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Introduction

This dissertation consists of two chapters. Chapter one is devoted to the
investigation of some properties of the layer potentials of an elliptic partial
differential operator with constant coefficients. In particular, we investigate
the dependence upon perturbation of the density, the support and the coef-
ficients of the operator. The main result is a real analyticity theorem for the
single layer potential and its derivatives, which has been proved under quite
general assumptions on the operator. This result is applied to the special
case of Helmholtz and bi-Helmholtz operators, Lamé equations and Stokes
system. A real analyticity theorem is proved for the corresponding single
and double layer potential.

Chapter two deals with the boundary value problems for the Lamé equa-
tions, which describe some physical processes, in particular, the elastic prop-
erties of an isotropic homogeneous elastic body. Special attention is paid to
the case of boundary value problems defined in a domain with a small hole
which shrinks to a point. The aim is to describe the behavior of the solu-
tion and of the corresponding energy integral. This kind of problem is not
new and has been investigated by the techniques of asymptotic analysis (see,
e.g., the works of Keller, Kozlov, Movchan, Maz’ya, Nazarov, Plamenewskii,
Ozawa, Ward.) Let € > 0 be a parameter which is proportional to the diam-
eter of the hole, so that the singularity of the domain appears when ¢ = 0.
By the approach of the asymptotic analysis, one can expect to obtain results
which are expressed by means of known functions of € plus an unknown term
which is smaller than a positive known function of €. The approach adopted
here stems from the papers of Lanza de Cristoforis [20, 21, 22, 23, 25] and it
is in some sense alternative to the approach of the asymptotic analysis. The
aim is to express the dependence upon € in terms of real analytic functions
defined in a whole open neighborhood of ¢ = 0 and in terms of possibly
singular but completely known function of €, such as €2~ or loge. As a
corollary, one could obtain asymptotic formulas which agree with those in
the literature.

We now describe in details the content of each chapter.

Chapter 1. In subsection 1.1.1, we present the construction of a par-
ticular fundamental solution S of a given elliptic constant coefficient partial
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differential operator L of order 2k on R™, £ > 1, n > 2. For this purpose,
we exploit John [14, Chapter III]. In subsection 1.1.2; we investigate the
dependence of such a fundamental solution upon perturbation of the coeffi-
cients of the operator. We verify that, if the coeflicients of the operator are
contained in a bounded set, then there exists a particular fundamental so-
lution of the type introduced in subsection 1.1.1 which is a sum of functions
which depend real analytically on the coefficients of the operator. Such a
result resembles the results of Mantlik [29, 30] (see also Treves [43]), where
more general assumptions on the operator are considered. We observe that
it is not a corollary. Indeed, the suitably detailed expression for the funda-
mental solution, which is obtained in subsection 1.1.1, cannot be deduced
by [29, 30].

Section 1.2 deals with the single layer potential of the elliptic operator L
corresponding to the fundamental solution S introduced in subsection 1.1.1.
We fix an open and bounded subset © of R™ with € and R™ \ cI€2 connected
and we assume that the boundary 02 is a compact sub-manifold of R™ of
Holder class C™*, with m € N\ {0} and 0 < A < 1. We regard  as
a given fixed set and we consider open subsets of R” whose boundary is
parametrized by a diffeomorphism of class C™* defined on 9. Clearly not
all the functions of 9f) to R™ give rise to the boundary of an open subset of
R™. So in subsection 1.2.1 we introduce a class Agq of admissible functions
on 92. We also recall some useful properties of the functions of Agq pointed
out by Lanza de Cristoforis and Rossi in [27, 28]. Then for each ¢ € Apq
of class C™* and for each density function p of class C™~1* defined on 9
we consider the single layer potential v which is the function defined on R"
by

o(E) = / S(E — o V() doy, V€€ R
$(0Q)

where S is the fundamental solution of L introduced in subsection 1.1.2.
Moreover, for each multi-index g with |5| < 2k — 1, we denote by vg the
function of R™ to R defined by

05(€) = / (@S)(€ — muod V() doy, ¥ EER,
6(092)

so that vg = c'?gv on R™\ ¢(99). We denote by V3 the function of 02 to R
which is the composition of vg and ¢. Our purpose is to investigate the de-
pendence of V upon suitable perturbations of the function ¢, of the density
1, and of the coefficients of the operator L. We state in subsection 1.2.2 the
main result of the present chapter, which is a real analyticity theorem in the
frame of Schauder spaces for Vj , |3| < 2k—1 (see Theorem 1.7.) The rest of
section 1.2 is dedicated to the proof of such a theorem. The main idea of the
proof stems from the papers of Lanza de Cristoforis and Preciso and of Lanza
de Cristoforis and Rossi and exploits the Implicit Function Theorem for the
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analytic functions. Indeed, Theorem 1.7 is in some sense a natural extension
of Theorem 3.23 of [26] (where the Cauchy integral has been considered), of
Theorem 3.25 of [27] (where the Laplace operator A has been considered)
and of Theorem 3.45 of [28] (where the Helmholtz operator has been con-
sidered.) Here we confine our attention to elliptic operators L which can be
factorized with operators of order 2 (cf. Theorem 1.7.) In order to prove our
main Theorem 1.7, we need some preliminaries. In subsection 1.2.3 we sum-
marize some regularity properties of the layer potentials. In subsection 1.2.4
we summarize the jumping properties of the corresponding derivatives. In
subsection 1.2.5 we introduce an auxiliary boundary value problem and in
subsection 1.2.5 we investigate some stability properties of such an auxiliary
boundary value problem. In subsection 1.7 we prove our main Theorem 1.7.
In the last section of the chapter we focus our attention on single and
double layer potentials which arise in the study of certain boundary value
problems of physical interest, such as the basic boundary value problems
for the Lamé equations and the Stokes system. First, we need some aux-
iliary results for the bi-Helmholtz single layer potential and its derivatives,
which are obtained as a straightforward consequence of Theorem 1.7 in the
subsection 1.3.1. Then in subsection 1.3.2 we give a suitable expression of
the fundamental solution of the Lamé equations and we deduce that the
corresponding single and double layer potentials depend real analytically
upon perturbations of the domain, the density and the coefficients of the
operator. By a similar argument we deduce also that the single and double
layer potentials relative to the Stokes system depend real analytically upon
perturbations of the domain and the density (see subsection 1.3.3.)

Chapter 2. In the second chapter we consider some boundary value
problems for the operator L[b] = A+bVdiv, where b > 1—2/n is a constant,
in a domain with a small hole. The behavior of the solution and of the
corresponding energy integral as the hole shrinks to a point is investigated.

To explain our results, we now present in details the statement of one
of the boundary value problems. First we introduce the domain. We fix a
bounded open subset Q% of R™, such that Q% and R™ \ clN? are connected,
and such that Q% is submanifold of class C™*, with m € N\ {0} and
A €]0,1[. If ¢¢ is a C™* function defined on 9Q? which belongs to the class
of the admissible functions Aggqq, then its image ¢?(9Q?) splits R” into two
connected components. We denote by I[¢?] the bounded one. Then I[¢9] is
a bounded open subset of R” with boundary of class C"* parametrized by
the function ¢?. Now, we make a hole in the domain I[¢?]. We fix another
bounded open subset Q" of R”, with Q" R™\ clQ” connected, and 0Q" of
class C™*. The hole will be obtained by a suitable affine transformation
of the domain I[¢"], with ¢" a C™* diffeomorphism on 99" which belongs
to Aygn. So, we take a point w in the domain I[¢¢], and we take a scalar
e € R. Clearly, if ¢ is small enough, the closure of the set w + el[¢"] is
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contained in I[¢9]. If this is the case, w + el[¢"] is our hole, and we obtain
a perforated domain Afw, e, ¢", %] by removing the closure of the hole w +
el[p"] from the domain I[¢?]. We note that Alw, e, ¢", ¢ is a bounded
open and connected subset of R™ with boundary made of two connected
components, w + €¢™(0Q") and ¢?(00Q%). We denote by £™* the set of
all the admissible quadruples (w, €, o, gzﬁd) which give rise to a perforated
domain Afw, €, ", ¢?] and we point out that £™?* is an open subset of the
Banach space R” x R x C™*(9Q" R") x C™*(9Q% R"). In particular,
Alw,0,9", ¢ = T[¢"] \ {w}.

We now introduce a boundary value problem in the domain Alw, €, ¢, ¢
with € > 0. So let g" and ¢g? be two functions of C™*(9Q" R") and
C™mA (9924, R™). We consider the following system of equations,

L{blu = 0 in Alw, €, ¢", ¢,
u=g"o(w+ep) =V on w+ ep(OQM), (0.1)
u=g%o (¢")=V on ¢%(007).

Problem (0.1) has a unique solution u of C™*(clA[w, €, ¢", $?], R™) for each
given b>1-2/n, (w,e,¢" ¢%) € E™* and (g%, g% € C™ANOQ", R™) x
C™mA (90T R™) (cf. subsection 2.2.2.) So it makes sense to consider such
a solution as a function of the variables (b,w,¢, ¢, ¢?, f, f4) and to write
ulb, w, €, o, o2, 1 fd] to denote it. Our purpose is to investigate the depen-
dence of ulb,w, €, ", ¢, 7, £ upon the 7-tuple (b, w, e, o", ¢, f7, f4). We
notice that we investigate the dependence of the solution upon perturbation
of the coeflicient of the operator, and of the point where the hole is situated,
and of the diameter of the hole, and of the shape of the hole, and of the
shape of the outer domain, and of the boundary data on the boundary of
the hole and on the outer boundary. In particular we want to investigate
the behavior of u[b,w, €, ¢, ¢¢, f*, f4] as € — 07 and the hole shrinks to a
point.

For fixed values of b, w, ¢, ¢%, ¢", ¢, the last problem is not new at
all. Indeed it has been long investigated by the techniques of asymptotic
analysis. It is perhaps difficult to provide a complete list of contributions.
Here we mention the work of Kozlov, Maz’ya and Movchan [17], Maz’ya,
Nazarov and Plamenewskii [31, 32|, Ozawa [37], Ward and Keller [46]. To
understand the kind of results that we can expect by asymptotic analysis,
we consider a simpler situation. Let n > 3. Let Q7 be the bounded open
set introduced above. We assume that Q¢ contains the origin of R” and we
fix a function g? of C™*(9Q?). Then we denote by B,, the unit ball of R",
and we fix a function g" of C™*(0B,,). We consider the following boundary
value problem,

Au=0 in Q4 \ cl(eB,,),
u=g? on 00,
u(€) = g(¢/e) for € € (eBy),
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where € > 0 and cl(eB,,) C Q¢ It is well known that such a boundary value
problem has a unique solution u[e]. Now let & # 0 be a point of Q. Then,
by the so-called compound asymptotic expansion method, we can deduce
that the asymptotic behavior of the solution u[e] evaluated at &y as € — 0
is delivered by the following equation,

¢ (vj (%) + w;(éo/€)) + O,

Mz

€l(&) =

j=0

where the v; are solutions of suitable boundary value problems in Q4 and the
w; are solutions of suitable boundary value problems in the exterior domain
R™\ cIB,, (cf. Maz'ya, Nazarov and Plamenewskii [31, Theorem 2.1.1].)

As announced, we adopt the different approach proposed by Lanza de
Cristoforis in [20, 21, 22, 23, 25]. The results that we obtain are expressed
by means of real analytic functions and by completely known function of e.
With the notation introduced above, let ey = (bg, wo, 0, ¢, ¢4, gi', g&) be an
admissible 7-tuple with ¢ = 0. Let €2 be an open bounded subset of R™ with
1 C I[¢d] \ {wo}. We prove that the solution u[e] of (0.1) can be written
in the form

ulel(©) = UVl + Y (su(@VOlel + VOle]) UPlelie) (0.2

v

for all £ € cI and all e = (b,w, €, ¢", ¢%, g", g?) with € > 0 in a open neigh-

borhood Uy of e, where UM, U 2) V;g ), VZ-§-2) are real analytic operators
defined on the whole open nelghborhood Uy and 7, is the function of € de-
fined by 7, (¢) = loge for n = 2, v,(¢) = 27" for n > 3 (cf. Theorem 2.53.)
In particular, if n > 3, one sees that u[-] admits a real analytic continuation,
while for n = 2, u[-] has a logarithm behavior around a degenerate 7-tuple.
A similar result is obtained for the energy integral of the solution u[e] (cf.
Theorem 2.55.)

Then we turn to consider the following Robin boundary value problem

for € > 0,

L[bju =0 in Alw, e, ¢", o7,
=T(b, Du)v(pephy = gt o (w+ eph)=1 on w+ g™ (00"),  (0.3)
T(b, Du)vga + a0 (¢!)Nu = g% o (¢/) 1 on ¢4(907),

where T'(b, Du) = (b—1)(divu) + (Du+Du'), and v, 4 ny, Vga are the unit
outward normal to the boundary of w + €l[¢"] and I[¢?], respectively, and «
is a matrix valued function on 9Q¢. Under reasonable conditions one verifies
that (0.3) has a unique solution. Then we prove a real analytic continuation
theorem for the solution in terms of (b,w, €, ¢, ¢%, g", g%) in Theorem 2.69,
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and a real analytic continuation theorem for the corresponding energy in-
tegral in terms of (b,w, €, ¢, ¢%, g", g?) in Theorem 2.70. We also consider
the following boundary value problem for € > 0,

L[blu =0 in Alw, €, 0", ¢,
=T(b, Du)v(tephy = T fo(w+ed)TY on w + e (00),  (0.4)
T'(b, Du)vga + a0 (¢ Vu =0 on ¢?(999),

where both the domain and the boundary data display a singular behavior
for ¢ — 0. We deduce also in this case a functional analytic representa-
tion formula for the solution and for the corresponding energy integral (cf.
Theorems 2.71 and 2.72.) We notice that in this case we have real analytic
continuation of the solution around ¢ = 0, while the energy integral can have
a singular behavior (cf. Remark 2.73.)

Finally we consider the following inhomogeneous Dirichlet boundary
value problem for € > 0,

L[b]u =F in A[W,Q ¢h’¢o]’
u=g"o(w+ed) D on w+ ed(ON), (0.5)
u=g%o gﬁd(_l) on ¢%(00%).

Under reasonable conditions we prove also in this case a formula similar to
(0.1) both for the solution and for the energy integral (cf Theorems 2.80 and
2.82.)

We now briefly outline our general strategy.

Step 1. We show that the solution of the boundary value problem can
be expressed in terms of layer potentials and elementary functions. The
density of the layer potentials are determined by suitable boundary inte-
gral equations of Fredholm type defined on the boundary of the domain
Aw,e, 6", 7).

Step 2. We recast such boundary integral equations into an equivalent
system of boundary integral equations defined on the boundary of the fixed
domains Q" and Q¢. The new system will admit a unique solution for all
admissible 7-tuple (b, w, €, ¢", ¢%, f, f%) with € > 0.

Step 3. By exploiting the real analyticity results for the layer potentials
obtained in the first chapter of the dissertation and by the Implicit Mapping
Theorem we deduce a real analyticity theorem for the solution of the system
on the boundary of the fixed domains.

Step 4. We compound the results of Chapter 1, of Step 1 and of Step 2
and we deduce a representation formula like (0.2) for the solution of original
boundary value problem.

The chapter is organized as follows. In section 2.1 we consider the ba-
sic boundary value problems for the operator L[b]. To each boundary value
problem a suitable boundary integral equation is associated, and some prop-
erties of the corresponding boundary integral operator are investigated. The
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results of section 2.1 will enable us to produce solutions for the boundary
value problems which are expressed by means of layer potentials and by
elementary known functions. So section 2.1 accomplishes the first step of
our general strategy. Then, in section 2.2, we consider the boundary value
problem (0.1). In section 2.3, problems (0.3) and (0.4) are considered and
finally, in section 2.4 problem (0.5) is considered.

Acknowledgment. The results of the present dissertation will appear in papers
by Matteo Dalla Riva, and by Matteo Dalla Riva and Massimo Lanza de Cristoforis.






Notation

Let X and Y be real normed spaces. .Z(X,)) denotes the normed space of
the continuous linear maps of X' into ) and is equipped with the topology
of the uniform convergence on the unit sphere of X. For standard defini-
tions of calculus in normed spaces, we refer, e.g., to Prodi and Ambrosetti
[40]. We understand that a finite product of normed spaces is equipped with
the sup-norm of the norm of the components, while we use the euclidean
norm for R™. The symbol N denotes the set of natural numbers includ-
ing 0. Throughout the paper, n is an element of N\ {0,1}. The inverse
function of an invertible function f is denoted f(=1), as opposed to the re-
ciprocal of a real-valued function g which is denoted ¢g~!'. For all € R",
x; denotes the i-th coordinate of z, |z| denotes the euclidean modulus of
z, and B, denotes the unit ball {z € R" : |z| < 1}. A dot ‘-’ denotes the
inner product in R™. M,,x,(R) is the set of the real n x n-matrices. Let
A € My, (R). Then A’ denotes the transpose matrix of A and A;; denotes
the (i, ) entry of A. If A is invertible A~! denotes the inverse matrix of A
and we set A~' = (A~1)!. Let B C R". Then clB denotes the closure of B,
OB denotes the boundary of B, and z + RB = {x + Ry : y € B} for all
x € R", R € R. Let €2 be an open subset of R”. The space of the m times
continuously differentiable real-valued functions on {2 is denoted by C™(€2).
Let f € C™(Q). The partial derivative of f with respect to z; is denoted
by 0if, O, f or % The space of the m times continuously differentiable
vector-valued functions on {2 is denoted by C™(,R™). Let f € C™(2,R™).
The i-th component of f is denoted by f; and Df denotes the gradient
matrix (0;fi)ij=1,.n- Let @ = (a1,...,an) € N, |a| = aq + -+ + an.
Then D®f denotes 01" ... 95" f. The subspace of C™(12) of those functions
f whose derivatives D®f of order |a] < m can be extended with conti-
nuity to a bounded function of clf2 is denoted C™(clQ2). Then C™*(clQ)
endowed with the norm [|f[lm = 324 <;n SuPeao [D?f| is a Banach space.
The subspace of C"™(clf2) whose functions have m-th order derivatives that
are Holder continuous with exponent A €]0,1] is denoted C™*(clQ) (see
e.g. Gilbarg and Trudinger [11].) Let B C R™. Then C™*(cl), B) denotes
{f € (C™McQ))™ : f(cIQ) C B}. If f € C%(clQ), then its Holder quo-
tient | f|5 is defined as sup {|f(z) — f(y)||z — y|™ : =,y € 1%,z # y}. The
space C"™(clQ), equipped with the norm || f|lm.x = || f|lm + 2 jaj=m DY fIx,

xiii
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is well known to be a Banach space. We denote by C~%*(clQ2) the space of
distributions {divg : g € C%*(clQ,R")} endowed with the norm || f||_1 . =
inf{|lgllon : f = divg,g € COMcIQ,R™)}. C~1*clQ) is a Banach space
(see e.g., Lanza de Cristoforis and Rossi [28].) We say that a bounded open
subset Q of R™ is of class C™ or C™?, if its boundary 0 is a submanifold
of R™ of class C™ or C™*, respectively (see e.g., Gilbarg and Trudinger [11,
§6.2].) We define the space C**(9Q), with 0 < k < m, by exploiting the
local parametrizations.



Chapter 1

The layer potentials

In this chapter, we construct a particular single layer potential of a given
constant coefficient elliptic partial differential operator of order 2k. Then,
in the frame of Schauder spaces, we prove a real analyticity result for the
dependence of such a potential and its derivatives till order 2k — 1 upon
suitable perturbations of the domain, the coefficients of the operator and
of the density. Exploiting such a result, we study the dependence upon
perturbations of the domain, the coefficients and the density of the single
and double layer potentials which arise in certain boundary value problems,
such as the Dirichlet and Neumann problems for the Lamé equations and
the Stokes system. We deduce also in this case that the dependence is real
analytic.

1.1 A particular fundamental solution

1.1.1 Construction of a particular fundamental solution

Let P € R[¢y,...,&,] be a real polynomial of degree 2k (n > 2, k > 1)
and denote by P, the homogeneous term of P of degree 2k. We assume
that the operator L = P(0y,,...,0,,) is elliptic on R" (i.e. Por(§) > 0
for all £ = (&1,...,&,) € R™, £ # 0) and then we investigate the structure
of a particular fundamental solution S of L (LS(z) = 6(z), where § is the
Dirac delta function.) For this purpose we exploit the construction of a
fundamental solution given by John in [14, Chapter III].

Theorem 1.1. Let n,k € N, n>2, k> 1. Let P € R[{y,...,&,] be a real
polynomial of degree 2k and let L = P(0y,,...,0s,) be elliptic. Then there
exist real valued functions A(-,-) defined on 0B, x R, B(:) defined on R™
and C(-) defined on R™, such that the following statements hold.

(i) There exists a sequence {fj(-)}jen of continuous functions of OB, to
R such that ‘
fi(=0) = (1)1 f;(8), V6 oB,

1



2 CHAPTER 1. THE LAYER POTENTIALS

and

Al,r) = ifj(ﬁ)rj, vV (0,r) € 0B, x R. (1.1)
=0

The series in (1.1) converges absolutely and uniformly in all compact
subsets of 0B, x R.

(i) B is real analytic and there exists a family {b, : o € N |a| > 2k —n}
of real numbers such that

B(z) = Z boz®, VYV zeR"™ (1.2)
aeN"™

|a|>2k—n
Furthermore B can be chosen to be identically O if n is odd.
(iii) C is continuous and can be chosen to be identically 0 if n is odd.
(iv) The function S of R™\ {0} defined by
S(z) = 2[* 7" A(2/|2], |2]) + B(2) log 2| + C(2), ¥ 2 € R*\ {0},
s a fundamental solution of L.

Proof. In John [14, Chapter III] the existence of the functions A(-,-), B(-)
and C(-) satisfying (iii) and (iv) has been proved. We claim that such
functions satisfy also (i) and (ii).

For all £ € 0B, and t € R, we denote by v(z,£,t) the solution of the
equation Lv = 1 for which v and all its derivatives of order < 2k — 1 vanish
on the hyper-plane z - £ = t. Then we define, for every z € R™ \ {0},

Wo(z) = W/mn /Oz.gv(z,ﬁ,t)sgntdtdag, (1.3)
Wi(z) = —(2731,)” /%nv(z,g,onogp.g\ do (1.4)
Wa(z) = _(2731')71 5 /02'5”(2’5’15);“(2’5’0) dtdog,  (L5)
and 1
5= Sy Rt Ao

By John [14, Chapter 3] we know that S is a fundamental solution of L. We
now investigate the structure of S.

By writing P(CE) = (2 Poy,(€) P(CE) [P Por(€)] ", for all ¢ € C\ {0}
and £ € 0B, one can easily recognize that there exists R > 0 such that

P(¢€) has no complex zeros ¢ outside of the ball RBg, for all £ € 0B,,. Now
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let v be an arbitrary simple closed curve of class C! in the complex plane
that describes the contour of the ball RBsy. Since L has constant coefficients,
the function v(-, -, ) is delivered by the formula

1 e(z:€-1)¢ B 9B
/U(Zagvt)_ Imi CP(Cf) C V(z,ﬁ,t)e X n X
(see John [14, pp. 65-66].) Thus we have
= a;
HOSUEDD ”]! — 1), V(26 ER"x OB, xR (L7)
7=0
where ‘
(6= S d A OB 1.8
aj(é.) :% »YP(CQ C? ge s ( . )

for every j € N.

We now show that ap = a1 = -++ = agg—1 = 0 and agg = 1/Po. Let
¢ € 9B, and g;(¢) = ¢/1/P(¢¢). By (1.8), we have a;(£) = —Res(g;, o0).
Since g; is holomorphic in a punctured neighborhood and lim¢_,+ (g;(¢) =0
for j = 0,...,2k — 1 and lim¢ o0 Cg2x(() = 1/P2x(&), we have a;(§) =
—Res(gj,00) = 0 for j = 0,...,2k — 1 and ag,(§) = —Res(gox,0) =
—Cok,—1 = 1/ Py (§).

Furthermore, one easily verifies that there exists M > 0 such that
la;j(€)] < MRU=Y=2 for all ¢ € OB,,. Hence the series in (1.7) converges
absolutely and uniformly in all compact subsets of R"™ x dB,, x R.

Now let n be odd and substitute v with its expression (1.7) in equation
(1.3). Since we can integrate term by term, we obtain

2) =Y Wo,(2), (1.9)

j=2k

with

Wos(z) = 4<2w1>1 /mn GI jfl))! (z- &) sgn(z - €) dog. (1.10)

We observe that, for every j € N, ¢ > 0 and z € R”,
W[)J(CZ) = Cj+1W0,j(Z) and W()J‘(—Z) = (—l)jW()’j(Z). (1.11)

Moreover we can prove that Wy ; € C*°(R"™ \ {0}). To do so we produce a
convenient expression for Wy ;. By definition of a; and of Wy ;, we have
’Z|J+1

j—l—l

IR 9T
sgn((z/]z]) - €) d¢ doe

WOJ
B,
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for all z € R™. Then we fix an arbitrary unit vector 1 and we restrict z
to lay in the half space z - > 0. With such a restriction we introduce a
new variable of integration £ instead of £ on 0B, namely, for all § € 9B,
0-n >0, we set

=10 =€ +2¢ - 0 Doy ()

We note that T'(-,0) is an orthogonal transformation: |T'(¢’,6)| = |¢'|, and
in addition 6 - §{ = n-&’. The expression for Wy ;(z), for z in the half-space
z-n > 0, becomes

ziHL _
Wos(e) = mae [ | Gy PETE /e

I €Y sgn(n - €) d¢ dog

and since the integrand depends real analytically on z for z-n > 0, we have

olal J+1
e 1

aza (j+1)! P(CT(E,2/)2)) (1.13)
'CJ 1(77 . fl)j—Hsgn(W . 5/) dC daé:/

for all z € R™ such that z-n > 0. By equation (1.13) and by standard

theorems on integral depending on parameters we deduce that D*Wj ;(z)

is a continuous function for z - n > 0. Since 7 is an arbitrary unit vector it

follows that D*W, ; is a continuous function on R™ \ {0} for all a« € N".
We now set

OB,

£(0) = (A"“Woﬁzk) @), V€ OBy,

for every j € N. Clearly f;(6) is a continuous function of # € 0B,, and by

(1.11), f;(=0) = (1) f;(¢) and
(A Worar) (2) = [ fi(=/1e), ¥z € R\ {0},

Moreover, substituting Wy in the form (1.9) into equation (1.6) we obtain

n+1 > = ntl —-n - j
2) =AY Woz) =Y AT Wo(z) =2 fi(z/12])]2
i=2k j=2k =0
(1.14)

which immediately implies statement (ii). Here we still have to justify that
one can exchange the summation with AT

To do so we estimate |[D*W, j(z)| by exploiting (1.13). Let

woo(C,€,0) = P(CT(€,0) ™"



1.1. A PARTICULAR FUNDAMENTAL SOLUTION 5

The function wpo(¢,&’,0) does not depend on j and is real analytic for
(¢,€,0) in the set A, of the triples which satisfy

(€ ROBy, ¢,0c0OB,, 60-n>0.

Moreover, for all multi-indexes ¢« € N™ with || =1,

8|L| |Z‘j+1 / -1
o [ Erer ™)
2P , 1 /
=B (a6 €2/1eD) + (6. 5712D

where wg, and wy, are the functions of A, defined by

wO,L(Ca gla 9)
wl,L(C? 5/) 9)

awa,O(Ca 5/7 0) 5
aé w0,0(Ca 51’ 0) -0 Z?:ﬂiaaiwo,o(ﬁa 5/7 9)

We note that wp, and w;, do not depend on j and are analytic for (¢,£’,6)
in the set A,. By an inductive argument on |a|, one can show that for
each a € N" with |a| < j there exist a natural number N(«) and sequences
{ci(4) : j €N,j > |a|} of real numbers in [0,1], for ¢ = 0,..., N(«a), and
functions w; o (-, -, ) of A; to C such that

olal Eias
0z ((j +1)!

P<<T<s',z/|z|>>1)

|Z|j+1—|a| N(a)

— m lz:% Cz(]) wz’,a(Ca§ 72/‘Z‘)

for all (¢,¢’, z) such that (¢, ¢, 2/|z|) € A,. By such an equality we deduce
that, for all & € N™ there exists a positive constant M such that

olel 1|zt
B8z ((j +1)!

| 2|71l
<M —
(G +1—laf)!

P(gT(g’,zAzr))‘l)

for all j > |a| and for all ¢ € ROB,, ¢ € 0B, and z € R™ such that
(z/|z]) -n > 1/2. Then by (1.13) there exist M’, M" > 0 such that

| 2|71l

DWW <M/ M// 7j—1
| z 07](2)‘ — ( ) (]+1—|Oé|)'

for all 7 > |a| and z in the cone (z/|z|) -n > 1/2.

Finally we recall that 7 is an arbitrary unit vector. So, possibly choosing
larger constant M’ and M”, the previous inequality holds for z in the whole
of R™\ {0}. It follows that the series > 22, D*Wp () is dominated by a
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convergent power series and hence it converges absolutely and uniformly in
all compact subsets of R™ \ {0}. This implies that

00 00
D* Z Wo’j(z) = Z DaWO’j(Z)
j=0 Jj=0

for all a € N, In particular we can deduce (1.14). Moreover, if we set for
all 6 € 0B,, and r € R

Al,r) = ij(e)rj,
=0

then A(6,r) satisfies statement (i).Then if we take B = 0, C' = 0, statement
(iv) for n odd follows by equation (1.14) and statements (ii) and (iii) for n
odd are obvious.

Now we only sketch the proof for n even, the argument being very similar
to the one developed for the case n odd. If n is even we have S(z) =
A (W (z) + Wa(z)). We observe that Wa(z) is O™ function defined in the
whole of R” (even for z = 0), and so if we set C(z) = A2Ws(z), then C
satisfies statement (iii). Now we consider S;(z) = A2W;(z). Substituting
v with its expression (1.7) into equation (1.4), we obtain

Wi(z) = > Wij(z), VzeR",
j=2k

with

(2mi)n 5!
By arguing as above one can show that Wi ; € C*°(R" \ {0}). Moreover we
have

Wis(z) = -t /a i ) (L e tog]z -] do.

AZWy(2) = Uj(2) + V(z) log 2|
where, for every j € N, j > 2k, V; is a homogeneous polynomial of degree
j—mnin R® with V; = 0 for j < n, U; is continuous in R™ \ {0} and,
Uj(cz) = d7"U;(z), Uj(—2) = (—1)’Uj(z) for all ¢ > 0 and z € R™ \ {0}.
We set, for every j € N and 0 € 0B,,, f;(f) = Ujior(f). By arguing as
above, we can show that we can exchange the order of differentiation and of
summation and thus we obtain

Si(z) =A% Y Wi (2) = > ATW4(2)

J=2k Jj=2k
o.9] ) o
= 27 Y Fiz/lDIal +logl2l Y Vi(2).
J=0 J=2k

Now we set A(0,r) = >3, f;(0)r7 for all (§,7) € OB, x R and B(z) =
Z;’i% Vj(z). By arguing as above we deduce that the series which defines
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A converges absolutely and uniformly in all compact subsets of B, x R
and the accordingly statement (i) holds. Similarly we deduce that the series
which defines B converges absolutely in the compact subsets of R™. Since
such series is a power series, B is real analytic. Hence statement (ii) follows.
Then also statements (iv) for n even follows. O

Remark 1.2. With the notation introduced in Theorem 1.1, we denote by
So(z) the function of R™\ {0} to R defined by

So(2) = 27" " fol(z/|2]) +log 2| Y baz®
aeN?
|a|=2k—n

where fo(-) is the coefficient of the first term in (1.1) and b, are the coeffi-
cients with |a| = 2k —n of (1.2). Hence b, = 0 if n is odd. Then Sp(z) is
a fundamental solution of the homogeneous operator Lo = Poy(0y).

Proof. In the proof of Theorem 1.1 we saw how to construct a particular
fundamental solution of P(9,). Here we specialize such a construction to the
case P = Py, where the function v(z,§,t) defined as a solution of Lov = 1
is a polynomial. Indeed a direct computation based on the definition of
v(z,&,t) shows that

a2k (§ )

(2k)' (Z : g - t)Qk = ;(z ' g - t)2k7

(2k) 1P (€)

for all (z,&,t) € R"x B, xR. Moreover, for n even, Lo(A 2 Ws) = 0, because
AzWsy is a polynomial function of degree < 2k, and thus the fundamental
solution is given only by the term Az Wj. O

v(z,&,t) =

1.1.2 Dependence upon the coefficients of the operator

If X is a subset of a Banach space, we say that a function f defined on X
is real analytic if f is the restriction to X of a real analytic function defined
on an open neighborhood of X'. We need the following elementary result.

Lemma 1.3. Let n,m € N\ {0}. Let X be a subset of R™ and let Y be a
compact subset of R™. Let T be a finite measure on' Y and let f(-,-) be a real

analytic function of X x Y to R. Then the function F(-) of X to R defined
by F(z) = fy f(z,y)dry for all x € X is real analytic.

Proof. In the sequel for each x = (21, ...,z,) € R” and € > 0 we denote by
Q(z,€) the rectangle

Q(z,e) = {2 e R" : |2} —z1]| < ¢€,...,|z}, — x| < €}

Similarly, we define Q(y,€) for all y = (y1,...,Ym) € R™ and € > 0.
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Now, let z¢ be a point of X. Clearly the set {zp} x V is compact. It
follows that there exist € > 0 and y1,...,y; € Y such that the set {zo} x Y
is covered by the finite set of rectangles {Q(xo,€) x Q(ys,€)}i=1,. 1, and for
alli=1,...,1 there exist a family {ag% :a € N* 3 € N™} of real numbers
such that

fla,y) = > aaple—20)*(y — v)° (1.15)
aeN" BeN™
for all (z,y) € (Q(xo, )NX) X (Q(yi, €)NY), and the series in (1.15) converges
absolutely and uniformly for all (z,y) € clQ(xo,€) X clQ(y;,€). Then the
series in (1.15) equals

3 )@ —20)*, Y (2,y) € Qzo,€) X Qys €), (1.16)
aeN”
with ’ A
W)=Y ally—w)’, VyeBlye) (1.17)
BeN™

for all ¢ = 1,...,l. We note that the series in (1.16) and (1.17) converge
absolutely and uniformly in clQ(xg, €) x clQ(y;, €) and cl@Q(y;, €), respectively.
In particular, b,(-) is a continuous function on clQ(y;, €) and the series

> B )l oo oy (= — x0)

aeN"™

converges absolutely and uniformly in cl@Q(z, €). Since b (y) = by )(y) for
all y € Q(yi,€) N Q(yj,¢€) and for all « € N* and 4,j =1,...,1, we have

Zb (& —x0)% VY (z,y) € (XNQ(zo,€)) XV,

aeN”

where b, (+) is a continuous function on ) and the series

> 1Bl (@ — 20)°

aeN”

converges absolutely in cl@Q(zg, €). Then we have

:Ajmwm@

= Z (/yba(y)dTy> (x —20)*, Vx€Qxo,6)NA,

aeN"

where the series converges absolutely in cl@Q(zg, €). Since xg was an arbitrary
point of X the proof of the lemma is completed. O



1.1. A PARTICULAR FUNDAMENTAL SOLUTION 9

Now, for each n,l € N, n > 0, we denote by N(n,l) the set of all multi-
indexes o with || < I. We say that a is a vector of coefficients of order
lif a = (aa)aen(n,) is a real function on N(n,l). We denote by R(n,l)
space of all vectors of coefficients of order . Then, by ordering N(n,l) on
arbitrary way, we identify R(n,l) with a finite dimension real vector space
and we endow R(n,l) with the corresponding Euclidean norm |- |. For
each a € R(n,l) we denote by Pla](§) = Pla]({,..-.,&,) the polynomial
2 aeN(n) Gaé™ and we set Lla] = P[a](y,, ..., 0s,). Then Lla] is a partial
differential operator with constant coefficients. If L[a] is elliptic we can
construct the corresponding functions S(a, z), A(a,f,r) and B(a, z), C(a, z)
as in Theorem 1.1. We have the following.

Theorem 1.4. Letn,k € N, n>2, k> 1. Let & be a bounded open subset
of R(n,2k) such that L[a] is an elliptic operator of order 2k for all a € cl&.
Then there exist a real analytic function A(-,-,-) defined on & x IB, x R
and real analytic functions B(-,-), C(-,-) defined on & x R"™ such that the
following statements hold.

(i) There exists a sequence {f;(-,-)}jen of real analytic functions of & x
OB, such that

fila,—0) = (1) f;i(a,0), V (a,0) € & x OB,

and

A(a,0,r)=>_ fi(a,0)r!, V(a0,r)€& x B, xR,
=0
where the series converges absolutely and uniformly in all compact
subsets of & x OB, x R.

(ii) There exists a family {bo(-) : a € N" |a| > 2k —n} of real analytic
functions of & to R such that

B(a,z) = Z bo(a)z%, V (a,z) € & x R™.
aeN™
|a|>2k—n
Furthermore B can be chosen to be identically 0 if n is odd.
(iii) If n is odd C can be chosen to be identically 0.
(iv) For all a € & the function S(a,-) of R™ \ {0} to R defined by

S(a, z)
= [2[** " A(a, 2/|2], |2]) + B(a, 2)log |2| + C(a,2), ¥ z € R\ {0},

is a fundamental solution of L[a].
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Proof. The proof for n odd and n even is similar and so we confine our
attention to the case n odd, and we begin by considering the construction
of A (see Theorem 1.1.)

First we note that there exists a positive constant ¢ > 0 such that
Py [a](§) > € for all £ € 0B, and for all a € &. Indeed, by a continuity
argument, one verifies that, for each ag € cl€’, there exist a neighborhood
V(ag) and a constant e(ag) > 0 such that Pyi[a](&) > e(ag) for all £ € 9B,
and all a € V(ap). Since clé is compact, it is covered by a finite number
of such neighborhoods and taking as € the minimum of the corresponding
constants we deduce that Pyi[a](§) > € on their finite union. Moreover,
since & is bounded, there exists L > 0 such that |a| < L for all a € &.

