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1.2.3 Continuity and Hölder continuity . . . . . . . . . . . . 15
1.2.4 The jump across the boundary . . . . . . . . . . . . . 18
1.2.5 An auxiliary boundary value problem . . . . . . . . . 20
1.2.6 An equivalent problem and a stability theorem . . . . 24
1.2.7 Proof of the main Theorem 1.7 . . . . . . . . . . . . . 27

1.3 Some applications . . . . . . . . . . . . . . . . . . . . . . . . 33
1.3.1 The Helmholtz and bi-Helmholtz operator . . . . . . . 33
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Introduction

This dissertation consists of two chapters. Chapter one is devoted to the
investigation of some properties of the layer potentials of an elliptic partial
differential operator with constant coefficients. In particular, we investigate
the dependence upon perturbation of the density, the support and the coef-
ficients of the operator. The main result is a real analyticity theorem for the
single layer potential and its derivatives, which has been proved under quite
general assumptions on the operator. This result is applied to the special
case of Helmholtz and bi-Helmholtz operators, Lamé equations and Stokes
system. A real analyticity theorem is proved for the corresponding single
and double layer potential.

Chapter two deals with the boundary value problems for the Lamé equa-
tions, which describe some physical processes, in particular, the elastic prop-
erties of an isotropic homogeneous elastic body. Special attention is paid to
the case of boundary value problems defined in a domain with a small hole
which shrinks to a point. The aim is to describe the behavior of the solu-
tion and of the corresponding energy integral. This kind of problem is not
new and has been investigated by the techniques of asymptotic analysis (see,
e.g., the works of Keller, Kozlov, Movchan, Maz’ya, Nazarov, Plamenewskii,
Ozawa, Ward.) Let ε > 0 be a parameter which is proportional to the diam-
eter of the hole, so that the singularity of the domain appears when ε = 0.
By the approach of the asymptotic analysis, one can expect to obtain results
which are expressed by means of known functions of ε plus an unknown term
which is smaller than a positive known function of ε. The approach adopted
here stems from the papers of Lanza de Cristoforis [20, 21, 22, 23, 25] and it
is in some sense alternative to the approach of the asymptotic analysis. The
aim is to express the dependence upon ε in terms of real analytic functions
defined in a whole open neighborhood of ε = 0 and in terms of possibly
singular but completely known function of ε, such as ε2−n or log ε. As a
corollary, one could obtain asymptotic formulas which agree with those in
the literature.

We now describe in details the content of each chapter.

Chapter 1. In subsection 1.1.1, we present the construction of a par-
ticular fundamental solution S of a given elliptic constant coefficient partial
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differential operator L of order 2k on Rn, k ≥ 1, n ≥ 2. For this purpose,
we exploit John [14, Chapter III]. In subsection 1.1.2, we investigate the
dependence of such a fundamental solution upon perturbation of the coeffi-
cients of the operator. We verify that, if the coefficients of the operator are
contained in a bounded set, then there exists a particular fundamental so-
lution of the type introduced in subsection 1.1.1 which is a sum of functions
which depend real analytically on the coefficients of the operator. Such a
result resembles the results of Mantlik [29, 30] (see also Trèves [43]), where
more general assumptions on the operator are considered. We observe that
it is not a corollary. Indeed, the suitably detailed expression for the funda-
mental solution, which is obtained in subsection 1.1.1, cannot be deduced
by [29, 30].

Section 1.2 deals with the single layer potential of the elliptic operator L
corresponding to the fundamental solution S introduced in subsection 1.1.1.
We fix an open and bounded subset Ω of Rn with Ω and Rn \ clΩ connected
and we assume that the boundary ∂Ω is a compact sub-manifold of Rn of
Hölder class Cm,λ, with m ∈ N \ {0} and 0 < λ < 1. We regard Ω as
a given fixed set and we consider open subsets of Rn whose boundary is
parametrized by a diffeomorphism of class Cm,λ defined on ∂Ω. Clearly not
all the functions of ∂Ω to Rn give rise to the boundary of an open subset of
Rn. So in subsection 1.2.1 we introduce a class A∂Ω of admissible functions
on ∂Ω. We also recall some useful properties of the functions of A∂Ω pointed
out by Lanza de Cristoforis and Rossi in [27, 28]. Then for each φ ∈ A∂Ω

of class Cm,λ and for each density function µ of class Cm−1,λ defined on ∂Ω
we consider the single layer potential v which is the function defined on Rn

by

v(ξ) ≡
∫

φ(∂Ω)
S(ξ − η)µ ◦ φ(−1)(η) dση, ∀ ξ ∈ Rn

where S is the fundamental solution of L introduced in subsection 1.1.2.
Moreover, for each multi-index β with |β| ≤ 2k − 1, we denote by vβ the
function of Rn to R defined by

vβ(ξ) ≡
∫

φ(∂Ω)
(∂βS)(ξ − η)µ ◦ φ(−1)(η) dση, ∀ ξ ∈ Rn,

so that vβ = ∂β
ξ v on Rn \ φ(∂Ω). We denote by Vβ the function of ∂Ω to R

which is the composition of vβ and φ. Our purpose is to investigate the de-
pendence of Vβ upon suitable perturbations of the function φ, of the density
µ, and of the coefficients of the operator L. We state in subsection 1.2.2 the
main result of the present chapter, which is a real analyticity theorem in the
frame of Schauder spaces for Vβ , |β| ≤ 2k−1 (see Theorem 1.7.) The rest of
section 1.2 is dedicated to the proof of such a theorem. The main idea of the
proof stems from the papers of Lanza de Cristoforis and Preciso and of Lanza
de Cristoforis and Rossi and exploits the Implicit Function Theorem for the
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analytic functions. Indeed, Theorem 1.7 is in some sense a natural extension
of Theorem 3.23 of [26] (where the Cauchy integral has been considered), of
Theorem 3.25 of [27] (where the Laplace operator ∆ has been considered)
and of Theorem 3.45 of [28] (where the Helmholtz operator has been con-
sidered.) Here we confine our attention to elliptic operators L which can be
factorized with operators of order 2 (cf. Theorem 1.7.) In order to prove our
main Theorem 1.7, we need some preliminaries. In subsection 1.2.3 we sum-
marize some regularity properties of the layer potentials. In subsection 1.2.4
we summarize the jumping properties of the corresponding derivatives. In
subsection 1.2.5 we introduce an auxiliary boundary value problem and in
subsection 1.2.5 we investigate some stability properties of such an auxiliary
boundary value problem. In subsection 1.7 we prove our main Theorem 1.7.

In the last section of the chapter we focus our attention on single and
double layer potentials which arise in the study of certain boundary value
problems of physical interest, such as the basic boundary value problems
for the Lamé equations and the Stokes system. First, we need some aux-
iliary results for the bi-Helmholtz single layer potential and its derivatives,
which are obtained as a straightforward consequence of Theorem 1.7 in the
subsection 1.3.1. Then in subsection 1.3.2 we give a suitable expression of
the fundamental solution of the Lamé equations and we deduce that the
corresponding single and double layer potentials depend real analytically
upon perturbations of the domain, the density and the coefficients of the
operator. By a similar argument we deduce also that the single and double
layer potentials relative to the Stokes system depend real analytically upon
perturbations of the domain and the density (see subsection 1.3.3.)

Chapter 2. In the second chapter we consider some boundary value
problems for the operator L[b] ≡ ∆+b∇div, where b > 1−2/n is a constant,
in a domain with a small hole. The behavior of the solution and of the
corresponding energy integral as the hole shrinks to a point is investigated.

To explain our results, we now present in details the statement of one
of the boundary value problems. First we introduce the domain. We fix a
bounded open subset Ωd of Rn, such that Ωd and Rn \ clΩd are connected,
and such that ∂Ωd is submanifold of class Cm,λ, with m ∈ N \ {0} and
λ ∈]0, 1[. If φd is a Cm,λ function defined on ∂Ωd which belongs to the class
of the admissible functions A∂Ωd , then its image φd(∂Ωd) splits Rn into two
connected components. We denote by I[φd] the bounded one. Then I[φd] is
a bounded open subset of Rn with boundary of class Cm,λ parametrized by
the function φd. Now, we make a hole in the domain I[φd]. We fix another
bounded open subset Ωh of Rn, with Ωh, Rn \ clΩh connected, and ∂Ωh of
class Cm,λ. The hole will be obtained by a suitable affine transformation
of the domain I[φh], with φh a Cm,λ diffeomorphism on ∂Ωh which belongs
to A∂Ωh . So, we take a point ω in the domain I[φd], and we take a scalar
ε ∈ R. Clearly, if ε is small enough, the closure of the set ω + εI[φh] is
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contained in I[φd]. If this is the case, ω + εI[φh] is our hole, and we obtain
a perforated domain A[ω, ε, φh, φd] by removing the closure of the hole ω +
εI[φh] from the domain I[φd]. We note that A[ω, ε, φh, φd] is a bounded
open and connected subset of Rn with boundary made of two connected
components, ω + εφh(∂Ωh) and φd(∂Ωd). We denote by Em,λ the set of
all the admissible quadruples (ω, ε, φh, φd) which give rise to a perforated
domain A[ω, ε, φh, φd] and we point out that Em,λ is an open subset of the
Banach space Rn × R × Cm,λ(∂Ωh,Rn) × Cm,λ(∂Ωd,Rn). In particular,
A[ω, 0, φh, φd] = I[φd] \ {ω}.

We now introduce a boundary value problem in the domain A[ω, ε, φh, φd]
with ε > 0. So let gh and gd be two functions of Cm,λ(∂Ωh,Rn) and
Cm,λ(∂Ωd,Rn). We consider the following system of equations,

L[b]u = 0 in A[ω, ε, φh, φd],
u = gh ◦ (ω + εφh)(−1) on ω + εφh(∂Ωh),
u = gd ◦ (φh)(−1) on φd(∂Ωd).

(0.1)

Problem (0.1) has a unique solution u of Cm,λ(clA[ω, ε, φh, φd],Rn) for each
given b > 1− 2/n, (ω, ε, φh, φd) ∈ Em,λ and (gh, gd) ∈ Cm,λ(∂Ωh,Rn) ×
Cm,λ(∂Ωd,Rn) (cf. subsection 2.2.2.) So it makes sense to consider such
a solution as a function of the variables (b, ω, ε, φh, φd, fh, fd) and to write
u[b, ω, ε, φh, φd, fh, fd] to denote it. Our purpose is to investigate the depen-
dence of u[b, ω, ε, φh, φd, fh, fd] upon the 7-tuple (b, ω, ε, φh, φd, fh, fd). We
notice that we investigate the dependence of the solution upon perturbation
of the coefficient of the operator, and of the point where the hole is situated,
and of the diameter of the hole, and of the shape of the hole, and of the
shape of the outer domain, and of the boundary data on the boundary of
the hole and on the outer boundary. In particular we want to investigate
the behavior of u[b, ω, ε, φh, φd, fh, fd] as ε → 0+ and the hole shrinks to a
point.

For fixed values of b, ω, φh, φd, gh, gd, the last problem is not new at
all. Indeed it has been long investigated by the techniques of asymptotic
analysis. It is perhaps difficult to provide a complete list of contributions.
Here we mention the work of Kozlov, Maz’ya and Movchan [17], Maz’ya,
Nazarov and Plamenewskii [31, 32], Ozawa [37], Ward and Keller [46]. To
understand the kind of results that we can expect by asymptotic analysis,
we consider a simpler situation. Let n ≥ 3. Let Ωd be the bounded open
set introduced above. We assume that Ωd contains the origin of Rn and we
fix a function gd of Cm,λ(∂Ωd). Then we denote by Bn the unit ball of Rn,
and we fix a function gh of Cm,λ(∂Bn). We consider the following boundary
value problem, 

∆u = 0 in Ωd \ cl(εBn),
u = gd on ∂Ωd,
u(ξ) = gh(ξ/ε) for ξ ∈ ∂(εBn),
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where ε > 0 and cl(εBn) ⊂ Ωd. It is well known that such a boundary value
problem has a unique solution u[ε]. Now let ξ0 6= 0 be a point of Ωd. Then,
by the so-called compound asymptotic expansion method, we can deduce
that the asymptotic behavior of the solution u[ε] evaluated at ξ0 as ε→ 0+

is delivered by the following equation,

u[ε](ξ0) =
N∑

j=0

εj (vj(ξ0) + wj(ξ0/ε)) +O(εN+1),

where the vj are solutions of suitable boundary value problems in Ωd, and the
wj are solutions of suitable boundary value problems in the exterior domain
Rn \ clBn (cf. Maz’ya, Nazarov and Plamenewskii [31, Theorem 2.1.1].)

As announced, we adopt the different approach proposed by Lanza de
Cristoforis in [20, 21, 22, 23, 25]. The results that we obtain are expressed
by means of real analytic functions and by completely known function of ε.
With the notation introduced above, let e0 ≡ (b0, ω0, 0, φh

0 , φ
d
0, g

h
0 , g

d
0) be an

admissible 7-tuple with ε = 0. Let Ω be an open bounded subset of Rn with
clΩ ⊂ I[φd

0] \ {ω0}. We prove that the solution u[e] of (0.1) can be written
in the form

u[e](ξ) = U (1)[e](ξ) +
n+(n

2)∑
i,j=1

(
γn(ε)V (1)[e] + V (2)[e]

)−1

ij
U

(2)
ij [e](ξ) (0.2)

for all ξ ∈ clΩ and all e ≡ (b, ω, ε, φh, φd, gh, gd) with ε > 0 in a open neigh-
borhood U0 of e0, where U (1), U (2)

ij , V (1)
ij , V (2)

ij are real analytic operators
defined on the whole open neighborhood U0 and γn is the function of ε de-
fined by γn(ε) ≡ log ε for n = 2, γn(ε) ≡ ε2−n for n ≥ 3 (cf. Theorem 2.53.)
In particular, if n ≥ 3, one sees that u[·] admits a real analytic continuation,
while for n = 2, u[·] has a logarithm behavior around a degenerate 7-tuple.
A similar result is obtained for the energy integral of the solution u[e] (cf.
Theorem 2.55.)

Then we turn to consider the following Robin boundary value problem
for ε > 0,

L[b]u = 0 in A[ω, ε, φh, φd],
−T (b,Du)ν(ω+εφh) = gi ◦ (ω + εφh)(−1) on ω + εφh(∂Ωh),
T (b,Du)νφd + α ◦ (φd)(−1)u = gd ◦ (φd)(−1) on φd(∂Ωd),

(0.3)

where T (b,Du) ≡ (b−1)(div u)+(Du+Dut), and ν(ω+εφh), νφd are the unit
outward normal to the boundary of ω+ εI[φh] and I[φd], respectively, and α
is a matrix valued function on ∂Ωd. Under reasonable conditions one verifies
that (0.3) has a unique solution. Then we prove a real analytic continuation
theorem for the solution in terms of (b, ω, ε, φh, φd, gh, gd) in Theorem 2.69,
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and a real analytic continuation theorem for the corresponding energy in-
tegral in terms of (b, ω, ε, φh, φd, gh, gd) in Theorem 2.70. We also consider
the following boundary value problem for ε > 0,

L[b]u = 0 in A[ω, ε, φh, φd],
−T (b,Du)ν(ω+εφh) = ε1−nf ◦ (ω + εφh)(−1) on ω + εφh(∂Ωh),
T (b,Du)νφd + α ◦ (φd)(−1)u = 0 on φd(∂Ωd),

(0.4)

where both the domain and the boundary data display a singular behavior
for ε → 0+. We deduce also in this case a functional analytic representa-
tion formula for the solution and for the corresponding energy integral (cf.
Theorems 2.71 and 2.72.) We notice that in this case we have real analytic
continuation of the solution around ε = 0, while the energy integral can have
a singular behavior (cf. Remark 2.73.)

Finally we consider the following inhomogeneous Dirichlet boundary
value problem for ε > 0,

L[b]u = F in A[ω, ε, φh, φo],
u = gh ◦ (ω + εφh)(−1) on ω + εφh(∂Ωh),
u = gd ◦ φd(−1) on φd(∂Ωd).

(0.5)

Under reasonable conditions we prove also in this case a formula similar to
(0.1) both for the solution and for the energy integral (cf Theorems 2.80 and
2.82.)

We now briefly outline our general strategy.
Step 1. We show that the solution of the boundary value problem can

be expressed in terms of layer potentials and elementary functions. The
density of the layer potentials are determined by suitable boundary inte-
gral equations of Fredholm type defined on the boundary of the domain
A[ω, ε, φh, φd].

Step 2. We recast such boundary integral equations into an equivalent
system of boundary integral equations defined on the boundary of the fixed
domains Ωh and Ωd. The new system will admit a unique solution for all
admissible 7-tuple (b, ω, ε, φh, φd, fh, fd) with ε ≥ 0.

Step 3. By exploiting the real analyticity results for the layer potentials
obtained in the first chapter of the dissertation and by the Implicit Mapping
Theorem we deduce a real analyticity theorem for the solution of the system
on the boundary of the fixed domains.

Step 4. We compound the results of Chapter 1, of Step 1 and of Step 2
and we deduce a representation formula like (0.2) for the solution of original
boundary value problem.

The chapter is organized as follows. In section 2.1 we consider the ba-
sic boundary value problems for the operator L[b]. To each boundary value
problem a suitable boundary integral equation is associated, and some prop-
erties of the corresponding boundary integral operator are investigated. The
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results of section 2.1 will enable us to produce solutions for the boundary
value problems which are expressed by means of layer potentials and by
elementary known functions. So section 2.1 accomplishes the first step of
our general strategy. Then, in section 2.2, we consider the boundary value
problem (0.1). In section 2.3, problems (0.3) and (0.4) are considered and
finally, in section 2.4 problem (0.5) is considered.

Acknowledgment. The results of the present dissertation will appear in papers
by Matteo Dalla Riva, and by Matteo Dalla Riva and Massimo Lanza de Cristoforis.





Notation

Let X and Y be real normed spaces. L (X ,Y) denotes the normed space of
the continuous linear maps of X into Y and is equipped with the topology
of the uniform convergence on the unit sphere of X . For standard defini-
tions of calculus in normed spaces, we refer, e.g., to Prodi and Ambrosetti
[40]. We understand that a finite product of normed spaces is equipped with
the sup-norm of the norm of the components, while we use the euclidean
norm for Rn. The symbol N denotes the set of natural numbers includ-
ing 0. Throughout the paper, n is an element of N \ {0, 1}. The inverse
function of an invertible function f is denoted f (−1), as opposed to the re-
ciprocal of a real-valued function g which is denoted g−1. For all x ∈ Rn,
xi denotes the i-th coordinate of x, |x| denotes the euclidean modulus of
x, and Bn denotes the unit ball {x ∈ Rn : |x| < 1}. A dot ‘·’ denotes the
inner product in Rn. Mn×n(R) is the set of the real n × n-matrices. Let
A ∈ Mn×n(R). Then At denotes the transpose matrix of A and Aij denotes
the (i, j) entry of A. If A is invertible A−1 denotes the inverse matrix of A
and we set A−t ≡ (A−1)t. Let B ⊂ Rn. Then clB denotes the closure of B,
∂B denotes the boundary of B, and x + RB ≡ {x + Ry : y ∈ B} for all
x ∈ Rn, R ∈ R. Let Ω be an open subset of Rn. The space of the m times
continuously differentiable real-valued functions on Ω is denoted by Cm(Ω).
Let f ∈ Cm(Ω). The partial derivative of f with respect to xi is denoted
by ∂if , ∂xif or ∂f

∂xi
. The space of the m times continuously differentiable

vector-valued functions on Ω is denoted by Cm(Ω,Rn). Let f ∈ Cm(Ω,Rn).
The i-th component of f is denoted by fi and Df denotes the gradient
matrix (∂jfi)i,j=1,...,n. Let α ≡ (α1, . . . , αn) ∈ Nn, |α| ≡ α1 + · · · + αn.
Then Dαf denotes ∂α1

1 . . . ∂αn
n f . The subspace of Cm(Ω) of those functions

f whose derivatives Dαf of order |α| ≤ m can be extended with conti-
nuity to a bounded function of clΩ is denoted Cm(clΩ). Then Cm,λ(clΩ)
endowed with the norm ‖f‖m ≡

∑
|α|≤m supclΩ |Dαf | is a Banach space.

The subspace of Cm(clΩ) whose functions have m-th order derivatives that
are Hölder continuous with exponent λ ∈]0, 1] is denoted Cm,λ(clΩ) (see
e.g. Gilbarg and Trudinger [11].) Let B ⊂ Rn. Then Cm,λ(clΩ, B) denotes
{f ∈ (Cm,λ(clΩ))n : f(clΩ) ⊂ B}. If f ∈ C0,λ(clΩ), then its Hölder quo-
tient |f |λ is defined as sup

{
|f(x)− f(y)||x− y|−λ : x, y ∈ clΩ, x 6= y

}
. The

space Cm,λ(clΩ), equipped with the norm ‖f‖m,λ = ‖f‖m +
∑

|α|=m |Dαf |λ,

xiii
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is well known to be a Banach space. We denote by C−1,λ(clΩ) the space of
distributions {div g : g ∈ C0,λ(clΩ,Rn)} endowed with the norm ‖f‖−1,λ ≡
inf{‖g‖0,λ : f = div g, g ∈ C0,λ(clΩ,Rn)}. C−1,λ(clΩ) is a Banach space
(see e.g., Lanza de Cristoforis and Rossi [28].) We say that a bounded open
subset Ω of Rn is of class Cm or Cm,λ, if its boundary ∂Ω is a submanifold
of Rn of class Cm or Cm,λ, respectively (see e.g., Gilbarg and Trudinger [11,
§6.2].) We define the space Ck,λ(∂Ω), with 0 ≤ k ≤ m, by exploiting the
local parametrizations.



Chapter 1

The layer potentials

In this chapter, we construct a particular single layer potential of a given
constant coefficient elliptic partial differential operator of order 2k. Then,
in the frame of Schauder spaces, we prove a real analyticity result for the
dependence of such a potential and its derivatives till order 2k − 1 upon
suitable perturbations of the domain, the coefficients of the operator and
of the density. Exploiting such a result, we study the dependence upon
perturbations of the domain, the coefficients and the density of the single
and double layer potentials which arise in certain boundary value problems,
such as the Dirichlet and Neumann problems for the Lamé equations and
the Stokes system. We deduce also in this case that the dependence is real
analytic.

1.1 A particular fundamental solution

1.1.1 Construction of a particular fundamental solution

Let P ∈ R[ξ1, . . . , ξn] be a real polynomial of degree 2k (n ≥ 2, k ≥ 1)
and denote by P2k the homogeneous term of P of degree 2k. We assume
that the operator L = P (∂x1 , . . . , ∂xn) is elliptic on Rn (i.e. P2k(ξ) > 0
for all ξ = (ξ1, . . . , ξn) ∈ Rn, ξ 6= 0) and then we investigate the structure
of a particular fundamental solution S of L (LS(z) = δ(z), where δ is the
Dirac delta function.) For this purpose we exploit the construction of a
fundamental solution given by John in [14, Chapter III].

Theorem 1.1. Let n, k ∈ N, n ≥ 2, k ≥ 1. Let P ∈ R[ξ1, . . . , ξn] be a real
polynomial of degree 2k and let L = P (∂x1 , . . . , ∂xn) be elliptic. Then there
exist real valued functions A(·, ·) defined on ∂Bn × R, B(·) defined on Rn

and C(·) defined on Rn, such that the following statements hold.

(i) There exists a sequence {fj(·)}j∈N of continuous functions of ∂Bn to
R such that

fj(−θ) = (−1)jfj(θ), ∀ θ ∈ ∂Bn

1
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and

A(θ, r) =
∞∑

j=0

fj(θ)rj , ∀ (θ, r) ∈ ∂Bn × R. (1.1)

The series in (1.1) converges absolutely and uniformly in all compact
subsets of ∂Bn × R.

(ii) B is real analytic and there exists a family {bα : α ∈ Nn, |α| ≥ 2k−n}
of real numbers such that

B(z) =
∑

α∈Nn

|α|≥2k−n

bαz
α, ∀ z ∈ Rn. (1.2)

Furthermore B can be chosen to be identically 0 if n is odd.

(iii) C is continuous and can be chosen to be identically 0 if n is odd.

(iv) The function S of Rn \ {0} defined by

S(z) ≡ |z|2k−nA(z/|z|, |z|) +B(z) log |z|+ C(z), ∀ z ∈ Rn \ {0},

is a fundamental solution of L.

Proof. In John [14, Chapter III] the existence of the functions A(·, ·), B(·)
and C(·) satisfying (iii) and (iv) has been proved. We claim that such
functions satisfy also (i) and (ii).

For all ξ ∈ ∂Bn and t ∈ R, we denote by v(z, ξ, t) the solution of the
equation Lv = 1 for which v and all its derivatives of order ≤ 2k− 1 vanish
on the hyper-plane z · ξ = t. Then we define, for every z ∈ Rn \ {0},

W0(z) ≡ 1
4(2πi)n−1

∫
∂Bn

∫ z·ξ

0
v(z, ξ, t) sgn t dt dσξ , (1.3)

W1(z) ≡ − 1
(2πi)n

∫
∂Bn

v(z, ξ, 0) log |z · ξ| dσξ , (1.4)

W2(z) ≡ − 1
(2πi)n

∫
∂Bn

∫ z·ξ

0

v(z, ξ, t)− v(z, ξ, 0)
t

dt dσξ , (1.5)

and

S(z) ≡

{
∆

n+1
2 W0(z) if n is odd,

∆
n
2 (W1 +W2)(z) if n is even.

(1.6)

By John [14, Chapter 3] we know that S is a fundamental solution of L. We
now investigate the structure of S.

By writing P (ζξ) = ζ2kP2k(ξ)P (ζξ)
[
ζ2kP2k(ξ)

]−1, for all ζ ∈ C \ {0}
and ξ ∈ ∂Bn, one can easily recognize that there exists R > 0 such that
P (ζξ) has no complex zeros ζ outside of the ball RB2, for all ξ ∈ ∂Bn. Now
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let γ be an arbitrary simple closed curve of class C1 in the complex plane
that describes the contour of the ball RB2. Since L has constant coefficients,
the function v(·, ·, ·) is delivered by the formula

v(z, ξ, t) =
1

2πi

∫
γ

e(z·ξ−t)ζ

ζP (ζξ)
dζ, ∀ (z, ξ, t) ∈ Rn × ∂Bn × R

(see John [14, pp. 65–66].) Thus we have

v(z, ξ, t) =
∞∑

j=0

aj(ξ)
j!

(z · ξ − t)j , ∀ (z, ξ, t) ∈ Rn × ∂Bn × R (1.7)

where

aj(ξ) ≡
1

2πi

∫
γ

ζj−1

P (ζξ)
dζ, ∀ ξ ∈ ∂Bn, (1.8)

for every j ∈ N.
We now show that a0 = a1 = · · · = a2k−1 = 0 and a2k = 1/P2k. Let

ξ ∈ ∂Bn and gj(ζ) ≡ ζj−1/P (ζξ). By (1.8), we have aj(ξ) = −Res(gj ,∞).
Since gj is holomorphic in a punctured neighborhood and limζ→∞ ζgj(ζ) = 0
for j = 0, . . . , 2k − 1 and limζ→∞ ζg2k(ζ) = 1/P2k(ξ), we have aj(ξ) =
−Res(gj ,∞) = 0 for j = 0, . . . , 2k − 1 and a2k(ξ) = −Res(g2k,∞) =
−c2k,−1 = 1/P2k(ξ).

Furthermore, one easily verifies that there exists M > 0 such that
|aj(ξ)| ≤ MR(j−1)−2k for all ξ ∈ ∂Bn. Hence the series in (1.7) converges
absolutely and uniformly in all compact subsets of Rn × ∂Bn × R.

Now let n be odd and substitute v with its expression (1.7) in equation
(1.3). Since we can integrate term by term, we obtain

W0(z) =
∞∑

j=2k

W0,j(z), (1.9)

with

W0,j(z) =
1

4(2πi)n−1

∫
∂Bn

aj(ξ)
(j + 1)!

(z · ξ)j+1 sgn(z · ξ) dσξ . (1.10)

We observe that, for every j ∈ N, c > 0 and z ∈ Rn,

W0,j(cz) = cj+1W0,j(z) and W0,j(−z) = (−1)jW0,j(z). (1.11)

Moreover we can prove that W0,j ∈ C∞(Rn \ {0}). To do so we produce a
convenient expression for W0,j . By definition of aj and of W0,j , we have

W0,j(z) =
1

4(2πi)n

∫
∂Bn

∫
γ

|z|j+1

(j + 1)!
P (ζξ)−1 ζj−1((z/|z|) · ξ)j+1

·sgn((z/|z|) · ξ) dζ dσξ
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for all z ∈ Rn. Then we fix an arbitrary unit vector η and we restrict z
to lay in the half space z · η > 0. With such a restriction we introduce a
new variable of integration ξ′ instead of ξ on ∂Bn, namely, for all θ ∈ ∂Bn,
θ · η > 0, we set

ξ = T (ξ′, θ) ≡ ξ′ + 2(ξ′ · η)θ − ξ′ · (θ + η)
1 + θ · η

(θ + η) . (1.12)

We note that T (·, θ) is an orthogonal transformation: |T (ξ′, θ)| = |ξ′|, and
in addition θ · ξ = η · ξ′. The expression for W0,j(z), for z in the half-space
z · η > 0, becomes

W0,j(z) =
1

4(2πi)n

∫
∂Bn

∫
γ

|z|j+1

(j + 1)!
P (ζT (ξ′, z/|z|))−1

·ζj−1(η · ξ′)j+1sgn(η · ξ′) dζ dσξ′

and since the integrand depends real analytically on z for z · η > 0, we have

DαW0,j(z) =
1

4(2πi)n

∫
∂Bn

∫
γ

∂|α|

∂zα

[
|z|j+1

(j + 1)!
P (ζT (ξ′, z/|z|))−1

]
(1.13)

·ζj−1(η · ξ′)j+1sgn(η · ξ′) dζ dσξ′

for all z ∈ Rn such that z · η > 0. By equation (1.13) and by standard
theorems on integral depending on parameters we deduce that DαW0,j(z)
is a continuous function for z · η > 0. Since η is an arbitrary unit vector it
follows that DαW0,j is a continuous function on Rn \ {0} for all α ∈ Nn.

We now set

fj(θ) ≡
(
∆

n+1
2 W0,j+2k

)
(θ), ∀θ ∈ ∂Bn,

for every j ∈ N. Clearly fj(θ) is a continuous function of θ ∈ ∂Bn, and by
(1.11), fj(−θ) = (−1)jfj(θ) and(

∆
n+1

2 W0,j+2k

)
(z) = |z|j−nfj(z/|z|), ∀z ∈ Rn \ {0}.

Moreover, substituting W0 in the form (1.9) into equation (1.6) we obtain

S(z) = ∆
n+1

2

∞∑
j=2k

W0,j(z) =
∞∑

j=2k

∆
n+1

2 W0,j(z) = |z|2k−n
∞∑

j=0

fj(z/|z|)|z|j

(1.14)
which immediately implies statement (ii). Here we still have to justify that
one can exchange the summation with ∆

n+1
2 .

To do so we estimate |DαW0,j(z)| by exploiting (1.13). Let

w0,0(ζ, ξ′, θ) ≡ P (ζT (ξ′, θ))−1
.
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The function w0,0(ζ, ξ′, θ) does not depend on j and is real analytic for
(ζ, ξ′, θ) in the set Aη of the triples which satisfy

ζ ∈ R∂B2, ξ′, θ ∈ ∂Bn, θ · η > 0.

Moreover, for all multi-indexes ι ∈ Nn with |ι| = 1,

∂|ι|

∂zι

[
|z|j+1

(j + 1)!
P (ζT (ξ′, z/|z|))−1

]
=
|z|j

j!

(
w0,ι(ζ, ξ′, z/|z|) +

1
j + 1

w1,ι(ζ, ξ′, z/|z|)
)

where w0,ι and w1,ι are the functions of Aη defined by

w0,ι(ζ, ξ′, θ) ≡ θιw0,0(ζ, ξ′, θ) ,
w1,ι(ζ, ξ′, θ) ≡ ∂ι

θ w0,0(ζ, ξ′, θ)− θι∑n
i=1θi∂θi

w0,0(ζ, ξ′, θ).

We note that w0,ι and w1,ι do not depend on j and are analytic for (ζ, ξ′, θ)
in the set Aη. By an inductive argument on |α|, one can show that for
each α ∈ Nn with |α| ≤ j there exist a natural number N(α) and sequences
{ci(j) : j ∈ N, j ≥ |α|} of real numbers in [0, 1], for i = 0, . . . , N(α), and
functions wi,α(·, ·, ·) of Aη to C such that

∂|α|

∂zα

(
|z|j+1

(j + 1)!
P (ζT (ξ′, z/|z|))−1

)

=
|z|j+1−|α|

(j + 1− |α|)!

N(α)∑
i=0

ci(j)wi,α(ζ, ξ′, z/|z|)

for all (ζ, ξ′, z) such that (ζ, ξ′, z/|z|) ∈ Aη. By such an equality we deduce
that, for all α ∈ Nn there exists a positive constant M such that∣∣∣∣∣∂|α|∂zα

(
|z|j+1

(j + 1)!
P (ζT (ξ′, z/|z|))−1

)∣∣∣∣∣ ≤M
|z|j+1−|α|

(j + 1− |α|)!

for all j ≥ |α| and for all ζ ∈ R∂Bn, ξ′ ∈ ∂Bn and z ∈ Rn such that
(z/|z|) · η ≥ 1/2. Then by (1.13) there exist M ′,M ′′ > 0 such that

|Dα
zW0,j(z)| ≤M ′(M ′′)j−1 |z|j+1−|α|

(j + 1− |α|)!

for all j ≥ |α| and z in the cone (z/|z|) · η ≥ 1/2.
Finally we recall that η is an arbitrary unit vector. So, possibly choosing

larger constant M ′ and M ′′, the previous inequality holds for z in the whole
of Rn \ {0}. It follows that the series

∑∞
j=0D

αW0,j(z) is dominated by a
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convergent power series and hence it converges absolutely and uniformly in
all compact subsets of Rn \ {0}. This implies that

Dα
∞∑

j=0

W0,j(z) =
∞∑

j=0

DαW0,j(z)

for all α ∈ Nn. In particular we can deduce (1.14). Moreover, if we set for
all θ ∈ ∂Bn and r ∈ R

A(θ, r) ≡
∞∑

j=0

fj(θ)rj ,

then A(θ, r) satisfies statement (i).Then if we take B ≡ 0, C ≡ 0, statement
(iv) for n odd follows by equation (1.14) and statements (ii) and (iii) for n
odd are obvious.

Now we only sketch the proof for n even, the argument being very similar
to the one developed for the case n odd. If n is even we have S(z) =
∆

n
2 (W1(z) +W2(z)). We observe that W2(z) is C∞ function defined in the

whole of Rn (even for z = 0), and so if we set C(z) ≡ ∆
n
2W2(z), then C

satisfies statement (iii). Now we consider S1(z) ≡ ∆
n
2W1(z). Substituting

v with its expression (1.7) into equation (1.4), we obtain

W1(z) =
∞∑

j=2k

W1,j(z), ∀ z ∈ Rn,

with
W1,j(z) = − 1

(2πi)n

∫
∂Bn

aj(ξ)
j!

(z · ξ)j log |z · ξ| dσξ.

By arguing as above one can show that W1,j ∈ C∞(Rn \ {0}). Moreover we
have

∆
n
2W1,j(z) = Uj(z) + Vj(z) log |z|

where, for every j ∈ N, j ≥ 2k, Vj is a homogeneous polynomial of degree
j − n in Rn with Vj = 0 for j < n, Uj is continuous in Rn \ {0} and,
Uj(cz) = cj−nUj(z), Uj(−z) = (−1)jUj(z) for all c > 0 and z ∈ Rn \ {0}.
We set, for every j ∈ N and θ ∈ ∂Bn, fj(θ) ≡ Uj+2k(θ). By arguing as
above, we can show that we can exchange the order of differentiation and of
summation and thus we obtain

S1(z) = ∆
n
2

∞∑
j=2k

W1,j(z) =
∞∑

j=2k

∆
n
2W1,j(z)

= |z|2k−n
∞∑

j=0

fj(z/|z|)|z|j + log |z|
∞∑

j=2k

Vj(z).

Now we set A(θ, r) ≡
∑∞

j=0 fj(θ)rj for all (θ, r) ∈ ∂Bn × R and B(z) ≡∑∞
j=2k Vj(z). By arguing as above we deduce that the series which defines



1.1. A PARTICULAR FUNDAMENTAL SOLUTION 7

A converges absolutely and uniformly in all compact subsets of ∂Bn × R
and the accordingly statement (i) holds. Similarly we deduce that the series
which defines B converges absolutely in the compact subsets of Rn. Since
such series is a power series, B is real analytic. Hence statement (ii) follows.
Then also statements (iv) for n even follows.

Remark 1.2. With the notation introduced in Theorem 1.1, we denote by
S0(z) the function of Rn \ {0} to R defined by

S0(z) ≡ |z|2k−nf0(z/|z|) + log |z|
∑

α∈Nn

|α|=2k−n

bαz
α

where f0(·) is the coefficient of the first term in (1.1) and bα are the coeffi-
cients with |α| = 2k − n of (1.2). Hence bα = 0 if n is odd. Then S0(z) is
a fundamental solution of the homogeneous operator L0 ≡ P2k(∂x).

Proof. In the proof of Theorem 1.1 we saw how to construct a particular
fundamental solution of P (∂x). Here we specialize such a construction to the
case P = P2k where the function v(z, ξ, t) defined as a solution of L0v = 1
is a polynomial. Indeed a direct computation based on the definition of
v(z, ξ, t) shows that

v(z, ξ, t) =
a2k(ξ)
(2k)!

(z · ξ − t)2k =
1

(2k)!P2k(ξ)
(z · ξ − t)2k,

for all (z, ξ, t) ∈ Rn×∂Bn×R. Moreover, for n even, L0(∆
n
2W2) = 0, because

∆
n
2W2 is a polynomial function of degree < 2k, and thus the fundamental

solution is given only by the term ∆
n
2W1.

1.1.2 Dependence upon the coefficients of the operator

If X is a subset of a Banach space, we say that a function f defined on X
is real analytic if f is the restriction to X of a real analytic function defined
on an open neighborhood of X . We need the following elementary result.

Lemma 1.3. Let n,m ∈ N \ {0}. Let X be a subset of Rn and let Y be a
compact subset of Rm. Let τ be a finite measure on Y and let f(·, ·) be a real
analytic function of X × Y to R. Then the function F (·) of X to R defined
by F (x) ≡

∫
Y f(x, y) dτy for all x ∈ X is real analytic.

Proof. In the sequel for each x ≡ (x1, . . . , xn) ∈ Rn and ε > 0 we denote by
Q(x, ε) the rectangle

Q(x, ε) ≡ {x′ ∈ Rn : |x′1 − x1| < ε, . . . , |x′n − xn| < ε}.

Similarly, we define Q(y, ε) for all y ≡ (y1, . . . , ym) ∈ Rm and ε > 0.
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Now, let x0 be a point of X . Clearly the set {x0} × Y is compact. It
follows that there exist ε > 0 and y1, . . . , yl ∈ Y such that the set {x0} × Y
is covered by the finite set of rectangles {Q(x0, ε)×Q(yi, ε)}i=1,...,l, and for
all i = 1, . . . , l there exist a family {a(i)

αβ : α ∈ Nn, β ∈ Nm} of real numbers
such that

f(x, y) =
∑

α∈Nn, β∈Nm

aαβ(x− x0)α(y − yi)β (1.15)

for all (x, y) ∈ (Q(x0, ε)∩X )×(Q(yi, ε)∩Y), and the series in (1.15) converges
absolutely and uniformly for all (x, y) ∈ clQ(x0, ε) × clQ(yi, ε). Then the
series in (1.15) equals∑

α∈Nn

b(i)α (y)(x− x0)α, ∀ (x, y) ∈ Q(x0, ε)×Q(yi, ε), (1.16)

with
b(i)α (y) ≡

∑
β∈Nm

a
(i)
αβ(y − yi)β, ∀ y ∈ B(yi, ε) (1.17)

for all i = 1, . . . , l. We note that the series in (1.16) and (1.17) converge
absolutely and uniformly in clQ(x0, ε)×clQ(yi, ε) and clQ(yi, ε), respectively.
In particular, bα(·) is a continuous function on clQ(yi, ε) and the series∑

α∈Nn

‖b(i)α (·)‖C0(clQ(yi,ε))(x− x0)α

converges absolutely and uniformly in clQ(x0, ε). Since b(i)α (y) = b
(j)
α (y) for

all y ∈ Q(yi, ε) ∩Q(yj , ε) and for all α ∈ Nn and i, j = 1, . . . , l, we have

f(x, y) =
∑

α∈Nn

bα(y)(x− x0)α, ∀ (x, y) ∈ (X ∩Q(x0, ε))× Y,

where bα(·) is a continuous function on Y and the series∑
α∈Nn

‖bα(·)‖C0(Y)(x− x0)α

converges absolutely in clQ(x0, ε). Then we have

F (x) =
∫
Y
f(x, y) dτy

=
∑

α∈Nn

(∫
Y
bα(y) dτy

)
(x− x0)α, ∀ x ∈ Q(x0, ε) ∩ X ,

where the series converges absolutely in clQ(x0, ε). Since x0 was an arbitrary
point of X the proof of the lemma is completed.
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Now, for each n, l ∈ N, n > 0, we denote by N(n, l) the set of all multi-
indexes α with |α| ≤ l. We say that a is a vector of coefficients of order
l if a ≡ (aα)α∈N(n,l) is a real function on N(n, l). We denote by R(n, l)
space of all vectors of coefficients of order l. Then, by ordering N(n, l) on
arbitrary way, we identify R(n, l) with a finite dimension real vector space
and we endow R(n, l) with the corresponding Euclidean norm | · |. For
each a ∈ R(n, l) we denote by P [a](ξ) = P [a](ξ1, . . . , ξn) the polynomial∑

α∈N(n,l) aαξ
α and we set L[a] ≡ P [a](∂x1 , . . . , ∂xn). Then L[a] is a partial

differential operator with constant coefficients. If L[a] is elliptic we can
construct the corresponding functions S(a, z), A(a, θ, r) and B(a, z), C(a, z)
as in Theorem 1.1. We have the following.

Theorem 1.4. Let n, k ∈ N, n ≥ 2, k ≥ 1. Let E be a bounded open subset
of R(n, 2k) such that L[a] is an elliptic operator of order 2k for all a ∈ clE .
Then there exist a real analytic function A(·, ·, ·) defined on E × ∂Bn × R
and real analytic functions B(·, ·), C(·, ·) defined on E × Rn such that the
following statements hold.

(i) There exists a sequence {fj(·, ·)}j∈N of real analytic functions of E ×
∂Bn such that

fj(a,−θ) = (−1)jfj(a, θ), ∀ (a, θ) ∈ E × ∂Bn

and

A(a, θ, r) =
∞∑

j=0

fj(a, θ)rj , ∀ (a, θ, r) ∈ E × ∂Bn × R,

where the series converges absolutely and uniformly in all compact
subsets of E × ∂Bn × R.

(ii) There exists a family {bα(·) : α ∈ Nn, |α| ≥ 2k − n} of real analytic
functions of E to R such that

B(a, z) =
∑

α∈Nn

|α|≥2k−n

bα(a)zα, ∀ (a, z) ∈ E × Rn.

Furthermore B can be chosen to be identically 0 if n is odd.

(iii) If n is odd C can be chosen to be identically 0.

