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The simultaneous PET/MRI to investigate the role of
glucose metabolic consumption on brain functional

architecture

ABSTRACT

The human brain performances and computational potential relies on

an intricate structure designed to share information between specialised

areas. This exchange is thought to be either locally and globally opti-

mized for best performances under the constraints posed by the physical

communication structure and available energy.

Borrowing concepts from the machine learning literature, these princi-

ples can be reframed considering the brain as a mixture of cost functions,

dynamically optimised lifelong but flawed in pathology.

At least one of these cost functions, needs to describe the energy bal-

ance of the brain, locally adapted to sustain specific functions but overall

shaping the entire brain functional connectivity (FC) organisation to sat-

isfy unknown energy consumption constraints.

In this thesis we investigate in-vivo the association defined by this

energy-based cost function. In particular, the brain’s connectivity struc-

ture will be assessed together with the glucose metabolism to understand

which network topological features are metabolically supported using

experimental approaches based on functional Magnetic Resonance Imag-

ing (fMRI) and Positron Emission Tomography (PET).

We then assessed the feasibility of state-of-the-art fMRI methods eval-

uating their impact over single-subject FC. Particular emphasis was de-



voted to the role of noise in different experimental conditions affecting

the experimental repeatability of FC measures.

A novel structural imaging approach based on Magnetic Resonance

Fingerprint (MRF) combined with synthetic MRI is finally proposed to

overcome current brain cortex delineation limitations in motion-prone

settings to offer a better support for subsequent FC analyses.

The contributions presented in this dissertation encourage the applica-

tion of single-subject FC measures providing consistent and eventually

biologically supported network features enabling a more confident clini-

cal usage when in tandem to the metabolism.
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Misurazione simultanea PET/MRI per investigare il
ruolo del metabolismo del glucosio sull’architettura

funzionale del cervello

SOMMARIO

Le prestazioni del cervello umano ed il suo potenziale computazionale

dipendono da una complessa struttura di comunicazione ottimizzata per

condividere informazioni tra aree funzionalmente specializzate.

Tale struttura si ritiene essere sia localmente che globalmente ottimizzata

per garantire massime prestazioni considerati i vincoli di efficienza ed

energetici associati all’infrastruttura.

Considerando il problema computazionale e di comunicazione sia risolto

tramite l’ottimizzazione di un insieme di funzioni di costo, adattate di-

namicamente durante tutta l’esistenza dell’individuo, offre un sistema

tanto flessibile quanto fragile rispetto a condizioni patologiche.

Almeno una di queste funzioni di costo dovra descrivere il bilancio en-

ergetico cerebrale. Ovvero descrivere in modo esplicito quali proprieta

della rete vanno ottimizzate al contempo minimizzando il consumo en-

ergetico necessario.

In questa tesi viene investigata in-vivo l’associazione inferita da questa

funzione di costo. In particolare verra studiato quali proprieta topo-

logiche della struttura di connettivita sono supportate dal metabolismo

del glucosio mediante un approccio sperimentale basato su risonanza

magnetica funzionale (fMRI) e tomografia ad emissione di positroni (PET).

A seguire e’ stata valutata la fattibilita’ di tecniche fMRI allo stato nell’arte
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ponendo particolare attenzione all’effetto di diverse variabili sperimen-

tali sulla consistenza delle strutture di rete identificate a livello di singolo

soggetto in base alle diverse condizioni di rumore introdotte.

Viene infine proposto un’approccio di acquisizione ed elaborazione di

immagini strutturali basato su Magnetic Resonance Fingerprint (MRF) ed

MRI sintetica atta a superare i limiti di delineazione della corteccia cere-

brale causati dal movimento con il fine ultimo di migliorare il supporto

strutturale sul quale sono svolte le successive analisi funzionali.

Il contributo di questa tesi e’ volto ad individuare metodiche fMRI a

singolo soggetto che forniscano misure ripetibili e consistenti della strut-

tura di connettivita cerebrale di ogni soggetto ponendo le basi per una

confidente applicazione clinica della metodologia, in particolare qualora

considerata assieme a misure del metabolismo del glucosio cerebrale.
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Any sufficiently advanced technology is

indistinguishable from magic.

Arthur C. Clarke

1
Introduction and Motivation

According to a natural selection principle, the survival of any biological

organism depends upon a tight performance-cost trade-off which delin-

eate the ability and flexibility of different species within their natural en-

vironment. Even accounting for some adaptability during its life cycle,

the general performances of each organism are archetypally defined by a

single controller organ: the brain.

The human brain is a complex structure enclosed within the skull bone

and meninges made up of many billions of specialized cells, called re-

spectively neurons or glial supporting cells. These cells are so well or-

ganized and stereotypically related to the underlying vasculature, to de-

serve a specific designation that describes single processing components,

the neuro vascular unit (McConnell et al., 2017).

Neurons are inter-connected by thousands of links (referred as synapses),

responsible not only for an important information integration mecha-

nism but also for the actual information exchange, whose strength is dy-

namically modulated to support higher level functions such as the adap-

tation or memory.
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Introduction and Motivation

This modulation mechanism can provide strong connections when a tight

coupling is needed between the activity of inter-connected neurons as

well as links several orders of magnitude weaker, entailing a non-sparse

communication structure at microscopic level (Panzeri et al., 2015).

However, its challenging to explain the functional role of such a broad

spectrum of connection strengths at this low spatial scale in support of

higher level cognitive functions.

Availing of appropriate experimental approaches, in the last 20 years

neuroscientists shifted to higher level assessments. They noticed a ten-

dency of brain neurons to cluster together when its functionally conve-

nient. Therefore, from a functional perspective they were able to divide

the whole brain in functionally discrete areas, characterized by a common

functional role as well as similar cellular structural architecture, struc-

ture, etc. At the highest spatial level, clusters of neurons contained within

the brain cortex (the outermost layer of the brain), were then subdivided

in discrete areas or lobes, each credited for a specific function as thinking,

voluntary actions or the processing of external stimuli.

The communication among such high level cortical structures (or areas)

was found to be mediated by direct or indirect connections whose bi-

ological significance is still unclear regarding an information exchange

or integration perspective. A central role in this perspective is offered by

basal ganglia, a cluster of structures strategically positioned at the brain’s

center thought to mostly mediate the information exchange among mul-

tiple distal brain areas (Hwang et al., 2017).

This information exchange needs to be carried out quickly and with

minimal resource requirements to guarantee the brains control capabil-

ities and support high level cognitive functions. A failure of this com-

munication system results in a loss of functionality that affects the whole

organism as well as higher cognitive functions. Some examples of psy-

chiatric and non-psychiatric conditions recently associated with altered

brain connectivity from healthy subjects includes Epilepsy (Chiang et al.,

2015), Stroke (Tsai et al., 2014), Alzheimers disease (Grothe et al., 2017)

and Schizophenia (Sheffield and Barch, 2016).
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The current view of the brain as a communication system arose almost

40 years ago with the seminal work of Legendy (Legéndy, 1975) which

opened a research field per se denoted as brain connectivity specifically

devoted to the study of the topological structure of the brain seen as a

set of interconnected and functionally homogenous areas. Still, the ex-

perimental method used to determine whether different brain areas are

connected or not is critical. A variety of approaches were proposed based

on the association principle considered, from the electrical (e.g. electro-

encephalography, EEG or magnetic (e.g. magneto-encephalography, MEG

(Hämäläinen and Ilmoniemi, 1994)) activity to the local metabolism with

imaging tools as Magnetic Resonance Imaging (MRI) (Fox et al., 2005) or

Positron Emission Tomography (PET) (Friston et al., 1996).

MRI can non-invasively represent soft tissues with high spatial reso-

lution by delivering images with flexible contrast, ultimately dependent

upon the magnetic properties of the imaged object. This tool allowed

to simultaneously study the brains anatomical structure as well as many

physiological functions such as its blood flow and metabolic supply. The

popularity of MRI for neuroscience application stems from its capability

of providing images sensitive to the local blood oxygenation level (BOLD

(Ogawa et al., 1990)) by means of dedicated experiments referred as func-

tional MRI measures (fMRI).

The underlying principle of fMRI depends upon the tight neuro-vascular

coupling previously introduced: the local neural activity yields measur-

able hemodynamic variations (by means of temporally unstable blood

oxygenation), ultimately making fMRI a relatively inexpensive and non-

invasive indirect neural activity biomarker (Logothetis et al., 2001).

While physicists exploit the spatio-temporal correlations in MRI to ac-

celerate the experimental data collection (see Chapter 2), neuroscientists

make use of series of brain MRI images based on BOLD contrast to non-

invasively monitor the temporal evolution of neural activity in a spatially

resolved fashion (Logothetis et al., 2001). This activity was found to be

spatially consistent to the structure of neuronal networks without the ap-

plication of explicit stimuli (spontaneous neural activity), hinting to a

3



Introduction and Motivation

flexible brain organization with, however, a common organization basis.

Seminal approaches for connectivity were tightly dependent upon the

specific experimental approach used and suffered from an unclear inter-

pretation framework. Recent connectivity definitions are instead based

on the co-activation between hemodynamic activity profiles in different

brain areas. This led to the concept of functional connectivity (Friston

et al., 1996) as statistically significant relationship between brain dynam-

ics across different areas.

Generalizing the idea of functional connectivity to the whole brain

level to offer a more comprehensive explanation of brain pathology or

psychiatric phenomena, the study of the brain connectivity was then re-

framed as the problem of accurately mapping its functional networks

(Smith et al., 2011) and use powerful formal tools to provide clearer in-

terpretations (e.g. with graph modelling techniques).

As detailed in Chapter 3, such mapping process requires a criteria to de-

fine discrete functional areas (or nodes) and a metric that measures their

activity similarity or eventually the information directionality. The aim

of such association is to attribute a connectivity strength to all network

links, generalizing the cellular network (whose connectivity is synaptically-

mediated) idea exposed in this Chapter to a general functional network.

However, any of the previously described communication mechanism

needs to be biologically supported. Brains communication structure is

subject from the cellular level up, to the biological constraints of having a

structural communication support (e.g. axons) which needs to be main-

tained and fueled. Brains energy consumption relies upon very efficient

metabolic processes requiring adequate supply of glucose and oxygen

delivered by the vasculature, needed to run synapses or for housekeep-

ing. These processes can be characterized by monitoring the usage of

molecular glucose, for example by means of PET that also enabled in-vivo

monitoring of other functional processes such as neuroreceptor binding,

protein deposition, etc. (Vlassenko and Mintun, 2012).

The amount of molecular energy required to keep the running con-

nections active is disproportionately high as compared to housekeeping

4



functions and most of this energy is not spent to support the processing

of external information, rather to sustain the connectivity among cortical

neurons, reported as intrinsic synaptic activity.

This view was experimentally validated finding that the additional en-

ergy required by the brain to answer to external stimuli is extremely small

compared to the ongoing energy requirements (Raichle, 2006), highlight-

ing that the intrinsic communication activity accounts for most of the

brain energy budget.

Based on an cost principle, Bullmore et al., (Bullmore and Sporns, 2012)

offered a clearer perspective on the brains functional connectivity struc-

ture, suggesting that the actual network organization could be dynam-

ically adapted to minimize material and metabolic costs while provid-

ing favorable topological properties (i.e. maintaining a high-performance

communication system). Estimated brain networks were found to have

high topological efficiency and organized in well-defined modules (Me-

unier et al., 2010) whose connectivity efficiency is further enhanced by a

backbone of central network areas, strategically positioned for example

to cut the topological distance among network nodes or maintain the con-

nectivity among different modules (connector hubs). According to the

authors, adapted topological patterns are governing the functional con-

nectivity hierarchical structure but to date, no clear experimental demon-

stration is explicitly corroborating the idea.

Another cost perspective was offered by Marblestone et al., (Marble-

stone et al., 2016), integrating ideas borrowed from machine learning lit-

erature of artificial neural networks. Considering the brain communica-

tion structure as a computational system, its performances could be de-

scribed by a set of dynamically optimized cost functions in the machine

learning sense. These functions are distinct across brain areas and could

be shaped as well by the development or by learning processes which

correspond to the cost optimization. With their work, these authors pro-

vided an interpretation framework where the connectivity among distal

areas is formulated as an optimization problem. This optimization adapts

pre-defined network architectures (e.g. templates) to solve different com-
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Introduction and Motivation

putational problems posing additional constraints. As an example, such

constraints could be based on the energetic cost of such an optimal net-

work therefore the energetic demand acts like the regularization term in

a traditional optimization problem.

Taken together, these ideas formally support the relation between en-

ergy metabolism and topological features of the brains network connec-

tivity. However, there is limited literature about the experimental method

to use for functional connectivity evaluation neither strong and biologically-

supported evidence toward specific network structures. This knowledge

limitation considered within the exposed energetic framework makes the

energy metabolism a perfect candidate to shed light on biologically plau-

sible architecture or discard unlikely network features that lacks a bio-

logically accepted interpretation.

Centering this introduction on the brain connectivity using fMRI and

energy metabolism using PET, there is consistent evidence toward the

benefits of collecting both types of data not only from the same subjects

but possibly also simultaneously. In fact, often the connectivity measures

as well as brains metabolism is characterized at group level for example

averaging the connectivity structure of many subjects resulting in a lower

sensitivity to the underlying network organization or similarly to subjec-

tive metabolic features which could be indicative of individual network

organizations.

While extensive evidence is available that describes the functional com-

munication to energy metabolism relation at microscopic (cellular level)

and meso-scale, limited evidence is available for such a relation between

the intrinsic connectivity and energy metabolism at macroscopic scale.

Even less applications can be found to make use of these ideas in neu-

ropathology, where only Scherr et al., (Scherr et al., 2018) explicitly stud-

ied together the metabolic and connectivity impairments of Alzheimer’s

disease patients.

Nonetheless, the combination of functional connectivity with energy

metabolism has the potential to enable more concrete brain network fea-
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1.1 Thesis Contributions and Outline

ture discovery motivating more focused modelling efforts as from multi-

modal brain connectivity descriptions. The aim of this thesis is to study

whether brain network organizational can be associated to the underly-

ing energy metabolism. Experimental limitations encountered will de-

mand for the investigation of the impact of different experimental vari-

ables on the estimated brains organization to promote consistent usage

of state-of-the-art fMRI tools for FC in hybrid PET/MRI scanners. More-

over, current limitations encountered in structural MRI will be tackled

by developing a novel structural imaging framework that enforce on the

comparability potential of quantitative MRI and the flexibility of syn-

thetic MRI within a generalized framework to minimized the manual in-

terventions and scanner protocol tuning needs.

1.1 THESIS CONTRIBUTIONS AND OUTLINE

• Chapter 1 (current Chapter) provides an introductory overview and

motivation for the studies described in this dissertation.

• Chapter 2 introduces the fundamental principles of MRI and its ap-

plication for relaxometry and fMRI. The fundamental principles of

PET imaging were also delineated concluding with a description of

hybrid scanners for simultaneous PET/MRI applications.

• Chapter 3 presents a description of fMRI-based functional connec-

tivity, modelling approaches and graphical methods to investigate

network structures. Functional connectivity confounds and exper-

imental approach will be discussed highlighting the limitations for

single subject estimates. Am overview of brain glucose metabolism

will be given describing its experimental assessment with PET and

discussing current results obtained combining functional connec-

tivity to glucose metabolism.

7



Introduction and Motivation

• Chapter 4 studied the relation between brain network architecture

and energy metabolism in resting state condition. Relevant brain

topological features, derived from fMRI data, were regionally asso-

ciated to the glucose metabolism described by PET using literature-

available data to evaluate whether structural network features are

biologically supported at macroscopic level with graph theory meth-

ods. The purpose and contribution of this chapter is to demonstrate

the existence of a link between connectivity structure as identified

in resting state condition to the underlying glucose metabolism,

that is not clearly determined over all brain areas while becomes

significant over central brain network nodes that regulate the brain

communication performances. The implemented analysis will also

be discussed to highlight current methodological limitations mo-

tivating the experimental improvements described in subsequent

Chapters 5 and 6.

• Chapter 5 builds upon the experimental limitations of functional

connectivity encountered to study both theoretically and experi-

mentally the reliability of single subject functional connectivity mea-

sures during a protocol optimization task, loosely aimed at deliver-

ing state-of-the-art functional connectivity protocols for PET/MRI

scanners. The purpose and contribution of this chapter was to demon-

strate the sensitivity of functional connectivity measures to the ex-

perimental covariate provided by the fMRI imaging sequence both

from a signal to noise and actual functional connectivity structure

perspective and also evaluate whether these parameters actually

impact the topological structure estimated over single subjects.

• Chapter 6 presents a novel framework for robust brain cortical seg-

mentation using quantitative MRI (qMRI) based on Magnetic Reso-

8



1.1 Thesis Contributions and Outline

nance Fingerprint (MRF) approaches combined with synthetic MRI

(synMRI) for arbitrary contrast generation. Current structural imag-

ing approaches collect one (or more) high resolution images subse-

quently processed to segment the brain cortex, used as structural

support for functional connectivity analysis. The idea was to per-

form qMRI instead of collecting single-contrast images and rely on

synMRI to generate contrasts simpler to segment, less motion prone

within a flexible modular framework structure. We focused on MRF

for T1 estimation to synthesize standard T1-w images and T2* as ad-

ditional source of contrast useful to disentangle brain and meninges,

often source of segmentation errors to be manually corrected for

accurate FC analysis. The framework is proposed along with pre-

liminary results regarding the MRF sequence implementation and

encountered limitations.

• Chapter 7 summarizes the dissertation contributions discussing the

perspectives of studied topics.

9
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2
Background

2.1 PRINCIPLES OF MAGNETIC RESONANCE IMAGING

Magnetic Resonance Imaging (MRI) entitle an imaging modality based

on the experimental manipulation and observation of the behaviour of

particles in a magnetic field, specifically referred in the case of atom nu-

clei elements as Nuclear Magnetic Resonance (NMR). NMR was first in-

vestigated in 1946 by Bloch (Bloch et al., 1946) and Purcell (Purcell et al.,

1946), awarded with The Nobel prize for physics in 1952. NMR tech-

niques naturally evolved to MRI with the introduction of spatial encod-

ing introduced by Lauterbur (Lauterbur, 1973) and Mansfield (Mansfield

and Grannell, 1973), as well awarded with The Nobel prize for Medicine

in 2003 as recognition for this in-vivo and non-invasive technique imag-

ing modality of soft tissues created.
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Background

2.1.1 SPIN PROPERTIES AND NMR EXPERIMENT

The physical phenomenon which underlies NMR and MRI is based on

the dynamic interaction between nuclear spins subjected to an externally

applied magnetic field. A pool of spins at the thermal equilibrium in

such a magnetic field can be then perturbed by a radiofrequency (RF)

pulse, specifically designed to drive the spin pool dynamic in order to

potentially generate measurable responses (Haacke et al., 1999).

At the thermal equilibrium, the spin populations are unbalanced, re-

sulting in a macroscopic magnetization M0 coherent with the external

B0. Such magnetization can be described as a vector in a reference sys-

tem fixed with the laboratory or moving with same angular frequency of

the spins (precession at Larmor frequency) as: M0 = (Mx,My,Mz).

Within a general B0, M is not necessarily parallel to B0, but can also

contain transversal components of magnetization equivalently represented

as:

M‖ = Mz

M⊥ = Mx + i ·My

(2.1)

2.2 RADIO FREQUENCY PULSES

The macroscopic static component of the magnetisation M0 from a pool

of spin isochromats to be investigated needs to be able to generate mea-

surable signals. One way to detect magnetization evolution is making

use of NMR phenomena. Superimposing a magnetic field B1 generally

referred as radiofrequency (RF) pulse, having at least one component or-

thogonal to B0, the spin evolution can be altered to precess around the

Bt = B0 +B1 field with same angular frequency. If B1 field is also played

at Larmor frequency (γ) of the nuclei of interest, only the spins of interest

are forced to also precess coherently in phase, building a net magnetiza-

tion component in the transverse plane. As the B1 pulse is generated in

the transversal B0 plane, only two components are needed to completely

12



2.2 Radio Frequency pulses

identify its dynamic as:

B(t)1 = B1,te
jωRF t = (B+

1,x, B
+
1,y) (2.2)

Formally, the precession motion can be described, in steady state and

no relaxation involved, as due to the off-resonance contributors (∆B0,

zero in case of the exactly prescribed B0) and the RF field B+
1 (decom-

posed in B+
1,x, B

+
1,y):

d

dt
·



mx

my

mz


 = γ




0 ∆B0 −B+
1,y

−∆B0 0 B+
1,x

B+
1,y −B+

1,x 0


 ·



mx

my

mz


 (2.3)

let us to model in the time domain the evolution of a single magneti-

sation element (isocromat) and, based on the magnetisation behaviour re-

ported in the following, tailor RF pulse to emphasize or suppress specific

features of the sample.

Once a transversal magnetisation component is defined, contributions

from each spatial location will process coherently in phase in the transver-

sal plane, inducing a measurable current in appropriate RF receive coil el-

ements (e.g. loop coils). After the application of a pulse of finite duration

(tp), the relative angle (flip angle, α) between B0 and M can be evaluated

based on B1 profile as:

α = γB(τ)1 · dτ = γB1 · tp (2.4)

In practice, the flip angle associated with an RF pulse is spatially de-

pendent based on the features of both the pulse and investigated sample.

As a consequence, applications where precise flip angle is needed request

additional effort in ensuring an appropriate pulse usage or external mea-

surement of the effective flip angle amplitude for correction purposes as

requested in quantitative MRI.
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2.3 MAGNETIC RESONANCE SIGNAL

The dynamics of the macroscopic magnetization M originating from an

ensemble of spin isochromats under and after an RF pulse application

can be described by the Bloch equations (Bloch et al., 1946). In a rotating

frame at Larmor frequency respect to the fixed (laboratory) reference, the

Bloch equations take the form:

d

dt
·



mx

my

mz


 =




− 1
T2

γ∆B0 −γB+
1,y

−γ∆B0 − 1
T2

γB+
1,x

γB+
1,y −γB+

1,x − 1
T1


 ·



mx

my

mz


+




0

0
m0

T1


 (2.5)

with ∆B0 the off-resonance field, T1 the longitudinal relaxation rate, T2

transverse relaxation rate, M0 the equilibrium magnetization and B1,x, B1,y

referring to the RF components respectively along x- or y-axis of the rotat-

ing frame. From Bloch equations, two fundamental mechanisms govern

magnetization evolution.

The longitudinal relaxation (T1 [s]) is related to the spin-lattice interaction

consisting of energy exchange between spins and its chemical surround-

ings (lattice) that describes the recovery of the longitudinal magnetiza-

tion component toward the thermal equilibrium. The transversal relax-

ation process (T2 [s]) accounts for spin-spin interaction phenomena con-

sisting of energy exchange between spins which ultimately introduces

phase incoherence and describes the decay of transversal magnetization

component.

The signal measured during an NMR experiment after repeated applica-

tion of tailored RF pulses, termed free induction decay (FID), can be mod-

elled adding on top of reversible T2 relaxation phenomena for transversal

magnetization, all irreversible transverse coherence loss as T ∗
2 relaxation

time:

1

T ∗
2

=
1

T2

+
1

T
′

2

(2.6)
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2.4 Measurement of relaxation

where the effect of additional relaxation due to local field inhomo-

geneities (departures from B0 existant in the imaged object during the

relaxation period) can be often approximated as:

1

T
′

2

= γ + ·∆B0 (2.7)

2.4 MEASUREMENT OF RELAXATION

The measurement of these relaxation constants is fundamental to charac-

terize chemical and in-vivo tissue properties. A standard method to mea-

sure T1 relaxation (Tofts, 2003) of a sample require an experiment termed

Inversion Recovery (IR) schematically depicted in Figure 2.4.2 while the

longitudinal relaxation process governed by such T1 relaxation constant

is described in 2.4.1 for brain tissues.

This consist in the application of an RF pulse to invert the magneti-

zation, flip angle homogeneous and near π, then after a pause time (in-

version time, TI) during which the longitudinal magnetization recovers,

a second RF pulse is played to create a transverse magnetization with

amplitude related with the longitudinally recovered one that is finally

measured (readout). The Block equations can be simplified to:

S(t) = ρ · (1− 2 · e
−TI
T1 ) (2.8)

where ρ represents a scaling factor which incorporates the spin density

(proton density) and possible inhomogeneity effects of the flip angle or

receive scaling effects. From this experiment an estimate of T1 value can

be obtained by measuring the signal with multiple TI values and fit the

signal equation.

Conversely, to assess the transversal relaxation decay (T2) (Tofts, 2003),

the longitudinal magnetization is nulled (90 deg. pulse), after a defined

amount of time (TE), the transversal one is measured as example in Fig-
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Figure 2.4.1: T1 recovery of longitudinal magnetisation (Mz) after IR pulse in gray
matter (GM), white matter (WM) and cerebro-spinal fluid (CSF). Inversion time for
image readout is reported as TI .

RF

INV

TI

RF

TE

ADC

Gz

Gy

Gx

Figure 2.4.2: IR sequence example for T1 measurements as by (Bernstein et al.,
2004).
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2.4 Measurement of relaxation

ure 2.4.3.

RF

RF

TE/2

180

TE/2

ADC

Gx

Gy

Gz

Figure 2.4.3: SE sequence example for T2 measurements as by (Bernstein et al.,
2004).

In such an experiment and no off-resonance effects (∆B0 = 0 T ) the

Block equations can be simplified regarding the transversal magnetisation

component to:

M⊥(TE) = M0 · e−
TE
T2

−iγ∆B0TE (2.9)

Repeating the measurement for an appropriate range of TE values and

fit the equation on magnitude will provide a T2 estimate following the

evolution of transversal decay depicted in Figure 2.4.4 for brain tissues.

When the experiment is performed in a sample with a locally inhomoge-

neous B0 with dephasing contributions not recovered (e.g. with ad hoc

refocusing pulses), a T ∗
2 decay with similar behavior will occur but char-

acterized by shorter time constant compared to T2 based on the local field

inhomogeneity strength (∆B0).
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Figure 2.4.4: T2 recovery of transversal magnetisation (MT) after a saturation RF
pulse in gray matter (GM), white matter (WM) and cerebro-spinal fluid (CSF).

2.5 EXTENDED PHASE GRAPHS (EPGS)

The reference method to describe the macroscopic magnetization evolu-

tion of single isochromats is based on Bloch equations. However, despite

the availability of simplified solvers (e.g. rotation operator algorithm

(Haacke et al., 1999)), solving these equations for spin ensembles with

randomly distributed phases quickly becomes numerically intractable

and eventually not even of interest in the general case where we are only

interested in the echo amplitude and timing.

An alternative approach to describe the dephasing of a spin ensem-

ble under a variety of experimental conditions is given by the extended

phase graph (EPG) framework (Hennig, 1991; Weigel, 2015). EPG model

describe the phase of the spin isochromats ensemble with Fourier sets in

order to simplify the description of precession motion in terms of phase

accumulation in configurations states that combined provide a conve-

nient description of the echo generation. The configuration states are
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2.6 Pulse sequences application and contrast

defined as the spatial Fourier decomposition of the transversal M⊥ =

(Mx,My)(r) and longitudinal magnetization Mz(r) inside a sample. Each

Fourier term will define the phase-frequency content by linear superpo-

sition:

M+(r) = Mx(r) + iMy(r) =
∫
V
F+(k) · e−ikr d3k

M−(r) = Mx(r)− iMy(r) =
∫
V
F−(k) · eikr d3k

Mz(r) =
∫
V
Z(k) · eikr d3k

(2.10)

where the magnetisation components can be interpreted as the sum of

complex spatial harmonics (F+, F−, Z) previously referred as configura-

tion states at different wave vectors k that represents the spatial frequency

domain of the sample:

k(t) = γ

∫ t

0

G(t
′

)dt
′

(2.11)

The effect of magnetic field gradients, RF pulses, relaxation and more

complex phenomena (e.g. diffusion, motion, etc. ) in the Fourier domain

of configuration states is computationally simpler requiring only matrix

calculations. To describe a spin pool behaviour, the relaxation features

(T1, T2), spin density (ρ), diffusion properties and kinetic rate of exchange

to (model magnetization transfer) can be accounted for describing the

magnetization evolution under known RF and gradient waveforms ap-

plied (Weigel, 2015).

2.6 PULSE SEQUENCES APPLICATION AND CONTRAST

The application of magnetic field gradients to encode the spatial informa-

tion content of an object with radiofrequencies in the MR spectrum is the

basis of MRI and find a natural formalism into Fourier encoding (Haacke

et al., 1999). To collect spatially encoded samples, a convenient strategy

often used regard the superposition of magnetic field gradients able to
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provide linear field variation on top of the main one (B0) as:

B(r, t) = B0 +G(t) · r (2.12)

where the amplitude and duration of these gradients (G(t)) is carefully

designed to provide an adequate range precession frequency (ω) across

the imaged object:

ω(r, t) = ω0 + γG(t) · r (2.13)

and/or spatially-dependent phase variations (φ) in the sample:

φ(r, t) = γ

∫ t

0

G(t
′

) · rdt′ (2.14)

Integrating along the volume of interest the sample spin contributors,

the expected MR signal, neglecting inhomogeneity (∆B0) and receive

sensitivity effects (B−
1 ), should be proportional to:

m(t) = γ

∫

V

ρ(r)eiφ(r,t)dr (2.15)

where ρ(r) depicts the local spin density or proton density. The same

equation can be rewritten highlighting the role of gradients (G) and in-

dexing the frequency locations k(t):

m(t) = γ

∫

V

ρ(r)eik(r,t)·rdr (2.16)

The previous equation can be inverted through an inverse Fourier trans-

form to obtain the ρ(r) from measured k-space data. This inversion maps

frequency to image domain directly if data is collected over a regular

sampling grid (Fast Fourier Transform, FFT) or non-uniform sampling

grid (Non Uniform Fast Fourier Transform, NUFFT).

2.6.1 PULSE SEQUENCE EXAMPLE

This principle is implemented in the gradient echo pulse sequence (Bern-

stein et al., 2004) consisting of an RF excitation pulse followed by a signal
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2.6 Pulse sequences application and contrast

readout along with two or more imaging gradient lobes responsible for

the creation of the recalled echo. A first gradient lobe de-phase the spin

pool (pre-phasing lobe) while a second linearly recovers the spin phase

(first half of the lobe) and de-phase them again (second half). Recalled

echo is seen as an induced voltage in the receive coils that is converted,

via an analog to digital converter (ADC), to MR sampled signal inserted

into proper k-space positions. An example of data collection with this

approach is reported in Figure 2.6.1.

Figure 2.6.1: Example of gradient echo sequence with k-space lines covered to fill
the acquisition matrix which discretize the full k-space.

2.6.2 IMAGING K-SPACE TRAJECTORIES

The example in figure 2.6.1 report a typical 2D sequence diagram (3D

encoding follows by phase encoding the kz direction) with gradients tai-

lored to follow a linear path in the k-space where the x-gradient (Gx) span

the kx coordinate (lines) while y-gradient (Gy) event introduce phase off-

sets that correspond to vertical k-space shift along ky direction, needed to
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cover adjacent lines. Such a k-space filling scheme (sampling trajectory)

is referred as cartesian. Other trajectories proposed to achieve higher sam-

pling efficiency and robustness to motion are shown in Figure 2.6.2 (see

(Bernstein et al., 2004) for reference).

Figure 2.6.2: Examples of k-space trasversal patterns: Cartesian (left), Radial (mid-
dle), Spiral (right)

Figure 2.6.3: EPI sequence k-space pattern measured after a single shot.

Acquiring k-space data following zig-zag pattern after a single (or few)

RF excitations is referred as Echo Planar Imaging (EPI) (Haacke et al., 1999)

for example shown in Figure 2.6.3 with cartesian-like pattern. This read-

out technique is very convenient for its data collection speed, ultimately
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2.6 Pulse sequences application and contrast

modulated by the number of k-space lines that can be consequentially ac-

quired (echo train length - ETL). The actual ETL is however instrinsically

limited by the T ∗
2 (see Figure 2.6.4) which modulates the decaying signal

amplitude introducing T ∗
2 blurring effects.

Figure 2.6.4: EPI signal distortions by T ∗
2 effects.

To limit T ∗
2 blurring, instead of collecting a single long EPI readout af-

ter each shot (single-shot EPI), the k-space can be filled after multiple RF

excitations (multi-shot EPI), of interest in extended field of view (FOV)

applications. Rapid gradient slew rate required for fast imaging involve

less precise k-space traversal caused by gradient delays resulting in inten-

sity ghosts. An enhanced sensitivity to off-resonance and motion effects

is also affecting the EPI readout causing potential signal dropout and ge-

ometrical distortion while this sensitivity could be well employed for T ∗
2

imaging.

2.6.3 DATA UNDERSAMPLING

When high resolution and/or large FOV are prescribed, k-space data col-

lection for each slice can be a time-consuming process that introduces

motion sensitivity and related artefacts ultimately limiting the achievable

voxel size. Popular strategies to cope with under-sampling effects are

based on sensitivity encoding (SENSE) (Pruessmann et al., 1999) or Gen-

eralized Auto-calibrating Partially Parallel Acquisition (GRAPPA) (Gris-

wold et al., 2002) to lower the data sampling need while maintaining ad-
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equate overall image quality in MRI scanners equipped with phased ar-

ray coils able to measure spatially redundant signals (Pruessmann et al.,

1999), a feature exploited during the reconstruction to cope with missing

k-space points.

Figure 2.6.5: k-space undersampling effects and associated zero filled k-space
(downsampled for representation purposes)

SENSE resolve the spatial aliasing due to undersampling providing a

combination of single-coil images within a full FOV solving a linear in-

verse problem:

P = S · I ⇒ I = (SH ·Ψ−1 · S)−1SH ·Ψ−1 · P (2.17)

where P accounts for the partial FOV aliased images, S the sensitivity

coefficient of each measurement receive coil, Ψ for the noise covariance

matrix between coil elements (hardware, loading effects, etc.) and I the

full FOV unaliased image of each image voxel. Instead, in GRAPPA omit-

ted k-space locations are estimated by interpolators (kernel functions) be-

fore the image reconstruction. Kernel functions are identified from a set

of fully sampled lines typically encompassing the center of k-space (au-
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2.6 Pulse sequences application and contrast

tocalibration lines, ACS) and used to estimate omitted k-space positions

assuming their generalizability to outer k-space locations.

