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Sommario

Nell’ambito della robotica, il Simultaneous Localization and Mapping (SLAM) è

il processo grazie al quale un robot autonomo è in grado di creare una mappa

dell’ambiente circostante e allo stesso tempo di localizzarsi avvalendosi di tale

mappa. Negli ultimi anni un considerevole numero di ricercatori ha sviluppato

nuove famiglie di algoritmi di SLAM, basati su vari sensori e utilizzando varie

piattaforme robotiche.

Uno degli ambiti più complessi nella ricerca sullo SLAM è il cosiddetto Visual-

SLAM, che prevede l’utilizzo di vari tipi di telecamera come sensore per la navi-

gazione. Le telecamere sono sensori economici che raccolgono molte informazioni

sull’ambiente circostante. D’altro canto, la complessità degli algoritmi di visione

artificiale e la forte dipendenza degli approcci attualmente realizzati dalle carat-

teristiche dell’ambiente, rendono il Visual-SLAM un problema lontano dal poter

essere considerato risolto.

Molti degli algoritmi di SLAM sono solitamente testati usando robot dotati

di ruote. Sebbene tali piattaforme siano ormai robuste e stabili, la ricerca sulla

progettazione di nuove piattaforme robotiche sta in parte migrando verso la ro-

botica umanoide. Proprio come gli esseri umani, i robot umanoidi sono in grado

di adattarsi ai cambiamenti dell’ambiente per raggiungere efficacemente i propri

obiettivi.

Nonostante ciò, solo pochi ricercatori hanno focalizzato i loro sforzi su implemen-

tazioni stabili di algoritmi di SLAM e Visual-SLAM adatti ai robot umanoidi.

Tali piattaforme robotiche introducono nuove problematiche che possono com-

promettere la stabilità degli algoritmi di navigazione convenzionali, specie se

basati sulla visione. I robot umanoidi sono dotati di un alto grado di libertà
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di movimento, con la possibilità di effettuare velocemente movimenti complessi:

tali caratteristiche introducono negli spostamenti vibrazioni non deterministiche

in grado di compromettere l’affidabilità dei dati sensoriali acquisiti, per esempio

introducendo nei flussi video effetti indesiderati quali il motion blur. A causa

dei vincoli imposti dal bilanciamento del corpo, inoltre, tali robot non sempre

possono essere dotati di unità di elaborazione molto performanti che spesso sono

ingombranti e dal peso elevato: ciò limita l’utilizzo di algoritmi complessi e com-

putazionalmente gravosi. Infine, al contrario di quanto accade per i robot dotati

di ruote, la complessa cinematica di un robot umanoide impedisce di ricostruire

il movimento basandosi sulle informazioni provenienti dagli encoder posti sui mo-

tori.

In questa tesi ci si è focalizzati sullo studio e sullo sviluppo di nuove metodolo-

gie per affrontare il problema del Visual-SLAM, ponendo particolare enfasi ai

problemi legati all’utilizzo di piccoli robot umanoidi dotati di una singola tele-

camera come piattaforme per gli esperimenti.

I maggiori sforzi nell’ambito della ricerca sullo SLAM e sul Visual-SLAM si sono

concentrati nel campo del processo di stima dello stato del robot, ad esempio

la stima della propria posizione e della mappa dell’ambiente. D’altra parte, la

maggior parte delle problematiche incontrate nella ricerca sul Visual-SLAM sono

legate al processo di percezione, ovvero all’interpretazione dei dati provenienti dai

sensori. In questa tesi ci si è perciò concentrati sul miglioramento dei processi

percettivi da un punto di vista della visione artificiale.

Sono stati affrontati i problemi che scaturiscono dall’utilizzo di piccoli robot

umanoidi come piattaforme sperimentali, come ad esempio la bassa capacità di

calcolo, la bassa qualità dei dati sensoriali e l’elevato numero di gradi di libertà

nei movimenti. La bassa capacità di calcolo ha portato alla creazione di un nuovo

metodo per misurare la similarità tra le immagini, che fa uso di una descrizione

dell’immagine compatta, utilizzabile in applicazioni di SLAM topologico. Il prob-

lema del motion blur è stato affrontato proponendo una nuova tecnica di rileva-

mento di feature visive, unitamente ad un nuovo schema di tracking, robusto an-

che in caso di motion blur non uniforme. E’ stato altres̀ı sviluppato un framework

per l’odometria basata sulle immagini, che fa uso delle feature visive presentate.
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Si propone infine un approccio al Visual-SLAM basato sulle omografie, che sfrutta

le informazioni ottenute da una singola telecamera montata su un robot umanoide.

Tale approccio si basa sull’assunzione che il robot si muove su una superficie pia-

na.

Tutti i metodi proposti sono stati validati con esperimenti e studi comparativi,

usando sia dataset standard che immagini acquisite dalle telecamere installate su

piccoli robot umanoidi.
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Abstract

In robotics the Simultaneous Localization and Mapping (SLAM) is the problem

in which an autonomous robots acquires a map of the surrounding environment

while at the same time localizes itself inside this map. In the last years a lot

of researchers have spent a great effort in developing new families of algorithms,

using several sensors and robotic platforms.

One of the most challenging field of research in SLAM is the so called Visual-

SLAM problem, in which various types of cameras are used as sensor for the

navigation. Cameras are inexpensive sensors and can provide rich information

about the surrounding environment, on the other hand the complexity of the

computer vision tasks and the strong dependence on the characteristics of the

environment in current approaches makes the Visual-SLAM far to be considered

a closed problem.

Most of the SLAM algorithm are usually tested on wheeled robot. These plat-

forms have become robust and stable, on the other hand the research in robot

design moves toward a new family of robot platforms, the humanoid robots. Just

like humans, a humanoid robot can adapt itself to changes in the environment in

order to efficiently reach its goals.

Despite that, only a few roboticists focused theirs research on stable implemen-

tation of SLAM and Visual SLAM algorithms well suited for humanoid robots.

Humanoid platforms raise issues which can compromise the stability of the con-

ventional navigation algorithms, especially for vision-based approaches. A hu-

manoid robot can move in 3D without the usual planar motion assumption that

constraint the movement in 2D, usually with quick and complex movements com-

bined with unpredictable vibrations, compromising the reliability of the acquired
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sensors data, for example introducing in the images grabbed by the camera an

undesired motion blur effect. Due to the strong balance constraints, a humanoid

robot usually can’t be equipped with powerfull but hefty computer boards: this

limits the implementation of complex and computational expensive algorithms.

Moreover, unlike wheeled robots, its complex kinematics usually forbids a reliable

reconstruction of the motion from the servo-motor encoders.

In this thesis, we focus on studying and developing new techniques address-

ing the Visual-SLAM problem, with particular attention to the issues related to

using as experimental platform small humanoid robots equipped with a single

perspective camera.

The main efforts in SLAM and Visual SLAM research areas have been put into

the estimation functionality. However, most of the functionalities involved in Vi-

sual SLAM are in perception processes. In this thesis we therefore focus on the

improvement of the perceptual processes, from a computer vision point-of-view.

We faced small humanoid robot related issues like low-computational capabil-

ity, the low quality of the sensor data and the high degrees of freedom of the

motion. We cope with the low computational resources presenting a new similar-

ity measure for images based on a compact signature to be used in image-based

topological SLAM problem. The motion blur problem is faced proposing a new

feature detection and tracking scheme that is robust even to non-uniform motion

blur. We develop a framework for visual odometry based on features robust to

motion blur.

We finally propose an homography-based approach to 3D visual SLAM, using the

information provided by a single camera mounted on a humanoid robot, based

on the assumption that the robot moves on a planar environment.

All proposed methods have been validated with experiments and comparative val-

idation using both standard datasets and images taken by the cameras mounted

on walking small humanoid robots.
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Chapter 1

Introduction

One of the most fundamental feature of an autonomous mobile robot is the ca-

pability to localize itself inside the environments where it moves. Without the

knowledge of its own position, a robot can’t perform complex tasks as rescue,

surveillance, or fetch and carry.

In order to provide a robot with localization capabilities, the programmer must

give it a representation of the environment (map) where it will move. For many

reasons, this representation is not always available, for example because of the

working area is not known a priori (as in the case of a rescue robot).

Generating incrementally consistent maps of the environment while locating it-

self within this map is therefore another fundamental task of mobile robots, more

general than the localization, and obviously more challenging. In robotics this

capability is commonly referred as the Simultaneous Localization and Mapping

(SLAM ) problem [29], and in the last years it has received much attention within

the research community.

SLAM has been formulated and solved as a theoretical problem in a number

of different ways and many researchers presented several implementations using

different robotic platforms and sensors. However, SLAM still remains an open

problem, due to the strong dependency of almost all current implementations on

the specific environment and the specific sensors used.

Moreover, the capability of autonomously navigate in a unknown environment

becomes critically important in indoor application, where no global positioning

systems as GPS are available.
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1. INTRODUCTION

1.1 Solving the SLAM problem: a brief intro-

duction

A mobile robot is commonly equipped with proprioceptive sensors, (e.g., mo-

tor’s encoders) and exteroceptive sensors (e.g., range finders or color cameras)[94].

When it moves it acquires observations from both these types of sensor, collecting

data, unavoidably corrupted by noise, about its internal state and the external

state. SLAM aims to reconstruct a map of the world and the actual position of

the robot using only these data streams. The map is usually represented through

a vector of landmark positions or through an occupancy grid of the environment.

The map together with the robot’s pose represents the state that should be esti-

mated during the SLAM process.

Most of the methods proposed to solve the SLAM problem belong to the family

of the Probabilistic (Bayesian) algorithms. The essential idea of this class of al-

gorithms is to attempt to estimate at time t the posterior probability distribution

over all possible states (maps and robot positions) given all the exteroceptive sen-

sors measurements (usually referred as the observations model) and all the noisy

predictions of robot’s motion (usually referred as the control model or motion

model), derived from the measurements of the proprioceptive sensors as motor’s

encoders.

The most influential SLAM algorithm is based on the Extended Kalman Filter

(EKF ) and was introduced by Smith and Cheeseman [97]. EKF-SLAM assumes

a Gaussian noise for both observations and controls, while maps are represented

through a vector of landmark positions. It calculates a solution for the online

problem, that is the state is updated for every incoming measurement (observa-

tions and controls). This approach suffers from some drawbacks that limits the

application in large environments: the sensitivity to failures in data association

and the quadratic complexity. Moreover, EKF-SLAM employs linearized models:

usually observations and controls models are non-linear.

An alternative algorithm to solve the SLAM problem is the so called Graph-

SLAM, based on a seminal paper by Lu and Milios [59]. It solves the offline full

SLAM problem, that is it calculates a solution taking into account all measure-

ments together. For this reason, GraphSLAM isn’t suitable for real-time and
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incrementally map building. GraphSLAM is based on a sparse graph that holds

robot poses and landmarks location (nodes) and the constraints given from the

controls and the observations (links). A maximum likelihood map and the corre-

sponding robot poses are then obtained through an optimization process over all

constraints.

A similar approach to GraphSLAM is the Sparse Extended Information Filter

(SEIF ) [101], based on the Information Filter (that is the dual of the Kalman

Filter). SEIF only maintains a posterior over the present state (robot position

and the actual map) but, just like GraphSLAM, it maintains an information rep-

resentation of all knowledge. SEIF has to make a number of approximation to

comply with the real-time constraints of an online SLAM approach: this results

in less accurate solutions than EKF-SLAM and GraphSLAM.

Recently, Montemerlo and Thrun introduced the FastSLAM [71], a new family of

algorithms for SLAM. FastSLAM is an instance of the Rao-Blackwellized Particle

Filters and it use particles to represent the posterior over the complete robot’s

path and Gaussians to represent the posterior over landmark positions. Fast-

SLAM is based on the statement that the knowledge of the robot’s true path al-

lows to estimate independently the positions of every map landmark. FastSLAM

is a very efficient solution to the SLAM problem, however ignoring correlation

information cause to underestimate the covariance of landmarks. Moreover, in

loop closing problem the number of FastSLAM particles must grow as a function

of the size of the loop: this decreases the efficiency of this approach for large

loops. The methods presented above deal with the construction of metric maps:

another approach to SLAM problem is to construct a topological representations

of the environment (Topological SLAM ) [19]. Topological maps attempt to cap-

ture spatial connectivity of the environment by representing it as a graph in which

nodes hold significant places in the environment.

1.2 SLAM with vision: the Visual SLAM

The most successful SLAM systems required the use of range-finder sensors (e.g.,

laser and sonar) and usually aimed to build 2-D maps of planar environments. Vi-

sion has been introduced recently in SLAM ([92, 25]), anyway a lot of researcher

3



1. INTRODUCTION

have spent a great effort in developing vision-based approach to simultaneous

localization and mapping problem (Visual SLAM ). Solving SLAM with vision

include a lot of challenging issue such as robust feature detection, data associa-

tion, and computationally efficient large-scale state estimation [74]. Despite that,

there are many interests to use vision for SLAM: vision offers the benefit of per-

ceiving the environment in a 3D volume, and the benefit of providing plenty of

information (geometric and photometric) relevant to analyze the perceived scenes

[52].

Current visual SLAM systems use perspective [25, 30, 31, 95], stereo [48, 32]

or panoramic cameras [2], looking for points [25], lines [31] or planar features

[95] as visual landmarks and most of these are based on probabilistic filtering

approaches as Extended Kalman Filters and Rao-Blackwellized Particle Filters

[71].

Most of the vision SLAM methods are based on a points features detection and

extraction step. Davison et al. [25] proposed a feature-based SLAM approach

using a single perspective camera and EKFs (Extended Kalman Filter), where

a 3D map of the features are built using the bearing only information provided

by the camera. A similar approach, but based on FastSLAM-type particle, was

presented in [30]. In [48] a high resolution digital elevation maps is built from

a sequence of stereovision image pairs where interest points are detected and

matched between consecutive frames. A visual motion estimation algorithm is

used to predict the movements, an extended Kalman filter is used to estimate

both the position parameters and the map. The system presented in [2] uses

Lowe’s Scale Invariant Feature Transform (SIFT)[58] to compute the similarity

between omnidirectional images. Links between the robot poses are established

based on odometry and image similarity, then a relaxation algorithm is used

to generate the map. In [32] a dense metric map of 3D point landmarks for

large cyclic environments are built using the Rao-Blackwellised Particle Filter,

where SIFT features are extracted from stereo vision and motion estimates are

based on sparse optical flow. Eade et al. [31] presents a monocular visual SLAM

approach using line features, where an efficient algorithm for selecting such land-

marks is defined. Higher level landmarks are exploited in [95], where 3D camera
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displacement and the scene structure are computed directly from image intensity

discrepancies using an efficient second-order optimization procedure for tracking

planar patches. Nistér et al. [78] presented a robust visual odometry system (i.e.,

the Visual SLAM sub-problem of estimating the robot’s ego-motion using vision)

based on features tracking and on the five-point algorithm, able to estimate the

motion of a stereo camera or a perspective camera in large trajectory.

1.2.1 Visual SLAM and Humanoids Robots

Most of the proposed SLAM algorithms are tested using wheeled robots provided

with stable exteroceptive sensors and with robust odometry information from its

motors. However, odometry is not always available: this is the case for humanoid

robots, where the complex kinematics combined with the unpredictable body

movements prohibit a reliable reconstruction of the motion from the servo-motor

encoders. Moreover, image processing in the humanoids robots domain is a very

complex task: during walking, turning, and squatting movements, the camera of

a humanoid robot moves in jerky and sometimes unpredictable way. For example,

Bennewitz et al. highlight in [11] that due to unstable motion of the humanoid

platforms, missing odometers, severe body vibrations, and shaking of the camera,

standard localization techniques are less robust on a humanoid robot compared

to a wheeled robot. As noted by Berthoz in his plenary talk at ICRA 2007 the

gait of a humanoid robot should be designed in order to stabilize the head and

so to simplify perception as it is done by animals and humans. However, this is

not simple for the current humanoid technology.

The first successfull validation of a Visual SLAM algorithm in a humanoid

robot was presented by Stasse et al. only in 2006 [98]. They presented a 3D

SLAM application for humanoid robots based on a standard EKF framework,

using the big and very expansive HRP-2 humanoid. However their system is

working on the HRP-2 robot that performs a very stable slow gait. The system

will not work on small walking robots.

5



1. INTRODUCTION

1.3 Objectives of the Thesis

(a) (b) (c)

Figure 1.1: The humanoid robots used in the experiments: (a) The VStone

Robovie-M; (b) The Kondo KHR; (c) The NimbRo Team Humanoid Robot.

The final aim of this thesis is to study and to develop new techniques address-

ing the Visual SLAM problem from a computer vision point-of-view, by directly

addressing to the issues and the limitations coming into view using as experimen-

tal platforms small and cheap humanoid robots (Fig. 1.1) equipped with single

perspective cameras.

The Visual SLAM problem is addressed starting from the image-based topo-

logical approach via image similarity. Then we focus on the Visual Odometry

problem, with a deep investigation of the issues related to the application of such

estimation techniques in the humanoid robots’ domain. The mapping step of the

visual SLAM problem is hence addressed from an homography-based point-of-

view.

Beyond the experimentation and the validation, we would to provide clean

and effective implementations of the proposed methods in order to support the

usage of these in real-time and real world applications.

This thesis has been inspired by some works of the author in the field of the

vision-based mobile robot localization [63, 66, 65] in which the omnidirectinal

6



vision has been exploited to accurately localize a mobile robot.

1.4 Thesis Overview

The thesis is organized as follows:

In Chapter 2 we introduce the most important algorithms for the solution

from a probabilistic point-of-view of the SLAM problem.

In Chapter 3 some recent approaches to solve SLAM with vision are pre-

sented. We start describing an effective single camera SLAM approach based on

point features, then we describe the most recent algorithms used in image based

topological SLAM and the state-of-the-art techniques used to solve the visual

odometry problem. The computer vision algorithms used in these contexts are

presented as well.

In Chapter 4 we presented a new similarity measure for images to be used

in image-based topological SLAM for robots with low computational resources.

We propose there a compact signature to be extracted from the image and to

be stored in memory. We also proposed a loop closure strategy based on this

signature.

The contributions proposed in this chapter have been presented in [86, 85].

In Chapter 5 we present a solution to the Visual Odometry problem: we pro-

pose here a visual odometry framework based on monocular images designed to

address the specific problem of motion estimation robust to motion blur. The

system is based on a new feature detection and tracking scheme that is robust

even to non-uniform motion blur.

The presented approaches are tested on small humanoid robots.

The contributions proposed in this chapter have been presented in [84, 88, 87].

In Chapter 6 we propose an homography-based approach to 3D visual SLAM,

7



1. INTRODUCTION

using only the information provided by a single camera mounted on a humanoid

robot. The floor plane is extracted and tracked in consecutive frames, the motion

of the robot and an intensity map of the floor plane is estimetd using an efficient

tracking method inside a probabilistic SLAM framework.

In Chapter 7 we present conclusions and some ideas to extended the presented

methods.
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Chapter 2

The SLAM Problem

This chapter presents an overview of some of the most influential Simultaneous

Localization and Mapping algorithms.

In SLAM, the robot acquires a map m of its environment while at the same time

localizing itself, using the sequence of the observations (i.e., sensors measure-

ments) z0:t = {z0, . . . zt} and the sequence of the movements (also called actions or

controls) u0:t = {u0, . . . ut}, performed until time t (Fig. 2.1). The map m is a list

of objects in the environment along with their properties, m = {m1,m2, . . . ,mN}.
In feature-based maps, each mi represents an environment landmark and its value

contains the properties of this landmark (e.g., a distinctive signature used during

the data association problem) along with its Cartesian location. In location-based

maps, each mi represents a location and its value is the property of this specific

location (e.g., a value that specifies whether or not a location is occupied with

an object).

In SLAM the state st of the system that should be estimated is, for every time t,

the robot pose xt together with the map m, st = {xt,m}. From a probabilistic

point of view, this means that we have to estimate a posterior density function

(PDF) over the state:

p[xt,m|z0:t, u0:t] (2.1)

This is called the online SLAM problem since it requires the computation of a

posterior over the current state. The PDF can be estimated recursively over time

9



2. THE SLAM PROBLEM

using incoming observations and actions by the Recursive Bayes Filter [100]:

p[xt,m|z0:t, u0:t] =

η p[zt|xt,mi]

∫
p[xt,m|ut, xt−1]p[xt−1,m|z0:t−1, u0:t−1]dxt−1 (2.2)

The Recursive Bayes Filter exploits the Markov assumption of the stochastic

SLAM process, that is the next state st depends only on the previous state st−1

and on the current control ut. The probability density p[xt,m|ut, xt−1] is called

motion model, while the probability density P [zt|xt,mi] is called sensor model, η

is a normalization factor.

