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Abstract

The capability of having human and robots cooperating together has increased the

interest in the control of robotic devices by means of physiological human signals. In

order to achieve this goal it is crucial to be able to catch the human intention of move-

ment and to translate it in a coherent robot action. Up to now, the classical approach

when considering physiological signals, and in particular EMG signals, is to focus on

the specific subject performing the task since the great complexity of these signals.

This thesis aims to expand the state of the art by proposing a general subject-

independent framework, able to extract the common constraints of human movement

by looking at several demonstration by many different subjects. The variability intro-

duced in the system by multiple demonstrations from many different subjects allows

the construction of a robust model of human movement, able to face small variations

and signal deterioration. Furthermore, the obtained framework could be used by any

subject with no need for long training sessions.

The signals undergo to an accurate preprocessing phase, in order to remove noise

and artefacts. Following this procedure, we are able to extract significant information

to be used in online processes. The human movement can be estimated by using well-

established statistical methods in Robot Programming by Demonstration applications,

in particular the input can be modelled by using a Gaussian Mixture Model (GMM).

The performed movement can be continuously estimated with a Gaussian Mixture Re-

gression (GMR) technique, or it can be identified among a set of possible movements

with a Gaussian Mixture Classification (GMC) approach. We improved the results by

incorporating some previous information in the model, in order to enriching the knowl-

edge of the system. In particular we considered the hierarchical information provided

by a quantitative taxonomy of hand grasps. Thus, we developed the first quantitative

taxonomy of hand grasps considering both muscular and kinematic information from

40 subjects. The results proved the feasibility of a subject-independent framework,

even by considering physiological signals, like EMG, from a wide number of partici-

pants.
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The proposed solution has been used in two different kinds of applications: (I) for

the control of prosthesis devices, and (II) in an Industry 4.0 facility, in order to allow

human and robot to work alongside or to cooperate. Indeed, a crucial aspect for mak-

ing human and robots working together is their mutual knowledge and anticipation of

other’s task, and physiological signals are capable to provide a signal even before the

movement is started. In this thesis we proposed also an application of Robot Program-

ming by Demonstration in a real industrial facility, in order to optimize the production

of electric motor coils. The task was part of the European Robotic Challenge (Eu-

RoC), and the goal was divided in phases of increasing complexity. This solution

exploits Machine Learning algorithms, like GMM, and the robustness was assured by

considering demonstration of the task from many subjects. We have been able to apply

an advanced research topic to a real factory, achieving promising results.

Keywords: Subject-Independence, Physiological Signals, EMG Signals, Quantita-

tive Taxonomy of Hand Grasps, Human-Robot Interaction (HRI), Robot Programming

by Demonstration (RPbD)
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Sommario

La possibilità di collaborazione tra robot ed esseri umani ha fatto crescere l’inte-

resse nello sviluppo di tecniche per il controllo di dispositivi robotici attraverso segnali

fisiologici provenienti dal corpo umano. Per poter ottenere questo obiettivo è essenzia-

le essere in grado di cogliere l’intenzione di movimento da parte dell’essere umano e di

tradurla in un relativo movimento del robot. Fin’ora, quando si consideravano segnali

fisiologici, ed in particolare segnali EMG, il classico approccio era quello di concen-

trarsi sul singolo soggetto che svolgeva il task, a causa della notevole complessità di

questo tipo di dati.

Lo scopo di questa tesi è quello di espandere lo stato dell’arte proponendo un fra-

mework generico ed indipendente dal soggetto, in grado di estrarre le caratteristiche

del movimento umano osservando diverse dimostrazioni svolte da un gran numero di

soggetti differenti. La variabilità introdotta nel sistema dai diversi soggetti e dalle di-

verse ripetizioni del task permette la costruzione di un modello del movimento umano,

robusto a piccole variazioni e a un possibile deterioramento del segnale. Inoltre, il fra-

mework ottenuto può essere utilizzato da ogni soggetto senza che debba sottoporsi a

lunghe sessioni di allenamento.

I segnali verranno sottoposti ad un’accurata fase di preprocessing per rimuovere

rumore ed artefatti, seguendo questo procedimento sarà possibile estrarre dell’infor-

mazione significativa che verrà utilizzata per elaborare il segnale online. Il movimento

umano può essere stimato utilizzando tecniche statistiche molto diffuse in applicazio-

ni di Robot Programming by Demonstration, in particolare l’informazione in input

può essere rappresentata utilizzando il Gaussian Mixture Model (GMM). Il movimen-

to svolto dal soggetto può venire stimato in maniera continua con delle tecniche di

regressione, come il Gaussian Mixture Regression (GMR), oppure può venire scelto

tra un insieme di possibili movimenti con delle tecniche di classificazione, come il

Gaussian Mixture Classification (GMC). I risultati sono stati migliorati incorporando

nel modello dell’informazione a priori, in modo da arricchirlo. In particolare, è stata

considerata l’informazione gerarchica fornita da una tassonomia quantitativa dei mo-
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vimenti di presa della mano. E’ stata anche realizzata la prima tassonomia quantitativa

delle prese della mano considerando l’informazione sia muscolare che cinematica pro-

veniente da 40 soggetti. I risultati ottenuti hanno dimostrato la possibilità di realizzare

un framework indipendente dal soggetto anche utilizzando segnali fisiologici come gli

EMG provenienti da un grande numero di partecipanti.

La soluzione proposta è stata utilizzata in due tipi diversi di applicazioni: (I) per

il controllo di dispositivi prostetici, e (II) in una soluzione per l’Industria 4.0, con l’o-

biettivo di consentire a uomini e robot di lavorare assieme o di collaborare . Infatti, un

aspetto cruciale perché uomini e robot possano lavorare assieme è che siano in grado

di anticipare uno il task dell’altro e i segnali fisiologici riescono a fornire un segnale

prima che avvenga l’effettivo movimento. In questa tesi è stata proposta anche un’ap-

plicazione di Robot Programming by Demonstration in una vera fabbrica che si occupa

di realizzare motori elettrici, con lo scopo di ottimizzarne la produzione. Il task faceva

parte della European Robotic Challenge (EuRoC) in cui l’obiettivo finale era diviso

in fasi di complessità crescente. La soluzione proposta impiega tecniche di Machine

Learning, come il GMM, mentre la robustezza dell’approccio è assicurata dalla consi-

derazione di dimostrazioni da parte di molti soggetti diversi. Il sistema è stato testato

in un contesto industriale ottenendo risultati promettenti.

Parole chiave: Indipendenza dal soggetto, Segnali fisiologici, Segnali EMG, Tas-

sonomia quantitativa dei movimenti di presa, Interazione uomo-robot, Robot Program-

ming by Demonstration



Chapter 1

Introduction

During the last years, the dissemination of robots has exploded in many aspects of

everyone lives. Up to now, we can meet robotic devices not only in the most advanced

factories, but also in our houses. Nowadays, it is common to find a robot autonomously

cleaning up a house, or assisting a surgeon during a medical operation. The main rea-

sons are the price decrease and the boosted investments to develop technology in the

field of robotics. All these new technologies have the goal of improving humans’ qual-

ity of life, for example by reducing their workload, or by substituting the operator in

dangerous and strenuous tasks. Furthermore, recent advancements are meant to help

injured persons regain their lost functionalities, for example by providing robotized

prosthesis, exoskeletons or advanced rehabilitation frameworks [1] [2]. These last so-

lutions exploit physiological signals from the subject’s body, in order to emulate and

replicate the human behaviour. Physiological signals are generated from the nervous

system and they cause muscle contractions, thus a movement. Considering physiologi-

cal signals for controlling a device like a prosthesis has a twofold vantage. Firstly, they

are generated before the actual movement, thus it is possible to detect the movement

the subject will do before it is actually performed. The second vantage comes from the

fact that we do not record the actual movement of a limb, but the muscular activation.

This means that it is possible to collect this kind of signals even from amputated sub-

jects, by recording the activation of their residual muscles. Despite the great progresses

in the field, and the constant development of new, innovative solutions, we are still far

from the realization of a prosthesis able to exactly reproduce a human limb. Physi-

ological signals used to control prosthesis, like EMG signals, are sensitive to several

factors [3]. Machine Learning can be used as a tool to generalize muscular behaviors

in different conditions with the objective of inferring information useful to control a

robotic device, e.g. the joints bending angles of a prosthesis [4]. In particular, Robot
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Programming by Demonstration paradigm aims to train robotic devices through human

demonstrations in order to teach them how to perform a task [5]. Usually, robots need

a large number of demonstrations to learn how to perform a simple task. Selecting a

specific Machine Learning algorithm could help to reduce the number of demonstra-

tions in certain contexts, but otherwise improvements are limited. On the other hand,

overcomplicated Machine Learning algorithms could end in overfitting. Consequently,

the model could fail in predicting reliably future observations. The same problem may

occur when data are limited and the model focuses on specific situations without the

possibility to fit additional data. With overfitting, the framework lacks of abstraction

and generalization capability and it will not be able to face even limited variations.

Generalization is a key concept if the goal is to obtain a relation between movements.

Nevertheless, very simple algorithms coupled with an excessively wide dataset could

lead to underfitting. The resulting model will not capture the common characteristics

among the data providing poor predictive performance. A good way to incorporate

variability is to consider actions developed by many different subjects [6]. The same

gesture can slightly change depending on who is doing it: the gesture remains cor-

rect, but the ways to perform it are almost infinite. However, the risk of underfitting is

forestalled since there are common characteristics among the numerous ways different

subjects perform the same movement.

From a kinematic point of view it is easy to prove the similarity among different

subjects gestures. The joint angles are easily recordable, the information is smooth

and regular, thus it is not hard to find a common path, even among different subjects.

The situation definitely changes when moving to physiological signals. In particular,

EMG signals are deeply affected from the source of the signal. Since EMGs records

the muscular activation, different muscular conditions are translated in different sig-

nals. Each person is different from the other, this means that the muscular activation

could vary among subjects, even if they are performing the same task. Furthermore,

human body is a redundant system, thus each person interpret the movement in a pe-

culiar way depending on the differences and characteristics that diversify every human

being. Actually, the same movement could be generated by the activation of different

EMG signals even for the same subject. Recordings of EMG signals can be affected

from muscular fatigue, psychological and physiological stress and tiredness, presence

of body fat, small changes in the sensors position, etc [7]. For these reasons, the clas-

sical approach when working with EMG signals is to focus on a specific subject [8].

Nevertheless, the usage of a subject-independent approach would provide many van-

tages. The first is the saving of a great amount of time and resources, since there is
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no need for long and draining training phases to adapt the model to a new subject.

This aspect is particularly important for injured subjects, for whom it is very painful

and debilitating to repeat a task many times. Furthermore, the variability included in

subject-independent frameworks ensures a greater ability of facing unexpected situa-

tions and reacting to limited variations in input.

A subject-independent approach is useful not only for controlling prosthesis or

exoskeletons, but it can be applied also to industrial settings [9]. Besides physiolog-

ical signals, other techniques can be used for robot learning. In kinesthetic demon-

stration [10], the robot is physically guided through the task by the humans. This

technique benefits from its intrinsic subject-independence owed to robots capability of

being a filter among different subjects. The subject-independence is harder to achieve

when learning from visual information [11]. In fact, the constraints characterizing the

movement should be extracted from a sequence of images, in a similar fashion to what

happens when considering physiological information. Furthermore, industrial applica-

tions requires particular conditions on safety and efficiency. These aspects have to be

taken into account when building the model to control a robotic device. The advent of

Industry 4.0 brought new and innovative challenges [12] for robotics. The new con-

cept of industry aims at reducing the waste, while maximizing the customization of

the product, therefore a flexible and dynamic production line is essential. An efficient

way to produce is necessary in modern factories, and the manufacturing system should

be able to switch production in a very short time. The presence of intelligent and col-

laborative robots is a key factor for the fulfillment of these targets. Old-fashion robots

are expensive devices, closed in a cage, repeating continuously the same task. Repro-

gram one of these robots takes time, money and requires the intervention of specialized

programmers. New robots are more lightweight and no longer closed in cages, since

they are equipped with force sensors, aware of possible contacts with the surround-

ing world. The characteristics of collaborative robots (Cobots) make them ideal to be

Programmed by Demonstration. This programming paradigm reduces the time needed

to program the robot, since there is no requirement of specialized personnel. On the

contrary, the machine will learn the task by learning the demonstrations performed by

skilled worker which knows well the tasks the robot should do. Furthermore, Cobots

offer the possibility of having humans and machines working on the same workplace,

an also to operate together to fulfill the same task. The closeness of the machine to

humans arises several safety problems. The main issue is to avoid accidental contacts

among humans and robots. Giving robot the capabilities perceive, understand and react

to what happens in the environment will become essential in the factories of the future.
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In other words, the robot should be intelligent, capable of interpreting feedbacks from

outside, and it will need the ability to understand and probably also predict human

movements.

In this thesis, we transferred an advanced research solution, like Robot Program-

ming by Demonstration to a real industrial case. In particular, our goal was to boost the

production of electric motor coils, by automatizing the copper winding procedure. The

project was part of a European challenge aiming to encourage collaboration between

academic and industrial counterparts [13].

1.1 Thesis outline

The topics introduced in the previous section will be deeply investigated in this

thesis. The main idea connecting the different aspects among the whole thesis is the

development of subject-independent solutions by exploiting Robot Programming by

Demonstration frameworks. Being independent from the specific subject execution of

a task ensures improved robustness and generalization capabilities. The obtained re-

sults will allow the usage of the developed technology by different subjects with no

need of long training phases. Subject-independent frameworks can be applied to dif-

ferent situations. The wider part of this thesis regards the implementation of subject-

independent models in the context of physiological signals to control prosthesis, ex-

oskeletons or rehabilitation devices. Chap. 2 describes the existing solutions exploit-

ing physiological signals for the control of robotics devices, with particular attention

on subject-independent approaches. In the same Chapter the characteristics of EMG

signals are illustrated, together with an overview of the datasets used for testing pur-

poses. The intrinsic characteristics of EMG signals require a dedicated preprocessing

phase. In Chap. 3, we discuss the preprocessing techniques ensuring a proper online

signal elaboration. The processed physiological signals are then used to feed a prob-

abilistic model, namely a GMM that is able to represent a connection between the

physiological signals and the limbs movement. A classification technique, namely

Gaussian Mixture Classification (GMC) allows the detection of the performed move-

ment among a set of actions, while a regression approach, namely GMR, is able to

continuously estimate the joint angles. GMM, GMC and GMR, together with the in-

cremental version Incremental Gaussian Mixture Model (IGMM) are also expounded

in Chap. 3. The experimental scenarios and the results obtained during the tests have

been listed in Chap. 4. After an initial test involving a limited number of subjects

to assure the feasibility of a subject-independent framework, we expand the approach
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1.1 Thesis outline

to a wider dataset. Initially, we focus on information coming exclusively from EMG

signals, to investigate afterwards how the results change by including IMU informa-

tion. We also propose a complete, low cost, classification framework, including signals

recording, modelization and prediction applied to a low cost 3D printed prosthesis.

Including some a priori information in the framework would intuitively improve

the predicted results. In this thesis, we speculate that the information from a hier-

archic taxonomy of hand grasps could provide a guideline able to speed-up and im-

prove classification results. Nonetheless, the many taxonomies proposed up to now are

based on qualitative parameters, and a quantitative taxonomy is missing. Therefore, in

Chap. 5, we introduce the first quantitative taxonomy of hand grasps. This taxonomy

include quantitative information considering data by many different subjects. By do-

ing so, we are able to integrate our taxonomy with a complete and robust description

of hand grasps from a physiological point of view while ensuring repeatability and

generalization. The quantitative taxonomy have been exploited in Chap. 6 providing a

subject-independent binary classification framework.

Traditionally, physiological signals are used to control prosthesis or rehabilitation

devices. However, the detection of human behaviour is useful also in other applica-

tions. In modern Industry 4.0 factories, intelligent robots work alongside humans in

order to optimize the production flow. The concept of intelligence for robots comes

from their capability to understand what happens in the world. Robots working along-

side humans should always be aware of their human counterparts, in order to avoid

dangerous situations. Knowing the position of the operator is not sufficient, the robot

should be able to predict what the human will do. A possible way to predict the human

movement exploits the use of physiological signals, as described in the first part of the

thesis. Chap. 7 propose a framework based on physiological signals to predict human

intention of movement in an industrial context in order to allow the robot to cooperate

and work alongside human operators.

A general subject-independent approach has been applied also in other industrial

settings, in particular to the EuRoC challenge. This challenge aims to boost the collab-

oration between research and industrial partners, in order to achieve innovative results.

In Sec. 8.1, we illustrate in brief the EuRoC challenge and the importance of inno-

vative solutions in industry. The challenge was divided in three phases of increasing

difficulty. A key factor associating the solution proposed in the various phases is the

usage of a general Robot Programming by Demonstration paradigm. Such paradigm

exploits Machine Learning techniques to make the robot assimilate the tasks by ob-

serving human demonstrations. The three phases are accurately described in Sec. 8.3,
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Sec. 8.4, Sec. 8.5.

Finally, in Chap. 9, we summarize the work and the results achieved during the

three year gathered in this thesis.
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Chapter 2

Physiological Signals: Analysis and

Processing

2.1 Subject Independence for physiological signals

The interaction with robotic devices by means of physiological human signals has

become of great interest in the last years. In particular it is significant their capability

of catching human intention of movement and translating it in a coherent movement

performed by a robotic platform. Moreover, the interest in wearable devices, the study

of new materials, the improvements in mechanical design and the advancement of sen-

sors are boosting the development of robotic prostheses as never before. Physiological

characteristics of the human movement are more and more at the center of the tech-

nological improvements. For example, they can be exploited by injured subjects to

replace lost limbs. In fact, physiological signals are usually applied to help amputees

in gaining part of their lost functionality.

The information used to estimate and predict a human movement comes directly

from the subject performing the task, regardless of the specific signal or the combina-

tion of them exploited in the process. The movement can be estimated with a regres-

sion approach, by continuously predicting the joints bending angles, or it is possible

to classify and choose the movement performed by the subject among several sets of

motion selected in advance. The majority of the studies in literature focus on classifi-

cation problems which are able to determine the type of movement, but not the actual

trajectories. On the contrary, the use of regression techniques allows a continuous and

proportional control of robotic platforms.

In order to deeply understand and study the human behaviour, many physical and

physiological information from subjects can be recorded both in invasive and non-
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invasive ways. Different elements could provide different information, like the strength

employed to fulfill a task, the joints angles along time, the muscular activation, and

also the body position in the space. In order to exploit the human information to

control a robotic device, the signals acquired from the human user should fulfill some

requirements and overcome possible limitations:

• Easy collection: the signals should be collected with small devices, and in any

condition. This means not only that the human user should not feel pain during

the acquisition, but also that she/he should behave naturally, avoiding forced

movements and positions. Invasive acquisition or dedicated surgery should not

be excluded, unless the subject quality of life worsen.

• Continuous acquisition: in order to control a robotic device, also for long time

periods, it should be possible to collect data continuously during the day. The

subject should not feels the stress of the registration, or change dramatically

his/hers behaviours. Furthermore, the user should be able to use the device ev-

erywhere, thus the signals recording setup should not be placed in an ad-hoc

location, unless the robotic device that has to be controlled is in an industrial

facility.

• Effective signals: collected signals should characterize profitably the informa-

tion from the human. After a specific preprocessing the recorded signals should

be informative enough to allow the recognition of the executed movement.

The majority of studies involved healthy subjects. Someone could foreseen a lim-

itation in such approaches, since technologies like prostheses are developed mainly to

help impaired subjects. Nevertheless, tests on injured people can be difficult to per-

form, since they are often affected by fatigue, both physical or psychological. Physical

issues appear when people push too much on the impaired part, e.g. the subject can-

not reach a specific pose and forces the muscles to unnatural positions. Psychological

disturbs occur when they are under the effect of a major stress, e.g. the subject cannot

accept the inability to perform a task, even simple. Working with healthy people can

reduce the influence of fatigue, and provide a more robust way to collect data. These

data are very important also to conduct comparative measurements between different

techniques and to propose effective solutions to guide the research for injured patients.

Anyway, studies on healthy subjects are less prone to physical or psychological prob-

lems, but not immune. This is particularly true when the system uses EMG or sEMG

signals.
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Many studies proved that EMG is an effective method to track and identify the

muscular activity [7], thus they can be profitably used in order to predict the human

movement. EMG signals provide good results even with low cost sensors [14], and

sEMG have the supplemental vantage of allowing a non invasive data recording, since

they are collected through superficial sensors applied on the skin. Nevertheless, this

family of signals has the drawback of being conditioned by many common physical as-

pects [7]. They are influenced by muscular fatigue, amount of body fat, physical stress

and tiredness. Furthermore, sEMG signals suffer from low voltage amplitude, broad

bandwidth, and sensitivity to sensor placement. The result is a noisy signal which

vary significantly during a relatively short period of time. Moreover, the information

provided by EMG data is strongly dependent from the specific subject involved in the

acquisition. Indeed, the muscular activation depends on the physical characteristics of

the subject as well as on his mental conditions. As highlighted by Taylor et al. [15],

repeatable and valid experiments can be obtained in strict conditions. Environment,

observer, measurements and instruments should be the same. Furthermore, the same

subjects must be involved in more that one experiment, so that a subject should not

concentrate on a single action. The same actions should be repeated on a short period

of time, to avoid major differences between iterations. This is the reason why the ma-

jority of studies concerning motion estimation by means of physiological signals are

subject-specific, i.e. they focus on a determined subject in order to find a way to char-

acterize and describe her/his motion. The subject-specific approach has the advantage

of giving high accuracy, with the drawback of lacking in generality, since a new model

has to be computed for every new subject. In addition, the accuracy of subject-specific

models could decrease due to the deterioration of the signal in time, for example in

case of continuous use of a prosthesis or for emotional instability. In order to over-

come these limitations, we proposed a subject-independent approach, with the idea of

selecting only the signal characteristics peculiar to several subjects. In literature, many

different works studied subject-specific approaches involving EMG signals. A large

number of them adopted classification techniques to establish a robust interaction with

prosthesis devices. In [16] Ju et al. present the classification of 10 different grasps or

in-hand manipulations using Fuzzy Gaussian Mixture Model, achieving an accuracy

of 96.7%. Bu et al. [17] propose a framework based on Bayesian Networks for motion

classification of a cooking task. The manually designed Bayesian Networks extract the

statistical dependency between two continuous motions and it is combined with the

output of a probabilistic Neural Network classifier, to improve stability and accuracy.

In classification frameworks only a limited subset of movements are considered. In
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real daily applications movements are complex and a single movement is composed

by many simpler sub-movements and classification approaches could not track all of

them. Instead, regression techniques are the ideal solution for estimating continuously

a given movement. Krasoulis et al [18] proposed a regression technique for the contin-

uous estimation of finger movements in a subject-specific framework. They proved that

regression methods could generalize to novel movements, not included in the training

dataset. LLoyd [19] and Gerus [20] were able to estimate forces by tuning the model

parameters to fit the motion of a particular person. Among regression techniques, [21]

should have a particular mention. In their work, Valentini et al processed signals on-

line using Wavelet Transform focusing on subject-specific framework. EMG data have

been elaborated in order to obtain comparable information through different subjects.

The computed information has been used to train a GMM, resulting in a lightweight

model with a reduced number of parameters to be kept, while GMR provided fast re-

gression that perfectly matched the needs of online applications. In this thesis, we took

inspiration from [21] to develop our original subject-independent frameworks able to

process online signals through Wavelet Transform.

Subject-independent models are a quite new argument in the field of rehabilitation

robotics. Nevertheless, some significant works have proved the effectiveness of these

methods in finding a common pattern between distinct individuals. Furthermore, ex-

ecuting a particular task intuitively leads to some constraints that could be extracted

by looking to different interpretations of the motion to obtain a subject-independent

model. Creating a subject-independent model enables to generalize the control pro-

cedure by extracting specific features of EMG signals coming from multiple individ-

uals. Studies in this field are few and relatively recent. First attempts focuses mainly

on classification, they presented some inter-subject analysis alongside subject-specific

approaches. Orabona et al [2] proposed a way to provide patients with a pre-trained

model, which will be subsequently refined and adapted to the specific subject to shorten

the training phase. Castellini et al [22] performed a cross-subject analysis as additional

study by comparing the performances of models built on single subjects when fed with

data from different users. More recent studies have highlighted that an underling com-

mon behavior can be identified between different subjects in order to obtain a subject-

independent solution. Matsubara et al [6] developed a multi-user interface which can

classify different movements using a bilinear model, achieving an accuracy of 73%.

Khushaba [23] described a method based on Canonical Correlation Analysis (CCA)

capable of adapting to new users while maintaining good performances. Antuvan et

al [24] present a subject-independent classifier, for eliminating the calibration phase.
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A hierarchical decision tree model classified 8 different movements involving two de-

grees of freedom, namely wrist flexion/extension and hand open/close. The model has

been built on 4 subjects and tested on other 6 subjects. Hartwell et al [8] overturn this

concept by proposing a way to optimally select a set of movements for a specific sub-

ject, in order to develop a personalized prosthetic control. Yang et al. [25] proposed

a technique for the classification of real Activities of Daily Living, while Khushaba et

al. [1] focused on individual and combined fingers control rather than on fixed, rough

movements. Their solution reaches an accuracy up to 90% by using a Bayesian data

fusion post-processing approach to maximize the probability of correct classification.

The idea proposed by Gibson et al. [26] reached an accuracy of 79% by using an op-

timized decision tree able to generalize among users with no need of an additional

training phase.

According to our knowledge, the only previous attempts of mixing together subject-

independent and regression techniques have been proposed by Tommasi et al [27].

Their aim was to shorten the training procedure starting from a similar known model

by minimizing the Mean Square Error (MSE) of the features measured with respect

to the ones already processed for a single individual or a combination of subjects.

While the method proposed by Tommasi et al mainly aims at improving an already

existing model, our goal is building a “ready-to-use” model able to guarantee good

performances since the first trials of a new user.

In this thesis, we exploited EMG signals from many different healthy subjects in

order to build a probabilistic model that characterize the movement. We focused on dif-

ferent techniques for the preprocessing phase, and we estimated the performed move-

ment with both regression and classification techniques. In particular, we developed

different approaches to boost the classification of many hand movements by consid-

ering prior information. It is worth to notice that our study was almost completely

oriented on healthy subjects. We decided not to cope with the limitations and dif-

ficulties connected to injured subjects, in order to avoid the long procedures needed

to obtain data from patients. Furthermore, promising solutions for healthy subjects

suggest possible applications in industrial environments.

2.2 Electromyography

The human body is composed by three major muscle types: skeletal, cardiac and

smooth muscle. As their name suggests, skeletal muscles are attached to bones by ten-

dons, and they are used to effect skeletal movement and to maintain posture. The
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activation of skeletal muscles is voluntary, contrariwise to the other muscle types,

whose activation is not under conscious control. In skeletal muscle, contraction is

stimulated by electrical impulses transmitted by the motoneurons nerves, and the con-

traction translates into movement. Nerves move muscles in response to both voluntary

and autonomic (involuntary) signals from the brain, different muscles correspond with

dedicated regions in the primary motor cortex of the brain. In particular situations,

muscles can react to reflexive nerve stimuli where the signal from the afferent fiber

does not reach the brain, but produces the reflexive movement by direct connections

with the efferent nerves in the spine. An essential contribution in the movement is

given by the proprioperception, i.e. the unconscious awareness of where the various

locations of the body are located in the space at any time. Several areas in the brain

coordinates the movement thanks to the feedback given by proprioperception.

Signals sent from the brain are transmitted through neurons as electrical signals.

This activity can be recorded through a technique called Electromyography. The EMG

measures muscle response or electrical activity in response to a nerve’s stimulation

of the muscle. EMG signals derive from potential generated through muscular unit

activation.

Figure 2.1: EMG acquisition

The analysis of EMG signals have a large variety of applications [7]. They are

widely used in medicine for detecting neuromuscular diseases, and they are also an

useful instrument for controlling external devices, such as prosthesis, exoskeletons,

but also collaborative robots. The idea behind the analysis of such signals is to imitate

the human body behaviour. The movement in limbs is due to muscular contraction

caused by electric signals emitted from the brain. In order to emulate this behaviour

on artificial devices, the goal is to create a mathematical and statistical model of EMG

signals, in order to create a connection between electrical signals and movements.

EMG signals can be recorded both with invasive (intramuscular EMG) and non-
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an ambitious goal. In particular, we are looking for a transformation of the raw EMG

information able to represent the movement as a set of features shared among several

people. The original signal has to be cleaned from noise and artifacts, since these

components could spoil the outcome. Our final objective is to extract the peculiar

characteristic of a certain motion by observing many different examples performed by

different subjects.

2.3 Experimental data

In this section, we will present the general characteristics of the two datasets we

will use for testing purposes. Depending on the objectives of the study we will use

one or the other, mainly working with upper limbs movements. It is worth to notice

that the differences between the two datasets will lead to distinct preprocessing phases

described in the following of this work.

2.3.1 NinaPro dataset

The NinaPro [28] [29] (Non Invasive Adaptive Prosthetics) database is a robust and

wide dataset, made with data collected from many different subjects, which perform

several hand and wrist movements. The database enables the comparison of classi-

fication and regression performances obtained using various techniques by providing

sEMG, hand/arm kinematics, dynamics and clinical parameters. The database con-

tains data obtained from 40 intact subjects (28 males, 12 females; 36 right handed,

4 left handed; age 29.9 ± 3.9). Each subject performed 6 repetitions of 50 different

movements. Hand kinematics has been measured using a 22-sensor CyberGlove II

(CyberGlove Systems LLC, www.cyberglovesystems.com) to provide joint-angle in-

formation at slightly less than 25 Hz. A 2-axis IS40 inclinometer with a range of 120◦

and a resolution of less than 0.15◦ (Fritz Kbler GmbH, www.kuebler.com) has been

added to measure the wrist orientation with a frequency of 100 Hz. Muscular activity

has been measured using Delsys double-differential sEMG electrodes sampling signals

at a rate of 2 kHz with a baseline noise of less than 750 nV RMS. These electrodes in-

tegrate also a 3-axes accelerometer sampled at 148 Hz. Eight electrodes were equally

spaced around the forearm at the height of the radio-humeral joint; two electrodes

were placed on the main activity spots of the flexor digitorum superficialis and of the

extensor digitorum superficialis, two electrodes were also placed on the main activity

spots of the biceps brachii and of the triceps brachii. An accurate timestamp has been
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associated to each data sample to properly synchronize the information collected. An

example of the recording procedure is shown in Fig. 2.3.

Figure 2.3: NinaPro recording procedure.