(iv) For all a ∈ E the function S(a, ·) of Rn \ {0} to R defined by

S(a, z)
≡ |z|2k−nA(a, z/|z|, |z|) +B(a, z) log |z|+ C(a, z), ∀ z ∈ Rn \ {0},

is a fundamental solution of L[a].
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Proof. The proof for n odd and n even is similar and so we confine our
attention to the case n odd, and we begin by considering the construction
of A (see Theorem 1.1.)

First we note that there exists a positive constant ε > 0 such that
P2k[a](ξ) ≥ ε for all ξ ∈ ∂Bn and for all a ∈ E . Indeed, by a continuity
argument, one verifies that, for each a0 ∈ clE , there exist a neighborhood
V(a0) and a constant ε(a0) > 0 such that P2k[a](ξ) ≥ ε(a0) for all ξ ∈ ∂Bn

and all a ∈ V(a0). Since clE is compact, it is covered by a finite number
of such neighborhoods and taking as ε the minimum of the corresponding
constants we deduce that P2k[a](ξ) ≥ ε on their finite union. Moreover,
since E is bounded, there exists L > 0 such that |a| ≤ L for all a ∈ E .

As we have already noted (see the proof of Theorem 1.1), for all elliptic
constant coefficients operators L[a] the solution v(a, x, ξ, t) of the equation
L[a]v = 1 for which v and all its derivatives of order ≤ 2k− 1 vanish on the
hyper-plane x · ξ = t is delivered by the equation

v(a, x, ξ, t) =
1

2πi

∫
γ

e(x·ξ−t)ζ

ζP [a](ζξ)
dζ , (1.18)

where γ is a simple closed C1 curve on the complex ζ-plane, which encloses
all roots of denominator for all ξ ∈ ∂Bn. Now we show that it is possible to
choose the same curve γ for all a ∈ E . We observe that

ζP [a](ζξ) = ζ2k+1P2k[a](ξ)

1 +
∑

α∈N(n,2k−1)

aαξ
α

ζ2k−|α|P2k[a](ξ)

 ,

and thus, if we set R ≡ max{2, 2Lε−1CardN(n, 2k−1)}, then, for all |ζ| ≥ R,
ξ ∈ ∂Bn and a ∈ V, we have∣∣∣∣ aαξ

α

ζ2k−|α|P2k[a](ξ)

∣∣∣∣ ≤ (2 CardN(n, 2k − 1))−1 .

This immediately implies that |ζP [a](ζξ)| ≥ ε and in particular, if γ de-
scribes the contour of a ball of radius R in the complex ζ-plane, then all the
roots of ζP [a](ζξ) are enclosed by γ for all ξ ∈ ∂Bn and all a ∈ E . So, for this
particular choice of γ, expression (1.18) provides a solution of the equation
L[a]v = 1, which vanishes together with all its derivatives of order ≤ 2k− 1
on the hyper-plane x · ξ = t, for all a ∈ E . Moreover, since the integrand in
(1.18) depends real analytically on (a, x, ξ, t, ζ) ∈ E ×Rn×∂Bn×R×R∂B2

then, by Lemma 1.3, v(a, x, ξ, t) is a real analytic function of (a, x, ξ, t) ∈
E × Rn × ∂Bn × R.

We also note that the function ṽ(a, ξ, t) of (a, ξ, t) ∈ E ×∂Bn×R defined
by

ṽ(a, ξ, t) ≡ v(a, x, ξ, x · ξ − t) =
1

2πi

∫
γ

etζ

ζP [a](ζξ)
dζ
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depends real analytically on (a, ξ, t) ∈ E × ∂Bn × R and vanishes for t = 0
together with its derivatives with respect to t till order 2k−1. Then it must
be ṽ(a, ξ, t) = t2kw(a, ξ, t) where w is a real analytic function on E×∂Bn×R.

Now we go on with the construction of the fundamental solution and we
consider the function W0 introduced in the proof of Theorem 1.1. We have

W0(a, z) =
1

4(2πi)n−1

∫
∂Bn

∫ z·ξ

0
v(a, z, ξ, t) sgn t dt dσξ

for all (a, z) ∈ E ×Rn\{0}. We denote by A′ the real function of E ×∂Bn×R
defined by

A′(a, θ, r) (1.19)

≡ 1
4(2πi)n−1

∫
∂Bn

∫ θ·ξ

0
(θ · ξ − s)2k w (a, ξ, r (θ · ξ − s)) sgn s ds dσξ

for all (a, θ, r) ∈ E × ∂Bn × R. Thus W0(a, z) = |z|2k+1A′(a, z/|z|, |z|)
for all (a, z) ∈ E × Rn \ {0}. We note that we can make the limits of
integration in the inner integral in (1.19) locally independent of θ by a
suitable orthogonal substitution. Let η be an arbitrary chosen unit vector
and consider θ restricted to the half sphere S+

η ≡ {θ ∈ ∂Bn : θ · η > 0}.
We introduce a new variable of integration ξ′ instead of ξ by means of the
formula ξ = T (ξ′, z/|z|) introduced in (1.12). We recall that, for any θ ∈ ∂Bn

with θ ·η > 0, the transformation T (·, θ) is an orthogonal one. In particular,
|T (ξ′, θ)| = |ξ′|. Furthermore θ · ξ = η · ξ′. Thus the integral in (1.19)
becomes∫

∂Bn

∫ η·ξ′

0
(η · ξ′ − s)2kw

(
a, T

(
ξ′, θ

)
, r(η · ξ′ − s)

)
sgn s ds dσξ′

where the limits of integration do not depend on θ, at least for θ ∈ S+
η .

Moreover, if we set

w̃
(
a, θ, r, ξ′, t

)
≡ w

(
a, T

(
ξ′, θ

)
, r(η · ξ′)(1− t)

)
− w

(
a, T

(
ξ′, θ

)
, r(η · ξ′)(t− 1)

)
for all (a, θ, r, ξ′, t) ∈ E × S+

η × R× ∂Bn × [0, 1], then we have

A′(a, θ, r) =
1

4(2πi)n−1

∫
clS+

η

∫ 1

0
(η · ξ′)2k(1− t)2kw̃

(
a, θ, r, ξ′, t

)
dt dσξ′

for all (a, θ, r) ∈ E ×S+
η ×R. We recall that, the function w is real analytic

on E × ∂Bn × R, the function T (ξ′, θ) is real analytic in (ξ′, θ) ∈ ∂Bn × S+
η

and satisfies |T (ξ′, θ)| = 1 for ξ′ ∈ ∂Bn. It follows that the function w̃ is real
analytic on E ×S+

η ×R×clS+
η × [0, 1]. Then the previous Lemma 1.3 implies
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that A′ is a real analytic function on E × S+
η × R. Since η is an arbitrary

unit vector it follows that A′ is real analytic on E × ∂Bn × R.
Now we recall that W0(a, z) = |z|2k+1A′(a, z/|z|, |z|). Therefore, if we

differentiate W0 with respect to zi, i = 1, . . . , n, we find

∂ziW0(a, z) = |z|2kA′′(a, z/|z|, |z|)

where A′′ is the function of E × ∂Bn × R defined by

A′′(a, θ, r) ≡ (2k + 1)θiA
′(a, θ, r) + ∂θi

A′(a, θ, r)

−θi

n∑
j=1

θj∂θj
A′(a, θ, r) + θi r∂rA

′(a, θ, r) .

We observe that A′′ have the same regularity properties of A′. By iterating
we verify that

S(a, z) = ∆
n+1

2 W0(a, z) = |z|2k−nA(a, z/|z|, |z|)

where A is a real analytic function on E × ∂Bn × R.
Finally we exploit the proof of Theorem 1.1 and we obtain that for all

fixed a ∈ E the function A(a, θ, r) has a power series representation as in
statement (i). The coefficients fj(a, θ) are given by

fj(a, θ) ≡
(

∆
n+1

2
z W0,j+2k

)
(a, θ)

where

W0,j(a, z) ≡
1

4(2πi)n−1

∫
∂Bn

aj(a, ξ)
(j + 1)!

(z · ξ)j+1 sgn(z · ξ) dσξ

and

aj(a, ξ) ≡
1

2πi

∫
γ

ζj−1

P [a](ζξ)
dζ

With our choice of the curve γ such equations hold for all a ∈ E and we
can verify the real analyticity of fj(a, θ) with the argument developed in
the proof of the real analyticity of A(a, θ, r). So for n odd the theorem is
proved. The proof for n even is similar.

1.2 The single layer potential

1.2.1 Technical preliminaries and notation

We first recall some technical facts of Lanza de Cristoforis and Rossi [28].
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Definition 1.5. Let Ω be an open and connected subset of Rn. We denote
by A∂Ω the set of all functions φ ∈ C1(∂Ω,Rn) which are injective and
whose differential dφ(x) is injective for all x ∈ ∂Ω. Similarly, we denote by
AclΩ the set of all functions φ ∈ C1(clΩ,Rn) which are injective and whose
differential dφ(x) is injective for all x ∈ clΩ.

Now we fix two constants m ∈ N \ {0} and λ ∈]0, 1[ and an open and
bounded subset Ω of Rn of class Cm,λ. We assume that Ω and Rn \ clΩ
are connected and we consider a function φ ∈ Cm,λ(∂Ω,Rn) ∩ A∂Ω. By the
Jordan’s Separation Theorem (see e.g. Deimling [8, p. 26]), φ(∂Ω) separates
Rn into two connected components. We denote by E[φ] the unbounded one
and by I[φ] the bounded one, and we denote by νφ the unit outward normal
to the boundary of I[φ]. Then we denote by νΩ the unit outward normal
to the boundary of Ω, we select a vector field ω ∈ Cm,λ(∂Ω,Rn) such that
|ω(x)| = 1 and ω(x) · νΩ(x) ≥ 1/2 for all x ∈ ∂Ω. With this notation we
have the following (see Lanza de Cristoforis and Rossi [28, §2].)

Proposition 1.6. Let m ∈ N \ {0} and λ ∈]0, 1[. Let Ω be an open and
bounded subset of Rn of class Cm,λ. Let Ω and Rn\clΩ be connected. Let ω ∈
Cm,λ(∂Ω,Rn) be a vector field such that |ω(x)| = 1 and ω(x) · νΩ(x) ≥ 1/2
for all x ∈ ∂Ω. Then, for each given φ0 ∈ Cm,λ(∂Ω,Rn) ∩A∂Ω, there exists
a positive constant δ0 such that, for all δ ∈]0, δ0] the following statements
hold.

(i) The sets

Ωω,δ ≡ {x+ tω(x) |x ∈ ∂Ω , t ∈]− δ, δ[} ,
Ω+

ω,δ ≡ {x+ tω(x) |x ∈ ∂Ω , t ∈]− δ, 0[} ,
Ω−

ω,δ ≡ {x+ tω(x) |x ∈ ∂Ω , t ∈]0, δ[} ,

are connected,

∂Ωω,δ ≡ {x+ tω(x) |x ∈ ∂Ω , t ∈ {−δ, δ}} ,
∂Ω+

ω,δ ≡ {x+ tω(x) |x ∈ ∂Ω , t ∈ {−δ, 0}} ,
∂Ω−

ω,δ ≡ {x+ tω(x) |x ∈ ∂Ω , t ∈ {0, δ}} ;

Ω+
ω,δ ⊂ Ω and Ω−

ω,δ ⊂ Rn \ clΩ.

(ii) If Φ ∈ AclΩω,δ
, then φ ≡ Φ|∂Ω ∈ A∂Ω.

(iii) The set A′clΩω,δ
≡
{

Φ ∈ AclΩω,δ
: Φ(Ω+

ω,δ) ⊂ I[Φ|∂Ω]
}

is an open subset

of AclΩω,δ
and Φ(Ω−

ω,δ) ⊂ E[Φ|∂Ω] for all Φ ∈ A′clΩω,δ
.

(iv) If Φ ∈ Cm,λ(clΩω,δ,Rn) ∩ A′clΩω,δ
, then both Φ(Ω+

ω,δ) and Φ(Ω−
ω,δ)

are open sets of class Cm,λ, and ∂Φ(Ω+
ω,δ) = Φ(∂Ω+

ω,δ), ∂Φ(Ω−
ω,δ) =

Φ(∂Ω−
ω,δ).
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(v) If φ0 ∈ Cm,λ(∂Ω,Rn)∩A∂Ω then there exists Φ0 ∈ Cm,λ(clΩω,δ,Rn)∩
A′clΩω,δ

such that φ0 ≡ Φ0|∂Ω.

(vi) If Φ0 ∈ Cm,λ(clΩω,δ,Rn) ∩ A′clΩω,δ
and φ0 ≡ Φ0|∂Ω, then there exist

an open neighborhood W0 of φ0 in Cm,λ(∂Ω,Rn) ∩ A∂Ω and a real
analytic operator E0[·] from Cm,λ(∂Ω,Rn) to Cm,λ(clΩω,δ,Rn) which
maps W0 into Cm,λ(clΩω,δ,Rn) ∩ A′clΩω,δ

and such that, E0[φ0] = Φ0,
and E0[φ]|∂Ω = φ for all φ ∈ W0.

1.2.2 The analyticity theorem

Let n, k ∈ N, n ≥ 2, k ≥ 1. Let E be an open bounded subset of R(n, 2k)
such that L[a] is an elliptic operator of order 2k for all a ∈ clE . Thus,
we can apply Theorem 1.4 to L[a] with a ∈ E and we can introduce the
corresponding analytic functions A(a, θ, r), B(a, z), C(a, z) and S(a, z). We
now fix two constants m ∈ N \ {0} and λ ∈]0, 1[ and we fix an open and
bounded subset Ω of Rn of class Cm,λ such that Ω and Rn\clΩ are connected.
If a ∈ E , φ ∈ Cm,λ(∂Ω,Rn)∩A∂Ω, µ ∈ Cm−1,λ(∂Ω) and β ∈ Nn, |β| ≤ 2k−1,
we set

vβ [a, φ, µ](ξ) ≡
∫

φ(∂Ω)
(∂β

z S)(a, ξ − η)µ ◦ φ(−1)(η) dση, ∀ ξ ∈ Rn, (1.20)

where the integral is understood in the sense of singular integrals if |β| =
2k − 1 and ξ ∈ φ(∂Ω), namely

vβ[a, φ, µ](ξ) ≡
∫ ∗

φ(∂Ω)
(∂β

z S)(a, ξ − η)µ ◦ φ(−1)(η) dση

≡ lim
ε→0+

∫
φ(∂Ω)\(ξ+εBn)

(∂β
z S)(a, ξ − η)µ ◦ φ(−1)(η) dση, ∀ ξ ∈ φ(∂Ω).

Then we set

Vβ[a, φ, µ](x) ≡ vβ [a, φ, µ] ◦ φ(x), ∀ x ∈ ∂Ω. (1.21)

Our goal is to prove the following.

Theorem 1.7. Let n, k ∈ N, n ≥ 2, k ≥ 1. Let C1,C2, . . . ,Ck be bounded
open subsets of R(n, 2) such that L[ai] is an elliptic operator of order 2 for all
ai ∈ clCi and for all i = 1, . . . , k. Let a(·) be the map of C ≡ C1×C2× . . .Ck

to R(n, 2k) which takes a k-tuple b ≡ (a1, · · ·ak) to the unique element a(b)
of R(n, 2k) such that

P [a(b)](ξ) = P [a1](ξ) · P [a2](ξ) · · · · · P [ak](ξ). (1.22)

Then the following statements hold.
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(i) a(·) is real analytic on C .

(ii) There exists a bounded open neighborhood E of cla(C ) in R(n, 2k)
such that L[a] is an elliptic operator of order 2k for all a ∈ clE .

Let S(a, z) be a function defined for all a ∈ E as in Theorem 1.4. Let m ∈
N \ {0}, λ ∈]0, 1[. Let Ω be a bounded open subset of Rn of class Cm,λ, with
Ω and Rn \clΩ connected. Let β, ι ∈ Nn, |β| ≤ 2k−2, |ι| = 1. Let Vβ [a, φ, µ]
and Vβ+ι[a, φ, µ] be as in (1.21) for all (a, φ, µ) ∈ E × (Cm,λ(∂Ω,Rn) ∩
A∂Ω)× Cm−1,λ(∂Ω). Then the following statements hold.

(iii) The map of C×(Cm,λ(∂Ω,Rn)∩A∂Ω)×Cm−1,λ(∂Ω) to Cm,λ(∂Ω) which
takes a triple (b, φ, µ) to the function Vβ[a(b), φ, µ], is real analytic.

(iv) The map of C × (Cm,λ(∂Ω,Rn) ∩A∂Ω)×Cm−1,λ(∂Ω) to Cm−1,λ(∂Ω)
which takes a triple (b, φ, µ) to the function Vβ+ι[a(b), φ, µ], is real
analytic.

Statements (i) and (ii) of Theorem 1.7 are elementary. The proof of
the statements (iii) and (iv) is contained in subsection 1.2.7. Before giving
such a proof we need some preliminaries. In subsection 1.2.3, we study the
continuity and Hölder continuity property of vβ [b, φ, µ]. In subsection 1.2.4,
we investigate the jump properties of vβ [b, φ, µ], with |β| = 2k − 1, across
the boundary φ(∂Ω). In subsections 1.2.5 and 1.2.6 we consider an auxiliary
boundary value problem. Then we will be ready for the proof of statements
(iii) and (iv) of Theorem 1.7.

1.2.3 Continuity and Hölder continuity

The purpose of this subsection is to prove the following.

Theorem 1.8. Let n, k, m, λ, Ω, E , S(·, ·) be as in Theorem 1.7, and
let (a, φ, µ) ∈ E × (Cm,λ(∂Ω,Rn) ∩ A∂Ω) × Cm−1,λ(∂Ω). We denote by
v(0,...,0)[a, φ, µ] the function in (1.20) with β = (0, . . . , 0). Then the following
statements hold.

(i) v(0,...,0)[a, φ, µ] is an element of C2k−2(Rn).

(ii) The map which takes µ to v(0,...,0)[a, φ, µ]|clI[φ] is linear and continuous
from the space Cm−1,λ(∂Ω) to Cm+2k−2,λ(clI[φ]).

(iii) For all positive constant R such that I[φ] ⊂ RBn, the map which takes
µ to v(0,...,0)[a, φ, µ]|RBn\I[φ] is linear and continuous from Cm−1,λ(∂Ω)
to Cm+2k−2,λ(RBn \ I[φ]).
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For the sake of simplicity, we only consider in the proof the dependence
on µ. So, we set S(z) ≡ S(a, z) for all z ∈ Rn\{0}, and v[µ] ≡ v(0,...,0)[a, φ, µ]
for all µ ∈ Cm−1,λ(∂Ω). If follows that

v[µ](ξ) ≡
∫

φ(∂Ω)
S(ξ − η)µ ◦ φ(−1)(η) dση, ∀ ξ ∈ Rn.

We split the proof into two parts. In the first we prove statement (i),
but in the second one the statements (iii) and (iv).

Proof of statement (i). By Theorem 1.4, we have

∂β
z S(z)

= Ã(z/|z|, |z|)|z|2k−n−|β| + B̃(z/|z|, |z|)|z|2k−n−|β| log |z|+ C̃(z/|z|, |z|)

for every β ∈ Nn, where Ã(θ, r), B̃(θ, r) and C̃(θ, r) are continuous function
of (θ, r) ∈ ∂Bn × R. Thus, if |β| ≤ 2k − 2, then DβS(z) = o(|z|1−n) as
|z| → 0+. Then, by classical theorems on integrals depending on parameters
and by Vitali convergence theorem, the function

fβ(ξ) ≡
∫

φ(∂Ω)
∂β

ξ S(ξ − η)µ ◦ φ(−1)(η) dση, ∀ ξ ∈ Rn,

is continuous on Rn and coincides with Dβv[µ] on Rn \ φ(∂Ω) for all |β| ≤
2k − 2. Then by a classical argument based on the divergence theorem, we
have Dβv[µ] = fβ in the sense of distributions. Hence, v[µ] ∈ C2k−2(Rn)
and Dβv[µ] = fβ classically.

Now we turn to the proof of statements (ii) and (iii). We exploit an idea
of Miranda [35, §5]. To do so we first state a theorem by Miranda, cf. [35,
Theorem 2.1], and we introduce the related definition.

Definition 1.9. We denote by Kj the set of the positively homogeneous
functions of degree (1− n) of class Cj(Rn \ {0}) and we denote by K0,j the
subset of Kj of the functions K such that

∫
Π∩∂Bn

K(η) dση = 0 for every
hyper-plane Π of Rn which contains 0.

Then we have the following (cf. Miranda [35, Theorem 2.1].)

Theorem 1.10. Let K ∈ K0,2m. Let

p[µ](ξ) ≡
∫

φ(∂Ω)
K(ξ − η)µ ◦ φ(−1)(η) dση, ∀ ξ ∈ Rn \ φ(∂Ω),

for every µ ∈ Cm−1,λ(∂Ω). Then p[µ]|I[φ] extends uniquely to an element
p+[µ] of Cm−1,λ(clI[φ]) and p[µ]|Rn\clI[φ] extends uniquely to an element
p−[µ] of Cm−1,λ(Rn \ I[φ]). The map which takes µ to p+[µ] is linear and
continuous from Cm−1,λ(∂Ω) to Cm−1,λ(clI[φ]). Let R > 0 be such that
I[φ] ⊂ RBn. The map which takes µ to p−[µ]|RBn\I[φ] is linear and continu-
ous from Cm−1,λ(∂Ω) to Cm−1,λ(RBn \ I[φ]).
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Now we introduce the following three lemmas.

Lemma 1.11. Let j, q ∈ N, q ≥ 1. Let f be a real analytic function of θ ∈
∂Bn such that f(−θ) = (−1)jf(θ). Let h(z) be the function of z ∈ Rn \ {0}
defined by h(z) ≡ f(z/|z|) |z|q−n. If the sum j+q is even, then Dαh ∈ K0,∞
for all α ∈ Nn with |α| = q − 1.

Proof. The lemma is easily verified for q = 1 and j odd. If q > 1, then, for
every ι ∈ Nn, |ι| = 1, Dιh is a function of the form g1(z/|z|) |z|q−n−1, with
g1 real analytic on ∂Bn and g1(−θ) = (−1)j+1g1(θ) for all θ ∈ ∂Bn. So that,
for all α ∈ Nn with |α| = q − 1, we have Dαh(z) = g2(z/|z|) |z|1−n, with g2
real analytic on ∂Bn and g2(−θ) = −g2(θ) for all θ ∈ ∂Bn.

Lemma 1.12. Let j ∈ N. Let p(z) be a homogeneous polynomial function
of z ∈ Rn of degree j. Let h(z) be the function of z ∈ Rn \ {0} defined by
h(z) ≡ p(z) log |z|. If n is even, then Dβh ∈ K0,∞ for all β ∈ Nn with
|β| = n+ j − 1.

Proof. We have

Dβh(z) =
∑

β′∈Nn

β′≤β

(
β

β′

)(
Dβ−β′p(z)

)(
Dβ′ log |z|

)

=
(
Dβp(z)

)
log |z| +

∑
β′∈Nn

0<β′≤β

(
β

β′

)(
Dβ−β′p(z)

)(
Dβ′ log |z|

)

and we note that, for j − |α| ≥ 0, Dαp(z) is a homogeneous polyno-
mial function of degree j − |α| and is identically 0 if j − |α| < 0. If
|α| > 0, so that α = α′ + ι, |ι| = 1, Dα log |z| = Dα′(|z|−1(z/|z|)ι) is
a function of the form f(z/|z|)|z|−|α|, with f real analytic on ∂Bn and
f(−θ) = (−1)|α|f(θ) for all θ ∈ ∂Bn (as in the proof of Lemma 1.11.)
It follows that Dβh(z) = q(z) log |z| + g(z/|z|) |z|j−|β| where q(z) is a homo-
geneous polynomial function of degree j− |β|, g is real analytic on ∂Bn and
g(−θ) = (−1)j−|β|g(θ). And thus by taking |β| = n + j − 1 our conclusion
follows.

Lemma 1.13. Let j ∈ N \ {0}. Let A, B be real analytic functions on
∂Bn×R. Then the function M(z) ≡ A(z/|z|, |z|)|z|j+B(z/|z|, |z|)|z|j log |z|,
for all z ∈ Rn \ {0}, can be extended to an element of Cj−1(Rn).

Proof. The lemma clearly holds for j = 1. Now we assume j ≥ 2. If ι ∈ Nn,
|ι| = 1, then we have

DιM(z) = A′(z/|z|, |z|)|z|j−1 +B′(z/|z|, |z|)|z|j−1 log |z|

in Rn \ {0}, where A′ and B′ are real analytic on ∂Bn × R. Thus we can
argue by induction on j.
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Finally we are ready to conclude the proof of Theorem 1.8.

Proof of statements (ii) and (iii). Let m′ ∈ N, m′ > m+ 2k − 2. By Theo-
rem 1.4, we have

S(z) =
m′+(2k−n)∑

j=0

fj(z/|z|)|z|2k−n+j +
∑

α∈Nn

2k−n≤|α|≤m′+(2k−n)

bαz
α log |z| (1.23)

+A′(z/|z|, |z|)|z|m′+1 +B′(z/|z|, |z|)|z|m′+1 log |z|+ C(z) ,

where the functions fj are real analytic on ∂Bn and fj(−θ) = (−1)jfj(θ),
bα = 0 if n is odd, and A′, B′ are real analytic on ∂Bn × R and C is real
analytic on Rn.

Now, the terms fj(z/|z|)|z|2k−n+j appearing in (1.23) are functions of the
form considered in Lemma 1.11 (note that j + 2k+ j is even.) Accordingly,
the map of Cm−1,λ(∂Ω) to Cm−1,λ(clI[φ]) which takes µ to the Dβ derivative
of the unique extension to clI[φ] of∫

φ(∂Ω)
fj ((ξ − η)/|ξ − η|) |ξ − η|2k−n+jµ ◦ φ(−1)(η) dση, ∀ ξ ∈ I[φ]

is continuous for all |β| = 2k+j−1. In particular, the same map with |β| = 0
maps continuously Cm−1,λ(∂Ω) to Cm−2k−2+j,λ(clI[φ]) ⊂ Cm−2k−2,λ(clI[φ]).
Similar result we have if we replace clI[φ] by RBn \ I[φ].

The terms bαzα log |z| satisfy the assumption of Lemma 1.12. Accord-
ingly, the map of Cm−1,λ(∂Ω) to Cm−1,λ(clI[φ]) which takes µ to the Dβ

derivative of the unique extension to clI[φ] of∫
φ(∂Ω)

bα(ξ − η)α log |ξ − η|µ ◦ φ(−1)(η) dση, ∀ ξ ∈ I[φ]

is continuous for all |β| = n+ |α|−1. In particular, the same map with |β| =
0 maps continuously Cm−1,λ(∂Ω) to the subset Cm−1+(n+|α|−1),λ(clI[φ]) of
Cm−2k−2,λ(clI[φ]). Similar result we have if we replace clI[φ] by RBn \ I[φ].

The term A′(z/|z|, |z|)|z|m′+1 + B′(z/|z|, |z|)|z|m′+1 log |z| satisfies the
assumptions Lemma 1.13, hence is an element of Cm′

(Rn). C is real analytic
and thus C∞. By means of derivation under integral sign, statements (ii)
and (iii) follows.

1.2.4 The jump across the boundary

In this subsection we assume that the assumptions of Theorem 1.7 hold, we
fix two constants m ∈ N \ {0} and λ ∈]0, 1[ and an open bounded subset
Ω of Rn of class Cm,λ such that Ω and Rn \ clΩ are connected. Then we
consider the functions vβ [a, φ, µ] introduced in subsection 1.2.2. Our aim
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is to investigate the behavior of vβ[a, φ, µ](ξ) when ξ approaches to the
boundary φ(∂Ω). For |β| ≤ 2k − 2, vβ [a, φ, µ](ξ) is continuous on Rn and
displays no particular behavior as ξ approaches to the boundary φ(∂Ω). So
we assume now |β| = 2k − 1 and we prove the following.

Theorem 1.14. Let n, k, m, λ, Ω, E , S(·, ·) be as in Theorem 1.7. Let
β ∈ Nn with |β| = 2k − 1. Let vβ[a, φ, µ] be the function in (1.20) for all
(a, φ, µ) ∈ E × (Cm,λ(∂Ω,Rn) ∩ A∂Ω)× Cm−1,λ(∂Ω). Then

lim
t→0+

(
vβ[a, φ, µ](ξ0 − tνφ(ξ0))− vβ [a, φ, µ](ξ0 + tνφ(ξ0))

)
(1.24)

= −
νφ(ξ0)β

P2k[a](νφ(ξ0))
µ ◦ φ(−1)(ξ0)

for all ξ0 ∈ φ(∂Ω) and all (a, φ, µ) ∈ E×(Cm,λ(∂Ω,Rn)∩A∂Ω)×Cm−1,λ(∂Ω).

Proof. If ξ is not on the boundary, i.e. ξ ∈ Rn \ φ(∂Ω), we have

vβ[a, φ, µ](ξ) =
∫

φ(∂Ω)
(∂β

z S)(a, ξ − η)µ ◦ φ(−1)(η) dση.

We introduce the function S0(a, z) defined by

S0(a, z) ≡ |z|2k−nf0(a, z/|z|) + log |z|
∑

|α|=2k−n

bα(a)zα, ∀ z ∈ Rn \ {0},

for all a ∈ E , where the function f0(a, z/|z|) is the coefficient of the first
term in the series introduced in statement (i) of Theorem 1.4, the functions
bα(a) are the coefficients with |α| = 2k − n appearing in statement (ii) of
Theorem 1.4 and where bα = 0 if n is odd or larger that 2k (see Remark 1.2.)
Then we set S∞(a, z) ≡ S(a, z)− S0(a, z) and we define

v0,β [a, φ, µ](ξ) ≡
∫

φ(∂Ω)
(∂β

z S0)(a, ξ − η)µ ◦ φ(−1)(η) dση

and
v∞,β [a, φ, µ](ξ) ≡

∫
φ(∂Ω)

(∂β
z S∞)(a, ξ − η)µ ◦ φ(−1)(η) dση

for all ξ ∈ Rn \ φ(∂Ω), so that vβ [a, φ, µ] = v0,β [a, φ, µ] + v∞,β [a, φ, µ]. We
note that

∂β
z S∞(a, z) = Ã(z/|z|, |z|)|z|2−n + B̃(z/|z|, |z|)r2−n log |z|+ C̃(z/|z|, |z|)

where Ã(θ, r), B̃(θ, r) and C̃(θ, r) are continuous function of (θ, r) ∈ ∂Bn×R.
Then, by arguing as in the proof of the statement (i) of Theorem 1.8, we
deduce that v∞,β [a, φ, µ] extend to a continuous function in Rn. So the
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contribution of v∞,β [a, φ, µ] to the limit (1.24) is zero and we are reduced
to consider the limit

lim
t→0+

(
v0,β [a, φ, µ](ξ0 − tνφ(ξ0))− v0,β [a, φ, µ](ξ0 + tνφ(ξ0))

)
By Cialdea [6, Theorem 3] we deduce immediately the validity of the theo-
rem.

1.2.5 An auxiliary boundary value problem

Let Sym(n,R) be the linear subspace of Mn×n(R) of all symmetric matrices.
We observe that there exists a unique triple (a, a′, a′′) ∈ R×Rn×Sym(n,R)
such that

P [a](ξ) = ξ · a′′ξ + a′ · ξ + a (1.25)

for each vector of coefficient a ∈ R(n, 2). Then we can introduce the follow-
ing.

Definition 1.15. Let a ∈ R(n, 2) and let (a, a′, a′′) ∈ R × Rn × Sym(n,R)
be as in (1.25). Let m, λ, Ω, ω, δ0 be as in Proposition 1.6. Let δ ∈]0, δ0],
and let Φ be a function of Cm,λ(clΩω,δ,Rn) ∩ A′clΩω,δ

, and let φ ≡ Φ|∂Ω.
Then we define the bounded and linear operator B[a,Φ] of Cm,λ(clΦ(Ω+

ω,δ))×
Cm,λ(clΦ(Ω−

ω,δ)) to Cm−1,λ(φ(∂Ω)) by the equality

B[a,Φ](v+, v−) ≡ (Dv+)|∂Ω a
′′νφ − (Dv−)|∂Ω a

′′νφ

for all (v+, v−) ∈ Cm,λ(clΦ(Ω+
ω,δ))× Cm,λ(clΦ(Ω−

ω,δ)).

Our purpose in this subsection is to prove the next Theorem 1.16.

Theorem 1.16. Let a ∈ R(n, 2) such that L[a] is elliptic. Let m, λ, Ω, ω, δ0
be as in Proposition 1.6. Let Φ0 be a function of Cm,λ(clΩω,δ0 ,Rn)∩A′clΩω,δ0

.
Then there exists δ1 ∈]0, δ0] such that the following boundary value problem,

L[a]v+ = f+ in clΦ(Ω+
ω,δ),

L[a]v− = f− in clΦ(Ω−
ω,δ),

v+ − v− = g on φ(∂Ω) ,
B[a,Φ](v+, v−) = γ on φ(∂Ω) ,
v+ = h+ on Φ(∂Ω+

ω,δ \ ∂Ω),
v− = h− on Φ(∂Ω−

ω,δ \ ∂Ω),

(1.26)

with Φ ≡ Φ0|clΩω,δ
and φ ≡ Φ|∂Ω, admits a unique solution (v+, v−) in

Cm,λ(clΦ(Ω+
ω,δ)) × Cm,λ(clΦ(Ω−

ω,δ)), for each given (f+, f−, g, γ, h+, h−) in
the space

SΦ ≡ Cm−2,λ(clΦ(Ω+
ω,δ))× Cm−2,λ(clΦ(Ω−

ω,δ))× Cm,λ(φ(∂Ω))

×Cm−1,λ(φ(∂Ω))× Cm,λ(Φ(∂Ω+
ω,δ \ ∂Ω))× Cm,λ(Φ(∂Ω−

ω,δ \ ∂Ω)),

and for all δ ∈]0, δ1].
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In order to prove Theorem 1.16 we need the following three lemmas.

Lemma 1.17. Let a ∈ R(n, 2) such that L[a] is elliptic. Let m, λ, Ω, ω, δ0
be as in Proposition 1.6. Let Φ0 be a function of Cm,λ(clΩω,δ0 ,Rn)∩A′clΩω,δ0

.
Then the boundary value problem

L[a]u+ = 0 in clΦ(Ω+
ω,δ),

L[a]u− = 0 in clΦ(Ω−
ω,δ)

u+ − u− = 0 on φ(∂Ω) ,
B[a,Φ](u+, u−) = γ on φ(∂Ω) ,

(1.27)

with Φ ≡ Φ0|clΩω,δ
and φ ≡ Φ|∂Ω, has a solution (u+, u−) which belongs to

Cm,λ(clΦ(Ω+
ω,δ)) × Cm,λ(clΦ(Ω−

ω,δ)) for each given γ ∈ Cm−1,λ(φ(∂Ω)) and
for all δ ∈]0, δ0].

Proof. By an elementary topological argument one verifies that there ex-
ists a bounded open neighborhood E of a in R(n, 2) such that L[b] is
elliptic of order 2 for all b ∈ clE . So we can introduce the function
v(0,...,0)[a, φ, µ] as in (1.20). We take δ ∈]0, δ0] and we set v+[a, φ, µ] ≡
v(0,...,0)[a, φ, µ]|clΦ(Ω+

ω,δ) and v−[a, φ, µ] ≡ v(0,...,0)[a, φ, µ]|clΦ(Ω−ω,δ). Then by

Theorem 1.8, (v+[a, φ, µ], v−[a, φ, µ]) ∈ Cm,λ(clΦ(Ω+
ω,δ)) × Cm,λ(clΦ(Ω−

ω,δ))
and satisfies the first, second and third equation of (1.27). Moreover, by
Theorem 1.14, we have

B[a,Φ](v+[a, φ, µ], v−[a, φ, µ]) = −µ ◦ φ(−1)

on φ(∂Ω). So, by taking (u+, u−) ≡ (v+[a, φ,−γ], v−[a, φ,−γ]) the validity
of the lemma follows.

Lemma 1.18. Let a ∈ R(n, 2) such that L[a] be elliptic. Then there exists
a constant M [a] > 0 such that the boundary value problem

L[a]u = 0 in Ω′, u = 0 on ∂Ω′ (1.28)

has only trivial solution u ∈ C1(clΩ′) for all bounded open subsets Ω′ of Rn

of class C1 with |Ω′| < M [a].

Proof. Let (a, a′, a′′) ∈ R×Rn×Sym(n,R) be as in (1.25). Then the operator
norm ‖a′′‖ of the matrix a′′ is positive and we have ξ ·a′′ξ ≥ ‖a′′‖2|ξ|2 for all
ξ ∈ Rn. Now let Ω′ be an open subset of Rn of class C1 and let u ∈ C1(clΩ)
be a solution of (1.28). We consider the weak formulation of (1.28). We
have ∫

Ω′
(Dv) a′′(Du)t + va′ (Du)t + auv dx = 0, ∀ v ∈W 1,2

0 (Ω′)
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where W 1,2
0 (Ω′) denotes the Sobolev space of the functions v ∈ L2(Ω′) with

Dv ∈ L2(Ω′,Rn) and v|∂Ω′ = 0. By taking u = v we obtain∫
Ω′

(Du) a′′(Du)t + u · a′(Du)t + a|u|2 dx = 0 (1.29)

and we note that the left hand side is greater or equal than∫
Ω′
‖a′′‖2|Du|2 − |a′||u||Du| − a|u|2 dx

which is greater or equal than∫
Ω′
‖a′′‖2|Du|2 − ε|Du|2 − (4ε)−1|a′|2|u|2 − a|u|2 dx

where ε is an arbitrary positive constant. Now, by the Poincaré inequality
we have ∫

Ω′
|u|2 dx ≤ cP (Ω)

∫
Ω′
|Du|2 dx.

Moreover, by the Krann-Faber inequality and by known properties of the
Poincaré constant on balls (see e.g., Troianiello [44, Theorem 1.43]) there
exists a positive constant cP (n) which depends only on the dimension n,
and such that cP (Ω) ≤ cP (n)|Ω′|2/n. So by (1.29) we deduce that∫

Ω′

{
(‖a′′‖2 − ε)− ((4ε)−1|a′|2 + |a|)cP (n)|Ω′|2/n

}
|Du|2 dx ≤ 0. (1.30)

If we set ε = ‖a′′‖2/2 and we assume that |Ω′| < ‖a′′‖2ncP (n)−n/2(|a′|2 +
2‖a′′‖2|a|)−n/2, then the term in brackets in (1.30) is positive and we have∫
Ω′ |Du|

2 dx = 0, which implies u = 0. So, by taking

M [a] ≡ ‖a′′‖2ncP (n)−n/2(|a′|2 + 2‖a′′‖2|a|)−n/2,

the validity of the lemma follows.

Lemma 1.19. Let a ∈ R(n, 2) such that L[a] be elliptic. Let Ω′ be a bounded
open subsets of Rn of class Cm,λ with |Ω′| < M [a], where M [a] is the con-
stant introduced in Lemma 1.19. Let (f, g) ∈ Cm−2,λ(clΩ′) × Cm,λ(∂Ω′).
Then there exists a unique u ∈ Cm,λ(clΩ′) such that

L[a]u = f in Ω′, u = g on ∂Ω′. (1.31)

Proof. As it is well known, there exists g̃ ∈ Cm,λ(clΩ′) such that g̃|∂Ω′ = g
(cf., e.g., Troianiello [44, Theorem 1.3, Lemma 1.5].) So it will be enough
to prove the lemma for g = 0. In this case the existence of a solution u
belonging to the Sobolev space W 1,2(Ω) follows by Lax-Milgram Theorem
and by noting that the sesquililear form associated to problem (1.31) is
coercive (see the proof of Lemma 1.18.) Then we have u ∈ Cm,λ(clΩ′) by
Morrey [36, Theorem 6.4.8].
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Proof of Theorem 1.16. LetM [a] be the constant introduced in the previous
Lemma 1.18. We take δ1 ∈]0, δ0] such that |Φ0(Ωω,δ)| < M [a] for all δ ∈
]0, δ1]. Then we fix δ ∈]0, δ1] and we fix a point (f+, f−, g, γ, h+, h−) of
SΦ. As a first step we wish to prove the existence of a solution (v+, v−) ∈
Cm,λ(clΦ(Ω+

ω,δ)) × Cm,λ(clΦ(Ω−
ω,δ)) of problem (1.26). To do so we note

that |Φ(Ω+
ω,δ)| < M [a] and |Φ(Ω−

ω,δ)| < M [a]. So by Lemma 1.19 there exist
ṽ+ ∈ Cm,λ(clΦ(Ω+

ω,δ)) and ṽ− ∈ Cm,λ(clΦ(Ω−
ω,δ)) such that

L[a]ṽ+ = f+ in clΦ(Ω+
ω,δ),

ṽ+ = g on φ(∂Ω),
ṽ+ = h+ on ∂Φ(Ω+

ω,δ \ ∂Ω),

and 
L[a]ṽ− = f− in clΦ(Ω−

ω,δ),
ṽ+ = 0 on φ(∂Ω),
ṽ− = h− on ∂Φ(Ω−

ω,δ \ ∂Ω).

Now let (u+, u−) ∈ Cm,λ(clΦ(Ω+
ω,δ))×C

m,λ(clΦ(Ω−
ω,δ)) be as in Lemma 1.17

with γ replaced by γ−B[a,Φ](ṽ+, ṽ−). Then system (1.26) admits a solution
(v+, v−) ∈ Cm,λ(clΦ(Ω+

ω,δ))× Cm,λ(clΦ(Ω−
ω,δ)) if and only if system

L[a]V + = 0 in clΦ(Ω+
ω,δ),

L[a]V − = 0 in clΦ(Ω−
ω,δ)

V + − V − = 0 on φ(∂Ω) ,
B[a,Φ](V +, V −) = 0 on φ(∂Ω) ,
V + = u+ on Φ(∂Ω+

ω,δ \ ∂Ω),
V − = u− on Φ(∂Ω−

ω,δ \ ∂Ω),

(1.32)

admits a solution (V +, V −) ∈ Cm,λ(clΦ(Ω+
ω,δ)) × Cm,λ(clΦ(Ω−

ω,δ)), and in
case of existence we have V + = v+− ṽ+ +u+ and V − = v−− ṽ−+u−. Thus
we now show existence for system (1.32). By the third and fourth equation
of (1.32), and by a standard argument based on the Divergence Theorem,
system (1.32) is equivalent to the following system for V ∈ Cm,λ(clΦ(Ωω,δ))

L[a]V = 0 in clΦ(Ωω,δ),
V = u+ on Φ(∂Ω+

ω,δ \ ∂Ω),
V = u− on Φ(∂Ω−

ω,δ \ ∂Ω).
(1.33)

By Lemma 1.19 such system has a solution V .
We now show uniqueness for system (1.26). Let (f+, f−, g, γ, h+, h−) = 0

and let (v+, v−) ∈ Cm,λ(clΦ(Ω+
ω,δ))×C

m,λ(clΦ(Ω−
ω,δ)) be the corresponding

solution of (1.26). We set v ≡ v+ on clΦ(Ω+
ω,δ) and v ≡ v− on clΦ(Ω−

ω,δ).
The function v satisfy the equation L[a]v = 0 in Φ(Ω+

ω,δ) ∪ Φ(Ω−
ω,δ) and

is continuous on clΦ(Ωω,δ). Thus by exploiting the third and the fourth
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equation of (1.26) with g = γ = 0 and by a standard argument based on
the Divergence Theorem, v can be shown to satisfy equation L[a]v = 0 in
Φ(Ωω,δ). By the fifth and sixth equation of (1.26) with h+ = 0 and h− = 0,
v vanishes on ∂Φ(Ωω,δ). Then by our choice of δ ≤ δ1 and by Lemma 1.18
we conclude that v = 0, and (v+, v−) must be zero.