On the other hand, the full SLAM problem involves the computation of a poste-

rior over the entire path x0:t = {x0, . . . , xt} along with the map:

p[x0:t,m|z0:t, u0:t] (2.3)

2.1 SLAM with Extended Kalman Filter

The earliest SLAM algorithm is based on the Extended Kalman Filter (EKF

SLAM ) [97, 54]: it recursively solves the online SLAM problem where the map

is feature-based.

The Kalman filter is an efficient and optimal filter that estimates the state of

a linear dynamic system: to cope with non-linear systems, it was introduced

the Extended Kalman filter, that is an approximation of the original filter. For a

complete derivation of the Kalman filter, see [100]. The EKF essentially linearizes

the non-linear functions around the current state before computing the Kalman

filter equations.

As in conventional Kalman filter, EKF SLAM estimates the state from a series of

noisy measurements (movements and observations), where the noise is assumed

to be always Gaussian. The PDF of the estimated state is Gaussian, as well:

p[xt,m|z0:t, u0:t] = N ({xt,m}, µt, Σt) = N (st, µt, Σt) (2.4)

where N is a multivariate Gaussian probability density with mean µt and covari-

ance matrix Σt. Therefore, for every iteration of the EKF filter, the uncertainty

10
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Figure 2.1: In SLAM, robot and landmark positions are estimated concurrently.

Observations are made between true robot and true landmark positions.

of the state st will be represented through a column vector µt of size n and a

covariance matrix Σt of size n× n, where n is the dimension of the state.

In the EKF SLAM, the probability density of the state transition p[st|st−1, ut]

(i.e., the motion model) must be Gaussian, this means that given the state st−1

at time t − 1 and the movement ut at time t, the transition of the state can be

written as:

st = f (ut, st−1) + vt (2.5)

where vt is an additive Gaussian noise with zero mean and covariance matrix Qt

that models the uncertain in the state transition, i.e. p(vt) ∼ N (0, Qt). Since

the motion model depends only on the previous robot pose and on the current

movement ut, we can omit in the equation the map vector, i.e.:

xt = f (ut, xt−1) + vt (2.6)
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2. THE SLAM PROBLEM

The function f doesn’t modify the map.

The probability density function of the observation zt (i.e., the observation model)

must be Gaussian as well, that is:

ẑt = h (st,mi) + wt (2.7)

where h is a function that maps the current state in an expected observation ẑt

given the landmark mi associated to zt, wt is an additive Gaussian noise with zero

mean and covariance matrix Rt that models the observation noise, i.e. p(wt) ∼
N (0, Rt).

In the 2D case, the state st at time t can be represented by the following column

vector:

st = (px,t, py,t, pθ,t,mx,1,my,1,ms,1, . . . ,mx,N ,my,N ,ms,N)T (2.8)

where xt = (px,t, px,t, pθ,t) denotes the robot’s coordinate, mx,i,my,i are the coor-

dinates of the i− th landmark mi with ms,i its distinctive signature, i = 1, . . . , N .

The signatures are used during the data association step of the algorithm, that

is the problem to find the right correspondence (if exits) between an observation

z and a landmark mi in the current map.

The Kalman filter assumes that the function f of Eq. 2.6 and the function h of

Eq. 2.7 are linear: this in general is not true. In the Extended Kalman filter these

functions are linearized using first order Taylor Expansion around the most-likely

state of the system (i.e., the mean µt) in order to apply the Kalman equations.

In the case of the state transition function f we can write:

f (ut, st−1) w f (ut, µt−1) + Ft (st−1 − µt−1) (2.9)

where Ft is the n × n jacobian matrix of the function f (n is the dimension of

the state). The jacobian usually depends on ut and µt−1:

Ft = ∇st−1f (ut, st−1) |st−1=µt−1,ut=ut (2.10)

The Kalman filter is divided in two phases: prediction and correction [100]. In

the SLAM problem, during the prediction phase the state (i.e., its mean and

covariance) at time t is updated according to the motion model:

µ−t = f (ut, µt−1) (2.11)

Σ−t = FtΣt−1F
T
t +Qt (2.12)
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2.2 SLAM WITH EXTENDED KALMAN FILTER

where µt−1 and Σt−1 are the mean and covariance of the state at time t − 1,

respectively.

During the correction step, for every observation zt associated with the landmark

mi, it is computed an expected observation ẑt = h
(
µ−t ,mi

)
and a corresponding

Kalman gain (Eq. 2.14) that specifies the degree to which the incoming observa-

tion corrects the current state estimation (Eq. 2.15 and 2.16):

St = HtΣ
−
t H

T
t +Rt (2.13)

Kt = Σ−t H
T
t S
−1
t (2.14)

µt = µ−t +Kt

(
zt − h

(
µ−t ,mi

))
(2.15)

Σt = (I −KtHt) Σ−t (2.16)

where Ht is the jacobian of the function h:

Ht = ∇sth (st,mi) |st=µ
−
t ,mi=mi

(2.17)

Before fusing data into the map, new measurements are associated with existing

map landmarks. If no existing landmarks in the map m = {m1,m2, . . . ,mN}
are associated with the new observation, a new landmark mN+1 is initialized and

added to the map.

The standard formulation of the EKF-SLAM solution is not robust to incorrect

association of observations to landmarks: an accurate data association is then

desirable. An important advance in the data association task is the concept of

batch validation, where multiple associations are considered simultaneously, in-

stead of searching the single associations using the maximum likelihood rule as

in early SLAM implementations. Well known batch validation techniques are the

Joint Compatibility Branch and Bound (JCBB) [75] method, which is based on

a tree-search, and Combined Constraint Data Association (CCDA) [4], which is

based on a graph search.

The quadratic complexity of EKF-SLAM limits the application in large environ-

ments, moreover EKF-SLAM employs linearized models where usually observa-

tions and controls models are non-linear.
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2.2 Graph-based SLAM
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Figure 2.2: An example of Graph-based SLAM with five robot poses and two

landmarks. Each link is a non-linear quadratic constraint. The triangles are

robot poses, while the stars are landmarks. In the illustration only a subset of

the constraint is reported.

In the graph-based SLAM framework, the SLAM problem is represented as

a graph in which nodes are environment landmarks or robot poses, and edges

are the measurements. Edges are modeled as rigid-body constraints between

nodes. The goal of the graph-based SLAM algorithms is to find the configuration

of nodes that maximizes the likelihood of the measurements. All nodes (robot

locations and landmarks) are involved in the optimization process, this means

that graph-based SLAM algorithms solve the full SLAM problem (Eq. 2.3).

Given a sequence of observations z0:t and a sequence of actions (i.e., movements)
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2.2 GRAPH-BASED SLAM

u0:t, Graph-based SLAM turns this data into a graph. The nodes are robot poses

x0, . . . xt (triangles in Fig 2.2) and landmarks m1,m2, . . . ,mN (stars in Fig 2.2).

Each edge in the graph corresponds to a movement (robot pose to robot pose

link) or feature observation (robot pose to landmark link).

Lu and Milios [59] propose to apply a brute-force nonlinear least square error

minimization techniques based on graph constraints: this approach was called

GraphSLAM. First consider a control ut, that provides information about the

relative movement from the pose xt−1 to the pose xt. This information induces a

constraint in the graph between node xt−1 and node xt. We can therefore define

the error et−1,t introduced by the constraint:

et−1,t = xt − f (ut, xt−1) (2.18)

where f is the function of Eq. 2.6 that maps the two robot pose given the control

ut. If the movement perfectly matches the current configuration of the nodes,

et−1,t is equal to 0. Assuming a Gaussian noise in the motion model, the negative

logarithmic likelihood of the state transition f (ut, xt−1) can be written (dashed

lines in Fig. 2.2):

[xt − f (ut, xt−1)]
TQ−1

t [xt − f (ut, xt−1)] (2.19)

Qt is the covariance matrix that models the uncertainty in the motion model

(see Sec. 2.1), its inverse is called information matrix. We can think edges as

“springs” in a spring-mass model.

In the same way, we can define the constraint introduced by a landmark obser-

vation zt (dashed arrows in Fig. 2.2):

[zt − h (xt,mi)]
TR−1

t [zt − h (xt,mi)] (2.20)

Rt is the covariance matrix that models the uncertain in the sensor model and

mi is the landmark in the map associated to the current observation zt. After

incorporating all measurement and actions, we obtain a sparse graph of soft

constraints. The sum of all constraints in the graph will be of form:

JGraphSLAM = Σt [xt − f (µt, xt−1)]
T Q−1 [xt − f (µt, xt−1)] + (2.21)

Σt [zt − h (xt,mi)]
T R−1 [zt − h (xt,mi)]
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In Lu and Milios [59] approach, the maximum likelihood map is obtained search-

ing for the node configuration x∗ = {x∗0, . . . , x∗n} that minimize Eq. 2.21 This

approach seeks to optimize the whole graph at once: the brute-force implemen-

tation of this algorithm makes it impractical in real-time applications.

A similar approach to GraphSLAM is the Sparse Extended Information Filter

(SEIF ) [101], based on the Information Filter, that is the the dual of the Kalman

Filter. Just like EKF SLAM, SEIF only maintains a posterior over the present

state (robot position and the current map, Eq. 2.1) but, similar to GraphSLAM,

it maintains an information representation of all knowledge (i.e., a global informa-

tion matrix over the robot pose and the map that is modified for every incoming

constraint). In SEIF, the motion update differs from GraphSLAM, since it elim-

inates past pose estimates. This information is not entirely lost: some of it is

mapped into information links between pairs of features. Moreover SEIF employs

a sparsification step, where some features are deactivated by eliminating its link

to the robot. To compensate for this change in information state, links between

active features are also updated.

SEIF is a computationally efficient SLAM algorithm but, due to the number

of approximations, it provides a less accurate solutions than EKF-SLAM and

GraphSLAM.

Other solutions to the graph-based SLAM have been recently proposed. Folkesson

and Christensen [36] presents an algorithm based on a gradient descent opti-

mization procedure. Dellaert proposed a smoothing method called Square Root

Smoothing and Mapping [26] that applies smoothing to correct the poses of the

robot and feature locations. Recently, Olson et al. [82] presented a fast non-linear

optimization algorithm that rapidly recovers the robot trajectory using a variant

of Stochastic Gradient Descent on an alternative state-space representation.
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2.3 SLAM with Rao-Blackwellized Particle Fil-

ters

In the last years, Montemerlo and Thrun introduced the FastSLAM method,

[71] (Factored Solution to the SLAM problem). FastSLAM is an instance of the

Rao-Blackwellized Particle Filters (RBPF) and it uses particles to represent the

posterior over the complete robot path and Gaussians to represent the posterior

over landmark positions.

The Particle filter is an approximated solution of the Bayes Filter: the key idea

is to represent the posterior density functions of the state by means of a set of M

particles {x[1]
t , x

[2]
t , . . . , x

[M ]
t }. Each particle represents an hypothesis of the state

(e.g., the robot path): the denser a subregion of the state space is populated by

particles, the more likely it is the true state falls into this region [100].

FastSLAM is based on the statement that the knowledge of the robot’s true path

allows to estimate independently the positions of every map landmark. Fast-

SLAM solves the full SLAM problem estimating a posterior over the entire path

x0:t along with the map (Eq. 2.3). The intuition of the FastSLAM is to use a

factorization of this posterior:

p[x0:t,m|z0:t, u0:t] = p[x0:t|z0:t, u0:t]
N∏
i=1

p[mi|x0:t, z0:t, u0:t] (2.22)

The proof of the factorization can be found in [71].

FastSLAM estimates the first term in Eq. 6.20 using a particle filter: a particle

is a hypothesis of a complete path. For each particle, N conditional landmark

posteriors p[mi|x0:t, z0:t, u0:t] are estimated using the Extended Kalman Filter.

Given N the number of landmarks and M the number of particles, in total there

are N ∗N EKFs.

Each FastSLAM particle is of the form:

S
[i]
t = {x[i]

0:t, µ
[i]
m1,t,Σ

[i]
m1,t, . . . , µ

[i]
mN ,t

,Σ
[i]
mN ,t
} (2.23)

where [i] indicates the index of the particles, x
[i]
0:t is the particle’s robot path

estimate and µ
[i]
mj ,t and Σ

[i]
mj ,t are the mean and the covariance of the Gaussian

representing the location of the j− th landmark mj conditioned on the path x
[i]
0:t.
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The particle set St = {S[1]
t , . . . , S

[M ]
t } is calculated incrementally from the set

St−1, the current observation zt and the control ut. At time t for each particle

S
[i]
t−1, i = 1, . . . ,M , a new robot pose is sampled from the motion model :

x
[i]
t ∼ p[xt|ut, S[i]

t−1] (2.24)

where ut is the last movement. A new temporary particles set Ŝ
[i]
t is therefore

generated adding the new poses x
[i]
t to the robot path of each particle S

[i]
t−1, i.e.

Ŝ
[i]
t = {x[i]

t ∪ S
[i]
t−1}, with i = 1, . . . ,M .

The current observation zt is then associated for each particle Ŝ
[i]
t with a land-

mark mji : using the correction step of the EKF (Sec. 2.1), the means and the

covariances µ̂
[i]
mj ,t and Σ̂

[i]
mj ,t of this landmark are updated, with i = 1, . . . ,M .

The particles Ŝ
[i]
t are then weighted based on the sensor model p[zt|x[i]

t ,mji ].

Finally, a new particle set St = {S[1]
t , . . . , S

[M ]
t } is generated by selecting particles

from the temporary population Ŝt with probability proportional to the weight of

each one [100]. Some initial particles may be forgotten and some may be dupli-

cated.

FastSLAM is a very efficient solution to the SLAM problem, however ignoring cor-

relation information cause to underestimate the covariance of landmarks. More-

over, in loop closing problem the number of FastSlam particles grows as a function

of the size of the loop: this decreases the efficiency of this approach for large loops.

An improved FastSLAM algorithm called FastSLAM 2.0 has been presented in

[70]: it incorporates the current observation into the proposal distribution of the

particle filter and consequently produces more accurate results than the Fast-

SLAM original algorithm when motion noise is high relative to sensor noise.

Recently, Grisetti et al. [40] presented novel adaptive techniques for reducing the

number of particle in RBPF.

2.4 Topological SLAM

The methods presented above deal with the construction of metric maps: topo-

logical SLAM is an alternative approach to the SLAM problem that generates a

map that provide a topological representation of the environment.

18



2.4 TOPOLOGICAL SLAM

Choset and Nagatani [19] proposed a SLAM approach that use a generalized

Voronoi graph (GVG) as topological map: this approach is well-suited for robot

equipped with range sensor like laser and sonars.

The GVG is a set of curves that captures the topology of the robots environment.

In the planar case, GVG edges are the set of points at equal distance from two

obstacles, while nodes can be boundary points (both the distances are 0) or meet

points (points equidistant to three or more obstacles).

To build the GVG, the robot initially moves away from the nearest obstacle until

it is equidistant to two obstacles. When the robot reach a meet point, it puts into

the map a topological symbol (node). While building the GVG, the robot locates

itself on the meet points: the nodes of the GVG are indeed used as “virtual”

landmarks. A specific control law is also provided to construct the GVG.

In order to reliably disambiguate the graph, the proposed approach suggests to

look at the neighboring nodes of a particular meet point and to look for stable

feature with unique sensor signature (i.e., a sensor reading that univocally iden-

tify a node). Lisien et al. [56] proposed a hierarchical approach where a GVG

based topological map is used to decompose the space into regions where it is

built a feature-based map.
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Chapter 3

Vision in SLAM

Visual SLAM is the process of build maps of the sourrounding environment and

in the same time estimate the robot ego-motion using mainly visual information.

Conventional SLAM approaches commonly use information provided by range

finder sensors as lasers or sonar rings. Range finder sensors provide easily inter-

preted outputs that can be directly used in the SLAM state estimation problem.

On the other hand, vision-based sensors provides the robot with a large amount

of information that should be properly interpreted before the estimation process.

The process of understanding of the sensory information coming from vision is

called visual perception. Generally visual perception is a complex task and it

involves various scientific subjects as signal processing, geometry and pattern

recognition. Often usefull information, for example visual landmark positions,

are difficult to extract from images due to the sensor noise and the illumination

changes, additionally 3D positions are not observable given only a single frame.

A lot of computer vision techniques are involved in Visual SLAM systems, as

visual features extraction and detection, features matching, image transforma-

tions and structure reconstruction. As introduced in the former chapters, cur-

rent visual-SLAM systems use various types of cameras (perspective, stereo,

panoramic, . . . ). Due to size and balance constraints, small humanoid robots

are ususally equipped with a single, often low-cost, perspective camera. This is

the case of the humanoids used as experimental platform in this thesis.

This chapter presents some topics related to the Visual SLAM problem faced
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with a single perspective camera. After an introduction of the pinhole camera,

the simple mathematical model mainly used to represent perspective cameras, it

is described an effective and well-known method to build a 3D map of point fea-

tures using a single camera. In the following sections, we introduce some recent

applications of vision in the Topological SLAM problem and the state-of-the-art

techniques used in the vision-based robot ego-motion estimation problem (visual

odometry).

We further present an overview of the techniques used in current visual features

detection and description schemes.

3.1 The camera

Digital cameras are the most common vision-based sensors mounted on mobile

robots. Vision is the sense of capturing light from the sourrounding world. The

light begins as rays emanating form a source (e.g., the sun, a lamp, . . . ). These

rays strikes an object in the world, and much of the light is absorbed. We perceive

the amount of the light that is not absorbed in the form of color : the reflected

rays that strike our eye (or camera) is hence collected in our retina (or in the

camera image sensor, as a CCD or a CMOS sensor, two of the most common

image sensor.). Usually cameras mounted on mobile robot work with the light of

the visible spectrum (e.g., Fig. 3.1(a,b,c)) but there are cameras that can work

with other portions of the electromagnetic spectrum (e.g., Fig. 3.1(d)). A simple

model used to describe what happens when a ray strikes a camera is the pinhole

camera model [45]. In this model, light from a scene point passes through a single

point (e.g., a small aperture) and projects an inverted image on a plane called

image plane, i.e. the plane where it is located the image sensor. In the pinhole

camera model, the small aperture is also the origin O of a 3D coordinate system

whose Z axis is along the optical axis (i.e., the viewing direction of the camera).

This coordinate system is called the standard coordinate system of the camera,

the origin of this frame is called focal point or simply camera center. In Fig 3.3

this frame seen from the X axis. The image plane is parallel to axes X and Y

and is located in the negative direction of the Z axis at distance f from the origin

O: f is called the focal length of the pinhole camera. It is also defined the 2D
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3.1 THE CAMERA

(a) (b)

(c) (d)

Figure 3.1: Some type of digital cameras : (a) A consumer CMOS photo camera;

(b) A cheap CMOS webcam; (c) An industrial CCD camera; (d) An infrared

thermal imaging camera.

Figure 3.2: The pinhole camera model.
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Figure 3.3: The standard coordinate system of the pinhole camera system seen

from the X axis.

coordinate system of the image plane, whose origin (called principal point) is at

the intersection of the optical axis with the image plane, and whose axes x and

y are parallel and with opposite direction to the X and Y axes of the standard

coordinate system.

A world 3D point P with coordinates (XP , YP , ZP ) in the standard system will be

projected at some point p = (xp, yp) in the image plane (Fig 3.3). The relationship

between the two coordinate systems are:

xp =
XPf

ZP
, yp =

YPf

ZP
(3.1)
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3.1 THE CAMERA

Using homogeneous coordinates, this projective transformations can be easily

represented by a matrix multiplication:


sx

sy

s

 =


f 0 0 0

0 f 0 0

0 0 1 0



XP

YP

ZP

1

 (3.2)

where s 6= 0 is a scale factor.

In computer vision, the smallest item of information in an image is represented by

the pixel. A pixel (u, v) is defined in a coordinate system whose origin is located

in a corner of the image plane. The relationship between the two coordinate

systems are:

u = uc +
x

wp
, v = vc +

y

hp
(3.3)

where uc and vc are the coordinates of the principal point in pixels and wp and

hp are the pixel width and height, respectively.

In the image coordinate system, the system in Eq. 3.2 become:


su

sv

s

 =


αu 0 uc 0

0 αv vc 0

0 0 1 0



XP

YP

ZP

1

 (3.4)

where αu = f
wp

and αv = f
hp

. The 3 × 4 matrix A in Eq. 3.4 is called per-

spective projection matrix. In short hand notation, given ũ = [sv su s]T and

P̃ = [XP YP ZP 1]T , we can write:

ũ = AP̃ (3.5)

The parameters αu, αv, uc and vc are called the intrinsic parameters of the camera

due to the fact they don’t depend on the position and orientation of the camera

in the environment.

