox regression models for the cardiotoxicity rate and the
mortality rate.

CMF for relapse affected the cardiotoxicity rate, conditionally to the other risk factors,

with a magnitude depending on the cumulative dose. The coefficient for CMF, equal

to -1.35 (Table 2.2), represents the difference between cardiotoxicity rates for the two

groups, when the cumulative dose is fixed at 500 mg/m2, as shown in Figure 2.3.

The mortality rate was shown to decrease by increasing cumulative dose. When the

cumulative dose increased by 100 mg/m2, the rate was reduced by 65% during the

first three months of treatment, by 40% between the fourth and sixth month and by

10% from the seventh month on. Thus, the effect of increasing doses onreducing the

mortality rate was higher in the first treatment period than later on. The mortality rate

decreased by 82.9% (exp {β9(9.5 − 6)}) going from a cumulative dose of 600 mg/m2

to a dose of 950 mg/m2 between the fourth and sixth month of treatment (Table 2.2).

2.3.3 Problems related to goodness-of-fit of regression models

For testing the correct functional form of the continuous covariates ageand cumulative

dose in the Cox regression models, graphical methods based on martingale residuals

and smoothing splines were used (Therneau et al., 1990). In this section we illustrate

how these methods were applied and which are the related problems, especially in

connection with time-dependent covariates. Methods are first illustrated onthe time-

constant variable age, and then they are discussed for the time-dependent variable
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Figure 2.3:Interpretation of the interaction term between cumulative dose and CMF
for relapse in the Cox model for the cardiotoxicity rate. The two lines represent the
logarithm of the hazard for patients with CMF for relapse and patients without CMF
treatment. The different effects of cumulative dose are represented by the slopes of the
lines, which are computed from the estimates of regression parameters.

cumulative dose, in connection with the proportional hazards model for thecardiotox-

icity rate.

For testing graphically if the linear form of a covariate is correct, the simplestap-

proach consists in plotting the logarithm of the estimated cumulative hazard versus the

covariate. When investigating the covariate age, the plotted cumulative hazards refer

to the simple Cox regression model with the only covariate age and can be estimated

from equation (2.3). The resulting graph, together with a scatterplot smoothfunction,

is shown in panel (a) of Figure 2.4 and suggests that the linear form for age might be

correct.

The second approach by Therneau et al. (1990), Therneau and Grambsch (2000, Chap.

5) consists in plotting the martingale residuals from a regression model with onlythe

covariate of interest versus the covariate values. In this case, superimposing a smooth

function should indicate the correct functional form for the covariate under investiga-

tion. As age is a time-independent covariate, martingale residuals are expressed by

equation (2.10) when analysing this covariate. Panel (b) in Figure 2.4 shows martin-

gale residuals computed per-individual. If a linear form was correct, wewould expect

to observe no specific pattern of the data and a linear smooth function superimposed.

Nevertheless, interpretation of these concepts for the age graph is hard, as the data

points appear to be clustered in an atypical pattern. A large number of residuals are

observed between−0.3 and 0, while none is present between 0 and 0.7, few points

are higher than 0.7. A possible explanation of this pattern could be the presence of



2.3.3 Problems related to goodness-of-fit of regression models 53

few events of cardiotoxicity (125) with respect to the censored data. As itwas already

pointed out by Therneau and Grambsch (2000, Chap. 5), this situation is frequent in

data sets with a large amount of censoring. The observed counting process, which is

a component of the martingale residuals as observed in (2.9), is equal to 0 for many

individuals, and this fact leads to many negative values for the residuals.

An alternative appealing approach by Hastie and Tibshirani (1990, Chap. 2) is to

model the functional form of covariates through smoothing splines directly inthe Cox

model. The use of smoothing splines requires to specify a certain number of knots (de-

grees of freedom) and therefore results might strongly depend on the chosen degrees of

freedom. In order to understand the basic relation between the hazard and a single co-

variate, a simple Cox model with a smoothing spline for age and no further covariates

was considered. Panel (c) in Figure 2.4, where four degrees of freedom were chosen,

does not show a significant curvature for the covariate age, as also confirmed by the

corresponding test of hypothesis (p < 0.001 for the linear term andp = 0.29 for the

nonlinear term).
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Figure 2.4:Functional form of the covariate age in the Cox model for the cardiotoxicity
rate.

In the following, the methods applied above to age are illustrated for the covariate cu-

mulative dose, and the differences and critical aspects of investigating thefunctional

form of a time-dependent covariate are discussed. Panel (a) in Figure2.5 shows the

logarithm of the estimated cumulative hazard versus the total cumulative dose.The

cumulative hazards are given per-subject and refer to the simple Cox regression model

with the only covariate cumulative dose. Estimates are obtained summing the incre-

ments in (2.3) up to the entire follow-up period.

The original data set is modified so that each patient is split in more observations and

cumulative dose is time-constant in the risk set of each observation. The estimated
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Figure 2.5:Functional form of the covariate cumulative dose in the Cox model for the
cardiotoxicity rate.
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cumulative hazard of each patient is then the sum of the estimated cumulative hazards

of her observations. In fact, the per-subject estimated cumulative hazards in panel (a)

of Figure 2.5 are obtained by collapsing the estimates related to all the observations

that the subject is split in.

The case when the estimated cumulative hazards refer to all the observations of indi-

viduals can be observed in panel (b) of Figure 2.5, where a much largeramount of

points than in panel (a) is represented. Comparison between panels (a) and (b) might

suggest different conclusions about the functional form. This fact might be acceptable

as the covariates under investigation are different, the total dose in panel(a) and the

cumulative dose in panel (b). The problem is that our interest focuses on the covariate

cumulative dose, but investigation of its functional form by computing and plotting

per-observation estimates (as in panel (b)) can yield distortions and misinterpretation.

The problem is further discussed for the martingale residuals studied later inthis sec-

tion.

The martingale residuals from a regression model with only the covariate cumulative

dose are plotted against the covariate values of total dose. Martingale residuals of each

patient are given by the sum of martingale residuals of her observations and are shown

in panel (c) of Figure 2.5. Formally, martingale residuals of patients in case of a time-

dependent covariate, as cumulative dose, can not be computed by equation (2.10). In

this equation, the exponential needs to be under the integral. As our interest is on

the functional form of the time-dependent covariate cumulative dose, per-observation

martingale residuals are also plotted against cumulative dose and the pattern isshown

in panel (d) of Figure 2.5. Here, points are clustered in horizontal bands and the

interpretation of this pattern in order to check the linear form of the covariate, is quite

hard, despite the help from the superimposed smooth function. The same problem

occurs in panel (b), where, in comparison with panel (a), an additionalband of points

is observed. The explanation of these difficulties is that there is a large amount of

‘artificial’ observations, created in order to handle time-dependent covariates, which

leads to many ‘artificial’ censoring. For this reason, many low values of martingale

residuals are observed. Only the latest observation of each individual iseventually

associated with a failure, and therefore with a positive residual. Moreover, most of the

observations correspond to small or near to zero values of the estimated cumulative

hazard, due to the presence of small at risk time intervals, leading then to mostof

the martingale residuals being nearly zero. Further explanations and more detailed

analyses about bias in case of time dependence of covariates are givenby Therneau
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and Grambsch (2000, Chap. 5).

The approach using smoothing splines, choosing 4 degrees of freedomfor the knots

(Hastie and Tibshirani, 1990, Chap. 2), is also considered in order to test the correct

functional form of the cumulative dose. This approach is not affected by the prob-

lems previously discussed about the time-dependent covariate. A spline fitis shown

in panel (f) of Figure 2.5 and suggests a linear form for the covariate. This result is

also confirmed by the accompanying test of hypothesis (p < 0.001 for the linear effect

andp = 0.24 for the nonlinear effect). Panel (e) shows what would happen in casethe

time-constant covariate total dose is considered. This last panel differsfrom panel (f)

with respect to the time-dependent covariate, but the corresponding testof hypothesis

indicates a linear functional form for total dose. Note that a regression model with

total dose is used here only in order to investigate differences in how the methods are

handling time-dependent and time-constant covariates. In our application about breast

cancer, such a model would make no sense, as total dose can not be observed at the

time origin, but only at the end of the treatment.

The proportionality of hazards was investigated by graphics and tests of hypothesis

based on Schoenfeld residuals (Grambsch and Therneau, 1994). Results are discussed

only for the model for the mortality rate. Violation of this assumption happens when

the regression coefficients are not constant in time, as in the extended Coxmodel

(Section 1.3.5)

λ(t) = Y (t)α0(t) exp
{
XT (t)β(t)

}
. (2.13)

The presence of a time-dependent covariate in the model does not introduce any prob-

lem in the application, and results of the approach based on Schoenfeld residuals can

easily be interpreted.

The assumption of proportionality was tested on the Cox model obtained at the last step

of the data analysis and Figure 2.6 refers to the covariates in this model. Figure 2.6

shows, for each covariatej, a plot of the quantitiessjk + β̂j against time.sjk is thejth

element of the scaled Schoenfeld residual at a specific failure timetk given in equation

(2.12), andβ̂j is the estimated coefficient from a standard Cox model. The plotted

valuessjk + β̂j are estimating the time-varying coefficient (Scheike, 2004)βj(t). If

the proportionality assumption holds for the covariatej, i.e. its regression coefficient is

time-constant, then valuessjk + β̂j should be randomly distributed around a horizontal

line in time. Scatterplot smooth functions in Figure 2.6 help displaying the behaviour

of points in time. The assumption of a time-varying coefficient, asβj(t) = βj + θjt,

was verified by the test of hypothesisH0 : θj = 0, for each covariatej (Therneau and
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Figure 2.6:Time-varying regression coefficients based on Schoenfeld residuals.Plots
are testing for proportionality of the hazards in the Cox model for mortality.

Grambsch, 2000, Chap. 6). Individual tests for log cumulative dose (p < 0.001) and

PS (p < 0.001), as also the global test (p < 0.001), indicate a strong departure from

proportionality of the hazards. That was the reason why the covariate PSwas used as

a stratification factor and a piecewise constant coefficient was assumed for cumulative

dose in the final model for mortality rate.

Results about goodness-of-fit of the regression models in the application tobreast can-

cer underline difficulties in detecting a good model and in the interpretation of graphi-

cal tests in the presence of a time-dependent covariate. This problems canbe overcome

by checking the model with cumulative residuals, which are various functionals of the

martingale residuals (Lin et al., 1993, Wei, 1984). An introduction to these residuals is

given in Section 2.1.2. If the interest is on checking the functional form ofa covariate,

the cumulative residuals of interest are obtained as partial sums of martingaleresidu-

als over the covariate values. For simplicity, we consider only a covariateX1 and we

distinguish between the cases of a time-dependent and time-constant covariate. In the
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former case, the residual process inx is

M1
c (x) =

n∑

i=1

∫ ∞

0
I(Xi1(t) ≤ x)dM̂i(t),

whereI is the indicator function. None of the problems previously encountered with

martingale residuals, are here observed, asMc(x) is obtained as a sum over all the

observations, and also over all the subjects. Each term in the processMc(x) at a certain

covariate valuex represents the estimated martingale dM̂i(tx) of individual i on the

interval(0, tx] where her time-dependent covariateXi1(t) assumes values smaller than

or equal tox. In case the covariate is constant in time, the cumulative residuals process

reduces to

M1
c (x) =

n∑

i=1

I(Xi1 ≤ x)M̂i.

2.4 Competing risks analysis

At this step, estimates from the two Cox regression models were used for the compet-

ing risks analysis. The attention is concentrated on the cumulative incidence proba-

bility for cardiotoxicity,P0c, in a a well-defined follow-up time. In the current appli-

cation the time interval was chosen to be(s, t]. In this case the transition probability

P0c(s, t) represents the conditional probability of developing CHF over the interval

(s, t], given that a patient is still alive and without cardiotoxicity at times. The alter-

native choice of the entire time interval(0, t] would have led to the non-conditional

probabilityP0c(0, t) of developing CHF over the interval(0, t]. This last case would

implicate different assumptions and some computational difficulties in handling the

time-dependent covariate cumulative dose, as will be explained later on.

Prediction of the cumulative incidence probability requires times and values of the

covariates to be specified, i.e., a specific patient with given values of the relevant prog-

nostic factors and of the total cumulative dose needs to be assumed. Therefore, we

have fixed the covariates of both the Cox regression models and called themX
(0)
c and

X
(0)
d . Consequently, using the formula in (2.3) we have computed the estimators of

the two cumulative cause-specific hazard increments as follows:

dÂh(t; X
(0)
h ) = dÂh0(t, β̂h)exp

{
(X

(0)
h )T β̂h

}
, h = c, d. (2.14)

Vectorsβ̂c andβ̂d contain parameter estimates in the Cox models for the cardiotoxicity
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hazard and the mortality hazard, respectively.

In the application we have fixed times equal to six months and we have assumed that

s represents the end of treatment. Therefore, cumulative dose, which is administrated

only during the treatment period, is time-independent in(s, t] and equal to the total

dose at the end of treatment. Formally we are in a situation whereX1(u) = X1(s)

for all u such thats ≤ u ≤ t. That is why the covariate vectorsX(0)
h , h = c, d,

which include cumulative doseX1, are constant in time and easily fixed in (2.14) for

computingdÂh(t; X
(0)
h ).

Through the plug-in method, increments of the estimated cumulative hazards for car-

diotoxicity in (2.14) and the estimated survival function were used to compute the

Aalen-Johansen type estimator in (2.4), as follows:

P̂0c(s, t; X
(0)
c , X

(0)
d ) =

∑

s<tcj≤t

P̂00

(
s, tcj−; X(0)

c , X
(0)
d

)
dÂc(tcj ; X

(0)
c ). (2.15)

We underline that this estimator works correctly in case all the covariates aretime-

independent in the considered time interval(s, t].

In our application we computed̂P0c(s, t) as a function of dose and time, withs = 0.5

andt = 2.5 years. Predictions on CHF probability were made for different levels of

total epirubicin (600, 800, 900 and 1000 mg/m2) and for some different combinations

of values of the prognostic factors. As an example, risk of developing CHF from 0.5 to

2.5 years of follow-up for a patient without risk factors, with performance status equal

to 1 and number of tumour sites higher than1 is shown in Figure 2.7 for age 40, 50,

60 and 70. Each risk curve on(s, t] is associated with a fixed level of cumulative dose.

For all possible typologies of patients, probability of developing CHF increased mostly

during the first eight months after stopping treatment, becoming nearly constant at

the end of the 2.5 years follow-up, as it is also shown by the example in Figure2.7.

The cardiotoxicity risk increased with age for fixed doses. Moreover, the substantial

increase in the risk of developing CHF, as the cumulative dose rose from 600 mg/m2

up to 1000 mg/m2, was highest for older patients, as the risk curves became gradually

more spaced from age 40 to age 70 (Figure 2.7).

In this application, cumulative incidence probabilities were rich of information from

a medical point of view, because they yield risk of cardiotoxicity at each fixed time

point u, for u ∈ (s, t], and for each combination of the significant risk factors in the

competing risks model. Table 2.3 shows a numerical example of increasing riskfor

older patients and for higher total doses, in case of presence of previous antihormonal
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Figure 2.7:Risk of developing CHF from 0.5 to 2.5 years of follow-up at age 40, 50,
60 and 70 for patients without risk factors, with number of sites >1 and performance
status=1. The solid black, red, green and blue lines represent the probability curve
associated with an epirubicin treatment of 600, 800, 900 and 1000 mg/m2, respectively.
The dashed black line represents the curve of CHF risk correspondingto the optimal
recommended cumulative dose; the mark along that curve indicates the 5%probability
level reached at 2.5 years.

treatment, performance status= 1 and number of tumour sites= 1.