2.3.2 Myo dataset

The Myo dataset is based on data provided by a pair of Myo armbands1. It has

been collected entirely during the period of this thesis in our laboratory, the Intelligent

Autonomous Systems Laboratory (IAS-Lab) at the Department of Information Engi-

neering (DEI) of the University of Padova. The Myo Armband is a quite diffuse low

cost all-in-one sensor developed by Thalmic Labs, and it is shown in Fig. 2.4. Origi-

nally, its scope was to let users control technological devices by means of a set of hand

motions. It should be considered as a black box for non expert users, which can use the

sensor for high level tasks. Nevertheless, it has a great potential for developers and sci-

entists interested in physiological signals, since it has 8 EMG sensors, combined with

gyroscope, accelerometer and magnetometer to recognize gestures. The main reasons

for selecting this hardware are:

• the high number of sensors with respect to other competitors;

• the easy access to ROS compatible drivers;

• the simple mechanism for adjusting the sensor on different subjects.

In fact, the sensors are uniformly distributed and arranged in an adjustable band.

Ten sizing clips make the Myo expandable between 7.5 - 13 inches (19 - 34 cm)

1https://www.myo.com/
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2. Physiological Signals: Analysis and Processing

Figure 2.4: Myo armband.

forearm circumference, allowing its usage for a large amount users. Furthermore, its

weight of only 93 grams and 0.45 inches of thickness make it easy to use daily without

annoying the user. The EMG signals has the drawback of being very position-related,

this means that small changes in the position of the sensors would cause a large vari-

ation in the recorded signal. For avoiding this problem, we introduced a simple setup

procedure based on the constraints given by the arrangement of the sensors in a fixed

position to reduce the possibility of signals misplacing, accelerating the setup time and

improving the signal quality. The sensor communicates with many compatible operat-

ing systems (Windows, Mac, IOS and Android) by using the Bluetooth Smart Wireless

Technology and there is a wide community of developers and a large support network

constantly working on bug fixing. Starting from the packages compatible with the ROS

middleware available in Myo community, we developed a specific driver for enabling

a multi-device communication with a single PC.
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Chapter 3

Signals Analysis Methods

The generic structure of the frameworks developed in this thesis is illustrated in

Fig. 3.1. The overall procedure aims at estimating the control of a robotic device (out-

put data) starting from human information (input data). Two main phases can be rec-

ognized, i.e. an offline and an online elaboration. During the offline phase, data are

collected from many subjects while performing a certain task. In this phase, the in-

formation available for each trial should contain both input (e.g. EMG or accelerom-

eter (ACC) signals) and output data (e.g. robot joint angles or kind of movement).

Data undergo into a preprocessing phase in order to remove artifacts and noise from

the signals. Finally, a probabilistic model is trained in order to represent the processed

information with a limited set of parameters. The online phase considers data directly

recorded from subjects, exploiting the model previously computed to estimate the cor-

responding robot motion. Again, data undergo into a preprocessing phase before en-

tering regression or classification phases. All the concepts introduced so far will be

accurately described in this chapter.

The complete procedure has been developed in C++ language. The communication

with the different devices (i.e. sensors and robots) exploits Robot Operating System

(ROS), a standard de facto in robotics.

3.1 Signal processing

EMG signals need to be elaborated in order to highlight the muscular activation

during a task, and in particular to extract the common behaviours among different

subjects. Selecting an extremely sophisticated machine learning technique does not

guarantee high accuracy in data estimation. The aim of the preprocessing procedure

is to obtain a set of significant features to estimate or in some cases predict robustly
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Figure 3.1: Sequence of activities necessary in order to achieve the robot motion start-

ing from physiological signals.

and online the movement performed by a subject. In fact, the process of filtering the

significant information from input signals can affect the actual success of the entire

framework. The preprocessing phase is essential to obtain a well-balanced combina-

tion of similarity and variability within the signal. On one hand, if the considered

signals have nothing in common, the final model would not work properly. On the

other hand, a certain amount of variability should be integrated in the system, in order

to build a general model which can work with new, unseen subjects. Moreover, we

want the robotic devices to react almost immediately to human commands. Offline

preprocessing methods are not suitable to direct control, consequently it would be al-

most impossible to use the resulting framework in real life applications. The signal

analysis should be an online process, extracting useful information from the raw signal

in real-time and with no dependency from the specific portion of the data in time. The

online constraint limits the running time and the signal portion at the disposal along

all the framework phases, and reduces the number of approaches for preprocessing.

Indeed, some techniques could be useful even when applied offline only to training

data to achieve a better regularization. For these reasons, the preprocessing phase is

the combination of two main techniques:

• Wavelet Transform.
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• Smoothing and normalization.

An additional and powerful offline tool for improving data regularization is Dy-

namic Time Warping, which works on the signal extension, thus obtaining an adapta-

tion to changes in the velocity of the performing task.

As a further consideration, the peculiar characteristics of the two datasets consid-

ered for testing lead to slightly differences in the preprocessing operations. Neverthe-

less, the major steps are the same independently from the dataset.

All the techniques introduced so far are deeply described in the following subsec-

tions.

3.1.1 Wavelet Transform

Variations along time are extremely common in EMG signals. Extracting a smooth

behaviour from the raw signal is a first important step to control a robotic device. The

usual approach is to compute some interesting features from EMG signals, in par-

ticular a common solution regards the application of transformation methods. Some

widespread techniques applied to EMG signals are Fourier Transform (FT) [30], In-

tegral Absolute Value (IAV), variance and zero crossing [31], Mean Average Value

(MAV) [32], Rooted Mean Square (RMS), Mean Power Frequency (MPF) [33], or as

proposed in [34] full wave rectification, filtering and normalization.

The major drawback of these transformation methods, especially for the fast and

short-term Fourier Transform, is that they assume signal to be stationary [35]. Since

EMG signals are nonstationary, we investigated other solutions, and in particular a

promising tool, namely the Wavelet Transform. Daubechies adopted WT to analyze

time series that contain non-stationary power at many different frequencies [36]. Lat-

erza [37] showed that WT is a valuable alternative to represent time frequency signals,

since WT allows a linear multiresolution representation of the original signal without

crossterms affections. Furthermore, Guglielminotti [38] proved the existence of good

matching properties between an EMG signal and its WT shapes, and these results

have been confirmed by more recent works, like [39] and [40]. Among the different

mother wavelet, Chowdhury [41] emphasized the good results obtained when adopting

Daubechies functions by analyzing various studies on Wavelet Transform. Wavelet in-

formation can be synthesized by using statistical features as stated by Subasi [42], [43],

thus obtaining linearity, multiresolution representation and cross terms resolution.
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Definition

A wavelet is a term that indicates a wave-like oscillation with a zero average ampli-

tude. Generally, wavelets are arranged in order to make them have specific properties

that make them useful for specific signal processing. In particular, starting from a well

known mother wavelet, the signal is transformed and convolutionary combined with

portions of a known signal in order to extract information from the unknown signal.

WT [44], [45], together with Fourier Transform (FT), are commonly used for signal

analysis and processing, particularly when we are interested in the analysis of fre-

quency components. Nevertheless, WT preserves the temporal aspects of the signal

without resolution limits in frequency, thus allowing an analysis in both time and fre-

quency, in different amplitude windows. WT can be thought as an extension of FT able

to work on a multi-scale basis (i.e. time and frequency), thus allowing the decomposi-

tion of a signal into several scales. WT and FT are similar also from a mathematical

point of view, but instead of using a basis composed by sine and cosine, WT uses

particular functions that satisfy certain mathematical rules. Wavelet Transform [44]

decomposes the signal into several kernel functions called wavelets. A base wavelet,

called mother wavelet (ψ(t)), is scaled and translated by a scaling function to generate

the set of M wavelets composing the original signal while providing multi-resolution

analysis. Each wavelet is represented by a coefficient (γm).

The input signals are represented as a linear combination of a particular set of func-

tions (Wavelet Transform) as illustrated in Eq. 3.1, obtained by shifting and dilating

one single function called a mother wavelet (ψ(t)) by means of a scaling function

(φ(t)).

f [n] =
1√
M

∑
k

Wφ [ j0,k]φ j0,k[n]+
1√
M

∞

∑
j= j0

∑
k

Wψ [ j,k]ψ j,k[n] (3.1)

The decomposition of the signal leads to a set of coefficients called wavelet co-

efficients. Therefore the signal can be reconstructed as a linear combination of the

wavelet functions weighted by an adequate number of wavelet coefficients. WT are a

very powerful tool, yet flexible and general, there is a wide variety of wavelet functions

that can be suitable for different applications.

There are two types of Wavelet transform methods:

• Discrete Wavelet Transform.

• Continuous Wavelet Transform.

In this thesis, we focused in Discrete Wavelet Transform, the most commonly used
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in real-time engineering applications.

Mother Wavelet selection

A previous study [21] showed that choosing a good mother wavelet is particularly

important, since every mother wavelet yields to different results even when applied to

the same signal. Chowdhury [41] successfully used Daubechies family (db) function

to analyze sEMG signals. His work focused on the processing of sEMG and its use

in different applications. The signal has been processed by means of a set of specific

functions (db2, db4, db6, db44 and db45) at decomposition level 4 in order to maintain

the maximum amount of information. In a similar study, Phinyomark [40] was able to

find good results by using db7 as mother wavelet.

A key contribution of our work is the online processing of the EMG data. In order

to achieve this result, at each instant t, only a small window of the whole signal has to

be considered. We used Wavelet Transform to extract significant information from the

raw signal.

φ j,k = f [n] =
1√
M

∑
k

Wφ [ j0,k]φ j0,k[n]+

1√
M

∞

∑
j= j0

∑
k

Wψ [ j,k]ψ j,k[n]

(3.2)

By looking at the good performances obtained for subject-specific cases in both

accuracy and time [21], we selected the db2 mother wavelet from the Daubechies

family for representing the EMGs in input. Synthesizing the coefficients provided

by Wavelet Transform to a single value representing the wavelet decomposition allows

us to compare different signals. The synthesis function should guarantee a certain level

of smoothness in order to avoid sudden changes from one instant to another and being

fast enough to be computed online. Mean Average Value (MAV) (Eq. 3.3) represents

a good candidate given the results achieved in [21]. Fig. 3.2 shows the comparison

between the raw EMG signals and after the application of WT.

MAV =
1

M

M

∑
m=1

|γm| (3.3)
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Figure 3.2: a) Original sEMG signal, b) sEMG signal after the application of WT and

MAV.

3.1.2 Smoothing and Normalization

Nevertheless, data coming from Wavelet Analysis are still very jagged and they are

not good enough to be used for a subject-independent modelization, since the great

variability of the signal results in poor model performances. The WT of the EMG

channels have been smoothed and normalized in order to obtain better and more robust

models.

The smoothing function is based on a moving average filter. At the instant t, the av-

erage of S data points available within the windows is computed in order to smooth the

data. This process is equivalent to lowpass filtering, with the response of the smoothing

given by Eq. 3.4

γS(t) =
1

S+1

S

∑
s=1

γ(t − s) (3.4)

The smoothing function used smooths the data using the loess method. It performs

a local regression using weighted linear least squares and a second degree polynomial

model. Fig. 3.3 shows the result of the smoothing on the EMG signal to whom has

already been applied the WT.

Differences in the amplitude and in the mean of the signal requires the application
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Figure 3.3: a) EMG signal before and after the application of smoothing.

of a normalization technique. The normalization process ensures the regularization of

the signal in order to obtain a more robust model. The normalization has been im-

plemented in two different manners for training and testing phases. Since the training

phase is executed offline, the normalization for the data involved has been accom-

plished by using the relative maximum within the specific trial involved in the process.

Instead, during the online testing procedure the information about the relative maxi-

mum is not available, and we needed to use a different method to be able to compute

the normalization online. For obtaining this result, the mean of the relative maximums

collected during the entire training set has been used as normalization factor.

3.1.3 Time Warping Techniques

Shift in time domain is a common occurrence in data analysis. It is almost impos-

sible that two repetitions of the same task have the same duration. If limited variations

could be ignored since the model would be able to abstract easily, this is not true if the

changes are relevant. As a matter of fact, there must be a common behaviour among

all the repetitions in order to model properly the input signal. If the differences among

repetitions are relevant, data needs to be brought to a form where the observed vari-

ables of the samples under analysis express similar attributes. Warping is one of the

numerous preprocessing techniques that have been proposed to correct shifts.

Two different warping algorithms have received much attention in recent years:

• DTW, was initially applied for aligning words pronounced by different speakers

for speech to text recognition purposes.

• Correlation Optimized Warping (COW), was proposed more recently in order

to correct chromatograms for shifts in the time axis prior to multivariate model-
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ing [46].

Dynamic Time Warping

Dynamic Time Warping nonlinearly warps two trajectories in order to align sim-

ilar movements by minimizing the distance between them. During the last years this

algorithm has found application in many fields, like batch process monitoring, gene

expression studies, temporal sequences of video, audio, and graphics data, automatic

speech recognition and signature recognition. In general, any data which can be turned

into a linear sequence can be analyzed with DTW. In time series analysis, DTW is an

algorithm that compute the similarity among two sequences which may vary in time

or speed. For instance, it could be used to detect similarities in walking patterns, even

if one person walks faster than the other, or if there are accelerations and decelerations

during the observation (Fig. 3.4, Fig. 3.5).

In general, DTW is a method that calculates an optimal match between two given

sequences. In order to reach the best pairing. the sequences are ”warped” non-linearly

in the time dimension. The signals distortion is computed in order to determine a mea-

sure of their similarity independently from non-linear variations in the time dimension.

Figure 3.4: Signals before and after the application of the DTW algorithm.

Computing the DTW takes O(N2) and this particular algorithm cannot be used in

real time, because it requires to have all the data at the beginning of the computation.

This limitation makes it impossible to be used in online applications, but we have

applied it successfully in preliminary studies and in the training phase.
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Figure 3.5: DTW on the angle of the knee with different parameters.

3.2 Gaussian Mixture Model

Gaussian Mixture Model is a parametric probabilistic model that assumes all data

points are generated from a mixture of a finite number of Gaussian distributions. These

distributions completely characterize the model, therefore it is composed by a weighted

sum of Gaussian components. In particular, three parameters for each Gaussian com-

ponent are sufficient to represent the whole information: mean, covariance and weight.

These parameters are estimated from training data using the iterative EM [47] algo-

rithm. EM is a statistical algorithm that iteratively finds locally maximum likelihood

parameters of a probabilistic model when equations can not be solved directly. The

locally maximum likelihood is obtained repeating cyclically two phases:

• Expectation (E) step creates a function for the expectation of the log-likelihood

evaluated using the following estimate of the components parameters:

pk, j(t +1) =
πk(t)N (ζ j; µk(t),Σk(t))

∑
K
i=1 πi(t)N (ζ j; µi(t),Σi(t))

(3.5)

• Maximization (M) computes parameters maximizing the expected log-likelihood
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found during last E step:

πk(t +1) =
1

N

N

∑
i=1

pk, j(t +1) (3.6)

µk(t +1) =
∑

N
i=1 pk, j(t +1)ξ j

∑
N
i=1 pk, j(t +1)

Σk(t +1) =
∑

N
i=1 pk, j(t +1)(ζ j −µk(t +1))(ζ j −µk(t +1))⊤

∑
N
i=1 pk, j(t +1)

The result is a continuously improving adaptation to the best representation of the input

data as it is shown in Fig. 3.6.

Figure 3.6: Example of the EM algorithm. The red and yellow ovals show how the

algorithm adapt the parameters to fit the data (the red and yellow crosses)

The EM loop stops when the increment of the log-likelihood L =∑
N
j=1 log

(
p
(
ζ j|θ

))

at each iteration becomes smaller than a defined threshold ε , i.e.
L (t+1)
L (t) < ε .

A possible limitation in the learning process is the fact that EM requires a priori

specification of the number of Gaussian components K. Selecting the correct K is a

crucial task. On one hand, an overestimation of this parameter might lead to over-fitting

and, consequently, to a poor generalization. On the other hand, an underestimation will

result to poor predicting performances.

Several entropy based model selection techniques has been proposed in literature

to estimate this parameter (e.g. Bayesian Information Criterion (BIC) [48], Akaike

Information Criterion (AIC) [49], Minimum Description Length (MDL) [50], and

Minimum Message Length (MML) [51]). In this thesis, we choose a standard approach

based on BIC (Eq. 3.7).

SBIC =−2L +np logN (3.7)

with:

• L = ∑
N
j=1 log

(
p
(
ζ j|θ

))
, the log-likelihood for the considered model θ .
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• np = (K−1)+K(D+ 1
2D(D+1)), the number of free parameters required for a

mixture of K components with full covariance matrix.

In our work, the physiological information from the subjects has been used to train

a GMM. The data used for the learning process are composed by both input (e.g.

the physiological signals) and output (e.g. joints angles). Instead, during the online

testing phase, only the physiological signals are known, and the output is estimated.

Following the example, the probabilistic algorithm is able to estimate the bending angle

α of different joints during the movement using a regression technique, or alternatively

to choose between a set of possible movements performed by the subject by following

the classification approach.

Considering:

• H, number of subjects involved in the study.

• n, number of trials per subject used to train the system.

• T , number of repetitions of each trial.

• N = nT (H − 1), total number of data samples. The number of subjects is de-

creased by one, since the model is trained on H − 1 subjects and then tested on

the excluded subject h.

Then a single data ζ j,1≤ j ≤N in input at the framework can be written like in Eq. 3.8.

ζ j = {ξ (t),α(t)} ∈ R
D

ξ (t) = {ξc(t)}C
c=1,

α(t) = {αg(t)}G
g=1.

(3.8)

where:

• C = |ξ |, number of physiological signals considered.

• ξ (t) ∈ R
C, the set of values assumed from all the considered physiological sig-

nals at the time instant t, with ξc(t) ∈ R, the value assumed from the cth physio-

logical signal at the time instant t.

• G = |α|, number of joint bending angles for regression, G = 1 for classification.

• α(t) ∈ R
G, for regression the set of values assumed from the considered joint

bending angles at the time instant t, with αg(t) ∈ R, the value assumed from gth
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joint bending angle at the time instant t. For classification α(t) ∈ N the index of

the performed movement.

• D =C+G, the dimensionality of the problem.

It is worth to notice that there is no direct use of the time instant t in the data

provided to the model.

The final resulting probability density function is computed as:

p
(
ζ j

)
=

K

∑
k=1

πk N
(
ζ j; µk,Σk

)
(3.9)

where

• πk priors probabilities.

• N
(
ζ j; µk,Σk

)
Gaussian distribution.

• µk mean vector of the k-th distribution.

• Σk covariance matrix of the k-th distribution.

• K number of Gaussian components.

Fig. 3.7 shows an example of the input signals modelization through GMM.

Figure 3.7: Example GMM, the green ovals represents the Gaussian components.
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3.3 Incremental Gaussian Mixture Model

The construction of the probabilistic model is a time consuming task. Furthermore,

often we are not interested in the building of a new model from scratch. On the con-

trary, in some cases we want to update the model, adding the information from new

subjects, in order to make the model fit on the subject performing the task, without los-

ing the knowledge, the robustness and the generality acquired from previous subjects.

For these reasons, we implemented an incremental version of GMM, namely IGMM,

able to update the model as new demonstrations are received from the subject. We

implemented and tested the Generative method described in [52].

The first step consists of building a GMM with the classic EM algorithm as de-

scribed in Sec. 3.2. When new data are available ξi, they undergo the following pas-

sages:

1. Synthetic data are stochastically generated with by performing a regression on

the current GMM. The generated data are a compact representation of the previ-

ous data distribution.

2. A new GMM is computed on the whole set composed by new data ξi and the

stochastically generated ones.

3. A learning rate α ∈ [0,1] is introduced to modulate the contribution from the

new data and the stochastically generated ones. α = Ñ
Ñ+N

, with Ñ number of new

datapoints available, and N number of datapoints from previous demonstrations.

4. Given n = n1 + n2 number of samples for the iterative learning procedure, with

n1 ∈ N number of trials from the new observations, and n2 ∈ N number of trials

generated from the previous model. The new training set is then defined by:

ξi, j = ξ̃ j, if 1 < i 6 ni

ξi, j = N(µ̂ j, Σ̂ j), if ni < i 6 n

∀ j ∈ {1, ...,T}, with T number of timestamps, with n1 = [nα] ([.] nearest integer

function).

5. The training set of n trials is used to refine the model by updating the current set

of parameters (πk, µk, Σk) by using the EM algorithm.
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3.4 Gaussian Mixture Classification

This section is dedicated to an accurate analysis of the online classification phase.

A classification technique allows us to predict which kind of movement the subject is

performing starting from a previously trained model and the EMG signals collected

from the subject’s muscles. We developed three different approaches, all based on

Mixtures of Gaussian Components. One of the proposed techniques is a simple clas-

sification providing instantaneously the estimated class for each sample in input at the

process. The other two methods follow an accumulation approach, where the classi-

fication of a certain sample ξk depends also on the classifications of previous samples

ξ k−1
1 , with 1 ≤ k ≤ S, being S the number of samples for a certain movement of a spe-

cific subject. Taking into account the previous classification outcomes leads to a more

robust estimation less prone to misclassification problems.

3.4.1 Instantaneous Classifier

Considering the data of a certain trial performed by a specific subject, the samples

belonging to a trial can be denoted as ξ t
0 = {ξ0,ξ1, ...,ξt}. Following this approach, at

each instant, the classification depends only from the last sample ξt received in input to

the classifier. In order to estimate the correct class, we compute the Probability Density

Function (PDF) of each new sample as

ρi,k = PDF(ξk|γi) (3.10)

where 1 ≤ k ≤ S is the index of the considered sample. γi with 1 ≤ i ≤ M indicating

the index of all the possible classes of movements, being M the number of considered

movements. The selected class is the one with the highest PDF, the formal equation is

reported in Eq. 3.11.

φk = i : max
{

ρi,k,1 ≤ i ≤ M
}

(3.11)

3.4.2 Normalized Accumulation Classifier

The first accumulation approach extends the instantaneous classifier. The result of

Eq. 3.10 is normalized ∀i with 1 ≤ k ≤ S, obtaining ρ̃i. Then, we compute the mean
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3.4 Gaussian Mixture Classification

between all the already considered normalized samples:

µi,k =

k

∑
j=1

ρ̃i, j

k
,∀i,1 ≤ i ≤ M

(3.12)

The mean all the PDF computed from the collected samples represents the contribution

of previous classifications until reaching the last sample.

The most probable class is chosen like in the previous technique:

φk = i : max
{

µi,k,∀i,1 ≤ i ≤ M
}

(3.13)

3.4.3 Bayesian Accumulation Classifier

Up to now, we tried to compute the probability of each sample ξk of belonging to a

certain class α . An alternative approach can be obtained by calculating the probability

of the current class φk of being the class α , given that we received in input the sequence

of data ξ k
0 . Consequently, we are interested in computing p(φk|ξ k

0 ), we can apply

Bayes’ rule, obtaining:

p(φk = α|ξ k
0 ) =

p(ξk|ξ k−1
0 ,φk = α)(φk = α|ξ k−1

0 )

p(ξk|ξ k−1
0 )

(3.14)

We can make two assumptions:

• First order Markov assumption: p(ξk|ξ k−1
0 ,φk = α) = p(ξk|φk = α), since the

measurement of ξk is conditionally independent from previous measurements.

In other words, next samples are not strictly determined from previous data.

• Smoothness of the posterior assumption: p(φk = α|ξ k−1
0 )≈ p(φk−1 = α|ξ k−1

0 ).

Thanks to the previous assumptions, we can write Eq. 3.14 as:

p(φk = α|ξ k
0 ) =

p(ξk|φk = α)(φk−1 = α|ξ k−1
0 )

p(ξk|ξ k−1
0 )

(3.15)

Then, we have:
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p(φk−1 = α|ξ k−1
0 ) =

p(ξk−1|φk−1 = α)(φk−2 = α|ξ k−2
0 )

p(ξk−1|ξ k−2
0 )

(3.16)

Substituting the equations and putting everything together we have:

p(φk = α|ξ k
0 ) =

p(ξk|φk = α)p(ξk−1|φk−1 = α)...p(ξ1|φ1 = α)

p(ξk|ξ k−1
0 )p(ξk−1|ξ k−2

0 )...p(ξ1|ξ 1
0 )

p(φ0 = α|ξ0)

(3.17)

We can expound p(φ0 = α|ξ0) by applying Bayes’ equation.

p(φ0 = α|ξ0) =
p(ξ0|φ0 = α)p(φ0 = α)

∑
M
m=1 p(ξ0|φ = m)p(φ = m)

= λ0 (3.18)

where λ0 is the initial probability that the class being α given the first sample.

Therefore, the probabilities for the following samples can be computed as a func-

tion of the previous one:

p(φ1 = α|ξ 1
0 ) =

p(ξ1|φ1 = α)

p(ξ1)
λ0 = λ1,

p(φ2 = α|ξ 2
0 ) =

p(ξ2|φ2 = α)

p(ξ2)
λ1 = λ2,

...

p(φn = α|ξ n
0 ) =

p(ξn|φn = α)

p(ξn)
λn−1 = λn

(3.19)

Eq. 3.19 can be easily computed by discretizing the input signal, i.e. by assigning

each value to a class with a clustering solution. Finally, after the training phase we will

be able to compute the probability of each class, thus the class belonging probability

for each sample.

3.5 Gaussian Mixture Regression

Beside the discrete classification among a set of possible movements, it is also

interesting to continuously estimating the joint bending angles by considering solely
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3.5 Gaussian Mixture Regression

physiological signals from the subjects. The angles can be estimated continuously

by using a regression technique. The Gaussian Mixture Regression (GMR) provides

a smooth generalized version of the signal starting from the GMM. GMR estimates

the joints angles α̂ and their covariance from the EMG ξ (and eventually accelerome-

ters ϕ) signals known a priori, respectively using Eq. 3.20 and Eq. 3.21.

α̂ = E [α |ξ ,ϕ ] =
K

∑
k=1

βkα̂k (3.20)

Σ̂s =Cov [α |ξ ,ϕ ] =
K

∑
k=1

βk
2
Σ̂α,k (3.21)

where:

• βk =
πkN (ξ ,ϕ|µp,k,Σp,k )

∑
K
j=1 N (ξ ,ϕ|µp, j,Σp, j )

, the weight of the kth Gaussian component through the

mixture.

• α̂k = E [αk |ξ ,ϕ ] = µα,k+Σα p,kΣ−1
p,k{{ξ ,ϕ}−µp,k}, the conditional expectation

of αk given {ξ ,ϕ}.

• Σ̂α,k = Cov [αk |ξ ,ϕ ] = Σα,k +Σα p,k

(
Σp,k

)−1
Σpα,k, the conditional covariance

of αk given {ξ ,ϕ}.

Assuming that the parameters (πk, µk, Σk) defining the kth Gaussian component are

decomposed as follows:

µk =
{

µp,k µα,k

}
Σk =

[
Σp,k Σpα,k

Σα p,k Σα,k

]
(3.22)

in which the mean and the covariance of the known a priori information p = {ξ ,ϕ}
have been represented respectively with µp and Σp. Thus, the model is completely de-

fined by the Gaussian components composed solely by weights, means and covariances

obtained by means of the EM algorithm. Subsequently, the information composing the

model allows us to calculate a generalized motion ζ̂ = {ξ ,ϕ, α̂} starting from physio-

logical data provided by the sensors (Fig. 3.8).
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Figure 3.8: Signal estimation with GMR, the estimated movement is represented by

the red line.

3.6 System effectiveness

3.6.1 Classification

For the classification, a measure for the quality of the prediction is obtained by

computing the ratio between the number of correct predictions and the total number

of examples. The obtained result is a number n, with 0 ≤ n ≤ 1, where 0 indicates no

correct prediction, while 1 means that all the predicted movements were correct. In

general, the closer the accuracy to 1, the better the classification.

Often the accuracy is represented in percentage, with the results varying between

0% and 100%.

3.6.2 Regression

A common measure widely used for evaluating the goodness of the predicted mea-

sure [2] [27] is the correlation coefficient ρα,α̂ . This value is calculated between the

predicted output α̂ and the real one α (Eq. 3.23), and it gives a measure of the model

performances by means of the statistical relationships between different signals and

different subjects. In particular, the correlation coefficient is a measure of the de-

gree of linear dependence between two variables, and it is based on the covariance

(Cov(α, α̂)) and the standard deviations (σα and σα̂ ) of the considered variables. The

resulting formula is reported in Eq. 3.23.

ρα,α̂ =
Cov(α, α̂)

σασα̂
(3.23)
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The correlation coefficient can assume all the values between 1 and -1, where 1 is

total positive correlation and indicates a perfect direct linear relationship (correlation),

0 is no correlation, and -1 is total negative correlation, or a perfect decreasing linear

relationship (anticorrelation). The closer the coefficient is to either -1 or 1, the stronger

is the correlation between the variables, while the closer it is to zero, the weaker is the

correlation. When the correlation reaches zero the variables are independent.

Another common measure of the effectiveness of GMM-based systems is NMSE.

This function measures the goodness of fit between test and reference data. NMSE

(Eq. 3.24) costs vary between -∞ (bad fit) to 1 (perfect fit).

NMSE(t) = 1−
∥∥∥∥

α̂(t)−α(t)

α̂(t)−µt(α)

∥∥∥∥
2

(3.24)

where t is the temporal instant from the beginning of the trial; α̂(t) is the estimated

output at the instant t; α(t) is the groundtruth at instant t; µt(α) is the mean along the

time of considered quantity.
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Chapter 4

Movements Prediction: Experiments

and Results

4.1 Preliminary study

A preliminary study involved a limited number of subjects. We initially focused

on a small dataset to test the feasibility of the subject-independent framework. In

particular, we considered a very simple movement. Three healthy subjects (S1-S3; age

30±4; one female) were asked to naturally kick a ball from a sitting position Fig. 4.1.

EMG signals were acquired with an active 8-channel wireless EMG system at 1000

Hz to cover the principal muscular groups active during the kick task, namely Rectus

femoris (Ch1), Vastus lateralis (Ch2), Vastus medialis (Ch3), Tibialis anterior (Ch4),

Gastrocnemius lateralis (Ch5), Gastrocnemius medialis (Ch6), Biceps femoris caput

longus (Ch7), Peroneus longus (Ch8). Synchronously, six infrared digital cameras

recorded at 60 Hz the kinematic of the knee-joint angle from the position of 6 markers

on the subjects leg. Each person repeated the movement about 60 times. EMG data has

been processed by means of signal rectification and smoothing in order to highlight the

muscular activation during the kick tasks. The preprocessing has been deeply described

in Chap. 3.

The information extracted from EMG has been used as input of a GMM to estimate

its correlation with the knee bending angle α . GMM have been trained with data from

couple of subjects (S1+S2, S1+S3, S2+S3). For every couple, different sizes of training

set have been considered (10, 30, 60, 120), half from the first subject and half from

the second one. For the testing phase, we used 10 trials coming from the remaining

subject in order to verify the generality of the model. The described procedure has

been applied to all the collected EMG channels. Fig. 4.2 represents the Goodness of
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erally better results with respect to the first part of the analysis. The model generally

decreases its performances when the testing data shows more variability. Anyway, in a

long term perspective the adaptation characteristics of the proposed framework could

be a great resource for rehabilitation purposes.

The time needed in each phase is presented in Tab. 4.2, together with the total

amount of time needed for the signals elaboration and the joints angle prediction. The

analysis of the computing time at each step has been conducted by using an Intel R©
64-bit computer with i3 quad core CPU of 2.13 GHz and 4 GB of RAM.