In general the (homogeneous) coordinates of a 3D point P̃′ are not specified in

the actual standard coordinate system (0, X, Y, Z) of the moving camera, but in

a more convenient fixed frame (0′, X ′, Y ′, Z ′) often called world frame. Before

projecting this 3D point in the image plane, we need to change its coordinates
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from the world frame to the standard coordinate system. Given the 3×3 rotation

matrix R that encodes the camera orientation with respect to the world frame and

the 3× 1 vector t that contains the camera displacement from the world frame,

we can obtain the (homogeneous) coordinates of the point P′ in the standard

coordinate system as:

P̃ = TP̃′ , T =

[
R t

0T3 1

]
(3.6)

R and t are called extrinsic parameters. Finally, pluggin Eq. 3.6 in Eq. 3.5, we

obtain:

ũ = ATP̃′ = CP̃′ (3.7)

The 3 × 4 matrix C is called camera calibration matrix. We can rewrite Eq. 3.7

in an alternative way as:

ũ = K[R|t]P̃′ (3.8)

where [R|t] is a 3× 4 matrix composed by the rotation matrix R and the trans-

lation vector t and K is a 3× 3 matrix holding the intrinsic parameters:

K =


αu 0 uc

0 αv vc

0 0 1

 (3.9)

In many cases, like in the wide-angles camera applications, the lens distortion

should be taken into account in the perspective projection: distortion is modeled

by nonlinear intrinsic parameters.

The process of finding the intrinsic parameters is called camera calibration: Zhang

[108] proposed a new powerfull technique that allows to easily calibrate a camera

observing a planar pattern (e.g., a chessboard) shown at a few (at least two)

different orientations. Zhang’s method is able to estimate radial lens distortion

parameters, as well.

3.2 SLAM with a single camera

The first real-time full Visual SLAM approach using a single camera was presented

by Davison in a seminal work in 2003 [24]. This approach is able to estimate the
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3.2 SLAM WITH A SINGLE CAMERA

complete camera trajectory and the full 3D map of all the observed features.

The built map is feature-based, where features are 3D points associated with

salient image patches extracted and tracked between images (Fig. 3.4). Davison’s

Figure 3.4: SLAM with a single camera: on the left, the tracked pixel patches;

on the right, the estimation of the camera position together with the locations of

the 3D features [courtesy of Paul Smith].

approach assumes a Gaussian uncertainty for the whole state vector, therefore it

maintains the mean and the full camera and feature covariance. The estimation

of the posterior density function over the state is based on a traditional Extended

Kalman Filter SLAM approach (see Sec. 2.1).

If we define the fixed world coordinate frame W , and a coordinate frame R fixed

with respect to the camera, the camera state xc is given by:

xc =


rW

qWR

vW

ωW

 (3.10)

where rW = [x y z]T is the camera 3D position, qWR = [q0 qx qy qz]
T its orien-

tation, while vW and ωW are the the linear and angular velocity of the camera,

respectively.

Each feature yi = [xi yi zi]
T is a 3D position vector.

The posterior density function over the camera and feature state is modelled as
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a single multi-variate Gaussian:

x =


xc

y1

...

yN

 , Σ =


Σxcxc Σxcy1 . . . ΣxcyN

Σy1xc Σy1y1 . . . Σy1yN

...
...

. . .
...

ΣyNxc ΣyNy1 . . . ΣyNyN

 (3.11)

As we seen in Sec. 2.1, EKF SLAM is divided in two phases: prediction and

correction. During the prediction step the state is updated according to the

motion model, that depends only on the previous camera pose and on the actual

movement, by means of the state transition function plus an additive Gaussian

noise (Eq. 2.6). Davison’s original approach uses the following state transition

function:

x̂newc =


r̂W,new

q̂WR,new

v̂W,new

ω̂W,new

 = fc (n,x) + ξ =


rW + (vW + VW )∆t

qWR × q((ωW + ΩW )∆t)

vW + VW

ωW + ΩW

 (3.12)

where ξ is a zero mean Gaussian noise and, assuming in each time step an un-

known Gaussian zero mean acceleration aW and angular acceleration αW , VW

and ΩW are defined as:

n =

[
VW

ΩW

]
=

[
aW∆t

αW∆t

]
(3.13)

During the prediction state, remembering Eq. 2.12, the covariance Σxcxc of the

camera state is updated by:

Σnew
xcxc

= (∇xcfc)Σxcxc(∇xcfc)
T + (∇nfc)Pn(∇nfc)

T (3.14)

where Pn is the covariance of the noise vector n and ∇xcfc and ∇nfc are the

jacobians of the function fc.

During the correction step, for every observation (i.e., a pixel location) zi =

[ui vi]
T associated with the 3D landmark yi = [xi yi zi]

T , it is computed an

expected observation ẑi:

ẑi = h (xc,yi) (3.15)
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3.2 SLAM WITH A SINGLE CAMERA

The function h exploits the the standard pinhole camera model (Sec. 3.1) to

project the 3D point yi in an image pixel ẑi. The association between 2D vi-

sual features zi detected into the image and a 3D landmark yi is performed as

follows: the visual features are detected using the Harris corner detector ([43],

see Sec. 3.5) as applied by Shi and Tomasi [93] to pixel patches of size 15 × 15.

The information about the uncertainty presented in the actual map is projected

into the image: the pixel patches associated to the projected landmark should lie

with some desired probability inside the ellipse representing the uncertainty of

this landmark . Matching within this region is achieved by an exhaustive corre-

lation search.

The complete correction step is therefore given by:

S = (∇xh)Σ(∇xh)T + R (3.16)

K = Σ∇xh
TS−1 (3.17)

xnew = x + K (zi − h (xc,yi)) (3.18)

Σnew = (I −K∇xh) Σ (3.19)

where R is the noise covariance of the measurements and ∇xh is the jacobian of

the function h.

The principal issue in this approach is the initialization of a new 3D elements

in the map; in fact, from a single frame, we cannot estimate the depth of a 3D

feature. In his original work, Davison proposed to performed a delayed initial-

ization in which the uncertainty in the feature’s depth is explicitly represented

by means of a particle filter. The depth estimate is refined over several frames

outside the actual state vector. When the standard deviation of the depth drops

below a threshold, the new 3D feature is included in the EKF state vector.

Recently Civera et al. [20] proposed an undelayed initialization strategy, based

on a direct parametrization of the inverse depth of features relative to the camera

locations from which they were first viewed, that significantly improved the Davi-

son’s approach. Despite that, the described single camera SLAM approach suffers

from some drawbacks. It tracks only a small number of points and assumes to

encounter the same points again and again in the future: this is not the case for
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example of a humanoid robot’s forward walk, where many new detected features

remain in the camera field-of-view only for a short time.

Moreover, 3D feature-based maps are usually sparse and useless for real naviga-

tion tasks.

3.3 Image-Based Topological SLAM

As introduced in Sec. 2.4, the Topological SLAM aims to segment the environ-

ment into distinctive places that form the nodes of a graph (the topological map)

given the robot’s sensor measurements.

Topological SLAM approaches are usually appearance-based, that is the sensor

readings are used to infer if the node to which the current measurement pertains

represents a new or a previously visited location. In most of the vision-based

Topological SLAM approaches the appearance measurement is represented by a

similarity distance between images, i.e. very similar images are considered as

grabbed from the same location and thus as corresponding to the same node [3].

In these cases, omnidirectional vision is often the better choice since an omnidi-

rectional camera always observes a 360-degree field-of-view.

Image similarity between omnidirectional images is exploited for example in [89]:

Ranganathan et al. presented here the concept of Probabilistic Topological Maps

(PTM), a sample-based representation that approximates the posterior distribu-

tion over topologies given available sensor measurements . The PTM is obtained

by performing Bayesian inference over the space of all possible topologies and

provides a systematic solution to the correspondence problem in the domain of

topological mapping. The algorithm is completely data-driven in the sense that

it does not require a control algorithm for robot exploration that aids in map-

ping. The algorithm also does not compute localization information for the robot

during the map inference. They do not provide landmark detection algorithms or

other techniques for detecting signicant places, but assume that these are avail-

able. A significant place is labeled with the Fourier signature obtained from an

omnidirectional image grabbed at that place. The Fourier signatures are calcu-

lated using a modication of the procedure given in [64]. Firstly, a single column

image obtained by averaging the columns of the input image is calculated and
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subsequently, the one-dimensional Fourier transform of this image is performed.

It is to be noted that Fourier signatures do not comprise a robust source of mea-

surements, in the sense that images from distinct physical locations often yield

similar Fourier signatures. However, they have the advantage of being simple to

compute and model.

In [3] Angeli et al. proposed an appearance-based topological SLAM approach

that relies on the visual bag of words paradigm [34] to represent the images, and

on a discrete Bayes filter to compute the probability of loop-closure (i.e., when a

robot returns to reobserve landmarks after a large path [29]). For every incoming

image, a loop-closures among the nodes of the topological map is attempted. If

the loop-closure fails, a new node is added to the map. This approach uses a sin-

gle monocular wide-angle camera, and it allows to build in real-time consistent

topological maps of indoor environment also under strong perceptual aliasing.

3.4 Visual Odometry

Odometry is the process of estimating the ego-motion a of a mobile robot. In

robotics, odometry plays an essential role: it is a precondition in most robot

localization and SLAM approaches. Odometry is simple and reliable to obtain

with wheeled robots, where it is given by the wheel encoders. However, sometimes

odometry is not available: this is the case for flying robots and also for humanoid

robots, where the complex kinematics combined with the unpredictable body

movements prohibit a reliable reconstruction of the motion from the servo-motor

encoders. In such cases, odometry has to be estimated in other ways. In the

last few years, several researchers have proposed ”visual odometry” systems, in

which the ego-motion of the robot can be estimated using on-board cameras

[61, 78, 22, 91]. In almost all visual odometry systems, one can identify the

following steps:

1. point features are detected;

2. these features are tracked along the image sequence;

3. the odometry is recovered from the apparent motion in the image plane of

the tracked features.
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Points (1) and (2) will be discussed in Sec. 3.5, in this section we focus on point

(3). We present a brief introduction on how to recover the rigid-body transfor-

mation (rotation and translation) that relates two subsequent camera positions

under an epipolar geometry point of view.

3.4.1 Relative pose estimation based on epipolar geome-

try

Epipolar geometry describes the relations between 3D points and their projections

into the 2D image planes of two cameras (or one camera in two different positions)

that view a scene from two distinct point-of-view. In the epipolar geometry,

cameras are modeled with the pinhole cameras approximation (see Sec. 3.1).

Suppose we have two cameras, looking at the same 3D scene point X (Fig. 3.5).

Figure 3.5: Two cameras observing the same scene point X. OL and OR are

the focal points of the cameras (i.e., the origin of theirs standard coordinate

system, see Sec. 3.1.). Here the image plane is placed in front of the focal point

at distance f : this is an alternative and equivalent way to represent the pinhole

camera (Fig. 3.2).

xL and xR are the perspective projection of the scene point X into the two image

planes, eL and eR are the epipoles while the red line {eR,xR} is an epipolar line.

If we known the rotation matrix RLR and the displacement tLR that correlate
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the two camera positions, we can define the epipole (or epipolar point) eL as the

projection of the camera center (i.e., its focal point) of the right camera OR in the

image plane of the left camera. We can define the epipole eR as the projection of

the camera center of the left camera OL in the image plane of the right camera,

as well. Obviously, both epipoles eL and eR and both focal points OL and OR

lie in the same 3D line, the distance between OL and OR is called baseline.

A point xL in the image plane of the left camera can be the projection of the

scene point X, but also the projection of all point X1,X2,X3, . . . that lie in the

line {OLX} (Fig. 3.5). All of these points will be projected in the image plane

of the right camera in points (e.g., xR in the case of the scene point X) that lie

in a line lR passing through the epipole eR: this line is called epipolar line. This

means that for each point observed in one image the same point must be observed

in the other image on a known epipolar line. This provides an epipolar constraint.

Mathematically, this fact can be described by means of the fundamental matrix

F [45].

Given the two camera matrix CL and CR of the left and right camera, respectively,

from Eq. 3.7 we can write:

x̃L = CLX̃ (3.20)

x̃R = CRX̃ (3.21)

where x̃L, x̃R and X̃ are the points xL, xR and X in homogeneous coordinates,

respectively.

Given the point x̃L, we determine the set of points in the 3D space that map to

this point. This set of points lie in a ray passing through the focal point ÕL (i.e.,

the frame origin in homogeneous coordinates for which CLÕL = 0) and the point

C+
L x̃L, where C+

L is the pseudo-inverse of CL, C+
L = CT

L(CLCT
L)−1, for which

CLC+
L = I. Point C+

L x̃L lies in the ray since CL(C+
L x̃L) = Ix̃L = x̃L. The ray is

the line formed by the join of these two points:

X̃(λ) = C+
L x̃L + λÕL (3.22)

parametrized by the scalar λ. Setting λ = 0 we obtain the point C+
L x̃L and setting

λ =∞ we obtain the camera center ÕL (remembering that ÕL is expressed in 3D

homogeneous coordinates). We can project these points in the image plane of the
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right camera, i.e. CRC+
L x̃L and CRÕL. The epipolar line is the line joining these

two projected points (the symbol × defines here the cross product operator):

lR = CRÕL ×CRC+
L x̃L (3.23)

the point CRÕL is the projection of the left camera center in the image plane

of the right camera, i.e. it is the epipole ẽR in homogeneous coordinates. Let

v = [vx xy vz]
T , we define the skew symmetric matrix [v]×:

[v]× =


0 −vz vy

vz 0 −vx
−vy vx 0

 (3.24)

so that [v]×x = v × x for all x. Then we can write Eq. 3.23 as:

lR = [ẽR]×CRC+
L x̃L (3.25)

The projections x̃R in the right camera of all the 3D point that lie in the ray

defined by Eq. 3.22 belong to the epipolar line lR, i.e. x̃TRlR = 0. From Eq. 3.25

we obtain:

x̃TR[ẽR]×CRC+
L x̃L = 0 (3.26)

where:

F = [ẽR]×CRC+
L (3.27)

is the fundamental matrix that encodes the epipolar constraint:

x̃TRFx̃L (3.28)

Since [ẽR]× has rank 2 and CRC+
L has rank 3, F is a matrix of rank 2: it is shown

that any rank-2 matrix is a possible fundamental matrix [45]. Moreover, F is

determined uniquely from the camera matrices, up to scale.

If we set the left camera’s standard coordinate system as the world frame, from

Eq. 3.8 we can write:

x̃L = CLX̃ = KL[I|0]X̃ (3.29)

x̃R = CRX̃ = KR[RLR|tLR]X̃ (3.30)
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where I is the identity matrix. In this case Eq. 3.27 can be expressed [45] in the

simplified form:

F = K−TL [tRL]×RRLK−1
R (3.31)

where KL and KR are the matrices holding the intrinsic parameters of the two

cameras. If we known these matrices, we can express the points x̃L and x̃R in

normalized coordinates :

x̃′L = K−1
L x̃L

x̃′R = K−1
R x̃R (3.32)

Plugging Eq. 3.32 in Eq. 3.31 we obtain:

x̃′
T

R[tRL]×RRLx̃′L = 0 (3.33)

where the matrix E:

E = [tRL]×RRL (3.34)

encodes the epipolar constraint in a simplified form:

x̃′
T

REx̃′L = 0 (3.35)

The matrix E is called essential matrix. The matrix R and the displacement t

that encode the rigid transformation between two camera frames (i.e., the relative

movement in the case of a single moving camera) can be recovered from the

essential matrix on the basis of the following theorem [45]:

Theorem 3.1 Let the singular value decomposition of the essential matrix be

E ∼ Udiag(1, 1, 0)VT , where U and V are chosen such that det(U) > 0 and

det(V) > 0. Then t ∼ tu ≡ [u13 u23 u33] and R is equal to Ra ≡ UDVT or

Rb ≡ UDTVT .

In order to determine which choice corresponds to the true configuration, the

cheirality constraint is imposed, i.e. the constraint that the scene points should

be in front of the camera: one point is sufficient to resolve the ambiguity.
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Eight-Point algorithm

In a calibrated setting (i.e. we known the intrinsic parameters of the camera), the

knownledge of the essential matrix or the essential matrix allows to estimate the

relative movement between two camera poses. The problem is to find the possible

solutions for these matrices given a number of corresponding points (projections

of the same 3D points) in two images of the same scene grabbed from different

point-of-views.

The best-known method is represented by the Eight-Point algorithm proposed by

Longuet-Higgins [57] and improved by Hartley [44]. The Eight-Point algorithm

allows to estimate the fundamental matrix F given eight corresponding points in

two images.

Given a pair of matching points y and y′ and the corresponding fundamental

matrix F :

y =


y1

y2

1

 and y′ =


y′1

y′2

1

 with F =


F11 F12 F13

F21 F22 F23

F31 F32 F33

 (3.36)

from Eq. 3.28 we have:

y′TFy = 0 (3.37)

We can rewrite this constraint as:

y′1y1F11+y
′
1y2F12+y

′
1F13+y

′
2y1F21+y

′
2y2F22+y

′
2F23+y1F31+y2F32+F33 = 0 (3.38)

This equation can be represented by a matrix multiplication af = 0 where:

a = [y′1y1 y
′
1y2 y

′
1 y
′
2y1 y

′
2y2 y

′
2 y1 y2 1] (3.39)

f = [F11 F12 F13 F21 F22 F23 F31 F32 F33]
T (3.40)

Given a set of N point matches, we obtain a set of linear equations of the form:

Af = 0 with A =


a1

...

aN

 (3.41)

The fundamental matrix F is defined only up to an scale: we can make the ad-

ditional constraint ‖ f ‖= fT f = 1: this also avoid the trivial solution f = 0.
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Having at least eight point matches, it is possible to find a solution to the system

3.41.

With more than eight matches, we have an overspecified system. In this case,

the rank of A must be at most 8: with rank equals to 9, the system has a unique

trivial solution f = 0. Unfortunately this is the case of estimating F using real

data: due to inaccuracies in the measurement, the matrix A will have rank 9,

therefore we will not be able to find a non-zero solution to the system 3.41. In-

stead, we look for a least-squares solution of the system, i.e. we find a vector f

that minimizes the ‖ Af ‖ taking into account the additional constraint ‖ f ‖= 1.

The solution to this problem is the unit eigenvector of ATA corresponding to the

smallest eigenvalue of A (see [45]). This can be found, for example, using the

Singular Value Decomposition.

Hartley [44] proposed to precede the algorithm with a simple normalization

(translation and scaling) of the coordinates of the matched points: this results in

a notably improvement in the stability of the Eight-Point algorithm.

Five-Point algorithm

Recently Nistér proposed [81] a state-of-the-art algorithm to solve the Five-Point

relative pose problem, that allows a robust estimation of the camera egomotion

being at the same time computationally very efficient. We report here an overview

of the Nistér’s implementation presented in [79].

The Five-Point problem aims to estimate the essential matrix E given five cor-

responding points in two images. Given a pair of matching points m and m′ (in

this case expressed in normalized coordinates) and the corresponding essential

matrix E, from Eq. 3.35 we known that:

m′TEm = 0 (3.42)

Since an essential matrix E is a representation of the motion (translation and

rotation, up to a scale) of the camera (see 3.34), it has only five degrees of

freedom. Consequently, to be a valid essential matrix, it must further satisfy

more constraints, which are characterized by the following theorem [45] :
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Theorem 3.2 A real nonzero 3× 3 matrix E is an essential matrix if and only

if satisfies the equation:

EETE− 1

2
trace(EET )E = 0 (3.43)

Given five point matches, we build a linear system in a similar way as in the

Eight-Point algorithm derivation:

Qe = 0 (3.44)

where Q is the 5× 9 matrix built from the five point matches (similar to the A

in the Eight-Point algorithm derivation) and e is represented by:

e = [E11 E12 E13 E21 E22 E23 E31 E32 E33]
T (3.45)

From the system 3.44 it is possible to recover the following nullspace:

Ē = xE0 + yE1 + zE2 + wE3 (3.46)

where Ei, i = 0, 1, 2, 3 are the null-space bases: the essential matrix E must

be of the the form reported in Eq. 3.46. The null-space bases Ei, i = 0, 1, 2, 3

are extracted using a QR-factorization: this method is much more efficient than

the conventional Singular value decomposition normally used for the nullspace

extraction. Using the fact that E is homogeneous, without loss of generality, we

set w = 1: given the null-space bases, the essential matrix E is hence defined by

some (x, y, z).