2.6.4 MULTIBAND IMAGING

Recent technical improvements made also available methods to acceler-

ate even the slice dimension of the prescribed multi-slice volume (see Fig-

ure 2.6.6). These methods are based on multiband RF excitations (Moeller

et al., 2010) played to excite and acquire multiple slice locations simulta-

neously encoded by a slice selection gradient instead of traditional GRE-

EPI RF played at a single specific frequency band.

Figure 2.6.6: T1w image with multiple excited slices (2x) and slice scan ordering
along a saggital brain slice prescribing 2D axial slices.

From the signal equation (Haacke et al., 1999), each receive coil chan-

nel will sample a linear combination of signals obtained from multiple

slice locations weighted by its coil sensitivity profile. Consistent recon-

struction quality (i.e. successful unfolding of simultaneously excited 2D

slices) was obtained with a convenient phase offset between each pulse

aimed, through a Fourier transform perspective, to spatially shift the ex-

cited slice associated to each RF pulse band with a different amount (Set-

sompop et al., 2012). The scan time advantage is directly proportional to

the number of slices that can be simultaneously excited. However, the
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slice ill-posedness associated to the slice un-aliasing process intrinsically

elevates the reconstruction g-factor (Setsompop et al., 2012) also depend-

ing on the RF excitation performance and receive coil configuration avail-

able which affecting overall the unfolding capabilities.

A recent reconstruction approach by (Setsompop et al., 2012) named

slice-GRAPPA employ the reference data (pre-scan calibration) in a GRAPPA-

like linear framework to fit distinct kernel sets (one for each simultane-

ously excited) subsequently used to fit k-space positions of different slices

to effectively unfold superimposed contributions while limiting spurious

signal leakage effects (Cauley et al., 2014) among simultaneously excited

slices.

2.7 FUNCTIONAL MRI

Thanks to its peculiar T ∗
2 sensitivity, the GRE sequence found a wide vari-

ety of applications (Bernstein et al., 2004) where the collected images can

conveniently depict objects based on their T ∗
2 differences. This sensitivity

enabled to probe in-vivo the temporal variability of the local blood oxy-

genation, extensively used as image contrast mean for functional brain

activation. This association derive from the pioneering studies that led

in 1993 to the concept of blood oxygenation level dependent (BOLD) con-

trast, later found to be a reliable metabolic correlate to neuronal activity

(Ogawa et al., 1990). The BOLD contrast is based on the idea that differ-

ent levels of blood oxygen concentration provide significant differences

of magnetic susceptibility in a sample.

Ogawa (Ogawa et al., 1990) found that physiological variations of blood

oxygenation levels were strong enough to provide measurable T ∗
2 fluctu-

ations. Following the original idea that the neural activity and cellular

metabolism are correlated with changes in blood flow first empirical ev-

idence arose relating the action potential response of neuron cells and

later the local electrical field potential (LFP) (Logothetis, 2002) on groups of

neurons briefly stimulated to the hematic activity.

Considered its biological relation to the oxygen and blood flow the
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question about the metabolic contributions that explain the BOLD sig-

nal arose quickly in the neuroscience community which tried to estimate

the metabolic demand associated with neural activity finding that at least

blood flow could be driven by excitatory post-synaptic activity processes.

Figure 2.7.1: BOLD response as determined from a task administration to activate
the brain cortical area depicted in purple in the structural image overlay in traspar-
cency. Focus on the local vasculature response is reported depicting the elicited
neural response and resulting hemodynamic response involving an unbalanced Hb
content responsible for T ∗

2 variations, measurable in voxels whose traces are reported
for example in the box on the left (typical BOLD response dynamics, z-scored).

For these reasons, the temporal tracking of BOLD contrast fluctuations

is among the most commonly used methods for brain functional map-

ping and functional connectivity (FC) (Biswal et al., 1995a) under task or

spontaneous conditions (see Figure 2.7.1) based on low spatial resolution

GRE images. Temporal sampling frequency should be adequate to de-

scribe BOLD signal contrast variations (Lindquist et al., 2009), found to

interest the frequency range of 0.01 to 0.1 Hz and spatial range of few

mm.
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2.8 POSITRON EMISSION IMAGING PRINCIPLES

Positron Emission Tomography methods add a fundamental feature that

often is confounded in MRI: the biological specificity and interpretation.

The significance of this methodology stems from the pioneering stud-

ies of the cerebral blood flow at whole brain scale (due to technical limi-

tations progressively passed) that also combined arteriovenous sampling

to further refine the biological meaning of tracked biological process re-

moving all others substrates and confound metabolites paving the way

to our current understanding of the relationship between substrate de-

livery and utilization in the human brain. Currently PET is an in-vivo

functional imaging technique able to assess the quantitative distribution

of a positron-emitting radionuclide (Sokoloff et al., 1977a). The radioac-

tive decay of known as unstable isotopes, referred as radionuclides (e.g.

18-F, 15-O, etc. ), results in the generation of measurable photons (see

Figure 2.8.1).

The spatial distribution of decaying isotopes can be then reconstructed

with tomographic image tools (Valk, 2004), to depict the in-vivo distribu-

tion of an injected radiopharmaceutical. The sampling performances of

current PET systems are a tradeoff between spatial resolution (typically 2

to 5 mm) and temporal resolution (typically minutes).

PET radionuclides are especially suited, for their chemical resemblance,

to the normal constituents of biological molecules (Phelps, 2004), thus

they can be combined to substances known to participate to specific metabolic

pathways. Safe application on human subjects was cleared as the ra-

dioactive nature of these isotopes has a decay constant of minutes (15-O =

2 min) to hours (18-F = 110 min) making them practical for in-vivo imag-

ing of blood flow, cerebral glucose and oxygen transport and utilization.

However, radiopharmaceuticals can be chemically unstable and pro-

vide functional variability depending on the location and dose, therefore

to disentangle the biological pathways followed by these substances by

appropriate mathematical models of the PET tracer and biological system
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Figure 2.8.1: PET experiment consisting of tracer injection, measurement and re-
construction of local activity as dynamic process with physiological information re-
garding the biological tracer pathways.

(Sokoloff et al., 1977a).

The simplest characterisation, often used in clinical application for its

simplicity, require the calculation of the tracer concentration in a region of

interest, defined as a single-frame acquisition of the average PET activity

(sum of the raw counts) from the region. Normalizing this quantity by

the injected dose and anthropometric characteristics of the subject (e.g.

weight, body surface area, the standardized uptake value (SUV) (Keyes,

1995) is obtained. SUV consist in a semi-quantitative index useful for

its general applicability but limited from an interpretation point of view

from the lack of a specific model for the tracer kinetic (Keyes, 1995).

2.8.1 INTEGRATED PET/MRI SCANNERS

In-vivo MRI and PET imaging offer non overlapping information and

opposite limitations: PET can investigate a wide range of physiological,

pathological and biological processes with high specificity but low spatial

resolution while MRI provides high spatial resolution for both structural
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and functional characterization. Therefore, an imaging system capable

of simultaneous PET and MRI measurement can enforce the spatial ac-

curacy and relaxation-based contrast of MRI with the metabolic contrast

and quantitative information about the underlying tissue of PET. How-

ever, the advantages of combining PET and MRI go beyond the spatial

localization improvements obtained using MRI in place of CT, requiring

innovative solutions to solve the technical challenges associated with the

interference between these two modalities (Jung et al., 2016).

This technological effort initiated two commercially available and ap-

proved by Food and Drug Administration human PET-MRI scanners in-

troduced after 2010 and capable of simultaneous PET and MRI imaging

respectively from Siemens Healthcare (Biograph mMR; Siemens Health-

care Sector, Erlangen, Germany) and General Electric Healthcare (Signa

PET/MR; GE, Waukesha WI, USA) (Ladefoged et al., 2017).

Despite the effort in using PET-transparent materials, PET-MRI scan-

ner nonetheless suffer from an appreciable activity attenuation even con-

sidered the relatively high energy of the annihilation radiation. This at-

tenuation can be corrected estimating the attenuating path followed by

photons along different structures (human body, scanner bed, RF hard-

ware, etc.) before impacting on the receiving detectors and reversing the

estimated attenuation on the activity before or during the PET image re-

construction stage.

The development of robust methods for attenuation correction has been

a major challenge in PET/MRI that promoted a rapid evolution of stan-

dard correction methods (Catana, 2017) for example atlas-based or MR-

derived tissue segmentations (Martinez-Moller et al., 2009; Muzic and Di-

Filippo, 2014) (with assumed attenuation coefficient). A significant jump

is due to the application of deep learning methods to learn the spatial

distribution of the attenuation (Liu et al., 2018a) with results approach-

ing standard CT-derived attenuation maps.

A fundamental difference that marks the advent of PET/MRI com-

pared to traditional PET is however the development of PET reconstruc-

tion methods able to exploit the anatomical information to enhance the
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reconstruction accuracy extracting spatial anatomical priors derived from

atlases or, more interestingly, from the MRI images themselves (Ehrhardt

et al., 2016). Joint probabilistic models for estimation of PET activity

(Hwang et al., 2018) has been proposed for PET/MRI scanners exactly

because of the inherent spatial alignment between PET and MRI data

without subject repositioning. The PET reconstruction can also make use

of motion estimates provided by MRI (or the PET data itself) to correct

for motion effect increasing the effective PET spatial resolution and even-

tually lowering the injected dose (Kang et al., 2015).

Simultaneous acquisition of PET and MRI data allows maximal tempo-

ral correlation between functional and anatomical information from both

modalities, combining MRI-derived anatomical and function data and

PET-derived biologically specific and quantitative information about the

tissue function. This offer special opportunities where the timing and

spatial accuracy are critical such as in cardiology, stroke, neurodegenera-

tive disorders, oncology or brain assessment (Catana, 2017).
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3
Methods to study and integrate

functional connectivity and energy

metabolism

Considering the variety of clinical applications based either on alterations

of the brain organisation structure or local glucose metabolism, very few

studies studies tried to connect such alterations using multi-modal mea-

sures. This chapter describes the state of the art methods for FC and

metabolic analysis reporting experimental approaches and important re-

sults associating these two modalities.

3.1 FUNCTIONAL CONNECTIVITY

3.1.1 INTRODUCTION: EVOLVING DEFINITIONS AND RELATION TO BRAIN

CONNECTOME

Based on the idea of functional connectivity as functional association

between areas, many different experimental approaches based on brain
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hemodynamic alterations were designed to directly, e.g. with Near Infrared

Spectroscopy (NIRS), or indirectly, e.g. with fMRI through the BOLD

contrast (Glover, 2011) extended by also probing the joint perfusion as

sampled with Arterial Spin Labeling (ASL) approaches (Steketee et al.,

2015), fundamental to provide dynamic functional activity measures to

be associated in order to defined the brains FC.

Given the advantage of non-invasive in-vivo sampling with both high

spatial and temporal resolution, fMRI-based methods soon gained promi-

nence in literature. Historically BOLD-fMRI (Bandettini et al., 1993) have

found early application in functional connectivity (fcMRI)(Biswal et al.,

1995b; Friston, 2011) to the point that have recently become a popular

non-invasive method to probe inter-area association based on statistical

dependence measures. Two macroscopic areas are said to be function-

ally connected (Friston, 2011) when they exhibit a significant association

based on the correlation between BOLD signals (see Figure 3.1.1 for an

example).

While interesting connectivity results can be obtained during a task

activation experiment aimed at identifying co-activating brain groups of

areas (functional networks), much of the FC literature has been devoted

in fMRI to the analysis of the resting-state brain condition starting from

the seminal work of Biswal et al. (Biswal et al., 1995b). This observation

was soon extended reporting (Beckmann et al., 2005) that many different

systems actually co-exist in the brain and are distinguishable from each

other due to their relatively different hemodynamic behavior which re-

sults in the possibility of measuring consistently different activity time

courses.

Numerous studies found a complex organization system of different

networks, referred as resting state networks (RSN) (Sporns, 2013) present

even under non-physiologic conditions (e.g. anaesthesia or pathology)

and consistent across subjects (Thomas Yeo et al., 2011). Recent applica-

tions found interesting similarities in organization structure among con-

nectomes derived from rs-fMRI and task-fMRI (Gordon et al., 2017), en-

hancing the experimental robustness while offering a more extensive val-
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idation (e.g. by means of independent PET measures).

Considering the existence of such network structures, continuously

maintained even at rest (as supported by many metabolic studies (Raichle,

2006)), the brain is believed to be continuously engaged in some sort of

conscious (e.g. reasoning processes) or subconscious activities (e.g. learn-

ing) but always set to react to external stimuli. This operational burden

is the basis of the high human brain metabolic demand to be justified

from the connectome organization perspective rather than only from cel-

lular scale considerations. Multi-modal MRI provided connectome es-

timates by similarity of local anatomical measures such as the cortical

thickness (Evans, 2013) while FDG-PET measurements correlated across

subjects provided the concept of metabolic connectivity (Di and Biswal,

and Alzheimer’s Disease Neu, 2012).

When it comes to experimentally define functional connectomes based

on fMRI measures, two fundamental steps are required: delineate areas

of interest (functionally discrete brain areas) and correlated their asso-

ciated activity profile (as a probe for their connectivity). From a graph

theory perspective (van den Heuvel et al., 2009) where a graph is a formal

object defined by a set of nodes and a description of the interconnections

among them, delineated areas basically consist in the functional nodes

of the graph (i.e. brain network) while their interconnections are defined

according to the association degree among areas (i.e. their functional con-

nectivity).

The process of generating a functionally meaningful set of functional

brain areas in rs-fMRI literature is referred to parcellation. Previous par-

cellation techniques were based on putative anatomical landmarks (De-

sikan et al., 2006). Recent approaches shifted toward defining areas ac-

cording to their presumed associated brain function to maximize the local

coherence of measured signal (Gordon et al., 2016) providing more func-

tionally homogeneous areas. However, these consist in hard parcellation

approaches where the set of parcels is derived from the group- to the

subject- level traditionally through accurate registration processes.
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Figure 3.1.1: Computing functional connectivity. Top-Left) Resting state functional
MRI (rs-fMRI) signals are averaged within three functional parcels (indexed as A, B,
C). The associated average signals are Pearson cross-correlated generating an indi-
vidual correlation matrix Top-Right) from the pairwise, parcel-to-parcel correlations
corresponding to edge strength of the functional connectivity matrix. Bottom-Left)
Representation in overlay to an inflated cortical surface mesh of functionally delin-
eated parcels (according to Gordon-Lauman atlas) colored according to the belonging
network. Bottom-Right) Volumetric sagittal, coronal, axial views of an anatomical
atlas (MALF atlas) colored according to the parcel indexing (not by functional net-
work).
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A successful methods for the analysis and parcellation was the inde-

pendent component analysis (ICA) which was the first used in literature to

isolate a set of coactivated areas in resting state, referred as RSN, whose

connectivity defines the basis for the identification of anatomically dis-

tinct but functionally interconnected networks later subject of extensive

investigation(Beckmann et al., 2005).

The role and processing structure of the brain at rest, represented through

these networks, have been linked to fundamental human cognitive and

emotional performances (Greicius et al., 2003) while sharply disrupted

in pathologic conditions (Fox, 2010; Whitfield-Gabrieli et al., 2009). Pre-

vious studies based on resting state FC were able to associate a lower

connectivity level (ipo-connectivity) between networks to pathological

state in patients affected by schizophrenia or significantly altered from

healthy controls as observed in Alzheimer disease (Grothe et al., 2017) or

Schizophrenia (Zhu et al., 2017).

Regardless of the delineation principle, when defined on large scale

(low spatial resolution, up to dozens), functional areas and their connec-

tivity describe network-level connectivity while fine brain parcellations

(higher spatial resolution, up to hundreds) by describing the interaction

of finer functional units may reveal which nodes or sub-networks are ac-

tually driving the RSN-level connectivity (e.g. possibly seen with lower

resolution parcellations).

3.1.2 PRACTICAL FC AND MODELLING APPROACHES

Once a parcellation scheme has been defined, each parcels fMRI dynamic

(typically obtained by averaging the rs-fMRI signals of all voxels part of

the parcel) will represent the subject response during the resting state ex-

periment as for example depicted in Figure 3.1.2. Then, the full set of

all possible pairwise interactions among parcels (i.e. FC) could be sum-

marized in a NparcelsxNparcels matrix (often referred as FC matrix) where

each correlation will correspond to a network edge (connection among

two nodes), altogether representing the subjects functional connectome
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during that resting state experiment.

Often the association among parcels is based on Pearson linear correla-

tion (Friston, 2011) or similar point-wise measures such as the cosine sim-

ilarity (Shen et al., 2012) boiling down the entire process of FC identifica-

tion to an iterative detection of a set of dependent correlations (because

of the RSN-structure existence), possibly highlighting the statistically sig-

nificant ones (e.g. significantly non-zero correlations between associated

dynamics).

The operational simplicity of this correlation and its straightforward

interpretation justified its large use in fMRI literature but produced an

entire literature field of issues to be addressed to achieve genuine rep-

resentation of the brain networks (note that we still lack from a suitable

ground truth).

Partial correlation can instead disentangle the association between two

parcels while simultaneously conditioning on all the others, generaliz-

ing to all nodes this requires the knowledge of a full sample covariance

matrix. Null partial correlation inform if the two parcels to be condition-

ally independent under Gaussian conditions that are not met in practical

rs-fMRI conditions, resulting in the need of regularized schemes such as

based on L1-sparsity to account for noise propagation (Smith et al., 2011).

The need for careful regularization could lower its statistical power re-

sulting of limited applicability in the typical experiment consisting of a

limited number of time points finally limiting its applicability.

It worth noting that many other methods are available to measure (Fris-

ton, 2011) and pre-process the fMRI data in order to remove confounds

(more carefully described in a later section), but the critical step resides

in the method used to infer each connection, possibly influencing all net-

work analysis and derived features, however few studies focused on the

reliability of detected structures to essentially validate available methods,

a major theme of this thesis.

While the distinction between direct and indirect has been studied by

Smith et al. (Smith et al., 2011) who proposed functional model iden-

tification based on partial correlation to provide more physiologically
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meaningful structures rather than refined covariance descriptions, more

complex models were proposed based on Granger causality (Deshpande

and Hu, 2012), Dynamic Causal Models (Friston, 2011), Structural Equa-

tion Modelling (McIntosh and Gonzalez-Lima, 1994), Bayesian Networks

(Ramsey et al., 2010) or time-series Non-Gaussianity (Hyvärinen and Smith,

2013) to simultaneously deal with the edge existence as well as its direc-

tionality (introducing the causality notion). Moreover, as there is some

consensus about the majority of brain connections as bi-directional (Markov

et al., 2014a), sparse methods to infer unidirectional edges may be not ap-

propriate.

3.1.3 NETWORK THEORY: DESCRIBING THE BRAINS NETWORK ORGAN-

ISATION

The notion of nodes and connections yet considered naturally falls into

the context of graph theory (Stam and Reijneveld, 2007) providing to the

brain researchers complementary information to task-fMRI experiments.

By its very nature, a graph G = (V,E) will consist in a set of nodes (or

vertices V with fixed cardinality [M ], unique node labelling (cardinal)

and fixed ordered set), interpreted as parcelled brain areas, functional

parcels or ICA components, and their connectivity represented as edges

E (with associated weights contained in a dedicated adjacency square

matrix A[MxM ]) overall describing the complete graph structure. We

consider in this context only undirected graph, requiring the adjacency

matrix to be as well symmetrical (A = AT ).

As the parcellation increase its functional specialization offering pro-

gressively detailed views about the brain, the number of nodes whose

connectivity is being investigated increase significantly. From this per-

spective graph theory (Fornito et al., 2013) offers a much needed means to

examine the overall structure of the brain network in terms of simple fea-

tures and abstract concepts (Rubinov and Sporns, 2010) considering the

network as a whole rather than as a group of integrated/segregated RSN

and describing the information exchange and processing implemented

39



Methods to study and integrate functional connectivity and energy
metabolism

Figure 3.1.2: Typical pipeline for a connectivity analysis up to the brain network
representation. Starting from a resting state fMRI experiment (top-center, typically
collecting at least 12 minutes worth of data), fMRI volumes are pre-processed (fil-
tered, motion corrected, confound regressed, etc.) then parcelled according to a
chosen atlas or parcellation method (center-left). The average signal dynamic in
each parcel is then Pearson cross-correlated to the dynamic of all other parcels’ in
order to define a complete FC matrix (center-right). Single rows (or columns by
symmetry) of the FC will represent how each node (a.k.a. parcel) is connected to
all other nodes in the network (connectivity profile), that is represents its relation
with the neighborhood. Each FC matrix, considered as an adjacency matrix, can be
then represented as a graph structure (bottom-right) and its features then studied
according to graph theory tools.
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by the brain (Bullmore and Sporns, 2009).

At this level, many strategies were proposed to remove spurious con-

nections. Typically the weakest weights are simply discarded if under a

predefined cut-off threshold based on statistical considerations or a pre-

defined sparsity level. This problem could be discussed within the net-

work estimation process, here reported to highlight the unsolved need

for precision measures to the connections weights for confident estima-

tion of reliable networks.

3.1.3.1 NOISE PROPAGATION IN FC ESTIMATES

Here we show how theoretically the noise propagates though the FC and

play an important role in defining its amplitude as well as introducing

possible biases related to the spatial inhomogeneity of noise and experi-

mentally how this effect can provide a connectivity loss at single-subject

level. The predicted echo signal amplitude at the prescribed time (t)

could be described during a GRE experiment as:

s (t) = s0 (t) e−R∗

2
(t) TE + n (t)

where s0 (t) accounts for the initial transversal magnetisation, TE [ms]

the time passed from the RF excitation (echo time) and n (t) describes

the superimposed noise term, zero-mean and temporally uncorrelated

Gaussian distributed.

Considering the linear approximation of such a model proposed in

(Liu, 2017), the actual signal variability in the time domain is the vari-

able of interest during a typical fMRI experiment concerned on the signal

variability, rather than its absolute value:

∆s (t)

s (0)
=

∆s0 (t)

s0 (0)
−∆R∗

2(t) TE +
n (t)

s (0)

respectively describing: the fluctuations of measured signal as contri-

butions from the relative transversal magnetisation difference from the

experiment beginning (unstable longitudinal relaxation contributions, slice
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cross-talk, motion, in-flow, etc), the temporal fluctuations of transversal

relaxation decay (susceptibility differences related to the hemodynamic

BOLD response involving unbalanced oxygen and/or blood flow and/or

volume local content, instability of ∆B0 due to scanner instabilities or res-

piration, etc) and the relative noise contribution.

In fMRI literature the noise contributors to this model have been of-

ten described by means of two metrics: the image signal-to-noise ratio

(SNR0) and temporal SNR (tSNR) whose relationship has been formally

established in the noise model (Krüger and Glover, 2001). Such a model

distinguishes the variability from thermal and physiological origin under

linear superposition assumption.

The former noise source was assumed as temporally and spatially (across

voxels) uncorrelated Gaussian noise with zero mean and σ2
0 variance (as-

sumed to be stationary across space, i.e. homogeneously distributed

across voxels) while the latter as a zero-mean process spatially uncorre-

lated with and Gaussian distribution characterized by σ2
P temporal vari-

ance (not necessarily temporally uncorrelated) which accounts for BOLD-

like (σ2
NB) and non-BOLD-like (σ2

NB) contributors as previously described

by (Liu, 2017).

According to the Kruger et al. (Krüger and Glover, 2001) noise model,

the thermal noise variability (σ2
0) is independent to the signal level (ad-

ditive noise, dependent on hardware losses, field conditions and imaged

sample) while the physiological noise variability (σ2
P ) is linearly depen-

dent over the actual signal level s (t) (modulating noise) according to a

proportionality constant (λ tissue-dependent): σP ∝ λ s (t) demonstrat-

ing how better receive hardware sensitivity (higher B0 and flip angle,

denser receive coil array, larger voxels or limited image acceleration) ac-

tually explain the improved BOLD signal sensitivity over the noise (σ2
NB),

unfortunately accompanied by higher sensitivity to non-BOLD sources

of variability (σ2
NB).

Within this framework SNR0 can be determined as the voxel-wise ra-

tio between the locally measured signal s (t) (averaged in time) and the

overall thermal noise standard deviation (σ0).
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Instead, the tSNR measure had been defined as the ratio of the locally

measured signal s (t) (averaged in time) and the total standard deviation

of the measured signal (σt =
√
σ2
0 + σ2

P ). These noise measures were an-

alytically associated as:

tSNR =
SNR0√

σ2
0 + σ2

B + σ2
NB

=
SNR0√

1 + λ2 SNR2
0

From this relation, two asymptotic scenarios can be distinguished:

1) Small SNR0 negligible SNR2
0 λ

2 SNR2
0 ≪ 1 : tSNR ∼= SNR0

2) High SNR0 λ
2 SNR2

0 ≫ 1 : tSNR ∼= 1
λ

The first scenario can be achieved under thermal noise regime requir-

ing σ2
0 > σ

2
P that is measured signal variability contribution mostly de-

fined by the statistical features of the thermal noise, nonetheless favourable

by adequately balancing the benefits of thermal noise regime (noise as-

sumption of spatial uncorrelation more valid) to the actual noise ampli-

tude level which should not completely obscure the BOLD contribution.

The second scenario highlights a substantial dependence of the tSNR

by the tissue-specific signal variability rather than the actual image noise

(SNR0) typically reporting progressively lower values from white to grey

matter and CSF directly associated to the physiological signal variability

of these tissues with strong dependence over the average signal accord-

ing to (Krüger and Glover, 2001).

Specifically, under this noise regime (σ2
0 < σ

2
P ), providing higher SNR0

by means of lower noise figure by better receive hardware or lower spa-

tial resolutions not necessarily improves the tSNR.

Note that, in this case the usually costly enhancement related to hard-

ware improvements, do not guarantee any improvements in terms of

BOLD signal sensitivity described in terms of BOLD contrast to noise

ratio (CNRB) once the main field strength (B0) and voxel size are defined

in (Wald and Polimeni, 2017) by:
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CNRB =
∆R∗

2

R∗
2

tSNR

with ∆R∗
2 relative to the baseline R∗

2 describing the BOLD effect of

interest to measure reportedly modulated only by the local tSNR sug-

gesting in agreement with (Wald and Polimeni, 2017) a more favourable

framework for fMRI measurement to be attained under thermal noise

regime simultaneously limiting spurious spatial correlation effects non

related to the BOLD activity.

This relation appoints the ability of an fMRI experiment to detect small

BOLD signal changes mostly upon the actual tSNR amplitude nonethe-

less providing a sensitivity lower bound for the detection of the co-activation

of putative brain areas. This suggest that in general it make sense to

have highest possible tSNR but not necessarily this needs to be achieved

through higher SNR0 depending on the actual noise regime prescribed,

entailing experimental optimisation scenarios that could as well feature

less performing hardware for example making use of lower main field or

less dense receive array coil (neglecting other acquisition advantages as

parallel imaging) potentially with limited penalty in terms of fMRI mea-

surement quality.

The actual noise regime existing in a given experimental setting could

be practically be inferred evaluating the ratio of local thermal (σ0) to

physiological noise (σP ) variabilities. Considering previous formulations

and assumptions this measure can be however conveniently determined

from the SNR0 and tSNR as (Wald and Polimeni, 2017):

σP

σ0

=

√(
SNR0

tSNR

)2

− 1

this ratio had been reported to be remarkably related to the flip an-

gle (Krüger and Glover, 2001),main field strength and voxel volume by

(Triantafyllou et al., 2005) while later accounting for the noise correlation

across receiving elements of the array (Triantafyllou et al., 2011) or ac-

counting for physiological noise scaling effects (Triantafyllou et al., 2006).
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Nonetheless, it has been suggested (Wald and Polimeni, 2017) that the ac-

tual noise regime could be inferred by observing the spatial distribution

in the imaged sample of the tSNR. It had, in fact, observed that under

thermal noise regime the tSNR pattern should follow the spatial appear-

ance of the array coil receive sensitivity profile (thus similar to the SNR0

pattern with monotonical decay moving away from the coil elements),

while under physiologically dominated noise the appearance should en-

tail neat brain tissue separation and ranking of tSNR according to the

voxel content.

Building upon previous assumptions, the physiological noise contribu-

tions over the total signal variability is stable once the main field and sig-

nal defining elements (B0, flip angle, voxel size, TE , TR) are set in agree-

ment with (Triantafyllou et al., 2011). Considering experimental proto-

cols (i.e. fMRI sequence settings) with these parameters matched, should

entail acquisitions affected by similar physiological noise content, while

other sequence parameters (not modulators of the signal amplitude) like

the image acceleration, would instead only control the propagation of

thermal noise to the measured signal. In this case, the tSNR measure is a

direct probe of thermal noise propagation.

Despite the extensive work of dedicated literature, fMRI denoising is

still not completely effective (Bright et al., 2017), requiring researchers

to consider the variability in residuals as associated to the thermal noise

propagation (with variance described by the σ2
0 term in previous mod-

elling notations) and physiological noise variability (σ2
P ) of both neural

(BOLD-like) or non-neural (confounds not completely removed) origin.

Under Gaussian assumptions, the physiological noise would as well

been considered Gaussian distributed, linearly superimposing as:

ε (t) = P (t) + T (t)

where the time-course of fMRI signal residuals can be decomposed as

P (t) physiological contributions Gaussian distributed with zero-mean

and temporal covariance structure summarized by means of outputs from
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an AR(p) model (of appropriate order p (Arbabshirani et al., 2014)) whereas

T (t) = T describes the thermal noise content Gaussian distributed with

zero mean and temporally uncorrelated variance σ2
0 . Both of these sources

correspond to stationary random processes consistent with noise models

previously discussed. Considering the GLM residuals obtained from two

putative brain areas as: ǫ1 = P1 + T1 and ǫ2 = P2 + T2 (dropping the time

index for notation simplicity and assuming in general different distribu-

tion variances by areas), their Pearson linear correlation is defined as:

r =
E [ǫ1 · ǫ2]√

Var (ǫ1) ·
√

Var (ǫ2)
=

E [(P1 + T1) · (P2 + T2)]√
σ2
P,1 + σ2

0,1 ·
√

σ2
P,2 + σ2

0,2

Assuming linearity principle and under Gaussian distribution hypoth-

esis (zero-mean) the previous definition could be reframed after some

term rearrangements as:

r =
E [P1 · P2]

σ0,1

√
1 +

(
σP,1

σ0,1

)2
· σ0,2

√
1 +

(
σP,2

σ0,2

)2

Highlighting that the Pearson linear correlation is directly dependent

on the covariance between physiological noise contributors (P1, P2) in

the two areas while inversely dependent over the thermal noise standard

deviation amplitudes (σ0,1, σ0,2) and a factor directly related to the
σP,i

σ0,i
,

that is the locally delivered physiological-to-thermal noise ratio.

This equation suggests that the actual connectivity between two brain

areas depends on their local thermal noise scaling (σ0,1, σ0,2). In turn,

the latter depends on the spatial pattern of thermal noise propagation

(i.e. the SNR0) which under parallel imaging conditions could be highly

non-homogeneous (SNR0 further restrained by the g-factor (Breuer et al.,

2009)) nonetheless introducing a non-trivial modulation of the actual func-

tional connectivity between two brain areas based on their spatial posi-

tion across the array sensitivity profile.

Interestingly, the above measure of connectivity is also locally depen-

dent on the achieved noise regime of both areas. Under global thermal
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noise regime, the correlation would still be potentially modulated by the

SNR0 pattern while under physiologic noise regime is mostly dependent

on the actual physiological variability of the two areas thus purposely

modulated more by the actual BOLD variability scaling.

While the experimental acquisition choices could significantly help in

reducing the sensitivity of functional connectivity measures from the spa-

tial correlation, the deliberate propagation of thermal noise should be

carefully accounted for in functional connectivity studies because, as op-

posed to task-fMRI, the local noise content is important as much as the

difference of noise behaviour across areas (spatial pattern dependence).

3.1.4 FC TOPOLOGICAL FEATURES

To describe the interaction of a node with its surroundings, graph the-

ory offer summary metrics to study the efficiency and hierarchical struc-

ture of the identified network, its connectivity density (local clustering of

nodes), its small-worldness features or the existence of few highly-connected

nodes which support the network efficiency.

These features could be determined by means of measures like the

clustering coefficient, node degree or strength, various notions of centrality

or modularity and whole-graph features like the characteristic path length

and the global efficiency, for a more extensive list of available features see

(Guimerà and Nunes Amaral, 2005; Rubinov and Sporns, 2010), in the

following only few relevant ones will be described. Observing the neigh-

borhood of all nodes together could instead shed light on the distribution

of connections of the graph.

This is reported by the node degree as number of edges in which a node

is involved, or strength (also referred as degree centrality (Junker et al.,

2006)) of the same node by adding the weights of its neighboring con-

nections. Repeating the evaluation for all nodes (summing the adjacency

matrix rows or columns) report to a distribution of degrees on all nodes.

A conceptual extension of the strength is offered by the Eigenvector Cen-

trality (EC) (Zuo et al., 2012) which measures whether strong connections

47



Methods to study and integrate functional connectivity and energy
metabolism

typically involve similar nodes with strong connections, accounting for

indirect pathways as measured by the first eigenvector decomposition of

the FC matrix.

The (N-)neighbours of a network node are the nodes that can be reached

by crossing at most N edges over the adjacency matrix starting from the

node of interest. The clustering coefficient of a node (measuring the local

connectivity density) express how the neighbors of a node are intercon-

nected themselves (forming a closed triangle or cycle) indicating the local

connectedness degree or figuratively the connection density around such

a node.

