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Summary

The thesis concerns regression models related to the competing risks settingval
analysis and deals with both the case of known specific causes andelaf ngagknown
(even if present) specific causes of the event of interest.

In the first part, dealing with events whose specific cause is known, dogpesks
modelling has been applied to a breast cancer study and some of the dyspattsa
such as time-dependent variables are tackled within the context of the ajgplic
The aim of the application was to detect an optimal chemotherapy dosagiéféor d
ent typologies of patients with advanced breast cancer in order to ttmrdask of
cardiotoxicity. The attention was concentrated on the cumulative incideobalpii-
ity of getting cardiotoxicity in a well-defined time period, conditional on risk fegto
This probability was estimated as a function of the time-dependent covarisagelo
Within the context of the application, some problems of goodness-of-fiedkta time-
dependent covariates are discussed.

The previous application gave rise to investigating the role of time-dependeati-
ates in competing risks regression models. There exist various types add¢pssdent
covariates, which differ in their random or deterministic development in timeséo
called internal covariates, predictions based on the model are not ajlontbey meet
with difficulties. We describe a general overview of the state of the arhl@nus and
future directions. Moreover, a possible extension of the competing riskielmitnat
allows us to include a simple random binary time-dependent variable, in a mtdti-sta
framework, is presented. Inclusion of the sojourn time of an individual ¢gersain
state as a time-dependent covariate into the model, is also studied.

In the second part of the thesis, dealing with events whose specificisausavailable,
regression models for relative survival are discussed. We studydhearametric
additive excess hazards models, where the excess hazard is onegiibitiv We show
how recent developments can be used to make inferential statements &madbls,
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and especially to test the hypothesis that an excess risk effect is timeg/argontrast

to being constant over time. We also show how a semiparametric additive riski mod
can be considered in the excess risk setting. These two additive modesgri® dit
with estimators on explicit form and inference including tests for time-consftéatts

can be carried out based on a resampling scheme. We analyze a reak daiag
different approaches and show the need for more flexible models irvestativival.

Finally, we describe a new suggestion for goodness-of-fit of the additid propor-
tional models for relative survival, which avoids some disadvantagesogint pro-
posals in the literature. The method consists of statistical and graphical assts n
cumulative martingale residuals and it is illustrated for testing the proportiezakts
assumption in the semiparametric proportional excess hazards model.



Riassunto

La tesi riguarda modelli di regressione per rischi concorrenti in angilisoprav-
vivenza, e tratta sia il caso in cui le cause specifiche di un evento sutecsia il
caso in cui tali cause sono sconosciute, pur se esistenti.

La prima parte della tesi, relativa alle cause specifiche note, presengpliceaione
del modello di regressione per rischi concorrenti per lo studio sudroasella mam-
mella. Nelllambito di questa applicazione, sono affrontati alcuni aspetthdgialel
modello, come per esempio le variabili esplicative dipendenti dal tempo. Lmosco
dell'applicazione € consistito nell'individuare un dosaggio chemioterapitmale
per diverse tipologie di pazienti con cancro della mammella, al fine di tesuite
controllo il rischio di cardiotossicita. L'attenzione si & concentrata sultdoaiili-

ta d’'incidenza cumulata di sviluppare la cardiotossicita in un predeterminatm pe
do temporale, condizionatamente a determinati fattori di rischio d’interg3sesta
probabilita & stata stimata come una funzione della variabile esplicativa digenden
dal tempo, ‘dosaggio’. Alcuni problemi sulla bonta di adattamento del madello
relazione alle variabili esplicative dipendenti dal tempo, sono discug&mbito
dell'applicazione.

La suddetta applicazione ha fornito uno spunto nell’esaminare il ruolo celiabili
dipendenti dal tempo nei modelli di regressione per rischi concorré&sistono di-
verse tipologie di tali variabili, che si differenziano a seconda del lordaenento
casuale o deterministico nel tempo. Nel caso delle cosiddette variabili intene-
visioni basate sul modello non sono possibili o incontrano delle difficoltdlaNesi
vengono descritti lo stato dell'arte, i problemi e le future direzioni di Kadn questo
campo. Inoltre, nell’lambito dei modelli multi-stato, viene presentato un’ampliamento
del modello per rischi concorrenti che permette di includere al suo miema varia-
bile casuale binaria dipendente dal tempo. La tesi tratta anche l'inclusiotentzo
di permanenza in un certo stato del modello come variabile esplicativa dipterakd
tempo.
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La seconda parte della tesi, riguardante eventi le cui cause specditberso disponi-
bili, discute i modelli di regressione per la sopravvivenza relativa. &/sdiato il
modello non parametrico per i rischi additivi in eccesso, nel caso inraheail ri-
schio in eccesso sia in forma additiva. Viene mostrato come alcuni recdopsv
possono essere usati per fare inferenza relativamente a tale modelloagticolare,
per verificare che I'effetto di una certa variabile sul rischio in eccessoostante, piut-
tosto che dipendente dal tempo. La tesi presenta anche un modello semipatame
per i rischi additivi in eccesso. | suddetti modelli, non parametrico e searpetrico,
hanno stimatori in forma esplicita ed i test d’ipotesi sulla costanza degtiiaffd
tempo possono essere basati su uno schema di ricampionamento. Un insitie d
reali & stato studiato usando diversi modelli statistici al fine di evidenlgarecessita
di modelli flessibili nell’ambito della sopravvivenza relativa.

In conclusione, viene discusso un suggerimento per valutare la bondattimento
dei modelli per la sopravvivenza relativa. Tale proposta consiste irstaisstici e
metodi grafici basati sui residui di martingala cumulati, e non presentaiaegli
svantaggi osservati nei recenti metodi offerti dalla letteratura. Lpgsta € illustrata
tramite la verifica dell’assunzione di proporzionalita dei rischi nell’ambitord®iello
semiparametrico per i rischi proporzionali in eccesso.



Introduction

The thesis concerns regression models related to the competing risks settingval

analysis. The work deals both with the case of known specific causegtritie case
of unknown (even if present) specific causes of the event of intdretite first case,
we discuss the competing risks model and we focus on regression fonrthdative

incidence probability. In the second case, where the event related t@aagoup of
diseased patients is recorded without any cause, regression modelafioe survival
are discussed. Along all the work, attention is directed towards infergmrbalems
concerning dynamic aspects of models, such as time-dependent ce/andtéime-
varying regression coefficients.

The thesis consists of four chapters, which we have attempted to makestlfred.
For this reason, some basic results are recalled more times in order to be @ald to
each chapter separately.

Chapter 1 provides some background theory on survival analygiie&d using the
martingale theory and counting process representation. The competiagnisiel is
also briefly presented within the framework of multi-state models. While Chapter 1
serves as a general background of the thesis, each of the oth&zrstigjntroduced by

a specific section, where some of the methods and literature relevant fasteerch
work of the chapter are presented.

Chapter 2 of the thesis deals with the case of events whose specific ckoseis In
this context, within the framework of a multi-state approach (Andersen aidirige
2002), competing risks models and time-dependent covariates are édcuss

Competing risks modelling has been here applied to a breast cancer studg. db
the dynamic aspects such as time-dependent variables are tackled withontegt c
of the application.

The aim of the application, besides illustrating the available methodology foyistud
competing risks, was to detect an optimal chemotherapy dosage for diffgpmlo-
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gies of patients with advanced breast cancer in order to control thefreseaiotox-
icity. The attention was concentrated on the cumulative incidence probabibities f
the cause-specific events in a well-defined time period. In a multi-state apprtba
cumulative incidence probability of getting cardiotoxicity, conditional to riskdes,
was estimated as a function of the time-dependent covariate dosage. Suieensr

of goodness-of-fit related to time-dependent covariates are distusse

The application to breast cancer in Chapter 2 gave rise to investigatingeta tione-
dependent covariates in competing risks regression models, and maelgerin
multi-state regression models. There exists various types of time-depeogarniates,
which differ in their random or deterministic development in time. When some of
these are studied, predictions based on the model are not allowed, onée¢with
difficulties. The outlook in Chapter B describe a general overview of tifite ®f the

art, problems and future directions. Moreover, a possible extension abthpeting
risks model, that allows us to include a simple random binary time-dependéatilea

in a multi-state framework, is presented. Inclusion of the sojourn time of avidugil

in a certain state as a time-dependent covariate into the model, is also studied.

The following chapters of the thesis deal with cases where information usesaof
death, remissions, etc. is sometimes unavailable, as typically happens intmopula
based and clinical observational studies with long follow-up. In some sihstthis
information is recorded on medical registries but it is incomplete or misleadayg, b
cause death could be only partially due to the disease of interest and it ¢siltlitidi
classify deaths due to other causes indirectly correlated with the diseagereft.
For this reason, the use of cause-specific survival in the frameviadnopeting risks,
where at least two distinct alternative causes need to be specifiedblematic. The
relative survival approach provides a solution to these difficultiesodsdot require
information on cause of death, while it allows to estimate patient survivatcien for
the effect of other causes of death, using the natural mortality of thelyimdepop-
ulation. Indeed, relative survival describes the excess mortality f@mia diagnosed
with the disease of interest, irrespective of whether the excess mortalitedigior
indirectly attributable to the disease.

In Chapter 3 within the context of relative survival, we study the additkeegs haz-
ards models (Zahl, 1996), where the excess hazard is on additive Wégrahow how
recent developments (Scheike, 2002) can be used to make infererigatetds about
the nonparametric additive excess hazards model. This makes it possibd¢ ttoete
key hypothesis that an excess risk effect is time-varying in contrasting lbenstant
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over time. One problem with the fully nonparametric dynamic description is that the
model might be too big, if some covariate effects are in fact constant with tilereT
fore, we also show how a semiparametric additive risk model (McKeaghiSasieni,
1994) can be considered in the excess risk setting. This model can @\idtter
and more useful summary of the data and makes a better bias/varianceffrade-
show how these two additive models are easy to fit with estimators on explicit for
and how inference including tests for time-constant effects can beaaitdased on

a resampling scheme. We analyze a real dataset using different epgsaand show
the need for more flexible models in relative survival.

A parallel objective of the thesis is to assess the importance of time-varyiegisef
for regression models in the relative survival framework, showing théitantages
especially within nonparametric and semiparametric regression models n€reasfe
time-varying coefficients in the model shows directly how the influence offask
tors on the excess hazard may change over follow-up time. No difficultigsaapn
handling time-dependent covariates, which are treated as commonlymedan the
Aalen additive hazards model and in the Cox model.

There is a general lack of accomplished methodology for the regrestignagtics

and assessment of goodness-of-fit of additive relative survivalelao The existing
theory is only sometimes implemented in public software. In Chapter 4 we describe
a new suggestion for goodness-of-fit of the additive and propottiondels, which
avoids some disadvantages of recent proposals in the literature (Str,e2€05). It
consists of statistical and graphical tests based on cumulative martingdleategLin

etal., 1993). The method is illustrated for testing the proportional hazastisrgption

in the semiparametric proportional excess model (Sasieni, 1996). Thisambpis

very simple to implement and is known to work well in the standard survival gettin
An application based on real data is used to show how these technigues wor

Note: The application to breast cancer presented in Chapter 2 was pisdgtontly
with Marianne Ryberg and Dorte Nielsen, from Herlev Hospital, Univedit@open-
hagen, Denmark, who collected the clinical data from various obserehstudies.
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Chapter 1

Survival Data and Theoretical
Background

About twenty years ago there was an extensive development of thg thfesiatistical
models based on the counting process representation in the field ofadawalysis.
Nowadays, research in this area is mostly based on those developments hatdc
opened new perspectives on possible extensions and alternative rsl@specially
for nonparametric and semiparametric models.

In this chapter, the general framework and some of its basic conceptheihdds

will be presented, aiming to explain the theory underlying this thesis. Theipainc
references for this chapter are Fleming and Harrington (1993), Ardeat al. (1993),
Therneau and Grambsch (2000) and Martinussen and Scheike (2006)

1.1  An overview on survival data

Survival analysis deals with data where the random variable underisttidytime7™
from a well-defined time origin to the occurrence of a certain given eveinterest.
General extensions concern the study of multiple temporal variables or mekighs
of interest. The main feature of survival data is the presence of incomptéisérved
survival times. Incompleteness can be of different type, the most comrampe
being the right censoring, which is explained in detail later.



10 1.1.2 Censoring and truncation

1.1.1 Survival and hazard functions

We consider a random survival tiff& that has probability density functiofy(-). The
F(-) denotes the distribution function @f*. The distribution of7™ is often equiva-
lently characterized by the survival function

S(t)=1—-F(t)=P(T* > t).
The hazard function, also called instantaneous rate, is defined as

_ ) _ N "
a(t)—%—%{%P(th <t+h|T* >1t)/h, (1.2)

which represents the instantaneous probability.

The survival function can be computed from the cumulative hazarditmel (t) =
f(f a(s)ds or equally from the hazard function, as follows

S(t) = exp {—A(t)} = exp {— /Ot a(s)ds} . (1.2)

1.1.2 Censoring and truncation

We suppose to be unable to observe the entire survivalfimé-or instance, the rea-
son might be that the individual is still alive at the end of the study or thernmdtion
about his status is lost during the study period. These are examples tetelggored
times.

Let us denote by/ the right-censoring time, which is the time from the origin to the
end of the study or to the exit of the subject from the study for other rsasé/hen
studying a group of subjects, tinié may not be observed for each individual. This is
the case whefi™ < U. On the other hand, when the survival time is not observed for
some individual, it means that < 7. Therefore, we defin@ = min(7*,U) to be

the follow-up time, which is an observable variable, and the indicator funciica
I(T* < U),which is equal to 1 if the survival tim€* is observed and equal to O if the
observation is right-censored. The observation is then the(paik). If we suppose

to have a sample with independent and identically distributed (i.i.d.) observations,
the observed data are the p&(is, A;) fori = 1,...,n, with T; = min(7}", U;) and

A; = I(TF < U).

There exist different types of right-censoring schemes (Andersah, 4993, Ander-



1.1.3 The counting process notation 11

sen, 1998). The simplest one is called type | censorship and it happemstiae study,
and then the observation of subjects, ends at a common deterministig tiffibere-
fore, the right-censoring times are nonrandom and suctithatu. fori =1,... n.
Type Il censorship is a scheme where the study ends at the time of-thefailure,
with » < n. In this case the right-censoring times afe= T(i) fori =1,...,n,
whereT(’;) are then ordered survival times, and the observed tifigare dependent.
The most common type of right-censoring scheme is the random censosslee
the censoring time&;, i = 1,...,n, are assumed to be i.i.d. with a given probability
distribution. An important assumption in studies of survival analysis conisiste
independent right-censoring, a situation where censoring times cambglered in-
dependent from the survival times (Kalbfleisch and Prentice, 200@2Yhé schemes
previously described are independent right-censoring (see Secii@).1

The basic question concerning survival data is how to incorporate inetergbserved
data in order to obtain valid inference. Nonparametric and parametric ncieris

straightforward in case of independent right-censoring. More detailgigen later in
the likelihood construction.

Another important kind of incomplete information is left-truncation (De Gruttold an
Liao, 1998). In this case individuals enter in the study, and then theylaeneed,
conditionally to not having experienced a certain event before the bagimf the
study. Formally, survival time§* are left-truncated if, given the times (random or
nonrandom)V; which represent entering into the study for each individuale ob-
serveT;|T} > V;. Left-truncation is not to be confused with left-censoring. In the
latter situation all individuals, both having and not having experiencedtaicevent
before the beginning of the study, are observed, but for those ierpérg the event
before the beginning of the study, the only available information istfiat V;.

1.1.3 The counting process notation

The general framework for survival data, which is given in the previsubsections,
is common to all the literature about survival analysis. During the last twadies;
the full development of the theory of martingales and counting processesnabled
most authors to work in the field of survival analysis using the countingga®rep-
resentation of the data (Fleming and Harrington, 1993, Andersen et 88, Chap.
2).

Here we first present the counting process notation for complete dathemde gen-
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eralize to the case of right-censored observations. Martingale theoyeniltesented
later in Section 1.2.1.

Considert as the time scale, varying in the time intery@l 7]. In literature, the end-
point 7 = oo is often considered. The survival tiM& can be represented by the
counting process

N(t)=I(T* <t),

which assumes value zero until the jump to value one at fiheV(¢) is a stochastic
process counting the number of observed events in the int@rvdl The martingale
associated with the counting proce$ét) is defined as

M(t) = N(t) — A(t) (1.3)

with compensator
t
A(t):/ A(s) ds. (1.4)
0

M is generally called the counting process martingale. The tgm is the inten-
sity process associated with the compensat¢t). This last term is also called the
integrated or cumulative intensity process. The hazard in (1.1), whicressgs a
deterministic function, is linked ta(s) by

The termY () is often called the at-risk process. It is a stochastic process defined as
Y(t)=I(t<T%),

which indicates the at-risk state of an individual. It is equal to the unity while the
individual is at risk, i.e., under observation before the event a fithé@as occurred,
and zero afterwards. The difference betwaét) anda(t) is that the latter is a deter-
ministic part, which is often modelled, while the former is a stochastic processhwh
expresses when the hazard rate is observed.

The above formulation includes easily right-censored data, becausenis dhe mar-
tingale theory to be still valid. In this case the counting process is

N@t)=I(T <t,A=1),

which is a right-continuous process with a jump to the unity only when the event is
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observed aff™*, while the process is always equal to zero for a right-censored time.
The at-risk process i¥'(t) = I(t < T), indicating that an individual is at risk until
the event or the censorship occurs, and it is left-continuous and tabldic

For statistical purposes, in the counting process notatiom thied. observations of

a sample are the pairs of variable¥;(t), Yi(t)), fori = 1,...,n, instead of the
pairs (T;, A;) of the standard formulation. When analysing data, it is very common
to have tied event times. As time is assumed to be continuous and it is desirable
to assume an absolutely continuous distribution function for the survival tiitniss
convenient to handle the ties, breaking them according to differenbapipes (Efron,
1977, Therneau and Grambsch, 2000, Chap. 2), so that the probteforisiulated
without ties. In fact, in case of no ties the theory of counting processepisitk the
easiest form, and inference is based on the simple praégsswith a possible jump

of height 1.

A final remark concerns the usefulness of the counting process arithgade repre-
sentation. The decompositia¥i(t) = A(t) + M (t) can be thought of as the usual
statistical form where the observed data are equal to the sum of the muti¢he
error. The martingale process represents an error process,(ane fot Y(s)a(s)ds
expresses the expected number of events.it], which can be modelled by choosing
a regression model fox(t), or, equivalently, a regression form fo«fs). This com-
parison is also motivating the construction of residuals for goodnefistokthods
based on martingales. A more formal justification to this interpretation is giveimeby
asymptotic theory related to martingales, reviewed later in the present chapter

1.2 Counting processes and martingale theory

The present section describes the basic concepts of counting @eeessmartingale
theory in continuous time. The entire nonparametric and semiparametric tlogory f
survival data and statistical modelling has relied on this theory during théwast
decades. Moreover, the counting process representation allows esdoatize and
extend the original basic regression models in survival analysis, haridérgjatistical
formulation within a single comprehensive general framework. Some exarple
useful extensions are time-varying coefficients and time-dependesntiatms, analysis

of residuals, multiple time scales, recurrent and multiple events.

We shall describe martingales and their properties, and formalize theiectiom to
counting processes. Finally, we shall illustrate the theory in the speciftextoof
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independent censoring (Andersen et al., 1993, Chap. 3).

1.2.1 Martingales

Our attention focuses on discrete events occurring in continuous time, Wikeron-
sider timet within a given time interval0, 7]. Let (2, 7, P) be a probability space,
whereF is ac-field andP is a probability measure defined gnh A stochastic process
is defined as a family of random variablég(¢),t > 0} with sample path< (¢, w)
for everyw € Q. The family of increasing sub-fields, 7, = 0{Z(s),0 < s < t},is
called the filtration generated by the process

A martingale with respect to a filtratiaf; is an adapted right-continuous stochastic
processV with left-hand limits (cadlag process) which is integrable, i.e.,

E|[M(t)] < oo  forallt,
and satisfies the martingale property
E(M(t)|Fs) = M(s) foralls<t. (1.5)

Property (1.5) states that information up to the present tirdees not give further
information about the expected value &f in the future timet. As the martingale
property can be written equivalently as

E(dM(t)|F—)=0 forallt >0, (1.6)

wheredM (t) = M((t+dt)—)— M (t—), the martingalé\/ has zero-mean increments
given the pasf;_.

Hereafter two important properties of a martingale are described:

e A martingale has constant mean in time, becauseit(i%/ (¢)) = E(M(0)),
and if at the time origin it is\/ (0) = 0, then the mean of the martingale is zero,
i.e.,E(M(t)) = 0forallt > 0 (zero-mean martingale);

¢ the martingale increments are uncorrelated, i.e.,

Cov(M(t) — M(t—s),M(t+u)—M(t)) =0 forallt,s,u>0; (1.7)
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A process is a submartingale if in the property (1.5) the inequality holds, i.e.,
E(M(t)|Fs) > M(s) foralls <t.

A martingale is square integrable whewp,c( - E(M(t)?) < oo. If the martingale
property holds locally for a procedd, thenM is called a local martingale.

In order to explain further properties and theorems related to martingateseced

to define formally a predictable procefsand a compensator. A stochastic process
H is called predictable if it is measurable with respect to dhealgebra generated
by the adapted processes whose paths are left-continuous. In thés arke left-
continuous adapted processes are predictable, and also any determiegsigrable
function. Given a cadlag adapted procé§sa compensataX is a predictable, cadlag
and finite variation process such th&t— X is a local zero-mean martingale. If a
compensator exists, it is unique.

Our intent is to be able to write a stochastic process as the sum of a martindale an
a predictable process, in order to justify the decomposition of the countoupes
mentioned in (1.3). The definitions previously introduced in the currergestilon are

now needed to explain for which processes the decomposition holds. fitanally,

the answer is contained in a crucial theorem which states the so-calledNDeahy
decomposition.

Theorem 1.2.1 Let X be a cadlag adapted process. ThEras a compensator if and
only if X is the difference of two local submartingales.

For further details, see Andersen et al. (1993, Chap. 2).

As a consequence, X is also a local submartingale, then it has a compensator, since
X is the difference of two local submartingal€$,itself and the trivial constant pro-
cess 0.

SupposéV/ is a local square integrable martingale. Then, by Jensen’s inequdlity,
is a local submartingale and therefore, by the just mentioned consequigthe®rem
1.2.1, it has a compensator. The compensatdr &fis called the predictable variation
process ofM/ and it is denoted byM). Consequently, we have that? — (M) is

a local zero-mean martingale. The predictable variation process f the limit in
probability of the approximations

Z E [ ]+1 M ‘ft ] ZVar ]+1 (t])‘ft]] (18)



16 1.2.1 Martingales

for increasingly fine partitions of the intervl, t], 0 = t) < t; < --- < t; < tj41 <
<ty =t

A similar explanation is related to the so-called predictable covariation prQMsAi{)

of M and M, which is the compensator of the produdti/, with M and M being

two local square integrable martingales. In general, the predictableaioamprocess

is useful in the asymptotic theory to identify asymptotic covariances in the stdtistica
problems, since

Cov(M(s), M(t)) = E((M, M))(t), s<t. (1.9)

Another important process to consider in this context is the optional variptaness
of M, denoted by M]. Itis the limit in probability of the sums of squares

> (M(tj1) — M(t;))°, (1.10)
J
for increasingly fine partitions of the intervd, ¢], 0 = tp < t; < --- < t; <
tj+1 < --- <t, =t. This process is defined far being just a local martingale, and
not anymore a local square integrable martingale. Whehas finite variation, the
optional variation process has the explicit fof|(t) = >, [M(s) — M (s—)]%
The proces9/? — [M] is a local martingale.

The process$M |, unlike (M), is not predictable. Moreover, in statistical applications
(M) is determined by the model characteristics, as suggested by the approxgnation
in (1.8). The procesg\/] may instead be computed from the data, as seen from (1.10).
Finally, if [M] is locally integrable({ /) is the compensator of\/]. Therefore, we are
able to compute both the predictable and optional variation processesttdistical
application on the basis of (1.10).

Our attention concentrates on statistical problems where stochastic intejmsds to

a martingaleM can be computed easily. The reason is that these stochastic integrals
have a pathwise interpretation, more specifically, they are ordinary pathesesgue
integrals. A special property arises when the integrand is a predictaidegs” and

we integrate with respect to a local martingale The resulting procesf HdM is a

local martingale, and its predictable and optional variation processescaintdéined

from (M) and[M] by the formulas

</HdM> = /H2d<M) [/HdM] = /H2d[M]. (1.11)
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For further details and results on martingale theory related to the statistidydiarct
survival data, see Fleming and Harrington (1993).

1.2.2 Counting processes

In the present subsection a counting process will be formally defined.pfihcipal
results and properties will be described by applying the martingale theomy the
previous subsection to counting processes.

A stochastic procesd (t) is called a counting process if it is adapted to the filtration
F:, cadlag, almost surely finite for all with N (0) = 0 and with piecewise constant
paths having jumps of size 1.

Because of its definition, a counting procég§) is a local submartingale. Therefore,
as explained in the previous subsection, it has a compensator, dall€de process
A(t) is nondecreasing, predictable and witfi0) = 0. Moreover, because of the
definition of a compensator, the procédgds= N — A is a local zeromean martingale
with respect taF;. Furthermore, if5(A(t) < oo, thenM is a martingale, as it verifies
all the martingale conditions.

An important property of the counting process is that
E(N(t) = E(A(#)) (1.12)

as M is a zeromean martingale. A martingale increment is definedMdst) =
M((t+ dt)—) — M(t—), and the incremeni&N anddA are defined similarly. Thus,

the just mentioned property, as in general all the other properties abotihgades

and counting processes, can be written in the f&@N (¢)| F—) = E(dA(t)|F-).