2.5 The optimal recommended dosage at 5% risk for car-

diotoxicity

In the medical literature the recommended epirubicin total dose is based on a 5%es-

timated risk of CHF (Ryberg et al., 1998). Therefore, the maximal level of total dose

(mg/m2) associated with an estimated probability of developing CHF equal to 5% was

computed for each combination of values of prognostic factors. A total dose below
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Risk of cardiotoxicity at time t

Time Cumulative dose (mg/m2) Age
40 50 60 70

600 0.04 0.05 0.06 0.07
t = 547.87 800 0.07 0.09 0.12 0.14
(1.5 years) 900 0.10 0.13 0.16 0.20

1000 0.14 0.17 0.22 0.26
600 0.05 0.06 0.07 0.09

t = 913.12 800 0.09 0.11 0.14 0.17
(2.5 years) 900 0.13 0.16 0.19 0.23

1000 0.17 0.21 0.26 0.31

Table 2.3:Risk of cardiotoxicity as a function of cumulative dose (600, 800, 900 and
1000mg/m2) at specific time pointst = 1.5 andt = 2.5 (years) in case of tumour sites
= 1, presence of previous antihormonal treatment, performance status= 1, for age
40, 50, 60, and 70..

that maximal predicted threshold would assure a risk lower that 5% to developcar-

diotoxicity. We have denominated the predicted threshold of maximal total dose as the

optimal dosage.

In order to find optimal dosages for each typology of patient, from (2.1) we consider

the cumulative incidence probability

P0c(s, t0; X1) =

∫ t0

s
S(u−; X1)αc(u; X1)du,

whereS(t; X1) is the survival function in (2.2), as a function of the total cumulative

dose,X1, on which both the cause-specific hazards depend. We fixed a certain time

t = t0. The variableX1 is a component of both the covariate vectorsXc andXd. The

predicted threshold for the total dose is computed by holding fixed all the covariates at

X
(0)
c andX

(0)
d , except the cumulative doseX1. In this case, we consider the estimate

P̂0c(s, t0; X1, X
(0)
c , X

(0)
d ) in (2.15) only as a function of the total cumulative doseX1.

The optimal recommended dose is then the numerical solutionX1 = X∗
1 to

P̂0c(s, t0; X
∗
1 , X(0)

c , X
(0)
d ) = 0.05.

Note that if we fix the covariates at values other thanX
(0)
c and X

(0)
d , we obtain a

different recommended total dose.
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Case Risk factors
Age

40 50 60 70

Performance
status= 1

A: No risk factors 806/844 739/782 673/722 609/665
B: CMF for relapse 864/883 828/850 793/818 759/786
C: Previous Tam 626/670 561/610 496/552 434/496
D: Irradiation Spine/med 596/640 530/581 467/523 404/467
E: Disposition Heart Disease 491/539 427/481 364/424 303/369

Performance
status> 1

F: No risk factors 890 835 783 732
G: CMF for relapse 908 878 848 820
H: Previous Tam 723 670 620 571
I: Adjuvant CMF 917 865 815 767
J: CMF for relapse + adjuvant CMF 922 893 866 839

Table 2.4:Optimal recommended total dosages by performance status (PS) and age.
Doses about patient typologies with PS= 1 are given for number of sites= 1/ > 1.
Doses about patient typologies with PS> 1 are given only for number of sites> 1.

2.5.1 Examples

In order to show how results about the cumulative incidence probability andthe opti-

mal dosages were obtained, we consider the following example. We choosea typical

patient, for instance, a patient 50 years old with number of tumour sites> 1, a perfor-

mance status equal to1, with disposition to heart disease and antihormonal treatment

as the only risk factors. Formally, it corresponds to choosing

X2 = X3 = 1, X4 = X6 = X7 = 0, X5 = 50 years,

X8 = 1 (n. of sites> 1), X9 = 1.

We remark that performance status is a stratification factor and it does not have any

regression coefficient. It affects the estimate of the baseline cumulative hazard for

mortality, and therefore, it must also be fixed when estimating the cumulative inci-

dence probability. If we also fix a value for the total cumulative dose, for instance, 800

mg/m2, the corresponding estimate of the probability isP0c(s, t) = 0.26. For other

choices of total dose, 600, 900 or 1000 mg/m2, the estimated probability is, respec-

tively, 0.14, 0.35 and0.45. On the other hand, if we intend to find the optimal total

dose for this type of patient, we fix a time interval(s, t0] with t0 = 2.5 years. Then, we

compute the value of the total dose which makes the estimated probabilityP̂0c(s, t0)

equal to5%. In the example, the result is312 mg/m2.

Table 2.4 shows some results about the optimal dosage recommended in an epirubicin

treatment of six month (s = 0.5 years) for each typology of patient. Results in the

table are classified by performance status and number of sites (= 1 or > 1). The time
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interval (s, t0] was fixed equal to(0.5, 2.5] years. For patients without risk factors,

with number of sites= 1 and performance status= 1, the cumulative dose which

assured a 5% risk of developing CHF was equal to 806 mg/m2 at age 40 and decreased

gradually with increasing age, being equal to 609 mg/m2 at age 70 (patient A in Table

2.4). If number of sites is> 1, the cumulative dose increased slightly, being 844 at

the age 40 and 665 at age 70. Curves of cardiotoxicity risk are shown in Figure 2.7 for

these last patients with number of sites> 1.

Probability of developing CHF depends strongly on the risk factors for thisdisease.

That is why results about the optimal dose can vary greatly according to which risk

factor is present. As the oldest patients had the highest substantial increase in CHF

probability, their optimal dosage is about 200 mg/m2 less compared to the youngest

patients for almost all the patient typologies. Cases with CMF for relapse arean ex-

ception (patient B in Table 2.4). Some risk factors are found to be more severe for

risk of cardiotoxicity than others and lower doses are then recommended in their pres-

ence. This observation can be noted from Table 2.4, where, in case of performance

status= 1, presence of previous antihormonal treatment (patient C) reduces the rec-

ommended dosage compared with the case of no risk factors (patient A). Moreover,

presence of irradiation to the spine lowers the optimal dose further. Finally,presence

of disposition to heart disease appears to be the most severe risk factor,as it corre-

sponds to the lowest suggested doses.

We expect patients with some risk factors for cardiotoxicity to have an optimal dosage

lower than the one for patients without any risk factor. This idea did not holdin case

of CMF for relapse (patient B in Table 2.4), because its effect needs to be interpreted

taking into account the interaction with the cumulative dose, i.e. in combination with

a specific cumulative dose. Presence of CMF reduces the cardiotoxicity rate in com-

bination with doses lower than 928 mg/m2 (Figure 2.3) and the optimal dose resulted

to be lower than 900 mg/m2 in all the cases. Therefore, patients with CMF for relapse

are associated with high optimal doses, even higher than the ones in the caseof no risk

factors, as shown in Table 2.4. A total dose equal to 864/883 mg/m2 is associated with

40 years and a decrease of only about 100 mg/m2 is observed for the oldest patients

with 70 years (patient B), in contrast with the cases mentioned above.

The consequences of including the competing risk of dying for breast cancer into the

study can be noted with various examples. Differences in the optimal dosages between

a low performance status (= 1) and a more severe status (> 1) are due to the competing

cause of death, because for patients with status> 1, who have a higher risk of dying,
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the event of cardiotoxicity is less probable to be observed. For example, apatient with

very high mortality rate from breast cancer, as the case I in Table 2.4, is associated

with a higher optimal dose than the recommended dose for a patient with lower risk

of dying, as the case A. The same mechanism about the competing risks is observed

when comparing patients with number of sites= 1 and> 1. From a medical point

of view, the recommended doses need to be increased in order to respondto the more

severe status of patients who have numerous tumour sites.

Comparison between the case E and the case I in Table 2.4 shows the importance of

taking the risk factors for both causes into account and how they can be balanced. In

fact, the difference in the dose, which is more than 400 mg/m2, is attributable to the

high cardiotoxicity rate for patient E and the increased mortality rate of patientI.

2.6 The time-dependent cumulative dose and its interpreta-

tion

In this section we recall some assumptions used in the application to breast cancer in

predicting the cumulative incidence probability for cardiotoxicity. Moreoverwe dis-

cuss how the time-dependent covariate cumulative dose was defined and handled, and

whether this covariate leaves the related inference unchanged. Finally, we discuss the

prediction of the cumulative incidence probability when some alternative assumption

are made.

In the application to breast cancer, the covariate cumulative dose was named asXc,1(t)

andXd,1(t) in the Cox models for the cardiotoxicity rate and the mortality rate, respec-

tively. Since bothXc,1(t) andXd,1(t) represent the same covariate, but as elements

of the different vectorsXc andXd, here we will simplify the notation by calling them

X1(t).

In Section 2.4 we estimated the cumulative incidence probability for cardiotocixityas

follows. Since the chemotherapy treatment period was assumed to be equal to(0, s],

with s being a fixed time within the observation period[0, τ ] of the study, and since

the dose was administrated only along the treatment period, the covariateX1(t) is

time-dependent only within the time interval(0, s], whereas it is time-independent and

equal to the total doseX1(s) in the remaining period(s, τ ]. Since an interesting medi-

cal aspect consists of studying the risk of cardiotoxicity after ending the chemotherapy

treatment (after times), we decided to predict the behaviour of the cumulative inci-
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dence probability between the given times and a timet, with t > s. Therefore, the

estimate of this probability by equation (2.15) was straightforward because just a single

given value for the cumulative doseX1, being time-independent in(s, t], was required.

Implementation of equation (2.15) did not imply any computational difficulty.

If the interest was on studying the risk of cardiotoxicity from the beginning of the

treatment until a given timet, t > s, thenX1 would no longer be time-independent

on the whole interval of interest(0, t], and the specification of a single covariate value

would not be sufficient anymore. This alternative scenario shall be illustrated later in

this section, after formally defining the time-dependent covariate structure.

Let the process{X1(t), 0 ≤ t ≤ τ}, where[0, τ ] is the observational period of the

study, be the time-dependent covariate cumulative dose. In the application tobreast

cancer it turns out that the processX1(t) can be condidered as deterministic, i.e. fixed

in advance. This means that the covariate cumulative dose belongs to the class of

so-called external defined time-dependent covariates (Kalbfleisch andPrentice, 2002,

Chap. 6). Therefore, the form of the likelihood function and inferenceare unchanged,

and predictions of the cumulative incidence probabilities in the competing risks re-

gression model can be performed without any complication. The reason is that the

administration of the cumulative dose along the treatment period is assumed to be reg-

ulated, for each patient, by a predetermined time schedule between the possibilities

shown in Table 2.1.

Unlike the competing risks regression model of our application, generally, inregres-

sion models covariates are considered as random variables. The usualassumption

is that the hazards functions refer to the conditional distribution of survival times

given the observed covariates. Therefore, it appears to be naturalto consider a time-

dependent covariate as a stochastic process. Nevertheless, handlingsuch a process in

competing risks regression models is not always straightforward, and in some cases it

is even not possible to make predictions (Fisher and Lin, 1999, Andersenet al., 1993,

Chap. 3). Further explanations are given in Appendix B of the thesis.

After having specified the type of processX1(t) for the cumulative dose, we return

to the hypothetical situation of studying the risk of cardiotoxicity over the entiretime

interval (0, t]. We shall briefly discuss how the predictions of the risk as a function

of the cumulative dose are obtained. In order to be able to predict the cumulative

incidence probability for cardiotoxicity (causeh = c) by equation (2.6), given the data

and the estimateŝβh of the regression coefficients, we need to specify a path of the

processX1(t), besides the values for the remaining covariates in the vectorsXc and
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Xd. Denote the given path for the cumulative dose byX
(0)
1 (t). This path consists of

a non-decreasing left-continuous step function with jump size equal to the single dose

injected; its maximum value is reached at the end of the treatnment (times) and hence

it is equal to the total doseX(0)
1 (t).

In estimating the cumulative imcidence probability for cardiotoxicity,P0c(0, t), in

presence of the cumulative dose processX1(t), the theory illustrated in Section 2.1.1

and Section 2.4 is still valid and the formulas need just to be updated by substituingXh

with Xh(t). Equation (2.4) expresses still valid estimators for the cumulative cause-

specific baseline hazards, the only differences being in the evaluation ofS
(0)
h (t, β̂h).

The latter formula needs also the values of the cumulative dose for all patientsat risk

at that timet and therefore, this fact might yield some computational difficulties in the

estimation of the survival probability in (2.5). Moreover, the values of the given path

X
(0)
1 (t) at all the cause-specific failure times are needed in order to compute Equations

(2.14) and (2.15).

Optimal recommended dosages might be also investigated when the interest focuses

on the risk of cardiotoxicity from the beginning of the treatment until a given timet

after the treatment. Let us illustrate a possible procedure by an example. Similarly to

what was done in Section 2.5, we may consider the cumulative incidence probability

P0c(0, t0), for a given timet0, as a function of the cumulative dose, i.e., as a func-

tion of the deterministic processX1(t). Furthermore, we might restrict the attention

to the case of such a functional relationship under the assumption that a certain time

schedule is specified. For instance, we assume a time schedule of an injectionat day

one every three weeks (Table 2.1) during a treatment period(0, s], with s < t0. An

interesting aim would then be to find the single dose injected every three weeks, which

assures a cardiotoxicity risk lower than 5% at timet. In order to solve this problem and

find such a recommended single dose, it would be sufficient to find the corresponding

recommended total dose as a numerical solution to the equationP̂0c(0, t0) = 0.05.

Nevertheless, the optimal total dose found by this procedure, or, equivalently, the cor-

responding optimal single doses, would be strictly related to the assumed time sched-

ule and, therefore, could not be interpreted by its own. In conclusion, this hypothetical

analysis would compute a dose administration regime which is optimal for a certain

given time schedule (three weeks in the previous example) and with respectto a 5%

treshold for the cardiotoxicity risk. Further recommended dose administrationregimes

might also be determined for the different time schedules in the study, in orderto pro-

vide a general picture and useful medical guidelines about the relation between the
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chemotherapy treatment and cardiotoxicity.

2.7 Discussion

The competing risks setting was chosen as a very necessary statistical toolfor study-

ing the cardiotoxicity risk for patients with advanced breast cancer. Because of their

severe status, it is known that these patients have a very high risk of dying, also during

their chemotherapy treatment. That is why we can not neglect to consider thecompet-

ing risk of dying for breast cancer even though the primary interest focuses on risk of

developing CHF. Ignoring the competing cause might lead to overlooking important

features of the studied problem. Patients who died could potentially have developed

CHF, but this event can never be observed. The comments on the numerical results

about the optimal total doses described in Section 2.5 investigate the mechanismun-

derlying the two competing causes and describe a possible reasonable interpretation of

the medical problem.

The application of a competing risks analysis to the study of cardiotoxicity as a func-

tion of chemotherapy dosages led to very important new medical results. First of all,

we found new recommended levels for the total dose administrated during Epirubicin

chemotherapy, which were found to be lower than the one recommended in thelitera-

ture (Ryberg et al., 1998). Moreover, the existing literature suggests a single level for

all types of patients. We demonstrated that the optimal recommended dosage can vary

substantially between groups of patients with different characteristics andrisk factors.

In order to compute the optimal dosage levels corresponding to a 5% cardiotoxicity

risk, we needed to treat the cumulative dose as a time-dependent covariate. Handling

the time-dependent cumulative dose turned out to be easy as it was considered as a

deterministic process. However, as the history of dose administration for each patient

was needed, the implementation of the analysis was not trivial. In general, handling

time-dependent covariates required particular attention since it is essentialto define

which kind of process is underlying the covariate (Kalbfleisch and Prentice, 2002,

Chap. 6).