1.2.6 An equivalent problem and a stability theorem

By following strategy of Lanza de Cristoforis and Preciso [26], Lanza de
Cristoforis and Rossi [27, 28] we wish now to transform problem (1.26)
into an equivalent problem defined on the fixed set Ωω,δ. We also obtain a
stability theorem for the result of Theorem 1.16, i.e. if a, Φ and δ ∈]0, δ1] are
as in Theorem 1.16 we show that the property of having a unique solution
(v+, v−) ∈ Cm,λ(clΦ0(Ω+

ω,δ))×C
m,λ(clΦ0(Ω−

ω,δ)) for all (f+, f−, g, h+, h−) ∈
SΦ is attained by (1.26) in a whole neighborhood of (a,Φ) in R(n, 2) ×
(Cm,λ(clΩω,δ,Rn)∩A′clΩω,δ

). To state this proposition in a more convenient
way we introduce the following.

Definition 1.20. Let m, λ, Ω, ω, δ0 be as in Proposition 1.6. Let δ ∈]0, δ0]
and let (a,Φ) ∈ R(n, 2)×(Cm,λ(clΩω,δ,Rn)∩A′clΩω,δ

). We denote by D[a,Φ]
the continuous and linear operator of Cm,λ(clΦ(Ω+

ω,δ))×C
m,λ(clΦ(Ω−

ω,δ)) to
SΦ which takes a pair (v+, v−) to(

L[a]v+,L[a]v−, v+ − v−,B[a, φ](v+, v−), v+|Φ(∂Ω+
ω,δ\∂Ω), v

−|Φ(∂Ω−ω,δ\∂Ω)

)
.

Then, it is easy to verify that (1.26) is equivalent to the equation

D[a,Φ](v+, v−) = (f+, f−, g, γ, h+, h−)

and thus, by the Open Mapping Theorem, the existence and uniqueness
of a solution (v+, v−) to (1.26) for each sextuple (f+, f−, g, γ, h+, h−) is
equivalent to the fact that D[a,Φ] is an homeomorphism.

The following Lemmas 1.21, 1.22 and 1.23 are just slight modifications
of Lanza de Cristoforis and Rossi [28, Lemmas 3.25 and 3.26].

Lemma 1.21. Let m,m′ ∈ N, m > 0 and m ≥ m′. Let Ω′ be an open
and bounded subset of Rn of class Cm,λ. Then the operator div from the
space Cm′,λ(clΩ′,Rn) to the space Cm′−1,λ(clΩ′) is bounded linear open and
surjective.

Lemma 1.22. Let m ∈ N\{0}, λ ∈]0, 1[, and let Ω′ be an open and bounded
subset of Rn of class Cm,λ. The set

Ym,λ(Ω′) ≡
{
w ∈ Cm,λ(clΩ′,Rn)

∣∣∣ ∫
Ω
(Dψ)w dx = 0 for every ψ ∈ D(Ω′)

}
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is a closed linear subspace of Cm,λ(clΩ′,Rn) and the quotient

Zm,λ(Ω′) ≡ Cm,λ(clΩ′,Rn)/Ym,λ(Ω′)

is a Banach space. Moreover, if we denote by ΠΩ′ the canonical projec-
tion of Cm,λ(clΩ′,Rn) onto Zm,λ(Ω′) there exists a unique homeomorphism
d̃iv of Zm,λ to Cm−1,λ(clΩ′) such that div u = d̃iv(ΠΩ′ u) for each u ∈
Cm,λ(clΩ′,Rn).

We recall the identification of R(n, 2) to R×Rn×Sym(n,R) introduced
before Definition 1.15. We have the following.

Lemma 1.23. Let m ∈ N \ {0}, λ ∈]0, 1[, and let Ω′ be an open and
bounded subset of Rn of class Cm,λ. For all a = (a, a′, a′′) ∈ R(n, 2) and all
Φ ∈ Cm,λ(clΩ′,Rn) ∩ A′clΩ′ we denote by L[a,Φ] the operator of the space
Cm,λ(clΩ′) to Zm−1,λ(Ω′) which takes u ∈ Cm,λ(clΩ′) to

L[a,Φ]u ≡ ΠΩA[a,Φ, u] + a d̃iv
(−1)

(u|detDΦ|)

where A[a,Φ, u] ∈ Cm−1,λ(clΩ′,Rn) is defined by

A[a,Φ, u] ≡
{
(DΦ)−1a′′(DΦ)−t(Du)t + (DΦ)−1a′u

}
|detDΦ| .

Then, for all f ∈ Cm−1,λ(clΩ′,Rn) and u ∈ Cm,λ(clΩ′) we have L[a,Φ]u =
ΠΩ′ f if and only if

L[a]
(
u ◦ Φ(−1)

)
= div

{(
(DΦ)f

)
◦ Φ(−1)

∣∣∣detDΦ(−1)
∣∣∣}

in the sense of distributions in Φ(Ω′).

Proof. We recall that L[a,Φ]u = ΠΩ′A[a,Φ, u] + a d̃iv
(−1)

(u|detDu|) and
we begin considering the second term on the right. Since u|detDΦ| is in
Cm−1,λ(clΩ′), by Lemma 1.21 there exists g ∈ Cm,λ(clΩ′,Rn) such that

d̃iv
(−1)

(u|detDu|) = ΠΩ′ g .

So the equation L[a,Φ]u = ΠΩ′ f is equivalent to ΠΩ′A[a,Φ, u] = ΠΩ′(f −
ag). Then, by an argument based on the convolution with a family of
mollifiers, Divergence Theorem and the rules of change of variable under
integral sign we deduce that ΠΩ′A[a,Φ, u] = ΠΩ′(f − ag) is equivalent to

L[a]
(
u ◦ Φ(−1)

)
+ adiv

{(
(DΦ)g

)
◦ Φ(−1)

∣∣∣detDΦ(−1)
∣∣∣}

= div
{(

(DΦ)f
)
◦ Φ(−1)

∣∣∣detDΦ(−1)
∣∣∣}

(cf. Lanza de Cristoforis and Rossi [27, Lemma 3.4].) By the Piola Identity,
we have

div
{(

(DΦ)g
)
◦ Φ(−1)

∣∣∣detDΦ(−1)
∣∣∣} = (divg) ◦ Φ(−1)

∣∣∣detDΦ(−1)
∣∣∣
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and the lemma follows.

We now turn to consider an open subset Ω of Rn of class Cm,λ which
satisfies the assumptions of Proposition 1.6. We take (a,Φ) ∈ R(n, 2) ×
Cm,λ(clΩω,δ,Rn)∩A′clΩω,δ

and we define the operator D[a,Φ] which we obtain
by transplanting D[a,Φ] on the fixed set Ωω,δ. In Theorem 1.25 we show
that equations for D[a,Φ] and D[a,Φ] are equivalent, then an elementary
lemma will immediately imply the validity of Theorem 1.27.

Definition 1.24. Let m, λ, Ω, ω, δ0 be as in Proposition 1.6. Let δ ∈
]0, δ0]. For all a = (a, a′, a′′) ∈ R(n, 2) and all Φ ∈ Cm,λ(clΩω,δ,Rn) ∩
A′clΩω,δ

we denote by B[a,Φ] the bounded and linear operator from the space
Cm,λ(clΩ+

ω,δ)×C
m,λ(clΩ−

ω,δ) to Cm−1,λ(∂Ωω,δ) which takes a pair (V +, V −)
to

B[a,Φ](V +, V −) ≡
(
a′′DΦ−1DV +

)
· n[Φ]−

(
a′′DΦ−1DV −) · n[Φ]

where n[Φ] is the function of x ∈ ∂Ω given by

n[Φ](x) ≡ (DΦ(x))−tνΩ(x)
|(DΦ(x))−tνΩ(x)|

(so that n[Φ] = νφ◦φ, see Lanza de Cristoforis and Rossi [28, Lemma 3.22].)
Then we denote by D[a,Φ] the operator of Cm,λ(clΩ+

ω,δ) × Cm,λ(clΩ−
ω,δ) to

the space

Z ≡ Zm−1,λ(Ω+
ω,δ)×Z

m−1,λ(Ω−
ω,δ)× Cm,λ(∂Ω)× Cm−1,λ(∂Ω)×

×Cm,λ
(
(∂Ω+

ω,δ) \ ∂Ω
)
× Cm,λ

(
(∂Ω−

ω,δ) \ ∂Ω
)

which takes a pair (V +, V −) to(
L[a,Φ]V +,L[a,Φ]V −, V + − V −,

B[a,Φ](V +, V −), V +|∂Ω+
ω,δ\∂Ω, V

−|∂Ω−ω,δ\∂Ω

)
.

Theorem 1.25. Let m, λ, Ω, ω, δ0 be as in Proposition 1.6. Let δ ∈]0, δ0].
Let a ∈ R(n, 2), and let Φ ∈ Cm,λ(clΩω,δ,Rn) ∩A′clΩω,δ

. Then D[a,Φ] is an
homeomorphism if and only if D[a,Φ] is an homeomorphism.

Proof. We assume that D[a,Φ] is an homeomorphism and we prove that
D[a,Φ] is also an homeomorphism. The proof of the converse is similar and
we omit it. By the Open Mapping Theorem it suffices to show that D[a,Φ]
is a bijection. So, let (F+, F−, G,Γ,H+,H−) be a given sextuple of Z and
consider the equation

D[a,Φ](V +, V −) = (F+, F−, G,Γ,H+,H−). (1.34)
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Since ΠΩ+
ω,δ

and ΠΩ−ω,δ
are surjective there exist f̃+ ∈ Cm,λ(clΩ+

ω,δ,R
n) and

f̃− ∈ Cm,λ(clΩ−
ω,δ,R

n) such that ΠΩ+
ω,δ
f̃+ = F+ and ΠΩ−ω,δ

f̃+ = F−. We
set

f+ ≡ div
{(

(DΦ)f̃+
)
◦ Φ(−1)

∣∣∣detDΦ(−1)
∣∣∣} ,

f− ≡ div
{(

(DΦ)f̃−
)
◦ Φ(−1)

∣∣∣detDΦ(−1)
∣∣∣} ,

and we note that, by Lemma 1.23, equation (1.34) is equivalent to the fol-
lowing one,

D[a,Φ](v+, v−) = (f+, f−, g, γ, h+, h−) (1.35)

where v+ ≡ V + ◦ Φ(−1)|clΦ(Ω+
ω,δ), v

− ≡ V − ◦ Φ(−1)|clΦ(Ω+
ω,δ), g ≡ G ◦ φ(−1),

γ ≡ Γ◦φ(−1), h+ ≡ H+ ◦Φ(−1)|Φ(∂Ω+
ω,δ\∂Ω) and h− ≡ H− ◦Φ(−1)|Φ(∂Ω−ω,δ\∂Ω).

Now, if we assume D[a,Φ] to be an homeomorphism, equation (1.35) has a
unique solution. It follows that also (1.34) has a unique solution and since
(F+, F−, G,Γ,H+,H−) is an arbitrary point of Z, D[a,Φ] is a bijection.

Now, we recall that, for all Banach spaces X and Y, the space L (X ,Y) of
the continuous and linear maps of X into Y endowed with the operator norm
is a Banach space. By the continuity of the pointwise product in Schauder
spaces and standard calculus in Banach space we have the following.

Lemma 1.26. With the notation introduced in Definition 1.24, D[·, ·] is a
real analytic map from the Banach space R(n, 2) ×

(
Cm,λ(clΩ,Rn) ∩ A′clΩ

)
to the Banach space L (Cm,λ(clΩ+

ω,δ)× Cm,λ(clΩ−
ω,δ),Z).

The next theorem follows immediately.

Theorem 1.27. Let m, λ, Ω, ω, δ0 be as in Proposition 1.6. Let δ ∈]0, δ0].
Let a ∈ R(n, 2), and let Φ ∈ Cm,λ(clΩω,δ,Rn) ∩ A′clΩω,δ

, and let D[a,Φ] be
an homeomorphism. Then there exists a neighborhood U of a in R(n, 2) and
a neighborhood V of Φ in Cm,λ(clΩω,δ,Rn), V ⊂ A′clΩω,δ

, such that D[b,Ψ]
is an homeomorphism for all (b,Ψ) ∈ U × V.

Proof. Assume that D[a,Φ] is a homeomorphism, then D[a,Φ] is a homeo-
morphism by Theorem 1.25. Moreover, for (b,Ψ) close to (a,Φ) the opera-
tors D[b,Ψ] and D[a,Φ] are close in operator norm by Lemma 1.26 (which
in particular implies that D[·, ·] is continuous.) Thus, for (b,Ψ) close enough
to (a,Φ), D[b,Ψ] is still an homeomorphism (see Kato [15, Chap. IV, §5])
and, again by Theorem 1.25, D[b,Ψ] is an homeomorphism too.

1.2.7 Proof of the main Theorem 1.7

Here we adopt all the notation and assumptions introduced in the previous
subsection 1.2.2 and in Theorem 1.7. Furthermore we select a multi-index
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β ∈ N(n, 2k − 2) and multi-indexes β0, β1, . . . , βk−1 ∈ N(n, 2) such that
β0 + · · · + βk−1 = β and β0 ≡ 0. The multi-indexes β, β0, . . . , βk−1 will be
considered as fixed in all the subsection. We begin with a definition.

Definition 1.28. Let m, λ, Ω, C , a(·) be as in Theorem 1.7. Let ω, δ0 be as
in Proposition 1.6. Let δ ∈]0, δ0]. We denote by vj [b,Φ, µ], with j = 1, . . . , k,
the functions defined by

v1[b,Φ, µ] ≡ L[a2] . . .L[ak] vβ0 [a(b), φ, µ],
v2[b,Φ, µ] ≡ L[a3] . . .L[ak] vβ0+β1 [a(b), φ, µ],

...
vj [b,Φ, µ] ≡ L[aj+1] . . .L[ak] vβ0+···+βj−1

[a(b), φ, µ],
...

vk[b,Φ, µ] ≡ vβ[a(b), φ, µ]

for all b ≡ (a1, . . . ,ak) ∈ C and for all (Φ, µ) ∈ (Cm,λ(clΩω,δ,Rn)∩A′clΩω,δ
)×

Cm−1,λ(∂Ω), where we understand φ ≡ Φ|∂Ω.

Then by Theorem 1.8 we have the following.

Lemma 1.29. Let m, λ, Ω, C be as in Theorem 1.7. Let ω, δ0 be as
in Proposition 1.6. Let δ ∈]0, δ0]. Let (b,Φ, µ) ∈ C × (Cm,λ(clΩω,δ,Rn) ∩
A′clΩω,δ

)×Cm−1,λ(∂Ω). Then vj [b,Φ, µ] is a continuous function on Rn, and
the restrictions

v+
j [b,Φ, µ] ≡ vj [b,Φ, µ]|clΦ(Ω+

ω,δ), v−j [b,Φ, µ] ≡ vj [b,Φ, µ]|clΦ(Ω−ω,δ)

are functions of Cm,λ(clΦ(Ω+
ω,δ)) and of Cm,λ(clΦ(Ω−

ω,δ)), respectively, for
all j = 1, . . . , k.

In the sequel we denote by B[·, ·] and D[·, ·] the operators introduced
in Definition 1.15 and in Definition 1.20, respectively. By Theorem 1.14 we
have the following.

Lemma 1.30. Let m, λ, Ω, C , a(·) be as in Theorem 1.7. Let ω, δ0 be
as in Proposition 1.6. Let δ ∈]0, δ0] and let Φ ∈ Cm,λ(clΩω,δ,Rn) ∩ A′clΩω,δ

.
We denote by Jj(·, ·) the map of C × ∂Bn to R which takes (b, θ), with
b ≡ (a1, . . . ,ak), to

Jj [b, θ] ≡ −δj
P2[aj+1](θ) . . . P2[ak](θ)

P2k[a(b)](θ)
θβ0+···+βj−1

for all j = 1, . . . , k − 1, and to

Jj [b, θ] ≡ −δj
θβ

P2k[a(b)](θ)
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if j = k, where δj ≡ 1 if |β0 + · · ·+ βj−1| = 2j − 2, and δj ≡ 0 if |β0 + · · ·+
βj−1| < 2j − 2. Then we have

B[aj ,Φ](v+
j [b,Φ, µ], v−j [b,Φ, µ]) = Jj(b, νφ)µ ◦ φ(−1),

for all j = 1, . . . , k and for all (b, µ) ∈ C×Cm−1,λ(∂Ω) with b ≡ (a1, . . . ,ak).

We now focus our attention on a arbitrary given point (b0,Φ0) of C ×
(Cm,λ(clΩω,δ0 ,Rn) ∩ A′clΩω,δ0

).

Lemma 1.31. Let m, λ, Ω, C be as in Theorem 1.7. Let ω, δ0 be as in
Proposition 1.6. Let (b0,Φ0) be a point of C ×(Cm,λ(clΩω,δ0 ,Rn)∩A′clΩω,δ0

).
Then there exist δ1 ∈]0, δ0], and a neighborhood U of b0 in C , and a neighbor-
hood V of Φ1 ≡ Φ0|clΩω,δ1

in Cm,λ(clΩω,δ1 ,Rn)∩A′clΩω,δ1
, such that D[aj ,Φ]

is an homeomorphism for all j = 1, . . . , k and for all (b,Φ) ∈ U × V with
b ≡ (a1, . . . ,ak).

Proof. Let b0 ≡ (a01, . . . ,a0k). Then L[a0j ] is an elliptic operator of order
2 for all j = 1, . . . , k. By exploiting Theorem 1.16 and Theorem 1.27 the
assertion follows.

Now we see that the 2k-tuple

(v+
1 [b,Φ, µ], v−1 [b,Φ, µ] . . . , v+

k [b,Φ, µ], v−k [b,Φ, µ]) (1.36)

is the unique solution of a chain of coupled boundary value problems, at
least for b ∈ U and Φ ∈ V.

Lemma 1.32. Let m, λ, Ω, ω, δ1, U , V be as in Lemma 1.31. Let (b,Φ, µ)
belong to U × V ×Cm−1,λ(∂Ω) and let b ≡ (a1, . . . ,ak). Then there exists a
unique 2k-tuple

(v+
1 , v

−
1 , . . . , v

+
k , v

−
k ) ∈

[
Cm,λ(clΦ(Ω+

ω,δ1
))× Cm,λ(clΦ(Ω−

ω,δ1
))
]k

which is a solution of the following equations for all j = 1, . . . , k,

D[aj ,Φ](v+
j , v

−
j ) (1.37)

=
(
Dβj−1v+

j−1 , D
βj−1v−j−1 , 0 , Jj(b, νφ)µ ◦ φ(−1) , h+

j [b,Φ, µ] , h−j [b,Φ, µ]
)

where v+
0 ≡ 0, v−0 ≡ 0, and φ ≡ Φ|∂Ω, and the functions h+

j [b,Φ, µ] and
h−j [b,Φ, µ] are given by the restriction of vj [b,Φ, µ] to Φ(∂Ω+

ω,δ \ ∂Ω) and to
Φ(∂Ω−

ω,δ \ ∂Ω), respectively. Moreover the unique solution of the (1.37) is
given by the 2k-tuple in (1.36).
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Proof. By the previous Lemmas 1.29 and 1.30 one proves that the 2k-tuple
in (1.36) is indeed a solution of (1.37). So we have to prove the uniqueness.

We note that, for j = 1 equation (1.37) involves only the two unknown
functions v+

1 and v−1 . Then Lemma 1.31 implies that (v+
1 , v

−
1 ) is uniquely

determined and equals (v+
1 [b,Φ, µ], v−1 [b,Φ, µ]). Now we turn to consider

(v+
2 , v

−
2 ) and we exploit (1.37) with j = 2. Since (v+

1 , v
−
1 ) is uniquely deter-

mined we can replace it by the pair (v+
1 [b,Φ, µ], v−1 [b,Φ, µ]). So now (1.37)

with j = 2 only involves the two unknown functions v+
2 and v−2 and again we

deduce that (v+
2 , v

−
2 ) is uniquely determined by Lemma 1.31. Iterating this

procedure till we get that also (v+
k , v

−
k ) is uniquely determined, we conclude

the proof of the lemma.

The problem with the (1.37) is that the right hand side of (1.37) belongs
to the Φ-dependent space SΦ. To write an equivalent chain of equations in
the fixed space Z (see Definition 1.24), we need some more notation.

Definition 1.33. Let m, λ, Ω, C , a(·) be as in Theorem 1.7. Let ω, δ1 be
as in Lemma 1.31. We set

Hj [b,Φ, µ](x) ≡
∫

∂Ω
Kj(b,Φ(x)− Φ(y))µ(y)σn[Φ](y)dσy, ∀ x ∈ ∂Ωω,δ1 ,

for all j = 1, . . . , k and for all (b,Φ, µ) ∈ C ×(Cm,λ(clΩω,δ1 ,Rn)∩A′clΩω,δ1
)×

Cm−1,λ(∂Ω) with b ≡ (a1, . . . ,ak), where

Kj(b, z) ≡ L[aj+1] . . .L[ak] ∂
β0+···+βj−1
z S(a(b), z), ∀ z ∈ Rn \ {0},

and σ[Φ] is given by σ[Φ] ≡ |detDΦ||(DΦ)−tνΩ|, where νΩ is the exte-
rior unit normal to the boundary of Ω. Moreover we set H+

j [b,Φ, µ] ≡
Hj [b,Φ, µ]|∂Ω+

ω,δ\∂Ω and H−
j [b,Φ, µ] ≡ Hj [b,Φ, µ]|∂Ω−ω,δ\∂Ω.

In particular, we note that Hj [b,Φ, µ] = vj [b,Φ, µ] ◦ Φ on ∂Ωω,δ. Now,
consider the fixed multi-indexes β0, . . . ,βk−1. We recall that R(n, 2) is the
space of the real functions defined on the set N(n, 2) of the multi-indexes
α ∈ Nn with |α| ≤ 2. So we can introduce the functions b0, . . . , bk−1 of
R(n, 2) which satisfy the following condition, bj is the element of R(n, 2)
which attains value 1 on βj and 0 on each other multi-index of N(n, 2). The
elements b0, . . . , bk−1 are clearly uniquely determined. Moreover we have
L[b0] = 1 and L[bj ] = Dβj for all j = 1, . . . , k − 1. By Lemmas 1.22 and
1.23 we obtain the following.

Lemma 1.34. Let m, λ, Ω, ω, δ1, U , V be as in Lemma 1.31. Let (b,Φ, µ) ∈
U × V × Cm−1,λ(∂Ω) and let b ≡ (a1, . . . ,ak). Then the 2k-tuple

(v+
1 , v

−
1 , . . . , v

+
k , v

−
k ) ∈

[
Cm,λ(clΦ(Ω+

ω,δ1
))× Cm,λ(clΦ(Ω−

ω,δ1
))
]k
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satisfies (1.37) for j = 1, . . . , k if and only if the 2k-tuple

(V +
1 , V

−
1 , . . . , V

+
k , V

−
k ) ∈

[
Cm,λ(clΩ+

ω,δ1
)× Cm,λ(clΩ−

ω,δ1
)
]k
,

with V +
j ≡ v+

j ◦ Φ and V −
j ≡ v−j ◦ Φ (j = 1, . . . , k) satisfies the following

equations for j = 1, . . . , k,

D[aj ,Φ](V +
j , V

−
j ) (1.38)

=
(
L[bj−1,Φ]V +

j−1, L[bj−1,Φ]V −
j−1, 0 ,

Jj(b, n[Φ])µ, H+
j [b,Φ, µ], H−

j [b,Φ, µ]
)

where D[aj ,Φ] and n[Φ] have been introduced in Definition 1.24 and we set
V +

0 ≡ 0 and V −
0 ≡ 0.

In the next Lemma 1.36 we recast the equations (1.38) into an equiva-
lent equation of the form Λ[b,Φ, µ,W ] = 0, where Λ is a suitable operator
between Banach spaces and W is the 2k-tuple of Lemma 1.34. Then we plan
to analyze the equation Λ[b,Φ, µ,W ] = 0 by means of the Implicit Mapping
Theorem for real analytic operators, and accordingly we need to show that
Λ is real analytic. To do so we introduce the following Lemma 1.35. We
omit the proof which is just a straightforward modification of the proof of
Lanza de Cristoforis and Rossi [28, Lemma 3.34] and is based on Böhme and
Tomi [2, p. 10], Henry [13, p. 29] and Valent [45, Chapter 2, Theorem 5.2].

Lemma 1.35. Let m, λ, Ω, C be as in Theorem 1.7. Let ω, δ1 be as in
Lemma 1.31. The map of C × (Cm,λ(clΩω,δ1 ,Rn) ∩A′clΩω,δ1

)×Cm−1,λ(∂Ω)

to Cm,λ(∂Ωω,δ1) which takes (b,Φ, µ) to Hj [b,Φ, µ] is real analytic.

We now set

V +
j [b,Φ, µ] ≡ v+

j [b,Φ, µ] ◦ Φ|clΩ+
ω,δ1

, V −
j [b,Φ, µ] ≡ v−j [b,Φ, µ] ◦ Φ|clΩ−ω,δ1

for all j = 1, . . . , k and for all (b,Φ, µ) ∈ U×V×Cm−1,λ(∂Ω). By Lemma 1.29
and by the properties of composition of functions in Schauder spaces, we
have V +

j [b,Φ, µ] ∈ Cm,λ(clΩ+
ω,δ1

) and V −
j [b,Φ, µ] ∈ Cm,λ(clΩ−

ω,δ1
). Then we

denote by W [b,Φ, µ] the 2k-tuple

W [b,Φ, µ] ≡ (V +
1 [b,Φ, µ], V −

1 [b,Φ, µ], . . . , V +
k [b,Φ, µ], V −

k [b,Φ, µ]) (1.39)

of the space
[
Cm,λ(clΩ+

ω,δ1
)× Cm,λ(clΩ−

ω,δ1
)
]k

. The following Lemma 1.36
will immediately imply the validity of the main Theorem 1.7.

Lemma 1.36. Let m, λ, Ω, ω, δ1, U , V be as in Lemma 1.31. The map

of U × V × Cm−1,λ(∂Ω) to
[
Cm,λ(clΩ+

ω,δ1
)× Cm,λ(clΩ−

ω,δ1
)
]k

, which takes a
triple (b,Φ, µ) to the 2k-tuple W [b,Φ, µ] defined by (1.39), is real analytic.
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Proof. Let X be the Banach space R(n, 2)k×Cm,λ(clΩω,δ1 ,Rn)×Cm−1,λ(∂Ω)

and let Y be the Banach space
[
Cm,λ(clΩ+

ω,δ1
)× Cm,λ(clΩ−

ω,δ1
)
]k

. Let W ≡
U × V × Cm−1,λ(∂Ω) and let Λj be the (nonlinear) operator of W × Y
to the Banach space Z introduced in Definition 1.24, which takes each
(b,Φ, µ,W ) ∈ W×Y with b ≡ (a1, . . . ,ak) and W ≡ (V +

1 , V
−
1 , . . . , V

+
k , V

−
k ),

to

Λj [b,Φ, µ,W ] ≡ D[aj ,Φ](V +
j , V

−
j )

−
(
L[bj−1,Φ]V +

j−1, L[bj−1,Φ]V −
j−1, 0,

Jj(b, n[Φ])µ, H+
j [b,Φ, µ], H−

j [b,Φ, µ]
)
,

for all j = 1, . . . , k, where as usual V +
0 ≡ 0 and V −

0 ≡ 0. D[aj ,Φ] and n[Φ]
have been introduced in Definition 1.24, L[bj−1,Φ] has been introduced
in Lemma 1.23, Jj(b, n[Φ]), H+

j [b,Φ, µ] and H−
j [b,Φ, µ] are the functions

introduced in Lemmas 1.30 and Definition 1.33, respectively. We note that,
by Lemmas 1.26 and 1.35, and by continuity of the pointwise product in
Schauder spaces and by standard calculus in Banach space, Λj is a real
analytic operator. Then we denote by Λ the operator (Λ1, . . . ,Λk) from
W ×Y to Zk, clearly Λ is real analytic too. By Lemmas 1.32 and 1.34 the
graph of the map W [·, ·, ·] of W to Y coincides with the set of zeros of Λ in
W ×Y. So if we prove that the differential

dW Λ[b,Φ, µ,W [b,Φ, µ]] (1.40)

is an homeomorphism of Y to Zk for any point (b,Φ, µ,W [b,Φ, µ]) with
(b,Φ, µ) ∈ W, then the Implicit Mapping Theorem for real analytic opera-
tors (cf. e.g., Prodi and Ambrosetti [40, Theorem 11.6]) implies thatW [·, ·, ·]
is real analytic on W. By the Open Mapping Theorem, it suffices to show
that the operator in (1.40) is a bijection. So, let(

(F+
1 , F

−
1 , G1,Γ1,H

+
1 ,H

−
1 ), . . . , (F+

k , F
−
k , Gk,Γk,H

+
k ,H

−
k )
)

be an arbitrary given point of Zk. We have to prove that there exists one
and only one 2k-tuple (X+

1 , X
−
1 , . . . , X

+
k , X

−
k ) ∈ Y such that the following

equations hold for all j = 1, . . . , k,

D[aj ,Φ1]
(
X+

j , X
−
j

)
(1.41)

=
(
L[bj−1,Φ1]X+

j−1 + F+
j , L[bj−1,Φ1]X−

j−1 + F−j , Gj , Γj , H
+
j , H

−
j

)
,

where as usual b ≡ (a1, . . . ,ak) and X+
0 ≡ 0, X−

0 ≡ 0. Now, by Lemma 1.31,
the operator D[aj ,Φ1] is an homeomorphism for all j = 1, . . . , k. By
Theorem 1.25 it follows that also D[aj ,Φ1] is an homeomorphism for all
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j = 1, . . . , k. Then by an iteration argument, we deduce that the solu-
tion solution (X+

1 , X
−
1 , . . . , X

+
k , X

−
k ) of (1.41) exists unique (see the proof

of Lemma 1.32.) Thus the operator in (1.40) is a homeomorphism and the
assertion of the lemma follows.

Now we are ready for the proof of our main result.

Proof of statement (iii) of Theorem 1.7. It is clearly enough to show that
if (b0, φ0, µ0) ∈ C × (Cm,λ(∂Ω,R) ∩ A∂Ω) × Cm−1,λ(∂Ω), then Vβ[a(·), ·, ·]
is real analytic in a neighborhood of (b0, φ0, µ0). Let ω and δ0 be as in
Proposition 1.6, and let Φ0 ∈ Cm,λ(∂Ωω,δ0 ,Rn) ∩ A∂Ωω,δ0

be an extension
of φ0 (cf. statement (v) of Proposition 1.6.) Then we take δ1, U , V as in
Lemma 1.31. By statement (vi) of Proposition 1.6 there exist a neighbor-
hood W0 of φ0 and a real analytic extension operator E0[·] which maps W0

into Cm,λ(∂Ωω,δ1 ,Rn)∩A∂Ωω,δ1
and such that E0[φ0] = Φ0|clΩω,δ1

. Further-
more we can assume E0[W0] ⊂ V. With the notation introduced in the
previous subsection 1.2.2 and in the remark before Lemma 1.36, we have

Vβ[a(b), φ, µ] = V +
k [b,E0[φ], µ]|∂Ω

for all b ∈ U , φ ∈ W0 and µ ∈ Cm−1,λ(∂Ω). So, by the previous Lemma 1.36
and by standard calculus in Banach space, statement (iii) follows.

Proof of statement (iv) of Theorem 1.7. Now let ι ∈ Nn with |ι| = 1. By
Theorem 1.8 one verifies that the restriction vβ+ι[a(b), φ, µ]|I[φ] extends to a
function v+

β+ι[a(b), φ, µ] of Cm,λ(clI[φ]). Moreover, on φ(∂Ω) we have

v+
β+ι[a(b), φ, µ] = −1

2
(νφ)β+ι

P2k[a(b)](νφ)
µ ◦ φ(−1) + vβ+ι[a(b), φ, µ]

(see Theorem 1.14 and Cialdea [5, §2, IX].) Then, with the notation intro-
duced above,

Vβ+ι[a(b), φ, µ] =
1
2

(n[E0[φ]])β+ι

P2k[a(b)](n[E0[φ]])
µ+

[
(DE0[φ])−tDV +

k [b,E0[φ], µ]
]ι
.

We deduce that the function Vβ+ι[a(b), φ, µ] belongs to Cm−1,λ(∂Ω). More-
over, by the continuity of the pointwise product in Schauder spaces, and by
standard calculus in Banach space, and by statement (iii) of Theorem 1.7,
the statement (iv) follows.

1.3 Some applications

1.3.1 The Helmholtz and bi-Helmholtz operator

We denote by H2[b1, b2] the operator

H2[b1, b2] ≡ (∆ + b1) (∆ + b2)
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where b1 and b2 are real coefficients. We denote by aH2(·, ·) the real analytic
map of R2 to R(n, 4) defined by the equality

P [aH2(b1, b2)](ξ) ≡
(
|ξ|2 + b1

) (
|ξ|2 + b2

)
, ∀ b1, b2 ∈ R.

Then we fix two open and bounded subsets B1 and B2 of R. By an el-
ementary topological argument one can show that there exists a bounded
open neighborhood E of aH2(B1,B2) in R(n, 4) such that L[a] is an elliptic
operator of order 4 for all a ∈ clE . Then by Theorem 1.4 there exists a real
analytic function SH2(a, z) of a ∈ E and z ∈ Rn\{0} such that SH2(a, ·) is a
fundamental solution of L[a] for all a ∈ E . We fix m ∈ N\{0}, λ ∈]0, 1[ and
a bounded and open subset Ω of Rn of class Cm,λ such that Ω and Rn \ clΩ
are connected. We set

(vH2)β[a, φ, µ](ξ) ≡
∫

φ(∂Ω)
(∂β

z SH2)(a, ξ − η)µ ◦ φ(−1)(η) dση, ∀ ξ ∈ Rn,

and (VH2)β [a, φ, µ] ≡ (vH2)β [a, φ, µ] ◦ φ, for all the triple (a, φ, µ) of E ×
(Cm,λ(∂Ω,Rn) ∩ A∂Ω) × Cm−1,λ(∂Ω) and all multi-indexes β with |β| ≤ 3,
where the integral is understood in the sense of singular integrals if |β| = 3
and ξ ∈ φ(∂Ω). Then the assumptions of Theorem 1.7 hold and by standard
calculus in Banach space we deduce the following.

Proposition 1.37. Let β ∈ Nn. The map (VH2)β[aH2(·, ·), ·, ·] is real ana-
lytic from B1×B2× (Cm,λ(∂Ω,Rn)∩A∂Ω)×Cm−1,λ(∂Ω) to Cm,λ(∂Ω) and
to Cm−1,λ(∂Ω), if |β| ≤ 2 and |β| = 3, respectively.

Now, it is easily seen that the function

S̃H1(b1, b2, z) ≡ (∆ + b2)SH2(aH2(b1, b2), z)

is a fundamental solution of the operator H1[b1] ≡ (∆ + b1). We can define
the corresponding single layer potential

ṽH1 [b1, b2, φ, µ](ξ) ≡
∫

φ(∂Ω)
S̃H1(b1, b2, ξ − η)µ ◦ φ(−1)(η) dση, ∀ ξ ∈ Rn,

and the function ṼH1 [b1, b2, φ, µ] ≡ ṽH1 [b1, b2, φ, µ] ◦ φ, for all (b1, b2, φ, µ) ∈
B1 ×B2 × (Cm,λ(∂Ω,Rn) ∩A∂Ω)×Cm−1,λ(∂Ω). By the previous Proposi-
tion 1.37 next Proposition follows immediately.

Proposition 1.38. The map ṼH1 [·, ·, ·, ·] is real analytic from B1 × B2 ×
(Cm,λ(∂Ω,Rn) ∩ A∂Ω)× Cm−1,λ(∂Ω) to Cm,λ(∂Ω).

Then we denote by w̃H1 [b1, b2, φ, µ] the double layer potential

w̃H1 [b1, b2, φ, µ](ξ)

≡ −
∫

φ(∂Ω)
νφ(η) ·DξS̃H1(b1, b2, ξ − η) µ ◦ φ(−1)(η) dση, ∀ξ ∈ Rn
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and we set W̃H1 [b1, b2, φ, µ] ≡ w̃H1 [b1, b2, φ, µ] ◦ φ, for all (b1, b2, φ, µ) ∈
B1 × B2 × (Cm,λ(∂Ω,Rn) ∩ A∂Ω) × Cm,λ(∂Ω). By arguing as in Lanza
de Cristoforis and Rossi [28, Theorem 3.4] one verifies that the restriction
w̃H1 [b1, b2, φ, µ]|I[φ] extends to a function w̃+

H1 [b1, b2, φ, µ] of Cm,λ(clI[φ]) and
w̃H1 [b1, b2, φ, µ]|E[φ] extends to a function w̃−

H1 [b1, b2, φ, µ] of Cm,λ(clE[φ]).
Moreover, on φ(∂Ω) we have w̃+

H1 [b1, b2, φ, µ] = 1
2µ◦φ+ w̃H1 [b1, b2, φ, µ]. We

deduce that W̃H1 [b1, b2, φ, µ] belongs to Cm,λ(∂Ω) and by a straightforward
modification in the proof of Lanza de Cristoforis and Rossi [28, Theorem 3.45
statement (iii)], we have the following.

Proposition 1.39. The map W̃H1 [·, ·, ·, ·] is real analytic from B1 ×B2 ×
(Cm,λ(∂Ω,Rn) ∩ A∂Ω)× Cm,λ(∂Ω) to Cm,λ(∂Ω).

1.3.2 The Lamé equations

We denote by L[b1, b2] the vector valued operator

L[b1, b2] ≡ ∆ + b1∇div + b2

where b1 and b2 are real coefficients. For b1 > 1 − 2/n and b2 ≥ 0 such an
operator is related to the equations describing the behavior of an isotropic
and homogeneous elastic body, i.e. the Lamé equations (see e.g. Kupradze,
Gegelia, Bashelĕıshvili and Burchuladze [18].) For our purpose, we fix a
bounded open subset B1 of R \ {−1} and a bounded open subset B2 of R.
Then for all (b1, b2) ∈ B1 ×B2 a fundamental solution SL(b1, b2, z) of the
operator L[b1, b2] is given by the n× n-matrix function defined by

(SL(b1, b2, z))ij (1.42)

≡
(
δij

(
∆z +

b2
b1 + 1

)
− b1
b1 + 1

∂2

∂zi∂zj

)
SH2

(
aH2(b2, b2/(b1 + 1)), z

)
,

for all z ∈ Rn \ {0} and for all i, j = 1, . . . , n, where δij denotes the Kro-
necker delta symbol and SH2 is the function introduced in the previous
subsection 1.3.1. Then we fix m ∈ N \ {0}, λ ∈]0, 1[ and a bounded and
open subset Ω of Rn of class Cm,λ such that Ω and Rn \ clΩ are connected.
We denote by vL[b1, b2, φ, µ] the single layer potential given by

vL[b1, b2, φ, µ](ξ) ≡
∫

φ(∂Ω)
SL(b1, b2, ξ − η)µ ◦ φ(−1)(η) dση, ∀ ξ ∈ Rn,

for all (b1, b2, φ, µ) ∈ B1 ×B2 × (Cm,λ(∂Ω,Rn) ∩ A∂Ω) × Cm−1,λ(∂Ω,Rn),
and as usual we set VL[b1, b2, φ, µ] ≡ vL[b1, b2, φ, µ]◦φ. Taking the derivatives
out of the integral sign we deduce that

vL[b1, b2, φ, µ] =
((

∆ +
b2

b1 + 1

)
− b1
b1 + 1

∇div
)

(1.43)

·
(
vH2

[
aH2(b2, b2/(b1 + 1)), φ, µi

])
i=1,...,n
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where vH2 ≡ (vH2)(0,...,0) is defined as in the previous subsection. Moreover
we set

(vL)ι[b1, b2, φ, µ](ξ)

≡
∫

φ(∂Ω)
(∂ι

zSL)(b1, b2, ξ − η)µ ◦ φ(−1)(η) dση, ∀ ξ ∈ Rn,

for all ι ∈ Nn, |ι| ≤ 1, and all (b1, b2, φ, µ) ∈ B1 × B2 × (Cm,λ(∂Ω,Rn) ∩
A∂Ω) × Cm−1,λ(∂Ω,Rn), where the integral is understood in the sense of
singular integrals if |ι| = 1 and ξ ∈ φ(∂Ω). Then we set (VL)ι[b1, b2, φ, µ] ≡
(vL)ι[b1, b2, φ, µ] ◦ φ. By equation (1.42) and by Proposition 1.37, and by
standard calculus in Banach space, we have the following.

Proposition 1.40. Let ι ∈ Nn, |ι| ≤ 1. Then (VL)ι[·, ·, ·, ·] is a real an-
alytic map from B1 × B2 × (Cm,λ(∂Ω,Rn) ∩ A∂Ω) × Cm−1,λ(∂Ω,Rn) to
Cm,λ(∂Ω,Rn) and to Cm−1,λ(∂Ω,Mn×n(R)), if |ι| = 0 or |ι| = 1, respec-
tively.

Now we introduce the double layer potential wL[b1, b2, φ, µ]. We denote
by S

(i)
L the vector valued function given by the i-th column of SL for all

i = 1, . . . , n. We denote by T (b1, A) the matrix

(b1 − 1)(trA)1n + (A+At)

for all A ∈ Mn×n(R) and all b1 ∈ R. Here 1n denotes the unit matrix of
Mn×n(R). Then we set

wL[b1, b2, φ, µ](ξ)

≡ −
∫

φ(∂Ω)

[(
T
(
b1, DzS

(i)
L (b1, b2, ξ − η)

)
νφ(η)

)
· µ ◦ φ(−1)(η)

]
i=1,...,n

dση

for all ξ ∈ Rn, where the integral is understood in the sense of singular
integrals if ξ ∈ φ(∂Ω), and we set WL[b1, b2, φ, µ] ≡ wL[b1, b2, φ, µ] ◦ φ, for
all (b1, b2, φ, µ) ∈ B1 ×B2 × (Cm,λ(∂Ω,Rn) ∩ A∂Ω)× Cm,λ(∂Ω,Rn).

We wish to prove that the map WL[·, ·, ·, ·] is real analytic from the
space B1 × B2 × (Cm,λ(∂Ω,Rn) ∩ A∂Ω) × Cm,λ(∂Ω,Rn) to Cm,λ(∂Ω,Rn).
To do so we introduce the operator Mij(ν) which is defined by Mij(ν) ≡
νjDi − νiDj for all i, j = 1, . . . , n and all vectors ν ∈ Rn. We note that, for
any φ ∈ Cm,λ(∂Ω,Rn) ∩ A∂Ω, we have Mij(νφ) = (νφ)jDi − (νφ)iDj , where
Di ≡ Di − (νφ)iνφ ·Dt is the Günter tangential derivative (see Günter [12,
Chapter 1].) It follows that Mij(νφ) is a tangential operator on φ(∂Ω).
Moreover we have the following.
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Lemma 1.41. If (b1, b2, φ, µ) belongs to B1×B2× (Cm,λ(∂Ω,Rn)∩A∂Ω)×
Cm,λ(∂Ω), then∫

φ(∂Ω)

[
M (νφ(η))ξ SL(b1, b2, ξ − η)

]
µ ◦ φ(η) dση

=
∫

φ(∂Ω)

[
M (νφ(η))η µ ◦ φ(η)

]
SL(b1, b2, ξ − η) dση, ∀ ξ ∈ Rn.