As we have already noted (see the proof of Theorem 1.1), for all elliptic
constant coefficients operators L[a] the solution v(a, z,&,t) of the equation
L[aJv = 1 for which v and all its derivatives of order < 2k — 1 vanish on the
hyper-plane x - £ =t is delivered by the equation

1 e(ﬂﬁ'f—t)(
2mi J, (P[a)(¢€)
where 7 is a simple closed C! curve on the complex (-plane, which encloses

all roots of denominator for all £ € 9B,,. Now we show that it is possible to
choose the same curve ~ for all a € &. We observe that

ofa,z,6,1) = ac, (L18)

CPll(CE) = C*HPylal(e) [1+ Y Gl ,

a€N(n,2k—1) CQk_'OC‘ Py, [a] (5)

and thus, if we set R = max{2,2Le " 'CardN(n,2k—1)}, then, for all |(| > R,
£ € 0B, and a € V, we have

aaga

¢2h=lol Py [a](€)

This immediately implies that |(P[a](¢€)| > € and in particular, if v de-
scribes the contour of a ball of radius R in the complex (-plane, then all the
roots of ( P[a]((€) are enclosed by v for all £ € 0B,, and alla € &. So, for this
particular choice of 7, expression (1.18) provides a solution of the equation
L[a]v = 1, which vanishes together with all its derivatives of order < 2k — 1
on the hyper-plane = - £ = t, for all a € &. Moreover, since the integrand in
(1.18) depends real analytically on (a,z,§,t,() € & x R" x 0B,, x R x ROB,
then, by Lemma 1.3, v(a,z,{,t) is a real analytic function of (a,z,{,t) €
& x R" x 0B,, x R.

We also note that the function v(a, &, t) of (a,§,t) € & x IB,, x R defined
by

‘ < (2CardN(n, 2k — 1)) .

5(a,§,t)5v(a,m,§,:n-§—t): C

1 et¢
MAwwwd
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depends real analytically on (a,&,t) € & x 0B,, X R and vanishes for ¢ = 0
together with its derivatives with respect to ¢ till order 2k — 1. Then it must
be v(a, £, t) = t?kw(a, &, ) where w is a real analytic function on & x 9B, x R.

Now we go on with the construction of the fundamental solution and we
consider the function W} introduced in the proof of Theorem 1.1. We have

1 =t
Wo(a, z) = 12mi)i T /813”/0 v(a, z,§,t)sgnt dt dog

for all (a, z) € &xR™\{0}. We denote by A’ the real function of & x 9B, xR
defined by

Al(a,0,7) (1.19)

0-§
54(2;2')71—1/83 /0 (9'f—3)2kw(a,§;r(9-§—8))sgnsdsdag

for all (a,0,r) € & x 9B, x R. Thus Wy(a,z) = |z/*T14'(a,z/|z|,|2|)
for all (a,z) € & x R™\ {0}. We note that we can make the limits of
integration in the inner integral in (1.19) locally independent of 6 by a
suitable orthogonal substitution. Let n be an arbitrary chosen unit vector
and consider 6 restricted to the half sphere S;f = {0 € 9B, : -7 > 0}.
We introduce a new variable of integration & instead of £ by means of the
formula & = T'(¢', z/|z|) introduced in (1.12). We recall that, for any 6 € 9B,
with 6-n > 0, the transformation 7T'(-, 0) is an orthogonal one. In particular,
|T(&,0)] = [&']. Furthermore 6 - & = n-&. Thus the integral in (1.19)
becomes

n€
/ / (77 : 5/ - 8)2kw (aa T (gla 0) 7T(77 . fl - 5)) sgn s ds dO‘{/
OB, J0O

where the limits of integration do not depend on 6, at least for 6 € Sg‘ .
Moreover, if we set

w (a,&,r, §',t)
= w(a,7(¢,0),7(n- &)1~ 1) —w (a,T (¢€,0) ,r(n-€)(t — 1))

for all (a,8,r,&',t) € & x S x R x dB,, x [0, 1], then we have

1 1
Aa,0,r) = —— CENR1 =)W (a,0,r,&t) dtdoge
(a7 ’T) 4(27_”-)”,1 /clS,'?"'/O (77 6) ( ) w(a7 )Tagv) O¢

for all (a,0,r) € & x S;r x R. We recall that, the function w is real analytic
on & x 0B, x R, the function T(¢', ) is real analytic in (¢',0) € dB,, x S,
and satisfies |T'(¢',0)| = 1 for £’ € 9B,,. It follows that the function w is real
analytic on & X S;L x R x clS:{ x [0, 1]. Then the previous Lemma 1.3 implies



12 CHAPTER 1. THE LAYER POTENTIALS

that A’ is a real analytic function on & x S,J]r x R. Since 7 is an arbitrary
unit vector it follows that A’ is real analytic on & x 9B, x R.

Now we recall that Wy(a, z) = |z|***1A’(a, 2/|2|,|z|). Therefore, if we
differentiate Wy with respect to z;, i =1,...,n, we find

9., Wo(a,z) = |z|**A"(a, z/|2|, |2])

where A” is the function of & x 0B,, x R defined by

A'(a,0,r) = (2k+1)0;A'(a,0,7) + 0p,A'(a,0,r)

—0; > 0,00, A'(a,0,7) + 0;r0,A'(a,0,7).
j=1
We observe that A” have the same regularity properties of A’. By iterating
we verify that
Sla,z) = A" Wa, 2) = 2 " A(a, 2/|21, 2])

where A is a real analytic function on & x 9B,, x R.

Finally we exploit the proof of Theorem 1.1 and we obtain that for all
fixed a € & the function A(a,f,r) has a power series representation as in
statement (i). The coefficients f;(a,6) are given by

fi(a,0) = <A,:-2HWO,j+2k> (a,0)

where

1 (a, :
Wo,j(a, z) = W /6]3” ?;(ff))! (2 §)J+1 sgn(z - €) dog

and

ae = L[
aj(@,) = 2wéLP[a]<<£> d

With our choice of the curve v such equations hold for all a € & and we
can verify the real analyticity of fj(a,f) with the argument developed in
the proof of the real analyticity of A(a,d,r). So for n odd the theorem is
proved. The proof for n even is similar. O

1.2 The single layer potential

1.2.1 Technical preliminaries and notation

We first recall some technical facts of Lanza de Cristoforis and Rossi [28].
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Definition 1.5. Let ) be an open and connected subset of R™. We denote
by Asq the set of all functions ¢ € C1(O,R™) which are injective and
whose differential do(x) is injective for all x € Q. Similarly, we denote by
Acq the set of all functions ¢ € C'(clQ, R™) which are injective and whose
differential do(x) is injective for all x € cl€Q.

Now we fix two constants m € N\ {0} and A €]0,1[ and an open and
bounded subset © of R™ of class C"™*. We assume that Q and R™ \ cIf
are connected and we consider a function ¢ € C™*(9Q, R™) N Asq. By the
Jordan’s Separation Theorem (see e.g. Deimling [8, p. 26]), ¢(0f2) separates
R™ into two connected components. We denote by E[¢] the unbounded one
and by I[¢] the bounded one, and we denote by v, the unit outward normal
to the boundary of I[¢]. Then we denote by vq the unit outward normal
to the boundary of Q, we select a vector field w € C™*(9Q, R"™) such that
lw(z)] =1 and w(x) - vo(z) > 1/2 for all x € 9. With this notation we
have the following (see Lanza de Cristoforis and Rossi [28, §2].)

Proposition 1.6. Let m € N\ {0} and X\ €]0,1[. Let Q be an open and
bounded subset of R™ of class C™. Let 2 and R™\cl) be connected. Letw €
C™AOQ,R™) be a vector field such that |w(x)| = 1 and w(x) - vo(x) > 1/2
for all x € 0Q. Then, for each given ¢g € C™(IQ, R™) N Apq, there exists
a positive constant 6y such that, for all § €]0,dp] the following statements
hold.

(i) The sets

Qs {z+tw(x)|zecd, te€]—0,0[},
Q;a = {r+tw(x)|zed,te]—460[},

Q,; = {v+tw(@)|zed, te€l,d},

are connected,
0N = {r+tw(x)|zedd, te{-0,6}},
(9(2:76 = {r+tw(x)|zed, te{-60}},
09, = {z+tw(x)|zed, te{0,d}};
Q‘jé CQand Q5 CR™\clfd.
(ii) If ® € Aclﬁw,a’ then ¢ = ®lgq € Asq.
(iii) The set A’me’é = {<I> € Aaq,; : (I)(Q:,é) C ]I[tl)\ag]} is an open subset
of Aag,, , and ©(Q ;) C E[®[pq] for all @ € Ay, .
(iv) If @ € C™*(clfdy, 5, R™) N Alig, 5+ then both () 5) and B(Q )

are open sets of class C™>, and 8@(935) = @(8936), o(, 5) =
(09, 5)-
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(v) If ¢o € C™AOQ,R™) N Apq then there exists @y € C’m’/\(CIQ%g,R”) N
‘A,lew , such that ¢o = Do 0 -

(vi) If &g € Cm’)‘(leW;,]R") N Ai:mw(; and ¢o = Poloq, then there exist
an open neighborhood Wy of ¢q in C™AOQ,R™) N Apa and a real
analytic operator Eq[-] from C™*(9Q,R™) to C™(clQ, 5, R") which
maps Wy into Cm’A(CIQw,g,R") N ‘Aélﬂw,a and such that, Eg[¢o] = Po,
and Eg[op]lagq = ¢ for all ¢ € W.

1.2.2 The analyticity theorem

Let n,k € Nyn > 2, k> 1. Let & be an open bounded subset of R(n,2k)
such that L[a] is an elliptic operator of order 2k for all a € cl&. Thus,
we can apply Theorem 1.4 to L[a] with a € & and we can introduce the
corresponding analytic functions A(a, 6,r), B(a, z), C(a,z) and S(a,z). We
now fix two constants m € N\ {0} and A €]0,1[ and we fix an open and
bounded subset 2 of R™ of class C™* such that © and R\ cl{ are connected.
Ifac &, ¢ C™MNIN,R)NAgq, p € C™1ANOQ) and 8 € N, 8| < 2k—1,

we set

vsla, b, (€) = /qﬁ oy @@ E o d V) doy, VEERT, (120)

where the integral is understood in the sense of singular integrals if || =
2k — 1 and £ € ¢(09), namely

*

vsla, b, 4 (€) = /¢ o 2SN~ o6 oy

= lim (079) (@, & —n) po "N (n) doy, V&€ p(OQ).
=07 J$(00)\ (¢ +€By)

Then we set

Vsla, ¢, pl(x) = vgla, ¢, p] o p(z), V€ 0. (1.21)

Our goal is to prove the following.

Theorem 1.7. Let n,k € N, n > 2, k > 1. Let 61,%>,...,% be bounded
open subsets of R(n,2) such that L[a;] is an elliptic operator of order 2 for all
a; € clé; and for alli =1,... k. Let a(-) be the map of € = €1 X2 X ... )
to R(n,2k) which takes a k-tuple b= (ay,---ay) to the unique element a(b)
of R(n,2k) such that

Pla(b)](§) = Plai](§) - Plag](§) -+ Plag](¢). (1.22)

Then the following statements hold.
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(i) a(-) is real analytic on €.

(ii) There exists a bounded open neighborhood & of cla(¥¢) in R(n,2k)
such that L[a] is an elliptic operator of order 2k for all a € cl&.

Let S(a, z) be a function defined for all a € & as in Theorem 1.4. Let m €
N\ {0}, A €]0,1[. Let Q be a bounded open subset of R"™ of class C™>, with
Q and R™\ cIQ) connected. Let 5,0 € N*, |3| <2k—2, |¢| = 1. Let Vj3[a, ¢, p1]
and Vg, [a, ¢, 1) be as in (1.21) for all (a,¢,pu) € & x (C™ N, R™) N
Asq) x C=1A(9Q). Then the following statements hold.

(iii) The map of € x (C™*(9Q, R")NApq) x C™~1A(9Q) to C™*(0N) which
takes a triple (b, ¢, 1) to the function Vsla(b), ¢, u], is real analytic.

(iv) The map of € x (C™MIQ, R™) N Agq) x C 1A 9Q) to C~ 1A (09Q)
which takes a triple (b, ¢, ) to the function Vay,[a(b), ¢, u], is real
analytic.

Statements (i) and (ii) of Theorem 1.7 are elementary. The proof of
the statements (iii) and (iv) is contained in subsection 1.2.7. Before giving
such a proof we need some preliminaries. In subsection 1.2.3, we study the
continuity and Holder continuity property of vglb, ¢, p]. In subsection 1.2.4,
we investigate the jump properties of vg[b, ¢, u], with |3| = 2k — 1, across
the boundary ¢(9). In subsections 1.2.5 and 1.2.6 we consider an auxiliary
boundary value problem. Then we will be ready for the proof of statements
(iii) and (iv) of Theorem 1.7.

1.2.3 Continuity and Holder continuity

The purpose of this subsection is to prove the following.

Theorem 1.8. Let n, k, m, \, Q, &, S(-,-) be as in Theorem 1.7, and
let (a,¢, 1) € & x (O™ OR™) N Agq) x C™~LA9Q). We denote by
V(0,...,0)[& @, p] the function in (1.20) with 3 = (0,...,0). Then the following
statements hold.

(i) vo,....0)a ¢, 1] is an element of C2E=2(R").

(i) The map which takes p1 to v, . o), @, ptllcirg) s linear and continuous
from the space C™~ 1A (9Q) to C™FT2E=2X(cll[¢)]).

(iii) For all positive constant R such that 1[¢] C RB,,, the map which takes
w to v, 0y (@, &, ]| R, \1j¢] 45 linear and continuous from Cm=1A(69)
to CH2R=2A(RB, \ 1[4)).
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For the sake of simplicity, we only consider in the proof the dependence
on p. So, weset S(z) = S(a, z) for all z € R"\{0}, and v[u] = v(q,.._o)[a, ¢, ]
for all 4 € C™= 1N (9Q). If follows that

olpl(€) = /qﬁ ooy SE o6 ) do, VR

We split the proof into two parts. In the first we prove statement (i),
but in the second one the statements (iii) and (iv).

Proof of statement (i). By Theorem 1.4, we have

78(z)
= A(z/21, 12D 1270l 4 B(z/ |21, [20) 2" Plog 2] + C(z/|21, |2])

for every 3 € N", where 1(9, ), E(G, r) and 6’(9, r) are continuous function
of (6,r) € 0B, x R. Thus, if |3| < 2k — 2, then D?S(z) = o(|z|'™") as
|z] — 0T. Then, by classical theorems on integrals depending on parameters
and by Vitali convergence theorem, the function

f(6) = /(b oy €m0 6V oy VR

is continuous on R” and coincides with DPv[u] on R™ \ ¢(99) for all |3| <
2k — 2. Then by a classical argument based on the divergence theorem, we
have DPv[u] = fs in the sense of distributions. Hence, v[u] € C?*~2(R")
and DPv[u] = f5 classically. O

Now we turn to the proof of statements (ii) and (iii). We exploit an idea
of Miranda [35, §5]. To do so we first state a theorem by Miranda, cf. [35,
Theorem 2.1], and we introduce the related definition.

Definition 1.9. We denote by J#; the set of the positively homogeneous
functions of degree (1 —n) of class C7(R™\ {0}) and we denote by o j the
subset of K; of the functions K such that meBBnK(n) doy, = 0 for every
hyper-plane II of R™ which contains 0.

Then we have the following (cf. Miranda [35, Theorem 2.1].)
Theorem 1.10. Let K € J 2p,. Let

pl(€) = /(b oo Koo V) doy, €€\ 6(00),

for every p € C™1AOR). Then plullig extends uniquely to an element
pTu] of C™ B (cll[g]) and p[p]|gm\ang) extends uniquely to an element
p~[u] of C AR\ 1[¢]). The map which takes p to p*lu] is linear and
continuous from C™~1A0Q) to C™ LA (cll[¢]). Let R > 0 be such that
I[¢] C RB,,. The map which takes p to p~[u]|pr,\11¢] s linear and continu-
ous from C~1N9Q) to C YN (RB, \ 1[4)]).
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Now we introduce the following three lemmas.

Lemma 1.11. Let j,q € N, ¢ > 1. Let f be a real analytic function of 0 €
OB, such that f(—0) = (=1) f(0). Let h(z) be the function of = € R™\ {0}
defined by h(z) = f(z/|z]) |2|97". If the sum j+q is even, then Dh € J) oo
for all € N" with |a] = ¢ — 1.

Proof. The lemma is easily verified for ¢ = 1 and j odd. If ¢ > 1, then, for
every + € N, |¢| = 1, D*h is a function of the form g1(z/|z|)|z|7 "}, with
g1 real analytic on OB, and g1(—0) = (—=1)7*1g,(0) for all § € B,,. So that,
for all @ € N® with |a| = ¢ — 1, we have D®h(z) = ga(2/]2]) |2|' ™", with go
real analytic on 0B, and g2(—6) = —g2(0) for all 6 € 9B,,. O

Lemma 1.12. Let j € N. Let p(z) be a homogeneous polynomial function
of z € R™ of degree j. Let h(z) be the function of z € R™\ {0} defined by
h(z) = p(2) log|z|. If n is even, then DPh € Koo for all 3 € N™ with
Bl=n+j—1.

Proof. We have

DPh(z) = Z (é) (Dﬁ_ﬂ/p(z» (Dﬂ/log\z\)

B eN™
B'<B
_ (Dﬂp(z)) loglz| + Y (5) (Dﬂ—ﬂ’p(z)) (Dﬁ’ log|z|)
0‘1/55?3

and we note that, for j — |a| > 0, D%p(z) is a homogeneous polyno-
mial function of degree j — |a| and is identically 0 if j — |a] < 0. If
la] > 0, so that o = o + 1, |¢|] = 1, D¥log|z| = D¥(|z|7X(z/|z])") is
a function of the form f(z/|z|)|z|~1®!, with f real analytic on OB, and
f(—=0) = (=1D)lelf(9) for all # € 9B, (as in the proof of Lemma 1.11.)
It follows that D?h(z) = q(2)log |z| 4+ g(2/|z|) |2} ~18 where q(2) is a homo-
geneous polynomial function of degree j — |3, g is real analytic on 9B,, and
g(—0) = (=1)718lg(#). And thus by taking |3| = n + j — 1 our conclusion
follows. O

Lemma 1.13. Let j € N\ {0}. Let A, B be real analytic functions on
OB, xR. Then the function M(z) = A(z/|z|,|z|)|z[? + B(z/|z], |2])|2|? log ||,
for all z € R™\ {0}, can be extended to an element of C7~1(R™).

Proof. The lemma clearly holds for j = 1. Now we assume j > 2. If 1 € N,
|t] = 1, then we have

D'M(z) = A'(z/|2], |2)|2P " + B'(2/|2], [2) |21~ log ||

in R™\ {0}, where A’ and B’ are real analytic on dB,, x R. Thus we can
argue by induction on j. O
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Finally we are ready to conclude the proof of Theorem 1.8.

Proof of statements (i) and (iii). Let m’ € N, m’ > m + 2k — 2. By Theo-
rem 1.4, we have

m/+(2k—n)
Sy = Y LGP > baz®log|z| (1.23)
Jj=0 aeN"

2k—n<|a|<m/+(2k—n)
+A'(2/ |2, [2)]2™ T+ B'(2/|z], [2)|2]™ T log [2] + C(2)

where the functions f; are real analytic on 0B, and f;(—0) = (—1)7 f;(0),
bo, = 0 if n is odd, and A’, B’ are real analytic on dB,, x R and C is real
analytic on R"™.

Now, the terms f;(z/|z|)|z|?*~"*J appearing in (1.23) are functions of the
form considered in Lemma 1.11 (note that j 4+ 2k + j is even.) Accordingly,
the map of C"~1A(99) to C™ 1A (cll[¢]) which takes p to the D? derivative
of the unique extension to cll[¢] of

/ £ (€ —m/E—nD) € = nP "o gV () doy, V€€ Tg)
»(0%Q2)

is continuous for all |3| = 2k+j—1. In particular, the same map with |3] = 0
maps continuously C™~1A(9Q) to C™=2k=2H7A(cll[¢]) € C™2k=2A(cll[¢]).
Similar result we have if we replace cll[¢| by RB,, \ I[¢].

The terms by 2% log |z| satisfy the assumption of Lemma 1.12. Accord-
ingly, the map of C"™14(9Q) to C™ LA (cll[¢]) which takes p to the D?
derivative of the unique extension to cll[¢] of

/ ba(E — 1) log|¢ —nl o ¢V () doy, V€ € T[g]
$(0%2)

is continuous for all || = n+|a|—1. In particular, the same map with || =
0 maps continuously C™~1A(9Q) to the subset C™~1++lel=DA(cl1[¢]) of
Cm=2k=2X(cll[¢]). Similar result we have if we replace cll[¢] by RB,, \ I[#].

The term A'(z/|z|,|2])|z|™+! + B'(2/|z],|2])|2|™ ' log || satisfies the
assumptions Lemma 1.13, hence is an element of C™ (R"). C'is real analytic
and thus C*°. By means of derivation under integral sign, statements (ii)
and (iii) follows. O

1.2.4 The jump across the boundary

In this subsection we assume that the assumptions of Theorem 1.7 hold, we
fix two constants m € N\ {0} and A\ €]0,1] and an open bounded subset
Q of R" of class C™* such that Q and R" \ clQ2 are connected. Then we

consider the functions vgla, ¢, ] introduced in subsection 1.2.2. Our aim
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is to investigate the behavior of wgla, ¢, u](§) when & approaches to the
boundary ¢(02). For || < 2k — 2, vgla, ¢, u|(§) is continuous on R™ and
displays no particular behavior as £ approaches to the boundary ¢(952). So
we assume now || = 2k — 1 and we prove the following.

Theorem 1.14. Let n, k, m, A\, Q, &, S(-,-) be as in Theorem 1.7. Let
B € N* with |3] = 2k — 1. Let vgla, ¢, p] be the function in (1.20) for all
(a,¢, 1) € & x (C™AMNON,R™) N Aga) x C™~LAOQ). Then

i (vala, 6. 1](60 — 17(&0)) — vola, 6,1 6o + t5(60))) (1.24)

t—0+
_ (&)’
Par[a](v4(£0))

for all & € $(0Q) and all (a, ¢, ) € Ex(C™MIQ, RM)NAgq) x C™ 1A (990).

po (&)

Proof. If £ is not on the boundary, i.e. £ € R™\ ¢(912), we have
wia bl = [ (02)(a.&~n)uo o) dor,
»(0Q)
We introduce the function Sy(a, z) defined by
So(a, 2) = |z " fo(a, z/|2|) + log | 2| Z bo(a)z®, V zeR"\ {0},
|a|=2k—n

for all a € &, where the function fy(a,z/|z|) is the coefficient of the first
term in the series introduced in statement (i) of Theorem 1.4, the functions
bo(a) are the coefficients with |a| = 2k — n appearing in statement (ii) of
Theorem 1.4 and where b, = 0 if n is odd or larger that 2k (see Remark 1.2.)
Then we set Soo(a, z) = S(a, z) — So(a, z) and we define

vosla, 6, u](€) = /¢ oy @S0 E = o) e,

and

vso, sl 6, 1] (€) /¢ ooy SN E = oo ) doy

for all £ € R™\ ¢(09), so that vgla, ¢, u] = v gla, ¢, u] + v gla, ¢, u]. We
note that

07 Soc(a,2) = A(z/|2], |2))|=*7" + B(=/ |2, |2)r* " log || + C(2/2], |=])

where A(6,r), B(6,r) and C(6,r) are continuous function of (0, 7) € 9B, xR.
Then, by arguing as in the proof of the statement (i) of Theorem 1.8, we
deduce that v gla, ¢, ] extend to a continuous function in R"™. So the
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contribution of v gla, ¢, p] to the limit (1.24) is zero and we are reduced
to consider the limit

Jim (0,518, @, 1)(60 — trg(€0)) — o sla, 6.l (60 + tro(&0)) )

By Cialdea [6, Theorem 3] we deduce immediately the validity of the theo-
rem. 0

1.2.5 An auxiliary boundary value problem

Let Sym(n,R) be the linear subspace of M,,x,(R) of all symmetric matrices.
We observe that there exists a unique triple (a,d’,a”) € R x R" x Sym(n, R)
such that

Plaj(¢§)=¢-d"¢+d - E+a (1.25)
for each vector of coefficient a € R(n,2). Then we can introduce the follow-
ing.

Definition 1.15. Let a € R(n,2) and let (a,a’,a”) € R x R™ x Sym(n,R)
be as in (1.25). Let m, A\, Q, w, dy be as in Proposition 1.6. Let ¢ €]0, o],
and let ® be a function of Cm’A(de’(s, N ‘Aclﬂ ;o and let ¢ = D0

Then we define the bounded and linear operator Bla, <I>] of Cm’)‘(clfb(QI?é)) X
Cm’)‘(cl@(ﬂ‘;&)) to C™~ LA (p(0R)) by the equality
Bla, ®](u*, 07) = (Dv*)lon a"vg — (Dv™)|on a"vg
for all (vt ,v7) € Cm’)‘(clq)(Q;a)) X Cm’A(clq)(Q;(;)).
Our purpose in this subsection is to prove the next Theorem 1.16.

Theorem 1.16. Let a € R(n,2) such that L[a] is elliptic. Letm, X\, Q, w, do
be as in Proposition 1.6. Let @y be a function of C™*(cl€, 5,, R )DACIQ 5
0

Then there exists 61 €]0, 0] such that the following boundary value problem,

Llajvt = f* in cl@(Qj’é),

Llajv™ = f~ in cl®(Q 5),

vt —v = g on ¢(aQ) )

Bla, )(u*,07) =7 on 6(90), (120
vt =ht on @(BQ+5 \ 09),

vT =h" on @00 5\ 09),

with ® = ®glag, ; and ¢ = Plaq, admits a unique solution (vF,v™) in
Cm’A(cl®(Q:76)) x O™ (cl®(Q, ), for each given (ft. f 9,7, h",h7) in
the space

S* = OB (] ) x OB (9 ) x CTN(B(09))
XCMIA(B(09)) x C™N @I 5\ 992)) x C™N(D(99 5\ 092)),
and for all § €]0,81].



1.2. THE SINGLE LAYER POTENTIAL 21

In order to prove Theorem 1.16 we need the following three lemmas.

Lemma 1.17. Let a € R(n,2) such that L[a] is elliptic. Let m, X\, Q, w, &y
be as in Proposition 1.6. Let ®q be a function of C’m”\(lewﬁo,Rn)ﬂA’dQ .

w,dq
Then the boundary value problem

Llajut =0 in c1®(Qf 5),

L[aJu~ =0 in cl®(€ 5)

e =0 o 600, 75 (1.27)
Bla, ®](ut,u”) =~ on ¢(09),

with ® = ®glaq, ; and ¢ = ®laq, has a solution (u™,u~) which belongs to
C’m“\(cl@(st)) x ™A (cl®(Q ) for each given v € C™ LA ((09)) and
for all § €]0, §p].

Proof. By an elementary topological argument one verifies that there ex-
ists a bounded open neighborhood & of a in R(n,2) such that L[b] is
elliptic of order 2 for all b € cl&. So we can introduce the function

0. 70)[ , &, ] as in (1.20). We take § €]0,80] and we set v'|a, ¢, u] =

[ yo ”01@ ot ) and v~ [a, ¢, pu] = U(o,_._70)[a, o, u]|dq>(9;6). Then by

Theorem 1.8, (v|a qb, pl,v"[a, ¢, pu]) € C’m”\(ckI)(QI’&)) X C’m”\(cl@(Q;é))
and satisfies the first, second and third equation of (1.27). Moreover, by
Theorem 1.14, we have

Bla, ®|(v*[a, ¢, 4], v [a, ¢, p]) = —ppo Y

on ¢(9N). So, by taking (ut,u™) = (vt]a, ¢, —7],v " [a, ¢, —7]) the validity
of the lemma follows. O

Lemma 1.18. Let a € R(n,2) such that L[a] be elliptic. Then there exists
a constant M[a] > 0 such that the boundary value problem

Liaju=0in Q, u=0 on o (1.28)

has only trivial solution u € C1(clQY') for all bounded open subsets Q' of R™
of class C* with || < M]a].

Proof. Let (a,ad’,a”) € RxR™xSym(n,R) be as in (1.25). Then the operator
norm ||a”|| of the matrix a” is positive and we have & -a”’¢ > ||a”||?|€|? for all
¢ € R™. Now let €’ be an open subset of R” of class C! and let u € C(clf2)
be a solution of (1.28). We consider the weak formulation of (1.28). We
have

//(Dfu) a"(Du)t + vd' (Du)! 4 auv dz =0, Y v e Wy*(Q)
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where VVO1 2(€Y') denotes the Sobolev space of the functions v € L2(€') with
Dv € L?(Q,R") and v|sq = 0. By taking u = v we obtain

/I(Du) d"(Du)t +u - d' (Du)t + alu|? dz =0 (1.29)
and we note that the left hand side is greater or equal than
/Q/ la"|*|Dul® — |a'|[ul| Du| — alu|* dx
which is greater or equal than
/Q, la"|I*|Dul? — el Dul* — (4¢) 7 |a'[*|ul* - alul* dz
where € is an arbitrary positive constant. Now, by the Poincaré inequality

/ lu|? do < cP(Q)/ |Dul? da.
! Q/

Moreover, by the Krann-Faber inequality and by known properties of the
Poincaré constant on balls (see e.g., Troianiello [44, Theorem 1.43]) there
exists a positive constant cp(n) which depends only on the dimension n,
and such that cp(Q) < cp(n)|V)?/™. So by (1.29) we deduce that

we have

/Q {12 = ) = ()7 ' + lal)ep(m)|V[/ } |Duf? do < 0. (1.30)

If we set € = [la”||?/2 and we assume that || < |la”||**cp(n)~"/2(|d'|* +
2|a”||?|a])~™/2, then the term in brackets in (1.30) is positive and we have
Joy | Dul?* dz = 0, which implies u = 0. So, by taking

M[a) = [|a"|*"cp(n)~"*(Jd'* + 2[|a"||?|a]) /2,
the validity of the lemma follows. O

Lemma 1.19. Let a € R(n,2) such that L[a] be elliptic. Let Q) be a bounded
open subsets of R"™ of class C™* with || < M|a], where M]|a] is the con-
stant introduced in Lemma 1.19. Let (f,g) € C™ 22 (clQ') x C™*(0SY).
Then there exists a unique u € C"™(clY') such that

Liaju=f inQ, wu=g ondQ. (1.31)

Proof. As it is well known, there exists § € C™(cl€Y') such that gloo = ¢
(cf., e.g., Troianiello [44, Theorem 1.3, Lemma 1.5].) So it will be enough
to prove the lemma for ¢ = 0. In this case the existence of a solution u
belonging to the Sobolev space W12(Q) follows by Lax-Milgram Theorem
and by noting that the sesquililear form associated to problem (1.31) is
coercive (see the proof of Lemma 1.18.) Then we have u € C™*(clQ) by
Morrey [36, Theorem 6.4.8]. O
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Proof of Theorem 1.16. Let M|a] be the constant introduced in the previous
Lemma 1.18. We take d; €]0,dp] such that |®¢(€,5)] < M][a] for all § €
10,01]. Then we fix § €]0,41] and we fix a point (f*, f7,g,7,h",h”) of
S?®. As a first step we wish to prove the existence of a solution (vF,v™) €
Cmﬁ)‘(clé(Q:’(s)) X Cm’)‘(cl©(9;(s)) of problem (1.26). To do so we note
that |<I>(Q:f75)\ < M[a] and [®(£2, 5)| < Mla]. So by Lemma 1.19 there exist
ot e O c®(Q 5)) and 57 € O™ (cl®(€ 5)) such that

LiaJot = f* in c®(Qf ),

Tr=g  ong(0Q)
vt =ht on 9P 5\ 9Q),
and
LlaJo— in cl@(Q;’(;),
vt =0 on ¢(09Q),
=h" on 90(Q 5\ 99).

Now let (ut,u™) € Cm”\(cl(I)(QZ(S)) X Cm”\(c@(ﬂ;(s)) be as in Lemma 1.17
with v replaced by y—Bla, ®](v",27). Then system (1.26) admits a solution
(v, 07) € O™ (Qf 5)) x C™A(cl®( ) if and only if system

Lja]V*t =0 in cl®(Qf 5),

Lla]V— =0 in cl®(8 5)

Vt—V-=0 on ¢(99),

Bla, 9)(V*, V") =0 on 6(90). (1:32)
Vt=u" on <I>(8(Z+5 \ 09),

Vo =u" on ¢(0Q2 w.b \ 09),

admits a solution (VT, V™) € Cm”\(cl<I>(QI75)) X Cm’)‘(clfb(Q;é)), and in
case of existence we have VT = vt —9" 4yt and V- = v~ =0~ +u~. Thus
we now show existence for system (1.32). By the third and fourth equation
of (1.32), and by a standard argument based on the Divergence Theorem,
system (1.32) is equivalent to the following system for V € C™*(cl®(8,, 4))

L{a]V =0 in cl®(Qy ),
V=ut  on®09];\00), (1.33)
V=u" on ®(99Q 5\ 99Q).

By Lemma 1.19 such system has a solution V.

We now show uniqueness for system (1.26). Let (f*, f~,g,v,hT,h7) =0
and let (vt ,v7) € Cm”\(CICI)(QIﬁ)) X Cm’)‘(c@((l;’é)) be the corresponding
solution of (1.26). We set v = vt on cl@(Q:ﬁ) and v = v~ on cl®(Q ;).
The function v satisfy the equation L[aJv = 0 in @(Qi’é) U (2, 5) and
is continuous on cl®(€2, 5). Thus by exploiting the third and the fourth
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equation of (1.26) with ¢ = v = 0 and by a standard argument based on
the Divergence Theorem, v can be shown to satisfy equation Llajv = 0 in
(€, 5). By the fifth and sixth equation of (1.26) with h™ =0 and h~ =0,
v vanishes on 0® (), 5). Then by our choice of § < §; and by Lemma 1.18
we conclude that v = 0, and (v",v™) must be zero. O

1.2.6 An equivalent problem and a stability theorem

By following strategy of Lanza de Cristoforis and Preciso [26], Lanza de
Cristoforis and Rossi [27, 28] we wish now to transform problem (1.26)
into an equivalent problem defined on the fixed set €1, 5. We also obtain a
stability theorem for the result of Theorem 1.16, i.e. if a, ® and § €]0, d;] are
as in Theorem 1.16 we show that the property of having a unique solution
(v, 07) € C™A(cl®o(] 5)) x O™ cl®o(Q 5)) for all (f+, f~, g, h7) €
S?® is attained by (1.26) in a whole neighborhood of (a,®) in R(n,2) x
(C™A Iy, 5,R™) N Al ,)- To state this proposition in a more convenient
way we introduce the following.

Definition 1.20. Let m, A\, Q, w, &y be as in Proposition 1.6. Let 6 €]0, do]
and let (a, ®) € R(n,2) X (Cm’)‘(CIwa(g,Rn)ﬁAIde ,)- We denote by Dla, @]
the continuous and linear operator of Cm”\(CICI)(Qié)) X Cm’)‘(d@(Q;é)) to
S® which takes a pair (vF,v7) to

<L[a]v+,L[a]v_,v+ —v~,BJa, ¢](v+’U_)’Uﬂ@(aﬂja\aﬂ)vU_‘eb(aﬂgé\aﬂ)) .
Then, it is easy to verify that (1.26) is equivalent to the equation
Dla,®](v,v7) = (", f 7. 9,7, h" k")

and thus, by the Open Mapping Theorem, the existence and uniqueness
of a solution (v*,v™) to (1.26) for each sextuple (f*, f~,g,7v,h",h™) is
equivalent to the fact that Dla, ®] is an homeomorphism.

The following Lemmas 1.21, 1.22 and 1.23 are just slight modifications
of Lanza de Cristoforis and Rossi [28, Lemmas 3.25 and 3.26].

Lemma 1.21. Let m,m’ € N, m > 0 and m > m’. Let Q' be an open
and bounded subset of R™ of class C™*. Then the operator div from the
space C™ A (I, R™) to the space C™ =1 (clQY) is bounded linear open and
surjective.

Lemma 1.22. Let m € N\ {0}, X €]0,1[, and let Q' be an open and bounded
subset of R™ of class C™*. The set

YA = {w € C™A (eI, R™)

/(Dz/J) w dx =0 for every ¢ € 9(9/)}
Q
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is a closed linear subspace of C™(cl€Y,R™) and the quotient
Zm,)\(Q/) = Cm,)\(dQ/’ Rn)/ym,)\(gl)

18 a Banach space. Moreover, if we denote by Il the canonical projec-
tion of C™(clQ,R™) onto Z™A(Q) there exists a unique homeomorphism
div of Zm to Cm=LA(clQ)) such that divu = (/1\1-{7(]:[9/ u) for each u €
C™A (1, R™).

We recall the identification of R(n,2) to R x R™ x Sym(n,R) introduced
before Definition 1.15. We have the following.

Lemma 1.23. Let m € N\ {0}, X\ €]0,1], and let Q' be an open and
bounded subset of R™ of class C™. For all a = (a,d’,a") € R(n,2) and all
® ¢ O™ Y, R™) N Al we denote by £a, ®] the operator of the space
C™A () to ZMLNQ) which takes u € O™ (cl) to

Lla, ®ju =TgAla, ®,u] + a(ﬁ;f(_l) (u|detD®|)
where Ala, ®,u] € C™ 1A (eI, R™) is defined by
Ala, ®,u] = {(D®)'a"(D®) " (Du)" + (D®) 'd'u} |det DP| .

Then, for all f € C™~ LA (clQ,R™) and u € C™(cl®Y) we have L[a, ®]u =
g f if and only if

Lfa] (wo V) = div{ ((D®)f) 0 ) |detD0 1]}
in the sense of distributions in ®().

— (-1
Proof. We recall that £[a, ®]u = Ilg Ala, ®,u] + adiv( )(u]detDu]) and
we begin considering the second term on the right. Since u|detD®| is in
C™m=1A(clQY), by Lemma 1.21 there exists g € C™*(clQ,R") such that
-~ (=1
div. “(u|detDu|) =Tg g.

So the equation £[a, ®]u = Il f is equivalent to g Ala, ®,u] = o/ (f —
ag). Then, by an argument based on the convolution with a family of
mollifiers, Divergence Theorem and the rules of change of variable under
integral sign we deduce that Il Afa, ®,u] = g/ (f — ag) is equivalent to

Lia] (uo V) + adiv { (D®)g) 0 o) |det D01}
— div { (D)) 0 @V |detD@ Y|}

(cf. Lanza de Cristoforis and Rossi [27, Lemma 3.4].) By the Piola Identity,
we have

div { ((D®)g) o &1 ‘detD(I)(_l) ’} — (divg) o &V ‘deth,(_l)’
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and the lemma follows. O

We now turn to consider an open subset Q of R” of class C™* which
satisfies the assumptions of Proposition 1.6. We take (a,®) € R(n,2) x
C™A (el 5, R™")NAYq_ , and we define the operator Dla, ®] which we obtain

by transplanting D[a, ®] on the fixed set 5. In Theorem 1.25 we show
that equations for D[a, ®] and DJa, ®] are equivalent, then an elementary
lemma will immediately imply the validity of Theorem 1.27.