By inserting Eq. 3.46 into the the nine equations of Eq. 3.43, we obtain a 9× 20

coefficient matrix corresponding to the 20-dimensional vector:

[x3 y3 x2y xy2 x2z x2 y2z y2 xyz xy xz2 xz x yz2 yz y z3 z2 z 1] (3.47)

This matrix is hence reduced to an upper triangle form using Gaussian-Jordan

elimination [83].

Looking for some relationships between the rows of the matrix, it is possible to

define five equations in (x, y, z): these are arranged into two 4×4 matrices. Their

determinant polynomials are arranged in a 10-th degree polynomial (both these

determinant must vanish) from which 10 roots of z are obtained. For each root z
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the variables x and y can be found using the equation system defined by the first

4× 4 matrix.

The Five-Point algorithm find up to 10 solutions of possible essential matrices

E: the right solution is found using an additional point or using a RANSAC -like

hypothesis-and-test framework (see next section).

The Five-Point algorithm somehow outperforms the Eight-Point algorithm: it’s

more efficient and obtains better results in the estimation of sideways motion.

Moreover, the Five-Point method is essentially unaffected by the planar degener-

acy.

The RANSAC algorithm

Normally for each coupe of consecutive images, the amount of corresponding

points (i.e., point matches) is much larger than the minimal case required by

the estimation algorithms introduced above, that is obviously five matches for

the Five-point algorithm and eight matches for the Eight-Point algorithm. In-

deed the standard procedures for the estimation of the camera motion include an

hypothesis-and-test framework that exploits all the available point matches in or-

der to improve the estimation accuracy and to detect completely wrong matches

(usually referred as outliers).

The RANdom SAmple Consensus (RANSAC) algorithm [35] is the best-known

method to estimate some parameters (e.g., the fundamental matrix or the essen-

tial matrix) from a set of observed data which contains outliers. The idea is very

simple: a minimal set of matches are selected randomly (e.g., five in the case of

the Five-point algorithm). This points define some hypothetical solutions (e.g.,

a set of essential matrix extracted by the Five-point algorithm). The support

for this solution is measured by the number of points that lie within a distance

threshold. In the case of the essential matrix, given two corresponding points,

this distance could be the euclidean distance between the second point and epipo-

lar line defined by the essential matrix applied to the first point. The random

selection is repeated a number of times, the best model is taken as solution of the

estimation problem.

RANSAC original method has been improved in a great number of contribu-
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tions. Torr and Zisserman proposed the MLESAC estimator [102]: MLESAC

uses the same sampling strategy as RANSAC where minimal sets of correspon-

dences are used to derive hypothesized solutions. The remaining correspondences

are used to evaluate the quality of each hypothesis. Unlike RANSAC, that count

the number of inliers, MLESAC evaluates the likelihood of the hypothesis by rep-

resenting the error distribution as a mixture model. Recently Nistér [80] proposed

random a sample consensus framework well-suited for the ego-motion estimation

that performs a preemptive scoring of the motion hypotheses.

3.5 Local Invariant Features

Local invariant features are a relatively new paradigm in computer vision. In

the last years, they are widely used in recognition of specific objects or specific

object classes, image mosaicking, 3D reconstruction and in mobile robots visual

navigation, as well.

Local invariant features detection and description is not just a method to select

interesting locations in the image, but rather a new image representation that

allows to describe objects or image regions.

A feature in computer vision can be defined as a meaningful, detectable parts of

the image.

The best-known and widely used feature detector and descriptor scheme was

introduced by Lowe [58] and it is called SIFT (Scale-invariant feature transform).

SIFT efficiently detects interest points by using a Difference-of-Gaussian (DoG)

operator, at each extracted point is associated a 128-dimensional vector. As

shown in [68], SIFT features outperformed previous features detectors-descriptor

schemes (e.g. shape context [9], steerable filters [37], differential invariants [50]).

Ke et al. [49] proposed a variation of the SIFT features, called PCA-SIFT: ap-

plying PCA in the gradient images, the descriptor is reduced to a 36-dimensional

vector, and matching step is faster. PCA-SIFT are robust to focus-blur noise, but

are less discriminative compared with SIFT [68]. Mikolajczyk et al. proposed a

novel approach for detecting interest points invariant to scale and affine transfor-

mation [67]. Interest points are chosen by detecting the local maxima of the Harris
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function of the image over the location, and the local maxima of the Laplacian-

of-Gaussian (LoG) over the scale. The affine shape of a point neighborhood is

then estimated based on second moment matrix. In [68] is presented a novel

descriptor called GLOH (Gradient location-orientation histogram), an extension

of the SIFT descriptor designed to increase its robustness and distinctiveness:

it also uses PCA to reduce the dimension of the descriptor. Recently, Bay et

al. [5] presented a novel and computationally efficient invariant feature detector-

descriptor scheme called SURF (Speeded Up Robust Features). Repeatability

and distinctiveness performance are similar to previous proposed schemes, but

SURF features can be computed much faster.

An ideal feature should be [103]:

Invariant to same image transformation or distortion

Robust to noise, blur, discretization, compression

Distinctive : individual features can be matched to a large database of objects

Accurate : precise localization

Efficient : close to real-time performance

In every local invariant features extraction method, we can distinguish two se-

quential processes: the detection of the features, and the description.

3.5.1 Detecting local features

Detecting features means selecting a suitable set of points or regions (i.e., the

features) that should be robust, stable and well-defined. This process is called

features detection or interest points detection, and in computer vision it is a well

known task and several methods have been presented for corners, blobs and edges

detection.

The classical methodology used in most systems is to initially convolve the image

with some kernel and/or apply to it some mathematical operator that responses

strongly for some kind of features. Then the interest points are extracted out
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from the filtered images through, for example, a non-maxima suppression process.

Here’s are reported the most common features detector. In all of these operator,

the input image f(x, y) is initially convolved by a circular symmetric Gaussian

kernel g(x, y, σ) with zero-mean and standard deviation σ:

L(x, y, σ) = g(x, y, σ) ∗ f(x, y)

and hence the operators are applied directly to the convolved image L(x, y, σ)

Laplacian of Gaussian and Difference of Gaussians

Laplacian of the Gaussian (LoG) is one of the most common blob detectors.

Laplacian represents the second derivative of the Gaussian smoothed image L:

∇2L = Lxx + Lyy

where Lxx and Lyy are the second derivatives along x and y. Applying the Lapla-

cian of Gaussian usually results in strong responses for blobs of extent σ. Interest

points are isolated taking the local maxima of ∇2L, greater than a certain thresh-

old.

The Difference of Gaussians [58] is an approximation of the Laplacian of Gaussian

operator, more computationally efficient (Figure 3.6):

∇2L ≈ 1

2∆t
(L(x, y, σ + ∆t)− L(x, y, σ −∆t))

Hessian detector

The Hessian detector [6] is defined as:

det(H(x, y, σ)) = det

[
Lxx(x, y, σ) Lxy(x, y, σ)

Lxy(x, y, σ) Lyy(x, y, σ)

]
where Lxx, Lyy, Lxy are the second derivatives of the convolved images L(x, y, σ).

The resulting kernels used by the Hessian detector are shown in Figure 3.7.

Interest points are isolated taking the local maxima of det(H(x, y, σ)), greater

than a certain threshold. Hessian detector responses mainly to corners and highly

textured points (Figure 3.8).
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Figure 3.6: The interest point selected by the Difference of Gaussians detector

[courtesy of Tinne Tuytelaars].

Figure 3.7: Gaussian derivatives up to second order (σ = 3.6).

Harris detector

Given the 2× 2 matrix M :

M(x, y, σ) =

[
L2
x(x, y, σ) Lx(x, y, σ)Ly(x, y, σ)

Lx(x, y, σ)Ly(x, y, σ) L2
y(x, y, σ)

]

where Lx and Ly are the first derivatives of the convolved images L(x, y, σ), we

can compute a measure of corner response called Harris detector [43]:

R = det(M(x, y, σ))− k(trace(M(x, y, σ)))2
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Figure 3.8: The interest point selected by the Hessian detector [courtesy of Tinne

Tuytelaars].

where k is an empirical constant, k = 0.04 − 0.06. R is large for corners and

small for flat regions: corners in the images are isolated taking the points of local

maxima of R, greater than a certain threshold (Figure 3.9).

Automatic scale selection

The scale-space theory of Lindeberg [55] aims to represent the input image at dif-

ferent scales and it is at the base of the latest scale-invariant feature detectors and

descriptors schemes such as SIFT [58] and SURF [5]. Scale-space representation

is obtained convolving the original images f(x, y) with a set of Gaussian filters

with zero-mean g(x, y, σ) and with increasing standard deviations σ (normally

referred to as the scale of the smoothed image):

l(x, y, σ) = g(x, y, σ) ∗ f(x, y)

In order to extract scale-space invariant features, it is applied the detector (e.g.,

the Laplacian of Gaussian) for each “scaled” image. Interest points are then
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Figure 3.9: The interest point selected by the Harris detector [courtesy of Tinne

Tuytelaars].

detected searching for local maxima over scale and location space in a 3× 3× 3

neighborhood of each point: only local maxima than a threshold are selected.

3.5.2 Feature descriptors

An ideal feature descriptors should be repeatable, distinctive, compact and ef-

ficient [103]. A good example of feature descriptor is represented by the SIFT

descriptor [58]. SIFT descriptor is invariant to image scale and rotation, and is

quite robust in matching across affine transformations and changing of viewpoint.

We report here an overview of SIFT descriptor.

Orientation assignment

SIFT assigns a distinctive orientation for each detected interest point. SIFT

begins computing the gradients orientations and magnitudes of 16 × 16 sample

points regularly spaced into a square window centered around the interest point.
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Gradients orientations and magnitudes of sample points are computed using first

Gaussian derivatives in the smoothed image with scale (see Sec. 3.5.1) closed to

the characteristic scale of the interest point:

m(x, y, σ) =
√
Lx(x, y, σ)2 + Ly(x, y, σ)2

θ(x, y, σ) = tan−1

(
Ly(x, y, σ)

Lx(x, y, σ)

)
(3.48)

The magnitudes are Gaussian-weighted with a circular bivariate Gaussian cen-

tered in the interest point. Magnitudes are then accumulated into an orientation

histogram representing the discretized orientations of the gradients. After an

histogram-smoothing step, the bins with values greater than a threshold are se-

lected: multiple interest points are created with the initial location and scale but

with these different orientations (interpolated with histogram neighborhood).

Descriptor assignment

After the orientation assignment, SIFT computes an 128-entry descriptor for each

selected interest point.

It is selected a square window centered around the interest point and oriented

according with its orientation. This region is regularly divided into 4× 4 smaller

sub-regions, each containing 4× 4 regularly spaced sample points. The gradients

orientations and magnitudes of the sample points are computed as in Eq. 3.48.

Magnitudes are then Gaussian-weighted with a circular bivariate Gaussian in

order to increase stability of the descriptor towards small affine transformation

and localization errors. Each sample point’s gradient is rotated according to the

interest point orientation, then its magnitude is accumulated in a orientation

histogram with 8 bins (i.e., eight discretized orientations) characteristic of the

sub-region. The 4 × 4 8-bins histograms form the 128-entry descriptor of the

selected interest point. The descriptor is finally normalized to an unit vector in

order to obtain invariance toward contrast variations.

3.5.3 Features matching

After the computation of the descriptors, it is possible to match features between

images. Matching is the process to find a one-to-one association between visual
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features detected in a couple of images: the matched features should represent

the same scene point seen from different views.

The simplest matching method is called threshold-based : two features are

matched if the distance between their descriptors is below a threshold. In this

case, a descriptor could have more than one match.

In nearest neighbor-based matching (NN), two features A and B are matched if

the descriptor DA is the nearest neighbor of the descriptor DB and if this distance

is below a threshold: in this case, a descriptor has at least one match.

Nearest neighbor distance ratio matching strategy (NNDR) is similar to NN,

except that the thresholding is applied to the distance ratio between the first

and the second nearest neighbor. This means that two features are matched if
‖DA−DB‖
‖DA−DC‖

< t, where DB is the first nearest neighbor and DC is the second nearest

neighbor.

Usually the precision in matching is higher for the nearest neighbor-based

strategies, this is because the nearest neighbor is mostly correct, although the

distance between similar descriptors varies significantly due to image transforma-

tions [68].

Computational efficiency in features matching is often a critical issue: match-

ing between hundred descriptors each one composed, for example, by more than

one hundred bins is a very computationally expensive task. To cope such a prob-

lem, Beis et al. [8] proposed an approximate and very efficient algorithm for

the nearest neighbor search, called Best-Bin-First (BBF). The BBF algorithm is

based on the kd-tree algorithm, that organize k-dimensional points in a tree in

order to speed-up the nearest neighbor search: the tree is explored searching for

the node that is closer to the input point. The BBF algorithm only search m

candidates, in the order of their closest distance from the query location, and

returns the nearest-neighbor for a subset of queries.
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Chapter 4

Image Similarity for Image-Based

Topological SLAM

4.1 Introduction

This chapter describes a similarity measure for images which can be used in image-

based topological localization and topological SLAM problems by autonomous

robots with low computational resources. Instead of storing the images in the

robot memory, we propose a compact signature to be extracted from the images.

The signature is based on the calculation of the 2D Haar Wavelet Transform of

the gray-level image and weights 170 bytes only. We called this signature DWT-

signature. We exploit the frequency and space localization property of the wavelet

transform to match the images grabbed by the perspective camera mounted on

board of the robot and the reference panoramic images built using an automatic

image stitching procedure. The proposed signature allows, at the same time,

memory saving and fast and efficient similarity calculation. For the topological

SLAM problem we also present a simple implementation of a loop-closure detec-

tion based on the proposed signature.

We report experiments showing the effectiveness of the proposed image similarity

measure using two kinds of small robots: an AIBO ERS-7 robot of the RoboCup

Araibo Team of the University of Tokyo and a Kondo KHR-1HV humanoid robot

of the IAS-Lab of the University of Padua.
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The image-based localization approaches are composed of two stages: the

setup stage and the running stage. In the setup stage the robot moves to dif-

ferent points in the environment (called reference locations) and collect a large

set of images (called reference images) to be stored, with their positions, in the

robot’s memory and to be used as reference to calculate the correct position at

the running stage. In the running stage the robot is moving autonomously in

the environment. The robot can calculate its position by grabbing a picture and

comparing it with the reference images stored in its memory, to find the most

similar reference image. This will give a topological localization of the robot,

because the robot will be more close to the position of this reference image than

to any other reference position. The image comparison is done using an image

similarity measure, which quantifies the degree of similarity between two images.

In topological SLAM, on the other hand, a map is not provided. The ref-

erence images are collected at the running stage. While a robot moves in the

environment, if the current image doesn’t match any of the previously collected

reference image, a new node (i.e., a new location) is added to the map and the

current image is saved as a new reference image (see Sec. 3.3).

Three are the main problems to be solved by any techniques of image-based

localization or topological SLAM one can develop: (i) how to reduce the num-

ber of images necessary to fully describe the environment in which the robot is

working; (ii) how to efficiently store a large data set of reference images without

filling-up the robot’s memory (it is common to have several hundred reference

images for typical environments); (iii) how to calculate in a fast and efficient way

the similarity of the input image against all the reference images in the data set.

4.2 Related Works and Motivations

Several works have been published that use the image-based localization ap-

proach (among the others [73, 28]) or the image-based topological SLAM ap-

proach (among the others [89, 3]). Each work tried to solve these problems in a

different way. One of the most effective approaches to reduce the number of im-
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ages needed to describe the environment is to mount an omnidirectional camera

on the robot. In fact, an omnidirectional camera can acquire a complete view

of the surroundings in one shot: a single location is hence completely described

by a single panoramic image, regardless of the current robot orientation. The

most popular technique to reduce the memory consumption of the reference data

set, is to extract a set of eigenimages from the set of reference images and to

project the images into eigenspaces. The drawback of such systems is that they

need to further preprocess the panoramic cylinder images they created from the

omnidirectional image in order to obtain the rotational invariance, as in [1], in

[47] and in [39] or to constrain the heading of the sensor as in [51]. An approach

that exploit the natural rotational invariance of the omnidirectional images is to

create a signature for the image based on the color histograms of vertical sub-

windows of the panoramic image, as in [41] or in [38]. However, this approach

based on colors might not be very effective in a general environment with poor

color information. An alternative approach to preserve the rotational invariance

of omnidirectional image is the one presented in [64], which exploit the properties

of the Fourier signature of the omnidirectional images.

Visual invariant features like SIFT [58] are widely exploited in topological local-

ization and mapping tasks. In [13] is proposed a topological mapping strategy

where SIFT features are matched between omnidirectional images and the num-

ber of correspondences that agree with the epipolar geometry and planar floor

constraint are used as a similarity measure of the two images.

Despite the effectiveness of the approaches based on the omnidirectional cam-

eras, it is not always possible to mount an omnidirectional camera on the robot.

A solution can be to constrain the movements of the robot in order to keep the

camera pointing at the same location [18], but this greatly limits the motion of

the robot. An alternative solution can be to extract from the perspective images

some features that reduce the amount of required memory while retaining a rich

description of the image. A good example of this is reported in [106], where 936

images were stored in less than 4MB by extracting features invariant to transla-

tion and to some amount of scaling. However, to extract such a large amount of

images is time consuming, even if an automatic procedure is available.
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Recently, several methods of global localization and loop-closure detection

based on bag of words methods has been presented. Bag of words methods

[96, 77] aims to represents images with a set of clusterized visual descriptors (e.g.

SIFT features) taken from a visual vocabulary generated offline. In [76] bag of

words methods are exploited to detect loop-closure using an appearance based

retrieval system within a 3D metrical SLAM framework. In [33] is presented a

visual localization and map-learning system based on bag of visual words meth-

ods able to recognize the robot location after a short training. This approach is

similar to [3], in which visual bag of words paradigm is used to build appearance-

based topological maps using a discrete Bayes filter to estimate the probability

of loop-closure.

(a) (b)

Figure 4.1: The robots used in the experiments: (a) The AIBO ERS-7; (b) The

Kondo KHR-2HV.

Even though topological navigation algorithms based on bag of words meth-

ods exhibit exciting results in global localization and loop-closure detection tasks,
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bag of words methods suffer from some drawbacks. The detection, description

and clusterization of the visual features still remain computationally expensive,

especially for robots equipped with low computational resources, as the platforms

used in our experiments (Fig. 4.1). Moreover, bag of words methods rely on scale-

space invariant features extracted from the images. Images grabbed in different

environments (e.g., different rooms) often exhibit distinctive set of features, but

images taken from different places inside the same room usually share a lot of

common visual features. In some way, bag of words methods provide a large scale

characterization of the environment, usefull to detect, for example, if an image

corresponds to a previously visited room, but not to a different location in the

same room.

The similarity measure we propose provides a robust characterization of each sin-

gle image grabbed by a perspective camera: images grabbed in nearby locations,

own similar signatures, also in presence of illumination changes. Unlike bag of

words methods, images taken from different location inside the same environ-

ment obtain considerable different signatures. In some way, our methods provide

a small scale characterization of the environment. Therefore, bag of words meth-

ods and our method can be combined in the same topological framework, the

formers to provided a high level estimation of the robot position (for example,

in which room the robot is), and the latter to provide a low level estimation (for

example, in which corner the robot is).

As said above, a single omnidirectional image can completely define a refer-

ence location. However, small 4-legged robots or small humanoid robots usu-

ally are not equipped with omnidirectional cameras. However, if the camera can

be panned by moving the neck of the robot, it is possible to create panoramic

(or quasi-panoramic) images by stitching the images together. We implemented

an automatic image collection and stitching procedure in order to automatically

built the reference panoramic images using the perspective cameras that equip

the AIBO and the Kondo humanoid robot used in the experiments.

We use these stitched panoramic images as reference images in topological lo-

calization and topological SLAM experiments. Incoming images grabbed by the

robot’s perspective camera are hence matched with the reference panoramic im-
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ages using a simple and efficient sliding window matching strategy that exploits

the frequency-space localization property of the 2D Haar Discrete Wavelet Trans-

form (e.g., the black sliding window in Fig. 4.2(c)). The assumption in this

matching strategy is the fact that the images are grabbed almost at the same

height and with horizontal axis parallel to the ground. Image grabbed in differ-

ent poses simply are not used in the process, they can be used for other purposes

(e.g. tracking, object recognition, etc.).