Proof. Clearly

M (νφ(η))η

[
SL(b1, b2, ξ − η)µ ◦ φ(η)

]
=
[
M (νφ(η))η µ ◦ φ(η)

]
SL(b1, b2, ξ − η)

−
[
M (νφ(η))ξ SL(b1, b2, ξ − η)

]
µ ◦ φ(η).

Thus it suffices to prove that∫
φ(∂Ω)

M (νφ(η))η

[
SL(b1, b2, ξ − η)µ ◦ φ(η)

]
dση = 0. (1.44)

We note that, by the Divergence Theorem,∫
φ(∂Ω)

Mij(νφ(η))ψ(η) dση = 0

for any function ψ ∈ C∞(φ(∂Ω)). It follows that (1.44) does not depend
on the particular choice of the fundamental solutions of L[b1, b2]. Indeed
two different fundamental solutions differ by a real analytic function. So by
Kupradze et al. [18, Chapter V, §1], we conclude the proof of the lemma.
We note that in [18] only the case n = 3 has been considered, but that all
the statements can be extended to case n ≥ 2 with minor modifications.

Now we are ready to prove the following.

Proposition 1.42. The function WL[·, ·, ·, ·] is real analytic from B1×B2×
(Cm,λ(∂Ω,Rn) ∩ A∂Ω)× Cm,λ(∂Ω,Rn) to Cm,λ(∂Ω,Rn).

Proof. Let S̃H1(b1, b2, z) be the function introduced in the previous subsec-
tion. By a cumbersome but straightforward calculation, one verifies that{

T
(
b1, DzS

(i)
L (b1, b2, z)

)
ν
}

j
(1.45)

= δijν ·DzS̃H1 (b2, b2/(b1 + 1), z) + Mij(ν)S̃H1 (b2, b2/(b1 + 1), z)

−2 [M (ν)SL(b1, b2, z)]ij +
b1b2
b1 + 1

νj
∂

∂zi
SH2(aH2(b1, b2), z)

for every vector ν ∈ Rn and for every i, j = 1, . . . , n. Moreover, one can
prove that Lemma 1.41 still holds if we replace SL(b1, b2, z) by the function
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S̃H1(b1, b2, z). So, given φ0 ∈ Cm,λ(∂Ω,Rn) ∩ A∂Ω and ω, δ, W0, E0 as in
Proposition 1.6, we have

WL[b1, b2, φ, µ] = W̃H1

[
b2,

b2
b1 + 1

, φ, µi

]
i=1,...,n

+ṼH1

[
b2,

b2
b1 + 1

, φ,
∑n

j=1Mij(φ, n[E0[φ]])µj

]
i=1,...,n

−2
n∑

j=1

VL[b1, b2, φ,Mij(φ, n[E0[φ]])µ]i=1,...,n

− b1b2
b1 + 1

(DE0[φ])−tDVH2 [aH2(b1, b2), φ, n[E0[φ]] · µ]

for all (b1, b2, φ, µ) ∈ B1 × B2 ×W0 × Cm,λ(∂Ω,Rn), where n is the func-
tion introduced in Definition 1.24 and Mij(φ, ν) ≡ νj

[
(DE0[φ])−tDt

]
i
−

νi

[
(DE0[φ])−tDt

]
j

for any φ ∈ W0 and any vector ν ∈ Rn. Then by Propo-
sitions 1.37, 1.38, 1.39 and 1.40, by the continuity of the pointwise product in
Schauder spaces and by standard calculus in Banach space, our proposition
follows.

1.3.3 The Stokes system

We say that SS ≡ (SV , SP ) is a fundamental solution for the Stokes system
in Rn if SV is a real analytic n× n-matrix valued function of Rn \ {0}, SP

is a real analytic vector valued function of Rn \ {0} and

∆SV (z)−∇SP (z) = δ(z)1n, divSV (z) = 0, ∀ z ∈ Rn \ {0}

(cf. Ladyzhenskaya [19, Chapter 3].) We can verify that a suitable choice of
the functions SV and SP is given by the following equalities,

(SV (z))ij ≡
(
δij∆− ∂2

∂zi∂zj

)
S∆2(z), (SP )i(z) ≡ − ∂

∂zi
S∆(z), (1.46)

for all z ∈ Rn \ {0}, where we understand S∆2(z) ≡ SH2(aH2(0, 0), z) and
S∆(z) ≡ ∆S∆2(z), in accordance with the notation of subsection 1.3.1. Then
we consider an open bounded subset Ω of Rn of class Cm,λ, m ∈ N \ {0},
λ ∈]0, 1[, with Ω and Rn \ clΩ connected. We introduce the single layer
potentials vV [φ, µ] and vP [φ, µ] by the equalities

vV [φ, µ](ξ) ≡
∫

φ(∂Ω)
SV (ξ − η)µ ◦ φ(−1)(η) dση, ∀ ξ ∈ Rn, (1.47)

vP [φ, µ](ξ) ≡
∫

φ(∂Ω)
SP (ξ − η) · µ ◦ φ(−1)(η) dση, ∀ ξ ∈ Rn, (1.48)

for all (φ, µ) ∈ Cm,λ(∂Ω,Rn) ∩ A∂Ω × Cm−1,λ(∂Ω,Rn), where the integral
in (1.48) is understood in the sense of singular integrals if ξ ∈ φ(∂Ω). As



1.3. SOME APPLICATIONS 39

usual we set VV [φ, µ] ≡ vV [φ, µ] ◦ φ and VP [φ, µ] ≡ vP [φ, µ] ◦ φ. Then, by
equation (1.46) and by Proposition 1.37, we have the following.

Proposition 1.43. VV [·, ·] and VP [·, ·] are real analytic function defined
from the set (Cm,λ(∂Ω,Rn) ∩A∂Ω)× Cm−1,λ(∂Ω,Rn) to Cm,λ(∂Ω,Rn) and
to Cm−1,λ(∂Ω,Rn), respectively.

Now for each scalar b ∈ R and each matrix A ∈ Mn×n(R) we set
T (b, A) ≡ −b1n + (A + At). Then we denote by S

(i)
V the vector valued

function given by the i-th column of SV for each i = 1, . . . , n. We define the
double layer potential wV [φ, µ] by

wV [φ, µ](ξ)

≡ −
∫

φ(∂Ω)

[(
T
(
(SP )i(ξ − η), DS(i)

V (ξ − η)
)
νφ(η)

)
· µ ◦ φ(−1)(η)

]
i=1,...,n

dση,

for all ξ ∈ Rn and for all (φ, µ) ∈ Cm,λ(∂Ω,Rn) ∩ A∂Ω × Cm−1,λ(∂Ω,Rn).
As usual, we set WV [φ, µ] ≡ wV [φ, µ] ◦ φ and we have the following.

Proposition 1.44. WV [·, ·] is a real analytic map from (Cm,λ(∂Ω,Rn) ∩
A∂Ω)× Cm,λ(∂Ω,Rn) to Cm,λ(∂Ω,Rn).

Proof. For each vector ν ∈ Rn we have{
T
(
(SP )i, DS

(i)
V

)
ν
}

j
= δij ν ·DS∆ + Mij(ν)S∆ − 2[M (ν)SV ]ij .

Then one verifies that Lemma 1.41 still holds if we replace SL[b, ·] by SV (·)
or by S∆(·). So, given φ0 ∈ Cm,λ(∂Ω,Rn) ∩ A∂Ω and ω, δ, W0, E0 as in
Proposition 1.6, we have

WV [φ, µ] = W∆[φ, µi]i=1,...,n + V∆

[
φ,
∑n

j=1Mij(φ, n[E0[φ]])µj

]
i=1,...,n

−2
n∑

j=1

VV

[
φ,Mij(φ, n[E0[φ]

]
)µ]i=1,...,n

for all (φ, µ) ∈ W0 × Cm,λ(∂Ω,Rn). By Propositions 1.38 and 1.43 we
conclude the proof.

We now consider the double layer potential wP [φ, µ] which is the function
of Rn \ φ(∂Ω) defined by

wP [φ, µ](ξ) ≡ −2 div

(∫
φ(∂Ω)

SP (ξ − η) · µ ◦ φ(−1)(η) νφ(η) dση

)
, (1.49)

for all ξ ∈ Rn\φ(∂Ω) and all (φ, µ) ∈ Cm,λ(∂Ω,Rn)∩A∂Ω×Cm−1,λ(∂Ω,Rn).
We note that the right hand side of (1.49) equals

−2
n∑

i,j=1

∂

∂ξi

∫
φ(∂Ω)

Mij(νφ(η))ξS∆(ξ − η)µj ◦ φ(−1) dση, (1.50)
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for all ξ ∈ Rn \φ(∂Ω). Since Lemma 1.41 still holds if we replace SL by S∆,
the expression in (1.50) equals

−2
n∑

i,j=1

∫
φ(∂Ω)

(∂iS∆)(ξ − η) (Mij(νφ(η))η µj ◦ φ(−1)(η)) dση, (1.51)

for all ξ ∈ Rn \φ(∂Ω). We now observe that the expression in (1.51) defines
a map from Rn to R for all (φ, µ) ∈ Cm,λ(∂Ω,Rn) ∩ A∂Ω × Cm,λ(∂Ω,Rn),
where the integral is understood in the sense of singular integrals if ξ ∈
φ(∂Ω). So it makes sense to introduce the function WP [φ, µ] which is the
composition of the function defined by (1.51) and the function φ, for all
(φ, µ) ∈ Cm,λ(∂Ω,Rn)∩A∂Ω×Cm,λ(∂Ω,Rn). Then, by the previous Propo-
sition 1.37, we deduce the following.

Proposition 1.45. WP [·, ·] is a real analytic map from (Cm,λ(∂Ω,Rn) ∩
A∂Ω)× Cm,λ(∂Ω,Rn) to Cm−1,λ(∂Ω,Rn).

Proof. By (1.51) we deduce that WP [φ, µ] is a sum of terms of the form
(V∆)β [φ,Mij(φ, n[E0[φ]])µj ], with β ∈ Nn, |β| = 1. Then, by Proposi-
tion 1.37 and by standard calculus in Banach space, our statement fol-
lows.



Chapter 2

Elastic boundary value
problems in a domain with a
small hole

2.0.4 Basic boundary value problems

In this chapter we focus our attention on the vector valued partial differential
operator L[b] ≡ ∆ + b∇div, where b is a real coefficient. One immediately
recognizes that L[b] = L[(b, 0)], where L[(b, 0)] is the operator introduced in
subsection 1.3.2. Let b ∈ R and A ∈ Mn×n(R). We denote by T (b, A) the
matrix (b− 1)(trA)1n + (A+At). We also note that the matrix of polyno-
mials

P [b](ξ1, . . . , ξn) = (Pij [b](ξ1, . . . , ξn))i,j=1,...,n,

with
Pij [b](ξ1, . . . , ξn) = δij |ξ|2 + b ξiξj ∀ i, j = 1, . . . , n,

satisfies the equality L[b] = P [b](∂x1 , . . . , ∂xn). Moreover we have

ηtP [b](ξ)η = |ξ|2|η|2 + b(ξ · η)2 ≥ |ξ|2|η|2 ∀ ξ, η ∈ Rn, b ≥ 0,

which implies that L[b] is a strictly elliptic operator for all b ≥ 0. Now let
Ω be an open bounded subset of Rn of class C1, and let ν be the outward
unit normal to ∂Ω, and let f be a vector valued function defined on ∂Ω. In
the sequel we consider the following basic boundary value problems,

(i) L[b]u = 0 in Ω and u = f on ∂Ω,

(ii) L[b]u = 0 in Rn \ clΩ and u = f on ∂Ω,

(iii) L[b]u = 0 in Ω and T (b,Du)ν = f on ∂Ω,

(iv) L[b]u = 0 in Rn \ clΩ and T (b,Du)ν = f on ∂Ω.

41
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We refer to problems (i), (ii), (iii) and (iv) as to the Dirichlet interior, the
Dirichlet exterior, the Neumann interior and the Neumann exterior bound-
ary value problem, respectively. One can verify that the boundary value
problems (i), (ii), (iii) and (iv) satisfy the Shapiro-Lopatinskĭı conditions for
all b ∈ R \ {0,−1,−2} (see Kozhevnikov [16].) In particular, the spaces of
the solutions of the problems with homogeneous data (namely with f = 0)
have a completely explicit description for all b > 1− 2/n (cf. Theorem 2.4.)
For this reason we focus our attention on this particular range of values of
b and we denote by B the set {b ∈ R : b > 1− 2/n}.

2.1 Boundary integral equations

In this section, we investigate the basic boundary value problems for the
operator L[b] in an open subset Ω of Rn. We associate to such problems
suitable boundary integral equations and we point out some properties of
the corresponding integral operators.

2.1.1 Preliminaries

In the next Theorem 2.4, we describe the solutions of the first and second
boundary value problems in Ω and Rn \ clΩ when homogeneous boundary
data are considered. To do so, we first introduce the following definition.

Definition 2.1. We denote by R the set of the vector valued function ρ
on Rn such that ρ(x) = Ax + b for every x ∈ Rn, where A is a real n × n
skew-symmetric matrix (briefly A ∈ Skew(n,R)) and b ∈ Rn. Let Ω be an
open subset of Rn. We denote by RΩ the set of the functions on Ω which are
restrictions of functions of R. We denote by RΩ,loc the set of the functions
on Ω such that ρ|Ω′ ∈ RΩ′ for every connected component Ω′ of Ω. We
denote by (RΩ,loc)|∂Ω the set of the functions on ∂Ω which are trace on ∂Ω
of functions of RΩ,loc.

Then we have the following proposition.

Proposition 2.2. Let Ω be an open subset of Rn. Let E[b] be the symmetric
bilinear operator of [C1(Ω,Rn)]2 to C(Ω) which takes a pair (u, v) to

E[b](u, v) ≡ (b− 1 + 2/n) div u div v (2.1)

+
1
2

n∑
i,j=1
i6=j

(∂iuj + ∂jui)(∂ivj + ∂ivi) +
1
n

n∑
i,j=1

(∂iui − ∂juj)(∂ivi − ∂jvj).

If b > 1− 2/n, then the following statements hold.

(i) There exists a real constant c > 0 such that E[b](u, u) ≥ c|Du+(Du)t|2
for all u ∈ C1(Ω,Rn).
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(ii) If u ∈ C2(Ω,Rn), then E[b](u, u) = 0 if and only if u ∈ RΩ,loc.

(iii) If u ∈ C1(Ω,Rn), then E[b](u, u) = 0 if and only if E[b](u, v) = 0 for
all v ∈ C1(Ω,Rn).

Proof. (i) Let u ∈ C1(Ω,Rn). By a straightforward calculation we verify
that

E[b](u, u) (2.2)

= (b+ 1)
n∑

i=1

(∂iui)2 + (b− 1)
n∑

i,j=1
i6=j

(∂iui)(∂juj) +
1
2

n∑
i,j=1
i6=j

(∂iuj + ∂jui)2.

We prove separately the statement for b ≥ 1 and b < 1. Let b ≥ 1. By (2.2),
we deduce that E[b](u, u) = (b − 1)(div u)2 + (1/2)|Du + (Du)t|2, which
immediately implies statement (i) with c ≡ 1/2. Now let b < 1. We observe
that

n∑
i,j=1
i6=j

(∂iui)(∂juj) ≤
1
2

n∑
i,j=1
i6=j

[
(∂iui)2 + (∂juj)2

]
= (n− 1)

n∑
i=1

(∂iui)2.

Then, we deduce by (2.2) the following inequality,

E[b](u, u) ≥ n(b− 1 + 2/n)
n∑

i=1

(∂iui)2 +
1
2

n∑
i,j=1
i6=j

(∂iuj + ∂jui)2.

If b > 1− 2/n the expression in the right hand side is greater or equal than
c|Du+ (Du)t|2, with c ≡ (n/4)(b− 1 + 2/n).

(ii) Let b > 1 − 2/n. Let u ∈ C2(Ω,Rn) such that E[b](u, u) = 0.
By statement (i) we deduce that ∂iui = 0 and ∂iuj = −∂jui for all i, j =
1, . . . , n. It follows that ∂2

ijuk = 0 for all i, j, k = 1, . . . , n. In particular,
for every connected component Ω′ of Ω there exist a skew symmetric matrix
A ∈ Skew(n,R) and a constant vector b ∈ Rn such that u(x) = Ax + b for
all x ∈ Ω′. The proof of statement (ii) can now be easily completed. The
proof of (iii) is straightforward.

In the following Theorem 2.3 we introduce a Green like formula for the
operator L[b].

Theorem 2.3. Let Ω be a bounded open subset of Rn of class C1, and let
ν be the outward unit normal to ∂Ω. Then the following statements hold.

(i) Let u ∈ C1(clΩ,Rn) ∩C2(Ω,Rn), and let v ∈ C(clΩ,Rn) ∩C1(Ω,Rn),
and let L[b]u ∈ L2(Ω,Rn). Then∫

∂Ω
[T (b,Du)|∂Ων] · v|∂Ω dσ =

∫
Ω

(L[b]u) · v + E[b](u, v) dx. (2.3)
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(ii) Let u ∈ C1(Rn \Ω,Rn)∩C2(Rn \ clΩ,Rn), and let v ∈ C(Rn \Ω,Rn)∩
C1(Rn \clΩ,Rn), and let L[b]u ∈ L2(Rn \ clΩ,Rn), and let νRBn be the
outward unit normal to the boundary of RBn, and assume that

lim
R→∞

∫
∂RBn

[T (b,Du)|∂RBnνRBn ] · v|∂RBn dσ = 0. (2.4)

Then∫
∂Ω

[T (b,Du)|∂Ων] · v|∂Ω dσ = −
∫

Rn\clΩ
(L[b]u) · v + E[b](u, v) dx.

(2.5)

Proof. (i) We note that we have T (b,Du)v ∈ C(clΩ,Rn) ∩ C1(Ω,Rn), and
div (T (b,Du)v) = (L[b]u) ·v+E[b](u, v) ∈ L1(Ω). Then, by applying the Os-
trogradski Formula, see Dautray and Lions [7, Chap. II §1.3], equation (2.3)
follows.

(ii) Let R > 0 and let clΩ ⊂ RBn. Equation (2.5) follows by applying
statement (i) in the open bounded set RBn\clΩ and by letting R→ +∞.

Now we can prove the following.

Theorem 2.4. Let b > 1 − 2/n. Let Ω be a bounded open subset of Rn of
class C1. Then the following statements hold.

(i) Let u ∈ C1(clΩ,Rn) ∩ C2(Ω,Rn) such that L[b]u = 0 in Ω. Then we
have u|∂Ω = 0 if and only if u = 0, and we have T (b,Du)|∂Ων = 0 if
and only if u ∈ RΩ,loc.

(ii) Let u ∈ C1(Rn \ Ω,Rn) ∩ C2(Rn \ clΩ,Rn) such that L[b]u = 0 in
Rn \ clΩ, satisfy equation 2.4 with v = u. Then we have u|∂Ω = 0
if and only if u = 0, and we have T (b,Du)|∂Ων = 0 if and only if
u ∈ RRn\clΩ,loc and the restriction of u to the unbounded connected
component of Rn \ clΩ equals 0.

Proof. The sufficiency is in each case a straightforward verification. To
prove the necessity we exploit Proposition 2.2 and Theorem 2.3. Indeed if
u satisfies the assumption of either statement (i) or statement (ii) then by
means of Theorem 2.3 we deduce that E[b](u, u) = 0. By Proposition 2.2 it
follows that either u ∈ RΩ,loc or u ∈ RRn\clΩ,loc. Then by some elementary
remarks we can conclude the proof.

2.1.2 The elastic layer potentials

A fundamental solution of the operator L[b] is delivered by the function
SL[(b, 0)] introduced in subsection 1.3.2. There, we have seen that SL[(b, 0)]
can be expressed by means of a fundamental solution S∆2 of the bi-Laplacian
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operator ∆2. Here, we find convenient to introduce an explicit expression
for the fundamental solution of L[b]. So we introduce an explicit expression
for S∆2 by the following equation,

S∆2(z) ≡

{
(−1)

n−2
2 (4|∂Bn|)−1|z|4−n log |z| if n = 2 or n = 4,

(2(n− 2)(n− 4)|∂Bn|)−1 |z|4−n otherwise.

We note that S∆2 satisfies is a fundamental solution in the form of Theo-
rem 1.1. By exploiting equation (1.42) we deduce the following.

Proposition 2.5. Let Γ(·, ·) be the matrix valued function of (R \ {−1})×
(Rn \ {0}) to Mn×n(R) which takes a pair (b, z) to the matrix Γ(b, z) defined
by

(Γ(b, z))ij ≡


b+ 2

2(b+ 1)
δij

ln |z|
2π

− b

2(b+ 1)
1
2π

zizj
|z|n

, if n = 2 ,

b+ 2
2(b+ 1)

δij
|z|2−n

(2− n)|∂Bn|
− b

2(b+ 1)
1

|∂Bn|
zizj
|z|n

, if n ≥ 3 ,

(2.6)
for all i, j = 1, . . . , n. Then the function Γ(b, ·) is a fundamental solution of
the operator L[b] for all fixed b 6= −1.

Now let m ∈ N \ {0}, and let λ ∈]0, 1[. Let Ω be a bounded and open
subset of Rn of class Cm,λ, and let ν be the outward unit normal to ∂Ω. Let
µ ∈ C0,λ(∂Ω,Rn). We denote by v∂Ω[b, µ] and w∂Ω[b, µ] the functions of Rn

defined by

v∂Ω[b, µ](x) ≡
∫

∂Ω
Γ(b, x− y)µ(y) dσy

and

w∂Ω[b, µ](x) ≡ −
∫

∂Ω

[(
T (b,DzΓ(i)(b, x− y))ν(y)

)
· µ(y)

]
i=1,...,n

dσy (2.7)

for all x ∈ Rn, where Γ(i) is the vector valued function which coincides with
the i-th column of Γ for each i = 1, . . . , n. In the sequel we write v[b, µ]
and w[b, µ] instead of v∂Ω[b, µ] and w∂Ω[b, µ] where no ambiguity can arise.
v[b, µ], w[b, µ] are the elastic single and double layer potentials, respectively.
Note that the definition of v[b, µ], w[b, µ] coincides with the definition of
vL[b1, b2, φ, µ], wL[b1, b2, φ, µ] in subsection 1.3.2 if we take b1 = b, b2 = 0,
φ = id∂Ω and we replace the fundamental solution SL(b1, b2, ·) by Γ(b, ·). In
the following Propositions 2.6 and 2.7 we summarize some known facts on
the layer potentials.

Proposition 2.6. Let b ∈ R\{−1}, m ∈ N\{0}, λ ∈]0, 1[. Let Ω be an open
and bounded subset of Rn of class Cm,λ. Let µ ∈ Cm−1,λ(∂Ω,Rn). Then the
following statements hold.
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(i) v[b, µ]|Rn\∂Ω is a C∞ function and L[b]v[b, µ] = 0 in Rn \ ∂Ω.

(ii) v[b, µ] is a continuous function on Rn, the restrictions v[b, µ]|clΩ and
v[b, µ]|Rn\Ω belong to the sets Cm,λ(clΩ,Rn) and Cm,λ(Rn \ Ω,Rn),
respectively.

(iii) We have

lim
t→0−

T (b,Dv[b, µ](x+ tν(x))) ν(x) = −1
2
µ(x) + v∗∂Ω[b, µ](x),

lim
t→0+

T (b,Dv[b, µ](x+ tν(x))) ν(x) = +
1
2
µ(x) + v∗∂Ω[b, µ](x),

for all x ∈ ∂Ω, where

v∗∂Ω[b, µ](x) ≡
∫ ∗

∂Ω

n∑
i=1

[
T (b,DzΓ(i)(b, x− y))ν(x)

]
µi(y) dσy. (2.8)

(iv) If n ≥ 3 then the functions |x|n−2v[b, µ](x) and |x|n−1Dv[b, µ](x) of
x ∈ Rn are bounded for |x| in a neighborhood of +∞. If n = 2
and we assume that

∫
∂Ω µ dσ = 0 then the functions |x|v[b, µ](x) and

|x|2Dv[b, µ](x) of x ∈ Rn are bounded for |x| in a neighborhood of +∞.

Proof. Statement (i) is trivial. Statement (ii) follows by a slight modifica-
tion of Theorem 1.8. To prove statement (iii) we note that, by Cialdea [6,
Theorem 3] and [5, §2, IX],

lim
t→0∓

Dβv∆2 [µ](x+ tν(x)) = ∓1
2
ν(x)βµ+

∫
∂Ω
DβS∆2(x− y)µ(y) dσy,

for all x ∈ ∂Ω and for all multiindexes β ∈ Nn with |β| = 3, where v∆2 [µ] is
the single later potential with density µ ∈ Cm−1,λ(∂Ω) corresponding to the
bi-Laplace operator ∆2. Then, by equations (1.42) and (1.43), we deduce
the validity of statement (iii). Statement (iv) for n ≥ 3 can be verified by a
straightforward calculation. To prove statement (iv) for n = 2 we note that

v[b, µ](x) =
∫

∂Ω
(Γ(b, x− y)− Γ(b, x))µ(y) dσy + Γ(b, x)

∫
∂Ω
µ dσ .

Since |Γ(b, x− y)− Γ(b, x)||x| is uniformly bounded for y ∈ ∂Ω and |x| in a
neighborhood of +∞ and we have

∫
∂Ω µ dσ = 0, we deduce that the function

|x||v[b, µ](x)| is bounded for |x| in a neighborhood of +∞. The proof for
Dv[b, µ] is similar. Indeed we have

|x|2|Dv[b, µ](x)| ≤ |x|2
∫

∂Ω
|DΓ(b, x− y)−DΓ(b, x)| |µ(y)| dσy ,

and we conclude by noting that |x|2|DΓ(b, x−y)−DΓ(b, x)| stays uniformly
bounded for y ∈ ∂Ω and |x| in a neighborhood of +∞.
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In the sequel we find convenient the following notation. If Ω is an open
and bounded subset of Rn of class C1 and f and g are functions defined
on Ω and Rn \ clΩ, respectively, we denote by f+(x) and by g−(x) the
limits limt→0− f(x + tν(x)) and limt→0+ g(x + tν(x)), respectively, where
x is a point of ∂Ω and ν is the outward unit normal to ∂Ω. Accordingly
the limits in statement (iii) of the previous proposition can be denoted by
[T (b,Dv[b, µ]))ν]+(x) and [T (b,Dv[b, µ]))ν]−(x), respectively. Now for the
double layer potential we have the following.

Proposition 2.7. Let b ∈ R \ {0}, m ∈ N \ {0}, λ ∈]0, 1[, and let Ω be an
open and bounded subset of Rn of class Cm,λ, and let µ ∈ Cm−1,λ(∂Ω,Rn).
Then the following statements hold.

(i) w[b, µ]|Rn\∂Ω is a C∞ function and L[b]w[b, µ] = 0 in Rn \ ∂Ω.

(ii) w[b, µ]|Ω extends to unique element w+[b, µ] of Cm−1,λ(clΩ,Rn) and
w[b, µ]|Rn\clΩ extends to unique element w−[b, µ] of Cm−1,λ(Rn\Ω,Rn).

(iii) On ∂Ω we have w+[b, µ] = 1
2µ+w[b, µ] and w−[b, µ] = −1

2µ+w[b, µ].

(iv) The functions |x|n−1|w[b, µ](x)| and |x|n|Dw[b, µ](x)| of x ∈ Rn are
bounded for |x| in a neighborhood of +∞.

(v) If µ ∈ Cm,λ(∂Ω,Rn) then w[b, µ]|Ω extends uniquely to an element
w+[b, µ] of Cm,λ(clΩ,Rn) and w[b, µ]|Rn\clΩ extends uniquely to an el-
ement w−[b, µ] of Cm,λ(Rn \ Ω,Rn).

Proof. The proof of statement (i) is trivial. Statement (ii) follows by a slight
modification of Theorem 1.8. To prove statement (iii) we note that

lim
t→0±

w∂Ω[b, µ](x+ tν(x))

= − lim
t→0±

∫
∂Ω

[(
T (b,DΓ(i)(b, x+ tν(x)− y))ν(x)

)
· µ(y)

]
i=1,...,n

dσy

− lim
t→0±

∫
∂Ω

[(
T (b,DΓ(i)(b, x+ tν(x)− y))

·(ν(y)− ν(x))
)
· µ(y)

]
i=1,...,n

dσy,

for all x ∈ ∂Ω. Then, we can investigate the first limit in the right hand
side by arguing as in the proof of statement (iii) of Proposition 2.6, and
we can show that the argument of the second limit is a continuous function
of t by exploiting the Vitali Convergence Theorem. Statement (iii) follows.
Statement (iv) can be verified by a straightforward calculation. To prove
statements (v) we note that, by equation (1.45) and Lemma 1.41,

w[b, µ] = w∆[µ] +
n∑

j=1

v∆[Mij(ν)µj ]i=1,...,n − 2
n∑

j=1

v[b,Mij(ν)µ]i=1,...,n,
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where v∆ and w∆ are the single and double layer potentials correspond-
ing to the Laplace operator ∆. For v∆ and w∆ we have the equation
∂iw∆[µj ] = −

∑n
k=1 ∂kv∆[Mik(ν)µj ] for all i, j = 1, . . . , n (see Kupradze,

Gegelia, Bashelĕıshvili and Burchuladze [18, Chapter V, §6] and Lanza de
Cristoforis and Rossi [27, Theorem 3.1].) Then by exploiting Theorem 1.8
and by the previous Proposition 2.6 statements (v) follows immediately.

Moreover we have the representation formula (2.9). For a proof in R3

see Kupradze et al. [18, Chapter V, Theorem 1.6], the proof for n ≥ 2 can
be deduced by a straightforward modification.

Theorem 2.8. Let b ∈ R\{−1}, and let λ ∈]0, 1[, and let Ω be an open and
bounded subset of Rn of class C1,λ, and let u ∈ C1,λ(clΩ,Rn) ∩ C2(Ω,Rn)
such that L[b]u = 0. Then

u(x) = w[b, u|∂Ω](x)− v[b, T (b,Du)|∂Ων](x) ∀ x ∈ Ω, (2.9)

and the right hand side of (2.9) vanishes for x ∈ Rn \ clΩ.

2.1.3 Boundary integral operators on L2(∂Ω, Rn)

Definition 2.9. Let λ ∈]0, 1[ and let Ω be a bounded open subset of Rn of
class C1,λ. We set

K∂Ω[b, µ] ≡ 1
2
µ+ w∂Ω[b, µ]|∂Ω, K∗

∂Ω[b, µ] ≡ 1
2
µ+ v∗∂Ω[b, µ]|∂Ω,

H∂Ω[b, µ] ≡ −1
2
µ+ v∗∂Ω[b, µ]|∂Ω, H∗

∂Ω[b, µ] ≡ −1
2
µ+ w∂Ω[b, µ]|∂Ω,

for all b ∈ R \ {−1} and all µ ∈ L2(∂Ω,Rn), where w∂Ω[b, µ] and v∗∂Ω[b, µ]
are defined by (2.7) and (2.8), respectively. We write K, K∗, H, H∗ instead
of K∂Ω, K∗

∂Ω, H∂Ω, H∗
∂Ω where no ambiguity can arise.

Proposition 2.10. With the same notation of Definition 2.9, the operators
K[b, ·], K∗[b, ·], H[b, ·], H∗[b, ·] are bounded on L2(∂Ω,Rn).

Proof. We note that (∂zk
Γ(b, z))ij is a singular integral kernel of the form

f(z)|z|1−n, where f is an odd, homogeneous of degree zero, real analytic
function on Rn \ {0}. Therefore the map which takes an element µ of
L2(∂Ω) to

∫ ∗
∂Ω(∂xk

Γ(b, x−y))ijµ(y) dσy is a bounded operator on L2(∂Ω) (cf.
Mikhlin [33, §27].) By equations (2.7) and (2.8) our proposition follows.

Moreover we have the following.

Theorem 2.11. With the same notation of Definition 2.9, K[b, ·], K∗[b, ·],
H[b, ·], H∗[b, ·] are Fredholm operators of index 0 on L2(∂Ω,Rn) for all fixed
b ∈ R \ {0,−1,−2}.



2.1. BOUNDARY INTEGRAL EQUATIONS 49

Proof. For the sake of brevity we confine to consider K[b, ·], the proof for the
other operators is very similar. We show that K[b, ·] have an Hermitian and
invertible symbolic matrix. Then the theorem will follow by Mikhlin [33,
Corollary to Theorem 4.40]. For the definition of the symbolic matrix of a
singular integral operator defined on ∂Ω we refer to Mikhlin [33, §40] and
Seeley [41] (see also Mikhlin and Prössdorf [34, Chapter XIII, §2].) Here we
recall that the symbolic matrix of a singular integral operator defined on
∂Ω is a function of ∂Ω× ∂Bn−1 to Mn×n(R). We denote such a function by
σK[b,·](x, θ), for all x ∈ ∂Ω, θ ∈ ∂Bn−1. So, our claim is that σK[b,·](x, θ) is
an invertible Hermitian matrix for all x ∈ ∂Ω and θ ∈ ∂Bn−1.

By equation (2.6) and by a straightforward calculation we can see that

[T (b,DΓ(i)(b, z))ν]j (2.10)

=
1

b+ 1
1

|∂Bn|

(
νizj − νjzi

|z|n
+
(
δij + nb

zizj
|z|2

)
ν · z
|z|n

)
for all i, j = 1, . . . , n, and all vectors ν ∈ Rn, and all z ∈ Rn \ {0}. Now,
let ν be the outward unit normal to the boundary of Ω and let kij(x, z) and
aij(x, z) be defined by

kij(x, z) ≡
νi(x)zj − νj(x)zi

|z|n
, aij(x, z) ≡

(
δij + nb

zizj
|z|2

)
ν(x) · z
|z|n

for every i, j = 1, . . . , n, and all x ∈ ∂Ω, and all z ∈ Rn \ {0}. One easily
verifies that kij(x, x− y)− kij(y, x− y) = O(|x− y|n−1−λ) as y → x, for all
x, y ∈ ∂Ω. Moreover aij(y, x − y) = O(|x − y|n−1−λ) and thus, if we set
bij(x, y) ≡ kij(y, x− y)− kij(x, x− y) + aij(y, x− y), we have

K[b, µ](x) =
1
2
µ(x)− 1

|∂Bn|
1

b+ 1

∫ ∗

∂Ω
k(x, x− y)µ(y) dσy (2.11)

− 1
|∂Bn|

1
b+ 1

∫
∂Ω
b(x, x− y)µ(y) dσy, ∀x ∈ ∂Ω,

for all µ ∈ C0,λ(∂Ω,Rn), where we intend∫ ∗

∂Ω
k(x, x− y)µ(y) dσy ≡ lim

ε→0+

∫
∂Ω\(x+εBn)

k(x, x− y)µ(y) dσy, ∀ x ∈ ∂Ω.

We now fix a point x0 of ∂Ω. To calculate σK[b,·](x0, θ) we have to
introduce a local parametrization of ∂Ω in a neighborhood of x0. To do
so we perform an orthogonal coordinate transformation in Rn such that
x0 = (0, . . . , 0), and all vectors of the form (ξ, 0), with ξ ≡ (ξ1, . . . , ξn−1),
are tangent to ∂Ω in x0, and the outward normal to ∂Ω in x0 is delivered by
(0, . . . , 0, 1). By a straightforward calculation, we verify that equation (2.11)
still holds with respect to the new coordinate system.
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Moreover, by our assumptions on Ω, there exist r, δ > 0 and a func-
tion γ ∈ C1,λ(cl(rBn−1)) such that −δ < γ < δ and the intersection
Ω∩ (rBn−1×]− δ, δ[) coincides with the subgraph of the function γ, namely
with the set {(ξ, ξn) ∈ Rn : |ξ| < r, −δ < ξn < γ(ξ)}. In particular, the
map of rBn−1 to ∂Ω ∩ (rBn−1×]− δ, δ[) which takes ξ to (ξ, γ(ξ)) is a local
parametrization of ∂Ω in a neighborhood of x0.

We recall that γ admits an extension to a function of class C1,λ defined
on the whole of Rn−1 (cf., e.g., Troianiello [44, §1.2.2].) We still denote by
γ such an extension. With this notation, we introduce the function k̃(·, ·) of
Rn−1 × (Rn−1 \ {0}) to Mn×n(R) which takes (ξ, ζ) to the n× n matrix

1
|ζ|n

(
ζDγ(ξ)− (ζDγ(ξ))t −ζ + (Dγ(ξ))t(Dγ(ξ))ζ
ζt − (Dγ(ξ))(Dγ(ξ))ζ 0

)
,

where we intend

ζDγ(ξ) = (ζi∂jγ(ξ))i,j=1,...,n−1, (Dγ(ξ))ζ =
n−1∑
i=1

(∂iγ(ξ))ζi,

as accordingly to the fact that ζ is a column vector and Dγ(ξ) a row. By
exploiting the equality ν(ξ, γ(ξ)) = (1 + |Dγ(ξ)|2)−1/2(−Dγ(ξ), 1), for all
ξ ∈ rBn−1, we verify that

kij((ξ, γ(ξ)), (ξ − η, γ(ξ)− γ(η)))− k̃ij(ξ, ξ − η)
(1 + |Dγ(ξ)|2)1/2

= O(|ξ − η|n−1−λ),

as η → ξ, for all ξ, η ∈ rBn−1, i, j = 1, . . . , n.
Now, let µ be a function of C0,λ(∂Ω,Rn) with support contained in

∂Ω ∩ (rBn−1×]− δ, δ[). We denote by µ̃ the function of Rn−1 to Rn defined
by, µ̃(ξ) ≡ µ(ξ, γ(ξ)), for all ξ ∈ rBn−1, µ̃(ξ) ≡ 0, for all ξ ∈ Rn−1 \ rBn−1.
Then, with respect to the new coordinate system, we obtain by (2.11) the
following equation,

K[b, µ](ξ, γ(ξ)) (2.12)

=
1
2
µ̃(ξ)− 1

|∂Bn|
1

b+ 1
lim

ε→0+

∫
Rn−1\B(ξ,ε)

k̃(ξ, ξ − η)µ̃(η)
(1 + |Dγ(ξ)|2)1/2

(1 + |Dγ(η)|2)1/2 dη

+
∫

Rn−1

c(ξ, η)µ̃(η) dη,

for all ξ ∈ rBn−1, where c(·, ·) is a weakly singular kernel and B(ξ, ε) ≡ {η ∈
Rn−1 : |ξ − η|2 + (γ(ξ) − γ(η))2 < ε2}. Since we have (1 + |Dγ(ξ)|2)1/2 −
(1 + |Dγ(η)|2)1/2 = O(|ξ − η|λ), the right hand side of (2.12) equals

1
2
µ̃(ξ)− 1

|∂Bn|
1

b+ 1
lim

ε→0+

∫
Rn−1\B(ξ,ε)

k̃(ξ, ξ − η)µ̃(η) dη (2.13)

+
∫

Rn−1

d(ξ, η)µ̃(η) dη,
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for all ξ ∈ Rn−1, where d(·, ·) is a weakly singular kernel. Moreover, the
limit in (2.13) equals∫ ∗

Rn−1

k̃(ξ, ξ − η)µ̃(η) dη +
(∫

∂Bn−1

k̃(ξ, θ) log β(ξ, θ) dσθ

)
µ̃(ξ), (2.14)

where

β(ξ, θ) ≡ lim
ε→0+

ε

(ε2 + (γ(ξ)− γ(ξ + εθ))2)1/2
=

1

(1 + ((Dγ(ξ))θ)2)1/2
,

for all ξ ∈ Rn−1 and θ ∈ ∂Bn−1 (cf. Mikhlin and Prössdorf [34, Chapter IX,
§1.3].) Then we easily verify that k̃(ξ, θ) log β(ξ, θ) is a odd function of
θ ∈ ∂Bn−1 for all fixed ξ ∈ Rn−1. So, the second integral in (2.14) vanishes.

Now, by (2.12), we obtain

K[b, µ](ξ, γ(ξ)) = K̃[b, µ̃](ξ) + B̃[b, µ̃](ξ), ∀ ξ ∈ rBn−1,

where B̃[b, ·] is a weakly singular integral operator (cf. Mikhlin and Pröss-
dorf [34, Chapter VIII, §3]) and K̃[b, ·] is the singular integral operator on
L2(Rn−1,Rn) which takes φ to the function K̃[b, φ] defined by

K̃[b, φ](ξ) ≡ 1
2
φ(ξ)−

∫ ∗

Rn−1

k̃(ξ, ξ − η)φ(η) dη, ∀ ξ ∈ Rn−1.

Then, by definition, we have σK[b,·](x, θ) ≡ σ
K̃[b,·](ξ, θ), for all θ ∈ ∂Bn−1

and for all x = (ξ, γ(ξ)) ∈ ∂Ω∩(rBn−1×]−δ, δ[) (cf. Seeley [41], Mikhlin and
Prössdorf [34, Chapter XIII, §2].) By exploiting Mikhlin and Prössdorf [34,
Chapter X, §2.1], we verify that

σ
K̃[b,·](ξ, θ)

=
1
2
1n −

i

2(b+ 1)

(
θDγ(ξ)− (θDγ(ξ))t −θ + (Dγ(ξ))t(Dγ(ξ))θ
θt − (Dγ(ξ))(Dγ(ξ))θ 0

)
,

for all ξ ∈ Rn−1, θ ∈ ∂Bn−1. In particular, for ξ = 0, we have

σ
K̃[b,·](0, θ) =

1
2

(
1n−1 i(b+ 1)−1θt

−i(b+ 1)−1θ 1

)
.

One easily verifies that σK[b,·](x0, θ) = σ
K̃[b,·](0, θ) is an Hermitian matrix

and that detσK[b,·](x0, θ) = (1/2n)b(b+2)(b+1)−2, for all θ ∈ ∂Bn−1. So that
detσK[b,·](x0, θ) 6= 0 for all b ∈ R \ {0,−1,−2}. Since x0 was an arbitrary
point of ∂Ω and the symbolic matrix does not depend on the choice of
the local parametrization (cf. Seeley [41]), we deduce that σK[b,·](x, θ) is
an invertible Hermitian matrix for all x ∈ ∂Ω, θ ∈ ∂Bn−1. The proof is
completed.
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Theorem 2.12. With the same notation of Definition 2.9, the operator
K∗[b, ·] is the adjoint to K[b, ·] and the operator H∗[b, ·] is the adjoint to
H[b, ·] for all b ∈ R \ {−1}.

Proof. The proof follows by the properties of the composition of ordinary
and singular integrals (see Mikhlin [33, §9]) and by equations (2.7) and (2.8).

2.1.4 Kernels of the boundary integral operators

If the density µ is of class C0,λ, then K[b, µ], K∗[b, µ], H[b, µ], H∗[b, µ] are
related to the boundary values of the layer potentials v[b, µ] and w[b, µ] as
it is stated in the following proposition, which we immediately deduce by
Proposition 2.6 and Definition 2.9.

Proposition 2.13. Let b ∈ R \ {−1}, λ ∈]0, 1[. Let Ω be an open and
bounded subset of Rn of class C1,λ. Let µ ∈ C0,λ(∂Ω,Rn). Then K[b, µ] =
w+[b, µ]|∂Ω, K∗[b, µ] = [T (b,Dv[b, µ]))ν]−, H[b, µ] = [T (b,Dv[b, µ]))ν]+,
H∗[b, µ] = w−[b, µ]|∂Ω.

Moreover, we have the following Lemma 2.14, which states that every
µ ∈ L2(∂Ω,Rn) such that K[b, µ] ∈ C0,λ(∂Ω,Rn) is indeed a function of
C0,λ(∂Ω,Rn), and similarly for K∗, H and H∗.