Definition 1.24. Let m, X\, , w, dy be as in Proposition 1.6. Let § €
10,80]. For all a = (a,d’,a") € R(n,2) and all ® € C™(cl, 5, R") N
A’me , we denote by Bla, ®] the bounded and linear operator from the space
Cm’A(le;a) X Cm”\(le;’é) to C™=LX(00,, 5) which takes a pair (V*,V7)

to
Bla,@|(VT, V") = ("D 'DVT) - n[®] — ("D 'DV ™) - n[®]
where n[®] is the function of x € 0N given by

(Do) va(e)
M) = [ D8 (@) wa (o))

(so that n[®] = v40¢, see Lanza de Cristoforis and Rossi [28, Lemma 3.22].)
Then we denote by D[a, @] the operator of Cm’)‘(le::’a) X Cm’A(CIQ;(;) to
the space

Z = 2" ) x 21N 5) x CTN09) x CT I 09) x
x O ((8&2;5) \asz) x O ((asz;’é) \@Q)

which takes a pair (VT, V™) to
<£[a, BV, Lla, BV, V-V,
%[aa (E] (V+7 V7)7 VJF‘BQ:(S\aQa |’ "99;,6\69) :

Theorem 1.25. Let m, A\, Q, w, dy be as in Proposition 1.6. Let 6 €]0, dp).
Let a € R(n,2), and let & € C™*(clQ, 5,R™) N Aliq, ;- Then Dla, @] is an
homeomorphism if and only if D[a, ®| is an homeomorphism.

Proof. We assume that DJa, ®] is an homeomorphism and we prove that
Dla, ®] is also an homeomorphism. The proof of the converse is similar and
we omit it. By the Open Mapping Theorem it suffices to show that D[a, ®]
is a bijection. So, let (F*, F~ G, T, H", H™) be a given sextuple of Z and
consider the equation

Da, @)V, V)= (F",F,G,I,H" H"). (1.34)
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Since HQL; and HQJ,& are surjective there exist fT € Cm’)‘(clﬂi 5»R") and

= € C™AMclQ o, R™) such that HQI,5f+ = FT and HQ“_)’(S]?Jr = F~. We

w,0?

set
o= div{((D@)Jﬂ)o@(—l) ‘detD@(*l)‘}’

o= div{((p@)f—) o d-1) ‘dethb(_l)‘},

and we note that, by Lemma 1.23, equation (1.34) is equivalent to the fol-
lowing one,

D[a7®](v+7v_> = (f+7f_7g777h+7h_) (1'35)
where v = V1o <I>(*1)|d¢,m;5), v =V"o CID(*l)]C@(Q:’é), g=Goglh,
y=Tog¢(V nt=H" oq>(—1>|¢(a%6\m) and h~ = H~ O‘I’(_l)|<1><aa;6\am-

Now, if we assume DJa, ®] to be an homeomorphism, equation (1.35) has a
unique solution. It follows that also (1.34) has a unique solution and since
(F*,F~,G,T,H", H)is an arbitrary point of Z, D[a, ®| is a bijection. [

Now, we recall that, for all Banach spaces X and ), the space £ (X, ) of
the continuous and linear maps of X’ into ) endowed with the operator norm
is a Banach space. By the continuity of the pointwise product in Schauder
spaces and standard calculus in Banach space we have the following.

Lemma 1.26. With the notation introduced in Definition 1.24, D[] is a
real analytic map from the Banach space R(n,2) x (C™(cl), R™) N AL,)
to the Banach space £(C™(cIF ;) x C™A(clQ 5), Z).

The next theorem follows immediately.

Theorem 1.27. Let m, A, Q, w, &y be as in Proposition 1.6. Let ¢ €]0,do].
Let a € R(n,2), and let ® € C™(clQ, 5, R™) N A,lew,L;’ and let D[a, @] be
an homeomorphism. Then there ezists a neighborhood U of a in R(n,2) and
a neighborhood V of ® in C™*(clQ, 5,R"), V C Aélﬂm,s’ such that Db, ¥]
is an homeomorphism for all (b, ¥) € U x V.

Proof. Assume that DJa, ®] is a homeomorphism, then D[a, ®] is a homeo-
morphism by Theorem 1.25. Moreover, for (b, V) close to (a,®) the opera-
tors D[b, V] and DJa, ®] are close in operator norm by Lemma 1.26 (which
in particular implies that D[, -] is continuous.) Thus, for (b, ¥) close enough
to (a, ®), D[b, U] is still an homeomorphism (see Kato [15, Chap. IV, §5])
and, again by Theorem 1.25, D[b, ¥] is an homeomorphism too. O

1.2.7 Proof of the main Theorem 1.7

Here we adopt all the notation and assumptions introduced in the previous
subsection 1.2.2 and in Theorem 1.7. Furthermore we select a multi-index
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B € N(n,2k — 2) and multi-indexes o, 51, ...,0k—1 € N(n,2) such that
Bo+ -4+ Br_1 = B and By = 0. The multi-indexes (3, 0o, . .., Br_1 will be
considered as fixed in all the subsection. We begin with a definition.

Definition 1.28. Let m, A\, Q, €, a(-) be as in Theorem 1.7. Let w, oy be as
in Proposition 1.6. Let § €]0,60]. We denote by v;[b, ®, pu], withj =1,...,k,
the functions defined by

v1[b,®,u] = Llag]...Llag]vg,[a(d), ¢, u,

V2 [bv P, :u] = L[a?)] s L[ak] UBo+p1 [a(b)a b, :u],

vy [b7 P, :u] = L[aj-i-l} s L[ak] VBo+-+Bj-1 [a(b)> b, M]a
Uk [bv P, :u] = Ug [a(b)a b, M]

forallb = (ay, ..., ar) € € and for all (P, 1) € (C™A (I 5, RM)NAYq )X
Cm=LA9R), where we understand ¢ = ®|aq.

Then by Theorem 1.8 we have the following.

Lemma 1.29. Let m, A, Q, € be as in Theorem 1.7. Let w, dy be as
in Proposition 1.6. Let § €]0,80]. Let (b,®, 1) € € x (C™(clf, 5, R™) N

élQu,s) x Cm=L2(9Q). Then vj[b, ®, u] is a continuous function on R", and
the restrictions

,U;r [ba @7 ,U,] =1j [ba (I)v M] ‘Clq)(ﬂ:;r,a)’ vj_ [b7 q)a /J'] =5 [ba (I)a :u] ‘C1<I>(Q;5)
are functions of C’m“\(cl@(Q;é)) and of C’m’)‘(ckI)(Q;é)), respectively, for
allj=1,... k.
In the sequel we denote by B[, -] and D[, -] the operators introduced

in Definition 1.15 and in Definition 1.20, respectively. By Theorem 1.14 we
have the following.

Lemma 1.30. Let m, A, Q, €, a(-) be as in Theorem 1.7. Let w, oy be
as in Proposition 1.6. Let § €]0,68] and let @ € C™*(clQ, 5, R™) N Ao, ;-
We denote by J;(-,-) the map of € x 0B, to R which takes (b,0), with
b= (al,...,ak), to

oo — s P2(ai]6) - Polar](6) apqnp,
J;[b,0]) = —0; P2 (0)](0) gPo+-+

forallj=1,...,k—1, and to
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if j =k, where 6; = 1 if |Bo+ -+ Fj—1] =2 —2, and 6; =0 if |Bo+ - - +
Bi—1| <2j —2. Then we have

B[aj7 (I)] (’U;—[b, P, :U']7 vj_ [b7 P, M]) = Jj(b7 V¢) po ¢(_1)7

forallj =1,...,k and for all (b, ) € € x O™ LAON) with b = (ay, ..., ax).

We now focus our attention on a arbitrary given point (b, ®g) of € x
(C™A (el 50, R™) N A;mw’&o ).

Lemma 1.31. Let m, A\, Q, € be as in Theorem 1.7. Let w, &g be as in
Proposition 1.6. Let (by, @) be a point of € x (C™(cl€Yy, 5,, R™) ﬂAélQMO).
Then there exist 61 €]0, dp], and a neighborhoodU of by in €, and a neighbor-
hood V of ®1 = ®|agq,, 5 in C™A (1 5,, R™) m‘A/Cle,&l , such that D[a;, ]
is an homeomorphism for all j = 1,... k and for all (b,®) € U X V with
b= (al,...,ak).

Proof. Let by = (ag1,-..,ao;). Then Llag;] is an elliptic operator of order
2 for all j = 1,...,k. By exploiting Theorem 1.16 and Theorem 1.27 the
assertion follows. O

Now we see that the 2k-tuple
(01 [0, @, ], v [b, @, ] ., v [b, @, ], vy [b, @, p1]) (1.36)

is the unique solution of a chain of coupled boundary value problems, at
least for b € U and ® € V.

Lemma 1.32. Let m, A, Q, w, 01, U, V be as in Lemma 1.31. Let (b, ®, u)
belong to U x V x C™1MN0Q) and let b= (ay,...,a;). Then there exists a
unique 2k-tuple

k
(WF Vs v ) € [CTA (AR 5,)) X O™ (9 ))}

w,01
which is a solution of the following equations for all j =1,...,k,

Dlaj, ®] (v}, v;) (1.37)
= (Dﬁj—lvj_l, DY%=1wr 0, Ji(b,vg)po 6D BF b, @, ], h;[b,cb,u])

where v = 0, vy = 0, and ¢ = ®|sq, and the functions hj[b,fb,,u] and
h; [b, @, u] are given by the restriction of v;[b, @, u] to @(89‘:5 \ 9Q) and to
(00, 5 \ 012), respectively. Moreover the unique solution of the (1.37) is
given by the 2k-tuple in (1.36).
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Proof. By the previous Lemmas 1.29 and 1.30 one proves that the 2k-tuple
in (1.36) is indeed a solution of (1.37). So we have to prove the uniqueness.

We note that, for j = 1 equation (1.37) involves only the two unknown
functions vf and v; . Then Lemma 1.31 implies that (vf,vf ) is uniquely
determined and equals (v [b, @, u], vy [b, @, u]). Now we turn to consider
(vy,vy ) and we exploit (1.37) with j = 2. Since (v],v]) is uniquely deter-
mined we can replace it by the pair (v{[b, ®, u], vy [b, ®, u]). So now (1.37)
with j = 2 only involves the two unknown functions v; and v, and again we
deduce that (vy, v, ) is uniquely determined by Lemma 1.31. Iterating this
procedure till we get that also (v,j, v;.) is uniquely determined, we conclude
the proof of the lemma. ]

The problem with the (1.37) is that the right hand side of (1.37) belongs
to the ®-dependent space S®. To write an equivalent chain of equations in
the fixed space Z (see Definition 1.24), we need some more notation.

Definition 1.33. Let m, A\, Q, €, a(-) be as in Theorem 1.7. Let w, §1 be
as i Lemma 1.31. We set

H;b, @, ul|(z) = - Kb, ®(z) — ®(y))uw(y)on[®|(y)doy, Y x € 0Qys,
forallj=1,...,k and for all (b,®, u) € € x (Cm’/\(CIQW;l,R”)ﬁA’CIQW 51) X
Cm=LA90) with b= (ay,...,ay), where

K;(b,z) = Lla,j 1] ... Llag] 02T 7 S(a(h), ), V zeR™\ {0},

and o[®] is given by o[®] = |detD®||(D®) tvq|, where vq is the exte-
rior unit normal to the boundary of 2. Moreover we set H;[b,q),y] =

H] [b, (I), M”aQI,(S\aQ and H; [ba <I>, ,UJ] = H] [ba <I>, .LL”{)Q;&\SQ'

In particular, we note that H;[b, ®, u] = v;[b, ®, ] o ® on 082, 5. Now,
consider the fixed multi-indexes [y, ...,Bx—1. We recall that R(n,2) is the
space of the real functions defined on the set N(n,2) of the multi-indexes
a € N with |a] < 2. So we can introduce the functions by, ..., bg_1 of
R(n,2) which satisfy the following condition, b; is the element of R(n,2)
which attains value 1 on 8; and 0 on each other multi-index of N(n,2). The
elements bg, ..., bi_; are clearly uniquely determined. Moreover we have
L[bg] = 1 and L[b;] = D% for all j = 1,...,k — 1. By Lemmas 1.22 and
1.23 we obtain the following.

Lemma 1.34. Letm, A\, Q, w, 61, U, V be as in Lemma 1.31. Let (b, @, u) €
UxVxC™ N0 and let b= (ay,...,a). Then the 2k-tuple

k
(of v, ot o) € [Cm”\(cqu(Qi 5.)) X T (B(Q 5))
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satisfies (1.37) for j =1,...,k if and only if the 2k-tuple
k
(VI Ve Vi V) € [Om ) x M a0 )]

with Vj+ = v]‘f o® and V;m =wv; o ® (i =1,...,k) satisfies the following
equations for j =1,...,k,

Dlay, BV}, V;) (1.33)

= (&b, @)V, b1, V4, 0,

J;(b, n[®]) 1, H b, @, i), Hy [b, @, p])

where D[a;, ] and n[®] have been introduced in Definition 1.24 and we set
Vot =0 and Vy =0.

In the next Lemma 1.36 we recast the equations (1.38) into an equiva-
lent equation of the form A[b, ®, u, W] = 0, where A is a suitable operator
between Banach spaces and W is the 2k-tuple of Lemma 1.34. Then we plan
to analyze the equation A[b, @, u, W] = 0 by means of the Implicit Mapping
Theorem for real analytic operators, and accordingly we need to show that
A is real analytic. To do so we introduce the following Lemma 1.35. We
omit the proof which is just a straightforward modification of the proof of
Lanza de Cristoforis and Rossi [28, Lemma 3.34] and is based on B6hme and
Tomi [2, p. 10], Henry [13, p. 29] and Valent [45, Chapter 2, Theorem 5.2].

Lemma 1.35. Let m, X\, Q, € be as in Theorem 1.7. Let w, 61 be as in
Lemma 1.31. The map of € x (C™*(clQy,s,, R™) N AL 5 ) X Cm=1A(69)
w81

to C"™ MO0, 5,) which takes (b, ®, u) to H;[b, ®, ] is real analytic.

We now set

Vi (b, @, p) = v [b, @, 4] 0 Clagt, Vi b @ ul =0y b2, ul0 lgg-

forallj =1,...,k and for all (b, ®, u) € UxVxC™1A(99Q). By Lemma 1.29
and by the properties of composition of functions in Schauder spaces, we
have Vf[b,q),,u] € O™ () and Vb, ®,pl € C™A (el 5,)- Then we

w,01

denote by Wb, ®, u] the 2k-tuple

W[bv q)a //J] = (‘/1+ [bv (I)a iu]a Vvli [b7 (I)v :U’]a ot V]:r[ba (I>a //J]’ ij [ba (I)v MD (139)

of the space [Cm’)‘(cm:’(sl) X Cm’)‘(clﬁg,él)r. The following Lemma 1.36
will immediately imply the validity of the main Theorem 1.7.

Lemma 1.36. Let m, A\, Q, w, 01, U, V be as in Lemma 1.31. The map
of U x V x C™12(9Q) to [Cm’)‘(lejﬁl) X C’m’)‘(cl(l;gl)r, which takes a
triple (b, @, u) to the 2k-tuple Wb, ®, u] defined by (1.39), is real analytic.
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Proof. Let X be the Banach space R(n, 2)* x C™(clQ, 5,, R") x C™~1A(9Q)
k
and let ) be the Banach space C’m’A(CIQJ&) X C’m’)‘(clﬁ;dl)] . Let W =

UxV x Cm1A9Q) and let A; be the (nonlinear) operator of W x Y
to the Banach space Z introduced in Definition 1.24, which takes each
(b, @, 1, W) € Wx Y with b= (ay,...,a;) and W = (V;",V,.... V", V),
to

Aj[b, @, pu, W] = @[aj,é](v;,v;.—)

~(2lbj1, @)V, 2By, BV, 0,

T3 (0,0 @]) e, H} b, . pl, Hy b, @, 4] ).

for all j = 1,..., k, where as usual V;" =0 and V; = 0. D[a;, ®] and n[P]
have been introduced in Definition 1.24, £[b;_1,®] has been introduced
in Lemma 1.23, J;(b,n[®]), Hj’[b,@,,u] and H; [b, @, u] are the functions
introduced in Lemmas 1.30 and Definition 1.33, respectively. We note that,
by Lemmas 1.26 and 1.35, and by continuity of the pointwise product in
Schauder spaces and by standard calculus in Banach space, A; is a real
analytic operator. Then we denote by A the operator (Aqy,...,A;) from
W x Y to Z*, clearly A is real analytic too. By Lemmas 1.32 and 1.34 the
graph of the map W7, -, -] of W to Y coincides with the set of zeros of A in
W x Y. So if we prove that the differential

is an homeomorphism of )} to Z* for any point (b, ®, u, Wb, ®, u]) with
(b, ®, ) € W, then the Implicit Mapping Theorem for real analytic opera-
tors (cf. e.g., Prodi and Ambrosetti [40, Theorem 11.6]) implies that W[, -, -]
is real analytic on WW. By the Open Mapping Theorem, it suffices to show
that the operator in (1.40) is a bijection. So, let

((Fr7Ff7Gl7F17Hfr7H;)7"')(F]j)FlvakquaH]:raH];)>

be an arbitrary given point of Z¥. We have to prove that there exists one
and only one 2k-tuple (X", X, ... 7X/,;*',Xk_) € Y such that the following
equations hold for all j =1,...,k,

Dla;, &] (X].*,X;) (1.41)

— (LMoo, X + FF £lby, @4, + Fy L Gy, Ty, HY, H ),
where as usual b = (ay, ..., a;) and X§ =0, X; = 0. Now, by Lemma 1.31,
the operator D[aj, ®;] is an homeomorphism for all j = 1,...,k. By
Theorem 1.25 it follows that also D[a;, ;] is an homeomorphism for all
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j = 1,...,k. Then by an iteration argument, we deduce that the solu-
tion solution (X", X7 ,..., X, , X, ) of (1.41) exists unique (see the proof
of Lemma 1.32.) Thus the operator in (1.40) is a homeomorphism and the
assertion of the lemma follows. O

Now we are ready for the proof of our main result.

Proof of statement (iii) of Theorem 1.7. 1t is clearly enough to show that
if (bo, o, po) € € x (C™MINR) N Agq) x C™=1X(0Q), then Vza(-),-, ]
is real analytic in a neighborhood of (b, ¢, 10). Let w and Jp be as in
Proposition 1.6, and let &y € C™*(9Q, 5,, R™) N AaQw,% be an extension
of ¢g (cf. statement (v) of Proposition 1.6.) Then we take d;, U, V as in
Lemma 1.31. By statement (vi) of Proposition 1.6 there exist a neighbor-
hood W) of ¢y and a real analytic extension operator Eg[-] which maps W)
into Cm“\(@Qw,gl,R") N Aaﬁw,al and such that Eg[¢g] = @0\019%51. Further-
more we can assume Eg[Wp] € V. With the notation introduced in the
previous subsection 1.2.2 and in the remark before Lemma 1.36, we have

VB [a(b)v ¢7 :u] = V]j [b7 E0[¢]7 ”] ’69

forallb € U, ¢ € Wy and pu € C™ 1A (99Q). So, by the previous Lemma 1.36
and by standard calculus in Banach space, statement (iii) follows. O

Proof of statement (iv) of Theorem 1.7. Now let « € N™ with || = 1. By
Theorem 1.8 one verifies that the restriction vgy,[a(b), ¢, u]|1e) extends to a
function U;ﬂ[a(b), é, 1] of C™(cll[@]). Moreover, on ¢(9€) we have

1 ()t
2 Pyr.la(b)](vg)

(see Theorem 1.14 and Cialdea [5, §2, IX].) Then, with the notation intro-
duced above,

viJab), ¢, u = o + s fa(b), ¢, 4

1 (n[Eo[g]])"* ,t .
Virila(d), ¢, pu) = 5 1+ [(DEo[¢]) ™" DV, [b, Eo[¢], u]]" .
We deduce that the function Vs, [a(b), ¢, u] belongs to C™~1A(9Q). More-
over, by the continuity of the pointwise product in Schauder spaces, and by
standard calculus in Banach space, and by statement (iii) of Theorem 1.7,
the statement (iv) follows. O

1.3 Some applications
1.3.1 The Helmholtz and bi-Helmholtz operator

We denote by H2[by, bs] the operator
H?[by,bo] = (A +b1) (A + by)
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where by and bg are real coefficients. We denote by ag2 (-, -) the real analytic
map of R? to R(n,4) defined by the equality

Plag(bi,02)](€) = (1617 +b1) (|67 +b2), ¥ b1,b2 €R.

Then we fix two open and bounded subsets %, and % of R. By an el-
ementary topological argument one can show that there exists a bounded
open neighborhood & of ay2 (%1, %2) in R(n,4) such that L[a] is an elliptic
operator of order 4 for all a € cl&. Then by Theorem 1.4 there exists a real
analytic function Sp2(a, z) of a € & and z € R™\ {0} such that Sp2(a,-) isa
fundamental solution of L[a] for all a € &. We fix m € N\ {0}, A €]0, 1] and
a bounded and open subset 2 of R™ of class C™* such that Q and R™ \ ¢
are connected. We set

(vg2)gla, ¢, 1] (€) = /(b(m)(afsm)(a,ﬁ —n)po¢V(n) doy, VEER,

and (Vy2)gla, ¢, 1] = (vyz)sla, ¢, p] o ¢, for all the triple (a, ¢, ) of & X
(C™A 09, R™) N Agg) x C™12(9Q) and all multi-indexes 3 with |3| < 3,
where the integral is understood in the sense of singular integrals if |3] = 3
and £ € ¢(092). Then the assumptions of Theorem 1.7 hold and by standard
calculus in Banach space we deduce the following.

Proposition 1.37. Let 3 € N". The map (Vy2)slag2(:,-),-, | is real ana-
lytic from %y x $Ba x (C™ (0, R™) N Agq) x C™~ 1A 9N) to C™AN0Q) and
to C™=LAN9Q), if |8] < 2 and || = 3, respectively.

Now, it is easily seen that the function
S (b1, b2, 2) = (A + by) Sz (ag2(by, ba), 2)

is a fundamental solution of the operator H![b;] = (A + b1). We can define
the corresponding single layer potential

Fans b1, b, 6, 1) () = /¢ oy S 01506 =) 06V 0) o,V E R

and the function Y7H1 [b1,b2, @, 1] = Vg1 [b1, b2, &, ] 0 @, for all (b, ba, P, ) €
By x By x (C™ANON,R™) N Agq) x C™~ 1A (99). By the previous Proposi-
tion 1.37 next Proposition follows immediately.

Proposition 1.38. The map ‘7H1[‘, -] is real analytic from By x PBo X
(C™A 09, R™) N Agg) x O™~ 1A (9Q) to O™ (9Q).

Then we denote by w1 b1, ba, ¢, ] the double layer potential
Wi [b1, b2, &, 1] (§)

- /¢(65;/)¢(77) - DS (b1, b2, € —1) po ¢~ () doy, VE € R"
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and we set Wi [by,ba, &, 1] = W [bi,ba, ¢, 4] 0 ¢, for all (by, by, ¢, ) €
B x By x (C™ N, R™) N Aga) x C™MNO). By arguing as in Lanza
de Cristoforis and Rossi [28, Theorem 3.4] one verifies that the restriction
Wi [br, ba, @, ]| extends to a function w}, [by, be, ¢, ] of C™A(cll[¢]) and
W b1, ba, ¢, p]|gpe) extends to a function w, (b1, b, ¢, p] of C™A(clE[¢]).
Moreover, on ¢(0f2) we have @El [b1,b2, ¢, u] = %,uogb—l—@Hl [b1, b2, @, p]. We
deduce that W [b1, b2, ¢, u] belongs to C™A(952) and by a straightforward
modification in the proof of Lanza de Cristoforis and Rossi [28, Theorem 3.45
statement (iii)], we have the following.

Proposition 1.39. The map WHl[-, v+ | is real analytic from By x PBay x
(C™AM O, R™) N Agg) x C™A(AN) to C™AIN).

1.3.2 The Lamé equations

We denote by Lby, bs] the vector valued operator
L[bl, bg] = A+ b0 Vdiv + by

where b; and by are real coefficients. For by > 1 — 2/n and by > 0 such an
operator is related to the equations describing the behavior of an isotropic
and homogeneous elastic body, i.e. the Lamé equations (see e.g. Kupradze,
Gegelia, Basheleishvili and Burchuladze [18].) For our purpose, we fix a
bounded open subset %; of R\ {—1} and a bounded open subset %, of R.
Then for all (b1, by) € %1 x Py a fundamental solution S, (b1, be, z) of the
operator L[b, by is given by the n x n-matrix function defined by

(Sp(b1, b2, 2)), (1.42)

P N R A P (a (b b/(b+1))z)
B K z by +1 b1—|—1821-62j A2\ SH22, P2 ! ’ ’

for all z € R™\ {0} and for all ¢, =1,...,n, where J;; denotes the Kro-
necker delta symbol and Spg2 is the function introduced in the previous
subsection 1.3.1. Then we fix m € N\ {0}, A €]0,1] and a bounded and
open subset Q of R™ of class C™* such that Q and R™ \ ¢l are connected.
We denote by vy [b1, ba, ¢, u] the single layer potential given by

UL[blaan ¢71u](£) = /¢(8Q) SL(blvan§ - 77) o d)(_l)(n) dGTI’ v g € Rn’

for all (b1, b2, ¢, 1) € By x By x (C™MNOQR™) N Apg) x C 1200, R™),
and as usual we set V,[by, ba, ¢, | = vp[b1, ba, ¢, u]od. Taking the derivatives
out of the integral sign we deduce that

_ by b1 :
UL[b1;b27¢7H] = ((A + by 1 1> byt 1Vd1v> (1.43)

-(UHQ [aHQ(b27 b?/(bl + 1))7 ¢7lu’1])

i=1,..,n
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where vz = (v Hz)(om,,g) is defined as in the previous subsection. Moreover
we set

(02, [br, b, 6, 1)(€)
- / (:51) (b1, s, € — ) pro 60 () doy, ¥ € € R,
»(09)

for all © € N, |¢| < 1, and all (by,ba, ¢, 1) € By x Bo x (C™(0Q,R™) N
Asq) x C™~LA(9Q, R™), where the integral is understood in the sense of
singular integrals if || = 1 and & € ¢(992). Then we set (V1),[b1, b2, ¢, ] =
(vr).[b1,b2, ¢, 1] © ¢. By equation (1.42) and by Proposition 1.37, and by
standard calculus in Banach space, we have the following.

Proposition 1.40. Let « € N*, |o| < 1. Then (VL).[-,-,-, ] s a real an-
alytic map from By x By x (C™MNOQ,R™) N Agq) x C™ 1A 9Q,R™) to
C™mA9Q,R™) and to C™1ANOQ, Mpxn(R)), if [t| = 0 or |¢| = 1, respec-
tively.

Now we introduce the double layer potential wy,[by, be, ¢, u]. We denote

by Sg) the vector valued function given by the i-th column of Sy for all
i=1,...,n. We denote by T'(b;, A) the matrix

(by — 1)(trA)1, + (A + A"

for all A € M,,x,(R) and all by € R. Here 1,, denotes the unit matrix of
M, xn(R). Then we set

wr[b1, b2, ¢, ] (§)
=_ /¢>(8m KT (bl, DS (by, by, & — n)) V¢(n)) o V()| doy

for all £ € R"™, where the integral is understood in the sense of singular
integrals if & € ¢(992), and we set W [b1,ba, ¢, u] = wr[b1, b2, @, u] o ¢, for
all (b1, ba, ¢, ) € By x By x (C™AON,R™) N Agg) x C™(0Q,R™).

We wish to prove that the map Wil -, -, -] is real analytic from the
space %y x By x (C™A(9Q,R™) N Agg) x C™ (I, R™) to C™ (90, R™).
To do so we introduce the operator .#;;(v) which is defined by .;;(v) =
v;D; —v;Dj for all 4,5 = 1,...,n and all vectors v € R". We note that, for
any ¢ € C™MNOQ,R™) N Aga, we have #;;(vy) = (v);Zi — (V)i D, where
9; = D; — (vg)ivy - D' is the Giinter tangential derivative (see Ginter [12,
Chapter 1].) It follows that .#;;(vy) is a tangential operator on ¢(0€).
Moreover we have the following.
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Lemma 1.41. If (b1, ba, &, 1) belongs to By x By x (C™(0Q, R™) N Asq) x
C™A0Q), then

[ [t sutonbe =) o o(a) doy
$(0%2)
= [ sy o 6] Sulorba,§ — 1) dory, ¥ € R
$(0%2)

Proof. Clearly

M (v (n))n [SL(b1,b2,& — 1) o d(n)]
= [t (vs(m)y 1o &()] Sp(b1,b2,€ — 1)
— [ (vs(n))e SL(b1, b2, € — )] o B(n).

Thus it suffices to prove that

M (o)) [St(b,ba € =) p 0 B()| dory = 0. (1.44)
»(09)

We note that, by the Divergence Theorem,

/ Mig(vo(n) V() doy =0
#(09)

for any function ¢» € C*(¢(09)). It follows that (1.44) does not depend
on the particular choice of the fundamental solutions of L[b, bs]. Indeed
two different fundamental solutions differ by a real analytic function. So by
Kupradze et al. [18, Chapter V, §1], we conclude the proof of the lemma.
We note that in [18] only the case n = 3 has been considered, but that all
the statements can be extended to case n > 2 with minor modifications. O

Now we are ready to prove the following.
Proposition 1.42. The function Wi[-,-, -, ] is real analytic from %y x PBa x
(C™A 99, R™) N Agq) x C™AIQ,R™) to C™ (9, R™).

Proof. Let Sy (b1, ba, z) be the function introduced in the previous subsec-
tion. By a cumbersome but straightforward calculation, one verifies that

{T (bl,Dzs(g)(bl,bQ,z)) v}j (1.45)

= 6ijv - DSy (ba, ba/(by 4+ 1), 2) + i (V) Sy (b2, ba/ (b1 + 1), 2)

b1bo 0
—2[A (v)SL(b1, b2, 2)];; + myj%SH2 (agz(b1,b2), 2)
for every vector v € R™ and for every 7,5 = 1,...,n. Moreover, one can

prove that Lemma 1.41 still holds if we replace Sp,(b1, ba, z) by the function
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§H1(bl,b2,z). So, given ¢g € C™MOQ,R™) N Asq and w, §, Wy, Eq as in
Proposition 1.6, we have

Wilbr,bo, 6, = Win b2, = 6,1

b
b +1 =1,...,n
by
—I—VHl [bg, by + ,¢ Z] 19ﬁ2] (¢a [E0[¢]])

—2ZVL b1, b9, 0, zg(¢v [EO[¢]D ] =1,...,n

7j=1
_ L)
b1+1

for all (b1, ba, ¢, 1) € By X By x Wy x C™ 0, R™), where n is the func-
tion introduced in Definition 1.24 and 9M;;(¢,v) = v; [(DEo[¢]) "' D], —
v; [(DEg [qb])*tDt]j for any ¢ € Wy and any vector v € R™. Then by Propo-
sitions 1.37, 1.38, 1.39 and 1.40, by the continuity of the pointwise product in

Schauder spaces and by standard calculus in Banach space, our proposition
follows. O

(DEo[¢]) ™" DVipz[agz(by, b2), ¢, n[Eo[¢]] - 1]

1.3.3 The Stokes system

We say that Sg = (Sy, Sp) is a fundamental solution for the Stokes system
in R™ if Sy is a real analytic n x n-matrix valued function of R \ {0}, Sp
is a real analytic vector valued function of R \ {0} and

ASy(z) = VSp(z) =d6(2)1,, divSy(z)=0, VzeR"\{0}

(cf. Ladyzhenskaya [19, Chapter 3].) We can verify that a suitable choice of
the functions Sy and Sp is given by the following equalities,

2
(Sv(eN)y = (0 = 525 ) Swe), (SP)(e) = ~515a(2). (1do)

for all z € R™\ {0}, where we understand Saz2(z) = Spyz(ay2(0,0), z) and
SA(z) = ASa2(z), in accordance with the notation of subsection 1.3.1. Then
we consider an open bounded subset Q of R of class C™*, m € N\ {0},
A €]0,1], with © and R™ \ clIQ connected. We introduce the single layer
potentials vy [¢, u] and vp[@, u] by the equalities

vy [, 1 (€)

/ Sy(E—n)pod V() doy, VEER", (1.47)
$(092)

vp(¢, 1] (€)

/ Sp(€—m) - pod"V(n) doy, VEER", (148)
$(092)

for all (¢, ) € C™MNOQ,R™) N Agg x C1A(9Q,R™), where the integral
in (1.48) is understood in the sense of singular integrals if £ € ¢(99). As
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usual we set Vi [¢, u] = vyv[é, p] o ¢ and Vp[o, u] = vp[d, u] o ¢. Then, by
equation (1.46) and by Proposition 1.37, we have the following.

Proposition 1.43. Vy[-,:] and Vp[-,-] are real analytic function defined
from the set (C™*(9Q,R™) N Agn) x O™ 1A (90, R™) to C™*(9Q, R™) and
to O™ LA OQ, R™), respectively.

Now for each scalar b € R and each matrix A € My,x,(R) we set

T(b,A) = —bl, + (A + A"). Then we denote by S‘(}) the vector valued
function given by the i-th column of Sy for each i = 1,...,n. We define the
double layer potential wy [, u] by

wy [¢, p] (€)
zzié@@[(r«smxs—nxﬂwﬁkg—nﬁuann-uo¢“”mﬂ. day,

i=1,...,n
for all £ € R™ and for all (¢, u) € C™A(0Q,R™) N Aga x C™ 190, R™).
As usual, we set Wy [¢, u] = wy ¢, ] o ¢ and we have the following.
Proposition 1.44. Wy [-,-] is a real analytic map from (C™*(992,R™) N
Asq) x C™A 00, R™) to C™ OQ,R™).
Proof. For each vector v € R™ we have

{T ((sp),-, DSS’) V}j = 8ijv - DSA + Mij(V)Sa — 24 (V)Sy);;.

Then one verifies that Lemma 1.41 still holds if we replace Sp[b,] by Sy (+)
or by Sa(-). So, given ¢o € C™*9Q,R") N Apq and w, 6§, Wy, Eqg as in
Proposition 1.6, we have

Wy (o, u] = Wal, pili=1,...n + Va6, Y5 Mij(d, n[Eolo) ],

_QZVV [¢’9ﬁl](¢7n[E0[¢]] )M]Zil,,n
j=1
for all (¢, ) € Wy x C™*99Q,R"). By Propositions 1.38 and 1.43 we
conclude the proof. O

We now consider the double layer potential wp[¢, u] which is the function
of R™\ ¢(99) defined by

wplo, p](€) = —2div </¢(a§z) Sp(é—n)-po QS(*l)(n) vg(n) d0n> , (1.49)

for all ¢ € R™\ ¢(99) and all (¢, i) € C™* (92, R™)NAgq x C™ 1A (90, R™).
We note that the right hand side of (1.49) equals

"9
—2 — M SA(E=n) i od™Y do,, 1.50
i;%ﬂm S m)eSa(E —m 06V doy, (150)
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for all £ € R™\ ¢(0€). Since Lemma 1.41 still holds if we replace S, by Sa,
the expression in (1.50) equals

2y / (0:5a)(€ =) (Mg (vs(1))y 15 0 6D (1)) dorgy  (1.51)

G217 6(09)

for all £ € R™\ ¢(0f2). We now observe that the expression in (1.51) defines
a map from R” to R for all (¢, 1) € C™IQ,R™) N Agg x C™(9Q, R™),
where the integral is understood in the sense of singular integrals if £ €
»(09). So it makes sense to introduce the function Wp[¢, u] which is the
composition of the function defined by (1.51) and the function ¢, for all
(6, 1) € C™A 0, R") N Ay x C™*(9Q, R™). Then, by the previous Propo-
sition 1.37, we deduce the following.

Proposition 1.45. Wp[-,-] is a real analytic map from (C™*(092,R™) N
Asq) x C™A(0Q,R") to C™~ 1A (9, R™).

Proof. By (1.51) we deduce that Wp|¢, u] is a sum of terms of the form
(Va)g (6, 95(h, n[Eo[o]]) 4], with 3 € N™, |B] = 1. Then, by Proposi-
tion 1.37 and by standard calculus in Banach space, our statement fol-
lows. O



Chapter 2

Elastic boundary value
problems in a domain with a
small hole

2.0.4 Basic boundary value problems

In this chapter we focus our attention on the vector valued partial differential
operator L[b] = A + bVdiv, where b is a real coefficient. One immediately
recognizes that L[b] = L[(b, 0)], where L[(b,0)] is the operator introduced in
subsection 1.3.2. Let b € R and A € M,,,(R). We denote by T'(b, A) the
matrix (b — 1)(trA)1, + (A+A"). We also note that the matrix of polyno-
mials

PJ(&r, -, &n) = (Bylbl(&1s -+, &n))i=1,..m»
with
Py[b (&1, &) = 05l€7 +0&& Vij=1,...,n,
satisfies the equality L[b] = P[b](0y,, ..., 0z,). Moreover we have

' P)(&)n = €l +b(&-n)* > EInl* ¥ &neR, b>0,

which implies that L[b] is a strictly elliptic operator for all b > 0. Now let
2 be an open bounded subset of R™ of class C!, and let v be the outward
unit normal to 912, and let f be a vector valued function defined on 9€2. In
the sequel we consider the following basic boundary value problems,

(i) L[bjJu =01in Q and u = f on 012,
(i) L
) L
) L

b
[blu =0 1in R™\ cIQ2 and u = f on 012,

[blu =0 1in Q and T'(b, Du)v = f on 09,
b

(ii

[blu =0 in R™\ cIQ? and T'(b, Du)v = f on 0f.

(iv

41
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We refer to problems (i), (ii), (iii) and (iv) as to the Dirichlet interior, the
Dirichlet exterior, the Neumann interior and the Neumann exterior bound-
ary value problem, respectively. One can verify that the boundary value
problems (i), (ii), (iii) and (iv) satisfy the Shapiro-Lopatinskii conditions for
all b € R\ {0,—1, -2} (see Kozhevnikov [16].) In particular, the spaces of
the solutions of the problems with homogeneous data (namely with f = 0)
have a completely explicit description for all b > 1 —2/n (cf. Theorem 2.4.)
For this reason we focus our attention on this particular range of values of
b and we denote by & theset {bc R : b>1—2/n}.