This is immediately obtained from the decomposition of the martingale increments,
dM(t) = dN(t) — A\(t)dt, and the fact thad M (t) has zeromean.

In case we restrict our attention to the case of independent censodrapanlutely
continuous distributions for the survival times, a fundamental consequiatiows.
First, we stress that the continuity gives the relation between the cumulatinsiigte
processA and the intensity process expressed in (1.4). Therefore, equation (1.12)
becomes

E(dN(t)|Fi—) = A(t)dt. (1.13)

This conclusion is obtained because the predictable prodgs$ét is a nonrandom
term, givenf;_.
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Hereafter, we mention two important statements concerning the varianceofitg
processes martingale:
Var(dM (t)| Fe—) = d(M)(t), (1.14)

since VatdM (t)|F;—) = E[(dM(t))*|F—] = E[d(M?)(t)|F,—] andd(M) is the
compensator of M/ ?;

Var(dM (t)| F,_) = dA(t)[1 — dA(t)] ~ dA(2). (1.15)

The explanation of (1.15) consists of two facts. Fiist/ (t) = dN (t)—E(dN(t)|F:-),
i.e. the martingale increment is the difference between the counting process in
ment and its conditional expectation. Second,is a process assuming only two
possible values, 0 or 1, and its definition states thabas jumps of size 1. Hence,
Var(dM (t)) = Var(dN (t)).

The expressions in (1.14) and (1.15), if observed together, leadstieaity to assess

that
(M)(t) = A(t), (1.16)

i.e., the predictable variation process Mf is just the compensatox of the count-
ing process. The following result for the optional variation processheaformally
obtained from the martingale theory previously described (Section 1.2.1):

Moreover, equation (1.16) arises formally from noting thef] is locally integrable
and hencéM) is its compensator.

In statistical problems we are faced with multivariate counting processaggasnce
is based on a sample of size A multivariate counting processes,

N =(Ny,...,N;,....,N,), (1.17)

is a vector of counting processes, each of them defined as previouslg Turrent
subsection, and such that they do not have simultaneous jumps. Eaessigc
is associated with the counting process martingdleand the compensatady;, as
in (1.3), and it has all the properties and results previously describrethdoone-
dimensional counting processes. The additional property concernsthizgonality
of martingales, that is the predictable covariation process is null for escif, M,

with j # [. This fact leads to the compacting matrix notatidW/) = A and[ M| =
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N.

In case of counting processes, specific expressions about gtoghtegration arise
from equations (1.11) (Andersen et al., 1993, Chap. 2).

1.2.3 Asymptotic theory

Most of the asymptotic properties of estimators based on martingales in copniing
cess models arise from a central limit theorem for martingales. There exist ma
versions of the theorem, which anyway generalize the original versi@ndiy Re-
bolledo (1980). Before illustrating the theorem, we briefly introduce soroessary
concepts.

Let us consider a vector ¢f R-valued local square integrable martingales, denoted
by M®™ = (M™, ..., M{™), wheren represents the sample size. Lt/ (t) :

t € [0,7]} be asequence far=1,2, .. .. ForeachV/\™ in M™ withh =1,... k,

let Mgf) be the corresponding martingale containing all the jumpMéf“) larger

in absolute value than. That is, all the jumps oM}(L”) are such thatMe(;L‘)(s) —
Me(,’;)(s—)\ > efors < t.

An RF-valued martingald/ is said to be Gaussian if it has continuous sample paths,
U(0) = 0, and any finite family(U (1), ...,U(t;)) has Gaussian distribution. The
covariance matrix ot/(t), V(t), is such that the incremefi(t) — V (s), for s < ¢,

is positive semidefinite. Moreover, the Gaussian martingale increthgnt— U (s)

has a normal distributiotV (0, V'(t) — V'(s)) and is independent ¢t/ (1); I < s) for

s <t.

Theorem 1.2.2 Central limit theorem for martingales.
If (M™(t) : t € [0,7]) is a sequence dR*-valued local square integrable martin-
gales and the following conditions

(MM () S V(1) for all t asn — oo, (1.18)
(M) Lo forall ¢,/ ande > 0 asn — oo (1.19)

hold, then
M®™ B U asn — oo, (1.20)

i.e., the procesd/(™ converges weakly to a Gaussian marting&levith covariance
functionV. Moreover,(M () and [M ("] converge uniformly on compact subsets of
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[0, 7], in probability, toV.

The weak convergence refers to the spfP¥[0, 7])} of the R¥-valued cadlag func-
tions on|0, 7|, with the Skorohod topology as defined in Billingsley (1968). The the-
orem assesses that the jumpsiéf™ become negligible as — oo, and thus the
process has asymptotically continuous sample paths, and the predictédtienaro-
cess, which is equal to the compensator in case of counting processesrges in
probability to a deterministic function.

By the application of Theorem 1.2.2 to the martingales or to functionals of maesga
in the counting process setting, it is possible to determine the asymptotic distriébution
of many estimators and use these results for defining tests of hypothekesrdin
dence intervals.

1.3 Model specification for counting processes

In this section the model specification is presented within the counting preettissy,
first in the case of complete data, and then for right-censored sutiives. In order
to illustrate how the likelihood function is constructed, we describe the simpsst ¢
of a single uncensored survival time and then we generalize to a raraiopies of
survival data. Moreover, it is shown how to accommodate the likelihoodtitom
to incomplete information due to right-censorship. When a regression mudiklef
hazard function is desired, the likelihood is then a function of the regrepsi@meters
in the distribution of survival times, besides the parameters in the distributioghwf
censored times.

1.3.1 Likelihood and partial likelihood construction

As a first step, the simple case of a single complete observation is considered
T* be the survival time irfj0, 7] with density functionf? depending on a parameter
6, which might have finite or infinite dimension. Thus, we denoteB§t) the cor-
responding hazard function. The counting proc¥sassociated witll™ is univariate
and the compensatdy’(t) = [; A?(s)ds = [, Y (s)a’(s)ds represents the cumula-
tive intensity process, with'(t) = I(T* > t¢) being the at-risk process.
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The likelihood function fol up to timet is given by

Lo.t)y= J[ () N exp <— /0 )ﬁ(u)du), (1.21)

s<t,s€[0,7]

whereAN(t) = N(t) — N(t—).

The likelihood computed up to the entire inter{@lr] is

L) =[] {Y(u)ae(u)}AN(u) exp <— /0 TY(u)oﬁ(u)du>

t

= (T*)exp | — T*aeuu
= a’(17) p</ <>d>,

which reduces to the density functionZt, sinceL(6) = of (T*)S%(T*) = f9(T*).

(1.22)

We now generalize the previous case to a multivariate counting processdensored
survival data. Letl},..., T, be independent survival times with hazard functions
af,z’ =1,...,n. N = (Ny,...,N,) is the associated multivariate counting process

with intensity procesa\® = (X\{,...,\?). The likelihood function fo# is then given
by

n

L(9) = [T T\ @) 2N exp (— > /OT Af(u)du> . (1.23)
=1

=1

Similarly to above the likelihood can be written as

£0) = [[ (77 exp (— > / " a?<u>du) , (1.24)
i=1 i=170

since, recalling the independence of survival times, it verifies

n

L(O) = [[ (1) (1) = [ [ £2(T).

i=1 i=1

If the statistical model is specified by regression on covariates, we nedd¢ove the
(T, X;), fori =1,...,n. TheX; is the covariate vector for individual Assume that
Ty,..., Ty are independent conditionally on the covariatesXin= (X3,...,X,),

and that the conditional distribution @*|X; has hazard?(t) which depends on a
parameter. Moreover, suppose that the marginal distribution®f Py depend on
a nuisance parametérand ond. Therefore, each compensatby(-) associated with
the counting procesy(-) depends only on the parameter of interesthe likelihood
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function for the parameter®, ¢) can be factorized in the form

whereLq(0, ¢) = Pye(X). The remaining factof.-(6) is the partial likelihood fo#
and is given by (1.23), or equivalently by (1.24). It represents tmelitional distri-
bution of theT*| X, i = 1,...,n, evaluated af}, ..., T,. If the distribution ofX
depends only om, that isLy (6, ¢) = Lo(¢), thenL,(0) is a full likelihood for @ for
each givery in its parameter space.

In the literature there exist various regression models for the hazactidansyntheti-

cally written asn (t) = g(t, 0, z;) with z; being the observed values:of Essentially

they differ with respect to the link functiog(-) between hazard and covariates. The
most common examples are the multiplicative and additive hazards models, where
the link functionsg(-) are, respectively, in multiplicative or additive form. For these
models, inference is simply based on the (partial) likelihdodd) wherea!(t) is
substituted by its regression forgt, 0, x;).

1.3.2 Right-censorship

This section illustrates briefly how the counting process modifies in the presd#n
right-censorship and it serves as an introduction to the following sectiout atbodel
specification for right-censored data.

Given (T7,...,Ty) independent survival times, we consider a multivariate process
N* = (Ny,...,N;) adapted to the filtratiofF;” on the probability spac&?, 7*, P).

The simplest situation is when the filtration is the natural one generated byuhgrap
process itself, i.e. ;" = N; = o(N(s) : s < t), while in regression models, the
filtration F; may also incorporate information about covariates. When we are faced
with incomplete (right-censored) survival data, the counting pro®éssan not be
completely observed. Therefore, partially observed counting presess defined as

t
Ni(t) = / Co(w)dN* (), i=1,....n, (1.26)
0
and called right-censored counting processes, where
Ci(t) =1t < Uy)

is the so-called individual right-censoring procegs is the time of censorship for
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individual 7).
The right-censoring process, (t), ..., C,(t) are not adapted to the filtratiof;" and
for this reason we consider the enlarged filtration

G =FVo(Ci(u);i=1,...,n;u <t),

so thatC (t), ..., Cy,(t) are adapted and predictable with respegi;toMoreover, for
any individuali either N or C; is not fully observed. Hence, the filtratigjf can not
be fully observed and therefore, we need to work with a reduced filtrégipwhich is
generated by the observed data.

Given N, the corresponding intensity proceiswith respect toF; might be dif-
ferent from the one associated with the entire counting pro®éss \*, since it
may be changed by the right-censoring mechanism. When this does not icegu
A*(t) = AX(t), then we have independent right-censoring. A formal definition of in-
dependent right-censoring is given by Andersen et al. (1993, .CBapThe right-
censoring mechanism leading to the observable counting pr@éagsnerated by the
C; is said to be independent if the compensatalNof with respect tay; is equivalent

to the compensator* with respect taF;'.

The intensity processes for subjects being at risk at any tiare unchanged by the
modified filtrationG; due to right-censoring. However, our interest is on the intensity
process\ of the observedV with respect taF;. If C;(t)\f(t), fori = 1,...,n, are
predictable with respect t&;, then it follows from the previous definition of right-
censoring that the intensity processeg\iwith respect taF; are

N(t) = CHONE (D). (1.27)

In other words, when the right-censoring is independent, the informaéioted by

the right-censoring procegs(¢) does not modify the intensity process iy at time

t. The interpretation is that the risk set, containing individuals being at risk@fsre

a certain timet, is representative of what the sample of individuals would have been
without censoring.

LetY* = I(t < T}) be the risk indicator fofN*. Independent right-censoring modi-
fies the risk indicator so that

Yilt) = Gi()Y} (1) = I(t < Ty), (1.28)



24 1.3.3 Model specification for right-censored data

with T; = min(T}", U;) being the observed right-censored survival time for individual
i. Therefore for the intensity process, we havét) = Y;(t)a;(t), with o;(t) being
the hazard function for individualin an independent right-censoring scheme.

1.3.3 Model specification for right-censored data

In this section we describe the likelihood function under the assumption giémdient
right-censoring and we keep the same notation used in Section 1.3.2.

Consider a right-censored counting proc@éswith functionsN;(¢) as in (1.26), the
at-risk indicatorsy;(¢) for i« = 1,...,n, defined as in (1.28). Suppose a model for
the hazard functiom?(t) is specified depending on a parameter Therefore, the
intensity process associated with the right-censored counting pragégss given in
(1.27) and it depends also @nsince)\! (t) = Y;(t)ad (t).

The likelihood function can be constructed starting from the factorizati@h ¢) =
LY (0, ¢)LE(6), similarly to what was done in (1.25) for uncensored observations. The
first factor L* (6, ¢) may contain information about the additional parametezlated

to the distribution of the censoring variabl&s or/and the distribution of a possible
covariate vectoX . The second factor is the likelihood férand has the form

E[{HAG AN(t)exp( /AG du>}
i [5on)

with 7; = min(T}", U;) being the observed time for individual The expression of

(1.29)

L5(0) in (1.29) represents a partial likelihood férand contains the terms related to
the distribution of the right-censored survival timiBsi = 1,...,n

Presence of independent right-censoring does not alter the forne qattial likeli-
hood for6, as it can be noted comparing expressions in (1.29) and (1.24). If ste fir
factor L*(6, ¢) does not depend on the parameter of intefetiten < (0) corresponds

to a full likelihood ford at each fixed in its parameter space and the right-censoring
mechanism is said to be noninformative for
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1.3.4 Maximum partial likelihood estimation

The basic inference based on the maximum partial likelihood estimator is fedsen
in this section. The theory is valid for i.i.d. observations of counting pre&seSgt),

i =1,...,n,under independent right-censorship, but can also be used in a grere g
eral context. In this section we assume thé ap-dimensional parameter.

The log-partial likelihood function fof can be written as
t0) = S { [ Tos0t@panio - [“atioa}.
i 0 0

which yields thep-dimensional score function

U-(6) :Z{ OT(%log(Ae / %Af }

The maximum likelihood estimator féris given as a solution to the equation(d) =
0. It can be proved that there exists a consistent estinatand that'/2(4 — 6,) is
asymptotically normally distributed with covariance matfix!(6,) , wheref, is the
true parameter value. The information matfixas elements

82
86,00,

Zji(0o) = E( — ),  jl=1,...,p,

evaluated afy. The asymptotic covariance matrix may be estimated by the observed
information atd, Z(f), with elements

A T H? T 92
; =n! — * : *
Zj1(6o) =n ZZ: { /0 79, 06, log(A7(s))dN;(s) + , 96, 00, A (s)ds} .

1.3.5 Regression models for incomplete survival data

We describe briefly some essential regression models using the courdgesgirep-
resentation. Let’(t) be the intensity process associated with the counting process
N(t), with t € [0, 7], andé the parameter of interest. Léf(¢) be a vector of co-
variates, possibly time-dependent. A regression model for the intensitesst/ (¢)

may be specified by choosing a functional form for the hazard funeif@h), since

N (t) = Y(t)af(t) and the at-risk indicato¥ (¢) does not depend on any parame-
ter. The two most common classes of regression models are based onitae add
multiplicative form, and are called additive hazards models and multiplicativertisiz
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models, respectively.

Example 1.3.1 An additive hazards model is a nonparametric model specified by the
following form for the intensity process (Aalen, 1980)

N(t) =Y ()X (8)B(2), (1.30)

where X (t) = (Xi(t),..., X,(t)) is ap-dimensional vector of covariates. In this
model, known as the additive Aalen model, the parameter of int@risssimply the
locally integrablep-dimensional parametet = (51 (), ..., Bp(t)).

Inference for this model is usually made on the cumulative regressiofficieetf
B(t) = fg B(s)ds, and it is based on the counting process martingale decomposition

N(t) = /0 X ()3(s)ds + M(t).

Estimators for the cumulative regression coeffici®&{t) can be obtained either by
least square methods for multiple linear regression (Aalen, 1980) or biymaaxpar-
tial likelihood methods (Sasieni, 1992, Greenwood and Wefelmeyer, 1991)

The multiplicative hazards models are semiparametric models, where the effects
covariates on the hazard function follow a multiplicative scale. The most famou
ample of this class is the proportional hazards model, known also as the Gi@t.mo

Example 1.3.21In the Cox model (Cox, 1972), the intensity process is specified as
follows
N (t) = Y (t)ao(t) exp(X7T (£)5), (1.31)

wheref = (ag,3) with o being a nonparametric locally integrable function and
B = (b1, .., 03, being thep-dimensional vector of regression coefficienfs(t) is
here thep-dimensional vectofX (t), ..., X,(t)) of covariates. The parametgs(t) is
denoted as the baseline hazard function.

Given i.i.d. observationgN;(¢), Yi(t), X;(t)),7 = 1,...,n, in the time intervalo, 7],
inference for the Cox model is based on the well-known partial likelihoaattfan
(Cox, 1972) fors

exn( X7 AN;(t)
L<ﬁ>=HH<I§§; p )> , (1.32)



1.4.1 Multi-state models 27

with
ZY exp (X (1))

The expression in (1.32) is found by replacing the so-called cumulatsedibhe hazard
fo ap(u)du with its estimator in the likelihood function fat (1.29), where
the |ntenS|ty proces¥’ (t) has the regression form (1.31).

Another example of multiplicative hazards models is an extension of (1.31)xmpbe
1.3.2, where the regression coefficients are allowed to vary over timetsar¢hef the
form 5(t). For an introduction to this model, see Martinussen and Scheike (2006,
Chap. 6) and references therein.

Recently, regression models that combines the multiplicative and additiveitptens
models, have been proposed in the literature, leading to a more genera gattire
both the Cox model and the additive Aalen model are included as speasl CHsis
combination has been studied following various approaches, the mosinelesing
the ones by Lin and Ying (1995), Martinussen and Scheike (2002) ahdil& and
Zhang (2002).

1.4 Competing risks

In this section a general overview of multi-state models is presented as anoakne
for the competing risks setting. In the literature, there exists an alternapreagh
to competing risks, denoted as latent failure times approach, which assuesaia
number of potential failure times for each individuals. There is a vast litey @i this
latter approach, especially in applied areas other than biostatistics. A coipigtete
of the latent failure times approach for competing risks is given by TsiatB3)1&nd a
brief discussion about problems of nonidentifiability of the survival digtidn related
to this approach is found in Tsiatis (1975).

1.4.1 Multi-state models

A multi-state model is a model for a stochastic process in continuous time with a finite
number of states. Generally, a time origin is given and set equal to 0. idodig
under study are observed in time and they can experience one or multipts,exach
one corresponding to a state of the process. The states might reptdfsrant as-
pects of the history of individuals, according to the problem studied. Famele,
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in biomedicine, they can be different causes of death from a certainsdisdistinct
phases of the disease, clinical symptoms or marginal side-effects.

There is a vast literature in this field, and various multi-state models are pedsan
applied contexts (Courgeau and Lelievre, 1992, Commenges, 1999)erteral the-
ory is presented in Andersen and Keiding (2002), Andersen et &3j¥hd Hougaard
(1999, 2000). Various modelling approaches within the multi-state settingedata
ference and softwares are reviewed in Meira-Machado et al. (2007)

Hereafter a formal description of a multi-state model is presented. This roodsists
of a stochastic process, denoted herd Byt),t € [0, 7]}, with right-continuous paths
and finite state spacg = {0,1,...,k}. Let (Q, F, P) be the reference probability
space, wheré is the filtration generated by the procesg).

The distribution of the process is determined by the magx, ), for s, ¢ € [0, 7], of
transition probabilities between states

Pu(s,t) = P(Z(t) =|Z(s) = h, F,_)  hileS s<t (1.33)

or, equivalently, by the matrig(¢) of transition intensities

o Pyt t+ At)
ap(t) = AI}/IEOT h,leS, h#l, tel0,7), (2.34)
which are supposed to exist. Thgy, for h € S, are defined agy, = — Zh# apls
since the sum of the probabilitids,; overl = 0,1, ..., kK must be equal to one.

The initial distribution of the process is denotedh)(0), for everyh € S, and repre-
sents the probability to be in the stadtat the time origint = 0. The state probabilities
are defined by the sum of the transition probabilities over the origin statéghted
by the initial distribution, i.e.q;(t) = ;s Pu(0,t)m(0), fori € S andt € [0, 7).
A stateh is absorbing when,; ,(t) = 0 for all t € [0, 7] andl € S, otherwise itis
a transient state.

The multi-state model is built by associating statistical models to the transition in-
tensitiesay, (t) in (1.34). Most models treated in the literature are associated with
the intensity transitions of a nonhomogeneous Markov process. The leoribgas-
sumption is present if the transition intensities are constant in time and thetieéore
matrix @ is independent of time. Otherwise, that is whep(¢) depends on, the
process is nonhomogeneous. The Markov property states that

Pu(s,t) = P(Z(t) =1|Z(s) = h,Fs—) = P(Z(t) = 1| Z(s) = h),
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i.e.,ap(t) depends on the histot¥; only through the current state at time

Example 1.4.1 The simplest multi-state model is associated with a process with a sin-
gle transient state 0 and a single absorbing state 1. In this situation, theastinaie

T of an individual represents the time from the origin (state 0) to the ocagreha
certain event (state 1). The survival probability is then given by thesitian proba-
bility of still being in state 0 at timé, i.e., S(t) = Poo(0,t) = exp {— st a(s)ds},

with a single transition intensityg; (-) = «(+).

The transition intensityy(-) is the hazard function defined in (1.1) at the beginning
of the chapter. Hence, a statistical model can be chosen(fprunder some general
assumption. The Cox model (Example 1.3.2) is the simplest example of a iegress
model for the intensity transition(-), under the assumption of a nonhomogeneous
Markov process.

1.4.2 Nonhomogeneous Markov multi-state models

For a Markov model, explicit expressions for the transition probabilitiesbesfound
by solving forward Kolmogorov differential equations (Sidney, 1992jey are func-
tions of the transition intensities, and therefore of the hazard functiong onhtael.

We introduce here the integrated intensitigg(t) = fg ap(s)ds, which are simply
the cumulative hazards functions defined in Subsection 1.1.1. We use ttteomno
dAp; instead ofvy,; to denote the entries @f, referring to a more general context than
absolutely continuoudy,;.

An important instrument for statistical inference is the so-called produdjrizlteep-
resentation for the transition probabilities

Ps,t) =[], 0+ Q) (1.35)

wherel is the identity matrix, and the product integral is defined by

Hue(s,t] (I T Q(’U,)) - lim H(‘[ + Q(tv) - Q(tv—l))7

max [ty —ty—1|—0
wheres =ty < t; < --- < t, = t is a partition of[s,¢]. The theory about this
representation is thoroughly explained in Andersen et al. (1993).

To understand the idea behind the product integral representatiors, ¢engider the
case when thel,; are step functions. The corresponding process is then a Markov
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chain in discrete time. The transition mats, t) can be written as the product of
transition matrices at each jump time betweeandt, since the limit is obtained at
the finite partition constructed from the jump times. The representation (1.8%)eca
considered as a generalization of this example to an infinitesimal fine partition.

When a Markov regression multi-state model is suitable, particular cares nedx
taken when many states are present. In this last situation, all the transitioveehe
states need to be modelled by regression of the corresponding transitinsitiete
The consequence is that a large number of regression coefficientbenastimated,
and that there is the demand for a sufficiently large size sample of individuihls
problem requires less attention for a regression competing risks model, witlicie
described in the next section.

1.4.3 Counting process notation for multi-state models

Before introducing the competing risks model as a particular multi-state model, we
briefly mention the counting process notation. We assume a nonhomogsmeulb

state model based on a Markov procegg). We considem independent observa-
tions from this process over the time interval | and denote them by;(¢), for

i = 1,...,n. Moreover, we assume here independent right censoring or leftatrun
tion.

Hence, the counting process representation leads to defining the multicarizting
processNV = { Ny, h # 1}, asin (1.17). Here

Np =Y Niult), (1.36)
i=1

where N; ,(t) is the process associated with individdalvhich counts the number
of observed direct transitions of the procés$t) from the stateh to the statd. N
has intensity process = {\;, h # [}, where each element has the fop (t) =

Y, (t)an(t). The at-risk process, (t) represents the number of individuals at risk in
stateh at timet—, and it is given by

Ya(t) = Yin(t), (1.37)
=1
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with Y; 5, (t) = I(Z;(t—) = h). The processy,(t) is defined as

an(t) = ain(t), (1.38)
=1
wherew; (t), for i = 1,...,n, is the intensity process of the transition from the

stateh to [ for individual ;. An important fact to underline is thaty,(¢), for b # [,
represent the transition intensities defined in (1.34), and they depend bistory 7,
only through their dependence on the current state

Statistical inference for a general Markov multi-state model is here ned|exgét will
be illustrated in the special case of the competing risks model. For furtheytiveo
refer to Andersen et al. (1993, Chap. 4).

1.4.4 Competing risks models

In this section the competing risks model will be formally presented, while therund
standing of its usefulness and its practical use will be widely discussedapied
framework in Chapter 2.

A competing risks model is in the class of Markov multi-state models. We refer to the
notation already used in Section 1.4.1. Consider a stochastic pa¢@gst € [0, 7]},
with right-continuous pathg(t+) = Z(¢), and finite state space= {0,1,...,k}.

The statd is the only transient state, while the remaining states. ., k} are absorb-
ing. Usually, in an epidemiological context, the absorbing states reprdsfament
types of events, or different causes of the event under study is dBg wefinition of
the states ii&, only the transition probabilities from the state 0 to the stétes. ., k}
are positive, and therefore considered in a competing risks model. E#usse tran-
sitions represents the occurrence of the event due to dauséh h € {1,...,k}
(here we choose to indicate the absorbing states and the causes with theotame
tion). Moreover, given a realization of the procésg), only one of these transitions
is observed.