Lemma 2.14. Let λ ∈]0, 1[. Let Ω be a bounded open subset of Rn of
class C1,λ. Let µ be a function of L2(∂Ω,Rn). Let b ∈ R \ {0,−1,−2}.
If either K[b, µ] ∈ C0,λ(∂Ω,Rn), or K∗[b, µ] ∈ C0,λ(∂Ω,Rn), or H[b, µ] ∈
C0,λ(∂Ω,Rn), or H∗[b, µ] ∈ C0,λ(∂Ω,Rn), then µ ∈ C0,λ(∂Ω,Rn).

Proof. The lemma follows by Mikhlin and Prössdorf [34, Chapter XIII, The-
orem 7.1]. Indeed, by arguing as in the proof of Theorem 2.11, we can verify
that the assumptions of [34, Chapter XIII, Theorem 7.1] are satisfied. We
note that [34, Chapter XIII, Theorem 7.1] is concerned with a singular inte-
gral operator of L2(∂Ω) to L2(∂Ω), while K[b, ·], K∗[b, ·], H[b, ·], H∗[b, ·] are
singular integral matrix operators of L2(∂Ω,Rn) to L2(∂Ω,Rn). By exploit-
ing Ševčenko [42], one can verify that the statement of [34, Chapter XIII,
Theorem 7.1] extends, with the obvious modifications, to the case of singular
integral matrix operators.

Now we are ready to give a detailed description of the kernels KerH[b, ·]
and KerH∗[b, ·] of the operators H[b, ·] and H∗[b, ·]. This is the purpose
of the next Theorem 2.16. In the following Theorem 2.17, we consider the
kernels KerK[b, ·] and KerK∗[b, ·] of K[b, ·] and K∗[b, ·]. Also in this case we
give a detailed description. First we introduce some more notation.
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Definition 2.15. Let Ω be an open subset of Rn. We denote by Rn
Ω the set

of the vector valued constant functions on Ω. We denote by Rn
Ω,loc the set of

the functions on Ω which are constant on the connected components of Ω.
We denote by (Rn

Ω,loc)|∂Ω the set of the functions on ∂Ω which are trace on
∂Ω of functions of Rn

Ω,loc.

Theorem 2.16. Let b > 1 − 2/n and λ ∈]0, 1[. Let Ω be an open bounded
subset of Rn of class C1,λ. Let H[b, ·] and H∗[b, ·] be the operators on
L2(∂Ω,Rn) introduced in Definition 2.9. We denote by (KerH[b, ·])0 the
subspace of KerH[b, ·] of the functions µ such that

∫
∂Ω′ µdσ = 0 for every

connected component Ω′ of Ω. Then the following statements hold.

(i) v[b, µ]|∂Ω ∈ KerH∗[b, ·] for every µ ∈ KerH[b, ·].

(ii) The map which takes µ to v[b, µ]|∂Ω is injective on (KerH[b, ·])0.

(iii) If n ≥ 3 the map which takes µ to v[b, µ]|∂Ω is an isomorphism from
KerH[b, ·] to KerH∗[b, ·].

(iv) KerH∗[b, ·] = v[b, (KerH)0]|∂Ω ⊕ (Rn
Ω,loc)|∂Ω, the sum being direct but

not necessarily orthogonal.

(v) KerH∗[b, ·] = (RΩ,loc)|∂Ω.

Proof. (i) By Lemma 2.14 each µ ∈ Ker(H) belongs to C0,λ(∂Ω,Rn). There-
fore we have v[b, µ] ∈ C1(clΩ,Rn)∩C2(Ω,Rn) by Proposition 2.6. Then we
apply Theorem 2.8 and we obtain that

w[b, v[b, φ]|∂Ω](x) = v
[
b, [T (b,Dv[b, φ])ν]+

]
(x)

= v [b,H[b, µ]] (x) = v [b, 0] (x) = 0

for all x ∈ Rn \ clΩ. We recall that, by Proposition 2.13, H∗ [b, v[b, µ]|∂Ω] =
w [b, v[b, µ]|∂Ω]− and we deduce that H∗ [b, v[b, µ]|∂Ω] = 0.

(ii) Now, let µ ∈ (KerH)0 such that v[b, µ]|∂Ω = 0. Then v[b, µ] = 0 by
Theorem 2.4 and by Proposition 2.6. Since

µ = [T (b,Dv[b, µ])ν]− − [T (b,Dv[b, µ])ν]+ , (2.15)

it follows that µ = 0, which implies our claim.
(iii) We note that KerH[b, ·] and KerH∗[b, ·] have the same finite dimen-

sion (cf. Theorem 2.11.) So it is enough to prove that the map which takes
µ to v[b, µ]|∂Ω is injective from KerH[b, ·] to KerH∗[b, ·]. This can be seen
by arguing as in the proof of (ii).

(iv) First we prove that v[b, (KerH[b, ·])0]|∂Ω does not contain non-zero
functions of (Rn

Ω,loc)|∂Ω. Let µ ∈ (KerH[b, ·])0 and let v[b, µ]|∂Ω = ρ|∂Ω with
ρ ∈ Rn

Ω,loc. We show that this implies µ = 0 and thus v[b, µ]|∂Ω = 0. We
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have [T (b,Dv[b, µ])ν]+ = H[b, µ] = 0 and therefore µ = [T (b, v[b, µ])ν]− by
(2.15). Then, by Proposition 2.6 and Theorem 2.3, we get∫

Rn\clΩ
E[b](v[b, φ], v[b, φ]) dx = −

∫
∂Ω
v[b, µ]|∂Ω · [T (b,Dv[b, µ])ν]− dσ

= −
∫

∂Ω
ρ|∂Ω · µ dσ = −

N∑
i=1

ρ|∂Ωi
·
∫

∂Ωi

µ dσ = 0,

where Ω1, . . . ,ΩN are the connected components of Ω. By Theorem 2.2, the
restriction v[b, µ]|Rn\clΩ belongs to RRn\clΩ,loc. Hence v[b, µ]|Rn\clΩ = ρ by
the continuity of v[b, µ] in Rn. In particular, we have Dv[b, µ]|Rn\clΩ = 0
and [T (b, v[µ])ν]− = 0, which implies µ = 0.

On the other hand (Rn
Ω,loc)|∂Ω is a subspace of KerH∗[b, ·]. In fact, by

means of Theorem 2.8, we deduce that w[b, ρ|∂Ω] = 0 on Rn \ clΩ for every
ρ ∈ Rn

Ω,loc. Thus H∗[ρ|∂Ω] = w[b, ρ|∂Ω]− = 0. Moreover, dim KerH[b, ·] =
dim KerH∗[b, ·], for H[b, ·] is a Fredholm operator of index 0, and

codim v[b, (KerH[b, ·])0]|∂Ω = codim (KerH[b, ·])0 ≤ nN,

where N is the number of connected components of Ω, because v[b, ·]|∂Ω

is injective on (KerH[b, ·])0 and (KerH[b, ·])0 is defined by the vanishing
of the nN linear functionals which take µ ∈ KerH[b, ·] to

∫
∂Ωj

µi dσ, with
i = 1, . . . , n and j = 1, . . . , N .

So summarizing we have

v[b, (KerH[b, ·])0]|∂Ω ⊂ KerH∗[b, ·], (Rn
Ω,loc)|∂Ω ⊂ KerH∗[b, ·],

codim v[b, (KerH[b, ·])0]|∂Ω ≤ nN, dim (Rn
Ω,loc)|∂Ω = nN,

and v[b, (KerH[b, ·])0]|∂Ω ∩ (Rn
Ω,loc)|∂Ω = {0}. We deduce that the codimen-

sion of v[b, (KerH[b, ·])0]|∂Ω in KerH∗[b, ·] is exactly nN and KerH∗[b, ·] =
v[b, (KerH[b, ·])0]|∂Ω ⊕ (Rn

Ω,loc)|∂Ω, the sum being direct but not necessarily
orthogonal.

(v) KerH[b, ·]∗ ⊂ (RΩ,loc) |∂Ω follows by statement (iii) and Theorem 2.4.
To prove the converse consider a function ρ ∈ RΩ,loc. Then, by Theorem 2.4,
L[b]ρ = 0 in Ω and [T (b,Dρ)ν]+ = 0 on ∂Ω. By Proposition 2.7 and
Theorem 2.8 it follows that w[b, ρ|∂Ω] = ρ on clΩ. Then w[b, ρ|∂Ω]+ = ρ|∂Ω

and so H∗[b, ρ|∂Ω] = w[b, ρ|∂Ω]− = w[b, ρ|∂Ω]+ − ρ|∂Ω = 0.

For KerK[b, ·] and KerK∗[b, ·] we have the following.

Theorem 2.17. Let b > 1 − 2/n and λ ∈]0, 1[. Let Ω be an open bounded
subset of Rn of class C1,λ. Let K[b, ·] and K∗[b, ·] be the operators on
L2(∂Ω,Rn) introduced in Definition 2.9. Then the following statements hold.

(i) The map which takes µ to v[b, µ]|∂Ω is an isomorphism from KerK∗[b, ·]
to KerK[b, ·].
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(ii) KerK[b, ·] coincides with the set of the functions ρ ∈ (RRn\clΩ,loc)|∂Ω

which vanish on the boundary of the unbounded connected component
of Rn \ clΩ.

Proof. Since the proof is very similar to the proof of Theorem 2.16 we omit
it. We only note that both the statement of the theorem and the proof
are in this case simpler. The reason is the following. One can verify that∫
∂Ω µ dσ =

∫
∂Ω K∗[b, µ] dσ for all µ ∈ L2(∂Ω,Rn). Indeed, by Definition 2.9,

K∗[b, µ] = µ+H[b, µ], and by Theorems 2.11, 2.12, 2.16, H[b, µ] is orthogonal
to each constant function on ∂Ω. In particular,

∫
∂Ω H[b, µ] dσ = 0. Then µ ∈

KerK∗[b, ·] implies
∫
∂Ω µ dσ = 0 and therefore we don’t have to distinguish

between n = 2 and n ≥ 3.

Moreover we have the following Proposition 2.18 which provides a direct
decomposition of the space L2(∂Ω,Rn) in terms of KerK[b, ·], KerK∗[b, ·],
KerH[b, ·], KerH∗[b, ·] and their orthogonal spaces.

Proposition 2.18. Let b > 1 − 2/n and λ ∈]0, 1[. Let Ω be an open
bounded subset of Rn of class C1,λ. We have L2(∂Ω,Rn) = (KerH∗[b, ·])⊥⊕
KerH[b, ·] = (KerK[b, ·])⊥ ⊕KerK∗[b, ·], the sum being direct but not neces-
sarily orthogonal.

Proof. By Theorems 2.11 and 2.12, H[b, ·] and H∗[b, ·] are adjoint Fred-
holm operators of index 0. So dim KerH[b, ·] = codim (KerH∗[b, ·])⊥ < +∞.
Then to prove the first equality it is enough to show that (KerH∗[b, ·])⊥ ∩
KerH[b, ·] = {0}.

So let µ ∈ (KerH∗[b, ·])⊥ ∩ KerH[b, ·]. We claim that µ = 0. We note
that H[b, µ] = 0, and by Fredholm’s Alternative Theorem, there exists ψ ∈
L2(∂Ω,Rn) such that µ = H[b, ψ]. By Lemma 2.14 it follows that both µ
and ψ belong to C0,λ(∂Ω,Rn). Then by Proposition 2.13 we have

[T (b,Dv[b, µ])ν]+ = 0

and

[T (b,Dv[b, ψ])ν]+ = µ = µ+ H[b, µ] = K∗[b, µ] = [T (b,Dv[b, µ])ν]− .

Multiplying the first equation by v[b, ψ] and the second by v[b, µ], subtract-
ing, and integrating over ∂Ω, we obtain∫

∂Ω
[T (b,Dv[b, µ])ν]+ · v[b, ψ]− [T (b,Dv[b, ψ])ν]+ · v[b, µ] dσ (2.16)

=
∫

∂Ω
[T (b,Dv[b, µ])ν]− · v[b, µ] dσ.

Since µ ∈ (KerH∗[b, 0])⊥, µ is orthogonal to each function of (RΩ,loc)|∂Ω. In
particular

∫
∂Ω µdσ = 0. So, by Proposition 2.6 and Theorem 2.3, the left
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hand side of (2.16) equals∫
Ω
v[b, µ] · L[b]v[b, ψ]− v[b, ψ] · L[b]v[b, µ] dx = 0,

while the right hand side equals

−
∫

Rn\clΩ
E[b](v[b, µ], v[b, µ]) dx.

We deduce that E[b](v[b, µ], v[b, µ]) = 0, and thus v[b, µ] ∈ RRn\clΩ,loc by
Proposition 2.2. Then we have µ = [T (b,Dv[b, µ])ν]− = 0, which is our
claim. The proof that L2(∂Ω,Rn) = (KerK[b, ·])⊥ ⊕ KerK∗[b, ·] is very
similar and we omit it.

2.1.5 Boundary integral operators in Schauder spaces

Theorem 2.19. Let b > 1 − 2/n, m ∈ N \ {0}, λ ∈]0, 1[. Let Ω be an
open and bounded subset of Rn of class Cm,λ. Let µ ∈ L2(∂Ω,Rn). If
either K∗[b, µ] ∈ Cm−1,λ(∂Ω,Rn) or H[b, µ] ∈ Cm−1,λ(∂Ω,Rn), then µ ∈
Cm−1,λ(∂Ω,Rn).

Proof. For m = 1 the theorem follows immediately by Lemma 2.14. So let
m ≥ 2 and assume that H[b, µ] ∈ Cm−1,λ(∂Ω,Rn). By Lemma 2.14 we have
µ ∈ C0,λ(∂Ω,Rn). So, by Proposition 2.13 we have [T (b,Dv[b, µ])ν]+ =
H[b, µ], which implies that [T (b,Dv[b, µ])ν]+ ∈ Cm−1,λ(∂Ω,Rn). Therefore,
by Proposition 2.6 and by exploiting Agmon, Douglis and Nirenberg [1,
Theorem 9.3], we deduce that the restriction v[b, µ]|clΩ is a function of class
Cm,λ. Now let R > 0 and let clΩ ⊂ RBn. By the continuity of v[b, µ]
on Rn we deduce that the restriction of v[b, µ] to the boundary of RBn \
Ω is a function of class Cm,λ. Thus, by [1, Theorem 9.3], the restriction
v[b, µ]|(clRBn)\Ω belongs to Cm,λ((clRBn) \ Ω,Rn). In particular the limit
[T (b,Dv[b, µ])ν]− exists and defines a function on ∂Ω of class Cm−1,λ. Now,
by Definition 2.9 and by Proposition 2.13, we have

µ = K∗[b, µ]−H[b, µ] = [T (b,Dv[b, µ])ν]− −H[b, µ].

It follows that µ ∈ Cm−1,λ(∂Ω,Rn), which is our claim. The proof for K∗ is
very similar.

In the following Theorem 2.19 we consider the operators K and H∗ and
prove a statement which is similar to the statement of Theorem 2.19. For
this purpose we need the following lemma.

Lemma 2.20. Let b > 1− 2/n, m ∈ N \ {0}, λ ∈]0, 1[. Let Ω be a bounded
open subset of Rn of class Cm,λ. Let µ ∈ C0,λ(∂Ω,Rn). Then the following
statements are equivalent.
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(i) w[b, µ]|Ω extends to a function w+[b, µ] of Cm,λ(clΩ,Rn).

(ii) w[b, µ]|Rn\clΩ extends to a function w−[b, µ] of Cm,λ(Rn \ Ω,Rn).

Proof. We prove that (ii) imply (i). The proof of the other direction of
the lemma is very similar. If we assume that (ii) holds than we clearly
have that the limit [T (b,Dw[b, µ])ν]− (x) exists for all x ∈ ∂Ω and defines a
function of class Cm−1,λ on ∂Ω. As a first step we prove that there exists
ψ ∈ Cm−1,λ(∂Ω,Rn) such that

H[b, ψ] = [T (b,Dw[b, µ])ν]− . (2.17)

We note that, if ψ ∈ L2(∂Ω,Rn) satisfies (2.17), then ψ ∈ Cm−1,λ(∂Ω,Rn) by
Theorem 2.19. So, by the Fredholm Alternative Theorem, it will be enough
to show that [T (b,Dw[b, µ])ν]− is orthogonal to KerH∗[b, ·] (cf. Theo-
rem 2.19.) Now, by Theorem 2.16, we have KerH∗[b, ·] = v[b, (KerH[b, ·])0]⊕
(Rn

Ω,loc)|∂Ω. So we are reduced the prove that∫
∂Ω

(v[b, φ] + ρ)|∂Ω · [T (b,Dw[b, µ])ν]− dσ = 0 (2.18)

for all φ ∈ (KerH[b, ·])0 and all ρ ∈ Rn
Ω,loc. By Theorem 2.3 and Proposi-

tion 2.6 the integral in (2.18) equals∫
∂Ω
w−[b, µ] · [T (b,Dv[b, φ])ν]− dσ. (2.19)

Since [T (b,Dv[b, φ])ν]+ = 0 and φ = [T (b,Dv[b, φ])ν]− − [T (b,Dv[b, φ])ν]+

we have [T (b,Dv[b, φ])ν]− = φ, which in turn implies that [T (b,Dv[b, φ])ν]−

belongs to KerH[b, ·]. Moreover we have w−[b, µ]|∂Ω = H∗[b, µ] by Propo-
sition 2.13. Thus w−[b, µ]|∂Ω is orthogonal to KerH[b, ·] by the Fredholm
Alternative Theorem. In particular w−[b, µ]|∂Ω is orthogonal to the func-
tion [T (b,Dv[b, φ])ν]− and therefore the integral in (2.19) vanishes. It follows
that (2.18) holds and that ψ exists.

So, let ψ be a function of Cm−1,λ(∂Ω,Rn) which satisfies (2.17). Since
(codim KerH[b, ·])0 ≥ n (see the proof of Theorem 2.16) there exists ψ̃ ∈
KerH[b, ·] such that

∫
∂Ω ψ̃ dσ =

∫
∂Ω ψ dσ. We set ψ0 ≡ ψ − ψ̃ and we note

that ψ0 ∈ Cm−1,λ(∂Ω,Rn) and satisfies (2.17). Now we set

u ≡ v[b, ψ0]− w[b, µ]. (2.20)

By (ii) and by Proposition 2.6, the restriction u|Rn\clΩ admits an extension
u− ∈ Cm,λ(Rn \ Ω,Rn). We claim that

(u−|∂Ω − µ) ∈ KerH∗[b, ·]. (2.21)
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By Propositions 2.6 and 2.13 and by equation (2.17) we deduce that

ψ0 = [T (b,Dv[b, ψ0])ν]
− −H[b, ψ0] (2.22)

= [T (b,Dv[b, ψ0])ν]
− − [T (b,Dw[b, µ])ν]− =

[
T (b,Du−)ν

]−
.

Then, by exploiting Theorem 2.8, we have

u(x) =
∫

∂Ω
Γ(b, x− y)

[
T (b,Du−)ν

]− (y) dσy (2.23)

−
∫

∂RBn

Γ(b, x− y)
[
T (b,Du−(y))νRBn(y)

]
dσy

+
∫

∂Ω

{
u−|∂Ω(y) ·

[
T (b,DΓ(i)(b, x− y))ν(y)

]}
i=1,...,n

dσy

−
∫

∂RBn

{
u(y) ·

[
T (b,DΓ(i)(b, x− y))νRBn(y)

]}
i=1,...,n

dσy,

for every x ∈ RBn \ clΩ and every R > 0 such that clΩ ⊂ RBn. By
arguing as in the proof of Proposition 2.6, one can verify that the second
and the fourth integral term in (2.22) vanish as R → +∞. Therefore we
have u(x) = v[[T (b,Du−)ν]−](x)−w[b, u−|∂Ω](x) for all x ∈ Rn \ clΩ, which
implies

u(x) = v[b, ψ0](x)− w[b, u−|∂Ω](x), ∀ x ∈ Rn \ clΩ, (2.24)

by equation (2.22). Taking the difference of (2.24) and (2.20) we obtain
that w[b, u−|∂Ω − µ](x) = 0 for all x ∈ Rn \ clΩ. By Proposition 2.13
equation (2.21) immediately follows.

Now, by (2.21) and by Theorem 2.16, there exists ρ ∈ RΩ,loc such that

u−|∂Ω = µ+ ρ|∂Ω. (2.25)

Moreover we note that the right hand side of (2.23) vanishes for x ∈ Ω
by Theorem 2.3. So, by letting R→∞, we deduce that

v
[
b,
[
T (b,Du−)ν

]− ](x)− w
[
b, u−|∂Ω

]
(x) = 0, ∀ x ∈ Ω. (2.26)

Now, by exploiting (2.22), (2.25) and (2.26), we obtain

v[b, ψ0](x)−w[b, µ](x) = −
∫

∂Ω
[T (b,DΓ(b, x− y))ν(y)]·ρ|∂Ω(y) dσy, (2.27)

for all x ∈ Ω. By Theorems 2.4 and 2.8 we deduce that the integral on the
right hand side of (2.27) equals ρ(x). So we have

w[b, µ](x) = v[b, ψ0](x)− ρ(x), ∀ x ∈ Ω, (2.28)

which immediately implies statement (i) of our Lemma 2.20.
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We also note that, by (2.28), the limit [T (b,Dw[b, µ])ν]+ exists and
equals [T (b,Dv[b, ψ])ν]+. Indeed we have [T (b,Dρ)ν]+ = 0 by Theorem 2.4.
Since, by (2.17), [T (b,Dv[b, ψ0])ν]

+ = H[b, ψ0] = [T (b,Dw[b, µ])ν]−, we de-
duce that [T (b,Dw[b, µ])ν]+ = [T (b,Dw[b, µ])ν]−.

Theorem 2.21. Let b > 1−2/n, m ∈ N\{0}, λ ∈]0, 1[. Let Ω be a bounded
open subset of Rn of class Cm,λ. Let µ ∈ L2(∂Ω,Rn). If either K[b, µ] ∈
Cm,λ(∂Ω,Rn) or H∗[b, µ] ∈ Cm,λ(∂Ω,Rn), then µ ∈ Cm,λ(∂Ω,Rn).

Proof. Assume that K[b, µ] ∈ Cm,λ(∂Ω,Rn). By Lemma 2.14 we have µ ∈
C0,λ(∂Ω,Rn). Then, by Proposition 2.7, the restriction w[b, µ]|Ω extends
to a function w+[b, µ] of C0,λ(clΩ,Rn). Moreover w+[b, µ]|∂Ω = K[b, µ] by
Proposition 2.13. So we have w+[b, µ]|∂Ω ∈ Cm,λ(∂Ω,Rn) and we deduce by
Giaquinta [10, §3.4] for m = 1, and by Agmon, Douglis and Nirenberg [1,
Theorem 9.3] for m ≥ 2, that w+[b, µ] ∈ Cm,λ(clΩ,Rn). Now we exploit
Lemma 2.20 which implies that the restriction w[b, µ]|Rn\clΩ has an extension
w−[b, µ] ∈ Cm,λ(Rn \Ω,Rn). Since we have µ(x) = w+[b, µ](x)−w−[b, µ](x)
for all x ∈ ∂Ω, we conclude that µ ∈ Cm,λ(∂Ω,Rn). The proof for H∗ is
very similar.

2.2 Dirichlet boundary value problem

2.2.1 Description of the problem

In the sequel we consider an open connected subset A of Rn such that Rn\clA
consists of two connected components. We let the unbounded connected
component of Rn \ clA be perturbed in a “regular” way, whereas the other
one will display a “singular” behavior parametrized by a real coefficient ε.
To do so, we fix a constant m ∈ N \ {0}, and a constant λ ∈]0, 1[, and
we we fix a pair of open and bounded subsets Ωh and Ωd of Rn of class
Cm,λ, such that Ωh, Ωd, Rn \ clΩh and Rn \ clΩd are connected. Here “h”
stays for “hole” and “d” for “domain”. Then we consider two functions φh

and φd belonging to Cm,λ(∂Ωh,Rn) ∩ A∂Ωh and to Cm,λ(∂Ωd,Rn) ∩ A∂Ωd ,
respectively, where the sets A∂Ωh and A∂Ωd are defined as in subsection 1.5.
We denote by A[ω, ε, φh, φd] the subset of Rn defined by

A[ω, ε, φh, φd] ≡ I[φd] \ (ω + cl(εI[φs]))

where ω is a point of Rn contained in I[φd], ε is a real parameter, and we
assume that (ω + cl(εI[φs])) ⊂ I[φd]. We note that, with this notation,
A[ω, 0, φh, φd] is the punctured domain I[φd] \ {ω}.

As we have just seen ω, ε, φh and φd are subjected to certain conditions.
We denote by Em,λ the set of all quadruples (ω, ε, φh, φd) which we retain
as admissible. So Em,λ is the set of all quadruples (ω, ε, φh, φd) ∈ Rn × R×
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(Cm,λ(∂Ωs,Rn) ∩ A∂Ωh)× (Cm,λ(∂Ωr,Rn) ∩ A∂Ωd) such that ω + cl(εI[φh])
is contained in I[φd]. We also find convenient to denote by Em,λ

+ the subset
of Em,λ of all quadruples (ω, ε, φh, φd) with ε > 0. Then one verifies that
the sets Em,λ and Em,λ

+ are open subsets of the Banach space Rn × R ×
Cm,λ(∂Ωh,Rn) × Cm,λ(∂Ωd,Rn). To simplify our notation we sometimes
write a instead of (ω, ε, φd, φh). By applying the Jordan-Leray Separation
Theorem it is easily seen that

∂A[a] = (ω + εφh(∂Ωh)) ∪ φd(∂Ωd)

for all a ≡ (ω, ε, φh, φd) ∈ Em,λ
+ . Moreover ω + εφh(∂Ωh) and φd(∂Ωd)

are manifolds of class Cm,λ. It follows that A[a] is a bounded open and
connected subset of Rn of class Cm,λ and that Rn \clA[a] has two connected
components, for all a ∈ Em,λ

+ .
Now we introduce a Dirichlet boundary value problem for the operator

L[b] in the domain A[a], with a ∈ Em,λ
+ . Let b > 1 − 2/n and let a ≡

(ω, ε, φh, φd) ∈ Em,λ
+ . Let (gh, gd) belong to Cm,λ(∂Ωh,Rn)×Cm,λ(∂Ωd,Rn).

We consider the following system of equations,
L[b]u = 0 in A[a],
u = gh ◦ (ω + εφh)(−1) on ω + εφh(∂Ωh),
u = gd ◦ φd(−1) on φd(∂Ωd),

(2.29)

It is well known that there exists a unique u ∈ Cm,λ(clA[a],Rn) which sat-
isfies system (2.29) (cf., e.g., Kupradze, Gegelia, Bashelĕıshvili and Burchu-
ladze [18].) We denote by u[b,a, gh, gd] such a solution. Then we in-
vestigate the behavior of u[b,a, gh, gd] upon perturbation of (b,a, gh, gd)
around a given degenerate 7-tuple (b0, ω0, 0, φh

0 , φ
d
0, g

h
0 , g

d
0) of B × Em,λ ×

Cm,λ(∂Ωh,Rn)× Cm,λ(∂Ωd,Rn), where B ≡ {b ∈ R : b > 1− 2/n}.

2.2.2 Solution by means of layer potentials

In the following Theorem 2.25 we show that the solution u of problem (2.29)
is delivered by a linear combination of layer potentials. In order to prove
such a result we need some more notation. So, if X is a measure space, we
consider on L2(X ,Rn) the natural structure of Hilbert space and we denote
by 〈·|·〉X the natural product on L2(X ,Rn). We write 〈·|·〉 instead of 〈·|·〉X if
no ambiguity can arise. Moreover, if Y is a closed subspace of L2(X ,Rn) we
denote by P[Y]µ the orthogonal projection on Y of µ, for all µ ∈ L2(X ,Rn)
(cf. e.g. Brezis [3, Ch. V, §1].) Then we have the following Lemmas 2.22,
2.23 and 2.24.

Lemma 2.22. Let the notation introduced in subsection 2.2.1 hold. Let a ≡
(ω, ε, φh, φd) ∈ Em,λ

+ and b ∈ B. Let F ∈ Cm,λ(∂A[a],Rn)∩(KerK∂A[a][b, ·])⊥
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and β ∈ KerK∂A[a][b, ·]. Then the following boundary value problem,{
K∗

∂A[a][b, τ ] = F,

P[KerK∂A[a][b, ·]]τ = β,
(2.30)

has a unique solution τ ∈ Cm−1,λ(∂A[a],Rn).

Proof. The existence of a solution τ ∈ L2(∂A[a],Rn) which satisfies the first
equation of (2.30) follows by Fredholm Alternative Theorem. Moreover,
by Theorem 2.19, τ ∈ Cm−1,λ(∂A[a],Rn). To conclude the proof we show
that P[KerK∂A[a][b, ·]] is an isomorphism of KerK∗

∂A[a][b, ·] to KerK∂A[a][b, ·].
Since KerK∗

∂A[a][b, ·] and KerK∂A[a][b, ·] have the same finite dimension, it
is enough to show that P[KerK∂A[a][b, ·]] is injective. We recall that, by
Proposition 2.18, KerK∗

∂A[a][b, ·] ∩ (KerK∂A[a][b, ·])⊥ = {0}. It follows that
P[KerK∂A[a][b, ·]]τ0 = 0 implies τ0 = 0, for all τ0 ∈ KerK∗

∂A[a][b, ·].

Lemma 2.23. Let the notation of subsection 2.2.1 hold. Let b ∈ B and
a ≡ (ω, ε, φh, φd) ∈ Em,λ

+ . Let G̃ ∈ Cm,λ(∂A[a],Rn) ∩ (KerK∗
∂A(a)[b, ·])

⊥.
Then the boundary value problem,{

K∂A[a][b, µ] = G̃,

P[KerK∂A[a][b, ·]]µ = 0,
(2.31)

has a unique solution µ ∈ Cm,λ(∂A[a],Rn).

Proof. The existence of µ ∈ L2(∂A[a],Rn) follows by Fredholm Alternative
Theorem and Theorem 2.11. The uniqueness is trivial. By Theorem 2.21
we have that µ ∈ Cm,λ(∂A[a],Rn).

By Lemma 2.22 we deduce the following.

Lemma 2.24. Let the notation of subsection 2.2.1 hold. Let b ∈ B and
a ∈ Em,λ

+ . Let n̄ ≡ dim KerK∂A[a][b, ·]. Let {β(i)}i=1,...,n̄ be orthonormal basis
of KerK∂A[a][b, ·]. Then there exists a basis {α(i)}i=1,...,n̄ of KerK∗

∂A[a][b, ·]
such that 〈α(i)|β(j)〉 = δij for all i, j = 1, . . . , n̄.

Proof. Let α(i) be the unique solution of (2.30) with F = 0 and β = β(i),
for all i = 1, . . . , n̄. Then, by Proposition 2.18, {α(i)}i=1,...,n̄ is a basis
of KerK∗

∂A[a][b, ·]. Moreover, 〈α(i)|β(j)〉 = 〈P[KerK∂A[a][b, ·]]α(i)|β(j)〉 =

〈β(i)|β(j)〉 = δij for all i, j = 1, . . . , n̄.

Now we are ready to prove the following.

Theorem 2.25. Let the notation introduced in subsection 2.2.1 hold. Let
(b,a, gh, gd) ∈ B × Em,λ

+ × Cm,λ(∂Ωh,Rn) × Cm,λ(∂Ωd,Rn). Let G be the
function of ∂A[a] to Rn defined by G(x) ≡ gh ◦ (ω + εφh)(−1)(x) for all
x ∈ (ω + εφh(∂Ωh)) and G(x) ≡ gd ◦ φd(−1)(x) for all x ∈ φd(∂Ωd). Let



62 CHAPTER 2. ELASTIC BOUNDARY VALUE PROBLEMS

{α(i)}i=1,...,n̄ and {β(i)}i=1,...,n̄ be as in Lemma 2.24. Then the unique so-
lution u[b,a, gh, gd] ∈ Cm,λ(clA[a],Rn) of problem (2.29) is delivered by the
following equation,

u[b,a, gh, gd] ≡ w∂A[a][b, µ] +
n̄∑

i,j=1

〈G|α(i)〉∂A[a] (V
−1)ij v∂A[a][b, α

(j)], (2.32)

where µ is the only solution of (2.31) with

G̃ ≡ G−
n̄∑

i=1

〈G|α(i)〉∂A[a] β
(i), (2.33)

and V is the n× n real matrix defined by

Vij ≡ 〈v∂A[a][b, α
(i)]|β(j)〉∂A[a],

for all i, j = 1, . . . , n̄.

Proof. The uniqueness of the solution follows by Theorem 2.4. The existence
can be proved by the previous Lemma 2.23 and by exploiting equation 2.32.
We just note here that the matrix V is invertible by Theorem 2.17.

2.2.3 Auxiliary boundary value problems

The purpose of this subsection is to investigate the Dirichlet interior bound-
ary value problem in I[φd] and the Dirichlet exterior boundary value problem
in E[φh] and to provide an expression for the solutions of both by means of
layer potentials. This will be done in the Theorems 2.27 and 2.30. First we
state the following Lemma 2.26, which can be verified by arguing as in the
proof of Lemmas 2.22 and 2.23.

Lemma 2.26. Let the notation of subsection 2.2.1 hold. Let b ∈ B and
a ≡ (ω, ε, φh, φd) ∈ Em,λ

+ . Then the following statements hold.

(i) Let F ∈ Cm−1,λ(φd(∂Ωd),Rn). Then the equation

K∗
φd(∂Ωd)[b, τ ] = F, (2.34)

has one and only one solution τ ∈ Cm−1,λ(φd(∂Ωd),Rn).

(ii) Let Gd ∈ Cm,λ(φd(∂Ωd),Rn). Then the equation

Kφd(∂Ωd)[b, µ] = Gd, (2.35)

has a unique solution µ ∈ Cm,λ(φd(∂Ωd),Rn).
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(iii) Let F be a function of Cm−1,λ(φh(∂Ωh),Rn)∩(KerH∗
φh(∂Ωh)

[b, ·])⊥ and
β ∈ KerH∗

φh(∂Ωh)
[b, ·]. Then the following boundary value problem,

{
Hφh(∂Ωh)[b, τ ] = F,

P[KerH∗
φh(∂Ωh)

[b, ·]]τ = β,
(2.36)

has a unique solution τ ∈ Cm−1,λ(φh(∂Ωh),Rn).

(iv) Let G̃h be a function of Cm,λ(φh(∂Ωh),Rn)∩ (KerHφh(∂Ωh)[b, ·])⊥ and
β ∈ KerH∗

φh(∂Ωh)
[b, ·]. Then the following boundary value problem,

{
H∗

φh(∂Ωh)
[b, µ] = G̃h,

P[KerH∗
φh(∂Ωh)

[b, ·]]µ = β,
(2.37)

has a unique solution µ ∈ Cm,λ(φh(∂Ωh),Rn).

By means of Lemma 2.26 and by Proposition 2.13 we immediately deduce
the following.

Theorem 2.27. Let the notation of subsection 2.2.1 hold. Let b ∈ B
and a ≡ (ω, ε, φh, φd) ∈ Em,λ

+ . Let Gd ∈ Cm,λ(φd(∂Ωd),Rn). Let µ ∈
Cm,λ(φd(∂Ωd),Rn) be the solution of (2.35). Then the boundary value prob-
lem {

L[b]u = 0 in I[φd] ,
u = Gd on φd(∂Ωd) ,

(2.38)

has a unique solution u ∈ Cm,λ(clI[φd],Rn), which is delivered by the double
layer potential wφd(∂Ωd)[b, µ].

Now we turn to consider the first exterior boundary value problem in
E[φh]. We need the following lemma, which can be proved by arguing as in
the proof of Lemma 2.24.

Lemma 2.28. Let the notation of subsection 2.2.1 hold. Let b ∈ B and a ≡
(ω, ε, φh, φd) ∈ Em,λ

+ . Let n̄ ≡ dim KerH∗
φh(∂Ωh)

[b, ·]. Let {b(i)}i=1,...,n̄ be an

orthonormal basis of KerH∗
φh(∂Ωh)

[b, ·]. Then there exists a basis {a(i)}i=1,...,n̄

of KerHφh(∂Ωh)[b, ·] such that 〈a(i)|b(j)〉 = δij, for all i, j = 1, . . . , n̄.

In the following Theorem 2.30 we distinguish between the case n = 2 and
n ≥ 3. To treat the case n = 2 we need to introduce an explicit basis for
KerH∗

φd(∂Ωd))
[b, ·]. So, by exploiting Theorem 2.16 we deduce the following.

Lemma 2.29. Let the notation of subsection 2.2.1 hold. Let n = 2, and
b ∈ B, and a ≡ (ω, ε, φh, φd) ∈ Em,λ

+ . Let b(1)[φh], b(2)[φh] and b(3)[φh] be
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the functions of φh(∂Ωh) to R2 defined by

b(1)[φh](x) ≡ |φh(∂Ωh)|−1/2(1, 0),
b(2)[φh](x) ≡ |φh(∂Ωh)|−1/2(0, 1),
b(3)[φh](x) ≡ b̃[φh](x)− 〈̃b[φh]|b(1)[φh]〉φh(∂Ωh)b

(1)[φh](x)

−〈̃b[φh]|b(2)[φh]〉φh(∂Ωh)b
(2)[φh](x),

for all x ∈ φh(∂Ωh), where

b̃[φh](x) ≡ c−1/2|φh(∂Ωh)|−1/2(−x2, x1)

for all x ≡ (x1, x2) ∈ φh(∂Ωh), with

c ≡ −
∫

φh(∂Ωh)
|y|2 dσy −

(
−
∫

φh(∂Ωh)
y dσy

)2
,

where −
∫

denotes the integral average. Then {b(1)[φh], b(2)[φh], b(3)[φh]} is
an orthonormal basis of KerH∗

φh(∂Ωh)
[b, ·]. Moreover there exists a unique

(α̃[b, φh], c̃[b, φh]) of (KerHφh(∂Ωh)[b, ·])0 × (R2
I[φh],loc

)|φh(∂Ωh) such that

vφh(∂Ωh)[b, α̃[b, φh]] + c̃[b, φh] = b̃[φh].

We are now ready to prove Theorem 2.30.

Theorem 2.30. Let the notation of subsection 2.2.1 hold. Let b ∈ B and
a ≡ (ω, ε, φh, φd) ∈ Em,λ

+ . Let Gh ∈ Cm,λ(φh(∂Ωh),Rn). Then the boundary
value problem

L[b]u = 0 in E[φh],
u = Gh on φh(∂Ωh),
supx∈E[φh] |u(x)||x|n−2 < +∞,

supx∈E[φh] |Du(x)||x|n−1 < +∞,

(2.39)

has a unique solution u ∈ Cm,λ(clE[φh],Rn). Moreover the following state-
ments hold.

(i) Let n ≥ 3. Let {a(i)}i=1,...,n̄ and {b(i)}i=1,...,n̄ be as in Lemma 2.28.
Then the solution u of (2.39) is delivered by the following equation,

u ≡ wφh(∂Ωh)[b, µ] +
∑

i,j=1,...,n̄

〈Gh|a(i)〉 (V −1)ij vφh(∂Ωh)[b, a
(j)], (2.40)

where µ is the only solution of (2.37) with β = 0 and

G̃h = Gh −
∑

i=1,...,n̄

〈Gh|a(i)〉 b(i),

and where V ∈Mn̄×n̄(R) is defined by

Vij ≡ 〈vφh(∂Ωh)[b, a
(i)]|b(j)〉

for every i, j = 1, . . . , n̄.



2.2. DIRICHLET BOUNDARY VALUE PROBLEM 65

(ii) Let n = 2. Let {b(i)[φh]}i=1,...,3, b̃[φh] and (α̃[b, φh], c̃[b, φh]) be as in
Lemma 2.29. Let {a(i)[φh]}i=1,...,3 be defined as in Lemma 2.29 with
b(i) ≡ b(i)[φh] for all i = 1, . . . , 3. Then the solution of (2.39) is
delivered by the following equation,

u ≡ wφh(∂Ωh)[b, µ] + 〈Gh|a(3)〉
(
vφh(∂Ωh)[b, α̃[b, φh]] + c̃[b, φh]

)
(2.41)

+
∑
i=1,2

(
〈Gh|a(i)〉 − 〈Gh|a(3)〉〈̃b[φh]|b(i)[φh]〉

)
b̄(i)[φh],

where µ is the only solution of (2.37) with β = 0, and

G̃h = Gh −
∑

i=1,...,3

〈Gh|a(i)〉b(i)[φh],

and b̄(i)[φh] is the constant function on clE[φh] which extends b(i)[φh],
for i = 1, 2.

By Theorem 2.27 and 2.30 we can introduce the following notation.

Definition 2.31. Let the notation of subsection 2.2.1 hold. Let (b,a, gh, gd)
be a point of B × Em,λ

+ × Cm,λ(∂Ωh,Rn) × Cm,λ(∂Ωd,Rn). We denote by
ud[φd, gd] the unique solution of (2.38) with Gd = gd ◦ (φd)(−1), and we
denote by uh[b, φh, gh] the unique solution of (2.39) with Gh = gh ◦ (φh)(−1),
and we denote by uh

r [b, φh, gh] the function wφh(∂Ωh)[b, µ](x) of the variable
x ∈ E[φh] with µ as in Theorem 2.30, and we denote by uh

s [b, φh, gh] the
difference uh[b, φh, gh]− uh

r [b, φh, gh].

2.2.4 Fixed basis for the kernels of the integral operators

In order to make the expressions (2.32) and (2.40) more explicit, we fix in
the following Theorem 2.34 explicit expression for the orthonormal basis
{β(i)}i=1,...,n̄ and {b(i)}i=1,...,n̄ of KerH∗

φh(∂Ωh)
[b, ·] and KerK∂A[a][b, ·], re-

spectively. To do so, we need the following technical lemma, which can be
verified by a standard calculus (see also Lanza de Cristoforis and Rossi [27,
Lemma 3.13].)

Lemma 2.32. Let m ∈ N \ {0}, λ ∈]0, 1[. Let Ω be an open bounded
subset of Rn of class Cm,λ such that Ω and Rn \ clΩ are connected. Let
φ ∈ Cm,λ(∂Ω,Rn) ∩ A∂Ω. Then there exists a positive function σ̃[φ] ∈
Cm−1,λ(∂Ω) such that∫

φ(∂Ω)
f(ξ) dσξ =

∫
∂Ω
f ◦ φ(x)σ̃[φ](x) dσx,

for every f ∈ L1(φ(∂Ω)).
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Definition 2.33. We denote by {e(i)}i=1,...,n the canonical basis of Rn and
we denote by {s(i)}i=1,...,(n

2)
the canonical basis of Skew(n,R). Let m ∈

N \ {0} and λ ∈]0, 1[. Let Ω be an open bounded subset of Rn of class Cm,λ

such that Ω and Rn \ clΩ are connected. Let φ ∈ Cm,λ(∂Ω,Rn) ∩ A∂Ω. We
denote by {b(i)[φ]}1,...,n̄, n̄ ≡ n +

(
n
2

)
, the orthonormal basis of (RI[φ])|φ(∂Ω)

defined by

b(i)[φ](ξ) ≡
(∫

∂Ω
σ̃[φ] dσ

)− 1
2

e(i) ∀ ξ ∈ φ(∂Ω), i = 1, . . . , n,

and

b(i)[φ](ξ) ≡(
s(i−n)ξ −

i−1∑
j=1

∫
∂Ω

(s(i−n)φ(y)) · b(j)[φ] ◦ φ(y) σ̃[φ](y) dσy b
(j)[φ](ξ)

)

·
(∫

∂Ω
|(s(i−n)φ(y))|2σ̃[φ](y) dσy

−
i−1∑
j=1

(∫
∂Ω

(s(i−n)φ(y)) · b(j)[φ] ◦ φ(y) σ̃[φ](y) dσy

)2)− 1
2

for all ξ ∈ φ(∂Ω) and for all i = n+ 1, . . . , n+
(
n
2

)
.