The standard method for competing risks regression models (Andersen etal., 2002,

1993, Chap. 7) was used for the statistical analyses. Although new alternative methods

(Scheike and Zhang, 2004, Fine, 2001, Scheike et al., 2007, Andersen et al., 2003)

have appeared recently in the literature, the standard approach enabledus to perform

a complete and accurate analysis, as selection and goodness-of-fit of the model follow
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methods which are well-established in survival analysis and applicable to thiscontext.

Moreover, standard software for survival analysis can be used for regression models

for the cause-specific hazards by regarding all events due to other causes than the one

of interest as additional censoring events. Nevertheless, this idea about censoring is

correct only when analyzing cause-specific hazard functions and cumulative incidence

probabilities, while it yields erroneous conclusions if it is used in computing Kaplan-

Meier type estimates for the single causes. These estimates would not be equal to one

minus the cause-specific estimated cumulative incidence probabilities (Tsiatis, 1975,

1998).

A drawback of the standard method for regression analysis of competing risks data is

that simple parameters, which explain directly the effects of covariates on thecause-

specific cumulative incidence probabilities, are missing. The cumulative incidence

probabilities are complex non-linear functions of the covariates and therefore it is only

possible to describe indirect covariate effects by estimating these probabilities for dif-

ferent given covariate patterns.

In our breast cancer study, the interest was limited to estimating the cumulative inci-

dence probabilities in the interval(s, t] with s = 0.5 andt = 2.5 years. An interesting

suggestion might be to investigate and compare the cardiotoxicity risk in different time

intervals in order to identify periods with highest risk. This can be performed by con-

sidering the conditional probabilitiesP (T ≤ s + ∆, Z(T ) = c |T ≥ s), for instance

with ∆ = 0.5 years ands = 0.5, 1, 1.5, 2 years. For the notation of these conditional

probabilities the reader can refer to equation (1.39).

Problems about goodness-of-fit in case of a time-dependent covariatewere investi-

gated. Some of them were already pointed out by other authors (Therneau and Gramb-

sch, 2000, Chap. 5), but we disagree on the usefulness of martingale residuals in

suggesting possible correct functional form. Plots of martingale residualsboth per-

observation and per-subject might fail in investigating the functional formof a time-

dependent covariate. We discussed about the need of cumulative martingale residuals

(Lin et al., 1993) in model diagnostics, as they overcome problems related to time-

dependency of covariates. A drawback of the type of residuals discussed in this chapter

and the corresponding tests of hypotheses for each covariate, is that they are only valid

if the Cox model is correct for all the remaining covariates (Scheike and Martinussen,

2004).



Chapter 3

Time-varying Regression

Coefficients in Relative Survival

Models

In relative survival modelling through regression analysis, the existing approaches can

be classified within the parametric, semiparametric and nonparametric settings. Here

we present the additive excess hazards models (Zahl, 1996), where the excess hazard

is on additive form. We assess the importance of time-varying effects for regression

models in this framework and show how recent developments can be used to make

inferential statements within the nonparametric version of the model. When some

covariate effects are constant, we show how the semiparametric additive risk model can

be considered in the excess risk setting, providing a better and more useful summary

of the data. Estimators having an explicit form and inference based on a resampling

scheme are presented for both the nonparametric and semiparametric models.We also

describe a suggestion for goodness-of-fit of relative survival models, which consists

of statistical and graphical tests based on cumulative martingale residuals. This is

illustrated on the semiparametric model with proportional excess hazards. Weanalyze

data from the TRACE study using different approaches and show the need for more

flexible models in relative survival.

The research work presented in this chapter is based on the paper Cortese and Scheike

(2008).
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3.1 Introduction and background

3.1.1 Relative survival

In many cancer studies, but also in population-based and clinical observational studies

other than cancer, information on causes of death, remissions, etc. is sometimes un-

available, especially with a long follow-up. In some cases, this information is recorded

on medical registries but it is incomplete or misleading, because death could beonly

partially due to the disease of interest and it is difficult to classify deaths dueto other

causes indirectly correlated with the disease of interest. For this reason, the use of

cause-specific survival in the framework of competing risks, where atleast two dis-

tinct alternative causes need to be specified, is problematic. Moreover, many clinical

studies aim at identifying prognostic factors for mortality due to the disease, differen-

tiating whether their effects are also related to the natural mortality in the underlying

population. In this case, problems arise in comparisons between studies based on dif-

ferent background populations.

Relative survival analysis provides a solution to these difficulties. It does not require

information on cause of death, whereas it allows one to estimate patient survival cor-

rected for the effect of other causes of death, using the natural mortalityof the under-

lying population. Of course, the natural mortality encompasses also mortality from

the disease of interest; however, when the latter is very small and then negligible, the

general population is commonly assumed to be unaffected by the disease of interest.

Indeed, relative survival describes the excess mortality for patients diagnosed with the

disease of interest, irrespective of whether the excess mortality is directly or indirectly

attributable to the disease. In general, estimation of this corrected patient survival,

a quantity which is hypothetically defined as the net survival in the competing risks

setting, is the principal aim in relative survival. From population life tables theory,

the estimate is given by the relative survival ratio between the observed survival of

patients and the expected survival from the underlying population, with respect to the

main factors affecting the natural mortality, such as age, sex and calendartime.

A natural way of modelling relative survival through regression analysis consists in

assuming the following additive form for the hazard at timet, conditional on covariates

Z andX:

λ(t; Z, X) = λ∗(t; Z) + ν(t; X), (3.1)

whereZ andX are sets of covariates which are not necessarily all distinct. The total
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observed hazardλ is modelled as the sum of the expected hazardλ∗(t; Z), which

represents the background rate of mortality of the general population, and the excess

hazardν(t; X) due to presence of an additional cause of mortality, such as cancer or

other chronic diseases. The expected hazard is generally estimated fromexternal data,

i.e., mortality rates recorded in the public registries of the population underlyingthe

patients’ sample under study. It is assumed to be known in the relative survival model

and generally it depends on some characteristicsZ of the population. The additional

excess hazard follows a regression model based on the relevant risk factorsX and

can be modelled by a proportional or an additive form, according to the validity of

the underlying assumptions. In general, the principal interest in regression analysis

consists in evaluating possible prognostic factors which influence directly the excess

risk, in absence of the effect of competing causes of death. That is whyonly the excess

risk is supposed to depend on the set of covariates observed in the exposed individuals.

3.1.2 Parametric, semiparametric and nonparametric approaches

Among different approaches to modelling relative survival, our attention isdirected

to models following the additive form in (3.1). Within this approach, various models

and their extensions have been proposed recently and they can be classified as para-

metric, semiparametric or nonparametric models. Two basic methods that assume a

multiplicative function of the covariates for the excess hazard, describedby Hakuli-

nen and Tenkanen (1987) and Estève et al. (1990), have been usedin the parametric

setting. Extensions of these models (Dickman et al., 2004, Lambert et al., 2005) and

handling time-dependent covariates (Bolard et al., 2001) have also beendeveloped in

the literature. Although all these models are specified in continuous time, they assume

a parametric function for the hazard, usually a constant hazard within predetermined

time-intervals. In order to detect possible nonproportional excess hazards, the standard

solution used within these models consists of including time-dependent covariates as

interaction terms (covariate by follow-up time-intervals). More recently, somesugges-

tions have used spline functions (Giorgi et al., 2003, Bolard et al., 2002)for modelling

time-dependent hazard ratio and the baseline excess hazard, in order toyield more

flexible and less restrictive additive models, in case of multiplicative scale forthe ex-

cess hazard. In the semiparametric setting, these attempts can be seen as alternatives to

the well-known proportional excess hazards model by Sasieni (1996). The semipara-

metric proportional excess hazards model considers an excess risk onCox form and

can easily handle time-dependent covariates, provided that the assumptionof a propor-
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tional hazards for the excess risk of individuals is verified. Zahl (1996) considered the

fully nonparametric additive hazards model (Aalen, 1980) described in Example 1.3.1,

to model the excess hazard, withλ(t; X) = α0(t) + β1(t)X1 + . . . + βp(t)Xp, over-

coming problems about non-proportionality and non-positive excess hazards (Zahl and

Tretli, 1997, Zahl, 1995).

3.1.3 Dynamic extensions for the nonparametric and semiparametric set-

tings

We shall study the additive hazard models and show how recent developments can be

used to make inferential statements within the nonparametric additive excess hazards

model. This makes it possible to test the key hypothesis that an excess risk effect is

time-varying in contrast to being constant over time. One problem with the fully non-

parametric dynamic description is that the model might be too big, if some covariate

effects are in fact constant with time. We shall therefore also show how thesemipara-

metric additive risk model (McKeague and Sasieni, 1994) can be considered in the

excess risk setting. This model can provide a better and more useful summary of the

data and makes a better bias/variance trade-off. We shall show how thesetwo additive

models are easy to fit with estimators on explicit form and how inference including

tests for time-constant effects can be carried out based on a resampling scheme.

Our objective is to introduce and to assess the importance of time-varying effects

(Scheike, 2004) for regression models in the relative survival framework. Their pres-

ence in the model shows directly how the influence of risk factors on the excess hazard

may change over follow-up time, as regression coefficients are allowed to depend on

time. No difficulties appear in handling time-dependent covariates, which aretreated

as commonly performed in the Aalen additive hazards model and in the Cox model.

3.2 The nonparametric additive excess hazards model

The nonparametric additive excess hazards model, described by Zahl (1996), is

λ(t) = Y (t)[α∗(t; Z) + XT (t)β(t)], (3.2)

and contains only nonparametric terms. The excess rate is modelled in additiveform

and follows the additive hazards model (Example 1.3.1) introduced by Aalen(1980).

The p-dimensional vector of covariates is denoted byX(t). The functionY (t) is



3.2.2 The estimators 73

the risk indicator, which is one if the event or censoring has not occurred until t and

zero otherwise. The effects of risk factors on the excess mortality hazard ν(t; X) =

Y (t)XT (t)β(t) are expressed by the time-varyingp-dimensional regression coeffi-

cientβ(t) = (β1(t), . . . , βp(t))
T .

The relative survival for the additive excess hazards model is equalto

r(t) = exp

{
−
∫ t

0
XT (s)β(s)ds

}
,

which in general, for additive models, can be written asr(t) = S(t)/S∗(t), where

S(t) andS∗(t) denote the observed and expected survival, respectively.

3.2.1 Notation

The models and the related inference are given using the counting process representa-

tion described in Section 1.1.3. The conditional intensityλ(t) in (3.2) provides a model

for its associated counting processN(t), that counts the observed failures in the obser-

vation periodt ∈ [0, τ ], with τ < ∞, of a subject with predictable covariates Z and X.

Let (Ni(t), Yi(t), Zi(t), Xi(t)) for i = 1, . . . , n, ben independent observations from

the additive excess hazards model with intensityλ(t). Recalling the definition (1.17) in

Chapter 1, denote byN(t) = (N1(t), . . . , Nn(t))T the multivariate counting process

of then subjects, and byλ(t) = (λ1(t), . . . , λn(t))T the associated intensity. Then×p

dimensional matrixX(t) = (Y1(t)X1(t), . . . , Yn(t)Xn(t))T contains all the informa-

tion about the predictable covariates in the excess rate. The considered estimators

have properties that rely on the martingale theory described in Section 1.2.1.M(t) =

N(t) − Λ(t) is then-dimensional zero-mean martingale associated with the counting

processesN(t). The total cumulative intensity is given by the compensator of the mar-

tingale,Λ(t) =
∫ t
0 λ(s)ds. Defineλ∗(t) = (Y1(t)α

∗
1(t), . . . , Yn(t)α∗

n(t))T . We then

have the incrementsdN(t) = λ(t)dt + dM(t) = λ∗(t)dt + X(t)β(t)dt + dM(t) of

the counting process using the excess additive regression model.

3.2.2 The estimators

Inference is made by estimating the cumulative regression coefficientsB(t) =
∫ t
0 β(s)ds,

which give the cumulative effects of each covariate on the excess mortality rate. Esti-

mators in the additive excess hazards model are very similar to the ones usedfor the

standard additive hazards model (Example 1.3.1). LetΛ∗(s) =
∫ t
0 λ∗(s)ds. The prin-
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cipal basic difference in working with relative survival consists in replacing the usual

counting processN(t) with the modified counting process̃N(t) = N(t) − Λ∗(t).

Thus from the increments of the martingale, we have

dÑ(t) = dN(t) − λ∗(t)dt = X(t)β(t)dt + dM(t),

which suggests the possibility to estimate the incrementsβ(t)dt by weighted least

squares methods for multiple linear regression (Huffer and McKeague, 1991). The

increment inÑi(t) thus gives the observed excess risk compared with the background

mortality, among those under risk, since the martingale increment has mean zero. In

other words, the expected number of deaths equals the expected number of background

deaths plus the expected number of excess mortality deaths. The resulting estimator is

dB̂∗(t) = X
−(t)dÑ(t), (3.3)

where thep × n matrix

X
−(t) = (XT (t)W (t)X(t))−1

X
T (t)W (t) (3.4)

is the generalized inverse ofX(t) andW (t) is a predictablen × n diagonal matrix of

weights. Therefore,

B̂∗(t) =

∫ t

0
X

−(s)dÑ(s) (3.5)

is the estimator for thep-dimensional vector of cumulative regression coefficients.

The estimator in (3.5) can be written as

B̂∗(t) = B̂(t) −
∫ t

0
X

−(s)λ∗(s)ds, (3.6)

the difference of the standard Aalen estimator (Aalen, 1980),B̂(t) =
∫ t
0 X

−(s)dN(s),

and a predictable term depending on the known background mortality rate and the ob-

served covariates (Zahl and Tretli, 1997). The second term represents the average

expected hazard of the population at risk at each observed time, weightedwith the

observed covariate values. The Aalen estimator is incremented at each failure time

(where a jump is observed) while it is constant between failures. Note that the es-

timator B̂∗ decreases systematically between failure times because of the Lebesgue

integral in the second term of (3.6). In this latterdÑi(t) is negative fort < Ti (Ti is

the failure time of the individuali) and, at failure times, it is observed to have jumps
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equal toNi(Ti)−Λ∗
i (Ti). Moreover, the estimators depend on both censoring and fail-

ure times, as the modified counting processÑ(t) for censored individuals depends on

their precise censoring times (while the observed counting processN(t) is constantly

equal to zero for censored subjects). Consequently, even though theestimatorB̂∗ is

well-defined by expression (3.3) and is an unbiased estimator of the excess mortality,

some care has to be taken when implementing the Lebesgue integration. Even though

the substitution of integrals with summations might require further assumptions, in

practical cases where the expected hazardλ∗ is piecewise constant, this substitution

is allowed. This aspect is also discussed in related papers (Andersen and Væth, 1989,

Zahl, 1996, Sasieni, 1996).

The approximate maximum likelihood estimator forB(t) is

B̃∗(t) =

∫ t

0
X

−
W (s)dÑ(s),

whereX−
W is the matrix in (3.4) with diagonal weight matrixW (t) = diag(Yi(t)/λi(t)).

The estimator is obtained from score equations for the infinite-dimensional parameter

β(t) as in Greenwood and Wefelmeyer (1991), Sasieni (1992). For a more general

theory on estimation equations for infinite-dimensional parameters the readeris re-

ferred to Greenwood and Wefelmeyer (1990). Since the matrixW (t) contains the

unknown parameterβ(t) throughλi(t), B̃∗(t) requires estimatingW (t), which can be

preformed by the application of smoothing techniques. The estimated weight matrix

is then plugged into the estimator̃B∗(t). B̃∗(t) is asymptoticly efficient and
√

n times

its difference with the true cumulative regression parameter converges in distribution

to a Gaussian martingale, as for the least squares estimatorB̂∗(t).