2.1 Boundary integral equations

In this section, we investigate the basic boundary value problems for the
operator L[b] in an open subset © of R™. We associate to such problems
suitable boundary integral equations and we point out some properties of
the corresponding integral operators.

2.1.1 Preliminaries

In the next Theorem 2.4, we describe the solutions of the first and second
boundary value problems in  and R™ \ cl©2 when homogeneous boundary
data are considered. To do so, we first introduce the following definition.

Definition 2.1. We denote by R the set of the vector valued function p
on R™ such that p(x) = Ax + b for every x € R"™, where A is a real n X n
skew-symmetric matriz (briefly A € Skew(n,R)) and b € R™. Let 2 be an
open subset of R™. We denote by Rq the set of the functions on Q which are
restrictions of functions of R. We denote by Rq 1oc the set of the functions
on Q such that ploy € Rey for every connected component Q' of Q. We
denote by (Raoc)|oq the set of the functions on 0Q which are trace on 09
of functions of Rq 1oc-

Then we have the following proposition.

Proposition 2.2. Let Q be an open subset of R™. Let E[b] be the symmetric
bilinear operator of [C1 (2, R™)]? to C(Q) which takes a pair (u,v) to

E[b|(u,v) = (b—142/n)divudive (2.1)
1 < 1 &
+5 i;(aiuj + 9;u) (Biv; + Byvi) + nijzl(aiui — 8ju;)(Ov; — B;v;).
i T

If b > 1 —2/n, then the following statements hold.

(i) There exists a real constant ¢ > 0 such that E[b](u,u) > ¢|Du+(Du)t|?
for alluw € C1(Q,R").
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(ii) If u € C*(,R"), then E[b](u,u) =0 if and only if u € R joc-

(iii) If u € CY(Q,R™), then Eb)(u,u) = 0 if and only if E[b](u,v) = 0 for
all v € CHQ,R").

Proof. (i) Let u € C*(Q,R"). By a straightforward calculation we verify

that

E[b](u,v) (2.2)
= () D@+ 6 1) D @uua)(Opug) + 5 D (s + Dy

=1 i,j=1 ij=1

i o

We prove separately the statement for b > 1 and b < 1. Let b > 1. By (2.2),
we deduce that E[b](u,u) = (b — 1)(divu)? + (1/2)|Du + (Du)?|?, which
immediately implies statement (i) with ¢ = 1/2. Now let b < 1. We observe
that

n n n

S (9hus)(05u5) < % S @) + @u)?] = (n—1)S " (Brue)®
ij—1 ij=1 i1
i#j i#j

Then, we deduce by (2.2) the following inequality,

E[b](u,u) > n(b—1+2/n) Z (Ou;)? Z (O5uj + Ojui)?.
i=1 ij=1
i#]

If b > 1 —2/n the expression in the right hand side is greater or equal than
c|Du + (Du)!|?, with ¢ = (n/4)(b— 1+ 2/n).

(ii) Let b > 1 —2/n. Let u € C?(Q,R") such that E[b](u,u) = 0.
By statement (i) we deduce that Jju; = 0 and Qju; = —0;u; for all i,j =
1,...,n. It follows that afjuk =0 for all 4,5,k = 1,...,n. In particular,
for every connected component Q' of  there exist a skew symmetric matrix
A € Skew(n,R) and a constant vector b € R™ such that u(z) = Az + b for
all x € Q. The proof of statement (ii) can now be easily completed. The
proof of (iii) is straightforward. O

In the following Theorem 2.3 we introduce a Green like formula for the
operator L[b].

Theorem 2.3. Let Q2 be a bounded open subset of R™ of class C', and let
v be the outward unit normal to 0S2. Then the following statements hold.
(i) Let u € C(cl,R™") N C?(Q,R"), and let v € C(cl2,R") N CL (2, R"),
and let L[blu € L*(Q,R™). Then
/ [T (b, Du)|gav] - v|sq do = / (L[blu) - v + E[b](u,v) dz. (2.3)
o0

Q
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(ii) Let u € CH(R™\ Q,R")NC?(R™\ clQ), R"), and let v € C(R™\ 2, R")N
CHR™\ clQ,R"), and let Lblu € L?(R™ \ cl2, R™), and let vgp, be the
outward unit normal to the boundary of RB,, and assume that

lim [T(b, Du)’@RBnVR]Bn] . ’U’aRBn do = 0. (24)
R—00 JoRB,

Then

/ T(b, Du)lot] - vlog do = —/ (L{blu) - v+ E[b] (u, v) da.
o9 R\l o)

Proof. (i) We note that we have T'(b, Du)v € C(cl2,R") N C*(Q2,R"), and
div (T'(b, Du)v) = (L[bJu)-v+E[b](u,v) € L}(Q). Then, by applying the Os-
trogradski Formula, see Dautray and Lions [7, Chap. II §1.3], equation (2.3)
follows.

(i) Let R > 0 and let cl2 C RB,,. Equation (2.5) follows by applying
statement (i) in the open bounded set RB,, \cl{2 and by letting R — +o00. [

Now we can prove the following.

Theorem 2.4. Let b > 1 —2/n. Let Q2 be a bounded open subset of R"™ of
class C'. Then the following statements hold.

(i) Let u € C1(clQ,R™) N C?(2,R™) such that L[bju = 0 in Q. Then we
have ulgq = 0 if and only if w = 0, and we have T'(b, Du)|gpqv = 0 if
and only if u € Rq 1oc-

(ii) Let u € CY(R™\ Q,R") N C%(R" \ cIQ,R") such that L{blu = 0 in
R™ \ clQ), satisfy equation 2.4 with v = u. Then we have ulpg = 0
if and only if u = 0, and we have T(b, Du)|spqv = 0 if and only if
u € Rrm\aqloc and the restriction of u to the unbounded connected
component of R™\ clQ equals 0.

Proof. The sufficiency is in each case a straightforward verification. To
prove the necessity we exploit Proposition 2.2 and Theorem 2.3. Indeed if
u satisfies the assumption of either statement (i) or statement (ii) then by
means of Theorem 2.3 we deduce that E[b](u,u) = 0. By Proposition 2.2 it
follows that either u € Rqloc Or u € Rpn\ci,loc- Then by some elementary
remarks we can conclude the proof. ]

2.1.2 The elastic layer potentials

A fundamental solution of the operator L[b] is delivered by the function
SL[(b,0)] introduced in subsection 1.3.2. There, we have seen that Sy [(b,0)]
can be expressed by means of a fundamental solution Sz of the bi-Laplacian
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operator A%. Here, we find convenient to introduce an explicit expression
for the fundamental solution of L[b]. So we introduce an explicit expression
for Sx2 by the following equation,

Sna(z) = (—1)"2" (49B,|)"Yz[* " log |2| if n =2 or n =4,
AT (2= 2)(n— 4)|0B,]) 2] otherwise.

We note that Sa2 satisfies is a fundamental solution in the form of Theo-
rem 1.1. By exploiting equation (1.42) we deduce the following.

Proposition 2.5. Let I'(-,-) be the matriz valued function of (R\ {—1}) x
(R™\ {0}) to Mpxn(R) which takes a pair (b, z) to the matriz I'(b, z) defined
by

b+2 (Infzf b1 zg ifn=2
(b, 2)), = 2b+1) "7 2 2(b+1) 27 |27 -
2))ig = b+2 . P b 1 2z ifn>3
2b+1) 7 (2—n)|0B,| 2(b+1)|0B,] |z|"’ -
(2.6)

foralli,j=1,...,n. Then the function I'(b,-) is a fundamental solution of

the operator L[b] for all fivzed b # —1.

Now let m € N\ {0}, and let A €]0,1[. Let ©Q be a bounded and open
subset of R” of class C™*, and let v be the outward unit normal to 9. Let
p € COMNAQ,R™). We denote by vaa[b, 1] and waq[b, 1] the functions of R™
defined by

voalbopl(e) = [ Tlbz =) (o) do

and

walb, pl(x) = — /a N D002 ) )], doy @27)

i=1,....,n

for all € R™, where T'¥) is the vector valued function which coincides with
the i-th column of T" for each i = 1,...,n. In the sequel we write v[b, u]
and w(b, u] instead of vy [b, u| and waq[b, 1] where no ambiguity can arise.
v[b, u], wlb, p] are the elastic single and double layer potentials, respectively.
Note that the definition of v[b, u], w[b, u] coincides with the definition of
vp[b1, b2, @, 1], wrlbi, ba, @, u] in subsection 1.3.2 if we take by = b, by = 0,
¢ = idpn and we replace the fundamental solution Sr,(b1,be,-) by I'(b,). In
the following Propositions 2.6 and 2.7 we summarize some known facts on
the layer potentials.

Proposition 2.6. Letb € R\{—1}, m € N\{0}, A €]0,1[. Let Q be an open
and bounded subset of R"™ of class C™*. Let u € C™ 1A (9Q, R"). Then the
following statements hold.
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(i) v[b, pllrm\aq is a C°° function and L[blv[b, u] = 0 in R™\ 0Q.

(i) vlb, u] is a continuous function on R™, the restrictions v[b, p]lao and
v[b, illgme belong to the sets C™NclQ,R™) and C™A(R™\ Q,R"),
respectively.

(iii) We have

Tim T (b, Dolb, pl(x + (@) () =~ ple) + vl (o),
Tim T (b, Do (e + tv(@) v(a) = +gp(a) + vhalb ul(e),

for all x € 082, where
thalbosle) = | > [10. .00 = )uto)] i) doy. (28)

(iv) If n > 3 then the functions |z|"2v[b, u](z) and |z|* 1 Dvb, u](x) of
x € R™ are bounded for |x| in a neighborhood of +oco. If n = 2
and we assume that [,o @ do =0 then the functions |z|v[b, u](z) and
|z|2Dv[b, p](z) of x € R™ are bounded for |x| in a neighborhood of +oc.

Proof. Statement (i) is trivial. Statement (ii) follows by a slight modifica-
tion of Theorem 1.8. To prove statement (iii) we note that, by Cialdea [6,
Theorem 3] and [5, §2, IX],

lim DPosalil(o + tv(a)) = F () + [ DPSsale — y)aty) doy,
t—0F 2 o9

for all x € 9Q and for all multiindexes 5 € N™ with || = 3, where va2[u] is
the single later potential with density u € C™ 5 (99) corresponding to the
bi-Laplace operator A2. Then, by equations (1.42) and (1.43), we deduce
the validity of statement (iii). Statement (iv) for n > 3 can be verified by a
straightforward calculation. To prove statement (iv) for n = 2 we note that

olbuil(@) = [ (Db =) = Db.)uly) doy +T00) [ oo
o0 onN
Since |I'(b, x — y) — I['(b, z)||z| is uniformly bounded for y € 90 and |z| in a
neighborhood of +oco and we have [, aq 1 do = 0, we deduce that the function
|z||v[b, u](x)| is bounded for |z| in a neighborhood of +oc. The proof for
Duolb, p] is similar. Indeed we have

|| Dolb, p] ()] < !x\Q/ [DL(b; & — y) — DL(b, )| [u(y)| doy ,
oN

and we conclude by noting that |z|?| DT (b, z —y) — DT'(b, x)| stays uniformly
bounded for y € 92 and |z| in a neighborhood of +o0. O
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In the sequel we find convenient the following notation. If 2 is an open
and bounded subset of R of class C' and f and g are functions defined
on  and R™ \ clQ, respectively, we denote by f*(z) and by g~ (z) the
limits lim; ,o- f(z + tv(z)) and lim, o+ g(z + tv(x)), respectively, where
x is a point of 02 and v is the outward unit normal to 092. Accordingly
the limits in statement (iii) of the previous proposition can be denoted by
[T(b, Dv[b, u]))v]T (z) and [T(b, Dv[b, u]))v]™ (z), respectively. Now for the
double layer potential we have the following.

Proposition 2.7. Let b € R\ {0}, m € N\ {0}, X €]0,1[, and let Q be an
open and bounded subset of R™ of class C™*, and let p € C™ 1A (9Q, R").
Then the following statements hold.

(i) wb, pllrm\aq is a C*° function and L[blw[b, u] = 0 in R™\ 0Q.

(ii) wb, ul|o extends to unique element wt[b, u] of C™ 1A (clQ, R™) and
w[b, p1]|pn\c10 extends to unique element w™[b, p of CIA(R™M\ Q, R™).

(iii) On 0 we have wt[b, u] = Sp+wlb, u] and w=[b, u] = —5p + wlb, p).

(iv) The functions |x|"Y|wb, u](z)| and |z|*|Dwb, u](x)| of x € R™ are
bounded for |z| in a neighborhood of +oc.

(v) If p € C™ O R™) then wlb, u]|q evtends uniquely to an element
wt[b, u] of C™ (I, R™) and wlb, Hlrm\cio extends uniquely to an el-
ement w=[b, 1] of C™A(R™\ Q,R™).

Proof. The proof of statement (i) is trivial. Statement (ii) follows by a slight
modification of Theorem 1.8. To prove statement (iii) we note that

lim waq[b, p](x + tv(z))
t—0+

- —tl_i}(l)li " [(T(b, DrO(b, z + tv(x) — y))V(CU)> 'u(y)] , doy

_ lim [(T(b, DF(i)(b, T +tv(x) —y))

t—0* o0
(wly) = v@) uw)]| _ doy,
i=1,....,n
for all z € 9. Then, we can investigate the first limit in the right hand
side by arguing as in the proof of statement (iii) of Proposition 2.6, and
we can show that the argument of the second limit is a continuous function
of t by exploiting the Vitali Convergence Theorem. Statement (iii) follows.
Statement (iv) can be verified by a straightforward calculation. To prove
statements (v) we note that, by equation (1.45) and Lemma 1.41,

[b u = ZUA +Z’UA —1 Z b '%z] =1,...,n»
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where va and wa are the single and double layer potentials correspond-
ing to the Laplace operator A. For wa and wa we have the equation
Oiwalpjl = =Y 5y Opval M (v)p] for all i,j = 1,...,n (see Kupradze,
Gegelia, Basheleishvili and Burchuladze [18, Chapter V, §6] and Lanza de
Cristoforis and Rossi [27, Theorem 3.1].) Then by exploiting Theorem 1.8
and by the previous Proposition 2.6 statements (v) follows immediately. [

Moreover we have the representation formula (2.9). For a proof in R3
see Kupradze et al. [18, Chapter V, Theorem 1.6], the proof for n > 2 can
be deduced by a straightforward modification.

Theorem 2.8. Let b € R\ {—1}, and let X €]0,1[, and let Q@ be an open and
bounded subset of R"™ of class C1*, and let u € OV (clQ, R™) N C?(Q,R?)
such that L[blu = 0. Then

u(z) = wb, u|aq](x) — v[b, T(b, Du)|gor](z) YV z € Q, (2.9)
and the right hand side of (2.9) vanishes for x € R™\ clQ.

2.1.3 Boundary integral operators on L*(99,R")

Definition 2.9. Let A €]0,1] and let Q be a bounded open subset of R"™ of
class CYA. We set

1 « 1 x
Koalb, u] = 5+ woalb, ulloe, Kbalb, ul = Su +vaalb, ulloa,
1 . N 1
Hoqlb, u] = =51+ vjalb, ulloe, Hbolb, u] = =51 + woalb, dlog,

for allb € R\ {—1} and all p € L*(0Q,R"), where woq[b, p1] and viq b, p]
are defined by (2.7) and (2.8), respectively. We write K, K*, H, H* instead
of Ko, Kjq, Haq, Hj, where no ambiguity can arise.

Proposition 2.10. With the same notation of Definition 2.9, the operators
K[b, ], K*[b,-], H[b, ], H*[b, -] are bounded on L?(0Q,R™).

Proof. We note that (0.,I'(b, 2))i; is a singular integral kernel of the form
f(2)|z|'™™, where f is an odd, homogeneous of degree zero, real analytic
function on R™ \ {0}. Therefore the map which takes an element p of
L2(09) to [0(02,T(b,x—y))ijiu(y) doy is a bounded operator on L*(9€2) (cf.
Mikhlin [33, §27].) By equations (2.7) and (2.8) our proposition follows. [

Moreover we have the following.

Theorem 2.11. With the same notation of Definition 2.9, K[b, -], K*[b,],
H[b, ], H*[b, ] are Fredholm operators of index 0 on L*(92,R™) for all fived
beR\{0,—1,-2}.
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Proof. For the sake of brevity we confine to consider K|[b, -], the proof for the
other operators is very similar. We show that K[b, -] have an Hermitian and
invertible symbolic matrix. Then the theorem will follow by Mikhlin [33,
Corollary to Theorem 4.40]. For the definition of the symbolic matrix of a
singular integral operator defined on 092 we refer to Mikhlin [33, §40] and
Seeley [41] (see also Mikhlin and Prossdorf [34, Chapter XIII, §2].) Here we
recall that the symbolic matrix of a singular integral operator defined on
0N is a function of 9Q x IB,,_1 to My« (R). We denote such a function by
oK, ](7,0), for all x € 9Q, 6 € OB,—1. So, our claim is that ok, j(,0) is
an invertible Hermitian matrix for all x € 002 and 6 € 0B,,_1.

By equation (2.6) and by a straightforward calculation we can see that

[T(b, DTO (b, 2))v); (2.10)
1 1 I/Z'zj — I/jzi ZiZj |2
— i b e
b+1]0B,] ( FO— < jn \z|2> \z\">

for all 7,5 = 1,...,n, and all vectors v € R", and all z € R" \ {0}. Now,
let v be the outward unit normal to the boundary of 2 and let k;;(z, z) and
a;j(z, z) be defined by

Vi\x)z; — Vi \X)Z;
k’ij(l’,Z)E ( )J’z‘n]( )

. aij(z, ) = <(5ij + nbzizj> v(x) 2

212 ) |zl

for every i,7 = 1,...,n, and all z € 99, and all z € R™\ {0}. One easily
verifies that k;j(z,z —y) — kij(y,2 — y) = O(Jz — y|* 1) as y — z, for all
z,y € 0Q. Moreover a;;(y,z —y) = O(|z — y[*~17*) and thus, if we set
bij(x,y) = kij(y,x —y) — kij(z, 2 — y) + a4j(y, z — y), we have

1 1 *

1
Kb, pf(z) = 5#(@ T OB b+ 1 g k(z,z —y)u(y) doy (2.11)
1 1
OB By, T~ Wuly) doy, Ve € 00,

for all u € C9*(99, R"), where we intend

/ k(z,z —y)u(y) doy = lim k(z,z —y)u(y)doy, YV x € 0.
o0 =07 JoQ\ (z+€B,,)

We now fix a point z¢ of 2. To calculate ok j(z0,0) we have to
introduce a local parametrization of 92 in a neighborhood of zy. To do
so we perform an orthogonal coordinate transformation in R™ such that
zo = (0,...,0), and all vectors of the form (&,0), with & = (&1,...,&—1),
are tangent to 0€) in xg, and the outward normal to 02 in xg is delivered by
(0,...,0,1). By a straightforward calculation, we verify that equation (2.11)
still holds with respect to the new coordinate system.
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Moreover, by our assumptions on ), there exist r,0 > 0 and a func-
tion v € C™(cl(rB,_1)) such that —6 < 7 < & and the intersection
QN (rB,,—1%x] — 6,4]) coincides with the subgraph of the function -, namely
with the set {(£,&,) € R® @ [£] < r, =0 < &, < v(£)}. In particular, the
map of rB,_1 to 9Q N (rB,_1x] — §,d[) which takes £ to (£,v(£)) is a local
parametrization of 0¢) in a neighborhood of z.

We recall that v admits an extension to a function of class C1* defined
on the whole of R (cf., e.g., Troianiello [44, §1.2.2].) We still denote by
v such an extension. With this notation, we introduce the function k(-,-) of
R x (R*1\ {0}) to M,,xn(R) which takes (&,¢) to the n x n matrix

1 ( ¢D7(§) — (CDy(8))" —C+(D7(£))t(D7(€))C>,

[¢]* \ ¢t = (D)D) 0
where we intend
n—1
(DY) = (GOV(E))ij=t,m—1,  (DVEC =D (0:v(£)G,
i=1

as accordingly to the fact that ¢ is a column vector and Dv(§) a row. By
exploiting the equality v(£,7(€)) = (1 + |[Dv(€)|?)"2(=Dy(€),1), for all
¢ € rB,,_1, we verify that

fl%ij (575 - 77)
(1+|Dy(&)]H)1/?
asn— & forallémerB,_1,4,5=1,...,n.

Now, let u be a function of C%*(9Q, R"™) with support contained in
00N (rB,_1x] — §,5[). We denote by fi the function of R*~! to R defined

by, Fi(€) = u(E,1(£)), for all € € 1By, (€) = 0. for all € € R™1\ 1B, _;.
Then, with respect to the new coordinate system, we obtain by (2.11) the
following equation,

Kb, (&, 7(£)) (2.12)

I PPN S 75(5,5—77);7(77) 2\1/2
= 5O BT Lo 1 DR PO

kij ((€,7(9)), (€ =0, 7(&) — v(n))) — = O(|¢ —n["17Y),

[ el dn

for all £ € rB,,—1, where c(-, -) is a weakly singular kernel and B(&,¢) = {n €
R 2 €=l + (y(§) = 7(n))* < €} Since we have (1 + [Dy(€)[*)"/? ~
(1+|Dy(n)[>)Y? = O(|¢ — n|*), the right hand side of (2.12) equals

1 1 1 ~
(&) — — i k —n)p(n) d 2.1
O~ i [ HEEwEm dy (1)

+ /Rn_l d(&;m)i(n) dn,
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for all ¢ € R"™! where d(-,-) is a weakly singular kernel. Moreover, the
limit in (2.13) equals

[ Heg—mit) dn+< | Heossen) daa>zz(£>, (2.14)
Rn—1 OB, _1

where

= lim - - 1
IO = B @@ — 1€+ @D~ (1 (Do)

for all ¢ € R" ! and § € 0B,,_1 (cf. Mikhlin and Prossdorf [34, Chapter IX,

§1.3].) Then we easily verify that k(,0)log3(,0) is a odd function of

6 € OB,,_; for all fixed £ € R"L. So, the second integral in (2.14) vanishes.
Now, by (2.12), we obtain

Kb, u](£,7(£)) = Kb, A(€) + B[b, A](€), V€€ By,

where B[b, ] is a weakly singular integral operator (cf. Mikhlin and Pross-
dorf [34, Chapter VIII, §3]) and KIb,] is the singular integral operator on
L?(R"~! R™) which takes ¢ to the function K[b, ¢] defined by

(b, )(6) = Lo(e) - /R R(E.€ — moln) dn, V€€ RM.

n—1

| =

Then, by definition, we have ok, )(z,0) = TR (b ] (&,0), for all 0 € 0B,,_;
and for all z = (&,7(€)) € 99N (rB,,—1 x| =0, d[) (cf. Seeley [41], Mikhlin and
Prossdorf [34, Chapter XIII, §2].) By exploiting Mikhlin and Prossdorf [34,
Chapter X, §2.1], we verify that

IKb,] (&, 0)
1

1,

1 i ( 0Dv(§) — (0D~(8))* —9+(D7(£))t(D7(£))9)
5 ,

S 2(b+1) \ 0" — (Dy(E)(Dy(€))o 0

for all £ € R"!, § € OB,,_1. In particular, for £ = 0, we have

) 1 1,4 i(b+1)"16
“kp) (00 =3 ( bt 1 :

One easily verifies that ok, (w0, 0) = TRb, ] (0,0) is an Hermitian matrix
and that det o, ) (w0, 0) = (1/2")b(b+2)(b+1) "2, for all § € OB,,—1. So that
det ok, (0,0) # 0 for all b € R\ {0, —1,—2}. Since 29 was an arbitrary
point of 02 and the symbolic matrix does not depend on the choice of
the local parametrization (cf. Seeley [41]), we deduce that ok )(z,0) is
an invertible Hermitian matrix for all x € 09, 8 € 0B, _1. The proof is
completed. ]
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Theorem 2.12. With the same notation of Definition 2.9, the operator
K*[b, -] is the adjoint to KIb,-] and the operator H*[b, ] is the adjoint to
H[b, ] for allb e R\ {—1}.

Proof. The proof follows by the properties of the composition of ordinary
and singular integrals (see Mikhlin [33, §9]) and by equations (2.7) and (2.8).
O

2.1.4 Kernels of the boundary integral operators

If the density p is of class C%*, then K[b, u], K*[b, u], H[b, u], H*[b, 1] are
related to the boundary values of the layer potentials v[b, u] and wib, ] as
it is stated in the following proposition, which we immediately deduce by
Proposition 2.6 and Definition 2.9.

Proposition 2.13. Let b € R\ {—1}, X €]0,1[. Let Q be an open and
bounded subset of R™ of class C**. Let y € CO*(0,R™). Then Kb, u] =
w[b, pllag, K*[b,u] = [T(b, Dv[b, p))v]~, Hb, u] = [T(b, Dv[b, u)))v]",
H*[b, p] = w™ b, pf|o-

Moreover, we have the following Lemma 2.14, which states that every
p € L2(0Q,R™) such that K[b,u] € C**09Q,R") is indeed a function of
C9* (09, R™), and similarly for K*, H and H*.

Lemma 2.14. Let A €]0,1]. Let Q be a bounded open subset of R™ of
class C*A. Let pu be a function of L>(0Q,R™). Let b € R\ {0,—1,—2}.
If either K[b, u] € CO*OQ,R"), or K*[b, u] € CO*(0Q,R™), or Hb, u] €
COANOQ,R™), or H*[b, i) € COMNOQ,R™), then u € COANOQ,R™).

Proof. The lemma follows by Mikhlin and Prossdorf [34, Chapter XIII, The-
orem 7.1]. Indeed, by arguing as in the proof of Theorem 2.11, we can verify
that the assumptions of [34, Chapter XIII, Theorem 7.1] are satisfied. We
note that [34, Chapter XIII, Theorem 7.1] is concerned with a singular inte-
gral operator of L2(99) to L2(09), while K[b, ], K*[b, ], H[b, -], H*[b, -] are
singular integral matrix operators of L?(9€, R™) to L?(9€), R™). By exploit-
ing Sevcenko [42], one can verify that the statement of [34, Chapter XIII,
Theorem 7.1] extends, with the obvious modifications, to the case of singular
integral matrix operators. O

Now we are ready to give a detailed description of the kernels KerH][b, -]
and KerH*[b, ] of the operators H[b,:| and H*[b,:]. This is the purpose
of the next Theorem 2.16. In the following Theorem 2.17, we consider the
kernels KerK[b, -] and KerK*[b, -] of K[b, -] and K*[b,-]. Also in this case we
give a detailed description. First we introduce some more notation.
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Definition 2.15. Let €2 be an open subset of R". We denote by R the set
of the vector valued constant functions on 2. We denote by RY, | . the set of
the functions on €2 which are constant on the connected components of €.

We denote by (RS ..)|oa the set of the functions on 02 which are trace on
0Q of functions of RS Joc-

Theorem 2.16. Let b > 1 —2/n and X €]0,1[. Let Q be an open bounded
subset of R of class C'*. Let H[b,-| and H*[b,-] be the operators on
L2(09,R™) introduced in Definition 2.9. We denote by (KerH[b,])o the
subspace of KerH[b, -] of the functions p such that faﬁ' pdo = 0 for every
connected component Q' of Q. Then the following statements hold.

(i) vlb, u)|oq € KerH*[b, -] for every u € KerH[b, -].
(ii) The map which takes p to v[b, u)|aq is injective on (KerHIb, -])o.

(iii) If n > 3 the map which takes p to v[b, ulloq is an isomorphism from
KerH[b, ] to KerH*[b, -].

w) KerH*[b, ] = v[b, (KerH)gl|gg ® (RE a0q, the sum being direct but
( ) Q,loc
not necessarily orthogonal.

(’U) KerH*[b, ] = (RQ,IOC)|8Q-

Proof. (i) By Lemma 2.14 each p € Ker(H) belongs to C%*(9Q, R"). There-
fore we have v[b, u] € C*(cl2,R") N C?(Q, R") by Proposition 2.6. Then we
apply Theorem 2.8 and we obtain that

w[b, U[b, ¢]‘aﬂ](x> =v [bv [T(bv Dv[bv M)V]-’_] (x>
= v[b,H[b, p] (z) = v [b,0] (x) =0

for all z € R™\ cl2. We recall that, by Proposition 2.13, H* [b, v[b, u]|aq] =
w [b,v]b, pllaa]” and we deduce that H* [b, v[b, u]laq] = 0.

(ii) Now, let p € (KerH)q such that v[b, u]|aq = 0. Then v[b, u] = 0 by
Theorem 2.4 and by Proposition 2.6. Since

p = [T(b, Do[b, p])v]~ — [T'(b, Dvlb, u))v]" (2.15)

it follows that pu = 0, which implies our claim.

(i7i) We note that KerH[b, -] and KerH*[b, -] have the same finite dimen-
sion (cf. Theorem 2.11.) So it is enough to prove that the map which takes
w to vlb, pllaq is injective from KerH[b, -] to KerH*[b, ]. This can be seen
by arguing as in the proof of (ii).

(iv) First we prove that v[b, (KerHIb,|)o]|sn does not contain non-zero
functions of (R{ .. )|oq. Let u € (KerHIb, -])o and let v[b, ullaq = plon with
p € R, We show that this implies 4 = 0 and thus v[b, ullsn = 0. We
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have [T'(b, Dv[b, u])v]™ = H[b, u] = 0 and therefore p = [T'(b, v[b, u])v]~ by
(2.15). Then, by Proposition 2.6 and Theorem 2.3, we get

/ E[b)(u[b, o], vlb, ¢]) de = / olb, ilog - [T(6, Dolb, )]~ do
R™\clQ2 a0

N
=—/ ploo -1 do == plag, / p do =0,
o0 = 2%,
where 1, ...,Qx are the connected components of 2. By Theorem 2.2, the

restriction v[b, u]|rm\cio belongs to Rgn\cio10c- Hence v[b, p]|gn\c0 = p by
the continuity of v[b, u] in R". In particular, we have Duvlb, u]|gn\c0 = 0
and [T'(b,v[p])v]” = 0, which implies p = 0.

On the other hand (Rf . )|oq is a subspace of KerH*[b,-]. In fact, by
means of Theorem 2.8, we deduce that w(b, plag] = 0 on R™ \ clf? for every
p € R e Thus H*[ploq] = w(b, ploa]™ = 0. Moreover, dim KerH[b, | =
dim KerH*[b, |, for H[b, ] is a Fredholm operator of index 0, and

codim v[b, (KerHIb, -])o]|an = codim (KerHIb, -])o < nN,

where N is the number of connected components of €2, because v[b,]|aa
is injective on (KerH[b,])o and (KerH[b,:])o is defined by the vanishing
of the nN linear functionals which take p € KerH[b, ] to faQ ;i do, with
i=1,....,nand j=1,...,N.

So summarizing we have

v[b, (KerH[b, -])o][ao C KerH*[b, -], (Rg j0c)|on € KerH'[b, ],
codim v[b, (KerH[b, -])o]lan < nN, dim (RG ,.)|ae = nN,

and v[b, (KerH[b, -])olloa N (RG ,c)loo = {0}. We deduce that the codimen-
sion of v[b, (KerHIb, -])o]|aq in KerH* [b, -] is exactly nN and KerH*[b, ] =
v[b, (KerH[b, -])o]|aa ® (RS ,.)|o0, the sum being direct but not necessarily
orthogonal. 7
(v) KerH[b, -|* C (Rq,10c) lon follows by statement (iii) and Theorem 2.4.
To prove the converse consider a function p € R joc. Then, by Theorem 2.4,
Lblp = 0 in Q and [T'(b, Dp)v]t = 0 on 0. By Proposition 2.7 and
Theorem 2.8 it follows that w[b, p|laa] = p on cl). Then w(b, ploa]™ = plag
and so H*[b, plaa] = w(b, plaa] ™ = w[b, plaa]™ — ploa = 0. O
For KerK|[b, -] and KerK*[b, ] we have the following.

Theorem 2.17. Let b > 1 —2/n and X €]0,1[. Let Q be an open bounded
subset of R™ of class C'*. Let K[b,-] and K*[b,-] be the operators on
L2(09Q, R™) introduced in Definition 2.9. Then the following statements hold.

(i) The map which takes u to v[b, u)|aq is an isomorphism from KerK*[b, -]
to KerKJb, |.
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(i) KerK[b, ] coincides with the set of the functions p € (Rgn\ci0,loc)|00
which vanish on the boundary of the unbounded connected component

of R™\ clQ.

Proof. Since the proof is very similar to the proof of Theorem 2.16 we omit
it. We only note that both the statement of the theorem and the proof
are in this case simpler. The reason is the following. One can verify that
Joq tdo = [0 K*[b, 1] do for all p € L*(0Q, R™). Indeed, by Definition 2.9,
K*[b, u] = p+H][b, u], and by Theorems 2.11, 2.12, 2.16, H[b, p] is orthogonal
to each constant function on Q. In particular, [;, H[b, ] do = 0. Then p €
KerK*[b, -] implies [, i do = 0 and therefore we don’t have to distinguish
between n = 2 and n > 3. O

Moreover we have the following Proposition 2.18 which provides a direct
decomposition of the space L2(9€, R") in terms of KerK[b, ], KerK*[b, -],
KerH[b, -], KerH*[b, -] and their orthogonal spaces.

Proposition 2.18. Let b > 1 — 2/n and A €]0,1[. Let Q be an open
bounded subset of R™ of class C'*. We have L*(992,R") = (KerH*[b, |)* @
KerH[b, -] = (KerK[b, -])* @ KerK*[b, -], the sum being direct but not neces-
sarily orthogonal.

Proof. By Theorems 2.11 and 2.12, H[b,:] and H*[b, ] are adjoint Fred-
holm operators of index 0. So dim KerH|[b, -] = codim (KerH*[b, -])* < 4oc.
Then to prove the first equality it is enough to show that (KerH*[b,-])* N
KerHJ[b, -] = {0}.

So let p € (KerH*[b,])* N KerH[b,-]. We claim that u = 0. We note
that H[b, | = 0, and by Fredholm’s Alternative Theorem, there exists ¢ €
L?(09,R™) such that u = H[b,?]. By Lemma 2.14 it follows that both u
and 1) belong to C%* (99, R™). Then by Proposition 2.13 we have

[T(b, Dvlb, p)v] " =0
and
[T(b7 D’U[b, w])y]+ =p=p+ H[b7 :U’] = K*[bv M] = [T(bv Dv[b7 :U'])l/]_ :

Multiplying the first equation by v[b, 1] and the second by v[b, u], subtract-
ing, and integrating over 0f), we obtain

/m [T'(b, Dvlb, p))v]* - v[b,¥] — [T'(b, Dv[b, ) )v]t - v[b, u] do (2.16)
:/ [T'(b, Dvlb, u])v]™ - v[b, u] do.
o0

Since 1 € (KerH*[b,0])1, 1 is orthogonal to each function of (Rq joc)|oq- In
particular |, sqMdo = 0. So, by Proposition 2.6 and Theorem 2.3, the left
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hand side of (2.16) equals

/Q olb 1] - LibJolb, ] — v[b, 4] - LibJolb, 4 dz = 0,

while the right hand side equals

- / B[ (o[b, 1, olb p]) e
R™\clQ2

We deduce that E[b](v[b, u],v[b, u]) = 0, and thus v[b, u] € Rrm\cio10c DY

Proposition 2.2. Then we have p = [T'(b, Dv[b, u])v]” = 0, which is our
claim. The proof that L2(9Q,R") = (KerK[b, |)* @& KerK*[b,-] is very
similar and we omit it. O

2.1.5 Boundary integral operators in Schauder spaces

Theorem 2.19. Let b > 1 —2/n, m € N\ {0}, A €]0,1[. Let Q be an
open and bounded subset of R™ of class C™>. Let u € L*(09,R"™). If
either K*[b, u] € C™ 1A OQ,R™) or H[b, u] € O™ VAOQ,R"), then p €
Cm=LA(9Q, R™).

Proof. For m = 1 the theorem follows immediately by Lemma 2.14. So let
m > 2 and assume that H[b, u] € C"™ 199, R"). By Lemma 2.14 we have
p € COMNOQ,R™). So, by Proposition 2.13 we have [T'(b, Dv[b, u))v]t =
H|[b, u, which implies that [T'(b, Dv[b, u])v]t € C™ 1299, R™). Therefore,
by Proposition 2.6 and by exploiting Agmon, Douglis and Nirenberg [1,
Theorem 9.3|, we deduce that the restriction v[b, u||aq is a function of class
C™A. Now let R > 0 and let clQ C RB,. By the continuity of v[b, ]
on R™ we deduce that the restriction of v[b, 1] to the boundary of RB,, \
Q) is a function of class C™*. Thus, by [1, Theorem 9.3], the restriction
v[b, u|(c1rB,)\@ belongs to C™((clRB,,) \ Q,R™). In particular the limit
[T(b, Du[b, u1])v]~ exists and defines a function on 92 of class C™~ 1. Now,
by Definition 2.9 and by Proposition 2.13, we have

= K*[ba M] - H[b7 M] = [T(b7 D'l)[b, :U’])V]_ - H[b7 :U’]

It follows that u € C™~1A(99, R"), which is our claim. The proof for K* is
very similar. O

In the following Theorem 2.19 we consider the operators K and H* and
prove a statement which is similar to the statement of Theorem 2.19. For
this purpose we need the following lemma.

Lemma 2.20. Letb>1—2/n, m € N\ {0}, X €]0,1[. Let Q be a bounded
open subset of R™ of class C™*. Let u € C%*(0Q,R™). Then the following
statements are equivalent.
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(i) wlb, u]|q extends to a function wr[b, u] of C™(clQ, R™).
(i4) w(b, p]lgrm\ciq2 extends to a function w™[b, u] of C™AR™\ Q,R").