DEGi =
N∑

j=1

F̃Cij (3.1)

STRi =
N∑

j=1

FCij (3.2)

ECi =
1

λ1

FC µ1 =
1

λ1

N∑

j=1

FCij µ1 (j) (3.3)

CC =
1

n

∑

i∈N

CCi =
1

n

∑

i∈N

2ti
ki (ki − 1)

(3.4)

dij =
∑

FCuv ∈ g
i↔j

FCuv (3.5)

L =
1

n

∑

i∈N

Li =
1

n

∑

i∈N

∑
j∈N,j 6=i dij

n− 1
(3.6)

SW =
C/Crand

L/Lrand
(3.7)

where FC here plays the role of the adjacency matrix for clarity of rep-

resentation: DEGi represents the degree of node i, F̃Cij the binarized FC

matrix connecting node i and j; STRi the node strength of node i, ECi the

eigenvector centrality of node i, λ1 the first eigenvalue deriving from the

decomposition of the FC matrix and µ1 the associated eigenvector, CCi
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the clustering coefficient of the node i within the neighborhood N with ti

edges within such neighborhood of ki nodes (ki (ki − 1) /2 represents the

total number of all possible edges) while dij measure the path length as

weighted (topological graph-distance) distance across a path g of edges

and L the characteristic path length over N paths of distance dij among

each node i, j (average distance across all possible paths in the graph, also

referred as graph diameter), necessary to define the small-worldness SW

as ratio of the average CC observed to the CC of a CCrand random equiv-

alent network normalized to the characteristic path length L observed as

compared to a Lrand random equivalent network.

To describe the nodal centrality, graph theory offers many metrics (e.g.

betweeness, ...) describing how central a node is based on how many

shortest path (of minimal edges crossed or with minimal/maximal to-

tal weights of edge crossed) between other nodes pass through the one of

interest.

BCi =
∑

∀j,k 6=i

σj↔k,i

σj↔k

(3.8)

where σj↔k is the number of existent shortest paths from node j to node

k while σj↔k,i correspond to the number of shortest paths passing through

the node i.

To understand if a node hierarchy exist in the graph that effectively or-

ganizes groups of nodes and shape their connectivity at different organi-

zation levels, the concept of clustering can be extended to identify groups

of nodes with favored connectivity among them compared to others in-

troduced by the notion of modularity ((Newman, 2006)) and a sharedness

notion dedicated to modular structure describing the strength of partic-

ipation of a node to the belonging module rather than others (participa-

tion coefficient). This metric suggests whether the links of a node are

uniformly distributed across all modules rather than are mostly connect-
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ing nodes within the same module (Guimerà and Nunes Amaral, 2005).

Q =
∑

u∈M


euu −

(
∑

v∈M

euv

)2

 (3.9)

PARi = 1−
N∑

s=1

(
kis

ki

)2

(3.10)

where: Q represents the modularity measure of such graph with a

module definition M (i.e. fixed set of modules which segregates all the

nodes), euu the number of within-module edges and euv the number of

between-module edges; PARi represents the participation coefficient of

node i with kis the total number of edges of node i within the module s

while ki represents the degree of node i (total number of edges interested

by node i).

Within this framework it is even clearer the critical role of accurate net-

work modelling at the lower level through careful estimation of the FC

matrices because the abstraction layer added by graph modeling could

make it challenging to evaluate meaningful results from confounds for

example related to spurious edges (Smith et al., 2013b). For an in-depth

discussion of graph theory tools refer also to (Wang et al., 2010).

3.1.4.1 BRAINS NETWORK ORGANISATION PRINCIPLES ASSOCIATED TO

THE ENERGETIC BUDGET

The graph-based approach in brain network analysis has been applied to

characterize the global network organization. Many works found sub-

stantial topological reorganizations of the brain communication system

in response to different states, age (Vidal-Piñeiro et al., 2014), adminis-

tered task or modulated by stimulation (Fox et al., 2012).

As for economic and social networks, the brain, specifically in rest-

ing condition, is organized following a small-world network topology

(van den Heuvel et al., 2008). This structure features a high local cluster-

ing (high clustering coefficient) and low path length (travel distance be-

tween any couple of nodes) (Watts and Strogatz, 1998). This means that
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brain communication structure relies on specialized (segregated mod-

ules) and distributed information processing for its functioning while

balancing the information transfer efficiency and the wiring cost of op-

erating such a network. Nonetheless many brain pathologies were found

to sharply alter this balance and property falling into the concept of ”con-

nectivity pathologies”.

In this context two cost contributions can be distinguished: the cost

of wiring and the cost of operating the network (Achard and Bullmore,

2007). Brain wiring cost are due to the fact that brain networks are spa-

tially embedded in a finite volume (intra-cranial space) constraining the

density of neurons and shaping their connectivity medium (axon form

and size factors, ultimately related to their communication efficiency)

and maximal information travel distance. The accepted principle un-

derlying this cost, is assumed to be an increasing function of the wiring

volume represented by the amount of neuronal axons to be energeti-

cally sustained. Moreover, GM neurons tend to have myelinated axons

for long connections with increasingly sparse long-range fashion com-

pared to GM neurons, a sharp phenomenon observing the brain of dif-

ferent animal species whose brain to body size relation was found to fol-

low an allometric scaling law. This was biologically confirmed in mam-

malian with an increased probability of synaptic connections between

closer cells (Kaiser et al., 2009) and similarly, at mascroscopic scale the

distance between two brain areas was found to be inversely correlated to

both anatomical and functional connectivity (Meier et al., 2016).

3.2 MODELS FOR ENERGY METABOLISM

Glucose is the major energy substrate of the brain, tightly regulated un-

der physiological conditions, although abruptly altered by a variety of

pathologies such as stroke, epilepsy and dementia where it is also indica-

tive of cellular loss patterns. The following introduction is based on the

work of Magistretti et al. (Magistretti and Allaman, 2015) about the en-

ergy utilization at cellular level while the neuroscience perspective was
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drawn from Raichle et al. (Raichle, 2006).

Glucose is responsible for the production of energy through different

metabolic pathways (i.e. chemical processes): glycolysis and oxidative

phosphorylation. Interestingly, the energy budget entailed by these glu-

cose metabolism pathways is adapted to the body condition. For exam-

ple, a substrate involved in fueling brain activities such as the lactate,

typically accounts for 8 to 10% of the energy requirements but can be

physiologically up-regulated to 20-25% under prolonged physical activ-

ity (Matsui et al., 2017).

Quantitatively, the amount of energy required by the brain under nor-

mal condition was found around 20% of the total body energy (Raichle

and Gusnard, 2002) despite the weight ratio to the body is around 2%.

Consistently, the metabolic processes are fueled also by an amount of

oxygen estimated around the 20% of the total oxygen consumption in the

body. Overall, around 80% of total energy is attributed to glutamate-

mediated neurotransmission while 15% to the resting potential main-

tenance as confirmed in-vivo by means of Magnetic Resonance Spec-

troscopy (MRS) targeting glutamate usage. This budget is dominated

by neuron cells (80% of the brain energy requirements) while supporting

cells of the central nervous system (glial cells that make up nearly half of

the brain volume and outnumber the neurons) account for 10 to 15% of

the consumption.

3.2.1 THE 18F-FLUORO-DEOXY-GLUCOSE (FDG) TRACER

While the principle underlying fMRI measurement of neural activity has

been covered in the previous Chapter, its biological specificity and hence

interpretability is reported to be still limited (Turner, 2016).

While widespread tracing the dynamics of oxygen consumption (local

cerebral metabolic rate of oxygen or CMRO2) has been limited by the

technical difficulties, the measurement of glucose is currently one of the

most clinically prescribed exams to study brain metabolic alterations.

The traced molecule consists in the deoxy-glucose labelled by the 18-F
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radioisotope (18F-FDG) that is meant to mimic the role of glucose while

crossing the BBB and during the phosphorylation but then accumulates

without participating any further to the metabolic pathways (Sokoloff

et al., 1977b).

The current standard model for cerebral glucose metabolism traced by

FDG is derived from the three compartment kinetic model proposed by

(Bertoldo et al., 1998; Sokoloff et al., 1977b).

Assumptions underlying this model require a steady state glucose sys-

tem (see Figure 3.2.1) for the duration of the experiment (often 45-120

minutes (Lucignani et al., 1993)), injected bolus under tracer hypothesis

not able to perturb this state implying fixed kinetic parameters govern-

ing the glucose exchange between compartments and homogeneous tis-

sue metabolic response in the sampled volume (Bertoldo et al., 1998). The

standard uptake value (SUV), corrected for weight or body surface area,

plasmatic glucose level and injected dose, provides the experimentally

simplest semi-quantitative measure when the investigation is focused on

FDG variations rather than the rate constants (Hamberg et al., 1994b).

Careful experimental design further allowed Vlassenko et al. (Vlassenko

et al., 2006) to appreciate a measurable FDG uptake increase (+28%) in-

vivo after visual stimulation even with very short (compared to the FDG

dynamic with time scale around one hour) visual stimulation paradigms

of 5 min of FDG uptake compared to previous task application (Friston

et al., 1996).

Although simple, the SUV biological interpretation is less clear than

compartmental modeling or graphical methods. Considering a steady

state uptake period that avoid unstable vascular circulation of the FDG

(0-15 minutes post-injection) and measuring the activity at least after

40 minutes post-injection (Sokoloff et al., 1977b) for tracer equilibrium

would provide an index consistently associated to CMRGlu (Hamberg

et al., 1994b).
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Figure 3.2.1: Dynamic activity measured during a PET experiment. After the
venous injection of Fluorodeoxyglucose labeled with 18-F (FDG), the activity [kBq]
can be collected continuously (list mode scan) for the 60-minutes’ duration of the
experiment. According to a non-uniform time grid (finer at the beginning while
coarse after 30/40 minutes) the measured activity [kBq/ml] can be 3D reconstructed
in associated volumes as depicted in figure. After an initially increasing activity period
(region dependent, 30-40 minutes in average), the dynamic activity reaches a stable
trend (steady state period) where the standard uptake value can be calculated by
summation of the activity in the desired frame normalized by injected dose [Bq] and
usually body weight [Kg]. The dynamic trend can be modelled according to the 3K
compartmental model depicted in the right box. The SUV relative to the cerebellum
has been obtained from the 40-60 min window of the dynamic activity curve and
reported in the bottom section for a set of transversal slices encompassing the whole
brain SUVR distribution for a typical healthy subject (M, 56 yrs).
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The SUV, often referenced to a pre-determined brain area or the global

uptake (referred as SUVR), could be suitable for studies based on FDG

contrast differences to monitor FDG variations caused by pathology, phar-

macological treatment and sensory-motor tasks not expected to alter glob-

ally the FDG balance of the brain again without offering a biologically

clear and quantitative information (Hamberg et al., 1994b).

3.3 BRAIN NETWORK ORGANISATION AND GLUCOSE METABOLISM

TOGETHER: HYBRID PET-MRI SCANNERS

Previous studies reported a significant intra-subject variability affecting

FC-fMRI and FDG-PET (Cecchin et al., 2017).

This variability stems from the nature of fundamental brain processes

such as the metabolism, neuronal activity that are both space and time de-

pendent therefore independent experimental methods aimed at describ-

ing the functional activity (or coactivity in FC) and metabolism need to

necessarily probe the brain under matched physiological conditions for

an unbiased matching.

Quantitatively these sources of variability have been estimated in healthy

subjects as high as 10% of coefficient of variation (CV) of local CMRGlu

(Maquet et al., 1990) while the scan-rescan variability has been reported

typically in the order of 10% of CMRGlu (intra-subject) or typically less

than 20% between-subjects. Even if not statistically significant, the aver-

age CMRGlu cortical variability has been estimated in 7.9 ± 15.5%, com-

paratively at the same order of magnitude of intra-subject variability, tes-

tifying how the CMRGlu variability can certainly reach and potentially

mask physiological differences of metabolism between brain areas.

Likewise, FC based on BOLD contrast can be severely affected by any

modifying aspect of cerebral hemodynamic response such as perfusion

alterations, age, sex, respiratory characteristic or motion content variabil-

ity. To note is that the impact on FC also depends on the cognitive and

behavioral state of the subject during the measurement where the intra-

subject variability can explain, in a typical fMRI experiment, between
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40 and 60% of the total observed variance (as the sum of the within-

subject and between-subject variability) (Chen et al., 2015). Moreover,

scan-rescan reliability of fMRI measures as well as network-level connec-

tivity was found under 0.6 in terms of intra class correlation coefficient

(ICC) (Chen et al., 2015).

Indirect interaction between these confound can also happen as recent

literature results reported a close relationship between the pattern of per-

fusion and structural RSNs alterations in the default mode or executive

control networks (Liang et al., 2012) while ipo-perfusion has been previ-

ously associated to a decreased FC amplitude.

Preclinical studies on small animals (Wehrl et al., 2013) made first use

of the simultaneous approach to demonstrate partially, although, lim-

itedly consistent pattern of task-evoked fMRI activity and FDG-PET in

rats.

The relation between metabolism and brain functional organization was

soon explored in healthy humans by (Aiello et al., 2015) who observed

a limited similarity between spatial patterns of functional and glucose

metabolism through voxel-wise correlation analysis. Specifically, the fMRI

local connectivity based on regional homogeneity (ReHo) and the ampli-

tude of low frequency fluctuations (ALFF) (Lv et al., 2018) were found

to be significantly associated (Spearmans ρ > 0.7 over significant voxels)

to FDG-PET derived glucose consumption while network-level features

such as the degree of centrality were less clearly explained in terms of

metabolism leaving open questions on how the BOLD response depends

on oxygen demand variability or local glucose consumption.

Based on an often hypothesized relation between local neuronal ac-

tivity and functional coupling in neural computational modeling, (Riedl

et al., 2014) investigated the local relationship between neural activity

(probed by FDG-PET) and connectivity observing an increased glucose

metabolism in the visual system and the salience network (correspond-

ing to cingulate and insular cortex) correlated with the spatial pattern of

increased connectivity across areas within such networks.

Refined modelling of local functional connectivity in terms of density
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(lFCD) (Tomasi et al., 2013) lead to additional evidence about the FC re-

lation to changes of glucose metabolism across brain states.

Despite the incomplete literature agreement, first clinical application

of the concept has been proposed by (Tahmasian et al., 2016) who suc-

cessfully employed FC voxel-wise degree centrality along with glucose

metabolism to enhance the classification of Alzheimer disease from Frontotemporal-

lobar degeneration patients as compared to the separate modalities.
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4
The relation between resting-state

functional connectivity and

glucose metabolism

4.1 INTRODUCTION

Thus far, neuroscientists demonstrated that the brains communication

across macroscopic, functionally homogeneous areas, is an highly effi-

cient structure for information exchange whereas graph-based modelling

of such a network, revealed an active balance maintained between func-

tional segregation and information integration across multiple brain ar-

eas (Deco et al., 2015; Sporns, 2013) leading to the late concept of func-

tional connectivity (FC) (Friston, 2011).

Many of these studies, based on the temporal covariance exhibited

by the blood-oxygen-level-dependent (BOLD) signal in different brain

areas, revealed the existence of interacting whole-brain functional net-

works whose altered connectivity pattern has been observed in a wide
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range of pathologies (Dennis and Thompson, 2014; Woodward and Cas-

cio, 2015), often associated to sharp metabolic alterations as in dementia

(Peraza et al., 2014) and Alzheimer’s disease (Scherr et al., 2018).

As described a previous Chapter, the brain energy demand is remark-

ably related to its functional operation. However, the spatial variability

of brains glucose metabolism has received limited attention under phys-

iologic conditions (i.e. healthy subjects) while much more emphasis has

given to its focal alterations during pathology.

To cover this neglect, the brains glucose metabolism and physiologic sig-

nificance of its spatial variability was here considered on a macroscopic

scale and from the functional perspective ot investigate the eventual as-

sociation among relevant functional network features and the underlying

glucose metabolism.

4.2 MATERIALS AND METHODS

4.2.1 DATA AND IMAGING PROTOCOLS

A dataset of 28 healthy subjects was assembled merging 11 subjects (8

males, 3 females; 52.2 10.4 years) as from (Riedl et al., 2014) (referred as:

dataset A - Munich) and 17 (6 males, 11 females; 64.7 7.9 years) from

(Aiello et al., 2015) (referred as: dataset B - Naples). All subjects were

scanned in eyes-open condition simultaneously collecting 18F-FDG-PET

(30 minutes post-injection with at least 10 minutes of saturated list mode),

rs-fMRI data (at least 7.6 minutes, TR approx. 2 s, voxel-size 3 to 4 mm),

and a structural image (1mm isotropic voxel).

4.2.2 DATA ANALYSIS

Considered the similar age range and 18F-FDG-PET/fMRI imaging pro-

tocol, all subjects were identically pre-processed to obtain local glucose

metabolism measures (18F-FDG-PET data) and FC measure (rs-fMRI data)

implementing a processing pipeline similar to (Glasser et al., 2013).
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4.2.2.1 STRUCTURAL IMAGE PRE-PROCESSING

Structural T1w images were corrected for field bias (Tustison et al., 2010),

skull stripped as in (Tustison et al., 2013), and segmented into gray/white

matter and cerebrospinal fluid. A second stage of intensity normalisation

was then applied by estimating the intensity bias from the segmented

white matter. The final brain mask was obtained applying the routine

antsBrainExtraction (ANTs) (Tustison et al., 2013) whereas cortical sur-

face delineation and region segmentation was obtained running Freesurfer

(recon-all volume and surface reconstruction pipelines (Dale et al., 1999;

Fischl et al., 1999)on bias field corrected T1w image.

Manual editing of the cortical surfaces obtained from the pial and white

matter segmentations was performed to correct for gross delineation er-

rors. Pial and white matter surfaces were finally resampled over the

fs LR surface mesh, provided in the Conte69 atlas (a surface mesh of

164,000 nodes, symmetrically distributed in hemispheric correspondence,

that was subsequently down sampled to 32000) to define the cortical rep-

resentation space (32k fs LR) used in this study. The Gordon-Laumann

(GL) functional atlas (Gordon et al., 2016) was applied to parcel

32k fs LR (defined by approx. 32000 mesh vertices) surface meshes into

333 cortical regions, integrated with 18 gray matter subcortical regions as

provided by FreeSurfer.

The spatial distance among macroscopic brain regions was evaluated

by means of Euclidean distance (ED) (Supekar et al., 2009), obtained in

each subject, between the parcels centre-of-mass, which was then nor-

malised by the ED median value across parcels in each subject, and then

averaged across subjects to provide a normalized group-wise measure of

inter-areal distance.

4.2.2.2 FUNCTIONAL IMAGE PRE-PROCESSING

The first four images of each fMRI run were discarded to avoid non-

equilibrium effects of magnetization. The volumes were then corrected

for slice timing differences (Jenkinson et al., 2012; Smith et al., 2004) and
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motion (mcflirt, FSL with normcorr cost function and 12 degrees of free-

dom) in reference to the median volume. An EPI reference image suitable

for co-registration to the structural one was then obtained with ANTs

(Avants et al., 2011). An affine registration was estimated with flirt tool

of FSL between this EPI template and the processed T1w image, which

was used to resample the segmentations of subcortical regions, WM and

CSF (nearest neighbour approach) from T1w to EPI space.

A number of nuisance regressors were then removed from the fMRI

timeseries: motion and first order derivatives, the first five components

obtained by principal component analysis that explained 70% variance

(with decreasing explained variance order and typically in all subjects)

of WM and CSF fMRI signals (compcor (Behzadi et al., 2007)) and co-

sine high-pass filter basis (frequency cut-off = 0.009 Hz). Confound-

regressed fMRI timeseries were finally resampled over the 32kfsLR sur-

face mesh (flirt routine, FSL; connectome workbench tools (Marcus et al.,

2011)). The resampled data was averaged across surface mesh nodes cor-

responding to the same parcel as defined by the GL atlas.

The parcels were grouped in networks: visual (VIS), retro-splenial-

temporal (RSPT), sensory-motor hand (SMH) and mouth (SMM), audi-

tory (AUD), cingulo-opercular (CON), ventral attention (VAN), dorsal at-

tention (DAN), salience (SAL), cingulo-parietal (CP), fronto-parietal (FPN),

default mode (DMN), and unassigned regions (None). The subcortical

(SUB) regions, as provided in FreeSurfer T1w space (Fischl et al., 2002),

included bilateral Caudate, Putamen, Accumbens, Pallidum, Amygdala,

Hippocampus, Thalamus, Ventral diencephalon, Cerebellum cortex. Over-

all, 333 functional time courses for cortical parcels and 18 for subcortical

regions were obtained for each subject (total n=351). Weakly represented

parcels or consisting of less than 10 mapped voxels (Gordon et al., 2016)

were discarded obtaining 347 usable parcels in each subject.

The BOLD spectral content was quantified by the amplitude of low fre-

quency fluctuations (ALFF), i.e. the power of the signal within [0.01, 0.1]

Hz band), and the fractional ALFF (fALFF), i.e. the power within the low

frequency range [0.01, 0.1] Hz, divided by the total power in the entirely
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detectable frequency range. The local signal coherence was measured

with the Regional Homogeneity (ReHo) (Song et al., 2011), computed as

Kendalls coefficient of concordance (Kendall, 1938) for the signal between

each voxel and its neighboors. These BOLD signal metrics were defined

in each parcel and averaged across subjects.

4.2.2.3 FC ESTIMATION AND GRAPH ANALYSIS

Functional connectivity (FC) matrices were obtained by Pearson’s cross-

correlation of the 347 fMRI time series, subsequently Fisher z-transformed.

Motion-corrupted time points of each fMRI run were identified by frame-

wise displacement (FD) (Power et al., 2014), and discarded before FC es-

timation using an FD threshold of 0.3 mm. FC matrices from subjects

in dataset A and B were averaged and compared, then combined for

analysis across datasets. For graph computations, FC matrices (van Wijk

et al., 2010) were binarized by preserving only connections with associ-

ated weights above the 80th percentile of FC weight distribution, corre-

sponding to a sparsity level of 20%.

The adjacency structure described by each FC matrix was summarized

by its formal topological properties using routines part of the Brain Con-

nectivity Toolbox (BCT) (Rubinov and Sporns, 2010) as implemented in

Matlab (ver. 2016b, The Mathworks, Natick, MA). The connectivity of

each node can be represented (Sporns et al., 2007) by the number of its

discrete connections (node degree, DEG), and the sum of FC weights of

all nodal connections (node strength, STR). To measure a nodes central-

ity we used the eigenvector centrality (EC) and (Lohmann et al., 2010)

betweenness centrality (BC) (Freeman, 1977). Local connectivity struc-

ture (Rubinov and Sporns, 2010) was also explored using the clustering

coefficient (CC) and the local efficiency (LE) metrics.

Brain networks are organised in modules. Here the modularity struc-

ture was either defined according to putative RSNs (i.e. atlas derived

(Gordon et al., 2016)) or identified by optimising the Newman’s modu-

larity (Girvan and Newman, 2002; Newman, 2006) using the Louvains
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approach (Blondel et al., 2008; Rubinov and Sporns, 2010; Sporns and

Betzel, 2016) implemented in BCT (Rubinov and Sporns, 2010).

Such an optimisation was separately carried out over a range of module

resolutions (γ = 0.9 − 1.75) to encompass different network organisation

levels in order to detect possibly different glucose metabolic interactions

at different organisation scales. Given the modularity structure, the par-

ticipation coefficient (PAR) (Guimerà and Nunes Amaral, 2005) was fi-

nally used to measure the proportion of each node’s connections that are

part of the same module or that are part of different modules; finally, the

versatility coefficient (VER) (Shinn et al., 2017) measured how strongly a

node was affiliated to a specific module as compared to other modules.

4.2.2.4 PET DATA PROCESSING

18F-FDG-PET images in saturated list mode were resampled in T1w space

(flirt, FSL) and normalized by the whole-brain 18F-FDG average uptake

(Byrnes et al., 2014), obtaining a relative standard uptake value (SUVR)

image for each subject. SUVR images were sampled over the cortical sur-

face (32k fs LR), and mean SUVR values for each cortical (atlas-derived

(Gordon et al., 2016)) and subcortical (previously delineated) parcels were

obtained. The impact of partial volume effect (PVE) on 18F-FDG-PET

data was evaluated separately defining the parcel SUVR value as the

50th, 75th or 90th percentile of the SUVR distribution and meant to pro-

vide parcel-representative SUVR values variably affected by PVE. Fur-

ther analysis and considerations regarding SUVR will consider parcel

values obtained by sampling the local SUVR distribution at the 90th per-

centile, observed to be the most robust estimate across subjects that min-

imized PVE.

4.2.2.5 DATASETS COMPARISON ANALYSIS

To establish the agreement of SUVR and FC estimates provided by the

two dataset, we performed a paired comparison, separately for 18F-FDG-

PET and fMRI data whose results are summarized the supplementary
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section 4.6.1. The 18F-FDG-PET agreement consisted in a linear regres-

sion analysis to check the consistency of SUVR across corresponding parcels

between the two datasets, separately carried out considering age and sex

covariates prior to the intra-dataset averaging. The statistical significance

of such a difference was investigated with a paired two-tail t-test (0.05

level, Bonferroni corrected across parcels), separately performed by vary-

ing the cortical sampling depth of the parcel SUVR to highlight PVE is-

sues for dataset agreement.

The agreement between fMRI measures in the two dataset was performed

to ensure similar BOLD signal properties and FC structural consistence.

Spectral and local homogeneity of BOLD signal (ALFF, fALFF, ReHo)

(Aiello et al., 2015) were compared at the group level with a linear regres-

sion analysis across corresponding parcels. The inter-subject variability

of these measures was evaluated intra- and inter-dataset with the coef-

ficient of variation (CV%), defined as the standard deviation divided by

the average across subjects in percent.

The similarity at the parcel level of the FC matrices in the two groups of

subjects was determined by linear regression analysis and statistical com-

parison (Wilcoxons rank sum, 0.05 significance level) of pairwise parcel

FC weights. Since there is limited data in the literature on the similarity

of FC matrices in different groups of subjects, we examined this issue by

computing similarity in randomly split datasets (1000 permutations), and

evaluating linear agreement level by the amount of variability accounted

for (R2).

4.2.2.6 METABOLIC CONSUMPTION OF DIFFERENT RSNS

Since RSNs form an important organizational feature of fMRI FC, we

first tested if different networks show different metabolic consumption.

This was tested with a non-parametric ANOVA (Kruskal-Wallis test on

median SUVR differences, 0.05 significance level) after averaging within

each network across parcels. Post-hoc comparisons were carried out be-

tween pairs of networks with a Wilcoxon rank sum test (FDR with 0.05
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rate across post-hocs (Benjamini and Hochberg, 1995)). A similar analy-

sis was carried out on the variability of the SUVR values across different

RSNs.

Visual inspection of the scatter plots of SUVR values by network showed

that in each RSN it was possible to have both metabolically expensive or

inexpensive nodes, but that the relative distribution varied by network.

To determine which networks were significantly enriched in metaboli-

cally expensive or non-expensive nodes, we measured the proportion of

high/low SUVR nodes within a RSN as compared to a random set of

nodes forming a random RSN of the same size.

A null distribution of the expected proportion of high/low SUVR val-

ues in a random set of nodes was generated by repeating the same pro-

cedure 50000 times. Significance was determined by counting how many

times SUVR values of the null distribution were more extreme (respec-

tively higher or lower) than high-SUVR and low-SUVR values measured

from the RSN of interest after normalizing for the number of repetitions.

A network was significantly enriched in low/high SUVR nodes if the

number of extreme values in the null distribution occurred less than 5%

of the times (p < 0.05) Bonferroni corrected for the number of networks

tested. The analysis was run at different criteria of high and low-SUVR

values by decreasing or increasing the percentiles of the SUVR distribu-

tion (respectively from 50th to 10th or from 50th to 90th percentiles), and

results were evaluated at different cut-offs.

4.2.2.7 METABOLIC SIMILARITY OF FUNCTIONALLY CONNECTED RE-

GIONS

Once we measured the similarity of the two datasets in terms of BOLD

signal (spectral properties, local and global functional connectivity) and

SUVR, we were interested in relating FC properties to glucose consump-

tion. In a first analysis, we reasoned that if the connectivity profile of

a node (i.e. its FC with other nodes) were not related to its glucose

metabolism, then functionally similar nodes will not show similar glu-

cose metabolism profiles. In other words, nodes with stronger FC will
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show the same metabolic homogeneity than a randomly sampled group

of nodes. Conversely, if functionally connected nodes have lower glucose

metabolic variability than random nodes, then we can conclude that FC

has an influence on glucose consumption. In this study, two nodes were

considered functionally similar if their FC profile was correspondingly

similar.

This hypothesis was investigated as follows: (1) nodes were hierar-

chically clustered according to their functional profile similarity (Ward

hierarchical clustering of connectivity distance (Smith et al., 2011)); (2)

the full node set was randomly clustered (without replacement) using

the same number and size of the clusters determined in step 1; (3) glu-

cose metabolism variability was estimated calculating the SUVR variance

intra-cluster, averaged across clusters, separately for random (step 2) or

functionally-derived (step 1) clusters.

Step 2 was repeated 50,000 times for random set of nodes yielding clus-

ters of the same number and size as those functionally defined. The sig-

nificance level of intra-cluster metabolic homogeneity obtained on func-

tional clusters (step 1) was compared to that obtained from random clus-

ters (step 2) by counting how many times the random (null) distribu-

tion had lower SUVR variance than the SUVR variance obtained from

the functional clusters, after normalizing for the number of repetitions.

The level of significance was adjusted to p < 0.05. This analysis was

repeated cutting the hierarchy tree (step 1) at increasing height, thus de-

creasing the number of clusters from 15 (consistent to the typical number

of RSNs) to 2 (consistent with a macroscopic network categorization in

intrinsic vs. extrinsic networks as defined in (Doucet et al., 2011; Hacker

et al., 2013; Thomas Yeo et al., 2011).

This analysis of similarity of FC and glucose consumption across mul-

tiple nodes/modules was also performed using in step 1 clusters defined

based on the GL atlas-derived RSNs.
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4.2.2.8 FC WEIGHTS AND GRAPH PROPERTIES VS. GLUCOSE METABOLISM

We tested the linear association between graph properties of functional

connectivity (DEG, STR, CC, LE, BC, PAR, VER) and glucose metabolism

(SUVR) across nodes. A backward stepwise regression (significance level

0.05) was then applied to detect which graph feature was significantly

explaining SUVR across nodes. Each connection was also labelled as

within- or between-network and according to inter-areal distance (con-

sidered short or long range connection respectively if the Euclidean dis-

tance fell above the 75th percentile or below the 25th percentile of the over-

all ED distribution) to separately evaluate whether these link features,

once summarized in terms of functional features, were singularly more

clearly related to the nodal SUVR.

4.2.3 GLUCOSE METABOLISM IN HUB NODES

As observed in other real-world networks, the brains network structure

exhibit a long-tailed degree distribution, suggesting that few nodes re-

ferred as hubs have a very high degree and play a fundamental role

in maintaining network efficiency (van den Heuvel and Sporns, 2013a).

HUB nodes are not defined based on a single feature, but different fea-

tures highlight different properties of hub nodes in a network (van den

Heuvel and Sporns, 2013a), which may be relevant for their metabolic

behaviour.

We considered the connectivity level (DEG (Buckner et al., 2009)) to de-

tect hubs nodes. Candidate hubs were selected among the nodes with

DEG level exceeding a set threshold, defined as a linearly increasing per-

centiles (2.5th to 97.5th) of the overall feature distribution.

The metabolic behaviour of selected HUBs was studied associating

their STR and SUVR, separately discussing their network role to high-

light whether HUBs primarily involved in few modules (provincial, char-

acterized by low PAR) are metabolically different than HUBs that link

many modules (connectors, characterized by high PAR) as well as the
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role of inter-HUB connectivity and distance. To test if the STR-SUVR

association in HUBs was significantly higher/lower compared to other

network nodes, for each selection criteria, we compared the STR-SUVR

correlation (Pearsons linear correlation) with the same measure obtained

over a random subsample of nodes (i.e. not necessarily HUBs, 5000 repe-

titions). The significance was evaluated respectively counting how many

null distribution occurrences of STR-SUVR correlation are lower/higher

than the observed for HUBs (FDR corrected with 0.05 rate across selection

thresholds and separately for each HUB criteria).

4.3 RESULTS

4.3.1 SPATIAL DISTRIBUTION OF GLUCOSE METABOLISM

The typical spatial distribution of glucose metabolic activity in the hu-

man brain assessed by 18F-FDG-PET SUVR is depicted in Figure 4.3.1.

Point-wise SUVR (Figure 4.3.1-A) can be parceled according to a func-

tional atlas (GL atlas) resulting in the map shown in Figure 4.3.1-B for

cortical areas and Figure 4.3.1-C for subcortical areas. From the medial

view, SUVR was bilaterally higher than the brains average in the poste-

rior and anterior medial regions of cortex including medial occipital cor-

tex, cuneus, retrosplenial cortex, precuneus, and pregenual cortex. From

a lateral view, high SUVR regions include middle and inferior frontal

gyri, intraparietal sulcus, and superior temporal gyri. Subcortical nuclei

and cerebellar regions showed high SUVR (respectively highest in thala-

mus, caudate, putamen), comparable to those of the most metabolically

active cortex regions (Figure 4.3.1-C). Low-SUVR areas included pre- and

post-central regions and anterior temporal lobes (represented in blue and

brown at the bottom of Figure 4.3.1-A).
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Figure 4.3.1: Distribution of glucose metabolic activity in the human brain.
A) SUVR distribution on cortical Freesurfer surface; B) SUVR distribution mapped
on parcels of GL atlas; C) SUVR distribution in subcortical nuclei and cerebellum.
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4.3.2 METABOLIC FEATURES OF HUMAN RSNS

A non-parametric ANOVA (Kruskal-Wallis test, degreeoffreedom−dof =

13, X = 87.1, p = 5 · 10−13) suggested that different RSNs (Gordon et al.,

2016) have significantly different SUVR. This difference was significant

even omitting areas of None network (uncertainly mapped as close to

discontinuities of magnetic susceptibility) and SUB networks (Kruskal-

Wallis test, dof = 11, X = 58.7, p = 1.6 · 10−8). The median of SUVR

by network was not significantly correlated to the network size or the

networks average spatial extent (Spearmans correlation, p > 0.05). As

shown in the box plots of Figure 4.3.2-A, most of the RSNs have con-

sistently similar SUVR except for CP and None, respectively having el-

evated and decreased values. This was confirmed with a post-hoc com-

parison of SUVR among RSNs (Wilcoxon rank sum, FDR corrected at 0.05

rate across multiple tests) showing significantly higher SUVR in CP and

FP networks (Ranksum test, p < 0.02).