3.2.3 Properties of the estimators

If the matrix X(t) has full rank for allt, B̂∗(t) is an unbiased estimator ofB(t),

because the second term in

B̂∗(t) =

∫ t

0
dB(s) +

∫ t

0
X

−(s)dM(s)

is a martingale with zero mean. Moreover, using functional forms of the strong law

of large numbers, under certain regularity conditions the following convergence in

distribution can be proved (Martinussen and Scheike, 2006, Chap. 5):

n1/2(B̂∗ − B)
D→ U, for n → ∞,
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whereU is a Gaussian martingale with covariance functionΦ(t) =
∫ t
0 φ(s)ds. An

explicit expression forφ(t) can be found in Martinussen and Scheike (2006, Chap. 5).

As a general reference within the thesis, the asymptotic theory is describedin Section

1.2.3. These simple properties of the estimatorB̂∗ are the fundamental elements for

inference and are the same as those for the estimatorB̂ for the standard nonparametric

additive hazards model (Example 1.3.1), since the asymptotic results are still based

on the martingaleM(t). The martingale in the additive excess model differs from the

one in the standard additive model only for the expression of its compensator Λ(t). In

fact, a component of this latter is constrained to be equal to the integrated expected

mortality of the population.

One of the possible estimators for the variance ofB̂∗ is

Φ̂(t) = n

∫ t

0
X

−(s)diag(dN(s))(X−(s))T ,

which is mostly used because of its simple implementation. It is the optional variation

process of the martingale
∫ t
0 X

−(s)dM(s) and it is uniformly consistent.

3.2.4 Inferential procedures

The pointwise confidence interval forBj(t) is equivalent to

B̂∗
j (t) ± n−1/2cα/2Φ̂

1/2
jj (t), (3.7)

whereΦ̂jj(t) is thejth diagonal element of̂Φ(t), andcα/2 is the(1 − α/2) quantile

of the standard normal distribution. It is useful as a synthetic estimator but, as it can

vary strongly depending on which time point is chosen, its use for a statisticaltest

about the entire shape of the cumulative regression coefficients would lead to incorrect

conclusions.

The two hypothesesH(1)
0 : βj(t) = 0 (or Bj(t) = 0) andH

(2)
0 : βj(t) = γ (or

Bj(t) = γt), for all t in the range[0, τ ], are of interest, stating, respectively, the

assumption of no effect and the assumption of constant effect of the coefficient βj .

Tests are shown directly for the cumulative regression coefficientBj(t). In order to

explain the final test-statistics, we consider the process

∆1(t) = n−1/2
n∑

1

ǫ̂∗i (t)Gi,
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which, conditional on the data(Ni(t), Yi(t), Zi(t), Xi(t)), for i = 1, . . . , n, and under

some regularity conditions, has the same limit distribution asn1/2(B̂∗(t)−B(t)). The

random variablesGi, for i = 1, . . . , n, are independent standard normals and

ǫ̂∗i (t) =

∫ t

0
(n−1XT (s)X(s))−1Xi(s)dM̂i(s),

with

M̂i(t) = Ñi(t) −
∫ t

0
Yi(s)X

T
i (s)dB̂∗(s).

Moreover

Ψ̂∗(t) = n−1
n∑

i=1

ǫ̂∗i (t)(ǫ̂
∗
i (t))

T ,

is a consistent estimator of the asymptotic variance ofn1/2(B̂∗(t) − B(t)).

The hypothesisH(1)
0 can thus be tested using the variance weighted test statistic,

T1S = supt∈[0,τ ]

∣∣∣∣∣
n1/2B̂∗

j (t)

(Ψ̂∗
jj(t))

1/2

∣∣∣∣∣ , (3.8)

based on the resampling approach for the additive Aalen model by Scheike(2002),

whereΨ̂∗
jj(t) is thejth diagonal element of̂Ψ∗(t). SinceT1S has the same asymp-

totic distribution as sup
∣∣∣∆1(t)/(Ψ̂∗

jj(t))
1/2
∣∣∣ under the null hypothesis, an empirical

distribution of this latter can be used to build confidence band forT1S . The empir-

ical distribution is obtained by resampling∆1(t), by generating replicates from the

standard normal{Gi}i=1,...,n. The observed test process can be plotted versus time to-

gether with its confidence band. Graphically,H
(1)
0 may be tested by observing whether

the zero function, representing the null hypothesis, is contained within this confidence

band.

In order to test the hypothesisH(2)
0 , the quantityB̂∗

j (τ)/τ may estimate the constant

γ of the null hypothesis. The two test statistics based on the resampling approach

(Scheike, 2002) are :

T2S = n1/2 sup
t∈[0,τ ]

|B̂∗
j (t)−B̂∗

j (τ)
t

τ
| and T2I = n

∫ τ

0
(B̂∗

j (t)−B̂∗
j (τ)

t

τ
)2dt. (3.9)

Approximatep-values can be obtained by resampling from the process∆1(t)−∆1(τ) t
τ ,

similar to what was explained earlier. The resampled processes may be plottedversus

time, together with the observed process. The possible deviation of this latter from

the resampled processes might show rejection of the hypothesis about constant effect.
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Note that these test statistics depend on the selected time interval[0, τ ], and therefore

different results may be obtained on smaller time intervals.

3.3 The semiparametric additive excess hazards model

The semiparametric additive model is a submodel of the nonparametric additivemodel

where some effects are allowed to be constant in time. We can specify a semiparamet-

ric model for relative survival with additive hazards

λ(t) = Y (t){α∗(t; Z) + XT (t)β(t) + V T (t)γ}, (3.10)

whereX(t) andV (t) are, respectively,p-dimensional andq-dimensional covariates,

Y (t) is the risk indicator,β(t) is thep-dimensional time-varying regression coefficient

and γ is the q-dimensional time-invariant coefficient. After having tested whether

effects are time-varying or constant in the full additive model (3.2), the semiparametric

additive model (3.10) could be fitted to better describe the right form of the regression

coefficients. Moreover, the model is simpler and leads to less complicated estimators.

3.3.1 Estimators and their properties

The estimators of the cumulative coefficientB(t) =
∫ t
0 β(s)ds and of γ can be

obtained by least squares methods, as for the nonparametric additive model. We

consider the same setting as for the additive excess hazards model (3.2), where the

counting processN(t) is now associated with the intensityλ(t) modelled by the

semiparametric regression in (3.10). In addition toX(t), define the matrixV (t) =

(Y1(t)V1(t), ..., Yn(t)Vn(t))T of dimensionn × q. If we consider the martingale de-

composition and the modified counting processÑ(t) = N(t)−Λ∗(t), its correspond-

ing increment can be written as

dÑ(t) = dN(t) − λ∗(t)dt = X(t)β(t)dt + V (t)γdt + dM(t).

Since the martingale incrementsdM(t) are uncorrelated and with zero mean, least

squares methods lead to the equationdB̂∗(t) = X
−(t)

(
dÑ(t) − V (t)γdt

)
for B(t),

whereγ has been fixed. The estimator ofγ is

γ̂∗ =

(∫ τ

0
V

T (t)H(t)V (t)dt

)−1 ∫ τ

0
V

T (t)H(t)dÑ(t), (3.11)
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where the inverse of the matrixH(t) = W (t)(I − X(t)X−(t)) is assumed to ex-

ist. Finally, plugging the estimator̂γ∗ into the previous expression fordB̂∗(t), the

estimator ofB(t) is given as

B̂∗(t) =

∫ t

0
X

−(s)
(
dÑ(s) − V (s)γ̂∗ds

)
. (3.12)

This estimator can also be written as

B̂∗(t) = B̂′(t) −
∫ t

0
X

−(s)λ̂∗(s)ds +

∫ t

0
X

−(s)V (s)
[
γ̂′ − γ̂∗

]
ds,

depending on the estimatedp-dimensional cumulative coefficient,

B̂′(t) =
∫ t
0 X

−(s) [dN(s) − V (s)γ̂′ds],

and on the estimated constant coefficientγ̂′ in a standard semiparametric additive haz-

ards model. The estimator̂γ′ has the same expression asγ̂∗ in (3.11), except for the

presence ofN(t) instead ofÑ(t).

Asymptotic properties of the estimatorŝB∗(t) and γ̂∗ are of primary importance in

testing hypotheses aboutB(t) andγ. Under some regularity conditions, asn → ∞,

n1/2(γ̂∗ − γ) converges in distribution to a zero-mean normalV with varianceΣ, and

n1/2(B̂∗ − B) converges in distribution to a zero-mean Gaussian processU(t) with

varianceΦ(t). Consistent estimators of the variancesΣ andΦ(t) arise from properties

of martingales and the optional variation processes, and they have the sameform as

for the standard semiparametric additive model (Martinussen and Scheike,2006).

3.3.2 The maximum likelihood approach

For the semiparametric excess additive hazards model an approximate maximumlike-

lihood estimator can be found, similarly to the one derived by McKeague and Sasieni

(1994) for the standard semiparametric model. The partial log-likelihood function can
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be written in counting process notation as follows

n∑

i=1

(∫
log (λi(t)) dNi(t) −

∫
λi(t)dt

)
=

n∑

i=1

(∫
log
[
λ∗

i (t) + Yi(t)X
T
i (t)β(t) + Yi(t)V

T
i (t)γ

]
dNi(t)

−
∫ [

λ∗
i (t) + Yi(t)X

T
i (t)β(t) + Yi(t)V

T
i (t)γ

]
dt

)
.

Derivatives with respect toβ(t) andγ lead to the score equations

X
T (t)diag(Yi(t)/λi(t))

[
dÑ(t) − X(t)dB(t) − V (t)γdt

]
= 0,

∫ τ

0
V

T (t)diag(Yi(t)/λi(t))
[
dÑ(t) − X(t)dB(t) − V (t)γdt

]
= 0,

which have the same form as the least squares ones in case that the weightmatrix

W (t) = diag(Yi(t)/λi(t)) andλi(t) is assumed known. The maximum likelihood

estimators with consistent estimates of the weights are asymptotically efficient, as itis

in case of the same estimators for the corresponding standard semiparametricmodel.

3.3.3 Inferential procedures

In order to test the hypothesis of no effect (H(1)
0 : Bj(t) ≡ 0) and the hypothesis about

an effect being time-constant (H(2)
0 : Bj(t) ≡ γjt), we suggest to use the confidence

band forBj(t) based on the resampling approach, similarly to what was presented in

Section 3.2.4.

From the properties about asymptotic convergence previously described, in the simple

case ofW = I it follows that

∆2(t) = C−1
1 n−1/2

n∑

1

ǫ̂∗2iGi, ∆3(t) = n−1/2
n∑

1

ǫ̂∗3i(t)Gi,

with G1, . . . , Gn independent standard normal, have the same asymptotic distribution

asn1/2(γ̂∗− γ) andn1/2(B̂∗−B) respectively. Then, the variances of these latter are

consistently estimated, respectively, by

Σ̂
′

= C−1
1 (n−1

n∑

1

ǫ̂∗2i(ǫ̂
∗
2i)

T )C−1
1 , Ψ̂

′

(t) = n−1
n∑

1

ǫ̂∗3i(ǫ̂
∗
3i)

T , (3.13)
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with

ǫ̂∗2i =

∫ τ

0

{
Vi(t) − (V (t)T X(t))(X(t)T X(t))−1Xi(t)

}
dM̂i(t),

ǫ̂∗3i(t) = ǫ̂∗4i(t) − P (t)C−1
1 ǫ̂∗2i, ǫ̂∗4i(t) =

∫ t

0

(
n−1XT (s)X(s)

)−1
Xi(s)dM̂i(s).

VectorsP (t) andC1 are predictable functions of the matricesV andX− and they are

defined as follows:

C1 = n−1

∫ τ

0
V T (t)H(t)V (t)dt, P (t) =

∫ t

0
X−(s)V (s)ds.

The estimateŝMi(t) of martingale residuals are

M̂i(t) = Ñi(t) −
∫ t

0
Yi(s)(X

T
i (s)dB̂∗(s) + V T

i (s)γ̂∗ds).

Then, as for the nonparametric excess hazards model, a test statistic for H(1)
0 is

T1S = sup
t∈[0,τ ]

∣∣∣∣∣
n1/2B̂∗

j (t)

Ψ̂
1/2
jj (t)

∣∣∣∣∣ , (3.14)

whereΨ̂jj(t) is the jth diagonal element of the robust estimatorΨ̂(t) in equation

(3.13). The confidence band forT1S is built resampling∆3 in order to find the em-

pirical distribution ofsupt∈[0,τ ]

∣∣∣n1/2∆3(t)/Ψ̂
1/2
jj (t)

∣∣∣, which has the same asymptotic

distribution asT1S under the null hypothesis.

Similarly, for the hypothesis H(2)0 the test statistics

T2S = n1/2 sup
t∈[0,τ ]

∣∣∣∣B̂∗
j (t) − B̂∗

j (τ)
t

τ

∣∣∣∣ , T2I = n

∫ τ

0
(B̂∗

j (t) − B̂∗
j (τ)

t

τ
)2dt (3.15)

and their quantiles can be computed by resampling from the process∆3(t). Graphical

comparisons between the observed test-processB̂∗
j (t) − B̂∗

j (τ) t
τ and the simulated

processes under the null can show possible time intervals where there is a departure

from the hypothesis H(20 .

3.4 Application to the TRACE data

Data from the TRACE study are here illustrated. They provide a typical example of

data exhibiting nonproportional excess hazards with respect to some covariates.
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3.4.1 Description of the data

The TRACE study (Kober et al., 1995), consisted in a cohort of 6676 patients with

acute myocardial infarction who were screened in 27 Danish coronary care units for

entry between May 1990 and July 1992. Information on all patients survival was

available from the Danish national registries. The follow-up period was from the day

of diagnosis and onwards, during which the outcome under study was totaldeath. The

aim of the TRACE study group was to establish which risk factors had a prognostic

importance on mortality of patients with acute myocardial infarction.

The actual data set analyzed in this section consists in a random sample of 1876 pa-

tients from the TRACE data. Models were fitted only in the follow-up period of the

first six years from diagnosis, as most of the excess deaths for myocardial infarction

occurred within this time. Patients still alive after six years were considered right-

censored. The total number of deaths after myocardial infarction duringthe follow-up

period was 881, and of these, 221 took place within the first two months. Thetime

scale was time since prognosis. The background control population mortalitywas ob-

tained from the registry StatBank Denmark (www.statistikbanken.dk) during the five

years period from 1986 to 1990. Information on the background mortality rates was

collected by gender and age.

In our analysis, only the most relevant prognostic factors are taken into account as

an example for fitting and comparing the different models. The recorded risk factors

are age of patients during the follow-up time, gender (female=1), clinical heart pump

failure (CHF) (presence=1), diabetes (presence=1) and ventricular fibrillation (VF)

(presence=1). Some risk factors are expected to have effects varying strongly in time,

in particular ventricular fibrillation. Previous studies (Jensen et al., 1997)showed that

ventricular fibrillation was a very important risk factor for death due to myocardial

infarction during the first short time period after diagnosis, but its adverse effect was

exhausted approximately two months after.

3.4.2 Comparison of models and estimators

In this section, the nonparametric and semiparametric additive excess hazards models

described in Sections 3.2 and 3.3 are analyzed on the TRACE dataset and compared

to the standard methods used for modeling relative survival. The total hazard will be

written as the sum of the known background rate of mortality in the control population

and the excess hazard associated with myocardial infarction.
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Figure 3.1:Estimated cumulative regression coefficients for the nonparametric addi-
tive hazards model, together with 95% confidence intervals (dashed lines)and confi-
dence bands based on 50 simulated processes under the null (solid lines).