Then by Theorems 2.16 and 2.17 we have the following.

Theorem 2.34. Let the notation of subsection 2.2.1 hold. Let b ∈ B and
a ≡ (ω, ε, φh, φd) ∈ Em,λ

+ . Let b(i)[φh], i = 1, . . . , n̄, be as in the previous
definition. Let β(i)[a] be the function on ∂A[a] defined by

β(i)[a](ξ) ≡

{
ε

1−n
2 b(i)[φh]

(
ξ−ω

ε

)
for ξ ∈ ω + εφh(∂Ωh),

0 for ξ ∈ φd(∂Ωd),

for all i = 1, . . . , n̄. Then the following statements hold.

(i) {b(i)[φh]}i=1,...,n̄ is an orthonormal basis of KerH∗
φh(∂Ωh)

[b, ·].

(ii) {β(i)[a]}i=1,...,n̄ is an orthonormal basis of KerK∂A[a][b, ·].

We note that, for n = 2, the two bases {b(1)[φh], b(2)[φh], b(3)[φh]} of
KerH∗

φh(∂Ωh)
[b, ·] introduced in Lemma 2.29 and in Theorem 2.34, respec-

tively, coincide.
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2.2.5 A real analyticity theorem for the solutions of (2.30)

We start our analysis of the auxiliary problem (2.30), which is defined on the
a dependent domain A[a], by transforming it into a system of equations on
the boundaries of the fixed domains Ωh and Ωd. This is done in the following
Theorem 2.36. In order to abbreviate our notation we find convenient to
introduce the following.

Definition 2.35. Let m ∈ N \ {0} and λ ∈]0, 1[. Let Ω be an open bounded
subset of Rn of class Cm,λ such that Ω and Rn \ clΩ are connected. We set

K[b, φ, µ] ≡ Kφ(∂Ω)[b, µ ◦ φ(−1)] ◦ φ, K∗[b, φ, µ] ≡ K∗
φ(∂Ω)[b, µ ◦ φ

(−1)] ◦ φ,

H[b, φ, µ] ≡ Hφ(∂Ω)[b, µ ◦ φ(−1)] ◦ φ, H∗[b, φ, µ] ≡ H∗
φ(∂Ω)[b, µ ◦ φ

(−1)] ◦ φ

for all (b, φ, µ) ∈ B × (Cm,λ(∂Ω,Rn) ∩ A∂Ω)× L2(∂Ω,Rn).

Theorem 2.36. Let the notation of subsection 2.2.1 hold. We denote by
T ≡ (T 1, T 2, T 3) the map of the set B × Em,λ × Rn̄ × Cm−1,λ(∂Ωh,Rn) ×
Cm−1,λ(∂Ωd,Rn) to Cm−1,λ(∂Ωh,Rn)× Cm−1,λ(∂Ωd,Rn)× Rn̄ defined by

T 1[b, ω, ε, φh, φd, c, τh, τd](x) ≡ −H[b, φh, τh](x) (2.42)

−εn−1

∫
∂Ωd

n∑
i=1

[
T (b,DΓ(i)(b, ω + εφh(x)− φd(y)))

·νφh ◦ φh(x)
]
τd
i (y)σ̃[φd](y) dσy, ∀ x ∈ ∂Ωh,

T 2[b, ω, ε, φh, φd, c, τh, τd](x) ≡ K∗[b, φd, τd](x) (2.43)

+
∫

∂Ωh

n∑
i=1

[
T (b,DΓ(i)(b, φd(x)− ω − εφh(y))

·νφd ◦ φd(x)
]
τh
i (y)σ̃[φh](y) dσy, ∀ x ∈ ∂Ωd,

T 3[b, ω, ε, φh, φd, c, τh, τd] (2.44)

≡
(∫

∂Ωh

τh(y) ·
(
b(i)[φh] ◦ φh(y)

)
σ̃[φh](y) dσy − ci

)
i=1,...,n̄

,

for all elements (b, ω, ε, φh, φd, c, τh, τd) of the product B × Em,λ × Rn̄ ×
Cm−1,λ(∂Ωh,Rn)×Cm−1,λ(∂Ωd,Rn), where νφh and νφd denote the outward
unit normal to the boundary of I[φh] and I[φd], respectively.

Let (b, ω, ε, φh, φd, c) ∈ B×Em,λ
+ ×Rn̄ be fixed. Then the pair of functions

(τh, τd) of Cm−1,λ(∂Ωh,Rn)× Cm−1,λ(∂Ωd,Rn) satisfies the equation

T [b, ω, ε, φh, φd, c, τh, τd] = 0 (2.45)

if and only if the function τ ∈ Cm−1,λ(∂A[ω, ε, φh, φd],Rn) defined by

τ ≡
{
ε1−n τh ◦ (ω + εφh)(−1) on ω + εφh(∂Ωh),
τd ◦ (φd)(−1) on φd(∂Ωd),
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satisfies (2.30) with T = 0 and β = ε
1−n

2
∑n̄

i=1 ciβ
(i)[ω, ε, φh, φd] . In partic-

ular, equation (2.45) has exactly one solution (τh, τd) ∈ Cm−1,λ(∂Ωh,Rn)×
Cm−1,λ(∂Ωd,Rn) for each fixed (b, ω, ε, φh, φd, c) ∈ B × Em,λ

+ × Rn̄.
Let (b, ω, 0, φh, φd, c) ∈ B×Em,λ×Rn̄ be fixed. Then the pair of functions

(τh, τd) of Cm−1,λ(∂Ωh,Rn)× Cm−1,λ(∂Ωd,Rn) satisfies equation

T [b, ω, 0, φh, φd, c, τh, τd] = 0, (2.46)

if and only if both the following conditions are fulfilled.

(i) The function τ ≡ τd ◦ (φd)(−1) of Cm−1,λ(φd(∂Ωd),Rn) satisfies (2.34)
with

F (ξ) = −|φh(∂Ωh)|1/2
n∑

i=1

ci T (b,DΓ(i)(b, ξ−ω)) νφd(ξ), ∀ξ ∈ φd(∂Ωd).

(2.47)

(ii) The function τ ≡ τh◦(φh)(−1) of Cm−1,λ(φh(∂Ωh),Rn) satisfies (2.36)
with F = 0 and β =

∑n̄
i=1 ci b

(i)[φh].

In particular, equation (2.46) admits exactly one solution (τh, τd) belonging
to Cm−1,λ(∂Ωh,Rn) × Cm−1,λ(∂Ωd,Rn) for each fixed (b, ω, 0, φh, φd, c) ∈
B × Em,λ × Rn̄.

Proof. The statement follows by a straightforward verification based on the
theorem of change of variables in integrals and by the previous Lemmas 2.22,
2.26 and by Theorem 2.34. We only note that, if (b, ω, 0, φh, φd, c) ∈ B ×
Em,λ×Rn̄ is fixed, then by statement (iv) of Lemma 2.26 the first and third
component of (2.46) admit a unique solution τh ∈ Cm−1,λ(φh(∂Ωh),Rn)
which satisfies condition (ii) of Theorem 2.36. Then, by statement (i) of
Lemma 2.26, the second component of equation (2.46) has a unique solution
τd ∈ Cm−1,λ(φd(∂Ωd),Rn). In particular, the function τ ≡ τd ◦ (φd)(−1)

satisfies (2.34) with

F (ξ) = −
n∑

i=1

(∫
∂Ωh

τh
i σ̃[φh] dσ

)
T (b,DΓ(i)(b, ξ−ω))νφd(ξ), ∀ ξ ∈ φd(∂Ωd).

The integral in the right hand side equals

|φh(∂Ωh)|1/2

∫
∂Ωh

τh ·
(
bi[φh] ◦ φh

)
σ̃[φh] dσ = |φh(∂Ωh)|1/2ci,

for all i = 1, . . . , n. Therefore τd satisfies condition (i).

By Theorem 2.36, it makes sense to introduce the following.
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Definition 2.37. Let the notation introduced in subsection 2.2.1 hold. Let
c ≡ (b, ω, ε, φh, φd, c) ∈ B × Em,λ × Rn̄ with ε > 0 or ε = 0. We denote
by (τ̂h[c], τ̂d[c]) the couple of functions (τh, τd) ∈ Cm−1,λ(φh(∂Ωh),Rn) ×
Cm−1,λ(φd(∂Ωd),Rn) which satisfies equation (2.45) or equation (2.46), re-
spectively.

Our goal is now to show that τ̂h[·], τ̂d[·] admit a real analytic continuation
around a “degenerate” point c0 ≡ (b0, ω0, 0, φh

0 , φ
d
0, c0) ∈ B×Em,λ×Rn̄. By

Theorem 2.36, it suffices to show that locally around (c0, τ̂
h[c0], τ̂d[c0]) the

set of zeros of T is the graph of a real analytic operator. We plan to do
so by exploiting the following corollary of the Implicit Mapping Theorem in
Banach space (for a proof see Lanza de Cristoforis [25, Appendix B].)

Proposition 2.38. Let X , Y, Z, Z1 be Banach spaces. Let O be an open set
of X ×Y such that (x0, y0) ∈ O. Let F be a real analytic map of O to Z such
that F (x0, y0) = 0. Let the partial differential ∂yF (x0, y0) with respect to the
variable y be an homeomorphism of Y onto its image V ≡ Ran(∂yF (x0, y0)).
Assume that there exists a closed subspace V1 of Z such that Z = V ⊕ V1

algebraically. Let O1 be an open subset of X × Y × Z containig (x0, y0, 0)
such that O1 ⊃ {(x, y, F (x, y)) : (x, y) ∈ O}, O1 ⊃ {(x, y, 0) : (x, y) ∈ O}.
Let G be a real analytic map of O1 to Z1 such that G(x, y, F (x, y)) = 0
for all (x, y) ∈ O, G(x, y, 0) = 0 for all (x, y) ∈ O, and such that the
partial differential ∂zG(x0, y0, 0) is surjective onto Z1 and has kernel equal
to V . Then there exists an open neighborhood U of x0 in X and an open
neighborhood V of y0 in Y with U ×V ⊂ O and such that the set of zeros of
F in U × V coincides with the graph of a real analytic function of U to V.

So, in order to apply the previous proposition to the operator T in a
neighborhood of a point c0 ∈ B × Em,λ × Rn̄ we have to understand the
real analyticity properties of T . The definition of T involves the operators
H[·, ·, ·] and K∗[·, ·, ·] and also integral operators which display no singular-
ities. To analyze their regularity we need the following Propositions 2.39,
where we summarize some known and some easily verifiable real analyticity
results.

Proposition 2.39. Let m ∈ N\{0} and λ ∈]0, 1[. Let Ω be an open bounded
subsets of Rn of class Cm,λ such that Ω and Rn \ clΩ are connected. Let F
be a real analytic map of B×(Rn\{0}) to R. Then the following statements
hold.

(i) The map of Cm,λ(∂Ω,Rn)∩A∂Ω to Cm−1,λ(∂Ω) which takes φ to σ̃[φ]
is real analytic.

(ii) The map of Cm,λ(∂Ω,Rn) ∩ A∂Ω to Cm−1,λ(∂Ω,Rn) which takes φ to
νφ ◦ φ is real analytic.
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(iii) The map of Cm,λ(∂Ω,Rn) ∩ A∂Ω to Cm,λ(∂Ω,Rn) which takes φ to
b(i)[φ] ◦ φ is real analytic for all i = 1, . . . , n̄.

(iv) Let Ω′ be an open bounded subsets of Rn of class Cm,λ such that Ω′

and Rn \ clΩ′ are connected. Then the map H1 of{
(b, φ, ψ, f) ∈ B × Cm,λ(∂Ω,Rn))× Cm,λ(∂Ω′,Rn)× L1(∂Ω′)

: φ(∂Ω) ∩ ψ(∂Ω′) = ∅
}

to Cm,λ(∂Ω) which takes (b, φ, ψ, f) to the function H1[b, φ, ψ, f ] de-
fined by

H1[b, φ, ψ, f ](x) ≡
∫

∂Ω′
F (b, φ(x)− ψ(y))f(y) dσy, ∀ x ∈ ∂Ω,

is real analytic.

(v) Let Ω′ be a bounded open subset of Rn. Then the map H2 of{
(φ, f) ∈ B × C0(∂Ω,Rn)× L1(∂Ω) : φ(∂Ω) ∩ clΩ′ = ∅

}
to C0(clΩ′) which takes (b, φ, f) to the function H2[b, φ, f ] defined by

H2[b, φ, f ](x) ≡
∫

∂Ω
F (b, x− φ(y))f(y) dσy, ∀ x ∈ clΩ′,

is real analytic.

(vi) Let Ω′ be a bounded connected open subset of Rn of class C1. Then
the map H3 of{

(b, φ,Φ, f) ∈ B × Cm,λ(∂Ω,Rn)× Cm,λ(clΩ′,Rn)× L1(∂Bn)

: φ(Ω) ∩ Φ(clΩ′) = ∅
}

to Cm,λ(clΩ′) which takes (b, φ,Φ, f) to the function H3[b, φ,Φ, f ] de-
fined by

H3[b, φ,Φ, f ](x) ≡
∫

∂Ω
F (b,Φ(x)− φ(y))f(y) dσy, ∀ x ∈ clΩ′,

is real analytic.

(vii) K[·, ·, ·] and H∗[·, ·, ·] are real analytic from B×(Cm,λ(∂Ω,Rn)∩A∂Ω)×
Cm,λ(∂Ω,Rn) to Cm,λ(∂Ω,Rn).

(viii) K∗[·, ·, ·] and H[·, ·, ·] are real analytic from B×(Cm,λ(∂Ω,Rn)∩A∂Ω)×
Cm−1,λ(∂Ω,Rn) to Cm−1,λ(∂Ω,Rn).
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Proof. A proof of (i) and (ii) can be found in Lanza de Cristoforis and
Rossi [27, Lemma 3.13]. Statement (iii) follows by standard calculus in Ba-
nach space. Statement (iv) is a corollary of a known result for composition
operators (cf. Böhme and Tomi [2, p. 10], Henry [13, p. 29], Valent [45, The-
orem 5.2, p. 44]), its proof can be found in Lanza de Cristoforis [22, Propo-
sition 3.7] and is just a straightforward modification of Lanza de Cristoforis
and Rossi [27, Lemma 3.9]. The proof of (v) and (vi) is similar. Statement
(vii) and (viii) follows by Proposition 1.40.

Then we immdiately deduce the following.

Proposition 2.40. With the notation of subsection 2.2.1 hold, the set B×
Em,λ×Rn̄×Cm−1,λ(∂Ωh,Rn)×Cm−1,λ(∂Ωd,Rn) is an open subset of the Ba-
nach space Rn+2×Cm,λ(∂Ωh,Rn)×Cm,λ(∂Ωd,Rn)×Rn̄×Cm−1,λ(∂Ωh,Rn)×
Cm−1,λ(∂Ωd,Rn) and the operator T is real analytic.

Moreover we need the following two lemmas.

Lemma 2.41. With the notation introduced in subsection 2.2.1, let d0 ≡
(b0, ω0, 0, φh

0 , φ
d
0, c0, τ

h
0 , τ

d
0 ) be a point of B×Em,λ×Rn̄×Cm−1,λ(∂Ωh,Rn)×

Cm−1,λ(∂Ωd,Rn) such that T [d0] = 0. Then the differential

∂(τh,τd)T [d0] =
(
∂(τh,τd)T

1[d0], ∂(τh,τd)T
2[d0], ∂(τh,τd)T

3[d0]
)

of T with respect to the variable (τh, τd) at d0 is delivered by the linear op-
erators which takes a couple (τ̄h, τ̄d) of Cm−1,λ(∂Ωh,Rn)×Cm−1,λ(∂Ωd,Rn)
to the functions defined by

∂(τh,τd)T
1[d0](τ̄h, τ̄d)(x) = −H[b0, φh

0 , τ̄
h](x), ∀ x ∈ ∂Ωh (2.48)

∂(τh,τd)T
2[d0](τ̄h, τ̄d)(x) (2.49)

= K∗[b0, φd
0, τ̄

d](x) +
∫

∂Ωh

n∑
i=1

[
T (b0, DΓ(i)(b0, φd

0(x)− ω0))

·νφd
0
◦ φd

0(x)
]
τ̄h
i (y)σ̃[φh

0 ](y) dσy, ∀ x ∈ ∂Ωh,

∂(τh,τd)T
3[d0](τ̄h, τ̄d) (2.50)

=
(∫

∂Ωh

τ̄h(y) ·
(
b(i)[φh

0 ] ◦ φh
0(y)

)
σ̃[φh

0 ](y) dσy

)
i=1,...,n̄

.

Let V m,λ
0 be the subspace of Cm−1,λ(∂Ωh,Rn) × Cm−1,λ(∂Ωd,Rn) × Rn̄

of the triple (fh, fd, d) such that∫
∂Ωh

fh(y) ·
(
b(i)[φh

0 ] ◦ φh
0(y)

)
σ̃[φh

0 ](y) dσy = 0

for all i = 1, . . . , n̄. Then ∂(τh,τd)T [d0] is a linear homeomorphism of
Cm−1,λ(∂Ωh,Rn)× Cm−1,λ(∂Ωd,Rn) to V m,λ

0 .
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Proof. Expressions (2.48), (2.49), (2.50) follow by standard calculus in Ba-
nach space. Exploiting such expressions we recognize that ∂(τh,τd)T [d0] is a
linear and bounded operator from Cm−1,λ(∂Ωh,Rn) × Cm−1,λ(∂Ωd,Rn) to
Cm−1,λ(∂Ωh,Rn)× Cm−1,λ(∂Ωd,Rn)× Rn̄. Moreover, by the Fredholm Al-
ternative Theorem, the range of ∂(τh,τd)T [d0] is contained in V m,λ

0 . Indeed,
the range of ∂(τh,τd)T

1[d0] is contained in the range of H[b0, φh
0 , ·], which

is orthogonal to the kernel of H∗[b0, φh
0 , ·]. Now, it remains to prove that

∂(τh,τd)T [d0] is a homeomorphism of Cm−1,λ(∂Ωh,Rn)×Cm−1,λ(∂Ωd,Rn) to
V m,λ

0 . By the Open Mapping Theorem, it suffices to show that it is bijective.
So, we fix (fh, fd, c) ∈ V m,λ

0 and we verify that there exists a unique couple
(τ̄h, τ̄d) ∈ Cm−1,λ(∂Ωh,Rn)× Cm−1,λ(∂Ωd,Rn) such that

∂(τh,τd)T
1[d0](τ̄h, τ̄d) = fh,

∂(τh,τd)T
2[d0](τ̄h, τ̄d) = fd,

∂(τh,τd)T
3[d0](τ̄h, τ̄d) = c.

(2.51)

Let F h ≡ fh ◦ (φh
0)(−1). Then, by changing the variable with the function

φh
0 in the definition of V m,λ

0 and by Theorem 2.34, we deduce that F h is
an element of (KerH∗

φh
0 (∂Ωh)

[b0, ·])⊥. Then, by changing the variable with

the function φh
0 if the first and third equation of (2.48) and by exploiting

statement (iii) of Lemma 2.26, we deduce that the the system of the first
and third equation of (2.51) has a unique solution τ̄h ∈ Cm−1,λ(∂Ωh,Rn).
Now let F d be defined by

F d(ξ) ≡ fd ◦ (φd
0)

(−1)(ξ)

−
∫

∂Ωh

n∑
i=1

[
T (b0, DΓ(i)(b0, ξ − ω0))νφd

0
(x)
]
τ̄h
i (y)σ̃[φh

0 ](y) dσy,

for all ξ ∈ φd
0(∂Ωd). Then F d ∈ Cm−1,λ(φd

0(∂Ωd),Rn) and by statement
(i) of the Lemma 2.26 the second equation of (2.51) has a unique solution
τ̄d ∈ Cm−1,λ(φd

0(∂Ωd),Rn).

Lemma 2.42. Let the notation introduced in subsection 2.2.1 hold. Let
d ≡ (b, ω, ε, φh, φd, c, τh, τd) be a point of B×Em,λ×Rn̄×Cm−1,λ(∂Ωh,Rn)×
Cm−1,λ(∂Ωh,Rn). Then∫

∂Ωh

T 1[d](y) ·
(
b(i)[φh] ◦ φh(y)

)
σ̃[φh](y) dσy = 0, (2.52)

for all i = 1, . . . , n̄.

Proof. Let T̃ 1 denote the second term on the right hand side of (2.42).
By the Fredholm Alternative Theorem, equation (2.52) holds with T 1[d]
replaced by T 1[d] − T̃ 1. Thus, to conclude the proof, it is enough to show
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that (2.52) holds with T 1[d] replaced by T̃ 1. For ε = 0, T̃ 1 = 0 and there is
nothing to prove. Let ε 6= 0. We note that

T̃ 1(x) = −εn−1

∫
∂Ωd

n∑
i=1

[
T (b,DΓ(i)(b, ω + εφh(x)− φd(y)))

·νφh ◦ φh(x)
]
· τd

i (y)σ̃[φd](y) dσy, ∀ x ∈ ∂Ωh.

So, if we set

µ̃(ξ) ≡ −
∫

∂Ωd

n∑
i=1

Γ(i)(b, ξ − φd(y))τd
i (y)σ̃[φd](y) dσy, ∀ ξ ∈ I[φd],

then we have

T̃ 1(x) = εn−1T (b,Dµ̃(ω + εφh(x)))νω+εφh(ω + εφh(x)), ∀ x ∈ ∂Ωh.

Now let ρ be an element of RI[ω+εφh] and let ρ̄ be the continuous extension
of ρ to clI[ω + εφh]. Then, by Lemma 2.2, we have E[b](ρ, µ̃) = 0. By
Theorem 2.3 we deduce that∫

∂Ωh

T̃ 1(y) · ρ̄ ◦ (ω + εφh(y)) σ̃[φh](y) dσy

= (sgnε)n−1

∫
ω+εφh(∂Ωh)

[
T (b,Dµ̃(ξ))νω+εφh(ξ)

]
· ρ̄(ξ) dσξ

= (sgnε)n−1

∫
I[ω+εφh]

(L[b]µ̃) · ρ+ E[b](µ̃, ρ) dξ = 0.

Therefore, by Theorem 2.34, we deduce that T̃ 1 satisfies (2.52).

We are now ready to prove a real analyticity result for τ̂h[·] and τ̂d[·].

Theorem 2.43. Let the notation introduced in subsection 2.2.1 hold. Let
c0 ≡ (b0, ω0, 0, φh

0 , φ
d
0, c0) ∈ B × Em,λ × Rn̄. Then there exist an open

neighborhood U0 of c0 in B × Em,λ × Rn̄, and an open neighborhood V0 of
(τ̂h[c0], τ̂d[c0]) in Cm−1,λ(∂Ωh,Rn) × Cm−1,λ(∂Ωd,Rn), and a real analytic
operator (T h, T d) of U0 to V0 such that

(T h[c], T d[c]) = (τ̂h[c], τ̂d[c]) (2.53)

for all c ≡ (b, ω, ε, φh, φd, c) ∈ U0 with ε ≥ 0. Moreover, the graph of
(T h, T d) coincides with the set of zero of T in U0 × V0.

Proof. LetH ≡ B×Em,λ×Rn̄×(Cm−1,λ(∂Ωh,Rn)×Cm−1,λ(∂Ωd,Rn))2×Rn̄,
and let G be the function of H to Rn̄ defined by

G[d, fh, fd, d] ≡
∫

∂Ωh

(
fh(y) · b(i)[φh] ◦ φh(y)

)
i=1,...,n̄

σ̃[φh](y) dσy,
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for all (d, fh, fd, d) ∈ H, with d ≡ (b, ω, ε, φh, φd, c, τh, τd). Then, by Propo-
sition 2.39, G is real analytic. Moreover G[d, 0, 0, 0] = 0 and G[d, T [d]] = 0
for all d ∈ B × Em,λ × Rn̄ × Cm−1,λ(∂Ωh,Rn) × Cm−1,λ(∂Ωd,Rn) (see the
previous Lemma 2.42.) Now, let d0 ≡ (c0, τ̂

h[c0], τ̂d[c0]). The partial dif-
ferential ∂(fh,fd,d)G[d0, 0, 0, 0] coincides with the linear map which takes
(f̄h, f̄d, d̄) to∫

∂Ωh

(
f̄h(y) · b(i)[φh] ◦ φh(y)

)
i=1,...,n̄

σ̃[φh](y) dσy.

We immediately recognize that ∂(fh,fd,d)G[d0, 0, 0, 0] is surjective onto Rn̄

and has kernel equal to V m,λ
0 . We note that V m,λ

0 is a closed subspace of
Cm−1,λ(∂Ωh,Rn) × Cm−1,λ(∂Ωd,Rn) × Rn̄ of codimension n̄, therefore it
admits a closed topological supplement of dimension n̄. Then, by Proposi-
tion 2.38 and Lemma 2.41, the statement of Theorem 2.43 follows.

2.2.6 A real analyticity theorem for the solutions of (2.31)

By exploiting the results of the previous subsection we deduce the following.

Proposition 2.44. Let the notation introduced in subsection 2.2.1 hold. Let
b0 ≡ (b0, ω0, 0, φs

0, φ
r
0) be a point of B×Em,λ. Let {e(i)}i=1,...,n̄ be the canon-

ical basis of Rn̄. We denote by U (i)
0 the neighborhood U0 of c0 ≡ (b0, e

(i))
in B × Em,λ × Rn̄ introduced in Theorem 2.43, and we denote by W(i)

0 the
projection of U (i)

0 to B × Em,λ, for all i = 1, . . . , n̄. Let W0 be an open
neighborhood of b0 in B × Em,λ contained in the intersection ∩n̄

i=1W
(i)
0 .

Then there exist real analytic operators T (i) ≡ (T (i)
h , T (i)

d ) from W0 to
Cm−1,λ(∂Ωh,Rn)×Cm−1,λ(∂Ωd,Rn), such that (τ̂h[(b, e(i))], τ̂d[(b, e(i))]) =
T (i)[b] for all b ∈ W0 with ε ≥ 0, and all i = 1, . . . , n̄.

Now, let b ≡ (b, ω, ε, φh, φd) ∈ W0 with ε > 0. We denote by α(i)[b] the
function of ∂A[a], a ≡ (ω, ε, φh, φd), defined by

α(i)[b] ≡

{
ε

1−n
2 T (i)

h [b] ◦ (ω + εφh)(−1) on ω + εφh(∂Ωh),
ε

n−1
2 T (i)

d [b] ◦ (φd)(−1) on φd(∂Ωd),

for all i = 1, . . . , n̄. Then {α(i)[b]}i=1,...,n̄ is a basis of KerK∗
∂A[a][b, ·] and

we have 〈α(i)[b], β(j)[a]〉 = δij for all i, j = 1, . . . , n̄, where {β(i)[a]}i=1,...,n̄

is the basis of KerK∂A[a][b, ·] introduced in Theorem 2.34.

Moreover, if b ≡ (b, ω, 0, φh, φd) ∈ W0, then {T (i)
h [b] ◦ (φh)(−1)}i=1,...,n̄

is a basis of KerHφh(∂Ωh)[b, ·] and we have 〈T (i)
h [b] ◦ (φh)(−1), b(j)[φ]〉 = δij

for all j = 1, . . . , n̄.
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In the next Theorem 2.45 we transform the problem{
K∂A[a][b, µ] = G−

∑n̄
i=1〈G,α(i)[b]〉β(i)[a],

P[KerK∂A[a][b, ·]]µ = 0,
(2.54)

which is defined on the boundary of the a-dependent domain A[a], into
a system of equations on the boundary of the fixed domains Ωh and Ωd.
So, Theorem 2.45 is in some sense the corresponding of Theorem 2.36 for
problem (2.31).

Theorem 2.45. Let the notation introduced in subsection 2.2.1 hold. Let
b0 ≡ (b0, ω0, 0, φh

0 , φ
d
0) ∈ B × Em,λ, and let W0 and T (i), i = 1, . . . , n̄,

be as in the previous proposition. We denote by M ≡ (M1,M2,M3) the
map of O0 ≡ W0 × (Cm,λ(∂Ωh,Rn)× Cm,λ(∂Ωd,Rn))2 to Cm,λ(∂Ωh,Rn)×
Cm,λ(∂Ωd,Rn)× Rn̄ defined by

M1[b, ω, ε, φh, φd, gh, gd, µh, µd](x) ≡ −H∗[b, φh, µh](x) (2.55)

−
∫

∂Ωd

([
T (b,DΓ(i)(b, ω + εφh(x)− φd(y)))

·νφd ◦ φd(y)
]
· µd(y)

)
i=1,...,n

σ̃[φd](y) dσy − gh(x)

+
n̄∑

i=1

(∫
∂Ωh

gh · T (i)
h [b] σ̃[φh] dσ

+
∫

∂Ωd

gd · T (i)
d [b] σ̃[φd] dσ

)
b(i)[φh] ◦ φh(x), ∀ x ∈ ∂Ωh,

M2[b, ω, ε, φh, φd, gh, gd, µh, µd](x) ≡ K[b, φd, µd](x) (2.56)

+εn−1

∫
∂Ωh

([
T (b,DΓ(i)(b, φd(x)− ω − εφh(y))νφh ◦ φh(y)

]
·µh(y)

)
i=1,...,n

σ̃[φh](y) dσy − gd(x), ∀ x ∈ ∂Ωd,

M3[b, ω, ε, φh, φd, gh, gd, µh, µd] (2.57)

≡
(∫

∂Ωh

µh(y) ·
(
b(i)[φh] ◦ φh(y)

)
σ̃[φh](y) dσy

)
i=1,...,n̄

,

for all (b, ω, ε, φh, φd, gh, gd, µh, µd) ∈ O0, where b ≡ (b, ω, ε, φh, φd).
Let (b, ω, ε, φh, φd, gi, go) ∈ W0 × Cm,λ(∂Ωh,Rn) × Cm,λ(∂Ωd,Rn), with

ε > 0, be fixed. Then the pair of functions (µh, µd) ∈ Cm,λ(∂Ωh,Rn) ×
Cm,λ(∂Ωd,Rn) satisfies equation

M [b, ω, ε, φh, φd, gh, gd, µh, µd] = 0, (2.58)

if and only if, the function µ ∈ Cm,λ(∂A[ω, ε, φh, φd],Rn) defined by

µ ≡
{
µh ◦ (ω + εφh)(−1) on ω + εφh(∂Ωh),
µd ◦ (φd)(−1) on φd(∂Ω),

(2.59)
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satisfies equation (2.54) with

G ≡
{
gh ◦ (ω + εφh)(−1) on ω + εφh(∂Ωh),
gd ◦ (φd)(−1) on φd(∂Ωd).

In particular, equation (2.58) has one and only one solution (µh, µd) ∈
Cm,λ(∂Ωh,Rn)× Cm,λ(∂Ωd,Rn) for each fixed (b, ω, ε, φh, φd, gh, gd) ∈ B ×
W0 × Cm,λ(∂Ωh,Rn)× Cm,λ(∂Ωd,Rn) with ε > 0.

Let (b, ω, 0, φh, φd, gh, gd) ∈ W0 × Cm,λ(∂Ωh,Rn) × Cm,λ(∂Ωd,Rn) be
fixed. Then the pair of functions (µh, µd) ∈ Cm,λ(∂Ωh,Rn)×Cm,λ(∂Ωd,Rn)
satisfies equation

M [b, ω, 0, φh, φd, gh, gd, µh, µd] = 0 (2.60)

if and only if the following two conditions are fulfilled.

(i) The function µ ≡ µd ◦ (φd)(−1) of Cm,λ(φd(∂Ωd),Rn) satisfies (2.35)
with G̃ = gd ◦ (φd)−1.

(ii) The function µ ≡ µh ◦ (φh)(−1) of Cm,λ(φh(∂Ωh),Rn) satisfies (2.37)
with β = 0 and

G̃ = gh ◦ (φh)−1 −
n̄∑

i=1

(∫
∂Ωh

gh · T (i)
h [b] σ̃[φh] dσ

)
b(i)[φh] ◦ (φh)(−1),

where we abbreviated (b, ω, 0, φh, φd) as b.

In particular, equation (2.60) has one and only one solution (µh, µd) ∈
Cm,λ(∂Ωh,Rn)×Cm,λ(∂Ωd,Rn) for each fixed (b, ω, 0, φh, φd, gh, gd) ∈ W0×
Cm,λ(∂Ωh,Rn)× Cm,λ(∂Ωd,Rn).

Proof. The first part of the theorem follows by a straightforward verification
based on the theorem of change of variable in integrals. So we consider
only the last part relative to the case ε = 0. Let (b, ω, 0, φs, φr, gs, gr) ∈
W0 × Cm,λ(∂Ωh,Rn) × Cm,λ(∂Ωd,Rn) and let (µh, µd) ∈ Cm,λ(∂Ωh,Rn) ×
Cm,λ(∂Ωd,Rn) satisfy equation (2.60). Then, by the second equation in
(2.60), we have K[b, φd, µd] = gd. By changing variable by means of the
function φh, the validity of condition (i) follows. We now show that condition
(ii) holds as well. By the first equation in (2.60) we have

H∗[b, φh, µh](x) (2.61)

= gh(x)−
n̄∑

i=1

(∫
∂Ωh

gh · T (i)
h [b] σ̃[φh] dσ

)
b(i)[φh] ◦ (φh)(−1)

+
∫

∂Ωd

([
T (b,DΓ(i)(b, ω + εφh(x)− φd(y)))

·νφd ◦ φd(y)
]
· µd(y)

)
i=1,...,n

σ̃[φd](y) dσy

−
n̄∑

i=1

(∫
∂Ωd

gd · T (i)
d [b] σ̃[φd] dσ

)
b(i)[φh] ◦ φh(x), ∀ x ∈ ∂Ωh.
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So, if we prove that the sum of the third and fourth term in the right hand
side of (2.61) vanishes, the validity of statement (ii) follows by changing
variable by means of the function φh in the first and third equation of (2.60).
Now, let b ≡ (b, ω, 0, φh, φd). By condition (i) of Theorem 2.36 and by the
previous Proposition 2.44, we have

K∗[b, φd, T (i)
d [b]](x) = |φh(∂Ωh)|1/2 T (b,DΓ(i)(b, ω − φd(x)))νφd ◦ φd(x),

for all x ∈ ∂Ωh, and all i = 1, . . . , n, and K∗[b, φo, T (i)
d [b]] = 0 for all

i = n+ 1, . . . , n̄. We deduce that∫
∂Ωd

K[b, φd, µd] · T (i)
d [b] σ̃[φd] dσ

=
∫

∂Ωd

K∗[b, φd, T (i)
d [b]] · µd σ̃[φd] dσ

= |φh(∂Ωh)|1/2

∫
∂Ωd

[
T (b,DΓ(i)(b, ω − φd(y)))

·νφd ◦ φd(y)
]
· µd(y) σ̃[φd](y) dσy,

for all i = 1, . . . , n, and similarly,∫
∂Ωd

K[b, φd, µd] · T (i)
d [b] σ̃[φd] dσ = 0,

for all i = n + 1, . . . , n̄. Then, by exploiting Definition 2.33, we have the
following equality,

n̄∑
i=1

(∫
∂Ωd

K[b, φd, µd] · T (i)
d [b] σ̃[φd] dσ

)
b(i)[φh] ◦ φh(x) (2.62)

=
∫

∂Ωd

{[
T (b,DΓ(i)(b, ω − φd(y)))

·νφd ◦ φd(y)
]
· µd(y)

}
i=1,...,n

σ̃[φd](y) dσy,

for all x ∈ ∂Ωh. Since K[b, φd, µd] = gd, it follows that the sum of the third
and fourth term in the right hand side of (2.61) vanishes.

Similarly we can verify that (i) and (ii) imply (2.60). The existence and
uniqueness of the solution (µh, µd) follows by Lemmas 2.23 and 2.26.

By Theorem 2.45, it makes sense to introduce the following.

Definition 2.46. Let the notation introduced in subsection 2.2.1 hold. Let
b0 ≡ (b0, ω0, 0, φh

0 , φ
d
0) ∈ B × Em,λ. Let W0 be the open neighborhood of

b0 of Theorem 2.45. Let e ≡ (ω, ε, ξ, φo, gi, go) ∈ W0 × Cm,λ(∂Ωh,Rn) ×
Cm,λ(∂Ωd,Rn) with ε > 0 or ε = 0. We denote by (µ̂h[e], µ̂d[e]) the unique
solution (µh, µd) ∈ Cm,λ(∂Ωh,Rn) × Cm,λ(∂Ωd,Rn) of equation (2.58) or
equation (2.60), respectively.
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We now prove that µ̂h[·], µ̂d[·] have a real analytic continuation in whole
open neighborhood of a fixed point e0 ≡ (b0, ω0, 0, φh

0 , φ
d
0, g

h
0 , g

d
0) of B ×

Em,λ×Cm,λ(∂Ωh,Rn)×Cm,λ(∂Ωd,Rn). By Theorem 2.45, if suffices to show
that locally around (e0, µ̂

h[e0], µ̂d[e0]) the set of zero of M is the graph of
a real analytic function. We plan to prove such a fact by means of Proposi-
tion 2.38. For this reason we prove the following Lemmas 2.48 and 2.49 and
we state Proposition 2.47, which can be deduced by Proposition 2.39.

Proposition 2.47. With the notation introduced in subsection 2.2.1 and in
Theorem 2.45, the set O0 is an open subset of the Banach space Rn+2 ×
(Cm,λ(∂Ωh,Rn)× Cm,λ(∂Ωd,Rn))3 and the operator M is real analytic.

Lemma 2.48. Let the notation of subsection 2.2.1 and of Theorem 2.45
hold. Let e0 ≡ (b0, g

h
0 , g

d
0). Let (µh

0 , µ
d
0) ∈ Cm,λ(∂Ωh,Rn) × Cm,λ(∂Ωd,Rn)

be a solution on (2.60). Then the partial differential

∂(µh,µd)M [e0, µ
h
0 , µ

d
0] =

(
∂(µh,µd)M

i[e0, µ
h
0 , µ

d
0]
)

i=1,...,3

of M with respect to the variable (µh, µd) at the point (e0, µ
h
0 , µ

d
0) is delivered

by the linear operator which takes a couple (µ̄h, µ̄d) of Cm,λ(∂Ωh,Rn) ×
Cm,λ(∂Ωd,Rn) to the functions defined by

∂(µd,µh)M
1[e0, µ

h
0 , µ

d
0](µ̄

h, µ̄d)(x) = −H∗[b0, φh
0 , µ̄

h](x) (2.63)

−
∫

∂Ωd

{[
T (b0, DΓ(i)(b0, ω0 − φd

0(y))

·νφd
0
◦ φd

0(y)
]
· µ̄d(y)

}
i=1,...,n

σ̃[φd
0](y) dσy, ∀ x ∈ ∂Ωh,

∂(µd,µh)M
2[e0, µ

h
0 , µ

d
0](µ̄

h, µ̄d)(x) = K[b0, φd
0, µ̄

d](x), ∀ x ∈ ∂Ωd, (2.64)

∂(µd,µh)M
3[e0, µ

h
0 , µ

d
0](µ̄

h, µ̄d) (2.65)

=
(∫

∂Ωh

µ̄h ·
(
b(i)[φh

0 ] ◦ φh
0

)
σ̃[φh

0 ] dσ
)

i=1,...,n̄

.

Let Wm,λ
0 be the subspace of Cm,λ(∂Ωh,Rn)×Cm,λ(∂Ωd,Rn)×Rn̄ of all

the triple (fh, fd, d) such that∫
∂Ωh

fh · T (i)
h [b0] σ̃[φh

0 ] dσ +
∫

∂Ωd

fd · T (i)
d [b0] σ̃[φd

0] dσ = 0 (2.66)

for all i = 1, . . . , n̄. Then ∂(µh,µd)M [e0, µ
h
0 , µ

d
0] is a linear homeomorphism

of the space Cm,λ(∂Ωh,Rn)× Cm,λ(∂Ωd,Rn) onto the space Wm,λ
0 .

Proof. Expression (2.63), (2.64), (2.65) follow by standard calculus in Ba-
nach space. By such expressions we recognize that ∂(µh,µd)M [e0, µ

h
0 , µ

d
0]

is a linear and bounded operator from Cm,λ(∂Ωh,Rn) × Cm,λ(∂Ωd,Rn) to
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Cm,λ(∂Ωh,Rn) × Cm,λ(∂Ωd,Rn) × Rn̄. We now show that the range of
∂(µh,µd)M [e0, µ

h
0 , µ

d
0] is contained in Wm,λ

0 . To do so, we prove that (2.66)
holds with fh and fd replaced by the right hand side of (2.63) and (2.64),
respectively. By the Fredholm Alternative Theorem we have∫

∂Ωh

H∗[b0, φh
0 , µ̄

h] · T (i)
h [b0] σ̃[φh

0 ] dσ = 0,

for all i = 1, . . . , n̄. So the first term in the right hand side of (2.63) give
no contribution to left hand side of the corresponding equation (2.66). We
now consider the contribution of the second term in the right hand side of
(2.63). By arguing as in the proof of Theorem 2.45, we see that

n̄∑
j=1

(∫
∂Ωd

K[b0, φd
0, µ̄

d] · T (j)
d [b0] σ̃[φd

0] dσ
)
b(j)[φh

0 ] ◦ φh
0(x) (2.67)

=
∫

∂Ωd

{[
T (b0, DΓ(j)(b0, ω0 − φd

0(y)))

·νφd
0
◦ φd

0(y)
]
· µ̄d(y)

}
j=1,...,n

σ̃[φd
0](y) dσy,

for all x ∈ ∂Ωh. Since, by Proposition (2.44),∫
∂Ωh

(
b(j)[φh

0 ] ◦ φh
0

)
· T (i)

h [b0] σ̃[φh
0 ] dσ = δij , ∀ i, j = 1, . . . , n̄,

we deduce by (2.67) that the contribution of the second term of (2.63) is

−
∫

∂Ωd

K[b0, φd
0, µ̄

d] · T (j)
d [b0] σ̃[φd

0] dσ,

which is clearly opposite to the contribution of the right hand side of (2.64).
Thus (2.66) holds with fh and fd replaced by the right hand side of (2.63)
and (2.64), respectively.

We now prove that ∂(µh,µd)M [e0, µ
h
0 , µ

d
0] is an homeomorphism. By the

Open Mapping Theorem it suffices to show that it is bijective. So, let
(fh, fd, d) be a given point of Wm,λ

0 . We verify that there exists a unique
(µ̄h, µ̄d) ∈ Cm,λ(∂Ωh,Rn)× Cm,λ(∂Ωd,Rn) such that

∂(µd,µh)M
1[e0, µ

h
0 , µ

d
0](µ̄

h, µ̄d) = fh,

∂(µd,µh)M
2[e0, µ

h
0 , µ

d
0](µ̄

h, µ̄d) = fd,

∂(µd,µh)M
3[e0, µ

h
0 , µ

d
0](µ̄

h, µ̄d) = d.

(2.68)

The second equation of (2.68) is equivalent to K[b0, φd
0, µ̄

d] = fd. By state-
ment (ii) of Lemma 2.26 such an equation has a unique solution µ̄d ∈
Cm,λ(∂Ωd,Rn). Then, by (2.67), the first equation of (2.68) is equivalent to

−H∗[b0, φh
0 , µ̄

h] = fh +
n̄∑

i=1

(∫
∂Ωd

fd · T (i)
d [b0] σ̃[φd

0] dσ
)
b(i)[φh

0 ] ◦ φh
0 .
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By (2.54) the right hand side equals

fh −
n̄∑

i=1

(∫
∂Ωd

fh · T (i)
h [b0] σ̃[φh

0 ] dσ
)
b(i)[φh

0 ] ◦ φh
0 .