The distribution ofZ () is regulated by the transition matrix
P(s,t) = {Pn(s,t),h,l € S},

where the positive transition probabilities aPg,(s,t) = P (Z(t) = h|Z(s) =0),
with b € {1,...,k} ands < t. The transition intensities are called cause-specific
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1
Event, causé
o (t)
0
Alive
ozk(t) k

Event, causé

Figure 1.1: Competing risks model withdifferent causes of the event under study.

hazard functions and equal to

Pt <T* <t+At, Z(T*) = h|T* > 1)
At—0 At ’

h=1,....k (1.39)

whereT™ denote the survival time. Note that here the definition is simplyt) =
app(t).

Therefore, the competing risks model is built by specifying all the capeeiic haz-
ard functions, and it is represented by the diagram shown in Figure lusefl ref-
erence for understanding the model, its applications and related problemdess&n
et al. (2002).

It is important to stress an aspect concerning the terminology used in theetomp
ing risks setting: The name ‘risk’ should refer to a transition probabilitychehe
phrasing ‘competing risks’ referring to the competing probabilities of égpeing
different causes of the event, while the name ‘rate’ is appropriate feritbéng the
cause-specific hazard.

A very informative way to illustrate the behaviour of competing risks over timeyis b
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the transition probabilities from the staleto the remaining absorbing states. Each
of these functions is called the cumulative incidence probability for cause also
cumulative incidence function, and its explicit expression is

t
Pon(t) = /0 S(u—)ap(u)du, h=1,... k, (1.40)

where the marginal survival functiosi(¢) = P(T > t) is

kot
S(t) = Pool0,) = exp(~ Y / an(s)ds). (1.41)
h=1"0

Py (t) represents the probability of experiencing the event from chudmfore timet
and it depends on all the cause-specific hazaids), . . ., ax(¢) through the survival
functionS(¢) in (1.41).

A regression competing risks model can be constructed via differergsgign models
for the cause-specific hazards. Regression models for two caesiispazards can
have different and common covariates, as well as different or comnramgéers.

1.4.5 Counting process representation for competing risks

The model introduced above can be described by the multivariate coumtingss
N ={Nyp(t),h=1,...,k} where

Nu(t) = I(T* < t,Z(T*) = h)

counts the number of observed failures from causehe associated intensit(¢) has
components\, (t) = Y (t)a(t) for h = 1,...,k, whereay(t) is the cause-specific
hazard defined in (1.39).

Note that for a general multi-state model the risk indicator was previouslgatbfis

Yy (t) = I(Z(t—) = h), forh € {...,k}. In the competing risks model instead, the
risk indicatorY (¢) does not depend on any cause (or, equivalently, any state of the
processZ(t)), since 0 is the only state where an individual can be at risk and the initial
distribution of the Markov process(t) is 7y (0) = 1.

From the martingale decomposition we obtain thatikdimensional martingale can
be written asM (t) = N(t) — A(t), where thek-dimensional cumulative intensity
process\(t) = {An(t) = fot Ap(u)du,h =1,... k} is the compensator d¥f.
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1.4.6 Statistical inference for the competing risks model

For inferential purposes, the attention is concentrated on the cumulatigerice
probabilities defined in (1.40). There exist different approachesdttmating the cu-
mulative incidence probability. The standard approach, which will be eqidater

in this section, consists of estimating all the cause-specific hazards anzbthbiming
them in order to estimat&, (0, t) (Aalen and Johansen, 1978, Fleming, 1978a,b, An-
dersen et al., 1993). Regression analysis for competing risks datddsped by con-
structing a single regression model for each cause-specific haratibfu Therefore,
estimates of the cause-specific hazards depend on the estimated regresfioients

of each cause-specific model.

Alternative approaches, which are not treated here, attempt to sp&eifylyla regres-
sion model for the cumulative incidence probability. They are based orothalked

subdistribution hazards (Gray, 1988, Fine and Gray, 1999, Scheik&ang, 2004,
Fine, 2001, Scheike et al., 2007). A parallel approach was profmysaddersen et al.
(2003).

In order to describe the standard approach for estimatijpgwe need to extend the
notation of Section 1.4.5 to the case of:ami.d. sample ofk-dimensional counting
processe$N;i, ..., N;:). For this purpose we refer to the general counting process
notation for a multi-state model illustrated in Section 1.4.3. Similarly to equations
(1.36) and (1.37), we denote here

New(t) =>_ Nin(t), (1.42)
=1

with Ny, = Ni,Ohf and

whereY;(t) is the at-risk indicator for individual

We then have the decomposition
dNip(t) = Yi(t)dAp(t) + dMip(1), (1.43)

whereA;, = [ap(u)du, for h = 1,...,k, are the cause-specific cumulative hazard
functions, and\/;;, is the martingale associated wity,,. Formula (1.43) suggests that
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a natural estimator fad,, is

Ap(t) = /0 ; ((SS)) AN (s), (1.44)

whereJ(t) = I1(Y,(t) > 0) with the convention thab/0 = 0. The Nelson-Aalen
type estimators in formula (1.44) are determined as the solution to estimating equation
based on martingales (Aalen, 1975, 1978). These estimators can albtab®d as
nonparametric maximum likelihood estimators (Andersen et al., 1993, Chap. 4)

We now return to the cumulative incidence probabilities, which can be synéukes
into the transition probability matrixP(0,¢) of the Markov process. Since we are
in a competing risks setting, the matX(0, ¢t) has element$, € (0,1), for h =
0,1,...,k, onthe firstrowP,, = 1forh = 1,...,k, and zero otherwise. Using the
product integral representation in (1.35), the transition matrix can thenitiemas

PO,t)= [ (I +dAw), (1.45)
u€(0,t]

where A is the matrix of cause-specific cumulative hazard functions. The firstmow
Ais (Aoo, A,y Apy ooy Ag), With Agg = — Z’,j:l Ay, and all the other entries are
zero. Relation (1.45) suggests that an estimatd? ©f ¢) is

POty = [] (I+dA(u)), (1.46)

ue(0,t]

where A is the matrix constructed from the Nelson-Aalen estimatégsgiven in
(1.44). The first row inA is (Ago, Ay, ..., Ap, ..., Ay), with Agg = —SF_| Ay,

and all the other entries are zero. The estimator in (1.46) is referred tpaxa

uct limit estimator ofP(0, ¢), and it is generally called the Aalen-Johansen estimator
(Aalen and Johansen, 1978). For a discussion on the variance oftiigtor we refer

to Martinussen and Scheike (2006, Chap. 10) and Andersen et @8,(C@ap. 4).

Maximum likelihood estimation under the competing risks model can be based on
the likelihood function for the multivariate counting procégs= (N, ..., Ni) with
intensity process\ = (A1,..., ), as in Section 1.4.5. We consider the intensity
process\’? () depending on a paramet@r but in order to simplify the notation, we
write simply A(¢). In the case of complete observations, the likelihood functior for
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up to timet is proportional to

Lo, t) = [TTT O (s)) e exp{— /0 )\.(s)ds}, (1.47)

h s<t

where . (t) = S2F_ A\u(t), anddN,, = 3. dNy. The log-likelihood function is
then equal to

10,1) = zh: [ /0 log(n(s)) dNun (s) — /0 "ns) ds] |

When we have incomplete observations, and we assume independemiengbting,
then the likelihood function in (1.47) is referred to as a partial likelihood tionc A
general expression for the partial likelihood on the entire intdfval] is

n 1—‘1 k
L(G) = Hexp {/ )\.(S)ds} H )\h(z)l(zl(Tl):h)
i=1 0 h=1

In this case the full likelihood would also contain terms corresponding to thebdistr
tion of the censoring times.



Chapter 2

Competing Risks Modelling for
Breast Cancer Chemotherapy

The competing risks modelling offers a rich set of solutions for sevesattioal prob-
lems in biostatistics. In this chapter we shall present a regression mode¢foor-
peting risks analysis of patients treated for advanced breast caneraif of the
application is to detect the optimal chemotherapy dosage for different tyipslof
patients with advanced breast cancer in order to control the risk of taxdiity. The
conditional cumulative incidence probability of getting cardiotoxicity is estimaged a
a function of the time-dependent covariate ‘dosage’. We shall desttribstandard
approach for studying competing risks and the problems related to its eafulity.

We shall also show problems, difficulties and some proposals about hoanttieh
time-dependent covariates.

The application and its results presented in this chapter are based on ¢ndjyaprg
et al. (2008).

2.1 Introduction and background

In the framework of multi-state models (Andersen and Keiding, 2002), ixquan
Section 1.4 of the thesis, a competing risks model has a transient state, ¢aléadl'
a certain numbek of absorbing states. Transitions from the state ‘0’ toktending
states, each one representing the event happening fromicangb h = 1, ..., k, are
regulated by the cause-specific hazardg), . . ., ax(t),. .., ax(t). As the likelihood
function for right-censored survival times depends on these caesdfis hazards,
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models based on competing risks can be formulated by their specificatios, ifihu
ferential procedures are straightforward and estimators related to $wcelehazard
models described in Section 1.3.5 can also be applied in the competing risks models

2.1.1 The standard approach for regression analysis of compeg risks

When the purpose of the study is to investigate the dependence of easitidrgprob-
ability on possible covariates, a regression analysis of competing risks datpiired.

In this section, we describe the standard approach (Andersen etGf), 20 a basic
competing risks model, within the framework of multi-state models. This method-
ology is based on the general background presented in Section 1.4apphegach
consists of simple regression models for each cause-specific hazaoth, ave then
combined together through the transition probabilities of a well-defined ranmto-
cess. For a competing risks model the process is Markovian, i.e., the-specéc
hazardsy,(t), forh = 1,..., k, depend only on the state occupied by the process at
time ¢. In analysing the model related to causewvhere the failure time is due to the
causeh, failures due to the competing causes are treated as censored obaervatio

The attention is concentrated on the cumulative incidence probabilities foattse
specific events in the time peri@d, t|. From equation (1.40), these transition proba-
bilities can be written as

t
Por(0,t; X) = / S(u—; X)ap(u; X)du, h=1,... k, (2.2)
0
where
ko nt
S(t; X) = Poo(0,t; X) = exp (— Z/ ozh(u;X)du> (2.2)
h=1"0

is the marginal survival probability as in (1.41). Conditioning &nunderlines the
dependence of the transition probabilities on the covariates through the-spacific
hazards, on which specific regression models are buil(#nX), the addendd,, (t; X') =
f(f ap(u; X)du, for h = 1,..., k, are the cumulative cause-specific hazards from the
regression models.

Given the observed data, the cumulative incidence probaliity0, ¢; X) is esti-
mated by the Aalen-Johansen type estimator (Aalen and Johansen, 18@anB
1998), derived from the product-integral representation for thesitian probability
matrix of the Markov process under study (see equation (1.46)). ker dodcompute
easily the Aalen-Johansen type estimator, it is necessary first to estimateueaala-
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tive cause-specific hazard through a regression model.

Let Bh, h =1,...,k, be the vectors of parameter estimates in the regression models
for the cause-specific hazards. CalliNg the covariate vector in thie cause-specific
hazard model, for each = 1,...,k, the estimated increments of thecumulative
cause-specific hazards can be written as

dAn(t: Xp) = dAho(t,Bh)exp{XgBh} C h=1,... .k (2.3)

Note that some of the covariates considered in the regression analpdss cammon
to different specific models.

We denote by, ..., 1, . . ., thk, the times when events of typeare observed, for
h=1,..., k. K is the total number of observed events of typeThen, Ay (t, 35,)

forh = 1,..., k are the Breslow estimators of the baseline cumulative cause-specific
hazards, i.e.,

- A dNep (th;
Ah0<t7ﬁh) = Z (O)hi(h{)v

whered N,y (th;), defined in (1.42), is the number of events of typehich occurred
attimet;. The quantityS,(lo) (t,Bp) is defined as

h=1,...,k, (2.4)

S\ (¢, Bn) = Zexp{X,ZiBh} Y;(t), h=1,...,k,
=1

with Y;(¢) the indicator for patient at risk at timet—, and X}, ; contains the covariate
values for individuak.

In the competing risks model, in order to estimate the probahiiityof being alive at
time ¢ without experiencing any event due to theauses, we can use the the Kaplan-
Meier type estimator (Kaplan and Meier, 1958)

k
Poo(0,t; Xp,h=1,... k) =[] {1 — deih(tj;xh)} . (2.5)

tjgt h=1

It is computed using the estimated incremenrss of the cumulative cause-specific
hazards, given in (2.4), fas = 1,...,k. It is important to note that the product is
computed at times;, which are times when an event of any type happens.

In the competing risks setting the interest is often addressed to the study sjecific
of the k possible causes, let it bg and to the corresponding cumulative incidence
probability. The cumulative incidence probability for the caésevent can then be
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estimated by the Aalen-Johansen type estimator, by plug-in of alt #stimated in-
crements of the cumulative cause-specific hazards and the estimated amyiival
probability:

Pon(0,t;X) = > Poo (0, tn;—; X) dAp(tn;;: Xp). (2.6)
0<tp;<t
We underline that this estimator works correctly in case all the covariatetinege
independent in the considered time interféalt]. A time-dependent covariate can also
be included when itis already defined at the time origin, since it can themisedered
a deterministic path (Kalbfleisch and Prentice, 2002, Chap. 5).

2.1.2 Residuals for goodness-of-fit of the cause-specificzaad models

In case the standard approach in subsection 2.1.1 is applied, the geadiiie$or the
competing risk model relies on the diagnostics for each cause-specificdhandel.

In this section we limit our attention on the basic ideas for the residuals in the Cox
model (Example 1.3.2), even though they are also used elsewhere. Wedrimma-

rize the theory concerning the different types of residuals used later the current
chapter within the application to breast cancer. A general referemd¢ki$osection is
Therneau and Grambsch (2000, Chap. 4).

Martingale residuals

The martingale process for the individdaln case of a Cox model, is written as

M;(t) = Ni(t) - /0 Yi(s) exp { X7 (5)3} Mo(5)ds, 2.7)

where X;(-) is the possibly time-dependeptdimensional covariate vector for indi-
viduali. The martingale residual process is then defined as

310 = Nt = [ Vits)exp { X7 (5)3} ), 28

where A () estimates the cumulative baseline intensity processfaisdthe vector

of the maximum partial likelihood estimates of the regression coefficients. Time te
Ai(t) = [} Yi(s)exp {Xf(s)[i’} dAy(s) estimates the compensator of the counting
processV;(t) and represents the estimated cumulative intensity for individiredhe
Cox model.
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The martingale residuals are defined as the martingale residual proaesesnd of
the study. Formally they are

M;(00) = Nj(00) — Aj(c0), fori=1,...,n. (2.9)

We can write them more synthetically &§ = N; — A;.

When the hazard function follows a Cox model, in case of no time-dependeati-
ates, the martingale residual for individuahkes the form

1= N - exp (X753} [ vitodho(o) (2.10)
0

where X; is the covariate vector for individual It represents the difference between
the observed number of events for subje€lv;) and the expected number of events
conditional to the observed data.

The following properties are essential to understand the practical tisesafresiduals:

° Z?Zl Mi = 0, i.e. the sum of martingale residuals, given the estinyfatés
equal to zero;

e E(M;) = 0, i.e. the expected value of each residual is equal to zero at the true
parametep;

e Cov(M;, M;) = 0fori # j, i.e. the residuals at the true parameteare
uncorrelated.

Schoenfeld residualSchoenfeld, 1982)

We consider the-dimensional score process over subjects
n t
U(3.0) =3 [ 3i(s) = (B8} dMi(s), 2.11)
=1

whereE(8, s) = S1(8,t)/S0(3,t), with So(3,t) = >, Y;(t) exp { X[ (t)3} and
S1(B,t) = S0, Yi(6)Xi(t)exp { X[ (t)3}. From the estimating equation for the
Cox model, the observed score process is then equivalent to

06,0 =300 =Y [ {Xits) - BB} @it
=1 %

From the martingale residual decompositialdt) = dN;(¢) — dA;(t) and the ex-
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pression of the estimator of the cumulative baseline hazard, it is easy tp tretf
when there are no ties for the failure times, it is also

0.0 =3 [ {x66) - BB b anico)

The observed score process is piecewise constant over time and inhas iju cor-
respondence with failure times. Therefore, Schoenfeld residuals cometlie idea

of splitting U(B, o0), the observed score process at the end of the study, in the time
intervals identified by the failure times, ..., t,... observed from the data. The
Schoenfeld residual at the failure timyeis then

o = /tk > {Xits) — E(3.5)} avits) 2.12)

tk—1

The residuals;, in (2.12) is really ap-dimensional vector, becaum(ﬁ,t) is ap-
dimensional process with componeiis (3,t) = [1{Xi;(s) — E(3,s)}dN;(s) for
the covariateg =1, ..., p.
Notice that Schoenfeld residuals in (2.12) are still valid in case of a timerdepé co-
variate. In case of no ties, their computation is easy and can be basedfolhativang
expression

sk = X (te) — E(B, ty)

for each failure time,,, where X, (¢1) is thep-dimensional covariate vector at time
t;, for the subject who experienced a failure at

Cumulative residuals

Cumulative residuals (Lin et al., 1993, Wei, 1984) are used to test vaagmusnptions
in the Cox model, such as the functional form of covariates, the propatitiprof
the hazards and misspecification of the link function. They are theretpressed as
different functionals of the residuald;(t) in (2.8).

The simplest functional of residuals is the observed score functiomdapeon time,
A~ " t A~
U0 =3 [ Xt ()
=1

The cumulative martingale residuals, given by each compd@éﬁt t)yfory=1,...,p,
are useful in checking the proportional hazards assumption.
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Other types of cumulative residuals are obtained by considering a two-siiomahcu-
mulative residual process depending both on time and on covariate vhinex @l.,
1993, 2000), or by partial sums of the estimated residuals depending rotihe @o-
variate values as illustrated later in Section 2.3.3.

2.2 An application to breast cancer: Introduction and scope
of the study

Breast cancer has become a major health problem over the last 50 pdan®dd-
wide, it is the fifth most common cause of cancer death. The anthracycliesl los
Epirubicin is among the most commonly used antitumour chemotherapy with activity
against a wide spectrum of cancer diseases (Tormeys, 1975, Goidinl&85). Nev-
ertheless, it was demonstrated that its antitumour effect is set off agaicestdistoxic

side effects such as cardiomyopathy and congestive heart failurg)(Btambilla

et al., 1986). The risk of cardiotoxicity after anthracycline-based treztimes been
shown to depend on the cumulative dose administered to patients and seems to in-
crease in case of some risk factors such as preexisting cardiac dsepsayvious
irradiation against the heart (Swain et al., 2003). As the median sufeiahtients

with advanced breast cancer is short, a 5% risk for development ofi€kiEnerally
accepted and it is estimated to correspond to a total dose of 950%rogEpirubicin
(Ryberg et al., 1998). In previous medical studies, this recommendedativawlose

was determined by the Kaplan-Meier estimator as a function of the cumulatbee do
only (Swain et al., 2003, Ryberg et al., 1998). Thus, this statistical aradtysored

both the effect of time and the competing risk of dying from advanced cafid¢e
application of the competing risks method to this problem, presented in this chapter
has compensated for the missing aspects, taking both the cardiotoxicity atadityor
rates into account.

The general scope of the study was to assess an optimal recommendédddetiaking
the following aspects into account: history of the dose administration durirtgetie
ment period, concurrent risk of dying of advanced cancer andigegsedictors for
cardiotoxicity. Investigation on possible predictors for development of Gils been
of primary interest because they have allowed discriminating between reauathe
cumulative doses for different groups of patients.

A well-defined cohort of 1097 patients treated with an Epirubicin basechctierapy
for advanced breast cancer admitted to Herlev Hospital (Denmark)dessrbtrospec-
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Treatment time schedule

Days of administration and doses per day Frequencies
Epi day 1 and day 8: 661g/m? every 4 weeks 70
Epi day 1 and day 8: 7fhg/m? every 4 weeks 181
Epi day 1: 130ng/m? every 3 weeks 164
Epi day 1: 130ng/m? every 6 weeks + CTX 49
Epi day 1: 100ng/m? every 3 weeks 514
Epi dayl and day 8: 4bg/m? every 4 weeks + Vindesine 54
Epi dayl and day 8: 6Bvg/m? every 4 weeks + Cisplatin 65
Treatments
Type Frequencies
Epirubicin 929
Epirubicin + Vindecine 54
Epirubicin + Cisplatin 65
Epirubicin + CTX 49

Table 2.1: The complete treatment based on Epirubicin. Some groups wmdehdi-
tional chemotherapy (CTX, Vindesine, Cisplatin). The time schedule vac@sding
to days of administration and doses per day.

tively analysed during a period of twenty years (from November 1983aeeiber
2003). The patients had no evidence of cardiac disease or a historyamfandyal
infarction before starting the chemotherapeutic treatment. The women in the stud
followed different treatment regimes for Epirubicin. Some of them redeare ad-
ditional chemotherapy. Information about type of treatments and time schacle
shown in Table 2.1. However, because of the seriousness of thecadeancer stage
and the collateral symptoms, almost all patients deviated from their schedule.

Hereafter we explain the aims of the present study in greater details andetivéeay

of the corresponding statistical methods appropriately applied. In theseekbn,
these statistical methods together with problems related to their applicability shall be
discussed, placed side by side with numerical results.

The first aim of the study was to investigate which predictors were significan
developing CHF. The second aim was to estimate the conditional probabilitg-of d
veloping CHF within a certain time interval, as a function of epirubicin cumulative
dose (and of other prognostic factors), taking also the possibility of dyimg breast
cancer into account. In order to evaluate this probability, a competing riskielmo
with two causes was suitable. Cardiotoxicity was the event of primary intanest
mortality from breast cancer was the competing event. Figure 2.1 shopsicatly

the competing risks model as a multi-state model with two possible ending events. In
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the framework of competing risks, the possibilities for a patient along the falijpw
time are to be alive with no sign of CHF, to develop cardiotoxicity and to die from
breast cancer without cardiotoxicity. These three states must be takeroidinlera-
tion when a patient’s risk for cardiotoxicity is estimated, as well as when theofisk
dying from breast cancer is evaluated. Follow-up time was from stareadpirubicin
treatment until patients either developed cardiotoxicity, died without cardaitpxr

left the study alive without cardiotoxicity.

The competing risk model depends on both the cause-specific hazgtdanda,(t),

as observed from Figure 2.1. Thus, as the probability of developing\@ttin a cer-
tain time interval depends on cumulative dose through both the mortality rate from
breast cancer and the cardiotoxicity rate, the statistical analysis wasdoaut in two
steps. In the first one (corresponding to the first aim), both of the two etngpevent
rates were estimated through regression analyses, considering tlit@depeffect of
cumulative dose and other prognostic factors. In the second stepgponding to the
second aim), the estimated rates were used to evaluate the cumulative ingo@Ence
ability for CHF, i.e. the probability of developing CHF within a certain time interval.
Finally, when this probability was fixed equal to 5%, it was possible to deterthae
corresponding value of the cumulative dose in order to find the optimatmeemded
total dosage.

{ Alive

Figure 2.1:Competing risks model with two causes

Death
(cause 1)

(cause 2)

Cardiotox J

2.3 The regression models for the cause-specific hazards

The influence of the Epirubicin cumulative doses along the treatment peribdther
prognostic factors on both the cardiotoxicity rate and the mortality rate fraasbr
cancer, was investigated by Cox regression models (Cox, 1972) xseepte 1.3.2 in
Section 1.3.5) separately for each one of the two rates. When modelling thetoz-
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icity rate (i.e. development of CHF), the event time was considered riglsaced for
patients who died without having cardiotoxicity. On the contrary, when moglétia
mortality rate, the event of interest was death without cardiotoxicity; thexe@vent
times for the patients who developed CHF were right-censored.

The choice of distinct regression parameters for the covariates in thestywession
models was due to the fact that covariates are expected to influence thatésalif-
ferently.

2.3.1 Assumptions and preparation of the data set

The preparation of the data was nontrivial and computer expensivesbential, espe-
cially for treating the cumulative treatment dose as a time-dependent covarthte
regression analyses.

In the data set the information for each patient consisted in the number efigos
jections, date of the last injection, total dose administrated, date of entry ituitie s
treatment duration, presence of cardiotoxicity and the possible date of@ogenent,
date of death or last seen.

Patients followed different treatment schedules (Table 2.1) and, as meshiioiBec-

tion 2.2, each woman had deviation with respect to the dose schedule, axattte
information about the single doses was not available. For this reasonssuenad
that the patient was given the same dose amount at each injection, caladated
total dose divided by the number of injections. Moreover, each indiVvicdagits own
treatment period and her time schedule could also deviate from the protxalde

of missing or additional injections, but information about the exact times oftinjes

was not available. Therefore, different functions correspondirthedhree different
time schedules, were implemented in order to calculate the assumed dates ofrigjectio
for each patient. As an example, let us explain the computation of the datesef d
administration for a patient who should have followed the time schedule 'dand1 a
day 8 every 4 weeks’. Figure 2.2 can simplify the understanding of thewabn.

We definer; andd; the number of injections and the total treatment duration of pa-
tient ¢, respectively. If the patient was following exactly the right time scheduk, th
intervals[l.(l) andIZ.(s) in Figure 2.2 should have been of length 4 weeks and 8 days, re-
spectively. In our situation doctors were unable to follow the protocol ithallcases.
Therefore, we decided to find the lengths of the inteni{alI)sandIi(s) by keeping the
ratioIi(S)/Ii(l) equal to the one of the schedule (8/28). In casg of 2, if r; was even,
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the function(d; — 8)/[(r;/2) — 1] was used to assume the Iengthlﬁ?, while if r;
was odd, the functiod, / [(r; — 1)/2] was computed. Length dfs) was obtained by
IZ.(Z) -8/28. In caser; was equal to 2, the length difs) was set equal td; andIZ.(l) was

empty.