As represented by red stars in Figure 4.3.2-A, FPN, SMH, VIS, CON,

DMN networks exhibit outliers SUVR values. In the DMN, these bilat-

erally corresponded to the posterior cingulate cortex exhibiting among

the brains highest metabolic rates while other DMN parcels did not have

high SUVR. Parcels with high SUVR (Figure 4.3.2-B top rows, over the

75th percentile of the overall SUVR distribution) were part of the me-

dial VIS network, DMN and CP in corresponding of posterior cingu-

late and ventromedial prefrontal cortex, and FPN, DAN, CON parcels

in correspondence of lateral prefrontal/insula and intraparietal. Low

SUVR (Figure 4.3.2-B bottom rows, under the 25th percentile of the over-

all SUVR distribution) was instead observed in pre/post-central regions

of the SMM and SMH, and None parcels.
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Figure 4.3.2: SUVR distribution by network. A) Boxplots representing the SUVR
in different networks (above) as referred by label, sorted by network size (number of
nodes). Red line indicates the network-wise SUVR median, the blue box reports
the inter 25th − 75th percentile range and external SUVR values are reported as red
whiskers. Spatial representation of associated networks (color-coded as the cortical
surface representation). B) Spatial representation of high and low SUVR cortical
areas (respectively identified as: SUV R > 75th or < 25th percentile of the SUVR
distribution). Left column represent areas for the left hemisphere first with lateral
then medial view, the right column give same presentation for the right hemisphere.
C) SUVR distribution in subcortical nuclei and cerebellum.
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4.3.2.1 THE METABOLIC ACTIVITY BASELINE DETERMINED BY THE NET-

WORK FUNCTION (INTRINSIC/EXTRINSIC DIFFERENCES)

In resting condition, the role of putative RSNs for example distinguished

in sensory-motor or cognitive can entail adaptive mechanisms and ex-

plain network consumption variability. Extrinsic networks (DAN, VAN,

VIS and SM, blue parcels in Figure 4.3.3-A) had significantly lower SUVR

(Ranksum test, p < 0.05) than intrinsic ones (FP and DMN, red parcels in

Figure 4.3.3-A) following the separation proposed in (Hacker et al., 2013),

further represented in Figure 4.3.3-B.

Figure 4.3.3: Representation of extrinsic (DAN, VAN, VIS, SM; depicted
in blue) and intrinsic (FP, DMN; depicted in red) resting state networks
in box (A) along with comparative distribution of the SUVR in these two network
categories in (B). Statistical significance of two-tailed median difference between
network categories is reported by ** (p < 0.05).

4.3.2.2 METABOLIC ENRICHMENT ANALYSIS

Figure 4.3.4-A shows the distribution of SUVR values over all brain parcels.

This distribution was thresholded at different percentiles to determine

the RSN-level enrichment of high/low SUVR parcels. As depicted in Fig-

ure 4.3.4-B, the proportion of low SUVR parcels was statistically signif-

icant in RSPT, SMH, None and Sub networks consistently across differ-
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ent percentile levels. High SUVR parcels were instead more consistently

observed within CP, FPN, DAN, SAL, DMN networks (Figure 4.3.4-C)

eventually supporting a more central roles related to higher cognitive

functions while less involved in sensory and motor activities.

Figure 4.3.4: Network SUVR enrichment analysis. A) Frequency distribution of
SUVR values across parcels, and percentiles of SUVR values. B) High SUVR enriched
networks from 50th to 90th percentile of SUVR value distribution: network parcels
with significantly higher SUVR values, as compared to random parcels (Yellow to
Black). Networks with no significant enrichment (White). C) Low SUVR enriched
networks from 10th to 50th percentile of SUVR value distribution: network parcels
with significantly lower SUVR values, as compared to random parcels (Cyan-Teal).
Networks with no significant enrichment (Magenta-Pink).

4.3.3 NODE CONNECTIVITY ENTAILS GLUCOSE METABOLIC ACTIVITY

We found a positive linear association between glucose metabolic activity

and nodal connectivity across nodes. Connectivity assessed by DEG, STR

and EC features obtained from the group-average FC were significantly

correlated to SUVR (Table 4.3.1, column 1 and 3). A lower but significant

correlation was also found using a non-linear (Spearman rank) associ-

ation metric in place of Pearson correlation (Table 4.3.1, column 2 and

4). Increasing the sparsity level used to binarize and calculate the node

DEG was found to provide a progressively less consistent (from Pearson
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r = 0.35 with clear significance to Pearson r < 0.1 with no statistical sig-

nificance) association of DEG with SUVR when increasing the sparsity

level from 70% to 99% (preserving 30% to 1% of strongest FC edges).

Graph metric (P) r (S) r (P) r (wo None) (S) r (wo None)

Degree (DEG) 0.35** 0.29** 0.16* 0.13*

Strength (STR) 0.40** 0.31** 0.23* 0.17*

Eigenvector Centr. (EC) 0.35** 0.27** 0.15* 0.11

Table 4.3.1: Association between local metabolic glucose consumption
(SUVR) and connectivity graph metrics (Node degree, strength, eigenvec-
tor centrality). P: Pearson correlation, S: Spearman ranks correlation are evaluated
both considering all 347 nodes or omitting None group (without None). Significance
reported as: * p < 0.05 and ** p < 10−6.

The clearest linear association, observed between STR and SUVR (r =

0.40, p < 10−6), was not dependent on spatial distance. In fact, regressing

out the Euclidean distance from FC amplitude before the STR evaluation

limitedly affected the STR-SUVR association.

The limited linear association amplitude among STR and SUVR was

clarified in Figure 4.3.5-B highlighting the presence of many outlier from

the main trend. Most of them, responsible for lowest STR values, belong

to the None group of functionally unassigned areas (lower frontal and

lower temporal positions) while in the high-SUVR range (SUV R > 1.5) a

pool of outliers instead had a lower STR than expected from their SUVR

(50 < STR < 70) and were localized in posterior cingulate cortex (DMN,

RSPT), visual (VIS) and subcortical (SUBCORT) networks.

The STR evaluated considering between-network edges was signifi-

cantly related to SUVR (Pearson r = 0.41, p < 0.01;SUV R = 1.1 +

0.0037xSTR,R2 = 0.17) in agreement with (Castrilln et al., 2016) while

a borderline significant relation was observed regarding intra-network

edges (Pearson r = 0.15, p = 0.045). Similarly, the STR evaluated con-

sidering only short-range connections was significantly associated with

SUVR (Pearson r = 0.44, p < 0.01) as compared to long-range ones (Pear-
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Figure 4.3.5: Metabolic and functional spatial correspondence. (A) Represen-
tation of group-wise node strength (above) and SUVR (below) at each parcel over
an inflated cortical surface for the left hemisphere of GL atlas (right hemisphere and
subcortical areas omitted). (B) Scatter plot depicting the global (all ROIs) linear
association between SUVR and node strength (FC summed by column). Linear least
square regression line (black plain) and 95% confidence intervals on regression slope
(black dotted) reported in overlay. Network nodal membership is highlighted using
different colours for each network (see relative color-coded legend).
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sons r = 0.16, p = 0.05). Taken together, these results suggests that the ob-

served STR-SUVR association was mostly mediated by between-network

and short-range edges. As reported in Table 4.3.2, regressing out the Eu-

clidean distance from the FC weights, before evaluating any node con-

nectivity metric, lowered but not completely resolved the observed asso-

ciation with SUVR.

Graph metric Full FC FC - Distance regressed

Degree (DEG) 0.35** 0.30**

Strength (STR) 0.40** 0.37**

Eigenvector Centrality (EC) 0.35** 0.22**

Table 4.3.2: Distance effect on FC. Variability due to edge-wise Euclidean dis-
tance over the association between relevant nodal connectivity metrics (Node degree,
strength, eigenvector centrality) and the relative SUVR (* p < 0.05; ** p < 10−6).

4.3.3.1 PER-NETWORK METABOLIC ASSOCIATION

The STR-SUVR association observed over all nodes was network-dependent.

The functional-metabolic association (Table 4.3.3), once corrected for mul-

tiple comparisons, held only in VIS, SMH, AUD and FPN networks (Pear-

son r > 0.4, p < 0.01) while DMN and RSPT had borderline association

significance. Network size and average spatial extent were not related to

STR-SUVR correlation (respectively: r = −0.05, p > 0.05; r = −0.3, p >

0.05) at network-level.

4.3.4 FUNCTIONALLY SIMILAR NODES ARE METABOLICALLY SIMILAR

Aiming to a more general relationship between glucose metabolism and

functionally connected regions based on the actual network organisation.

We hypothesized a link between the connectivity profile of a region, i.e.

its FC with all other regions (nodes), and its metabolic consumption.

Specifically, regions with similar connectivity profiles shall have lower

variability of SUVR than randomly selected groups of regions. Such a
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Network Network size r(STR-SUVR) Network Network size r(STR-SUVR)

VIS 39 0.42* SAL 4 0.33

RSPT 8 0.8 CP 5 0.25

SMH 38 0.42* DAN 32 -0.006

SMM 8 -0.42 FPN 24 0.54*

AUD 24 0.67* DMN 41 0.36

CON 40 0.21 None 45 -0.14

VAN 23 0.33 SUBC 16 0.31

Table 4.3.3: Network-wise functional-metabolism association. The network
size expressed as number of regions per network is consistently reported. Values in
bold define: p− value < 0.1, while *: p− value < 0.01.

prediction would be consistent with a link between the metabolic con-

sumption of a region and the sum of its excitatory/inhibitory inputs to/from

the very same region. In this analysis, we first identified groups of re-

gions with similar connectivity profiles based on a Ward hierarchical clus-

tering based on connectivity distance (Smith et al., 2011).

Figure 4.3.6-A shows the results with the tree distance varying between

15 and 2 clusters. Next, we tested whether SUVR variance was lower for

nodes belonging to each of these functional clusters as compared to ran-

dom cluster. The null hypothesis is that random clusters should have

the same SUVR variance than functionally defined clusters. This analy-

sis was repeated for clusters of different size from n=15 to n=2 correcting

for multiple comparisons. As an example for n=14 clusters, SUVR vari-

ance for functional vs. random clusters was respectively 0.0123 vs. 0.0175

(median of 50,000 permutations), p < 10− 6.

Figure 4.3.6-B shows that SUVR variance was significantly lower from

15 to 4 clusters, as compared to random ones. This effect was no longer

present for very large clusters (n=2). By plotting the ratio of SUVR vari-

ance for functionally defined vs. random clusters, SUVR variability was

relatively stable between 15 to 8 clusters (with a minimum between 8 and

12) at about 0.5−0.6 of random variance, but then slowly climbed as clus-

ters became larger in size (Figure 4.3.6-C). Therefore, a functional division

of brain regions in 8-12 clusters is the most homogeneous metabolically.
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Figure 4.3.6: Regions with similar FC have lower glucose metabolism variabil-
ity. (A) Group-average FC matrix (pooling across datasets) and associate hierarchical
clustering tree. Colours define the baseline distance of significantly segregated clus-
ters. The tree distance among nodes is mapped onto the corresponding number of
clusters (from 2 to 15). (B) Ratio between SUVR variance of functionally defined
clusters and matched random clusters (black line), as function of the number of clus-
ters. Confidence intervals (red lines) based on +/-1 mean absolute deviation (mad)
of SUVR ratio. As the variance ratio approximates 1, then functionally defined and
random clusters tend to have more similar SUVR variability. The more homogeneous
metabolic variability is obtained between 8 and 12 clusters.

Importantly, these effects were not influenced by the relative distance of

nodes/regions. In fact, the average SUVR between two nodes was not

related to their distance (Spearman ρ = −0.03, p = 0.4;R2 < 10−3).

The network structure obtained by Ward hierarchical clustering was

similar but not completely overlapping to that GL atlas-derived RSNs

when cutting the hierarchical tree to about 12-14 clusters. When the same

analysis was repeated on RSNs as compared to random node clusters,

SUVR variance was also significantly lower. The difference in SUVR ratio

was comparable to that obtained for data-driven clusters (respectively

70% for Ward clusters vs. 74% for RSNs).

4.3.5 THE ROLE OF NETWORK ORGANIZATION FEATURES

Features that describe the inter-modular connectivity role of each node

as locally (CC, LE) were associated with node-level SUVR (Pearson r =

0.39, p < 10−6 both metrics). Centrality and inter-modular connectiv-

ity (BC, PAR, VER), were not clearly associated to SUVR (r = 0.16, p <
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0.01forBC, r = 0.31, p < 10−6 for participation coefficient). However,

CC and LE were consistently correlated (Pearson r > 0.9, p < 0.05) with

STR while PAR and BC had lower but significant correlation (Pearson

r = 0.79 and r = 0.36, both significant at 0.05 level), suggesting a limited

additional information once STR is considered from these features in ex-

plaining SUVR across nodes. A stepwise regression analysis (pooling all

nodal features together) in fact identified as most significant features, to

linearly explain SUVR, the STR (p < 10−6) and VER (p = 0.047). Con-

sidered the borderline significance of VER feature, further analysis were

based only STR.

4.3.6 METABOLIC FEATURES OF NETWORK HUBS

The glucose metabolic activity of highly-connected and central nodes, the

HUBs, was clearly related to their nodal connectivity. Nodes with de-

gree over the 85th degree percentile (corresponding to DEG/DEGmax =

122/203 in Figure 4.3.7, selecting 35 nodes of which 15 on the right hemi-

sphere) exhibited a clear linear SUVR-STR association (Pearsons r = 0.63,

p < 0.05, FDR-corrected across thresholds) with a correlation level signifi-

cantly higher (p < 0.05, FDR-corrected across thresholds) than the associ-

ation previously observed across all parcels (up to Pearsons r = 0.72, p <

0.05, FDR-corrected across thresholds selecting nodes with DEG over the

92th percentile).

These HUBs were consistent to those observed in (Buckner et al., 2009;

Power et al., 2013; van den Heuvel and Sporns, 2013a), with the exception

of posterior cingulate cortex found to have an high but limited degree,

despite being a metabolic hotspot (SUV R > 1.5 if bilaterally considered).

This association was stable over increasing DEG from DEG = 90, corre-

spondent to the 70th DEG distribution percentile. In this selection range

(DEG = 102 − 142, respectively 77th to 92th percentile), HUBs also sta-

bly exhibited higher association than randomly chosen nodes (green box,

Figure 4.3.7) and became unstable or not significant with higher thresh-

olds due to the insufficient number of selected HUBs to draw consistent
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associations.

An opposing pattern was observed considering DEG thresholds lower

than the 70th DEG distribution percentile, highlighting an association

level possibly weakly significant and lower than observed in randomly

selected nodes (purple box, Figure 4.3.7) suggesting that low DEG nodes

play an important role in defining the overall SUVR-STR association which

is weakly significant without them and returns to be significant only at

HUB-level DEG values (i.e. over 70th DEG percentile).

Figure 4.3.7: Functional-metabolic association over HUB nodes. HUBs iden-
tified according to different criteria, respectively based on node connectivity (degree,
DEG). Association between strength and SUVR over HUB nodes selected (blue curve)
by increasing respectively (x-axis) the DEG threshold. Statistically significant cor-
relations (FDR corrected across selection thresholds, 0.05 rate) are indicated with
the red star (more conservative than FDR). Decreasing density and selected HUBs
are depicted by the red curve at increasing degree thresholds. Purple and green bars
respectively represent degrees where selected nodes are correlated less/more to SUVR
than a random group sampling.

Distinguishing the HUBs (nodes over the 90th DEG percentile) accord-

ing to their PAR in connectors (HUBs with PAR level over the 70th PAR

distribution percentile, 10/35 nodes 6 on right hemisphere) or provincials

(HUBs with PAR level under the 30th PAR distribution percentile, 10/35

nodes 6 on right hemisphere) while omitting others provided a signifi-
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cant criteria to delineate HUB metabolism. The centrality of connector

HUBs (BC and PAR features) was found to be strongly associated to the

SUVR in these nodes (respectively with Pearsons r = 0.79, p = 0.007

and r = 0.7, p = 0.02) as opposed to provincial ones (respectively with

Pearsons r = 0.19, p = 0.6 and r = 0.2, p = 0.5). Connector HUBs had sig-

nificantly higher SUVR than provincial HUBs (Wilcoxons rank sum test,

p = 0.002, the median SUVR in connectors was 14.5% higher than the

median SUVR in provincial HUBs relative to their average). The SUVR

was not significantly different among HUBs and non-HUBs correcting for

multiple comparisons (Wilcoxons rank sum test, 0.05 level significance,

FDR corrected).

4.4 DISCUSSION

The relation between neural communication activity (probed by means of

electrical recording of cell spiking) and glucose metabolism in the brain

is a well-known biological principle (Mergenthaler et al., 2013; Shulman

et al., 2004; Sokoloff et al., 1977b). Spatially integrating this cellular be-

haviour up to functionally homogeneous putative brain areas, whose

connectivity is currently being described by rs-fMRI functional connec-

tivity (Biswal et al., 2010; Smith et al., 2011), a relation between such a

connectivity and local glucose metabolism is expected.

However, the spatial variability of brain glucose metabolism has been

hardly investigated at whole brain scale supporting this macroscopic func-

tional interpretation of the metabolism. Few studies tried to explain its

variability from a connectivity perspective by using local FC metrics (Aiello

et al., 2015; Tomasi et al., 2013) (e.g. ALFF, ReHo, etc) with, however, in-

consistent results across studies at whole brain level.

Conversely, these metrics were very effective if the pattern agreement

among glucose metabolic activity and connectivity is evaluated within

the functional neighborhood of single brain regions, that is its belong-

ing functional network referring to modern functional connectivity lit-

erature. However, the association of these metrics was still inconstant
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among RSNs suggesting other explanatory mechanisms in place explain-

ing the spatial variability of glucose metabolic activity. Eventually these

results suggests that the RSN organization of the brain is fundamental to

explain its actual metabolic demand.

To cover this neglect, we explored which aspects of brains network

structure are biologically supported by glucose metabolic activity to pro-

vide metabolically-based validations of brain network features. The local

glucose metabolism was assessed by 18F-FDG-PET SUVR, and simulta-

neously measured along with rs-fMRI to characterize the brains func-

tional network structure (Bullmore and Sporns, 2012). Two datasets of

healthy subjects, whose consistency in metabolic and functional terms

was first of all evaluated, were considered to improve the sample size.

Functional brain network structures were consistently organized as sepa-

rable subnetworks recalling known topology of RSNs, each with different

role and purpose (Smith et al., 2013a; Thomas Yeo et al., 2011) in resting

condition.

The SUVR spatial distribution was significantly modulated by the RSNs

topology. In agreement to (Passow et al., 2015), CP, DMN, SUB, RSPT and

VIS networks were the most metabolically expensive RSNs and while

the most metabolically expensive (CP and FPN) are considered intrinsic

networks, a significantly lower metabolic demand was observed from ex-

trinsic networks such as sensory-motor areas (Doucet et al., 2011; Golland

et al., 2008).

These groups fundamentally constitutes two networks set respectively

(Bullmore and Sporns, 2012) with suboptimal but stable demand under-

lying to the brains metabolic baseline (Raichle et al., 2001) or dynami-

cally involved in task response and as such more explicitly optimized

preferring more performing and energy efficient structural connections

in agreement with the perspective offered in (Gu et al., 2018; Honey et al.,

2007; Mennes et al., 2013).

Networks involved in internal information processing and decision

making processes (intrinsic) are therefore more metabolically active than

those involved in attention modulation, saliency, cognitive control and
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information sensing (extrinsic RSNs), in agreement with an overall less

operational system which eventually requires a more frugal metabolism,

barely changing also during tasks administration (Raichle et al., 2001).

Consistent with this view, energy-savvy (low-SUVR) nodes were more

frequently encountered in SM e VAN than expected by chance while ex-

pensive (high-SUVR) ones mostly enriched RSPT, CP, FP, SUB networks,

respectively part of the extrinsic and intrinsic class.

However, such inhomogeneous distribution of regions with extremal

metabolic behavior along different networks without a clear ranking sug-

gest that other mechanisms are actually modulating the region-level SUVR.

We conjecture the connectivity structure and topology to be an additional

clarifying mechanism useful to handle this SUVR variability.

Upon previous assumptions, higher connectivity yields higher local

synaptic activity, resulting in an increased metabolic consumption (Sokoloff,

1999) that supports such connection. Considering a measure that inte-

grates all the contributors to the local activity to best describe the local

metabolic activity, such connectivity level measure should be consistently

associated to the SUVR variability across regions. In agreement with a

conceptually similar measure (degree centrality) used in (Aiello et al.,

2015), this association was investigated considering within a graph the-

ory framework measures of node degree, strength and eigenvector cen-

trality. All these measures were significant although limitedly associated

to the respective SUVR. Among them the node strength arose as most

relevant metric in linearly explaining the SUVR.

Specifically, this association was mostly supported by the strength of

between-RSN and short-range connections. The clearer metabolic role

of between network connectivity is consistent with various studies (Gre-

icius et al., 2003; Liang et al., 2012; van den Heuvel et al., 2009) suggesting

the RSNs to be internally linked via (metabolically cheaper) structural

projections while inter-network connectivity can be possibly less opti-

mized, delivering a more straightforward metabolic footprint. Consid-

ering a different, phenomenological notion of energy, a recent study (Gu

et al., 2018) also hypothesized a differential energy expense by within-
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system interactions as compared to between-system interactions by ob-

serving a preferential support of cognitive effort from between-system

interactions.

This notion of connectivity distance role is also consistent with the

small-world property found to apply in brain functional networks (van den

Heuvel et al., 2008). Small-world networks in fact were found to over-

all have high local clustering and short topologic network paths (limited

number of hops to traverse the network) and are maintained by few long-

distance edges evolutionary minimized because of their high cost (Kaiser

and Hilgetag, 2006).

Therefore, considering the role of long-distance edges as negligible

(due to their limited number and optimized behaviour) in describing the

glucose metabolism relation to the connectivity across nodes, short-range

edges instead are expected to play a major role on the energetic balance,

in agreement with our results and in relation with a recent study (Markov

et al., 2014a,b) showing that feed-forward connectivity pathways are me-

diated by relatively short-range connections hinting again to the sink

functional behaviour of metabolically expensive nodes as previously ob-

served.

In agreement with (Aiello et al., 2015; Tomasi et al., 2013), such relation

was however not consistent in all RSNs but was significant only in VIS,

SMH, AUD and FPN and partially in DMN and RSPT again suggesting

the role of RSN organization goes beyond the naive regional segregation.

Note that in this study, the functional connectivity analysis was carried

on by means of linear correlation analysis between the BOLD dynamics

of different brain regions. This FC methodology is conveniently simple to

apply and offers predictable effects from the denoising strategies (i.e. lin-

ear confound regression or filtering) while scaling efficiently over large

datasets. For these reasons, it has been previously applied in countless

fundamental FC studies ((Biswal et al., 1995a)) and also in this study to

offer a proper glucose metabolism on the basis of previous investigations.

On the other hand, recent developments offered more advanced method-

ologies by performing more sophisticated connectivity analysis that are
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not limited to testing some form of correlation against a null hypothesis

of uncorrelation (zero correlation) as they aim not only at understanding

which regions are significantly, coupled but also how such connection is

defined informing the researcher on the type of relationship. While the

brain condition provided consistent FC measures, for example in resting

and task conditions ((Cole et al., 2014)), different FC metrics from corre-

lation such as the cross-coherence ((Sun et al., 2004)), mutual information

((Jeong et al., 2001)) or canonical correlation ((Zhou et al., 2009)) might

provide valuable additional information to clarify the connectivity role

on metabolism. However, these are still association measures working

on tight assumptions to determine pairwise association among regions

and their weight information, although very valuable can be difficult

to scale across subjects therefore providing difficult to interpret glucose

metabolism support.

Regarding the limited association found between overall node STR and

SUVR, a possibility would be to explicitly discard unreliable or spurious

connections so that their weight contribution does not confound the STR-

SUVR correlation making the FC measure based on correlation also more

informative. A first attempt in removing spurious edges arising from in-

direct connections can be for example disentangled by means of partial

correlation in place of Pearson correlation or considering higher-order

models to describe the entire set of connections alltogether rather than

pairwise (again with the aim of providing less spurious edges) as dis-

cussed in Chapter 3 of this thesis. Removing form the STR-SUVR those

edges is in fact expected to remove the confound effect promoted by in-

direct connections, particularly damaging central nodes exhibiting high

FC to others.

Interestingly, other edge features such as its directionality could serve

as additional explanatory mechanism of the involved energetic behaviour.

A recent study made use of the metabolic perspective (Riedl et al., 2016)

in the opposite way: determine the effective connectivity among areas

based on their glucose metabolism to infer directionality. That study

further suggest that the FC structure can be important but also needs
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to be accompanied by the communication directionality to complete the

metabolic demand picture. An intriguing possibility is that weak func-

tional connections are not metabolically informative because their actual

communication activity is strongly non-stationary. However, this im-

ply that Pearson correlation operator can be biased and a much clear

connectivity picture (also supported from glucose metabolism) might be

obtained discarding the stationarity hypothesis passing to dynamic FC

measures ((Preti et al., 2017)) to measure not only if a functional con-

nection exists, but also for how long, providing direct glucose metabolic

interpretation.

Even if limited, the observed STR-SUVR association also suggests that

nodes with similar STR should have similar SUVR. Among the nodes

with similar STR, if we consider those with similar functional landscape

(i.e. they are connected to their network neighborhood in a topologi-

cally similar way), they should not have similar consumption unless the

network structure has a meaningful role independently from its cumula-

tive connectivity effect. This possibility was investigated considering the

overall communication profile of each functional node to evaluate if this

structure is able to shape the glucose metabolism.

In practice, if the communication structure is somehow related to glu-

cose metabolic activity, then nodes with similar connectivity profiles should

have similar glucose metabolic consumption. The connectivity profile

of each node was here expressed by the FC amplitude exhibited by a

node against all other nodes in the network whereas functionally sim-

ilar nodes were determined by means of hierarchical clustering of the

exhibited functional profiles. Our results demonstrate that topologically

closer nodes, having similar connectivity profiles, have similar glucose

metabolism according to the performed clustering analysis, regardless of

potential distance effects in agreement to (Guo et al., 2014), advocating

that functional homogeneity overall shapes the glucose metabolic homo-

geneity. This also suggests that the complete set of nodal connection can

be needed to understand the metabolic behaviour of each node, specu-

lated to directly result from the biological evolutionary tuning performed
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at both node and whole network scale (Achard and Bullmore, 2007). Note

that although functionally similar nodes (similar connectivity profiles)

occurs to be significantly closer in space, the distance among nodes was

unrelated to their metabolic similarity that is, closer nodes does not nec-

essarily have a similar glucose consumption.

Considering between 8 and 12 clusters during the hierarchical analysis

provided minimal and stable intra-cluster metabolic variability as com-

pared to random samples suggesting that functionally grouping nodes

with this numerosity provides a functional clustering which is metaboli-

cally supported.

This range of clusters is well in agreement with the optimal number of

functional clusters determined in (Lee et al., 2012) based on a cluster dis-

persion measure found to be minimal when considering 7 or 11 clusters

using a fuzzy-c-means clustering algorithm on averaged functional con-

nectivity data of healthy individuals. Similarly, the clustering and stabil-

ity analysis performed in (Thomas Yeo et al., 2011) reported that 7, 10, 12,

or 17 networks can be stably estimated in resting state, a further confir-

mation of the range adequacy determined in this work which could give

a parallel interpretation of network stability from the glucose metabolic

consumption stability point of view. Grouping network nodes according

to putative RSNs structure, as provided in (Gordon et al., 2016), provided

consistently similar connectivity profiles as well but more interestingly

thus gathered nodes with similar glucose metabolic activity, in agreement

with previous results.

This result and the incomplete agreement exposed by traditional RSN

provided with (Gordon et al., 2016) atlas, suggest that the chosen parcel-

lation strategy, aimed at maximizing the fMRI-based signal homogeneity

within-parcel to ensure consistency across subjects, might be suboptimal

metabolically advising for different parcellation strategies. Note that in

this study, rather than exploring the association between FC and glucose

metabolism using a wide range of parcellation schemes, we focused on

understanding the topological role of FC in describing the local glucose

metabolism. Therefore, we did not rely strictly on RSN structure organ-
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isation by also providing a data-driven analysis to determine the actual

RSN hierarchy structure (i.e. data-driven instead of atlas-derived) but

still based our fMRI-FC measures on a single parcellation scheme, func-

tionally adequate, but not necessarily metabolically.

From the glucose metabolism perspective, the inherited RSN structure

((Gordon et al., 2016)) may ’over’ segregate the set of parcels in too many

RSN in agreement to the improved metabolic homogeneity shown be-

tween 8 and 12 clusters above, considered as metabolically-supported

RSN under the hypothesis of this study. Overall, this suggests that to co-

herently study the metabolism heterogeneity in the brain, further effort

in parcellation strategies is needed, for example providing mixed par-

cellation strategies to ensure proper fMRI-signal management (adequate

parcel definition for consistent FC analysis) while also accounting for the

glucose metabolism heterogeneity which can be otherwise confounded.

Adding other relevant network features (such as centrality and cluster-

ing measures) aimed at describing the local network structure (Rubinov

and Sporns, 2010) was not beneficial in improving the limited agreement

among SUVR and strength.

Moving past the classical interpretation of small world network, the

overall network efficiency depends on topological short-cuts preferen-

tially connecting highly central nodes such as the HUBs (van den Heuvel

and Sporns, 2013b).

We found that the HUB regime described by highest node degree, the

number of significant discrete connections, select nodes whose connectiv-

ity strength is robustly related with their glucose metabolic activity with

a progressively clearer association level, highlighting their unique fea-

tures of connectivity optimisation framework which entails a more clear

linear cost for its links as also observed with a metabolic consumption

surrogate, the hematic blood flow, found to be as well related to the node

strength in (Liang et al., 2012).

Among the high-degree HUBs, we also found that a very different role

is played by the participation of these nodes into a single rather than

more than one network module, respectively describing provincial and
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connector HUBs (Power et al., 2013). The latter class of HUBs was found

to be more metabolically expensive, in agreement with their more cen-

tral network role and previous literature results suggesting an increase in

their activity during tasks involving multiple cognitive functions while

provincial hubs have more stable activity during task switching (Mišić

and Sporns, 2016). The consumption of connector HUBs was also signifi-

cantly mediated by their participation level across multiple modules in a

picture: higher glucose metabolism is demanded by more central HUBs.

As suggested in (Power et al., 2013), a suitable measure to detect HUBs

is based on within-module degree. Other than a pattern across selection

thresholds in good agreement with the one obtained with DEG, we found

that dividing the network with 9 to 25 modules provides a suitable means

for degree normalisation that provides selected HUBs with robust STR-

SURV association, nonetheless suggesting an adequate range of resolu-

tions for network modularity analysis supported by glucose metabolism

arguments. This range was also in agreement with the optimal number of

detected modules reported in (Doucet et al., 2011; Lee et al., 2012; Thomas

Yeo et al., 2011), whereas the less clear SUVR-STR association found by

normalizing the DEG considering a modularity structure given by pu-

tative RSNs suggest their limited role in describing high-level network

features.

Taken together, these observations suggest that high connectivity (by

means of significant number of connections, i.e. degree) and network

centrality (network role) are strongly related features in the brain that

covariate in defining their energetic needs suggesting that possibly one

functional feature is not sufficient to characterize brain HUBs (van den

Heuvel and Sporns, 2013a) maintaining an adequate biological support

but as we found for betweenness centrality and participation alone, not

all nodal features provide effective means to detect HUB with metaboli-

cally supported connectivity.
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4.4.0.1 STUDY LIMITATIONS

Several limitations of this work should be considered:

- The glucose metabolic activity measure, namely SUVR, can offer a bi-

ologically confounded interpretation as compared to quantitative kinetic

tracer 18F-FDG-PET analysis (Hamberg et al., 1994b; Keyes, 1995) and

variably biased by non-neurological effects nonetheless interacting with

the brain metabolism measure (Laffon et al., 2008) even in neurologically

healthy subjects.

- A single parcellation strategy was used to ensure consistent fMRI-

FC measures across subjects. However, such parcellation is by no means

optimized also from the glucose metabolism perspective and can act as

metabolic heterogeneity confound operator. Even if the underling hy-

pothesis was that the functional homogeneity can directly influence the

glucose metabolism homogeneity (as seen in previous studies where the

FC amplitude and regional homogeneity were strongly associated to the

glucose SUVR distribution at voxel scale (Aiello et al., 2015)), further in-

vestigations might benefit from the use of more parcellation schemes to

more clearly address the relationship between metabolism and FC.

- In this study, to cope with FOV limitations of fMRI data which not al-

ways encompassed subcortical areas consistently in all subjects, we sum-

marized the FC of subcortical nuclei and cerebellum as single parcels (i.e.

averaging all enclosed voxel dynamics) and enclosing their FC contribu-

tion as separate network. However, future investigations might benefit

from the use of finer parcellation schemes for example able to cope with

functional differences of Thalamus or Cerebellum. It has in fact been ob-

served that different part of the Cerebellar cortex are actually functionally

connected with brain cortical areas by (Dobromyslin et al., 2012), suggest-

ing that the number and actual RSN hierarchy can be shrinked from that

used in this study toward more compact schemes as also metabolically

suggested above. This parcellation refinement would also provide a fur-

ther validation tool to verify the scalability of presented results.

- Current large-scale FC models of the human brain were meant to
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capture only the inter-regional connectivity across macroscopic putative

areas while intrinsically neglecting any functional contribution from lo-

cal neural circuitry. Improved methods to identify the FC structure are

thus needed clear spurious connections offering an unbiased perspective

on the actual communication structure expectedly extend the metabolic

support of the identified structure. Even if the network contribution is

currently unclear, time-variant components of connectivity are likely to

play an important role in understanding the energy consumption in the

brain network. Therefore, unlike the simple first-order connectivity met-

ric employed in this study as based on Pearson linear correlation to sup-

port metabolically previous studies, future investigations will purposely

benefit from enhanced FC measures or mascroscopic models. A second

level investigation might as well benefit from those novel FC approaches

providing deeper insights about the glucose metabolic association to FC

structure.

- Finally, related to the previous limitations, a limited experimental

sensitivity can be advocated from the group-level analysis carried out.