Step Method Time(µs)

WT db2 581.3955

Feature extraction MAV 0.8448

Regression - 1774.6145

Angle remapping - 7.4357

Total db2 + MAV 2408.9559

Table 4.2: Analysis of the computational time (µs) needed from the framework at each

phase. The times have been obtained with a

The generated motion has been successfully tested on a humanoid, namely a Alde-

baran NAO Fig. 4.3. The EMG signals were sent via software and estimated angle was

computed to actuate the robot through TCP/IP protocol. Our software is able to send

pose messages to robot at 240 Hz, although in practice the rate has been reduced to

satisfy NAO bound of 50 Hz.

The main purpose of testing the whole procedure on a humanoid robot (Aldebaran

NAO) by remapping the human motion to the robotic platform was to verify the proper

execution of the original movement. The robot execution properly mimic the move-

ments of a person whose signals are not included in the model.

4.1.1 Conclusions

Tests have showed that our learning framework produced results comparable with

subject-specific models. Besides the good results, the dataset was composed by only

3 people. Since the population is so poor, bad performances of a subject could ruin

the whole model. Nevertheless, the good results we achieved with a first attempt of

subject-independent framework proved us that we can expand the work by testing other

dataset composed by more subjects and by applying the described method to a multiple

joint motion. In fact, a bigger dataset could lead to even more general models. The
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Figure 4.3: Humanoid robot on which has been tested the framework (Aldebaran NAO)

results showed good trends for both low and high variability in the task execution. This

is a very important feature for a model to be used in rehabilitation contexts, since it can

evolve with the patient without any external intervention.

4.2 Multi Joint Subject Independent Regression

The promising results of the preliminary work encourages us to expand our study to

a greater number of subjects, in particular we considered data from the NinaPro dataset.

In order to obtain comparable results between the considered datasets we applied a

series of standardizing approaches. A similar number of samples (≃ 2000) for trial has

been considered by down-sampling the information available in the NinaPro database

by a factor of ten. We looked at the most informative EMG channels by conducting

a preparatory study. The study aimed to measure the engagement of each considered

channel in the performed movement. By looking at the measure of engagement, we

selected an equal number of channels for each motion. The db2 mother wavelet and

MAV synthesis feature have been applied to the raw signal provided from every single

channel. The resulting values have been associated to the corresponding bending angle

along time. A model for each channel has been trained and GMR has been used to

retrieve the estimated bending angle to be compared with a testing set. The three

channels offering the best performances have been selected in order to obtain similar

models. It is worth to notice that more channels could be considered for the NinaPro

dataset, resulting in a more accurate estimation. Anyway, a subset of the significant
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Robots Fig. 4.7.

Figure 4.7: Simulated hand by Shadow Robots

The EMG signals were sent via software and estimated angle was computed to ac-

tuate the robot though TCP/IP protocol. The robot motion generated at 240 Hz was

micro-interpolated from the simulated controller of the robot to match the actual rate of

1kHz. The results showed a good correlation resulting from the created GMM/GMR

framework. Both the movements reached a statistically significant mean correlation

coefficient (ρα,α̂ ≥ 0.8), with good results for both single joint estimation (ρα,α̂ =

0.8224) for Movement 13 (Fig. 4.5), and multi-joints estimation (ρα,α̂ = 0.8067) for

Movement 3 (Fig. 4.6). The performance reached for multi-joints motion was particu-

larly good even if a bit lower than the single one, since the model has showed consistent

results with similar correlation coefficients for all the considered joints.

4.2.1 Conclusion

The framework obtained significant results on new, unseen data, with great vari-

ability of subjects and few repetitions of the movements. It was able to estimate the

motion of both single (ρα,α̂ = 0.8224) and multiple (ρα,α̂ = 0.8067) joints for different

movements. The estimated joint angles have been remapped to control online a simu-

lated hand for testing the effectiveness of the estimated motion on both the considered

movements.
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4.3 Integration of IMU data

In the previous chapters, we have already introduced how the comprehension of

physiological characteristics of the human movement is gaining more and more inter-

est in the scientific community. The advancements in understanding the mechanisms

behind human motion can be exploited by injured subjects to replace lost limbs. In fact,

physiological signals are usually applied to help amputees in gaining part of their lost

functionality. Moreover, the interest in wearable devices, the study of new materials,

the improvements in mechanical design and the advancement of sensors are boosting

the development of robotic prostheses as never before. In Chap. 2, we listed the limita-

tions of EMG signals, like the drawback of being conditioned by many common phys-

ical aspects [7], together with the strong dependency from the specific subject involved

in the acquisition. These are the reasons why the majority of studies concerning mo-

tion estimation by means of physiological signals are subject specific. Nevertheless,

the results showed in this thesis proved the effectiveness of the subject-independent

framework, and the presence of a common pattern between distinct individuals.

In this section, we aim to improve previous results by enriching the model through

the integration of accelerometer information from IMUs, alongside the already con-

sidered sEMG data. IMU data have been used in robotics in many different ways. In

our case, we treated them as a resourceful way for investigating human movement.

As a matter of fact, the more information related to motion can be extracted from the

subject to be analyzed, the more likely the final result will be accurate. Many stud-

ies explored the IMU contribution in estimating people motion, and several of them

paired accelerometers and sEMG to obtain more precise results. Keil et al. [53] proved

that EMG and accelerometers capture different aspects of the movement, thus they can

be considered complementary. Gijsberts et al. [54] tested data acquired from 20 sub-

jects, building individual models on 40 different movements in order to highlight the

contribution given by accelerometers to the classification of hand movements. Their

tests compared modality based on accelerometers and sEMG, showing that the ac-

celerometer modality outperformed the sEMG modality, but performances increased

when integrating both the signals in an unified model. Liu et al. [55] proposed the

combined use of sEMG and accelerometers in order to improve the upper limb reha-

bilitation. The rehabilitation process has been made more interesting and interactive

by using video games. Khushaba et al. [56] compared five EMG features, one of them

including data from accelerometers. They studied how the training set can be general-

ized in order to classify upper limb movements varying the forearm orientation and the

muscular effort. Their tests proved that the inclusion of accelerometers improved the
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movement classification accuracy. Anyway, all the presented works studied the con-

tribution of accelerometers in subject-specific sEMG-based models, and as far as we

know no attempt has been done in combining accelerometer and sEMG information to

boost accuracy in subject-independent approaches.

The aim of this study is to improve the capabilities of a probabilistic model based

on multiple subjects to estimate the human motion. The main contribution of this sec-

tion is comparing, for the first time, the performances of a model built on physiological

information with and without taking into account of the IMU as input data. Therefore,

sEMG and accelerometer streams are collected to train a probabilistic model, namely a

GMM, with the final scope to estimate online the joint bending angles involved in the

motion by means of a regression-based approach, namely a GMR. The proposed solu-

tion implements a regression technique in order to obtain a continuous control of the

movement with the main purpose of actuating a robotic hand or a prosthesis, so that the

motion is not only a pre-defined qualitative classification, but an actual interpretation

of the movement the patient would like to perform. Moreover, a regression-based ap-

proach has the advantage of providing more details regarding the response of the model

in time, with the possibility of a more accurate analysis with respect to the results pro-

vided by classification methods. It is worth to notice that the proposed framework is

not trained online on the data of the user, but it requires an offline phase for generating

the GMM model. Anyway, the regression phase can be performed online to obtain

the joint angles directly from the data collected on the subject. In order to better un-

derstand the contribution of accelerometer data, the results obtained from the novel

model integrating both sEMG and accelerometers have been compared with the out-

come of the model created in our previous work which involve sEMG data only. Both

the models are subject-independent and the same movements have been considered, in

order to allow us to compare the results effectively. In particular, we focused on two

hand movements, involving a different number and type of joints, in order to test the

robustness of the framework in different situations. Based on the results obtained on

previous studies mixing together EMG and IMU signals, we expect to be able to im-

prove the accuracy with respect to our previous work. This idea is supported from the

fact that IMU sensors are not strongly influenced from subjects’ fatigue. On the other

hand, different problems could condition the recording of IMU data, such as drifting

or sudden bumps. Furthermore, the contribution of accelerometers is larger for wide

movements.
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4.3.1 Data and methodologies

The dataset used in this study comes from the already described NinaPro dataset,

which provide us not only the EMG signals, but also the IMU information.

Signal analysis

In order to be able to extract significant information from the raw signal, we need

an appropriate elaboration offering the possibility to process online the input signals.

We treated separately EMG data from the rest. Joint angles and IMU data have been

aligned to zero and smoothed by means of Eq. 4.1, while EMGs have processed exactly

like in the previous experiments.

γS(t) =
1

S+1

S

∑
s=1

γ(t − s) (4.1)

The information from EMG, accelerometers and the joint angles have been used to

train a probabilistic model, namely a Gaussian Mixture Model, accurately described in

Chap. 3. The probabilistic model is able to estimate the bending angle α of different

joints during the movement using a regression technique considering both EMG and

ACC information. Once completed the offline modeling phase, the framework can es-

timate online the joint bending angles by considering solely EMG and accelerometers

as input. The angles are estimated continuously by using a regression technique based

on the GMM, i.e. Gaussian Mixture Regression (GMR). The Gaussian Mixture Re-

gression (GMR) provided a smooth generalized version of the signal starting from the

GMM.

The goodness of the prediction is estimated by computing the correlation coeffi-

cient ρα,α̂ which has been accurately described in Chap. 3.

4.3.2 Results

A leave-one-out approach has been used to test the results coming out from the

framework. The models has been built on data from H − 1 subjects and tested on the

6 repetitions of the remaining one. In this way, we have been able to emulate and

evaluate the usage of the model by a novel subject. For each repetition, we computed

the correlation coefficient between the estimated bending angles and the actual joints

angles recorded together with the EMG signals. For each joint, we computed the

mean and the standard deviation of the correlation coefficient, averaging the results

among the 6 trials. Furthermore, for Movement 3, the correlation coefficient has been
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averaged also on the 8 joints involved in the test, in order to summarize the estimated

information as a whole.

Corresponding vs Best

We performed the whole set of tests for both the EMG + corresponding IMU and

the EMG + best IMU approaches obtaining good results for both the movements in

terms of accuracy. In particular, for the EMG + corresponding IMU approach, Move-

ment 13 reaches an accuracy of 0.8634 by averaging between all the considered mod-

els. 14 subjects out of 35 reach an accuracy above the 0.9, exceeding 0.95 in three

cases. With this approach, Movement 13 showed a high regularity on the results among

the different subjects, with the unique exception of Subject 26. In fact, the accuracy

of 0.3968 reached by Subject 26 decreased the average value. This low accuracy value

goes along with a high variance between the trials (0.5112 versus the average vari-

ance of 0.0789). This means that a subset of movements have been performed by the

subject in a very different or wrong manner. With the same approach, Movement 3

reaches a lower accuracy with respect to Movement 13, obtaining a mean accuracy

between the subjects of 0.7659 and a variance equals to 0.0673. The reduced accuracy

is mainly due to the higher number of joints involved in Movement 3. Subject 13 only

exceeds 0.9 in accuracy (0.9073), while the worst case is Subject 7, reaching an ac-

curacy of 0.3207. Since the low variance between the different trials within the same

subject, it is not possible to explain the low accuracy as an isolate error. More likely

the low accuracy is due to differences in the way the subjects perform the movement

during the entire set of trials. Using this approach, the variance is very similar and

quite low for both the tested movements, showing a good generalization capability of

the framework. For the EMG + best IMU approach, Movement 13 reaches an accu-

racy of 0.8200 by averaging between all the considered models. 12 subjects out of 35

reaches an accuracy above the 0.9, exceeding 0.95 in six cases. In this case, Movement

13 showed a lower regularity with respect to the previous approach. Again, Subject 26

reached the worst accuracy and confirmed the problems in the specific executions, with

a mean of 0.3684 and a variance of 0.4628 (average variance of 0.1041). Regarding

Movement 3, again the accuracy decreased with respect to Movement 13, reaching a

mean of 0.7426 and variance of 0.0756. The evolution confirms that the higher number

of joints involved in Movement 3 affects the accuracy. In general, the performances

between the two approaches are not so different in average. On the other hand, it is

clear that the use of the best pair of accelerometers improved the accuracy in terms of

both mean and variance for the majority of the subjects, but they are not informative
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enough to maintain the trend for the entire population. Fig. 4.5 and Fig. 4.9 summarize

the tests performed on Movement 13 and Movement 3 respectively, by comparing the

results obtained with the EMG + corresponding IMU approach, in blue, and the one

computed with the EMG + best IMU approach, in green.

Figure 4.8: Correlation and Standard Deviation for the model of a wrist flexion move-

ment. The model was built on H − 1 subjects and tested on the remaining one. For

every subject the correlation is the mean on 6 trials. Comparison between the EMG +

corresponding IMU approach (blue) the EMG + best IMU approach (green).

Analysis of IMU contribution

A further analysis regards the comparison of the results achieved considering only

EMG signals with the ones considering both EMG and IMU signals. In this case, we

limited the analysis to the best performing approach: the EMG + corresponding IMU.

Again, we considered Movement 3 and Movement 13 as testbeds. For both move-

ments, the integration with the accelerometer signals augmented the model accuracy.

For Movement 13 (Fig. 4.10), the average accuracy went from 0.8172 (EMG only), to

the 0.8634 (EMG+IMU). For Movement 3 (Fig. 4.11), the increment is present, but

limited, since the accuracy passed from 0.762 to 0.7659. In some cases, in Movement

13 accuracy increased remarkably when including accelerometers, while for Move-

ment 3 accuracy decreases considerably in three subjects.

Movement 3 Movement 13

sEMG 0.762 0.8172

sEMG and IMU 0.7659 0.8634

Table 4.3: Average accuracy for the considered movements. EMG only vs EMG +IMU
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Figure 4.9: Correlation and Standard Deviation for the model of the Three posture.

The model was built on H − 1 subjects and tested on the remaining one. For every

subject the correlation is the mean on 6 trials and 8 joints. Comparison between the

EMG + corresponding IMU approach (blue) the EMG + best IMU approach (green).

This difference in the improvement can be explained by looking at the nature of the

considered movements. Indeed, the contribution from the accelerometers is more valu-

able when the motion is wide, since they are placed nearby the forearm and they are not

strongly sensible to finger motion. On the contrary, it is possible that a small movement

corresponds to a considerable muscle contraction, resulting in a characteristic muscles

activation visible in the analysis of EMG signals. Therefore, it is reasonable that IMUs

data are more affected by movements involving the wrist rather than the fingers. This

explains why Movement 3, which involves the movement of several fingers, does not

receive a large benefit from the contribution related to accelerometers. Generally, the

mean accuracy increased slightly with the introduction of the accelerometers. More-

over, the variance usually decreased showing a significant improvement corresponding

to a better generalization capability of the model. This is probably, the most important

result of this study, since this is one of the more desirable characteristics of a subject-

independent model.

Tests on a robotic device

Finally, the predicted joint bending angles have been used to control a simulated

hand by Shadow Robots. The objective of these tests was to check the correspondence

between the actual movement and the motion performed by the robotic device. In

this work, we wanted to focus on the contribution of IMU data to the model gener-

alization capabilities rather than on an accurate motion estimation on robotic devices.

Therefore, the consideration regarding this section are very limited. The estimated
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Figure 4.10: Correlation and Standard Deviation for the model of a wrist flexion move-

ment. The model was built on H − 1 subjects and tested on the remaining one. For

every subject the correlation is the mean on 6 trials. The graph shows a comparison

between the correlation of the model built using only the EMG signals (orange) and

the model built considering also the IMUs (blue).

Figure 4.11: Correlation and Standard Deviation for the model of the Three posture.

The model was built on H−1 subjects and tested on the remaining one. For every sub-

ject the correlation is the mean on 6 trials and 8 joints. The graph shows a comparison

between the correlation of the model built using only the EMG signals (orange) and

the model built considering also the IMUs (blue).
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joint angles have been sent to the robot through the TCP/IP protocol, with a frequency

around 240 Hz. Subsequently, the robot motion has been micro-interpolated from the

simulated controller of the robot to match the final rate of 1kHz. At each trial, we

observed the robot motion in order to compare it with with the actual movement and

obtain a set of qualitative considerations on the feasibility of the task. In particular, we

noticed that very few robot attempts resulted in an altered motion in both the consid-

ered movements. This is a first and significant result when dealing with hand gestures.

On the other hand, it could not be sufficient if the objective of the motion is to grasp

an object, and we are aware that more work could be done on this subject.

4.3.3 Conclusions

We extended our previous studies by integrating the EMG signal with information

from IMUs. The final goal was to develop a subject-independent framework able to

adapt quickly to new subjects not included in the model.

The signals have been preprocessed in order to be used online and to simulate

correctly the usage of a prosthesis device by human users. We tested two different hand

movements to prove the robustness and generality of our framework, by considering

signals from 35 different subjects in a leave-one-out approach. The framework has

been tested on the subject not included in the model.

Tests compared three different models: the first built using only EMG signals, the

second trained with EMG plus data from the 2 best IMUs available, and the third cre-

ated with EMG and IMUs corresponding to the same 3 electrodes. Both the approaches

using IMU information improved the correlation with respect to the one considering

the EMG signals solely. The introduction of the IMU data helped in improving signif-

icantly the generalization capabilities of the framework and consequently in obtaining

a better subject-independent model.

In the best case, the mean correlation was 0.8634 for the single joint motion and

0.7659 for the multi joints movement, with an associated variance of 0.0789 and 0.0673

respectively. The improvement in accuracy has been higher in the first case, due to

the characteristics of the considered movements: accelerometers are located on the

forearm so they are not strongly involved in movements using mainly fingers.

4.4 Low cost framework

The introduction of robotic prosthetic devices can improve the quality of life in

amputees, helping to interact with the world around them in simple activities without
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depending on other people [57]. Robotics prosthesis could be divided into upper and

lower limbs. Hand devices are more complex than legs due to the large number of De-

grees of Freedom (DoFs), furthermore they are crucial for interacting and performing

daily activities. With hands, it is possible to grasp different objects, and to manipulate

them, in order to achieve the most disparate tasks which can be extraordinarily com-

plex and composite. Even if we choose to focus on a subset of movements, it requires

a certain amount of dexterity to obtain a renewed upper limbs mobility for amputated

subjects. Anyway, hand prosthesis do not suffer of stability problems and there are

minor risks of endangering the patient. In fact, prosthetic legs or feet do no need to

focus on grasping or manipulation problems, nevertheless a wrong weight distribution

or a faulty movement during the walking can cause a damage to the musculoskele-

tal system. Due to these reasons, hand prosthesis have a major role in the research

community [58].

Usually, sophisticated and expensive technologies are needed in order to make

robotic hands interact with the environment. Furthermore, the classical approach is

based on the prosthesis customization depending on the specific subject that will use

it. The customization process is applied on the three fundamental aspects that char-

acterize the rehabilitation system, i.e. the hardware, the sensors used to record the

physiological signals that the subject will use to control the device, and the software

connecting the information from the sensors to the physical device. The highly tech-

nological process and the ad hoc software make the whole prosthesis a very expensive

device. A purely cosmetic arm can cost up to $5000, that become $20.000-$100.000

for an advanced myoelectric arm [59]. Many potential users can not afford such pricey

products. The users penalized by the high costs are not only private, public clinics or

rehabilitation centers, but also research groups that would like to work on this field,

focusing mainly on the software rather than on the mechanical or medical side. Fur-

thermore, a great number of injured subjects come from poor countries which cannot

afford investments on these technologies [60]. For people with economical difficulties

it is even more important being reintroduced in the labour market. The possibility of

being able to carry out a physical job is essential for the subjects survival and nourish-

ment, but this is not possible with the classical approach. Different considerations are

necessary for children [61]. This kind of subjects have peculiar physiological charac-

teristics that distinguish them from adults, therefore a separate study is needed. Despite

the differences between adult and young subjects, it is clear that both the groups would

benefit from a low cost prosthesis system. Children grow quickly, thus they need to

change prosthesis often, causing a double drawback: high costs for new prosthesis,
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while the old ones can not be used by other patients, since they are fitted on the origi-

nal subject.

For these reasons we focused on the development of a low cost prosthesis frame-

work as described in Fig. 4.12, due to the great benefits brought by a low cost technol-

ogy. In particular, we consider three different aspects:

• Underactuated 3D printed hand prosthesis.

• Compact and low cost arm band for EMG signals recording.

• Subject-independent probabilistic framework.

Anyway, it is worth to notice that despite the great number of advantages related to

a low cost approach based on these aspects, it has also some limitations:

• An underactuated hand does not allow an exact movement replication, since a

certain number of joints are bonded, thus it has a lower degree of freedom with

respect to a real hand.

• A low cost recording system gives usually worst results than more expensive

technologies. The classical solution for the control of the prosthesis is by using

EMG signals from the residual muscles. EMG signals can be recorded easily

with non invasive technologies, but they have the drawback of being variable

during time, dependent on the considered subject, and sensitive to human fatigue

and stress. The limitations of the EMG signals are emphasized by using low cost

sensors, and they should be filled by using a robust software framework.

• The software framework should handle the limitations of the low cost EMG sen-

sors, while being able to differences of the human hand joints with respect to

the underactuated hand. Furthermore, the proposed software solution is subject-

independent, which means that each subject can use the generic and robust model

with no need of long training phases. This approach has the vantage of zero or

rapid training phase for new subjects while maintaining a generic and robust

modelization, with the drawback of a slightly worst accuracy.

Up to now, a wide number of robotic hands have been proposed by the scientific

community. Different approaches have been explored as regards the previously listed

elements, i.e. prosthesis hardware, myoelectric sensors for the recording of physio-

logical signals, and software frameworks for combining the previous two points. An

increasing number of hardware solutions have been proposed by both research groups
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Figure 4.12: The figure presents the sequence of operations for data recording, analysis

and modeling. A preliminary offline phase used for training puposes is followed by an

online phase for testing the classification framework.

and people became fond on the argument, the cost can vary from very expensive and

complex mechanisms to low-cost devices. This great variability depends mainly on

the materials selected for building the prostheses, the technologies adopted for moving

the fingers, and the presence of sensors. Exploiting these factors, the proposed solu-

tions can be applied in industrial facilities, used as prostheses, or assembles as part of

a whole humanoid robot. Looking at low-cost solutions, Yale University proposed an

open source project, namely the Yale OpenHand Project [62], to produce a set versa-

tile and customizable robotic hands at low cost. Several different configurations are

available, with 2, 3 or 4 fingers, each finger is motor-powered and it has 2 joints with

a single degree of freedom. The hands can grasp many different objects of varying

size, but none of them has a layout similar to the human hand, since they are mainly

oriented to industrial applications. Yang et al. [63] introduced the design of a multi-

fingers hand, each finger having 2 joints, with the only exception of the thumb, which

had 3 joints. The finger motion was based on the loading of a compression spring, thus

the solution is relatively low cost, compared to other technologies. In their paper, Scar-

cia et al. [64] presented a novel 3D printed hand, where the finger motion is actuated

by means of a Rotational Joint, produced as a single piece.

Regarding EMG sensors, the two alternatives for obtaining a low cost system are

self-made infrastructures, like [65], or all-in-one solutions, as DTing Gesture Control
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Wristband1.

The main purpose of the software is to process the sensor data to consequently

control the finger joints [66]. The majority of solutions focus on properly classify

the movement the user wants to perform, in order to reproduce the same task on the

robotic device. The traditional approach is a subject specific solution, where the model

is trained and tested on the data from the same subject, since EMG signals can strongly

differ from one subject to another. Nonetheless, recent studies have highlighted that

an underling common behavior can be identified between different subjects in order to

obtain a subject-independent solution. This work aims to develop a complete frame-

work bringing together low cost hardware accompany by a suitable software able to

work in practice with no need for long training sessions from a specific subject.

4.4.1 Experimental setup

Underactuated 3D printed hand

Between the large number of low cost 3D printed robotic hands proposed in the

past few years, we selected the hand design from an open project, called InMoov2.

InMoov is a wide project that propose a low cost, 3D printed humanoid robot by pro-

viding the CAD models for the whole body, as well as the assembly scheme. The

goal of the project is to supply universities and research groups with a low cost device,

while providing constant improvements. For our work, we chose to focus on the hand

instead than on the whole robot. The main reasons for selecting this specific hand were

(i) the open-source nature of the project providing 3D models ready for printing, (ii)

the human-like hand design, robust and simple to print with almost every kind of 3D

printer (iii) the wide community supporting the project.

The hand has 5 fingers, each of them has 3 joints with one degree of freedom, i.e.

one less than the human hand. The joints cannot be controlled singularly, two wires

connected to the extremity of each finger control their opening and closure. It is not

possible to move a single joint without moving the others connected to the same wire.

Joints are passive and depends on the movements of the electric motors that control the

wires, and there is no tactile or force feedback on the fingers.

With respect to the original project, we created a ROS interface which let the hand

being easily integrated with other robots or systems based on ROS. Furthermore, we

created a virtual model of the hand which can be useful in order to test the movements

1http://www.dtingsmart.com/
2http://inmoov.fr/
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maximum flexion. These values are used to compute the nominal angles for each joint

in the virtual model by means of Eq. 4.2 and Eq. 4.3 respectively for thumb and the

other fingers.
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where α is the generic rotation angle of the servo motor used to actuate the selected

finger, d, m, and p are the joint angles assumed by Distal Phalanx, Middle Phalanx,

and Proximal Phalanx respectively, while αd , αm, and αp are the servo motor angles

of maximum flexion for each of the phalanxes.

4.4.3 Results

We tested the framework on data recorded from 4 different subjects. We recorded

8 EMG channels by using a single Myo sensor placed in the proximity of the forearm.

Each subject performed 5 times the 3 grasping movements. Four different GMMs

have been trained starting from the data of 3 subjects and testing the classification

accuracy on the information coming from the remaining subject, following a leave-one-

out approach to validate the results. The classification accuracy has been computed by

dividing the number of correct predictions over the total number of considered tests.

We averaged the accuracy over the 5 trials to obtain a unique confusion matrix for each

subject, as reported in Fig. 4.15.

Generally, the results are quite good, with a similar trend between the four subjects,

with a mean accuracy of 78.5%, 75.2%, 78.6%, and 74.9% respectively for the model

tested on Subject 1, Subject 2, Subject 3, and Subject 4, and an overall accuracy of

76.8% (mean inter-subject accuracy: 85.4%). It is easier to classify the Writing Tripod

Grasp, in which the model tested on Subject 1 reached the maximum accuracy of

85.6% and all the models performed best. There are more errors when comparing

Sphere Grasp and Fixed Hook Grasp, the minimum accuracy has been reached on the

model tested on Subject 4 with 72.3% in recognizing the Sphere Grasp, while some

of the other models obtained their personal worst results in classifying the Fixed Hook

Grasp. We expected such behavior, since Sphere Grasp and Fixed Hook Grasp are

more similar with respect to Writing Tripod Grasp. In fact, the two former movements

are both labeled as Power Grasps, while the latter is part of the so called Precision

Grasps.
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Figure 4.15: Confusion matrices related to the 4 subjects involved in this study. For

each subject the classification model has been trained by using data coming only from

the three remaining subjects. The results compared the predicted class within the 3

selected grasps with respect to the the actual one.

Once the movement has been classified by the framework, the information passed

to the UDOO board to actuate the robotic device. Tests have been performed on real

objects to prove the actual grasping capability of the 3D printed hand. We tried also a

set of new objects, slightly different with respect to the original ones but with similar

grasping characteristics, such as a bulb, a glass, and a cordless phone. The prerecorded

motion were able to adapt to these small differences with no need of special inter-

ventions thanks to the flexibility of the 3D printed robotic hand when closing on the

objects.

4.4.4 Conclusions

The system was able to reach a mean accuracy of 76.8% showing that it is not

necessary an expensive setup nor long training sessions from the specific subject to

control an hand prosthesis. In the near future, this technology has the potential to

provide access to low cost and easy to use prostheses to everyone in need. Tests with

a larger variety of grasping poses and with a wide number of subjects could provide

useful data to enhance the results obtained up to now, but tests on different objects

showed that a small set of basic grasps can actually improve the daily life of injured

people without discriminating on their social status.
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Chapter 5

Quantitative Taxonomy of Hand

Grasps

The techniques proposed to classify or continuously estimate the human move-

ments take into account only the physiological signals from the human, but we did not

include any additional information. Intuitively, taking into account some a priori in-

formation would boost the estimated results accuracy, since the additional data would

bring a greater knowledge of the observed parameters.

Some useful information could be provided by a taxonomy of movements, which

can give a structured dependence relationship among movements. This information can

be exploited as an useful guideline in the prediction phase. Furthermore, a proper mod-

eling of human grasping and hand movements is fundamental for robotics, prosthetics,

physiology and rehabilitation. The taxonomies of hand grasps that have been proposed

in scientific literature so far are based on qualitative analyses of the movements, thus

they are usually not quantitatively justified. In order to overcome this limitation, we de-

veloped the first quantitative taxonomy of hand grasps based on biomedical data mea-

surements. The taxonomy is based on electromyography and kinematic data recorded

from 40 healthy subjects performing 20 unique hand grasps. For each subject, a set

of hierarchical trees are computed for several signal features. Afterwards, the trees

are combined, first into modality-specific (i.e. muscular and kinematic) taxonomies of

hand grasps and then into a general quantitative taxonomy of hand movements. The

modality-specific taxonomies provide similar results despite describing different pa-

rameters of hand movements, one being muscular and the other kinematic.

The general taxonomy merges the kinematic and muscular description into a com-

prehensive hierarchical structure. The obtained results clarify what has been proposed

in the literature so far and they partially confirm the qualitative parameters used to cre-
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ate previous taxonomies of hand grasps. According to the results, hand movements can

be divided into five movement categories based on the overall grasp shape, finger posi-

tioning and muscular activation. Part of the results appears qualitatively in accordance

with previous results describing kinematic hand grasping synergies. The taxonomy of

hand grasps clarifies with quantitative measurements what has been proposed in the

field on a qualitative basis, thus having a potential impact on several scientific fields.

5.1 The quantitative taxonomy of hand grasps

In 1989 Cutkosky [68] said that the main goal in the field of rehabilitation robotics

was to build a robot capable of deciding autonomously how to pick up and manipulate

objects to perform everyday tasks just like humans do. However, the human hand can

perform an almost infinite number of movements. Structuring and organizing the hand

grasps into a hierarchical taxonomy can be useful to better understand how the hands

interact with different objects as well as to advance and evaluate devices that try to

imitate them.

A taxonomy of hand movements is important for several scientific fields, including

robotics, prosthetics, physiology and rehabilitation. In robotics, it can be useful to

compare the functionality of robotic hands with real human hands. In prosthetics,

very advanced myoelectric hands have been developed from a mechanical point of

view but they are usually not well accepted by amputees [69–71]. A taxonomy of

hand grasps can foster the development of prosthetic hands that perform movements

corresponding to the taxonomic groups that are mostly useful in real life situations.