In the first step, the nonparametric additive excess hazards model is applied to the

TRACE data. Successively, we show how possible simplifications of the nonparamet-

ric model lead to the more parsimonious semiparametric hazards model. Excess risk

for the TRACE data was also estimated through the proportional excess hazards model

presented briefly in Equation (3.16) and described more thoroughly in Chapter 4.

Age was centered around its mean at the start of the study (defined asā0) and consid-

ered as a time-dependent covariate. Results from the nonparametric additive excess

hazards model are presented in Table 3.1 and Figure 3.1. For simulation-based tests, a

number equal to 300 resampled processes was used. All covariates in themodel had

an effect significantly different from zero, according to the testT1S in (3.8). Using

the supremum testT2S in (3.9), the effects of CHF, centered age and VF resulted to

be time-varying, while the effects of gender and diabetes turned out to be invariant
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Test for non-significant effects Test for time invariant effects
Covariate T1S p-value T2S p-value T2I p-value
Intercept 2.74 0.147 0.061 0.060 0.006 0.073
CHF 10.20 <0.001 0.121 <0.001 0.043 <0.001
agec 9.76 <0.001 0.006 0.003 1e-04 0.003
sex (female=1) 4.67 <0.001 0.031 0.867 0.001 0.840
diabetes 4.89 <0.001 0.066 0.763 0.003 0.890
VF 6.43 <0.001 0.459 <0.001 0.433 <0.001

Table 3.1:Nonparametric additive excess hazards model: 300 simulation-based tests
for non-significant effects and for time invariant effects.

in time (Table 3.1). The same conclusions hold in case of using the alternative test

statisticsT2I . The estimated cumulative regression coefficientsB̂∗(t) are shown in

Figure 3.1 for each covariate, together with the 95% pointwise confidence intervals

(3.7) and the confidence band based onT1S obtained by the resampling technique in

Section 3.2.4. The regression function estimatesβ̂(t) are the slopes of the cumulative

estimates. Interpretation of their patterns is explained later on in this Section.

Particular care needs to be taken in the interpretation of the interceptβ0(t) and its

behaviour in the model when compared with the horizontal zero line. In our ap-

plication, the excess intensity for a male subject without CHF, diabetes and VF, is

νi(t) = Yi(t) [β0(t) + ((a0i + t) − ā0)β1(t)], wherea0i is the age of subjecti at the

start of the study. In this case, the intercept needs to be interpreted together with the

additional coefficientβ1. The excess baseline hazard can then be represented byνi(t)

for a subject witha0i = ā0. In order to interpret correctly the coefficientβ0(t) on its

own as the excess baseline hazard, the time-dependent agea0i + t should be centered

with respect tōa0 + t. Thus, the additional term about age in the excess hazard would

be null for a subject with mean agēa0 + t at everyt. In this second case, results

from the application (not shown here) indicated that patients with acute myocardial

infarction have an estimated decreasing relative survival during the whole follow-up

period.

From Figure 3.1 it can be observed that the effects of gender and diabetes on the excess

mortality rate are constant with time, as graphs of their estimated cumulative coeffi-

cients are approximately straight lines. The time invariance of these two covariate

effects justifies a possible simplification of the model by reducing the number ofnon-

parametric components. Therefore, the semiparametric additive excess hazards model

is also applied to the TRACE data, where effects of gender and diabetes are assumed

to be constant and the remaining covariate effects are allowed to be time-varying.
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Figure 3.2:Semiparametric additive excess hazards model: Observed test-process for
each covariate, along with 50 simulated processes under the null hypothesis of time
invariant effects.

Results about the semiparametric excess hazards model are presented in Table 3.2. The

assumption of constant effects for gender and diabetes was confirmed by the results in

the right side of Table 3.2. According to the testsT2S andT2I in (3.15), the remaining

covariate effects were still significantly time-varying, as in the previous nonparamet-

ric model. This reduced semiparametric model gives a better fit to the TRACE data,

as it is simpler in the interpretation and able to discriminate between constant and

time-varying effects. Moreover, going from the nonparametric to the semiparamet-

ric additive model, comparison of Table 3.1 with Table 3.2 reveals that values of the

supremum and squared tests are almost unchanged. Graphics about behaviour of the

estimated time-varying cumulative coefficients were also unchanged with respect to

the nonparametric case, and thus they can be observed from the same Figure 3.1. Both

the constant effects in Table 3.2 were significant (p-values< 0.001) and positive: For

patients with diabetes the estimated excess mortality rate was 8.3% higher than for

patients without diabetes and this increase was estimated to be constant within the6
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Test for time invariant effects Constant effects
Covariate T2S p-value T2I p-value Covariate Coef.γ Robust SE
Intercept 0.065 0.003 0.008 0.003 sex (female=1) 0.043 0.010
CHF 0.120 <0.001 0.043 <0.001diabetes 0.083 0.018
agec 0.006 0.003 0.0001 0.003
VF 0.458 <0.001 0.432 <0.001

Table 3.2:Semiparametric additive excess hazards model: 300 simulation-based tests
for for time invariant effects and estimates of constant effects.

years follow-up; the female gender was associated with an estimated increased excess

mortality rate of 4.3%. Departure of the effects from the null hypothesis of time invari-

ance may be observed easily looking at Figure 3.2, where each observed test-process

is shown along with 50 resampled processes under the null. Presence of asignificant

variation within the six years follow-up period is very evident for the VF coefficient:

Behaviour of its test-process in Figure 3.2 reveals that the effect of ventricular fibrilla-

tion is very strong initially, and thus the excess mortality rate has a very high increase

within the first two months, but successively the effect seems to disappearin time.

Increasing age had also a strongly time-varying effect, which was very high within

approximately the first eight months. Similarly, the effect of CHF was increasing very

fast initially, after two months it continued to be present but constant until thefourth

year, finally the effect vanished during the last two years of follow-up.

We apply the proportional excess hazards model by Sasieni (1996) to the TRACE data,

in order to verify whether the excess hazard associated with myocardial infarction

could be described by a proportional form. The statistical model is

λ(t) = Y (t)
[
α∗(t; z) + λ0(t)exp(XT β)

]
, (3.16)

where the regression coefficientβ is assumed to be time invariant. A formal descrip-

tion of this model can be found in Section 4.1.1. The same set of covariates analyzed

in the previous models is influencing significantly the proportional excess hazard, by

increasing it (Table 3.3). CHF and VF seem to be very important risk factors in pre-

dicting the excess mortality rate due to myocardial infarction, as for patients withheart

pump failure or with ventricular fibrillation the excess hazard ratio is about 3.2and 2.7,

respectively. Nevertheless, these last results could be questionable because they are re-

lated to regression coefficients which are assumed to be invariant in time. If instead

effects of CHF and VF were highly time-varying (as it was in the semiparametricad-

ditive model), the assumption of proportional excess hazards would be violated, since
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Test for non-significant effects
Covariate exp(β) (Rel. risk) SE(β) 95% CI for rel. risk p-value
CHF 3.158 0.130 (2.436 - 4.056) <0.001
agec 1.046 0.005 (1.035 - 1.057) <0.001
sex (female=1) 1.689 0.117 (1.342 - 2.125) <0.001
diabetes 1.998 0.120 (1.579 - 2.529) <0.001
VF 2.718 0.131 (2.109 - 3.522) <0.001

Table 3.3:Proportional excess hazards model: Tests for non-significant effects.

it is strictly related to the invariance of the regression coefficients in the relative risk.

3.5 Discussion

The high flexibility of the additive nonparametric and semiparametric models for rela-

tive survival, together with the inferential aspects described in this Chapter, provides a

very important alternative to the existing methods in this field, and on the other hand,

a useful general extension of the more restrictive recent models. Indeed, the model

fitting may fail both because the chosen link function for the excess hazard(multi-

plicative or additive function) is inappropriate, and because the time invariance of the

hazard ratio does not hold, besides misspecification of the functional forms of covari-

ates. The described additive excess hazards models overcome the critical problem

of violating the proportional hazards assumption. The introduction of covariate-by-

time interactions in the parametric relative survival models entails further assumptions

which would need always to be carefully tested, in order to avoid neglectingpossible

associations between time-dependent covariates and excess mortality.

The TRACE example demonstrates the need of new flexible survival models for mod-

eling the excess hazards, which can deal with time-varying dynamics of covariates

effects. In this Chapter, we showed how the nonparametric and semiparametric ver-

sions of the additive excess hazard can easily handle these dynamics. Wedemonstrated

when one or the other model is appropriate according to the responses ofsimulation

based graphical and statistical tests about variation of effects over time. Even though

inferential procedures described here are complicated in their expressions, when they

concern finding equivalent asymptotic distributions of Gaussian processes, the great

advantage is a very easy interpretation of results. In this connection, the statistical

software, e.g. the R packagetimereg (Martinussen and Scheike, 2006, App. C)

used in our application and presented in the Appendix A, is an essential instrument.
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The graphical procedures showed for the additive excess hazardsmodels have the ad-

vantage of suggesting time points and sub-intervals where variation of the effects oc-

curs in time with sufficient accuracy, while, in the graphics about Brownianbridge

processes (Stare et al., 2005) for the proportional excess models, these information are

not clearly provided because of the implementation of smoothing procedures.

It would be of interest to extend other test methods about time-varying covariate effects

and goodness-of-fit plots from the nonparametric and semiparametric additive hazards

model to the relative survival case. Some starting points could be Aalen (1989, 1993)

and Gandy et al. (2007).

As for the nonparametric excess additive hazards model, also for the semiparametric

model (3.10), approximate maximum likelihood estimators can be found, similarly

to what was done by McKeague and Sasieni (1994) for the semiparametricadditive

hazards models. They are also asymptotically efficient in case of consistent estimates

of the weights. For the model by McKeague and Sasieni (1994), there exist also other

estimators, improved by their properties of robustness and consistency, which could

be easily extended to the relative survival case when the replacement ofdÑ(s) holds.

In choosing between a proportional or an additive form for the excesshazards, prob-

lems about non-proportionality and large number of covariates under study should

always be faced. An additional crucial problem, which was not studied inthe present

Chapter, concerns non-positive excess hazards in relative survival regression models.

From a practical point of view, models about some situations as prevention studies,

would need to allow the excess hazards to be negative, assuring however non-negative

observed intensities. As pointed by Zahl (1996), the nonparametric additive excess

hazards model overcomes this problem. A proportional excess hazardsmodel can not

be used in case of negative excess intensities, however, it is still possibleto consider a

possible excess intensity equal to zero (Sasieni, 1996).

Models which allow accommodating time-varying covariate effects are very interest-

ing in the relative survival scenario. In this chapter, we studied such models with

additive excess hazards and presented the usefulness of some inferential procedures

about time-varying coefficients. A natural and important case to investigate, following

the same lines of study presented here, would be allowing the presence of both time-

varying and constant regression coefficients within the proportional excess hazards

model (3.16).



Chapter 4

Goodness-of-fit for Relative

Survival Models

The purpose of this chapter is to describe a suggestion for goodness-of-fit methods and

graphical tests for residuals in the relative survival setting. We do this bya straightfor-

ward use of the cumulative martingale residuals proposed by Lin et al. (1993), and we

illustrate how to use the cumulative martingale residuals for testing the proportional

hazards assumption in the proportional excess model by Sasieni (1996). This approach

is very simple to implement and is known to work well in the standard survival setting.

4.1 Introduction and background

There is a general lack of accomplished methodology for regression diagnostics and

assessment of goodness-of-fit of additive relative survival models. The existing theory

is only sometimes implemented in public software. Some of the parametric models

are estimated in the framework of generalized linear models, thereby enablingthe use

of standard regression diagnostics in this area. Recently, in the context of models

with multiplicative excess rate, Stare et al. (2005) proposed some diagnostics aimed

at detecting time-varying effects of covariates on the excess risk and based on partial

residuals defined similarly to the Schoenfeld residuals for Cox model. However, their

procedure relies heavily on the choice of a smoothing parameter, that can be com-

pletely avoided by the procedure we suggest here. An additional problem with the

proposal by Stare et al. (2005) is that it does not lead to the correct level even though

it in practice tend to work well.
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In order to show our idea, we need some background which was alreadypartially in-

troduced in Chapter 3. We describe the proportional excess hazards model, one of the

semiparametric choices in relative survival. Martingale residuals and their properties

are already reviewed in Section 2.1.2. The successive sections concern the application

of cumulative martingale residuals, presented in Section 2.1.2, to the proportional ex-

cess hazards model and to the nonparametric additive excess hazards model described

in Section 3.2.

4.1.1 The proportional excess hazards model

The proportional excess model proposed by Sasieni (1996) models theexcess risk on

a multiplicative scale. The statistical model is

λ(t) = Y (t)
[
α∗(t; z) + λ0(t)exp(XT β)

]
, (4.1)

where thep-dimensional regression coefficientβ = (β1, . . . , βp)
T is assumed time

invariant. Thep-dimensional vectorX contains the covariate values. Here the notation

is as in Section 3.2. In the counting process setting, the intensityλ(t) is associated

with the processN(t), with t ∈ [0, τ ], τ < ∞. Referring to the same definitions of the

model in (3.2), we associate the compensated counting processÑ(t) = N(t) − Λ∗(t)

to the martingaleM(t) so that

M(t) = Ñ(t) −
∫ t

0
Y (s)exp(XT β)dΛ0(s),

with Y (t) = (Y1(t), . . . , Yn(t)).

Solving the unweighted score equations derived from the log-likelihood for β andλ0,

up to all the observation period[0, τ ], leads to the following estimator for the baseline

cumulative excess hazard

Λ̂0(t; β) =

∫ t

0

∑
dÑi(u)

∑
Yi(u)eXT

i β
, (4.2)

with Xi equal to thep-dimensional vector of covariates of subjecti. The substitution

of this estimator in the score equation forβ yields

U(β) =
∑

i

∫ {
Xi −

∑
j Yj(t)Xje

XT
j β

∑
j Yj(t)e

XT
j β

}
dÑi(t), (4.3)
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which provides an estimate for the parameterβ such thatU(β̂) = 0. The general

background theory for the score equations is given in 1.3.4. Settingλ∗
i (t) = 0 for

i = 1, . . . , n, the modified counting process̃Ni is equal toNi and the unweighted es-

timators are the solutions to the usual score equations for the Cox model (see equation

(1.32) and Example 1.3.2 for more details). Properties of the estimators and conditions

under which they are valid can be found in Sasieni (1996).

Note that some difficulties arise in exchanging summation with integration in equation

(4.3), which depends on both the observed failure times and the observedcensoring

times, as the modified counting processÑi changes at every censoring time, besides at

every failure time.

4.2 Goodness-of-fit with cumulative martingale residuals

In this section, we propose a very straightforward procedure based on cumulative mar-

tingale residuals for testing goodness-of-fit of the proportional excess hazards model

(4.1). Our approach can also be used to assess the fit of the additive hazards excess

model but we here illustrate the basic idea by looking at the proportional excess model.

In the proportional excess hazards model, we are interested in checkingwhether the

sub-model for the excess hazard is adequate. More specifically, in order to fulfill this

objective, three aspects would need to be checked: Functional form ofcovariates, the

form of the link function of the excess hazard, the assumption of proportional hazards.

We show how the cumulative sums of martingale-based residuals (Lin et al., 1993) can

be used to answer this problems.

The partial likelihood score function (4.3) for the parameterβ can be also written as a

functional of the martingale processMi(t) associated with individuali, as in equation

(2.11). Here we recall the expression of the score function up to the entire interval

[0, τ ],

U(β) =
∑

i

∫ τ

0
{Xi − E(β, t)} dMi(t),

where we have definedE(β, t) = S1(β, t)/S0(β, t) and

Sk(β, t) =
∑

i

Yi(t)X
⊗k
i exp(XT

i β),

with k = 0, 1, 2. We haveX⊗0
i = 1, X⊗1

i = Xi and X⊗2
i = XiX

T
i . Xi =

(X1i, . . . , Xpi)
T is thep-dimensional vector of covariates of individuali.