4.3 Reference Image Collection

As we said in the introduction, one of the crucial point in image-based local-

ization and in topological SLAM is how to store in a memory-saving way the

reference images and how to efficiently compare them with the input images.

This is particularly true when using a robot with limited storage memory and

limited computational resources, as the standard AIBO ERS-7 (Fig. 4.1(a)) or

the small and lightweight humanoid robots (Fig. 4.1(b)) used in our experiments.

AIBO ERS-7 is provided with a low-resolution CMOS perspective camera: with

the following procedure, the robot can autonomously build 180-degrees panorama

images of the environment stitching a sequence of perspective images. The en-

semble of two 180 panorama images taken in the same location with opposite

heading give the 360-degrees panoramic view. In the case of topological SLAM,

the procedure is performed if the current grabbed image doesn’t match any pre-

viously collected reference panoramic image.

The stitching procedures for the AIBO ERS-7 is the following:

1. the robot swings its color CMOS camera from right to left parallel to the

ground. The process takes 8 seconds: a sequence of 208×160 pixels images

are obtained, with a 40ms cycle;

2. 180 of the grabbed images, those obtained at angles α,−90 deg ≤ α <

90 deg, are chosen as sources of the final 180-degrees image (Fig. 4.2(a)).
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(a) (b)

(c)

Figure 4.2: In (a) and (b) the two 180-degrees panoramic images, both taken by

the AIBO ERS-7 at the same reference position, but with opposite heading. In

(c) their composed 360-degrees panoramic image, with depicted an horizontal-

sliding window that highlights a portion suitable for input images matching. In

the localization problem, the position of the window is related to the returned

bearing angle.

We take the two central columns of these images (i.e., strips of 2×160 pixels

) and we stitch them in a 180-degrees panorama image of 360× 160 pixels;

3. the robot turns on the spot of 180-degrees and the procedure is repeated

and a second 180-degrees view of the surrounding environment is taken

(Fig. 4.2(b));

4. the two 180-degrees panorama images, representing a new reference loca-

tion, are stitched together, regardless of the inevitable discontinuity at the

boundaries between the two images, Fig. 4.2(c);

For the Kondo KHR-1HV humanoid robot (Fig. 4.1(b)) the procedure is slightly

different. Our KHR-1HV is equipped with a low-cost pan-tilt camera that allow a

horizontal movement (pan) in the range of ± 60 degrees. The camera is mounted

on the robot’s neck, that is composed by a DC servo motor with vertical axis: this

allow a horizontal movement in the range of ± 100 degrees. Combining the two
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Figure 4.3: The 360-degrees panoramic image composed with the automatically

stitching procedure by the Kondo KHR-1HV.

movements and exploiting the complete angle of view of the camera (42 degree),

the robot can build a complete 360-degrees panoramic image without turning on

the spot (e.g, Fig.4.3).

4.4 DWT Image Signature

For an effective vision-based localization and mapping strategy, we need to store

the visual memory of the environment (i.e., the images corresponding to reference

locations) in a compact and effective way. Images should be represented using

specific signatures that characterize the content and some useful features of each

image in the database. Signatures must have very small size compared with

image sizes. The signature of a query image will be directly compared with the

signatures of all the reference images through a specific metric called similarity

measurement. A small similarity value between two images means that the two

images have been grabbed one close to the other. As presented in [64], one of

the possible approaches could be to use the Fourier signatures of the 360-degrees

reference images that results from the automatic stitching procedure. However,

this approach didn’t produce satisfying results. In fact the Fourier Transform

gives the spectral content of the whole signal, but it gives no explicit information

regarding where in space those spectral components appear (Fig. 4.4). This is

a good feature when it is used to match omnidirectional images, but not when

the input image has to match only a slice of the reference, as in Figure 4.7(a).

A better tool for non-stationary signal analysis (whose frequency response varies

in time, like in the images) is the Wavelet Transform [104]: it gives information
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Figure 4.4: The magnitude components of the Discrete Fourier transform (FFT)

and the Haar Wavelet coefficients magnitude (DWT) of a periodic signal (input

signal 1) and of a shifted version of this signal (input signal 2). Unlike the Fourier

transform that provides equal components for both signals, Wavelet transform

gives information about where frequency components appear.

about which frequency components exist and where these components appear.

Wavelet features are successfully exploited in the image coding algorithms; for

instance, the image compression standard JPEG-2000 [21] is based on Wavelet

Transform. As well, wavelet signatures are successfully used in image retrieval

algorithms, e.g. [46, 72], and texture retrieval algorithm, e.g. [27]. We exploited

these properties of the Wavelet Transform using the Discrete Wavelet Transform

(DWT) coefficients in order to represent images in a compact way, without losing

information about location of the image discontinuity, shapes and texture [72].
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4.4.1 The Discrete Wavelet Transform

Discrete Wavelet Transform are used to analyze signals at different scale, scale =

1/frequency. In single level discrete 1-D Wavelet Transform (Figure 4.5), the

signal is decomposed into a coarse approximation and a detail information (Eq.

4.4.1,4.4.1). Decomposition is performed convolving the input signal with a low-

pass filter and an high-pass filter. After filtering, according to the Nyquist’s rule,

it is possible to eliminate half of the samples. g() and h() low and high-pass filter

depend on chosen wavelet type.

Figure 4.5: Single-level discrete 1-D Wavelet Transform.

ylow(k) =
∑
n

x(n) ∗ g(2k − n) (4.1)

yhigh(k) =
∑
n

x(n) ∗ h(2k − n) (4.2)

The single-level discrete Wavelet Transform can be recursively repeated for fur-

ther decomposition of the previously ylow.

In the 2-D case, the 1-D Wavelet Transform is applied first on each row of the

image. The process results in two new matrices with half columns than the input

image. A further 1-D DWT is applied to the columns of the resulting matrices.

At the end of the one-level 2-D decomposition, m×m input matrix is decomposed

in 4 m/2×m/2 matrices.

In Figure 4.5 is shown a multilevel 2-D Wavelet decomposition: I is the input

image, Ci are the approximation coefficients, Hi,Vi and Di are respectively the

horizontal, vertical and diagonal detailed coefficients, i = 1, 2, . . . , n represent the

recursion level of wavelet decomposition.
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Figure 4.6: Multilevel 2-D Wavelet decomposition.

4.4.2 The proposed signature

We use as image signature a 2-D Haar Wavelet Transform of the grey-level values

of the image. Given the resolution of the images grabbed by our robots, we decide

to stop at 4-th level decomposition, and to characterize images by the detailed

coefficients (horizontal, vertical and diagonal) of this level. Thanks to the great

properties of frequency localization given by the DWT, it is possible to store

only a few of Discrete Wavelet Signatures (DWT-signatures) for the references

panoramic images: the subset of coefficients required for similarity measurement

can be extracted using a simple sliding-window strategy.

Wavelet type

Haar Wavelet is chosen as wavelet type because of it is very effective in detecting

the exact instants when a signal changes: image discontinuity are one of the

most important features chosen in image-based localization. Haar Wavelet can be

easily implemented and they are very fast to compute, for example using integral

images based techniques [23]. If one is interested in image reconstruction phase,

the Haar Wavelets are not the good choice, because they tend to produce a lot

of squared artifacts in the reconstructed image. However, we are not interested

in the reconstruction phase, we exploit the DWT coefficients to calculate the

similarity.

Other wavelet type was taken into account: Daubechies’ Wavelets [104] family,

commonly used in image coding, were tested. Surprisingly, growing the vanishing

moments of the wavelets (i.e. the Daubechies’ Wavelets order) performances

decade. Those Wavelets are better suitable than Haar to detect a rupture in high-

order derivative, but we are interested on detecting discontinuity and features
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directly in the signal.

Wavelet level

With the automatically stitching procedure described above we obtain 360-degrees

panoramic 720× 160 pixels images with the AIBO robot, and 1830× 160 pixels

with the Kondo robot. By applying recursively 2-D Haar Wavelet Transform, we

can reduce a lot the signature size. On the other hand, high level decomposition

discard some features in the images, like edge and texture, useful for environment

characterization. Given the resolution of our images, we choose decomposition

level 4 as a trade-off between a compactness representation and a reliability sim-

ilarity computation.

In order to cope with the image noise and with the inaccuracy in the height at

which the images are grabbed, before the computation of the 2-D Haar Wavelet

Transform, images are convolved with a 2-D symmetric Gaussian kernel with

standard deviation σ = 2wavelet level.

4.4.3 Quantization of detailed coefficients

In our experience, the approximation coefficients are not well suitable for image

similarity computation. Considering Haar Wavelet, those coefficients represent

only the mean of the intensity of the pixels composing the macro-squares (16×16

pixels in our case), therefore they are strongly sensitive to illumination changes.

On the other hand, detailed coefficients can be used to well detected and highlight

image discontinuities, shapes and patterns. Our image signature is based on those

coefficients computed at level 4: approximation coefficients are simply discarded.

As shown in [46], a coarse quantization of these coefficients doesn’t affect the

effectiveness of the Haar Wavelet coefficients in the image retrieval field. We

tested a similar approach for our scope obtaining very good experimental results.

We simply represent detailed coefficients di as −1 if di < 0 and as 1 if di ≥ 0. In

this way, it is possible to storage every detailed coefficient in only a single bit.
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4.4.4 The image similarity metric

Signatures are hence composed by the 3 w/2wavelet level × h/2wavelet level matrix

holding the horizontal, vertical and diagonal quantized detailed coefficients, where

w is the image width and h are is images height, in our case wavelet level is 4.

Given the signatures of two images with equal size, we compute our similarity

measure as:

Sim =
1

Diss
(4.3)

where:

Diss = wh ∗
∑
m

∑
n

|Hi(m,n)−Hr(m,n)|

+wv ∗
∑
m

∑
n

|Vi(m,n)− Vr(m,n)|

+wd ∗
∑
m

∑
n

|Di(m,n)−Dr(m,n)|

(4.4)

Where m,n represent rows and columns of the detailed coefficients matrices, Hi

and Hr, Vi and Vr, Di and Dr represent the horizontal, vertical and diagonal

detailed coefficients respectively the two images. wh, wv, wd are weights usefull to

move importance through the three different set of coefficients in the matching

process. Our default value are wh = 0.25, wv = 0.5, wd = 0.25, because of the

large amount of vertical characteristic in indoor environment. The memory saving

of our approach is considerable: a gray-scale omnidirectional reference image

720 × 160 = 115.2 Kbyte of memory can be represented by our DWT signature

with only 170 byte. Experimental results will show the reliability of our approach.

Sliding window wavelet

We match between perspective and panoramic images using a sliding window

strategy in the signature domain.

Given the m × n detailed coefficients matrices HI , VI and DI representing the

signature of a perspective image I and the m′ × n matrices HP , VP and DP ,

representing the signature of a panoramic image P , we define H ′P (i), V ′P (i) and

D′P (i), i = {1, . . . ,m′ −m} the m × n sub-matrices of HP , VP and DP holding
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(a)

(b)

(c)

(d)

Figure 4.7: In (a) is represented an input image; (b),(c),(d) are panoramic refer-

ences images matched against (a) using the proposed DWT signature. (b) is the

references image that best matches (a). Say 100% the similarity of (a) vs (b),

similarity (a) against (c) and (d) are respectively 61% and 55%.

m contiguous columns, starting from the i-th columns. We extensively compute

the similarity measures between HI , VI and DI and H ′P (i), V ′P (i) and D′P (i) for

all i. The highest value represents the similarity between the image I and the

panoramic image P .
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Coefficient of Haar Wavelet at level 4 pertains to 16 × 16 pixels square. In or-

der to achieve higher accuracy in matching, before matching an incoming image

with the panoramic reference images, we need to calculate more than one global

Discrete Wavelet Signature for every perspective image. Given the an input im-

age, we compute 8 global discrete wavelet signatures, starting from pixels with

x = {0, 2, . . . to 14}: for each signature, we compute the similarity using the slid-

ing window strategy explained above. The highest value represents the similarity

between the two images, as well.

4.5 Loop-Closure Detection

The DWT-signature can be used also for loop-closure detection similarly to

what described in [3] where a topological map is built using visual bag of words

paradigm.

We built a graph (e.g, Fig. 4.11) where nodes represents locations in which a

complete 360-degrees panoramic reference image is acquired and links represent

consecutive reached reference positions. Loops in the graph represents previously

visited places (red circles Fig. 4.11).

As described in [3], while the robot moves it checks for a loop closing for every

incoming (perspective) image. If the loop-closure is not detected, in our ap-

proach a new reference panoramic image is acquired and hence it is associated to

a new node added to the graph. The process for the loop closing detection is the

following:

1. A new perspective image is acquired.

2. If the similarity (Eq. 4.4.4) between the current perspective image and the

last panoramic image added to the graph is over a threshold th, return to

point (1), otherwise proceed to point (3).

3. A loop-closure between the current image and all the reference panoramic

images (except the last visited) is attempt (see below for a detailed expla-

nation).
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4. If the loop-closure is detected, a link between the last visited node in the

graph and the node associated with the matched reference image is added.

5. If the loop-closure fails, a new reference panoramic image is acquired with

the method described in Sec. 4.3 and hence it is associated to a new node

added to the graph.

6. The process restart from the point (1).

The loop-closure detection of point (3) is performed with the following proce-

dure. At time t, given an incoming image It and the the current set of nodes in

the graph Mt−1 = N0, . . . , Nn, the loop-closure detection is performed searching

for the node Nj of the actual graph that satisfies:

j = argmaxi=−1,...,n p(St = i|It;Mt−1) (4.5)

where St = i is the event that image current image It is grabbed in the location

represented by the nodeNi, St = −1 is the event that current image is not grabbed

in a previously visited location (i.e., no loop-closure detected). Following the

recursive Bayesian approach in the discrete case, the posterior density function

p(St = i|It;Mt−1) of Eq. 4.5 becomes:

p(St|It;Mt−1) = η p(It|St;Mt−1)
n∑

j=−1

p(St|St−1 = j,Mt−1)p(St−1|It−1;Mt−2)

(4.6)

where η is a normalization factor.

Mt−1 is obtained at time t− 1 updating Mt−2 according to Eq. 4.5 (for example,

adding a new node at time Mt−1 Eq. 4.5 gives −1).

We simply assume an uniform transition probability p(St|St−1 = j,Mt−1). The

probability p(It|St;Mt−1) is considered as a likelihood function L(St|It;Mt−1)

that is obtained computing the similarity Eq. 4.4.4 between the perspective im-

age It and every reference panoramic images associated with the nodes Mt−1 =

N0, . . . , Nn (except the last visited).

One must select the value to be associated to L(St = −1|It;Mt−1), that represents

the likelihood of the event ”no loop-closure”. The node −1 usually it is a node

with high probability (i.e., the event ”loop-closure” is less likely than ”add a new
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node”). We set this likelihood at the same value as the threshold th used for

determining if the current perspective image is matching or not the last visited

node. In this way, we have just one magic number for these two thresholds. It

is sensible to choose the same number, because if the similarity of the current

image must be over a certain threshold to match the last visited reference image,

the same threshold should be used also to check if the current image is matching

one of the previously visited reference images (i.e. to check for loop-closure).

If Eq. 4.5 gives a j 6= −1, the last visited is linked with the node Nj, while if

j = −1 a new reference panoramic image is acquired with the method described

in Sec. 4.3 and a new node associated to this reference image is added to the

graph.

4.6 Experiments on the AIBO ERS-7 Robot

We tested the system in a RoboCup Four-legged League 540 × 360 cm soccer

field, using a grid of 13 by 9 reference images. The images have been grabbed in

known poses regularly distributed all over the field. For every reference position

two 180-degrees panoramic images were collected, using the technique explained

in the previous sections. A set of input images, taken in distinct known positions

and at different rotations, was used to test the proposed image similarity mea-

sure. The ground-truth position of the robot for every input image was measured

by hand with an error less than 1 cm. We compared our DWT-based image

signature with the Fourier signature proposed in [64] and used in a topological

SLAM approach in [89]. In Figure 4.8, the corresponding similarity values against

the reference images are plotted for both the proposed DWT signature and the

Fourier signature. The similarity values have been interpolated to obtain a simi-

larity value for every possible pose of the robot in the field. In the plot the dark

red areas correspond to a higher similarity, while the dark blue areas correspond

to a lower similarity. The white cross represents the actual pose of the robot.

The proposed DWT signature outperforms the Fourier signature for all the sam-

ple images, resulting in well-defined unimodal distributions around the real robot

positions, where the Fourier signature results in a higher uncertainty with often

multimodal distributions. This is due to the fact that Fourier Transform gives

65



4. IMAGE SIMILARITY FOR IMAGE-BASED TOPOLOGICAL SLAM

Figure 4.8: The proposed Discrete Wavelet Transform signature compared to

Fourier signature. The interpolated similarity values are depicted for all possible

poses of the robot in the field. Dark red areas correspond to a higher similarity,

while dark blue areas correspond to a lower similarity. The crosses represent the

current robot poses.

information regarding the whole spectral content of the images, but no informa-

tion regarding the locations of the intensity patterns inside the images.
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(a) (b) (c)

(d) (e) (f)

Figure 4.9: Sample images added with occlusions.

In order to prove the robustness of our approach to occlusion in the images,

(a) (b) (c)

(d) (e) (f)

Figure 4.10: Interpolated similarity values for all possible poses of the robot in

the field, given the input images with occlusions of Figure 4.9. Darker areas

correspond to a higher similarity. The crosses represent the current robot poses.
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we generated some synthetic images, by overlapping at the original input images

some pictures of AIBO robots (Fig. 4.9). The effect of image occlusion is to in-

crease the similarity of the input image also with reference images close to the

the correct reference image (Fig. 4.10). However, this effect is limited and it is

only reducing a little bit the discriminative power of the DWT signature without

impairing its effectiveness. Note that Fig. 4.9(c) is the one in which the similarity

measure decrease most its discriminative power. This is because the preponder-

ant feature constituted by the white line is occluded and the rest of the picture

is very general with the green and the white smooth surfaces that can be found

in any picture.

4.7 Experiments on the Kondo KHR-1HV Robot

In addition to the image similarity based on the DWT-signature, we tested also

the loop-Closure detection strategy in a 12 meters trajectories walked by the

Kondo KHR-1HV humanoid robot. At every step, a perspective image is ac-

quired. If this does no longer match the last reference image, the loop-closure

detection strategy presented in Sec. 4.5 is performed. If no loop-closure is de-

tected, a new panoramic image is acquired, and a new node is added to the graph.

In Fig. 4.11 (a) the ground-truth of the walked trajectory, in Fig. 4.11 (b) the

built graph: all the loop-closure are correctly detected.

In Fig. 4.12 and 4.13 are depicted the posterior density functions (Eq. 4.6) com-

puted in 4 locations in which a loop-closure is detected (see Fig. 4.11).

4.8 Summary

In this chapter we presented a new way to calculate the similarity between images

to be used in the image-based topological localization and SLAM approaches on

autonomous robot with low computational resources. We presented a technique

that enables a quick visual characterization of the environment by building at

run-time the panoramic reference images. Then, we proposed a new image signa-

ture that exploits the properties of the Haar Wavelet Transform and suitable for

matching perspective images against panoramic images. We presented successful
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Figure 4.11: The result of the presented Loop-closure detection strategy. (a)

The ground-truth of the walked trajectory, the small cyan circles represent the

locations where a panoramic image is acquired, and a new node is added. Red

circles represents the real loop-closure positions. (b) The graph built using the

proposed signature with depicted the detected loop-closures.

experiments on the calculation of the image similarity of real images grabbed by

a AIBO ERS-7 robot and an experiment in which multiple loop-closures events

are correctly detected along a trajectories walked by the Kondo KHR-1HV small

humanoid robot.

69



4. IMAGE SIMILARITY FOR IMAGE-BASED TOPOLOGICAL SLAM

(a)

(b)

Figure 4.12: Input image, matched panoramic and posterior density functions of

the loop-closure event for the locations locations 1 and 2 in which a loop-closure

is detected.
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(c)

(c)

Figure 4.13: Input image, matched panoramic and posterior density functions of

the loop-closure event for the locations locations 4 and 5 in which a loop-closure

is detected.
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Chapter 5

Visual Odometry with Improved

Local Invariant Features

5.1 Introduction

As introduced in Chapter 2, SLAM algorithms base their prediction steps on in-

formation given by the robot odometry. We also introduced that not always the

odometry is available: this is the case for flying robots and also for humanoid

robots. In such cases, odometry has to be estimated in other ways for example

using a visual odometry strategy (Sec. 3.4), that estimates the robot position

using only images.