In physiology, a comprehensive quantitative comparison of hand grasps may create

a link between hand synergies [72] and real life needs. In rehabilitation, a proper

taxonomy of human grasps allows priorizing the hand functionalities that need to be

restored with the highest priority. Santello et al. [72] proposed an early approach into

this direction by applying Principal Components Analysis (PCA) to digit joint angles

during a significant set of hand postures. Their work, as many others that followed

it [73–78], took inspiration from grasp taxonomies in order to properly select the set

of hand movements.

Several attempts to build a complete taxonomy of hand grasps were published in the

scientific literature during the last 30 years. However, all of the presented taxonomies

were based on qualitative approaches and qualitative justifications. Most of the tax-

onomies of hand movements include a division between power and precision tasks.

This idea was originally proposed by Napier et al. in 1956 [79] and influenced most
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authors afterwards (e.g. [80–83]). Cutkosky [83] organized 16 hand grasps into a hi-

erarchical tree according to the adaptability required by small-batch tasks. The grasps

were characterized using several qualitative measures (such as compliance, connec-

tivity, grasp isotropy, resistance and other parameters) and they were split into power

and precision tasks. Feix et al. [67] compared several previous taxonomies of hand

grasps and created a taxonomy of hand grasps that they called the GRASP taxonomy.

This taxonomy is organized in a matrix, with the grasps divided into several columns

and in two rows according to four main parameters including power type, opposition

type, position of the thumb and virtual finger assignments. Starting from Feix’s work,

Wolf et al. [84] considered composed tasks in order to evaluate the micro-gestures that

can be performed alongside the main grasp. More recently, Bullock et al. [85] decom-

posed manipulation tasks into simpler movements with an object-centric, environment-

centric and hand-centric perspective. This taxonomy provides a structured way to clas-

sify 15 simple movements, where basic movements can be composed in order to build

more complex movements.

Qualitative methods can provide useful perspectives of nature. However, quanti-

tative measurements are strongly related to the scientific method and to the concept

of science itself. Quantitative methods provide practical control over the subject stud-

ied, they make possible a formulation of principles that are capable of unambiguous

confirmation or refutation (depending on experiments and measurements) possible and

therefore very few investigations can be carried out without them [86].

A quantitative taxonomy of hand movements can therefore reduce ambiguity in the

field, but it requires the measurement of specific biomedical data. Several parame-

ters can be used to quantitatively characterize hand grasps, such as posture, muscular

activity and force. Kinematic data are usually measured with two main techniques:

visual or wearable systems. Visual systems can be affected by visual occlusion in the

recording of hand grasps and the procedure to place the visual markers can be time

consuming. Data gloves are a common alternative that is sufficiently precise [87] and

extremely easy to record. Thus, they are suitable for studies involving many subjects.

The joint angles were previously used as features in order to compare model estima-

tions with real position measurements [88], [89]. In the comparison of movements,

synthesis functions are often applied to represent the entire motion with fewer data.

For instance, Finger Aperture Indexs (FAIs) were used to represent long finger opening

starting from joint angles collected by a Motion Capture (MoCap) system composed

of nine infrared cameras and 17 retro-reflective hemispheric markers [90]. Normalized

geometric distances were used as features for representing hand gestures [91].
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Muscular data can be measured with Surface Electromyography (sEMG). The

sEMG signal can be modeled as a superimposition of the Motor Unit Action Poten-

tials (MUAPs) of the active Motor Units (MUs) [92, 93]. The MU recruitment and

firing frequency are the major factors for both EMG amplitude and force exerted by

the muscle [93, 94]. Thus, a qualitative relation between the sEMG signal amplitude

and the force exerted by the muscle can be noticed [94]. Signal features based on

sEMG signal amplitude can reveal the hand movement patterns based on the sEMG

amplitude-force relation in both intact subjects [29] and hand amputees [95]. Muscle

activation patterns can differ strongly between intact and transradial amputees, par-

ticularly in relation to clinical parameters such as phantom limb sensation intensity,

remaining forearm percentage and time since the amputation [95]. This result leads

to the fact that signal acquisition controls trained on intact subjects may not be valid

for amputees [96]. Other parameters may be interesting but in this work we focus on

kinematics and muscular activity because we mainly target the posture of the hands,

but also due to practical data availability. In this thesis it is presented the first quan-

titative taxonomy of hand movements.The relative variations between joint bending

angles (measured with a data glove) allow a quantitative characterization of the hand

movement kinematics. The sEMG signals allow a functional analysis of the muscles

involved in each grasp. The taxonomy is organized in a hierarchical structure and it

is based on a signal feature extraction procedure that is common in sEMG literature.

The analysis of the movements performed by 40 intact subjects allows to extract the

common underlying patterns that characterize each grasp. The quantitative approach

ensures the repeatability non-subjective perspective of this taxonomy, thus making it a

reference for several scientific fields.

5.2 Methods

This section describes how kinematic and sEMG data were recorded and analyzed

to create a quantitative taxonomy of hand movements. The data analysis procedure

can be summarized as data acquisition (subsection 5.2.1), signal feature extraction

(subsection 5.2.2, subsection 5.2.2), creation of the hierarchical trees (subsection 5.2.3)

and fusion of the trees into super-trees (subsection 5.2.4), a procedure coming from

genetics studies and leading to the general quantitative taxonomy of hand movements.
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5.2.1 Data Acquisition

The used dataset is the second Ninapro dataset, including 40 intact subjects (28

males, 12 females; 36 right handed, 4 left handed; age 29.9 ± 3.9 years). The Ninapro

database1 [28, 29], is a publicly available resource aiming at improving the control of

robotic hand prostheses. The data comprise 50 hand and wrist movements, including

basic motions (e.g. flexion, extension) as well as 20 grasps.

Acquisition setup

The acquisition setup includes a data glove and a set of surface electromyographic

electrodes with built-in accelerometer. Hand kinematics were measured using a 22-

sensor CyberGlove II (CyberGlove Systems LLC 2), providing data proportional to

joint angles, sampled at slightly less than 25 Hz. Muscular activity was measured us-

ing a Delsys Trigno Wireless system. The sEMG electrodes are double-differential

and measure the myoelectric signals at 2 kHz with a baseline noise of less than 750 nV

RMS. The sEMG electrodes were placed using the hypo-allergenic Trigno Adhesive

Skin Interfaces. Prior to electrode placement the skin was cleaned with isopropyl al-

cohol.

A hand movement is the result of an activation pattern potentially involving several

muscles controlling hand and wrist. Therefore, in order to identify the hand move-

ment from the sEMG signal by means of pattern recognition methods, the electrodes

were placed around the subject’s forearm combining a precise anatomical position-

ing strategy [94] with a dense sampling approach [97, 98]. An array of eight sEMG

electrodes was applied at the height of the radio-humeral joint. The electrodes were

equally spaced, creating an array covering the whole circumference of the forearm.

Four electrodes were placed on the main activity spots of four specific muscles: the

flexor digitorum superficialis, the extensor digitorum superficialis, the biceps brachii

and the triceps brachii. The aforementioned strategy is widely used in the prosthetic

field. It was shown that, in terms of pattern recognition accuracy for hand movement

identification, the electrode position is not a crucial aspect as long as a sufficient num-

ber of channels is provided [99, 100].

1http://ninapro.hevs.ch/
2url: http://www.cyberglovesystems.com/
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Acquisition protocol

During the data acquisitions, the subjects were sitting with the arms positioned in

a relaxed way on a desktop. A laptop computer was used to show them the videos

representing the movements to be performed and to record the data from the sensors.

The subjects were asked to synchronously mimic the movements with their right hand.

Each subject performed 6 repetitions of 49 movements plus rest. Each movement

repetition lasted 5 seconds, alternated with 3 seconds of rest. Several precautions were

taken in order to encourage a natural and spontaneous execution of the grasp. First,

the subjects were instructed to perform the grasp movement as naturally as possible,

without lifting the objects or exerting unnatural grip force. The movements were not

randomized and the objects to be grasped were positioned as closely as possible to

the hand of the subject. The latter also helped in minimizing the time of the reaching

and releasing phases. The hand movements were selected from the hand taxonomy,

robotics, and rehabilitation literature (e.g., [67, 68, 81, 101]) according to Activities of

Daily Living (ADL) requirements. Everyday objects that can easily be found in daily

life tasks were used in the experiment.

5.2.2 sEMG and Data Glove Signal Processing

In order to allow the creation of the sEMG based quantitative taxonomy, pre-

processing and feature extraction were performed. First, data preprocessing was per-

formed to assure good data quality. This phase included filtering and synchronization.

Second, the information of the sEMG signals was made usable by extracting a set of

signal features using a moving window technique [102, 103]. Finally, the signal fea-

tures were used as input data to compute the hand movement taxonomies.

The CyberGlove data were analyzed with a procedure that takes inspiration from

window based time series analysis and in particular from the literature in EMG data

analysis [29, 102]. The procedure includes synchronization and feature extraction.

Filtering

The Delsys electrodes are not shielded against power line interference, so the power

line interference was removed using an Hampel filter at 50 Hz [104].

Synchronization

A high-resolution timestamp based on the Time Stamp Counter (TSC) of the CPU

was assigned to each sample recorded for both the sEMG and joint angle data. The
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timestamp was used in the post-processing phase to synchronize the devices. To do so,

all the modalities were up-sampled at the sampling frequency of the fastest device (2

kHz) using linear-interpolation. This is a well-known technique to increase resolution,

avoid aliasing, and reduce noise [105]. Interpolation is particularly useful when the

data collected with low frequency (kinematics) is considerably smoother than the data

at high frequency (sEMG).

Feature Extraction

Signal feature extraction was performed applying the method described by Engle-

hart et al. [102]. Each movement repetition was windowed using a 200 ms window,

with 100 ms of overlap. As described in scientific literature, diverse signal features

highlight different signal properties, leading for instance to varying classification per-

formance (e.g. [29]). In order to make the taxonomy robust to differences between

features, a selection of five time domain signal features was extracted on each time

window.

The features were chosen according to use in the previous literature and include

Rooted Mean Square (RMS), Mean Average Value (MAV), Integral Absolute Value

(IAV), Time Domain (TD) [103] and Wavelet (WL) [102,106–111]. The Time Domain

(TD) are composed of: Mean Average Value (MAV), Mean Absolute Value Slope

(MAVS), Zero Crossings (ZC), Slope Sign Changes (SSC) and Wavelet (WL) [103].

Each feature was extracted from each signal x on each time window w of T samples in

length.

Rooted Mean Square (RMS) is arguably one of the most common features to rep-

resent sEMG signals. RMS provides a useful measurement of signal amplitude and,

under ideal conditions, it has a quasi-linear relationship with the force exerted by a

muscle [94]. The RMS feature for a given time window w was obtained as:

RMSw(x) =

√
1

T

T

∑
t=1

x2
t ;

where xt is the tth sample in the window w.

The Mean Average Value (MAV) and the Integral Absolute Value (IAV) are also

popular features in sEMG signal analysis and for a given time window w they are

defined as [103, 112]:

MAVw(x) =
1

T

T

∑
t=1

|xt | IAVw(x) =
T

∑
t=1

|xt |
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The Mean Absolute Value Slope (MAVS) is defined as the difference between the

MAV value of two adjacent time windows, w and w+1 [103]:

MAVSw(x) = MAVw+1(x)−MAVw(x)

The Zero Crossings (ZC) [103] feature gives an indication about the frequency of the

signal by counting how many times the signal crosses zero. The ZC of a signal x in a

given window w, ZCw(x), is increased by one if, given two consecutive samples xt and

xt+1, {xt > 0 and xt+1 < 0 } or {xt < 0 and xt+1 > 0 } and |xt − xt+1| ≥ threshold.

Another feature related to the frequency of the signal is the Slope Sign Changes

(SSC) [103] which is defined as the number of times the sign of the slope changes.

The SSC of a signal x in a given window w, SSCw(x), is incremented if, given three

consecutive samples xt−1, xt and xt+1, {xt > xt−1 and xt > xt+1} or {xt < xt−1 and

xt < xt+1 } and {|xt − xt+1| ≥ threshold or |xt − xt−1| ≥ threshold}.

Wavelet (WL) returns a single parameter providing a measure of the waveform

complexity and given a time window w it is defined as [103]:

WLw(x) =
T

∑
t=2

|xt − xt−1|

5.2.3 Hierarchical trees

The quantitative taxonomy of hand movements is based on a hierarchical struc-

ture in order to highlight dependencies and relationships between the different mo-

tions. For each subject, one hierarchical tree was computed for each modality-feature

combination, thus leading to five hierarchical trees for the EMG data and five trees

for the kinematic data. We adopted this approach, instead of building only one large

hierarchical tree containing all the subjects in order to achieve a higher control of in-

termediate results and to be able to check the similarity across subjects. For each sub-

ject modality-feature combination, the hierarchical trees were computed by performing

one-way Multivariate Analysis of Variance (MANOVA) [113] between the hand move-

ments. This procedure allows us to test our hypothesis for all the movements at once

to measure how much a grasp is correlated to the others. Therefore, MANOVA can

provide a measure of similarity between the grasps that were considered in the study.

Moreover, MANOVA is a standard, well accepted means of performing multivariate

analysis. The signal features were grouped by movement and the means of the col-

lected measures were compared by computing the Mahalanobis distance [114]. It is

multi-dimensional, unitless, and scale-invariant. The Mahalanobis distance takes into
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account the correlations coming from the MANOVA procedure to measure how dis-

tant a specific movement is from the distribution (the whole set of grasps) in terms of

standard deviations. The distances between the movements were then used as a ba-

sis to build the dendrograms. The dendrograms were initially represented as binary

trees composed of clusters of two movements combined depending on the distance.

We followed a hierarchical agglomerative clustering or bottom-up approach. By do-

ing so, we treated each movement as a singleton cluster and then agglomerate pairs

of clusters until all clusters are merged into a unique tree containing all grasps. The

initial set of grasps was a previous knowledge so it almost naturally implied the use of

hierarchical agglomerative clustering. On the contrary using a divisive (or top-down)

approach could have lead us to a different final number of grasps not corresponding

to the initial set that was available. Subsequently, the dendrograms were converted

into phylogenetic trees that are unordered rooted trees with unweighted edges, with

the characteristic of having all the leaves at the same distance from the root. Part of the

information contained in the dendrograms is lost when using unweighted edges. This

is due to a limitations of the merging algorithm (subsection 5.2.4) that is not currently

able to manage such information. Using a weighted structure may provide more accu-

rate results than the current work, thus we are working on an improved version of the

merging procedure. Nevertheless, an approach based on unweighted trees is impor-

tant to have a proper understanding of the general methodology since this is the first

attempt to obtain a quantitative taxonomy of hand grasps.

5.2.4 Computation of the muscular, kinematic and general quan-

titative taxonomies: hierarchical super-trees

The capability to merge several highly specific trees is the key idea in obtaining

a unique hierarchical structure. This part of the data analysis is fundamental, since it

allows us to create a general and global quantitative taxonomy that takes into account

inter- and intra-subject variability. Inter-subject variability is due to the highly specific

way in which each person performs hand movements. Intra-subject variability is due

to the small differences between repetitions of the same movement by the same sub-

ject. Despite the inter- and intra- subject variability, each hand movement has common

underlying kinematic and muscular patterns that can be extracted by analyzing several

repetitions of the same movement performed by different subjects. The variability be-

tween subjects can be measured as edit distance, that is the minimal-cost sequence of

node edit operations that transforms one tree into another [115, 116] (more details in

subsection 5.2.5). The common characteristics emerged in a preliminary study [117],
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where we focused on the taxonomies built on specific subjects (average edit distance of

4.312) and for specific features (average edit distance of 3.548), excluding the gener-

alization phase. More detailed information about these results is reported in Table 5.1

and Table 5.2, it is worth to notice that we considered the weighted dendrograms for

computing edit distances displayed in both tables. Starting from the initial results, in

this paper we aim at expanding and enriching the knowledge in the field by merging

several features in order to develop a unique and general taxonomy. Considering 40

subjects and 6 repetitions for each subject results in 240 repetitions of each movement,

which is a sample large enough to create the taxonomy with the procedure described in

this section. The procedure to compute the taxonomies of hand movements starts from

the subject-specific hierarchical modality-feature trees and includes several phases.

First, subject-independent hierarchical modality-feature trees are computed. Second,

the general kinematic and muscular taxonomies of hand movements are computed.

Third, a general taxonomy of hand movements is computed.

Table 5.1: Inter-subject variability in grasps across the different quantitative metrics

expressed as edit distance. Rows represent the different modalities while columns

represent modality features.

IAV EMG MAV EMG RMS EMG TD EMG WL EMG

Muscular 4.60±1.68 4.60±1.68 4.05±1.24 4.36±1.48 4.51±1.60

IAV glove MAV glove RMS glove TD glove WL glove

Kinematic 4.04±1.45 4.04±1.45 4.04±1.45 3.95±1.59 3.84±1.28

As said in the previous section, one hierarchical tree is computed for each subject

and for each combination of modality-feature, thus leading to five hierarchical trees

for the EMG data and five trees for the kinematic data. For each modality and for each

feature, a supertree is computed by combining the data of all the 40 subjects, leading to

a subject-independent hierarchical modality-feature tree. The procedure used to merge

the hierarchical trees is based on the Subtree Prune-and-Regraft (SPR) distance [118].

The calculation of the SPR distance is computationally expensive. Thus, the algorithm

combines the Maximum Agreement Forests (MAFs) approach and clustering to make

the construction of the SPR-based supertree feasible. Clustering reduces the complex-

ity of the input trees into sub-problems that can be solved recursively. The algorithm

solves the MAF problem between a pair of rooted trees by recursively exploring all

edge-cutting possibilities. The supertree is built in two phases: the construction of

an initial SPR supertree and the SPR rearrangement. The final supertree is a binary

rooted tree constructed iteratively by minimizing the SPR distance. This approach

was demonstrated to be better than other common distance criteria on biological data
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sets [118]. Merging the subject-independent hierarchical modality-feature trees of the

same modality leads to two modality supertrees: the first one representing the quantita-

tive kinematic taxonomy of hand movements (obtained by merging all the Cyberglove

feature trees); the second one representing the quantitative muscular taxonomy of hand

movements (obtained by merging all EMG feature trees).

Finally, the quantitative muscular and the kinematic taxonomies of hand move-

ments were merged into the general quantitative taxonomy of hand movements. While

the EMG tree gives a vision of muscular involvement in the movement and the kine-

matic tree shows the actual physiological movement performed by the subject, mixing

the two allows a general analysis of the movement from both the muscular and the

kinematic perspective.

5.2.5 Supertree similarity measurements

Evaluating the similarity between the quantitative muscular and the kinematic tax-

onomies of hand movements can yield fruitful insight, particularly to measure whether

the two agree or not. While a reasonable agreement between the two taxonomies may

enforce their representativeness, a strong disagreement may lead to a limited accept-

ability. Intermediate situations can be interesting to highlight differences in the data

acquisition modalities or highlight differences between the muscular activation and the

actual performed movement. The tree edit distance is frequently used in the compar-

ison of hierarchical trees [115, 116]. The measure is computed as the minimal-cost

sequence of node edit operations that transforms one tree into another. The algorithm

used to compute the tree edit distance was originally proposed by Pawlik and Aug-

sten [115, 116]. It includes three possible edit operations: delete a node, insert a node

and rename the label of a node. A cost was assigned to each edit operation. The cost

of an edit sequence is the sum of the costs of its edit operations. The tree edit distance

is the sequence with the minimal cost.

5.3 Results

This work presents a quantitative taxonomy of hand grasps based on muscular and

kinematic data, described in detail in subsection 5.3.3. The general taxonomy is com-

puted by merging the sEMG and kinematic taxonomies of hand grasps (that are de-

scribed in detail in subsection 5.3.2) and it is compared in subsection 5.3.4 with a

qualitative taxonomy of hand grasps that merges most of previous results described in

literature.
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5.3.1 Preliminary study

Robots that aim at grasping and manipulating objects, such as industrial robotic

hands and prostheses, all lack reliability and robustness in real life settings. In indus-

try, automated warehouses are successful at removing processes such as walking and

searching for items. However, automated handling of goods in unstructured environ-

ments still remains a difficult challenge.

The human hand is highly dexterous and can be used for many diverse tasks. It

includes 15 joints (not including carpus and metacarpus), leading to more than 20

degrees of freedom. The development and evaluation of quantitative representations

of hand movements requires the measurement of specific biomedical data. Kinematic

and muscular data can provide a complete view of hand functions and they have been

widely studied for rehabilitative robotic applications.

Before focusing on the quantitative taxonomy of hand grasps, we studied the feasi-

bility of our goal by quantitatively analyzing the similarity between hand movements

in 40 subjects. Surface electromyography (sEMG) and the relative variations between

joint bending angles of a data glove allow a hierarchical quantitative characterization

of the hand movement dynamics and kinematics for each subject, in order to iden-

tify functional similarities and variability. The proposed approach suggests a way to

perform a systematic, quantitative analysis of hand movements in order to develop a

quantitative taxonomy.

The obtained taxonomies have been compared both among subjects and among

features. The comparison of the signal feature taxonomies show that IAV and MAV

features produced the same tree for almost all the considered subjects for both EMG

and glove signals. Anyway, the trees related to the other features have some common

characteristics: for example Extension Grasp and Power Disk are closely related for

Subject 2 (Fig. 5.1a and Fig. 5.1b). Furthermore, IAV and MAV are very similar to

RMS results, while TD tree is the most different from the others (Fig. 5.1c). The

previous assertion is valid for both EMG and GLOVE signals, confirming that the

represented information is coherent among the two kind of signals. The comparison

of the subject taxonomies shows that a common behaviour could be highlighted among

the different individuals. Some movements are strictly related among almost every

subject, this is the case of Extension Grasp and Power Disk Grasp. While the majority

of subjects have a similar behaviour, some of them vary from the average, as it happens

for Subject 9 (Fig. 5.1d). In particular, this subject’s subtree is populated by a wide

set of movements for both IAV and MAV features for EMG signals In fact, in this

case movements like Stick Grasp, Writing Grasp, Power Sphere Grasp are in the same
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(a) Subj:2, Feat:MAV, Data:EMG (b) Subj:2, Feat:MAV, Data:GLOVE

(c) Subj:2, Feat:TD, Data:EMG (d) Subj:9, Feat:MAV, Data:EMG

Figure 5.1: Hierarchical trees created by using (a) MAV features on EMG data from Subject

2, (b) MAV features on Glove data from Subject 2, (c) TD features on EMG data from Subject

2, (d) MAV features on EMG data from Subject 9

subtree, while trey are usually separated in different branches.

The results suggest that quantitative hierarchical representations of hand move-

ments can be performed with the proposed approach and the results from different

subjects and features can be compared.

5.3.2 Muscular and kinematic taxonomies of hand grasps

The quantitative hand movement taxonomies based on EMG (Figure 5.2(a)) and

kinematic data (Figure 5.2(b)) are in agreement and provide a similar representation

of the hierarchical organization of hand movements. This result is confirmed by the

edit distance between the two supertrees, which is 33 (a value within the range of the

distances computed for hierarchical trees obtained in a specific modality by using dif-

ferent features). This fact enforces the validity of both taxonomies, that were computed

using sensors measuring different parameters related to hand movements. The groups

of movements defined in the two modality-specific taxonomies are often similar. For

instance, the large diameter and medium wrap grasps are linked at the first level in both

the EMG and the kinematic taxonomy. The same happens for several other groups of
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movements, such as the small diameter and fixed hook grasps, the prismatic pinch and

tip pinch grasps. Other movements change from first level connections in one tree to

second level connections in the other. This is the case, for instance, of parallel exten-

sion and the lateral grasp, prismatic four fingers and writing tripod, precision sphere

and tripod. An interesting change happens considering the power sphere, precision

sphere, tripod and three finger grasps. These grasps are strongly linked (i.e. they are

very similar) considering the kinematic taxonomy. In the EMG taxonomy the precision

sphere and the tripod grasps are closer to the quadpod movement, while power sphere

and three finger grasps are closer to the prismatic pinch and tip pinch grasps. Few

movements change the grasp group depending on the considered taxonomy. This is

the case of the power disk, the index finger extension and the parallel extension grasp.

The power disk is grouped with the prismatic four fingers, the writing tripod and the

stick grasp in the EMG based taxonomy. On the other hand, only in the penultimate

level in the kinematic taxonomy is linked to them. The index finger extension grasp is

isolated in both trees. In the EMG tree, this grasp is in a single branch, close to the

majority of graspings but linked at the higher level to the grasp group including the

parallel extension, lateral and the extension type grasps. In the CyberGlove tree on

the other hand, it is completely isolated from the others movements. A strong differ-

ence between the two taxonomies occurs for the parallel extension grasp. In the EMG

tree, the grasp is isolated from the other movements, but grouped with the lateral and

the extension type grasps. In the kinematic taxonomy it is close to the prismatc four

fingers and the writing tripod grasp. There are two possible reasons to explain this dif-

ference. First, the EMG taxonomy considers the activation of wrist flexors/extensors,

while the taxonomy based on the data glove does not consider them. The EMG signals

measure all the muscular activity in the forearm, including the activity related to wrist

movements while the Cyber Glove on the other hand is sensitive only to finger move-

ments. Second, the difference can be due to variations in the force used to accomplish

the movements, since the EMG signals are sensitive to it. In any case, except these

few situations, the differences between the EMG and the kinematic taxonomy of hand

movements are limited, confirming the validity of the proposed approaches and thus

the validity of both taxonomies.

As previously said, the final EMG and glove taxonomies are assembled from su-

pertrees built from single features. We measured how much the grasps are similar one

to each other by using MANOVA starting from those features. The comparison in-

volved the same features for different movements, so we computed a metric able to

cope with the entire distribution in a multi-dimensional space as described in subsec-
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tion 5.2.3. Mahalanobis distances were computed for all features, and for each modal-

ity, we averaged them to obtain a unique value representing how close a movement is

to another. In order to provide an intuitive way to show similarity between EMG and

glove information, we built two distance matrices, one for the muscular (Figure 5.3)

and one for the kinematic (Figure 5.4) data. The two matrices show several similarities

and, in general, they confirm the considerations derived from the respective supertrees.

For example, the index finger extension is clearly distant from all the other movements,

while small diameter, fixed hook, large diameter, and medium wrap are very similar

grasps. As a further prove to sustain the idea of merging trees built from different sen-

sors, Table 5.3 represents the edit distance between the modality-specific taxonomies

and the supertrees built on each modality for each specific feature. Considering the

EMG data, the IAV and the MAV based taxonomy are the most similar to the muscu-

lar taxonomy (edit distance = 22). The edit distance between the IAV and the MAV

taxonomies is 0. The most different tree is the one based on WL (edit distance = 39).

Considering the kinematic data, the RMS based taxonomy is identical to the kinematic

taxonomy (edit distance = 0), while the TD tree is the most different.

5.3.3 General quantitative taxonomy of hand grasps based on mus-

cular and kinematic data

The general quantitative taxonomy of hand grasps (Figure 5.5) is computed by

merging the muscular and the kinematic taxonomies and offers a general and compre-

hensive description of hand movement similarities, thus overcoming the subjectivity of

previous qualitative taxonomies as well as the limitations of the muscular and the kine-

matic taxonomies presented in Subsection 5.3.2. The general taxonomy of hand grasps

is slightly closer to the EMG taxonomy (edit distance = 29) than to the kinematic tax-

onomy (edit distance = 42). Coherently, the supersupertree has more connections in

common with the EMG one.

The general quantitative taxonomy of hand grasps presents a division into five cate-

gories that correspond to real finger positioning and muscular activation, reflecting the

shape of the grasped object and balanced combinations of parameters rather than the

force used or other specific single parameters. The categories were named as follows

according to specific properties of each group: 1) flat grasps; 2) distal grasps; 3) cylin-

drical grasps; 4) spherical grasps; 5) ring grasps. Flat grasps are well separated from

all the others and are characterized by an elongated (or ”cupped”) positioning of the

palm with an abducted or adducted thumb. Parallel extension can be added to this

group considering its similarity with the extension grasp and that the grasp is included
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in the same group in the quantitative muscular taxonomy of hand grasps. Distal grasps

are usually characterized by the strong involvement of distal phalanxes, thus of the

flexor digitalis profundus. Cylindrical grasps are strongly linked to the shape of the

object. They usually involve palm opposition with both adducted or abducted thumb

and virtual fingers 2-5. Spherical grasps are strongly linked to the shape of the object

as well. They involve both pad and palm opposition with virtual fingers 2-3, 2-4 and 2-

5. Ring grasps are almost entirely in accordance with the GRASP’s taxonomy grasps

with virtual fingers 2. This category includes as well the three finger sphere grasp,

which is the only power, pad opposition grasp with virtual fingers 2-3 in the GRASP

taxonomy. The three finger sphere grasp is grouped differently within the muscular

and the kinematic taxonomy. These facts suggest that in static conditions the middle

finger may have an accessory function in the grasp.

Cylindrical and spherical grasps can also be grouped into a macro-sub group at

the third level. Qualitative comparison of the results with the kinematic hand grasping

synergies [72] highlights an overall similarity between the cylindrical grasps and the

first synergy obtained by Santello et al.(closure of finger aperture achieved by flexion

at the pip joints of the fingers and thumb adduction and internal rotation) and between

the spherical grasps and the second synergy (flexion at the mcp joint and adduction of

the fingers).

The main differences between the general and the muscular taxonomies concern

the grasps targeting spherical objects. In the general taxonomy, the power sphere, the

precision sphere and tripod grasps are grouped together, similarly to what happens

in the kinematic one. The three finger sphere is closer to prismatic pinch, tip pinch

and ring grasp. Similarly to the kinematic taxonomy, the extension type, lateral and

quadpod grasps are grouped separately from all the other movements.

Two more important differences between the general taxonomy and the modality-

specific ones are related to two movements that have different connections in EMG

and glove trees: parallel extension and index finger extension. The parallel extension

grasp is grouped with the lateral and extension grasp in the EMG taxonomy, while it is

grouped with the prismatic four fingers and the writing tripod grasp in the kinematic

taxonomy. In the general taxonomy, the parallel extension grasp is located alone in its

own branch, separated from almost any other grasp and separated from the extension,

lateral and quadpod grasp. The index finger extension grasp is represented as com-

pletely separated from the others in the kinematic taxonomy. In the EMG and in the

general taxonomy of hand movements on the other hand, the grasp is still quite isolated

but it is grouped with classical grasps (such as the stick, medium wrap grasp) at a very
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high level.

As previously mentioned, the differences between the muscular and the kinematic

taxonomies are due to the properties of the movements that the different sensors can

highlight. Thus, the general taxonomy of hand grasps provides a unified and general

description of all of them.

5.3.4 Comparison with the GRASP taxonomy

Comparing the general quantitative taxonomy of hand grasps with previous tax-

onomies allows evaluating the considerations used to create the previous taxonomies

and to better interpret the results achieved. Among the taxonomies presented so far,

the GRASP taxonomy [67] is a a well accepted taxonomy that represents most of the

previous studies and includes all the movements considered in this work. The authors

divided the grasps into groups according to four main parameters: 1) power type; 2)

opposition type (i.e. the direction in which the hand applies force on the object); 3)

thumb position and 4) virtual finger assignments.