T4l T

Iis) Tis)
—r —
| I | I | I |
I ! I ! I ! I
Day?  Dayd Day? Day8 Day? Day8

4 weeks
B weeks
12 weeks

Start of treatment

Figure 2.2:The intervall(®) between two single dose injections and the intefal
of the first treatment cycle for a patient how followed exactly the time schihyld
and day 8 every 4 weeks'.

These last computations led to represent the information of each patienttEiou-
bicin dosage by a vector containing history of cumulative doses at everyofime-
ministration from the date of entry in the study to the date of end of treatment, even
or censoring. Note that in our data the treatment period can be shortgualrte the
follow-up period. Thus, cumulative dose of epirubicin (mg)rwas considered as a
time-dependent variable in both the regression models. Statistical analysiseirot
time-dependent covariates needs a special formulation of the data. Tihgncopro-
cess form is a very useful instrument to represent information on tleeseiates in
the dataset. The entire follow-up period of a subject is split in risk intervetsch
are built on the time points where the covariate changes its value. In ouratppiic
the cumulative dose is an increasing step function, with jumps at the endlofiskc
interval. Each subject is then represented by a set of observatian$oroeach risk
interval. Intervals are defined as left-open so that covariate history iedicpable
process and the event or censoring coincides with the upper bound witénval, as
for the risk indicator in the counting process notation.

The dataset was adjusted for presence of ties (Therneau and Gharab86, Chap.
2) and overlapping of date of event and date of ending treatment. Whéattdrecase
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happened, dates were translated by 0.5 days. This was done in ordeiatiebto
evaluate information about the time-dependent dose at the end of the treatrtien
Cox models.

Covariates involved in the study and measured at start of treatment werpeaépr-
mance status (PS), number of sites affected by the tumour, type of compkte tre
ment (single drug or additional treatments), predisposition to cardiac désqasei-
ous treatment for breast cancer either in an adjuvant setting or forises(@ntihor-
monal therapy, or chemotherapy), adjuvant or extensive radiothenagh palliation
radiotherapy (local skin metastases, thoracic spine, mediastinum).

2.3.2 The Cox regression models

Out of 1097, 125 patients developed CHF while in 10 patients the informatiout ab
the CHF development was either missing or uncertain. The number of patieats wh
died was equal to 1032. There was presence of missing values for sovaréates.

Care needs to be taken when information about the event due to a ceriagnda
missing for some patients. In this case, estimates in all the cause-speciéissiegr
models would need to be computed ignoring patients with missing information on
the event from causk. Otherwise, we may overestimate the observed number of
events from causes other thanin studies where patients can experience multiple
events. In our study, we ignored 10 patients with missing information abo@Htke
development in both the Cox regression models.

We study the problem under the independent right-censoring assumptiaorder
to investigate the best statistical model for the cardiotoxicity rate, detailedsasaly
were performed to evaluate, in the following order, the appropriate furadtform for
the continuous variables, which covariates were significant risk factdrsther the
proportional hazards assumption in the Cox model was correct andsleostratifi-
cation. The same analyses were also performed for finding a corgeesston model
for the mortality rate for breast cancer, taking presence of cardiotoxidityaccount
by censoring.

The correct functional form was investigated for the covariates agecamulative
dose. For testing the correct functional form, graphical methods lmasethrtingale
residuals and smoothing splines were used (Therneau et al., 1990)thithie Cox
models fora,(t) anday(t), results showed that no transformations of the functional
form of the cumulative dose and age were necessary.
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Separate procedures based on backward and forward algorithes segt to select the
group of covariates significant at the 5% level. Interactions betwednoeaariate and
the cumulative dose were also considered when applying these presetikelihood
ratio tests were performed in order to decide whether to include the interaetion
between a covariate and the cumulative dose into the model, besides the Beuile e
of the covariate.

The proportionality of the hazards was investigated by graphical methadsyeests
of hypothesis based on Schoenfeld residuals (Grambsch and Thel®®a). Pres-
ence of non-constant coefficients in the model indicates that the effeotree covari-
ates on the hazard may vary over time, thus violating the assumption of proditio
In the model for the cardiotoxicity rate, the global test and the univariatetemn-
proportionality for each covariate were not significant. In the model femtlortality
rate, proportionality of the hazard did not hold for performance stathighwvas then
used as a stratification factor. Moreover, since the effect of the cuwveildbise was
found to vary over time, a time-varying coefficient (Scheike, 2004) veasluThere-
fore, follow-up was split in three time intervals and the cumulative dose wasestu
separately in each time interval using different coefficients in the model. The th
time intervals were the first three months after the start of treatment, the following
three months and from the seventh month onwards.

In the final Cox model, the cardiotoxicity hazard function for individiialas:

ae,i(t; Xe) = aco(t) exp {Xc1i(t) 51 + Xe2if2 + Xe3if3 + XeaiBa + XesiBs
+Xe6i06 + (Xei(t) * Xeei)Br} s

where the unspecified nonnegative functigg(t) is the baseline hazard for cardiotox-
icity and X is the covariate vector with componernts;, [ = 1,...,6, defined to be,
respectively, time-dependent cumulative dose of epirubicin, dispositibedd dis-
ease, previous antihormonal treatment for relapse, irradiation agaimatit spine,
age, and previous chemotherapy (CMF) for relapse. [itheovariate of individual

is specified as\. ;;, wherel = 1,...,6. A significant interaction was found between
cumulative doseX, and CMF for relapseXs.

In the second Cox model, the mortality hazard function for individweahs:

aq;(t; Xa) = Oégf)) (t; Xo) exp {Xa,1:(t)3;(t) + Xapsi11 + Xa7iB12 + Xagi13}

where the vectoX; contains the covariates,;, for/ = 1,5,7,8,9. CovariatesX 7,
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Xqg and X, 9 are defined to be, respectively, previous adjuvant chemotheragsy, pr
ence of more than one tumour site and performance status. Variation ofebeadf
cumulative dose in time is represented by the different coefficigsts, j = 8,9, 10,
such that

Bs if 0<t<91.31

Bi(t) =< By if 91.31 <t <182.62
610 if ¢>182.62.

The stratification factorXy in our application, divides the subjects into disjoint groups,
each of which has a distinct baseline hazard function but common valu#sefoe-
gression coefficients. If individual belongs to stratuntk), thenagf)) (t; Xo) is her
baseline hazard function for mortality.

Results about the two Cox regression models are synthesized in Table2i2 olr
application the main interest is on the effect of the Epirubicin dose, descriptithe
results focuses on this covariate and it is given separately for the tw rate

The rate of cardiotoxicity was shown to depend log-linearly on the cumuldtsge,
with different effects for patients with or without CMF for relapse. Thidatiénce

is due to the significant interaction term between cumulative dose and CMi-for
lapse. In the group of patients who did not receive CMF for relapsesaidiotoxicity
rate had an increase of 40% each time the cumulative dose increased mgA@
holding the other covariates constant. Thus, from a cumulative doseQofm@?

to a level of 900 mg/rhthe rate was increased 2.72 fold. For the group of patients
who received CMF for relapse instead, an increase of 100 fiyrthe cumulative
dose was associated with a 91.58&1{ {51 + (7}) increase in the cardiotoxicity rate
(Table 2.2). Therefore, presence of CMF for relapse, in addition towits effect,
raised the effect of increasing dose on the CHF rate. This is shown imeF®)8,
which illustrates the interpretation of the interaction term. The two lines in Figure 2.3
represent the logarithm of cardiotoxicity rate for patients with CMF for 1sda@nd
patients without CMF treatment. The slopes of the lines represent the difedfects

of cumulative dose for the two groups of patients. For doses below 928 ‘mphn
tients who received CMF had a lower cardiotoxicity rate compared to patiettsut/
CMF. On the contrary, the picture was inverted at doses higher than 926°mi.g.

at an epirubicin dose equal to 950 mg/nthe hazard was 7.3% higher for patients
with CMF than for patients without CMF. Both the estimated regression coefficie
about CMF and its interaction with dose were needed in order to calculateattasch
(exp {Bs + 47(9.5 — 5)}). Because of the significant interaction term in the model,
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Predictors for the cardiotoxicity rate

Variable 8 Robustses) Exp(58) P-value
Cumulative dose (100 mgi 0.334 0.073 1.396 <0.0001
Disposition to heart disease 1.102 0.209 3.010 <0.0001
Previous antihormonal treatment 0.628 0.214 1.873 0.0033
Irradiation against thoracic spine 0.734 0.251 2.084 0.0035
Age 0.025 0.010 1.025 0.012
CMF for relapse at cumulative dose 500 mg/m -1.350 0.697 0.259 0.053
(CMF for relapse) * (Cumulative dose (100 mg)n 0.316 0.121 1.371 0.0092
Predictors for the mortality rate
Variable 8 Robustse3) Exp(8) P-value
Cumulative dose (100 mgih
(during the first three months of follow-up) -1.047 0.164 0.351 8010
Cumulative dose (100 mghp
(during the fourth, fifth and sixth months) -0.504 0.061 0.604 <(01000
Cumulative dose (100 mgih
(from the seventh month on) -0.106 0.016 0.900 <0.0001
Age 0.012 0.004 1.012 0.0026
Adjuvant CMF 0.254 0.078 1.289 0.0011
Number of sites >1 0.721 0.077 2.056 <0.0001

Table 2.2:Estimates in the Cox regression models for the cardiotoxicity rate and the
mortality rate

CMF for relapse affected the cardiotoxicity rate, conditionally to the othkfaistors,
with a magnitude depending on the cumulative dose. The coefficient for, Eral
to -1.35 (Table 2.2), represents the difference between cardiotoxitéty fiar the two
groups, when the cumulative dose is fixed at 500 ndgam shown in Figure 2.3.

The mortality rate was shown to decrease by increasing cumulative dosen hén
cumulative dose increased by 100 md/rthe rate was reduced by 65% during the
first three months of treatment, by 40% between the fourth and sixth monthyand b
10% from the seventh month on. Thus, the effect of increasing dosesdaning the
mortality rate was higher in the first treatment period than later on. The mortdkty ra
decreased by 82.9%:xp {((9.5 — 6)}) going from a cumulative dose of 600 mg/m

to a dose of 950 mg/fbetween the fourth and sixth month of treatment (Table 2.2).

2.3.3 Problems related to goodness-of-fit of regression meis

For testing the correct functional form of the continuous covariateaadeumulative
dose in the Cox regression models, graphical methods based on martegjelealts
and smoothing splines were used (Therneau et al., 1990). In this sedidlustrate
how these methods were applied and which are the related problems, Wgpecia
connection with time-dependent covariates. Methods are first illustratgeedime-
constant variable age, and then they are discussed for the time-dapeadable



52 2.3.3 Problems related to goodness-of-fit of regression models

Log (cardiotoxicity hazard)
with CMF

without CMF
Slope:

B, = 0.334

-1.35

Slope:
By + B, =065

500 928 Cumulative dose of epirubicin
(mg/m?2)

Figure 2.3:Interpretation of the interaction term between cumulative dose and CMF
for relapse in the Cox model for the cardiotoxicity rate. The two lines reptetse
logarithm of the hazard for patients with CMF for relapse and patients withouECM
treatment. The different effects of cumulative dose are represented blpties of the
lines, which are computed from the estimates of regression parameters.

cumulative dose, in connection with the proportional hazards model faatttiotox-
icity rate.

For testing graphically if the linear form of a covariate is correct, the simplpst
proach consists in plotting the logarithm of the estimated cumulative hazargsvbes
covariate. When investigating the covariate age, the plotted cumulativedsazder

to the simple Cox regression model with the only covariate age and can be edtimate
from equation (2.3). The resulting graph, together with a scatterplot snfuomttion,

is shown in panel (a) of Figure 2.4 and suggests that the linear forngéoméght be
correct.

The second approach by Therneau et al. (1990), Therneau antbG&eh (2000, Chap.
5) consists in plotting the martingale residuals from a regression model withttanly
covariate of interest versus the covariate values. In this case, supsiimga smooth
function should indicate the correct functional form for the covariatdenimvestiga-
tion. As age is a time-independent covariate, martingale residuals aressagrey
equation (2.10) when analysing this covariate. Panel (b) in Figure 2wssimartin-
gale residuals computed per-individual. If a linear form was correctyadd expect
to observe no specific pattern of the data and a linear smooth functiorirmppsed.
Nevertheless, interpretation of these concepts for the age graph isdsatide data
points appear to be clustered in an atypical pattern. A large number ofia¢sigre
observed between0.3 and 0, while none is present between 0 and 0.7, few points
are higher than 0.7. A possible explanation of this pattern could be thenpeesé
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few events of cardiotoxicity (125) with respect to the censored data. Wasitalready
pointed out by Therneau and Grambsch (2000, Chap. 5), this situaticegiseit in
data sets with a large amount of censoring. The observed countingspradaich is
a component of the martingale residuals as observed in (2.9), is equabtar@ahy
individuals, and this fact leads to many negative values for the residuals.

An alternative appealing approach by Hastie and Tibshirani (1990p.CBj is to
model the functional form of covariates through smoothing splines directheiCox
model. The use of smoothing splines requires to specify a certain numbeotsf(kie-
grees of freedom) and therefore results might strongly depend ondkertdegrees of
freedom. In order to understand the basic relation between the hazhadsamgle co-
variate, a simple Cox model with a smoothing spline for age and no furtheriatas
was considered. Panel (c) in Figure 2.4, where four degreeseaafdra were chosen,
does not show a significant curvature for the covariate age, as aiionoed by the
corresponding test of hypothesjs € 0.001 for the linear term ang = 0.29 for the
nonlinear term).

Log{Cumuie Hezar)
Neringal Resuls
Spine i

20 a0 s0 60 7O 8O —=o0 —10 o 10  =zo

Age Age — meancage)

Figure 2.4:Functional form of the covariate age in the Cox model for the cardiotoxicity
rate.

In the following, the methods applied above to age are illustrated for theiatvau-
mulative dose, and the differences and critical aspects of investigatirfgribéonal

form of a time-dependent covariate are discussed. Panel (a) in Rdushows the
logarithm of the estimated cumulative hazard versus the total cumulative dbse.
cumulative hazards are given per-subject and refer to the simple Ge@sston model

with the only covariate cumulative dose. Estimates are obtained summing the incre-
ments in (2.3) up to the entire follow-up period.

The original data set is modified so that each patient is split in more obsewaitim
cumulative dose is time-constant in the risk set of each observation. Tiheatsl
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Figure 2.5:Functional form of the covariate cumulative dose in the Cox model for the
cardiotoxicity rate.
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cumulative hazard of each patient is then the sum of the estimated cumulaarefa
of her observations. In fact, the per-subject estimated cumulativedsairepanel (a)
of Figure 2.5 are obtained by collapsing the estimates related to all the diisesva
that the subject is split in.

The case when the estimated cumulative hazards refer to all the obsesaitiadi-
viduals can be observed in panel (b) of Figure 2.5, where a much largeunt of
points than in panel (a) is represented. Comparison between panetsl (fg) anight
suggest different conclusions about the functional form. This fachtiig acceptable
as the covariates under investigation are different, the total dose in (@greeid the
cumulative dose in panel (b). The problem is that our interest focustteccovariate
cumulative dose, but investigation of its functional form by computing antipép
per-observation estimates (as in panel (b)) can yield distortions and mséetsgion.
The problem is further discussed for the martingale residuals studied ldtes sec-
tion.

The martingale residuals from a regression model with only the covariatelativeu
dose are plotted against the covariate values of total dose. Martingidleaissof each
patient are given by the sum of martingale residuals of her observatidrera shown
in panel (c) of Figure 2.5. Formally, martingale residuals of patients in deséiroe-
dependent covariate, as cumulative dose, can not be computed hioed@4l0). In
this equation, the exponential needs to be under the integral. As our tne@s
the functional form of the time-dependent covariate cumulative doseglsarvation
martingale residuals are also plotted against cumulative dose and the pasteowis
in panel (d) of Figure 2.5. Here, points are clustered in horizontal band the
interpretation of this pattern in order to check the linear form of the covaitatpiite
hard, despite the help from the superimposed smooth function. The sabiermpro
occurs in panel (b), where, in comparison with panel (a), an additlwarad of points
is observed. The explanation of these difficulties is that there is a largerarabu
‘artificial’ observations, created in order to handle time-dependentrict@a, which
leads to many ‘artificial’ censoring. For this reason, many low values of nggttn
residuals are observed. Only the latest observation of each individesergually
associated with a failure, and therefore with a positive residual. Morgonest of the
observations correspond to small or near to zero values of the estimatedative
hazard, due to the presence of small at risk time intervals, leading then toomost
the martingale residuals being nearly zero. Further explanations and etaited
analyses about bias in case of time dependence of covariates arebgiliérerneau
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and Grambsch (2000, Chap. 5).

The approach using smoothing splines, choosing 4 degrees of frdeddne knots
(Hastie and Tibshirani, 1990, Chap. 2), is also considered in orderttthtesorrect
functional form of the cumulative dose. This approach is not affecyethé prob-
lems previously discussed about the time-dependent covariate. A splissHibwn
in panel (f) of Figure 2.5 and suggests a linear form for the covarialés result is
also confirmed by the accompanying test of hypothesis (.001 for the linear effect
andp = 0.24 for the nonlinear effect). Panel (e) shows what would happen intbase
time-constant covariate total dose is considered. This last panel ditfenspanel (f)
with respect to the time-dependent covariate, but the correspondiraf tegtothesis
indicates a linear functional form for total dose. Note that a regressiatehwaith
total dose is used here only in order to investigate differences in how thedsctine
handling time-dependent and time-constant covariates. In our applicaton lareast
cancer, such a model would make no sense, as total dose can notepecobast the
time origin, but only at the end of the treatment.

The proportionality of hazards was investigated by graphics and testgotHesis
based on Schoenfeld residuals (Grambsch and Therneau, 1984djtsRee discussed
only for the model for the mortality rate. Violation of this assumption happensiwhe
the regression coefficients are not constant in time, as in the extendedh@abed
(Section 1.3.5)

A(t) =Y (H)ao(t) exp {XT(1)B(t)} . (2.13)

The presence of a time-dependent covariate in the model does not terady prob-
lem in the application, and results of the approach based on Schoertigldals can
easily be interpreted.

The assumption of proportionality was tested on the Cox model obtained astistesia

of the data analysis and Figure 2.6 refers to the covariates in this model.e RAdur
shows, for each covariage a plot of the quantities;;, + Bj against times;y, is thejth
element of the scaled Schoenfeld residual at a specific failure timigen in equation
(2.12), andﬁj is the estimated coefficient from a standard Cox model. The plotted
valuess;;, + Bj are estimating the time-varying coefficient (Scheike, 2004}). If

the proportionality assumption holds for the covariatee. its regression coefficient is
time-constant, then valugs, +Bj should be randomly distributed around a horizontal
line in time. Scatterplot smooth functions in Figure 2.6 help displaying the betraviou
of points in time. The assumption of a time-varying coefficient3gg) = 5; + 60,t,

was verified by the test of hypothedik : 6; = 0, for each covariatg (Therneau and
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Figure 2.6:Time-varying regression coefficients based on Schoenfeld residrlats.
are testing for proportionality of the hazards in the Cox model for mortality.

Grambsch, 2000, Chap. 6). Individual tests for log cumulative dese (.001) and
PS @ < 0.001), as also the global tesp (< 0.001), indicate a strong departure from
proportionality of the hazards. That was the reason why the covariateaB 8sed as
a stratification factor and a piecewise constant coefficient was assomadhfiulative
dose in the final model for mortality rate.

Results about goodness-of-fit of the regression models in the applicatiosetst can-
cer underline difficulties in detecting a good model and in the interpretatioraphg

cal tests in the presence of a time-dependent covariate. This probleins caercome
by checking the model with cumulative residuals, which are various furadgaf the
martingale residuals (Lin et al., 1993, Wei, 1984). An introduction to thesduals is
given in Section 2.1.2. If the interest is on checking the functional forenadvariate,
the cumulative residuals of interest are obtained as partial sums of martingale-
als over the covariate values. For simplicity, we consider only a covakiatend we
distinguish between the cases of a time-dependent and time-constanmatJarthe
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former case, the residual processiis

M@ =3 | 10 < i),

wherel is the indicator function. None of the problems previously encountered with
martingale residuals, are here observed)&A$z) is obtained as a sum over all the
observations, and also over all the subjects. Each term in the prh¢s$at a certain
covariate valuer represents the estimated martingal@idtm) of individual i on the
interval (0, t;] where her time-dependent covari&fg (¢) assumes values smaller than

or equal tar. In case the covariate is constant in time, the cumulative residuals process
reduces to

Ml(x) =D I1(Xi < 2)M;.
=1

2.4 Competing risks analysis

At this step, estimates from the two Cox regression models were used fartipet

ing risks analysis. The attention is concentrated on the cumulative incideoica-p
bility for cardiotoxicity, Py, in a a well-defined follow-up time. In the current appli-
cation the time interval was chosen to @3et]. In this case the transition probability
Py.(s,t) represents the conditional probability of developing CHF over the interval
(s, t], given that a patient is still alive and without cardiotoxicity at timeThe alter-
native choice of the entire time intervé), t| would have led to the non-conditional
probability Py.(0, t) of developing CHF over the intervé, t]. This last case would
implicate different assumptions and some computational difficulties in handling the
time-dependent covariate cumulative dose, as will be explained later on.

Prediction of the cumulative incidence probability requires tisrend values of the
covariates to be specified, i.e., a specific patient with given values oflévang prog-
nostic factors and of the total cumulative dose needs to be assumed .fofberee

have fixed the covariates of both the Cox regression models and calIedXtﬁérand

Xflo). Consequently, using the formula in (2.3) we have computed the estimators of
the two cumulative cause-specific hazard increments as follows:

dAn(t; X\V) = dAp(t, 3h)exp{(X,§0>)Tﬁh} . h=cd. (2.14)

Vectors/3. andf3, contain parameter estimates in the Cox models for the cardiotoxicity
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hazard and the mortality hazard, respectively.

In the application we have fixed timeequal to six months and we have assumed that
s represents the end of treatment. Therefore, cumulative dose, whichisisilated
only during the treatment period, is time-independentsirt] and equal to the total
dose at the end of treatment. Formally we are in a situation whgfe) = X;(s)

for all u such thats < u < ¢. That is why the covariate vectoﬁé,so), h = c,d,
which include cumulative dos&, are constant in time and easily fixed in (2.14) for
computingd Ay (¢; X\”).

Through the plug-in method, increments of the estimated cumulative hazarckrfo
diotoxicity in (2.14) and the estimated survival function were used to compete th
Aalen-Johansen type estimator in (2.4), as follows:

Poe(s, t; X0, X = 3 By (s, tcj—;X§0>,X§°)) dAo(te;; X©).  (2.15)
8<tclj§t

We underline that this estimator works correctly in case all the covariatetinzze

independent in the considered time interialt].

In our application we computeﬂ)c(s, t) as a function of dose and time, with= 0.5
andt¢ = 2.5 years. Predictions on CHF probability were made for different levels of
total epirubicin (600, 800, 900 and 1000 mdjrand for some different combinations
of values of the prognostic factors. As an example, risk of developinig fédi 0.5 to

2.5 years of follow-up for a patient without risk factors, with performastatus equal

to 1 and number of tumour sites higher thais shown in Figure 2.7 for age 40, 50,
60 and 70. Each risk curve dr, t] is associated with a fixed level of cumulative dose.

For all possible typologies of patients, probability of developing CHF irsgdanostly
during the first eight months after stopping treatment, becoming nearly oorata
the end of the 2.5 years follow-up, as it is also shown by the example in Figare
The cardiotoxicity risk increased with age for fixed doses. Moreoverstlbstantial
increase in the risk of developing CHF, as the cumulative dose rose 06rm@/n?

up to 1000 mg/rh, was highest for older patients, as the risk curves became gradually
more spaced from age 40 to age 70 (Figure 2.7).

In this application, cumulative incidence probabilities were rich of informatiomf

a medical point of view, because they vyield risk of cardiotoxicity at eadtdfikne
pointu, for u € (s,t], and for each combination of the significant risk factors in the
competing risks model. Table 2.3 shows a numerical example of increasinfprrisk
older patients and for higher total doses, in case of presence of psesitihormonal
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Figure 2.7:Risk of developing CHF from 0.5 to 2.5 years of follow-up at age 40, 50,
60 and 70 for patients without risk factors, with number of sites >1 and perdnice
status=1. The solid black, red, green and blue lines represent theapiiity curve
associated with an epirubicin treatment of 600, 800, 900 and 1000 fng#apectively.
The dashed black line represents the curve of CHF risk corresporditige optimal
recommended cumulative dose; the mark along that curve indicates tpedbbility
level reached at 2.5 years.

treatment, performance statasl and number of tumour sites 1.

2.5 The optimal recommended dosage at 5% risk for car-
diotoxicity

In the medical literature the recommended epirubicin total dose is based orea-5%
timated risk of CHF (Ryberg et al., 1998). Therefore, the maximal leveltaf tibse
(mg/m?) associated with an estimated probability of developing CHF equal to 5% was
computed for each combination of values of prognostic factors. A tota Hekw
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Risk of cardiotoxicity at time ¢

Time Cumulative dose (mg/n?) Age

40 50 60 70

600 0.04 0.05 0.06 0.07

t = 547.87 800 0.07 0.09 0.12 0.14
(1.5 years) 900 0.10 0.13 0.16 0.20
1000 0.14 0.17 0.22 0.26

600 0.05 0.06 0.07 0.09

t=913.12 800 0.09 0.11 0.14 0.17
(2.5 years) 900 0.13 0.16 0.19 0.23
1000 0.17 0.21 0.26 0.31

Table 2.3:Risk of cardiotoxicity as a function of cumulative dose (600, 800, 900 and
1000mg/m) at specific time points= 1.5 andt = 2.5 (years) in case of tumour sites

= 1, presence of previous antihormonal treatment, performance statusfor age

40, 50, 60, and 70.

that maximal predicted threshold would assure a risk lower that 5% to degvatep
diotoxicity. We have denominated the predicted threshold of maximal total ddke a
optimal dosage.