Proof. We prove that (ii) imply (i). The proof of the other direction of
the lemma is very similar. If we assume that (ii) holds than we clearly
have that the limit [T'(b, Dw[b, pu])v]™ (x) exists for all z € 9 and defines a
function of class C™ 1 on 9. As a first step we prove that there exists
Y € O™~ LA 90, R™) such that

H(b, ¢] = [T'(b, Dwlb, u])v] ™ . (2.17)

We note that, if ¢ € L2(99Q, R") satisfies (2.17), then 1p € C™~14(9Q, R™) by
Theorem 2.19. So, by the Fredholm Alternative Theorem, it will be enough
to show that [T'(b, Dw[b,u])v]” is orthogonal to KerH*[b,:] (cf. Theo-
rem 2.19.) Now, by Theorem 2.16, we have KerH*[b, -] = v[b, (KerH[b, -])o] ®
(RS 1oc)|002- So we are reduced the prove that

/6 (@00 + )l (T Db, )]~ dor =0 (2.18)

for all ¢ € (KerHb, |)o and all p € Rf, .. By Theorem 2.3 and Proposi-
tion 2.6 the integral in (2.18) equals

/ w™ (b, 1] - [T(b, Dolb, ¢)]~ dor. (2.19)
oN

Since [T'(b, Dv[b, ¢])v]t = 0 and ¢ = [T(b, Dv[b, ¢])v]~ — [T(b, Dv[b, ¢])v]*
we have [T'(b, Dv[b, ¢])v]” = ¢, which in turn implies that [T'(b, Dv[b, ¢])v]~
belongs to KerH[b,-]. Moreover we have w™[b, u]lsgo = H*[b, u] by Propo-
sition 2.13. Thus w™[b, ul|sq is orthogonal to KerHIb, ] by the Fredholm
Alternative Theorem. In particular w™[b, u]|go is orthogonal to the func-
tion [T'(b, Dv[b, ¢])v]” and therefore the integral in (2.19) vanishes. It follows
that (2.18) holds and that 1 exists.

So, let 9 be a function of C™ (99, R™) which satisfies (2.17). Since
(codim KerH[b, -])o > n (see the proof of Theorem 2.16) there exists Y €
KerHJb, -] such that faQ Ydo = faQ ¥ do. We set g = ¢ — ¢ and we note
that ¢g € C™~ 190, R™) and satisfies (2.17). Now we set

u = vlb, o] — wlb, ul. (2.20)

By (ii) and by Proposition 2.6, the restriction u|gn\.qo admits an extension
u™ € C™ANR™\ Q,R"). We claim that

(U™ |oq — 1) € KerH*[b, ]. (2.21)
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By Propositions 2.6 and 2.13 and by equation (2.17) we deduce that

Yo = [T'(b, Dv[b, vo])v]” — H[b, 1] (2.22)
= [T'(b, Dv[b, tho])v]™ — [T(b, Dw(b, p])v]~ = [T(b, Du”)v] .

Then, by exploiting Theorem 2.8, we have
u(z) = / L(b,z —y) [T(b,Du)v] (y) doy (2.23)
o0
[ T [10.D0 @)vrs, W] doy
ORB,,

+ /a . {u—m(y) : [T(b, Dr® (b, z — y))V(y)] } day

i=1,...,n

_ /a . {u(y) . [T(b, DI (b, 2 —y))vrs, (y)] } day,

i=1,...,n

for every x € RB, \ cI2 and every R > 0 such that cI? C RB,. By
arguing as in the proof of Proposition 2.6, one can verify that the second
and the fourth integral term in (2.22) vanish as R — +oo. Therefore we

have u(x) = v[[T'(b, Du™)v] |(x) —wlb,u™ |sa](z) for all x € R™\ clQ2, which
implies

u(x) = v[b,vo](x) — wlb,u” |ga|(x), V xeR"™\clQ, (2.24)

by equation (2.22). Taking the difference of (2.24) and (2.20) we obtain
that w[b,u™|sgq — p|(z) = 0 for all x € R™ \ cl2. By Proposition 2.13
equation (2.21) immediately follows.

Now, by (2.21) and by Theorem 2.16, there exists p € Rq 1oc such that

u” o = 1+ plog- (2.25)

Moreover we note that the right hand side of (2.23) vanishes for x € Q
by Theorem 2.3. So, by letting R — oo, we deduce that

v[b, [T(b, Du™)v]” |(z) —w [b,u"|sa] (x) =0, VzeQ. (2.26)

Now, by exploiting (2.22), (2.25) and (2.26), we obtain

vlb, ol () —wlb, pl(z) = — /8Q [T'(b, DT (b, x — y))v(y)]-ploa(y) doy, (2.27)

for all z € Q). By Theorems 2.4 and 2.8 we deduce that the integral on the
right hand side of (2.27) equals p(x). So we have

wlb, pl(x) = v[b, Pol(x) — p(x), Ve, (2.28)

which immediately implies statement (i) of our Lemma 2.20.
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We also note that, by (2.28), the limit [T'(b, Dw[b, u])v]T exists and
equals [T'(b, Dv[b,])v]*. Indeed we have [T'(b, Dp)v]* = 0 by Theorem 2.4.
Since, by (2.17), [T'(b, Du[b, 1bo])v]" = HIb, vo] = [T'(b, Dw[b, u])v]~, we de-
duce that [T(b, Dw[b, u])v]" = [T(b, Dwlb, pu])v] . O

Theorem 2.21. Letb > 1—-2/n, m € N\ {0}, A €]0,1[. Let Q2 be a bounded
open subset of R of class C™. Let u € L?>(0Q,R"). If either K[b, u] €
C™AOQ,R™) or H*[b, u] € O™ OO, R™), then p € C™* (9, R™).

Proof. Assume that K[b, u] € C™*(0Q,R"). By Lemma 2.14 we have u €
CO* (99, R™). Then, by Proposition 2.7, the restriction w[b, ]| extends
to a function w*[b, u] of C%*(clQ, R™). Moreover w*[b, u]|snq = K[b, u] by
Proposition 2.13. So we have wt[b, u]|aq € C™*(9Q, R™) and we deduce by
Giaquinta [10, §3.4] for m = 1, and by Agmon, Douglis and Nirenberg [1,
Theorem 9.3] for m > 2, that wt[b,u] € C™*(clQ,R™). Now we exploit
Lemma 2.20 which implies that the restriction w[b, y1]|gn\ 10 has an extension
w” b, u] € C™ANR™\ Q,R"). Since we have u(z) = wt[b, u](x) —w™[b, u](x)
for all € 9Q, we conclude that u € C™*(9Q,R"). The proof for H* is
very similar. O

2.2 Dirichlet boundary value problem

2.2.1 Description of the problem

In the sequel we consider an open connected subset A of R™ such that R™\clA
consists of two connected components. We let the unbounded connected
component of R™ \ clA be perturbed in a “regular” way, whereas the other
one will display a “singular” behavior parametrized by a real coefficient e.
To do so, we fix a constant m € N\ {0}, and a constant A\ €]0,1[, and
we we fix a pair of open and bounded subsets Q" and Q¢ of R” of class
C™A*, such that Q" Q7 R™\ clQ" and R™ \ cIQ¢ are connected. Here “h”
stays for “hole” and “d” for “domain”. Then we consider two functions ¢"
and ¢? belonging to C™*(9Q", R™) N Aygr and to C™A9Q%, R™) N Asq,
respectively, where the sets Aynr and Ayna are defined as in subsection 1.5.
We denote by Alw, €, ¢, ¢¢] the subset of R™ defined by

Alw,e,¢", ¢ = 1[¢%] \ (v + cl(I[¢"]))

where w is a point of R” contained in I[¢%], € is a real parameter, and we
assume that (w + cl(el[¢®])) C I[¢?. We note that, with this notation,
Alw,0,¢", 7] is the punctured domain I[¢?] \ {w}.

As we have just seen w, €, ¢ and ¢? are subjected to certain conditions.
We denote by £™* the set of all quadruples (w, €, ¢", gbd) which we retain
as admissible. So £™ is the set of all quadruples (w, €, 9", ¢?) € R™ x R x
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(C™A 005, R™) N Agan) x (C™AO07,R™) N Agqa) such that w + cl(el[¢"])
is contained in I[¢%]. We also find convenient to denote by &T’)‘ the subset
of £™* of all quadruples (w,¢,d",¢?) with ¢ > 0. Then one verifies that
the sets £™* and ET’)‘ are open subsets of the Banach space R" x R x
CmA (OO, R™) x C™A 90, R™). To simplify our notation we sometimes
write a instead of (w, €, ¢%, ¢"). By applying the Jordan-Leray Separation
Theorem it is easily seen that

OAla] = (w + e (90")) U ¢(902%)

for all a = (w, € ¢, ¢%) € ET’)‘. Moreover w + e¢(9Q") and ¢%(9Q7)
are manifolds of class C™*. Tt follows that A[a] is a bounded open and
connected subset of R™ of class C"™* and that R™ \ clA[a] has two connected
components, for all a € ST’A.

Now we introduce a Dirichlet boundary value problem for the operator
L[b] in the domain Alfa], with a € 7", Let b > 1 — 2/n and let a =
(w, €, 0", ¢?) € &T’)‘. Let (g", g%) belong to C™* (90", R™) x C™A (90, R™).
We consider the following system of equations,

L{blu=0 in Alal,
u=g"o(w+ep)=D on w+ e (OO, (2.29)
u= gd o ¢d(*1) on gbd(@Qd),

It is well known that there exists a unique u € C™*(clA[a], R") which sat-
isfies system (2.29) (cf., e.g., Kupradze, Gegelia, Basheleishvili and Burchu-
ladze [18].) We denote by wu[b,a,g", g%] such a solution. Then we in-
vestigate the behavior of u[b,a,¢", ¢g%] upon perturbation of (b,a,g", g%
around a given degenerate 7-tuple (bg,wo,0, ¢, ¢4, gh, gd) of B x £m™A x
C™A QR R™) x O™ (904, R™), where Z={bc R : b>1—2/n}.

2.2.2 Solution by means of layer potentials

In the following Theorem 2.25 we show that the solution u of problem (2.29)
is delivered by a linear combination of layer potentials. In order to prove
such a result we need some more notation. So, if X' is a measure space, we
consider on L?(X,R™) the natural structure of Hilbert space and we denote
by (-|-)x the natural product on L?(X,R"™). We write (-|-) instead of (-|-)x if
no ambiguity can arise. Moreover, if ) is a closed subspace of L?(X, R") we
denote by P[Y]u the orthogonal projection on Y of p, for all u € L?(X,R")
(cf. e.g. Brezis [3, Ch. V, §1].) Then we have the following Lemmas 2.22,
2.23 and 2.24.

Lemma 2.22. Let the notation introduced in subsection 2.2.1 hold. Let a =
(w, e, 0", ¢?) € ST’)‘ andb € B. Let F € C™*(9Ala], R")N(KerKgaq)[b, )+
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and 3 € KerKgy[q)[b,-]. Then the following boundary value problem,

[b T] = ,
DAal
{ P[KerKp[a b, -]]7 = 8, (2.30)

has a unique solution T € C™~1A(9A[a], R™).

Proof. The existence of a solution 7 € L?(9A[a], R") which satisfies the first
equation of (2.30) follows by Fredholm Alternative Theorem. Moreover,
by Theorem 2.19, 7 € C™~ 1A (9A[a],R"). To conclude the proof we show
that P[KerKga[b, -]] is an isomorphism of KerK?, A[a][ ] to KerKgypq) b, -

Since KerK3, ., [b,-] and KerKyy[q)[b, -] have the same finite dimension, it
is enough to show that P[KerKgy[q)[b, ] is injective. We recall that, by
Proposition 2.18, KerKp, [0, ] N (KerKgaa)[b, )+ = {0}. It follows that
P[KerKyypq)[b, -]]To = 0 implies 79 = 0, for all 79 € KerKj, ) [b,]. O

Lemma 2.23. Let the notation of subsection 2.2.1 hold. Let b € % and
a= (weoh¢?) € 51“. Let G € C™*0Ala],R") N (KerKgA(a)[b Dt

Then the boundary value problem,

K('?A[a] [b7 /'L] = 67
2.31
{ P(KerK py alb, -l = 0. (2.31)

has a unique solution p € C™*(OA[a],R").

Proof. The existence of u € L?(0A[a],R™) follows by Fredholm Alternative
Theorem and Theorem 2.11. The uniqueness is trivial. By Theorem 2.21
we have that u € C™*(9A[a], R"). O

By Lemma 2.22 we deduce the following.
Lemma 2.24. Let the notation of subsection 2.2.1 hold. Let b € £ and
aec&l” A Letn = dim KerKa(q)[0, ] Let {pC }z 1....n be orthonormal basis
of KerKgypa)[b,-]. Then there exists a basis {al }zzlj,,_ﬁ of KerK3, 1) [b, -]
such that (|30} = 0ij foralli,j=1,...,7n

Proof. Let o? be the unique solution of (2.30) with F = 0 and g = g,
for all i = 1,...,7. Then, by Proposition 2.18, {a¥};=; 5 is a basis
of KerKaA[a][b ]. Moreover, (a®|30)) = (P[KerKay[q) b, ]]Oz(’ 130)y =

(BD|pW)y = §;; for all i,5 = 1,..., 7. O

Now we are ready to prove the following.

Theorem 2.25. Let the notation introduced in subsection 2.2.1 hold. Let
(b,a,g" g%) € B x E x C™A QM R™) x C™MNINLR™). Let G be the
function of OA[a] to R™ defined by G(z) = g" o (w + €)=V (z) for all
z € (w4 (00 and G(z) = g% 0 ¢V (x) for all x € ¢*(0Q). Let
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{a(i)}izlw,ﬁ and {ﬂ(")}izlwﬁ be as in Lemma 2.24. Then the unique so-
lution ulb, a, g", g% € C™*(clA[a],R") of problem (2.29) is delivered by the
following equation,
ulb,a,g", g% = wonga b, 1l + > (Glot) g (V7 1)ij vouga b, o], (2.32)
ij=1

where p is the only solution of (2.31) with
G=G- Z<G|O‘(i)>8A[a] B9, (2.33)
i=1
and V' is the n X n real matriz defined by
Vij = (vaaga b, a?]18Y) oafa),
foralli,j=1,...,n.

Proof. The uniqueness of the solution follows by Theorem 2.4. The existence
can be proved by the previous Lemma 2.23 and by exploiting equation 2.32.
We just note here that the matrix V is invertible by Theorem 2.17. O

2.2.3 Auxiliary boundary value problems

The purpose of this subsection is to investigate the Dirichlet interior bound-
ary value problem in I[¢?] and the Dirichlet exterior boundary value problem
in E[¢"] and to provide an expression for the solutions of both by means of
layer potentials. This will be done in the Theorems 2.27 and 2.30. First we
state the following Lemma 2.26, which can be verified by arguing as in the
proof of Lemmas 2.22 and 2.23.

Lemma 2.26. Let the notation of subsection 2.2.1 hold. Let b € % and
a=(we o o) e &T’A. Then the following statements hold.

(i) Let F € O™~ 1A (¢?(009),R™). Then the equation
Saoan b, = . (2.34)
has one and only one solution T € C™ 1A (¢?(994),R™).
(i) Let G* € O™ (¢%(004),R™). Then the equation
K ya(o00)[b, 1] = G, (2.35)

has a unique solution u € C™*(¢4(0Q%), R™).
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(iii) Let F be a function of Cmfl’A(th(@Qh),R”)ﬁ(Keerh(am)[b, 1+ and

8 e KerH;h(am)[b, :|. Then the following boundary value problem,

H,n 9qm [b, 7] = F.

ol (0Qh) 1Y ) 2.36

{ P[KerHZh(agh)[bv HT = B? ( )

has a unique solution T € C™~ 1A (¢"(9Q"), R™).

(iv) Let G be a function of C™(¢"(OQ"), R™) N (KerH g (90n) [b, 1+ and

B e Keerh(aﬂh)[b, :|. Then the following boundary value problem,

* _ h
H¢h(th)[bvu] - G ’ (237)
P[KerHZh(th) [, ] = B,

has a unique solution p € C™(M(OQM), R™).

By means of Lemma 2.26 and by Proposition 2.13 we immediately deduce
the following.

Theorem 2.27. Let the notation of subsection 2.2.1 hold. Let b € A
and a = (w,e,¢" ¢%) € ET*. Let G4 e O™ (490, RY). Let p €
CmAp4(009),R™) be the solution of (2.35). Then the boundary value prob-
lem
L[bju =0 in I[¢7],
{ u=G%  on ¢4(0Q%), (2.38)

has a unique solution u € C™*(cll[¢?], R™), which is delivered by the double
layer potential wya(gqay (b, 1]

Now we turn to consider the first exterior boundary value problem in
E[#¢"]. We need the following lemma, which can be proved by arguing as in
the proof of Lemma 2.24.

Lemma 2.28. Let the notation of subsection 2.2.1 hold. Let b € # and a =
(w, €, 0% € ET’)‘. Let n = dimKerH;h(OQh)[b, . Let {b(i)}izly,,,ﬁ be an
orthonormal basis ofKerH;h(th) [b,:]. Then there exists a basis {a(i)}izlyn_ﬁ

of KerHyn(pan)[b, -] such that (aDpW)y = 6,5, for all i,5=1,...,7.

In the following Theorem 2.30 we distinguish between the case n = 2 and
n > 3. To treat the case n = 2 we need to introduce an explicit basis for
KerH:;d( an))[b’ :]. So, by exploiting Theorem 2.16 we deduce the following.

Lemma 2.29. Let the notation of subsection 2.2.1 hold. Let n = 2, and
be B, and a = (w,e,0",¢%) € EM. Let bV [p"], b@[¢"] and b3["] be
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the functions of ¢"(OQ") to R? defined by
Wiph)(z) = |¢"(092")|71/*(1,0),
P [p" (@) = |o" (902" 7/%(0,1),
b @) (x) = b[g"| () — (B[6"]1B™M [6"]) g oy b [6"] ()
—(B[g" 6P [") 1 2020 DP 8" (@),
for all x € ¢"(O0"), where
b[o")(x) = ¢ 12[¢M(09") |2 (—a2, 21)

for all x = (z1,12) € ¢"(OQN), with

) 2
c E][ ly|* doy — (]Z yday> ,
@ (00N) @ (00N)

where f denotes the integral average. Then {bM "], b3 [¢"], 63 [p"]} is
an orthonormal basis of KerHZh(th)[b, :]. Moreover there exists a unique

(a[ba ¢h]7aba ¢h]) of (Keer)h(th)[ba ])0 X (R§[¢h] 1oc)|q5h o0h) such that

vgn o0 [b, b, 6"]] + b, ¢"] = Ble"].
We are now ready to prove Theorem 2.30.

Theorem 2.30. Let the notation of subsection 2.2.1 hold. Let b € B and
a=(we ol o) e S_T”\. Let G € C™A(¢"(0Q"), R™). Then the boundary
value problem
L[blu=0 in E[p"],
u=Gh on ¢ (OQ"),
SUPcgfph) [u()]|2]" % < +o0,
suPgeggn] [Du()]z]" ! < +oo,

(2.39)

has a unique solution u € C™(clE[¢"], R™). Moreover the following state-
ments hold.

(i) Let n > 3. Let {a(i)}i:17.“7ﬁ and {b(i)}izl,m,ﬁ be as in Lemma 2.28.
Then the solution u of (2.39) is delivered by the following equation,
u=wenam bl + Y (GMa™) (V)i v 00m b, aV], (2.40)
ij=1,0,70
where p is the only solution of (2.37) with =0 and
éh _ Gh o Z <Gh|a(z)> b(i),
i=1,..,70
and where V- € My« (R) is defined by
Vij = (g (oo b, a][p0))

for everyi,j=1,...,n.
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(ii) Let n = 2. Let {bD[¢")}i1 3, blo"] and (a[b, ¢"],cb, ¢"]) be as in
Lemma 2.29. Let {a(i) [¢h]}i:1,,,.73 be defined as in Lemma 2.29 with
b = D[] for all i = 1,...,3. Then the solution of (2.39) is
delivered by the following equation,

u = W g b, 1] + (G*a®) (%hmh [b, &[b, ¢"]] + 2, ¢h]) (2.41)
+ 3 ((6"aD) = (G"a®) Ble b [6) ) BO[6"),

1=1,2

where p is the only solution of (2.37) with =0, and

Gh=G"— > (GMaD)p D [gh],

and b [P is the constant function on clE[@"] which extends b [¢"],
fori=1,2.

By Theorem 2.27 and 2.30 we can introduce the following notation.

Definition 2.31. Let the notation of subsection 2.2.1 hold. Let (b, a, g", g%)
be a point of B x E_T’)‘ x C™A (00" R™) x C™AN9Q4, RY). We denote by
u[p?, g% the unique solution of (2.38) with G¢ = g% o (¢)=V), and we
denote by ul[b, d)h,gh] the unique solution of (2.39) with G* = gl o (¢")(=1
and we denote by ul[b, o™, g"] the function Weh(gam) b, pl(x) of the variable
x € E[p"] with u as in Theorem 2.30, and we denote by ul[b, ¢", g"] the
difference uh[b, ", g") — ulb, o, gt

2.2.4 Fixed basis for the kernels of the integral operators

In order to make the expressions (2.32) and (2.40) more explicit, we fix in
the followmg Theorem 2.34 explicit expression for the orthonormal basis
{(BDY,21 5 and {bD}iy 5 of KerH S (oo [0 ] and KerKoaq[b, ], re-
spectlvely. To do so, we need the following technical lemma, which can be
verified by a standard calculus (see also Lanza de Cristoforis and Rossi [27,
Lemma 3.13].)

Lemma 2.32. Let m € N\ {0}, X\ €]0,1[. Let Q be an open bounded
subset of R™ of class C™* such that Q and R \ clQ are connected. Let
¢ € C™MNONR™) N Agq. Then there exists a positive function G[¢] €
Cm=LA(9Q) such that

/ £(6) do = / f 0 $(2)516](x) doa,
$(09) a0

for every f € LY(¢(09)).
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Definition 2.33. We denote by {e(i)}izl,wn the canonical basis of R™ and
we denote by {sV} _, () the canonical basis of Skew(n,R). Let m €
(B

N\ {0} and X €]0,1[. Let 2 be an open bounded subset of R™ of class C™*
such that Q and R™ \ cIQ are connected. Let ¢ € C™ (09, R™) N Agn. We

denote by {b¥ 6,5, D=1+ (g), the orthonormal basis of (Riyjg))|e(o0)
defined by

b D[] (€) = </895[¢] da)_é ) VeEepdQ),i=1,...,n,

and
bD[g](¢) =
(i—n) S (i—n) ) (y) (y) do, bY) ()>
(s 5‘;/39(8 o)) - 896 0 6(y) 5161(y) do, B [](€
( [ 1661610 do,
oN
i—1 2\ -1
_ S b)) - bD 18] © b(u) >
g( [ 6000890610 000 [¢]<y>dy) )

for all £ € $(09Q) and for alli=n+1,....,n+ (}).
Then by Theorems 2.16 and 2.17 we have the following.
Theorem 2.34. Let the notation of subsection 2.2.1 hold. Let b € B and

a= (weoh¢?) e 51”. Let bD[¢"), i = 1,...,7, be as in the previous
definition. Let 3" [a] be the function on OAla] defined by

) _ g (ﬂ) for € € w+ eg(AQN),
ﬁ [a](f) = { 0 f07"§ c ¢d(an),

foralli=1,....n. Then the following statements hold.
(i) {b(i) [¢h]}i:1,...,ﬁ is an orthonormal basis of KerH;h(GQh)[b, .
(ii) {ﬁ(i) [a]}i=1,..n is an orthonormal basis of KerKya () [b,-].
We note that, for n = 2, the two bases {b(V[¢"], b3 [¢"], 03 [p"]} of

KerH;h(th)[b, .| introduced in Lemma 2.29 and in Theorem 2.34, respec-
tively, coincide.
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2.2.5 A real analyticity theorem for the solutions of (2.30)

We start our analysis of the auxiliary problem (2.30), which is defined on the
a dependent domain Afa], by transforming it into a system of equations on
the boundaries of the fixed domains Q" and Q?. This is done in the following
Theorem 2.36. In order to abbreviate our notation we find convenient to
introduce the following.

Definition 2.35. Let m € N\ {0} and X €]0,1]. Let Q2 be an open bounded
subset of R™ of class C™> such that Q and R™\ clQ are connected. We set

Kb, ¢, ] = Ko b, o o]0, K*[b,¢,u] = Ko b no Voo,
H[b, ¢, 1] = Hy(o)[b, o ¢V 0 6, H*[b, ¢, 1] = H [, 00 9 V)0 ¢
for all (b, ¢, ) € % x (C™A 9, R™) N Apq) x L2(02,R™).

Theorem 2.36. Let the notation of subsection 2.2.1 hold. We denote by
T = (T, T?,T3) the map of the set B x E™* x R® x ™~ LA (90" R™) x
Cm=LA 90 R™) to C™ LA OQ", R™) x ™LA 90, R™) x R™ defined by

T'b,w,e, 0" 6% e, 7", 7 (x) = —H[b, ", 7")(x) (2.42)
0 [ 2 [0 om0 s o @) - o)

Vg 0 ¢"(@) | 7()510")(y) doy, V@ € 0D,
T2b,w,e.¢" ¢ c. 7" 7 (2) = K*[b, ¢, 7)(2) (2.43)

. (b, §(z) — w— e
# g 2 [10.5800.6%0) ot )

Vg © ¢d(x)}7ih(y)5[¢h](y) doy, Y x €l

T°b,w,e ", ¢ ¢, 7", 7 (2.44)
_ - (D181 o P () 5" oy — e 7
= ([ "W (000 0 w) ol oy )

for all elements (b,w, e, ", %, c, 7", %) of the product B x E™* x R™ x
Cm=LA 90" R™) x C™~ LA (90, R™), where Vyn and Vga denote the outward
unit normal to the boundary of 1[¢"] and 1[¢?], respectively.

Let (byw, €, 9", ¢%, c) € B x ET’)‘ xR™ be fived. Then the pair of functions
(I, 79) of C™=LAOQ, R™) x C™~LA 90 R™) satisfies the equation

Th,w,e,¢", 6% c,7" 7 =0 (2.45)
if and only if the function T € C™ YN OA[w, €, ", ¢, R™) defined by

_ el=nrho (w4 e¢h)(71) on w + €¢h(89h)7
=9 o (¢ on ¢4(80%),
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1—n

satisfies (2.30) with T'=0 and = € 2 Z?:l ciBOw, e, ¢, ¢ . In partic-
ular, equation (2.45) has exactly one solution (7%, 7%) € C™~ 1A (90" R™) x
Cm=LA 0L, R™) for each fived (b,w, e, ¢, ¢%, c) € B x S_T’)‘ x R™.

Let (b,w, 0, 0", ¢ c) € BxE™ < R" be fized. Then the pair of functions
(th, 79) of C™=LAOQ, R™) x O™~ 1A (90, R™) satisfies equation

Tb,w,0,¢" ¢*,c,7", 7 =0, (2.46)
if and only if both the following conditions are fulfilled.

(i) The function 7 = %0 (¢4)(=1) of O™ 1A (6% (909, R™) satisfies (2.34)
with

F(&) = —[¢"(0QM)|"2> " ¢; T(b, DTV (b, 6—w)) vga(€), VE € ¢4(0QY).
=1
(2.47)

(ii) The function T = Tho(géh)(*l) of C=LA(ph(0Q"), R™) satisfies (2.36)
with F =0 and 3 =31, ¢; b [¢"].

In particular, equation (2.46) admits exactly one solution (", 7%) belonging
to C™=LAQQM R™) x O™~ LA 904, R™) for each fized (b,w,0,¢" ¢% c) €
B x EmA x R,

Proof. The statement follows by a straightforward verification based on the
theorem of change of variables in integrals and by the previous Lemmas 2.22,
2.26 and by Theorem 2.34. We only note that, if (b,w,0,¢",¢% c) € 2B x
EmA x R™ is fixed, then by statement (iv) of Lemma 2.26 the first and third
component of (2.46) admit a unique solution 7" € C™~1A(¢"(90Q"),R™)
which satisfies condition (ii) of Theorem 2.36. Then, by statement (i) of
Lemma 2.26, the second component of equation (2.46) has a unique solution
¢ e ™LA ¢%(90%),R™). In particular, the function 7 = 7% o (¢¢)(-1)
satisfies (2.34) with

F(g) = - Z( /8 7ol do) T(b, DT (b, € —w)vga(8), V€ € 7(007).

=1

The integral in the right hand side equals
@2 [ ot (5(6M o o) 5lo") do = [ 00,
oQh

for all i = 1,...,n. Therefore 7¢ satisfies condition (i). O

By Theorem 2.36, it makes sense to introduce the following.
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Definition 2.37. Let the notation introduced in subsection 2.2.1 hold. Let
c = (byw,e, ¢h,¢d,c) € B xE™N xR with e > 0 or e = 0. We denote
by (#h[c], 79[c]) the couple of functions (7, 79) € C™~LA(¢"(9Q"),R") x
Cm=LA(¢4(00), R™) which satisfies equation (2.45) or equation (2.46), re-
spectively.

Our goal is now to show that 7[-], #¢[.] admit a real analytic continuation
around a “degenerate” point ¢y = (bg, wo, 0, gbg, gf)g, co) € B xE™N xR, By
Theorem 2.36, it suffices to show that locally around (cg,7"[co], 7%[co]) the
set of zeros of T is the graph of a real analytic operator. We plan to do
so by exploiting the following corollary of the Implicit Mapping Theorem in
Banach space (for a proof see Lanza de Cristoforis [25, Appendix B].)

Proposition 2.38. Let X', Y, Z, Z, be Banach spaces. Let O be an open set
of X xY such that (xo,yo) € O. Let F be a real analytic map of O to Z such
that F(xq,y0) = 0. Let the partial differential Oy F (xo,yo) with respect to the
variable y be an homeomorphism of Y onto its image V = Ran(0y F(xo, yo))-
Assume that there exists a closed subspace Vi of Z such that Z =V & V;
algebraically. Let O1 be an open subset of X x Y x Z containig (x¢, yo,0)
such that O1 D {(x,y, F(z,y)) : (z,y) € O}, O1 D {(x,y,0) : (x,y) € O}.
Let G be a real analytic map of O1 to Z1 such that G(z,y, F(x,y)) = 0
for all (z,y) € O, G(z,y,0) = 0 for all (z,y) € O, and such that the
partial differential 0,G(xo,yo,0) is surjective onto Z1 and has kernel equal
to V. Then there exists an open neighborhood U of xo in X and an open
neighborhood V of yg in Y withU xV C O and such that the set of zeros of
F inlU xV coincides with the graph of a real analytic function of U to V.

So, in order to apply the previous proposition to the operator 7' in a
neighborhood of a point ¢y € Z x £™* x R® we have to understand the
real analyticity properties of T. The definition of T involves the operators
H[. -, -] and K*[-,-, ] and also integral operators which display no singular-
ities. To analyze their regularity we need the following Propositions 2.39,
where we summarize some known and some easily verifiable real analyticity
results.

Proposition 2.39. Let m € N\{0} and X\ €]0,1[. Let Q2 be an open bounded
subsets of R™ of class C™ such that Q and R\ cIQ are connected. Let F
be a real analytic map of B x (R™\{0}) to R. Then the following statements
hold.

(i) The map of C"™ A9, R™) N Aga to C™= L OQ) which takes ¢ to 5[d)
1s real analytic.

(i) The map of C™*(IQ,R™) N Agq to C™ 1A (9Q, R™) which takes ¢ to

Vg 0 ¢ is real analytic.
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(i4i) The map of C™*9Q,R™) N Asq to C™*(0Q,R™) which takes ¢ to
bD[¢] o ¢ is real analytic for alli=1,...,7.

(iv) Let ' be an open bounded subsets of R™ of class C™* such that
and R™\ I are connected. Then the map Hy of

{(b, 6,10, ) € B x O™ 9N, R™)) x O™ (9, R™) x LAY
- 6(002) Ny(o%) =0}

to C™A(00) which takes (b, ¢,v, f) to the function Hi[b,d,1, f] de-
fined by

0., 1)@ = [ Fbole) = 6)fw) doy. V€00,

1s real analytic.
(v) Let Q) be a bounded open subset of R™. Then the map Hs of
{(¢, ) € B x CU(OULR™) x L'(09) : $(0Q) Nl =0}

to CO(clY) which takes (b, ¢, f) to the function Hab, ¢, f] defined by

Halb, 6, f](x) = /8 P = o)) dy, Y w €lf.

1s real analytic.
(vi) Let Q' be a bounded connected open subset of R™ of class C'. Then
the map Hs of
{(b, 6, ®, ) € B x O™ (90, R™) x O™ (Y, R") x L(9B,)
: o(Q) N@(cl) = (ZJ}

to C™A(cl€Y) which takes (b, ¢, ®, ) to the function Hy[b, 6, @, f] de-
fined by

Hilb, 6. B, f](x) = /a F0.8() 60 (9) doy. Y a €,

1s real analytic.

(vii) K[-,-,-] and H*[-, -, ] are real analytic from %x (C™*(0Q, R™")NAsq) X
C™A 99, R™) to C™A (99, R™).

(viii) K*[-,-,-] and H[-, -, -] are real analytic from B x (C™ (09, R™)NAsq) x
Cm=1A (90, R") to C™~ 1A (9, R™).
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Proof. A proof of (i) and (ii) can be found in Lanza de Cristoforis and
Rossi [27, Lemma 3.13]. Statement (iii) follows by standard calculus in Ba-
nach space. Statement (iv) is a corollary of a known result for composition
operators (cf. Bohme and Tomi [2, p. 10], Henry [13, p. 29], Valent [45, The-
orem 5.2, p. 44]), its proof can be found in Lanza de Cristoforis [22, Propo-
sition 3.7] and is just a straightforward modification of Lanza de Cristoforis
and Rossi [27, Lemma 3.9]. The proof of (v) and (vi) is similar. Statement
(vii) and (viii) follows by Proposition 1.40. O

Then we immdiately deduce the following.

Proposition 2.40. With the notation of subsection 2.2.1 hold, the set % x
EMAXRY x C™=IA(9Q, R™) x C™= LA (90 R™) is an open subset of the Ba-
nach space R"*2x C™A (90" R™) x C™A (904, R™) x R™ x C™~ 1A (90" R™) x
C™m=LA (90, R™) and the operator T is real analytic.

Moreover we need the following two lemmas.

Lemma 2.41. With the notation introduced in subsection 2.2.1, let dy =
(bo, wo, 0, B%, #3, co, 70, 7d) be a point of B x E™A x R? x C™~LA (90" R™) x
Cm=LA (901 R™) such that T[dg) = 0. Then the differential

a(Tthd)T[do] = (8(7.h77_d)T1 [do], 8(7h77d)T2 [do], 8(7.h77_d)T3 [do])

of T with respect to the variable (7", 7%) at dg is delivered by the linear op-
erators which takes a couple (7", 7%) of C™~1A (90" R™) x C™~ 1A (904, R™)
to the functions defined by

Orn rayT [do) (7", 7%)(x) = —H[bo, 65, 7"|(z), V¥ z € 0Q" (2.48)
Oy T [do] (7", 7) () (2.49)

sT

Th

= K*[bo, 43, 79 (x) + /a o > [T(bo, DI® by, ¢(x) — wo))
=1

Vg © ¢6l(w)} M (y)eofl(y) doy, ¥ x € IQ",
8(Th’7-d)T3 [do](f'h, ?d) (2.50)
= ([ 70 (4916l 0 b)) sloflw) am,)

i=1,..,R

Let VJ™ be the subspace of C™ 1A 90M R™) x C™~1A (90 R™) x R™
of the triple (f*, f¢,d) such that

71@) - (8916b] 0 6h(v) ) 3166)(v) dor, =0
Nk

for all i = 1,...;n. Then O n r0yT[do] is a linear homeomorphism of
CLA @O R™) x OO0 R to VI
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Proof. Expressions (2.48), (2.49), (2.50) follow by standard calculus in Ba-
nach space. Exploiting such expressions we recognize that di.» -4)T'[do] is a
linear and bounded operator from C™~1A(9Q" R™) x C™~ 1A (904, R™) to
Cm=LA(9O R™) x C™~1A (904 R™) x R™. Moreover, by the Fredholm Al-
yI'[do] is contained in Vom’)‘. Indeed,

the range of 9 .4yT"[dg] is contained in the range of H{bo, ¢, -], which

ternative Theorem, the range of J.» 4

is orthogonal to the kernel of H*[bo, gbg, -]. Now, it remains to prove that
O(rn 7ayT[do] is a homeomorphism of Cm=LA(9QR R™) x C™— 1A (904, R™) to
Vom”\. By the Open Mapping Theorem, it suffices to show that it is bijective.

So, we fix (f, f¢,c) € Vom’)‘ and we verify that there exists a unique couple
(7h, 74 € =AM R™) x C™ LA (904, R™) such that

h
O(rh -y T?[do] (%Z, 74 = fd, (2.51)

Let Fh = fho (qbg)(_l). Then, by changing the variable with the function
(ﬁg in the definition of me’/\ and by Theorem 2.34, we deduce that F” is

an element of (KerH;‘bh (th)[bO’ ])*. Then, by changing the variable with
0

the function ¢f if the first and third equation of (2.48) and by exploiting
statement (iii) of Lemma 2.26, we deduce that the the system of the first
and third equation of (2.51) has a unique solution 7" € C™~1A(9Q" R™).
Now let F? be defined by

FU(€) = [0 (¢)) V()
- /m > [ 70, DT (bo, € — wo)vgg(@)| 7 ()51041(v) dor,
i=1
for all £ € ¢d(9Q%). Then F? € C™ 1A ¢d(009),R™) and by statement

(i) of the Lemma 2.26 the second equation of (2.51) has a unique solution
7h e O (g (907),R™). O

Lemma 2.42. Let the notation introduced in subsection 2.2.1 hold. Let
d= (bw,e ¢ ¢ c, 7™, 1) be a point of B x EM™A xR™ x C™~ LA (90" R™) x
Cm=LA (90" R™). Then

[ 1) - (4061 0 ') 516w doy =0, (252)
onk

foralli=1,... 7.

Proof. Let T" denote the second term on the right hand side of (2.42).
By the Fredholm Alternative Theorem, equation (2.52) holds with 7"[d]
replaced by T'[d] — T". Thus, to conclude the proof, it is enough to show
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that (2.52) holds with T"[d] replaced by T!. For ¢ = 0, T* = 0 and there is
nothing to prove. Let € # 0. We note that

T@) ==t [ 32 [P0 DO b+ 6 (@) = ')

Vg 0 ¢h(a:)] )5 0Y(y) doy, V€ ON.

So, if we set
i) == [ S rObg - ) w)olo")) doy, ¥ € € L)
o0 2y
then we have

T (2) = 1T (b, Dfi(w + €6 (2)) )y e (w + €¢(2)), ¥ a € QM.