The quantitative taxonomy of hand grasps is partially similar to the GRASP tax-

onomy considering the sub-groups determined by the intersection of the GRASP pa-

rameters. However, it differs in the fact that the parameters considered in the GRASP

taxonomy are differently (and only partially) represented by the quantitative taxon-

omy (Figure 5.6).

GRASP Taxonomy Parameters

The subdivision according to power type (power, intermediate or precision grasps)

that strongly influenced the scientific literature in the past is not well supported by the

general and modality-specific quantitative taxonomies of hand movements (power, in-

termediate and precision grasps are usually divided between the five groups presented

in this work). This result is also confirmed considering only the quantitative muscular

and kinematic taxonomies, that are more similar to the the general quantitative taxon-

omy. The subdivision according to opposition type (pad opposition, palm opposition

or side opposition) is partially supported by the general quantitative taxonomy of hand

grasps (palm and pad grasps are in most cases well divided). The subdivision ac-

cording to thumb position (thumb abducted or adducted) is not well supported by the

general taxonomy of hand grasps, even if the index finger extension grasp is constantly

well separated from all the other grasps and the lateral and parallel extension grasp are

grouped. The subdivision according to virtual finger assignments is well supported
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Figure 5.6: Comparison of the general quantitative taxonomy of hand grasps with the

GRASP taxonomy.

by the general quantitative taxonomy of hand grasps. The index finger extension grasp

is constantly well separated from the other grasps, coherently with the fact that it is the

only grasp with virtual fingers 3-5 in the GRASP taxonomy. The general quantitative

taxonomy category ”ring grasps” is almost entirely in accordance with the GRASP tax-

onomy groups having virtual finger 2. This category includes as well the three finger

sphere grasp, which is the only power, pad opposition grasp with virtual fingers 2-3

in the GRASP taxonomy. Two grasps of the virtual finger 2-4 category in the GRASP

taxonomy (extension type and quadpod) are grouped in the category ”flat grasps” of

the general quantitative taxonomy. However, grasps that are grouped with virtual fin-

gers 3, 2-3 and 2-5 are often mixed within the general quantitative taxonomy of hand

grasps.

Sub-groups determined by the intersection of the GRASP Taxonomy Parameters

The thumb-abducted, palm opposition, power grasps of the GRASP taxonomy are

grouped together in the general quantitative taxonomy (the only differences are for the

power disk and the power sphere, that are separated in the in the general quantitative

taxonomy). Coherently with the GRASP taxonomy, the fixed hook is grouped at the
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second level with the thumb abducted palm opposition power grasps. The index finger

extension grasp is separated from almost all the others, somehow corresponding to the

GRASP taxonomy, in which this movement is alone in the power palm thumb adducted

group having virtual fingers 3-5.

Coherently with the GRASP taxonomy, the ring and the sphere three finger grasps

are grouped in the quantitative taxonomy. However, these grasps are grouped with the

prismatic (palmar) pinch and the tip pinch, which previously were represented as part

of the precision grasps. In the GRASP taxonomy, the thumb-adducted, side opposition,

intermediate grasps include the lateral and stick grasps. These two grasps are not

grouped in the general quantitative taxonomy of hand grasps. In fact, the lateral grasp

is grouped with the extension type and the quadpod grasp. The stick grasp is grouped

at the second level with the writing tripod and the prismatic four fingers and, at the

third level, with the power disk. In the quantitative taxonomy, the thumb abduction,

precision group of the GRASP taxonomy is divided into several sub-groups. The sub-

groups are often grouped (also with other movements) according to the shape of the

object rather than on the properties previously identified. The prismatic four finger

grasp is grouped with the writing tripod at the first level, the tripod and the precision

sphere are grouped at the second level, the prismatic (palmar) pinch and the tip pinch

are grouped at the first level. This result shows that, on average, the shape of the

object influences the positioning of the fingers and the muscular activity more than the

usefulness for power or precision tasks and opposition type.

Finally, accordance between the general quantitative and the GRASP taxonomy

is obtained for the parallel extension grasp, that is separated from most of the other

movements in both of them.

5.4 Discussion

This work presents to the best of our knowledge the first quantitative taxonomy of

hand grasps based on muscular and kinematic measurements of the hand (Figure 5.5).

Several taxonomies of hand grasps were presented in scientific literature. All of them

are based on rigorous qualitative descriptions of hand movements and valuable intu-

itions performed by scientists. They are capable to highlight intrinsically important

characteristics of hand movements, nevertheless, a qualitative analysis is prone to sub-

jectivity and it does not allow a demonstrable confirmation or refutation offered by

quantitative methods [86]. The quantitative taxonomy is based on solid experimental

measurements and statistical data analyses. The analysis is limited to the considered
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data and time domain features, that determine the organization of the taxonomy. Fur-

ther analysis (including other data and signal features, such as for instance frequency

based features) is considered in future work. Such analyses may be able to highlight

deeper or different relationships between muscular and kinematic properties of hand

movements. This work sets the basis for such work by providing a quantitative de-

scription of the hand movements that are divided into five main groups, as presented in

Figure 5.5. The general quantitative taxonomy of hand grasps is based on two modal-

ity specific taxonomies (based on EMG and kinematic data Figure 5.2). The results

are interesting both considering the modality-specific and the general quantitative tax-

onomies.

The modality-specific taxonomies provide very similar representations of the hi-

erarchical organization of hand movements (edit distance = 33), thus validating each

other. The similarity between the muscular and the kinematic taxonomy confirms the

existence of strong relationships between the muscular activity and the actual motion

of the hand, as expected by anatomy. Small differences between the muscular and

the kinematic taxonomies exist. Such differences can be due to the differences in the

techniques used to record the data. The EMG based taxonomy considers the force ex-

erted and the motion of the wrist, while the taxonomy based on the data glove does not

consider these parameters. Nevertheless, these differences are in general small com-

pared to the similarities and they can possibly be reduced by considering weights when

merging hierarchical trees, as explained in subsection 5.2.3. Another possible source

of difference can be related to non-linearities existing between some joint angles in

the CyberGlove sensor output (e.g. abduction/adduction at the metacarpophalangeal

joints) [119, 120]. Although this aspect can affect the kinematic data, the kinematic

taxonomies are based on grasp similarities in the kinematic feature space (that take

into account the distribution of the data) and not directly the joint angles, probably

contributing to the similarity with the muscular taxonomy.

Several parameters can be used to quantitatively characterize hand grasps. This

work considers kinematics and muscular activity in order to target the posture of the

hands and due to practical data availability. The consistency between the muscular and

kinematic taxonomy enforces the usefulness and reliability of the results. The analysis

of other parameters can definitely be interesting and should be considered in follow-

up work. The edit distance boundaries depend on the number of nodes (thus on the

number of considered grasps). Intuitively, the larger the number of classes, the higher

the possible number of variations that can occur between different trees. This fact

can be one of the reasons behind the discrepancy obtained between the modality trees.
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Future work should address this fact in detail, by applying additional or alternative

operations, measures or approaches.

Depending on the domain, one specific taxonomy may be more useful than the

other. While the kinematic taxonomy may be more useful for robotics, the muscular

taxonomy may be more suitable for applications in prosthetics. Both taxonomies can

have applications in rehabilitation, physiology and neuroscience. The general taxon-

omy aims at providing a solution that is intermediate to the different fields, allowing

(and hopefully fostering) the collaboration among them on the basis of the first set

of quantitative results in this challenging domain. The general quantitative taxonomy

provides a comprehensive quantitative representation of hand grasps, overcoming the

subjectivity of the taxonomies previously presented in literature and the limitations of

the muscular and the kinematic taxonomies presented in this thesis. The general quan-

titative taxonomy suggests a division into five groups of grasps that were named after

specific properties of each group: 1) flat grasps; 2) distal grasps; 3) cylindrical grasps;

4) spherical grasps; 5) ring grasps. Cylindric grasps and spherical grasps can also be

grouped into a macro-sub group at the third level.

The division in categories is arbitrary, made in order to facilitate the comparison

with previous taxonomies and to provide a further synthesis of the taxonomy. Future

work could benefit from including quantitative approaches to perform the division in

categories.

The comparison of the general quantitative taxonomy of hand movements with pre-

vious taxonomies is important because it allows to validate the parameters on which

the previous taxonomies were based and to better interpret the achieved results. The

GRASP taxonomy [67] represents a proper reference for the comparison because it is

one of the most recent qualitative taxonomies of hand grasps and because it is based

on the comparison of several previous taxonomies. The quantitative approach only

partially confirms the parameters used to create the previous taxonomies (and thus the

GRASP taxonomy), while it enforces movement groups defined on the basis of real

finger positioning and muscular activation, reflecting often the shape of the grasped

object and balanced combinations of parameters rather than specific single qualita-

tive parameters. The intersections of different parameters in the GRASP taxonomy are

partially similar to the general quantitative taxonomy of hand grasps. However, there

are still important differences (Figure 5.6). Considering each parameter separately,

some of the qualitative GRASP parameters are not well represented in the quantitative

taxonomy and some others are predominant in a few categories. In particular, the sub-

division of hand grasps according to power (which strongly influenced the scientific
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literature in the past), is not well supported by the general quantitative taxonomy of

hand movements, while the subdivision into opposition and virtual finger assignments

are usually better represented in the general quantitative taxonomy (in particular for

specific groups, such as ring grasps). We offer two possible interpretations of these

results. First, human intuition and perception enrich previous taxonomies with alterna-

tive perceptions of the grasps, such as their usual aim, that is separated from a strictly

kinematic or muscular representation of the grasps. Second, it can be important that

the parameters of previous taxonomies are considered but it is not easy to balance and

weigh the parameters in each movement and category properly only on a qualitative

basis.

The hierarchical model of human manipulation and grasping improves several

fields (including robotics, prosthetics, rehabilitation and physiology) with the quan-

titative analysis of relationships that were previously widely described in literature on

the basis of qualitative parameters. In robotics, the five categories of movements de-

fined in Figure 5.5 can help to describe and plan robotic hands according to a clear,

solid and simple modular definition of movements. Moreover, the taxonomy can pro-

vide a priori information to improve classification algorithms, as proposed in [121].

In prosthetics, the general quantitative taxonomy can foster the development of pros-

thetic hands that are more suitable for real life situations in terms of both control and

mechanical design. For instance, the five categories of movements can be compared

with the mechanical properties of the prosthesis, as well as with the ADLs and the

movements mostly needed by hand amputees in order to develop modular control sys-

tems based on the movement categories. In rehabilitation, the presented taxonomy of

hand grasps can improve planning with a better scheduling that prioritizes the cate-

gories of movements that are more useful (or more realistically achievable) and thus

need to be restored earlier. In recent years, hand synergies gathered importance in

physiology, bioengineering, rehabilitation and robotics [72]. Comparing the quantita-

tive taxonomy of hand movements with the hand synergies can highlight relationships

between the two. The cylindrical grasps look qualitatively similar to the first kinematic

hand grasping synergy obtained by Santello et al. [72], characterized by the closure of

the finger aperture achieved by flexion at the pip joints of the fingers and thumb adduc-

tion and internal rotation. The spherical grasps look qualitatively similar to the second

kinematic hand grasping synergy (flexion at the mcp joint and adduction of the fingers).

These considerations provide a coherent relationship between the hand synergies and

the quantitative taxonomy approaches.

In conclusion, this work presents the first quantitative taxonomy of hand grasps
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based on muscular and kinematic data. The taxonomy clarifies with a solid quan-

titative approach what was proposed in the field so far based mainly on qualitative

assumptions, thus unifying the diverse perspectives presented and offering a scientific

reference for the taxonomies of hand grasps. The results were compared with previ-

ously presented taxonomies of hand grasps, improving them and clarifying the param-

eters used to define them. They appear at a first qualitative inspection in accordance

with hand synergy studies.

5.5 Quantitative Taxonomy of Hand Grasps for Ampu-

tated Subjects

The previous work have been extended to amputated subjects. All the signal pro-

cessing is the same of the previous section, but it has been applied to a different dataset.

In particular, we considered a different dataset from the NinaPro projects. The data

comes from 11 amputated subjects (11 males; 10 right handed, 1 left handed; age 42.36

± 11.96 years), performing the same exercises of the healthy ones. Detailed informa-

tion about the subjects, the movements and the acquisition setup can be found in [29].

Amputated subjects wear the sEMG electrodes on the stump, while the dataglove and

the inclinometer were placed on the contralateral hand.

It is worth to notice that for amputated the generalization among subjects is even

more challenging. As a matter of fact, many factors contributes to the quality of EMG

signals, like:

• Years since the amputation.

• Cause of the amputation.

• Phantom limb sensation.

• Amputation level.

• Usage of other prosthesis.

Nevertheless, the needs of a subject-independent solution is even more important,

since the major stress for the training procedure with respect to healthy subjects.

The study of a quantitative taxonomy of hand grasps, which considers both muscu-

lar and kinematic aspects, and its comparison with the one built on healthy subjects

would highlight the differences and the common behaviour among these two kind

of subjects. A coherent taxonomy for amputated subjects suggests a similarity with
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healthy subjects, despite the physical and physiological differences, thus validate the

subject-independent framework for amputated.

Figure 5.7, Figure 5.8, Figure 5.9 represents the quantitative taxonomy of hand

grasps for amputated subjects. Figure 5.7 and Figure 5.8 shows the muscular and the

kinematic taxonomy respectively, while Figure 5.9 represents the general taxonomy,

that exploits both EMGs and glove data.

5.5.1 Analysis of Amputated Taxonomy

The obtained trees are slightly less balanced than the ones built on data from

healthy subjects. It is interesting to study the analogies between the muscular and

the kinematic taxonomy. For healthy subjects the similarity was high, confirming the

connection among EMG signals and muscular activation. The results for amputated

subjects are less robust, thus the damaged muscles are not able to control the muscular

activation as profitably as for healthy persons. Further studies are needed, but patients

who lost their forearm many years ago, and without an efficient rehabilitation are more

inclined to lose their ability to control a limb. Nevertheless results are promising, since

many movements are organized in the tree in the same way.

Comparison between Muscular and Kinematic Taxonomies for Amputated Sub-

jects

For amputated subject the connection between muscular and kinematic taxonomies

is not trivial. As a matter of fact, the kinematic is recorded from the only forearm still

present, while EMG signals are recorded from the residual limb. For these persons is

particularly complex try to perform a movement from a limb that does not exists, and

this can also lead to frustration and stress, but mostly the movements and the muscu-

lar activation does not come from the same limb. For these reasons, the presence of

common subtrees among these two taxonomies is very interesting. In particular Tripod

and Precision sphere movements are very close in both the taxonomies. Also Pris-

matic pinch, Quadpod, and Tip pinch are strictly connected in both the taxonomies,

but the subtrees containing them changes:they are considered similar to Lateral grasp,

Power disk in the muscular taxonomy, while to Tripod, Precision sphere, Power sphere,

and Three fingers grasp in kinematic taxonomy. Other similar movements are Lateral

grasp, Extension type, and Power disk, but in this case too they are organized differ-

ently in the two taxonomies: in the kinematic taxonomy they are in the same subtree

as Parallel extension, but that is not true for muscular taxonomy. On the contrary, as
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previously said, from a kinematic perspective these movements are in the same subtree

as Lateral grasp, divided from ”spherical” grasps, like Tripod grasp. Furthermore,

Medium wrap, and Prismatic four fingers are close in both the taxonomies, but their

belonging subtrees differs from the presence of Ring grasp exclusively in the kinematic

taxonomy.

Nevertheless, both the trees have the same general structure: they have two sub-

trees, one rich of movements, while the other less populated, with four movements

maximum (Ring grasp, Index finger extension, Parallel extension in the muscular tax-

onomy, Fixed hook, Index finger extension, Large diameter grasp, Small diameter

grasp in the kinematic taxonomy). The remaining subtree is very balanced in the

kinematic taxonomy, but is much less regular in the muscular taxonomy, probably a

limitation given by the limb amputation.

Analysis of General Taxonomy for Amputated Subjects

The fusion of the two taxonomies overcome their limitations, by creating an unique,

general tree, that incorporates the information of both the muscular and the kinematic

perspective. The structure of the general taxonomy is similar to the two specific ones,

thus it is composed by two subtrees, the smaller one composed of only five movements:

Fixed hook, Index finger extension, Large diameter grasp, Small diameter grasp, and

Parallel extension. Large diameter grasp and Medium wrap are separated, like hap-

pened in the kinematic taxonomy, nevertheless the result of the muscular taxonomy

that groups them together seems more reasonable from a qualitative analysis. An other

aspect that reflect what happens in the kinematic taxonomy is the fact that the larger

subtree is well balanced. Furthermore, from a qualitative analysis emerges a correct

separation of ”palm grasps” (Medium wrap, Ring grasp) from ”finger grasps” (Quad-

pod, Tip pinch), and a proper grouping of Lateral grasp, Extension type, and Power

disk.

5.5.2 Comparison between Amputated and Healthy Subjects Tax-

onomy

The comparison of the results obtained by healthy and amputated subject is ex-

tremely useful in order to understand the characteristics of these groups of users,

and most of all to find similarities which can suggest the feasibility of a subject-

independent approach for injured persons.
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Muscular taxonomies

The comparison of these taxonomies would intuitively give the most different re-

sults since EMG signals of non intact muscles from amputated subject could be ex-

tremely different from the ones obtained from healthy subjects. Despite the great dif-

ferences among these groups of subjects, there are some comparable results in the two

taxonomies. It is worth to notice that the healthy tree is more balanced, nevertheless

also in this case there is a largely populated subtree and an other one with only three

movements, but only Parallel extension is shared between the two trees. The larger

subtree is more balanced for the healthy people, excluding Index finger extension. It is

interesting to notice that this movement is organized in the smaller subtrees for ampu-

tated. The group of ”spherical” grasps is organized in the same way for healthy and for

amputated subject, with the only exclusion of Ring grasp, which is present only in the

healthy subtree. However, a limitation of amputated taxonomy emerges for the move-

ments Large diameter, Medium wrap, Small diameter and Fixed hook: as a matter of

fact they are grouped together in the healthy taxonomy, and this seems correct from a

qualitative analysis, but they are separated in the amputated taxonomy.

Kinematic taxonomies

It is interesting to notice differences among these taxonomies too, even if the am-

putated subjects performed the task with their intact limb. What emerges from an

accurate analysis is that the healthy supertree is less balanced, mainly for the presence

of Index finger extension movement completely isolated from the rest of movements,

while for the amputated taxonomy this movement is grouped with Fixed hook. A

similar behaviour involves Power disk, since for healthy subjects this movement is iso-

lated, on the contrary then for amputated. The movements Stick grasp, Small diameter,

Fixed hook, Large diameter, Medium wrap are grouped in the same subtree for healthy

subjects, but there is not a coherent grouping in amputated taxonomy. Despite the

differences, there are some common aspects among the taxonomies, for example the

group composed by Three fingers sphere, Tripod, Power sphere, and Precision sphere

is organized in the same way in the two taxonomies. Also Prismatic pinch, Tip pinch,

Quadpod, Extension type, are grouped together in both the taxonomies, but for healthy

subjects they are strongly related with Ring grasp, while a strong connection is high-

lighted with Power disk and Parallel extension for amputated subjects.
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General taxonomies

In the comparison of the general taxonomies, it is possible to notice in the ampu-

tated one the absence of the class of movements highlighted for healthy subjects.

1. Flat grasps is present in both the taxonomies, with the exclusion of Quadpod

grasp.

2. Distal grasps: the majority of movements are relatively close, with the exclusion

of Power disk, which is in a completely different position.

3. Cylindrical grasps: in amputated taxonomy Medium wrap is substituted by

Index finger extension.

4. Spherical grasps: in amputated taxonomy Power sphere is missing.

5. Ring grasps: only Tip pinch and Prismatic pinch are close in the general taxon-

omy for amputated.

5.6 Conclusions

In conclusion, this work presents the first quantitative taxonomy of hand grasps

based on muscular and kinematic data. The taxonomy clarifies with a solid quan-

titative approach what was proposed in the field so far based mainly on qualitative

assumptions, thus unifying the diverse perspectives presented and offering a scientific

reference for the taxonomies of hand grasps. The results were compared with previ-

ously presented taxonomies of hand grasps, improving them and clarifying the param-

eters used to define them. They appear at a first qualitative inspection in accordance

with hand synergy studies.

The analysis of taxonomy for amputated subjects highlight some interesting re-

sults. Generally the taxonomy is quite different from the one obtained on data from

healthy subjects, and also from Feix’s one. The results seems less coherent even from

a qualitative analysis. Particularly interesting are the different results achieved for the

kinematic taxonomy. This was unexpected, since the amputated subjects were using

their intact limb for performing the tasks. These differences suggest a modification in

the way subjects perform daily grasps due to the fact that they are forced to use only

one hand.
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Table 5.2: Intra-subject variability in grasps across the different quantitative metrics

expressed as edit distance. Rows represent subjects while columns represent the dif-

ferent modalities.

Muscular Kinematic

Subject 1 4.00 ± 2.65 1.44 ± 1.33

Subject 2 2.48 ± 1.75 1.28 ± 1.87

Subject 3 0.96 ± 1.00 2.40 ± 2.59

Subject 4 2.08 ± 1.44 0.96 ± 1.40

Subject 5 3.04 ± 2.05 1.60 ± 2.33

Subject 6 3.84 ± 2.49 1.44 ± 1.65

Subject 7 2.96 ± 2.14 1.20 ± 1.30

Subject 8 2.24 ± 2.03 1.76 ± 2.10

Subject 9 4.32 ± 2.78 0.64 ± 0.93

Subject 10 3.12 ± 2.14 1.28 ± 1.43

Subject 11 2.80 ± 2.10 0.96 ± 1.40

Subject 12 0.32 ± 0.47 2.24 ± 1.99

Subject 13 2.48 ± 2.08 1.60 ± 1.26

Subject 14 3.12 ± 2.07 0.64 ± 0.93

Subject 15 2.72 ± 1.87 1.92 ± 1.74

Subject 16 3.36 ± 2.31 1.60 ± 1.88

Subject 17 2.16 ± 1.67 1.76 ± 1.73

Subject 18 2.96 ± 1.91 1.28 ± 1.87

Subject 19 1.44 ± 1.33 0.96 ± 1.40

Subject 20 2.32 ± 1.64 1.28 ± 1.87

Subject 21 2.72 ± 1.95 2.00 ± 1.81

Subject 22 2.24 ± 1.63 2.56 ± 2.30

Subject 23 2.32 ± 1.59 2.56 ± 2.30

Subject 24 1.92 ± 1.32 1.68 ± 1.49

Subject 25 2.96 ± 1.87 0.96 ± 1.40

Subject 26 3.52 ± 2.28 1.28 ± 1.87

Subject 27 2.80 ± 1.90 1.04 ± 0.96

Subject 28 3.12 ± 1.99 0.64 ± 0.93

Subject 29 3.28 ± 2.41 2.24 ± 1.99

Subject 30 3.68 ± 2.78 1.60 ± 2.33

Subject 31 2.72 ± 2.43 2.40 ± 2.30

Subject 32 1.84 ± 1.51 0.64 ± 0.62

Subject 33 3.28 ± 2.20 1.04 ± 0.96

Subject 34 2.00 ± 1.36 1.28 ± 1.87

Subject 35 2.48 ± 1.75 1.92 ± 2.80

Subject 36 2.56 ± 2.30 0.96 ± 1.40

Subject 37 0.32 ± 0.47 1.28 ± 1.87

Subject 38 2.56 ± 1.70 2.08 ± 2.15

Subject 39 2.24 ± 1.58 1.28 ± 1.87

Subject 40 3.36 ± 2.57 2.16 ± 2.27
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Table 5.3: Edit distance between the modality-specific taxonomies of hand grasps and

each modality feature supertree

IAV EMG MAV EMG RMS EMG TD EMG WL EMG

Muscular Tax. 22 22 34 24 39

IAV glove MAV glove RMS glove TD glove WL glove

Kinematic Tax. 19 31 0 34 26
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Chapter 6

Taxonomy-Based Classification

New and innovative prosthesis devices can improve the life quality of amputated

subjects, helping them to interact with the surrounding world. Hands are one of human

principal ways to interact with the surrounding world, and in particular with objects.

The three most important hand functions are to explore, to restrain and to manipulate

objects. Indeed, the several ways of grasping an item are part of the ADL that allow

us to interact naturally and easily with the world. These activities are crucial for each

individual and a great effort has been put to gain back lost functionality for injured,

amputated, or impaired subjects. Everyday hands grasp an high number of objects

with different shapes, dimensions and weight. These characteristics lead to disparate

ways of interacting with objects by using different grasping approaches. The scientific

community have selected a number of essential grasps, organizing them in taxonomies

depending on several qualitative factors. Many different taxonomies have been pro-

posed during the years, considering different aspects of hand motion. One of the most

complete and detailed taxonomy has been proposed by Feix et al. in [67] by arranging

together many different proposals. The result, namely the GRASP taxonomy, orga-

nizes a matrix of 33 hand grasps, arranging the movements according to qualitative

force parameters and finger positions. Nevertheless, a qualitative approach can reduce

ambiguity, since it depends on measurable and repeatable experiments. For this reason

we exploited the quantitative taxonomy of hand grasps (see Chap. 5) as a guideline. In

particular, the previously described taxonomy has been reduced extracting 8 significant

hand grasps. The movements are arranged in a binary tree, where movements belong-

ing to the same subtree have a common underlying behaviour. The taxonomy have

been built by considering data from many different subjects, in order to obtain a robust

and general solution. The considered taxonomy is based on quantitative parameters,

i.e. it includes the information from hand and fingers kinematics, and the muscular
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activation during the motion. In particular, the muscular activation is represented by

sEMG signals. These signals are also commonly used for the control of prosthesis, we

considered sEMG signals from the subjects with the goal of exploiting the physiologi-

cal behaviour in order to emulate what happens in the human body. sEMG signals have

the drawback of being non stationary, and very sensitive to the physical and physiolog-

ical state of the subject. In particular, studies shown a sensibility for muscular fatigue,

as well as for stress and physical weariness [122]. These characteristics result in a great

variability of the sEMG signals, even if they are collected from a single subject in a

limited period of time. As a consequence, the traditional approach when using sEMG

signals is to focus on the signals of a specific subject, without mixing signals from

several subjects. Nevertheless, despite the prevalence of subject-specific approaches,

in literature there are some examples of subject-independent approaches. An extended

literature review can be found in Chap. 2, here we report only some examples of the

techniques proposed during the years to establish a robust interaction with prosthe-

sis devices [16] [17]. Castellini et al. [22] developed a subject-specific (train and test

data from the same person) and a cross-subject (train data from one person and test

from another) analysis in both controlled (baseline) and ADL conditions. Matsubara

and Morimoto [6] implemented a bilinear model able to reach an accuracy of 73% by

classifying different movements in a multi-user context.

In these studies, the fusion of signals from several different subjects produces gen-

erally slightly worst performances, but has the vantage of obtaining a more robust and

general model. Thanks to this generalization, a new subject can use the framework

without the needs of long training phases, or with no training phase at all. In fact,

the model has larger variability, to let it embody a wide number of possible subjects

behaviours. Previously, we described a set of additional tools capable of conforming

EMG signals by means of an online preprocessing phase (Chap. 3). The necessity

of such tools is more relevant for subject-independent approaches rather than subject-

specific ones due to the greater signals variability. The crucial and fundamental role

committed to the preprocessing phase is to even differences between signals due to

noise, muscular and physical fatigue, while highlighting the intrinsic characteristic of

the considered movement.

Besides the preprocessing phase, better results can be obtained by implementing

new classification techniques. In classification frameworks, only a limited subset of

movements are considered. In [25] Yang et al. studied how the composition of a

movement affect the movement classification, with the aim of using this technology in

real ADL. They proved that better results can be achieved by including dynamic arm
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postures and varying muscular contractions in the training phase. Khushaba et al. [1]

worked on a similar problem, focusing on individual and combined fingers control

rather than on fixed, rough movements. They used a Bayesian data fusion postpro-

cessing approach to maximize the probability of correct classification, obtaining an

accuracy of about 90%. Abdullah et al. [123] asserted that the great variability of

EMG signals affects the classification performances. The Wavelet Packet Decomposi-

tion (WPD) has been used for features extraction from surface EMG signals, with the

vantage of avoiding EMG variations. Random Forest, Rotation Forest and MultiBoost

have been used for classification, reaching a classification accuracy of 92.1% with Ran-

dom Forest. Chan et al. [124] developed a fuzzy approach to classify single-site EMG

signals. The results have been compared with a neural network-based approach, ob-

taining better results since the fuzzy system gave more consistent classification results

being insensitive to over-training. Tang et al. [125] raised the problem of multiple hand

motion identification, since error rate increases with the addition of hand motions, pro-

ducing more overlapping areas for the projecting features. They proposed a classifier

dividing the classification procedure into several levels, where at each level different

features are located and projected in different spaces, obtaining an accuracy greater

than 89% for identifying 11 gestures.

Our previous studies [126] [127], described in detail in Chap. 4, shown good re-

sults in the continuous online estimation of both upper and lower limb movements,

considering up to 40 different subjects. Furthermore, we used a freely available online

dataset (Chap. 2), the data was not registered ad-hoc for our intentions assuring gen-

eral results, and the availability of the dataset makes the experiments comparable and

reproducible. The studies focused on subject-independent regression solutions for the

continuous estimation of several joints for a fixed movement. In this work, we aim to

approach to hand grasp classification by using a subject-independent framework. In

order to be able to control a prosthetic device we need a twofold approach:

• obtaining good prediction of the movement, in order to be able to reproduce

correctly the requested movement;

• being able to process the information and the prediction in a short time, in order

to be able to work online.

We propose to exploit prior information regarding the tasks to refine and fasten the clas-

sification process. The approach is based on a hierarchical cascade-based classification

technique by following the idea from Tang et al. [125], to both reduce elaboration time

and improve the prediction accuracy. The classification algorithm is developed to re-
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duce the number of movement classes at which the input samples could belong while

descending into the depth of a hierarchical tree. Thus, comparisons are made only

within a subset of the initial movements representing the classes. This subset is contin-

ually refined and reduced until arriving at the classification between two movements,

and eventually to a final decision. The binary classification follows the structure of

the quantitative taxonomy of hand grasps previously introduced. This means that the

classification will be repeated among the taxonomy subtrees. With this approach we

divide the classification in levels of increasing complexity, by following the taxon-

omy branches structure. In particular, level 0 indicates a classification among a couple

of leaves, while higher levels classify among groups of movements. The basic idea

behind this approach is that close movements in the taxonomy are more hard to distin-

guish than distant ones. At the same time, a misclassification between two movements

closed one to the other is less questionable than a misclassification between two distant

motions. Moreover, this approach is easily to generalize and scale. New movements

can be easily added to the classfication framework if they are in the taxonomy structure.