In fact, even if averaging the FC structure was expected to lower the

inter-subject variability of FC measures while suppressing not stable net-

work features shared to different subjects, averaging the local glucose

metabolism could provide stable estimates but affected by intrinsically

lower sensitivity which neglect the observation of finer metabolic opti-

misation principles to be possibly observed at single subject level. To pro-

mote even more reliable FC measures, the current experimental paradigms

for FC measurements might be first of all extended to encompass the

complete brain within the FOV, provide more comprehensive sampling

(i.e. longer scan durations to better characterise the fMRI dynamics) in

each subject to promote better denoising strategies and consider a larger

populations of subjects with eventually more homogeneous age range.

92



4.5 Conclusions

4.5 CONCLUSIONS

Functional brain networks share a common organization (Gratton et al.,

2018) but their role in pathological alterations, often accompanied by

sharp glucose metabolism impairments, is still incompletely understood.

In this work, we strived to describe the local brain glucose metabolism

in terms of brain functional networks by identifying which organiza-

tion principles can explain the actual consumption. We found a consis-

tently different glucose metabolic activity in different networks and even

if without a clear metabolic ranking, functional criteria attributed by the

network role and intrinsic/extrinsic distinction provided meaningful in-

sights about the glucose consumers in resting condition.

Cumulative connectivity measures partially explained the regional metabolism

noticing that the node strength was the most clearly associated to lo-

cal metabolism, in agreement with previous voxel-level (Tomasi et al.,

2013) or network level (Vaishnavi et al., 2010) analyses. This associa-

tion relied on short-range and between-network connections in agree-

ment with (Guo et al., 2014; Hermundstad et al., 2013)based upon a dis-

tance effect currently only principled (Achard and Bullmore, 2007; Bull-

more and Sporns, 2012). Even if local organisation metrics were less able

to clearly describe the associated regional glucose metabolism, some in-

teresting departures from association linearity among strength and glu-

cose metabolic activity suggested a network-related metabolic behaviour

in resting state indeed verified to provide inconsistently clear associa-

tion as explained by potentially different efficiency mechanisms (Pas-

sow et al., 2015; Vaishnavi et al., 2010). The connectivity of central net-

work nodes, or HUBs, was more consistently associated to their glucose

metabolic activity with a suggestive effect from their network role: the

glucose metabolic behaviour of inter-module facilitators (connectors) is

different from that of local mediators (provincial), in connection to the

previously observed abrupt metabolic sensitivity and functional alter-

ations in neuropathology (Nugent et al., 2015; Scherr et al., 2018) involv-

ing HUBs. Rather than single network features, we found that it is the
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entire set of connections that eventually shapes the local metabolic activ-

ity: topologically closer nodes indeed tend to be metabolically similar.

Future investigations will benefit from considering an enhanced dataset

that allows a second stage analysis aimed at clarifying the observed FC

to metabolism relationship making use of more complex but sensitive FC

measures which, once associated to proper parcellation methods, could

provide more clear explanatory mechanism on the glucose metabolism

heterogeneity.

These observations have consequences for basic neuroscience research

and neuropathology indicating that: (1) brain network structure obtained

from FC shapes the local metabolic activity in the brain; (2) individual

functional connections are not effective in explain the metabolic demand,

instead short-range and between network connections cumulatively play

a metabolic role with limited influence from the local network organiza-

tion; (3) the metabolic activity of high-rank nodes, backbone of the brain

network (van den Heuvel and Sporns, 2013b), is consistently tuned ac-

cording to their connectivity and role in the network compared to less

central nodes. Afterwards, the regional metabolism could be thought as

an additional valuable tool to comprehend and guide network structure

selection promoting physiologically reasonable communication structures

and bridge alterations of connectivity structure and metabolism in pathol-

ogy.
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4.6 SUPPLEMENTARY MATERIAL: CONSISTENCY ANALYSIS

4.6.1 COMPARISON OF 18F-FDG PET DATA

We compared SUVR values between the Munich dataset (A) and Naples

dataset (B) at the parcel level of the GL atlas (Gordon et al., 2016). Out

of 347 parcels only 12 exhibited significant differences between datasets

(Figure 4.6.1-A). Most of these parcels (7/12) belonged to the None net-

work (Gordon et al., 2016) that forms small clusters, rather than well-

organized RSNs, and overlaps with regions of high magnetic susceptibil-

ity and poor signal-to-noise.

The other regions showing different SUVR values between datasets

were scattered over different RSNs with no discernible pattern. The SUVR

variability measured as CV% across subjects, was of 5.4±1.3% (median ±
mad over all ROIs) in dataset A, 7.0±1.3% in dataset B and remained con-

sistent once the datasets are merged at 6.8 ± 1.0% in relative agreement

with their size difference.

Figure 4.6.1: Glucose metabolism (SUVR) agreement between datasets. (A)
Group-average nodal SUVR ordered by network (lateral colour label bar) for the two
datasets and the merged one. Statistically significant SUVR differences between
datasets are reported in the central blue/yellow column bar (yellow for significant
differences). (B) Scatter plot and linear regression of SUVR across corresponding
parcels, values colour-coded by RSNs.
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SUVR values between datasets were strongly linearly related. Figure

4.6.1-B shows the linear regression agreement (SUV RB = 0.978xSUV RA+

0.03, R2 = 0.89, where SUV RA,B represent the SUVR in dataset A or B)

between SUVR values in corresponding parcels of the two datasets. The

SUVR values frequency distribution in the two datasets show a similar

mean/median and variance. Regression of age and gender covariates

prior to intra-dataset averaging did not affect appreciably the observed

linear agreement (R2 = 0.8).

Visual inspection of Figure 4.6.1-B also shows that the smaller SUVR

values mapped onto regions of the None network; that intermediate SUVR

values mapped onto sensory (VIS, AUD) and motor (SMH, SMM) re-

gions, and that the highest SUVR values mapped onto some nodes of as-

sociative networks (CP, SAL, DMN). Similar results were obtained when

comparing SUVR values sampled with different surface sampling strate-

gies. In summary, we conclude that the two datasets were highly compa-

rable in terms of SUVR values and their variability at the parcel level of a

functionally defined cortical atlas.

4.6.2 FUNCTIONAL CONNECTIVITY COMPARISON

Next, we compared local and global metrics of BOLD signal time series

in the two datasets. At the parcel level, we measured in each data set: (1)

the amplitude of low frequency fluctuations (ALFF, i.e. the power of the

signal within [0.01, 0.1] Hz band); (2) the fractional ALFF (fALFF), i.e. the

power within the low frequency range [0.01, 0.1] Hz, divided by the total

power in the entirely detectable frequency range; (3) The Regional Homo-

geneity (ReHo) for the signal between each voxel and its neighboors. Lo-

cal fMRI signal metrics were highly consistent between the Munich and

Naples dataset, with R2 linear agreement of 0.84, 0.92 and 0.80 for ALFF,

fALFF, ReHo, respectively. The metric variability across subjects (CV%)

between datasets was similar for ALFF (CV%A,B = 24.3; 26.3), fALFF

(CV%A,B = 6.5; 9.7), but slightly different for ReHo (CV%A,B = 14.1; 20.4).

These metrics were not significantly altered when pooling all subjects of
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the two datasets (CV% ALFF = 28.6, fALFF = 9.4, ReHo = 21.8).

We then compared group average FC matrices obtained from each dataset.

FC matrices were organized into Visual (VIS), Retro Splenial Temporal

(RSPT), Sensory-motor-hand (SMH), Sensory-motor-mouth (SMM), Au-

ditory (AUD), Cingulo opercular (CON), Ventral Attention (VAN), Salience

(SAL), Cingulo Parietal (CP), Dorsal Attention (DAN), Fronto-parietal

(FPN), Default Mode (DMN), Unassigned (None) networks according to

the RSN scheme proposed in (Gordon et al., 2016), while parcels corre-

sponding to subcortical regions were assigned to the Subcortical (SUB)

group. On visual inspection (Figure 4.6.2-A), the two FC matrices showed

a similar RSN architecture with higher within-network connectivity and

lower between-network connectivity. A noticeable scaling effect with

overall higher FC values in the Naples sample (dataset B) can be also

noted.

Figure 4.6.2: Functional connectivity (FC-fMRI) agreement between datasets.
A) Group-FC matrices of the two dataset (A, B) and merged (Merged). B) Linear
regression analysis of the respective FC weights distributions of the two datasets
overlaid to a scatter plot of the correspondent FC weights.

The linear regression of FC values at the parcel level between datasets
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was moderate (R2 = 0.64) (Figure 4.6.2-B). Comparatively, the linear con-

sistency across random samples of subjects in each dataset was similar.

In dataset A (Munich), comparing the average FC of 5 versus 5 random

subjects, we obtained a relationship equal to R2 = 0.58 ± 0.023 (median

± mean absolute deviation (mad) of random sampling), while in dataset

B (Naples), comparing the average FC of 8 versus 8 random subjects, the

corresponding values were R2 = 0.66 ± 0.021. These figures are compa-

rable to other reports on inter-group (Choe et al., 2015; Liu et al., 2018b),

or inter-subject variability (Gratton et al., 2018). Moreover, the spatial

correlation of the group average FC matrices for dataset A and B, with or

without removing linear scaling, was in excellent agreement (R2 = 0.995).

In summary, we conclude that, notwithstanding scaling differences in

FC weights, the overall functional organization was similar in the Mu-

nich and Naples datasets, comparable to other reports in the literature on

agreement between groups (Choe et al., 2015; Liu, 2017), or inter-subject

variability within the same group (Gratton et al., 2018).
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5
A functional connectivity

perspective on Multiband EPI

imaging

5.1 INTRODUCTION

Forecasting the importance of single-subject FC characterization (Ander-

son et al., 2011; Badea et al., 2017; Shah et al., 2016), unbiased tools for FC

from fMRI data requires a more detailed exploration of the confounds

effects attributed to motion artefacts, noise propagation as well as any

other source of variability able to alter local fMRI signal variance.

Besides the structured signal artefacts extensively studied elsewhere

(Griffanti et al., 2017), the role of thermal and residual physiological noise

propagation (i.e. after adequate confound removal) is expected to play a

major role on FC as currently based on linear correlation analysis (Tri-

antafyllou et al., 2005, 2011; Wald and Polimeni, 2017), since any experi-

mental factor able to enhance the temporal local noise content (e.g. image
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acceleration) could nonetheless alter the FC measure, possibly even more

at single-subject level which exhibit higher sensitivity to the subject brain

features but to its confound and noise content qualities as well.

Unbiased FC studies require adequate experimental optimisation of

the employed sequence together with data processing: ideally, other than

minimal temporal noise content to avoid uncertain connectivity descrip-

tions, each data processing step should be designed to limit the impact

of temporally structured artefacts not related to the brain dynamic of in-

terest (i.e. confounds from drift to the subject motion). Their effect can

be ameliorated during post-processing (Bright et al., 2017; Griffanti et al.,

2015; Murphy et al., 2013) provided that these phenomena are adequately

sampled. This introduces a tight experimental trade-off in terms of tem-

poral/spatial resolution and brain coverage which limit the effectiveness

(Bright et al., 2017) of confound removal.

Despite their great potential, recent MB-EPI sequences are fundamen-

tally limited by current MRI hardware technologies and to maximise the

achievable acceleration levels with adequate image quality different strate-

gies have been implemented (Todd et al., 2016) with unclear effects of

enhanced image acceleration over the FC structure. In fact, the role of

noise propagation at different levels of image acceleration, is expected

to play a major role on FC since higher acceleration is connected to a po-

tentially lower FC estimates through enhanced signal variability, limiting

the methods potential at single subject level.

Building upon previous considerations about hardware and acquisi-

tion choices that could affect the ratio of thermal to non-thermal noise

content over the fMRI signals (Triantafyllou et al., 2011; Wald and Poli-

meni, 2017), we studied the impact of a shifting noise regime and ampli-

tude over the FC estimates at single subject level.

FC differences obtained at different acceleration levels (thus different noise

propagation level) will be studied under virtually matched experimental

conditions designed matching sequence settings to focus only on propa-

gation of thermal noise content.
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5.2 MATERIALS AND METHODS

5.2.1 PARTICIPANTS AND DATA ACQUISITION

Ten healthy subjects (M/F: 7/3, age: 25.2 ± 4.3 yrs) were scanned on a

Siemens mMR Biograph 3T PET-MRI scanner (Siemens, Erlangen, Ger-

many) using the vendor-supplied receive coil (12 channels). Written in-

formed consent was obtained from all subjects who were instructed to

maintain their eyes open and not fall asleep during the scan. A T1w-

MPRAGE image (T1w) was collected for each subject (256x256x160 ma-

trix, 1mm isotropic voxel, TR/TE/TI =2400/3.24/1000 ms, FA=8 deg, GRAPPA

R=2). Resting-state fMRI (rs-fMRI) data was acquired using a 2D MB Gra-

dient Echo EPI sequence (ver. R014, (Moeller et al., 2010; Setsompop et al.,

2012; Xu et al., 2013)).

All fMRI scans shared: isotropic 3 mm voxel size; 6868 acquisition ma-

trix size; TE = 30 ms; Echo spacing = 0.51 ms; sequence-default CAIPI

shift. FMRI volumes were reconstructed using Split-Slice-GRAPPA (Cauley

et al., 2014) with default parameters. Two Spin Echo EPI (SE-EPI) im-

ages, geometrically-matched to fMRI volumes, were acquired with par-

allel and reversed phase encoding (PEdir) orientation for distortion cor-

rection.

To study the receive performances of the standard 12-ch head coil for

MB imaging, fMRI volumes were collected with both axial (AX) and coro-

nal (COR) slice orientation. Different performances were expected along

different directions because of the modest inhomogeneity profile avail-

able along head-feet direction as compared to in-plane (left-right and

antero-posterior). Coronal orientation had been prescribed to investi-

gate whether the theoretical improvements of signal dropout and slice

un-aliasing performance (Todd et al., 2016) resulting from the proper us-

age of receive coil sensitivity profile play a clear role on fMRI functional

connectivity data.

101



A functional connectivity perspective on Multiband EPI imaging

Resting state fMRI acquisitions

Two experimental protocols were implemented, first to identify suitable

sequence settings for fMRI-FC studies (P1) and then assess their perfor-

mance for FC estimation (P2).

P1: 16 fMRI runs of 50 volumes (TR = 3700 ms, flip angle - FA = 90)

were acquired in five subjects by varying: slice orientation (AX, COR); MB

factor (1-4); iPAT factor (1, 2).

In-plane parallel imaging acceleration (iPAT) was based generalized

autocalibrating partially parallel acquisitions (GRAPPA) (Griswold et al.,

2002).

The considered iPAT factor (image acceleration factor, R) corresponds to

the ratio of the desired k-space phase-encoding lines prescribed over the

number of k-space lines actually acquired after each RF excitation (e.g.

iPAT = 2 acquires half of the echoes to fill the k-space while missing

phase-encoding lines are recovered with GRAPPA algorithm) as com-

pared to the acquisition of the entire k-space during each EPI train (i.e.

iPAT = 1 filling the entire k-space). Conversely, the MB factor (slice ac-

celeration factor, MB) corresponds to the number of simultaneously RF

excited slices, directly influencing the achievable TR and FOV. Axially ori-

ented volumes comprised 40 slices with anterior-to-posterior (A-P) PEdir

while coronal volumes of 60 slices with left-to-right (L-R) PEdir.

Out of all settings explored in P1, three provided adequate perfor-

mances, respectively determined by: 1) achievable temporal (TR ∼ 1 sec)

or spatial (voxel size ≤ 3 mm) sampling and coverage (FOV for whole

brain imaging); 2) limited image artefacts content and EPI ghosting level

(required stable amplitude <10% and motion-independent); 3) adequate

tSNR and signal dropout.

These three settings (Table 5.2.1) were further explored during P2 col-

lecting 12 minutes of rs-fMRI with minimal TR and same geometric pa-

rameters from P1 (FA according to Ernst angle (Ernst and Anderson,

1966)) in the remaining five subjects. Each run (Table 5.2.1) was collected

along opposing PEdirs and consecutive days (test-retest) overall provid-

ing 6x2 fMRI runs/subject. In the following these main settings will be
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referred according to the following notation: slice orientation (AX, COR),

iPAT factor (1, 2) MB factor (2, 3). Therefore, runs 1-4 of Table 5.2.1 will

refer to the AXR1MB2, 5-8 to CORR1MB3 and 9-12 to CORR2MB3 setting.

Run 1 2 3 4 5 6 7 8 9 10 11 12
MB / slice orientation 2 / AX 3 / COR

iPAT (R) / TR [ms] 1 / 1261 2 / 1090
Phase encoding A-P P-A L-R R-L L-R R-L

Table 5.2.1: Sequence parameters acquired during protocol 2 (P2) for single-subject
FC assessment. Each run was repeated on consecutive days along two test/retest
sessions.

5.2.2 DATA PROCESSING: P1

Structural T1w images were bias field corrected (N4BiasFieldCorrection,

ANTs v2.1), skull stripped (bet, FSL v5.09, www.fmrib.ox.ac.uk/fsl, (Smith

et al., 2004)), segmented (fast, FSL v5.09, (Smith et al., 2004)) for prin-

cipal tissues (gray matter-GM, white matter-WM, cerebro-spinal-fluid-

CSF) and parcelled in 108 regions of interest (ROI) with Multi-Atlas La-

bel Fusion (MALF) method (Hongzhi Wang et al., 2013) and MICCAI2012

reference dataset. FMRI data was motion corrected (mcflirt, 12 degree of

freedom - dof, FSL) using the single band image as reference (temporal

average for non-MB accelerated data) and high pass filtered (butterworth,

128s cutoff).

Framewise displacement (FD) (Power et al., 2014) was evaluated and

motion affected volumes (0.5 mm threshold) discarded. Prior to T1w

image registration (Boundary Based Registration approach, 12 dof flirt,

FSL), functional data was corrected for geometric distortions (topup, FSL)

using run-specific SE image pair. Proper distortion correction and regis-

tration was visually ensured.

A schematic summary for data pre-processing is reported in Figure

5.2.1. Temporal Signal to Noise Ratio (tSNR), was calculated as ratio of
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the standard deviation of voxel signal and its temporal average in native

EPI space, finally resampled on the T1w reference.

Figure 5.2.1: Pre-processing pipelines implemented for P1 and P2 illustrating
all the processing steps employed in the two protocols. Processing steps are color
coded according to the pipeline usage by protocol (see legend).

Statistically significant differences in tSNR were evaluated by means

of 3-way analysis of variance with repeated measures (3way-ANOVA,

p<0.05) and slice orientation, iPAT and MB as main factors. A Greenhouse-

Geisser correction scheme was applied in case of sphericity hypothesis vi-

olation, separately assessed with a Mauchly test (0.05 significance level)

per factor and interaction considered in the model.

Factor interactions were explored also regionally performing a similar

3way-ANOVA over frontal, temporal lobes, subcortical areas and, as com-

parison reference, midbrain areas (posterior cingulate cortex, sensory-

motor areas). Statistical assessment was carried out using JASP software

(v.0.9).
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Visual assessment for unusual signal dropout, distortions, ghost effects

and MB-related residual artefacts were carried out by means of fslview

tool (FSL v5.09, www.fmrib.ox.ac.uk/fsl, (Smith et al., 2004)) at single-

subject level as part of the image quality assessment based on artefact,

ghost, noise content. Extra care was due to the presence of tSNR banding

and residual aliasing effects attributed to MB acceleration.

5.2.3 DATA PROCESSING: P2

In addition to the pre-preprocessing described in the section 5.2.2, in the

section 5.2.3 the structural image was used for cortical surface delineation

(Freesurfer v. 5.3, https://surfer.nmr.mgh.harvard.edu/fswiki; Caret v.

5, Connectome Workbench v. 2.3 (Marcus et al., 2011)) and functional

parcellation (Gordon functional atlas (Gordon et al., 2016) for cortical

parcels, MALF method (Hongzhi Wang et al., 2013) for subcortical nu-

clei).

FMRI data was further confound-regressed removing the contribution

of estimated motion traces and its first-order derivatives, the five most

variance-explanatory PCA components of WM and CSF signals (Salimi-

Khorshidi et al., 2014), high pass cosine filter basis (cutoff frequency 0.009

Hz). Regressed fMRI data was then AR(p) whitened (Arbabshirani et al.,

2014; Lund et al., 2006), modelling the signal temporal autocorrelation

structure by a family of 8 exponentials with halflives from 0.5 to 64 TRs.

Pre-processed fMRI signals were finally registered to T1w reference im-

age and resampled over the delineated cortical surface. Parcel-representative

fMRI signals were obtained by averaging all the signals from nodes be-

longing to the same cortical surface parcel.

Similarly, voxel-wise fMRI signals were averaged to obtain represen-

tative time course for all defined subcortical areas (bilaterally: Caudate,

Putamen, Accumbens, Pallidum, Amygdala, Hippocampus, Thalamus,

Ventral diencephalon, Cerebellum cortex) anatomically defined from MALF

segmentation. For each parcel and run, tSNR was computed as local

noise content probe.

105



A functional connectivity perspective on Multiband EPI imaging

FC matrices were obtained by Pearson cross-correlation of all parcel-

defined time courses, subsequently Fisher’s z-transformed obtaining 12

matrices (351x351) per subject. A schematic summary for data pre-processing

is reported in Figure 5.2.1. Each FC matrix was processed to determine

the node strength, eigenvector centrality, local efficiency and participa-

tion coefficient (Brain Connectivity Toolbox (Rubinov and Sporns, 2010))

after FC normalisation. FC binarization was obtained by at 90% sparsity

level (10 upper percentile of highest FC values retained).

Significantly non-null FC edges were detected at group level by means of

Network Based Statistics (NBS method (Zalesky et al., 2010) with cluster

enhancement by extent, F-test with base threshold 3.1 and 5000 permuta-

tions, 0.05 overall significance level, 5 subjects) tool.

5.2.4 FUNCTIONAL CONNECTIVITY SENSITIVITY ANALYSIS

Statistically significant FC differences across sequence settings were eval-

uated with a 1way-ANOVA with FDR correction for multiple compar-

isons (0.05 level) with t-test as post-hoc tests while the agreement in terms

of estimated edge-level amplitude was evaluated by linear regression

across multiple settings. This analysis was performed both over full FC

matrices (thus comparing edge connections between settings, pooling op-

posed PEdir and T/RT) and on the nodal features and similarly between

FC matrices obtained during T/RT scans to highlight setting-related sta-

bility issues.

Possible FC differences across settings were explored in terms of noise

propagation. By definition of Pearson linear correlation, the temporal co-

variance of two fMRI signals is divided by the product of their temporal

standard deviations, then any element able to modify temporal variance

or covariance structure would affect the FC estimate. Under controlled

experimental conditions, we attributed any difference in temporal vari-

ance to enhanced noise propagation resulting from increased image ac-

celeration rather than minor differences in experimental parameters or

physiological variability.
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To test if the noise content is able to explain FC differences between set-

tings, the product of tSNR, measured in two ROIs, was linearly regressed

(t-test for slope significance with level 0.05, FDR criteria) to the FC of

these ROIs along different settings (significance level 0.05, FDR criteria).

A similar analysis was performed to assess the noise linear dependence

of FC-derived nodal structural features, separately repeated adding a cat-

egorical covariate to account for slice orientation.

5.3 RESULTS

5.3.1 TSNR ASSESSMENT

The effect of MB and iPAT factors on tSNR along two slice orientations

was represented in Figure 5.3.1-A, for a typical tSNR distribution in a

mid-brain axial slice. Coronal slice orientation visually provided higher

tSNR (even rows, Figure 5.3.1-A) compared to equi-accelerated scans along

axial slice orientation (odd rows, Figure 1-A) with MB > 1, regardless of

iPAT. Observing Figure 5.3.1-A, the tSNR loss and tSNR spatial inhomo-

geneity with increasing MB acceleration appears more marked using an

axial orientation whereas only at the maximum total acceleration (MB x

iPAT = 4 x 2), the observed tSNR loss pattern of coronal acquisitions was

comparable to axial acquisitions considerably less accelerated (MB x iPAT

= 2 x 2).

This performance shift suggests that MB-related noise propagation (MB >

2) interacts with slice orientation while iPAT usage provides a tSNR loss

with spatial pattern typically observed under apparent physiological (MB =

1) rather than thermal noise regime (MB > 1). A critical point across

these two regimes was observed using MB = 2 which, collected with-

out iPAT provide high and spatially homogeneous tSNR in both orienta-

tion but enabling iPAT axially provided a tSNR pattern shift more clearly

compatible to the expected g-factor whereas a similar coronal acquisi-

tion was in the between of the two noise regimes highlighting a more

favourable BOLD sensitivity with this setting (coronal, MB = 2).
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Higher MB acceleration levels (MB > 2) instead provided a tSNR

loss pattern more consistent with the thermal noise regime even without

iPAT. Interestingly, the tSNR observed coronally without iPAT was the

unique combination stable across MB factors, highlighting a favourable

noise propagation regime (MB = 2 − 4) thus possibly limited g-factor

enhancemen t as confirmed in all scanned subjects. Noise regime in ax-

ial acquisitions was also confirmed by observing the pattern of net tSNR

loss with increasing MB factor regardless of iPAT whereas coronal acqui-

sitions provided stable average tSNR or an increasing/decreasing trend

respectively enabling or not iPAT (Figure 5.3.1-B).

The patterns of tSNR loss observed axially or more interestingly in the

coronal direction by increasing (from MB = 1 to MB = 2) then decreas-

ing (from MB = 2 up) were consistent to previous observations (Todd

et al., 2016), but were not further investigated in this study as we were in-

terested in settings with temporal sampling adequate for functional con-

nectivity (i.e. MB >= 2 axially or MB >= 3 coronally to cope with the

different number of slices collected).

Previous observations were statistically assessed with a 3way-ANOVA

(2x2x3 levels, main factors: slice orientation, iPAT and MB) over all brain

areas, pooled together to study whole-brain effects. Significant main ef-

fects were found on slice orientation (F (1, 97) = 147.2 p < .001, η2 = 0.6),

iPAT (F (1, 97) = 1820.8, p < .001, η2 = 0.95) and MB (F (1.24, 120.1) =

258.6, p < .001, η2 = 0.72, Greenhouse-Geisser corrected) over the tSNR.

The interaction between slice orientation and iPAT was not significant

(F (1, 97) = 0.37, p = 0.54, η2 = 0.004) consistent with the geometric ar-

rangement of receiving elements (cylindrical symmetry) of the receive

coil used, expected to comparably support parallel imaging along the

adopted PEdirs. Instead, MB factor was found to interact both with slice

orientation (F (1.59, 154.3) = 468.9, p < 0.001, η2 = 0.83, Greenhouse-

Geisser corrected) and iPAT (F (2.38, 230.8) = 111.7, p < 0.001, η2 = 0.54,

Greenhouse-Geisser corrected).
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Figure 5.3.1: (A) tSNR spatial distribution in a representative subject with different
sequence settings. Average ± standard deviation of intra-mask (brain-only) tSNR is
separately reported in each box with acceleration parameters referred by upper row
and laeral labels. Adequate settings (by artefact content and sampling capabilities)
are highlighted in green. (B) tSNR marginal means (averaged over 5 subjects) ob-
tained by splitting the three main experimental factors of P1 protocol (whole-brain
average). Each box represents tSNR with increasing MB acceleration either with
fixed slice orientation (left column) or iPAT acceleration (right column) depicting the
other factor separately.

Observing the marginal mean plots in Figure 5.3.1-B, the relation be-

tween MB and tSNR was visibly modulated by the slice orientation (re-

gardless of iPAT but more clearly when enabled). Conversely, the signifi-

cant interaction found between MB and iPAT was resolved by specifying

the slice orientation. In fact, with fixed slice orientations, the association

trends between tSNR and MB were parallel across iPAT levels suggesting

that MB was not interacting with iPAT in degrading the tSNR, once the

slice orientation is specified.

A post-hoc paired t-test revealed that tSNR of axial acquisitions was

significantly lower than coronal acquisitions (p < 0.001, Cohen’s d =

−2.06). The same test, Bonferroni-corrected over levels, suggested that

increasing MB (MB >= 2) generally decreases the tSNR (pBonferroni <

.001, Cohen’s d > 1.67).

A 3w-ANOVA analysis was also performed to test tSNR dependency

on main effects over four non-overlapping sets of contiguous areas con-

sidering frontal, temporal, subcortical and regular areas (posterior cingu-
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late cortex, post-central areas, pre-central areas, superior frontal gyrus,

orbito-frontal gyrus) and explore spatially-dependent effects (spatially

represented in supplementary Figure 5.6.1).

Slice orientation did not account for significant tSNR differences in

frontal areas (Figure 5.3.1, supplementary Figure 5.6.1) while significantly

different tSNR were observed in temporal, subcortical o reference areas

across slice orientations (row 1, Figure 5.3.1). As reported in supplemen-

tary Figure 5.6.1, the tSNR distribution of coronal settings was signifi-

cantly higher than axial ones except for frontal areas. Differentiating the

tSNR distribution according to the actual iPAT usage (supplementary Ta-

bles 5.6.1, 5.6.2 ) we found that (except for frontal areas) an overall signifi-

cantly higher tSNR (supplementary Table 5.6.2) using coronal orientation

with particular tSNR enhancement in temporal, subcortical and regular

areas while using iPAT or pronounced tSNR advantages in subcortical

and regular without using iPAT.

In all tested areas the MB factor accounted for statistically significant

tSNR differences (row 2, Table 5.3.1) and significantly interacted with the

slice orientation factor (row 4, Table 5.3.1) in agreement to the whole-

brain results. Conversely, the lack of interaction between iPAT and slice

orientation was not verified in temporal areas (row 2, Table 5.3.1) where

the tSNR dependency over the slice orientation was significantly modu-

lated by iPAT.

The MB factor that locally maximized the tSNR (in average across sub-

jects) was strikingly dependent on the slice orientation which interacts

differently with iPAT. This result was spatially depicted in supplemen-

tary Figure 5.6.2 where each area delineated was color-coded according to

the MB factor which maximized the average tSNR across subjects. Con-

sidering axial orientation the figure confirms how without iPAT (second

row, supplementary Figure 5.6.2) neatly half of the areas were optimized

by omitting MB acceleration (coloured light blue) particularly in upper

cortical areas or subcortical nuclei while the remaining was optimally

supported by MB = 2 (coloured yellow) while to maximize the tSNR with

iPAT almost all of the areas abandoned the usage of MB (third row, sup-
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plementary Figure 5.6.2).

Instead, the MB factor which maximized the tSNR along coronal orien-

tation was of 2 in most of the areas (82% regardless of iPAT usage) while

other MB factors were optimal in up to 9% of the remaining areas.

The spatial pattern of optimal MB to support maximal tSNR was instead

dominated by MB factor 2 along coronal orientation with little-to-no im-

pact regarding iPAT usage (fourth/fifth row of supplementary Figure

5.6.2). Few occipital-parietal brain areas exhibited optimal support even

at higher MB factor of four (without iPAT represented by brown colour

on the fifth row, supplementary Figure 5.6.2) and three (with iPAT rep-

resented by red colour on the fourth row, supplementary Figure 5.6.2),

consistently across the iPAT.

Factor / Brain region Frontal lobe (20) Temporal lobe (12) Subcortical areas (12) Regular areas (14)

slice orientation F (1, 19) = 0.69, p = 0.4 F (1, 11) = 37.2, p < 10−3 F (1, 11) = 152.5, p < 10−3 F (1, 13) = 156.0, p < 10−3

MB F (1.7, 32.3) = 93.0, p < 10−3* F (1.7, 19.5) = 132.4, p < 10−3 * F (1.6, 17.4) = 344.8, p < 10−3 * F (1.1, 13.9) = 53.2, p < 10−3 *

slice x iPAT F (1, 19) = 0.92, p = 0.35 F (1, 11) = 22.3, p < 10−3 F (1, 11) = 0.37, p = 0.5 F (1, 13) = 10− 3, p = 0.9

slice x MB F (1.28, 24.4) = 69.0, p < 10−3 * F (1.4, 15.2) = 206.5, p < 10−3 * F (1.2, 13.6) = 23.8, p < 10−3 * F (1.2, 15.6) = 299.3, p < 10−3 *

iPAT x MB F (2.0, 38.7) = 32.7, p < 10−3 * F (1.5, 16.8) = 12.9, p < 10−3 * F (1.2, 13.4) = 3.8, p = .07 * F (1.8, 22.8) = 17.6, p < 10−3 *

Table 5.3.1: Main effect and interaction significance of defined factors (by row as
declared in the first column) over the measured tSNR in different brain areas (column
2-4, with the number of considered areas reported in parenthesis). Starred significance
results indicate Greenhouse-Geisser corrected significance, here considered to cope
with sphericity assumption violation. Non-significant interactions at 0.05 level are
instead highlighted in red.

Different PEdir and slice orientations did not provide visually differ-

ent residual geometric distortions once corrected and registered to the

relative T1w reference. The image quality assessment (supplementary

Figure 5.6.3) discarded axial settings with MB acceleration over 2 (due to

structured artefacts content and ghosting) and discouraged the usage of

iPAT (due to the observed central slabs of variable tSNR). Settings with

MB factor 4 along coronal orientation were discarded because of non-

tolerable artefact content (with iPAT) or possibly unstable sequence be-

haviour (without iPAT) under strong motion conditions resulting in non-

trivial motion artefacts, not further investigated in this study where we
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chose to maintain conservative accelerations levels.

Settings not availing of MB acceleration as well as with MB factor less

than 3 along coronal orientation were discarded for insufficient tempo-

ral sampling capabilities (i.e. high repetition time). These results finally

provided three suitable settings for FC evaluation, respectively based on

MB/iPAT = 2/1 with axial orientation or MB = 3 with or without iPAT

with coronal orientation.

5.3.2 FC AGREEMENT WITH DIFFERENT SEQUENCE SETTINGS

Considering the adequate settings provided in the section 5.2.2, we tested

their agreement level in terms of estimated FC at single subject level to

investigate differences attributable to the acquisition process.

The results of this evaluation were summarized in Figure 5.3.2. FC

weights with different setting were found to be in high linear agreement

with minimum R2 of 0.81 comparing AXR1MB2 and CORR2MB3 set-

tings.