92 4.2 Goodness-of-fit with cumulative martingale residuals

The martingale residuals (Section 2.1.2) for the proportional excess hazards model are

defined as

M̂i(t) = Ñi(t) −
∫ t

0
Yi(s)exp(XT

i β̂)dΛ̂0(s), (4.4)

whereΛ̂0(s) is the estimator in (4.2). They are defined similarly to the martingale

residuals for the standard proportional hazards model (Grønnesby and Borgan, 1996).

They verify the basic properties given in Section 2.1.2, i.e., their sum over the indi-

viduals is zero and they average to zero asymptotically. The cumulative martingale

residuals (Section 2.1.2) are constructed by different partial-sum processes of the mar-

tingale residualsM̂i(t). Processes can be over follow-up time or covariate values, in

order to test, respectively, the proportional excess hazards assumption or the functional

form of covariates and the link function. Then, tests about these aspectsare made by

using the processes to compare their observed behaviour with their potential one under

the assumption that the model is true.

The functional of the martingale residuals used to test the proportional excess haz-

ards assumption is based on the observed score process in time, written asU(β̂, t) =
∑

i XiM̂i(t). Using the cumulative martingale residualsUj(β̂, t) =
∑

i XjiM̂i(t), the

proportional excess hazard assumption may be verified both by graphical plots and by

hypothesis tests. A test statistics for eachj (j = 1, . . . , p) is given by the supremum

of the standardized score process

supt
(
V̂ ar(Uj(β̂, t)

)− 1

2

∣∣∣Uj(β̂, t)
∣∣∣ , (4.5)

where

V̂ ar
(
Uj(β̂, t)

)
=
∑

i

∫ t

0

(
Xi −

S1(β̂, s)

S0(β̂, s)

)⊗2

dNi(s)

is a consistent estimator of the variance of the observed score process.This supremum

test for proportionality has the advantage that no specific functional form needs to be

chosen when looking for lack of fit of the model for a specific covariatej.

The distribution ofn− 1

2 U(β̂, t) is asymptotically equivalent to

n− 1

2

(
D̂1(t) − Ĵ(β̂, t)Ĵ−1(β̂, τ)D̂1(τ)

)
, (4.6)

whereD̂1(t) =
∑n

i=1

∫ t
0 (Xi − E(β̂, s))dNi(s)Gi andG1, . . . , Gn are independent

standard normals. The matrix̂J(β̂, t) represents minus the derivative of the score func-

tion with respect toβ given by (4.3). Then, the asymptotic distribution ofn− 1

2 U(β̂, t)
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may be evaluated using a resampling procedure, by generating realizationsfrom the

process (4.6) which depends only on the random variablesGi (Martinussen and Scheike,

2006). This is made by repeatedly generating normal random samples{Gi} while

holding the observed data{Ni, Yi, Xi} fixed. The null distribution of the test statistics

in (4.5) is then approximated by these simulations. A graphical test about proportion-

ality may be obtained by plotting the observed score processU(β̂, t) over time together

with the realizations we have simulated from the process (4.6) in order to approximate

the null distribution ofU(β̂, t). If the observed score process diverges from the sim-

ulated processes under the model, which should randomly fluctuate aroundthe zero

axis, there is evidence of a lacking fit of the proportional excess hazards model due to

the missing proportionality.

The key reasoning about the validity of the cumulative martingale residuals in checking

the current model consists in replacing the counting processN(t) with the modified

counting process̃N(t) when it is opportune. Here, we underline the use of the esti-

matorΛ̂0 in (4.2), expressed as a function ofÑ(t). Moreover, in the process (4.6), the

estimator of minus the average of the derivative of the score function with respect to

β, Ĵ(β̂, t), needs also to be a function of̃N(t) and it is evaluated as

Ĵ(β̂, t) =
∑

i

∫ t

0

(
S2(β̂, s)

S0(β̂, s)
− E(β̂, s)⊗2

)
dÑi(s).

Finally, it is important to note that the process (4.6) depends directly only on the orig-

inal counting processNi(t), but not on ˜Ni(t), as the variance ofMi(t) is equal to

E(Ni), and therefore can be approximated byGiNi.

Graphical and statistical tests for checking the functional form of covariates and the

link function in the proportional excess hazards model may be carried outvery sim-

ilarly to the ones proposed by Lin et al. (1993) for the proportional hazards model

and involve the same substitutions shown previously in this section. For investigation

of the functional form of a certain covariatej, the tests are based on the cumulative

residual processM j
c (x) =

∑n
i=1

∫ τ
0 I(Xji(t) ≤ x)dM̂i(t), whereI(·) is the indi-

cator function,x ∈ R, andM̂i(t) are defined in (4.4). Resampling methods, as de-

scribed previously, provide simulated realizations under the null, which approximate

the asymptotic distribution of the latter process. Therefore, a graphical test is given

by plotting the observed cumulative residualsM j
c (x) versus the continuous covariate

with valuesx, together with random realizations under the model.
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Test for proportionality of the excess hazard
Covariate j Test-statistics supt |Uj(t)| p-value
CHF 12.7 0.418
agec 163.0 0.826
sex (female=1) 22.1 0.176
diabetes 19.4 0.086
VF 29.2 0.002

Table 4.1:Proportional excess hazards model: 50 simulation-based tests for propor-
tionality of the relative excess risk.

4.3 Example from the TRACE data

In order to test proportionality of the excess hazards of each covariatein the propor-

tional model (4.1), we use the simple non-standardized version of the test-statistics

(4.5) based on cumulative martingale residuals. Results in Table 4.1 suggestthat only

the covariate VF contributes to violate the assumption of proportionality (p = 0.002),

whereas the proportional effect of CHF was correctly verified by the data.

Comparison of the model-based relative survival functions with the corresponding

nonparametric estimated curves, underlines the possible violation of assumptions in

the analyzed models. We considered the semiparametric additive excess hazards mod-

els and the proportional excess hazards model with sex and VF as the onlyrisk fac-

tors. In Figure 4.1, the four estimated relative survival functions from each model are

compared with the corresponding relative survival curves (relative survival ratios) esti-

mated by using the Kaplan-Meier method for the observed and the Hakulinen method

(Hakulinen, 1982) for the expected survival. The choice of the alternative Edered II

method (Ederer and Heise, 1959) for the expected survival does notaffect the final

results, as our example concerns a short follow-up period. In panel (a) of Figure 4.1,

it is observed that the proportional excess hazards model does not fitvery well data of

patients with ventricular fibrillation, neither for females nor for males. On the other

hand, this model captures well the difference in relative survival between males and

females. The current lack of fit of the proportional excess hazards model is due to

the wrong assumption of proportional excess hazards for VF, which does not reflect a

much higher excess risk of dying soon after admission in the study for patients with

ventricular fibrillation. Predictions in panel (b) of Figure 4.1 describe muchbetter the

excess mortality pattern for the different patients groups, since the presence of a time-

varying coefficient for VF in the semiparametric model allows to capture changes of

the effect of VF with time.
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Figure 4.1: (a) Comparison between relative survival predictions based on the pro-
portional excess hazards model (dashed lines) and nonparametric relative survival
estimates based on the Kaplan-Meier and Hakulinen methods (solid lines) bysex and
VF. (b) Comparison between relative survival predictions based on the semiparamet-
ric excess hazards model (dashed lines) and nonparametric relative survival estimates
based on the Kaplan-Meier and Hakulinen methods (solid lines) by sex andVF.

The evidence of the wrong assumption about the proportionality for the VF effect

within the additive model with excess risk as in (4.1), was also provided by thestatis-

tical and graphical tests proposed by Stare et al. (2005), based on themaximum values

of the Brownian bridge processes. The EM method for smoothed baseline excess haz-

ards was chosen within the R packagerelsurv (Pohar and Stare, 2006), in order

to fit the regression model. The effect of VF resulted to be time-varying (maximum

value was equal to 3.109 withp < 0.001), whereas CHF and all the remaining co-

variates had time-constant effects. Therefore, the analyses of goodness-of-fit based on

the test-statistics (4.5) and on the tests by Stare reached the same conclusionsabout

the TRACE study, stating that it is solely the covariate VF that ruins the proportional

effects. Different results given by the models presented in the currentsection are es-

sentially due to modeling the excess risk on different scales, that is, the proportional or
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the additive scale. The effect for CHF, which resulted to be time-varying when using

the latter scale in the additive excess hazards models, but time-constant in models with

the proportional scale, is an example of that.

4.4 Discussion

Even though our suggestion is related to the recent interesting proposal by Stare et al.

(2005), our approach has important advantages. First, our method does not need any

critical choice of smoothing parameters (or parametric assumptions) for the baseline.

Secondly, our procedure is asymptotically justified and will thus lead to asymptotically

correctp-values and this is not true in general for the Stare et al. procedure.

Our suggestions about checking goodness-of-fit of the proportional excess hazards

model and the additive excess models play an important role in a good model selec-

tion. An advantage of the supremum test described in Section 4.2 is that no specific

deviations from proportionality need to be explicitly expressed. The drawback is how-

ever that the model is assumed to be correct with respect to all the other covariates

when the proportionality assumption is investigated for a specific covariate. Neverthe-

less, this is a general problem faced also by the existing methods for goodness-of-fit of

regression survival models. Then, important features of the data may beoverlooked,

and we might be unable to detect where a possible lack of proportionality occurs dur-

ing the follow-up time.



Chapter 5

Outlook: Time-dependent

Covariates in Competing Risks

Settings

The application to breast cancer in Chapter 2 gave rise to investigating the role of

time-dependent covariates in competing risks regression models, and more generally,

in multi-state regression models. There exist various types of time-dependent covari-

ates, which differ in their random or deterministic development in time (AppendixB).

When some of these are studied, predictions based on the model are not allowed, or

they meet with difficulties.

The area of research about the role of time-dependent covariates in thisfield is at a

young stage and there exists little literature focusing on how to handle different types

of time-dependent covariates. The present chapter is an attempt to enter this area and

provide some directions for future work.

In the next section a general overview of the state of the art, problems andfuture direc-

tions are introduced. The following section presents a possible extension of the com-

peting risks model, that allows us to include a simple random binary time-dependent

variable, in a multi-state framework. Inclusion of the sojourn time of an individual in

a certain state as a time-dependent covariate into the model, is also studied.
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5.1 Introduction

In multi-state models, and specifically in competing risks models, the principal interest

focuses often on the cumulative incidence probabilities. When a regression analysis is

suitable, in general the aim is to investigate the effects of covariates on theseprobabili-

ties. Of course, both time-independent and time-dependent covariates maybe relevant

to study.

The standard approach (Andersen et al., 1993, Chap. 7) consists ofseparate regres-

sion models for all the cause-specific hazards, which are then combined toestimate

the cumulative incidence probabilities. The effect of the covariates on these probabil-

ities is not direct and can not be synthesized by simple regression parameters. This

difficulty has led to the development of alternative recent approaches, which aim to es-

tablish direct effects of covariates on the cumulative incidence probabilities(Scheike

and Zhang, 2007). Fine and Gray (1999) proposed the proportionalsubdistribution

hazards model for competing risks, and the direct parametric inference for the cumu-

lative incidence functions is discussed by Jeong and Fine (2006). Klein and Andersen

(2005) presented a further approach based on pseudovalues. Predictions of cumulative

incidence functions by the direct binomial regression approach are given by Scheike

et al. (2007).

Regression on some kinds of time-dependent covariates, especially internal covariates

(Appendix B), leads to problems in interpreting and predicting cumulative incidence

probabilities within the standard approach, as discussed in the next section. These

aspects belong to the class of problems arising when model specification is only par-

tial (Andersen et al., 1993, Chap. 3). A possible solution, which however yields

rather complex theory, consists of specifying completely the model, i.e., givinga joint

model for the multi-state process and the time-dependent covariates (Henderson et al.,

2000). An open question is the role of external and internal covariates (Appendix B)

in modelling cumulative incidence probabilities according to the previously mentioned

alternative approaches, and whether or not predictions are possible.

The present chapter, within the standard approach of Andersen et al.(1993, Chap. 7),

provides a discussion about the role of the different types of time-dependent covariates,

throws light on some interesting directions of work and attempts to give some possible

solutions. This work could serve as a starting point for further investigation on the

above mentioned problems and related aspects, both within the standard approach and

within the alternative recent approaches.
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Figure 5.1:The extended illness-death model for competing risks without possibility
of recovery. The ending event can be due to causes{2, . . . , k}. The arrows represents
the possible transitions between states.

5.2 An extended illness-death model for competing risks

This section presents a multi-state model where additional information about thehealthy

and diseased states is joint to the standard competing risks model. Therefore, we can

think of this model as an extended illness-death model (Appendix C) where the com-

peting risks are also taken into account.

Consider a nonhomogeneous Markov process in continuous time with finite state space

Sc = {0, 1, 2, . . . , k}. The extended illness-death model for competing risks has ab-

sorbing states{2, . . . , k}, representing the ending events due to different causes, while

the states0 and1 are transient and represent two different statuses of individuals. Its

possible transitions are shown in Figure 5.1, where, in clinical studies, the patient sta-

tus can be ‘healthy’ or ‘diseased’. Individuals can experience the transition from0 to

1, but the transition back to state0, i.e., the possibility of recovery for diseased patients

is here excluded. Moreover, both ‘healthy’ and ‘diseased’ individuals can meet with

one of the possiblek − 1 ending events.

The probability space is(Ω,Z, P ), withZ being the filtration generated by the stochas-

tic process. Denote withPhl(s, t) andαhl(t), h, l ∈ Sc, the transition probabilities and

the transition intensities, respectively, as in equations (1.33) and (1.34). Under inde-

pendent right-censoring, letN(t) = (N0l(t), l ∈ {1, . . . , k}; N1h(t), h ∈ {2, . . . , k})
be the multivariate counting process, where, for instance,N0l(t) counts the number of
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direct observed transitions from0 to l in [0, t]. Assume thatN(·) has intensity pro-

cessλ(t) = (λ0l, l ∈ {1, . . . , k}; λ1h(t), h ∈ {2, . . . , k}), where each element has

the multiplicative formλ0l(t) = Y0(t)α0l(t), with Y0(·) being the at-risk process. The

hazard functionsα0l(·), for l ∈ {1, . . . , k}, andα1h(·), for h ∈ {2, . . . , k}, regulate

the behaviour of the extended illness-death model for competing risks, as shown by

the arrows in Figure 5.1.

Let A be the matrix of integrated transition intensities, where the positive elements

are A0l(t) =
∫ t
0 α0l(u)du, for l ∈ {1, . . . , k}, and A1hl(t) =

∫ t
0 α1h(u)du, for

h ∈ {2, . . . , k}. Ahh(t) =
∫ t
0 αhh(u)du, for h = 0, 1, are defined so thatαhh(·) =

−∑l 6=h αhl(·). The transition matrixP can be written in product integral representa-

tion as in Equation (1.35), withQ = dA. Since we are in the absolutely continuous

case,P is the unique solution to the Kolmogorov forward differential equations for the

intensity matrixα. As a solution to these equations, explicit expressions for the tran-

sition probabilities of the extended illness-death model for competing risks caneasily

be obtained.