6.1 Signal analysis

The preprocessing phase is designed to enable the online elaboration of the input

signal. Data used in this study come from the NinaPro dataset, a freely online available

dataset [28]. Information has been collected from N= 40 healthy subjects performing 8

different hand grasps, each movement was repeated 6 times. The dataset contains both

muscular activation and physical movements, but we focused only on the physiological

signals from 8 sensors placed around the forearm.

The preprocessing has the role to detect a clear underlying behaviour between the

considered signals. The process provides conditions for good classification perfor-

mances. This goal is even more important to reach since we are considering signals

from a large number of different subjects. As described in Chap. 3, we started by apply-

ing the WT [44] to the signal in order to obtain an analysis in time and frequency, thus

removing the dependence from time and granting online processing. We used the db2

mother wavelet from the Daubechies family and MAV as synthesis function, applying

the WT to consecutive windows of 200 samples. Finally, data has been smoothed by

applying a moving average lowpass filter and normalized, in order to regularize the

output.
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6.1.1 Gaussian mixture model and classification

The EMG signals from a selected number of channels plus the additional infor-

mation of the movement type, have been used to train offline a probabilistic model,

namely a GMM. The GMM approximates the input by using a weighted sum of K

Gaussian components which better represent the input data, used to train the model. A

complete overview of the GMM can be found in Chap. 3.

After training the model, we proceeded with the online classification phase. We

will perform tests with three methods in order to compare the use of preliminary in-

formation from the taxonomy in different contexts. The classification techniques have

been described also in Chap. 3. makes us predict the kind of movement the subject is

performing starting from EMG signals from the subject’s muscles.

6.1.2 Taxonomy

To simplify the work, we considered a subset of 8 movements extracted from the

complete taxonomy. The movements have been chosen among classical every day

grasps to interact with common objects. In particular, we considered the following

movements: Index Finger Extension, Medium Wrap, Prismatic Four Fingers, Stick,

Writing Tripod, Power Sphere, Extension Type, and Power Disk. The taxonomy for the

considered subset of chosen movements is represented in Fig. 6.3.

6.2 Results

We tested the framework with a Leave-One-Out approach. The model has been

built on N-1 subjects and tested on the remaining one. The whole process has been

repeated for all the N subjects. The testing phase has been organized in levels of in-

creasing complexity. Level 0 includes the classification between couples of movement,

i.e. writing tripod and prismatic four fingers, medium wrap and power sphere. Level

1 rises of one level in the binary tree and compares a couple with a single movement.

Particularly, the movements of the previous level are considered as the same ”move-

ment group”. Therefore, in level 1 we classified between stick vs. writing tripod plus

prismatic four fingers, and so on. A graphical example of this procedure is depicted

in Fig. 6.2.

Fig. 6.2 summarizes the achieved results, showing the accuracy obtained during

the tests. In particular, we computed the accuracy for each trial and movement, in

every classification level among all the 40 considered subjects. The final accuracy has
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been computed by fixing the level and averaging among all the remaining factors. The

obtained results are generally good, and they confirmed our expectations. Lower levels

achieves worst results, this is probably due to the similarity of the two movements

considered at these levels. In fact, they showed very similar sEMG signals, thus it is

easier to missclassify them. This hypothesis is supported by the fact that high level

reaches higher accuracy. In particular, level 3 reaches an accuracy of 97.29%.

Figure 6.3: Accuracy obtained among all the considered levels for the subject-

independent taxonomy-based classification.

6.2.1 Test of different classification techniques

The previous tests have been expanded to different classification approaches, and

they have been compared with the results achieved without the taxonomy contribution.

In particular, we considered:

• 8 movements.

• 40 subjects.

• 5 taxonomy levels.

• Three classification approaches.

• Comparison with the classification of 8 movements without exploiting the tax-

onomy.

The preprocessing phase is described in Chap. 2, while the three classification ap-

proaches have been described in Chap. 3. We will refer to the following techniques:

• Instantaneous Classifier.

• Normalized Accumulation Classifier, the approach used in the previous tests.

• Bayesian Accumulation Classifier.
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The following tables report the accuracy achieved with the three different classi-

fication techniques. Furthermore, for each technique there is a comparison between

the results obtained exploiting the prior information from the taxonomy and without it.

As in the previous results, we tested the framework with a Leave-One-Out approach,

building the model on N-1 subjects and testing it on the remaining one.

Instantaneous Classifier

Movements 4, 5, 10, 19 Movements 7, 8, 9, 20

Level 0 Level 1 Level 2 Level 0 Level 1 Level 2 Level 3 Level 4 Level 5 No Taxonomy

Movement 4 0.0792 0.9667 0.025 0.975 0.1458

Movement 5 0.7875 0.85 0.925 0.9917 0.8792 0.8875 0.525

Movement 7 0.4583 0.825 0.95 0.9417 1 1 0.2833

Movement 8 0.325 0.925 0.9625 1 1 0.3833

Movement 9 0.6917 0.8917 0.975 0.9708 1 1 0.575

Movement 10 0.8167 0.9042 0.9875 0.9917 0.9875 1 0.7583

Movement 19 0.2167 0.3417 0.4042

Movement 20 0.075 0.9792 1 0.9958 0.233

Mean accuracy 0.8021 0.6111 0.7739 0.575 0.6805 0.7312 0.9729 0.8417 0.9 0.4135

Table 6.1: Average results obtained by applying Instantaneous Classifier technique

Normalized Accumulation Classifier

Movements 4, 5, 10, 19 Movements 7, 8, 9, 20

Level 0 Level 1 Level 2 Level 0 Level 1 Level 2 Level 3 Level 4 Level 5 No Taxonomy

Movement 4 0.0917 0.9375 0.0417 0.9625 0.1625

Movement 5 0.7 0.8042 0.9083 0.9875 0.8625 0.8833 0.525

Movement 7 0.5042 0.8917 0.9792 0.9542 1 1 0.2542

Movement 8 0.4458 0.9292 0.975 1 1 0.4333

Movement 9 0.7083 0.9125 0.9708 0.9875 1 1 0.5917

Movement 10 0.8625 0.8917 0.9792 1 0.9833 0.9958 0.6958

Movement 19 0.2083 0.3458 0.4417

Movement 20 0.0875 0.9875 1 0.9958 0.275

Mean accuracy 0.7812 0.5958 0.7583 0.6062 0.75 0.7217 0.9819 0.8979 0.8979 0.4224

Table 6.2: Average results obtained by applying Normalized Accumulation Classifier

technique

Classification techniques

By observing the results achieved with the three different classification techniques,

it is possible to notice that there is no substantial differences among the different tech-

niques, both considering the taxonomy or not. Normalized Accumulation Classifier

reached slightly better results when considering the taxonomy, while without taxon-

omy, Normalized Accumulation Classifier and Bayesian Accumulation Classifier ob-

tained substantially the same mean accuracy. In general, when considering the tax-

onomy, the maximum difference among the tested classification techniques is only
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Bayesian Accumulation Classifier

Movements 4, 5, 10, 19 Movements 7, 8, 9, 20

Level 0 Level 1 Level 2 Level 0 Level 1 Level 2 Level 3 Level 4 Level 5 No Taxonomy

Movement 4 0.0833 0.9333 0.0792 0.9667 0.075

Movement 5 0.7375 0.8583 0.9042 0.9958 0.8208 0.8417 0.3125

Movement 7 0.5583 0.7917 0.9667 0.9417 1 0.9958 0.125

Movement 8 0.5042 0.9083 0.9333 0.9958 0.9667 0.3625

Movement 9 0.6708 0.8208 0.9708 0.9667 1 0.9917 0.3708

Movement 10 0.8542 0.8875 0.975 1 0.975 0.9958 0.8708

Movement 19 0.3 0.4125 0.65

Movement 20 0.1 0.9708 0.9958 0.9833 0.6125

Mean accuracy 0.7958 0.6097 0.7781 0.6146 0.7056 0.7365 0.968 0.8381 0.8943 0.4224

Table 6.3: Average results obtained by applying Bayesian Accumulation Classifier

technique

0.89%, while without introducing the taxonomy information the maximum discard is

0.73%. Thus, we can assume that the three different classification approaches are com-

parable, both for the achieved results and the computational time.

Table 6.4: Average results with the various techniques

Instantaneous Classifier Normalized Accumulation Classifier Bayesian Accumulation Classifier

Tax 0.7654 0.7727 0.7712

No Tax 0.4135 0.4224 0.4224

Taxonomy vs. general classification

The discussion becomes more interesting when analyzing the differences between

the classical classification and the one that exploits the prior information from the

taxonomy. The introduction of taxonomy hierarchy boosts the accuracy achieved in all

the considered classification methods of about 35% for a subject-independent solution.

General considerations

This wider analysis confirms the results obtained in the initial study. Again, higher

levels in the taxonomy reached higher accuracy, while the prediction is less precise

in the lower levels. Nevertheless, a misclassification is less problematic in the lower

levels, since the possible movements are close.
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6.3 Conclusions

In this work we exploit the first results of the hierarchical and dependency rela-

tionship between the movements in order to develop a robust classification framework,

able to identify online the movement performed by a subject. Classifications are more

difficult as the number of considered class increases. In fact, the higher number of

classes lead to more misclassifications and lower accuracy. Our solution aims to limit

this problem by exploiting a hierarchical quantitative taxonomy of hand grasps. The

binary tree structure of the taxonomy comports a classification between two groups of

movements, close to each other. The classification becomes more precise descending

the tree and reaching the root, where the classification is restricted between a couple

of movements. The proposed solution is subject independent, and it works also with

new, unseen subjects. The developed GMM based classification allows an incremental

and progressive classification of the samples, granting robust and online results. In

particular, we considered data from 40 healthy subjects performing 8 common grasps.

Human information has been modeled and the classification process determined on-

line by using a Gaussian-based framework. Results are promising: we obtained a

mean accuracy of 76.5%, reaching 97.29% in one of the higher levels. Our approach

showed an improvement of performances when considering a-priori information from

the quantitative taxonomy of hand grasps.
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Chapter 7

Physiological Signals in Industrial

Settings

The advent of Industry 4.0 brought a wide number of innovative solutions for man-

ufacturing [12], and the interaction between man and machines is a fundamental part

in this process. The availability of affordable and reliable collaborative robots opens

new and interesting perspectives. Human and robot can work together in the same

area, on the same product. Operators can easily maneuver powerful manipulators,

while robots can observe several human demonstrations to learn how to perform a

task [128] [129] [130]. Up to now, many solutions propose to observe and track the

body by means of visual systems, for example by exploiting 3D camera networks, or

markers attached to the body [131]. This solution has the drawback of being sensitive

to camera occlusions, light variations, and motion blur [132]. IMUs are probably the

main alternative to cameras, they are effectively used to learn new behaviors [133] and

control robots in industrial setups [134]. Moreover, Venek et al. [135] evaluated the use

of IMUs as body tracking system under 5 major requirement areas to classify Active

and Assisted Living (AAL). They were able to distinguish among different activities,

with a limited amount of errors. In many cases, a multi-modal approach can be used

to enrich the information and overcome limitations of unimodal systems [136]. Many

solutions propose the introduction of physiological signals, recorded directly from the

human body. EMG signals have been rarely considered as a unique tool for the motion

prediction [137] due to their non-stationarity and sensitivity to muscular fatigue and

stress [7], but they are quite popular for controlling exoskeletons or prosthesis [126].

Nevertheless, these signals have proved to be a valuable source of information when

used in conjunction with other measurement units. Peternel et al. [9] aimed to read hu-

man intentions during a cooperating task through force/torque sensors, operator muscle
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direction. Finally, the proposed system has been tested by teleoperating a UR10 collab-

orative robot with online hardware-in-the-loop simulations. However, the framework

is general, thus it can be applied in many Industry 4.0 applications, where autonomous

and collaborative robots are an essential part of the innovative facilities.

7.1 Experimental setup

The data for models training has been registered from four healthy right-handed

subjects (age 26 ±4, one female) performing reaching movements with their right

upper-limb. At the beginning of the protocol, the subject is asked to comfortably sit on

a fixed chair, with his right arm lying on a working bench. At each session, the subject

is asked to move his hand from a home position (’H’) in the middle of the workspace, to

one of the targets placed at a distance of 15 cm in cardinal directions (’N’,’E’,’S’,’W’),

as shown in Fig. 7.1. Each trial consists of a movement towards the target, followed by

about 2 seconds of rest on the target, and a movement backwards the home position.

These main directions have been primarily chosen to compare the results of this study

with a previous work [139]. In addition to the cardinal directions, four secondary

directions (’NE’,’SE’,’SW’,’NW’) have been registered to test the robustness of the

proposed system when increasing the number directions to detect. For each subject,

six sessions have been performed, resulting in 30 trials for each target, thus 240 trials

in total. The whole protocol lasted about 40 minutes per subject.

Angular velocity, linear acceleration and muscle activity information have been

registered with two Myo armbands, from Thalmic Labs, worn on the upper arm and

on the forearm. Both Myo devices have been connected and synchronized to the ROS

middleware by means of a custom software library developed by our research group

enabling the use of more than one device on the same PC1

7.2 Methods

7.2.1 Offline movement segmentation

The data collected from the subjects during the experimental protocol are com-

posed of several trails acquired on after the other. Therefore, they present an alterna-

tion of states: motion (i.e. forward and backward movements) and rest (i.e. on the

1The library code is publicly available at https://github.com/ste92uo/ROS_

multipleMyo
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home position and on each target). We segmented the dataset offline in order to dis-

tinguish among the two states and divide each sample accordingly. The segmentation

consisted of two cascading steps, both composed by a filtering and a thresholding. The

procedure has been applied to the sum of the angular velocity magnitude of both arm

and forearm. The filters are respectively a zero-phase eight-order Butterworth filter at

0.01 Hz between 0.01 Hz and 3 Hz, and a moving average filter with 1s sliding win-

dow. The first threshold is computed as the average value plus six times the standard

deviation of the first and last seconds of each session, where subjects are known to be

in rest. The second threshold is fixed to 0.1.

7.2.2 Dimensionality reduction

All the registered dataset consisted of inertial and muscular information. From each

Myo device we saved 3-axis angular velocity, 3-axis linear accelerometer and 8 built-

in surface EMG electrodes, resulting in a total of 28 features. Thus, we compared a

number of dimensionality reduction techniques in order to limit the system complexity.

PCA

One of the most common unsupervised method is PCA [140]. PCA is based on

an orthogonal linear transformation of the data in a different coordinate system, where

the first components represent the most of the variance of the original dataset. This

can be achieved by iteratively look for a linear mapping matrix W that maximizes the

trace-norm of the multiplication between W and the sample covariance matrix of the

M-dimensional original dataset. The lower embedding dimension m is chosen as the

minimum number of principal components necessary to explain 90% of the dataset

variance. In this thesis, PCA has been applied on the dataset including all the 28

features from IMU and EMG channels (’PCA’).

Non-negative Matrix Factorization

Non-negative Matrix Factorization (NMF) [141] is a unsupervised dimensionality

reduction algorithm giving particularly good results with dataset including only non-

negative values, such as images and muscle activity envelopes. Given a dataset X of

non-negative values, NMF extracts H and W by minimizing the divergence D(X||HW )

between the original and the reconstructed datasets. Where, H is the subject-specific

synergy matrix and contains m time-invariant and task-independent synergy modules.
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And W is the m-dimensional matrix of activation coefficients over time. The m em-

bedding dimension has been chosen by looking to the Variance-Accounted-For [142]

in order to have a robust agreement between the original and the reconstructed dataset.

In this work, NMF has been applied on the dataset including the 16 EMG features

concatenated to the features extracted by PCA on IMU (’PCANMF’).

Fisher’s Discriminant Analysis (FDA)

Here, we refer to FDA not as the classification method, but as the dimensionality

reduction method based on the Fischer’s score. The aim of FDA is to project the data

samples in a subspace with embedding dimension m where the within-class variance

is minimized, while the between-class variance is maximized, in order to improve

class separability. Given a multi-class problem of L classes, linear mapping W can be

extracted from the first m eigenvectors vi solving the system of linear equations:

S−1
W S̄vi = λivi, i = 1, ...,m (7.1)

S̄ = SW +SB (7.2)

where SW and SB are the with-class scatter matrix and the between-class scatter matrix,

respectively and λi are descending eigenvvalues. This solution is limited to m < L

cases, since the rank of SB is L−1, thus all the eigenvalues from L to M are the same

and equal to 1 [143]. In this work, m = L− 1 has been chosen and applied on two

different datasets: the one including all the 28 features from IMU and EMG channels

(’FDA’), and the one including only the 12 IMU features (’FDA-IMU’).

7.2.3 GMM for direction identification

The feature extracted from the dimensionality reduction phase have been used to

train a probabilistic model, namely a Gaussian Mixture Model, which is able to esti-

mate the subject’s chosen direction, by classifying among all the possible positions.

This classification framework has been accurately described in (METHODS). For this

particular work, a single data ζ j,1 ≤ j ≤ N in input at the framework can be written

as Eq. 7.3.

ζ j = {ξ (t),γ} ∈ R
D
, ξ (t) = {ξc(t)}C

c=1. (7.3)

where C = |ξ | is the number of selected features, ξ (t) ∈ R
C is the set of values as-

sumed from the considered features, and γ is the class of movement. D =C+1 is the
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dimensionality of the problem.

7.2.4 HMM for motion prediction

A HMM has been implemented to predict if the subject is in a state of REST (i.e.

the hand is stopped on the home position or on one of the available targets) or in a state

of MOT ION (i.e. towards a target or backwards to the home position). As observed

variable y(t) emitted by the state x(t) at time t, the sum of filtered angular velocity

magnitude of arm and forearm has been exploited. The model has been trained by the

Baum-Welch algorithm [144]. At each time step t, the posterior probability of the i− th

state (i.e. rest or motion) is computed as:

p(xi(t)|y(t)) = p(y(t)|xi(t))∑
2
j=1 p(xi(t)|x j)p(x j(t −1)) (7.4)

i = 1,2

7.2.5 FSM for robot control

The output of HMM and GMM have been used to trigger a Finite State Machine

with the following states:

1. Home: the subject is not moving from the home position, the GMM probabilities

are not accumulated and the robot keeps its state;

2. Evidence Accumulation: the subject is moving towards a target and the output

probabilities of the GMM are accumulated over time;

3. Send Command: the predicted movement direction is sent to the robot and the

consequent action is activated;

4. On Target: the subject is on the target position;

5. Back Movement: the subject is moving back to the home position.

The transition map of the proposed FSM is shown in Fig. 7.2. At the beginning of

each session, the subject is supposed to be in Home state and the HMM is initialized

to REST. When MOTION is detected by the HMM, the machine immediately transits

to Evidence Accumulation state. If the accumulated evidence fulfill the criteria for

dynamic stopping, the machine goes to Send Command state. On the other hand, if the
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Figure 7.2: FSM Transion map. The transition valus 0 and 1 corresponds to REST

and MOTION respectively. The transition function a enables changing the state after

a predefined number of samples corresponding to the value in input. T (s,r) enables a

state transition only if the criteria for dynamic stopping is satisfied.

HMM identifies a REST and it is kept for at least X samples, the machine goes back to

Home state. Finally, if the accumulated evidence does not satisfy the criteria for longer

than Y samples, the FSM jumps directly to On Target state. The state goes to On Target

also from Send Command state just after receiving a MOTION. If the machine is in On

Target state and the HMM detects a MOTION for at least X samples, state transits to

Back Movement. It stays in Back Movement until going back Home once HMM detects

a REST for at least X samples. The values of X and Y have been calculated as the

average value plus six times the standard deviation of the mean number of MOTION

samples within a motion state and the number of REST samples in a rest state.

7.2.6 Criteria for dynamic stopping

The transition rule from Evidence Accumulation state to Send Command state de-

termines the amount of time the classifier accumulates the GMM posterior probabilities

before classifying the correct direction. However, it is difficult to determine a priori

the minimum amount of time the classifier should accumulate to guarantee a certain

accuracy, since the movement is performed at self-selected speed. For this reason, two

criteria have been introduced to determine dynamically the time of accumulation at

each trial. Given the vector of normalized accumulated posterior probabilities nP(t)

for each of the L classes, the first criterion, namely the ratio criterion, is defined as:

Cr(t) = 1− k2(t)

k1(t)
(7.5)
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where

k1(t) = nPi1(t) with i1 = argmax
i∈L

nPi(t) (7.6)

k2(t) = nPi2(t) with i2 = argmax
i6=i1∈L

nPi(t) (7.7)

and it represents the ratio between the probabilities of the two most probable directions.

This criterion has been introduced so that the system sends a command to the robot

only if the confidence on the selected command is sufficiently high. On the other

hand, given the not normalized accumulated probabilities P(t), thus the cumulative

sum of the raw posterior probabilities of the GMM for each of the L classes, the second

criterion, namely sum criterion, is defined as:

Cs(t) =
L

∑
i=1

Pi(t) (7.8)

Combining the two criteria allows the construction of the transition rule T (Cr,Cs, thr, ths)

as

T (Cr,Cs, thr, ths) =





true, if Cr > thr ∨Cs > ths

f alse, otherwise
(7.9)

Thus, a command is sent as soon as one of the criteria is verified (i.e. T = true). A grid

search has been conducted with a 5-fold cross-validation for each subject to determine

the thresholds thr and ths.

7.3 Results

To assess the performances of the system, the classification accuracy over the

reaching distance has been computed and averaged across subjects. The performance

in discriminating between the four main directions for the different dimensionality re-

duction methods, all coupled with the GMM, are shown in Fig. 7.3 (top). As expected,

the accuracy increases over time, reaching more than 90% of accuracy for all the meth-

ods. However, ’FDA’ shows the highest performance in the first half of the reaching

distance when compared to the other methods. The accuracy for ’FDA’ reached more

than 90% of accuracy already at 30% of reaching distance, and with a remarkably

lower variability between subjects. To assess robustness and scalability of the classi-

fication methods, we tested their performance over the extended set of eight classes.

The results, shown in Fig. 7.3 (bottom), reveal a higher robustness with the number of
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classes of the supervised dimensionality reduction methods (’FDA’ and ’FDA-IMU’).

In fact, the accuracy is higher than 80% at 50% of reaching distance, and it is up to 90%

at the end of the movement. Again, FDA applied on both EMG and IMU data showed

a slightly better behaviour and lower variability between subjects. For this reasons,

the couple FDA-GMM will be considered as the selected classifier for the following

analysis.

The results of the grid search for the stopping criteria thresholds are shown in

Fig. 7.4 for one of the tested subjects. Ideally, we would like to find the pair of thresh-

olds that maximizes the accuracy while minimizing the time, thus maximizing the

detection speed. It can be noticed that, at increasing of both thresholds, the accuracy

increases, as well as the time to send the command. The selection of the thresholds

allows a flexible design of the classifier’s performance, adjusting the speed-accuracy

trade-off according to the application. In this context, the pair of thresholds has been

selected as the one that guarantees an average accuracy of at least 95% in the mini-

mum amount of time. The selected thresholds for each subject and their corresponding

accuracy-time performance are provided in Table 7.1. In the final testing, the two

GMM and HMM classifiers have been used as external inputs to the finite state ma-

chine, implemented on ROS to control a physical manipulator robot, namely the UR10.

The characteristics of this robot make it the ideal choice for safe collaboration between

man and machines, since it is easy to control, even by non-expert users. Furthermore,

the force sensors block the robot when an impact is perceived, in order to avoid dam-

ages to both humans and objects. In the tested application, the robot end-effector has

been teleoperated on a horizontal plane, moving in four possible directions, forward

(’N’), backward (’S’), right (’E’) or left (’W’). The robot does not move while the ma-

chine is in home state. As soon as the FSM transits to Send Command state, the robot

moves in the detected direction and keeps moving in the same direction as long as the

machine is in On Target state. The robot stops as soon as the machine transits to Back

Movement state, meaning that the user does not want to send the command anymore.

The results of this testing are shown in Fig. 7.5. The figure shows four consecutive

trials, that consists of four commands to control the robot. The blue line represents the

offline movement segmentation, and can be either REST or MOTION. Two consecu-

tive motions represent a forward movement towards one of the target, and a backward

movement to the home position. The green line represents the output of the HMM,

that can predict either a status of REST or a status of MOTION, resulting in an average

accuracy of 82.5±4.8% across subjects. The red lines represents the transitions of the

FSM through its states (Home, Evidence Accumulation, Send Command, On Target,
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Figure 7.3: Classification accuracy over percentage of reaching distance of Gaussian

Mixture Model coupled to 5 dimensionality reduction algorithms. The classifier has

been tested with 4 classes (top) and 8 classes (bottom).
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Figure 7.4: Visualization of the grid search results using the combined transition rule

T . Each point of the picture reflects the performance that would have been achieved

with the corresponding thresholds. A total of 120 trials per subject each with a different

thresholds combinations are shown. Performance have been measured in terms of

mean accuracy (left) and mean time to send a command (right).

Back Movement). It can be seen that the FSM driven by the GMM and the HMM

correctly transits through the states, following the user’s movement, with delays that

are principally caused by the HMM transitions. Quantitatively, the performance of the

whole system averaged across the tested subjects is shown in Table 7.2, in terms of per-

centage of correctly sent command, time to send a command and number of erroneous

transitions of the FSM.

Table 7.1: Thresholds that have been selected for each subject to achieve at least 95%

of accuracy in the minimum amount of time. Their corresponding performance are

also shown

Subjects thr ths accuracy [%] time [sec]

s1 0.95 95 95.0 ± 6.8 0.24 ± 0.25

s2 0.95 35 95.0 ± 1.8 0.37 ± 0.24

s3 0.95 45 95.0 ± 3.5 0.25 ± 0.23

s4 0.95 25 95.0 ± 3.5 0.16 ± 0.17

Table 7.2: Performance of the whole human-machine interface during hardware-in-

the-loop simulations on UR10 robot. The results are evaluated in terms of percentage

of correctly sent commands (Accuracy), mean time to send a command and percentage

of FSM erroneous transitions, averaged across subjects

Accuracy [%] Mean time [sec] Transitions err. [%]

94.3 ± 2.9 0.16 ± 0.08 1.6 ± 1.5
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Figure 7.5: A sample of four trials taken from the final experiment with the FSM used

to control the UR10 robot. The offline segmentation (blue) is shown as ground truth for

the evaluation. Two consecutive state of MOTION represent a movement towards the

target and a backward movement to the home position. The trained HMM (green) has

been used to predict states of MOTION from state of REST. The FSM (red) correctly

transits through its possible states according to the outputs of the HMM and the GMM.
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7.4 Discussion

Different dimensionality reduction algorithms have been tested to evaluate the per-

formance of unsupervised approaches respect to supervised approaches in motion di-

rection prediction. In particular, the Non-negative matrix factorization has been tested

since it has previously shown to be efficient in extracting motion primitives from EMG

envelopes and to improve classification accuracy and speed in a similar context [139].

However, NMF on EMG data, coupled to PCA on IMU data, performed poorer in

this application compared to other methods. On the other hand, FDA has been tested

with and without the contribution of EMG channels, to see if inertial information alone

would be enough for motion classification. Interestingly, in both the 4 classes and 8

classes cases, the FDA with additional information on muscle activity improved the

classification accuracy of the FDA on IMU alone, of about 15% and with evidently

lower variability across subjects. These findings strengthen the hypothesis that multi-

model approaches, enriched with the introduction of physiological signals, can over-

come the limitations of traditional uni-modal approaches. Of interest is the filtering

effect of the FSM on the HMM misclassification, discarding fast and unstable transi-

tions from REST to MOTION and viceversa, according to the machine state. This can

be clearly seen between the first and second trials of Fig. 7.5, where a MOTION peak

of the HMM activates the Evidence Accumulation state immediately, but it does not

last enough to allow the GMM to verify the stopping criteria. As a consequence, the

machine goes back to the Home state, without sending an undesired command to the

robot. The evidence accumulation is a very well-known solution to improve the accu-

racy of a classification systems, particularly useful in applications where the driving

signals are very noisy [145]. However, it could be challenging to determine a priori

when to stop the accumulation. To this aim, the proposed dynamic stopping crite-

ria allows a flexible design of the system performance, adjusting the speed-accuracy

trade-off according to the application. In the tested teleoperation application, we were

more interested in the accuracy of the system, thus a command should have been sent

only if the direction has been predicted with 95% of confidence. On the other hand,

if fast detection of the motion is more important than the confidence on the predicted

direction (i.e. safety applications), the thresholds of the two criteria can be adjusted

to met the desired performance. With the selected subject-independent thresholds, the

system shows very high online accuracy in about 100 ms from movement onset. The

major limitation concerns the way the FSM reacts to erroneous transitions. In fact,

during the simulation, if a transition errors would have occurred, the FSM has been

manually reset to the Home state and the simulation restarted from the following trial.
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The response to wrong transitions, even if it should be improved in future works, does

not really affect the system performance, since 1 error every 100 commands happens

on average.
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Chapter 8

Robot Programming by

Demonstration in Industrial Settings

8.1 European Robotic Challenge

The European robotic industry needs new, innovative, ideas to be globally compet-

itive. Creative and avant-garde solutions usually emerge in the academic world, which

is commonly more inclined to abstract experimentation, while the industrial world is

more fond to traditional and safer solutions. The EuRoC project aims to promote col-

laboration between industrial and research communities by solving industrial relevant

problems with innovative proposals while increasing the state of the art in correspond-

ing fields. The project is developed as a challenge. Even though there is no failure in

losing the competition, the desire to win motivates the teams to improve their work,

and the money prize encourages them to invest funds in the challenge. Challenges are

very popular in the robotic field since 1977 and they evolved alongside robotics. From

Christiansen [146] proposing the “Amazing Micro-Mouse Maze Contest”, in which the

task was accomplished by solving a path planning problem to “DARPA Robotics Chal-

lenge” involving multi-joints robots interacting at very high level with humans. The

increasing interest in robotic challenges has several motivations. The main reason is

the capability to attract and interest a great audience. Gaining the attention of a wider

and non-specialized public is very important to enhance the knowledge of emerging

fields and new research areas, as expressed in [147]. Presenting research and scientific

topics as an involving and catchy competition is also a good way to collect private

funding from firms having a vision in the sector or simply interested in a cool manner

of promoting their products. Furthermore, challenges promote interactions and col-

laborations between different areas and aspects, improving the state of the art in the
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robotic field. In fact, having a great number of specialists able to concentrate on the

same issue, would lead to novel ideas and provide innovative solutions. In some cases,

challenges focus on problems not showing a direct improvement in the real life. For

example, at the very beginning, RoboCup 1 [147] aimed at developing a robot team

able to play soccer. The direct advantages in industrial or service robotics were not im-

mediately clear. Anyway, since from the first edition, RoboCup has leaded to several

evolutions in real-time recognition, planning, reasoning and acting in dynamic environ-

ments. In the recent past, RoboCup has included different areas from rescue missions

to home robot companions, passing through industrial settings. Therefore, research has

been enhanced to consider robots working as team with both other robots or humans

by learning behaviours for complex, cognitive modelling in the more different scenar-

ios. Another very famous competition is the DARPA Robotics Challenge 2 [148]. It

also evolved along time and right now it focuses on disaster or emergency-response

scenarios, asking robots to autonomously drive cars, move into terrains with debris

while interacting with the environment. Even if the tasks proposed in these challenges

are very complex, teams have the vantage of using a completely free and customizable

framework.