Now let p be an element of Ry, 4» and let p be the continuous extension

of p to cllfw + €¢"]. Then, by Lemma 2.2, we have E[b](p,i) = 0. By
Theorem 2.3 we deduce that

/th THy) - po (w+ed(y) 5[¢"](y) do,
— (sgne)! / [T(b, DR(E) W segn (€)] - 5(E) do
w+tedh (9QM)
—(sgnd™ [ (LWIR) - p + D7) dE =0
I[w+eqph]

Therefore, by Theorem 2.34, we deduce that T satisfies (2.52). O
We are now ready to prove a real analyticity result for #[-] and 79[].
Theorem 2.43. Let the notation introduced in subsection 2.2.1 hold. Let
co = (bo,wo,O,qbg,(bg,co) € B x E™ x R*. Then there exist an open
neighborhood Uy of co in B x E™* x R™, and an open neighborhood Vy of
(#7]co], 79co]) in C™LAAQN R™) x C™ LA (909, R™), and a real analytic

operator (T", T9) of Uy to Vo such that

(T"[c], T7e]) = (7"[e], 7/[c]) (2.53)

for all ¢ = (b,w,e,¢" ¢ c) € Uy with ¢ > 0. Moreover, the graph of
(T", T coincides with the set of zero of T in Uy x V.

Proof. Let H = BxE™AxRx (C™~ 1A (90" R™)x C™ 1A (90 R"))2 xR”,
and let G be the function of H to R™ defined by

Gld £ 1= [ (w100 W) 516" doy,

onk i=1,....,n
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for all (d, f*, f¢,d) € H, with d = (b, w, ¢, ¢", ¢, ¢, 7", 7¢). Then, by Propo-
sition 2.39, G is real analytic. Moreover Gd,0,0,0] = 0 and G[d,T'[d]] =0
for all d € Z x E™A x R? x C"~ 1A (90", R™) x O™~ LA (904, R™) (see the
previous Lemma 2.42.) Now, let dg = (cg, 7"[co], 7%[co]). The partial dif-
ferential O sn ra 4)G[do,0,0,0] coincides with the linear map which takes

(f", F4,d) to

[ (w6 edw) | ole'lw) do,

o0k =1,...,n

We immediately recognize that O sn fa 4)G[do, 0,0, 0] is surjective onto R™
and has kernel equal to Vom’)‘. We note that Vom’A is a closed subspace of
Cm=LA 90" R™) x ¢~ LA 904, R™) x R™ of codimension 7, therefore it
admits a closed topological supplement of dimension 7. Then, by Proposi-
tion 2.38 and Lemma 2.41, the statement of Theorem 2.43 follows. O

2.2.6 A real analyticity theorem for the solutions of (2.31)

By exploiting the results of the previous subsection we deduce the following.

Proposition 2.44. Let the notation introduced in subsection 2.2.1 hold. Let
bo = (bo, wo, 0, @3, #5) be a point of B x E™. Let {e(i)}izl,m,ﬁ be the canon-
ical basis of R™. We denote by L{éi) the neighborhood Uy of cg = (bo,e(i))
in B x E™N x R" introduced in Theorem 2.43, and we denote by Wéi) the
projection of Z/{éi) to B x EM™A, for alli = 1,...,n. Let Wy be an open
neighborhood of by in B x E™* contained in the intersection m;?:lwé”.
Then there exist real analytic operators T = (T(Z) T(Z) from Wy to
Cm=LA 9O, R™) x C™ 1A (904, R™), such that (7 [(b e 0)] 74(b,e®)]) =
TO[b] for all b € Wy with € >0, and all i =1,...,7

Now, let b = (b,w, €, ¢", ¢?) € Wy with e > 0. We denote by ol [b] the
function of OA[a], a = (w, ¢, o", ¢?), defined by

(i) 177”7%(1') [b] o (w+ ™)V on w + e (9Q),
olb] = il ay(-1 ‘(o0
"3 721 [b] o (¢ )( ) on (f> (BQ )7

foralli=1,...,7. Then {a®[b]}iz1. s is a basis of KerKj, }[b | and
we have (a(i)[b],ﬁ(j)[ab = 05 for alli,j =1,...,n, where { ’)[ 1Viz1,..m
is the basis of KerKgpa)[b, -] introduced in Theorem 2 34

Moreover, if b = (b,w,0, ", ¢%) € Wy, then {T [ ] o (gbh)( Micia

is a basis of KerHyn(gon[b, | and we have ( [ ] o ("D b0 [g]) = 6y
forallj=1,....7n
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In the next Theorem 2.45 we transform the problem

Koppa b, 1] = G — Y11 (G, oD [b]) 5]a],
{ P[KerKapa[b, -J]Ju = 0’1 (2:54)

which is defined on the boundary of the a-dependent domain Ala], into
a system of equations on the boundary of the fixed domains Q" and Q<.
So, Theorem 2.45 is in some sense the corresponding of Theorem 2.36 for
problem (2.31).

Theorem 2.45. Let the notation introduced in subsection 2.2.1 hold. Let
by = (bo,w0,0,¢3,¢>g) € B xE™N and let Wy and TW, ¢ = 1,...,7,
be as in the previous proposition. We denote by M = (M*', M? M?3) the
map of Og = Wy x (C™MOQM, R™) x C™A QT R™))? to O™ (90" R™) x
C™AM N, R™) x R™ defined by

M'[b,w,e,6", 0%, g", g% u", n¥)(x) = —H*[b,¢", "] () (2.55)

- [ ([T 6.0r00,w + @) - )
oNd

vga 0 ()] - 1Y),y 010" (y) doy — g"(x)

- h 7D 5160 do
32( [0 T

M2[b,w, €, 8", 0%, g", g%, 1", 1) (z) = K[b, ¢, n%)(2) (2.56)
e / ([T(5, DIO(b, ¢ (z) — w — e (y))vgn 0 6" ()]
th
'ﬂh(y))i:17._.7n&[¢h](y) de - gd(x)v Ve 8Qd7
M3[b,w, e, 6", 0%, g", g%, u, 1] (2.57)
= ([t (0o dw) aldim dn,)
onk

i=1,...,%
for all (b7 w? 67 ¢h7¢d7 gh7gd7 /’Lh7/’6d) 6 OO? whe?ﬁe b = (b7 w? 67 ¢h7¢d)'
Let (byw, e, ", 0%, g%, g°) € Wy x C™ QM R™) x C™A 904, R™), with
€ > 0, be fized. Then the pair of functions (u", u?) € C™*(9QF, R™) x
C™A (9N, R™) satisfies equation

M[b,w,e,¢", 6% g" g% 1, ] = 0, (2.58)
if and only if, the function p € C™*(OA[w, €, o", $?],R™) defined by

_ o(w+ etV on w4+ e (0QM),

h
w={ el D it (2.59)
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satisfies equation (2.54) with

o= { gZ o(w+ eV on w4+ e (0Q"),
g% o ()Y on ¢(0Q7).
In particular, equation (2.58) has one and only one solutwn ( houd) e
CmA OO R™) x C™A 90, R™) for each fized (b,w, €, o™, ¢%, g", g%) € B x
Wo x C™A 998 R™) x C™A (90 R™) with € > 0.
Let (b,w,0,8" ¢ g" g%) € Wy x C™A 99", R™) x C™MNINE,R™) be
fized. Then the pair offunctwns (', ud)y € CmA 90" R™) x O™ (904, R™)

satisfies equation
Mb,w,0,¢", 6%, g", g%, u", ] = 0 (2.60)
if and only if the following two conditions are fulfilled.

(i) The functwn p= ,u, o (qbd)(*l) of O™ (¢d(904), R") satisfies (2.35)
with G = g% o (¢4)~!

(ii) The function p = p" o (gf)h)(_l) of C™A (" (00M), R™) satisfies (2.37)
with B =0 and
— o h—l_ﬁ Tz) hd> h
=D ( [ T do) 8Ol o ()
where we abbreviated (b,w,0, ", ¢?) as b.

In particular, equation (2.60) has one and only one solution (u,pd) €
C™A O, R™) x C™A OO, R™) for each fized (b,w,0, ¢", ¢%, g", g%) € Wy x
C™AOQM, R™) x O™ (904, R™).

Proof. The first part of the theorem follows by a straightforward verification
based on the theorem of change of variable in integrals. So we consider
only the last part relative to the case € = 0. Let (b,w,0,¢%,¢",9% ¢") €
Wy x C™A 00", R™) x C™A0Q4,R™) and let (p, u?) € C™ (90", R™) x
C™A (909, R™) satisfy equation (2.60). Then, by the second equation in
(2.60), we have K[b, ¢?, u?] = g¢. By changing variable by means of the
function ¢, the validity of condition (i) follows. We now show that condition
(ii) holds as well. By the first equation in (2.60) we have

H'[b, 6", 1) (2) (2.61)
— ) — M g ) b 16h o (o) (D)
@ =3 ([, 0" BB do) 8Ol )

4 / ([T(b, DD (b, w + 6" () — 6 (y)))
o0Nd
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So, if we prove that the sum of the third and fourth term in the right hand
side of (2.61) vanishes, the validity of statement (ii) follows by changing
variable by means of the function ¢” in the first and third equation of (2.60).
Now, let b = (b,w,0,¢", ¢%). By condition (i) of Theorem 2.36 and by the
previous Proposition 2.44, we have

K*[b, ¢, 7, [b]) () = |¢" (02" T(b, DT (b, — ¢ () © 6" (),

for all z € 80", and all i = 1,...,n, and K*[b,¢°, . [b]] = 0 for all
i1=n-+1,...,7. We deduce that

K[b, ¢, u] - T," [b] 5[¢7] do

ond
= | Ko Tl 16 do
= jeh @) * [ [T (b Dr0 b - 6%(w)))
o0
vga 0 0°(y)] - 1?(9) 6167)() doy,
for all i = 1,...,n, and similarly,

K[, ¢, 1] - 7, [b] 51¢] do = 0,
004
for all i = n+ 1,...,72. Then, by exploiting Definition 2.33, we have the
following equality,
> ( Kb, ¢, u'] - 7, [b] (0] da) b[¢" 0 ¢" (@) (2.62)
ond

i=1
_ /a N {7, DrO .0 - ¢'()))
Vo o) uv)} _ 516%(w) doy,

i=1,...,n
for all z € 9Q". Since K[b, ¢, u?] = ¢, it follows that the sum of the third
and fourth term in the right hand side of (2.61) vanishes.
Similarly we can verify that (i) and (ii) imply (2.60). The existence and
uniqueness of the solution (1", u?) follows by Lemmas 2.23 and 2.26. O

By Theorem 2.45, it makes sense to introduce the following.

Definition 2.46. Let the notation introduced in subsection 2.2.1 hold. Let
by = (b, wo, 0, gbg,qﬁg) € B x E™N. Let Wy be the open neighborhood of
by of Theorem 2.45. Let e = (w,€,£,¢° g, 9°) € Wy x C™AOQ" R™) x
CmA N R™) with € > 0 or e = 0. We denote by (ii"[e], i%[e]) the unique
solution (u, ud) € C™A 90", R™) x O™ 904 R™) of equation (2.58) or
equation (2.60), respectively.
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We now prove that /i"[], i¢[-] have a real analytic continuation in whole
open neighborhood of a fixed point ey = (bo,wo,O,qbg,gbg,gg,gg) of % x
EMA X O™ (9O, R™) x O™ (904, R™). By Theorem 2.45, if suffices to show
that locally around (eq, i"[eo], i%[eo]) the set of zero of M is the graph of
a real analytic function. We plan to prove such a fact by means of Proposi-
tion 2.38. For this reason we prove the following Lemmas 2.48 and 2.49 and
we state Proposition 2.47, which can be deduced by Proposition 2.39.

Proposition 2.47. With the notation introduced in subsection 2.2.1 and in
Theorem 2.45, the set Oy is an open subset of the Banach space R" 2 x
(C™A QR R™) x O™ (90, R™))3 and the operator M is real analytic.

Lemma 2.48. Let the notation of subsection 2.2.1 and of Theorem 2.45
hold. Let eg = (bo, gh, gd). Let (ul, ud) € C™AOQM, R™) x C™A (994, R")
be a solution on (2.60). Then the partial differential

8(uh,ud)M[eﬁa Nga Mg] = (8(uh,;¢d)Mi [607 Ngv Mg])i:l 3
of M with respect to the variable (u", u?) at the point (eq, uft, ud) is delivered
by the linear operator which takes a couple (i, i%) of C™(0Q", R™) x
C™A (909, R™) to the functions defined by

Oty M [eos 1, 1), %) () = —E oo, ¢, i) () (2.63)
- [ {70, DrOn.e - )
Vg0 04W)] - B'W)}_  5l0fl(w) doy, Vw00,
Ot oy M2 oo, 1, 1) (" 1) () = Koo, 66, 1) (@), ¥ w € 007, (2.64)
Oy iy M leo, g, ] (1", 1) (2.65)

= ( /8 N (v91681 0 6t ) 10} da)

Let Wén’)‘ be the subspace of C™* (90" R™) x C™A (904, R™) x R™ of all
the triple (f", f¢,d) such that

i=1,...,7

o TObislofdo+ [ f1 TPl sl do =0 (260)
onhr 90d

foralli =1,...,n. Then 8('uh,ud)M[e(),M8',Mg] s a linear homeomorphism
of the space C™ (0" R™) x C™A (909, R™) onto the space ng’)‘.

Proof. Expression (2.63), (2.64), (2.65) follow by standard calculus in Ba-
nach space. By such expressions we recognize that O, )M leo, pf, 1]
is a linear and bounded operator from C™*(9Q" R™) x C™*(9Q%, R™) to
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CmAOQ R™) x C™A 904, R™) x R®. We now show that the range of
3(#h,#d)M[eo,,ug,,ug] is contained in Wgn’A. To do so, we prove that (2.66)
holds with f* and f¢ replaced by the right hand side of (2.63) and (2.64),
respectively. By the Fredholm Alternative Theorem we have

H*[bo, ¢f, "] - T, [bo] 5[] do
ok

for all i = 1,...,7. So the first term in the right hand side of (2.63) give
no contribution to left hand side of the corresponding equation (2.66). We
now consider the contribution of the second term in the right hand side of
(2.63). By arguing as in the proof of Theorem 2.45, we see that
EZ(adK%@&#yﬁmmww&w)WWﬁo%@> (2.67)
j=1 o0
= [ {7, DT bo.oo ~ i)
o0
Voot - BW}  5leElw) doy,
0 7=1,....n

for all 2 € 9Q". Since, by Proposition (2.44),

ok
we deduce by (2.67) that the contribution of the second term of (2.63) is

— | Kibo,¢5, i) - T, [bo] (6] dor
o004
which is clearly opposite to the contribution of the right hand side of (2.64).
Thus (2.66) holds with f* and f? replaced by the right hand side of (2.63)
and (2.64), respectively.

We now prove that 8(//17#4)]\4 [eo, ug, ug] is an homeomorphism. By the
Open Mapping Theorem it suffices to show that it is bijective. So, let
(f", f¢,d) be a given point of Wén’k. We verify that there exists a unique
(@™, i) € ™A 00" R™) x C™A (904, R™) such that

8(,ud,,uh)M1 [607 N6L7 Hg] (laha lad) = fh7
Oyt iy M2 [eo, iy, ) (1", 1) = £, (2.68)
Oy iy M (e, iy, ) (2", %) = d.

The second equation of (2.68) is equivalent to K[bo, ¢&, i¢] = f¢. By state-
ment (ii) of Lemma 2.26 such an equation has a unique solution a? €
C™A (004, R™). Then, by (2.67), the first equation of (2.68) is equivalent to

—H* b, of, 1" ﬁ+2(/fdi mwQWM]%
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By (2.54) the right hand side equals
7

=2 < RRARE LN da) b (6] o 05

i=1
Hence, by statement (iv) of Lemma 2.26, we deduce that the first and third
equation of (2.58) has a unique solution i € C™*(9Q", R™). O

Lemma 2.49. Let the notation of subsection 2.2.1 and Theorem 2.45 hold.
Let (w,e,¢", 0% g", g, u", n?) € Og. Then we have

M e o 6 g g i) T e o 0 5107 do (2.69)

+ | MPbwe o 0% g" g uh ) T w, e, ¢, 6% 669 do =0
o0d

foralli=1,...,n.

Proof. Let b = (b,w, €, ", ¢%). By linearity we have M|b, ", ¢¢, u", u4] =
MIb, g", ¢%,0,0]4+ M[b,0,0, u", u?. So, we can prove the lemma by proving
it for " = pu? = 0 and for ¢" = g% = 0 separately.

Let u" = p? = 0. By the third equation in (2.45) and by the definition
of ’Th(l) in Proposition 2.44, we have

/ (b(j)[qﬁh] o ¢h) TOb) 60" do =6,  Vij=1,...,n.
Nk
We deduce that the first integral in (2.69) equals

/ g¢ - T [b] 5¢7) do,
o0d

which clearly opposite to the second integral in equation (2.69).

Now, let g" = g% = 0. If € = 0 the statement can be proved by arguing
as in the proof of Lemma 2.48, so we consider ¢ # 0. By exploiting the
adjointness of K and K*, H and H*, and by straightforward application of
the Fubini Theorem, we find that the left hand side of equation 2.69 equals

/ - T [b,e®, 7. [b], 7,7 [b]] 5[¢%)do
onh
b [t e 70 b, T bl 6l do
o0Qd

where T' and T? are the first two components of the operator T intro-
duced in Theorem 2.36. By Proposition 2.44 and Theorem 2.43, the point
(b, e(i),’];l(i) [b],’];i(i) [b]) is contained in the set of zeros of T. Hence, both
the integrand functions in the previous expression are 0. The validity of the
statement of the lemma follows. O

We are now ready to prove the main result of this subsection.
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Theorem 2.50. Let the notation introduced in subsection 2.2.1 hold. Let
eo = (bo,wo, 0, ¢, ¢, gl gd) € B x EMA x C™A(OQR, R™) x C™A(90Q4, R™).
Let Og be as in Theorem 2.45. Let i"[-], i%[-] be the functions introduced
in Definition 2.46. Then there exist an open neighborhood Uy of ey in
R x ™A x C™A 9", R™) x C™A 004, R™), and an open neighborhood Vi
of (i"[eo], i%leo]) in C™AOQ",R™) x C™A 9N, R™), and a real analytic
operator (M, M) of Uy to Vi, such that Uy x V1 C Oy and

(M"[e], M7[e]) = ("[e], i%[e]), (2.70)

for all e = (w, e, 0", ¢ g", g%) € Uy with ¢ > 0. Moreover, the graph of
(M", M%) coincides with the set of zeros of M in Uy x V1.

Proof. Let H = Og x C™ (90" R™) x C™* (90, R™) x R™ and let G be the
function of H to R™ defined by

Gb,g", g%, £, £, d]
_ ( Tl o+ [ T il da)
oNh ona

i=1,...,n

for all (b, g¢", g% f* f¢,d) € H. Then, by Propositions 2.39 and 2.44, G
is real analytic. Moreover G[b,g",¢%,0,0,0] = 0 and, by Lemma 2.49,
G[b, ", g%, M[b,g",¢%] = 0 for all (b,g" ¢?) € ©Op. Now consider the
partial differential O sn 74.4)G[e0,0,0,0]. One easily verifies that the range
of J(pn pa 9)Gleo, 0,0, 0] equals R"™ and the kernel coincides with the space

wy" A introduced in Lemma 2.48. Clearly W;" A is a closed subspace of
C™mAOQM, R™) x O™ (909, R™) of codimension 7, therefore it admits a
closed topological complement of dimension 7. Then, by Proposition 2.38
and Lemma 2.48, the statement of the theorem follows. ]

2.2.7 Solution of the singularly perturbed problem

In this subsection we finally investigate the behavior of the solution u of
problem (2.29) around a given degenerate 7-tuple (bo,wo, 0, ¢, ¢d, gb, gd),
as we have announced in subsection 2.2.1. In the following Theorem 2.53
we provide a representation formula for u in terms of real analytic operators
and singular, but completely known, functions of €. By equation 2.32 we
first deduce a more explicit representation formula for the solution u of
problem (2.29) with € > 0. Indeed by means of Theorems 2.43, 2.50 and
Proposition 2.44, we obtain the following.

Lemma 2.51. Let the notation introduced in subsection 2.2.1 hold. Let eqg =
(bo, w0, 0, ok, ¢, glt, gd) € B x E™A x C™A OV R™) x C™A 9N, R™). Let
’Z;l(l)['], 7:1(2)[-], aW[],i=1,...,7a, be as in Proposition 2.44. Let Uy, M"[],
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M) be as in Theorem 2.50. Let e be a point (b,w, e, ¢ ¢% g" g?) € Uy
with € > 0. Let ule] be defined as in subsection 2.2.1. Then we have

ule] = u,le] + usle],

wlel@ =t [ {0,070 ¢~ - o)

v o d"(y)| - MPlel} 510" (y) do

i=1,...n
_ /md { [T(b, DI (b, e — ¢d(y)))
v 0 0%(y)] - Me]}

i=1,...,n

for all € € Ala], a = (w, €, ¢", ¢°), and

usle](€) = > (GlaD b)) ougm (Vb )i voaa b, 2P [bI€),  (2.72)

,j=1

for all € € Ala], where G is defined as in Theorem 2.25, and we abbreviated
(b,w,€,¢", ¢°) as b, and

VIb] = ((vonm b Vbl | B9[a)) 5,10 )

i,j=1,...,n

(2.73)

Moreover we have

and
Vij[b]
—e ([ peo @) - o) Tl 316 ) do,
(BD[8" 0 6"(2)) 616" () do
+ / / D(b,w + e (z) — ()T bl () 5169 () do,
o0k Jond

(B[ 0 ¢ (2)) 516" (x) dom) ,
(2.74)
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foralli,j=1,...,n, and
vauay b, P [b]] (€)
_ < [ 16— )T o161 do,
oNh

[ T6 - 0T bl ol doy) 7
o0d

for allE € R™ and for all j =1,...,n.
We also need the following technical lemma.

Lemma 2.52. With the notation introduced in subsection 2.2.1, let by =
(bo, wo, 0, (bg, ¢g) € BxE™, and let Wy be the neighborhood of by introduced
in Proposition 2.44, and let V[b] be defined by (2.73) for allb € Wy. Then
there exist real analytic operators V(l), 1742 of Wo to Muxin(R) such that
the following statements hold.

(i) We have

1nypy _ J (log VW] + V@ [b] ifn=2,
¢ Vb= { & VOb] + V@b  ifn >3,

) o7

for all b = (b,w,e, ¢", ¢%) € Wy. While for n > 3, VID[b] is an
invertible matriz for all b = (b,w, 0, ", ¢?) € Wy with € = 0.

for all b = (b,w, e, p", ) € Wy with € > 0.

(i) For n =2 we have

1
Wy [9"(0QM)] b+2
Vbl = 2r  2(b+1) 8

o = O
o O O

(i4i) Let n = 2. Let W) = {(b,w, 9", ¢?) : (b,w,0,¢" ¢) € Wy}. Then
there exists a real analytic operator \[-] of W( to R\ {0} such that

tim (o5 VO, w, e, 6", ¢ + V.0, ¢, 6", 0%)

e—0F

o O O
o O O

= A[b,w, ", ¢% 7 (

= o O
\_/

for all (b,w, ¢", ¢d) € W,

If n > 3, then the expression (2"VD[b] + VP [b])~! has a real
analytic continuation in the whole of Wy which vanishes for e = 0.
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Proof. 1t is convenient to prove separately the lemma for n = 2 and n > 3.

Let n = 2. By the definition (2.6) of the fundamental solution I'(b, -), we
have I'(b,ez) = %2(1’1:_21) loge + T'(b,2), for all b # —1, € > 0, z € R™ \ {0}.
So, if we set

Wy 1 b+2 () 121 ok g D5 o el sh
V)= 5ogts [ Tl o [ 40160 o510 o

voml= [ ([ Tt - )T bl el ) o,
(B¢ 0 6" (2) ) 516" (@) do

b\ _ 4d (4) Flod o
[ (] T o) - ot T i) 160 o, )
(916" 0 6" (@) 61¢")(a) dor

for all 4,5 = 1,...,3 and for all b = (b,w, €, ¢", ¢?) € Wy, then, by (2.74),
V) and V@ satisfy statement (i) of the lemma. Moreover, by Propo-
sitions 1.40, 2.39, 2.44, VY and V@ are real analytic operators of Wy
to Mrxa(R). To prove statement (iii) we note that, by Theorem 2.34,
Joan DD (@M 0 @G (9" do = (1 — 6;3)|0"(90")[V/2eV), j = 1,...,3, and, by
the deﬁnition of T(i) in Proposition 2.44 and by Theorems 2.43 and 2.36,
oo T 151" do = (1 = 613) | Q) 260, i = 1.3,

We now turn to prove statement (iii) for n = 2. Let b’ = (b,w, ¢", ¢%) €
W, and let b = (b,0,w, 9", $?), so that b € Wy. By Proposition 2.44, the
function T [ Jo (M) (2) of 2 € ¢"(9Q") belongs to (KerHyn aany[b; ])o-
So, by Theorem 2.16, we have

oo, T ] 0 (") V]| € (Ragghyioe)lon @an)-

and we deduce that v[b, T [ Jo(ph)(-1 ]|H[¢h] is a function of Rygn). There-
fore, there exists a unique couple (s[b’], c[b]) € Skew(2,R) x R? such that

olo, T, o] o (") V(€)= s[b'IE +¢[b], V€ € T[¢").

We now prove that the map which takes b’ to (s[b’], ¢[b’]) is real analytic
from W) to Skew (2, R) xR%. We fix a point b} = (b1, w1, ¢, ¢9) of Wi. Then
there exist a point & € R? and positive constant r > 0 such that the points
€1, & +7(1,0), & +7(0,1) are contained in I[¢?]. Furthermore there exists
an open neighborhood Wi of b} in W such that &1, & +7(1,0),& +7(0,1) €
I[¢h] for all b’ = (b,w, ¢", ¢%) € W;. Now, the entry s[b’];; of the matrix
s[b’] equals (s[b’]el?));, which in turn equals = (s[b’](&; +7eV)) — s[b']&;);
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by linearity. We deduce that

s[b] = = (uilb, T, ] o (6M) V(1 + D)
~ulb. 77l o (¢") V()
efb] = vb, T b] o (6") V(1) — s[b],

. ’
4,j=1,2

for all b’ = (b,w, ¢", $?) € W}, where b = (b,w, 0, ¢", ¢?). Then, by Propo-
sition 2.39, the map which takes b’ € W] to (s[b’], c[b']) € Skew(2,R) x R?
is real analytic. Since b} was an arbitrary point of W, we have our claim.

Moreover, we can prove that s[b’] # 0 for all b" € W). Indeed if we
assume that s[b’] = 0 then vl[b, ’];1(3)[b] o (¢"M) (1] = ¢[b] on I[¢"]. By
Proposition 2.6 and Theorem 2.4, we deduce that v[b, ’2;1(3) [b] o (¢™) (V)] is
constant on the whole of R?. Thus, by Proposition 2.6, we have

B 1b) o (¢") D ()

— lim 76, Dolb, T [b] 0 (") V)€ + 0 (€))) - (€)
~ lim T(b, Dolb, TV ] o (6") V)€ ~ g () v () = 0,

for all £ € ¢"(092"). Such an equality is in contradiction with the statement
of Proposition 2.44 and thus it must be s[b’] # 0 for all b’ € W). So, if we
set

A= [ 6 - 006" 0 M) 510 o VB €W,

then we have A[b’] # 0 and the map which takes b’ to A\[b'] is real analytic
from W) to R.

We now show that Vi) [b] = A[b/] for all b = (b,w,0, ¢", ¢%) € Wy with
e = 0, where b’ = (b,w,¢h,¢d). First we note that 7(3) [b] = 0. Indeed,
by statement Proposition 2.44, 7(3 [b]o(¢)=1 € KerK¢d(an)[b ], and by

Theorem 2.17, KerK;d(am)[ -] ={0}. So, by the definition, we have

Vi [b] = (vgh aam [, T 0] 0 (") ] [P [6]) s oy (2.76)
= <5[b/] c[b | b ¢h]>¢h(aﬂh) = )‘[b/] + <c[b/] ’ b3) [¢h]>¢h(agh) = )‘[b/]a

where b’ = (b, w, ¢", ¢%).
Finally we are ready to calculate the limit value as e — 0T of the inverse
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of the matrix e ="V [b,w, €, ¢, ¢%]. We set

_ 60" b+2 (1 0 Vi bl vy [b]
Ab] = (loge) o 2(b+1) ( 01 > " ( V;(%)[b] Vlé)[b] |

_ (v
= ()
) = (Vi vg'bl)
Db] = VZ'[bl,

for all b € W,. So that

. Alb] B[b|
g V[b]:<c[b1 D[b])'

Then we fix a point b = (b,w, 0, ", %) € Wy with € = 0. We denote by b*
the point b® = (b,w, €, ¢, ¢?) and we note that, for € > 0 close to 0, b* € Wy
and A[b¢] is an invertible matrix. Then we consider the Schur complement
Sa[b€] of A[b€] (cf., e.g., Carlson [4, §2].) Sa[b] is defined by

S4[b] = D[bS] — C[b]A[b]'B[be].
It is easily seen that

lim Ab]™' =0 and lim S4[b‘]= Alb].

e—0+ e—0+

Thus, S4[b] does not vanish for ¢ > 0 in a neighborhood of 0 and the
inverse of ¢!~V [b¢] is delivered by the following matrix,

A~ + A B[b]Sa[b] L CbIAD] L —A[b] "L Bb]S4 b}
—Sa[b]~1C[b]A[be] ! Sab] 1 '

Statement (iii) immediately follows.
For n > 3 the proof is simpler. We note that T'(b, €z) = €2~ "I'(b, z), for
allb# —1,e >0, z € R"\ {0}. Then we set

vibl= [ ([ Tt - )T bl st ) o,
(W18 0 0"(2)) 510"]() do

Vb= [ ([ @) - o7 i) ol o
(W18 0 () 510"]() do,

for all b € Wy and for all 4,5 = 1,...,7n. By equation (2.74), statement (i)
immediately follows. Moreover, by Proposition 2.39, V(1) and V®) are real
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analytic from Wy to Muxn(R). Let b = (b,w,0,¢", ¢?) € Wy with € = 0.
To verify that V(P [b] is an invertible matrix, we note that

VO] = ((vgroam [ ] o (") T [6916M) 1 o))

The matrix in the right hand side is invertible by Theorem 2.16 and Propo-
sition 2.44. Finally, we deduce statement (iii) by a straightforward calcula-
tion. O

i7j:17"'7ﬁ

Now we are ready to draw out conclusions from Theorems 2.43, 2.50 and
Lemmas 2.51 and 2.52.

Theorem 2.53. Let the notation introduced in subsection 2.2.1 hold. Let
eo = (bo, w0, 0, ¢, ¢, g, g%) € B x EM™A x C™A(9Q" R™) x C™A (90, R™).
Let Wy be the neighborhood of by = (bg, wo, 0, ¢l d>g) introduced in Proposi-
tion 2.44. Let VY, V2 be as in Lemma 2.52. Let Q be an open subset of
R™ such that c1Q) C T[¢d]\ {wo}. Then there exist an open neighborhood U of
e in B x EMA x O™ (90" R™) x C™ A9, R™) and real analytic operators
UD and Ui(f), i,j=1,...,n, of U to C(cIQ,R"™), endowed with the norm
of the uniform convergence, such that the following conditions hold.

(i) clQ C Alw, e, ¢", ¢°] for all (b,w, e, ", ¢°, g", g°) € U.
(i) (b,w,e, ", ¢°) € Wy for all (b,w, e, ¢, 4% g", g%) € U.
(ii) We have

n -1
ule](€) = UD€ + > (vu(V O]+ VD)) U el(€),
— ij
1,)=
(2.77)
for all £ € cl, and all e = (b,w, e, ", 0%, g", g%) € U with ¢ > 0,
where v,(€) = loge if n = 2, and y,(¢) = ™™ if n > 3. Here we

abbreviated (b, w, e, o", $?) as b.

(iv)
UWb,w,0,¢", 6%, g", g")(€) = u’[b, 6", g")(€)
for all € € cIQ and for all (b,w,0,¢", %, g", g%) € U, where ul[b, ¢?, g
is the solution of the first interior boundary value problem in 1[¢?)] with
boundary data g% o (¢4)(=V) (see Definition 2.31.)

(v) Let e = (b,w,0,¢" ¢ g" g%) € U, we denote by e, b the points
(b,w, e, ", ¢%, g", g%) and (b,w, e, ¢", ¢?), respectively, for all € > 0.
Then

n

tim 3 (@VOBVOR]) PO =0 (27

uniformly for & € cl).
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Proof. Possibly shrinking the neighborhood U; of Theorem 2.50, we can as-
sume that condition (i) holds and that (b,w, €, ¢", ¢?) belongs to the domain
Wy of VAU, V@ for all e € U (cf. Lemma 2.52.) Then we denote by U
the operator which takes e € U to the function of C(cl2,R™) defined by

the right hand side of (2.71), and we denote by U( ), 1,7 = 1,...,n, the
operator which takes e € I/ to the function Ui(j ) [e] of C(clf2, R™) defined by

Ui(f)[e](f)5< | o TOmeit ot [ gt TOplole do)
( /a Tl —w ey DT bl(y) 5[6")(y) doy,
+ [ T ot Wl sl ) doy ).

for all £ € clf2, where GG is defined as in Theorem 2.25 and as usual a =
(w,6,0", ¢%) and b = (b,w, €, ¢", ¢?). Then by Propositions 2.39 and 2.44
and by Theorem 2.50, UM and Ui(j?) are real analytic for all 4,7 =1,... n.
Moreover, statement (iii) follows by Lemmas 2.51 and 2.52, statement (iv)
follows by Theorems 2.27 and 2.36.

We now prove statement (v). First let n = 2. By Lemma 2.52, the

limit in (2.78) equals A[b,w, @™, qbd]*lUg(?Q)) [e](€). Let b = (b,w,0, 9", ¢%). B
Theorems 2.36 and 2.17, we have 7;1(3) [b] = 0. Therefore Ug(g) [e](&) equals

([, o 7wl do) (r0c =) [ 7OMIs10M do ).

for all £ € cl2, and the last integral vanishes by the definition of ’]71(3) (see
Proposition 2.44.) Hence statement (iv) for n = 2 follows. For n > 3, it is
an immediate consequence of Lemma 2.52. ]

We conclude this subsection by noting that, if n > 3, then the right
hand side of (2.77) can be continued real analytically in the whole of U (cf.
statement (iii) of Lemma 2.52.)

2.2.8 The corresponding energy integral

In this subsection we show that the energy integral |, A[a]E[b] (u,u)d¢ of
the solution w of problem 2.29 can be expressed by means of real an-
alytic operators deﬁned in a whole open neighborhood of a given point
(bo, wo, 0, qﬁo,gzbo, g", ¢%) and by completely known functions of e. We also
investigate the behavior of the energy integral as ¢ — 0. To do so we need
the following technical Lemma 2.54, which is an immediate consequence of
Lemma 1.36, and can be proved by arguing as in subsection 1.3.2 of the
previous chapter.
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Lemma 2.54. Let m € N\ {0} and X €]0,1[. Let Q be a bounded open
subset of R™ of class C™* with Q and R™ \ clQ connected. Let ¢g €
CmA O RY) N Agq.  Let w, §, Qus, U5, Q s, Wy be as in Propo-

w,07 w,0?
sition 1.6. Let w;;(am [b, ] and w;(am[b, p] be as in Proposition 2.7 for

all (b, ) € B x Wy x C™MNON,R™). Then the map of B x Wy x
C™A (99, R™) to C™ A (cI)! 5, R™), which takes a triple (b, ¢, p) to the func-

tion w;(aﬂ) [b, u] o Eq[@](z) of x € CIQ: s> 1s real analytic. Similarly, the map

of B x Wy x C™*(0Q,R™) to Cm’)‘(clﬂg(s, R™), which takes a triple (b, ¢, p)
to the function W 00) [b, p] o Eg[¢](z) of x € cl), 5, is real analytic.

Theorem 2.55. Let the notation introduced in subsection 2.2.1 hold. Let
eo = (bo,wo, 0, o, ¢, g", g?) € B x EMA x C™A (9", R™) x C™A (904, R™).
Let Wy be the neighborhood of by = (by,wo, 0, ¢, ¢d) introduced in Propo-
sition 2.44. Let V), V@) be as in Lemma 2.52. Then there exist an open
neighborhood U of ey in B x E™* x C™A N R") x C™A (904, R™) and
real analytic operators E® and Ei(]?), i,7=1,...,n, ofU to R, such that
(b,w, €, ¢, %) € Wy for all e = (w, €, ¢, ¢%, g", g%) €U and

| Bbl(ufel. ule) de (2.19
Ala]

— BV + 3 (VO bl + Vb))

.
ij=1 ’

for all e = (b,w, e, ", ¢, g", g%) € U with ¢ > 0, where a = (w, €, ¢, %),
and b = (b,w, €, ", ¢), and v, (€) is defined as in Theorem 2.583.
Moreover, if e = (b,w,0,¢h,¢d,gh,gd) belongs to U and we set e° =
(b,w, €, 0%, g" g%), b = (b,w, €, 0", ¢%) for all € > 0, then
lim BVe] + Y (VOB + VO p]) e (2.80)
. g

e—0t “ ij
i,j=1

= [ B, e o) de
toan [ BB 6" g b 6" 5" de,
E[¢"]

where 02, = 1 if n = 2, and d2, = 0 if n # 2, and ullb, ¢4, g4 is the
solution of the first interior boundary value problem in I[¢%] with bound-
ary data g% o (gbd)(_l), and uPb, ", g is the solution of the first exterior
boundary value problem in E[¢"] with boundary data g" o (¢")(1) (see Def-
inition 2.31.).