Despite such high agreement level, significant departures from the lin-

earity were found specifically involving CORR2MB3 which was, com-

pared to the other settings, characterized by a lower FC amplitude as

testified in Figure 5.3.2 by linear regression slopes greater than one (1.4

compared with AXR1MB2 or 1.37 with CORR1MB3), negligible offset

and more sparse departures from the linearity specifically involving high

correlation values, typically corresponding to intra-RSN links.

We did not observe strongly different linear associations respectively

considering the between rather than within-RSN links as compared to the

whole link set, rather a relatively sparser linear association considering

high FC amplitudes nonetheless not clearly affecting the overall relation.

A strong FC agreement was seen among AXR1MB2 and CORR1MB3 set-

tings, comparable to the intra-setting agreement level, that is the lin-

ear agreement among the FC matrices obtained by averaging the FC of
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Figure 5.3.2: Representation of group average FC matrices using the three
settings and inter-subject variability. The diagonal contains for each sequence
setting (labelled by row/column) a matrix depicting the average FC (upper triangular)
and between-subjects variability (sV ) from the average FC (lower diagonal, standard
deviation of FC across subject scaled by factor 100 for representation clarity). Out-
of-diagonal squares represent the linear regression analysis of FC edge weights or sV
estimates among couple of settings (indexed by row/column). Each box represents
the distribution of edge values (red for between-RSN, blue for intra-RSN edges)
paired by settings along with a least squares regression line (black, identified equation
reported above) and associated 95% confidence intervals over the regression (green
dashed lines), the identity relation is hinted by the dashed cyan-coloured line. For
brevity of notation setting AXR1MB2 has also referred with index 1 (e.g. FC1 and
sV 1), setting CORR1MB3 with index 2 (e.g. FC2 and sV 2) and setting CORR2MB3
with index 3 (e.g. FC3 and sV 3) in this context.
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(non-overlapping) random subjects sampled with same setting (R2 =

0.73 + / − 0.05forAXR1MB2andR2 = 0.73 + / − 0.05forCORR1MB3,

evaluated randomly sampling 100 times the runs obtained over five sub-

jects to define two groups which average FC is then linearly regressed).

The linear agreement was similar also pooling all the acquisitions avail-

able (R2 = 0.86±0.04 for AXR1MB2 and R2 = 0.84±0.05 for CORR1MB3,

randomly splitting 100 times the twenty acquisitions collected with each

setting in two groups of 10/10 whose FC is being linearly regressed).

The inter-subject variability (labelled as sV in Figure 5.3.2, below diag-

onal boxes) in single links was sparser than the absolute FC agreement

but nonetheless exhibited a significant linear trend comparing the FC

variability with different settings. A proportionally higher sV was ob-

served using COR settings as compared to AXR1MB2 (slope coefficients

less than one) while relatively similar sV was observed among COR set-

tings. No significantly different linear association was observed sepa-

rately considering within- or between-RSN links (results were thus omit-

ted for brevity).

We then evaluated whether the different sequence settings were able

to provide consistent FC structures. To this extent, we linearly regressed

the nodal features obtained by FC matrices derived from different set-

tings across all nodes.

As reported in supplementary Figure 5.6.4, we found a robust STR associ-

ation between AXR1MB2 and CORR1MB3 (R2 = 0.92), between AXR1MB2

and CORR2MB3 (R2 = 0.75)

or CORR1MB3 and CORR2MB3 (R2 = 0.83).

The actual STR estimated with AXR1MB2 was proportionally higher

than obtained with COR settings (regression slopes greater than one in

supplementary Figure 5.6.4, first row) which were in even agreement of

STR. A significantly positive STR offset was observed using other set-

tings as compared to CORR2MB3, shifting the baseline STR by as much

as 10% at low STR values. Similar considerations applied to the nodal

EC measure, suggesting a very high agreement level among AXR1MB2
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and CORR1MB3 (R2 = 0.94) even with a minor scaling factor present and

robust other settings (R2 > 0.7). Both AXR1MB2 and CORR1MB3 set-

tings provided proportionally lower EC measures (less than one slope

in supplementary Figure 5.6.4, second row) in corresponding nodes as

compared to CORR2MB3.

Node STR was significantly different across settings (Kruskal-Wallis

test at node level, FDR corrected across 351 nodes with 0.05 rate) in 50.7%

of the nodes, particularly affecting (with more than 50% of affected nodes)

RSPT, SMH, SMM, AUD, CON, VAN, SAL networks.

Post-hoc comparisons (Wilcoxon ranksum, FDR corrected across nodes

with 0.05 rate and Bonferroni among performed post-hocs) suggested

that no significant differences of STR involved AXR1MB2 and CORR1MB3

settings (0/351 nodes) while different STR was found among AXR1MB2

and CORR2MB3 in 170 nodes or CORR1MB3 and CORR2MB3 in 67 nodes.

Node EC was significantly different across settings (Kruskal-Wallis test

at node level, FDR corrected across 351 nodes with 0.05 rate) in 14.0% of

the nodes, preferentially affecting AUD network for over than 50% of the

nodes while other networks for less than 20% of their nodes.

Post-hoc comparisons (Wilcoxon ranksum, FDR corrected across nodes

with 0.05 rate and Bonferroni among performed post-hocs) suggested

that these differences were distributed among AXR1MB2 to CORR1MB3

for 17 nodes, AXR1MB2 to CORR2MB3 for 48 nodes and CORR1MB3 to

CORR2MB3 for 11 nodes.

The previous linear agreement analysis was further explored to assess

whether different sequence settings account for significantly different FC

weights with a repeated measures 1way-ANOVA, separately carried out

at edge-level (2 degrees of freedom for between setting effect, FDR cor-

rected across edges, 0.05 rate).

Significantly different edges were depicted in Figure 5.3.3-A report-

ing the observed F statistic (left box) and significantly affected edges

(right box) formatted as 351x351 matrices. Overall, 1.75% of the edges

(1076/61425) exhibited significant FC differences (2.06% referring only

to significantly non-null edges, determined by a one sample t-test per-
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formed to compare the average Fisher-transformed edge weights over all

settings with zero, FDR corrected with 0.05 rate) and involving 255 over

351 (72.7%) of the nodes.

Figure 5.3.3-A showed that the connectivity within and between sensory-

motor (SMM, SMH, AUD) networks (with 18.4%, 12.7% of affected edges

respectively within and between networks) as well as within cingulate

(CON, 19.4% affected edges) and between CON and AUD nodes (11.8%

affected edges) was significantly affected by the used setting. Connectiv-

ity among subcortical (SUB) nodes was similarly affected (21.6% of the

edges) along with the connectivity among SUB and CP or SAL nodes (re-

spectively involving 14.4% and 18.0% of the between network edges).

In Figure 5.3.3-B, affected functional connections were spatially repre-

sented for involved nodes (Figure 5.3.3-B, green mark) and their affected

connections (Figure 5.3.3-B, red lines with thickness weighted by the as-

sociated F statistic value) overlaid to the brain cortical and subcortical

node set in transparency.

This spatial representation clarified that the observed differences in-

volved areas situated in sensory-motor, auditory or salience cortex and

subcortical nuclei distributed around central to lower brain areas. Specifi-

cally, the connectivity among these areas often interested inter-hemispheric

connections rather than few strong effects observed in the same hemi-

sphere.

Post-hoc comparisons (suppl. Figures 5.6.5 performed between the

FC matrices obtained by couples of settings highlighted that most of

group-significant edges were nonetheless related to FC differences be-

tween AXR1MB2 and CORR2MB3 settings (involving 1.3% of the links

while a minimal fraction (< 0.1%) of the edges was different among

CORR1MB3 and CORR2MB3 also exhibiting a sparse pattern over the

FC matrix suggesting randomly distributed errors hardly affecting inter-

hemispheric connections.

No significantly different links were observed between AXR1MB2 and

CORR1MB3 settings. A decreasing FC amplitude mediated most of the
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Figure 5.3.3: (A) Significance results of 1way-ANOVA test applied at edge-level,
reporting the estimated F statistic (left box) and significantly different edges across
the three settings (right box, FDR corrected at 0.05 level across multiple edges).
Significantly affected edges were further spatially depicted in (B) in overlay to a typical
brain representation for left hemisphere (yellow) right hemisphere (light red) and
subcortical (blue) areas. Functional areas with affected edges are represented in bright
green (circled) while the affected connections in bright red (thickness modulated
proportionally by the relative F-statistic of the edge comparison) under four typical
brain perspectives.
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observed differences among AXR1MB2 and CORR2MB3, with lower FC

at higher total acceleration, whereas differences of FC among AXR1MB2

and CORR1MB3 settings were not consistent in sign across edges (single

tail post-hoc, pair-wise t-test, 0.05 level FDR).

The statistical comparison performed with a non-parametric Kruskal-

Wallis test in place of the 1way-ANOVA for the setting factor (FDR cor-

rected across edges, 0.01 rate), reported a consistently similar pattern

of FC differences, however reporting an increased fraction of affected

nodes, non-trivially explicable considered the actual limitations of sam-

ple distribution and size. Nonetheless, edge-level differences by means of

Kruskal-Wallis test involved 11.3% (6957/61425) of the edges (13.0% re-

ferring to the number of non-null edges determined by means of Wilcoxon

signed rank test at edge level testing if the median Fisher-transformed

edge weight over all settings was significantly non-zero, FDR corrected

with 0.05 rate), interesting 345 over 351 (98.3%) nodes.

5.3.3 ARE THESE FC DIFFERENCES RELATED TO THE NOISE ENHANCE-

MENT ACROSS SETTINGS?

We further investigated whether previously found FC differences could

be associated to noise propagation effects, caused by the image acceler-

ations delivered with different settings. To this extent, we linearly re-

gressed the FC weights to the tSNR product of connected nodes across

all the acquisitions (60 points = 5 subjects x 3 settings x 2 PEdir x 2 ses-

sions), separately for each matrix edge.

The linear association was found to be statistically significant in 7.3%

of the edges as shown in supplementary Figure 5.6.6 (first row) (F-test on

linear regression model consisting of an offset and tSNR product across

acquisitions, FDR corrected across edges with 0.01 rate). Coherently, the

Spearman correlation among these variables was significant in 8.3% of

the FC edges (FDR corrected across edges with 0.01 rate) as reported in

supplementary Figure 5.6.6 (second row). Out of 1077 significantly differ-

ent edges across settings, 884 (82.1%) exhibited a significant association
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between FC weights and tSNR product of connected nodes. A similar

proportion (929 out of 1077 nodes, 86.3%) held using the Spearman cor-

relation, overall confirming the pattern similarity observed in Figure 5.3.3

and supplementary Figure 5.6.6 (second row) respectively for edges af-

fected by the setting factor and FC edges whose weights were associated

to the tSNR.

Significantly different edges across settings, detected by means of Kruskal-

Wallis test (FDR corrected across edges with 0.01 rate) instead of 1way-

ANOVA test, were proportionally less associated to the tSNR product

(3566 out of 6958 nodes, 51.2%). However, lowering the FDR correction

rate to detect edges progressively more affected by the setting factor (i.e.

from FDR rate 0.01 to 10-4), the proportion of edges whose FC was also

associated to the tSNR product was of 1197 over 1509 (79.3%) by means of

Spearman correlation. Omitting from these proportions the edges whose

weight is not significantly different from zero at group level (paired t-

test, 11 dof, FDR corrected across edges at 0.05 rate) did not considerably

change the results.

The FC edges exhibiting such an association with tSNR product were

more often within-RSN links (i.e. edges typically with high FC weights)

with a relatively sparse prominence over VIS, DMN and DAN networks

while a more consistent pattern involved the connectivity of SMH, SMM,

AUD, CON and SUB networks.

Post-hoc tSNR comparisons (one-tail Wilcoxon ranksum test, FDR cor-

rected across nodes with 0.05 rate and Bonferroni across post-hoc tests)

suggested AXR1MB2 provided higher tSNR than CORR1MB3 in 0/351

areas and lower in 6/351; AXR1MB2 provided higher tSNR than CORR2MB3

in 337/351 areas and lower in 0/351 and finally CORR1MB3 provided

higher tSNR than CORR2MB3 in 343/351 areas and lower in 0/351, con-

firming the tSNR similarity of AXR1MB2 and CORR1MB3 and the lower

tSNR with CORR2MB3.

Post-hoc comparisons repeated after rescaling the tSNR of CORR2MB3

by a
√
2 factor, made the overall tSNR pattern across ROIs of relatively
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similar amplitude to the other settings. However, higher tSNR was nonethe-

less observed using AXR1MB2 than CORR2MB3 in 116/351 areas and

lower in 104/351 whereas higher tSNR was observed by using CORR1MB3

rather than CORR2MB3 in 264/351 areas and lower in 0/351.

The relatively similar tSNR amplitude along different settings suggested,

despite the significance of observed differences, that CORR2MB3 and

AXR1MB2 basically share a comparable tSNR pattern once corrected for

noise scaling effects (i.e.
√
2) related to iPAT while the tSNR provided

by CORR1MB3 was consistently highest with nonetheless similar pattern

across ROIs.

After the tSNR rescaling, we still observed a consistently lower tSNR

only in AUD and SUB areas (see supplementary Figure 5.6.7 for tSNR

patterns across ROI with/out
√
2 factor applied) using CORR2MB3 as

compared to CORR1MB3 (or similarly AXR1MB2), in agreement to the

expected g-factor spatial pattern of noise enhancement instead expected

to be less marked in central brain areas without iPAT acceleration.

The connectivity of these networks remained consistently associated to

the tSNR even after such tSNR rescaling while the involvement of other

RSNs was found significantly sparser than the previously observed asso-

ciation pattern (see supplementary Figure 5.6.6) also maintaining a solid

association in edges linking SUB to SAL and CP networks. Notably, AUD

and SUB along with CP and SAL were also the networks previously ob-

served to have a significantly affected FC across settings (see Figure 4).
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5.4 DISCUSSION

Within the established framework described in Chapter 3, we studied the

noise propagation effects over the functional connectivity provided by

experimental parameters typically not optimized from the FC perspec-

tive such as the image acceleration. Our aim was to evaluate the FC

estimation reliability in single subjects (Gordon et al., 2017) employing

PET/MRI scanners simultaneously providing experimental optimisation

guidelines for the researcher ensuring a limited impact over the FC struc-

ture, a fundamental asset for the enhancement of FC potential to uncover

the true underlying connectivity of the brain.

To this extent, the experimental limits of MB-EPI sequences were ex-

plored in PET/MRI scanners evaluating their feasibility for FC estimation

at standard neuroscience spatial resolution (3.0 mm) with maximal tem-

poral resolution (i.e. minimum TR) but whole-brain coverage. Such ex-

perimental requirements were satisfied through slice- (MB) and in-plane

(parallel imaging, iPAT) image accelerations. As observed in (Todd et al.,

2017), increasing MB and iPAT factors introduces a spatially inhomoge-

neous noise propagation, non-trivially explained by the acceleration in-

teraction (Risk et al., 2018; Todd et al., 2017).

We strived to disentangle these acceleration effects in order to maximize

their advantages by pursuing an experimental optimisation task consist-

ing of a two-stages protocol. A first set of scans was collected spanning

the space of acceleration factors (MB, iPAT) along two slice orientations

(axial, coronal) to identify which protocols provides adequate BOLD sen-

sitivity (tSNR as suggested in (Wald and Polimeni, 2017)) and overall

fMRI image quality with our setup.

These three experimental factors (slice orientation, iPAT, MB) accounted

for significant tSNR differences in agreement with the theoretical pre-

dictions regarding the receiver array performances and experimentally

demonstrating why MB-accelerated fMRI scans benefit from non-transversal

2D slices in our scanner setup. Coronal 2D slices, indeed provided higher

and more spatially homogeneous tSNR as compared to equi-accelerated
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axial scans. Considered the cylindrical geometry of the coil array, sagittal

slice are expected to enhance the supported MB as well, not considered

in this study to limit the protocol duration.

Interestingly, the interaction between MB and iPAT accelerations was

modulated by the slice orientation, confirming how the usage of different

slice prescriptions could more or less effectively support image accelera-

tion from a tSNR perspective. Note that the tSNR observed at different

iPAT levels was independent from the slice orientation (once accounted

for the
√

(R) factor (Breuer et al., 2009)), suggesting that the receive ar-

ray similarly supported parallel imaging along the two orthogonal slice

orientations (Ohliger and Sodickson, 2006) tested.

This interaction effect also accounts for the general observation of a

tSNR monotonically non-increasing with MB (Risk et al., 2018). Instead,

exploiting peculiar differences of the receive array, we were able to demon-

strate few conditions where this is not actually true: MB factor 2 axi-

ally generally lower tSNR than MB factor 3 with coronal slices. This was

taken to the extreme case where the interaction among MB and iPAT is

resolved along coronal orientation: condition under which the tSNR was

not significantly affected by increasing MB factors or in other words no

tSNR penalty is introduced by MB acceleration. Potentially, the maxi-

mum MB factor (MB = 4) is not even the maximally supported, at least in

terms of noise enhancement.

Considering the spatial pattern of tSNR homogeneity observed along

coronal orientation without iPAT (not recalling the SNR0 appearance

that suggest thermal noise regime neither the anatomy of brain tissues

suggesting a physiologically-dominated noise regime) we conjecture this

condition is actually balancing the noise propagation without reaching

the thermal noise regime whereas axial runs (MB > 1) exhibited a marked

tSNR discontinuity across slices around the FOV centre, an effect attributable

to discontinuous temporal signal variance, discouraging its use for FC

particularly when using with iPAT (inconsistent across subjecs without

iPAT).
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Different slice orientations did not enhance the tSNR in frontal brain ar-

eas (regardless of iPAT), that is no further tSNR improvement is obtained

once axial slices are tilted (improving the signal dropout) as compared

to coronal orientation, whereas in temporal, subcortical or regular (not

typically involved in heavy geometrical distortions or dropout effects)

areas the coronal slice orientation entailed a significant tSNR advantage

in agreement to the whole-brain results by using an appropriate combi-

nation of slice orientation and iPAT. The clearest improvements offered

by coronal orientation were observed when using iPAT (negatively in-

teracting with MB with axial slices) whereas, omitting iPAT, the coronal

benefit was substantial only for subcortical and regular areas.

We extended previous studies where the optimal MB factor (i.e. pro-

vides maximum tSNR) was found to be region-dependent (Todd et al.,

2016) by reporting that is also slice-orientation dependent. Specifically, it

depends on the receive array configuration and imaging FOV which con-

tribute to set the actual spatial pattern of SNR0 or noise enhancement

effects. Maximal tSNR was achieved in most of the brain areas using

minimal MB acceleration (MB <= 2) along axially orientated slices while

the usage of iPAT basically discarded any MB factor in agreement with

the negative factor interaction previously observed. Conversely, the lo-

cally maximum tSNR with coronal slices is achieved employing MB fac-

tor 2 in most of the brain areas and regardless of iPAT usage, with a small

but significant fraction of areas exhibiting maximum tSNR at even higher

factors (MB => 3) arguably due to the lower distance from the array coil

receiving elements observing the concerned parietal and occipital brain

areas.

Out of all evaluated settings, three were deemed adequate for FC: two

based on coronal slice orientation (MB=3, both with and without iPAT),

while the third was axially oriented (MB=2, without iPAT). Regarding

the noise regime of these settings, only the iPAT-enabled one appeared to

provide thermal noise regime, while the others exhibited spatially homo-

geneous tSNR without signatures amenable to physiologic rather than

thermal noise regimes, but favourably balancing these noise sources for
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maximal tSNR. Further processing steps required for FC analysis (e.g.

registration, resampling and confound regression) are expected to shift

these observed noise regimes toward the thermal-like dominated, yet

maintaining high BOLD sensitivity (Triantafyllou et al., 2011; Wald and

Polimeni, 2017).

Recalling the derivations proposed in Chapter 3, a relation is to be ex-

pected among FC and temporal noise content. To experimentally ver-

ify this effect we collected a second set of lengthier fMRI measurements

(suitable for FC assessment) making use of the three adequate settings

previously identified. We matched the imaging parameters other than

acceleration and employed same pre-processing to ensure similar physi-

ological noise content and signal level to make the tSNR especially sensi-

tive to the thermal noise propagation if compared across differently accel-

erated settings (i.e. expected to provide increasing levels of noise propa-

gation by means of decreasing tSNR).

In fact, even if the thermal noise regime provides desirable statistical

features nonetheless beneficial also for the validity of FC statistical infer-

ences, an upper bound exist in the amount of actual temporal variability

a single acquisition can afford before losing the sensitivity to single func-

tional connections.

We observed that FC by means of Pearson linear correlation is explicitly a

decreasing function of thermal noise level which could be enhanced up to

the point of causing a loss of FC amplitude and its statistical significance.

Unfortunately, this limit could be both spatially dependent (accord-

ing to the SNR0 modulated by g-factor) and related to the co-activity

strength expressed by different brain areas (possibly in a subjective fash-

ion (Rangaprakash et al., 2018) masking recently found biological metabolic

support or resting state brain networks (Aiello et al., 2015; Passow et al.,

2015; Riedl et al., 2014; Tomasi et al., 2013).

The brains FC is currently not meant to precisely characterize the cou-

pling among two brain areas (e.g. its directionality). Rather, it aims to

test their correlation against a null hypothesis of uncorrelation (Friston,
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2011). Experimental settings suitable for FC assessment should there-

fore guarantee the absence of any significant structural bias and corre-

lation patterns (or loss of it) susceptible to the acquisition process. The

FC measures provided in corresponding edges with the three settings

were found to be in high linear agreement: weak links with one setting

were consistently characterized as weak with others. Similarly, robustly

associated areas (high FC) with one setting generally exhibited robust

association also with others. However, the actual FC amplitude of the

strongest edges was more sparsely estimated by different settings as com-

pared to weak edges. That is, despite the high linear agreement across

settings, a significant spoiling effect acted over the strongest connections:

arguably the within-RSN ones. This effect was particularly clear observ-

ing the within-RSN connectivity estimated with CORR2MB3 setting both

lower and sparser than other settings (AXR1MB2, CORR1MB3), instead

in much higher agreement.

This observed decrease of FC was nonetheless in agreement with the

expected noise propagation across settings: the higher the acceleration

(i.e. higher noise propagation), the lower the actual correlation due to the

increased temporal standard deviation (see Chapter 3) by virtue of the

nearly matched experimental conditions. Only the connectivity among

areas of the visual network was preserved across all the three settings,

while the agreement among AXR1MB2 and CORR1MB3 was general-

ized, demonstrating their FC equivalence and leaving to the researcher

an experimental degree of freedom to be possibly spent in enhanced FOV

rather than spatio/temporal sampling.

The FC estimated by means of different settings specifically differed

within middle brain areas encompassing auditory, subcortical and sensory-

motor networks. At the highest acceleration level (CORR2MB3), the con-

nectivity of such areas was impaired to the point of possibly losing the

statistical significance at group level, mimicking dysconnectivity phe-

nomena otherwise observed in neuropathology (Badea et al., 2017) but

nonetheless able cover possible connectivity differences among subjects.

Overall, the FC amplitude was found to be associated to the tSNR
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product of linked areas in less than 10% of the edges. However, this

proportion was remarkably higher among edges significantly different

across settings (more than 80%), where the positive correlation observed

among FC amplitude and tSNR product well agreed with the predicted

FC loss. We also found that the more the FC amplitude is affected by the

setting used, the clearer is the association of such a FC measure with the

tSNR. This observation, together with the spatial pattern of areas exhibit-

ing significantly different connectivity across settings, suggested us that

the thermal noise enhancement, spatially described in terms of g-factor

(typically greater than one right over mid-brain areas) is responsible for

these structured FC differences, in good agreement with theoretical ex-

pectations.

Importantly, the association between FC amplitude and tSNR in setting-

affected edges was not resolved taking into account the spatially homo-

geneous loss of SNR0 given by parallel imaging (i.e.
√

(R), with R the

parallel imaging acceleration factor), it rather depends on the different

spatial inhomogeneity pattern of SNR0 exhibited by different settings

(i.e. the g-factor) highlighting that it is not only important to maximize

the amplitude of the tSNR but also its spatial homogeneity to provide

unbiased FC estimates.

Graph theory-based measures of network structure such as the node

strength was confirmed to be sensitive to the actual setting integrating

the actual FC bias previously observed at higher acceleration while main-

taining a high linear association.

There are limitations of this study that should be noted.

To accommodate for protocol duration limits, the two implemented ex-

perimental protocols explored a limited portion of the parameter space

for MB/iPAT accelerations and slice prescription with fixed data process-

ing regarding denoising and FC estimation. Physiologically similar con-

ditions and narrow age range were ensured to control for physiological

noise variability across subjects and sessions. Since all comparisons were

carried out at single-subject level the authors did not expect significant

126



5.4 Discussion

sample size effects, rather to generalize the results regarding group-level

comparisons, an effectively higher sample size would be needed.

127



A functional connectivity perspective on Multiband EPI imaging

5.5 CONCLUSIONS

We are assisting to a paradigm shift in brain functional connectivity which

is stepping from the phenomenological characterization of the human

brain fundamental features (e.g. small-worldness, efficiency, hubness,

etc.) to the its quantitative assessment, an asset considering how brain

functional structure characterization could be useful pathological biomark-

ers.

We built upon previous considerations about favorable noise condi-

tions to be achieved in fMRI experiments in order to make the typical

statistical assumptions more experimentally fulfilled while limiting the

impact of spurious spatial autocorrelation, overall improving the validity

of the performed inferences. We reframed this concept from task-fMRI lit-

erature to the typical functional connectivity study, theoretically demon-

strating how the noise amplitude and mixture interplay when the fMRI

signal of two areas is being associated instead of just one. In particular,

the thermal noise propagation of the associated areas can directly lower

their connectivity whereas close attention should be paid to the locally

defined balance among thermal to physiological noise ratio, ultimately

function of the experimental setup and chosen sequence settings. This

suggests that the FC structure can be amplitude-modulated according to

the actual noise regime and level, possibly resulting in a loss of signif-

icance for some connections rather than masking interesting effects in

others.

We demonstrated this effect during a two-stage experimental optimiza-

tion task. First, we explored the parametric space of image acceleration

(MB, iPAT) along two slice orientation to identify sequence settings suit-

able for FC studies overcoming current hardware setup limitations that

could impair MB imaging potential. Out of the complex interplay be-

tween various sequence factors, we provide strong evidence in favor of

non-transversal 2D slice orientations to make the most of MB accelera-

tion within the available setup (Siemens mMR Biograph, Head-Neck 12-

channel coil array).
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Three settings with adequate sampling performance offered increasing

levels of image acceleration (both MB and iPAT), these were employed

with matched parameters in a test/retest fashion to acquire FC matri-

ces of each subject. The FC matrices obtained with these settings ex-

hibited structured differences affecting various middle and lower-brain

areas, whose connectivity was positively correlated to the tSNR loss ex-

perienced in these areas with increasing image accelerations. These dif-

ferences as well as their correlation with tSNR were strikingly related to a

significant loss of tSNR (due to iPAT usage) clarifying that FC structural

alterations can be attributed to significant tSNR variations, while minor-

to-no FC differences are to be expected at single-subject level otherwise

(in our study defined by the MB factor, slice orientation, phase encoding

direction).

Moreover, the association of FC to tSNR in edges with connectivity

affected by the setting, was still significant accounting for spatially ho-

mogenous losses of tSNR (as from
√
R in iPAT) suggesting an important

role regarding the g-factor spatial pattern of noise enhancement, consis-

tent with the position of areas showing altered FC. Based on these obser-

vations we encourage the use of different slice orientations to exploit MB-

acceleration while enhancing fMRI scanning performances and BOLD

sensitivity. However, the actual noise content and regime should be care-

fully considered to guarantee appropriate FC robustness and possibly of-

fer more than one protocol with comparable estimation capabilities to

provide a FC consistency check at single-subject level. Even though noise

arguments foreseen the observed FC differences, more studies are needed

to provide guidelines and make the FC estimation more robust to the ac-

tual noise behaviour, providing more consistent definition for brain func-

tional connectivity.
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5.6 SUPPLEMENTARY FIGURES

Figure 5.6.1: (A) tSNR marginal means respectively in frontal (first column from
left), temporal (second column), subcortical (third column) and regularly sampled
areas (fourth column). The tSNR marginal mean across specified factors is repre-
sented while increasing the MB factor and separately reporting the tSNR of axial
acquisitions (white circles) and coronal (black circles) while different rows the iPAT
factor employed (top row for R=1, bottom row for R=2). (B) The spatial location
of evaluated brain areas of frontal (red), temporal (green), subcortical (blue) and
regularly sampled areas (purple) is reported on the bottom map for a standard brain
reference space.

Slice iPAT Frontal areas Temporal areas Subcortical areas Regular areas

AX On 64.8 (13.9) 40.9 (9.5) 56.6 (14.4) 26.0 (13.7) 56.7 (18.9) 23.2 (16.7) 78.9 (16.1) 35.4 (17.6)

COR Off 65.1 (15.8) 40.8 (9.9) 61.4 (13.1) 39.8 (8.2) 78.5 (9.9) 44.5 (10.4) 94.0 (6.3) 62.9 (9.7)

Table 5.6.1: Median and median absolute deviation (by parenthesis) of the tSNR
distributions in different brain areas. Representative values are respectively reported
separating by slice orientation (AX for axially oriented, COR for coronally oriented)
and iPAT factor (On for R=2, Off for R=1).
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Figure 5.6.2: Number of brain areas exhibiting maximum tSNR in correspondence
to each MB factor, separately reported for different slice orientation and iPAT factor.
Each bar height is scaled by the number of areas found to exhibit maximum tSNR
in correspondence to the specified MB factor. Optimal MB factors occurrences are
separately reported by different combinations of slice orientation and iPAT factors
to highlight possible optimal conditions of the MB acceleration depending over the
interaction with other sequence settings.
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Slice/iPAT Slice/iPAT Frontal areas Temporal areas Subcortical areas Regular areas

AX / 1 AX / 2 ¡ .0001 8.5 ¡ .0001 6.2 < .0001 6.0 < .0001 6.8

AX / 1 COR / 1 0.85 -0.2 0.086 -1.7 0.0011 -3.2 < .0001 -6.9

AX / 1 COR / 2 < .0001 7.7 < .0001 4.1 < .0001 4.7 0.0001 3.8

AX / 2 COR / 1 < .0001 -8.1 < .0001 - 7.4 < .0001 -8.1 < .0001 -9.1

AX / 2 COR / 2 0.28 -1.1 < .0001 -4.2 0.0002 -3.7 < .0001 -5.4

COR / 1 COR / 2 < .0001 7.5 < .0001 6.3 < .0001 8.0 < .0001 9.1

Table 5.6.2: Statistical comparison of the observed tSNR between factor combi-
nations (slice orientation x iPAT) stated in column 1 versus column 2. For each
performed comparison (by row) a Wilcoxon rank sum test was performed between
samples (Bonferroni corrected across multiple comparisons to correct the base 0.05
significance level) with obtained significance separately reported for each tested area
(frontal, temporal, subcortical, regularly sampled areas) in the respective left column
and z-score difference (first second combination as defined by the selected factors)
on the right.

Figure 5.6.3: Summary of image quality assessment of P1 protocol. Color-coded
boxes respectively report criteria satisfied (green), limitedly satisfied (yellow) or not
satisfied (red). Overall acceptable results are side-checked by a green mark highlight-
ing sequence settings overall providing adequate imaging performances.
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Figure 5.6.4: Linear agreement of node strength (STR) and eigenvector cen-
trality (EC) estimated from FC group matrices with different sequence settings
(reported by lateral labels). Nodes are colour-coded according to their belonging
RSN (see lateral legend). Specifically, each box report the metric value (STR in
the top row, EC in the bottom row) observed in corresponding nodes but different
settings along with their least squares regression line depicted in black along with
the associated 95% confidence intervals over the regression line (green dashed), the
identified equation is instead reported in the relative caption. The relation identity
is graphically represented by the dashed cyan-coloured line.
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Figure 5.6.5: Significance of post-hoc comparison between couples of sequence
settings (AXR1MB2 vs CORR1MB3, AXR1MB2 vs CORR2MB3, CORR1MB3 vs
CORR2MB3 respectively reported along indexed columns) performed by means of
paired sample t-test (FDR rate 0.05 for each comparison and additional Bonferroni
correction across multiple couples compared) the rm-ANOVA test applied at edge-
level over all 352 nodes. Top row reports the T-statistic estimated at edge-level
for each post-hoc comparison while the bottom depicts edges exhibiting significantly
different connectivity among settings (red for significant differences, blue for non-
significant).
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Figure 5.6.6: Linear association of FC amplitude and tSNR product of con-
nected areas across acquisitions. Top row shows for each FC edge position the
significance level of the linear model (F-statistic box top-left) and edges (top-right)
where such a linear association is statistically significant (white) or not (black) in
overlay with the network segregation (red lines) colour coded according to the con-
necting network. Results from Spearmans rank correlation among FC values and
tSNR product across acquisitions (bottom-left) and edges where the actual correla-
tion (bottom-right) was statistically significant (white) or not (black) across all edges
(FDR corrected at 0.01 rate) in overlay with the network segregation (red lines) colour
coded according to the connecting network.
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Figure 5.6.7: tSNR representation at group level with different sequence settings
and across all 351 ROIs, organized by belonging network (colour-coded). Top row
report the measured tSNR (averaged at group-level) while the bottom row depicts
the tSNR distribution rescaling for

√
R acceleration effects as attributed to iPAT

usage in the CORR2MB3 setting.

136



6
Brain cortex segmentation

framework for FC applications

In this chapter we formulate a framework to support accurate brain cor-

tical segmentation. The relevance for state-of-the-art FC pre-processing

will be discussed along with the generalization of current structural MRI

data processing.

The aim was to change the traditional structural MRI processing, which

provides the geometrical support of many FC studies, to a more robust

and flexible design for brain cortical segmentation which minimizes man-

ual interventions on the images and maximize the comparability across

subjects with eventually enhancing the sensitivity of subsequent FC anal-

yses to single subject effects.

The rationale of the proposed framework will be discussed reporting

the framework and sequence design principles followed. The chapter

is completed by some commented preliminary results that highlight the

potential of the framework as well as the encountered limitations to shed

light on critical steps that would guarantee further development.
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This study was carried out in collaboration with Prof. Cloos and Prof.