Hence, by statement (iv) of Lemma 2.26, we deduce that the first and third
equation of (2.58) has a unique solution µ̄h ∈ Cm,λ(∂Ωh,Rn).

Lemma 2.49. Let the notation of subsection 2.2.1 and Theorem 2.45 hold.
Let (ω, ε, φh, φd, gh, gd, µh, µd) ∈ O0. Then we have∫

∂Ωh

M1[b, ω, ε, φh, φd, gh, gd, µh, µd] · T (i)
h [ω, ε, φh, φd] σ̃[φd] dσ (2.69)

+
∫

∂Ωd

M2[b, ω, ε, φh, φd, gh, gd, µh, µd] · T (i)
d [ω, ε, φh, φd] σ̃[φd] dσ = 0

for all i = 1, . . . , n̄.

Proof. Let b ≡ (b, ω, ε, φh, φd). By linearity we have M [b, gh, gd, µh, µd] =
M [b, gh, gd, 0, 0]+M [b, 0, 0, µh, µd]. So, we can prove the lemma by proving
it for µh = µd = 0 and for gh = gd = 0 separately.

Let µh = µd = 0. By the third equation in (2.45) and by the definition
of T (i)

h in Proposition 2.44, we have∫
∂Ωh

(
b(j)[φh] ◦ φh

)
· T (i)

h [b] σ̃[φh] dσ = δij , ∀ i, j = 1, . . . , n̄.

We deduce that the first integral in (2.69) equals∫
∂Ωd

gd · T (i)
d [b] σ̃[φd] dσ,

which clearly opposite to the second integral in equation (2.69).
Now, let gh = gd = 0. If ε = 0 the statement can be proved by arguing

as in the proof of Lemma 2.48, so we consider ε 6= 0. By exploiting the
adjointness of K and K∗, H and H∗, and by straightforward application of
the Fubini Theorem, we find that the left hand side of equation 2.69 equals∫

∂Ωh

µh · T 1
[
b, e(i), T (i)

h [b], T (i)
d [b]

]
σ̃[φd]dσ

+
∫

∂Ωd

µd · T 2
[
b, e(i), T (i)

h [b], T (i)
d [b]

]
σ̃[φd] dσ,

where T 1 and T 2 are the first two components of the operator T intro-
duced in Theorem 2.36. By Proposition 2.44 and Theorem 2.43, the point
(b, e(i), T (i)

h [b], T (i)
d [b]) is contained in the set of zeros of T . Hence, both

the integrand functions in the previous expression are 0. The validity of the
statement of the lemma follows.

We are now ready to prove the main result of this subsection.
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Theorem 2.50. Let the notation introduced in subsection 2.2.1 hold. Let
e0 ≡ (b0, ω0, 0, φh

0 , φ
d
0, g

h
0 , g

d
0) ∈ B×Em,λ×Cm,λ(∂Ωh,Rn)×Cm,λ(∂Ωd,Rn).

Let O0 be as in Theorem 2.45. Let µ̄h[·], µ̄d[·] be the functions introduced
in Definition 2.46. Then there exist an open neighborhood U1 of e0 in
R × Em,λ × Cm,λ(∂Ωh,Rn) × Cm,λ(∂Ωd,Rn), and an open neighborhood V1

of (µ̂h[e0], µ̂d[e0]) in Cm,λ(∂Ωh,Rn) × Cm,λ(∂Ωd,Rn), and a real analytic
operator (Mh,Md) of U1 to V1, such that U1 × V1 ⊂ O0 and

(Mh[e],Md[e]) = (µ̂h[e], µ̂d[e]), (2.70)

for all e ≡ (ω, ε, φh, φd, gh, gd) ∈ U1 with ε ≥ 0. Moreover, the graph of
(Mh,Md) coincides with the set of zeros of M in U1 × V1.

Proof. Let H ≡ O0×Cm,λ(∂Ωh,Rn)×Cm,λ(∂Ωd,Rn)×Rn̄ and let G be the
function of H to Rn̄ defined by

G[b, gh, gd, fh, fd, d]

≡
(∫

∂Ωh

fh · T (i)
h [b]σ̃[φh] dσ +

∫
∂Ωd

fd · T (i)
d [b]σ̃[φd] dσ

)
i=1,...,n̄

for all (b, gh, gd, fh, fd, d) ∈ H. Then, by Propositions 2.39 and 2.44, G
is real analytic. Moreover G[b, gh, gd, 0, 0, 0] = 0 and, by Lemma 2.49,
G[b, gh, gd,M [b, gh, gd]] = 0 for all (b, gh, gd) ∈ O0. Now consider the
partial differential ∂(fh,fd,d)G[e0, 0, 0, 0]. One easily verifies that the range
of ∂(fh,fd,d)G[e0, 0, 0, 0] equals Rn̄ and the kernel coincides with the space
Wm,λ

0 introduced in Lemma 2.48. Clearly Wm,λ
0 is a closed subspace of

Cm,λ(∂Ωh,Rn) × Cm,λ(∂Ωd,Rn) of codimension n̄, therefore it admits a
closed topological complement of dimension n̄. Then, by Proposition 2.38
and Lemma 2.48, the statement of the theorem follows.

2.2.7 Solution of the singularly perturbed problem

In this subsection we finally investigate the behavior of the solution u of
problem (2.29) around a given degenerate 7-tuple (b0, ω0, 0, φh

0 , φ
d
0, g

h
0 , g

d
0),

as we have announced in subsection 2.2.1. In the following Theorem 2.53
we provide a representation formula for u in terms of real analytic operators
and singular, but completely known, functions of ε. By equation 2.32 we
first deduce a more explicit representation formula for the solution u of
problem (2.29) with ε > 0. Indeed by means of Theorems 2.43, 2.50 and
Proposition 2.44, we obtain the following.

Lemma 2.51. Let the notation introduced in subsection 2.2.1 hold. Let e0 ≡
(b0, ω0, 0, φh

0 , φ
d
0, g

h
0 , g

d
0) ∈ B × Em,λ × Cm,λ(∂Ωh,Rn)× Cm,λ(∂Ωd,Rn). Let

T (i)
h [·], T (i)

d [·], α(i)[·], i = 1, . . . , n̄, be as in Proposition 2.44. Let U1, Mh[·],
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Md[·] be as in Theorem 2.50. Let e be a point (b, ω, ε, φh, φd, gh, gd) ∈ U1

with ε > 0. Let u[e] be defined as in subsection 2.2.1. Then we have

u[e] = ur[e] + us[e],

where

ur[e](ξ) ≡ εn−1

∫
∂Ωh

{[
T (b,DΓ(i)(b, ξ − ω − εφh(y)))

·νφh ◦ φh(y)
]
· Mh[e]

}
i=1,...,n

σ̃[φh](y) dσy

−
∫

∂Ωd

{[
T (b,DΓ(i)(b, ξ − φd(y)))

·νφd ◦ φd(y)
]
· Md[e]

}
i=1,...,n

σ̃[φd](y) dσy,

(2.71)

for all ξ ∈ A[a], a ≡ (ω, ε, φh, φo), and

us[e](ξ) ≡
n̄∑

i,j=1

〈G|α(i)[b]〉∂A[a] (V [b]−1)ij v∂A[a][b, α
(j)[b]](ξ), (2.72)

for all ξ ∈ A[a], where G is defined as in Theorem 2.25, and we abbreviated
(b, ω, ε, φh, φo) as b, and

V [b] ≡
(〈
v∂A[a][b, α

(i)[b]]
∣∣β(j)[a]

〉
∂A[a]

)
i,j=1,...,n̄

. (2.73)

Moreover we have

〈G|α(i)[b]〉∂A[a]

= ε
n−1

2

(∫
∂Ωh

gh · T (i)
h [b] σ̃[φh] dσ +

∫
∂Ωd

gd · T (i)
d [b] σ̃[φd] dσ

)
,

and

Vij [b]

= εn−1

(∫
∂Ωh

∫
∂Ωh

Γ
(
b, ε(φh(x)− φh(y)

)
T (i)

h [b](y) σ̃[φh](y) dσy

·
(
b(j)[φh] ◦ φh(x)

)
σ̃[φh](x) dσx

+
∫

∂Ωh

∫
∂Ωd

Γ(b, ω + εφh(x)− φd(y))T (i)
d [b](y) σ̃[φd](y) dσy

·
(
b(j)[φh] ◦ φh(x)

)
σ̃[φh](x) dσx

)
,

(2.74)
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for all i, j = 1, . . . , n̄, and

v∂A[a][b, α
(j)[b]](ξ)

= ε
n−1

2

(∫
∂Ωh

Γ(b, ξ − ω − εφh(y))T (j)
h [b](y) σ̃[φh](y) dσy

+
∫

∂Ωd

Γ(b, ξ − φd(y))T (j)
d [b](y) σ̃[φd](y) dσy

)
,

for all ξ ∈ Rn and for all j = 1, . . . , n̄.

We also need the following technical lemma.

Lemma 2.52. With the notation introduced in subsection 2.2.1, let b0 ≡
(b0, ω0, 0, φh

0 , φ
d
0) ∈ B×Em,λ, and let W0 be the neighborhood of b0 introduced

in Proposition 2.44, and let V [b] be defined by (2.73) for all b ∈ W0. Then
there exist real analytic operators V (1), V (2) of W0 to Mn̄×n̄(R) such that
the following statements hold.

(i) We have

ε1−nV [b] =
{

(log ε)V (1)[b] + V (2)[b] if n = 2,
ε2−nV (1)[b] + V (2)[b] if n ≥ 3,

for all b ≡ (b, ω, ε, φh, φd) ∈ W0 with ε > 0.

(ii) For n = 2 we have

V (1)[b] =
|φh(∂Ωh)|

2π
b+ 2

2(b+ 1)

 1 0 0
0 1 0
0 0 0

 (2.75)

for all b ≡ (b, ω, ε, φh, φd) ∈ W0. While for n ≥ 3, V (1)[b] is an
invertible matrix for all b ≡ (b, ω, 0, φh, φd) ∈ W0 with ε = 0.

(iii) Let n = 2. Let W ′
0 ≡ {(b, ω, φh, φd) : (b, ω, 0, φh, φd) ∈ W0}. Then

there exists a real analytic operator λ[·] of W ′
0 to R \ {0} such that

lim
ε→0+

(
(log ε)V (1)[b, ω, ε, φh, φd] + V (2)[b, ω, ε, φh, φd]

)−1

= λ[b, ω, φh, φd]−1

 0 0 0
0 0 0
0 0 1


for all (b, ω, φh, φd) ∈ W ′

0.

If n ≥ 3, then the expression (ε2−nV (1)[b] + V (2)[b])−1 has a real
analytic continuation in the whole of W0 which vanishes for ε = 0.
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Proof. It is convenient to prove separately the lemma for n = 2 and n ≥ 3.
Let n = 2. By the definition (2.6) of the fundamental solution Γ(b, ·), we

have Γ(b, εz) = 1
2π

b+2
2(b+1) log ε + Γ(b, z), for all b 6= −1, ε > 0, z ∈ Rn \ {0}.

So, if we set

V
(1)
ij [b] ≡ 1

2π
b+ 2

2(b+ 1)

∫
∂Ωh

T (i)
h [b]σ̃[φh] dσ ·

∫
∂Ωh

b(j)[φh] ◦ φhσ̃[φh] dσ,

V
(2)
ij [b] ≡

∫
∂Ωh

(∫
∂Ωh

Γ
(
b, φh(x)− φh(y)

)
T (i)

h [b](y) σ̃[φh](y) dσy

)
·
(
b(j)[φh] ◦ φh(x)

)
σ̃[φh](x) dσx

+
∫

∂Ωh

(∫
∂Ωd

Γ(b, ω + εφh(x)− φd(y))T (i)
d [b](y) σ̃[φd](y) dσy

)
·
(
b(j)[φh] ◦ φh(x)

)
σ̃[φh](x) dσx,

for all i, j = 1, . . . , 3 and for all b ≡ (b, ω, ε, φh, φd) ∈ W0, then, by (2.74),
V (1) and V (2) satisfy statement (i) of the lemma. Moreover, by Propo-
sitions 1.40, 2.39, 2.44, V (1) and V (2) are real analytic operators of W0

to Mn̄×n̄(R). To prove statement (iii) we note that, by Theorem 2.34,∫
∂Ωh b

(j)[φh] ◦ φhσ̃[φh] dσ = (1 − δj3)|φh(∂Ωh)|1/2e(j), j = 1, . . . , 3, and, by
the definition of T (i)

h in Proposition 2.44 and by Theorems 2.43 and 2.36,∫
∂Ωh T (i)

h [b]σ̃[φh] dσ = (1− δi3)|φh(∂Ωh)|1/2e(i), i = 1, . . . , 3.
We now turn to prove statement (iii) for n = 2. Let b′ ≡ (b, ω, φh, φd) ∈

W ′
0 and let b ≡ (b, 0, ω, φh, φd), so that b ∈ W0. By Proposition 2.44, the

function T (3)
h [b]◦(φh)(−1)(x) of x ∈ φh(∂Ωh) belongs to (KerHφh(∂Ωh)[b, ·])0.

So, by Theorem 2.16, we have

v[b, T (3)
h [b] ◦ (φh)(−1)]|φh(∂Ωh) ∈ (RI[φh],loc)|φh(∂Ωh),

and we deduce that v[b, T (3)
h [b]◦(φh)(−1)]|I[φh] is a function of RI[φh]. There-

fore, there exists a unique couple (s[b′], c[b′]) ∈ Skew(2,R)× R2 such that

v[b, T (3)
h [b] ◦ (φh)(−1)](ξ) = s[b′]ξ + c[b′], ∀ ξ ∈ I[φh].

We now prove that the map which takes b′ to (s[b′], c[b′]) is real analytic
fromW ′

0 to Skew(2,R)×R2. We fix a point b′1 ≡ (b1, ω1, φ
h
1 , φ

d
1) ofW ′

0. Then
there exist a point ξ1 ∈ R2 and positive constant r > 0 such that the points
ξ1, ξ1 + r(1, 0), ξ1 + r(0, 1) are contained in I[φh

1 ]. Furthermore there exists
an open neighborhood W ′

1 of b′1 in W ′
0 such that ξ1, ξ1+r(1, 0), ξ1+r(0, 1) ∈

I[φh] for all b′ ≡ (b, ω, φh, φd) ∈ W ′
1. Now, the entry s[b′]ij of the matrix

s[b′] equals (s[b′]e(j))i, which in turn equals r−1(s[b′](ξ1 + r e(j))− s[b′]ξ1)i
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by linearity. We deduce that

s[b′] = r−1
(
vi[b, T (3)

h [b] ◦ (φh)(−1)](ξ1 + r e(j))

−vi[b, T (3)
h [b] ◦ (φh)(−1)](ξ1)

)
i,j=1,2

,

c[b′] = v[b, T (3)
h [b] ◦ (φh)(−1)](x1)− s[b′]x1,

for all b′ ≡ (b, ω, φh, φd) ∈ W ′
1, where b ≡ (b, ω, 0, φh, φd). Then, by Propo-

sition 2.39, the map which takes b′ ∈ W ′
1 to (s[b′], c[b′]) ∈ Skew(2,R)× R2

is real analytic. Since b′1 was an arbitrary point of W ′
0 we have our claim.

Moreover, we can prove that s[b′] 6= 0 for all b′ ∈ W ′
0. Indeed if we

assume that s[b′] = 0 then v[b, T (3)
h [b] ◦ (φh)(−1)] = c[b′] on I[φh]. By

Proposition 2.6 and Theorem 2.4, we deduce that v[b, T (3)
h [b] ◦ (φh)(−1)] is

constant on the whole of R2. Thus, by Proposition 2.6, we have

T (3)
h [b] ◦ (φh)(−1)(ξ)

= lim
t→0+

T
(
b,Dv[b, T (3)

h [b] ◦ (φh)(−1)](ξ + tνφh(ξ))
)
νφh(ξ)

− lim
t→0+

T
(
b,Dv[b, T (3)

h [b] ◦ (φh)(−1)](ξ − tνφh(ξ))
)
νφh(ξ) = 0,

for all ξ ∈ φh(∂Ωh). Such an equality is in contradiction with the statement
of Proposition 2.44 and thus it must be s[b′] 6= 0 for all b′ ∈ W ′

0. So, if we
set

λ[b′] ≡
∫

∂Ωh

(s[b′]φh) · (b(3)[φh] ◦ φh) σ̃[φh] dσ, ∀ b′ ∈ W ′
0,

then we have λ[b′] 6= 0 and the map which takes b′ to λ[b′] is real analytic
from W ′

0 to R.

We now show that V (2)
33 [b] = λ[b′] for all b ≡ (b, ω, 0, φh, φd) ∈ W0 with

ε = 0, where b′ ≡ (b, ω, φh, φd). First we note that T (3)
d [b] = 0. Indeed,

by statement Proposition 2.44, T (3)
d [b] ◦ (φd)(−1) ∈ KerK∗

φd(∂Ωd)
[b, ·], and by

Theorem 2.17, KerK∗
φd(∂Ωd)

[b, ·] = {0}. So, by the definition, we have

V
(2)
33 [b] =

〈
vφh(∂Ωh)[b, T

(3)
h [b] ◦ (φh)(−1)]

∣∣ b(3)[φh]
〉
φh(∂Ωh)

(2.76)

=
〈
s[b′] + c[b′]

∣∣ b(3)[φh]
〉
φh(∂Ωh)

= λ[b′] +
〈
c[b′]

∣∣ b(3)[φh]
〉
φh(∂Ωh)

= λ[b′],

where b′ ≡ (b, ω, φh, φd).
Finally we are ready to calculate the limit value as ε→ 0+ of the inverse
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of the matrix ε1−nV [b, ω, ε, φh, φd]. We set

A[b] ≡ (log ε)
|φh(∂Ωh)|

2π
b+ 2

2(b+ 1)

(
1 0
0 1

)
+

(
V

(2)
11 [b] V

(2)
12 [b]

V
(2)
21 [b] V

(2)
22 [b]

)
,

B[b] ≡

(
V

(2)
13 [b]
V

(2)
23 [b]

)
,

C[b] ≡
(
V

(2)
31 [b] V

(2)
32 [b]

)
,

D[b] ≡ V
(2)
33 [b],

for all b ∈ W0. So that

ε1−nV [b] =
(
A[b] B[b]
C[b] D[b]

)
.

Then we fix a point b ≡ (b, ω, 0, φh, φd) ∈ W0 with ε = 0. We denote by bε

the point bε ≡ (b, ω, ε, φh, φd) and we note that, for ε > 0 close to 0, bε ∈ W0

and A[bε] is an invertible matrix. Then we consider the Schur complement
SA[bε] of A[bε] (cf., e.g., Carlson [4, §2].) SA[bε] is defined by

SA[bε] ≡ D[bε]− C[bε]A[bε]−1B[bε].

It is easily seen that

lim
ε→0+

A[bε]−1 = 0 and lim
ε→0+

SA[bε] = λ[b].

Thus, SA[bε] does not vanish for ε > 0 in a neighborhood of 0 and the
inverse of ε1−nV [bε] is delivered by the following matrix,(

A[bε]−1+A[bε]−1B[bε]SA[bε]−1C[bε]A[bε]−1 −A[bε]−1B[bε]SA[bε]−1

−SA[bε]−1C[bε]A[bε]−1 SA[bε]−1

)
.

Statement (iii) immediately follows.
For n ≥ 3 the proof is simpler. We note that Γ(b, εz) = ε2−nΓ(b, z), for

all b 6= −1, ε > 0, z ∈ Rn \ {0}. Then we set

V
(1)
ij [b] ≡

∫
∂Ωh

(∫
∂Ωh

Γ
(
b, φh(x)− φh(y)

)
T (i)

h [b](y) σ̃[φh](y) dσy

)
·
(
b(j)[φh] ◦ φh(x)

)
σ̃[φh](x) dσx

V
(2)
ij [b] ≡

∫
∂Ωh

(∫
∂Ωd

Γ(b, ω + εφh(x)− φd(y))T (i)
d [b](y) σ̃[φd](y) dσy

)
·
(
b(j)[φh] ◦ φh(x)

)
σ̃[φh](x) dσx,

for all b ∈ W0 and for all i, j = 1, . . . , n̄. By equation (2.74), statement (i)
immediately follows. Moreover, by Proposition 2.39, V (1) and V (2) are real
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analytic from W0 to Mn̄×n̄(R). Let b ≡ (b, ω, 0, φh, φd) ∈ W0 with ε = 0.
To verify that V (1)[b] is an invertible matrix, we note that

V (1)[b] =
(〈
vφh(∂Ωh)[b, T

(i)
h [b] ◦ (φh)(−1)]

∣∣ b(j)[φh]
〉
φh(∂Ωh)

)
i,j=1,...,n̄

.

The matrix in the right hand side is invertible by Theorem 2.16 and Propo-
sition 2.44. Finally, we deduce statement (iii) by a straightforward calcula-
tion.

Now we are ready to draw out conclusions from Theorems 2.43, 2.50 and
Lemmas 2.51 and 2.52.

Theorem 2.53. Let the notation introduced in subsection 2.2.1 hold. Let
e0 ≡ (b0, ω0, 0, φh

0 , φ
d
0, g

h, gd) ∈ B×Em,λ×Cm,λ(∂Ωh,Rn)×Cm,λ(∂Ωd,Rn).
Let W0 be the neighborhood of b0 ≡ (b0, ω0, 0, φh

0 , φ
d
0) introduced in Proposi-

tion 2.44. Let V (1), V (2) be as in Lemma 2.52. Let Ω be an open subset of
Rn such that clΩ ⊂ I[φd

0]\{ω0}. Then there exist an open neighborhood U of
e0 in B×Em,λ×Cm,λ(∂Ωh,Rn)×Cm,λ(∂Ωd,Rn) and real analytic operators
U (1) and U

(2)
ij , i, j = 1, . . . , n̄, of U to C(clΩ,Rn), endowed with the norm

of the uniform convergence, such that the following conditions hold.

(i) clΩ ⊂ A[ω, ε, φh, φo] for all (b, ω, ε, φh, φo, gh, go) ∈ U .

(ii) (b, ω, ε, φh, φo) ∈ W0 for all (b, ω, ε, φh, φo, gh, gd) ∈ U .

(iii) We have

u[e](ξ) = U (1)[e](ξ) +
n̄∑

i,j=1

(
γn(ε)V (1)[b] + V (2)[b]

)−1

ij
U

(2)
ij [e](ξ),

(2.77)
for all ξ ∈ clΩ, and all e ≡ (b, ω, ε, φh, φd, gh, gd) ∈ U with ε > 0,
where γn(ε) ≡ log ε if n = 2, and γn(ε) ≡ ε2−n if n ≥ 3. Here we
abbreviated (b, ω, ε, φh, φd) as b.

(iv)
U (1)[b, ω, 0, φh, φd, gh, gd](ξ) = ud[b, φd, gd](ξ)

for all ξ ∈ clΩ and for all (b, ω, 0, φh, φd, gh, gd) ∈ U , where ud[b, φd, gd]
is the solution of the first interior boundary value problem in I[φd] with
boundary data gd ◦ (φd)(−1) (see Definition 2.31.)

(v) Let e ≡ (b, ω, 0, φh, φd, gh, gd) ∈ U , we denote by eε, bε the points
(b, ω, ε, φh, φd, gh, gd) and (b, ω, ε, φh, φd), respectively, for all ε > 0.
Then

lim
ε→0+

n̄∑
i,j=1

(
γn(ε)V (1)[bε] + V (2)[bε]

)−1

ij
U

(2)
ij [eε](ξ) = 0 (2.78)

uniformly for ξ ∈ clΩ.
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Proof. Possibly shrinking the neighborhood U1 of Theorem 2.50, we can as-
sume that condition (i) holds and that (b, ω, ε, φh, φd) belongs to the domain
W0 of V (1), V (2) for all e ∈ U (cf. Lemma 2.52.) Then we denote by U (1)

the operator which takes e ∈ U to the function of C(clΩ,Rn) defined by
the right hand side of (2.71), and we denote by U

(2)
ij , i, j = 1, . . . , n̄, the

operator which takes e ∈ U to the function U (2)
ij [e] of C(clΩ,Rn) defined by

U
(2)
ij [e](ξ) ≡

(∫
∂Ωh

gh · T (i)
h [b] σ̃[φh] dσ +

∫
∂Ωd

gd · T (i)
d [b] σ̃[φd] dσ

)
·
(∫

∂Ωh

Γ(b, ξ − ω − εφh(y))T (j)
h [b](y) σ̃[φh](y) dσy

+
∫

∂Ωd

Γ(b, ξ − φd(y))T (j)
d [b](y) σ̃[φd](y) dσy

)
,

for all ξ ∈ clΩ, where G is defined as in Theorem 2.25 and as usual a ≡
(ω, ε, φh, φd) and b ≡ (b, ω, ε, φh, φd). Then by Propositions 2.39 and 2.44
and by Theorem 2.50, U (1) and U (2)

ij are real analytic for all i, j = 1, . . . , n̄.
Moreover, statement (iii) follows by Lemmas 2.51 and 2.52, statement (iv)
follows by Theorems 2.27 and 2.36.

We now prove statement (v). First let n = 2. By Lemma 2.52, the
limit in (2.78) equals λ[b, ω, φh, φd]−1U

(2)
33 [e](ξ). Let b ≡ (b, ω, 0, φh, φd). By

Theorems 2.36 and 2.17, we have T (3)
d [b] = 0. Therefore U (2)

33 [e](ξ) equals(∫
∂Ωh

gh · T (3)
h [b]σ̃[φh] dσ

)(
Γ(b, ξ − ω)

∫
∂Ωh

T (3)
h [b]σ̃[φh] dσ

)
,

for all ξ ∈ clΩ, and the last integral vanishes by the definition of T (3)
h (see

Proposition 2.44.) Hence statement (iv) for n = 2 follows. For n ≥ 3, it is
an immediate consequence of Lemma 2.52.

We conclude this subsection by noting that, if n ≥ 3, then the right
hand side of (2.77) can be continued real analytically in the whole of U (cf.
statement (iii) of Lemma 2.52.)

2.2.8 The corresponding energy integral

In this subsection we show that the energy integral
∫

A[a] E[b](u, u)dξ of
the solution u of problem 2.29 can be expressed by means of real an-
alytic operators defined in a whole open neighborhood of a given point
(b0, ω0, 0, φh

0 , φ
d
0, g

h, gd) and by completely known functions of ε. We also
investigate the behavior of the energy integral as ε→ 0+. To do so we need
the following technical Lemma 2.54, which is an immediate consequence of
Lemma 1.36, and can be proved by arguing as in subsection 1.3.2 of the
previous chapter.
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Lemma 2.54. Let m ∈ N \ {0} and λ ∈]0, 1[. Let Ω be a bounded open
subset of Rn of class Cm,λ with Ω and Rn \ clΩ connected. Let φ0 ∈
Cm,λ(∂Ω,Rn) ∩ A∂Ω. Let ω, δ, Ωω,δ, Ω+

ω,δ, Ω−
ω,δ, W0 be as in Propo-

sition 1.6. Let w+
φ(∂Ω)[b, µ] and w−φ(∂Ω)[b, µ] be as in Proposition 2.7 for

all (b, φ, µ) ∈ B × W0 × Cm,λ(∂Ω,Rn). Then the map of B × W0 ×
Cm,λ(∂Ω,Rn) to Cm,λ(clΩ+

ω,δ,R
n), which takes a triple (b, φ, µ) to the func-

tion w+
φ(∂Ω)[b, µ]◦E0[φ](x) of x ∈ clΩ+

ω,δ, is real analytic. Similarly, the map
of B×W0×Cm,λ(∂Ω,Rn) to Cm,λ(clΩ−

ω,δ,R
n), which takes a triple (b, φ, µ)

to the function w−φ(∂Ω)[b, µ] ◦E0[φ](x) of x ∈ clΩ−
ω,δ, is real analytic.

Theorem 2.55. Let the notation introduced in subsection 2.2.1 hold. Let
e0 ≡ (b0, ω0, 0, φh

0 , φ
d
0, g

h, gd) ∈ B×Em,λ×Cm,λ(∂Ωh,Rn)×Cm,λ(∂Ωd,Rn).
Let W0 be the neighborhood of b0 ≡ (b0, ω0, 0, φh

0 , φ
d
0) introduced in Propo-

sition 2.44. Let V (1), V (2) be as in Lemma 2.52. Then there exist an open
neighborhood U of e0 in B × Em,λ × Cm,λ(∂Ωh,Rn) × Cm,λ(∂Ωd,Rn) and
real analytic operators E(1) and E

(2)
ij , i, j = 1, . . . , n̄, of U to R, such that

(b, ω, ε, φh, φd) ∈ W0 for all e ≡ (ω, ε, φh, φd, gh, gd) ∈ U and∫
A[a]

E[b](u[e], u[e]) dξ (2.79)

= E(1)[e] +
n̄∑

i,j=1

(
γn(ε)V (1)[b] + V (2)[b]

)−1

ij
E

(2)
ij [e],

for all e ≡ (b, ω, ε, φh, φd, gh, gd) ∈ U with ε > 0, where a ≡ (ω, ε, φh, φd),
and b ≡ (b, ω, ε, φh, φd), and γn(ε) is defined as in Theorem 2.53.

Moreover, if e ≡ (b, ω, 0, φh, φd, gh, gd) belongs to U and we set eε ≡
(b, ω, ε, φh, φd, gh, gd), bε ≡ (b, ω, ε, φh, φd) for all ε > 0, then

lim
ε→0+

E(1)[eε] +
n̄∑

i,j=1

(
γn(ε)V (1)[bε] + V (2)[bε]

)−1

ij
E

(2)
ij [eε] (2.80)

=
∫

I[φd]
E[b](ud[b, φd, gd], ud[b, φd, gd]) dξ

+δ2,n

∫
E[φh]

E[b](uh[b, φh, gh], uh[b, φh, gh]) dξ,

where δ2,n = 1 if n = 2, and δ2,n = 0 if n 6= 2, and ud[b, φd, gd] is the
solution of the first interior boundary value problem in I[φd] with bound-
ary data gd ◦ (φd)(−1), and uh[b, φh, gh] is the solution of the first exterior
boundary value problem in E[φh] with boundary data gh ◦ (φh)(−1) (see Def-
inition 2.31.).

Proof. We now exploit the results that we have summarized in subsec-
tion 1.2.1 of the previous chapter. By Proposition 1.6, there exist a neigh-



90 CHAPTER 2. ELASTIC BOUNDARY VALUE PROBLEMS

borhood Wh
0 of φh

0 in Cm,λ(∂Ωh,Rn)∩A∂Ωh , and a neighborhood Wd
0 of φd

0

in Cm,λ(∂Ωd,Rn) ∩ A∂Ωd , and real analytic extension operators

Eh
0 : Wh

0 → Cm,λ(clΩh
ωh,δh ,Rn) ∩ A′

clΩh
ωh,δh

,

Ed
0 : Wd

0 → Cm,λ(clΩd
ωd,δd ,Rd) ∩ A′

clΩd
ωd,δd

,

where ωh, δh, Ωh
ωh,δh , ωd, δd, Ωd

ωd,δd are defined as in subsection 1.2.1, with
the obvious modification. Possibly choosing a smaller δd, we can also assume
that ω0 /∈ Ed

0[φ
d
0](clΩ

d
ωd,δd). Then there exists an open neighborhood U of e0

in B × Em,λ ×Cm,λ(∂Ωh,Rn)×Cm,λ(∂Ωd,Rn) such that, U is contained in
the neighborhood O1 of Theorem 2.50, and we have φh ∈ Wh

0 , and φd ∈ Wd
0 ,

and (b, ω, ε, φh, φd) ∈ W0, and

(ω + εEh
0 [φh](clΩh

ωh,δh)) ∩ φd(∂Ωd) = ∅,

and

(ω + εφh(∂Ωh)) ∩Ed
0[φ

d](clΩd
ωd,δd) = ∅,

for all e ≡ (b, ω, ε, φh, φd, gh, gd) ∈ U . Then, by Theorem 2.3, we have∫
A[ω,ε,φh,φd]

E[b](u[e], u[e]) dξ (2.81)

= −εn−2

∫
∂Ωh

{
T
(
b,D
(
u[e] ◦ (ω + εEh

0 [φh])
)
(x)
(
DEh

0 [φh](x)
)−1 )

·νφh ◦ φh(x)
}
· gh(x) σ̃[φh](x) dσx

+
∫

∂Ωd

{
T
(
b,D
(
u[e] ◦Ed

0[φ
d]
)
(x)
(
DEd

0[φ
d](x)

)−1 )
·νφd ◦ φd(x)

}
· gd(x) σ̃[φd](x) dσx,

for all e ≡ (b, ω, ε, φh, φd, gh, gd) ∈ U with ε > 0.
We now consider the first integral in the right hand side of (2.81). By

equations (2.71) and (2.72), we have

ur[e] ◦ (ω + εEh
0 [φh])(x) (2.82)

= −w−
φh(∂Ωh)

[b,Mh[e] ◦ (φh)(−1)] ◦Eh
0 [φh](x)

−
∫

∂Ωd

{[
T (b,DΓ(i)(b, ω + εEh

0 [φh](x)− φd(y)))

·νφd ◦ φd(y)
]
· Md[e]

}
i=1,...,n

σ̃[φd](y) dσy,
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and

us[e] ◦ (ω + εEh
0 [φh])(x) (2.83)

=
n̄∑

i,j=1

(∫
∂Ωh

gh · T (i)
h [b]σ̃[φh] dσ +

∫
∂Ωd

gd · T (i)
d [b]σ̃[φd] dσ

)
·
(
γn(ε)V (1)[b] + V (2)[b]

)−1

ij

·
(∫

∂Ωh

Γ
(
b, ε(Eh

0 [φh](x)− φh(y))
)
T (j)

h [b](y) σ̃[φh](y) dσy

+
∫

∂Ωd

Γ(b, ω + εEh
0 [φh](x)− φd(y))T (j)

d [b](y) σ̃[φd](y) dσy

)
,

for all x ∈ (Ωh)−
ωh,δh (cf. Proposition 1.6) and all e ≡ (b, ω, ε, φh, φd, gh, gd)

with ε > 0, where as usual we abbreviated (b, ω, ε, φh, φd) as b. Then, by
Propositions 1.6, 2.39, 2.44, and by Theorem 2.50, and by Lemma 2.54,
and by equations (2.82) and (2.83), we deduce that there exist real analytic
operators G(1), G(3)

j , G(4)
j , j = 1, . . . , n̄, of U to Cm,λ(cl(Ωh)−

ωh,δh ,Rn), and

real analytic operators G(2)
i , i = 1, . . . , n̄, of U to R, such that

u[e] ◦ (ω + εEh
0 [φh])(x) = G(1)[e](x)

+
n̄∑

i,j=1

G
(2)
i [e]

(
γn(ε)V (1)[b] + V (2)[b]

)−1

ij

(
γn(ε)G(3)

j [e](x) +G
(4)
j [e](x)

)
,

for all x ∈ (Ωh)−
ωh,δh , and all e ∈ U with ε > 0. Indeed, we can take as

G(1)[e] the function of cl(Ωh)−
ωh,δh defined by the right hand side of (2.82)

and we can take as G(2)
i [p] the first factor in parentheses in the right hand

side of (2.83), for all i = 1, . . . , n̄. To define G(3)
j [p] we consider two different

cases. If n = 2 we take

G
(3)
j [e](x) ≡ |φh(∂Ωh)|1/2

2π
b+ 2

2(b+ 1)
(δij)i=1,2, ∀ x ∈ cl(Ωh)−

ωh,δh , j = 1, 2, 3.

In particular, we have G
(3)
3 [e](x) = 0 identically. If n ≥ 3 we take as

G
(3)
j [e](x) the function of x ∈ cl(Ωh)−

ωh,δh given by∫
∂Ωh

Γ(Eh
0 [φh](x)− φh(y))T (j)

h [b](y)σ̃[φh](y) dσy, ∀ x ∈ cl(Ωh)−
ωh,δh .

Then we take as G(4)
j [e] the difference between the last factor in parentheses

in the right hand side of (2.83) and γn(ε)G(3)
j [e], both for n = 2 and n ≥ 3.



92 CHAPTER 2. ELASTIC BOUNDARY VALUE PROBLEMS

Clearly

∂k

(
u[e] ◦ (ω + εEh

0 [φh])
)

= ∂kG
(1)[e]

+
n̄∑

i,j=1

G
(2)
i [e]

(
γn(ε)V (1)[b] + V (2)[b]

)−1

ij

(
γn(ε)∂kG

(3)
j [e] + ∂kG

(4)
j [e]

)
,

in (Ωh)−
ωh,δh , for all k = 1, . . . , n and all e ∈ U with ε > 0. Hence the first

integral in the right hand side of (2.81) equals∫
∂Ωh

{
T
(
b, (DG(1)[e])(DEh

0 [φh])−1
)
νφh ◦ φh

}
· gh σ̃[φh] dσ (2.84)

+
n̄∑

i,j=1

G
(2)
i [e]

(
γn(ε)V (1)[b] + V (2)[b]

)−1

ij

·
∫

∂Ωh

{
T
(
b,
(
γn(ε)DG(3)

j [e] +DG
(4)
j [e]

)(
DEh

0 [φh]
)−1
)

·νφh ◦ φh
}
· gh σ̃[φh] dσ,

for all e ∈ U with ε > 0.
Now let ε = 0. By Theorems 2.45, 2.50, we have

G(1)[e] = ud[b, φd, gd](ω) + uh
r [b, φ, gd] ◦Eh

0 [φh],
DG(1)[e] = D(uh

r [b, φh, gh] ◦Eh
0 [φh]),

in (Ωh)−
ωh,δh , for all e ≡ (b, ω, 0, φh, φd, gh, gd) ∈ U , where uh

r [b, φh, gh] is the
function introduced in Definition 2.31. Therefore, if ε = 0 the first integral
in (2.84) equals∫

φh(∂Ωh)

[
T (b,Duh

r [b, φh, gh])νφh

]−
· gh ◦ (φh)(−1) dσ,

which in turn equals

−
∫

E[φh]
E[b](uh

r [b, φh, gh], uh
r [b, φh, gh]) dξ

by Theorem 2.3. Moreover, if n = 2, then DG
(3)
j [e] = 0 for all j = 1, . . . , 3.

So, for n = 2 and ε = 0, the last integral in (2.84) equals∫
φh(∂Ωh)

[
T
(
b,Dvφh(∂Ωh)[b, T

(j)
h [b] ◦ (φh)(−1)]

)
νφh

]−
· gh ◦ (φh)(−1) dσ

=
∫

φh(∂Ωh)
K∗

φh(∂Ωh)[b, T
(j)

h [b] ◦ (φh)(−1)] · gh ◦ (φh)(−1) dσ.
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Since T (j)
h [b] ◦ (φh)(−1) ∈ KerHφh(∂Ωh)[b, ·] (cf. Proposition 2.44) we have

K∗
φh(∂Ωh)

[b, T (j)
h [b] ◦ (φh)(−1)] = T (j)

h [b] ◦ (φh)(−1). We conclude that, for
n = 2 and ε = 0 the last integral in (2.84) equals∫

∂Ωh

gh · T (j)
h [b] σ̃[φh] dσ.

We now consider the second integral in the right hand side of (2.81). By
equations (2.71) and (2.72), we have

ur[e] ◦Ed
0[φ

d](x) (2.85)

= εn−1

∫
∂Ωh

{[
T (b,DΓ(i)(b,Ed

0[φ
d](x)− ω − εφh(y)))

·νφh ◦ φh(y)
]
· Mh[e]

}
i=1,...,n

σ̃[φh](y) dσy,

+w+
φd(∂Ωd)

[
b,Md[e] ◦ (φd)(−1)

]
◦Ed

0[φ
d](x),

and

us[e] ◦Ed
0[φ

d](x) (2.86)

=
n̄∑

i,j=1

(∫
∂Ωh

gh · T (i)
h [b]σ̃[φh] dσ +

∫
∂Ωd

gd · T (i)
d [b]σ̃[φd] dσ

)
·
(
γn(ε)V (1)[b] + V (2)[b]

)−1

ij

·
(∫

∂Ωh

Γ
(
Ed

0[φ
d](x)− ω − εφh(y))

)
T (j)

h [b](y) σ̃[φh](y) dσy

+
∫

∂Ωd

Γ(Ed
0[φ

d](x)− φd(y))T (j)
d [b](y) σ̃[φd](y) dσy

)
,

for all x ∈ (Ωd)+
ωd,δd (cf. Proposition 1.6) and all e ∈ U with ε > 0. Then,

by Propositions 1.6, 2.39, 2.44, and by Theorem 2.50, and by Lemma 2.54,
and by equations (2.85) and (2.86), there exist real analytic operators G(5),
G

(6)
j , j = 1, . . . , n̄, of U to Cm,λ(clA+

δ ,R
n), such that

u[e] ◦Ed
0[φ

d] = G(5)[e] +
n̄∑

i,j=1

G
(2)
i [e](γn(ε)V (1)[b] + V (2)[b])−1

ij G
(6)
j [e]

in (Ωd)+
ωd,δd , for all e ∈ U with ε > 0. Indeed, we can take as G(5)[e](x)

the function defined by the right hand side of (2.85), and we can take as
G

(6)
j [e](x) the function defined by the last factor in parentheses in the right

hand side of (2.86), and we note that G(2)
i [e] coincides with the first factor
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in parentheses in the right hand side of (2.86). Clearly

∂k

(
u[e] ◦Ed

0[φ
d]
)

= ∂kG
(5)[e] +

n̄∑
i,j=1

G
(2)
i [e](γn(ε)V (1)[b] + V (2)[b])−1

ij ∂kG
(6)
j [e]

in (Ωd)+
ωd,δd , for all k = 1, . . . , n, and all e ∈ U with ε > 0. Then the second

integral in the right hand side of (2.81) equals∫
∂Ωd

{
T
(
b, (DG(5)[e])(DEd

0[φ
d])−1

)
νφd ◦ φd

}
· gd σ̃[φd] dσ (2.87)

+
n̄∑

i,j=1

G
(2)
i [e]

(
γn(ε)V (1)[b] + V (2)[b]

)−1

ij

·
∫

∂Ωd

{
T
(
b, (DG(6)

j [e])(DEh
0 [φh])−1

)
νφd ◦ φd

}
· gd σ̃[φd] dσ,

for all e ∈ U with ε > 0.
Now let ε = 0. We note that

G(5)[b, ω, 0, φh, φd, gh, gd] = ud[b, φd, gd] ◦Ed
0[φ

d],
DG(5)[b, ω, 0, φh, φd, gh, gd] = D(ud[b, φd, gd] ◦Ed

0[φ
d]),

in (Ωd)+
ωd,δd , for all (b, ω, 0, φh, φd, gh, gd) ∈ U . Therefore the first integral in

(2.87) equals∫
φd(∂Ωd)

[
T (b,Dud[b, φd, gd])νφd

]+
· gd ◦ (φd)(−1) dσ,

which is equal to ∫
I[φd]

E[b](ud[b, φd, gd], ud[b, φd, gd]) dξ,

by Theorem 2.3. Moreover, for n = 2 and ε = 0, the last integral in (2.87)
equals∫

φd(∂Ωd)

[
T
(
b,Dvφd(∂Ωd)[b, T

(j)
d [b] ◦ (φd)(−1)]

)
νφd

]+
· gd ◦ (φd)(−1) dσ.