A new project called EuRoC has been proposed in 2014 to boost robotics and man-

ufacturing in Europe by means of three challenges. Each challenge consists of a series

of stages over the 4 years of the project life leading to a progressive selection among the

participants. The EuRoC project is accurately described in [13]. The EuRoC project

is organized in four levels of different complexity, and it is divided in three different

challenges:

• Reconfigurable Interactive Manufacturing Cell (RIMC).

• Shop Floor Logistics and Manipulation (SFLM).

• Plant Servicing and Inspection (PSI).

As it is shown on figure 8.1, each challenge is divided in levels of increasing com-

plexity and competitiveness, which ended with the selection of a winner. Participant

teams belong to different backgrounds, there are technology developers, system inte-

grators, and end users.

103 teams joined the Stage I, i.e. the Simulation Contests, but only 41 teams did

advance to match making, in particular 11 teams for Challenge 1, 15 teams for Chal-

lenge 2 and 15 teams for Challenge 3. For Stage II, groups belonging to different areas

1http://www.robocup.org/
2http://www.theroboticschallenge.org/
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design of advanced tools and cell layout.

• ICPE is the end user. This Romanian company is specialized in the production

of electric motors coils.

The expertise of ICPE in electric motor bobbins oriented ITRXCell project in this

field, by proposing and innovative technology for developing an automated coils wind-

ing framework. Major details are provided in the following sections.

As it was previously said, EuRoC challenge is structured in stages of increasing

complexity:

• Stage II: Benchmarking.

• Stage III: Freestyle.

• Stage IV: Showcase.

• Stage V: Pilot (with access limited to the two best teams of each challenge).

The benchmarking phase is common among the five teams of a certain challenge.

For the Reconfigurable Interactive Manufacturing Cell (RIMC), the benchmarking goal

is the autonomous mounting of a plastic module on a car door. Each team tests its

solution in the same facility in Stuttgart, and the proposed solution is evaluated by a

team of experts which judges several parameters.

Higher other stages depends on the projects proposed by the teams, and they are

evaluated by a group of experts which assess the obtained results by considering both

the innovation of the solution, and the fulfilment of results. The tests are carried out

in Fraunhofer IPA in Stuttgart for Stage II up to Stage IV, thus the working cell have

to been transported and rebuilt in Stuttgart. For the finalist teams Stage V is tested at

the end user facility. Unfortunately ITRCell has not been admitted to the final phase,

but the scientific value of the proposal was assessed by the large number of scientific

publication, thus we are still collaborating with our partners to develop alternative

solutions.

8.2 FLEXICOIL Project

The Challenger team ITRXcell composed by UniPD and IT+R, the System Inte-

grator STAM and the End User ICPE propose the FLEXICOIL project, which aims

at developing a learning-based approach for robotised coils winding, to be used in the
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electric machines manufacturing industry. In order to exploit the electro-magnetic ef-

fect, wound coils can be found in several products (motors, generators, sensors), for

a wide range of applications. Smaller lot sizes and higher product flexibility can not

be achieved with conventional winding systems. In fact, highly productive automated

winding systems are not flexible enough, and manual labour causes high product costs.

FLEXICOIL aims at overcoming this drawback by developing a robotic cell for

coils winding. Three subsequent sets of activities allows the developing of a recon-

figurable interactive manufacturing cell with learning capability, suitable to wind the

coils of several kind of motors already on the market, basing on a simple teaching in-

terface that can be easily used by operators without specific skills in robotics. Adaptive

perception will in fact recognize the type of motor, in order to select the most suitable

winding procedure. The system will be able also to propose an effective solution in

case of motors never seen before. The solution proposed by FLEXICOIL will be af-

fordable from small-medium enterprises (SMEs), producing small batches of motors

and frequently changing product designs, to big companies having a market request

of several thousand standard units. This result will be possible by merging together

ICPEs experience in the electric motor field, the research skills of UniPD in the field

of human-robot interaction and robot learning, the technology transfer and industrial

vision capabilities of IT+R, and the ability of STAM in integrating robotic and automa-

tion systems.

The benefits in terms of the partners relative position in the competitive environ-

ment are:

• ICPE: increased market share, introduction in new market segments (product

diversification), increased quality and performances of products.

• STAM and IT+R: creation of two new products (the end effector and the vision

system) which equip the FLEXICOIL cell.

• UniPD (and all): increase of scientific reputation. All the partners are be co-

authors/contributors of any publication related to the FLEXICOIL technologies.

FLEXICOIL ultimately produces the following scientific and technical benefits:

• Reduction of setup times and cost of the winding machine.

• Increase of product performances and quality.

• Reduction of environmental impact of the production process.

• Winding operations can be easily parallelized.
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• Reduced number of defected cores.

8.2.1 Scientific and technical quality

Proposal target

Objectives and relevance to the Reconfigurable Interactive Manufacturing

Cell Challenge FLEXICOIL project perfectly matches the focus of EuRoC Chal-

lenge 1:

• Safety of the operator is addressed through the development of two sets of safety

protocols (basic ones in the freestyle demo and advanced one in the pilot).

• Human/robot interaction is the cornerstone upon which FLEXICOIL is based,

as the worker teaches the robot how to properly wind the coils of stator/rotors,

by showing the process.

• The cell is based on the human operator teaching the winding process to the

robot.

• The whole project is aimed at developing a cell to robotize the manufacturing

process of electric machines, in particular winding of coils on stator or rotor

cores.

• The cell is based on artificial vision systems to implement the learning system,

the safety protocols and the quality inspection, thus coping with process uncer-

tainties.

The desired goal is reached by increasing complexity phases: the freestyle and the

showcase.

The Freestyle Demo The proposed freestyle activity is the cornerstone of FLEX-

ICOIL and it paves the way for the development of the robot learning system. The

challengers UniPD and IT+R exploit their experience in robotic learning and artificial

vision systems. They develop the learning system of the cell, thanks to whom the robot

is able to learn from a human operator, how to correctly wind coils of electric motors

(stators and/or rotors, depending on the motor technology). The learning system is

complemented by the following activities:

• A people detection and tracking system, which puts the basis for the implemen-

tation of a safe and fruitful human/robot interaction.
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account several motor parameters including the wire tension feedback provided by the

sensor. Furthermore, a basic quality inspection protocol is implemented: the quality of

the generated coil is estimated by monitoring turns count and the wire tension. Finally,

the demonstration activity aims at assembling the poles of a stator, by winding each

coil and assembling them in the stator through the pick & place 8.3.

Figure 8.3: Simulation of the robotized coil winding and stator assembling for Show-

case phase.

Progress beyond the state-of-the-art

The low flexibility of automated winding machines, i.e. the time and costs required

to switch from one design to another, coupled to high cost of machinery (up to 100

kEuros), force small manufacturers (especially SMEs) to employ human operators in

this task. The handcrafted job is obviously much more flexible, but more expensive

(because of labour cost and equipment), and for the worker it is distressing, frustrating

and repetitive. Few attempts of robotic cell for coil winding have been made. Although

the approach proved to be competitive, none of these projects has eventually turned into

a real commercial product, mainly because of the following reasons:

• Low increase of flexibility, because reprogramming the cell to produce a new

coil design requires an operator skilled in robotics. This prevented small man-

ufacturers, that often change their production batch, from preferring the robotic

approach to the manual one.

• Low production rate compared to automated winding machinery. This prevented

large manufacturers, that produce several thousands of products with the same

design, from preferring the robotic approach to the traditional one.

FLEXICOIL aims to overcome all bottlenecks shown by previous solutions for coil

winding, whose breakthrough is represented by the strong human/robot interaction,
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that allows the robot to learn from the operator how to wind the coils. FLEXICOIL

increases the automation of manufacturers exploiting wound coils, without limiting

the flexibility to address fast production changes. Furthermore, the solution is comple-

mented by implementation of safety procedures and quality inspection protocols,

Previous works FLEXICOIL builds upon the previous work and relevant expe-

rience developed by all partners:

• The scientific know-how of UniPD in robotic learning systems.

• The synergic industrial background of the SME IT+R in artificial vision systems.

• The technical experience of the SME STAM in integration of robotic manufac-

turing cells.

• The knowledge about electric machines market and technical solutions of the

end user ICPE.

The FLEXICOIL approach to robotize coil winding was suggested by the end-user

ICPE, that, thanks to his profile of research centre and motors manufacturer, under-

stood that a robot could be the solution for the problem of coil winding. Two main

needs were identified:

• A fast procedure to develop the robot control at any change of production ref-

erence, not requiring operators skilled in robotics and ensuring safety of human

workers.

• An accurate set of automated quality inspections to verify that the coil meets

specifications.

FLEXICOIL consortium selected an approach based on the following works:

• UniPDs learning system for industrial robots and people detection [11], [149]

and tracking systems [150].

• IT+Rs quality inspection and motion planning systems based on visual feedback.

• STAMs quality sensor for optical fibres and grasping/tilting gripper for small

toys.

• ICPEs high performance outer rotor motor.
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The chosen approaches The approach proposed by FLEXICOIL aims to dra-

matically simplify the robot control by deploying a learning system based on artificial

vision. In the last years, Robot Learning from Demonstration (RLfD) has become a

major topic in robotics research. In fact, direct programming a robot motion can be

a very difficult and time-consuming task. Acquiring examples from humans provides

a powerful mechanism to simplify the process of programming complex robot mo-

tions. In this work, we will focus on allowing non-expert users to naturally interact

with robots to teach them new behaviours. The learning system is based on a Gaus-

sian Mixture Model /Gaussian Mixture Regression framework. This framework has

been proven to produce good results with a relative low number of demonstrations in

repeatable industrial tasks [11]. We considers several variables connected to the wind-

ing task in order to obtain a greater flexibility in terms of industrial application basing

our work on related experiences in the field. Such amount of task constraints and the

natural human-robot interface is the major contributions of this work to the state of the

art. An on-line trajectory correction systems based on vision feedback is coupled with

the learning module to avoid possible collisions. Using this technique allows to reach a

significant increase of the coil density and consequently higher standards in coil quality

and in engine efficiency. Reliably detecting and tracking movements of nearby work-

ers on the factory floor is crucial to the safety of advanced manufacturing automation

in which humans and robots share the same workspace. We address the problem of

multiple people detection and tracking in industrial environments in real-time by using

a network of cameras covering the workspace area. The entire project is developed on

top of the ROS framework [151], a robotics middleware which can be considered as a

standard de facto in the research community. It implements a good infrastructure for

network communication and provides all the tools necessary to a modern distributed

system. In this way, the created system would be easily scaled to different type of

robots with the only constraint of a proper wrapper for ROS.

Impact

Expected results FLEXICOIL project aims to produce a number of concrete re-

sults in different research areas such as: manufacturing processes, learning systems,

artificial vision devices and testing in a complex machinery. The exploitable results

expected are:

• The FLEXICOIL prototype is the main concrete result of the Project.

• The Pick & Place end-effector equipped with the wire deployment system and
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tension sensor.

• The learning system and teaching human-robot interface based on artificial vi-

sion system.

• The advanced quality inspections based on artificial vision systems.

The benefits in terms of the partners relative position in the competitive environ-

ment are:

• ICPE: increased market share, introduction in new market segments (product

diversification), increased quality and performances of products.

• STAM and IT+R: creation of new products (the end effector and the vision sys-

tem) which equip the FLEXICOIL cell; the two products could also be applied

for other applications.

As stated by the European Motor & Motion Association (EMMA) in its annual

report on industrial automation: to remain competitive in the global arena, future man-

ufacturing scenarios will have to combine highest productivity and flexibility with min-

imal lifecycle-cost of manufacturing equipment. European electrical machines manu-

facturers need to increase the flexibility of production process, due to the high cost

of equipment setup at the beginning of each new production batch. Overall, most of

these European manufacturers are striving to reduce costs while preserving the quality

of products, in order to face the competition by Far East companies. The FLEXICOIL

concept is expected to produce the following scientific and technical benefits, each of

them contributing to address the need for cost reduction and increase of flexibility:

• Reduction of setup times of the winding machine by 50%, thanks to the removal

of auxiliary special wire guides, which are necessary with conventional fly wind-

ing machines.

• Reduction of setup cost, mainly in terms of effort, by 70%, since the robotic-

based system does not require any machining of new fittings for every production

batch.

• Thanks to the improved stability of the process, the slot fill ratio can be increased

(increasing the performances) and less copper wire is wasted (greener process).

• Bobbins can be wound directly on a workpiece pallet, reducing the handling

steps. Cycle times can be reduced by about 30% and system stability is in-

creased.
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• Winding operations can be easily parallelized, dramatically increasing produc-

tion rate.

• The robot can also be used for assembly tasks (e.g. winding an armature and

assembling the motor), reducing equipment costs or labour costs and allow better

exploitation of robots.

• The function integration reduces the number of handling and loading operations

and hence the winding process chain can become more robust.

• The number of defected cores is expected to decrease from current 0.5% to

0.05%.

The FLEXICOIL project will affect the European market by increasing the com-

petitiveness in the electric vehicles and motors manufacturing, where automation at

different levels is already applied. This would have a major impact on economy at the

European level, because these markets, where automation is already implemented, are

facing strong competition from Countries with low labour cost. Increasing the process

efficiency would therefore strengthen a sector that is very critical for Europe as it rep-

resent almost 2% of the EU GDP. The introduction of this innovative technology could

then considerably increase the competitiveness of European enterprises which operate

in the electrical motors manufacturing field.

The role of this thesis into the EuRoC project regards the development of Robot

Programming by Demonstration solutions, in order to handle the most complex and

delicate part of the motion by exploiting the human knowledge. For this reason, part of

the work involves motion modelization and prediction, while an other part deals with

robot movement.
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8.3 EuRoC Benchmarking Phase

In the EuRoC benchmarking phase the teams have to perform the same task, i.e.

automatically assembly a car door with its module. All the teams have to accomplish

the same tasks in a period of few months and they are evaluated in the same facility

in Stuttgart through some fixed parameters. In this manner, it is possible to guarantee

success and repeatability of each task in a quantifiable way.

Constraints imposed by the challenge are similar to the constraints present in a real

factory. All the teams have to use a predetermined system, without the possibility of

adding new sensors or modifying the already existent ones. Similarly, any integra-

tion in a factory supply chain has to cope with a previous installed system, probably

obsolete or outdated. Moreover, complex and challenging workcell layouts, chang-

ing illumination, and tight workplaces are very common in both benchmarking and

industrial settings. On the other hand, a dynamic environment with people working

alongside robots in a collaborative manner, uncertain position of parts to be assembled

and teaching of novel configurations are still open problems in research.

As suggested by Chen et al [152], flexible assembly applications are actually un-

common and only a small portion of industrial robot are used to perform tasks with

variability in the parts. In fact, conventional industrial robots are not able to adapt

to changes in the assembly processes. On the other hand, Goya et al [153] indicated

flexibility in the automotive manufacturing as one of the more competitive weapons in

the economical analysis of North American automotive industry. They proposed the

possibility of switch easily and with a lower risk from a production line to an other

as main advantage in future achievements with respect to foreign competitors. The

reduced risk allows the industries to invest in low volume-high risk products, since the

money and time loss would be minor and the production line would remain the same.

In the EuRoC challenge both hardware and firmware composing the robotic sys-

tem are fixed. Anyway, they have to be programmed with ROS, the standard de facto

in research robotic frameworks and only recently introduced in industry. The impor-

tance of ROS has been expressed in [154] by Tavares et al. They analyzed a pick and

place task by combining several layers of control. Using ROS in developing industrial

applications gives the possibility of efficiently divide layers in standardized and com-

pact blocks able to interact one with each other to autonomously correct errors during

the accomplishment of the task. In our solution, we take advantage of the modular-

ity and standardization ROS characteristics to fuse together visual and robot learning

techniques in order to face the variability in the system configuration.

Stability and reliability of each method have to be enhanced to meet the bench-
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marking requirements in terms of elapsed time and hardware compatibility. We also

develop a human-robot interface able to easily teach the system with novel door as-

sembly combinations. Vakanski et al [155] suggest to take advantage of robots ability

of learning from what surrounds them, transferring skills to a robot thanks to multiple

demonstration of the same skill under similar conditions. Vakanski’s idea is to learn

the robot trajectory by observing a subject moving a tool. Instead, in our solution the

robot motion is acquired by looking at a person actually moving the robot. The robot

has to infer a generalized trajectory obtained extracting relevant unknown and hidden

features from the demonstrations.

8.3.1 Task and System Description

In the EuRoC benchmarking phase the teams have to automatically assembly a

car door with its module. The module and the door are represented on Fig. 8.4. The

positions of door and module could vary of few centimeters in translation and few

degrees in rotation in each direction. The testbed is composed by three tasks:

1. Pick and insert door module: in the Pick phase challengers have to locate the

door module by using visual and force information, pick it up and reach a refer-

ence position. Then the robot has to place the module into the door, and come

back to reference position without detaching it.

2. Screw door module: consists of detecting, picking up, inserting three screws into

three relevant holes to fix the module on the door.

3. Teach and assemble unknown door: teams have to teach to the system how to

perform the whole assembly for a novel pair of module and door.

Available points and maximum execution time for each task are listed in the bench-

marking rules alongside with constraints about hardware and software.

The available hardware in the Fraunhofer IPA facility consists of a lightweight

collaborative robot (Universal Robots UR10) equipped with three sensors: a 3D sensor

camera (PMD CamBoard Nano), a stereo camera (VRMagic D3), and a 6D force-

torque sensor (Robotiq FT150). A vacuum gripper, composed by 6 suction cups, and a

screwing tool (Weber Pluto 6D) are available and they could be automatically attached

or detached from the robot flange by using a tool changing rack (Schunk SWS011).

We replicated the setting in our laboratory, using as a basis the same lightweight

collaborative robot, the Universal Robots UR10, but equipping it with different sen-

sors. A PMD CamBoard Pico has been used as 3D camera, a pair of Philips SPZ5000
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and 3D cameras are provided with a default intrinsic and extrinsic calibration.

8.3.2 Methodology

The proposed tasks are connected to 3 main constraints:

• Limited time available for developing the solution.

• Flexibility needed to deal with position tolerances and unknown modules and

doors.

• Usability and reliability of the teaching procedure.

These characteristics lead us to propose a solution able to face both known and

unknown door assembly in a very similar manner. In fact, different modules and doors

rely on similar structures, and these features can be used as input for the framework.

We want to extract these common characteristics to simplify and speed-up the new

module and door identification. In order to successfully solve the previously described

tasks we used the following pipeline:

• Learn the relative positions of each screw hole in both module and door.

• Learn the gripping and inserting trajectories through human demonstrations.

• Identify both module and door real positions by visual inspection.

• Pick and place of the module by transposing the learned motion to real position.

• Identify screw positions.

• Screwing.

In the learning phase, we collect template images for each part to identify. The

idea is to extract relevant visual information in order to recognize them during the part

inspection in order to build a coarse virtual model of the environment. A combination

of Robot Learning from Kinesthetic Demonstration and Inverse Kinematics is used to

learn how to pick and place the module. The variability and robustness of the system

are granted by collecting several repetitions of the same action, performed by different

subjects. A visual system is used also for finding the screws and pick them up and

fixing the module. A Template Matching approach is used for the screwing opera-

tion. Again, a door inspection is performed looking for screw holes positions. Once

a matching has been identified, the system will align the screw with the hole by using

the previously acquired template in order to perform the insertion.
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Learning Phase

The learning phase mainly involves how to correctly pick the module and insert it in

the door. These operations could be very easy or critical depending on the context and

on the complexity of parts to be assembled. The module is composed by several ele-

ments including some flexible cables possibly assuming different configurations while

the task evolves. The gripper provided for performing the picking action has a fixed

base, while suction cups attached on its extremities can slightly change in position.

Positioning the gripper in a consistent manner obtaining a robust layout is essential to

assure a safe pick. This operation has to be performed in advance, since the surface

of the module vary a lot and it is not always smooth. Moreover, the module is quite

heavy while the suction cups do not have great gripping power in case of unbalanced

loads. Selecting a wrong gripping position can determinate a loss in vacuum system

and the consequential module falling due a displacement in weight or position of the

suction cups. Once the module is properly picked, it has to be placed into the door.

A series of coupling pins should be inserted into slots in the door to hold up the mod-

ule, while avoiding cables to obstruct the movement. The motion should be executed

precisely by placing the cables, and proceeding diagonally to insert the first coupling

pin. Finally, the module should be straighten, and the rest of the pins could be set into

place. Pinching the cable or failing to place a coupling pin lead to incorrect insertion

and consequential falling of the module. Obviously, the placing trajectory is really

dependent from the initial gripping position. Therefore, a successful picking does not

correspond necessarily to a good performance in placing the module.

The described constraints could be easily met when the task is performed by a hu-

man being. Indeed, people have the capabilities to understand the task, test the selected

strategy in few trials, and move the robot accordingly to fulfill the objectives. Never-

theless, recording a single execution is not enough for achieving a smooth generalized

trajectory able to take into account to the intrinsic variability in the tasks. In order

to obtain such motion, we used a Robot Learning by Demonstration paradigm able

to build a robust model of the movement starting from a series of demonstrations. In

particular, we recorded data directly from the robot while a subject is free to physically

guide the manipulator following the desired path (Fig. 8.6).

It is worth to notice that the use of this technique, namely Kinesthetic Demon-

stration, is strictly connected with the use of a compliant robot with the capability of

being externally guided by releasing motor brakes. Moreover, lightweight collabora-

tive robots such us UR10 can be easily used in a real factory with no need of safety

guarding, since they are intrinsically safe. Therefore, also unskilled workers can coop-
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Figure 8.6: The robot is physically guided to follow the desired motion through Kines-

thetic Demonstration.

erate with the robot by showing it what to do without any risk. In this way, it is possible

to let the robot learn a novel task in little time and without the need of additional staff

for robot programming.

Only few demonstrations are necessary to build from scratch a robust model of

an unknown movement. In order to avoid unnecessary variability in the motion and

reduce the complexity of the system we decided to keep human demonstrations as short

as possible. Short trajectories are computed quicker resulting in a more standardized

movement, while allowing a simpler and consequently safer robot activity. We mixed

together Probabilistic Robot Learning with Inverse Kinematics to take advantage from

both of them. The robot reaches fixed and safe positions close to the targets by using

an Inverse Kinematics engine obtaining better performances in both reliability and

time. The last part of the movement, namely the most complex one, is performed

by using inferred trajectories computed through Robot Learning. Ten repetitions of

the movement performed by different subjects has been recorded from an arbitrary

selected initial position. The angles assumed by each joint while the robot is manually

controlled have been considered for building the probabilistic model. Since door and

module positions are not known a priori, a visual feedback is used to compute the

actual configuration of the system before proceeding with the real picking and placing

motions.

The raw data recorded from robot encoders have to be preprocessed in order to be

able to generate a good probabilistic model. As a first step, they have been filtered to

remove artifacts, such as periods in which all the joints were still. Doing so all the

data not correlated with the movement have been eliminated, maintaining exclusively

motion information. This process leaded to more robust and smooth trajectories while

speeding up the creation of the model. Once the model is built, the final motion is

estimated thanks to a regression technique.
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GMM has been used as probabilistic model to predict angles of G = 6 robot joints.

GMM is a parametric probability density function represented as a weighted sum

of K Gaussian components which best approximate the input dataset. As described

in Chap. 3, an advantage of using GMM is the few parameters needed to represent the

whole model (i.e. the mean, the covariance and the prior probability of every Gaussian

component), resulting in a lightweight representation of the movement.

Naming n the number of repetitions of the task, and T the number of observations

acquired during each trial, the total number of data samples is N = nT . A single data

in input at the framework ζ j,1 ≤ j ≤ N is described in Eq. 8.1.

ζ j = {t,α(t)} ∈ R
D

αx(t) = {αg(t)}G
g=1.

(8.1)

with:

• G, number of joint bending angles.

• αg(t) ∈ R, the value assumed from gth joint bending angle at the time instant t.

• α(t) ∈ R, the set of values assumed from the considered joint bending angles at

the time instant t.

• D = G+1, the dimensionality of the problem.

Finally, the resulting probability density function is computed:

p
(
ζ j

)
=

K

∑
k=1

πk N
(
ζ j; µk,Σk

)
(8.2)

with πk priors probabilities, and N
(
ζ j; µk,Σk

)
Gaussian distribution defined by µk

and Σk, respectively mean vector and covariance matrix of the k-th distribution.

Empirical experiments shows that, in this case, good results can be achieved with

k = 10 Gaussian components. Using few Gaussian components cause the generation

of a too general model, unable to handle the variability of the signal. Contrariwise, if

k is big the final model will be too complex.

The Gaussian Mixture Regression (GMR) provided a smooth generalized version

of every joint angle starting from the GMM (Fig. 8.7). Every joint angle α̂ and its

covariance are estimated from the known a priori time instant t respectively using

Equation 8.3 and 8.4.

α̂ = E [α |t ] =
K

∑
k=1

βkα̂k (8.3)
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Figure 8.7: Modelization of Joint1 with GMM and continuous estimation of Joint1

angle retrieved with GMR.

Σ̂s =Cov [α |t ] =
K

∑
k=1

βk
2
Σ̂α,k (8.4)

with:

• βk, the weight of the kth Gaussian component through the mixture.

• α̂k, the conditional expectation of αk given t.

• Σ̂α,k, the conditional covariance of αk given t.

assuming that the parameters (πk, µk, Σk) defining the kth Gaussian component are

decomposed as follows:

µk =
{

µp,k µα,k

}
Σk =

[
Σp,k Σpα,k

Σα p,k Σα,k

]
(8.5)

with µp and Σp respectively the mean and the covariance of the known a priori infor-

mation. Thus, the generalized form of the motions ζ̂ = {t, α̂} required only weights,

means and covariances of the Gaussian components calculated through the EM algo-

rithm.

The described framework could be used with known setting as well as with novel

unknown door-module pairs. It gives good results both in time needed to teach the

tasks and in robustness in reaching the goals. Nevertheless, it is hugely dependent

from the information provided by the visual counterpart system.
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be easily computed as described in Eq. 8.6.

cξ cd = cξ o ∗ oξ cd = cξ o ∗ cdξ−1
o (8.6)

After the robot movement the effective displacement could be different due to noise

presence (Eq. 8.7).
˜cξ cd = cξ cd +∆ξ (8.7)

For this reason the procedure has been iterated to satisfy the condition in Eq. 8.8.

∆ξ ≤ ∆ξ max (8.8)

where ∆ξ max is related to the desired accuracy.

Experimentally, an average of 6 iterations were needed to reach a precision of 1mm

for translation and 0.2deg for rotation.

The training phase allowed us to perform a PBVS task in an easy way, without any

actual model of the object or a priori information. Therefore, the identification process

for unknown objects becomes quite simple and immediate. In fact, the operations

needed to perform the tasks have been restricted to:

• update the templates collected for the stereo camera pairs.

• recompute cdξ o through keypoints matching and triangulation.

The query phase remained unchanged.

A simple template matching in 2D has been used to find the screw and hole posi-

tions to perform the screwing task.

8.3.3 Results

In the first phase of EuRoC challenge we proposed a solution for solving a door

assembly task. The uncertain position of the part needed for the assembly and the

introduction of novel components make the problem non trivial. The scoring system

helped us in taking into account all the aspects of the problem. The described solution

has been tested with two different configurations.

The first configuration is the official setup of the benchmarking activities in Stuttgart.

Unfortunately, the system was not ready for performing the entire set of tasks in the

challenge during the pre-assigned temporal slot. Anyway, the available algorithms
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Figure 8.9: The robot is able to insert the plastic module into the door, both in Stuttgart

and laboratory facility.

worked as expected and we were able to score some points. Official results regarding

the EuRoC Challenge 1 can be founded at the project website 3.

The second setup has been created in our laboratory at the University of Padova

in order to independently test our methods. The use of a different hardware enhanced

both reliability and portability of the whole system. We also applied the developed

algorithms to a pair of door and module actually different from the ones available

at the Fraunhofer IPA facility. Having more time at disposal gave us the possibility

to further test and improve our system in order to achieve the objectives. Finally,

we were able to correctly pick and place the module, and the framework is robust to

module shifts Fig. 8.9.

3http://www.euroc-project.eu/
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8.4 EuRoC Freestyle Phase

A key factor for the Industry 4.0 upgrade is the use of robots [160]. Nowadays,

manipulators are employed for supply chains in which the same task should be ac-

complished several times in a repetitive manner. In the majority of the cases, human

operators can understood easily how to perform the task even in complex situations, but

they have not the expertise to program the robot. A useful solution could be obtained

if the operator would be able to teach the robot how to perform a certain task, guiding

the robot or showing himself what to do by using a robot learning by demonstration

paradigm [161]. Many examples in the literature show the useful aspects of applying

a robot learning by demonstration paradigm [162].

Up to now, several research groups have developed different paradigms and tech-

niques, but only a limited number of attempts have been exploited in real industrial

environments. Myers et al. [163] wanted to automatically insert a PC card into a back-

plane slot on the motherboard treating forces/moments as the sensed inputs and robot

velocities as the control outputs. Baroglio et al. [164] believe that the robots ability to

gain profit from its experiences is crucial for fully exploiting its potential. They ana-

lyzed several approaches and tested them in a classical industry-like problem: insert

a peg into a hole. The task was performed while recovering from error situations, in

which, for instance, the peg is stuck midway because of a wrong inclination. Neto et

al. [165] presented a way to program a robot showing it what to do by using gestures

and speech. The gestures are extracted from a motion sensor, namely a Wii remote

controller. The Japanese company Fanuc is developing robots that use reinforcement

learning to train themselves [166]. Fanucs robot learns how to pick up objects while

capturing video footage of the process. The new knowledge is used to refine a deep

learning model that controls robot actions. It has been proved that after about eight

hours the robot reaches up to 90 percent accuracy or above, almost the same as if

it was programmed by an expert. With respect to previous works, we introduce two

main contributions to the stat of the art. The first is introducing in an industrial-like

environment the use of a Robot Learning framework trained by means of visual in-

formation collected with no need for markers or special tools. The second is making

Robot Learning and Inverse Kinematics work alongside in order to benefit from both

methods.

For EuRoC challenge, ITRXCell’s end user, ICPE, needed a solution for the de-

velopment of an automatic electric motor coil winding and assembling. This goal

has been gradually reached passing through several demonstrative phases as is shown

in (Fig. 8.10).
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Figure 8.10: Operation sequence.

Our teams project aims to increase the competitiveness in the European electric

vehicles and motors manufacturing. Automation is already applied at different levels

in this field, nevertheless it is facing strong competition from Countries with low labor

cost. Increasing process efficiency would strengthen a very critical sector for Europe,

as it is expected to garner $22.32 billion by 2022, registering a CAGR of 3.7% during

the forecast period 2016-2022 [167]. Thanks to its flexibility, the process can easily

adapt to new developed motors, without the need of expensive and time-consuming

changing in the layout. Particularly, the removal of auxiliary special wire guides im-

plies a reduction of setup times of the winding machine by 50%. The robotic-based

system does not require any machining of new fittings for every new production batch.