Lattanzi during an internship period at the New York University (NYU)

- Center for Advanced Imaging Innovation and Research (CAI2R), devel-

oping the framework and required MRI sequences using locally available

scanning and software facilities.

6.1 THE IMPORTANCE OF BRAIN SEGMENTATION FOR FC

The investigation of brain functional connectivity discussed in the pre-

vious chapters, fundamentally relies on the accurate alignment of brain

spatial locations hypothesized to be functionally consistent across sub-

jects.

After typical fMRI pre-processing (volume realignment, filtering and even-

tually confound regression), fMRI data is registered to a structural image

and parcelled according to a chosen atlas for further FC analysis.

FMRI confounds to be regressed are typically extracted by processing

fMRI data extracted from CSF and WM tissues (i.e. not providing sig-

nificant BOLD contrast) while accurately preserving GM brain areas.

Therefore, suitable segmentation for these tissues as well as a correct

whole brain mask that removes skull and out-of-brain contributors is fun-

damental to estimate CSF-related fMRI signal variabilities as well as to

ameliorate the partial volume effect affecting GM voxels (Jo et al., 2007).

To avoid mixing up the fMRI signal contribution from different tissues

(e.g. GM with WM or CSF), its customary to restrict the spatial delin-

eation of brain areas (derived from an atlas) to weight only voxels sup-

posed to contain the signal of interest (i.e. GM) while de-weighting oth-

ers that consistently participate in the mixture of different GM parcels

resulting in an inflated FC measure among these parcels.

Recent rs-fMRI literature conveyed that even at single subject level, FC

estimation could be highly repeatable and comparable across modality

(e.g. task vs. rest as found in (Gordon et al., 2017)) yielding important

brain features provided that a sufficient amount of fMRI data is available.
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To capitalize on recent experimental developments (e.g. MB-EPI imag-

ing) and denser sampling, appropriate data compression schemes are

needed while maintaining without losing information.

As an example, fMRI data can be effectively collapsed along the cortical

thickness dimension assuming a homogeneous functional response along

such direction (i.e. under typical fMRI spatial resolutions) thus represent-

ing the GM local response as coming from a single surface vertex rather

than few volumetric voxels covering the cortical ribbon.

6.1.0.1 THE BRAIN CORTEX AS A SURFACE

The main idea underlying cortical surface generation is to avoid func-

tionally redundant volumetric representations by modelling the cortical

gray matter sheet as a set of vertices representing a 2D surface. In this

way, vertices uniformly covering the entire cortex will separately repre-

sent spatial locations corresponding to left and right hemispheres while

accounting for individual anatomical gyri and sulci variability.

To provide an average sampling resolution (average vertex spacing) on

the surface of 2 mm, approximately 30000 vertices are required per hemi-

sphere (Glasser et al., 2013) while to provide an average vertex spacing

approximately 80000 vertices are needed.

The cortical surface would be represented by the adjacency of indexed

vertices and the spatial location of each indexed vertex. Regarding fMRI,

pre-processed data in the same space as a delineated cortical surface would

be accordingly sampled by taking an average of the fMRI signal local to

each vertex thus providing a vertex-related dynamic.

6.1.0.2 SURFACE DELINEATION ERRORS

The complexity of cortical surface delineation process had been tack-

led by many methods, typically requiring carefully acquired and pre-

processed structural images to represent the brain anatomy (e.g. T1-w

MPRAGE or T2-weighted volumetric images) which suffers from coarse

intensity inhomogeneity eventually caused by transmit and receive fields
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inhomogeneity.

Even if methods exist to cope with these effects, residual intensity bias

combined with image artefacts (e.g. arising from motion or sequence lim-

itations) could result in a loss of contrast between brain and non-brain tis-

sues (see 6.1.1-A) such as the meninges (among which the dura is often

the only MRI-visible) ultimately resulting in surface delineation errors

or poor subcortical segmentations (e.g. thalamus, pallidum, cerebellum,

etc.). The cortical delineation process can fail locally or at whole-brain

level.

Whole brain delineation errors consist in cortical surfaces completely or

partially out of brain and are typically determined by poor skull-stripping

results due to improper subject positioning or excessive intensity bias.

However, typically the pre-processing of structural images proceed

smoothly but the delineated cortical surface (e.g. by means of Freesurfer

(Fischl et al., 1999)) exhibit local delineation errors associated to a locally

poor image contrast. These errors more often consist in a poorly delin-

eated pial surface (i.e. the boundary between GM and meninges or CSF)

not strictly delineating the GM cortex from CSF but locally encompassing

extensive CSF portions, subsequently considered as GM in further anal-

ysis. Instead, the delineation of GM from WM is typically more robust,

eventually suffering only from very poor GM/WM contrast or SNR.

As illustrated in 6.1.1-B, the accurate distinction between brain tissues

and meninges in condition of limited SNR is not guaranteed with same

accuracy in the whole brain because the meningeal layers (specifically

the dura structure for its possible MRI-visibility), have a T1 relaxation

relatively similar to GM (thus similar intensity in T1-w images) but vari-

able thickness and spacing from the pial surface.

These delineation errors, introducing CSF-like signals as if it were GM

during the surface sampling process, will mix spurious fMRI signals (CSF,

WM) other than GM (with impact dependent upon the GM ribbon thick-
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Figure 6.1.1: Human brain tissues and associated segmentation. A) Brain
structural representation depicting cortical gray matter (dark gray) and dura (yellow),
this figure was adapted from Fiederer et al., (Fiederer et al., 2016). B) Typical cortical
surface delineation results over a lower brain transversal slice section (top frame)
and upper brain transversal slice section (bottom frame) as obtained by standard
Freesurfer processing of the background MPRAGE image with delineated cortical
surface boundaries (yellow) overlaid. Delineation errors are highlighted by the red
arrows involving poor contrast among GM and adjacent dura structure.

ness compared to the extent of delineation error), making any previous

denoising and confound regression ineeffective and leaving persistent bi-

ases on the FC estimates at single-subject level.

Moreover, most of delineation errors involve CSF-like contribution which

is considered one of the brain tissues mostly affected from physiologi-

cal noise (i.e. flow effects, motion, pulsation, respiration) motivating the

need to manually restrict brain external bounds or manual surface edits.

6.1.1 REFINING THE CORTICAL SURFACE DELINEATION PROCESS

Previous works strived to overcome boundary segmentation errors con-

sidering, in addition to T1-w images, T2-w or T ∗
2 -w images provided that

similar geometric accuracy and intensity homogeneity can be achieved.

In general, a T2-w image requires the acquisition of a separate sequence

while different T ∗
2 weightings can be obtained collecting multiple echoes

for example by extending a single-echo T1-w MPRAGE.

The usage of T ∗
2 -w images was initially proposed by van Der Kouve et
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al. (van der Kouwe et al., 2008) where multi-echo data with different T ∗
2

contrasts were used to refine a surface delineated.

Although interesting for consistent morphometric studies, the approach

is currently not widely spread in the FC literature due to the requirement

of a dedicated sequence (i.e. a multi-echo MPRAGE) possibly more prone

to artefacts, motion and longer scan time although still somewhat limited

in poor SNR areas.

These approaches are generally more effective to delineate GM from WM

than GM from CSF or meninges when sufficient contrast is available be-

cause the structural T1-w image is typically optimized for best GM to

WM contrast assuming a CSF nearly intensity nulled (Wang et al., 2014).

Meninges, in turn, are explicitly suppressed or exhibit vanishing signal

intensity because of their low T ∗
2 though possibly MRI-visible, especially

regarding the dura.

Cortical delineation errors arising from the usage of these images are only

partially explained by limited SNR and CNR, whereas high SNR brain ar-

eas (see 6.1.1-B) instead exhibit delineation error more often related to the

presence of MR-visible structures not considered during the contrast op-

timisation because hypothesized to be suppressed (i.e. non MR-visible).

Following considerations about sequence design and optimization were

performed according to these relaxation parameters observed at 7T.

6.2 A GENERALIZED CORTICAL DELINEATION FRAMEWORK

We propose a framework to cope with previously discussed FC uncer-

tainty, shifting the entire traditional acquisition pipeline toward fast quan-

titative MRI approaches aimed at minimizing the need for manual sur-

face editing.

The proposed framework relies on two concepts: synthetic MRI (synMRI)

and quantitative MRI (qMRI) by means of Magnetic Resonance Finger-

print (MRF). The fascinating element is that these concepts to some ex-

tent overlap and will eventually merge current multiple-contrast images

into a single flexible and general-purpose sequence (Gulani et al., 2004).
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6.2 A generalized cortical delineation framework

Figure 6.2.1: Implemented brain cortical delineation scheme. From top to
bottom is represented the temporal processing domain from the MRF modelling
and sequence definition (top-left, green dashed) along with the parameterization
required by synMRI, brain skull-strip and segmentation (top-right, green dashed).
The following step use these parameterizations to collect actual MRF data from the
imaged sample (middle box, red dashed), building the MRF dictionary that will be
used for the subsequent dictionary matching process (middle box, blue dashed) in
order to estimate the relaxation parameters (i.e. T1, T

∗
2 , etc). Relaxation maps are

then fed to the synMRI tool (middle box, blue dashed) whereas generated images
are skull stripped and segmented to provide cortical surface delineation over which
the parametric maps (relaxation) are finally sampled (bottom right, yellow dashed
square).

6.2.1 SYNTHETIC MRI PRINCIPLE

Synthetic MRI consist in the generation of images with contrast based

on the local relaxation parameters of the imaged object (Bobman et al.,

1985).

It is aimed to provide completely arbitrary contrasts (tuneable off-line

within a context correspondent to machine learning of different contrasts)

(Bobman et al., 1985) or infer quantitative parameters from others (Callaghan

et al., 2016) proving increased robustness to artefacts and motion effects
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along with spatially homogeneous contrast helpful for improved seg-

mentation accuracy.

The synthesis process involve a prediction model for spin evolution (e.g.

Block equations, EPG models, etc) and a prescibed magnetisation manip-

ulation to be simulated (e.g. sequence diagrams, TE , TR and FA). The

collection of different contrast is no longer necessary with a possibly sig-

nificant save of scan time in clinical setting (Blystad et al., 2012) addi-

tionally providing control on the artefact content or eventually obtain

non-measured contrasts as in (Callaghan et al., 2016) for magnetisation

transfer.

6.2.2 MAGNETIC RESONANCE FINGERPRINT FOR QMRI

A wide range of experimental methods are currently available for quan-

titative MRI, different by estimation accuracy, resolution and scan time.

In general they can also be scan time efficient since they provide one or

few parameters at a time while also simplifying the model description.

An opposite approach would instead make the experimental process sen-

sitive to all the relevant relaxation parameters (Schmitt et al., 2004), dis-

entangling their contribution during a post-processing. This perspective

underlies the idea of MRF (Ma et al., 2013).

In MRF the experimental stage consist in making the actual spin evolu-

tion sensitive to many different relaxation parameters at once, perform-

ing the actual quantification step by matching the measured dynamics to

a predefined set of dynamics (dictionary) generated by a proper model.

The first critical ingredient of MRF is indeed the dictionary, consisting of

a range of possible spin dynamics to be measured under the prescibed

pulse sequence. However, MRF is practically feasible because it allows

extremely high image acceleration factors, resolving the resulting aliases

by means of adequate pattern matching provided that these aliases are

temporally incoherent.

Since MRF makes no assumptions regarding the sequence in use (needs
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only to be feasible its simulation) different excitation schemes like FLASH,

FISP or True FISP modules can be combined within a single continuous

acquisition to emphasize the various relaxation contributions and even-

tually balance spatial resolution and measurement precision or including

water diffusion (Rieger et al., 2018) or perfusion (ESR, 2015).

6.2.2.1 THE MRF PRINCIPLE

As previously described, MRF consists in a comprehensive prediction of

the observed spin dynamics under an arbitrary set of RF and gradient

pulses hereby referred as fingerprint.

If the pulse sequence is known, then the fingerprint expected from a voxel

characterized by a fixed set of relaxation features could be determined.

Simulating the response for a range of voxel mixtures would therefore

provide a basis to be inverted in order to gather informations about the

sample according to the most similar fingerprint measured.

The flexibility of pulse sequence and problem inversion is essential to

both independently promote differential spin dynamics while facilitat-

ing efficient solutions of the inverse problem.

In general the MRF approach requires three ingredients:

• A model for the spin dynamics during an arbitrary sequence;

• A suitable sequence to be applied;

• An inverse problem solver.

As previously discussed (see Chapter 2), the EPG approach offers a

computationally feasible alternative to Bloch equations valid in a wide

variety of experimental conditions and was one of the key tools that en-

abled MRF feasibility since its recent introduction (Ma et al., 2013).

EPG made also possible to simulate a wide range of fingerprints (dis-

cretized range of T1, T2, etc.) with convenient computational burder over-

coming the hurdles of analitical Bloch solutions, currently unavailable
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with practical computational times. Keeping a focus on the ease of in-

terpretation, each generated fingerprint (conveniently inserted within a

dictionary) is associated to a unique set of relaxation parameters.

It is then fundamentally the objective of the pulse sequence to make

such fingerprints sufficiently different among them to actually provide

a non-ambiguous problem inversion, in this case consisting in the selec-

tion of the best-matching dictionary entry (pattern matching for example

based on inner product).

Interestingly, this dictionary can be built considering every variable

that can actually provide a measurable effect on the fingerprints. There-

fore, recent studies added important features not related to the relaxation

such as the perfusion or diffusion as well as system parameters such as

B+
1 (Buonincontri and Sawiak, 2016) making the actual quantification of

every other parameter more robust to the hardware uncertainties typi-

cally affecting relaxation measurements.

This robustness enabled the use of more spatially inhomogeneous pulses

(alleviates the need for accurate RF pulse design to guarantee homoge-

neous B+
1 enabling faster excitations) while possibly discarding the ef-

fects of B0 inhomogeneities (Cloos et al., 2016) using the hardware con-

figurations as further probes for such inaccuracies.

The problem is therefore conveniently shifted from the sequence, RF

and hardware design to signal modelling with the potential issue of in-

creasingly demanding computational burden, recently alleviated by means

of numerical decomposition and compression techniques (Lattanzi et al.,

2018; McGivney et al., 2014).

In principle, fingerprint consists a separate set of k-space to be filled.

However, at high resolutions this requires unfeasible scan times even ap-

plying traditional parallel imaging methods. A peculiar aspect of MRF

is the availability of a model that describes temporal dynamics, therefore

signal variabilities uncorrelated to the dynamic of interest (e.g. incoher-
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ent aliasing artefacts (Feng et al., 2014)) are intrinsically discarded by the

very nature of the dictionary matching.

Assuming smoothly varying spin dynamics, the k-space under-sampling

strategy can be pushed as much as needed provided that it promotes tem-

porally incoherent aliasing artefacts (Ma et al., 2013) solvable during the

pattern matching process (i.e. uncorrelated alias dynamic would not bias

the mapping results).

This led to dramatic reductions of the actual scan time achieved for ex-

ample using variable density spiral trajectories (Ma et al., 2013) or radial

spokes (Cloos et al., 2016), possibly stacked for 3D imaging.

6.3 MRF IMPLEMENTATION FOR RELAXATION MAPPING

We built upon the idea of using T ∗
2 to overcome the limited T1 contrast

between meninges and pial surface while measuring B+
1 field distribu-

tion to obtain robust relaxation measures supplied to synMRI, in turn

optimized for cortical delineation accuracy with a flexible approach built

upon inherently co-registered relaxation maps.

6.3.1 MATERIALS AND METHODS

MRF sequence implementation, testing and safety assurance steps were

performed on custom phantoms composed by different compartments

(cylindrical test tubes) exhibiting various combinations of T1/T
∗
2 relax-

ation encompassing the range of human brain tissues within a salted wa-

ter container.

Estimation accuracy of obtained relaxation parameters was tested on phan-

tom compared to gold standard relaxation measures: single slice (2D)

IR-GRE measurements with variable TI = 30-6000 ms (TE/TR = 3/7500

ms, FA = 30 deg) unevenly spaced over the TI span to provide 8 mea-

sures at fixed spatial resolution for T1 estimation; single slice (2D) SR-

GRE measurements with variable TE = 3-50 ms (TR = 2000 ms, FA = 10
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deg) unevenly spaced over the TE span to provide 8 samples for T ∗
2 mea-

surement.

The implemented MRF sequence, referred as MRF-vTE in the following

(1mm3 isotropic resolution, peak FA = 20 deg) was preliminary tested in

2 healthy volunteers (males, 25 and 28 yrs) on an investigational whole-

body 7T (MAGNETOM 7T, Siemens Healthcare, Erlangen, Germany) us-

ing a 1-TX 32-RX head coil (Nova Medical, Wilmington, MA, USA) in

circularly polarized RF configuration (CP mode).

Results were compared with structural T1-w MPRAGE (Wang et al., 2014)

images. Written informed consent was obtained from each study partici-

pant.

6.3.1.1 MRF SEQUENCE DESIGN

A 3D MRF sequence previously used for T1 mapping by Fojimoto et al.

(Koji et al., 2017), derived from (Cloos et al., 2016), to measure T ∗
2 in addi-

tion to T1 and B+
1 using a single B+

1 transmit configuration (single chan-

nel transmission).

Each MRF sequence application would result in the volumetric estima-

tion of the apparent longitudinal magnetisation (M0), T1, T
∗
2 and B+

1 (FA)

maps.

As illustrated in 6.3.1-A, the MRF-vTE sequence (3D Plug-and-Play MRF

with variable TE) implements a 3D stack-of-stars readout (Block et al.,

2014) by repeating, for each 2-spoke star (defined on the kx − ky plane

with kz as cartesian partitioning dimension), an adiabatic non-selective

Frequency Offset Corrected Inversion (FOCI) RF pulse (with FA of 720

deg (Ordidge et al., 1996)) followed by 750 or 1000 FLASH segments con-

sidering a different RF pulse relative amplitude, scaling down the maxi-

mal prescribed FA with a half-sinusoid pattern as depicted in 6.3.1-B.

This pattern provided progressively higher RF coil driving voltages

along the three consecutive sectors in the 750 segments case while alter-

nate low/high driving voltage in the 1000 segments case.
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Figure 6.3.1: Overview of the MRF-vTE sequence. A) Pulse sequence diagram
of the 3D-MRF with golden angle increase of spoke angles along the fingerprint
while 180 deg fractional increment along partitions (Part.). The typical scheme of
prescribed TE (green trace) and FAs (blue trace) over 750 time points (at least 200
per each sector) are shown in (B) dividing the fingerprint in three sectors. TR trace
was omitted as identical to the TE except for a fixed positive offset typically of 5 ms
with the prescribed imaging settings.
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Both 750 and 1000 shot patterns considered a traditional RF phase-cycling

scheme based on a quadratic RF phase increment with increments de-

fined by a base angle of 117 deg. The kernel sequence overall consisted

in a RF-spoiled GRE (FLASH) instead of previously used FISP segments

used for T2 measurement while providing enhanced motion robustness

(Yu and Cloos, 2017). K-space stars collected along consecutive segments

are rotated by with a golden angle (117.3 deg) increase schedule and FA

reported in 6.3.1-B.

In-plane stars were composed by spokes relatively angled to homo-

geneously fill the 360 deg range. For example 2-spoke stars are com-

posed by spokes angled by 90 degrees. All kz partitions corresponding

to a single radial spoke were collected sequentially with a linear ordering

scheme (i.e. equi-distributed steps from kz = -kz,max/2 to kz=+kz,max/2,

where kz,max is defined by the inverse of FOVz and number of partitions)

before collecting another radial spoke angle. To measure the T ∗
2 , the seg-

ments were divided in 3 or 4 sections respectively for 750 or 1000 shots

with increasing TE (and TR keeping fixed TR-TE offset) at each section as

depicted in 6.3.1-B.

In-plane logical gradients (Gx, Gy employed for radial readout) were

first-moment balanced as well as out-of-plane (Gz) partition selection gra-

dient with only unbalanced gradient the spoiler. The TE delay introduced

at each section was empirically optimized in order to provide adequate

T ∗
2 sensitivity for distinguish the T ∗

2 of dura structure (few ms) to the

T ∗
2 of GM. Baseline TE/TR were set at the minimally supported values,

respectively of 2.5 ms for TE and 7.5 ms for TR within the prescribed

imaging parameters and available hardware. The sequence made use of

sinc-shaped RF excitation pulses (slab selective) with fixed duration, de-

lay period after the initial inversion RF pulse of 20 x TR [ms] and between

sections with different TE (10 x TR [ms]).

The delay among consecutive inversion RF pulses was set to 2000 ms

to allow a sufficient longitudinal magnetisation recovery.

To summarize, the sequence used for MRF-vTE phantom acquisitions

was defined as: TE/TR = 2.5/7.5ms, RF time-bandwidth ratio 3, RF pulse
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duration 2ms, 160 160 x 8 matrix, 1.0 1.0 x 5.0 mm resolution, 2x slice

oversampling to avoid spurious aliasing along the spoke direction and

overall under-sampling factor of approx. 10 (view sharing window merges

12 consecutive 2-spoke stars per each reconstructed volume) for an ap-

proximate scan time of 4min 10s using 750 shots.

The MRF-vTE sequence used for human in-vivo acquisitions was con-

sistently similar while differing only for: TE/TR = 3.0/8.0ms, 240 240 x

8 matrix (overall under-sampling factor of approx. 16), 1.0 1.0 x 1.0 mm

resolution and an approximate scan time of 5 min 25s with 1000 shots.

While consistently similar performances were offered by the usage of 750

and 1000 shots, we choose to employ 1000 shots for in-vivo data and 750

for phantom to provide a more comparable behaviour of the dictionaries

in poor B+
1 areas preferring to increase the train length rather than the

nominal FA to provide similar estimation performances.

6.3.1.2 MRF RECONSTRUCTION

Single volumes of MRF data were reconstructed in Matlab (The Math-

works Inc., Natick, USA) using an in-house developed software imple-

menting a 1D-FFT along the partition direction (kz, i.e. across collinear

spokes of stacked stars) followed by a 2D non-uniform fast Fourier trans-

forms (2D-NUFFT) over an appropriate trajectory sampling grid to re-

construct in-plane (kx − ky) collected stars. In-plane (kx − ky) stars were

composed by spokes collected along 12 consecutive RF shots implement-

ing a view sharing scheme (with window size and sliding window step

of 12 shots (Cloos et al., 2016)) aimed at reducing the aliasing artefacts

during reconstruction stage, while preserving the parametric sensitivity

range of relaxation.

Merging and reconstructing such stacked stars effectively reduced the

number of MRF time points to reconstruct from 750/1000 to 62/83.

The MRF dictionary was subsampled to match the reconstruction size by

averaging 12 consecutive generated time points for each dynamic (not

averaging samples from sectors with different TE).
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A separate set of coil sensitivity profiles were derived in each of the three

sections and applied for coil combine (Walsh et al., 2000) the pertain-

ing segments and remove baseline phase-offsets depending on TE differ-

ences in order to discard B0 effects resulting in phase differences among

consecutive sectors (Lattanzi et al., 2018).

6.3.1.3 MRF DICTIONARY

MRF signals for a range of T1 (50-3000 ms, 5% increment), T ∗
2 (5-100 ms,

5% increment), B+
1 (1-30, 1 increment) were simulated using an in-house

implementation written in Matlab and C++ simulating the sequence with

an EPG approach (see Chapter 2), considering M0 = 1 (thus estimated

from the match scaling to the measured data) while other parameters

were as in the MRF sequence. Since the RF excitation is performed over

a thick slab, we assumed the excitation profile to provide sufficiently ho-

mogeneous RF excitation within the slab centre, therefore not requiring to

explicitly account for the across-slice inhomogeneity of the excited mag-

netisation.

This condition was further enforced in this study by prescribing in all

imaging acquisitions a slice-oversampling factor of 2.

MRF measured signals of each voxel were matched to the best dictio-

nary entry by means of maximum normalized inner product (i.e. linear

correlation) of the MRF signal and all dictionary entries. The part of MRF

signal right after the initial inversion pulse (10 shots after the inversion

RF pulse) and after a TE discontinuity (5 shots after the variation of TE)

were discarded to avoid phase instability unresolved during reconstruc-

tion which could bias the dictionary matching process. Note that, even if

the FA schedule was fixed, the dictionary entries need to be sufficiently

weighted by T ∗
2 . Therefore, adequate TE schedules need to be first of

all simulated and empirically tested to guarantee that dictionary entries

generated with different T ∗
2 , are actually distinguishable by the matching
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operator under realistic noise conditions.

This process strive to tune the TE schedule in order to emphasize T ∗
2

contribution in the range of 5 to 30 ms, respectively making the dictio-

nary sensitive to T ∗
2 possibly related to dura structures as well as differ-

ent brain tissues. Note that making the dictionary actually able to distin-

guish brain tissues would require much longer TE making the scan time

unpractical. Instead, using TE up to 20 - 25 ms, the sensitivity should be

sufficient to distinguish T ∗
2 values up to 30/40 ms (depending on noise

conditions). The implemented scheme from the MRF acquisition to the

relaxation reconstruction was summarized in 6.3.2.

Figure 6.3.2: Flowchart of data processing for MRF. Acquired raw MRF data
(k-space performed measurements) is decompressed and reshaped for more efficient
handling in single channels (top). Single-channel data is loaded and reshaped in
Matlab for reconstruction, first performed to resolve the frequency along partitions
(kz), merging consecutive spokes (view sharing) and performing a non-uniform 2D-
fft reconstruction (2D-nufft). Data reconstructed from single channels (coils) is then
combined according to the sector-defined coil sensitivity profile (determined using the
same reconstruction pipeline by merging all sector shots and normalizing the relative
amplitude). Reconstructed MRF dynamics are then matched (Dictionary matching)
to the dictionary entry finally generated to provide the actual 3D relaxation maps.

Data reconstruction, dictionary generation and matching were performed

using a quad-core laptop computer running at 2.3GHz equipped with

8 GB memory. The approximate dictionary generation time was imple-

mented in C++ and required in most cases less than30 minutes for the

computation and, under prescribed dimensionality, less than 1 GB of disk

storage (per dictionary, stored uncompressed).
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Before the dictionary matching, the actual dictionary size was further

reduced by a factor of 24 obtained combining a factor 2 by discarding the

fictitious imaginary component of generated entries and an approximate

factor of 12 given by the view sharing which bundled together 12 consec-

utive time points (with same compression scheme implemented for the

measured fingerprints).

MRF image reconstruction of collected and compressed (view shared)

data was implemented in Matlab (without parallel computing implemen-

tation due to memory constraints) and required typically less than10 min-

utes of computation time per slice while the dictionary matching (imple-

mented in Matlab as well) less than 5 minutes per slice to reconstruct the

final relaxation maps.

6.3.1.4 IMAGE PROCESSING

T1 maps from MRF were subsequently used to create a synthetic MPRAGE

(Wang et al., 2014) (1mm3 resolution, 160 partitions, TI1/TD = 1000/3700

ms, FA=6).

T1-w images were skull stripped (bet, FSL, v5.09 (Smith et al., 2004)), 3-

class segmented (fast, FSL v5.09 (Smith et al., 2004)) and parcelled in 108

regions of interest (ROI) with Multi-Atlas Label Fusion (MALF) method

(Hongzhi Wang et al., 2013) and MICCAI 2012 reference dataset.

Pial and GM/WM cortical surfaces were outlined (Freesurfer v. 5.3,

https://surfer.nmr.mgh.harvard.edu/fswiki; Caret v. 5, Connectome Work-

bench v. 2.3) also as support for parametric maps representation. T ∗
2

map was separately used to verify the efficacy of brain mask refinements

prior to post-processing. Consistency of T1 and T ∗
2 values and maps on

clear anatomical structures was verified and obtained segmentation lo-

cally inspected for delineation errors. Sensitivity to dura structure, signal

dropout (susceptibility inhomogeneity) as well as intensity inhomogene-

ity and motion effects were evaluated.
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6.3.1.5 IMPLEMENTED FRAMEWORK

Once the MRF sequence and an appropriate dictionary have been gen-

erated, from the data handling perspective the scheme reported in 6.2.1

was step-by-step implemented as:

• MRF data collection, dictionary matching for parametric map gen-

eration

• Formatting and conversion of parametric maps (T1, T
∗
2 , M0 , B+

1 ) to

standard format (NIfTI)

• Generate skull-stripping mask from T1 and M0 (bet, FSL), then seg-

ment macro brain tissues (fast, FSL)

• Refinement step of obtained masks

• Generate the synthetic MPRAGE image

• Cortical segmentation and reconstruction with Freesurfer (feeding

the refined brain mask)

• Parametric surface mapping and parcellation

6.3.1.6 LITERATURE DATA

To investigate the relaxation features at 7T of the dura structure (section

4.1) we referred to literature images from Haast et al., (Haast et al., 2016)

including data collected with a multi-echo 3D GRE with TE range from

2.53 to 20.35 ms (see (Haast et al., 2016) for further details) and data from

Forstmann et al., (Forstmann et al., 2014) comprising an MP2RAGE im-

age (TE/TR = 3.71/5000 ms; TI1/TI2 = 900/2750 ms; FA = 5/3 deg, 0.6

mm isotropic resolution) used for dura detection and a multi-echo 3D

FLASH with TE ranging from 11.22 to 29.57 ms (0.5 mm iso voxel size).

The T1 and T2 relaxations in the brain were also observed from unpub-

lished data collected at 7T making use of the sequence implementation

already used in Yu et al., (Yu and Cloos, 2017) and consisting in a radial
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2D-FISP-MRF sequence (0.6x0.6x5 mm). Effectiveness of skull-stripping

(section 4.2) based on T1-w or quantitative relaxation was instead inves-

tigated over 7T human brain data, available from a previous study pilot

(healthy male subject, 33 yrs) scanned using the standard and validated

3D-PNP-MRF sequence.

6.4 PRELIMINARY RESULTS

6.4.1 RELAXATION FEATURES FROM LITERATURE DATA

Observing the multi-echo 3D GRE images made available by Haast et al.,

(Haast et al., 2016), the dura structure appears visible at TE = 2.5 ms, starts

to decay at TE = 7.0 ms while is non-visible at TE = 12.5 ms, suggesting

its typical apparent transversal relaxation (T ∗
2 ) to be less than 12.5 ms and

higher than 2.5 ms.

Similar data published by Forstmann et al., (Forstmann et al., 2014), sug-

gested by visual inspection that dura structure is consistently suppressed

at TE = 11.2 ms while completely nulled considering TE = 20.4 ms or

higher, again suggesting typical T ∗
2 of less than the lower TE but not with

same rate across the brain.

From both datasets, the T1 of dura is typically observed from 900 to

1000 ms, while CSF of 3300 ms or higher and the bone marrow of 100

to 200 ms. T2 was instead observed in dura between 15 and 25 ms, the

bone marrow typically having T2 < 10ms and CSF higher than 150 ms

(observing the unpublished 2D-FISP-MRF data). Dura thickness across

the brain is approximately 1 mm thick, entailing strong partial volume

effects at typical resolutions.

6.4.2 CONSIDERATIONS FROM A REFERENCE MRF DATASET

Human brain data, using the standard 3D-PNP-MRF sequence, was an-

alyzed to compare the performances of traditional approach to the pro-

posed framework for cortical surface delineation evaluating the feasibil-

ity of the latter in reducing pial delineation artefacts. This data consists

156



6.4 Preliminary results

only in T1 relaxation, B+
1 and M0 without T ∗

2 estimate. In this case, the

proposed framework basically differs from the traditional delineation di-

rectly from a T1-w MPRAGE regarding the data acquisition and synthesis

of the T1-w image (i.e. without any T ∗
2 refinements). This analysis will

guide the selection of the most effective skull-stripping scheme based on

all the estimated parameters and also eventually suggest whether some

improvements are already offered using a clean T1 contrast image alone,

unaffected from B+
1 or motion effects, expected to be particularly disturb-

ing at 7T.

The standard 3D-PNP-MRF sequence provides two measures suitable

for skull-stripping: M0 and T1 images and the synthetic MPRAGE. Since

the T1-w image is simulated, we can optimize its synthesis to improve

skull-stripping efficacy. However, optimizing the T1-w image contrast

based on skull-stripping results would heavily depend on the algorithm

implementation per se. A more flexible solution can instead be based

on quantitative parameters to be directly segmented, thus optimizing the

skull-strip parameters only once. In this implementation we consider

for simplicity only skull-stripping methods based on watershed segmen-

tation or intensity-based, leaving the application of registration-based

methods for future application.

To note is that registration-based approaches would instead benefit

from the usage of T1-w images instead of relaxation parameters because:

1 same contrast as the reference images that should be registered to; 2

spatially homogeneous contrast offered by synthetic MRI.

A typical example of obtained parametric maps and synthesized T1-

w image (reconstructed with 1x1x2 mm voxel-size) is shown in 6.4.1.

Accurate brain anatomy is depicted along different views, 6.4.1-A re-

porting adequate and homogeneous contrast among both GM/WM and

GM/CSF. Estimated T1 values of GM in frontal, temporal, parietal, occip-

ital respectively were (ROI mean ± standard deviation): 1410 ± 85 [ms],

1400±110 [ms], 1390±80 [ms], 1420±80 [ms] whereas in anterior or pos-

terior WM were: 800 ± 140 [ms] and 780 ± 100 [ms]. More variable local
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Figure 6.4.1: MRF mapping and synMPR image. Relaxation representation of
a healthy human brain for T1 (A), M0 (B), B+

1 (C) and synthesized MPRAGE (D)
over three representative brain views (from left to right sagittal, coronal, transversal)
acquired with the original 3D-PNP-MRF with stack-of-stars readout over 750 time
points. Whole-brain maps were obtained with spatial resolution of 1x1x2 mm3.
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estimate instead interested very high T1 values of the CSF (ventricular)

: 3200 ± 550 [ms] or small meningeal layers with typical thickness less

than 3 voxels wide (manually delineated): 950 ± 400 [ms]. CSF locations

exhibiting a dynamic not correctly described during the dictionary gen-

eration (i.e. having T1 > 3500ms) instead are eventually shown with null

T1 estimate.