The probabilityP01(s, t) is equal to the one in the illness-death model (Appendix C),

specified in equation (C.1). Its interpretation is intuitive: an individual may sojourn

in state0 for a certain time[s, u−] with probabilityP00(s, u−), then he may jump to

state1 atu with instantaneous rateα01(u) and finally sojourn in state1 the remaining

time [u, t] with probabilityP11(u, t). The transitions from state 1 (‘diseased’) to the

cause-specific events are regulated by the probabilities

P1h(s, t) =

∫ t

s
P11(s, u−)α1h(u)du, h = 2, . . . , k, s ≤ t. (5.1)

The cumulative incidence probabilities for the cause-specific events are the transition

probabilities from state 0 to the absorbing states2, . . . , k, given by

P0h(s, t) =

∫ t

s
[P00(s, u−)α0h(u) + P01(s, u−)α1h(u)] du, h = 2, . . . , k, s ≤ t.

(5.2)

Equations (C.1), (5.1) and (5.2) depend on the probabilities of permanence in0 or in 1

between a certain time interval[s, t], P00(s, t) andP11(s, t). Provided thatAhh(·), h =

0, 1, are absolutely continuous, their product integral representation has the explicit

form

Phh(s, t) = exp

{∫ t

s
αhh(u)du

}
, h = 0, 1, s ≤ t, (5.3)
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where

α00(u) = −(α01(u) +
∑

h=2,...,k

α0h(u)), α11(u) = −
∑

h=2,...,k

α1h(u).

One of the primary interests is to estimate theP0h(s, t), h = 2, . . . , k, which represent

the probability of experiencing the event due to causeh within (s, t], taking the history

of the disease into account. Another important aspect to study is the marginalsurvival

probability, that is the probability of not experiencing any event until timet, given by

S(t) = P00(t) + P01(0, t). (5.4)

First, we recall the Nelson-Aalen estimators for the cumulative hazard functions,

Â0l(t) =

∫ t

0

dN0l(u)

Y0(u)
, Â1h(t) =

∫ t

0

dN1h(u)

Y1(u)
, l = 1, 2, . . . , k, h = 2, . . . , k,

(5.5)

which are assumed to be equal to zero at times where the at-risk process is not pos-

itive. Moreover, defineÂhh(t) = −∑l 6=h Âhl(t), for h = 0, 1, and denote withÂ

the matrix containing the estimators of the cumulative hazard functions. For finite-

state Markov processes, an important result consists in the so-called Aalen-Johansen

estimator of the transition matrixP (Aalen and Johansen, 1978). This estimator is

P̂ (s, t) =
∏

(s,t]

(
I + dÂ(u)

)
. (5.6)

It is expressed by the product integral representation similarly to the Kaplan-Meier

estimator of the survival probability in a simple two states model, with one of them

absorbing.

The fundamental result (5.6) yields the following estimators

P̂hh(s, t) =
∏

(s,t]

(
1 + dÂhh(u)

)
=
∏

(s,t]

(
1 − dNh•(u)

Yh(u)

)
, h = 0, 1, (5.7)

with dN0•(t) =
∑k

j=1 dN0j(t) anddN1•(t) =
∑k

j=2 dN1j(t). Since theÂhh(·) are

continuous step-functions with a finite numbers of jumps, the product integral reduces

to a simple product over the jump times on(s, t]. Note that the product is over times

of any observed transition out of stateh.

Estimation ofP01(·) in (C.1) is straightforward, since it is obtained by plug-in of the
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estimatorŝP00 andP̂11 given in (5.7). Similarly, estimators of the cumulative incidence

probabilities in (5.2) and (5.1), as well asS(·) in (5.4), are given by the plug-in method.

Note that in these equations the integrals reduce to sums, when the estimators are

computed. For instance,̂P1h(s, t) is obtained by summation over the transition times

from 1 to h, that are the times when an event of typeh is observed for a diseased

patient.

5.3 Time-dependent covariates in the extended illness-death

model for competing risks

Regression analysis on Markov multi-state models can be performed by the standard

approach (Andersen and Keiding, 2002, Andersen et al., 1993, Chap. 7). Time-

dependent covariates are also allowed.

Denote withN i = (N0l,i(t), l ∈ {1, . . . , k}; N1h,i(t), h ∈ {2, . . . , k}), for i =

1, . . . , n the multivariate counting process of individuali. Regression on covari-

ates is made by specifying regression forms forα0l,i(t; Xi(t)) and α1h,i(t; Xi(t)),

for l ∈ {1, . . . , k} andh ∈ {2, . . . , k}, whereXi(t) is the vector containing all the

cause-specific covariates for individuali. Estimators of the baseline cumulative hazard

functions can then be obtained by Breslow estimators, similarly to what was done for

the application to breast cancer presented in Chapter 2.

When the interest is on predicting transition probabilities, the transition matrix is esti-

mated as usual by the product integral

P̂ (s, t; X0(t)) =
∏

(s,t]

(
I + dÂ(u; X0(t))

)
, (5.8)

whereÂ(u; X0(t)) is the matrix of estimators of the integrated transition intensities.

In order to obtain these estimators, the covariates need to be specified, as denoted by

the given covariate vectorX0(t).

A fundamental aspect so that the estimator in (5.8) is valid concerns the types of time-

dependent covariates (Appendix B) included in the multi-state model. In case an inter-

nal time-dependent covariate is included in the regression analysis, predictions on the

transition probabilities conditionally on given covariates, as in (5.8), are not possible.

We explain the reason of this by an informal example. Suppose the interest of a study

is to predict some cumulative incidence probabilities under the extended illness-death
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model for competing risks. Assume the regression models for the specific intensi-

tiesα1h(·; XI(·)), h = 2, . . . , k, include an internal time-dependent covariateXI(·).
Then, if we wish to estimate someP1h(s, t), from (5.1) we observe that they are func-

tions ofP11(s, u−). This latter depends indirectly onXI(·) through its dependence on

all the cause-specific hazardsα1h(·; XI(·)), h = 2, . . . , k (as seen in equation (5.3)),

but it also depends directly on the internal covariate, sinceXI(·) carries information

on the survival time of individuals. Therefore, given the observed covariate history up

to timeu−, P11(s, u−; XI(u−)) does not have anymore a meaningful interpretation.

In fact, it is equal to one, and the consequence would be that all the cause-specific

hazardsα1h are null.

5.3.1 Internal binary time-dependent covariates

In the previous subsection we illustrated the problems related to including an internal

covariate into the regression model when predictions of the transition probabilities are

of interest. In this context, the extended illness-death model for competing risks would

provide a useful instrument when an internal binary time-dependent covariate would

need to be studied. More specifically, when the binary time-dependent covariate is a

simple one-step process, we might incorporate this process into the competingrisks

model. This means that the information given by the binary covariate is represented

by the two additional states (0 and1) of the extended competing risks model, presented

in Section 5.2.

An example can be a study where it is important to take the binary covariate re-

sponse/no response to a certain treatment into account. One may include this inter-

nal variable into a competing risks regression model, and thus investigate its effect

on the cause-specific hazards, although cumulative incidence probabilities can not be

estimated without specifying a model for the covariate. Otherwise, the extended com-

peting risks model in Section 5.2, with transient states0, 1 equal to, respectively, ‘no

response’ and ‘response’, may be considered. Therefore, the probabilities of dying

for a certain cause, for response and non-response patients, can be estimated and even

compared. It may also be of interest to estimate the probabilityP01(0, t) to respond to

the treatment within a certain timet.

A further interesting idea would consist of allowing patients to enter the study at time

origin in either state0 or 1. An initial distribution would need to be specified, i.e.

the probabilitiesπ0(0) andπ1(0). This situation can be realistic when patients do not

experience both the statuses described by states0 and1. For example, when studying
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mortality due to different causes for some patients taking the role of HIV into account,

one might be faced with children with or without HIV at birth, correspondingto enter-

ing in state1 or 0, respectively.

Finally, we mention a possible extension of the model in Section 5.2 when the possi-

bility of ‘recovery’ is also considered, that is when the transition from state1 back to

state0 is possible, as in the illness-death model represented in Figure C.1. Explicit ex-

pressions for the transitions probabilities of this model can not be obtained anymore,

although estimators based on the product integral representation can be computed,

similarly to what was done in Section 5.2.

5.3.2 The time-dependent covariate ‘duration in a state’

Within the extended competing risks model in Section 5.2, a very relevant aspect to

study is the sojourn time into a certain state. Suppose we are interested in the duration

in state1 since the timeT1 of entrance in this state, and denote it withd. Therefore, the

intensities regulating the transitions from1 to the ending cause-specific events depend

on the durationd and can be written asα1,h(t, d), h = 2, . . . , k, with d = t − T1. We

defined = 0 for t < T1.

These intensities can be modelled by regression on the time-dependent covariate dura-

tion d, besides other covariates. An example is the Cox regression model,α1h(t, t −
T1) = α1h,0(t) exp{(t − T1)β}. Since the transition timeT1 is random, the duration

d = t − T1 is a simple random process, which is null untilT1, while afterT1 it in-

creases linearly with timet. LetFt andXt be the filtrations generated by the observed

multi-state process and the observed covariated, respectively. SinceT1 is determined

by the multi-state process itself,d is adapted to the filtrationFt, and then the observed

history ofd is so thatXt ⊂ Ft. The covariated can not be considered as determined

in advance from timet = 0, sinceT1 is unobserved at the time origin.

However, after entering state 1 atT1, given the covariate historyXt with t ≥ T1, the

durationd can be considered as determined. Thus, it may be thought of as a defined

time-dependent covariate (Appendix B).

Since,d is assumed to influence the multi-state process only through the transition

intensitiesα1h(·), h = 2, . . . , k, the transition probabilities from state1 given the

observed historyFs− are

P1h(s, t; T1) =

∫ t

s
P11(s, u−; T1)α1h(u, u−T1)du, h = 2, . . . , k, T1 < s ≤ t,
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where

P11(s, u; T1) = exp

(
−
∫ u

s

k∑

h=2

α1h(v, v − T1)ds

)
.

Similarly to equation (5.2), the cumulative incidence probabilities forh = 2, . . . , k

can be expressed as follows

P0h(s, t) =

∫ t

s
[P00(s, u−)α0h(u) + P01(s, u−)α1h(u)] du

=

∫ t

s
P00(s, u−)α0h(u)du +

∫ t

s
P00(s, u−)α01(u)P1h(u, t|u)du,

(5.9)

where

P1h(u, t|u) =

∫ t

u
P11(u, v − |u)α1h(v, v − u)dv,

andP00 is given by (5.3).

When transition intensities depend ond = t−T1, which is studied as a time-dependent

covariate, estimation of transition probabilities is straightforward, as seen just above,

since in (5.9) the conditional probabilitiesP1h(u, t|u) are computed for all possible

timesu of transition to state1. If we consider the extended illness-death model for

competing risks where individuals are allowed to enter the study in either state0 or

1 at the time origin, predictions onP can be possible only if the filtrationF0 at time

0 contains information about the previous entry timeT1 in state1. In this case, the

duration can be considered as a completely predetermined time-dependent covariate.

Otherwise, if information onT1 is unknown for patients entering the study in state1,

then the sojourn time in this state can not be observed, and hence estimation under the

model previously described can not be performed.

Interesting open questions arise in studying the extended competing risks model of

Section 5.2 with duration dependence. Some complications, for instance, arise also

when left-truncation is present, since information onT1 might not be known for pa-

tients with delayed entries.
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Discussion

The work in this thesis dealt with competing risks in survival analysis, both in the case

of known specific causes and with the case of unknown (even if present) specific causes

of the event. In the first case, we discussed the competing risks models andwe focused

on regression for the cumulative incidence probability. In the second case, where the

event related to a certain group of diseased patients is recorded without any cause,

regression models for relative survival were discussed. As shown by the present work,

it is important to pay attention to inferential problems concerning dynamic aspects of

models, such as time-dependent covariates and time-varying regression coefficients.

The competing risks setting was chosen as a very necessary statistical toolfor studying

the cardiotoxicity risk for patients with advanced breast cancer. Because of their severe

status, it is known that these patients have a very high risk of dying, also during their

chemotherapy treatment. That is why we can not neglect to consider the competing

risk of dying for breast cancer even though the primary interest focuses on the risk of

developing CHF. Ignoring the competing cause might lead to overlooking important

features of the studied problem. Patients who died could potentially have developed

CHF, but this event can never be observed.

The application of a competing risks analysis to the study of cardiotoxicity as a func-

tion of chemotherapy dosages led to very important new medical results. First of all,

we found new recommended levels for the total dose administrated during Epirubicin

chemotherapy, which were found to be lower than the one recommended in thelitera-

ture (Ryberg et al., 1998). Moreover, the existing literature suggests a single level for

all types of patients. We demonstrated that the optimal recommended dosage can vary

substantially between groups of patients with different characteristics andrisk factors.

In order to compute the optimal dosage levels corresponding to a 5% cardiotoxicity

risk, we needed to treat cumulative dose as a time-dependent covariate. In handling

time-dependent covariates, the implementation of the analysis was not trivial, since
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the history of dose administration for each patient was needed, but statistical inference

for the competing risks model did not require substantial modifications, sincewe were

allowed to treat the time-dependent covariate as deterministic.

A drawback of the standard method used in Chapter 2 for regression analysis of com-

peting risks data is that simple parameters, which explain directly the effects ofco-

variates on the cause-specific cumulative incidence probabilities, are missing. The

cumulative incidence probabilities are complex non-linear functions of the covariates

and then, it is only possible to describe an indirect covariate effects only by predicting

these probabilities for different given covariate patterns.

Problems about goodness-of-fit in case of a time-dependent covariatewere investi-

gated. Some of them were already pointed out by other authors (Therneau and Gramb-

sch, 2000, Chap. 5), but we disagree on the usefulness of martingale residuals in

suggesting possible correct functional form. Plots of martingale residualsboth per-

observation and per-subject might fail in investigating the functional formof a time-

dependent covariate. We discussed about the need of cumulative martingale residuals

(Lin et al., 1993) in model diagnostics, as they overcome problems related to time-

dependency of covariates. A drawback of the type of residuals appliedin Chapter 2

and the corresponding tests of hypotheses for each covariate, is that they are only valid

if the Cox model is correct for all the remaining covariates (Scheike and Martinussen,

2004).

For relative survival, it was shown that the high flexibility of the additive nonparametric

and semiparametric models, together with the inferential aspects described in Chapter

3, provides a very important alternative to the existing methods in this field, andon the

other hand, a useful general extension of the more restrictive recentmodels.

The TRACE example demonstrates the need of new flexible survival models for mod-

eling the excess hazards, which can deal with time-varying dynamics of covariates

effects. In Chapter 3, we showed how the nonparametric and semiparametric versions

of the additive excess hazard can easily handle these dynamics. We demonstrated

when one or the other model is appropriate according to the responses ofsimulation

based graphical and statistical tests about variation of effects over time. Even though

inferential procedures described here are complicated in their expressions, when they

concern finding equivalent asymptotic distributions of Gaussian processes, the great

advantage is a very easy interpretation of results. In this connection, the statistical

software, e.g. the R packagetimereg (Martinussen and Scheike, 2006, App. C)

used in our application and presented in the Appendix, is an essential instrument.
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In choosing between a proportional or an additive form for the excesshazards, prob-

lems about non-proportionality and large number of covariates under study should

always be faced. An additional crucial problem, which was not studied inChapter 3,

concerns non-positive excess hazards in relative survival regression models. From a

practical point of view, models about some situations as prevention studies,would need

to allow the excess hazards to be negative, assuring however non-negative observed in-

tensities. As pointed by Zahl (1996), the nonparametric additive excess hazards model

overcomes this problem. A proportional excess hazards model can not be used in case

of negative excess intensities, however, it is still possible to consider a possible excess

intensity equal to zero (Sasieni, 1996).

Even though our suggestion for goodness-of-fit for relative survival presented in Chap-

ter 4 is related to the recent interesting proposal by Stare et al. (2005), our approach has

important advantages. First, our method does not need any critical choiceof smooth-

ing parameters (or parametric assumptions) for the baseline. Secondly, our procedure

is asymptotically justified and will thus lead to asymptotically correctp-values and this

is not true in general for the Stare et al. procedure.