This will lead to an additional reduction of setup costs by 70%, mainly in terms of

effort.

8.4.1 Task and System Description

The first EuROC task-oriented phase is the Freestyle. In this phase, we focused

on developing a solid learning system and a reliable human-robot interface. Indeed,

the Freestyle objectives were agreed in order to put the basis of the following rounds.

The same approach will be used during the Showcase to wind up the stator coils of an

electric machine. The key robot action is the winding motion around a fixed point as

an initial step towards the final goal to wind the coil of a real electric motor. In the

Freestyle activities, the robot has to learn an arbitrary path. The framework is shown

in Fig. 8.11 The team is highly skilled in learning systems and this expertise has been

exploited to teach the robot how to unroll a wire following a specific path in order to

pass a wire through a peg grid composing different possible routes, as shown by an

operator. The trajectory is decided by a person not knowing the system to demonstrate

the consistency of the approach used. The operator teaches the selected path moving

a tool in a natural manner to deploy the wire through a pin table, for a relatively low

number of demonstrations. The user guides the copper wire through the pole grid using
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Figure 8.11: System setup.

an ad-hoc designed tool maintaining the wire constantly stretched, and preventing the

possibility of knotting. In order to select a pole to pass through, the operator has to

roll up the wire twice around each choice. The system records the covered trajectories

by using a camera network composed by both 2D and 3D cameras. A 6 DoF robot

manipulator, equipped with the same custom wire deployment system, has to replicate

the motion of the operator and unroll a wire along the same path taught by them. The

result is considered correct if the robot is able to replicate the pole sequnce in the exact

same order selected by the operator. Both the operator and the robot starts from a fixed

position. The camera network system has also the capability to monitor the workspace

by detecting and tracking humans. In this phase, the robot motion stops as soon as a

human being is detected in a danger zone around the robot by the cameras, as a first step

of a more advanced safely controlled environment. Moreover, the tool has to maintain

the tension of the wire, while allowing the user to detach the tool for demonstrating the

task and to attach it back on the robot when finished. During the Freestyle round, no

sensor is integrated in the end effector, since the only aim of the robot is to copy the

operator motion. More advanced features will be added starting from the Showcase

round to improve the system capability to work within a certain tension range.

As the robot deploys the wire, particular attention has to been kept in order to

prevent the wire from getting stuck or break. To do so, it is important that the robot

performs a human-like movement, choosing a smart way for moving from one pole to

another, avoiding useless change of direction or turnabout. These observations have

been considered by developing a learning by demonstration framework.
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8.4.2 Methodology

In our solution, we made Robot Learning and Inverse Kinematics work together

in order to accomplish a more general and robust solution. The basic idea is to take

advantage of the human capability to find a solution by simply looking at the problems,

while leaving to the robotic system the hand mathematical computation. In our context,

for people is very easy to find the path to follow in order to pass through a series of

poles, while it is very difficult (or even useless) for them to compute the robot joint

positions to guide the robot end effector along the same trajectory without interfering

with the copper wire. In order to do so, the set of useful information extracted from

the trajectories performed by humans has been described by using a GMM [10], while

a GMR has been used for retrieving an unified smoothed trajectory for the robot TCP.

Therefore, the learned trajectory has been translated from Task Space, in the tracking

system reference frame, into robot Joint Space by means of a inverse kinematic engine.

During this work, we considered mainly three aspects in order to make the robot

correctly reproduce the operator actions:

• Detect the selected poles in the right order.

• Find the best entrance and exit position for the pole wrapping.

• Make the robot deploy the wire correctly.

Poles selection

Starting from the trajectory extracted from the camera network system, our goal

is to detect which poles the operator selected and in which order. The information

at our disposal was already transformed and projected on the 2D plane, so the input

data is a sequence of (x, y) coordinates of the tool position. The algorithm used is a

derived from the consensus algorithm. The solution of the consensus problem is the

result of the agreement among a number of processes (or agents). The result we would

like to achieve is the pole selected by a person while deploying the wire. Basically,

the consensus problem requires agreement among a number of agents for a single

data value as well as our poles selection algorithm seeks at which poles have been

visited and on which order. Some of the processes could be unreliable since the visual

system has estimated them wrongly, therefore our selection algorithm should be able

to confirm the information coming from a single point the trajectory by compering it

with the others. In the same way, consensus protocols must be must somehow put forth

their candidate values, and agree on a single consensus value.
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Figure 8.12: Pole selection algorithm.

In our consensus algorithm, adapted for this particular case, we starts dividing the

grid in different areas belonging to the ”nearest” pole without overlapping, so that ev-

ery pole is in the center of a square. The idea is to assign to each pole an afference area

homogeneously distributed. After the grid division, we perform a sort of clustering

operation, where each point is substituted with the relative pole area. Once we count

the number of points belonging to each pole, a threshold helps in recognizing the se-

lected poles, without mistakenly choosing poles where the tools passes often without

selecting them. It is worth to notice that each pole can be visited only once in a specific

trajectory. Considering the visit order helps in correctly detect the poles in the right

order. A preprocessing phase is needed for remove the still periods in which the tool is

motionless in a fixed point. This case could alter the outcome, since it would result like

many consecutive samples in the same pole area, seeming like as that pole has been

selected. The poles detection algorithm is described accurately in Fig. 8.12.

Entrance and exit position estimation

In order to avoid breaks of the wire or tangles it is important that the robot begin

and end his winding motion in the correct place. The correct place depends mainly on

the previously visited pole. For example, if the previously visited pole is above on the

left with respect to the currently selected pole, the tool should come from left. After

the implementation of poles selection, we only know which poles have been chosen,
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Figure 8.13: Trajectory grid.

Figure 8.14: Human demonstration.
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but we do not know anything about how to practically perform the winding. In order to

do so, we exploit the human knowledge and expertise. Usually, a person is capable to

understand which is the best way to reach a fixed point also dealing with constraints.

Accordingly, we can take advantage of the human operator knowledge and overcome

the planning limits.

Our goal is to compute the (x, y) coordinates of the start winding point and the end

winding point. These coordinates are computed using a probabilistic framework. We

use the start and the end winding point coordinates recorded from many winding tests

performed by many different operators. The human expertise and knowledge give us

the best way to overcome this critical issue in a probabilistic way. Furthermore, using

many experiments performed by different subjects brings generality into the system,

since every person could think to a different, although correct solution. The use of

several executions allows the achievement of a generalized solution, which takes into

account the intrinsic variability in the tasks. We obtained such results by using a Robot

Learning by Demonstration paradigm, able to build a robust model of the coordinates

starting from a limited number of demonstrations. Another vantage of this solution

is that it could be used also by unskilled operators, since no further information or

training phases are needed. The interesting coordinates are selected from the operators

recorded tool trajectory. The selection has been made empirically since there is no

need of great precision, in fact it could lead to overfitting.

GMM [10] Chap. 3 is used as probabilistic framework to predict the (x, y) coordi-

nates.

In order to build the probabilistic model we introduces two fictitious poles in the

system: pole -1 and pole +∞. The first one represents the robots starting point, while

the second one represents the final goal, both outside the pole grid. The collected

information are sufficient in order to allow a mapping of every possible combination

of poles, profiting by the grid symmetry. Considering data collected from S subjects,

each of them completed the task T times and for each task he chose P different poles.

The total number of data sample is N = S ∗T ∗ (P+ 1). A single data in input at the

framework ζ j, 1 6 j 6 N is described in Eq. 8.9.

ζ j = {αw,αh,βw,βh,γx,γy,λx,λy} ∈ R
8 (8.9)

with:

• αw,αh respectively width and high position of the previous pole.
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• βw,βh respectively width and high position of the current pole.

• γx,γy respectively x and y coordinates of the exit position from the previous pole.

• λx,λy respectively x and y coordinates of the entrance position from the current

pole.

The resulting probability density function is computed Eq. 8.10:

p
(
ζ j

)
=

K

∑
k=1

πk N
(
ζ j; µk,Σk

)
(8.10)

with:

• πk prior probabilities.

• N
(
ζ j; µk,Σk

)
Gaussian distribution defined by µk and Σk, respectively mean

vector and covariance matrix of the k-th distribution.

The number of Gaussian components used in the model has been estimated empir-

ically, showing good results with k = 10. The GMR provides smooth and generalized

exit and entering points for the considered poles starting from the GMM. Every exit

and entering points and their covariance are estimated from the known visited poles

using Eq. 8.11 and Eq. 8.12

{γ̂x, γ̂y, λ̂x, λ̂y}= E [{γx,γy,λx,λy}|{αw,αh,βw,βh}] =
K

∑
k=1

ηk{γ̂x, γ̂y, λ̂x, λ̂y} (8.11)

Σ̂s =Cov [{γx,γy,λx,λy}|{αw,αh,βw,βh}] =
K

∑
k=1

ηkΣ̂{γ̂x,γ̂y,λ̂x,λ̂y},k (8.12)

with:

• ηk, the weight of the kth Gaussian component through the mixture.

• {γ̂x, γ̂y, λ̂x, λ̂y}, the conditional expectation of {γx,γy,λx,λy} given {αw,αh,βw,βh}.

• Σ̂{γ̂x,γ̂y,λ̂x,λ̂y},k, the conditional covariance of {γx,γy,λx,λy} given {αw,αh,βw,βh}.

The generalized form of the motions required only weights, means and covariances

of the Gaussian components calculated through the EM algorithm.
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Robot movement

Once the preprocessing phase have been completed and we have obtained the se-

lected poles, the entrance coordinates and exit coordinates, in the right order, we have

the complete information needed in order to make the robot repeat the operator task

by using the inverse kinematics. We use Trac-IK [168] as inverse kinematic motor.

The planner is RTT connect [169] from the OMPL library [170]. The planner includes

an obstacle avoidance algorithm, in order to avoid the poles. We use MoveIt [171] as

interface for planning and visualization in a virtual environment. After winding around

every pole, the end effector is lifted a few millimeters, in order to avoid the wire from

getting stuck. With our solution, once completed the preprocessing phase everything

is handled autonomously from the robot inverse kinematics.

8.4.3 Results

Since the project is structured as a challenge, we need to obtain the correct result in

the shortest time in order to gain a good score. In the final test, a person shows 5 arbi-

trary paths previously selected from an external subject by moving the end effector in

a 25 peg grid for a maximum time of 1 minute. No special marker or material has been

placed on the person or on the tool. The system records the covered trajectories by us-

ing only the camera network system. An automatic tool has been developed to extract

useful data from videos with almost no human intervention. A very complex and ro-

bust user interface has been implemented. Metric I measures the mean time needed to

compute the information provided by the camera network system after the demonstra-

tion stops. The robot learns each path and passes a wire through the pegs composing

the trajectory. Learning frameworks are usually based on probabilistic models built

from a series of previous demonstrations called training set. An initial training set of

40 examples has been used as a basis to compute the robot trajectory. Anyway, it could

not cover all possible paths, in those cases the model needs to be updated. Moreover,

the operator should be able to check the validity of a novel demonstration as soon as

possible. Metric II measures the mean time needed to update the model. Finally, the

user should perform a low number of demonstrations to obtain the desired robot mo-

tion. Metric III measures the mean number of examples needed to learn a selected path

in addition to the initial demonstration. Targets for each metric have been selected by

looking at expectation of our industrial partner and taking into account the state of the

art in the field.

The time needed to compute the data recorded by the camera network was in mean
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56.24s. We are able to provide an updated model starting only by the initial model and

the data acquired during last demonstration in 2.20s. Nevertheless, the initial model

has been always sufficient in order to compute the correct path during all the 5 different

paths, resulting in 0 additional demonstrations.

The system guarantees high success rate, high responsiveness and low effort for

humans. In fact, even in the worst cases, we over performed the targets by obtaining

58.21s, 2.21s, and 0 additional demonstrations respectively for Metric I, II, and III.

The results are summarized in Tab. 8.1.

Metric Description Achievement Worst case

Metric I Time needed to extract the demonstrated trajectory 56.24s 58.21s

Metric II Time needed to update the robot model 2.20s 2.21s

Metric III Number of additional demonstrations 0 0

Table 8.1: Final results for Freestyle phase.

8.4.4 Conclusions

In this project, we presents a Robot Learning framework able to acquire infor-

mation from a human demonstrations by using only a camera network system. The

framework has been paired to an Inverse Kinematics engine in order to make the robot

deploy a wire along a grid of poles following the same pole sequence as the human

operator. We measure a set of metric in order to validate our system in accordance

with the requests of a real industrial partner. We uses this system as a basis for the

industrial winding of coils for electrical motors to be used in the automotive market.
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8.5 EuRoC Showcase Phase

As previously described, ITRXCell goal for the EuRoC challenge is the develop-

ment of a robotized system for producing complete and working stators for electric

motors. The interest for electric motors has increased in the last years to reduce the

use of fossil fuels for environmental reasons, with the ideal goal to eliminate non-

renewable energy resources in few decades. ICPE (End user) has as main goal the

obtaining of innovative technologies and products, efficient and competitive, without

harmful impact on the environment. During the Showcase round, UNIPD and ITR (Re-

search team) and STAM (System integrator) collaborated to develop an automatic tool

for electric motor stators winding focusing on a specific category of motors. The learn-

ing algorithm developed during the Freestyle round has been extended for winding a

pole, to be mounted automatically afterwards on a motor stator. The system takes into

account coil dimensions (height, width, and depth), number of turns, wire thickness

and allowed tension to compute the robot trajectory. A set of quality checks has been

performed both online and after the winding procedure by following ICPE instructions

to validate the resulting coil in terms of electrical performances.

This work aims to reduce costs and increase flexibility with the following contri-

butions:

• Important reduction of setup time and costs of the winding machine, thanks to

the simplicity and flexibility of the proposed approach.

• Increase in the quality of the final motors, thanks to the increased amount of

copper that the robot will be able to insert in each coil with respect to manual

winding.

• Possibility to parallelize the winding operations, dramatically increasing produc-

tion rate.

• Decreased number of defected cores, thanks to an advanced quality inspection

system.

• Reduction of environmental impact of the production process, thanks to a reduc-

tion of wasted copper wire.

8.5.1 Introduction

An automatic system for coil winding has to be affordable to a wide range of users:

from small-medium enterprises (SMEs), producing small batches of motors and fre-
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quently changing products design, to big companies, having a market request of several

thousand standard units. The low flexibility of automated winding machines [172], i.e.

the time and costs required to switch from one design to another, coupled to their high

cost (up to 100k Euros), force small manufacturers (especially SMEs) to employ hu-

man operators in this task. The handcrafted job is obviously much more flexible, but

more expensive (because of labor cost and equipment), and for the worker it is dis-

tressing, frustrating and repetitive. Few attempts of robotic cell for coil winding have

been made [172]. In this work, we aim at achieving the product flexibility required

for this business sector by developing an interactive robotic cell for this task. Such a

reconfigurable cell has been provided with learning capabilities. The cell is suitable for

winding the coils of several kind of electric machines, starting from the information of

a simple teaching interface that can be easily used by operators without specific skills

in robotics. The concept of a flexible production will use a needle winding technique.

The production process is divided into coils manufacturing and insertion of these on

the stator. The coils are wound on frames, after which they are mounted onto the stator.

For this particular application the winding process is restricted to concentrated wind-

ings. However, distributed windings or even complex winding schemes are achievable

by winding individual coils. The proposed production process will have the potential

to allow three dimensional shapes of the coils and complex winding schemes.

During the project, we faced the following challenges:

• Teach the robot how to properly wind the coils of stator/rotors.

• Robotize the manufacturing process of electric machines, in particular the wind-

ing of coils on stator or rotor cores.

• Detect and report non-compliances in the process of the coil winding.

In the proposed work, the selected electric motors have the following features:

• Frameless torque motors designed to be compact, high performance and cost

effective.

• Allow direct coupling with the payload, eliminating parts of mechanical trans-

mission.

• Maintenance free.

• High energy NdFeB magnets maximize torque density.

Main applications for the proposed motors are electric vehicles, machine tools,

laser scanning and printing, motion simulators, rotary stage, robots, tracking systems.
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8.5.2 State of the art of Electric motors

The need of an alternative power supply system for cars will be a crucial issue in

the next years. Up to now, important steps forward have been made in the electrical

motors. Factories like Tesla produce cars whose motors performances are comparable

with traditional motors ones.

The desired goal of our end-user is the development of an automatic tool, able to

create autonomously an electric motor. Up to now, there are industrial machines able

to wind up coils. These machines are very expensive and they are not flexible.

The electric machines manufactures have to deal with uncertain sales volumes. As

follow, the batch sizes in the manufacturing process are varying. Furthermore, contin-

uous efforts are taken by the industries R&D departments to develop optimized electric

machines with increased efficiency, increased power density, decreased manufacturing

cost, etc. This also leads to currently uncertain motor designs for its manufacturing

processes. In the product lifetime its design may change several times.

An automated winding machine requires stators batches of minimum 30.000 units/year.

A semi-automated winding machine requires stators batches of minimum 6000 units/year.

The batches are related with only one stator type. For a semi-automated machine, in

order to wind a new type of stator is necessary to invest between 10.000 and 15.000

EUR in dedicated tools. The tool swapping will require between 2 - 4 hours.

Also there is a trend in the manufacturing industry to work with minimum or even

zero stocks. The products will be manufactured after receiving the orders. The de-

velopment of flexible production technologies that can be adapted to varying motor

constructions is an existing concern as long as manufacturing uncertainties still exist.

The process related to the coils manufacturing and theirs transfer/insertion into the

stator are addressed.

The concept of a flexible production will use a needle winding technique. The

production process is divided into coils manufacturing and insertion of these on the

stator. The coils are wound on frames, after which they are mounted onto the stator. For

this particular application the winding process is restricted to concentrated windings.

However, distributed windings or even complex winding schemes are achievable by

winding individual coils. The proposed production process will have the potential to

allow three dimensional shapes of the coils and complex winding schemes.

Each of the five proposed electric motors requires 68.5 minutes for winding the sta-

tor coils by manual operation. This means a person is able to wind 7 stators during a

normal working day of 8 hours. At ICPE the cost of winding one stator (from the pro-

posed ones) is 8 EUR. A semi-automated winding machine which requires an operator
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for handling and for doing some manual operations will wind the coils for one stator in

2 minutes. By using a semi-automated winding machine a person is able to wind 240

stators during 8 hours. The price of a semi-automated winding is 35.000 EUR. In order

to have an economical production process, for a quantity higher than 6000 electric mo-

tors it is worth to purchase a semi-automated winding machine. By these investments

a person will be able to wind 37.000 (includes the machine maintenance time) stator

coils over one year. The same number of the stator core can be made manually by 24

workers. By using a fully automated winding machine with a purchasing cost starting

from 150.000 EUR, a minimum quantity of 30.000 electric motors/year is required.

The system takes into account the coils dimensions (height, width, and depth), the

number of turns in the coil, the wire thickness and allowed tension. These characteris-

tics improve the system capabilities to compute the trajectory to be covered by the robot

tool. In fact, the considered features are used to plan the path for winding a coil never

seen before by the system. Of course, it will still be possible to refine the computed

trajectory by teaching a better route through human demonstration. Novel demonstra-

tions can be acquired by the learning system to iteratively improve its internal model

and increase the performances of the whole winding procedure. The parameters of

pole dimensions, number of turns in the coil, wire thickness and desired tension are

provided as input to the robot by the operator, without the need of specific sensors to

identify them. Based on the given information, the system chooses the proper coil from

the coils hub and the robot tool gripper picks and places it on the adjustable winding

stage. Later, the tool clamps its wire to the winding stage and starts winding the coil.

A set of basic quality inspection protocols, based on turns count, wire tension and wire

round distribution unity have been introduced, in order to guarantee a high standard of

the winding process. A tension sensor has been integrated into the robot end effector in

order to control the wire tension (Fig. 3). The output of the sensor will be used to close

the loop in the controller, adjusting the joint trajectories to match the desired output.

This feature allows the robot to keep the wire tension as much as possible within the

prescribed range, in order to reach optimal performances of the winded coil. Finally,

the robot gripper picks the wound coil and places it on the empty stator slot.

8.5.3 Achieved results

Task division

The desired task has been carried out thanks to the collaboration between all the

partners. They put together their different abilities and efforts facing different aspects:
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• UNIPD as Academic part of the Research Team, has developed the robot learn-

ing framework, the visual detection algorithms, the robot motion system, and the

main software interface.

• ITR as Industrial part of the Research Team, has provided his expertise in quality

inspection by using an online visual control of the winding process.

• STAM as System Integrator, has implemented the needed hardware providing

the necessary bridge between scientific knowledge and actual end user needs.

• ICPE as end user has projected a novel concept for electric motors suitable for

electrical vehicles in which the coils could be wound separately and subsequently

assembled in the stator in order to facilitate the hardware and software develop-

ment in the strict challenge time schedule.

8.5.4 Data

The manufacturer worked on redesign the electric motors in order to allow the

winding process by mean of a robotized device: stator core electromagnetic design,

stator core mechanical design, winding design, and coil frame mechanical design in

order to allow an interlocking function with the stator core. For an accurate perfor-

mance prediction of the motors redesign structures, Finite Element (FE) analysis is

used. Five different types of electric motors were designed and optimized in order to

allow a flexible production of the windings. The stator consists of a laminated steel

core in whose slots is located a three phase star connected winding. The rotor consists

of a magnetic steel ring on which there are placed high energy permanent magnets. Ap-

plications for the proposed motors are electric vehicles, machine tools, laser scanning

and printing, motion simulators, rotary stage, robots, tracking systems.

The specifications of the proposed outer rotor frameless motors are reported in Ta-

ble 8.2, while Figure 8.15 shows some of the real components derived from the man-

ufacturer designs.

8.5.5 System

The system takes into account the coils dimensions (height, width, and depth), the

number of turns in the coil, the wire thickness and allowed tension. The considered

features are used to plan the path for winding a coil. The planning is based on a

learning framework previously developed in [11] [173]. These characteristics improve

the previous system capabilities [174] [175] to compute the trajectory to be covered by
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Table 8.2: Specifications of the motors produced by the manufacturer during the

project.

Params Unit M1 M2 M3 M4 M5

Ext.

diam.
mm 128 178 178 252 252

Inner

diam.
mm 80 120 120 160 160

Act.

length
mm 30 20 30 30 50

Rated

power
W 1600 2400 3100 3000 4500

Conn.

torque
N m 13 24 30 36 54

Peak

torque
N m 30 53 69 82 124

Rated

speed
rpm 1200 1000 1000 800 800

Noload

speed
rpm 1500 1350 1200 900 850

Inertia Kg m2 0.09 0.03 0.032 0.055 0.06

Weight Kg 3.7 5.65 6.65 8.5 10

Phase

conn.
Y Y Y Y Y

N. of

poles
14 20 20 20 20
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Figure 8.18: Cross section of a coil slot.

terms of productivity, repeatability, reduced manufacturing costs, flexibility, and setup

time. At the end of each winding process, the coil has been compared with standards

coming from actual industrial manufacturer by checking copper fill factor, inductances,

resistances, and conductance at high voltage. In particular, the copper fill factor is the

ratio of the copper conductors area over the total slot area.

For a section of coil (Fig. 8.18), the copper fill factor is computed as explained

in Eq. 8.13.

copperFieldFactor =
nS

bh
(8.13)

where:

• n is the number of copper turns (conductors).

• S is the part of cross section composed by copper conductor.

• b is the base of the cross section of a coil slot.

• h is the height of the cross section of a coil slot.

During the tests in Stuttgart, we were able to reach a Copper Fill Factor of 0.5. For

electric motors used in standard applications, the copper fill factor is usually around

0.2. Moreover we achieved a valuable advantage in terms of productivity and repeata-

bility. At the current state the production system in the manufacturer facility is able
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Table 8.3: Results obtained during the testing phase at Fraunhofer IPA.

Metric Manufacturer Our system

Number of stator

wound every 8 hours
7 15

Correct wound

coils
90% 50%

Mean Copper fill

factor
0.2 0.5

High voltage Pass Pass

Resistance Pass Pass

Repeatability 20% 100%

to wind 7 stators in 8 hours. In ours case the robotic arm provides 15 completed sta-

tors every 8 hours. Finally, the repeatability has also increased in a very significant

manner due to the robotized approach. On the other hand, we faced a major problem

with an increased number of faulty products. The results can be certainly improved

with a more accurate tuning of the overall system, but some parts of the framework

should be revised in order to avoid failures. A simple example regards the material

used for the coils. It was too fragile and sometimes it broke while winding the copper

wire. The breaking problem could be avoided by 3D printing the coils perpendicularly

with respect to the winding direction. The geometry of the piece would have helped

in making it more robust. Another possibility could have been to completely change

the plastic material, for example by using nylon instead of polylactic acid. Anyway, it

is worth to notice that the copper material (the most expensive one) used for the spare

parts can be recycled in the very same process, and it had not been wasted.

Another very important aspect of our system is the high flexibility provided with

respect to industrial winding machines available in the market. The capability to switch

between different types of motors with minimum cost for additional tooling is essen-

tial. Commercial winding machines usually do provide very limited flexibility with

expensive additional tools requested to wind different stators types. Moreover, the

time needed for switching from one tool to another is quite long taking from some

hours to a day. With our system, a complete change of the entire production from a

motor type to a different one require more or less 15 minutes, reducing drastically the

minimum number of pieces for a sustainable production, and opening the market to

small-medium enterprises with a low margin of investment.
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8.5.7 Conclusions

In this work, we introduced an innovative automatic technology able to increase

considerably the competitiveness of European enterprises operating in the electric mo-

tors manufacturing field. The system is meant to introduce a flexible approach for

winding motor coils of different types, sizes, and power with a reduced and limited

human intervention in the process. Nevertheless, if necessary, the human operator can

still be part of the loop in order to improve the performance of the system. The pro-

posed technology has the potential to reduce costs, time, risks for electrical machine

manufacturers in the near future and put the basis for a different way of producing high

performance electrical components with an improved copper fill factor.
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Chapter 9

Conclusions

The thesis proposed a set of general subject-independent frameworks to model hu-

man motion in order to actuate online robotic devices, with both industrial and reha-

bilitation purposes. In particular, we developed subject-independent frameworks with

three different objectives:

• use physiological signals to control wearable devices;

• exploit physiological signals in industrial contexts;

• apply Robot Learning in Industry 4.0 dynamic environments.

Physiological signals, like Electromyography (EMG) signals, are non-stationary

information collected from human beings. Using such signals to generalize among

several repetitions of a certain task is challenging due to the peculiar characteristics of

physiological data. The usual approach when working with this kind of signals focuses

on subject-specific solutions. In this thesis, we proposed a subject-independent frame-

work to control robotics prosthesis or exoskeletons by using physiological signals. A

robust preprocessing phase has been developed in order to clean and smooth the signals

from variability due to noise or outliars. Wavelet Transform (WT) have been applied

to the raw signals to perform an analysis in both time and frequency. In conjunction

to this first transformation, the preprocessing phase included signals smoothing and

normalization. An additional preprocessing phase is possible when working offline.

Dynamic Time Warping (DTW) computed a time stretching and distortion in order to

face changes in the movement velocity. By removing artifacts, we have been able to

highlight the peculiar common characteristics of the specific motion along several dif-

ferent trials. The refined signals have been used to train offline a probabilistic model,

namely a Gaussian Mixture Model (GMM), able to represent the signal as a weighted
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sum of Gaussian components. A regression technique, namely Gaussian Mixture Re-

gression (GMR), has been used to continuously estimate the joint bending angles to

control a robotic device by exploiting only physiological signals. Instead, we exlpoited

a classification technique, namely Gaussian Mixture Classification (GMC), to choose

the performed movement among a set of possible choices.

At first, the feasibility of the subject-independent solution has been tested by con-

sidering EMG signals from three subjects performing a very simple task, i.e. kicking

a ball from a sitting position. The framework reached a mean accuracy of 85%, with a

maximum accuracy of 93%. Tests have been expanded by considering a much larger

dataset (i.e. 40 healthy persons), and more complex movements. The model was able

to estimate the motion of both single (ρα,α̂ = 0.8224) and multiple (ρα,α̂ = 0.8067)

joints for different movements. The performance the previous framework involving ex-

clusively EMG signals have been compared with a framework considering additional

information from Inertial Measurement Unit (IMU). Tests proved that the introduction

of IMU data helped in improving significantly the generalization capabilities of the

framework and consequently in obtaining a better subject-independent model, increas-

ing the accuracy up to 10%.

Finally, a complete low cost framework has been proposed, building a 3D printed

hand, recording EMG signals with a low cost device, and developing a subject-independent

model from these data. The system was able to reach a mean accuracy of 76.8% show-

ing that expensive devices or long training sessions from a specific subject are not

necessary to control a prosthesis.

Moreover, we demonstrated that a priori information from a hierarchic taxonomy

of hand grasps is able to provide a guideline able to speed-up and improve classifica-

tion results. We also developed for the first time a taxonomy including quantitative

information considering data by many different subjects.

EMG signals have been used also to predict the human movement in an industrial

context. We presented a general framework for human-machine interface in industrial

applications. The proposed framework improved the robot capabilities to work along-

side humans or cooperate with them. It exploited two classifiers running in parallel, a

HMM for motion detection and a GMM for direction classification, triggering the state

of a FSM. The system has been implemented under ROS for an easier applicability to

several robotic devices and applications. The main advantage of this approach is the

flexibility of speed-accuracy trade-off obtained thanks to the novel dynamic stopping

criteria introduced in this work.

168



Many industrial solutions have been deeply investigated in this thesis with the goal

of solving the challenges proposed in the EuRoC competition. The goal of EuRoC

is to boost the collaboration between universities and industries, in order to improve

the industrial production with innovative solutions. EuRoC was organized in three

steps of increasing complexity. We developed innovative Machine Learning solutions

at each step, by exploiting the Robot Learning by Demonstration paradigm oriented to

subject-independence, generality and robustness of the proposed frameworks.

During the first phase, we solved a relevant industrial task (i.e. mounting a door

module into the car door) by dividing the main assignment in easier subtasks and by

exploiting the human expertise in the most complex situations. In the second phase,

different subjects taught the robot how to perform a task. The system learn how to

wind up a wire through a peg table via visual human demonstrations. The third phase

was an extension of the second one. The robot had to learn how to wind copper wire

around 3D printed electric motor coils and finally mount the winded coils in the motor

stator. The system worked with different types of coils and stators, in a robust and flex-

ible way. We developed a flexible framework able to adapt to different situations and

boost the production procedure in electric motors. With our solution, it is possible to

switch from one motor model to another in a few minutes, without changing technol-

ogy or reprogramming the robot. The proposed system can keep the costs low, while

improving the production and the operators quality of work, by substituting them in

alienating and repetitive tasks.

In this thesis, we pursued one of the most important objectives in robotics: to

improve the people quality of life. The application of our framework could alleviate

operators from heavy tasks, or help injured people to regain their lost functionality. The

development of a subject-independent approach aimed at making these technologies

available for everyone at low-cost and without long training sessions.
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