In order to find optimal dosages for each typology of patient, from (2e.xensider
the cumulative incidence probability
to
Poc(s,to; X1) = S(u—; X1)ae(u; X1)du,

s
whereS(t; X1) is the survival function in (2.2), as a function of the total cumulative
dose, X7, on which both the cause-specific hazards depend. We fixed a certain time
t = tg. The variableX; is a component of both the covariate vectarsand X,. The
predicted threshold for the total dose is computed by holding fixed all trezriedes at
XC(O) andXC(lO), except the cumulative dosg,. In this case, we consider the estimate
ch(s, to; X1, XC(O),XC(IO)) in (2.15) only as a function of the total cumulative dose
The optimal recommended dose is then the numerical solufios: X to

POC($7t0;Xik7X(EO)7X((10)) = 0.05.

Note that if we fix the covariates at values other th’éﬁ” and Xfio), we obtain a
different recommended total dose.
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. Age
Case Risk factors 40 50 60 70

A: No risk factors 806/844 739/782 673/722 609/665
Performance B: CMF_ for relapse 864/883 828/850 793/818 759/786
status— 1 C: Prev!ogs Tam 626/670 561/610 496/552 434/496

D: Irradiation Spine/med 596/640 530/581 467/523 404/467

E: Disposition Heart Disease 491/539 427/481 364/424 303/369

F: No risk factors 890 835 783 732
Performance G: CME for relapse 908 878 848 820
status> 1 H: Pr(_ewous Tam 723 670 620 571

I: Adjuvant CMF 917 865 815 767

J: CMF for relapse + adjuvant CMF 922 893 866 839

Table 2.4:Optimal recommended total dosages by performance status (PS) and ag
Doses about patient typologies with PS1 are given for number of sites 1/ > 1.
Doses about patient typologies with BSI are given only for number of sites 1.

2.5.1 Examples

In order to show how results about the cumulative incidence probabilityrendpti-

mal dosages were obtained, we consider the following example. We chadyppieal
patient, for instance, a patient 50 years old with number of tumour sitesa perfor-
mance status equal g with disposition to heart disease and antihormonal treatment
as the only risk factors. Formally, it corresponds to choosing

Xo=X3=1, X4=Xg=X7=0, X5 = 50 years

Xg=1(n.ofsites> 1), Xg=1.

We remark that performance status is a stratification factor and it doesavetamy
regression coefficient. It affects the estimate of the baseline cumulathgechéor
mortality, and therefore, it must also be fixed when estimating the cumulative inci-
dence probability. If we also fix a value for the total cumulative dose, &iaimce, 800
mg/n?, the corresponding estimate of the probabilityAg (s, ) = 0.26. For other
choices of total dose, 600, 900 or 1000 m¢/rie estimated probability is, respec-
tively, 0.14, 0.35 and0.45. On the other hand, if we intend to find the optimal total
dose for this type of patient, we fix a time interyal ¢o| with ty = 2.5 years. Then, we
compute the value of the total dose which makes the estimated probahjlity; o)
equal to5%. In the example, the result 382 mg/n?.

Table 2.4 shows some results about the optimal dosage recommended iruarcepir
treatment of six months(= 0.5 years) for each typology of patient. Results in the
table are classified by performance status and number of sitéf > 1). The time
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interval (s, to] was fixed equal td0.5,2.5] years. For patients without risk factors,
with number of sites= 1 and performance status 1, the cumulative dose which
assured a 5% risk of developing CHF was equal to 806 mgtrage 40 and decreased
gradually with increasing age, being equal to 609 nigatage 70 (patient A in Table
2.4). If number of sites is> 1, the cumulative dose increased slightly, being 844 at
the age 40 and 665 at age 70. Curves of cardiotoxicity risk are showgune2.7 for
these last patients with number of sitedl.

Probability of developing CHF depends strongly on the risk factors fordisisase.
That is why results about the optimal dose can vary greatly according ithwisk
factor is present. As the oldest patients had the highest substantialseé¢re@HF
probability, their optimal dosage is about 200 mg/ess compared to the youngest
patients for almost all the patient typologies. Cases with CMF for relapsanaes-
ception (patient B in Table 2.4). Some risk factors are found to be moreeséore
risk of cardiotoxicity than others and lower doses are then recommendeglipibs-
ence. This observation can be noted from Table 2.4, where, in casafofrpance
status= 1, presence of previous antihormonal treatment (patient C) reducesdhe r
ommended dosage compared with the case of no risk factors (patient Agoiéo,
presence of irradiation to the spine lowers the optimal dose further. Fipadlgence
of disposition to heart disease appears to be the most severe risk &cibGorre-
sponds to the lowest suggested doses.

We expect patients with some risk factors for cardiotoxicity to have an optiosaige
lower than the one for patients without any risk factor. This idea did not imobeise

of CMF for relapse (patient B in Table 2.4), because its effect needs tatérpreted
taking into account the interaction with the cumulative dose, i.e. in combination with
a specific cumulative dose. Presence of CMF reduces the cardiotoxitgtynrcom-
bination with doses lower than 928 mg/ifFigure 2.3) and the optimal dose resulted
to be lower than 900 mg/frin all the cases. Therefore, patients with CMF for relapse
are associated with high optimal doses, even higher than the ones in thef nagésk
factors, as shown in Table 2.4. A total dose equal to 864/883 ig/associated with
40 years and a decrease of only about 100 ridéwbserved for the oldest patients
with 70 years (patient B), in contrast with the cases mentioned above.

The consequences of including the competing risk of dying for breasecanto the
study can be noted with various examples. Differences in the optimal dobatyeeen
a low performance status=(1) and a more severe status () are due to the competing
cause of death, because for patients with status who have a higher risk of dying,
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the event of cardiotoxicity is less probable to be observed. For exammddieat with
very high mortality rate from breast cancer, as the case | in Table 2.4sagiated
with a higher optimal dose than the recommended dose for a patient with lower ris
of dying, as the case A. The same mechanism about the competing risks ngeobse
when comparing patients with number of sitesl and> 1. From a medical point

of view, the recommended doses need to be increased in order to rasgbednore
severe status of patients who have numerous tumour sites.

Comparison between the case E and the case | in Table 2.4 shows the impaftanc
taking the risk factors for both causes into account and how they caalaeded. In
fact, the difference in the dose, which is more than 400 Mgimattributable to the
high cardiotoxicity rate for patient E and the increased mortality rate of patient

2.6 The time-dependent cumulative dose and its interpreta-
tion

In this section we recall some assumptions used in the application to breast agan
predicting the cumulative incidence probability for cardiotoxicity. Moreowerdis-
cuss how the time-dependent covariate cumulative dose was definedradiddy and
whether this covariate leaves the related inference unchanged. Finaliisauss the
prediction of the cumulative incidence probability when some alternativerastin
are made.

In the application to breast cancer, the covariate cumulative dose was aarig; (t)
andXg (t) in the Cox models for the cardiotoxicity rate and the mortality rate, respec-
tively. Since bothX,;(¢) and X, (t) represent the same covariate, but as elements
of the different vectorsy. and X, here we will simplify the notation by calling them
X1().

In Section 2.4 we estimated the cumulative incidence probability for cardiotoeigity
follows. Since the chemotherapy treatment period was assumed to be equad]to
with s being a fixed time within the observation perifid | of the study, and since
the dose was administrated only along the treatment period, the covATiéte is
time-dependent only within the time interv@l, s|, whereas it is time-independent and
equal to the total dos¥ (s) in the remaining periods, 7]. Since an interesting medi-
cal aspect consists of studying the risk of cardiotoxicity after endingttemotherapy
treatment (after time), we decided to predict the behaviour of the cumulative inci-
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dence probability between the given timeand a timet, with ¢ > s. Therefore, the
estimate of this probability by equation (2.15) was straightforward becasisg $ingle
given value for the cumulative dosé,, being time-independent {3, t|, was required.
Implementation of equation (2.15) did not imply any computational difficulty.

If the interest was on studying the risk of cardiotoxicity from the beginnihthe
treatment until a given time¢, ¢ > s, then X; would no longer be time-independent
on the whole interval of intere$0, ¢, and the specification of a single covariate value
would not be sufficient anymore. This alternative scenario shall be #liestdater in
this section, after formally defining the time-dependent covariate structure.

Let the procesg X (t),0 < ¢t < 7}, where|0, 7] is the observational period of the
study, be the time-dependent covariate cumulative dose. In the applicativaast
cancer it turns out that the proceXs(¢) can be condidered as deterministic, i.e. fixed
in advance. This means that the covariate cumulative dose belongs to thetlas
so-called external defined time-dependent covariates (KalbfleiscRramtice, 2002,
Chap. 6). Therefore, the form of the likelihood function and infereareeunchanged,
and predictions of the cumulative incidence probabilities in the competing resks r
gression model can be performed without any complication. The reasoatithth
administration of the cumulative dose along the treatment period is assumecetp be r
ulated, for each patient, by a predetermined time schedule between theiljiessib
shown in Table 2.1.

Unlike the competing risks regression model of our application, generallggires-
sion models covariates are considered as random variables. Theassuatption
is that the hazards functions refer to the conditional distribution of salrtimnes
given the observed covariates. Therefore, it appears to be ntiuwahsider a time-
dependent covariate as a stochastic process. Nevertheless, handling process in
competing risks regression models is not always straightforward, armfria sases it
is even not possible to make predictions (Fisher and Lin, 1999, Andetsdn 1993,
Chap. 3). Further explanations are given in Appendix B of the thesis.

After having specified the type of proce&s (¢) for the cumulative dose, we return
to the hypothetical situation of studying the risk of cardiotoxicity over the etitive
interval (0, ¢]. We shall briefly discuss how the predictions of the risk as a function
of the cumulative dose are obtained. In order to be able to predict the divaula
incidence probability for cardiotoxicity (cause= c) by equation (2.6), given the data
and the estimates), of the regression coefficients, we need to specify a path of the
processX; (), besides the values for the remaining covariates in the ve&fpend
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X 4. Denote the given path for the cumulative dose)by) (t). This path consists of
a non-decreasing left-continuous step function with jump size equal to e siose

injected; its maximum value is reached at the end of the treatnment{}iarel hence
it is equal to the total dosﬁfo) (t).

In estimating the cumulative imcidence probability for cardiotoxici.(0,¢), in
presence of the cumulative dose proc&ss$t), the theory illustrated in Section 2.1.1
and Section 2.4 is still valid and the formulas need just to be updated by sulgsfiiilin
with X, (¢). Equation (2.4) expresses still valid estimators for the cumulative cause-
specific baseline hazards, the only differences being in the evaluatisff)éf,@h).

The latter formula needs also the values of the cumulative dose for all padtetidk

at that timet and therefore, this fact might yield some computational difficulties in the
estimation of the survival probability in (2.5). Moreover, the values of tkiergpath

X{O) (t) at all the cause-specific failure times are needed in order to compute Eguatio
(2.14) and (2.15).

Optimal recommended dosages might be also investigated when the interessisfoc
on the risk of cardiotoxicity from the beginning of the treatment until a given time
after the treatment. Let us illustrate a possible procedure by an example. Hitailar
what was done in Section 2.5, we may consider the cumulative incidencahlith
Py.(0,t9), for a given timet,, as a function of the cumulative dose, i.e., as a func-
tion of the deterministic process; (¢). Furthermore, we might restrict the attention
to the case of such a functional relationship under the assumption thatan dane
schedule is specified. For instance, we assume a time schedule of an inggatipn
one every three weeks (Table 2.1) during a treatment péfipg, with s < t;. An
interesting aim would then be to find the single dose injected every three welgikk
assures a cardiotoxicity risk lower than 5% at tilmén order to solve this problem and
find such a recommended single dose, it would be sufficient to find thespamnding
recommended total dose as a numerical solution to the equBiidf, to) = 0.05.
Nevertheless, the optimal total dose found by this procedure, or,aqntly, the cor-
responding optimal single doses, would be strictly related to the assumed tietke sch
ule and, therefore, could not be interpreted by its own. In conclusi@httpothetical
analysis would compute a dose administration regime which is optimal for a certain
given time schedule (three weeks in the previous example) and with raspe&%
treshold for the cardiotoxicity risk. Further recommended dose administragimes
might also be determined for the different time schedules in the study, intorgen-
vide a general picture and useful medical guidelines about the relattoreée the
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chemotherapy treatment and cardiotoxicity.

2.7 Discussion

The competing risks setting was chosen as a very necessary statistidal tstoidy-
ing the cardiotoxicity risk for patients with advanced breast cancer. lBecaf their
severe status, it is known that these patients have a very high risk of, @sagduring
their chemotherapy treatment. That is why we can not neglect to considsoripet-
ing risk of dying for breast cancer even though the primary interestsis on risk of
developing CHF. Ignoring the competing cause might lead to overlooking tamgor
features of the studied problem. Patients who died could potentially havéodede
CHF, but this event can never be observed. The comments on the numesidés
about the optimal total doses described in Section 2.5 investigate the mechamism
derlying the two competing causes and describe a possible reasonalpeeiatibon of
the medical problem.

The application of a competing risks analysis to the study of cardiotoxicity asca f
tion of chemotherapy dosages led to very important new medical results of-at,
we found new recommended levels for the total dose administrated duringokeiir
chemotherapy, which were found to be lower than the one recommendeditethe
ture (Ryberg et al., 1998). Moreover, the existing literature suggestgie $evel for
all types of patients. We demonstrated that the optimal recommended dogsagayca
substantially between groups of patients with different characteristicasknfhctors.

In order to compute the optimal dosage levels corresponding to a 5% caidityto
risk, we needed to treat the cumulative dose as a time-dependent covidaatiing
the time-dependent cumulative dose turned out to be easy as it was cedsidea
deterministic process. However, as the history of dose administrationdbrpedient
was needed, the implementation of the analysis was not trivial. In generallifg
time-dependent covariates required particular attention since it is esdentiefine
which kind of process is underlying the covariate (Kalbfleisch and Pesn#@02,
Chap. 6).

The standard method for competing risks regression models (Andersén 2002,
1993, Chap. 7) was used for the statistical analyses. Although newaditermethods
(Scheike and Zhang, 2004, Fine, 2001, Scheike et al., 2007, Aerdetsal., 2003)
have appeared recently in the literature, the standard approach enalitegerform
a complete and accurate analysis, as selection and goodness-oféinobtiel follow
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methods which are well-established in survival analysis and applicable tothtiext.
Moreover, standard software for survival analysis can be usekfpession models
for the cause-specific hazards by regarding all events due to otlsgthan the one
of interest as additional censoring events. Nevertheless, this ided @bworing is
correct only when analyzing cause-specific hazard functions andlative incidence
probabilities, while it yields erroneous conclusions if it is used in computingldta
Meier type estimates for the single causes. These estimates would not btoeane
minus the cause-specific estimated cumulative incidence probabilities (Tstitk, 1
1998).

A drawback of the standard method for regression analysis of competkgydata is
that simple parameters, which explain directly the effects of covariates aratise-
specific cumulative incidence probabilities, are missing. The cumulative imxde
probabilities are complex non-linear functions of the covariates and threrigis only
possible to describe indirect covariate effects by estimating these probalfditidif-
ferent given covariate patterns.

In our breast cancer study, the interest was limited to estimating the cumulative in
dence probabilities in the intervad, ¢t] with s = 0.5 andt = 2.5 years. An interesting
suggestion might be to investigate and compare the cardiotoxicity risk in citfense
intervals in order to identify periods with highest risk. This can be perfdrimecon-
sidering the conditional probabilitieB(T' < s + A, Z(T') = ¢|T > s), for instance
with A = 0.5 years ang = 0.5, 1, 1.5, 2 years. For the notation of these conditional
probabilities the reader can refer to equation (1.39).

Problems about goodness-of-fit in case of a time-dependent covesgaéeinvesti-
gated. Some of them were already pointed out by other authors (Theandaramb-
sch, 2000, Chap. 5), but we disagree on the usefulness of martiregdials in
suggesting possible correct functional form. Plots of martingale resithasisper-
observation and per-subject might fail in investigating the functional fofm time-
dependent covariate. We discussed about the need of cumulative rakertiegiduals
(Lin et al., 1993) in model diagnostics, as they overcome problems related to time
dependency of covariates. A drawback of the type of residuals disduis this chapter
and the corresponding tests of hypotheses for each covariate, isapatréonly valid
if the Cox model is correct for all the remaining covariates (Scheike antifdasen,
2004).



Chapter 3

Time-varying Regression
Coefficients in Relative Survival
Models

In relative survival modelling through regression analysis, the exispipgoaches can

be classified within the parametric, semiparametric and nonparametric settiegs. H
we present the additive excess hazards models (Zahl, 1996), wieegrdbss hazard

is on additive form. We assess the importance of time-varying effects doession
models in this framework and show how recent developments can be usedkéo ma
inferential statements within the nonparametric version of the model. When some
covariate effects are constant, we show how the semiparametric addiiveade! can

be considered in the excess risk setting, providing a better and more sisefnary

of the data. Estimators having an explicit form and inference based sampéing
scheme are presented for both the nonparametric and semiparametric ridedalso
describe a suggestion for goodness-of-fit of relative survivaletspdvhich consists

of statistical and graphical tests based on cumulative martingale residulis.isT
illustrated on the semiparametric model with proportional excess hazardsnalee
data from the TRACE study using different approaches and show tu: foe more
flexible models in relative survival.

The research work presented in this chapter is based on the papeseCamteScheike
(2008).
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3.1 Introduction and background

3.1.1 Relative survival

In many cancer studies, but also in population-based and clinical altiseral studies
other than cancer, information on causes of death, remissions, etc. iireman-
available, especially with a long follow-up. In some cases, this informatiorcdsded
on medical registries but it is incomplete or misleading, because death coatdybe
partially due to the disease of interest and it is difficult to classify deathsadotner
causes indirectly correlated with the disease of interest. For this reagsonsehof
cause-specific survival in the framework of competing risks, wheteaat two dis-
tinct alternative causes need to be specified, is problematic. Moreowvey, ctimical
studies aim at identifying prognostic factors for mortality due to the dise#ereh-
tiating whether their effects are also related to the natural mortality in the unagrly
population. In this case, problems arise in comparisons between studsesdradif-
ferent background populations.

Relative survival analysis provides a solution to these difficulties. It ame require
information on cause of death, whereas it allows one to estimate patientadowi-
rected for the effect of other causes of death, using the natural modétite under-
lying population. Of course, the natural mortality encompasses also mortality fr
the disease of interest; however, when the latter is very small and thenibleglibe
general population is commonly assumed to be unaffected by the diseasere$in
Indeed, relative survival describes the excess mortality for patierdaasad with the
disease of interest, irrespective of whether the excess mortality is direatglicectly
attributable to the disease. In general, estimation of this corrected pati@iasur
a quantity which is hypothetically defined as the net survival in the compdtkg r
setting, is the principal aim in relative survival. From population life tablesre
the estimate is given by the relative survival ratio between the observenaof
patients and the expected survival from the underlying population, wsgfecs to the
main factors affecting the natural mortality, such as age, sex and cakinédar

A natural way of modelling relative survival through regression anglgsnsists in
assuming the following additive form for the hazard at timeonditional on covariates
Z andX:

ANt; Z,X) =N (t; Z) + v(t; X), (3.1)

whereZ and X are sets of covariates which are not necessarily all distinct. The total
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observed hazard is modelled as the sum of the expected hazsird; Z), which
represents the background rate of mortality of the general populatidrtharexcess
hazardv(¢; X) due to presence of an additional cause of mortality, such as cancer or
other chronic diseases. The expected hazard is generally estimateeitienmal data,
i.e., mortality rates recorded in the public registries of the population undetlyang
patients’ sample under study. It is assumed to be known in the relativeraumodel
and generally it depends on some characterisficg the population. The additional
excess hazard follows a regression model based on the relevanacisksfX and
can be modelled by a proportional or an additive form, according to theityatiél
the underlying assumptions. In general, the principal interest in régneanalysis
consists in evaluating possible prognostic factors which influence direetlgxbess
risk, in absence of the effect of competing causes of death. That ismiayhe excess
risk is supposed to depend on the set of covariates observed in theeebipdividuals.

3.1.2 Parametric, semiparametric and nonparametric appraches

Among different approaches to modelling relative survival, our attentiatirécted
to models following the additive form in (3.1). Within this approach, various eted
and their extensions have been proposed recently and they can bfetlass para-
metric, semiparametric or nonparametric models. Two basic methods that assume a
multiplicative function of the covariates for the excess hazard, deschpédtakuli-
nen and Tenkanen (1987) and Estéve et al. (1990), have beelinubedparametric
setting. Extensions of these models (Dickman et al., 2004, Lambert et &b) 200
handling time-dependent covariates (Bolard et al., 2001) have alsadegeloped in
the literature. Although all these models are specified in continuous time, thieynas
a parametric function for the hazard, usually a constant hazard withilefgrenined
time-intervals. In order to detect possible nonproportional excessdsgzhe standard
solution used within these models consists of including time-dependent degaaim
interaction terms (covariate by follow-up time-intervals). More recently, ssugges-
tions have used spline functions (Giorgi et al., 2003, Bolard et al., Zo0&)odelling
time-dependent hazard ratio and the baseline excess hazard, in osdeldtanore
flexible and less restrictive additive models, in case of multiplicative scalénéoex-
cess hazard. In the semiparametric setting, these attempts can be seenats/ak¢o
the well-known proportional excess hazards model by Sasieni (199@) semipara-
metric proportional excess hazards model considers an excess rid&xoform and
can easily handle time-dependent covariates, provided that the assuofjatipropor-
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tional hazards for the excess risk of individuals is verified. Zahl §)@®nsidered the
fully nonparametric additive hazards model (Aalen, 1980) describeddamigle 1.3.1,
to model the excess hazard, wiX¢; X) = ao(t) + 81(t) X1 + ... + B,(t) X,, over-
coming problems about non-proportionality and non-positive excessdm¢Zahl and
Tretli, 1997, Zahl, 1995).

3.1.3 Dynamic extensions for the nonparametric and semipametric set-
tings

We shall study the additive hazard models and show how recent deveitpoan be
used to make inferential statements within the nonparametric additive exassda
model. This makes it possible to test the key hypothesis that an excessfeiskief
time-varying in contrast to being constant over time. One problem with the faly n
parametric dynamic description is that the model might be too big, if some covariate
effects are in fact constant with time. We shall therefore also show hogetingoara-
metric additive risk model (McKeague and Sasieni, 1994) can be coedidierthe
excess risk setting. This model can provide a better and more useful syrafitae
data and makes a better bias/variance trade-off. We shall show howreadditive
models are easy to fit with estimators on explicit form and how inference imgjud
tests for time-constant effects can be carried out based on a resanghlgges

Our objective is to introduce and to assess the importance of time-varyiecgtseff
(Scheike, 2004) for regression models in the relative survival frasriewl heir pres-
ence in the model shows directly how the influence of risk factors on thresexwzard
may change over follow-up time, as regression coefficients are allowegpend on
time. No difficulties appear in handling time-dependent covariates, whictiesated
as commonly performed in the Aalen additive hazards model and in the CoX.mode

3.2 The nonparametric additive excess hazards model

The nonparametric additive excess hazards model, described byl28#))( is
At) =Y ()" (t; 2) + XT()B()], (3.2)

and contains only nonparametric terms. The excess rate is modelled in aéititive
and follows the additive hazards model (Example 1.3.1) introduced by Aa830).
The p-dimensional vector of covariates is denoted Xyt). The functionY'(¢) is
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the risk indicator, which is one if the event or censoring has not ootwnmél ¢ and
zero otherwise. The effects of risk factors on the excess mortality thazarX) =

Y (t)XT(t)B(t) are expressed by the time-varyipegdimensional regression coeffi-
cient3(t) = (Bi(t),. .., Bp(t)T.

The relative survival for the additive excess hazards model is égual

(0 = exp{ = [ XT(3(5)0s}

which in general, for additive models, can be writtenrég = S(t)/S*(t), where
S(t) andS*(t) denote the observed and expected survival, respectively.

3.2.1 Notation

The models and the related inference are given using the counting prepessenta-
tion described in Section 1.1.3. The conditional intensit) in (3.2) provides a model

for its associated counting processt), that counts the observed failures in the obser-
vation periodt € [0, 7], with 7 < oo, of a subject with predictable covariates Z and X.
Let (N;(t),Yi(t), Zi(t), X;(t)) fori = 1,...,n, ben independent observations from
the additive excess hazards model with intensity. Recalling the definition (1.17) in
Chapter 1, denote by (¢) = (Ny(t),..., N,(t))T the multivariate counting process
of then subjects, and by(t) = (A1 (1), ..., \(t))T the associated intensity. Thep
dimensional matrixX (t) = (Y1(t)X1(t), ..., Yn(t)X,(t))" contains all the informa-
tion about the predictable covariates in the excess rate. The considgiaters
have properties that rely on the martingale theory described in Section 2t} =

N(t) — A(t) is then-dimensional zero-mean martingale associated with the counting
processedV (¢). The total cumulative intensity is given by the compensator of the mar-
tingale,A(t) = fot)\(s)ds. Define*(t) = (Yi(#)aj(t),. .., Yu(t)ak(t)T. We then
have the increment&N (t) = A(t)dt + dM (t) = N*(t)dt + X (t)5(t)dt + dM (t) of

the counting process using the excess additive regression model.