Proof. We now exploit the results that we have summarized in subsec-
tion 1.2.1 of the previous chapter. By Proposition 1.6, there exist a neigh-
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borhood W of ¢f in C™*(00" R™) N Ayqn, and a neighborhood W of ¢
in O™ (904, R™) N Ay, and real analytic extension operators

El : Wi — C™ A o R NAL

wh sh

Eg : Wg — Cm7/\(CIQZd75d, Rd) N A,le 5

wd sd

where w?, 6", QF, . w? 6% Q% . are defined as in subsection 1.2.1, with
wh gk ) » MEud § )

the obvious modification. Possibly choosing a smaller 6%, we can also assume
that wy ¢ E&[¢d] (lei 4 54)- Then there exists an open neighborhood U of e

in B x EmA x AN R™) x C™* (90, R™) such that, U is contained in
the neighborhood @ of Theorem 2.50, and we have ¢" € W{}, and ¢? € Wg,
and (b, w, €, p", %) € Wy, and

(w + cEG[0"](c1]n 51)) N ¢ (0927) = 0,

and
(w + g™ (99") NEF o7 (c12a 5a) = 0,

for all e = (b,w, €, 9", ¢%, g", g%) € U. Then, by Theorem 2.3, we have
/ E[b] (ule], ule]) de (2.81)
[w,€,0" 0]
_ —1
= —en? /8 A (b(ulel o w+ By ) (DESW]@)) )

Vgh O <J5 } x) doe
n /d N {T(b, D(u[e] OESW])( (DEd [¢)(x ) )
Vga 0 ¢ (x) } g% (x) doy,

for all e = (b,w, €, 6", ¢, g, g%) € U with € > 0.
We now consider the first integral in the right hand side of (2.81). By
equations (2.71) and (2.72), we have
urle] o (w+ eEf[¢")(x) (2.82)
=~ gy [0: M"[e] 0 (") V] 0 Ef[¢"] ()

- [ {70,010 + Bllow) - 6'(0)
vgro 6'(y)| - Mel}  5[67(y) do,

i=1,..,n
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and

usle] o (w -+ B [9"]) () (2.83)
—EZﬁéﬁﬂzﬁmwa+émf0ﬁmmwmﬂ
i,j=1

(VO] + VEB])

]

< /8 o L (BR[O () — 6" (1)) T b](y) 5[¢"](v) do,
+/ I'(b,w + 6E8[¢h](:€) _ (bd(y))/];l(j) b](y) 5[¢d] (1) d0y>,
o004

for all z € (Qh) n sh (cf. Proposition 1.6) and all e = (b, w, ¢, ", ¢%, g", g9)

with € > 0, where as usual we abbreviated (b,w, €, ¢", $?) as b. Then by
Propositions 1.6, 2.39, 2.44, and by Theorem 2.50, and by Lemma 2.54,
and by equations (2.82) and (2.83), we deduce that there exist real analytic

operators G, G§3), G§4), j=1,...,7n, of U to C’m)‘(cl(Qh) . 5h,R”), and
real analytic operators GZ(Q), i=1,...,n, of U to R, such that
ule] o (w+ €EG[0"]) () = GV le](x)
+ 3 Gl (VO] + Vb)) (100G el (1) + GV [e] (),
ij=1
for all x € (Qh);h sn» and all e € U with € > 0. Indeed, we can take as

GWle] the function of cl(Qh);h s» defined by the right hand side of (2.82)

and we can take as GZ@) [p] the first factor in parentheses in the right hand

side of (2.83), for alli =1,...,n. To define Gg-?’) [p] we consider two different
cases. If n = 2 we take

_ oM (oM b+2
- 2 2(b+1)

(6i)i=12, ¥ @€l 50s 5 =1,2,3.

In particular, we have G [ |(z) = 0 identically. If n > 3 we take as
G§3)[ ](x) the function of € cl(Q" Jn sn given by

AmW%wW@—w@ﬂﬁM@WWMM%,anmm&m

Then we take as G§4) [e] the difference between the last factor in parentheses
in the right hand side of (2.83) and 7,(¢)G\”[e], both for n = 2 and n > 3.
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Clearly
Ok (ule] o (w+ eEg[gbh])) = 8kG(1)[e]

+3 GOle] (VO[] + V) b)), (3 (kG [e] + 0:G[e]),
i,j=1

in (Qh);h sioforall k=1,...,n and all e € & with e > 0. Hence the first
integral in the right hand side of (2.81) equals
| A7 (b 06O DB ) g0t} oM dr 280
Nk
-1

+ Y G2fel (Vo] + V)

ij=1
. / {7 (b, (vu(e)DGle] + DGV [e]) (DES[6) )
o0

vgn 0 ¢} - g" 510" do,

ij

for all e € U with € > 0.
Now let € = 0. By Theorems 2.45, 2.50, we have

GWle] = u'lb,¢% g%(w) + b, ¢, 9% 0 Ef 0",
DGWle] = D(ul[b, 4", g" o Ef[¢"]),

in ()7, s, for all e = (b,w,0,0", ¢%, g", g%) € U, where ul'[b, ", g"] is the
function introduced in Definition 2.31. Therefore, if ¢ = 0 the first integral
in (2.84) equals

[ 1D o g D] oo (@) do
oM (0QM)
which in turn equals

— [ Bl o) e
E[¢"]

by Theorem 2.3. Moreover, if n = 2, then DGS-S) [e] =0forall j=1,...,3.
So, for n =2 and € = 0, the last integral in (2.84) equals

Dipl o (M) D N IV NCE)
Ah(agh) [T (b, D’Ud)h(agh)[b,’fhj [b] (QS ) ]) Vg :| g (d) ) do

= /¢h(8ﬂh) ;h(aﬂh)[b, ’]’h(J)[b] o (¢h)(_1)] _gh o (d)h)(_l) do.
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Since ’T(J)[ b] o ((Z)h)( D e KerH¢h(8Qh)[b /| (cf. Proposition 2.44) we have

K;h(agh)[b T [ ] o (M) (D] = [ ] o (¢")(=1. We conclude that, for
n =2 and € = 0 the last mtegral in (2.84) equals
| " TPblsle") do
onn

We now consider the second integral in the right hand side of (2.81). By
equations (2.71) and (2.72), we have

ur[e] o Ef[¢7)(z) (2.85)
_ 1 (i) Aradl () — w — el
| {[re.or0 B @) o - o w)
v o' W) Mel} | 510")(w) doy,
W g0 [0: M el o () V] 0 Efff¢] (),

and
usle ]OEdW]( ) (2.86)

= Z ( / 7 b)5[¢" do + /a o g T bl5[¢ d(f)

i,7=1

(m@V OB+ VE])

< /m T(Ed[¢?)(2) — w — e¢" (1)) T [bl(y) 616" (y) do,
# [ TE) - 60T Bl 160 do ),
o0d

for all z € (Qd) 4 5a (cf. Proposition 1.6) and all e € & with € > 0. Then,
by Propositions 1 6, 2.39, 2.44, and by Theorem 2.50, and by Lemma 2.54,
and by equations (2.85) and (2.86), there exist real analytic operators G(5),

G(G) j=1,...,7, of U to Cm’/\(clAg',]R”), such that

ule] o E[p7] = GO)le] + Z a? VOB + Vb)) 1G]

3,j=1

in (Qd)j;d si» for all e € U with € > 0. Indeed, we can take as GO)[e](x)
the function defined by the right hand side of (2.85), and we can take as
Ggﬁ) [e](x) the function defined by the last factor in parentheses in the right

hand side of (2.86), and we note that Gl@) [e] coincides with the first factor
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in parentheses in the right hand side of (2.86). Clearly
O (ule] o Efle])

~ 8GO+ 32 G2 eV 6]+ Vo) 0G0

,5=1
in (Qd)::d se» forallk=1,....n, and all e € U/ with € > 0. Then the second
integral in the right hand side of (2.81) equals

/8 . {T(b, (DGO e])(DE[6™) ™ o 0 67} - " 516" do (2.87)
+ Z G2 ( (©VDO[b ]+v<2>[b])

4,j=1

. / {70, (DG ) (DEG6") vy 0 6%} - g% 5(0) do
ond

-1

ij

for all e € U with € > 0.
Now let ¢ = 0. We note that

GOb,w,0,6" 6%, g", g% = ullb, ¢, g% o B¢,
DGOb,w,0,6" 6%, g", g% = D(ullb, 6% g% o Ed[p7)),

in (Qd)::d s> for all (b,w, 0, ", ¢, 9", g?) € U. Therefore the first integral in
(2.87) equals

+
[ [r0.0u 6t g oo (69 do,
¢4(804)
which is equal to
[ B o gt o o) e
I[¢?]

by Theorem 2.3. Moreover, for n = 2 and € = 0, the last integral in (2.87)
equals

/¢ o0, [T (b, Dugaganm b, T,7) [b] o (¢d)(—1)]> Vﬂ

In particular, for j = 3 such an expression vanishes because, by Theo-
rem 2.36 and by Proposition 2.44, ’Td(3) [b] = 0.

Now, by (2.81), (2.84) and (2.87), we immediately deduce the existence
of EW, EZ) i,j = 1,...,7, and the validity of (2.79). For n > 3 the

validity of (2.80) follows by the above computation of the first integrals of

Jr
gho () do
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(2.84), (2.87) at € = 0 and by Lemma 2.52. Similarly one verifies that, for
n = 2, the limit in (2.79) converges to

/ E[B)(u?[b, 6%, g%, ulb, 6%, g%)) de (2.88)
I[¢4]
4 / E[B)(u"[b, 6", g"], " [b, 6", g"]) deé

E[¢h]

2
Albyw, 6", 61 ( [ o Tt da) |
aqh

To recognize that such an expression coincides with the right hand side of
(2.80) we have to do some more calculations.

We note that, by Definition 2.31 and Proposition 2.44, u”[b, ¢", ¢"] =
Weh (gmy b, p], With p € C™A (oM (00, R™), and

g = ([ g TOWI610 do ) vyl +e

where & is an element of (KerHyngany[b, ])o and ¢ is a constant vector.
Then we have

/ B[] (u[b, 6", g"), ul b, 8", g"]) de (2.89)
E[¢"]

— ([ & Tiale ao )
oah
/ E[b](wghraam)[b; 1], v a0m) [b; &) dE,
E[¢"]

and, by Theorem 2.3 and 2.12; the second integral in the right hand side
equals

/th(aﬂh) Weh oy [bs 1]~ - [T(b, Duvgnaam)lb, d])V¢hi| do (2.90)
/cbh(am) oroan ot o (091) o (o) [b: ]

Furthermore, we have

[ .o . o) de .91
E[¢"]

= ( /8 9T bl da)2

: E[b](v h(OQh [bv &]7U h(pQh [b7 d]) dga
/EW o (00) o (00%)
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and, by Theorem 2.3, the second integral in the right hand side equals
T(b, Dvgnoem [b, @) van | - Uy aom b, @] do 2.92
/¢h(anh)[ (b, Dvgh(gany b, &)y o (o0m [b; @] (2.92)
= P b, &l - b,al d
/¢>h<am> o (oam) [0, ] - Vg (a0m) b &] do
= Q- Vyghgam b, &) do.
/¢>h(aﬂh) P" (0QM)

Now, by definition we have vyngqn) (b, @] = b3[p"] 4 ¢ on ¢"(9Q"), where
c is a constant vector. Then, by exploiting equation (2.76), it follows that
Ut oo [0,6] = Alb,w, 6", 6~ vgnoan (b, 7, [b]  (¢")V)], which implies
that & = )\[b,w,¢h,qﬁd]*1’]'}53) [b] o (¢")(=1). So the last integral in (2.92)
equals

Alb,w, ¢, 67! / T0Mb) - (69[0"] 0 ¢") 519" do = Alb,w, 6", 677"
o0

(2.93)
Finally, by exploiting (2.89), (2.90), (2.91), (2.92) and (2.93) we deduce that

/ E[B)(u"[b, 6", "], " [b, 6", g"]) de
E[¢"]
=/ E[b] (Uf[b,¢h79h]+UZ[b,¢h,gh],Uf[b,¢h,gh]+u}§[b7¢h,gh]> de
E[¢"]
— / E[B)(u"[b, 6", g"), ul'b, 6" g"]) dé
E[¢"]

2
—)\[bywaqﬁhaqsd]_l </ gh : 7—h(3) [b] &[th] dU) )
onk

which immediately implies that expression (2.88) coincides with the right
hand side of equation (2.80). O

2.3 Robin boundary value problem

2.3.1 Preliminaries

Let © be a bounded open and connected subset of R” of class C! and let a
be a continuous matrix valued function on 0§2 which satisfies the following
conditions.

(al) deta is not identically equal to zero on 9f).

(a2) &-a(x) > 0 for all £ € R™ and for all x € 09Q.
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In this section we consider the following Robin boundary value problem,

T(b, Du)v + au =g on 01, (2.94)

{ L{bju =0 in Q,
where g is a given function on 02 and b > 1 —2/n. The conditions (al) and
(a2) on the matrix function a are motivated by the following Theorem.

Theorem 2.56. Let b > 1—2/n. Let Q be a bounded open and connected
subset of R™ of class C'. Let a € C(0Q, Myxn(R)) satisfy (al) and (a2).
If u € C(cl, R™) N C%(Q,R") is a solution of problem (2.94) with g = 0,
then u = 0.

Proof. By Theorem 2.3, we have
/ E[b](u,u) dx = / ulgq - T'(b, Du)|gov do = / ulpq - aulgg do.
Q oN onN

By condition (a2) the last integral is < 0. By Proposition 2.2, we have
EDb|(u,u) > 0. Thus E[b](u,u) = 0 and we deduce that u € Rq. Then,
by Theorem 2.4, T'(b, Du)|sqv = 0. Since T'(b, Du)|gov + aulopg = 0 by
assumption, it follows that au|sq = 0. So, to conclude the proof we have to
show that au|spq = 0 implies u = 0.

Since u € Rgq, there exist A € Skew(n,R) and b € R"™ such that u(z) =
Ax + b for all z € Q. We now prove that A = 0. To do so we assume, by
contradiction, that A # 0. Then A has a non zero minor of rank at least
2. It follows that the affine subspace Z = {x € R" : Az + b = 0} of R"
has codimension larger than 2. Therefore, the intersection Z N 9 cannot
be open and not empty in 9. Conversely, by equation au|sqg = 0 and by
condition (al), the set of the points x € 9Q where u(z) = 0 is open and not
empty in 0{2. So we have a contradiction, because Z N 902 coincides with
the set where u(xz) = 0. It follows that A = 0 and u = b. Moreover, since
det a is not identically zero, ab = 0 implies b = 0. O

Now let m € N\ {0}, and let A\ €]0, 1], and let © be a bounded open and
connected subset of R of class C™*, and let a € C™ 198, M, xn(R))
satisfy conditions (al) and (a2), and let g € C™ 1299, R™). With these
assumptions we associate to the boundary value problem (2.94) a bound-
ary integral equation of Fredholm type and we prove that problem (2.94)
has a unique solution u € C™*(cl2, R"), which is expressed by means of
suitable layer potentials. It will be necessary to distinguish between the
case n = 2 and the case n > 3. Indeed for n = 2 we look for solutions
in the form vgo[b, ] + ¢, where the density p belongs to C™~1A(9Q, R™)
and satisfies faa wdo = 0, and c is a constant function. If n > 3 we look
for solutions in the form of a single layer potential vgq[b, p], with density
p € O™ 1A (90, R™). We introduce the following.
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Definition 2.57. Letb > 1—-2/n, m € N\{0}, A €]0,1[. Let Q be a bounded
open connected subset of R"™ of class C™*. Let a € C™ N0, My xn(R))
satisfy (al) and (a2). We denote by Jaqlb,-] the operator on L?(0Q, R™)
which takes a function u to

JBQ [ba ,u} = HBQ [bv ,u} + avpn [b7 MHBQ

We denote by L*(0Q,R")qy the closed subspace 0f~L2(aQ,]R”) of the func-
tion u such that faguda = 0, and we denote by Jaqlb,-,-] the operator of
L2(0Q,R")g x RE to L?(0Q,R™) which takes a couple (p1,c) to

Joalb, iy ] = Haqlb, 1] + a (vaalb, u] + ¢) |aa-

We write J and J instead of Jaq and jaQ where no ambiguity can arise.
We have the following.

Proposition 2.58. With the notation introduced in Definition 2.57, the
operator J[b, -] is a Fredholm operator of index 0 on L?(0Q,R™), and the
operator J[b,-,| is a Fredholm operator of index 0 from L*(9§2,R"™)p x Ry
to L?(0Q, R™).

Proof. The proof that J[b, -] is a Fredholm operator of index 0 follows by
a slight modification in the proof of Theorem 2.11. We now consider the
operator J[b, -, -]. We have J[b, -, ] = J; 0J20J3, where J; is the operator of
L2099, R™) x R} to L?(09Q,R"™) which takes a couple (f,c) to the function
f +aclaq, and Jo is the operator from L?(9Q,R™) x R® to L?(9Q, R™) x R}
which takes a couple (u, ¢) to the couple (J[b, u], ¢), and J3 is the immersion
of L2(9Q, R™)o x R into L2(92, R™) x RY. Then we easily verify that J1, Jo
and J3 are Fredholm operators of index n, 0 and —n, respectively. Since the
composition of Fredholm operators is a Fredholm operator of index equal
to the sum of the indexes of the components, we deduce that J[b,-,] is a
Fredholm operator of index 0. O

Now, by Proposition 2.58, we deduce the following Theorem 2.59 which
motivates the distinction between the case n = 2 and the case n > 3.

Theorem 2.59. Let the notation of Definition 2.57 hold. If n > 3, then the
operator J[b, -] is a linear homeomorphism of L2(0Q,R™) onto L*(0Q,R™). If
n = 2, then the operator Jb, -, ] is a linear homeomorphism of L?(99Q, R?)q x
RZ onto L?(09,R?).

Proof. Since J[b,-] and J[b,-, ] are Fredholm operators of index 0 it will
be enough to prove that they have trivial kernel. So let n > 3, and let
J[b,u] = 0. By arguing as in the proof of Lemma 2.14, we deduce that
p € CONOQ,R™). Then, by Proposition 2.13, the function wvaq[b, u]|an
is a solution of problem (2.94) with ¢ = 0. Then vgq[b, p]lcan = 0 by
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Theorem 2.56. It follows that vgqlb,u] = 0 on I, which implies that
vaalb, u] = 0 in the whole of R™ (cf. Theorem 2.4 and Proposition 2.6.)
Then p = [T'(b, Dvaal[b, u])v]~ — [T'(b, Dvaq[b, u])v]* = 0. The proof that
J[b,-,] is an homeomorphism for n = 2 is very similar and we omit it. [

Moreover, by Theorem 2.19 and Proposition 2.6, we have the following.

Proposition 2.60. With the notation introduced in Definition 2.57, if ei-
ther Jb,u] € C™ A0, R") or Jb, u,c] € C™LANIQ,R"), then u €
Cm=LA (99, R™).

Proof. Let J[b,u] € C™~1A(9Q,R™). If m = 1 the statement follows by
a slight modification of the proof of Lemma 2.14. So let m > 2. If u €
Cm/_l’)‘((?Q, R™), with m’ < m, then vgq[b, u|sa € Cm/’)‘(aQ,]R”) by Propo-
sition 2.6. Then, by exploiting the definition of J[b, u], we have HI[b, u] €
C™ A (9, R™). By Theorem 2.19, it follows that u € C™*(dQ,R"™). By
induction on m’ we deduce that u € C™ 1A(9Q,R™). The proof for J is
very similar ad we omit it. O

Now, by the previous Theorems 2.56 and 2.59 and by Proposition 2.60,
we are ready to deduce the following.

Theorem 2.61. Letb > 1—2/n, m € N\ {0}, X €]0,1[. Let Q2 be a bounded
open connected subset of R™ of class C™*. Let a € Cmfl)‘(ﬁQ,Man(R))
satisfy (al) and (a2). Then problem (2.94) admits a unique solution u €
C™A(clQ,R™) for each given g € C™~VAOQ,R™). If n > 3, then the solu-
tion u is delivered by the function vaq[b, i]|aq, where p € C™~ 1A (99, R™)
18 the unique solution of

Jb, u] = g. (2.95)

If n = 2, then the solution w is delivered by the function vaqlb, ullaq + ¢,
where (p,c) € C™1A(9Q, R?) x R, is the unique solution of

J[bnu’a C] =9,
{ Joq 1do = 0. (2.96)

We now present a technical remark which is needed in the sequel, the
proof can be easily deduced by the previous Theorem 2.59 and Proposi-
tion 2.60 by linearity.

Remark 2.62. Let the notation of Definition 2.57 hold. If n = 2, then for
each given (g,d) € C™ 1A (9Q,R™) x RY there exists a unique pair (u,c) of
Cm=LA 00, R™) x RY such that

J[ba :U’] tc=y,
{ Joqudo = d. 297
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2.3.2 Robin problem in a singularly perturbed domain

We now introduce a Robin problem on a singularly perturbed domain. We
fix a constant m € N\ {0}, and a constant A\ €]0,1[, and two bounded
open subsets Q" and Q¢ of R” with Q" Q¢, R\ clQ”, R™\ clQ? connected,
and a matrix valued function a € C™ 1294 M, ,(R)) which satisfies
conditions (al) and (a2). Then, for each (b, w, ¢, ¢", %, g", g¢) € B x 55':”\ X
Cm=LA(9QR R™) x O™~ 1A (904, R™) (cf. subsection 2.2.1), we consider the
following Robin boundary value problem in the domain Afw, e, ¢", ¢ =
I[¢7] \ cll[w + eg"],

L[bjlu=0 in Alw, e, ¢, ¢,
=T(b, Du)v(iepny = gt o (w+eph) (=D on w + e (ON"),  (2.98)
T(b, DuJgs + a0 (69D = gl o ()~ on ¢%(802%),

In the previous subsection 2.3.1 we have proved that the system of equa-
tions (2.98) has a unique solution ulb,w, €, ¢", ¢?, g", g%] € C™*(clA[a], R™).
We shall investigate the behavior of the solution u[b, w, €, o o, g, ¢°] upon
perturbations of (b,w,¢, ", ¢?%, g, g?) around a given degenerate sextuple

(b07w07 07 (Z)(})L? ¢gaggag(c)l)

2.3.3 A real analyticity theorem for the solutions of (2.95)
and (2.96)

We start our analysis of the Robin problem (2.98), which is defined in the
a = (w,¢ 0" ¢?) dependent domain A[a]. As a first step we transform the
corresponding equation (2.95) and system (2.96) into a system of equations
on the boundary of the fixed domains Q" and Q. This is done in the
following Theorem 2.63.

Theorem 2.63. With the notation of subsections 2.3.2, we denote by N =
(N1, N2, N3) the map of BxE™ A x (C™=LA (9O R™) x O™~ 1A (904, R™))2 x
R™ to (C™~ LA 90", R™) x C™= 1A (004, R™))? x R™ defined by

N'b,w, e, 0", 0% " g%, u", u?, o] (a) = K[, 6", ") () (2.99)
ne () he N d
w3 10000+ @) - 6

V00" (2) | 1ul(4) 510°)(9) doy + g (@),
vV z € 00",
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N2b,w, e, 6", 0%, g", g%, 1", 1%, ) () (2.100)
= Hb, ¢%, 1 (2) + a(z) (Vb ¢% 1] (2) + c)

- /8 o ; [T(b, DT (b, ¢%(z) — w — ¢ (y)))

a0 (@) |l () 50" (w) do,

+ala) [ T(0.6%w) = w = e ()" () 16" )(0) doy, — (o)

vz € 897,
N3[b,w,€,¢",¢%, g", g%, 1", u? c] = (1 — b2n) € (2.101)

h ~1..h d ~1.d
o (/mu ol dr+ [ a[mda),

for all (b,w,e,¢" ¢ g" g%yl pd,c) € B x E™N x (C™= LA 90", R™) x
Cm=LA (901 R"))2 x R", where V[b, ¢, u?] = v[b, ¢¢, u?) o ¢.

Let (b,w, e, ¢", ¢ g", g%, u, ud,c) € % x ST”\ x (C™=LA 90", R™) x
Cm=1A 90 R™))? x R™, and let

[ el o (wH )Y on w+ el (0QM),
w={ st on ¢1(601), (2.102)
Q= Alw, e, ", ¢, (2.103)
— Opnxn on w —+ €¢h(89h>,
0= { Sl o oo (2104
h hy(—1) h(a0h
_f g"o(w+ep) on w+ e (00"),
9= { gd o (¢d)(_1) on ¢d(an). (2.105)
Then, we have
Nb,w,e,0" 6% g" g%, 1", 1%, ] = 0, (2.106)

if and only if either one of the following two conditions is satisfied.

(i) n = 2 and the pair (p,c), with p defined by (2.102), satisfies (2.96)
with Q, a and g defined by (2.103), (2.104) and (2.105), respectively.

(ii) n >3, and ¢ = 0, and the function p defined by (2.102) satisfies (2.95)
with 0, a and g defined by (2.103), (2.104) and (2.105), respectively.

In particular, for each given 7-tuple (b,w, e, ¢, ¢%, g" g?) in B x E_T’A X
Cm=LA Q! R™) x CLAN 90, R™), there exists a unique triple (u”, u?, c)
of C™M=LA(GQR R™) x C™m=LA (9O R™) x R™ such that equation 2.106 hold.

Now, lete = 0. Let (b,w,0,¢", ¢%, g", g%) € BxE™A x C 1A (9O, R™) x
Cm=LA 90, R™) be fived. Then the triple (u", p?, c) of C™= 1A 90" R™) x
Cm=LA (904, R™) x R™ satisfies equation

Nw,0,¢",¢% g", g%, u", u?, c] = 0, (2.107)
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if and only if " = 0 and either one of the following two conditions hold.

(iii) n = 2 and the pair (u,d), with p = po (¢4 =Y, is a solution of (2.96)
with @ =1[¢%, a = ao (1) D and g = g% o (¢9) V).

w) n >3, and c = 0, and the function p = p® o ~) is a solution o
3, and ¢ = 0, and the f do (¢p?)(=1) l f
(295) with Q = H[¢d], a=oo (gbd)(_l) and g = gd o (gbd)(_l).

In particular, for each (w,0,¢", ¢%, g", g?) in B x E™ x C™= LA (90" R™) x
Cm=LA 0L R™), equation (2.106) has exactly one solution (u",u?,c) in
CmTEAHOM R™) x C™TEA(90F, R™) x R™.

Proof. The statement follows by a straightforward verification based on the
theorem of change of variables in integrals and by the previous Theorem 2.61.
We only note that, if (b,w, 0, 9", ¢¢, g", g?) € B x E™* x C1A(9Q", R™) x
Cm=LA (904, R") is fixed, then the first component of equation (2.107) ad-
mits the unique solution u = 0 (cf. statement (i) of Lemma 2.26.) Then,
by the second and third component of (2.107), u¢ satisfies either condition
(iii) or condition (iv) of the theorem. O

By Theorem 2.63, it makes sense to introduce the following.

Definition 2.64. With the notation introduced in subsection 2.3.2, let e =
(byw,e,¢" ¢, g" g?) € B x E™F x CIAOON, R?) x C™ 1A (90 R™)
with € > 0 or ¢ = 0. We denote by (i"[e], i%le], ¢[e]) the unique solution
(u, u?, c) € Cm=IA Q! R?) x C™ A (904, R™) x R™ of equation (2.106)
or (2.107), respectively.

Our goal is to show that "], 4¢[-] and ¢[-] admit a real analytic con-
tinuation around a “degenerate” point ey = (bg, wp, 0, <Z>6’, (bg, g(’}, gg) € B x
EMA x Om=LA (90N R™) x C™1A (994, R™). By Propositions 1.40 and 2.39
we get the following.

Proposition 2.65. With the notation of subsection 2.3.2, the set 28 x E™ x
(C™= 1A (90, R™) x C™= 1A (904, R™))2 x R™ is an open subset of the Ba-
nach space R"2 x C™A (00", R™) x C™A(9Q4, R™) x (C™ 1A (90, R™) x
Cm=LA (904, R"))2 x R™, and the operator N is real analytic.

Moreover, we need the following.
Lemma 2.66. With the notation introduced in subsection 2.3.2, let fy =

(bo, wo,0, 4, 84, g5, g8 1y, 1, co) belong to B x E™A x (C™~1A(9Q", R™) x
Cm=LA 904, R™))2 x R™, and let N[fy] = 0. Then the differential

8(uhhud7c)N[f0] = (a(uh,ud,c)Nl[fO]a a(lth#d?c)]\ﬂ[fo], 8(Mh7ud’C)N3[f0])
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of N with respect to the variable (", ud,c) at £y is delivered by the linear
operators which takes (", i¢,€) € C™~1A(9Q" R™) x O™~ 1A (9Qh, R™) x R™
to the functions defined by

O it oy N 0] (A", 1, €) () = K*[bo, ¢, 1"] (), Yz € 0",
8(;/1,/14,0) N? [fO} (/j'h7 /j'da E) (l‘)
= Hbo, o, i) () + () (VIbo, 64, ) (@) + )

+Z[ (b DT 00, (@) — vy 0 63@)] [ b alof) o

+a(@) o, (o) — w) [ 16k do. Vo e oal,

a(,u,h,,u,d,c)]\[3 [fO} (p'h7 p'da 5) = (1 - 52,71) c

_h ~1.h —d ~71.d
+02.n (/amﬂ ltor] d0+/mdﬂ edtor] dU)-

Moreover, the partial differential O,n ,a o N[fo] is a linear homeomor-
phism of C™~ LA OO R™) x C™= 1A (9Q4, R™) x R™ to C™~ 1A 90", R™) x
Cm=LA(901 R") x R™.

(2.108)

Proof. Expression (2.108) follows by standard calculus in Banach space.
Then we recognize that the differential 9,n ,,a ) N[fo] is a bounded linear op-
erator on O™~ LA (90" R™) x C™~ 1A (904 R™) x R™. By the Open Mapping
Theorem, it follows that 9,» ;4 - N[fo] is an homeomorphism if it is an iso-
morphism. So we fix (¢", g%, d) € C™ 1A (9", R") x C™~1A (90, R™) x R*
and we conclude the proof of the lemma by showing that there exists a
unique triple (", i,¢) € C™ A (90" R™) x CmIA 904, R™) x R™ such
that

a(uh,ud,C)N[fO](ﬂh7ﬁd76) = (ghvgd¢ d) (2109)

By the Fredholm Alternative Theorem, and by Theorem 2.17, and by The-
orem 2.19, we deduce that there exists a unique " € C™~1A (90" R™) such
that K*[bo, ¢, i"] = g". So, the first equation of system (2.109) admits
a unique solution " and to conclude the proof we have to show that the
system of the second and third equation of (2.109) admits a unique solu-
tion (g¢,¢) € C™ L2904, R") x R™. The second and third equation are
equivalent to the following system,

{ H[b(]v ¢(C)l7/-_1'd} +a (V[b07 ¢6[7 ﬂd] + 6) = Gd on an7
(]— - 52,77,)6"— 52771, fan ﬂd5[¢g] do =C,
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where

n

)= = 3 [0 DO, 63(0) — )y 0 64| [ lolob) do

=1

— (@) (b, () — wo) /8 ol do+g'(w). Vo0

and B = —da,, [, sah ["5[ph] do + d. Then, the existence and the uniqueness
of the solution (ii¢,¢) € C™~ 1A (99, R™) x R™ follows by Theorem 2.59, and
by Proposition 2.60, and by Remark 2.62. 0

Now,by exploiting Proposition 2.65, and Lemma 2.66, and the Implicit
Mapping Theorem, we deduce the following.

Theorem 2.67. Let the notation introduced in subsection 2.3.2 hold. Let
eo = (bo,wo, 0, ¢, ¢, gl ) gd) be an element of B x E™A x C™~LA (90" R™) x
Cm=LA 0L, R™). Then there exist an open neighborhood Uy of ey in B x
EMA x OM=LAOQN R™) x C™= LA (904, R™), and an open neighborhood Vg
of (i"[eo], i%[eq], €[eo]) in C™LA(OQM, R™) x O™~ LA (904, R™) x R™, and a
real analytic operator (N, N'¢,C) of Uy to Vo such that

(N [e], N[e], Cle]) = (4" [e], i[e], le]) (2.110)

for all e = (b,w, e, ", ¢, g", %) € Uy with € > 0. Moreover, the graph of
(NP, N?.C) coincides with the set of zeros of N in Uy x V.

Remark 2.68. With the same notation of Theorem 2.67, there exists a real
analytic operator N of Uy to C™~ 1A (9" R™) such that

N'e] = € TN [e], (2.111)

for alle = (b,w, e, ¢", ¢, 9", g) € Up.
Moreover, N*[b,w, 0, ¢" ¢, g" g% = 0 if and only if

g" = ~T(b, Du[b, ¢, g")(w) )y o (¢") V), (2.112)

for all (b,w,0,¢", ¢, g", g) € Uy, where ullb, ¢, g%] is the unique solution
of the Robin boundary value problem (2.94) with Q = 1[¢%), a = a0 (¢¢)(=V
and g = g° o (¢7)7V

Proof. N [e] is the unique solution of the following equation,

K’ [¢", N"(e]] (z) = —¢"(x) (2.113)
(3) W€ h d
/mg[ (b, DI (b, + e (x) — (1))

wgn 0 ¢"(x) (N [e](y)5 [0 (y) doy, ¥z €90
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By Proposition 2.39 and by Theorem 2.67, the right hand side of (2.113)
depends real analytically on e € Up. Then, by the Implicit Mapping Theo-
rem, N" is real analytic on Uy. Equation (2.111) follows by linearity. Let
e = (b,w,0,0", ¢%, g" g7) € Uy with € = 0 such that N"[e] = 0. Then the
left hand side of (2.113) vanishes. We deduce (2.112) by Theorems 2.61, 2.63
and by straightforward calculation. The proof of the converse is similar. [

2.3.4 Solution of the singularly perturbed problem

Theorem 2.69. Let the notation of subsection 2.5.2 hold. Let eg = (bg, wo,
0,98, ¢d, g, gd) € B x EM™A x O™ LA R™) x C™— A 904, R™).  Let
Q be a bounded open subset of R™ such that cIQ C I[¢d] \ {wo}. Then
there exist an open neighborhood U of ey in B x E™* x C™~ LA 9O, R™) x
Cm=LA 901 R™), and a real analytic operator U[] of U to C(cl,R™), en-
dowed with the norm of the uniform convergence, such that the following
conditions hold.

(ii) ule](&) = Ule](€) for all € € I and all e = (b,w, €, ", %, g, g%) € U
with € > 0.
(iii)
Ulb,w,0,¢", ¢, g" g°)(€) = u’[b, 6", g"(€), V&€l
for all (b,w,0,0", ¢ g", g%) € U, where u[b, ¢¢, %] is the unique so-
lution of the Robin boundary value problem (2.94) with Q = I[¢9,
a=ao (¢! and g = g° o (¢*)71).

Proof. Let Uy be the open neighborhood of ey introduced in Theorem 2.67.
We set

UOlel(€) = [ (= 6" )N el(0)a16(0) dor +Cll.

UBlel(€) = [ T(E~w ot )Nl 0) don,

for all £ € Alw, €, d", ¢ and for all e = (b, w, €, ", ¢%, g, g%) € Uy. Then let
U be an open neighborhood of e contained in Uy and such that condition (i)
holds. By Proposition 2.39, UV []|aq, UP[]|aq are real analytic operators
of U to C(clf2,R™). Moreover we have

ule](§) =UWe](§) + U e](€), V¢ e d,

for all e = (b,w, €, ¢", ¢ g", g%) € U with € > 0. So, by taking Ule]
UDe]|aq + € 1UP[e]|aq, the theorem follows.

Il
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2.3.5 The corresponding energy integral

Theorem 2.70. Let the notation of subsection 2.3.2 hold. Let eqg = (bg,wo,
0,08, o8, g, gd) € B x E™A x CM=LAGO R™) x O™~ 1A 90T R™). Let U
be the open neighborhood of ey introduced in Theorem 2.69. Then there exist
a real analytic operator E of U to R such that

Ble = [ Elbule]ufe]) ds
[w,e.0m,¢7]
for all e = (b,w, €, o", ¢, g", g%) € U with € > 0. Moreover, we have

)
E[b7 w? 07 §7 ¢07 9717 go} = /]I\[(ﬁd] E[b] ('U/dl:b’ ¢d7 gd]7 ud[b7 ¢d7 gd]) df?

fOT’ a‘ll (b) W, 07 57 d)O’ gia go) € u
Proof. Let e = (b,w,€,d", ¢%, g", g%) € U and let € > 0. Then, we have

/ E[b|(ule],ule]) d§ = ule] - [T(b, Du[e])u¢d]+ do
[w,e,0",¢4] ¢4(00%)

—/ ule] - [T(b, Dule])v,, gn]  do.
w+eph (OQM)

We denote by Z;[e] and by Zs[e] the first and the second term in the right
hand side, respectively. Then

Tile] = L o (U(l)[e] +enly®@ [e])

. [—a o (<Z>d)(_1) (U(l)[e] + 1@ [e]) i gd . (¢d)(_1) o

Lie)= - [ (U] + 0 fe]) - g o (w+ e0) D do,
w+egph (OQM)

where UV [e] and U®)[e] are defined as in the proof of Theorem 2.69. By a
straightforward calculation we verify that

Tile] = /a . (U(l)[e]o¢d) (aUOfe 06 + ) 5167 do (2114)
et [ (U0 o) ool do
e /m (vt )~[<a+a>U<2H o) 516" do
¢2n-2 N (U ).(aU@)[e}ow)a[qsd] do
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and
Tole] el /mh (w+ egbh)> §"G[¢" do (2.115)
2n 2 w € b & h o
/{9 o + € )) g"ole"] d
Moreover, we note that
UM e] 0 ¢(x) = vga(904) b, Ne] o (1) TV] 0 ¢ () + Cle],
Vel o ¢(z) = / D (¢%(x) — w — ed" (y))N"[e] (y) 5[¢"](y) doy,
o0h
for all z € 99Q¢, and
UWMe] o (w+ eg(x))
= | P+ e @) = )N el () 5161 0) dor, + I,
U@[e] o (w + 6" (x)) = €" v (o0 [b, N [e] o (¢")TV](w),

for all z € 9Q". By Propositions 1.40 and 2.39, we deduce that each term
on the right hand side of (2.114) and (2.115) depends real analytically on
e € U. Now, we denote by Ele| the sum of the right hand side of (2.114)
and (2.115) and we conclude the proof by a straightforward calculation. [J

2.3.6 Robin problem in a singularly perturbed domain with
singularly perturbed data on the boundary

We now investigate a slightly different problem. With the notation intro-
duced in the previous subsection 2.3.2, let ¢ = (b,w, ¢, ", ¢%, f) € B x
S_T’)‘ x C=1A (90" R™). We consider the following system of equations,

L[blu =0 in Alw, €, ¢, ¢4,
{ =T (b, Du)v yeghy = e fo(w+ep") Y on w + e (9N,
T(b, Du)vga + a0 (¢ Dy =0 on ¢%(90%).
(2.116)

In subsection 2.3.1 we have proved that system (2.116) has a unique solution
ufc] € O™ (clAw, €, ¢, %], R™). We investigate the behavior of u[c] and of
the energy integral

/ E[b)(ulc], ulc]) d¢
Alw,e,0M,¢%]

upon perturbations of ¢ around a given point ¢ = (bg,wy, 0, ¢6L, ¢g, fo) of
B x E™A x Cm~LAOQ" R™). In the following Theorems 2.71 and 2.72
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we draw out our conclusions. In the next subsection 2.3.7 we prove the
validity of such theorems by adapting to the present situation the machinery
exploited in subsection 2.3.4. So, for the solution of (2.116) we have the
following.