Our suggestions about checking goodness-of-fit of the proportional excess hazards

model and the additive excess models play an important role in a good model selec-

tion. An advantage of the supremum test described in Section 4.2 is that no specific

deviations from proportionality need to be explicitly expressed. The drawback is how-

ever that the model is assumed to be correct with respect to all the other covariates

when the proportionality assumption is investigated for a specific covariate. Neverthe-

less, this is a general problem faced also by the existing methods for goodness-of-fit

of regression survival models.

In conclusion, presence of several (known or unknown) causes of an event of interest,

typically death, are ubiquitous in biostatistics, and imply the necessity of studying

problems in a competing risks or relative survival setting. Moreover, dynamic aspects

are essential in providing a more accurate statistical description of the behaviour and

effect of covariates in regression models. The results presented in the thesis contribute

to illustrate these aspects, both from an applied point-of-view using real data, where we

are faced with unexpected and realistic questions and complications, and byproviding

new theoretical improvements of the existing methodology.
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Appendix A

R Code for Relative Survival

Models

We show the basic R code concerning the application of the models presentedin

Section 3.4 to the TRACE data. The R packagetimereg can be downloaded at

http://staff.pubhealth.ku.dk/∼ts/timereg.html.

The dataset is called TR and it is structured with multiple observations for eachpatient

in order to fulfil the conditions for studying time-dependent variables. Thefunction

aalen.test fits both the nonparametric and semiparametric additive excess hazards

models presented in Sections 3.2 and 3.3. Commands for the former model are:

library(timereg);

dummy<-rnorm(nrow(TR));

fit1 <- aalen.test(Surv(start,stop,status>=7) ∼ CHF+agec

+sex+diabetes+VF+const(dummy),data=TR,n.sim=300,max.time=6,

+offsets=TR$rate,id=TR$id,fix.gam=1);

summary(fit1)

In this example, theSurv(start,stop,...) setting is used for the time-dependent

covariateagec, estimates are un-weighted and summary of the output shows the tests

T1S for non-significant effects and the testsT2S andT2I for time invariant effects. The

offsetTR$rate is the vector of expected mortality rates from the Danish population.

The optionfix.gam needs to be set equal to one in case of the nonparametric model.

Further options are explained in the R help.
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The following code,

plot.aalen(fit1,pointwise.ci=2,sim.ci=1)

provides graphics about the behaviour of the cumulative regression coefficientsB(t).

The argumentspointwise.ci ≥ 1 andsim.ci ≥ 1 show, respectively, the 95%

confidence intervals and the confidence bands based on 50 simulated processes under

the null hypothesis.

The semiparametric additive excess hazard is given by:

fit2 <- aalen.test(Surv(start,stop,status>=7) ∼ CHF+agec

+const(sex)+const(diabetes)+VF, data=TR,n.sim=300,

+max.time=6,offsets=TR$rate,id=TR$id);

summary(fit2);

plot.aalen(fit2,ylab="Test process",score=T)

The last plot, with the argumentscore, yields graphics about the observed processes

used for computingT2S andT2I with 50 random realizations under the null hypothesis.

Further options aboutplot.aalen are explained in the R help.

The functionpe.sasieni fits the proportional excess hazards model described in

Section 4.1 as follows:

fit3 <- pe.sasieni(Surv(start,stop,status>=7) ∼ CHF+agec

+sex+diabetes+VF,data=TR,offsets=TR$rate,id=TR$id,

+max.time=6);

summary(fit3)

The summary provides statistics about the regression coefficients and testsfor non-

significant effects. The non-standardized version of the test for the hypothesis of pro-

portionality of the hazards, based on cumulative martingale residuals and presented in

Section 4.2, is also given in the summary.
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Time-dependent Covariates

An overview of the different types of time-dependent covariates and their characteris-

tics is described. Partial model specification and likelihood construction arereviewed

for every type of such covariates and problems related to the survival function and

predictions are illustrated.

B.1 Time-dependent covariates

Time-dependent covariates arise in regression models when the covariates change in

time during the period of the study and their variation is influencing substantially the

hazard functions. Let{X(t); 0 ≤ t ≤ τ} denote a time-dependent covariate process,

where[0, τ ] is the study period, and letXt denote the filtration of the covariate history

up to timet.

We assume to work under a right-censoring scheme and we suppose that amodel

for the hazard functionαθ(t) is specified depending on a parameterθ. Let F ′
t be

the filtration generated by the observed survival data, as explained in thebackground

Section 1.3.2.

When a regression model is specified, an extended history,Ft, which incorporates

also information about covariates needs to be considered. If regression is only on time-

independent covariates, their information is expressed by the filtrationX0 generated by

all the covariates observed at the time origin 0. Hence, the extended observed history is

Ft = F ′
t ∨X0. If time-dependent covariates are included into the model, the observed

filtration Ft contains also the covariate information up to timet, Xt. It is then given

by Ft = F ′
t ∨ Xt, that is the smallestσ-algebra containing both the history generated
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by the observed survival times and the covariate historyXt up to timet.

The first important assumption for regression modelling with a time-dependentcovari-

ate is that the covariate process is predictable with respect toFt, for instance being

left continuous. The conditional hazard function given the history of the observed

covariate processX(t) is

αθ(t;Xt)dt = P {t ≤ T < t + dt|Xt, T ≥ t} , (B.1)

whereT is a right-censored survival time. In some particular cases, the hazard function

depends only on the current values of the covariates at timet.

Time-dependent covariates are divided into two general classes: External and inter-

nal covariates. In the literature they are sometimes also denoted as exogenous and

endogenous covariates. A formal definition can be given for these two classes. A

time-dependent covariate that satisfies the condition

P {u ≤ T < u + du|Xu, T ≥ u} = P {u ≤ T < u + du|Xt, T ≥ u} (B.2)

for all u and t such thatu ≤ t, is called external (Kalbfleisch and Prentice, 2002).

Hence, the hazard function at timeu is influenced by the observed covariate history

up to timeu by the regression model, but the occurrence of a failure in[u, u + du)

is independent of the future path of the covariate after timeu. This is equivalent to

saying that a covariate is external if its future path up to any timet is not affected

by the occurrence of a failure at timeu. When the condition in (B.2) does not hold, a

time-dependent covariate is called internal. The path of an internal covariate is affected

by the occurrence of a failure time, since its existence depends on the survival of the

individual. Therefore, its path carries information about the occurrence of a failure

time.

Internal covariates are related to the random behavior of individuals under study, and

consequently, they are observed only as long as individuals are at risk. In clinical bio-

statistics typical examples are disease complications, measurements recordedat the

follow-up visits, such as biochemical and clinical characteristics, which give prognos-

tic information on the status of patients. In general, external covariates have instead

an observed path which is external to the individuals under study or it is not directly

generated by their behavior in time. Some examples are the age of patients, levels of

air pollution or the time since the disease diagnosis.



B.2 Partial model specification and likelihood construction 115

External covariates can be of two different types, as defined by Kalbfleisch and Pren-

tice (2002). A time-dependent covariate is denoted as defined if it is deterministic in

time, or if it varies in a predetermined way, since its path can be determined in ad-

vance. Age of patients and time since the disease diagnosis, if this latter is included in

the information available at the time origin, are examples of that. A time-fixed covari-

ate belongs to the class of defined covariates, since its value is given at thetime origin

and is constant for the duration of the study. The second type of external covariates

is called ancillary. Their stochastic processes have distributions that do not involve

the parameters of the regression model for survival times. An example of an ancillary

time-dependent covariate is the measurement of air pollution used to predict the rate

of asthma attacks.

B.2 Time-dependent covariates: Partial model specification

and likelihood construction

The scope of this section is to remark the model specification and possible changes in

the likelihood function due to regression on different types of time-dependent covari-

ates.

As it was already described in Section 1.3.3, in case of right-censored data the full

likelihood function for(θ, φ) factorizes as

L(θ, φ) = Lu
τ (θ, φ)Lc

τ (θ), (B.3)

with θ andφ being the parameter of interest and the nuisance parameter, respectively.

In regression models for the hazard, the first factorLu
τ (θ, φ) may contain information

about the additional parameterφ related to the distribution of the censoring mecha-

nisms or/and the marginal distribution of covariates. The functionLc
τ (θ) is the partial

likelihood for θ and its form is given in equation (1.29). A model with such a fac-

torization for the total likelihood can be partially specified, since computation ofthe

partial likelihood forθ does not depend on the nuisance parameterφ and, generally,

does not require specifying models for the covariates and the censoringmechanism.

When regression models include time-independent covariates, we are in thesituation

previously mentioned, and thus the partial likelihood can be written conditionallyon

the covariates, which are fixed given the filtrationX0. However, this is not always

true for time-dependent covariates, and complications arise when certain classes of
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covariates are studied, as explained later in this section.

Suppose thatFt = F ′
t ∨X0 is the observed filtration which incorporates only informa-

tion on time-independent covariates. When a time-dependent covariateX(t) is also

included into the regression model, an important aspect to consider is whether its co-

variate process is adapted toFt or not. It turns out that defined covariates are adapted

to the filtrationFt, and then, the historyXt generated by their observation up to time

t is so thatXt ⊂ F ′
t ∨ X0 (Andersen et al., 1993, Chap. 3). This means that these

covariates are either deterministic or their paths can be considered as beingfixed in

advance. Therefore, inference can be based on a partial likelihood which has the same

form asLc
τ (θ) in (1.29).

Ancillary and internal covariates can instead be considered as random time-dependent

covariates, and their processX(t) is not adapted to the filtrationFt. Therefore, the

filtration needs to be extended so thatFt = F ′
t ∨ Xt. However, when ancillary co-

variates are studied, inference on the parameter of interestθ can still be based only on

the partial likelihoodLc
τ (θ), conditioning on the observed paths. Since the ancillary

covariate processes are completely external to the individuals under study, the model

for these covariates does not depend onθ, and therefore does not need to be specified.

The main difference of internal covariates with respect to other covariatetypes is that

they carry information about failure times of individuals. The hazard function has the

same form as in (B.1), but now we can condition only on the covariate historyXt− up

to the time just beforet. Inclusion of internal covariates allows us to base inference on

the partial likelihoodLc
τ (θ), even though the full likelihood in (B.3) contains factors

(included inLu
τ (θ, φ)) related to the marginal distribution ofX(t) given the history

Xt− (Kalbfleisch and Prentice, 2002). Thus, we can avoid to specify a modelfor X(t),

but, in case this model depends on both the parametersθ andφ, inference based on the

partial likelihood can be inefficient (Greenwood and Wefelmeyer, 1990).

B.3 Time-dependent covariates: Survival function and pre-

dictions

For external covariates, the survival function is well defined and, conditionally on the

covariate history, it is given byS(t; X(t)) = P{T > t|Xt}. Therefore it can be

estimated without problems, given a certain covariate path up to timet.

For internal covariates the previous situation does not hold and care needs to be taken
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in interpreting the survival function. Since the observation ofX(t) contains the failure

information for an individual, the knowledge of its process up to timet would mean

that the patient is still at risk at timet without having experienced the failure event, and

therefore it would beP{T > t|Xt} = 1. The conditional hazard in (B.1) can not be

directly related to the survival function, as it is usually done (equation (1.2)), since in

this case the survival distribution is meaningless and does not have any interpretation.

The survival probability is not anymore a function only of the hazard function, but

also of the random development of the covariates. Therefore, in orderto provide an

estimate for the survival probability, a distribution for the stochastic process of the

internal covariate must be also specified.

When internal covariates are studied, predictions based on the model cannot be made,

because of the same reasons previously explained for the survival probability. The

model is no longer partially specified and the parameters in the covariate modelneed

also to be considered as parameters of interest.
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Appendix C

The Illness-Death model

The illness-death model, also called the disability model, is a multi-state model for a

nonhomogeneous process in continuous time with a finite number of states. Thismodel

is very useful in clinical studies where it is important to record whether or not, and how

many times, the patient changes a certain clinical status before his/her possible death,

and the aim is to study in time the rate of these events. For instance, before dying,

patients may change status from being healthy to becoming diseased, and lateron they

may recover changing back into the healthy status.

We present this model, referring to the general formulas and notation about multi-state

models given in Section 1.4.1. Its first formulation was discussed in the papers by Fix

and Neyman (1951), Sverdrup (1965). A brief summary of the model is contained in

the paper by Andersen and Keiding (2002) and several applications can be found in

Andersen et al. (1993).

The state space is{0, 1, 2}, where0 and1 are transient states, representing the clinical

statuses of individuals, and2 is an absorbing state, corresponding to the ending event.

Let us consider the probability space(Ω,Z, P ), whereZ is the filtration generated

by the stochastic process for the illness-death model. The time interval of interest

is T = [0, τ) with τ ≤ ∞. The stochastic development of the process is specified

by the transition probabilities between states,Phl(s, t) with h, l ∈ {0, 1, 2} ands ≤
t ∈ T , (Equation (1.33)) or, equivalently, by the matrix of transition intensities of the

process,αhl(t) with h, l ∈ {0, 1, 2} (Equation (1.34)). The illness-death model and its

possible transitions are illustrated in Figure C.1, where for clarity the states0, 1 and2

are denoted by healthy, diseased and death, respectively. However,the states may of

course represent other types of ending events or intermediate statuses.
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Figure C.1:The illness-death model in the multi-state approach.

In the present formulation we assume that all individuals are observed from the time

origin, but this simple situation might not always be true and individuals might begin

to be observed later (left-truncation). We suppose that all individuals arein state0 at

the time origin, i.e., the initial distribution of the process isπ0(0) = 1 andπh(0) = 0

for h = 1, 2. Moreover, we restrict our description to the case of a Markov process

underlying the illness-death model.

A simpler version of the illness-death model precludes the transition from the state

1 back to the initial state0, which, for instance, means excluding the possibility of

recovery for those individuals who are in the diseased status. The simplerversion is

given in Figure C.1, if the arrow from1 to 0 is deleted, i.e.,α10(t) = 0 for all t ∈ T .

Hereafter, the mathematical formulation is described for this latter version.

The transition probabilities for the simpler illness-death model are specified asfollows:

P01(s, t) =

∫ t

s
P00(s, u−)α01(u)P11(u, t)du, s ≤ t, s, t ∈ T (C.1)

and

P02(s, t) =

∫ t

s
P00(s, u−)α02(u)du, s ≤ t, s, t ∈ T , (C.2)

P12(s, t) =

∫ t

s
P11(s, u−)α12(u)du, s ≤ t, s, t ∈ T . (C.3)

The probabilities of permanence in the states0 and1 have, respectively, the explicit
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expressions

P00(s, t) = exp

(
−
∫ t

s
(α02(u) + α01(u))du

)
, (C.4)

P11(s, t) = exp

(
−
∫ t

s
α12(u)du

)
, (C.5)

sinceα00(t) = −∑h 6=l αhl(t) = −(α02(t) + α01(t)) andα11(t) = −α12(t).

The marginal survival probability is given byS(t) = P00(0, t) + P01(0, t), and it

represents the probability of being alive, that is being either in state0 or in state1 at

time t.

In some situations it may occur that the hazard of the transition from state1 to state

2 depends on both the principal time scalet and the durationd of sojourn in state1.

One possible way of incorporating this dependence into the model is to consider the

additional time scaled when studying the hazard. In this case, the transition intensities

P11(s, t) andP12(s, t) are specified by replacingα12(u) with α12(u, d). Therefore,

the instantaneous rateα12(·) depends on the random entry time into state1. If this

hazard depends ond only, then the illness-death model belongs to the class of semi-

Markov models. Applications of such a model and some related theoretical aspects are

proposed by Klein and Shu (2002).
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