3.2.2 The estimators

Inference is made by estimating the cumulative regression coeffidihts= fot B(s)ds,
which give the cumulative effects of each covariate on the excess mortahtyEsti-
mators in the additive excess hazards model are very similar to the onefutiesl
standard additive hazards model (Example 1.3.1) A*¢t) = f(f X*(s)ds. The prin-
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cipal basic difference in working with relative survival consists in rejplg the usual
counting processV (¢) with the modified counting proces§(t) = N(t) — A*(t).
Thus from the increments of the martingale, we have

AN(t) = dN(t) — N (t)dt = X (£)B(t)dt + dM(t),

which suggests the possibility to estimate the incremgiit$dt by weighted least
squares methods for multiple linear regression (Huffer and McKea@84,)1 The
increment inNi(t) thus gives the observed excess risk compared with the background
mortality, among those under risk, since the martingale increment has mearirzero
other words, the expected number of deaths equals the expected niidekground
deaths plus the expected number of excess mortality deaths. The resultmg@sis

dB*(t) = X (t)dN(t), (3.3)
where thep x n matrix
X ()= XTOWHX) " X (W) (3.4)

is the generalized inverse & (¢) andWV () is a predictable: x n diagonal matrix of
weights. Therefore,

t
B ) = / X~ ()N (s) (3.5)
0
is the estimator for thg-dimensional vector of cumulative regression coefficients.

The estimator in (3.5) can be written as
R R t
B*(t) = B(t) —/ X (s)A\"(s)ds, (3.6)
0

the difference of the standard Aalen estimator (Aalen, 198() = f(f X7 (s)dN(s),

and a predictable term depending on the known background mortality hteeob-
served covariates (Zahl and Tretli, 1997). The second term reypseee average
expected hazard of the population at risk at each observed time, weigfttethe
observed covariate values. The Aalen estimator is incremented at each faile
(where a jump is observed) while it is constant between failures. Note thatsth
timator B* decreases systematically between failure times because of the Lebesgue
integral in the second term of (3.6). In this latt&¥; (t) is negative for < T; (T is

the failure time of the individual) and, at failure times, it is observed to have jumps
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equal toN;(T;) — Af(T;). Moreover, the estimators depend on both censoring and fail-
ure times, as the modified counting procés(st) for censored individuals depends on
their precise censoring times (while the observed counting praééssis constantly
equal to zero for censored subjects). Consequently, even thougistiheator3* is
well-defined by expression (3.3) and is an unbiased estimator of thesexwetality,
some care has to be taken when implementing the Lebesgue integration. Ewgim tho
the substitution of integrals with summations might require further assumptions, in
practical cases where the expected hazdris piecewise constant, this substitution

is allowed. This aspect is also discussed in related papers (Andersd&faeth, 1989,
Zahl, 1996, Sasieni, 1996).

The approximate maximum likelihood estimator #8(t) is
~ t ~
B () = / X (s)dN (s),
0

whereX |, is the matrix in (3.4) with diagonal weight matriX (¢) = diag(Y;(t)/\:(t)).
The estimator is obtained from score equations for the infinite-dimensiorahpter
B(t) as in Greenwood and Wefelmeyer (1991), Sasieni (1992). For a neorera
theory on estimation equations for infinite-dimensional parameters the resadker
ferred to Greenwood and Wefelmeyer (1990). Since the m&tf{x) contains the
unknown parametes(t) through\;(t), B*(t) requires estimating/ (t), which can be
preformed by the application of smoothing techniques. The estimated weiglix matr
is then plugged into the estimatB (t). B*(t) is asymptoticly efficient ang/n times

its difference with the true cumulative regression parameter convergéstiiwation

to a Gaussian martingale, as for the least squares estifatoy.

3.2.3 Properties of the estimators

If the matrix X (¢) has full rank for allt, B*(¢) is an unbiased estimator @#(t),
because the second term in

B ) = /0 dB(s) + /0 X~ (5)dM(s)

is a martingale with zero mean. Moreover, using functional forms of the gt
of large numbers, under certain regularity conditions the following cgearere in
distribution can be proved (Martinussen and Scheike, 2006, Chap. 5):

n'/2(B* — B) BU, forn — oo,
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whereU is a Gaussian martingale with covariance functipft) = fot ¢(s)ds. An
explicit expression fop(t) can be found in Martinussen and Scheike (2006, Chap. 5).
As a general reference within the thesis, the asymptotic theory is desariBedtion
1.2.3. These simple properties of the estimatérare the fundamental elements for
inference and are the same as those for the estinfator the standard nonparametric
additive hazards model (Example 1.3.1), since the asymptotic results areaséli b
on the martingalé/(¢). The martingale in the additive excess model differs from the
one in the standard additive model only for the expression of its compens@jo In

fact, a component of this latter is constrained to be equal to the integratedteap
mortality of the population.

One of the possible estimators for the varianc&ofis

b(0) = [ X~ (s)diagidN () (X~ (5)".

which is mostly used because of its simple implementation. It is the optional variation
process of the martingalﬁf X (s)dM s) and it is uniformly consistent.

3.2.4 Inferential procedures
The pointwise confidence interval fét;(t) is equivalent to
5% — 21/2
Bi(t) £n Y2, 00 (1), (3.7)

whered;(t) is the jth diagonal element ob(t), andc, /s is the (1 — a/2) quantile

of the standard normal distribution. It is useful as a synthetic estimator bittcan

vary strongly depending on which time point is chosen, its use for a statigtsal
about the entire shape of the cumulative regression coefficients wodltbl@zcorrect

conclusions.

The two hypotheseﬂél) : Bj(t) = 0 (or Bj(t) = 0) andHé2) 1 B(t) = v (or
B;(t) = ~t), for all ¢ in the range[0, 7], are of interest, stating, respectively, the
assumption of no effect and the assumption of constant effect of ttécoas 3;.
Tests are shown directly for the cumulative regression coeffidg(it). In order to
explain the final test-statistics, we consider the process

Ai(t) =n"' 2y ()G,
1
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which, conditional on the datav;(¢), Yi(¢), Z;(t), X;(t)), fori = 1,...,n, and under
some regularity conditions, has the same limit distribution'd$(B*(t) — B(t)). The
random variables&?;, fori = 1,...,n, are independent standard normals and

& (1) :/o (WX ()X (5)) "' Xi(s)dMi(s),

with

Moreover

=1
is a consistent estimator of the asymptotic variance!'6t(B*(t) — B(t)).
The hypothesisHél) can thus be tested using the variance weighted test statistic,

nl/2Bx(t)

A 3.8
(05,2 o0

Tis = SURco,r

based on the resampling approach for the additive Aalen model by Sqzéigg),
where\i/jj(t) is the jth diagonal element ob*(¢). SinceT}s has the same asymp-
totic distribution as sutAl(t)/(\ifjj(t))W) under the null hypothesis, an empirical
distribution of this latter can be used to build confidence bandfgr The empir-

ical distribution is obtained by resamplind; (¢), by generating replicates from the
standard normalG;},_; .. The observed test process can be plotted versus time to-
gether with its confidence band. Graphicaﬂzﬁél) may be tested by observing whether
the zero function, representing the null hypothesis, is contained withindhfgdence
band.

In order to test the hypothesfi(2), the quantityB}‘(T) /T may estimate the constant
~ of the null hypothesis. The two test statistics based on the resampling approa
(Scheike, 2002) are :

Tys = n'/? sup \B;(t)—B;(T)E| and To; =n / T(B;f(t) —B;(T)E)zdt. (3.9)
te[0,7] T 0 T
Approximatep-values can be obtained by resampling from the proﬂq$s)—A1(r)$,
similar to what was explained earlier. The resampled processes may be pkrded
time, together with the observed process. The possible deviation of this laiter f
the resampled processes might show rejection of the hypothesis abstardaeffect.
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Note that these test statistics depend on the selected time ingrvaland therefore
different results may be obtained on smaller time intervals.

3.3 The semiparametric additive excess hazards model

The semiparametric additive model is a submodel of the nonparametric acolitoled
where some effects are allowed to be constant in time. We can specify a samgba
ric model for relative survival with additive hazards

At) =Y (W){a*(t2) + XT()B() + VT ()7} (3.10)

where X (t) and V' (t) are, respectivelyp-dimensional and-dimensional covariates,

Y (t) is the risk indicator3(t) is thep-dimensional time-varying regression coefficient
and~ is the ¢g-dimensional time-invariant coefficient. After having tested whether
effects are time-varying or constant in the full additive model (3.2), thegarametric
additive model (3.10) could be fitted to better describe the right form ofdtpession
coefficients. Moreover, the model is simpler and leads to less complicated testma

3.3.1 Estimators and their properties

The estimators of the cumulative coefficieB{(t) = f(f B(s)ds and of v can be
obtained by least squares methods, as for the nonparametric additivé. made
consider the same setting as for the additive excess hazards model (32g, the
counting processV(t) is now associated with the intensify(¢) modelled by the
semiparametric regression in (3.10). In additionXdt), define the matriXd/(¢) =
(Y1()VA(t), ..., Yy (1) Vi ()T of dimensiomn x q. If we consider the martingale de-
composition and the modified counting proc@sg) = N (t) — A*(t), its correspond-
ing increment can be written as

AN(t) = dN(t) — N (t)dt = X (£)8(t)dt + V (£)ydt + dM(t).

Since the martingale incremendd/(¢) are uncorrelated and with zero mean, least
squares methods lead to the equatidti (t) = X ~(t) (dN(t) - V(t)’ydt) for B(t),
wherey has been fixed. The estimatorpfs

T -1 7
Ak T T \
7 = ( /0 v (t)H(t)V(t)dt> /0 VIOHGING,  (3.11)
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where the inverse of the matridd (t) = W (t)(I — X (¢)X (t)) is assumed to ex-
ist. Finally, plugging the estimatay* into the previous expression f@lré*(t), the
estimator ofB(t) is given as

t
B (t) = / X (s) (dN(s) - V(s)’y*ds) . (3.12)
0
This estimator can also be written as
R R t . t
B*(t) = B'(t) — / X7 (s)\*(s)ds —i—/ X (s)V(s) [¥' —4"] ds,
0 0
depending on the estimatpelimensional cumulative coefficient,
B(t) = [y X~ (s) [AN(s) — V(5)4'ds],

and on the estimated constant coeffici#nin a standard semiparametric additive haz-
ards model. The estimatéf has the same expression4sin (3.11), except for the
presence ofV (t) instead ofN (¢).

Asymptotic properties of the estimato&*(t) and#4* are of primary importance in
testing hypotheses abot(t) and~. Under some regularity conditions, as— oo,
n/2(4* — ) converges in distribution to a zero-mean norakith variancex, and
n!/2(B* — B) converges in distribution to a zero-mean Gaussian prodégswith
varianced(t). Consistent estimators of the varianéeand®(t) arise from properties
of martingales and the optional variation processes, and they have thdmamas
for the standard semiparametric additive model (Martinussen and ScBed®).

3.3.2 The maximum likelihood approach

For the semiparametric excess additive hazards model an approximate makum
lihood estimator can be found, similarly to the one derived by McKeague asié3
(1994) for the standard semiparametric model. The partial log-likelihooztitmcan
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be written in counting process notation as follows

n

> (feutonanicn - [ aoar) -

3 ( [ 108 [0+ Vi) XE @) + Yitv (0n] ani(o)

=1

- [0+ OxE @t + vt en] ar)
Derivatives with respect t3(¢) and~ lead to the score equations

X7 (t)diag Y;(1)/Ai(1)) [N (1) = X(D)dB(t) — V (£)ydt] =

/ VT (t)diag Yi(t) /A1) [N (1) - X(0dB(E) ~ V(t)yat] = 0.
0

which have the same form as the least squares ones in case that the maight
W(t) = diag(Yi(t)/Ni(t)) and \;(t) is assumed known. The maximum likelihood
estimators with consistent estimates of the weights are asymptotically efficient as it
in case of the same estimators for the corresponding standard semiparamoeligic

3.3.3 Inferential procedures

In order to test the hypothesis of no effecfj](H B;(t) = 0) and the hypothesis about

an effect being time-constant gﬂ : Bj(t) = ~;t), we suggest to use the confidence
band forB;(t) based on the resampling approach, similarly to what was presented in
Section 3.2.4.

From the properties about asymptotic convergence previously degciiltbe simple
case ofl = I it follows that

Ao(t) = Cy'n 12y " &,G, As(t) =n"1?Y ()G
1 1

with G, ..., G, independent standard normal, have the same asymptotic distribution
asn'/2(4* —~) andn'/2(B* — B) respectively. Then, the variances of these latter are
consistently estimated, respectively, by

5 n~! Zezz (é)")er, Ze& @&)",  (313)

1
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with
€ = /0 {Vi(t) = (V)" X (0)(X (1) X (1) Xi(6) } dM;(t),
&i(t) = &(t) — P()Cy &, &(t) = /0 (n X7 ()X (5)) " Xi(s)dM(s).

VectorsP(t) andC are predictable functions of the matricésand.X — and they are
defined as follows:

Cr=n""! /OTVT(t)H(t)V(t)dt, P(t):/OtX(s)V(s)ds.

The estimated/;(t) of martingale residuals are

NI (t) = Ni(t) - /0 Yi(s) (XT (5)dB* (5) + VT ()7 ds).

Then, as for the nonparametric excess hazards model, a test statistépf'm H

nl/2B(t)

>1/2
()

Tis = sup (3.14)

te(0,7]

where\i/jj(t) is the jth diagonal element of the robust estimafoft) in equation
(3.13). The confidence band f@i s is built resamplingAs in order to find the em-
nl/QAg(t)/\if;]/Q(t)‘, which has the same asymptotic
distribution asl; g under the null hypothesis.

pirical distribution ofsup;¢ 1

Similarly, for the hypothesis ﬁ) the test statistics

Tos = nl/2 sup

t
t€[0,7] T

E;(t)—B;‘(r)i), ngzn/OT(A;f(t)—B;(T) )2dt (3.15)

and their quantiles can be computed by resampling from the prdeg$s Graphical

comparisons between the observed test—profigf:és) - E;(T)% and the simulated
processes under the null can show possible time intervals where therepadute

from the hypothesis [ﬁ

3.4 Application to the TRACE data

Data from the TRACE study are here illustrated. They provide a typicahpiaof
data exhibiting nonproportional excess hazards with respect to soragates.
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3.4.1 Description of the data

The TRACE study (Kober et al., 1995), consisted in a cohort of 66Ti@mta with
acute myocardial infarction who were screened in 27 Danish coromeaeyunits for
entry between May 1990 and July 1992. Information on all patients sarwas
available from the Danish national registries. The follow-up period was fihe day
of diagnosis and onwards, during which the outcome under study wasléatdd. The
aim of the TRACE study group was to establish which risk factors had anpsiig
importance on mortality of patients with acute myocardial infarction.

The actual data set analyzed in this section consists in a random sampléeopd-8
tients from the TRACE data. Models were fitted only in the follow-up period ef th
first six years from diagnosis, as most of the excess deaths for myalcaferction
occurred within this time. Patients still alive after six years were considégbd r
censored. The total number of deaths after myocardial infarction dtivenfpllow-up
period was 881, and of these, 221 took place within the first two months tiffiee
scale was time since prognosis. The background control population movtaktpb-
tained from the registry StatBank Denmark (www.statistikbanken.dk) duridivi
years period from 1986 to 1990. Information on the background mortaliigsrwas
collected by gender and age.

In our analysis, only the most relevant prognostic factors are taken actmuat as
an example for fitting and comparing the different models. The recordedadsors
are age of patients during the follow-up time, gender (female=1), clinicat lpamp
failure (CHF) (presence=1), diabetes (presence=1) and ventritbidlation (VF)
(presence=1). Some risk factors are expected to have effectsyatyimgly in time,
in particular ventricular fibrillation. Previous studies (Jensen et al., 1893Wed that
ventricular fibrillation was a very important risk factor for death due to mydieh
infarction during the first short time period after diagnosis, but its adveffect was
exhausted approximately two months after.

3.4.2 Comparison of models and estimators

In this section, the nonparametric and semiparametric additive excess$hanadels
described in Sections 3.2 and 3.3 are analyzed on the TRACE dataseirapdred
to the standard methods used for modeling relative survival. The totalchadabe

written as the sum of the known background rate of mortality in the contrallptipn

and the excess hazard associated with myocardial infarction.
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Figure 3.1:Estimated cumulative regression coefficients for the nonparametric addi-
tive hazards model, together with 95% confidence intervals (dashed #indsjonfi-
dence bands based on 50 simulated processes under the null (solid lines)

In the first step, the nonparametric additive excess hazards modelliscafgpthe
TRACE data. Successively, we show how possible simplifications of theamamet-

ric model lead to the more parsimonious semiparametric hazards model. Exkess ris
for the TRACE data was also estimated through the proportional excesmsibamodel
presented briefly in Equation (3.16) and described more thoroughly ipt&ha.

Age was centered around its mean at the start of the study (defiragd @sd consid-
ered as a time-dependent covariate. Results from the nonparametriveagditess
hazards model are presented in Table 3.1 and Figure 3.1. For simulated-ests, a
number equal to 300 resampled processes was used. All covariatesniodet had

an effect significantly different from zero, according to the tEgf in (3.8). Using

the supremum teskys in (3.9), the effects of CHF, centered age and VF resulted to
be time-varying, while the effects of gender and diabetes turned out tosbgant
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Test for non-significant effects Test for time invariant effects

Covariate Tig p-value Tbs p-value 1T5;  p-value

Intercept 2.74 0.147 0.061 0.060 0.006 0.073
CHF 10.20 <0.001 0.121 <0.001 0.043 <0.001
agec 9.76 <0.001 0.006 0.003 1le-04 0.003
sex (female=1) 4.67 <0.001 0.031 0.867 0.001 0.840
diabetes 4.89 <0.001 0.066 0.763 0.003 0.890
VF 6.43 <0.001 0.459 <0.001 0.433 <0.001

Table 3.1:Nonparametric additive excess hazards model: 300 simulation-badsd tes
for non-significant effects and for time invariant effects.

in time (Table 3.1). The same conclusions hold in case of using the alternative te
statisticsT,;. The estimated cumulative regression coefficieBtst) are shown in
Figure 3.1 for each covariate, together with the 95% pointwise confideheeats
(3.7) and the confidence band basedlgn obtained by the resampling technique in
Section 3.2.4. The regression function estim&éts are the slopes of the cumulative
estimates. Interpretation of their patterns is explained later on in this Section.

Particular care needs to be taken in the interpretation of the intefgépt and its
behaviour in the model when compared with the horizontal zero line. In pur a
plication, the excess intensity for a male subject without CHF, diabetes ang VF
vi(t) = Yi(t) [Bo(t) + ((api +t) — ap)B1(t)], whereay; is the age of subjeatat the
start of the study. In this case, the intercept needs to be interpretedepgétin the
additional coefficienps;. The excess baseline hazard can then be represeniett py
for a subject withag; = ag. In order to interpret correctly the coefficiefi§(t) on its
own as the excess baseline hazard, the time-dependeag;age should be centered
with respect taip + ¢t. Thus, the additional term about age in the excess hazard would
be null for a subject with mean age + t at everyt. In this second case, results
from the application (not shown here) indicated that patients with acute mdiata
infarction have an estimated decreasing relative survival during théevibibow-up
period.

From Figure 3.1 it can be observed that the effects of gender andelatrethe excess
mortality rate are constant with time, as graphs of their estimated cumulative- coeffi
cients are approximately straight lines. The time invariance of these twoiatvar
effects justifies a possible simplification of the model by reducing the numberof
parametric components. Therefore, the semiparametric additive ex@zasdhenodel

is also applied to the TRACE data, where effects of gender and diabetassarmed

to be constant and the remaining covariate effects are allowed to be timeageary
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Figure 3.2:Semiparametric additive excess hazards model: Observed testpfoces
each covariate, along with 50 simulated processes under the null hygiethietime
invariant effects.

Results about the semiparametric excess hazards model are preseatdd B12. The
assumption of constant effects for gender and diabetes was configntiee kesults in

the right side of Table 3.2. According to the te$tg and7s; in (3.15), the remaining
covariate effects were still significantly time-varying, as in the previoupammet-

ric model. This reduced semiparametric model gives a better fit to the TRAGE da
as it is simpler in the interpretation and able to discriminate between constant and
time-varying effects. Moreover, going from the nonparametric to the searpst-

ric additive model, comparison of Table 3.1 with Table 3.2 reveals that valuibe o
supremum and squared tests are almost unchanged. Graphics ateiobeof the
estimated time-varying cumulative coefficients were also unchanged witbatep

the nonparametric case, and thus they can be observed from the samee3-1guBoth

the constant effects in Table 3.2 were significanv@lues< 0.001) and positive: For
patients with diabetes the estimated excess mortality rate was 8.3% higher than for
patients without diabetes and this increase was estimated to be constant witBin the
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Test for time invariant effects Constant effects
Covariate Thg p-value Ty p-value | Covariate Coefy Robust SE
Intercept 0.065 0.003 0.008 0.00B8sex (female=1) 0.043 0.010
CHF 0.120 <0.001 0.043 <0.001diabetes 0.083 0.018
agec 0.006 0.003 0.0001 0.008
VF 0.458 <0.001 0.432 <0.001

Table 3.2:Semiparametric additive excess hazards model: 300 simulation-based tes
for for time invariant effects and estimates of constant effects.

years follow-up; the female gender was associated with an estimated ienteasess
mortality rate of 4.3%. Departure of the effects from the null hypothesis of tiregin
ance may be observed easily looking at Figure 3.2, where each otbdestgrocess
is shown along with 50 resampled processes under the null. Presens@aoffant
variation within the six years follow-up period is very evident for the VFffioient:
Behaviour of its test-process in Figure 3.2 reveals that the effect tfieelar fibrilla-
tion is very strong initially, and thus the excess mortality rate has a very higbaser
within the first two months, but successively the effect seems to disappdiane.
Increasing age had also a strongly time-varying effect, which was vighywithin
approximately the first eight months. Similarly, the effect of CHF was inangagery
fast initially, after two months it continued to be present but constant untiioineh
year, finally the effect vanished during the last two years of follow-up.

We apply the proportional excess hazards model by Sasieni (199@) T&ACE data,
in order to verify whether the excess hazard associated with myocardiattioh
could be described by a proportional form. The statistical model is

At) =Y (t) [a*(t; 2) + Ao(t)exp(X T B)] , (3.16)

where the regression coefficiefiis assumed to be time invariant. A formal descrip-
tion of this model can be found in Section 4.1.1. The same set of covariabza

in the previous models is influencing significantly the proportional excezartiaby
increasing it (Table 3.3). CHF and VF seem to be very important risk faatopre-
dicting the excess mortality rate due to myocardial infarction, as for patientsedtt
pump failure or with ventricular fibrillation the excess hazard ratio is abowr¥2.7,
respectively. Nevertheless, these last results could be questionabhlesbehey are re-
lated to regression coefficients which are assumed to be invariant in timestdfh
effects of CHF and VF were highly time-varying (as it was in the semipararnearic
ditive model), the assumption of proportional excess hazards would lzedosince
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Test for non-significant effects

Covariate exp(f) (Rel. risk)  SES)  95% Clforrel. risk  p-value
CHF 3.158 0.130 (2.436 - 4.056) <0.001
agec 1.046 0.005 (1.035-1.057) <0.001
sex (female=1) 1.689 0.117 (1.342 - 2.125) <0.001
diabetes 1.998 0.120 (1.579 - 2.529) <0.001
VF 2.718 0.131 (2.109 - 3.522) <0.001

Table 3.3:Proportional excess hazards model: Tests for non-significant effects.

it is strictly related to the invariance of the regression coefficients in thewelask.

3.5 Discussion

The high flexibility of the additive nonparametric and semiparametric modelgfor r
tive survival, together with the inferential aspects described in this Chapterides a
very important alternative to the existing methods in this field, and on the othdr ha
a useful general extension of the more restrictive recent modelsedndee model
fitting may fail both because the chosen link function for the excess hdaarli-
plicative or additive function) is inappropriate, and because the time imagiaf the
hazard ratio does not hold, besides misspecification of the functiomatfof covari-
ates. The described additive excess hazards models overcome thé pratdam
of violating the proportional hazards assumption. The introduction ofr@ieaby-
time interactions in the parametric relative survival models entails furthemgdgns
which would need always to be carefully tested, in order to avoid neglegptingible
associations between time-dependent covariates and excess mortality.

The TRACE example demonstrates the need of new flexible survival mantetsod-
eling the excess hazards, which can deal with time-varying dynamics afiates
effects. In this Chapter, we showed how the nonparametric and semigdacavee-
sions of the additive excess hazard can easily handle these dynamidemdastrated
when one or the other model is appropriate according to the responsesusétion
based graphical and statistical tests about variation of effects over tivea. tRough
inferential procedures described here are complicated in their eigmeswhen they
concern finding equivalent asymptotic distributions of Gaussian presegse great
advantage is a very easy interpretation of results. In this connectioniatiisal
software, e.g. the R packagé mer eg (Martinussen and Scheike, 2006, App. C)
used in our application and presented in the Appendix A, is an essentiaimesit.
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The graphical procedures showed for the additive excess hanadiss have the ad-
vantage of suggesting time points and sub-intervals where variation offdutsedc-
curs in time with sufficient accuracy, while, in the graphics about Browbidage
processes (Stare et al., 2005) for the proportional excess modesks jtifiermation are
not clearly provided because of the implementation of smoothing procedures

It would be of interest to extend other test methods about time-varyingiateaffects
and goodness-of-fit plots from the nonparametric and semiparametiiivaddizards
model to the relative survival case. Some starting points could be Aal&9,(1993)
and Gandy et al. (2007).