Theorem 2.71. Let the notation introduced in subsection 2.3.2 hold. Let
co = (bo, w0, 0, ¢, @8, fo) € BxEMAx CMLA OO R™). Let Q be a bounded
open subset of R"™ such that cIQ C 1[¢d] \ {wo}. Then there exist an open
neighborhood U of co in B x ™ x C™= A0 R™) and a real analytic
operator U[-] of U to C(clQ,R"), endowed with the norm of the uniform
convergence, such that the following conditions hold.

(i) ¢l C Alw, €, ", ¢%] for all (b,w, e, ", ¢%, f) € U.

(ii) ulb,w, e, ¢, 6% F1(€) = Ulb,w, e, 8", ¢ f1(€) for all € € eI and all
(byw, e, ", ¢%, f) € U with € > 0.

(iii)
Ulb,w,0,¢", ¢, £1(£)
= u'b,w,¢", ¢%, f1(§) —T(b,6 —w) [ fo[¢"] do, V€€,

Nk

for all (b,w,0,0", ¢% f) € U, where ullb,w, ", ¢?, f] is the unique
solution of the Robin boundary value problem (2.94) with Q = I[¢7],
a=ao (¢ and

o) = ([ 1516 do) (700,500, ~ o)) oy
a0 ()TN~ )lgaons ), v € 007
In particular, Ub,w,0, ", ¢, f] = 0 if and only if

f&[e" do = 0.
onk

For the energy integral we have the following.

Theorem 2.72. Let the notation of subsection 2.5.2 hold. Let cy = (by, wo,
0,98, 98, fo) € B x E™A x CLA (OO R™). LetU be the open neighborhood
of co introduced in Theorem 2.71. Then there exist real analytic operators
EM, E® and E®) of U to R such that

/ E[b] (ulc], ulc]) d = ED[c] + 6.0 (log ) B [c] + " E®)c],
Aw e g ¢

for all ¢ = (b,w, e, ¢", ¢ f) € U with ¢ > 0. Moreover, the following two
statements hold.
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(i) Let (b,w,0,¢" ¢%, f) € U. Then EP[b,w,0,¢" ¢%, f] = 0 if and only
iffagh f&[th] do = 0. If this is the case, then E(l)[b,w,O, ", o, f1=0
and

E®[b,w,0,0", ¢, f] = / E[b](u" b, 6", 1, u"[b, &", f]) de,
E[¢"]

where u"[b, ¢, f] is the unique solution of the exterior Neumann bound-
ary value problem in B[¢"] with boundary data —f o (¢™)=Y and with
2|2 ul[b, o", f1(2)| and |z|"~ | Dulb, ", f](x)| bounded for |z| in a
neighborhood of +o00.

(ii) Let n >3 and (b,w,0,¢", ¢, f) € U. Then E®)[b,w,0,¢", ¢ f] =0
if and only if f = 0. If this is the case, then E(l)[b,w,O,gbh,qﬁd,f] =
E(Q) [b?w? 07 th’ ¢d7 f] = 0'

We summarize in the following Remark 2.73 some easily verifiable con-
siderations which can be deduced by Theorems 2.71 and 2.72.

Remark 2.73. With the same notations of Theorems 2.72 and 2.7/, let
(b,w,0,0", ¢%, f) €U. Then the following statements hold.

(i) IfU[b,w, 0, ", o, f] # 0, then the energy integral of u[b,w, €, o, o, f]

diverges as € — 07 .

(ii) If n = 2 and Ulb,w,0,¢" ¢, f] = 0, then the energy integral of
ulb,w, €, ¢, ¢%, f] converges to the energy integral of u"b,¢", f] as
e — 0T, and therefore its limit value as € — 0T vanishes only if f = 0.

(i) If n > 3, and Ub,w,0,¢",¢%, f] = 0, and f # 0, then the energy
integral of ulb,w, e, ¢", ¢%, f] diverges as e — 07.

(iv) If f = O then the energy integral of ulb,w,e, ¢, ¢%, f] is identically
equal to 0 for all € > 0 in the right neighborhood of ¢ = 0 where
ulb,w, €, ", ¢¢, f] is defined.

2.3.7 Proof of Theorems 2.71 and 2.72

Theorem 2.74. With the notation of the previous subsection 2.5.2, we de-
note by P = (P, P2, P?) the map of B x ™ x (C™ 190", R™))? x
Cm=LA 904, R™) x R™ to O™~ 1A (9QM R™) x C™~1A(904,R™) x R™ defined
by

Pl by, 6%, 6%, i () = Kb, o, i) (a) (2117)
n— - (@) _
w3 [T0. 500w+ @) - o)

Vi © ¢h(iv)]u§l(y)5[¢d](y) doy + f(z), Vxeo,
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P2b,w,e,d", ¢, f, 1", 1, c](x) (2.118)
= Hb, ¢%, 1% (2) + a(z)(V[b, ¢, u?)(z) + )

+ /ag Zl |76, DT (b, 6 (2) — w — 6" (1))

vga 0 (@) 1l (4)516"] () dor,
+al@) [T — 0= e ) () 16" )) doy. V€ 00,

P3b,w, e, ", ¢4, f,ul ud ] = (1 — o) c (2.119)

h ~1 .h d ~1.d
oy (/mu sl do+ [ a[¢]da),

for each (b,w, e, ¢%, f, ", ut,c) in B x E™ x (C™~ LA 90" R™))? x
Cm=1A 901 R") x R™, where Vb, ¢?, ud] = Vg (a04) (D, pd o ¢ (cf. sub-
section 1.3.2 of the previous chapter.)

Let (b,w, e, ", %, f, u", u?, c) belong to %xET’A x (CM=1LA(9QM R™))2 x
Cm=LA (90T R™) x R™. We set

[ e ph o (wH e onw + g (00M),
w={ o on (902, (2:120)
Q= Alw, e, ¢", ¢4, (2.121)
[ Onxn on w + e ("),
‘= { 0o (6 on ¢4(00), (2.122)
1-n hy(—1) h(HOh
g= { (6) fo(wed?) ZZ zdj(Lagbd)(?Q ) (2.123)
Then, we have
Plb,w,e,¢",¢%, f,u" u? ] =0 (2.124)

if and only if either one of the following two conditions is satisfied.

(i) n = 2 and the pair (u,c), with p defined by (2.120), satisfies (2.96)
with Q, a and g defined by (2.121), (2.122) and (2.123), respectively.

(i) n > 3, and ¢ = 0, and the function p defined by (2.120) satisfies (2.95)
with Q, a and g defined by (2.121), (2.122) and (2.123), respectively.

In particular, there exists a unique triple (u", u?,c) of C™=1A (OO R™) x
Cm=LA (904 R™) x R™ which satisfies equation (2.124) for each given 9-
tuple (b, w, €, o", ¢, f, 1", u?, c) of the set B x E_T’)‘ x (C™=1LA (908 R™))? x
Cm=LA(901 R™) x R™.

Let (b,w, 0, 0", ¢, f, 1P, u?, c) belong to B x E™* x (C™~ LA (HQM R™))? x
Cm=EA 904 R™) x R™. Then the triple (u", u?,c) of C™~1A (904, R™) x
Cm=LA (904, R™) x R™ satisfies equation

P[b7 w’ 0’ ¢h7¢d’ f’ /‘I’h’l'l’d7 C] = 07 (2']‘25)
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if and only if the function u" o (¢h)(*1) is the unique solution of
K [0, 1" 0 (6") ] = = f o (6" (2.126)
and either one of the following two conditions is satisfied.

(i4) n = 2 and the pair (p, ), with pn = pto (¢4, is a solution of (2.97)
with Q = 1[¢Y, a = a o ()1,

g(&) = < o f & da) <T(b, DT'[b, £ — wl)|ga(a0d) Ve (2.127)

a0 (¢~ wllgoan),  VE €OV,

and d = [y f 5[] do.

(iv) n >3, and ¢ = 0, and the function pto (¢%) (=Y is a solution of (2.95)
with @ =1[¢%, a = ao ()Y, and g defined by (2.127).

In particular, for each fized (b,w,0,¢", ¢, f, u"*, u?, c) in the set B x E™* x
(C™=1A 0, R™))2 x O™~ LA 909, R™) x R™ there exists a unique triple
(1", 1, c) of C=EAOQN, R™) x C™— 1A (90, R™) x R™ which satisfies equa-
tion (2.125).

Proof. The statement follows by a straightforward verification based on the
theorem of change of variables in integrals and by the previous Theorem 2.61.
We only note that, if (b,w,0,¢", ¢%, f) € B x E™* x C™~LA 90", R™) is
fixed, then the first component of equation (2.107) is equivalent to (2.126).
By statement (i) of Lemma 2.26 equation 2.126 admits a unique solution
ph o (M) =1 e e (M (9Q"), R™). Moreover, by Theorems 2.11, 2.12,
2.16, Hypyn [0, 1l o (¢™)(=1)] is orthogonal to each constant function defined
on ¢"(OQ"). In particular, f¢h(am) Hyyn [b, ph o (") Ddo = 0. So we
have

[owtaldde= [ o Vas
o0h oM (89M)
- / it o (61D + Hyggm[b, 4 0 (61)D] do
Ph(80N)

Kbt o (@ Vldr =~ [ salot an
Bh (O oOh

Then, by the second and third component of (2.107), u? satisfies either
condition (iii) or condition (iv) of the theorem. O

By Theorem 2.74 it makes sense to introduce the following.
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Definition 2.75. With the notation of the previous subsection 2.3.2, let ¢ =
(byw, €, ¢%, f) € BxE™Ax C™= LAV R™) with e > 0 ore=10. We de-
note by (i"[c], i%[c], ¢[c]) the unique triple (u"*, ud, c) € C™=LA (90" R™) x
Cm=LA 904, R™) x R™ which satisfies (2.124) or (2.125), respectively.

We shall show that ("], 4%[],¢[-]) admit a real analytic continuation
around a “degenerate” sextuple cg = (bg,wp, 0, ¢6‘,¢g,f0) € B x EM x
Cm=LA (9O R™). To do so we need the following Proposition 2.76 and
Lemma 2.77, which can be proved by a slight modification in the proof of
Proposition 2.65 and Lemma 2.66, respectively.

Proposition 2.76. With the notation of subsection 2.3.2, the set BxE™ x
(C™=LA 90", R™))2 x C LA 904, R™) x R™ is an open subset of the Ba-
nach space R"*2 x C™A (90" R™) x C™A (994, R™) x (C™~ LA (90 R™))? x
Cm=LA 904, R™) x R™, and the operator P is real analytic.

Lemma 2.77. With the notation introduced in subsection 2.5.2, let dg =
(bo,wo, 0, ¢, d2, fo, ult, ud, co) belong to B x EM™A x (C™=LA (90" R™))? x
Cm=EA 904 R") x R" and let Pldg] = 0. Then the partial differential
Ouh i o) Pldo] of P with respect to the variable (u, u?,c) at do is a linear
homeomorphism of the Banach space C™~ 1A (90" R™) x C™= 1A 9Ok, R™) x
R™ onto C™ 1A (90", R™) x C™~ 1A (90" R™) x R™.

Now, by the Implicit Mapping Theorem, we deduce the following.

Theorem 2.78. With the notation introduced in subsection 2.3.2, let cg =
(bo,wo, 0, ¢, d3, fo) be an element of B x E™* x C=IAOQ" R™). Then
there exist an open neighborhood Uy of co in B x E™* x C™M~ 1A (90", R™),
and an open neighborhood Vo of (fi[co], i[co], é[co]) in C™=LA (OO, R™) x
Cm=LA 904, R™) x R™ and a real analytic operator (P*, P4, D) of Uy to Vg
such that

(P"[c], P[], Dle]) = (4"[e], 4"[c], ¢[c]) (2.128)

for all ¢ = (bw,e,¢",¢% f) € Uy with ¢ > 0. Moreover, the graph of
(Ph, P?, D) coincides with the set of zeros of P in Uy x V.

We are now ready for the proof of Theorems 2.71 and 2.72.

Proof of Theorem 2.71. Let Uy be the open neighborhood of ¢y introduced
in Theorem 2.78. We set

UWe)(¢) = / D(& - ¢%(9)PYel(y) 616°)(y) do +Dle]  (2.129)

o0

and

UPLel(E) = [ TE—w = o )P ) ) deye (2130
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for all £ € Alw, ¢, ¢, ¢?] and for all ¢ = (b,w, ¢, ", ¢?, f) € Uy. Then let U
be an open neighborhood of ¢y contained in Uy and such that condition (i)
of Theorem 2.71 holds. By Proposition 2.39, UV []|qq, UP[]|aq are real
analytic operators of U to C(clf2, R™). Moreover we have

ule](§) = UD[e](€) + UP[e)(€), Ve,
for all ¢ = (b,w,e, 0", ¢ f) € U with ¢ > 0. So, by taking Ulc] =

UD[c]|aa + UP[c]|aq, statement (i) of the Theorem follows. Statement
(iii) is an immediate consequence of Theorem 2.74. O

Proof of Theorem 2.72. Let ¢ = (b,w, €, ¢", ¢%, f) € U with € > 0. Then, we
have

/ E[b](u[c],u[c]) d§ = ulc] - [T(b, Du[c])y¢h]+ do
Alw,e,0",¢7] ¢(894)
_ /w +e¢h(aﬂh)U[C] (b, Dule))vysepn]  do.

We denote by Zi[c] and by Zs|c| the first and the second term in the right
hand side, respectively. Then

Tilc] = — /¢ oo (U<1>[c] +U® [c]) (2.131)
.o (¢°)Y (U(l)[c] + U(Q)[CD do
and
Tle] = —eln / . U] fo(w+ed ™ do  (2.132)

elen / U®[c]- f o (w+e") D do,
w+tedh (8QN)

where UM [c] and UP[c] are defined as in the proof of Theorem 2.71. By
arguing as in the proof of Theorem 2.70 one verifies that right hand side
of (2.131) and the first term in the right hand side of (2.132) have a real
analytic continuation in the whole of . So, we denote by E(M[] the real
analytic operator on U/ which is defined by

B0 =T - " [ UW[e]- f o (w+e) D do,
wteph (0QM)

for all ¢ = (b, w, €, o", ¢?, f) € U with € > 0.
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We now recall that, I'(b,ez) = 52,n%%(10g ¢) + 2 T(b, ), for all
beB,e>0,ze€R"\ {0} (cf. definition (2.6).) So, by (2.129) and (2.130),

the second term in the right hand side of (2.132) equals

oo b+2 hi~i.h ~h
~5r 3 bH)(loge) mh?’ [c] 5[¢"] do - amfo[cé ] do
—e2 Vb, ¢", Pc]] - f &[¢"] do. (2.133)
oOh
We set,
@y~ L b+2 ol 516M do - 510
E'Y¥c] = 2720+ 1) thP [c] a[¢"] do 6tha[¢ | do,
E®c]=— [ Vb¢" P[] f5[¢"] do,
oQh

for all ¢ € U. Then, by Propositions 1.40 and 2.39 and by Theorems 2.71,
E®|c] and E®)[c] depend real analytically on ¢ € U.

Now, to conclude the proof it remains to verify statements (i) and (ii).
To do so, we exploit Theorem 2.74. By equation (2.126) we deduce that

) hod g L b+2 ik 2

for all (b,w,0,¢" ¢% f) € U. So, EP[b,w,0,6", ¢ f] = 0 if and only
if [oon fG[¢"]do = 0. Moreover, if this is the case, then both the func-
tions UMb, w, 0, ¢", ¢, f] and U [b,w, 0, ¢", ¢¢, f] are identically equal to
0, which implies that EM[b,w,0, ¢, ¢, f] = 0. Besides we have

E®[b,w,0,¢", 67, f] = / E[B](u"[b, 6", f], u"[b, &", f]) dé
E[¢"]

for all (b,w,0,¢", ¢%, f) € U, where
uh[ba ¢h7 f] = vd)h(aﬂh)[bv Ph[ba w, 0, ¢h7 ¢d7 f] ° (¢h)(_1)]

is the unique solution of the exterior Neumann boundary value problem in
E[¢"] with boundary data —f o (¢")(=1 (note that, if n = 2 the condition
Joqn [3[9"] do = 0 is necessary.) Therefore E®b,w,0,¢", ¢%, f] =0 if and
only if E[b](u”[b, ¢", f],u"[b, ¢, f]) = 0 in E[¢"], if and only if u”[b, ¢", f] €
Rpjgn (cf. Lemma 2.2), if and only if [T'(b, Du"[b, ¢, fDvgn]™ equals 0 (cf.
Theorem 2.4.) Summarizing, we have E®)[b,w,0,¢", ¢%, f] = 0 if and only
if f=0. O
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2.4 Inhomogeneous interior data

2.4.1 Description of the problem

In this subsection we introduce a Dirichlet boundary value problem in a
perforated domain with a non-homogeneous data in the interior and we
investigate the behavior of the solution and of the corresponding energy in-
tegral as the hole shrinks to a point. Our approach to the problem stems
from Lanza de Cristoforis [24]. Let g be a fixed bounded open connected
subset of R™. Let m € N\ {0} and X\ €]0,1[. Let Q" and Q% be bounded
open subsets of R™ of class C™* with Q" Q¢, R™ \ cIQ", R™ \ cIQ? con-
nected. Let £™” be as in subsection 2.2.1. We denote by Sgg”\ the subset
of £E™* of the quadruples (w, ¢, ", ¢%) with cll[¢p?] C Q. Then, for each
(b,w, e, ¢ ¢%, g" g € %x(‘f&’)‘ x CM=LAQO! R™) x O™~ 1A (904, R™) with
€ > 0 and for each vector valued function F' defined on €}y, we consider the
following Dirichlet boundary value problem in the domain Alw, €, ¢", ¢%] =

T¢?] \ w + cl(el[¢"]),

Lblu=F in Alw, €, ¢, ¢,
u=g"o(w+ed)D  on w+ e (OO, (2.134)
u=glo (@)D on g?(00%).

Under reasonable conditions on F', problem (2.134) has a unique solution
u = ulb,w, e, o", ¢, g", g%, F] and such a solution can be written in the form

ulb,w, e, ¢", 6%, g", g%, F]
= Pb, F] +ulb,w,¢,¢", ¢4, g" — P[b, F] o (w + ed™), g% — P[b, F] 0 ¢%, 0],

where

P, F|(¢) = /Ql“(b,ﬁ —n)F(n) dn, Ve, (2.135)

is the Newtonian potential of F' in 2.

Our purpose is to investigate the behavior the solution of (2.134) and of
its energy integral for ¢ — 0%. By Theorem 2.53, we know that we can rep-
resent ulb, w, €, 9", ¢°, g", g%, 0] in terms of the function v,(¢) and in terms
of real analytic operators of the variable (b,w, e, ", ¢°, g", g%). Thus, what
remains to be done here is to choose an appropriate Banach space for F'
so that P[b, F], P[b, F] o (w + e¢"), P[b, F] o ¢ depend real analytically on
(b,w, e, o, o, F). Now, for a large variety of choices of function spaces for
F, P[b, F] depends real analytically on (b, F'), and this is so in particular for
the Schauder spaces C™*. Less clear instead is the choice for the function
spaces for F', P[b, F| o ¢ in order that P[b, F] o ¢ depends real analytically
on (b,¢,F) when ¢ is in a Schauder space. Then we resort to results on
composition operators of Preciso [38], [39], which indicate that the right
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choice for the space for F, P[b, F| is a Romieu class, and thus the corre-
sponding real analyticity results for P[b, F] o ¢ of Lanza de Cristoforis [23,
Lemma 2.15], where a regular perturbation problem for the Poisson equa-
tion has been treated (such results concern the Newtonian potential relative
to the Laplace operator A but the proof given there applies with only minor
modifications to the present situation, where the Newtonian potential rela-
tive to the operator L[b] is considered.) Then we can prove Theorems 2.80
for the behavior of the solution of (2.134), and Theorem 2.82 for the behav-
ior of the corresponding energy integral, which extend the corresponding
Theorems 2.53 and 2.55 for F' = 0.

2.4.2 Introduction of the Romieu classes

For all bounded open subsets {2 of R™ and p > 0, we set

18]
ny — oo n P
CBW(CIQ,R ) = {U eC (ClQ,R ) sup 7”Dﬂu‘|co(dQ’Rn) < +OO}

genn | B!
and
— pl?! 8 0 n
lulleo (c10,rm) = ﬁséll\% WHD ullcoarny), ¥ u € Cy ,(cl2,R™).
As is well known, the Romieu class (Cgm(clﬂ, R™), || - HCB,,,(CIQ,R")> is a Ba-
nach space.

Then we have the following technical lemma.

Lemma 2.79. Let m € N", X\ €]0,1[ and p > 0. Let Q be a bounded open
connected subset of R™. Let €21 be an open connected subset of R™ of class
C! such that c1Q C Q. Then the following statements hold.

(i) If Q2 is a bounded open subset of R™ such that c1Qy C Q1, then there ex-
ists p1 €)0, p] such that the map of BxCY (clQ,R™) to CJ) , (clz, R™)
which takes (b, F') to P[b, F|aq,]|cq, s real analytic.

(it) The map of {(b, F,§) € # x CY (cIQ,R") x R"|{ € U} to R"™ which
take (b, F, &) to Plb, F|aq, (&) is real analytic.

(iii) If Qo is a bounded open subset of R™ of class C™, the map of B x
C’Sw(ClQ,R") x C™AN 09, Q1) to C™A (00, R™) which takes (b, F, ¢)
to Plb, F|aq,] © ¢ is real analytic.

subset 2 of R™. By (2.6) we have

Proof. Let F = (Fj)i=1,..n be a vector valued function on a bounded open

b+ 2 b
Pb,F] = ——

= mPA[E]i:L...,n - WQ[F]?
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where Pa[F;] denotes the Newtonian potential corresponding to the Laplace
operator and Q[F] is defined by

_ 1 (€—n)
IO = BB, ol =i
By Lanza de Cristoforis [23, Lemma 2.15], statements (i), (ii) and (iii) hold
with P[b, F] replaced by Pa[F;],i =1,...,n. Moreover, by a straightforward
modification of the proof of Lanza de Cristoforis [23, Lemma 2.15], we can
also verify that statements (i), (ii) and (iii) hold with P[b, F'] replaced by
Q[F]. Then the proof of the Lemma can be easily completed. O

(E—n)-F(n)dn, VE&Eecl.

2.4.3 Solution of the singularly perturbed problem
By Therem 2.53 and by Lemma 2.79, we deduce the following.

Theorem 2.80. Let the notation of subsection 2.4.1 hold. Let p > 0.
Let £y = (bo,w,0, 08, ¢d, g, g&, Fy) belong to & x ESTO”\ x C™A (OO R™) x
CmA (001, R™) x C’va(leo,R”). Let Wy be the neighborhood of the point
by = (bo,(.d(),o,¢8',¢6l) introduced in Proposition 2.44, and let VAV, V(2)
be as in Lemma 2.52. Let Q) be a bounded open subset of R™ such that
cQ C T[¢d] \ {wo}. Then there exist an open neighborhood U of £y in
B X ng)”\ x C™A (90", R™) x C™A (904, R™) x Cg’p(CIQO,R”), and real an-
alytic operators UY) and Uz-(f), i,j=1,...,7n, of U to C(cl2,R"™) such that
the following conditions hold.

(ii) (b,w,e,¢",¢%) € Wy for all (b,w, e, 6", 6% g", g%, F) € U.
(iii) We have

n ~1
ulf)(€) = UV + 3 (3u(@V OB+ V) UPiEI©).
ij=1
(2.136)
for all € € clQ, and all £ = (b,w, €, ", ¢, g", g%, F) € U with € > 0,
where v, () = loge if n = 2, and vp(e) = " if n > 3, and we
abbreviated (b, w, €, d", o) as b.

(iv)
UWb,w,0,", 6%, ", g, FI(€) = u’lb, ¢, g, FI(€),
for all € € I and for all (b,w, 0, ¢", ¢%, g", g%) € U, where ul[b, $?, g?]

is the solution of the Dirichlet boundary value problem in 1[¢%] with
boundary data g% o (¢4)=Y and interior data Flyga)-
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(v) Let £ = (b,w,0,¢", 0% g", g%, F) € U, we denote by £, b¢ the points
(byw, €, ¢%, g" g%, F) and (b,w, e, p", $?), respectively, for all € > 0.
Then

. - (1) [1ae @ mer) L 7@ e
lim > (VO] + VD) CUPE(€) =0

e—0t = ij
i,7=1

uniformly for € € cl€).

Proof. Let Q1 be an open connected subset of R™ of class C' such that
cl]l[qSS] C Qq, cl2; C Qp. Let U be an open neighborhood of fy in £ x 5&’)‘ X
CmA(O0" R™) x C™A (994, R™) x CJ ,(c1Qo, R™) such that (b, w, e, ", ¢?) €
W, and clQ C Alw, €, ¢, ¢4, and cll[¢?] C Q, for all (b,w,e, ¢, ¢%, g,
g%, F) € U. Thus we have

u[f] = P[b? F‘clﬂl] + u[b7 w, €, ¢h7 7h [f],')/d[f], 0], (2137)

for all f = (b,w, €, 8", 0%, g", g%, F) € U, where y"[f] = g" — P[b, F|ag, ] o (w+
e¢") and Y[f] = g? — Pb, F|aq,] o ¢? for all f € U with ¢ > 0. By statement
(iii) of Lemma 2.79, the maps which take f to v*[f] and y¢[f] are real analytic
from U to C™AON" R™) and to C™*(9Q? R"), respectively. Then, by
Theorem 2.53, possibly shrinking the neighborhood U of fj, the second term
in the right hand side of (2.137) admits a functional analytic representation
as in the right hand side of (2.136). Let UM and ﬁi(f), i,j =1,...,n,

be the corresponding real analytic operators. We denote by U™ and Ui(jz),
i,j = 1,...,7, the operators which take £ € U to P[b, Flaa,]|aa + UM f]

and ﬁi(jz) if], 4,7 = 1,...,7n, respectively. Then, by Lemma 2.79 (i) and

Theorem 2.53, U and UZ-(J»Q), 1,7 =1,...,n, are real real analytic operators
of U to the space C'(clf2, R™) and satisfies conditions (iii), (iv) and (v) of the
Theorem. O

We note that, if n > 3, the right hand side of (2.136) admit a real
analytic continuation in the whole of U, while for n = 2, the right hand side
of (2.136) displays a logarithmic behavior.

2.4.4 The corresponding energy integral

In the proof of Theorem 2.82 we need the following technical lemma, which
can be verified by a straightforward modification of the proof of Lanza de
Cristoforis [24, Proposition 2.2].

Lemma 2.81. Let the notations introduced in subsection 2.4.1 hold. Let )y
be a bounded open connected subset of R™ of class C' such that c1Qy C Q.
Let (bg,w, 0,88, 98, Fy) € B x Egl’)‘ X Cg’p(leO,R”). Then there exist an
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open neighborhood Vi of (by,w,0, ¢, ¢, Fy) in B x Sg(“)’)‘ X CBW(CIQ(),Rn)
and a real analytic operator I1 of V1 to R such that

b, w, c, ¢", o, F] = / E[)(P[Fla,], P[Flan,]) dé.
Alw,e,0",¢°]

for all (b,w, €, o™, ¢ F) € Vi with € > 0.

Theorem 2.82. Let the notation of subsection 2.4.1 hold. Let p > 0. Let
fo = (bo,w, 0,08, ¢4, gh, gd, Fy) belong to the set B x 8&”\ x C™A (0" R™) x
CmA 004, R™) x CBW(CIQ(),RTL). Let Wy be the neighborhood of the point
by = (bg,w0,0,¢8,¢g) introduced in Proposition 2.44, and let VD, V(2
be as in Lemma 2.52. Then there exist an open neighborhood U of fy in
%xgg(‘)’A x C™A(OQN R™) x C™A (90, R™) x CY ,(c1Q0, R™) and real analytic
operators EV) and Ei(f), i,j=1,...,7, ofU toR, such that (b,w, €, o", p?) €
W if (b,w, €, ¢, ¢% g", g% F) €U and

[ B @ (2.138)
Alw,e,¢",¢7]

n —1
2

=BV + Y <7n(e)V(1)[b] n v<2>[b])ij EP ],
ij=1
for all £ = (b,w, e, ", ¢ g", g%, F) € U with ¢ > 0, where we abbreviated
(b,w, €, ¢, ¢%) as b.

Moreover, if £ = (b,w, 0, ¢", ¢, g", g%, F) belongs to U and we set £f€ =
(b,w, e, ¢", ¢% g" g%, F), b* = (b,w, €, ¢",¢%) for all € > 0, then

n -1
: (1) 1pe (1) 1a€ (2) e (2) €
lim E [f]+z§j:1 (m(@VOD]+ V) B (2.139)

- / B[t (u[b, ¢, g%, F1, ullb, o, g, F1) de
[¢?]
oo / B[ ("[b, 6", g, u" b, 6" g"]) de,
E[¢"]

where u®b, ¢, g%, F] is the solution of the Dirichlet boundary value prob-
lem in 1[¢%] with boundary data g% o (¢%)(=V) and interior data F]W,d}, and

ul[b, ", g"] is the solution of the Dirichlet exterior boundary value problem
in E[¢"] with boundary data g" o (™)=Y (¢f. Definition 2.31.)

Proof. Let 21 be an open bounded open connected subset of R™ of class C*°
such that cl]l[gi)g] C Q4 and cl©)y C Q. Then we have

ulf] = w1 [f] + P[F|ag,]
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for all f € % x £ x C™A(AQR, R™) x C™A (994, R™) x CF_,(cl, R™) with
€ > 0, where

ul[f] = U[b,u)7 €, (z)ha ¢dagh - P[F|Clﬂl] o (w + 6¢h)7gd - P[F‘Clﬂl] o Qsd? 0]

is the solution of the homogeneous Dirichlet boundary value problem in
Alw, e, ¢, ¢] with boundary data g" o (w + €6*)™) — P[Flag, |l cgn oem)
and g% o (¢%) (=1 — P[F|aq,]|4e(a04)- Then, by Theorem 2.3, we have

/ B[ (ulf], ulf]) de (2.140)
Alw,€,0" 09
_ / E[b] (u1 [f], ua[f]) dé
Alw,e,0" 99
n / E[b)(P[Flag,], P[Flaq,)) d¢
Alw,e,0",¢%]

gt / (P[Flag] o (@ + es"))
onh
[T (b, Dua[f]) vy egn] © (w + e¢™) 5" do

2 / (P[Flag] o %) - [T(6, Dus[))a] 0 ¢ 5[] do
o0na

for all £ = (b,w, e, ¢", ¢%,g", g, F) in the set B x £5" x C™A (90", R") x
CmA 004, R™) x CF (1, R™) with € > 0.

By Theorem 2.55 and by statement (iii) of Lemma 2.79, the first integral
in the right hand side of (2.140) admits a representation as in the right hand
side of (2.138). Moreover, the corresponding limit (2.139) converges to

| Bl adie) e+ o [ BRI ulE) de. (2140
1] E[¢"]

where ud[f] = ulb, ¢¢, g% — P[F|aq,] o ¢¢,0] and ull[f] = u"[b, 4", g" —
P[F |0, ](w)] are the solution of the homogeneous Dirichlet boundary value
problem in I[¢%] with boundary data g¢o¢? — P[F|aq,] | p4(0024y and the solu-
tion of the homogeneous Dirichlet exterior boundary value problem in E[¢"]
with boundary data g" o ¢" — P[F|an,](w), respectively. In particular, for
n = 2, uhb, ¢, g" — P[F|aq,](w)] differs from u”[b, ", g"] by a constant
function, and the second integral in (2.141) equals

/ BB b, 6", g"), u" b, 6" g"]) de.
E[¢h]

By Lemma 2.81, the second integral in the right hand side of (2.140)
admits a real analytic continuation in the variable f around f, and accord-
ingly it admits a representation as in the right hand side of (2.138) and the
corresponding EV) | E?) equal II and 0, respectively.
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We now consider the third and fourth integrals in the right hand side
of (2.140). By statement (iii) of Lemma 2.79, both the functions g" —
P[F|aq,] © (w + €¢") and g% — P[F|aq,] o ¢¢ depend real analytically on
f=(bwe o ¢ g" g% F) € BxEL x O™ (9", R™) x C™ (90, R™)
Cg7p(leO,R”). So, by arguing as in the proof of Theorem 2.55, we verify
that, possibly shrinking the neighborhood U of fy, there exist real analytic
operators H), Jisvd i,j = 1,...,7, of U to C™ MO0 R™) and real

ij
analytic operators H®), Jisve i,j=1,...,n, of U to C" 190 R™) such

ij
that

€ [T (b, Du[£]) vy o] © (w + €8 (2.142)
= HO[f] + zn: (3(@V O]+ Vb)) B,
ij=1 K
[T(b, D [f])vga] 0 ¢ (2.143)
= HO[E]+ > (VO] + V(b))

ij=1

g

ij

for all f = (b,w,e, ", ¢%, g", g%, F) € U with € > 0, where as usual b =
(b,w, €, ¢ ¢?). By such equations, and by Proposition 2.39, and by state-
ment (iii) of the previous Lemma 2.79, and by standard calculus in Banach
space, one easily deduces the existence of E1), E®?) for the third and fourth
integral in the right hand side of (2.140).

To complete the proof we have to verify equation (2.139). To do so, we
compute the limit as e — 07 for the right hand sides of (2.142) and (2.143).
First we note that
H(l) [b7 w? 07 th’ ¢d7 gh7 gd7 F]

— Oa.n | T (b, Dult [b, 6", g" — P[Flaio, ] (@)])vgn| o 0",
H(3) [b7 w’ O? ¢h’ ¢d7 gh7 gd7 F]

= |T(b, Du[b, 6", g" = P[Flag,] o 6",0))v | o ¢°,
for all (b,w,0,8",¢%, g" g%, F) € U, where ul* is the function introduced in

Definition 2.31 (cf. proof of Theorem 2.55.) In particular, for n = 2, we
have

Duﬁ [b7 (bhv h_ P[F‘CIQJ(W)]
= Du[b,¢", g" — P[Flaa,)(w)] + c1[b,w, 6", g", F] Dvgn aqn)[b, @b, ¢"]]
= Du"[b,¢", "] + c1[b,w, ¢", g", F] Dvgn(pan)lb, alb, "],

where afb, ¢"] € (KerHyngony[b; ])o is defined as in Lemma 2.29, and
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c1[b,w, ¢", ", F] is a real constant. Now consider H,.. We have
M) = ([ "= PP @) T biale do
+ /6 8" = PlFlag,] 0 ¢) - 7, [blo[¢] do)
< 17 (5 Dvgr oo b, T D] 0 (")) vy |0 6" (@)
el Z/ T (b, DT™ (b,w + e¢"(x) — ¢%(y)))
vor o6 w)] (TVb]), () 5160 o, ).

for all z € Q" and for all f € U with ¢ > 0, where 7, [b] and 7. [b] are
defined as in Proposition 2.44 (cf. equation (2.83).) Clearly, for e — 0T, the
last factor in parentheses converges to

[T (b, Dvghpam b T [b] o (¢h)<—1>]) yd,h} o gt (2.144)

We recall that, for € = 0, T(i)[ blo (¢") (1) is an element of KerH yn gony [b; °]-
Thus quh(am)[b ’T [ Jo (M) = ( [b] o (¢")=1. So the expression
in (2.144) equals ’Z;L(] )[b}. Now consider H, i(j). We can verify that

H[f)(x) = ( /8 Qh(gh — P[Flan,](w)) - 7" b]5[6"] do
# [t PlFlany] o 6%) - T Blo10 do

(; /m 76, DTV (b, 6" (2) - w + 6" (1))
Va0 6'(@)] (T10]), ) 516")(v) doy

k

’U¢d d d V¢d+0 x) |,
[ (bvosonn .70 610 (691 ] "0 00))

for all x € Q% and for all f € U with ¢ > 0 (cf. equation 2.86.) For ¢ — 07,
the last factor in parentheses converges to

n

3 [T(b, DT®) (b, ¢%(2) — w))vya o d>d(:v)] /

k=1 9

_(37p]), 516" do

7 (0. Dot 0,70 101 (69 1) ] 0 ),
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which is equal to

|6"(0QM)['2> " 5, T (b, DT®) (b, ¢ () — w) ) vya 0 ¢%(x)
k=1

+H[b, %, 7,7 [b]])(x).

We recall that, for n =2 and € =0, ’271(3) [b] = 0 (see proof of Lemma 2.52.)
Thus, for n = 2 and € = 0, Hi(gl)[f] =0foralli=1,...,3.

We now summarize what we have seen for the limit value as ¢ — 07 of
the terms on the right hand side of (2.140). By exploiting Lemma 2.52, we
find that the limit in (2.139) converges to

/ E ] (uf[£], u§[f]) d& + 6o, / E[b)(u"[b, ¢", g"],u"[b, ¢", ")) d¢
I[¢9] E[¢ph]

+ [ BU(PIFlan], PIFlon) ds
I[¢d]
—205.p /8 o (P[Flaq,](w)) - (T(b, Du"[b, ¢", gh])u¢h) o ¢" 5[¢"] do
20l [ (PPl )) - 70l 0 6" 516 dor
onk
#200, ([ o 1O Bl510" do ) (PIFlan, (@)
- /B (70D 5 D] 00" 5167 do

+2 /a N (p[F|dQl] o ¢d) : (T(b, Dug[f])y¢d) o ¢? (¢4 do
—269 , A[b] 7! /

(PIFlac) 0 ¢7) - HL[£) 5167 do.
ok

(2.145)

where c[f] is a real constant and A[b’] is defined as in Lemma 2.52. To
conclude the proof we show that third, fourth, fifth and sixth term in (2.145)
vanish. In fact, the third term vanishes because, by Theorem 2.3,

[ (PPl ) - (10,04 .6 ) 0 6" 516" do
_ / (P(Fla,](@)) - T(b, Dul[b, 6", g")vndo
o (o)

- / B[] (P{Flaa, (@), u"[b, ", g") dt = 0,
E[¢"]

and the fourth term vanishes because, for n = 2 and € = 0, ’2;1(3) [b] =0
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(cf. proof of Lemma 2.52), and the fifth term vanishes because, by Theo-
rem 2.13,

/th |:T(b, DU¢h(8Qh)[b, b?[b, ¢h]])l/¢h] B © ¢h &[¢h] do

= K*, oom [b, alb, o] do = / alb, ¢ do =0,
/¢h(th) ¢h(th)[ [ P (00N

(cf. proof of Theorem 2.74) and finally the sixth term vanishes because, for
n=2ande=0, Hég) [f] = 0. Then, by Theorem 2.3, we deduce the validity
of formula (2.139). O
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