Most of the proposed visual odometry approaches were developed for wheeled

robots, but humanoid robots introduce novel challenges to visual odometry. When

a humanoid robot is walking, turning, or squatting, its camera moves in a jerky

and sometimes unpredictable way. This causes an undesired motion blur in the

images grabbed by the robot’s camera that negatively affects the performance of

the feature detectors and especially of the feature tracking classic algorithms. A

typical image affected by motion blur grabbed by a walking robot is depicted in

Fig. 5.1.

Motion blur is a severe problem: standard feature extraction and tracking

approaches (Sec. 3.5) typically fail when applied to sequences of images strongly

affected by motion blur. In this chapter, we propose two new feature detection
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Figure 5.1: Typical image grabbed by a walking humanoid robot. As can be seen,

the image is highly affected by motion blur.

and tracking schemes that are robust to motion blur.

The first approach is based on the introduction of a blind-deconvolution step

before starting the invariant feature detection and description process. During

this step, the parameters of the unknown blurring function (PSF, Point Spread

Function) are estimated using a direct method. If a motion blur is detected (the

PSF magnitude is over a preset threshold), the image is deblurred according to

the estimate PSF using an efficient Wiener filter. The invariant features detection

and description is then performed in the restored image.

The second approach overcomes the assumption of a single motion blur func-

tion for the whole image, so it is robust also to non-uniform motion blur. In this

approach, before detecting interest points, an image preprocessing step estimates

the Point Spread Function (PSF) of the motion blur in the image. We calculate
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not a unique PSF in the whole image, but we segment each image on the basis

of the local motion blur. The estimated PSFs are then used to build an adapted

scale-space representation trying to minimize the undesired effect of the motion

blur. The scale-space extrema are extracted based on the determinant of the

Hessian, and a SIFT descriptor is calculated for each keypoint. Before matching

features between images, features with less distinctive descriptors are discarded

based on their entropy.

Furthermore, we developed a framework for visual odometry based on features

extracted out of and matched in monocular image sequences, in which robot

ego-motion is estimated from the matched features with a method based on the

Five-point algorithm (similarly to the visual odometry strategy proposed by Nis-

ter et al. [78]).

We present experiments performed on standard datasets corrupted with motion

blur and on images taken by a camera mounted on walking small humanoid robots

to show the effectiveness of our approach. The experiments demonstrate that our

techniques are able to reliably extract and match features even in presence of

strong motion blur effects.

We also present experiments in which odometry could reliably be estimated from

images grabbed by walking humanoid robots in the presence of strong motion blur

effect. This is obtained without any global bundle adjustment process (a process

which is too computationally expensive for the processing units on-board of small

humanoids robots) and without the aid of any inertial measurement sensor.

5.2 First approach: restoring the image

Motion blur is the effect of the relative movements between the camera and the

objects of the observed scene during the exposure time (i.e., the integration time

of the grabbed image).

When an image is captured while the camera is moving during the exposure time,

a certain number of scene point is projected at any single image pixel. All these

points contribute to the final pixel value. This effect is called motion-blur, and
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it depends on the relative movement between the camera and the objects of the

observed scene during the exposure time. When this motion is linear and with

uniform velocity, the blur can be determined by two parameters: the blur extent

d and the direction θ. The observed image so can be obtained from the equation:

g(x, y) = f(x, y) ∗ h(x, y) + n(x, y) (5.1)

where ∗ is the convolution operator, f(x, y) is the uncorrupted version of the

observed image (i.e. the ideal image grabbed without relative motions), n(x, y) is

an additive noise function and h(x, y) is the blurring function, called PSF (Point

Spread Function). In the linear case:

h(x, y) =

{
1
L

if
√
x2 + y2 ≤ L

2
, x
y

= −tan(φ)

0 otherwise
(5.2)

Our first approach is based on two assumptions:

• Motion is linear

• We consider only a PSF for the whole image

The first assumption is acceptable for images grabbed by a camera mounted in

a simple humanoid robot as VStone Robovie-M (Fig. 5.4): with a shutter fre-

quency of 25-30 Hz, relative motions can be approximated as linear motions.

Moreover, this kind of robot doesn’t perform quick rotation around the optical

axis of the image. The second assumption means that we try to restore the image

considering the PSF that globally best fit all motion blur functions into the image.

Using deconvolution techniques, the image can be partially deblurred. For exam-

ple, the Richardson-Lucy algorithm [60] and the Expectation-Maximization [53]

method are well known iterative deconvolution procedure, while Wiener filter [90]

is a non-iterative image restoration technique that tries to build an ”optimal” es-

timate of the unblurred image.

5.2.1 PSF estimation

In order to restore the image with deconvolution techniques, the motion blur pa-

rameters (direction and extent) must be known: if they are unknown, the image
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restoration process is called blind deconvolution. In [107] is presented the whiten-

ing method: this is a non-iterative method that identify the PSF by high-pass

filtering the blurred image. The filtered image is characterized mostly by the

correlation property of the blur function. In [99] the PSF is obtained searching

for image moments that are invariant with respect to the motion blur. In [62]

blur direction is determined by an inertia-like tensor, while the extent is deter-

mined finding zeros of the blur slice of the power spectrum or bispectrum in this

direction. In [69] PSF is estimated by using Radon transform to find direction

and fuzzy set concepts to find its extend.

For PSF estimation, we use an approximated version of whitening method [107].

Motion during exposure affects the image by decreasing its resolution mostly in

the motion direction. We search for the direction in the image with the lowest

resolution: this can be done high-pass filtering the image in all directions. The

direction with the lowest responses represent the blur direction. The high-pass

filter used is the absolute value of the derivatives in the candidate directions:

we take the absolute value of the difference of two adjacent pixels along the di-

rection. For better approximation, pixels are interpolated. In order to preserve

the efficiency, we compute responses in 5 pixels regularly spaced sample points

along 36 directions (every 5 degrees): responses are accumulated in a 36-bins

histogram. The bin with the lowest value represent the blur direction: the final

direction is obtained by an interpolation step with the histogram bins closed to

the peak. In Figure 5.2(a) the responses for a 45-degrees blurred image. In order

to estimate the blur extent, the PSF correlation properties along its direction

are emphasized. For theoretical details, see [107]. An auto-correlation operation

(ACF ) in the image derivative lines along motion direction is performed:

Rl(j) =
1

M

M∑
i=−M

l(i+ j)l(i), j ∈ [M,−M ]

l(i) = 0 for i /∈ [0,M ]

(5.3)

where l(i) is the image derivatives line of index i in the motion direction. The

operation is obtained rotating the image with an angle of −α, where α is equals

to the blur direction angle: the derivatives along X axis of the resulting image are
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then calculated. The auto-correlations responses are accumulated in a histogram:

the global minimum falls in the blur extent estimation. In Figure 5.2(b), the ACF

for an image with motion-blur extent of 30 pixels. In our implementation, after a

histogram-smoothing step, we search for negative peaks over a certain threshold

(e.g., 2-3 pixels): the presence of noise in the images can introduce negative peaks

in the auto-correlation function at very low value of extent.

(a) (b)

Figure 5.2: (a) The motion-blur direction identification: the global minimum falls

in the blur direction estimation (in degrees). (b) The average ACF used for

estimation of the extent. The global minimum falls in the blur extent estimation

(in pixels).

5.2.2 Image restoration

If the estimated PSF extent is over a certain threshold (e.g., we use 6), an image

restoration step is performed. We use as deconvolution filter an efficient imple-

mentation of the Wiener filter. In frequency domain and without noise, Eq. 5.1

can be write as:

G(u, v) = F (u, v)H(u, v) (5.4)

In this case, with the knowledge of the PSF h(x, y), the uncorrupted image f(x, y)

can be recovered by the Inverse Fourier Transform of G(u, v)/H(u, v): this is
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(a) (b)

Figure 5.3: (a) The Blurred image. (b) The image restored with Wiener filter.

commonly referred to as the Inverse Filtering method. Unfortunately Inverse

Filtering method has some problems: 1/H(u, v) does not necessarily exist and

the filter not performs well in presence of noise. Images grabbed by a CCD or

CMOS camera are not noise-free: a better choice is the Wiener filter [90], a well-

known and effective deconvolution filter, that is designed to minimize the error

due to image noise:

W =
H∗

|H|2 + γ
(5.5)

where H is the 2D Fourier Transform of the PSF (Eq. 5.2), H∗ its conjugate and

γ a constant that depends on noise presents into the image (γ can be interpreted

as the reciprocal of the signal-to-noise ratio). Restored image can be obtained by

the Inverse Fourier Transform of:

F (u, v) = W (u, v)G(u, v) (5.6)

where G(u, v) is the 2D Fourier Transform of the corrupted image. In Figure 5.3

an example of blurred image restoration. Wiener filter is not the best deconvo-

lution filter: iterative methods ([60, 53]) can produce better results in terms of

quality of the restored image. However, these methods have a very high compu-

tational cost. Wiener filter is capable to restore very efficiently local structures

of the image that can be well detected during features detection step.
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5.2.3 Interest Point Detector

The proposed invariant features scheme takes advantage of two successfully ap-

proaches: we use a detector method similar to SURF features [5] and the descrip-

tor proposed in SIFT features scheme[58].

The first step is to select a set of interest point that are invariant to scale transfor-

mation. This is performed searching for features in a scale space representation

of the images [55], obtained convolving the original images I(x, y) with Gaussian

smoothing filters G(x, y, σ) and increasing standard deviation values σ (normally

referred as the scale of the smoothed image):

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (5.7)

The scale space is divided in octaves (i.e. the last smoothed image of the

octave has twice the scale of the first). As in [58], each octaves is divided into

an integer number s of intervals, with scales σi = σi−1 ∗ 2
1
s , where σ0 is the ini-

tial scale chosen to be 1.6. We choose s = 3, so we compute Eq. (5.7) at scales

1.6, 2.0159, 2.5398, 3.2, 4.0317. The latest scale is computed to detect local scale

space maxima at the higher scale of the octave, i.e. 3.2. Once an octave is com-

pleted, the image is resampled to half its original size: this image has obviously

twice the scale of the original image. A new octave is then processed on the re-

sampled (smaller) image, using the same σi values. Normally the number of the

octaves is 4, it can be reduced to obtain much faster computation of the detec-

tor. In order to detect interest points, the scaled images L(x, y, σ) are convolved

with filters that response mainly to invariant local features of the image. Har-

ris and Hessian based detectors response to corners and highly textured points,

whereas Difference-of-Gaussian (DoG) (used in [58]) and Laplacian-of-Gaussian

(LoG) based detectors response mainly to blobs: the latters descriptors are less

stable due to the possibility to detect points closed to contours of straight edges

[67]. As in [5], we use the determinant of Hessian of the scaled image for selecting

both location and characteristic scale of the interest points: the trace of Hessian

is the LoG, taking the determinant points in witch the second derivative change

in only one direction are penalized (e.g. straight edges):
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det(σ2H(x, y, σ)) =

det

[
σ2Lxx(x, y, σ) σ2Lxy(x, y, σ)

σ2Lxy(x, y, σ) σ2Lyy(x, y, σ)

]
(5.8)

where in Eq. (5.8) Lxx, Lyy, Lxy are the second derivatives of the scaled images

L(x, y, σ). The second derivatives are multiply with the square of the scale σ: this

is due to the fact that the amplitude of spatial derivatives decreases with scale,

so normalization is required for true scale invariance [55]). The implementation

strategy is to convolve the initial image with Gaussian smoothing filter at different

scales: at this scope, we use an efficient Gaussian smoothing algorithm provided

with OpenCV library1 [15]. First and second derivatives are then computed in

scaled images: in Eq. 5.9 the first and second Gaussian derivatives in x direction

are computed.

Lx(x, y, σ) = L(x+ 1, y, σ)− L(x− 1, y, σ)

Lxx(x, y, σ) = Lx(x+ 1, y, σ)− Lx(x− 1, y, σ)
(5.9)

First derivatives are stored in memory for efficient computation of the descriptors

(see Section 5.2.4), second derivatives are used to compute the determinant of

Hessian.

To improve computation speed of the detector, it can be used more approximated

Gaussian derivatives: in [5] discretized and cropped filter are used, computed

using the integral images technique. We show only a slight degradation of the

descriptor reliability using this fast method. Once computed the determinant of

Hessian for each location of the multi-scaled image, interest point are detected

searching for local maxima over scale and location space in a 3×3×3 neighborhood

of each point: only local maxima with determinant of Hessian greater than a

threshold are selected as interest points. Finally the location and the scale (called

characteristic scale) of the extracted points are interpolated [16] by fitting a 3D

quadratic to the scale-space determinant of Hessian and taking the maxima of

this quadratic. This step is useful to obtain a more accurate characteristic scale

of the point (negatively affected by the discrete nature of the scale space) and to

reduce the localization errors.
1http://sourceforge.net/projects/opencvlibrary/
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5.2.4 Interest Point Descriptor

In our experience we note that the SIFT descriptor is slightly more stable than

SURF descriptor. We decided to implement SIFT descriptor, tuning the param-

eters of the algorithm to improve reliability.

Orientation assignment

In order to assign orientations to detected interest points, we compute gradients

orientations and magnitudes of 16 × 16 regularly spaced sample points into a

square window centered around the interest point. The side length of the window

is equal to 12∗ scale, where scale is the interpolated characteristic scale (see Sec-

tion 5.2.3). Gradients magnitudes and orientation of sample points are computed

using the stored first Gaussian derivatives in the discretized scale closed to the

characteristic scale of the interest point:

m(x, y, σ) =
√
Lx(x, y, σ)2 + Ly(x, y, σ)2

θ(x, y, σ) = tan−1

(
Ly(x, y, σ)

Lx(x, y, σ)

) (5.10)

The magnitudes are Gaussian-weighted with a circular bivariate Gaussian cen-

tered in the interest point with standard deviation equals to 2.5 ∗ scale. Magni-

tudes are then accumulated into an orientation histogram with 36 bins represent-

ing the discretized orientations of the gradients. After an histogram-smoothing

step, the bins with values greater than 0.8 the global histogram maximum are

selected: multiple interest points are created with the initial location and scale

but with these different orientations (interpolated with histogram neighborhood).

Descriptor assignment

It is selected a square window centered around the interest point with side length

of 20 ∗ scale and oriented according with its orientation. This region is regularly

divided into 4 × 4 smaller sub-regions, each containing 4 × 4 regularly spaced

sample points. The gradients orientations and magnitudes of the sample points

are computed as in Section 5.2.4. Magnitudes are then Gaussian-weighted with a
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circular bivariate Gaussian with standard deviation equals to 6.7 ∗ scale in order

to increase stability of the descriptor towards small affine transformation and

localization errors. To avoid high variations in the distribution of the gradients

inside a sub-region caused by small pixels shift, magnitudes are further weighted

with a weight of 1 − d, where d is the distance of the sample point from the

central value of the bin as measured in units of the histogram bin spacing [58].

Each sample point gradient is rotated according to the interest point orientation,

then its magnitude is accumulated in a orientation histogram with 8 bins (i.e.,

8 discretized orientations) characteristic of the sub-region. The 4 × 4 8-bins

histograms form the 128-entry descriptor of the selected interest point. The

descriptor is finally normalized to an unit vector in order to obtain invariance

toward contrast variations.

5.2.5 Experiments

Figure 5.4: The VStone Robovie-M robot used in the experiments.

We tested the proposed technique using both a standard dataset 2 with added

synthetic motion-blur (some example in Figure 5.5) and real images with motion-

blur effect grabbed by the CMOS camera that equip our humanoid robot (Figure

2http://www.robots.ox.ac.uk/˜vgg/research/affine/
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(a) (b)

(c) (d)

Figure 5.5: Some of the standard dataset images used in the experiments. Sec-

ond image of every pair is blurred with a synthetic linear motion function with

different directions and extents.

5.4, some images in Figure 5.6). Aim of our tests is to evaluate the effectiveness of

the proposed method in matching images taken in a real humanoid robot scenario

in presence of motion-blur phenomena.

Testing image pairs are composed by two images of the same scene taken

from different viewpoint. The first image is still, the second image is affected

by motion-blur effect. The standard dataset we used is provided with homogra-

phies (plane projective transformations) between images: the map between the

two images is known, the exact correspondence of every point in one frame to

the corresponding points in the other frame is known. We can determine in this
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(a) (b)

(c) (d)

Figure 5.6: Some of the real images used in the experiments. In (a),(b) the image

pair 1, in (c),(d) the image pair 2. Second image of every pair present some

motion-blur phenomena, PSF parameters are not a-priori known.

case ground truth matches and also the accuracy (i.e. the localization error of

the matches). For real images set , we manually identified the correct matches

between frames (Figure 5.9). Our approach is compared to the SIFT features

scheme [58] and to the SURF features scheme [5]. Comparisons are performed

using well-known implementation of these methods3 4, without changing the algo-

rithms standard parameters. SIFT features implementations usually double the

3http://web.engr.oregonstate.edu/˜hess/index.html
4http://www.vision.ee.ethz.ch/˜surf/
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image size before starting features detection in order create more sample points.

This step increase the computational cost and decrease robustness of matching

in presence of motion-blur phenomena: for these reasons, we skip the resize step.

We refer here to the proposed descriptor-detector scheme as MoBIF (Motion-

Blur Invariant Features). For all tested approaches, we use the Nearest Neighbor

Distance Ratio matching strategy (see [68]), with distance ratio equal to 0.5. In

Figure 5.7 are presented matching results of the standard dataset image pairs in

Figure 5.5. Images 5.5(b) and 5.5(d) are blurred with synthetic motion-blur func-

tion of directions -45 and 23 degrees and extents of 30 and 20, respectively. The

matching accuracy is the distance in pixels between the ground truth match and

the obtained match. MoBIF approach outperforms SIFT and SURF in both the

number of correct matches and the localization accuracy. This is very important

especially in visual odometry tasks, where the accuracy in matching affect signif-

icantly results in motion estimation. Results for some real images are presented

in Figure 5.8: the X axis represent the image pairs used in matching process.

Image pairs 1 and 2 are shown in Figure 5.6. Estimated motion-blur extents

are in these cases 13, 14, 12, 20, 23 and 19, respectively. Also with real images

MoBIF outperforms other approaches, with higher number of correct matches

(Figure 5.8(a)) and a very high and stable correct matches ratio over all detected

matches (Figure 5.8(b)). Especially with large motion-blur function extent (test

image pair 5, estimated extent equals to 23) our approach preserves the reliability

in matching (Figure 5.9) where SIFT and SURF techniques tend to fail.

5.3 Second approach: adapting the scale-space

representation

The first approach we propose is based on a deconvolution techniques (the Wiener

filter) that aims to completely restore the images affected by motion blur.

Unfortunately the quality of the restored image strongly depends on the accu-

racy of the PSF estimation. Wrong PSF used for the deconvolution can produce

unacceptable resulting images. Moreover, this method assumes a linear motion

blur and the presence of PSF uniform in the whole image. Even if in simple small
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(a) (b)

Figure 5.7: Correct matches for the standard dataset images of Figure 5.5. Accu-

racy is the distance in pixels between the ground truth match and the obtained

match.

(a) (b)

Figure 5.8: (a) Correct matches for the real images set. In the x axis, the corre-

spondent image pair. Estimated PSF extents are 13, 14, 12, 20, 23, 19, respec-

tively. (b) Correct matches ratio over all detected matches

humanoid robots (e.g., Fig. 5.4 and Fig. 1.1(a,b)), these assumption can hold to a

certain extent [87], from our experiments, however, we experienced that the cam-

eras of robots with complex kinematics, like for instance the humanoid platform
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Figure 5.9: MoBIF detected matches for the test image pair 5.

of the NimbRo Robocup Team [7] (Fig. 1.1(c)), performs complex movements

resulting in different translation and rotation of the image that can introduce

non-linear and non-uniform motion blur effect. In these case, conventional de-

convolution techniques can easily fail. Instead of trying to restore the original,

unblurred images, we propose an adapted scale-space representation that tries to

overcome the negative effect of the motion blur in the invariant features detection

and description process. With respect to the method presented in Sec. 5.2, we

improved the estimation of the PSF by relaxing the constraint of a uniform PSF
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over the hole image and which leads to a better estimate than the simple Wiener

filter deconvolution presented in our first approach.