As for the nonparametric excess additive hazards model, also for theasamigtric
model (3.10), approximate maximum likelihood estimators can be found, similarly
to what was done by McKeague and Sasieni (1994) for the semipararaétfitive
hazards models. They are also asymptotically efficient in case of congstenates

of the weights. For the model by McKeague and Sasieni (1994), thiseadso other
estimators, improved by their properties of robustness and consistehicy) eould

be easily extended to the relative survival case when the replacemént(ef holds.

In choosing between a proportional or an additive form for the exeasards, prob-
lems about non-proportionality and large number of covariates undey shalld
always be faced. An additional crucial problem, which was not studidideipresent
Chapter, concerns non-positive excess hazards in relative asurggression models.
From a practical point of view, models about some situations as preveltidies,
would need to allow the excess hazards to be negative, assuring mowevaegative
observed intensities. As pointed by Zahl (1996), the nonparametric \additcess
hazards model overcomes this problem. A proportional excess hanacid can not
be used in case of negative excess intensities, however, it is still possimasider a
possible excess intensity equal to zero (Sasieni, 1996).

Models which allow accommodating time-varying covariate effects are versestte
ing in the relative survival scenario. In this chapter, we studied suchelmarith
additive excess hazards and presented the usefulness of somatiafgmeocedures
about time-varying coefficients. A natural and important case to investigétaving
the same lines of study presented here, would be allowing the presencthainhe-
varying and constant regression coefficients within the proportiona¢ssxhazards
model (3.16).



Chapter 4

Goodness-of-fit for Relative
Survival Models

The purpose of this chapter is to describe a suggestion for goodfiissrethods and
graphical tests for residuals in the relative survival setting. We do thisdtsaightfor-
ward use of the cumulative martingale residuals proposed by Lin et a3)1&&d we
illustrate how to use the cumulative martingale residuals for testing the progairtion
hazards assumption in the proportional excess model by Sasieni (T98§approach
is very simple to implement and is known to work well in the standard survittihge

4.1 Introduction and background

There is a general lack of accomplished methodology for regressionatiigs and
assessment of goodness-of-fit of additive relative survival modials existing theory
is only sometimes implemented in public software. Some of the parametric models
are estimated in the framework of generalized linear models, thereby entidinge
of standard regression diagnostics in this area. Recently, in the corftexbdels
with multiplicative excess rate, Stare et al. (2005) proposed some diagnastied
at detecting time-varying effects of covariates on the excess risk aed baspartial
residuals defined similarly to the Schoenfeld residuals for Cox model. Howineir
procedure relies heavily on the choice of a smoothing parameter, thateceoni-
pletely avoided by the procedure we suggest here. An additional pnolvith the
proposal by Stare et al. (2005) is that it does not lead to the corredtdegn though
it in practice tend to work well.
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In order to show our idea, we need some background which was alpzetiglly in-

troduced in Chapter 3. We describe the proportional excess hazadis, moe of the
semiparametric choices in relative survival. Martingale residuals and tuiepies
are already reviewed in Section 2.1.2. The successive sections cdheapplication
of cumulative martingale residuals, presented in Section 2.1.2, to the proabric

cess hazards model and to the nonparametric additive excess hazasdslesotibed
in Section 3.2.

4.1.1 The proportional excess hazards model

The proportional excess model proposed by Sasieni (1996) modedsdhes risk on
a multiplicative scale. The statistical model is

At) =Y (t) [a*(t; 2) + Mo(t)exp( X B)] , (4.1)

where thep-dimensional regression coefficiefit= (5, ... ,ﬂp)T is assumed time
invariant. Thep-dimensional vectoX contains the covariate values. Here the notation
is as in Section 3.2. In the counting process setting, the inteAsilyis associated
with the processV(t), with ¢ € [0, 7], T < co. Referring to the same definitions of the
model in (3.2), we associate the compensated counting proégss= N (t) — A*(t)

to the martingalé\/ (¢) so that

M) = K() = [ Yo X" Bt

With Y (£) = (Yi(1), ..., Ya(t)).

Solving the unweighted score equations derived from the log-likelihood nd A,
up to all the observation peridd, 7], leads to the following estimator for the baseline
cumulative excess hazard

A t sz u

Ro(tig) = [ =) 42)

0 3 Vi(u)eX's

with X; equal to thep-dimensional vector of covariates of subjéciThe substitution
of this estimator in the score equation foyields

- >, Y0xeS
U(ﬂ)—;/{Xi_ Zj:ij(t)eXJTﬁ }dNi(t)a

(4.3)
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A~

which provides an estimate for the parametesuch thatU(5) = 0. The general
background theory for the score equations is given in 1.3.4. Sekttitg = 0 for

i =1,...,n, the modified counting proces$ is equal toN; and the unweighted es-
timators are the solutions to the usual score equations for the Cox modet|(seme
(1.32) and Example 1.3.2 for more details). Properties of the estimators aditicos
under which they are valid can be found in Sasieni (1996).

Note that some difficulties arise in exchanging summation with integration in equation
(4.3), which depends on both the observed failure times and the obssmedring
times, as the modified counting procééschanges at every censoring time, besides at
every failure time.

4.2 Goodness-of-fit with cumulative martingale residuals

In this section, we propose a very straightforward procedure basedmulative mar-
tingale residuals for testing goodness-of-fit of the proportional exbhagards model
(4.1). Our approach can also be used to assess the fit of the addizmelbaxcess
model but we here illustrate the basic idea by looking at the proportionasexunodel.

In the proportional excess hazards model, we are interested in chegkather the
sub-model for the excess hazard is adequate. More specifically,en toréulfill this
objective, three aspects would need to be checked: Functional focovafiates, the
form of the link function of the excess hazard, the assumption of propaitiazards.
We show how the cumulative sums of martingale-based residuals (Lin et@3) ¢&n
be used to answer this problems.

The partial likelihood score function (4.3) for the parameétean be also written as a
functional of the martingale proceds;(¢) associated with individual as in equation
(2.11). Here we recall the expression of the score function up to thes entarval
[0, 7],

U3) = Z /0 {X; — E(8,t)} dM;(t),

where we have definel(53,t) = S1(5,t)/So(3,t) and
Sk(B,t) =) Yi(t) XFexp(X] ),

with & = 0,1,2. We haveXx = 1, X?' = X; andX* = X;XI. X; =
(X1, ..., Xpi) T is thep-dimensional vector of covariates of individual
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The martingale residuals (Section 2.1.2) for the proportional excesedsanadel are
defined as

M) = N0) [ V(o)X Byt @.4)
where]\o(s) is the estimator in (4.2). They are defined similarly to the martingale
residuals for the standard proportional hazards model (GrgnnesbBagan, 1996).
They verify the basic properties given in Section 2.1.2, i.e., their sum oeenth-
viduals is zero and they average to zero asymptotically. The cumulative nedeting
residuals (Section 2.1.2) are constructed by different partial-sunegses of the mar-
tingale residuals\/;(¢). Processes can be over follow-up time or covariate values, in
order to test, respectively, the proportional excess hazards assomptiee functional
form of covariates and the link function. Then, tests about these asgreatsade by
using the processes to compare their observed behaviour with their plodeetiander

the assumption that the model is true.

The functional of the martingale residuals used to test the proportionakexwaz-
ards assumption is based on the observed score process in time, writtéd, 4% =
> X, M;(t). Using the cumulative martingale residuél!;s(ﬁ,t) => le-Mi(t), the
proportional excess hazard assumption may be verified both by graplutsaand by
hypothesis tests. A test statistics for ega) = 1,...,p) is given by the supremum
of the standardized score process

sup (@“(Uj(ﬁ,t)) : (4.5)

where

®2
Var (U;(3 Z/( SMSD dNi(s)

is a consistent estimator of the variance of the observed score prodtéssupremum
test for proportionality has the advantage that no specific functiona feeds to be
chosen when looking for lack of fit of the model for a specific covarjate

The distribution ofn*%U(B, t) is asymptotically equivalent to
n=3 (D) = J(B, 00T (B.r)Da()) (4.6)

whereD; (t) = S0, [H(X; — E(3,5))dN;(s)G; andGy, . .., G, are independent
standard normals. The mattiX 3, t) represents minus the derivative of the score func-
tion with respect tgs given by (4.3). Then, the asymptotic distributiom@T%U(B, t)
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may be evaluated using a resampling procedure, by generating realiZationthe
process (4.6) which depends only on the random variagbj€Martinussen and Scheike,
2006). This is made by repeatedly generating normal random saf@léswhile
holding the observed dafav;, Y;, X;} fixed. The null distribution of the test statistics
in (4.5) is then approximated by these simulations. A graphical test abqubnien-
ality may be obtained by plotting the observed score proldeéﬁst) over time together
with the realizations we have simulated from the process (4.6) in order toxapyate
the null distribution oft/ (3, t). If the observed score process diverges from the sim-
ulated processes under the model, which should randomly fluctuate atweizero
axis, there is evidence of a lacking fit of the proportional excess dazaodel due to
the missing proportionality.

The key reasoning about the validity of the cumulative martingale residugieoking

the current model consists in replacing the counting prodé&gs with the modified
counting processV(¢) when it is opportune. Here, we underline the use of the esti-
matorA, in (4.2), expressed as a function]8(t). Moreover, in the process (4.6), the
estimator of minus the average of the derivative of the score function vafrect to

0, j(B, t), needs also to be a function E)f(t) and it is evaluated as

o [ (89w o
J(@t)—;/o (SO(&S) E(B, s) )dM( ).

Finally, it is important to note that the process (4.6) depends directly onlyeoart-

inal counting procesV;(t), but not onN;(¢), as the variance oM;(¢) is equal to
E(N;), and therefore can be approximated@yV;.

Graphical and statistical tests for checking the functional form of d¢ates and the
link function in the proportional excess hazards model may be carriedesytsim-
ilarly to the ones proposed by Lin et al. (1993) for the proportional ftlzenodel
and involve the same substitutions shown previously in this section. For iregéstig
of the functional form of a certain covariaje the tests are based on the cumulative
residual procesafi (z) = S0, [ I(X;i(t) < x)dM;(t), whereI(-) is the indi-
cator function,z € R, andMi(t) are defined in (4.4). Resampling methods, as de-
scribed previously, provide simulated realizations under the null, whicloajppate
the asymptotic distribution of the latter process. Therefore, a graphidastgiven

by plotting the observed cumulative residuMé(a:) versus the continuous covariate
with valuesz, together with random realizations under the model.
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Test for proportionality of the excess hazard

Covariate | Test-statistics syjg/;(t)| p-value
CHF 12.7 0.418
agec 163.0 0.826
sex (female=1) 22.1 0.176
diabetes 19.4 0.086
VF 29.2 0.002

Table 4.1:Proportional excess hazards model: 50 simulation-based tests fooprop
tionality of the relative excess risk.

4.3 Example from the TRACE data

In order to test proportionality of the excess hazards of each covamitte propor-
tional model (4.1), we use the simple non-standardized version of thetaéistiss
(4.5) based on cumulative martingale residuals. Results in Table 4.1 stiygtesnly
the covariate VF contributes to violate the assumption of proportionality (.002),

whereas the proportional effect of CHF was correctly verified by #ia.d

Comparison of the model-based relative survival functions with the sporaling
nonparametric estimated curves, underlines the possible violation of assusniptio
the analyzed models. We considered the semiparametric additive excasdshand-
els and the proportional excess hazards model with sex and VF as thasknisc-
tors. In Figure 4.1, the four estimated relative survival functions frashanodel are
compared with the corresponding relative survival curves (relatimg\al ratios) esti-
mated by using the Kaplan-Meier method for the observed and the Hakulirteoane
(Hakulinen, 1982) for the expected survival. The choice of the altem&dered I
method (Ederer and Heise, 1959) for the expected survival doeaffiect the final
results, as our example concerns a short follow-up period. In pahef Figure 4.1,
it is observed that the proportional excess hazards model does venyfitvell data of
patients with ventricular fibrillation, neither for females nor for males. On theroth
hand, this model captures well the difference in relative survival betweales and
females. The current lack of fit of the proportional excess hazardehi®due to
the wrong assumption of proportional excess hazards for VF, whieh dot reflect a
much higher excess risk of dying soon after admission in the study for patiétin
ventricular fibrillation. Predictions in panel (b) of Figure 4.1 describe mhetter the
excess mortality pattern for the different patients groups, since thenueséa time-
varying coefficient for VF in the semiparametric model allows to capture ggmnf
the effect of VF with time.
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Figure 4.1:(a) Comparison between relative survival predictions based on the pro-
portional excess hazards model (dashed lines) and nonparametdtive survival
estimates based on the Kaplan-Meier and Hakulinen methods (solid linsgktand

VF. (b) Comparison between relative survival predictions based onettmipsramet-

ric excess hazards model (dashed lines) and nonparametric relativival estimates
based on the Kaplan-Meier and Hakulinen methods (solid lines) by seX&and

The evidence of the wrong assumption about the proportionality for thefié€te
within the additive model with excess risk as in (4.1), was also provided bstétis-
tical and graphical tests proposed by Stare et al. (2005), based ora#i@um values
of the Brownian bridge processes. The EM method for smoothed basetiesshaz-
ards was chosen within the R packagel sur v (Pohar and Stare, 2006), in order
to fit the regression model. The effect of VF resulted to be time-varying ifmaxr
value was equal to 3.109 with < 0.001), whereas CHF and all the remaining co-
variates had time-constant effects. Therefore, the analyses of ggmdififit based on
the test-statistics (4.5) and on the tests by Stare reached the same condbsigins
the TRACE study, stating that it is solely the covariate VF that ruins the ptiopat
effects. Different results given by the models presented in the cusestibn are es-
sentially due to modeling the excess risk on different scales, that is, thentiamal or
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the additive scale. The effect for CHF, which resulted to be time-varyingnwsing
the latter scale in the additive excess hazards models, but time-constantals mwat
the proportional scale, is an example of that.

4.4 Discussion

Even though our suggestion is related to the recent interesting progoStdte et al.
(2005), our approach has important advantages. First, our methachdbeeed any
critical choice of smoothing parameters (or parametric assumptions) foatwdie.
Secondly, our procedure is asymptotically justified and will thus lead to asyicgitp
correctp-values and this is not true in general for the Stare et al. procedure.

Our suggestions about checking goodness-of-fit of the propottextess hazards
model and the additive excess models play an important role in a good maete| se
tion. An advantage of the supremum test described in Section 4.2 is thaecifisp
deviations from proportionality need to be explicitly expressed. The drxakwis how-
ever that the model is assumed to be correct with respect to all the othaiates
when the proportionality assumption is investigated for a specific covariaterihe-
less, this is a general problem faced also by the existing methods for ggmodfifit of
regression survival models. Then, important features of the data mayeoked,
and we might be unable to detect where a possible lack of proportionalityodar-
ing the follow-up time.



Chapter 5

Outlook: Time-dependent
Covariates in Competing Risks
Settings

The application to breast cancer in Chapter 2 gave rise to investigating lehefro
time-dependent covariates in competing risks regression models, and ematally,
in multi-state regression models. There exist various types of time-depermlemi-
ates, which differ in their random or deterministic development in time (AppeByix
When some of these are studied, predictions based on the model are weidaltr
they meet with difficulties.

The area of research about the role of time-dependent covariates fiettliss at a
young stage and there exists little literature focusing on how to handle diffitzes
of time-dependent covariates. The present chapter is an attempt to éntmethand
provide some directions for future work.

In the next section a general overview of the state of the art, problenfsitamd direc-
tions are introduced. The following section presents a possible exterfsioa com-
peting risks model, that allows us to include a simple random binary time-deptende
variable, in a multi-state framework. Inclusion of the sojourn time of an indaditu

a certain state as a time-dependent covariate into the model, is also studied.
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5.1 Introduction

In multi-state models, and specifically in competing risks models, the principatgtter
focuses often on the cumulative incidence probabilities. When a regnesmsadysis is
suitable, in general the aim is to investigate the effects of covariates onpitodseboili-
ties. Of course, both time-independent and time-dependent covariatdsemealgvant
to study.

The standard approach (Andersen et al., 1993, Chap. 7) consistpafate regres-
sion models for all the cause-specific hazards, which are then combirestintate
the cumulative incidence probabilities. The effect of the covariates oe firebabil-
ities is not direct and can not be synthesized by simple regression parsumétes
difficulty has led to the development of alternative recent approacheshwaim to es-
tablish direct effects of covariates on the cumulative incidence probab{i8igseike
and Zhang, 2007). Fine and Gray (1999) proposed the proportiomaistribution
hazards model for competing risks, and the direct parametric inferentleef cumu-
lative incidence functions is discussed by Jeong and Fine (2006). Kidiladersen
(2005) presented a further approach based on pseudovaluditiBres of cumulative
incidence functions by the direct binomial regression approach aes @iy Scheike
et al. (2007).

Regression on some kinds of time-dependent covariates, especiallyalrdevariates
(Appendix B), leads to problems in interpreting and predicting cumulative émciel
probabilities within the standard approach, as discussed in the next setGi@se
aspects belong to the class of problems arising when model specificatioly jsapn
tial (Andersen et al., 1993, Chap. 3). A possible solution, which howgiedds
rather complex theory, consists of specifying completely the model, i.e., ghjoigt
model for the multi-state process and the time-dependent covariates (s@ma¢al.,
2000). An open question is the role of external and internal covariAfgsefdix B)

in modelling cumulative incidence probabilities according to the previously meattion
alternative approaches, and whether or not predictions are possible.

The present chapter, within the standard approach of Andersen €98, Chap. 7),
provides a discussion about the role of the different types of time-dieménovariates,
throws light on some interesting directions of work and attempts to give sorséfeos
solutions. This work could serve as a starting point for further investigaiiothe
above mentioned problems and related aspects, both within the standaydcipand
within the alternative recent approaches.
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0 0y, 1
Healthy Diseased
2 h k
Event, . o . Event, . o . Event,
cause 2 cause h cause k

Figure 5.1:The extended illness-death model for competing risks without possibility
of recovery. The ending event can be due to ca{i2es ., k}. The arrows represents
the possible transitions between states.

5.2 An extended illness-death model for competing risks

This section presents a multi-state model where additional information abdwedliby
and diseased states is joint to the standard competing risks model. Thenefaran
think of this model as an extended iliness-death model (Appendix C) wheeth-
peting risks are also taken into account.

Consider a nonhomogeneous Markov process in continuous time with fingesptce

S, =1{0,1,2,...,k}. The extended illness-death model for competing risks has ab-
sorbing state$2, ..., k}, representing the ending events due to different causes, while
the state$) and1 are transient and represent two different statuses of individuals. Its
possible transitions are shown in Figure 5.1, where, in clinical studiesatienpsta-

tus can be ‘healthy’ or ‘diseased’. Individuals can experience tmsitran from0 to

1, but the transition back to stalei.e., the possibility of recovery for diseased patients
is here excluded. Moreover, both ‘healthy’ and ‘diseased’ indiviglaan meet with

one of the possiblé — 1 ending events.

The probability space i€2, Z, P), with Z being the filtration generated by the stochas-
tic process. Denote with, (s, t) anday(t), h,l € S., the transition probabilities and
the transition intensities, respectively, as in equations (1.33) and (1.3werlihde-
pendent right-censoring, 1&¥ (t) = (Ny(t),l € {1,...,k}; Nixp(t),h € {2,...,k})

be the multivariate counting process, where, for instanggt) counts the number of
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direct observed transitions fromto [ in [0,¢]. Assume thatV(-) has intensity pro-
cessA(t) = (Aoi,l € {1,...,k}; \n(t),h € {2,...,k}), where each element has
the multiplicative form\y; (t) = Yo(¢) (), with Yy (-) being the at-risk process. The
hazard functionsy(-), forl € {1,...,k}, anday(-), for h € {2,...,k}, regulate
the behaviour of the extended illness-death model for competing riskboas oy
the arrows in Figure 5.1.

Let A be the matrix of integrated transition intensities, where the positive elements
are Ay(t) =[5 ag(u)du, for i € {1,...,k}, and Ay (t) = [ arn(u)du, for
h€{2,....k}. Aw(t) = [ apn(u)du, for b = 0,1, are defined so thaty,(-) =

— 212, @ni(+). The transition matriX” can be written in product integral representa-
tion as in Equation (1.35), wit) = dA. Since we are in the absolutely continuous
case,P is the unique solution to the Kolmogorov forward differential equations fer th
intensity matrixa.. As a solution to these equations, explicit expressions for the tran-
sition probabilities of the extended illness-death model for competing riskeasily

be obtained.

The probabilityPy; (s, t) is equal to the one in the illness-death model (Appendix C),
specified in equation (C.1). Its interpretation is intuitive: an individual magwsa

in state0 for a certain timgs, u—] with probability Py (s, u—), then he may jump to
statel atwu with instantaneous ratey; (u) and finally sojourn in staté the remaining
time [u, t] with probability P;; (u,t). The transitions from state 1 (‘diseased’) to the
cause-specific events are regulated by the probabilities

t
Pyp(s,t) = / Py1(s,u—)aip(u)du, h=2,...,k, s<t. (5.1)

The cumulative incidence probabilities for the cause-specific eventsatgatisition
probabilities from state O to the absorbing st&es ., k, given by

Pon(s,t) = /t [Poo(s, u—)aon(u) + Por(s,u—)aqp(u)]du, h=2,....k, s<t.

’ (5.2)
Equations (C.1), (5.1) and (5.2) depend on the probabilities of permanedor in 1
between a certain time intenval ¢], Pyo(s, t) andPy1 (s, t). Provided thatd;,(-), h =
0,1, are absolutely continuous, their product integral representation basxgiicit
form

t
Pyp(s,t) = exp {/ ahh(u)du} , h=0,1, s<t, (5.3)
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where
apo(u) = —(ao1(u) + aon(u),  an(u)=— o (u).
h=2,....k h=2,...k
One of the primary interests is to estimate fhg(s,t), h = 2, ..., k, which represent

the probability of experiencing the event due to causéthin (s, t], taking the history
of the disease into account. Another important aspect to study is the masgiaial
probability, that is the probability of not experiencing any event until titrgiven by

S(t) = Poo(t) + Po1(0,1). (5.4)

First, we recall the Nelson-Aalen estimators for the cumulative hazardidumsc

) t AN, i tAN
AOl(t):/ dNoi(v) Alh(t):/ AN ok h=2 .k
o Yo(u) 0o Yi(u) (5.5)

which are assumed to be equal to zero at times where the at-risk procetpzsn
itive. Moreover, defined,(t) = — 7., An(t), for b = 0,1, and denote withd
the matrix containing the estimators of the cumulative hazard functions. For finite

state Markov processes, an important result consists in the so-calleg-Zalansen
estimator of the transition matri® (Aalen and Johansen, 1978). This estimator is

Pls,t) =] (I + dA(u)) . (5.6)
(st

It is expressed by the product integral representation similarly to the Kdp&er
estimator of the survival probability in a simple two states model, with one of them
absorbing.

The fundamental result (5.6) yields the following estimators

Pun(s,t) = ][ (1 + dAhh(u)) =1] <1 - d?f?{é?) , h=0,1, (5.7
(s,t] (s,t]

with dNoa (t) = S25_) dNo;(t) anddN1a(t) = Y25, dNy;(t). Since thed,,(-) are
continuous step-functions with a finite numbers of jumps, the product integhaces

to a simple product over the jump times on¢]. Note that the product is over times
of any observed transition out of stdte

Estimation of Py, (+) in (C.1) is straightforward, since it is obtained by plug-in of the
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estimators?y, andP;; given in (5.7). Similarly, estimators of the cumulative incidence
probabilities in (5.2) and (5.1), as well &%) in (5.4), are given by the plug-in method.
Note that in these equations the integrals reduce to sums, when the estimators ar
computed. For instancé, (s, t) is obtained by summation over the transition times
from 1 to A, that are the times when an event of typés observed for a diseased
patient.

5.3 Time-dependent covariates in the extended iliness-death
model for competing risks

Regression analysis on Markov multi-state models can be performed by titasta
approach (Andersen and Keiding, 2002, Andersen et al., 1993.Cia Time-
dependent covariates are also allowed.

Denote withIN; = (Noii(t),l € {1,...,k}; Nuni(t),h € {2,...,k}), fori =
1,...,n the multivariate counting process of individual Regression on covari-
ates is made by specifying regression forms dgr;(t; X;(t)) and oy, ;(t; Xi(t)),
forl € {1,...,k} andh € {2,... Kk}, whereX;(t) is the vector containing all the
cause-specific covariates for individdaEstimators of the baseline cumulative hazard
functions can then be obtained by Breslow estimators, similarly to what wasfdon
the application to breast cancer presented in Chapter 2.

When the interest is on predicting transition probabilities, the transition matritiis es
mated as usual by the product integral

Ps,t: Xo(t) = [ <I + dA(u; Xg(t))) , (5.8)
(s

where A (u; X (t)) is the matrix of estimators of the integrated transition intensities.
In order to obtain these estimators, the covariates need to be specifiethasdiby
the given covariate vectoX(t).

A fundamental aspect so that the estimator in (5.8) is valid concerns the tiyfiego
dependent covariates (Appendix B) included in the multi-state model. In paetea
nal time-dependent covariate is included in the regression analysig;tjes on the
transition probabilities conditionally on given covariates, as in (5.8), arpwossible.