Around the GM matter the black areas reporting T1 values under the

display threshold represent the relaxation of bone marrow or scalp fat

tissues, typically much shorter than other tissues (T1 < 500ms), eventu-

ally non MR-visible. Obtained T1 relaxation values were overall accurate

except for areas exhibiting very low B+
1 also possibly associated to the

incomplete fulfillment of the adiabatic condition required by the initial

RF inversion pulse that results in an inconstant initial amplitude of the

measured fingerprint.

Even if the GM/WM contrast is confounded by the observed effects the

actual contrast GM/CSF is suitable, adequately distinguishing GM from

pial structures which are actually suppressed corresponding to a rim of

voxels with nearly negligible M0 amplitude either corresponding to dic-

tionary entries scaled by very small magnitude amplitude (i.e. M0) or

very fast decaying spin dynamics not adequately modelled (thus degen-

erated estimates).

The FA profile reported in 6.4.1-C, is consistent with expected pattern of

excitation provided by the two-channel coil used with circular-polarization

mode with higher FA reached in the FOV center, slowly decaying with-

out tissue-specific contrast from the maximally achieved FA at the brain

center (FA = 25± 2[deg]) to the periphery (FA = 17± 4[deg]) that covers

GM.

Figure 6.4.1-D shows the synthetic MPRAGE obtained from the T1 re-

laxation. Obtained T1-w image show high and homogeneous GM/WM

contrast as well as GM/CSF contrast. However, meningeal structures are

visually conspicuous exhibiting intensity similar or lower than GM, typ-

ical distance in this subject ranged from 3 voxels (i.e. 3 mm) to 1 voxel

(i.e. 1 mm or less in case of partial volume effects) measuring the distance
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from GM gyri to the nearest visible dura surface.

However, skull-stripping mask derived from the synthetic MPRAGE

suffers from an excessive frontal erosion which possibly erode the GM

while posteriorly the mask is broader encompassing both some pial ar-

eas with CSF-like intensity and part of the dura. Instead, the mask ob-

tained from the T1 map was consistently dilated (generally larger than its

counterpart) encompassing all over the brain GM external surface CSF-

like structures up to the meninges, possibly suffer less from parametric

inhomogeneity. This suggest that with an adequate skull-stripping al-

gorithm calibration, the T1 could provide more consistent and homoge-

neous masking performance respect to standard MPRAGE.

In Figure 6.4.2 the frontal areas and overall homogeneity has been much

improved by means of more effective B+
1 shimming, recovering most of

the signal dropout but still observing some frontal and temporal anatom-

ical blurring in these locations exhibiting unclear GM/WM boundaries

in the T1 map (left column) and derived synthetic MPRAGE (middle col-

umn).

Even if with some caveats, these results suggest the usage of T1 map for

skull-stripping in conditions of adequate B+
1 homogeneity while omit-

ting M0-derived information possibly hampered by signal dropout that

determine tighter masks that result in GM cortex clipping.

6.4.3 PHANTOM STUDY

6.4.3.1 DICTIONARY T ∗
2 SENSITIVITY ANALYSIS

We then explored the sensitivity of MRF for T ∗
2 relaxation to various TE

amplitudes at different time intervals (segment) during the acquisition.

All other sequence parameters, except for TE (and thus TR), are held

constant as defined in methods. Instead, the employed TE pattern and

amplitude along the fingerprint have been varied employing different

combinations as depicted in 6.4.3 to demonstrate its effect on the MRF

dictionary sensitivity for T ∗
2 .

160



6.4 Preliminary results

Figure 6.4.2: MRF performance limitation effects on delineated brain cortex.
Brain T1 map (left column) and synthesized MPRAGE (middle column) used for
cortical delineation (right column) for an healthy subject over a transversal (top and
right) and sagittal view (bottom). Improved positioning and shimming provided more
accurate depiction of frontal lobe structures still affected by limited B+

1 inhomogene-
ity over the external part of the frontal cortex as well as suffering in temporal lobe
(purple arrows). These estimation inaccuracies propagated to the synMPRAGE result
in a limited cortical delineation accuracy in these areas particularly affecting pial (red
lined) as well as GM/WM interface (yellow lined) reported in the right column in
overlay to the relative synMPRAGE, T1 and B+

1 maps, non-physiologically regressed
from the correct pial location due to poor local B+

1 amplitude.
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Figure 6.4.3: MRF sensitivity to T ∗
2 with different TE patterns. For each pre-

scribed TE pattern (left column) reported in separate rows a subset of the generated
dictionary entries are depicted (middle column) for a single T1 value (800 ms) and FA
(20 deg) and a range of T ∗

2 values from 5 to 30 ms (step 1 ms), differently colored
for better visual clarity. The similarity among all dynamics couples is shown in the
right column, depicting the normalized inner product among all dictionary entries for
different TE patterns (by row) to show improvements in T ∗

2 encoding sensitivity. The
extreme case of maximum sensitivity is when the dictionary entries are uncorrelated
among them (blue scaled similarity) or at least only locally correlated among similar
T ∗
2 values while first row demonstrate how the dictionary is composed by very similar

entries, thus strongly non-diagonal similarity matrix (yellow out of diagonal).
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The four representative examples of TE patterns reported by row in

6.4.3, respectively show in the left column the prescribed TE pattern, in

the central column the normalized dynamic of dictionary entries simu-

lated for the prescribed MRF sequence with the associated TE pattern (for

a single T1 = 800 ms, T ∗
2 ranging from 5 to 30 ms with step 1 ms and 33 to

50 ms with step 5 ms, FA peak of 20 deg with the previous half sinusoidal

pattern) whereas the right column depicts the normalized inner product

among each dictionary entry pairs reported in the central column (entries

sorted by increasing T ∗
2 ).

The first row of 6.4.3 depicts a minimal TE variability (i.e. 1 ms added

at each section on top of baseline TE) across the three sequence sectors

(same length for simplicity of 250 RF shots) which results in a very lim-

ited span of the simulated dynamics (central column) which are visually

consistently similar, thus difficult to distinguish under noisy conditions.

This is confirmed in the right column where, under noise-free conditions,

the actual similarity displayed by all the entries is very high (correspond-

ing to linear correlations r > 0.95), suggesting poor sensitivity for T ∗
2 (i.e.

very similar dynamics regardless of T ∗
2 ) provided by such TE pattern.

An enhanced T ∗
2 contrast was obtained using higher TE , consistent

with the simulated T ∗
2 range: as a rule of thumb, to provide significant

signal variations the TE should be at least an integer fraction of the aimed

T ∗
2 . For example, aiming at T ∗

2 of 20 ms, possible TE should be of 10 ms

with higher sensitivity offered matching TE on T ∗
2 (providing 40% of sig-

nal variations according to the single exponential decay model described

in Chapter 2). The second to fourth row of Figure 6.4.3 apply this prin-

ciple to progressively enhance the T ∗
2 weight of each dynamic, passing

for enhancing contrast to possibly saturated contrast at extremely high

TE (40 or 100 ms) which actually enhance contributions of high T ∗
2 (e.g.

30 ms) while saturating (i.e. nulling) the signal of lower T ∗
2 (e.g. 5 ms).

Coherently the similarity matrices associate to these dynamics reflect the

enhancing dictionary sensitivity to the full T ∗
2 spectrum simulated.

However, the extreme case offered in the fourth row depicts how major

T ∗
2 contrast is overall offered along the simulated T ∗

2 range but this con-
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dition actually provides dynamics difficult to distinguish if having low

T ∗
2 (5 to 12 ms) rather than intermediate (13 to 22 ms) or high (23 to 30

ms) explaining the blocked appearance of the matrix where the contrast

is more consistent among blocks rather than being uniformly distributed

across all the T ∗
2 range.

Note that this condition is anyway impractical form the experimental

point of view as requires extremely long scan time as compared to shorted

acquisitions.

If collecting with TE/TR = 3/8 ms requires (((5 x 16 x (8 x 750 + 60 ms)))/1000

+ 2)/60 = 8.1 min (16 kz partitions composed by stars of 5 spokes over 750

RF shots, 60 ms approximate inversion time, 2 sec inter-shot delay) while

using a TE (averaged for calculation simplicity) of 15 ms would require

an excessive scan time of (((5 x 16 x (20 x 750 + 60 ms)))/1000 + 2)/60 =

20.1 min.

6.4.3.2 PHANTOM MAPPING RESULTS

Figure 6.4.4 shows the estimated T1 (left column), T ∗
2 (middle column)

and FA (right column) maps obtained with standard qMRI methods (first

row, from the top), the original 3D-PNP-MRF sequence (second row) and

the implemented MRF with variable TE (third to fifth rows). These re-

sults were obtained in different scan sessions after repositioning (maps

are thus rotated).

Despite some reconstruction artefacts involving the background of the

liquid phantom, the geometrical structure of the phantom and inner tubes

was well preserved in the MRF maps obtained with the implemented

MRF-vTE sequence (third to fifth rows) as compared to the reference

maps (first and second rows). Obtained FA maps (right column) were

in very high agreement both in terms of spatial pattern and amplitude

among the original MRF and proposed MRF-vTE sequence.

Similarly, the T1 map (middle column) obtained was in remarkable agree-

ment among measurements.

However, T ∗
2 values showed an apparent deviation from the T ∗

2 ref-
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Figure 6.4.4: MRF phantom results at 7T. Phantom comparison of estimated
T1 (left column), T ∗

2 (middle column) relaxation and B+
1 (right column) with ref-

erence methods (top rows), the original 3D-PNP-MRF (second row from top) and
implemented MRF-vTE (third to fifth row) with different TE patterns to demonstrate
their different T ∗

2 sensitivity. All data was collected using a 1x1x5 mm voxel size and
regarding MRF sharing TR=7.5 ms and same FA pattern and amplitude (25 deg).
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erence map over high T ∗
2 values (over 50 ms) and a consistent spatial

bias (over the phantom container background) passing from central ar-

eas where the B+
1 actually matches the prescribed FA to external parts

of the phantom where the achieved FA can be much lower resulting in

the eventual loss of T ∗
2 sensitivity. The three tested TE patterns showed

progressively lower T ∗
2 sensitivity from third to fifth row, losing accuracy

but also exhibiting lower sensitivity to the B+
1 inhomogeneity.

Figure 6.4.5: Phantom validation of MRF-vTE. Phantom validation analysis
by means of linear regression between relaxation parameters estimated with reference
methods and MRF-vTE (T1on top, T ∗

2 in the bottom) expressing the linear agreement
within the test tubes (numbered and schematized laterally).

To quantify the T1 and T ∗
2 agreement, we performed a linear regres-

sion analysis (Figure 6.4.5) over corresponding ROIs, manually delin-

eated encompassing the phantom inner tubes. A very high linear agree-

ment (R2 > 0.99) was obtained in terms of T1 values (top-left of Figure
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6.4.5) with minor T1 underestimation (regression slope = 1.05) with MRF-

vTE as compared to the T1 estimated with IR-GRE. Deviations observed

in the 400 to 1200 ms T1 range peaked up to -8%. A similarly high lin-

ear agreement (R2 > 0.95) was obtained in terms of T ∗
2 values (bottom-

left scatter plot, Figure 6.4.5) with modest T ∗
2 overestimation for high T ∗

2

values (T ∗
2 > 25ms) and remarkable agreement over the lower T ∗

2 range

(T ∗
2 < 25ms). The observed T ∗

2 deviation can be explained by the a pro-

gressive loss of dictionary encoding sensitivity, observed using MRF-vTE

as compared to the reference with relative error increasing from +20% at

30 ms up to +30% at 50 ms.

6.4.4 APPLICATION ON HUMAN DATA

Preliminary in-vivo data comprised a standard GRE with multiple echo

times along a single 2D slice for a reference T ∗
2 mapping, a standard

structural MPRAGE, the original 3D-PNP-MRF sequence and the imple-

mented MRF-vTE sequence collected using two patterns of TE to demon-

strate their different effectiveness.

Collected images and relaxation maps are shown in 6.4.6 for a repre-

sentative transversal slice. Despite the extreme acceleration levels em-

ployed, the MRF reconstruction and sequence framework provided ad-

equate geometrical accuracy in agreement with the structural MPRAGE

(Figure 6.4.6, first row on left) in posterior areas while frontal lobe areas

exhibited strong T1 estimation bias with both the original MRF sequence

(Figure 6.4.6, second row) and implemented MRF-vTE variants (Figure

6.4.6, third and fourth row). Even if this bias corrupted the T1 of frontal

structures (as well as T ∗
2 ), the underlying anatomy is possibly geomet-

rically preserved (with all MRF implementations) observing the under-

lying interfaces. Instead, the T1 estimated with all the MRF sequences

in other brain areas was in high agreement with the literature values for

GM and CSF while the WM appears slightly overestimated (up to 10%

higher than reference) at 7T. The estimated B+
1 field amplitude and spa-

tial distribution was consistent with the prescribed FA pattern.
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Figure 6.4.6: MRF results in-vivo at 7T. Comparisons of estimation results using
a standard MPRAGE or ME-GRE for T ∗

2 mapping (first row on top) rather than
the original 3D-PNP-MRF (second row) or the implemented MRF-vTE (third and
fourth row) showing the obtained T1, T

∗
2 and FA (B+

1 ) maps using two different TE

patterns.
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Regarding T ∗
2 estimation, the MRF-vTE implementation with lower TE

(Figure 6.4.6, third row) exhibited very poor estimation results with es-

timates saturated (overestimated) at the dictionary top value of 100 ms

other than the brain middle where the FA is consistently high. This re-

sult was in agreement with the limited MRF sensitivity making it un-

usable for any application. Interestingly though, the associated T1 map

obtained was in high agreement with the T1 supplied with the original

MRF testifying how the poor T ∗
2 contrast actually did not affect the esti-

mation accuracy of other parameters. The same applied for the B+
1 spatial

pattern while its actual amplitude is underestimated by as much as 17%

compared to the original MRF.

Instead, using a pattern of higher TE (Figure 6.4.6, fourth row) pro-

vided more adequate T ∗
2 estimate with a comparable range to the T ∗

2 ref-

erence map. However, even if the WM amplitude appears to be in quan-

titative agreement with the reference except for frontal lobe areas, highly

distorted and affected from the same bias exhibited by the T1. Also the

cortical GM (omitting the GM with some partial volume with CSF, possi-

bly affected by reconstruction uncertainty due to unresolved aliases over

the CSF, observed to be a strong GRE signal source) generally had T ∗
2 val-

ues similar to the reference map but the image quality is locally accept-

able only along posterior brain areas where the higher TE spent actually

give sufficient sensitivity leaving the only remaining bias over very high

T ∗
2 values as those involving the CSF (T ∗

2 > 100ms) eventually related to

limitations in dictionary coverage as well as limited MRF sensitivity to

such long decay rates.

Again, the T ∗
2 estimate and geometrical accuracy was best in middle

brain areas both for WM and GM where the possible SNR role offered

by high FA favoured clean T ∗
2 estimates. Note that the reference T ∗

2 map

as well exhibited some frontal lobe uncertainty and distortions in spatial

agreement with those observed with MRF sequences while the MPRAGE

exhibit no clear issues in such location. This result suggest that a TE pat-

tern encompassing 15 to 25 ms could be sufficient to provide adequate T ∗
2

contrast over the signal variations under this under sampling and noise
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condition, other artefacts involving frontal lobe are thought to be related

to hardware miscalibration effects (possibly affecting gradient timing ac-

curacy) further exacerbated by a locally poor B+
1 to be accounted for in

future applications with suitable calibrations and more homogeneous B+
1

application.

A second human scan session improved on previous MRF sequence

limitations collecting the original 3D-PNP-MRF sequence and MRF-vTE

sequence using a single TE pattern for quantification simplicity.

Encountered effects of miscalibrated hardware on MRF is demonstrated

in figure 6.4.7. The estimated M0 without any correction (second box

from left, 0 px shift) exhibit a consistent inhomogeneity bias not related

to the underlying apparent proton density nor to the possible receive in-

homogeneity profile expected from the coil sensitivity.

We conjectured that this stems from a not perfectly calibrated gradient

system, where the rise delay of one or possibly more imaging gradients,

resulting in a coarse modulation of M0.

To test for this effect we provided a simple correction strategy which

assumes the gradient delay errors are mostly resulting in activation de-

lays that correspond in k-space to a linear shift along the prescribed tra-

jectory. As resulting from discrete delay blocks caused by this effect, we

considered a correction scheme that shifts each acquired k-space line by -

1 to +3 points along the spoke direction (see 6.4.7) adapting the prescribed

k-space trajectory and sampling before the image reconstruction rather

than applying k-space interpolations.

Within this scheme a gradient anticipation would correspond to a k-

space line (spoke) acquired earlier along the trajectory, accounted by an-

ticipating the ideal spoke trajectory by 1 pixel whereas positive delays

would result in effectively measured data later on the spoke direction, to

be accounted for by positive shifts along the trajectory as demonstrated

in Figure 6.4.7-A for a range of discrete shifts.

The resulting M0 obtained by providing different k-space shift to each

acquired spoke is represented in Figure 6.4.7-B. As can be clearly ob-
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Figure 6.4.7: Effect of delayed k-space trajectory. Representation of a single
spoke (A) consisting on consecutive points to be shifted along the spoke direction of
discrete positions to mimic the effects of gradient delays from -1 point to +3 points.
The M0 estimated (B) with the original 3D-PNP-MRF with no shift of collected
spokes exhibited significant background amplitude modulation possibly correlated
to gradient delays effects. Negative shifts exacerbated the issue visually whereas a
positive +2 points (pixels) shift restored the expected M0 pattern based on the brain
proton density modulated by the unresolved coil sensitivities (B−

1 ).

served, gradient delays did not anticipate the data acquisition (left box)

from the biased M0 appearance. Rather, they are providing an error more

possibly accounted by a discrete shift of two positions along the spoke

(+2 pixels) as the obtained M0 appears consistent with the ideal proton

density in overlay with the receive sensitivity while additional shifts ac-

tually worsen the observed bias.

The results of this correction scheme are showed in Figure 6.4.8-A re-

garding the estimated T1 map using the original MRF sequence imple-

mentation along increasing k-space shifts applied. Passing from no shift

(+0 px) to the chosen shift (+2 px) it is clear that the frontal bias ob-

served in the first subject could have been ameliorated by such a cor-

rection scheme as the frontal bias could be well described by a frontal

bias also in the second, eventually corrected by the trajectory shift.

However, even if overall effective, the T1 estimate in cortical GM of

posterior brain areas start to suffer from an increased artefact content and
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lower T1 as compared to frontal brain areas (with relative difference up to

13% in terms of T1) suggesting how the correction scheme helps but not

completely accounted for trajectory errors. Figure 6.4.8-B showed how

the implemented correction reversed a strongly biased T1 and T ∗
2 maps

obtained with MRF-vTE to maps with decent structural quality without

any sequence improvements other than post-processing trajectory correc-

tions (i.e. k-space shifts before image reconstruction). Even if similar im-

provements were obtained with the MRF-vTE in terms of T1 mapping as

compared to the original MRF sequence, striking effects interested the T ∗
2

quantification (while the B+
1 mapping exhibit consistent results regard-

less of any trajectory shift).

Interestingly, the frontal bias which completely disrupted the T ∗
2 quan-

tification (Figure 6.4.8-B, middle column) was resolved by the correction

providing whole-brain level improvements (showed in Figure 6.4.9, top

row) in terms of structural delineation and literature agreement for CSF

and GM while locally inflated T ∗
2 regarding the WM.

The local structural appearance of T ∗
2 was still noisy after the correc-

tion (showed in Figure 6.4.9, bottom row and middle column), offering

limited CSF/GM and dura distinguishability to be eventually used to en-

hance cortical delineations but this could be improved by enhancing the

MRF pattern sensitivity, currently not strictly optimized as previously

stated.

6.5 CONSIDERATIONS AND FUTURE PERSPECTIVES

A novel framework for brain cortex segmentation has been proposed.

Building upon the idea of using more than the T1 relaxation to better

distinguish cortical GM from meninges as proposed by van Der Kouwe

et al., (van der Kouwe et al., 2008), we generalized the image collection for

accurate cortical segmentation applying the MRF concept for quantitative

MRI combined with synthetic MRI for arbitrary contrast generation.

In this preliminary study, we tackled the MRF sequence implementa-
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Figure 6.4.8: MRF results with delay correction. A) T1 estimates obtained using
the original 3D-PNP-MRF sequence with no correction to the suggested correction
(+2 points shift) from left to right. B) T1, T

∗
2 and B+

1 estimates obtained with MRF-
vTE without (top row) or with suggested shift correction (bottom row) showing the
recovery of anatomical accuracy and T ∗

2 sensitivity using identical parameterization
of the MRF sequence.
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Figure 6.4.9: Effect of delay correction over MRF and synMPR. Quantification
results and synthetic MPRAGE obtained with MRF-vTE after gradient delay correc-
tion showing whole-brain (top row) improvements in estimation accuracy as well as
literature agreement while locally providing enhanced anatomical accuracy (bottom
row) but still noisy T ∗

2 results out of brain.
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tion for robust and whole-brain qMRI measurement. As we focused on

cortical segmentation errors resulting from poorly segregated GM from

dura structure, we first explored literature values for T1 and T ∗
2 of dura to

identify a suitable T ∗
2 sensitivity range. A previous 3D-MRF implemen-

tation was therefore extended to provide such T ∗
2 estimation capability

along with T1 relaxation and B+
1 (that is the FA spatial distribution), en-

countering however, hardware-related hurdles as well as some local lim-

itations in terms of tissue delineation accuracy with T ∗
2 .

Quantitative parametric consistency was confirmed in phantom and pre-

liminarily evaluated on human brain data, demonstrating the contrast

homogeneity potential and anatomical accuracy of synthetic MPRAGEs

obtained from T1 relaxation in comparison to the standard MPRAGE (ac-

quired) still affected by coarse and scanner-dependent intensity and con-

trast performances.

We also portrayed the disrupting effect of hardware-related inaccura-

cies over qMRI measures, in this study possibly arising from the imag-

ing gradient delays which caused significant k-space trajectory devia-

tions from the expected one during reconstruction providing strong back-

ground modulations which disrupted any possible model-based consid-

eration if unaccounted for with the radial readout scheme considered. T ∗
2

estimates were found to be particularly sensitive to these inaccuracies.

Moreover, limited B+
1 performances were connected to a locally poor

SNR which as well resulted in inconsistent dictionary matching results

and anatomically unreliable cortical delineations impeding its correct de-

lineation.

Currently observed limitations are still limiting the effectiveness of T ∗
2

estimate to resolve accurately GM from dura while a first step was offered

even using only T1 relaxation to generate a synthetic MPRAGE which

strongly contrast with +/- 1 voxel of spatial error the external GM limit,

serving as primary confidence interval to be restricted when a more con-

sistent T ∗
2 information is locally available. Realistically, refining the MRF

reconstruction to make it less sensitive to hardware-related inaccuracies

(within a radial readout design) while providing more homogeneous B+
1 ,
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for example shifting from 7T to 3T, is expected to significantly improve

the MRF estimation results while promising direct inter-subject compara-

bility improvements in any subsequent functional connectivity analysis.

One fundamental limitation to be addressed in future studies is the

MRF optimisation process, currently mostly based upon empirical con-

siderations without clear evidence for optimality of the prescribed FA,

TE , TR pattern both in terms of actual scan time or sensitivity of sim-

ulated dynamics for example to T ∗
2 relaxation. Examples of the impact

of such optimisation on the estimation accuracy were reported without

however providing conclusive evidence toward a single sequence param-

eterisation. In practice, this optimisation tool will generalize the concept

of MRF dictionary sensitivity to any model parameter in order to let the

researcher choose which parameter, and within which parametric range,

is to be emphasized by the MRF sequence parameters removing the need

for manual tuning of TE as currently done.

However, even guaranteeing optimal sensitivity to a defined T ∗
2 range,

its estimation accuracy is still limited within the implemented frame-

work. In fact, to have a significant T ∗
2 contribution over MRF signals,

the TE needs to be sufficiently long and possibly along a comparable

temporal scale to the aimed T ∗
2 . Therefore, to measure brain-like T ∗

2 val-

ues the baseline TE/TR values adopted of 3/8 ms should be widely in-

creased for example to 15/20 ms (GM is still not clearly distinguished

from WM even considering TE/TR = 10/15 ms) making the actual scan

time proportionally longer (five times more) to the point of being practi-

cally unfeasible even implementing additional under sampling strategies

to accelerate the data collection. To overcome this limit the implemented

framework could consider the T2 relaxation instead of T ∗
2 benefiting of the

MRF sequence flexibility to switch some FLASH-based kernels to corre-

spondent FISP segments needed to introduce a proper T2 weight without

prohibitively long TR, however still requiring an adequate MRF pattern

optimisation method.
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Dont cling to a mistake just because you spent

a lot of time making it.

Aubrey De Graf

7
Conclusions

Describing the macroscopic brain communication structure based on inter-

areal correlation provided crucial insights about the fundamental brain

organization. It offered a powerful characterization tool to study the

brains response to pathologies such as Alzheimers Disease to psychiatric

conditions like Schizophrenia. Nevertheless, there is no general consen-

sus about the best experimental approach to determine the brains fun-

damental organization. Different approaches provided, in fact, only par-

tially overlapping evidence for example combining brain connectivity es-

timates derived from diffusion MRI data (i.e. structural connectivity) and

functional MRI data (i.e. functional connectivity).

In particular, there is very limited biological support for many of the in-

teresting topological features observed in estimated brain networks cur-

rently interpreted mostly from a high level cognitive perspective.

To solve this issue, we have drawn inspiration from the final sentence

of the work by Raichle at al., (Raichle, 2006) proposing as major chal-

lenge for the neuroscience community the understanding of the associ-

ation between brain functions and the underlying energy consumption.
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With the aim of providing further, biologically-motivated, evidence to the

obtained network structures while possibly discarding unlikely features,

we have resorted to a multi-modal measure of brain connectivity (FC)

and local glucose metabolism (18F-FDG-PET). Using literature available

multi-modal data, the first study reported in this dissertation (Chapter 4)

investigated whether group-level measures of FC can be associated to the

local glucose metabolism in resting state condition.

The group-average FC topological organization of different subjects was

summarized by means of interpretable local measures derived from graph

theory.

Single functional connections (referred as links or edges) were not able

to explain the local metabolic activity of linked areas (referred as network

nodes). Instead, the entire set of connections interesting each functional

area (defined as connectivity profile) shaped the local metabolic activity:

nodes with similar connectivity profile were found to be more metaboli-

cally similar than randomly chosen ones suggesting a background modu-

lation effect over glucose metabolism from by the FC structure. However,

among all local topological features considered, the most effective in ex-

plaining the brain’s metabolic activity was the total connectivity of each

node (i.e. node strength) in agreement with similar analysis performed

voxel-wise or at network level. Furthermore, this association was more

clearly mediated by short-range and between-network connections.

However, the explanatory power of such metric was quite limited in

quantitative terms and affected by significant departures from the even-

tually linear relationship. These departures highlight a possible network-

related metabolic behavior in resting state involving dynamic adapta-

tion mechanisms. The metabolic activity of high-rank network nodes,

backbone of the brain network, was found to be consistently tuned by

their connectivity and modulated according to their role in the network

as compared to non-central nodes, casting light on the previously ob-

served abrupt metabolic alteration paralleled by a functional connectiv-

ity loss observed in many of such nodes under pathologic conditions.

Afterwards, macroscopic level communication structures did not clearly
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support inter-areal connectivity if not in a specific subset of functionally

central brain areas. The regional metabolism nonetheless was a valuable

tool to comprehend and guide network structure selection, promoting

physiologically plausible structures able to mimic relevant pathologic al-

terations.

This first study was limited by the need of considering group-level FC

structures and experiments with limited explanatory power also from the

metabolic perspective. Recent studies pointed out the benefits of single-

subject evaluations of the FC structure as well as its energy metabolism

to overcome spurious variability effects and avoid group-level consider-

ations that can mask out relevant connectivity-metabolism effects impos-

sible to study without the sensitivity offered by single subject investiga-

tions. However, if the brains FC structure is poorly understood at group

level, at single-subject level the estimation is possibly also confounded by

nuisance effects able to impair genuine FC estimations making it difficult

to disentangle spurious FC structural variabilities from subject-specific

brain architecture optimizations.

To provide consistent FC estimate at single subject level to be employed

in future multi-modal studies that makes use of hybrid PET/MRI scan-

ners, in the second part of the dissertation (Chapter 5) we performed

a protocol optimization study aimed at detecting suitable experimental

protocols. The optimization was based upon principles drawn from task-

fMRI literature, which suggest to promote thermal noise regime in order

to minimize spurious spatial correlations. We reframed the concept for

resting state FC demonstrating the advantages of such a noise regime and

proposing experimental protocols based also on the noise nature while

indicating how the FC structure (based on linear correlation measures)

can be amplitude-modulated by the actual noise regime and level, possi-

bly masking interesting effects during between subjects comparisons.

The optimization study was purposely extended as a two-stage opti-

mization to evaluate the impact of main experimental parameters over

the estimated FC structures and the role of propagated noise using cur-

rent state-of-the-art approaches. We observed a complex interplay be-
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tween image accelerations (multi-band, MB; in-plane parallel imaging,

iPAT) and prescribed slice orientations highlighting a non-trivial inter-

play among imaging hardware and reconstruction over the temporal noise

propagated in fMRI measurements. We provided strong evidence toward

the use of non-transversal slice orientations to make the most of MB ac-

celeration within the available setup promoting three experimental set-

tings that satisfied our request for spatio-temporal sampling rate. These

three settings were further explored in a test/retest application (matched

protocols) to obtain single-subject FC matrices and evaluate their sensi-

tivity to a changing, although very similar experimental protocol. The

FC matrices obtained exhibited structured differences over many mid-

dle and lower-brain areas, whose connectivity (along with inferred brain

network features) was positively correlated to the tSNR loss experienced

in these areas with increasing image accelerations particularly related to

the iPAT usage, ultimately able to promote gross temporal signal-to-noise

(tSNR) variations explaining most of the observed FC differences among

settings.

Based on these observations we encourage the use of different slice ori-

entations to exploit MB acceleration to enhance both fMRI scanning capa-

bilities and BOLD sensitivity without ignoring the need for careful exper-

imental optimization to provide tolerable noise levels as we pointed out

that even consistently similar experimental protocols can indeed provide

different FC estimates. A practical limitation encountered during the first

multi-modal study performed on literature data regarded the definition

of a suitable structural support for FC evaluation. Typical FC data pre-

processing after suitable denoising requires the registration of such data

over a structural support consisting of high-resolution structural images

which can be automatically segmented for example to delimit brain areas

to define functional network nodes.

However, structural images can be corrupted by artefacts (e.g. motion)

as well as exhibit variable contrast across brain structures eventually re-

sulting in poor segmentation outcomes. As described in Chapter 6, to

avoid local FC confounds the manual correction of segmentation errors
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for example involving cortical delineation inaccuracies is mandatory. In

the last part of this dissertation (Chapter 6), we propose a novel structural

imaging framework using experimental methods robust to motion effect

combined with that allows for more flexible designs in order to mini-

mize the manual interventions needed offering an approach less depen-

dent over the used sequence and scanner. The collection of structural im-

ages was replaced by state-of-the-art quantitative MRI approaches based

on Magnetic Resonance Fingerprint (MRF) to provide high-resolution

relaxation maps subsequently used to generate images with arbitrary

MRI contrasts (synthetic MRI) making the actual automatic segmenta-

tion more robust to artifacts (e.g. related to motion or gross intensity

inhomogeneity) and virtually independent from the used sequence and

scanner.

We formulated this framework as a proof of concept within an auto-

matic pipeline. A dedicated 3D MRF sequence was developed to en-

able high-resolution relaxation mapping with feasible scan time allow-

ing for enhanced motion robustness and experimental flexibility. We

also demonstrated in-silico the feasibility of a parallel-imaging imple-

mentation based on view sharing, regular k-space under-sampling and

conjugate-gradient sensitivity encoding reconstruction to further enhance

the MRF scan time. The implemented sequence was able to determine

within same imaging space T1 and T ∗
2 relaxation without B0 and B+

1 ef-

fects. The usage of T ∗
2 was considered upon previous suggestions about

its useful application to accurately distinguish brain cortex from meninges.

We demonstrated the parametric accuracy of obtained relaxation esti-

mates over phantom data and preliminarily evaluated its application in-

vivo. However, we encountered a disruptive effect from hardware-related

inaccuracies over qMRI measures (particularly T ∗
2 ) which required fur-

ther development of more flexible image reconstructions for example to

cope with inaccurate k-space trajectories. As the implementation and

preliminary evaluation was carried out on healthy subjects with a 7T

scanner, another limiting effect was due to locally poor B+
1 performances

resulting in poor SNR underlying to inconsistent relaxation estimates
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mostly involving frontal and temporal brain areas. More homogeneous

B+
1 conditions as well as correction for imaging errors provided consis-

tently higher quality relaxation maps in good qualitative and quantita-

tive agreement to reference relaxation methods and literature. Further

refinements of the MRF reconstruction as well as shifting from 7T to 3T is

expected to significantly improve the MRF estimation results, promising

to achieve performances at least comparable with current standard struc-

tural images while offering enhanced robustness to motion and flexibility

in contrast generation.

In conclusion, this dissertation showed that the use of consistent bi-

ological information can help to study the brains functional connectiv-

ity architecture uncovering its main organizational features to support a

more extensive clinical application. Moreover, this work demonstrates

the benefit and limitations of current FC approaches at single-subject

level as well as its eventual dependence over the noise level demanding

for more clear guidelines to the researcher interested in resting state FC

assessment. The evaluated FC protocols will soon be applied in a multi-

modal PET/fMRI study aimed at extensive sampling of single-subject

features (healthy subjects) carried out within a joint collaboration be-

tween the University hospital of Padova (Nuclear Medicine unit, Depart-

ment of Medicine, Padova, Italy), the Padova Neuroscience center (Uni-

versity of Padova, Italy) and the Department of information engineering

of the University of Padova (Padua, Italy).

Finally, a generalized structural imaging framework was proposed to

offer more robust structural support to functional analyses while pro-

viding quantitative tissue characterization requiring less manual tuning.

This approach is applicable on different scanners within in a completely

automatic pipeline also aimed at maintaining a convenient separation

layer between the experimental scanning sequence, image generation and

processing useful for a better system maintenance but still requiring method-

ological improvements from the relaxation mapping method side.
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