The scale-space theory of Lindeberg [55] aims to represent the input image

at different scales and it is at the base of the scale-invariant feature detectors

and descriptors such as SIFT and SURF (Sec. 3.5). Scale-space representation

is obtained convolving the original images f(x, y) with a set of Gaussian filters

with zero-mean g(x, y, σ) and with increasing standard deviations σ (normally

referred to as the scale of the smoothed image):

l(x, y, σ) = g(x, y, σ) ∗ f(x, y) (5.11)

If one uses the conventional scale-space representation for images affected by

motion blur, it will blur with Gaussian noise the image b(x, y) that is already

blurred with the motion blur h(x, y). Thus, the resulting filter is not the desired

Gaussian filter, but the composition of a Gaussian filter plus the motion blur filter

(applied to the uncorrupted image by the motion of the camera). The motion

blur filter can be approximated to be Gaussian, but cannot be approximated

to be with equal marginal standard deviations. Thus, the resulting filter is no

longer circular symmetric. Therefore, we propose to compute the scale-space

representation of an image corrupted by motion blur by finding an appropriate

non-circular symmetric g′(x, y), determined from the PSF of the actual motion

blur in the image, that convolved with h(x, y) approximates a Gaussian filter with

equal marginal standard deviations. In other words, we smooth less the image

along the motion blur direction. We obtain from Eq. 5.1 and Eq. 5.11 (omitting

for simplicity the additive noise):

l′(x, y, σ) = g′(x, y) ∗ h(x, y) ∗ f(x, y) (5.12)

where g′(x, y) is a zero-mean Gaussian smoothing filter with different marginal

standard deviations. The proposed strategy is to find a g′(x, y) filter that mini-

mize the sum of squared difference between l and l′ over the whole image (here,

w is image width and h is image height in pixels):

w∑
x=1

h∑
y=1

(l − l′)2 (5.13)
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For the distributivity and associativity properties of the convolution operator one

can write:

l − l′ = (g(x, y, σ)− g′(x, y) ∗ h(x, y)) ∗ f(x, y) (5.14)

So, for an image f(x, y), we have to find a filter g′(x, y) that minimizes the

difference:

g(x, y, σ)− g′(x, y) ∗ h(x, y) (5.15)

Let us define as σ (i.e. the scale), the marginal standard deviation of g′(x, y) in

the direction perpendicular to the PSF direction, and σ′ the marginal standard

deviation in the PSF direction. One might think that g′(x, y) could be easily

obtained in the frequency domain by a standard deconvolution techniques as

Wiener filter, but, for the reason explained above, without an accurate estimation

of the real PSF h(x, y), results are very poor. Thus, we compute the value of σ′ by

minimizing the function (5.15) in the discrete domain (i.e., using discrete kernel’s

filter): we use the Levenberg-Marquardt algorithm (LMA) for the solution of

least squares problems in non-linear case. For example, given the PSF h0(x, y)

with extent d and direction θ = 0 and given the scale = σ, we compute using

LMA the σ′ that minimize:

g(x, y, σ)− g′(x, y,Σ) ∗ h0(x, y), Σ =

[
σ′ 0

0 σ

]
(5.16)

where Σ is the covariance matrix of the adapted Gaussian filter g′(x, y,Σ). For

a general PSF h(x, y) with θ 6= 0, we rotate the Gaussian kernel obtained for

h0(x, y) according to θ (see Fig. 5.10).

5.3.1 PSF clustering

For PSF estimation, we use the approximated version of the whitening method

[107] described in Sec. 5.2.1.

The proposed adapted scale-space representation assumes that the PSF is linear:

this is, in general, an approximation of the real PSF, that also isn’t usually

uniform in the whole image. In order to take into account of the non-uniform

nature of the PSF, we introduce a clustering step that aims to divide the image

in sub-regions characterized by different PSF.
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(a) (b) (c)

(d) (e) (f)

Figure 5.10: (a) The Cameraman original image. (b) Original image synthetically

blurred with PSF extent d = 18 and direction θ = 5
6
π. (c) Original image

smoothed with circular symmetric bivariate Gaussian kernel with σ = scale =

6.4. (d) Motion blurred image (b) smoothed with circular symmetric bivariate

Gaussian kernel with σ = scale = 6.4. (e) Motion blurred image (b) smoothed

with non circular bivariate Gaussian kernel with marginal standard deviation

σ = scale = 6.4 in the direction perpendicular to the PSF and in this case σ′ =

3.69 (computed with the LMA algorithm) in the PSF direction. (f) The adapted

Gaussian filter used to obtain (e). We can see that (e) tends to approximate the

original smoothed image (c) better than (d).

The segmentation of the image is performed using a modified version of the

K-means clustering algorithm [12]. Formally, we divide the image points in K

clusters where the 3-dimensional vector µk = (xµk
, yµk

, αµk
) (here, xµk

, yµk
are the

image coordinates, αµk
is the PSF direction (discretized) and k = 1, . . . , K) is a

prototype associated with the kth cluster. One can think of the µk as representing

the centroids of the clusters with uniform PSF with direction αµk
. Given an
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(a) (b)

Figure 5.11: (a) The result of the clustering process for the image Fig. 5.1: Using

the K-means algorithm (here with K = 2), each point is assigned to a cluster

that is characterized by an (approximated) uniform PSF in the region close to

the cluster centroid. (b) Based on segmentation performed in (a), the image is

divided in rectangular subregions with assigned uniform PSFs. Red and blue

arrows represent the computed directions of the PSF in each single subregion:

about 0◦ on the left side and around 80◦ on the right side.

image point Xi with coordinates xi, yi and Hi being the histogram (normalized

to unit vector) that holds the absolute values of the derivatives in each discretized

directions for this point (see section 5.2.1), we define the distance from a cluster

centroid µk as the weighted Euclidean distance:

d(Xi, µk) = Hi(αµk
) ∗
√

(xµk
− xi)2 + (yµk

− yi)2 (5.17)

where Hi(α) is the response of the absolute derivatives along the direction α for

the sample Xi: This response tends to be a minimum in the motion blur direction.

Here’s the algorithm:

1. For each sample point i, compute the histogram Hi that holds the absolute

values of the derivatives in each discretized direction, 18 in our case (see

section 5.2.1). Each histogram is normalized to the unit vector.

2. Compute, as accumulation of the histograms of point 1), the global his-

togram that, for each discretized direction, holds the sum of the responses

in that direction for all the sample points. Extract the K directions with
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minimum responses and assign them as initial choices for the direction αµk

of the the K cluster centroids µk. For all cluster centroids, assign at xµk
, yµk

the center of the image.

3. Using the distance (Eq. 5.17), assign each sample point to the closest cluster,

i.e., the cluster with the closest centroid.

4. Re-assign each sample point to the mode of its 8-neighbors sample points,

i.e., to the cluster that occurs most frequently in its 8 neighbors (Fig.

5.11 (a)).

5. For each cluster with centroid µk, compute as accumulation the histogram

Hµk
that holds the sum of the the responses of the single histograms of the

sample points that fall in the cluster.

6. Re-compute the centroids µk with coordinates xµk
, yµk

equal the mean of

the coordinates of the sample points assigned to the corresponding clus-

ter and with αµk
corresponds to the directions with minimum response in

histograms Hµk
.

7. Repeat from point 3 until convergence.

8. For each cluster, compute the PSF extent as explained in section 5.2.1

9. Divide the image in rectangular subregions with uniform PSFs based on

their cluster centroids (Fig. 5.11 (b)).

We experimentally found out that k = 2 yields good results.

5.3.2 Finding distinctive features

After the PSF clustering step, we have a set of rectangular subregions charac-

terized by a local PSF (Fig. 5.11 (b)): For each subregion we can now easily

compute the adapted scale-space representation, as explained at the beginning of

section 5.3, using the local PSF.

The detection and the description of the interest points are performed following

a method similar to that described in Sec. 5.2.4. The scaled images L are com-

puted in this case according to the local PSF based on the adapted scale-space
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representation explained before, i.e. in the Eq. 5.11 we use the adapted Gaussian

filter g′(x, y,Σ) of Eq. 5.16.

Motion blur effects tend to suppress the high frequency components, the re-

sulting image so loses a lot of small details: It happens that some interest point

extracted during detection step represents in reality very simple and not much

distinctive features, that they can compromise the stability of the feature match-

ing step producing more outliers. In order to avoid this issue, we introduce a

discarding process based on the Shannon entropy of the normalized descriptor. If

we take a normalized feature descriptor s(i), we can see it as a probability mass

function, with possible values 1, . . . , n the indexes of the bins of the descriptor,

in the case of SIFT descriptor n = 128. We can compute the entropy as:

H(s) = −
n∑
x=1

s(i)log(s(i)) (5.18)

We notice that simple and not much distinctive features tends to obtain descrip-

tors with low entropy. For each descriptor, we first compute the entropy, then we

compute the mean µH and the standard deviation σH of all entropy values. We

finally discard all the descriptors with entropy values less than µH − σH . This

step improves noticeably the stability of the following features matching precess.

5.3.3 Experiments

We implemented our detection-descriptor scheme in C++ using the efficient

OpenCV image processing library5 [15]: the whole process take on average 1

second for a 640X480 image on a 2Ghz core 2 PC.

As experimental platforms, we used the custom built NimbRo Robocup Team hu-

manoid robot and the commercial Kondo KHR-1 HV humanoid robot (Fig. 1.1(b,c)).

We compared our detection and descriptor scheme to the SIFT features [58] and

to the SURF-128 features [5] (i.e., the improved version of the SURF features).

Comparisons are performed using well-known implementation of these methods6’7

5http://sourceforge.net/projects/opencvlibrary/
6http://www.cs.ubc.ca/˜lowe/keypoints/
7http://www.vision.ee.ethz.ch/˜surf/
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Figure 5.12: Correct matches for the standard dataset images. (a) Image pair 1

and 3 of the graf series. (b) Image pair 1 and 6 of the boat series. (c) Image pair

1 and 6 of the trees series. (d) Image pair 1 and 6 of the leuven series. Accuracy

is the distance in pixels between the ground truth match and the obtained match.

without changing the standard parameters of the algorithms. The input data are

from two sources: (i) a standard dataset8 with added synthetic motion blur, (ii)

sequences of images grabbed by the CMOS camera of a walking humanoid robot

8http://www.robots.ox.ac.uk/˜vgg/research/affine/
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Figure 5.13: Correct matches for the real image sets. In the x-axis, the corre-

sponding image pairs are denoted. The y-axis indicates the number of correct

matches. Our approach finds much more feature correspondences compared to

SIFT and SURF.

affected by real motion blur effect. Testing image pairs are composed by two

images of the same scene taken from different viewpoint. One or both the images

are affected by motion blur. The standard dataset we used is provided with ho-

mographies (plane projective transformations) between images: the map between

the two images is known, the exact correspondence of every point in one frame to

the corresponding points in the other frame is known. We can determine in this

case ground truth matches and also the accuracy (i.e., the localization error of

the matches). For the real images set, we manually identified the correct matches

between frames. For all tested approaches, we use the Nearest Neighbor Distance

Ratio matching strategy (see [68]), with distance ratio equal to 0.5. Fig. 5.12

presents matching results for image pairs of the standard dataset. One or both

the image images of the pairs are blurred with synthetic motion-blur functions

with different directions and extent variable between 10 an 40 pixels. The match-

ing accuracy is the distance in pixels between the ground truth match and the

obtained match. As can be seen, our approach outperforms SIFT and SURF-128
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in both the number of correct matches and the localization accuracy. This is very

important especially in visual odometry tasks, where the accuracy in matching

affect significantly results in motion estimation. Results for some real images

are presented in Fig. 5.13: Here, the x-axis represents the image pairs used in

matching process. As the results demonstrate, also with real images our approach

outperforms the others with respect to the higher number of correct matches.

5.4 Visual odometry

We match the described features between pairs of frames using an efficient Best

Bin First (BBF) algorithm (Sec. 3.5.3, [8]) that finds an approximate solution

to the nearest neighbor search problem. The algorithm is similar to the kd-tree

search algorithm, where the tree is explored searching for the node that is closer

to the input descriptor. The BBF algorithm only search M candidates, and re-

turns the nearest-neighbor for a subset of queries.

Given five corresponding points, it’s possible to recover the relative positions of

the points and cameras, up to a scale. This is the minimum number of points

needed for estimating the relative camera motion from two calibrated views, us-

ing the so called five-point algorithm (see Sec. 3.4). The Five-point algorithm

offers many benefits compared with other relative pose problem solutions, as the

well-known Eight-point algorithm. The Five-point algorithm needs fewer corre-

spondences to find a solution. Moreover, it is essentially unaffected by the planar

degeneracy and it still works for planar scenes where other methods fail. The

estimation accuracy of the Five-point algorithm is also higher than other solu-

tions to the relative pose problem. In our visual odometry approach, we use the

efficient solution to the Five-point relative pose problem9 proposed by Nister [81].

We assume that the camera used in the visual odometry is fully calibrated, i.e.,

intrinsic matrix K is given. For a static scene point projected in two views, we

can write:

m′TFm = 0 (5.19)

9We use the Five-point algorithm implementation provided with the VW34 library by Ox-

ford’s Active Vision Lab.
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where F is a fundamental matrix and m and m′ are the image points expressed

in homogeneous coordinates for the first and second view, respectively. If the

camera is calibrated, the fundamental matrix is reduced to an essential matrix,

denoted by E, and the relationship becomes;

q′TEq = 0 (5.20)

with q = K−1m and q′ = K−1m′. Using the Five-point algorithm with five cor-

respondences qi, q
′
i, i = 1, . . . , 5, one can obtain at most ten possible essential

matrices (including complex ones) as solutions of the problem. For each essential

matrix four combinations of possible relative rotation R and translation T of the

camera can be easily extracted [81]. In order to determine which combination

corresponds to the true relative movement, the constraint that the scene points

should be in front of the camera for both the two views is imposed. The image

points are triangulated into 3D points [45] using all the combination of R and

T . The final solution is identified as configuration more compliant with the given

constraints.

We use the Five-point algorithm in conjunction with MLESAC estimator [102]:

MLESAC uses the same sampling strategy as RANSAC where minimal sets of

correspondences (5 in our case) are used to derive hypothesized solutions. The

remaining correspondences are used to evaluate the quality of each hypothesis.

Unlike RANSAC, that count the number of inliers, MLESAC evaluates the likeli-

hood of the hypothesis by representing the error distribution as a mixture model.

Our mono-camera visual odometry scheme operates as follows:

1. Extract the features from the images using the features detection and de-

scriptor scheme described in Sec. 5.3.

2. Track interest points over two frames using the BBF matching strategy.

3. Randomly chose a number of samples each composed of 5 matches between

the first and the second frame. Using the Five-point algorithm generate a

number of hypotheses for the essential matrix.

4. Search for the best hypotheses using MLESAC estimator and store the cor-

respondent inliers. The error function is the distance between the epipolar

line Eq associated with q and p′,
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5. Extract from the resulting essential matrix E the four combinations of pos-

sible relative rotation R and translation T . Triangulate all the inlier cor-

respondences for each combination. Take the configuration with more 3D

points in front of both camera views.

6. If this is not the first time inside the loop, select the features tracked in the

present reconstruction, that were tracked also in the previous one, and com-

pute using triangulation the depth for both reconstruction. Use these infor-

mation in conjunction with RANSAC to estimate the scale factor between

the present reconstruction and the previous. Put the present reconstruction

in the coordinate system of the first reconstruction.

7. Repeat from Point 1.

5.4.1 Experiments

We tested our visual odometry framework with trajectories walked by humanoid

robots. The accuracy is measured by checking the error between the start and

the endpoints of the recovered trajectory (Fig. 5.14). The path of Fig. 5.14 (a)

is a closed loop in which the starting point and the end point are the same point

in the environment. The robot walked a loop of about 4-5 m in diameter in the

cluttered environment of our laboratory. In the path of Fig. 5.14 (b) the robot

walked down a corridor for 5 m, it turned around, and it walked back to almost

the same position. In Fig. 5.15 and 5.16 is depicted the estimation of a path

followed by the NimbRo humanoid robot where the grabbed images were affected

by a very strong motion blur effect.

Unfortunately, it was not possible to record the ground-truth of the robot, but

the robot path was closely surveilled the paths of Fig. 5.14 are calculated up to

a scale, one can see that the proposed visual odometry can reliably estimate the

motion of the robot, even it is not so accurate when the robot is turning. This

is the reason why the start and end points do not overlap in Fig. 5.14 (a) and

the mutual distance is a bit too large in Fig. 5.14 (b). In fact, the reconstructed

paths are open-up because the robot rotation was underestimated. Unfortunately,

we cannot report a comparison with SIFT and SURF approaches on this visual
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(a)

(b)

Figure 5.14: Estimation of the robot motion using the proposed visual odometry

framework for two closed trajectories. The red crosses are the start points of the

trajectories.
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Figure 5.15: Estimation of a path followed by the NimbRo humanoid robot (first

part). The images are affected by a very strong motion blur effect. On the left of

every frame the matches detected using the approach proposed in Sec. 5.3. On the

right, the current path estimation obtained with the proposed visual odometry

strategy.
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Figure 5.16: Estimation of a path followed by the NimbRo humanoid robot (sec-

ond part). The images are affected by a very strong motion blur effect. On the

left of every frame the matches detected using the approach proposed in Sec. 5.3.

On the right, the current path estimation obtained with the proposed visual

odometry strategy.
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odometry experiment, because both approaches did not pick enough features in

the image sequence to reliable reconstruct the path. Indeed, the unmodified

environments in which we performed the experiments where quite dim and most

of the surfaces did not have bright patterns. Moreover, as reported in Fig. 5.13,

the motion blur affecting the images in the walking sequence lowered even more

the number of feature detected by SURF and SIFT approaches.

5.4.2 Testing visual odometry on a wheeled robot

Our visual odometry strategy is also tested in a 40 meters trajectory covered

by an omnidirectional wheeled robot. The accuracy is tested checking the error

between the start and the endpoints of the recovered trajectory. No assumption

about the planar movement of the robot nor about the camera initial configuration

are taken into account: a full 3D visual odometry is performed. In Fig. 5.17(a)

the map of the corridor where the robots performs the trajectory. The path

followed by the robot is almost superimposed to the black line. In Fig. 5.17(b)

the 2D projection of the estimated path. The pose estimation is more accurate in

the first (right) corridor: this is because along this corridor there are more local

features than others corridor, so with more (correct) matches between features

the odometry is more reliable. At the end of the path the global drift is less than

3 meters. Moreover, from Fig. 5.17(c) (the 3D estimated path), we can see that

the estimated 3D trajectory is essentially coplanar.

5.5 Summary

In this chapter, we presented a novel framework for visual odometry with a single

camera robust even to non-uniform motion blur.

We developed two improved feature detector and descriptor schemes that can find

good correspondences even in heavily blurred images, such as the ones grabbed

by robots performing brisk movements. The proposed methods outperforms the

SIFT and the SURF approach in detecting and matching corresponding features

between two images in which one image or both of them are corrupted with

motion blur. We evaluated our methods on images taken from standard datasets
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Figure 5.17: Estimation of a wheeled robot motion using the proposed visual

odometry framework for a 40 m trajectory. (a) The experiment configuration

(the path followed by the robot is almost superimposed to the black line); (b)

The 2D projection of the estimated path; (c) The 3D estimated path (the axes

of the path are manually scaled to obtain a correct metrical result).
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and on images grabbed by walking humanoid robots.

We also reported experiments for successful visual odometry estimation using

both small humanoid robots and a omnidirectional wheeled robot.
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Chapter 6

Visual SLAM Based on Floor

Plane Homographies

6.1 Introduction

In this chapter, we propose an homography-based approach to Visual SLAM

using only visual information provided by a perspective camera mounted on a

humanoid robots.

This approach aims to reconstruct an intensity map of the floor plane on which

a humanoid robot walks. This map can be used to localize the robot inside an

indoor environment, to recognize previously visited locations, and to recognize

the parts of the floor where there are no obstacles.

The proposed system is based on the assumption that the robot moves on a

planar environment and that portions of this plane are projected on the image

plane. The method is based on the extraction of the homographies that relate

pixels in the camera image plane and points that lie in the floor plane, using an

efficient tracking method [95, 10]. The map estimation is then performed using

a Rao-Blackwellized Particle filter [71].

From a perception point-of-view, the floor plane is searched in the images extract-

ing connected areas using an edge detection and a flood fill algorithm. These areas

represent candidate planar patches of the 3D scene.

An Efficient Second-Order method [95, 10] is used to track over a sequence of

images the extracted boundaries and therefore to obtain the homographies, that
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represent the coplanar relation between different views of a plane. Outlier re-

gions, i.e. connected areas that don’t represents planar patches, are discarded

during the tracking process as well.

The proposed system assumes that the camera is fully calibrated, then it is possi-

ble to recover the relative rotation and translation, and the normal to the tracked

plane. Only planar patches with normal vector close to the normal of the floor

plane measured when the humanoid robot is standing upright are taken into ac-

count. Pixels that belong to floor plane are therefore projected to a single image

representing the map of the floor plane.