We explain the reason of this by an informal example. Suppose the intégestualy
is to predict some cumulative incidence probabilities under the extended ileasis
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model for competing risks. Assume the regression models for the specifitsinte
tiesayp(+; X1(¢)), h = 2,..., k, include an internal time-dependent covariatg(-).
Then, if we wish to estimate sonig, (s, t), from (5.1) we observe that they are func-
tions of P;; (s, u—). This latter depends indirectly o¥; (-) through its dependence on
all the cause-specific hazards, (-; X;(+)), h = 2,...,k (as seen in equation (5.3)),
but it also depends directly on the internal covariate, sikigé) carries information
on the survival time of individuals. Therefore, given the observegate history up

to timeu—, Pi1(s,u—; X;(u—)) does not have anymore a meaningful interpretation.
In fact, it is equal to one, and the consequence would be that all the-spesific
hazardsy;;, are null.

5.3.1 Internal binary time-dependent covariates

In the previous subsection we illustrated the problems related to including anahte
covariate into the regression model when predictions of the transition lplitlea are

of interest. In this context, the extended illness-death model for competisgvizuld
provide a useful instrument when an internal binary time-dependeariete would
need to be studied. More specifically, when the binary time-dependeatiatevis a
simple one-step process, we might incorporate this process into the compgiting
model. This means that the information given by the binary covariate is myiszb

by the two additional state$ é&nd1) of the extended competing risks model, presented
in Section 5.2.

An example can be a study where it is important to take the binary covariate re-
sponse/no response to a certain treatment into account. One may includdethis in
nal variable into a competing risks regression model, and thus investigatéeits ef
on the cause-specific hazards, although cumulative incidence probaluitienot be
estimated without specifying a model for the covariate. Otherwise, the eedezuin-
peting risks model in Section 5.2, with transient statek equal to, respectively, ‘no
response’ and ‘response’, may be considered. Therefore, tialpitities of dying

for a certain cause, for response and non-response patients eatirbated and even
compared. It may also be of interest to estimate the probalility0, ¢) to respond to

the treatment within a certain tinte

A further interesting idea would consist of allowing patients to enter the stutiipe
origin in either state) or 1. An initial distribution would need to be specified, i.e.
the probabilitiest(0) andw (0). This situation can be realistic when patients do not
experience both the statuses described by stedesl 1. For example, when studying
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mortality due to different causes for some patients taking the role of HIV irtowad,
one might be faced with children with or without HIV at birth, correspondmgnter-
ing in statel or 0, respectively.

Finally, we mention a possible extension of the model in Section 5.2 when thie poss
bility of ‘recovery’ is also considered, that is when the transition from stdiack to
state0 is possible, as in the iliness-death model represented in Figure C.1. Explicit e
pressions for the transitions probabilities of this model can not be obtamedaae,
although estimators based on the product integral representation camipaited,
similarly to what was done in Section 5.2.

5.3.2 The time-dependent covariate ‘duration in a state’

Within the extended competing risks model in Section 5.2, a very relevanttaspe
study is the sojourn time into a certain state. Suppose we are interested indtierdur
in statel since the timé? of entrance in this state, and denote it withrherefore, the
intensities regulating the transitions franto the ending cause-specific events depend
on the duration/ and can be written as; 5,(¢,d), h = 2,...,k, withd =t — T;. We
defined = 0 for ¢t < T3.

These intensities can be modelled by regression on the time-dependeaidtecdara-
tion d, besides other covariates. An example is the Cox regression mogét, ¢t —

T1) = aupp(t) exp{(t — T1)5}. Since the transition tim&) is random, the duration

d = t — Ty is a simple random process, which is null urfjl, while afterTy it in-
creases linearly with time Let 7, andX; be the filtrations generated by the observed
multi-state process and the observed covadatespectively. Sinc& is determined
by the multi-state process itseffjs adapted to the filtratiof;, and then the observed
history ofd is so thatt; c F;. The covariatel can not be considered as determined
in advance from time = 0, sinceT is unobserved at the time origin.

However, after entering state 1&t, given the covariate historyt; with ¢ > T3, the
durationd can be considered as determined. Thus, it may be thought of as a defined
time-dependent covariate (Appendix B).

Since,d is assumed to influence the multi-state process only through the transition
intensitiesay,(-),h = 2,...,k, the transition probabilities from statiegiven the
observed historyF,_ are

t
Plh(sat;Tl) = / Pll(saU_;Tl)alh(u>u_Tl)dua h = 27 SERE) k» Ty <s< L,
s
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where .
Pii(s,u; Th) = exp (—/ Zalh(v,v - Tl)ds> .
S h=2
Similarly to equation (5.2), the cumulative incidence probabilitiestfoe 2,... .k

can be expressed as follows

Por(s,t) = / [Poo (s, u—)aon(u) + Poi(s, u—)aqp(u)] du
s (5.9)

t t
—/ Pog(s,u—)agh(u)du—i—/ Poo (s, u—)ap1(uw) Prp(u, t|u)du,

where .
Pip(u,tu) = / Py (u,v — |u)agp(v,v — u)dv,
u

and Py is given by (5.3).

When transition intensities depend éa- ¢t — 17, which is studied as a time-dependent
covariate, estimation of transition probabilities is straightforward, as seeahose,
since in (5.9) the conditional probabilitid, (u, t|u) are computed for all possible
timesw of transition to statd. If we consider the extended illness-death model for
competing risks where individuals are allowed to enter the study in either(state

1 at the time origin, predictions o can be possible only if the filtratioft, at time

0 contains information about the previous entry tiffiein statel. In this case, the
duration can be considered as a completely predetermined time-depeadandte.
Otherwise, if information o} is unknown for patients entering the study in sthte
then the sojourn time in this state can not be observed, and hence estimagonthend
model previously described can not be performed.

Interesting open questions arise in studying the extended competing risksd aiod
Section 5.2 with duration dependence. Some complications, for instance absis
when left-truncation is present, since information®@nmight not be known for pa-
tients with delayed entries.
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Discussion

The work in this thesis dealt with competing risks in survival analysis, botheicdise

of known specific causes and with the case of unknown (even if peg@tific causes
of the event. In the first case, we discussed the competing risks modeiedadused

on regression for the cumulative incidence probability. In the secore] edsere the

event related to a certain group of diseased patients is recorded withpohase,

regression models for relative survival were discussed. As shgwimelpresent work,
it is important to pay attention to inferential problems concerning dynamic espec
models, such as time-dependent covariates and time-varying regressfbaients.

The competing risks setting was chosen as a very necessary statisti¢al gtotying
the cardiotoxicity risk for patients with advanced breast cancer. Beadtiseir severe
status, it is known that these patients have a very high risk of dying, atdwgdheir
chemotherapy treatment. That is why we can not neglect to consider theetiogp
risk of dying for breast cancer even though the primary interest é&scan the risk of
developing CHF. Ignoring the competing cause might lead to overlooking tangor
features of the studied problem. Patients who died could potentially haviodede
CHEF, but this event can never be observed.

The application of a competing risks analysis to the study of cardiotoxicity asa f
tion of chemotherapy dosages led to very important new medical results of-at,
we found new recommended levels for the total dose administrated duringokeyiir
chemotherapy, which were found to be lower than the one recommendeditethe
ture (Ryberg et al., 1998). Moreover, the existing literature sugge$tg)ie $evel for
all types of patients. We demonstrated that the optimal recommended dosagayca
substantially between groups of patients with different characteristicasifhctors.

In order to compute the optimal dosage levels corresponding to a 5% caidityto
risk, we needed to treat cumulative dose as a time-dependent covaridtandling
time-dependent covariates, the implementation of the analysis was not triuEe, s
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the history of dose administration for each patient was needed, but sthtiggcance
for the competing risks model did not require substantial modifications, siaaeere
allowed to treat the time-dependent covariate as deterministic.

A drawback of the standard method used in Chapter 2 for regressitysianaf com-
peting risks data is that simple parameters, which explain directly the effects of
variates on the cause-specific cumulative incidence probabilities, are gnisEhe
cumulative incidence probabilities are complex non-linear functions of theriates
and then, it is only possible to describe an indirect covariate effects grgydalicting
these probabilities for different given covariate patterns.

Problems about goodness-of-fit in case of a time-dependent covevdageinvesti-
gated. Some of them were already pointed out by other authors (Theandaramb-
sch, 2000, Chap. 5), but we disagree on the usefulness of martiregadieials in
suggesting possible correct functional form. Plots of martingale resithodths per-
observation and per-subject might fail in investigating the functional fofm time-
dependent covariate. We discussed about the need of cumulative rakertiegiduals
(Lin et al., 1993) in model diagnostics, as they overcome problems related to time
dependency of covariates. A drawback of the type of residuals appli€tapter 2
and the corresponding tests of hypotheses for each covariate, isdhatéonly valid
if the Cox model is correct for all the remaining covariates (Scheike antimdasen,
2004).

For relative survival, it was shown that the high flexibility of the additivaparametric
and semiparametric models, together with the inferential aspects describedpte€
3, provides a very important alternative to the existing methods in this fieldhrattte

other hand, a useful general extension of the more restrictive rewsdels.

The TRACE example demonstrates the need of new flexible survival maatetsod-
eling the excess hazards, which can deal with time-varying dynamics afiates
effects. In Chapter 3, we showed how the nonparametric and semipacaveesions
of the additive excess hazard can easily handle these dynamics. We ddeatesh
when one or the other model is appropriate according to the responsisubétion
based graphical and statistical tests about variation of effects over tives. tRough
inferential procedures described here are complicated in their eigmesa/hen they
concern finding equivalent asymptotic distributions of Gaussian presgse great
advantage is a very easy interpretation of results. In this connectiontatisisal
software, e.g. the R packageé ner eg (Martinussen and Scheike, 2006, App. C)
used in our application and presented in the Appendix, is an essentiahmestr.u
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In choosing between a proportional or an additive form for the exicasards, prob-
lems about non-proportionality and large number of covariates undey shalld
always be faced. An additional crucial problem, which was not studi€thampter 3,
concerns non-positive excess hazards in relative survivalsgigre models. From a
practical point of view, models about some situations as prevention studiek need
to allow the excess hazards to be negative, assuring however nativeatpserved in-
tensities. As pointed by Zahl (1996), the nonparametric additive exeassds model
overcomes this problem. A proportional excess hazards model cae ngebl in case
of negative excess intensities, however, it is still possible to considessape excess
intensity equal to zero (Sasieni, 1996).

Even though our suggestion for goodness-of-fit for relative sahpresented in Chap-
ter 4 is related to the recent interesting proposal by Stare et al. (2Q0%pproach has
important advantages. First, our method does not need any critical afaogooth-
ing parameters (or parametric assumptions) for the baseline. Secondtypcadure
is asymptotically justified and will thus lead to asymptotically corgeealues and this
is not true in general for the Stare et al. procedure.

Our suggestions about checking goodness-of-fit of the propottextess hazards
model and the additive excess models play an important role in a good mdetel se
tion. An advantage of the supremum test described in Section 4.2 is thaeaifisp
deviations from proportionality need to be explicitly expressed. The daakvis how-
ever that the model is assumed to be correct with respect to all the othemiates
when the proportionality assumption is investigated for a specific covariateerite-
less, this is a general problem faced also by the existing methods for ggmafifit

of regression survival models.

In conclusion, presence of several (known or unknown) causas event of interest,
typically death, are ubiquitous in biostatistics, and imply the necessity of studying
problems in a competing risks or relative survival setting. Moreoveradhya aspects

are essential in providing a more accurate statistical description of thgibehand
effect of covariates in regression models. The results presented iretfis tontribute
toillustrate these aspects, both from an applied point-of-view using rehlaere we

are faced with unexpected and realistic questions and complications, gnoviging

new theoretical improvements of the existing methodology.
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Appendix A

R Code for Relative Survival
Models

We show the basic R code concerning the application of the models presented
Section 3.4 to the TRACE data. The R packdagerer eg can be downloaded at
http://staff. pubheal th. ku. dk/ ~ts/timereg. htni .

The dataset is called TR and it is structured with multiple observations forpediemt

in order to fulfil the conditions for studying time-dependent variables. flhetion

aal en. t est fits both the nonparametric and semiparametric additive excess hazards
models presented in Sections 3.2 and 3.3. Commands for the former model are:

library(tinmereg);

dummy<-rnorm nrow( TR) ) ;

fitl <- aalen.test(Surv(start, stop, status>=7) ~ CHF+agec
+sex+di abet es+VF+const (dunmy) , dat a=TR, n. si m=300, max. ti ne=6,
+of f set s=TR$r at e, i d=TRS$i d, fi x. gan¥l);

summary(fitl)

Inthis example, th8ur v(start, stop, ...) settingis used forthe time-dependent
covariateagec, estimates are un-weighted and summary of the output shows the tests
T s for non-significant effects and the te§ts; and75; for time invariant effects. The
offset TR$r at e is the vector of expected mortality rates from the Danish population.
The optionf i x. gamneeds to be set equal to one in case of the nonparametric model.
Further options are explained in the R help.
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The following code,

pl ot.aalen(fitl, pointwi se.ci=2,simci=1)

provides graphics about the behaviour of the cumulative regresséfficients B(t).
The argumentpoi nt wi se. ci > landsi m ci > 1show, respectively, the 95%
confidence intervals and the confidence bands based on 50 simulatedg@® under
the null hypothesis.

The semiparametric additive excess hazard is given by:

fit2 <- aalen.test(Surv(start, stop, status>=7) ~ CHF+agec
+const ( sex) +const ( di abet es) +VF, dat a=TR, n. si m=300,

+max. ti me=6, of f set s=TR$rat e, i d=TRS$i d) ;

summary(fit2);

plot.aalen(fit2,ylab="Test process", score=T)

The last plot, with the argumestor e, yields graphics about the observed processes
used for computind@ss and75; with 50 random realizations under the null hypothesis.
Further options abouil ot . aal en are explained in the R help.

The functionpe. sasi eni fits the proportional excess hazards model described in
Section 4.1 as follows:

fit3 <- pe.sasieni(Surv(start, stop, status>=7) ~ CHF+agec
+sex+di abet es+VF, dat a=TR, of f set s=TR$r at e, i d=TRS$i d,

+max. ti ne=6) ;

sunmary(fit3)

The summary provides statistics about the regression coefficients andotesta-
significant effects. The non-standardized version of the test forypethesis of pro-
portionality of the hazards, based on cumulative martingale residuals aseiped in
Section 4.2, is also given in the summary.
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Time-dependent Covariates

An overview of the different types of time-dependent covariates aridaharacteris-
tics is described. Partial model specification and likelihood constructioreaieved
for every type of such covariates and problems related to the suruimatibn and
predictions are illustrated.

B.1 Time-dependent covariates

Time-dependent covariates arise in regression models when the cavahatgge in
time during the period of the study and their variation is influencing substantialy th
hazard functions. LefX (¢);0 < t < 7} denote a time-dependent covariate process,
where[0, 7] is the study period, and lét; denote the filtration of the covariate history
up to timet.

We assume to work under a right-censoring scheme and we suppose ntiwateh
for the hazard functiom?(t) is specified depending on a parameter Let F, be
the filtration generated by the observed survival data, as explained badkground
Section 1.3.2.

When a regression model is specified, an extended hisfgrywhich incorporates
also information about covariates needs to be considered. If regnéssioly on time-
independent covariates, their information is expressed by the filtratigenerated by

all the covariates observed at the time origin 0. Hence, the extendedeth&istory is

F. = F/ V Xy. If time-dependent covariates are included into the model, the observed
filtration F; contains also the covariate information up to timex;. It is then given

by F; = F/ vV A, that is the smallest-algebra containing both the history generated
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by the observed survival times and the covariate histryp to timet.

The firstimportant assumption for regression modelling with a time-dependeaiti-

ate is that the covariate process is predictable with respegt,téor instance being
left continuous. The conditional hazard function given the history of theeoved
covariate procesX (t) is

At )dt = P{t <T < t+dt|X;, T >t}, (B.1)

whereT' is aright-censored survival time. In some particular cases, the harsrtion
depends only on the current values of the covariates atttime

Time-dependent covariates are divided into two general classes:nkxtard inter-
nal covariates. In the literature they are sometimes also denoted as ensgaTb
endogenous covariates. A formal definition can be given for these fagsas. A
time-dependent covariate that satisfies the condition

P{u<T <u+dulX,,T>u}=P{u<T<u+dulX,T>u} (B.2)

for all » andt such thatu < ¢, is called external (Kalbfleisch and Prentice, 2002).
Hence, the hazard function at timeis influenced by the observed covariate history
up to timew by the regression model, but the occurrence of a failurie.jm + du)

is independent of the future path of the covariate after timéhis is equivalent to
saying that a covariate is external if its future path up to any tirienot affected
by the occurrence of a failure at time When the condition in (B.2) does not hold, a
time-dependent covariate is called internal. The path of an internal cte/eritfected
by the occurrence of a failure time, since its existence depends on thea$wivthe
individual. Therefore, its path carries information about the occueraria failure
time.

Internal covariates are related to the random behavior of individuasrwstudy, and
consequently, they are observed only as long as individuals are alrrishnical bio-
statistics typical examples are disease complications, measurements reaotided
follow-up visits, such as biochemical and clinical characteristics, whiah giognos-
tic information on the status of patients. In general, external covariatesihstead
an observed path which is external to the individuals under study or ittidirectly
generated by their behavior in time. Some examples are the age of patiertspfeve
air pollution or the time since the disease diagnosis.
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External covariates can be of two different types, as defined by &bl and Pren-
tice (2002). A time-dependent covariate is denoted as defined if it is detstimin
time, or if it varies in a predetermined way, since its path can be determined in ad-
vance. Age of patients and time since the disease diagnosis, if this latter issiddfud
the information available at the time origin, are examples of that. A time-fixed ieovar
ate belongs to the class of defined covariates, since its value is giventiaéherigin
and is constant for the duration of the study. The second type of ektmvariates

is called ancillary. Their stochastic processes have distributions thattdavatve

the parameters of the regression model for survival times. An exampleariallary
time-dependent covariate is the measurement of air pollution used to presiett¢h

of asthma attacks.

B.2 Time-dependent covariates: Partial model specification
and likelihood construction

The scope of this section is to remark the model specification and possilbigeshia
the likelihood function due to regression on different types of time-depenzbvari-
ates.

As it was already described in Section 1.3.3, in case of right-censotadtdafull
likelihood function for(6, ¢) factorizes as

L(8,6) = (8, 6) L3(6), (B.3)

with 6 and¢ being the parameter of interest and the nuisance parameter, respectively

In regression models for the hazard, the first fadtbd, ) may contain information
about the additional parameterrelated to the distribution of the censoring mecha-
nisms or/and the marginal distribution of covariates. The funclip{®) is the partial
likelihood for # and its form is given in equation (1.29). A model with such a fac-
torization for the total likelihood can be partially specified, since computatidheof
partial likelihood forf does not depend on the nuisance paramgtand, generally,
does not require specifying models for the covariates and the censoeiciganism.

When regression models include time-independent covariates, we aresituidion
previously mentioned, and thus the partial likelihood can be written conditioaally
the covariates, which are fixed given the filtratidh. However, this is not always
true for time-dependent covariates, and complications arise when celdases of
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covariates are studied, as explained later in this section.

Suppose thaf; = F] V X} is the observed filtration which incorporates only informa-
tion on time-independent covariates. When a time-dependent covariajes also
included into the regression model, an important aspect to consider is wietbe-
variate process is adapted# or not. It turns out that defined covariates are adapted
to the filtrationF;, and then, the historgt; generated by their observation up to time

t is so thatY; C F/ vV Xy (Andersen et al., 1993, Chap. 3). This means that these
covariates are either deterministic or their paths can be considered adfikethin
advance. Therefore, inference can be based on a partial likelihbioth Wwas the same
form asL$(6) in (1.29).

Ancillary and internal covariates can instead be considered as randorde¢jpeadent
covariates, and their proce3s(t) is not adapted to the filtratiof;. Therefore, the
filtration needs to be extended so tifat = F/ v X;. However, when ancillary co-
variates are studied, inference on the parameter of intéiest still be based only on
the partial likelihoodZ¢ (), conditioning on the observed paths. Since the ancillary
covariate processes are completely external to the individuals undgr stadnodel

for these covariates does not dependpand therefore does not need to be specified.

The main difference of internal covariates with respect to other covayipés is that
they carry information about failure times of individuals. The hazardtiandas the
same form as in (B.1), but now we can condition only on the covariate hidforyip

to the time just before. Inclusion of internal covariates allows us to base inference on
the partial likelihoodL$ (6), even though the full likelihood in (B.3) contains factors
(included inL%(0, ¢)) related to the marginal distribution of (¢) given the history
X;— (Kalbfleisch and Prentice, 2002). Thus, we can avoid to specify a nfiod&l(¢),

but, in case this model depends on both the parametamnd ¢, inference based on the
partial likelihood can be inefficient (Greenwood and Wefelmeyer, 1990)

B.3 Time-dependent covariates: Survival function and pre-
dictions

For external covariates, the survival function is well defined andgitionally on the
covariate history, it is given by (¢; X (¢t)) = P{T > t|X;}. Therefore it can be
estimated without problems, given a certain covariate path up tottime

For internal covariates the previous situation does not hold and cads tebe taken
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in interpreting the survival function. Since the observatioX¢f) contains the failure
information for an individual, the knowledge of its process up to ttmeould mean
that the patient is still at risk at timewithout having experienced the failure event, and
therefore it would beP{T" > t|x;} = 1. The conditional hazard in (B.1) can not be
directly related to the survival function, as it is usually done (equation))lsihce in
this case the survival distribution is meaningless and does not have arprétgion.
The survival probability is not anymore a function only of the hazardfion, but
also of the random development of the covariates. Therefore, in t'gepvide an
estimate for the survival probability, a distribution for the stochastic psoéshe
internal covariate must be also specified.

When internal covariates are studied, predictions based on the modedtdae made,
because of the same reasons previously explained for the surviladlplity. The

model is no longer partially specified and the parameters in the covariate mesttl
also to be considered as parameters of interest.
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Appendix C

The lliness-Death model

The illness-death model, also called the disability model, is a multi-state model for a
nonhomogeneous process in continuous time with a finite number of statesaddes

is very useful in clinical studies where it is important to record whethepgrand how
many times, the patient changes a certain clinical status before his/herlpal&sth,

and the aim is to study in time the rate of these events. For instance, befogg dyin
patients may change status from being healthy to becoming diseased, aod khiey

may recover changing back into the healthy status.

We present this model, referring to the general formulas and notation mdudtirstate
models given in Section 1.4.1. Its first formulation was discussed in the phapétix
and Neyman (1951), Sverdrup (1965). A brief summary of the modelntagted in
the paper by Andersen and Keiding (2002) and several applicationbecéound in
Andersen et al. (1993).

The state space {9, 1, 2}, where0 and1 are transient states, representing the clinical
statuses of individuals, ariis an absorbing state, corresponding to the ending event.
Let us consider the probability spac®, Z, P), where Z is the filtration generated

by the stochastic process for the illness-death model. The time interval aéshter
is7 = [0,7) with 7 < co. The stochastic development of the process is specified
by the transition probabilities between stat&g(s, t) with 4,1 € {0,1,2} ands <

t € 7, (Equation (1.33)) or, equivalently, by the matrix of transition intensities ef th
processay, (t) with h, 1 € {0, 1,2} (Equation (1.34)). The iliness-death model and its
possible transitions are illustrated in Figure C.1, where for clarity the Slatesnd?2

are denoted by healthy, diseased and death, respectively. Hotwevestates may of
course represent other types of ending events or intermediate statuses.
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0 0, 1
Healthy Diseased
O\
oo O
2
Death

Figure C.1:The illness-death model in the multi-state approach.

In the present formulation we assume that all individuals are obserggdtfre time
origin, but this simple situation might not always be true and individuals migiinbe
to be observed later (left-truncation). We suppose that all individualsatate) at

the time origin, i.e., the initial distribution of the processrig0) = 1 and7,(0) = 0

for h = 1,2. Moreover, we restrict our description to the case of a Markov psoces
underlying the illness-death model.

A simpler version of the illness-death model precludes the transition fromtabe s
1 back to the initial stat®, which, for instance, means excluding the possibility of
recovery for those individuals who are in the diseased status. The siugpiaon is
given in Figure C.1, if the arrow fronh to 0 is deleted, i.e.q19(t) = Oforallt € 7.
Hereafter, the mathematical formulation is described for this latter version.

The transition probabilities for the simpler illness-death model are speciffeti@ss:

t
Pyi(s,t) = / Pyo(s,u—)apr(u)Pri(u,t)du, s<t, s, teT (C.2)
and
t
POQ(Svt) = / P()O(S, U—)Oé02(u)du, s<t, s, te T: (CZ)
t
Plg(s,t) = / P11(8, u—)alg(u)du, s<t, s,te 7. (C3)

The probabilities of permanence in the staileand 1 have, respectively, the explicit
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expressions

Poo(s,1) = exp <— / (o) + agl(u))du> , (C.4)
Pii(s,t) = exp < /: Oé12(u)du> , (C.5)

sinceaoo(t) = — Zh;ﬁl ahl(t) = —(Oéoz(t) + Oé()l(t)) andan(t) = —alg(t).

The marginal survival probability is given b§(t) = Pyo(0,t) + Po1(0,t), and it
represents the probability of being alive, that is being either in Statein statel at
timet.

In some situations it may occur that the hazard of the transition from btatetate

2 depends on both the principal time scalend the duratiorl of sojourn in statd.

One possible way of incorporating this dependence into the model is to eonisel
additional time scald when studying the hazard. In this case, the transition intensities
P11(s,t) and Pio(s,t) are specified by replacingi2(u) with aq2(u, d). Therefore,

the instantaneous rate»(-) depends on the random entry time into statelf this
hazard depends ahonly, then the illness-death model belongs to the class of semi-
Markov models. Applications of such a model and some related theoretzaitasare
proposed by Klein and Shu (2002).
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