The SLAM problem is solved using a Rao-Blackwellized Particle Filter. For

each particle (potential trajectory) an image (map) of the floor plane is held in

memory and updated for every incoming plane projection. The next generation

of particles are sampled at each step using the rigid transformation extracted by

the homography that relate the points that lie in the floor plane.

The importance weight of each particle is updated according to the drawn pose

and the last plane projection, the map of each particle is updated consequently.

We report some experiments performed using a Kondo KHR-1HV humanoid robot

walking in an indoor environment that show the effectiveness of the proposed ap-

proach in building reliable intensities map of the floor plane.

6.2 Motivations

Currently, most of the Visual SLAM approaches are based on points features:

features are detected and tracked between consecutive frames, the motion of the

camera and the locations in 3D of the tracked point features are hence estimated

concurrently using probabilistic estimation techniques.

A reported in Sec. 3.2, Davison et al. [25] proposed a point features-based SLAM

approach using a single perspective camera and EKFs (Extended Kalman Filter).

The 3D map of the points are built using the bearing only information provided

the camera. A similar approach, but based on the FastSLAM framework particle,
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Figure 6.1: The Kondo KHR-1HV humanoid robot walking on a table during the

experiments.

is presented in [30].

In [48] a high resolution digital elevation maps is built from a sequence of stereo-

vision image pairs where interest points are detected and matched between con-

secutive frames. A visual motion estimation algorithm is used to predict the

movements, an extended Kalman filter is used to estimate both the position pa-

rameters and the map.

In [32] a dense metric map of 3D point landmarks for large cyclic environments

are built using the Rao-Blackwellised Particle Filter, where SIFT features are

extracted from stereo vision and motion estimates are based on sparse optical

flow. Eade [31] presents a monocular visual SLAM approach using line features,

where an efficient algorithm for selecting such landmarks is defined.

In this thesis, we used point features to estimate the robot motion: in Chapter
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5 we propose an invariant features robust even to non-uniform motion blur, the

matched features are used to estimate the motion of the robot in 3D exploiting

the epipolar geometry constraints. In this case, we didn’t build a map of this

points: the points features were tracked only only during the time they are inside

the field-of.view of the camera. Once a point feature go outside the field-of.view,

this is simply forgotten. On the other hand, when a wheeled or humanoid robot

is moving quickly, usually points stay inside the field-of.view of the camera only

for a short time: this is a critical issue for the conventional point-based Visual

SLAM approaches, that assume to track points inside the image for long periods.

Moreover a map of 3D points doesn’t provide many usefull information about the

environment: usually mapped points are sparse and provide the robot with an

incomplete information about the appearance of the environment and the obsta-

cles that it can encounter.

In our opinion, point features tracking techniques are powerfull tools for es-

timating the motion of the robot using only vision, but we believe that a map

of the environment built using vision should holds more information than the

locations of some hundreds points.

In order to learn with vision more usefull maps with exhaustive information about

the appearance of the environment, and also the obstacles inside it, it is necessary

to exploit more complex visual features.

Higher level landmarks are exploited in [95], where 3D camera displacement and

the scene structure are computed directly from image intensity discrepancies using

an efficient second-order optimization procedure for tracking planar patches. Due

to complexity of the detecting and tracking higher level landmarks like planes,

not many works of Visual SLAM approaches based on planes have been presented.

In this chapter, we aim at introducing a method that exploit a robust plane

tracking techniques inside a probabilistic framework in order to reconstruct an

appearance map of the floor plane.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.2: The red pixels in (b),. . . ,(h) represent the boundaries of a set of

putative planes extracted from the input image (a). Planar patches found in

image (e) and image (h) will be discarded, because not belonging to the plane on

which the robot is walking.
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6.3 Extracting putative floor planes portions

Planes inside an indoor environment are often painted with an uniform color.

The lack of chromatic discontinuities makes problematic the tracking task. We

hence focus on the shape of the planes, to be more precise we decide to track

planar surfaces considering their boundaries, i.e. the image edges (the peaks of

the image derivatives ).

First, we need to extract from the images grabbed by the robot’s camera all

the boundaries of the regions of uniform color. In order to correct the radial

distortion of the camera [108], we use the algorithm provided by Bouguet [14].

Then we extract the edges into the image using the Canny operator [17]. The

Canny operator first smooths the image with a Gaussian kernel: we chose to set

the standard deviation of this filter to σ = 1. Then a first derivative operator

is applied to the smoothed image to highlight regions with high first spatial

derivatives. Edges give rise to ridges in the gradient magnitude image. Then

a non-maximal suppression process is performed in order to isolate those points

that with a high probability lie to an edge. The Canny operator results in a

binary image, where a pixel value p(x, y) = 1 means that this points lie in an

edge.

In order to correctly detect connected regions in the images, we apply to the

binary image a dilation operator followed by an erosion operator [42]. The effect

of the dilation operator is to enlarge the boundaries of regions, while the erosion

operator erodes away the boundaries of regions. The final effect of this couple of

operator is to join partially disconnected edges.

Closed boundaries are hence highlighted using a flood fill operator, that fill closed

regions with an uniform color. We select only regions with area greater than

a fixed threshold: this is because small regions don’t provide robust planarity

constraints in the following tracking process.

All the pixels in the original images that lie in the boundaries of this regions are

finally chosen as boundaries of putative planes. In Figure 6.2 the boundaries of

a set of putative planes extracted from an input image are depicted.

In order to robustly track the planes with the technique described in the next

section, we set the thickness of boundaries to 6 pixels.
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6.4 Floor Plane Detection and Tracking

In our approach we assume that the robot moves on a planar environment, and

that portions of this plane are projected on the image plane. A walking hu-

manoid robot performs small trunk motions to stabilize its posture, and the

camera mounted on its head moves accordingly to this body swing. So, given a

camera-centered coordinate systems, the floor plane normal vector changes dy-

namically during the motion. Aim of this section is to provide a method to

extract the image pixels that belong to the floor plane and therefore to calculate

the current rotation, translation and the normal to the floor plane.

6.4.1 Theoretical background

Image pixels that belong to a planar surface in the 3D space are related between

different views of the same scene by a homography [45]. Suppose that X is a

3D point in homogeneous coordinates that lies in a scene plane π = (n∗>,−d∗)>,

where n∗ is the normal to the plane in the reference frame, ‖n∗‖ = 1, and d∗ is

the distance from the plane. Given the normalized camera matrix for the two

views of the plane:

P∗ = [I|0] , P = [R|t] (6.1)

where R ∈ SO(3) and t ∈ R(3) are the rotation and the translation matrices

between the two frames, we can obtain the projections of the 3D point X in the

two views, i.e. x∗ = P∗X and x = PX. For the first view, any point on the ray

X = (x∗>, ρ)> projects to x∗. If X lies in the plane π, then π>X = 0, so we can

determine ρ, X = (x∗>, n∗>x∗

d∗
)>.

For the second view we have:

x = P′X = [R|t]X

= Rx∗ +
tn∗>x∗

d∗
=

(
R +

tn∗>

d∗

)
x∗

(6.2)

Where:

H = R + tn∗>d , n∗>d =
n∗>

d
(6.3)
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is called homography matrix.

From the normalized coordinates of an image point x, we can obtain the image

coordinates in pixel p with:

p = Kx (6.4)

where K is a camera intrinsic parameters matrix.

The Efficient Second-order Minimization proposed, among the other, in [95]

aims to find the homography (i.e., the rotation matrix, translation and the normal

vector, Eq. 6.3) that relates two images I∗ and I, starting from a set of q pixels

in the reference images I∗ and searching for the solution iteratively updating an

initial guess until convergence.

We can define:

G(T,n∗d) = KH(T,n∗d)K
−1 (6.5)

G = gij defines a projective transformation in the image, i.e. it is the homography

between images points. Moreover G ∈ SL(3), where SL(3) is the Special Linear

Group, i.e. the determinant of G is equal to 1.

T =

[
R t

0 1

]
(6.6)

is the matrix that hold the rotation matrix and the translation (see Eq. 6.1).

We define w [G] (p) as a P2 automorphism, w [G] : P2 → P2, such that

(remembering that G = gij):

w [G] (p∗i ) =

[
g11u

∗
i + g12v

∗
i + g13

g31u∗i + g32v∗i + g33

,
g21u

∗
i + g22v

∗
i + g23

g31u∗i + g32v∗i + g33

, 1

]>
(6.7)

where p∗i = [u∗i v
∗
i 1]> are the coordinates of a pixel in the reference image I∗.

We define now the basis Ai, i = 1, . . . , 6 of the Lie algebra se(3) [105]. Let

the (3× 1) standard basis for R3, i.e. bx = (1, 0, 0), by = (0, 1, 0), bz = (0, 0, 1),

then:

A1 =

[
0 bx

0 0

]
,A2 =

[
0 by

0 0

]
,A3 =

[
0 bz

0 0

]
(6.8)
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A4 =

[
[bx]× 0

0 0

]
,A5 =

[
[by]× 0

0 0

]
,A6 =

[
[bz]× 0

0 0

]
(6.9)

where [bi]× is the (3 × 3) anti-symmetric matrix that corresponds to the vector

bi = (ωx ωy ωz):

[bi]× =


0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

 (6.10)

It can be shown that for each x ∈ R6 then:

T(x) = exp

(
6∑
i=1

xiAi

)
=
∞∑
i=0

1

i!

(
6∑
i=1

xiAi

)i

(6.11)

is a matrix of the type of Eq. 6.6. In other words, moving R6 with Eq. 6.11 we

always obtain a valid matrix of the type defined in Eq. 6.6.

Finally, let n∗d ∈ R3 the plane normal vector in the reference camera frame

scaled by its distance, i.e. n∗d =
[

n∗1
z∗
,
n∗2
z∗
,
n∗3
z∗

]>
. Given three noncollinear image

points p∗i , i = 1, 2, 3, we can write:

n∗>d K−1p∗i = n∗dp
∗
in =

1

z∗i
(6.12)

where p∗in is the projection in the normalized image of the pixel p∗i and z∗i is the

distance to the point p∗i in the reference camera frame. Using the inverse depths

of the three points, i.e. z∗ =
[

1
z∗1
, 1
z∗2
, 1
z∗3

]>
, we can write:

n∗>d K−1[p∗1 p∗2 p∗3] = z∗> (6.13)

Then:

n∗>d = z∗>[p∗1 p∗2 p∗3]
−1K⇒ n∗d = K>[p∗1 p∗2 p∗3]

−>z∗ (6.14)

n∗d = n∗d(z
∗) = Mz∗, M = K>[p∗1 p∗2 p∗3]

−> (6.15)

z∗(y) = exp(y) > 0, y ∈ R3 (6.16)
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The Efficient Second-order Minimization (ESM) procedure aims to find the

T(x) and z∗(y) (i.e., the x ∈ R6 and the y ∈ R3) that minimizes:

φ(x,y) =
1

2

q∑
i=1

[
I
{

w
[
G
(
T̂T(x),n∗d(ẑ

∗ · z∗(y))
)]

(p∗i )
}
− I∗ {p∗i }

]2
(6.17)

where “·” is the element-wise multiplication, q is the number of tracked pixels

that should lie in a planes, I∗ is the reference image (i.e., the image for which its

coordinates frame coincides with the world frame) and I is an image taken from

a different point-of-view.

Setting θ = (x,y) and d(θ) = φ(x,y), during every update step we have to

find the optimal value such that:

θ0 = argminθ
1

2
‖ d(θ) ‖ (6.18)

it can be shown that an efficient second-order approximation of d(θ) is:

d(θ) w d(0) +
1

2
(J(θ) + J(0)) θ (6.19)

where J(θ) is the jacobian of d(θ) computed in θ: from 6.19 it is possible to

efficiently compute θ0 (Eq. 6.18).

6.4.2 Selecting the floor plane and estimating the motion

Given a pair of consecutive images grabbed by the robot, we set the first as the

reference image. Here we extract putative floor planes portions as described in

Sec. 6.3. For each set of pixels (one set for each putative plane) we perform an

ESM (Efficient Second-order Minimization), in order to find the optimal R, t and

n (i.e., the normal to the plane), given that points. The procedure is as follow:

1. Initialize in Eq. 6.17: T̂ to the identity matrix and ẑ∗ to [0 0 1]T

2. Calculate the Jacobian J and find θ0 solving Eq. 6.19.

3. Given θ0 = (x0,y0).

4. Update T̂ and ẑ∗ as T̂← T̂T(x0) and ẑ∗ ← ẑ∗z∗(y0).
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5. Stop the iteration if the increments becomes lower than a threshold, other-

wise restart from point (2)

Some set of pixels don’t lie in reality in a planar surface: in this case the ESM

tends to diverge from a coherent solution. The procedure in these cases is stopped

if the sum of differences between the value of the pixels in the reference image

and the corresponding values in the other image becomes larger than a threshold.

Only sets of pixels with resulting normal vector close to the normal of the floor

plane measured when the humanoid robot is standing upright are taken into

account. Therefore, all the selected pixels, together with the pixels that are

enclose by the selected boundaries, are clustered in a single set. The ESM is

performed again over this set: the estimated rotation matrix R, translation t

and normal n, together with the pixel values, will be used in the next section

inside a FastSLAM framework.

6.5 Updating the Intensities Map

The plane selection and tracking phase of the proposed algorithm provide the

robot with an estimation of the relative motion between two positions from which

two consecutive images are grabbed, with also the normal to the floor plane.

We exploit this information in a probabilistic SLAM framework based on Fast-

SLAM method [71], that is an instance of the a Rao-Blackwellized Particle Filters

(Sec. 2.3). The intuition of the FastSLAM is to use a factorization of the posterior

over the estimated state:

p[x0:t,m|z0:t, u0:t] = p[x0:t|z0:t, u0:t]
N∏
i=1

p[mi|x0:t, z0:t, u0:t] (6.20)

Fast SLAM represents the posterior density functions of the state by means at

time t of a set of M particles {x[1]
t , x

[2]
t , . . . , x

[M ]
t }. In our case, each particle is an

hypothesis of the 3D trajectory followed by the robot, together with its associated

intensities map mi. The map is an image in which are accumulated the intensities

of the pixel that should belong to the floor plane, projected in order to undistort

the perspective distortion. In other words, this map represent a byrd’s eye view

of the intensities value of the plane.
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6.5.1 Sampling a new pose

At the beginning, we set all particles at the origin of the world frame (i.e., all

represent a trajectory of only one step), while we set their intensities maps to zero.

At time t for each particle S
[i]
t−1, i = 1, . . . ,M , a new robot pose is sampled

from the motion model :

x
[i]
t ∼ p[xt|ut, S[i]

t−1] (6.21)

where ut is the last movement.

The sample model we use derives from the relative rotation matrix R and trans-

lation t extracted during the plane tracking. From R, we extract the Euler angles

yaw, pitch, and roll. The proposal distribution p[xt|ut, S[i]
t−1] is a Gaussian cen-

tered at the estimated movement values (i.e., the translation t and the Euler

angles). For each sample, we sample a relative movements from this distribution.

A new temporary particles set Ŝ
[i]
t is therefore generated adding the new poses x

[i]
t

to the robot path of each particle S
[i]
t−1, i.e. Ŝ

[i]
t = {x[i]

t ∪S
[i]
t−1}, with i = 1, . . . ,M .

6.5.2 Update the map

The current observation zt is represented by the set of pixel selected during the

tracking phase. All of these pixels should be the perspective projections of points

that lie in the floor plane.

For each particle, the position of the robot is provided by the particle’s trajectory.

while from the ESM tracking is provided the normal n to the floor plane.

Given these information, the homography matrix that relates the selected pixel

and the floor plane can be easily computed, and hence we can projected this

pixel into the intensities map that represents the floor plane. For each particle,

these pixel values are accumulated in the intensities map according to the state

(trajectory) of each particle itself.

Every map becomes with a mask of equal size, in which every pixel contains the

occurrences that the corresponding pixel in the map has been updated. To recover

the gray scale value of a pixel in the map, the (accumulated) value presents in

the map should be divided by the corresponding value in the mask.

Before accumulating the projected pixel in the maps, the particles Ŝ
[i]
t are weighted
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6.6 EXPERIMENTS

based on the sensor model p[zt|x[i]
t ,mji ].

In our case, the particle weight is the sum of the square difference between the

current gray scale value of the pixel in the map and the value of the projected

pixel in that point, i.e. given {p0, . . . , pk} the set of projected pixel, f(pi) the

gray level value in the image and map(h(pi))
mask(h(pi))

the gray level value in the projected

position (where h(pi) is the projection function), the particle weight is obtained

as:

w[i] = Σi=0,...,k

(
f(pi)−

map(h(pi))

mask(h(pi))

)
(6.22)

Finally, a resamplig step is performed: a new particle set St = {S[1]
t , . . . , S

[M ]
t }

is generated by selecting particles from the temporary population Ŝt with proba-

bility proportional to the weight of each one [100]. Some initial particles may be

forgotten and some may be duplicated.

6.6 Experiments

Figure 6.3: An intensity map of the planar surface on which the Kondo KHR-1HV

walked.

We tested the proposed Visual SLAM approach in a partially structured envi-
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6. VISUAL SLAM BASED ON FLOOR PLANE HOMOGRAPHIES

ronment (Fig. 6.1). We use the Kondo KHR-1HV humanoid robot walking slowly

on a table. The build intensity map is presented in Fig. 6.3. We can see that

both of the planar objects disposed in the plane are well reconstructed.

Due to a non-optimized implementation, the process is not yet able to run in real-

time: we are improving the implementation in order to comply with the real-time

requirements.
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Chapter 7

Conclusions

In this thesis, we faced the Visual SLAM problem with a particular attention

to the issues raised by the use of small humanoid robots as experimental plat-

forms. We addressed issues as the low-computational capability of small hu-

manoid robots, the low quality of their sensory information. Moreover we focused

on robust and usefull visual environment information like the object planes with

respect to less useful point features.

Our goal was to cope with these problems from a vision point-of-view, exploiting

new vision algorithms inside the robotics domain and proposing novel techniques,

as well.

While most of the contributions in SLAM and Visual SLAM problems still aims to

improve the estimation processes involved in these problems, we instead focused

on the perception processes involved in Visual SLAM problem, providing novel

perceptual techniques well suited to improve and make more stable the current

estimation methods.

In this thesis, we presented a new compact image signature based on the Discrete

Wavelet Transform that allows memory saving and fast and efficient similarity

calculation. We also presented a method to match between perspective images

and panoramic images using the proposed signature, where the panoramic images

are automatically composed by a humanoid robot with a stitching process from

a sequence of perspective images. A loop-closure strategy is hence presented,

experiments with real robots shown the effectiveness of our techniques.
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7. CONCLUSIONS

The contributions proposed in this Chapter resulted in two publications in [86,

85].

Another contribution presented in this thesis is a 3D visual odometry framework

based on monocular images robust even to non-uniform motion blur. The system

is based on a new features detection and description scheme in which a possible

motion blur effect that affects the images is estimated and minimized, allowing

an accurate and robust feature tracking process. The matched features are used

to estimate the motion of the robot in 3D, without the usual planar motion as-

sumption that constraint the movement in 2D, using the Five Point algorithm,

an efficient and stable epipolar geometry based technique.

The presented approaches are tested on small humanoid robots and on a wheeled

robot, as well.

The contributions proposed in this Chapter have been published in [84, 88, 87].

Finally, we propose a Visual SLAM strategy that aims to reconstruct an inten-

sity map of the floor plane on which a humanoid robot walks. The method is

based on the extraction of the homographies that relate the pixels in the camera

image plane and the points that lie in the floor plane, using an efficient tracking

method. The map estimation is performed using a probabilistic techniques called

Rao-Blackwellized Particle filter.

Currently, we are improving this approach and we are writing a new paper to be

submitted to a international conference.

7.1 Future Works

In order to extend the topics presented in this thesis, we are working on a complete

framework that provide an accurate 3D visual reconstruction of indoor unknown

environments explored by a humanoid robot.

Our idea is to improve and extend the Visual SLAM strategy based on planar

surfaces introduced in Chapter 6, allowing the tracking of multiple planes that

are mapped and updated inside a 3D map of intensities. The 3D map can be

considered a 3D image of the environment, where its voxel (3D pixels) represent

the intensities of the mapped planes.

The idea in this framework is to take advantage of the proposed visual odometry
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7.1 FUTURE WORKS

strategy presented in Chapter 5 for the robot ego-motion estimation, and to

match inside a 3D visual maps the tracked planar features. A topological loop-

closure strategy like the one presented in Chapter 4 should be exploited in order

to correctly detect previously visited locations.
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