In particular, for j = 3 such an expression vanishes because, by Theo-
rem 2.36 and by Proposition 2.44, T (3)

d [b] = 0.
Now, by (2.81), (2.84) and (2.87), we immediately deduce the existence

of E(1), E(2)
ij , i, j = 1, . . . , n̄, and the validity of (2.79). For n ≥ 3 the

validity of (2.80) follows by the above computation of the first integrals of
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(2.84), (2.87) at ε = 0 and by Lemma 2.52. Similarly one verifies that, for
n = 2, the limit in (2.79) converges to∫

I[φd]
E[b](ud[b, φd, gd], ud[b, φd, gd]) dξ (2.88)

+
∫

E[φh]
E[b](uh

r [b, φh, gh], uh
r [b, φh, gh]) dξ

−λ[b, ω, φh, φd]−1

(∫
∂Ωh

gh · T (3)
h [b] σ̃[φh] dσ

)2

.

To recognize that such an expression coincides with the right hand side of
(2.80) we have to do some more calculations.

We note that, by Definition 2.31 and Proposition 2.44, uh
r [b, φh, gh] =

wφh(∂Ωh)[b, µ], with µ ∈ Cm,λ(φh(∂Ωh),Rn), and

uh
s [b, φh, gh] =

(∫
∂Ωh

gh · T (3)
h [b] σ̃[φh] dσ

)
vφh(∂Ω)[b, α̃] + c

where α̃ is an element of (KerHφh(∂Ωh)[b, ·])0 and c is a constant vector.
Then we have∫

E[φh]
E[b](uh

r [b, φh, gh], uh
s [b, φh, gh]) dξ (2.89)

=
(∫

∂Ωh

gh · T (3)
h [b] σ̃[φh] dσ

)
·
∫

E[φh]
E[b](wφh(∂Ωh)[b, µ], vφh(∂Ωh)[b, α̃]) dξ,

and, by Theorem 2.3 and 2.12, the second integral in the right hand side
equals∫

φh(∂Ωh)
wφh(∂Ωh)[b, µ]− ·

[
T (b,Dvφh(∂Ωh)[b, α̃])νφh

]−
dσ (2.90)

=
∫

φh(∂Ωh)
H∗

φh(∂Ωh)[b, µ] · α̃ dσ =
∫

φh(∂Ωh)
µ ·Hφh(∂Ωh)[b, α̃] dσ = 0.

Furthermore, we have∫
E[φh]

E[b](uh
s [b, φh, gh], uh

s [b, φh, gh]) dξ (2.91)

=
(∫

∂Ωh

gh · T (3)
h [b] σ̃[φh] dσ

)2

·
∫

E[φh]
E[b](vφh(∂Ωh)[b, α̃], vφh(∂Ωh)[b, α̃]) dξ,
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and, by Theorem 2.3, the second integral in the right hand side equals∫
φh(∂Ωh)

[
T (b,Dvφh(∂Ωh)[b, α̃])νφh

]−
· vφh(∂Ωh)[b, α̃] dσ (2.92)

=
∫

φh(∂Ωh)
K∗

φh(∂Ωh)[b, α̃] · vφh(∂Ωh)[b, α̃] dσ

=
∫

φh(∂Ωh)
α̃ · vφh(∂Ωh)[b, α̃] dσ.

Now, by definition we have vφh(∂Ωh)[b, α̃] = b(3)[φh] + c′ on φh(∂Ωh), where
c′ is a constant vector. Then, by exploiting equation (2.76), it follows that
vφh(∂Ωh)[b, α̃] = λ[b, ω, φh, φd]−1vφh(∂Ωh)[b, T

(3)
h [b] ◦ (φh)(−1)], which implies

that α̃ = λ[b, ω, φh, φd]−1T (3)
h [b] ◦ (φh)(−1). So the last integral in (2.92)

equals

λ[b, ω, φh, φd]−1

∫
∂Ωh

T (3)
h [b] ·

(
b(3)[φh] ◦ φh

)
σ̃[φh] dσ = λ[b, ω, φh, φd]−1.

(2.93)
Finally, by exploiting (2.89), (2.90), (2.91), (2.92) and (2.93) we deduce that∫

E[φh]
E[b](uh[b, φh, gh], uh[b, φh, gh]) dξ

=
∫

E[φh]
E[b]

(
uh

r [b, φh, gh] + uh
s [b, φh, gh], uh

r [b, φh, gh] + uh
s [b, φh, gh]

)
dξ

=
∫

E[φh]
E[b](uh

r [b, φh, gh], uh
r [b, φh, gh]) dξ

−λ[b, ω, φh, φd]−1

(∫
∂Ωh

gh · T (3)
h [b] σ̃[φh] dσ

)2

,

which immediately implies that expression (2.88) coincides with the right
hand side of equation (2.80).

2.3 Robin boundary value problem

2.3.1 Preliminaries

Let Ω be a bounded open and connected subset of Rn of class C1 and let a
be a continuous matrix valued function on ∂Ω which satisfies the following
conditions.

(a1) det a is not identically equal to zero on ∂Ω.

(a2) ξ · a(x)ξ ≥ 0 for all ξ ∈ Rn and for all x ∈ ∂Ω.



2.3. ROBIN BOUNDARY VALUE PROBLEM 97

In this section we consider the following Robin boundary value problem,{
L[b]u = 0 in Ω,
T (b,Du)ν + au = g on ∂Ω,

(2.94)

where g is a given function on ∂Ω and b > 1− 2/n. The conditions (a1) and
(a2) on the matrix function a are motivated by the following Theorem.

Theorem 2.56. Let b > 1 − 2/n. Let Ω be a bounded open and connected
subset of Rn of class C1. Let a ∈ C(∂Ω,Mn×n(R)) satisfy (a1) and (a2).
If u ∈ C1(clΩ,Rn) ∩ C2(Ω,Rn) is a solution of problem (2.94) with g = 0,
then u = 0.

Proof. By Theorem 2.3, we have∫
Ω

E[b](u, u) dx =
∫

∂Ω
u|∂Ω · T (b,Du)|∂Ων dσ = −

∫
∂Ω
u|∂Ω · au|∂Ω dσ.

By condition (a2) the last integral is ≤ 0. By Proposition 2.2, we have
E[b](u, u) ≥ 0. Thus E[b](u, u) = 0 and we deduce that u ∈ RΩ. Then,
by Theorem 2.4, T (b,Du)|∂Ων = 0. Since T (b,Du)|∂Ων + au|∂Ω = 0 by
assumption, it follows that au|∂Ω = 0. So, to conclude the proof we have to
show that au|∂Ω = 0 implies u = 0.

Since u ∈ RΩ, there exist A ∈ Skew(n,R) and b ∈ Rn such that u(x) =
Ax + b for all x ∈ Ω. We now prove that A = 0. To do so we assume, by
contradiction, that A 6= 0. Then A has a non zero minor of rank at least
2. It follows that the affine subspace Z ≡ {x ∈ Rn : Ax + b = 0} of Rn

has codimension larger than 2. Therefore, the intersection Z ∩ ∂Ω cannot
be open and not empty in ∂Ω. Conversely, by equation au|∂Ω = 0 and by
condition (a1), the set of the points x ∈ ∂Ω where u(x) = 0 is open and not
empty in ∂Ω. So we have a contradiction, because Z ∩ ∂Ω coincides with
the set where u(x) = 0. It follows that A = 0 and u = b. Moreover, since
det a is not identically zero, ab = 0 implies b = 0.

Now let m ∈ N \ {0}, and let λ ∈]0, 1[, and let Ω be a bounded open and
connected subset of Rn of class Cm,λ, and let a ∈ Cm−1,λ(∂Ω,Mn×n(R))
satisfy conditions (a1) and (a2), and let g ∈ Cm−1,λ(∂Ω,Rn). With these
assumptions we associate to the boundary value problem (2.94) a bound-
ary integral equation of Fredholm type and we prove that problem (2.94)
has a unique solution u ∈ Cm,λ(clΩ,Rn), which is expressed by means of
suitable layer potentials. It will be necessary to distinguish between the
case n = 2 and the case n ≥ 3. Indeed for n = 2 we look for solutions
in the form v∂Ω[b, µ] + c, where the density µ belongs to Cm−1,λ(∂Ω,Rn)
and satisfies

∫
∂Ω µdσ = 0, and c is a constant function. If n ≥ 3 we look

for solutions in the form of a single layer potential v∂Ω[b, µ], with density
µ ∈ Cm−1,λ(∂Ω,Rn). We introduce the following.
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Definition 2.57. Let b > 1−2/n, m ∈ N\{0}, λ ∈]0, 1[. Let Ω be a bounded
open connected subset of Rn of class Cm,λ. Let a ∈ Cm−1,λ(∂Ω,Mn×n(R))
satisfy (a1) and (a2). We denote by J∂Ω[b, ·] the operator on L2(∂Ω,Rn)
which takes a function µ to

J∂Ω[b, µ] ≡ H∂Ω[b, µ] + av∂Ω[b, µ]|∂Ω.

We denote by L2(∂Ω,Rn)0 the closed subspace of L2(∂Ω,Rn) of the func-
tion µ such that

∫
∂Ω µdσ = 0, and we denote by J̃∂Ω[b, ·, ·] the operator of

L2(∂Ω,Rn)0 × Rn
Ω to L2(∂Ω,Rn) which takes a couple (µ, c) to

J̃∂Ω[b, µ, c] ≡ H∂Ω[b, µ] + a (v∂Ω[b, µ] + c) |∂Ω.

We write J and J̃ instead of J∂Ω and J̃∂Ω where no ambiguity can arise.

We have the following.

Proposition 2.58. With the notation introduced in Definition 2.57, the
operator J[b, ·] is a Fredholm operator of index 0 on L2(∂Ω,Rn), and the
operator J̃[b, ·, ·] is a Fredholm operator of index 0 from L2(∂Ω,Rn)0 × Rn

Ω

to L2(∂Ω,Rn).

Proof. The proof that J[b, ·] is a Fredholm operator of index 0 follows by
a slight modification in the proof of Theorem 2.11. We now consider the
operator J̃[b, ·, ·]. We have J̃[b, ·, ·] = J1 ◦J2 ◦J3, where J1 is the operator of
L2(∂Ω,Rn) × Rn

Ω to L2(∂Ω,Rn) which takes a couple (f, c) to the function
f +ac|∂Ω, and J2 is the operator from L2(∂Ω,Rn)×Rn

Ω to L2(∂Ω,Rn)×Rn
Ω

which takes a couple (µ, c) to the couple (J[b, µ], c), and J3 is the immersion
of L2(∂Ω,Rn)0×Rn

Ω into L2(∂Ω,Rn)×Rn
Ω. Then we easily verify that J1, J2

and J3 are Fredholm operators of index n, 0 and −n, respectively. Since the
composition of Fredholm operators is a Fredholm operator of index equal
to the sum of the indexes of the components, we deduce that J̃[b, ·, ·] is a
Fredholm operator of index 0.

Now, by Proposition 2.58, we deduce the following Theorem 2.59 which
motivates the distinction between the case n = 2 and the case n ≥ 3.

Theorem 2.59. Let the notation of Definition 2.57 hold. If n ≥ 3, then the
operator J[b, ·] is a linear homeomorphism of L2(∂Ω,Rn) onto L2(∂Ω,Rn). If
n = 2, then the operator J̃[b, ·, ·] is a linear homeomorphism of L2(∂Ω,R2)0×
R2

Ω onto L2(∂Ω,R2).

Proof. Since J[b, ·] and J̃[b, ·, ·] are Fredholm operators of index 0 it will
be enough to prove that they have trivial kernel. So let n ≥ 3, and let
J[b, µ] = 0. By arguing as in the proof of Lemma 2.14, we deduce that
µ ∈ C0,λ(∂Ω,Rn). Then, by Proposition 2.13, the function v∂Ω[b, µ]|clΩ
is a solution of problem (2.94) with g = 0. Then v∂Ω[b, µ]|clΩ = 0 by
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Theorem 2.56. It follows that v∂Ω[b, µ] = 0 on ∂Ω, which implies that
v∂Ω[b, µ] = 0 in the whole of Rn (cf. Theorem 2.4 and Proposition 2.6.)
Then µ = [T (b,Dv∂Ω[b, µ])ν]− − [T (b,Dv∂Ω[b, µ])ν]+ = 0. The proof that
J̃[b, ·, ·] is an homeomorphism for n = 2 is very similar and we omit it.

Moreover, by Theorem 2.19 and Proposition 2.6, we have the following.

Proposition 2.60. With the notation introduced in Definition 2.57, if ei-
ther J[b, µ] ∈ Cm−1,λ(∂Ω,Rn) or J̃[b, µ, c] ∈ Cm−1,λ(∂Ω,Rn), then µ ∈
Cm−1,λ(∂Ω,Rn).

Proof. Let J[b, µ] ∈ Cm−1,λ(∂Ω,Rn). If m = 1 the statement follows by
a slight modification of the proof of Lemma 2.14. So let m ≥ 2. If µ ∈
Cm′−1,λ(∂Ω,Rn), withm′ < m, then v∂Ω[b, µ]|∂Ω ∈ Cm′,λ(∂Ω,Rn) by Propo-
sition 2.6. Then, by exploiting the definition of J[b, µ], we have H[b, µ] ∈
Cm′,λ(∂Ω,Rn). By Theorem 2.19, it follows that µ ∈ Cm′,λ(∂Ω,Rn). By
induction on m′ we deduce that µ ∈ Cm−1,λ(∂Ω,Rn). The proof for J̃ is
very similar ad we omit it.

Now, by the previous Theorems 2.56 and 2.59 and by Proposition 2.60,
we are ready to deduce the following.

Theorem 2.61. Let b > 1−2/n, m ∈ N\{0}, λ ∈]0, 1[. Let Ω be a bounded
open connected subset of Rn of class Cm,λ. Let a ∈ Cm−1,λ(∂Ω,Mn×n(R))
satisfy (a1) and (a2). Then problem (2.94) admits a unique solution u ∈
Cm,λ(clΩ,Rn) for each given g ∈ Cm−1,λ(∂Ω,Rn). If n ≥ 3, then the solu-
tion u is delivered by the function v∂Ω[b, µ]|clΩ, where µ ∈ Cm−1,λ(∂Ω,Rn)
is the unique solution of

J[b, µ] = g. (2.95)

If n = 2, then the solution u is delivered by the function v∂Ω[b, µ]|clΩ + c,
where (µ, c) ∈ Cm−1,λ(∂Ω,R2)× R2

Ω is the unique solution of{
J̃[b, µ, c] = g,∫
∂Ω µdσ = 0.

(2.96)

We now present a technical remark which is needed in the sequel, the
proof can be easily deduced by the previous Theorem 2.59 and Proposi-
tion 2.60 by linearity.

Remark 2.62. Let the notation of Definition 2.57 hold. If n = 2, then for
each given (g, d) ∈ Cm−1,λ(∂Ω,Rn)×Rn

Ω there exists a unique pair (µ, c) of
Cm−1,λ(∂Ω,Rn)× Rn

Ω such that{
J[b, µ] + c = g,∫
∂Ω µdσ = d.

(2.97)



100 CHAPTER 2. ELASTIC BOUNDARY VALUE PROBLEMS

2.3.2 Robin problem in a singularly perturbed domain

We now introduce a Robin problem on a singularly perturbed domain. We
fix a constant m ∈ N \ {0}, and a constant λ ∈]0, 1[, and two bounded
open subsets Ωh and Ωd of Rn with Ωh, Ωd, Rn \ clΩh, Rn \ clΩd connected,
and a matrix valued function α ∈ Cm−1,λ(∂Ωd,Mn×n(R)) which satisfies
conditions (a1) and (a2). Then, for each (b, ω, ε, φh, φd, gh, gd) ∈ B×Em,λ

+ ×
Cm−1,λ(∂Ωh,Rn)× Cm−1,λ(∂Ωd,Rn) (cf. subsection 2.2.1), we consider the
following Robin boundary value problem in the domain A[ω, ε, φh, φd] ≡
I[φd] \ clI[ω + εφh],


L[b]u = 0 in A[ω, ε, φh, φd],
−T (b,Du)ν(ω+εφh) = gi ◦ (ω + εφh)(−1) on ω + εφh(∂Ωh),
T (b,Du)νφd + α ◦ (φd)(−1)u = gd ◦ (φd)(−1) on φd(∂Ωd),

(2.98)

In the previous subsection 2.3.1 we have proved that the system of equa-
tions (2.98) has a unique solution u[b, ω, ε, φh, φd, gh, gd] ∈ Cm,λ(clA[a],Rn).
We shall investigate the behavior of the solution u[b, ω, ε, φh, φd, gi, go] upon
perturbations of (b, ω, ε, φh, φd, gh, gd) around a given degenerate sextuple
(b0, ω0, 0, φh

0 , φ
d
0, g

h
0 , g

d
0).

2.3.3 A real analyticity theorem for the solutions of (2.95)
and (2.96)

We start our analysis of the Robin problem (2.98), which is defined in the
a ≡ (ω, ε, φh, φd) dependent domain A[a]. As a first step we transform the
corresponding equation (2.95) and system (2.96) into a system of equations
on the boundary of the fixed domains Ωh and Ωd. This is done in the
following Theorem 2.63.

Theorem 2.63. With the notation of subsections 2.3.2, we denote by N ≡
(N1, N2, N3) the map of B×Em,λ×(Cm−1,λ(∂Ωh,Rn)×Cm−1,λ(∂Ωd,Rn))2×
Rn to (Cm−1,λ(∂Ωh,Rn)× Cm−1,λ(∂Ωd,Rn))2 × Rn defined by

N1[b, ω, ε, φh, φd, gh, gd, µh, µd, c](xh) ≡ K∗[b, φh, µh](x) (2.99)

+εn−1

∫
∂Ωd

n∑
i=1

[
T (b,DΓ(i)(b, ω + εφh(x)− φd(y))

·νφh ◦ φh(x)
]
µd

i (y) σ̃[φd](y) dσy + εn−1gh(x),

∀ x ∈ ∂Ωh,
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N2[b, ω, ε, φh, φd, gh, gd, µh, µd, c](x) (2.100)
≡ H[b, φd, µd](x) + α(x)

(
V [b, φd, µd](x) + c

)
+
∫

∂Ωh

n∑
i=1

[
T (b,DΓ(i)(b, φd(x)− ω − εφh(y)))

·νφd ◦ φd(x)
]
µh

i (y) σ̃[φh](y) dσy

+α(x)
∫

∂Ωh

Γ(b, φd(x)− ω − εφh(y))µh(y) σ̃[φh](y) dσy − gd(x),

∀ x ∈ ∂Ωd,

N3[b, ω, ε, φh, φd, gh, gd, µh, µd, c] ≡ (1− δ2,n) c (2.101)

+δ2,n

(∫
∂Ωh

µh σ̃[φh] dσ +
∫

∂Ωd

µd σ̃[φd] dσ
)
,

for all (b, ω, ε, φh, φd, gh, gd, µh, µd, c) ∈ B × Em,λ × (Cm−1,λ(∂Ωh,Rn) ×
Cm−1,λ(∂Ωd,Rn))2 × Rn, where V [b, φd, µd] ≡ v[b, φd, µd] ◦ φd.

Let (b, ω, ε, φh, φd, gh, gd, µh, µd, c) ∈ B × Em,λ
+ × (Cm−1,λ(∂Ωh,Rn) ×

Cm−1,λ(∂Ωd,Rn))2 × Rn, and let

µ ≡
{
ε1−n µh ◦ (ω + εφh)(−1) on ω + εφh(∂Ωh),
µd ◦ (φd)(−1) on φd(∂Ωd),

(2.102)

Ω ≡ A[ω, ε, φh, φd], (2.103)

a ≡
{

0n×n on ω + εφh(∂Ωh),
α ◦ (φd)(−1) on φd(∂Ωd),

(2.104)

g ≡
{
gh ◦ (ω + εφh)(−1) on ω + εφh(∂Ωh),
gd ◦ (φd)(−1) on φd(∂Ωd).

(2.105)

Then, we have
N [b, ω, ε, φh, φd, gh, gd, µh, µd, c] = 0, (2.106)

if and only if either one of the following two conditions is satisfied.

(i) n = 2 and the pair (µ, c), with µ defined by (2.102), satisfies (2.96)
with Ω, a and g defined by (2.103), (2.104) and (2.105), respectively.

(ii) n ≥ 3, and c = 0, and the function µ defined by (2.102) satisfies (2.95)
with Ω, a and g defined by (2.103), (2.104) and (2.105), respectively.

In particular, for each given 7-tuple (b, ω, ε, φh, φd, gh, gd) in B × Em,λ
+ ×

Cm−1,λ(∂Ωh,Rn)×Cm−1,λ(∂Ωd,Rn), there exists a unique triple (µh, µd, c)
of Cm−1,λ(∂Ωh,Rn)×Cm−1,λ(∂Ωd,Rn)×Rn such that equation 2.106 hold.

Now, let ε = 0. Let (b, ω, 0, φh, φd, gh, gd)∈B×Em,λ×Cm−1,λ(∂Ωh,Rn)×
Cm−1,λ(∂Ωd,Rn) be fixed. Then the triple (µh, µd, c) of Cm−1,λ(∂Ωh,Rn)×
Cm−1,λ(∂Ωd,Rn)× Rn satisfies equation

N [ω, 0, φh, φd, gh, gd, µh, µd, c] = 0, (2.107)
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if and only if µh = 0 and either one of the following two conditions hold.

(iii) n = 2 and the pair (µ, d), with µ ≡ µd◦(φd)(−1), is a solution of (2.96)
with Ω ≡ I[φd], a ≡ α ◦ (φd)(−1) and g ≡ gd ◦ (φd)(−1).

(iv) n ≥ 3, and c = 0, and the function µ ≡ µd ◦ (φd)(−1) is a solution of
(2.95) with Ω ≡ I[φd], a ≡ α ◦ (φd)(−1) and g ≡ gd ◦ (φd)(−1).

In particular, for each (ω, 0, φh, φd, gh, gd) in B×Em,λ×Cm−1,λ(∂Ωh,Rn)×
Cm−1,λ(∂Ωd,Rn), equation (2.106) has exactly one solution (µh, µd, c) in
Cm−1,λ(∂Ωh,Rn)× Cm−1,λ(∂Ωd,Rn)× Rn.

Proof. The statement follows by a straightforward verification based on the
theorem of change of variables in integrals and by the previous Theorem 2.61.
We only note that, if (b, ω, 0, φh, φd, gh, gd) ∈ B×Em,λ×Cm−1,λ(∂Ωh,Rn)×
Cm−1,λ(∂Ωd,Rn) is fixed, then the first component of equation (2.107) ad-
mits the unique solution µh = 0 (cf. statement (i) of Lemma 2.26.) Then,
by the second and third component of (2.107), µd satisfies either condition
(iii) or condition (iv) of the theorem.

By Theorem 2.63, it makes sense to introduce the following.

Definition 2.64. With the notation introduced in subsection 2.3.2, let e ≡
(b, ω, ε, φh, φd, gh, gd) ∈ B × Em,λ × Cm−1,λ(∂Ωh,Rn) × Cm−1,λ(∂Ωd,Rn)
with ε > 0 or ε = 0. We denote by (µ̂h[e], µ̂d[e], ĉ[e]) the unique solution
(µh, µd, c) ∈ Cm−1,λ(∂Ωh,Rn) × Cm−1,λ(∂Ωd,Rn) × Rn of equation (2.106)
or (2.107), respectively.

Our goal is to show that µ̂h[·], µ̂d[·] and ĉ[·] admit a real analytic con-
tinuation around a “degenerate” point e0 ≡ (b0, ω0, 0, φh

0 , φ
d
0, g

h
0 , g

d
0) ∈ B ×

Em,λ×Cm−1,λ(∂Ωh,Rn)×Cm−1,λ(∂Ωd,Rn). By Propositions 1.40 and 2.39
we get the following.

Proposition 2.65. With the notation of subsection 2.3.2, the set B×Em,λ×
(Cm−1,λ(∂Ωh,Rn) × Cm−1,λ(∂Ωd,Rn))2 × Rn is an open subset of the Ba-
nach space Rn+2 × Cm,λ(∂Ωh,Rn) × Cm,λ(∂Ωd,Rn) × (Cm−1,λ(∂Ωh,Rn) ×
Cm−1,λ(∂Ωd,Rn))2 × Rn, and the operator N is real analytic.

Moreover, we need the following.

Lemma 2.66. With the notation introduced in subsection 2.3.2, let f0 ≡
(b0, ω0, 0, φh

0 , φ
d
0, g

h
0 , g

d
0 , µ

h
0 , µ

d
0, c0) belong to B×Em,λ × (Cm−1,λ(∂Ωh,Rn)×

Cm−1,λ(∂Ωd,Rn))2 × Rn, and let N [f0] = 0. Then the differential

∂(µh,µd,c)N [f0] =
(
∂(µh,µd,c)N

1[f0], ∂(µh,µd,c)N
2[f0], ∂(µh,µd,c)N

3[f0]
)
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of N with respect to the variable (µh, µd, c) at f0 is delivered by the linear
operators which takes (µ̄h, µ̄d, c̄) ∈ Cm−1,λ(∂Ωh,Rn)×Cm−1,λ(∂Ωh,Rn)×Rn

to the functions defined by

∂(µh,µd,c)N
1[f0](µ̄h, µ̄d, c̄)(x) = K∗[b0, φh

0 , µ̄
h](x), ∀ x ∈ ∂Ωh,

∂(µh,µd,c)N
2[f0](µ̄h, µ̄d, c̄)(x)

= H[b0, φd
0, µ̄

d](x) + α(x)
(
V [b0, φd

0, µ̄
d](x) + c̄

)
+

n∑
i=1

[
T (b0, DΓ(i)(b0, φd

0(x)− ω0))νφd
0
◦ φd

0(x)
] ∫

∂Ωh

µ̄h
i σ̃[φh

0 ] dσ

+α(x)Γ(b0, φd
0(x)− ω0)

∫
∂Ωh

µ̄h σ̃[φh
0 ] dσ, ∀ x ∈ ∂Ωd,

∂(µh,µd,c)N
3[f0](µ̄h, µ̄d, c̄) = (1− δ2,n) c̄

+δ2,n

(∫
∂Ωh

µ̄h σ̃[φh
0 ] dσ +

∫
∂Ωd

µ̄d σ̃[φd
0] dσ

)
.

(2.108)

Moreover, the partial differential ∂(µh,µd,c)N [f0] is a linear homeomor-
phism of Cm−1,λ(∂Ωh,Rn) × Cm−1,λ(∂Ωd,Rn) × Rn to Cm−1,λ(∂Ωh,Rn) ×
Cm−1,λ(∂Ωd,Rn)× Rn.

Proof. Expression (2.108) follows by standard calculus in Banach space.
Then we recognize that the differential ∂(µh,µd,c)N [f0] is a bounded linear op-
erator on Cm−1,λ(∂Ωh,Rn)×Cm−1,λ(∂Ωd,Rn)×Rn. By the Open Mapping
Theorem, it follows that ∂(µh,µd,c)N [f0] is an homeomorphism if it is an iso-
morphism. So we fix (gh, gd, d) ∈ Cm−1,λ(∂Ωh,Rn)×Cm−1,λ(∂Ωd,Rn)×Rn

and we conclude the proof of the lemma by showing that there exists a
unique triple (µ̄h, µ̄d, c̄) ∈ Cm−1,λ(∂Ωh,Rn) × Cm−1,λ(∂Ωd,Rn) × Rn such
that

∂(µh,µd,c)N [f0](µ̄h, µ̄d, c̄) = (gh, gd, d). (2.109)

By the Fredholm Alternative Theorem, and by Theorem 2.17, and by The-
orem 2.19, we deduce that there exists a unique µ̄h ∈ Cm−1,λ(∂Ωh,Rn) such
that K∗[b0, φh

0 , µ̄
h] = gh. So, the first equation of system (2.109) admits

a unique solution µ̄h and to conclude the proof we have to show that the
system of the second and third equation of (2.109) admits a unique solu-
tion (µ̄d, c̄) ∈ Cm−1,λ(∂Ωd,Rn) × Rn. The second and third equation are
equivalent to the following system,{

H[b0, φd
0, µ̄

d] + α
(
V [b0, φd

0, µ̄
d] + c̄

)
= Gd on ∂Ωd,

(1− δ2,n)c̄+ δ2,n

∫
∂Ωd µ̄

d σ̃[φd
0] dσ = C,
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where

Gd(x) ≡ −
n∑

i=1

[
T
(
b0, DΓ(i)(b0, φd

0(x)− ω0)
)
νφd

0
◦ φd

0(x)
] ∫

∂Ωh

µ̄h
i σ̃[φh

0 ] dσ

−α(x)Γ(b0, φd
0(x)− ω0)

∫
∂Ωh

µ̄h σ̃[φh
0 ] dσ + gd(x), ∀ x ∈ ∂Ωd,

and B ≡ −δ2,n

∫
∂Ωh µ̄

hσ̃[φh
0 ] dσ+ d. Then, the existence and the uniqueness

of the solution (µ̄d, c̄) ∈ Cm−1,λ(∂Ωd,Rn)×Rn follows by Theorem 2.59, and
by Proposition 2.60, and by Remark 2.62.

Now,by exploiting Proposition 2.65, and Lemma 2.66, and the Implicit
Mapping Theorem, we deduce the following.

Theorem 2.67. Let the notation introduced in subsection 2.3.2 hold. Let
e0 ≡ (b0, ω0, 0, φh

0 , φ
d
0, g

h
0 , g

d
0) be an element of B×Em,λ×Cm−1,λ(∂Ωh,Rn)×

Cm−1,λ(∂Ωd,Rn). Then there exist an open neighborhood U0 of e0 in B ×
Em,λ × Cm−1,λ(∂Ωh,Rn) × Cm−1,λ(∂Ωd,Rn), and an open neighborhood V0

of (µ̂h[e0], µ̂d[e0], ĉ[e0]) in Cm−1,λ(∂Ωh,Rn)×Cm−1,λ(∂Ωd,Rn)×Rn, and a
real analytic operator (N h,N d, C) of U0 to V0 such that

(N h[e],N d[e], C[e]) = (µ̂h[e], µ̂d[e], ĉ[e]) (2.110)

for all e ≡ (b, ω, ε, φh, φd, gh, gd) ∈ U0 with ε > 0. Moreover, the graph of
(N h,N d, C) coincides with the set of zeros of N in U0 × V0.

Remark 2.68. With the same notation of Theorem 2.67, there exists a real
analytic operator Ñ h of U0 to Cm−1,λ(∂Ωh,Rn) such that

N h[e] = εn−1Ñ h[e], (2.111)

for all e ≡ (b, ω, ε, φh, φd, gh, gd) ∈ U0.
Moreover, Ñ h[b, ω, 0, φh, φd, gh, gd] = 0 if and only if

gh = −T (b,Dud[b, φd, gd](ω))νφh ◦ (φh)(−1), (2.112)

for all (b, ω, 0, φh, φd, gh, gd) ∈ U0, where ud[b, φd, gd] is the unique solution
of the Robin boundary value problem (2.94) with Ω = I[φd], a = α ◦ (φd)(−1)

and g = go ◦ (φd)(−1).

Proof. Ñ h[e] is the unique solution of the following equation,

K∗[φh, Ñ h[e]
]
(x) = −gh(x) (2.113)

−
∫

∂Ωd

n∑
i=1

[
T
(
b,DΓ(i)(b, ω + εφh(x)− φd(y))

)
·νφh ◦ φh(x)

]
N d

i [e](y)σ̃[φd](y) dσy, ∀ x ∈ ∂Ωd.
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By Proposition 2.39 and by Theorem 2.67, the right hand side of (2.113)
depends real analytically on e ∈ U0. Then, by the Implicit Mapping Theo-
rem, Ñ h is real analytic on U0. Equation (2.111) follows by linearity. Let
e ≡ (b, ω, 0, φh, φd, gh, gd) ∈ U0 with ε = 0 such that Ñ h[e] = 0. Then the
left hand side of (2.113) vanishes. We deduce (2.112) by Theorems 2.61, 2.63
and by straightforward calculation. The proof of the converse is similar.

2.3.4 Solution of the singularly perturbed problem

Theorem 2.69. Let the notation of subsection 2.3.2 hold. Let e0 ≡ (b0, ω0,
0, φh

0 , φ
d
0, g

h
0 , g

d
0) ∈ B × Em,λ × Cm−1,λ(∂Ωh,Rn) × Cm−1,λ(∂Ωd,Rn). Let

Ω be a bounded open subset of Rn such that clΩ ⊂ I[φd
0] \ {ω0}. Then

there exist an open neighborhood U of e0 in B×Em,λ ×Cm−1,λ(∂Ωh,Rn)×
Cm−1,λ(∂Ωd,Rn), and a real analytic operator U [·] of U to C(clΩ,Rn), en-
dowed with the norm of the uniform convergence, such that the following
conditions hold.

(i) clΩ ⊂ A[ω, ε, φh, φd] for all (ω, ε, φh, φd, gh, gd) ∈ U .

(ii) u[e](ξ) = U [e](ξ) for all ξ ∈ clΩ and all e ≡ (b, ω, ε, φh, φd, gh, gd) ∈ U
with ε > 0.

(iii)
U [b, ω, 0, φh, φd, gh, gd](ξ) = ud[b, φd, gd](ξ), ∀ ξ ∈ clΩ,

for all (b, ω, 0, φh, φd, gh, gd) ∈ U , where ud[b, φd, gd] is the unique so-
lution of the Robin boundary value problem (2.94) with Ω = I[φd],
a = α ◦ (φd)(−1) and g = go ◦ (φd)(−1).

Proof. Let U0 be the open neighborhood of e0 introduced in Theorem 2.67.
We set

U (1)[e](ξ) ≡
∫

∂Ωd

Γ(ξ − φd(y))N d[e](y)σ̃[φd](y) dσy + C[e],

U (2)[e](ξ) ≡
∫

∂Ωh

Γ(ξ − ω − εφh(y))Ñ h[e](y)σ̃[φh](y) dσy,

for all ξ ∈ A[ω, ε, φh, φd] and for all e ≡ (b, ω, ε, φh, φd, gh, gd) ∈ U0. Then let
U be an open neighborhood of e0 contained in U0 and such that condition (i)
holds. By Proposition 2.39, U (1)[·]|clΩ, U (2)[·]|clΩ are real analytic operators
of U to C(clΩ,Rn). Moreover we have

u[e](ξ) = U (1)[e](ξ) + εn−1U (2)[e](ξ), ∀ ξ ∈ clΩ,

for all e ≡ (b, ω, ε, φh, φd, gh, gd) ∈ U with ε > 0. So, by taking U [e] ≡
U (1)[e]|clΩ + εn−1U (2)[e]|clΩ, the theorem follows.
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2.3.5 The corresponding energy integral

Theorem 2.70. Let the notation of subsection 2.3.2 hold. Let e0 ≡ (b0, ω0,
0, φh

0 , φ
d
0, g

h
0 , g

d
0) ∈ B × Em,λ × Cm−1,λ(∂Ωh,Rn) × Cm−1,λ(∂Ωd,Rn). Let U

be the open neighborhood of e0 introduced in Theorem 2.69. Then there exist
a real analytic operator E of U to R such that

E[e] =
∫

A[ω,ε,φh,φd]
E[b](u[e], u[e]) dξ

for all e ≡ (b, ω, ε, φh, φd, gh, gd) ∈ U with ε > 0. Moreover, we have

E[b, ω, 0, ξ, φo, gi, go] =
∫

I[φd]
E[b](ud[b, φd, gd], ud[b, φd, gd]) dξ,

for all (b, ω, 0, ξ, φo, gi, go) ∈ U .

Proof. Let e ≡ (b, ω, ε, φh, φd, gh, gd) ∈ U and let ε > 0. Then, we have∫
A[ω,ε,φh,φd]

E[b](u[e], u[e]) dξ =
∫

φd(∂Ωd)
u[e] ·

[
T (b,Du[e])νφd

]+
dσ

−
∫

ω+εφh(∂Ωh)
u[e] ·

[
T (b,Du[e])νω+εφh

]−
dσ.

We denote by I1[e] and by I2[e] the first and the second term in the right
hand side, respectively. Then

I1[e] =
∫

φd(∂Ωd)

(
U (1)[e] + εn−1U (2)[e]

)
·
[
−α ◦ (φd)(−1)

(
U (1)[e] + εn−1U (2)[e]

)
+ gd ◦ (φd)(−1)

]
dσ

and

I2[e] ≡ −
∫

ω+εφh(∂Ωh)

(
U (1)[e] + εn−1U (2)[e]

)
· gh ◦ (ω + εφh)(−1) dσ,

where U (1)[e] and U (2)[e] are defined as in the proof of Theorem 2.69. By a
straightforward calculation we verify that

I1[e] =
∫

∂Ωd

(
U (1)[e] ◦ φd

)
·
(
−αU (1)[e] ◦ φd + gd

)
σ̃[φd] dσ (2.114)

+εn−1

∫
∂Ωd

(
U (2)[e] ◦ φd

)
· gd σ̃[φd] dσ

−εn−1

∫
∂Ωd

(
U (1)[e] ◦ φd

)
·
[
(α+ αt)U (2)[e] ◦ φd

]
σ̃[φd] dσ

−ε2n−2

∫
∂Ωd

(
U (2)[e] ◦ φd

)
·
(
αU (2)[e] ◦ φo

)
σ̃[φd] dσ
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and

I2[e] = −εn−1

∫
∂Ωh

(
U1[e] ◦ (ω + εφh)

)
· gh σ̃[φh] dσ (2.115)

−ε2n−2

∫
∂Ωh

(
U2[e] ◦ (ω + εφh)

)
· gh σ̃[φh] dσ.

Moreover, we note that

U (1)[e] ◦ φd(x) = vφd(∂Ωd)[b,N d[e] ◦ (φd)(−1)] ◦ φd(x) + C[e],

U (2)[e] ◦ φd(x) =
∫

∂Ωh

Γ(φd(x)− ω − εφh(y))Ñ h[e](y) σ̃[φh](y) dσy,

for all x ∈ ∂Ωd, and

U (1)[e] ◦ (ω + εφh(x))

=
∫

∂Ωd

Γ(b, ω + εφh(x)− φd(y))N d[e](y) σ̃[φd](y) dσy + C[b],

U (2)[e] ◦ (ω + εφh(x)) = εn−1vφh(∂Ωh)[b, Ñ h[e] ◦ (φh)(−1)](x),

for all x ∈ ∂Ωh. By Propositions 1.40 and 2.39, we deduce that each term
on the right hand side of (2.114) and (2.115) depends real analytically on
e ∈ U . Now, we denote by E[e] the sum of the right hand side of (2.114)
and (2.115) and we conclude the proof by a straightforward calculation.

2.3.6 Robin problem in a singularly perturbed domain with
singularly perturbed data on the boundary

We now investigate a slightly different problem. With the notation intro-
duced in the previous subsection 2.3.2, let c ≡ (b, ω, ε, φh, φd, f) ∈ B ×
Em,λ

+ × Cm−1,λ(∂Ωh,Rn). We consider the following system of equations,
L[b]u = 0 in A[ω, ε, φh, φd],
−T (b,Du)ν(ω+εφh) = ε1−nf ◦ (ω + εφh)(−1) on ω + εφh(∂Ωh),
T (b,Du)νφd + α ◦ (φd)(−1)u = 0 on φd(∂Ωd).

(2.116)
In subsection 2.3.1 we have proved that system (2.116) has a unique solution
u[c] ∈ Cm,λ(clA[ω, ε, φh, φd],Rn). We investigate the behavior of u[c] and of
the energy integral ∫

A[ω,ε,φh,φd]
E[b](u[c], u[c]) dξ

upon perturbations of c around a given point c0 ≡ (b0, ω0, 0, φh
0 , φ

d
0, f0) of

B × Em,λ × Cm−1,λ(∂Ωh,Rn). In the following Theorems 2.71 and 2.72
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we draw out our conclusions. In the next subsection 2.3.7 we prove the
validity of such theorems by adapting to the present situation the machinery
exploited in subsection 2.3.4. So, for the solution of (2.116) we have the
following.

Theorem 2.71. Let the notation introduced in subsection 2.3.2 hold. Let
c0 ≡ (b0, ω0, 0, φh

0 , φ
d
0, f0) ∈ B×Em,λ×Cm−1,λ(∂Ωh,Rn). Let Ω be a bounded

open subset of Rn such that clΩ ⊂ I[φd
0] \ {ω0}. Then there exist an open

neighborhood U of c0 in B × Em,λ × Cm−1,λ(∂Ωh,Rn) and a real analytic
operator U [·] of U to C(clΩ,Rn), endowed with the norm of the uniform
convergence, such that the following conditions hold.

(i) clΩ ⊂ A[ω, ε, φh, φd] for all (b, ω, ε, φh, φd, f) ∈ U .

(ii) u[b, ω, ε, φh, φd, f ](ξ) = U [b, ω, ε, φh, φd, f ](ξ) for all ξ ∈ clΩ and all
(b, ω, ε, φh, φd, f) ∈ U with ε > 0.

(iii)

U [b, ω, 0, φh, φd, f ](ξ)

= ud[b, ω, φh, φd, f ](ξ)− Γ(b, ξ − ω)
∫

∂Ωh

f σ̃[φh] dσ, ∀ ξ ∈ clΩ,

for all (b, ω, 0, φh, φd, f) ∈ U , where ud[b, ω, φh, φd, f ] is the unique
solution of the Robin boundary value problem (2.94) with Ω = I[φd],
a = α ◦ (φd)(−1) and

g(ξ) =
(∫

∂Ωh

f σ̃[φh] dσ
)(

T (b,DΓ(b, ξ − ω))|φd(∂Ωd)νφd

+α ◦ (φd)(−1)(ξ)Γ(b, ξ − ω)|φd(∂Ωd)

)
, ∀ξ ∈ ∂Ωd.

In particular, U [b, ω, 0, φh, φd, f ] = 0 if and only if∫
∂Ωh

f σ̃[φh] dσ = 0.

For the energy integral we have the following.

Theorem 2.72. Let the notation of subsection 2.3.2 hold. Let c0 ≡ (b0, ω0,
0, φh

0 , φ
d
0, f0) ∈ B×Em,λ×Cm−1,λ(∂Ωh,Rn). Let U be the open neighborhood

of c0 introduced in Theorem 2.71. Then there exist real analytic operators
E(1), E(2) and E(3) of U to R such that∫

A[ω,ε,φh,φd]
E[b](u[c], u[c]) dξ = E(1)[c] + δ2,n(log ε)E(2)[c] + ε2−nE(3)[c],

for all c ≡ (b, ω, ε, φh, φd, f) ∈ U with ε > 0. Moreover, the following two
statements hold.
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(i) Let (b, ω, 0, φh, φd, f) ∈ U . Then E(2)[b, ω, 0, φh, φd, f ] = 0 if and only
if
∫
∂Ωh f σ̃[φh] dσ = 0. If this is the case, then E(1)[b, ω, 0, φh, φd, f ] = 0

and

E(3)[b, ω, 0, φh, φd, f ] =
∫

E[φh]
E[b](uh[b, φh, f ], uh[b, φh, f ]) dξ,

where uh[b, φh,f ] is the unique solution of the exterior Neumann bound-
ary value problem in E[φh] with boundary data −f ◦ (φh)(−1) and with
|x|n−2|uh[b, φh, f ](x)| and |x|n−1|Duh[b, φh, f ](x)| bounded for |x| in a
neighborhood of +∞.

(ii) Let n ≥ 3 and (b, ω, 0, φh, φd, f) ∈ U . Then E(3)[b, ω, 0, φh, φd, f ] = 0
if and only if f = 0. If this is the case, then E(1)[b, ω, 0, φh, φd, f ] =
E(2)[b, ω, 0, φh, φd, f ] = 0.

We summarize in the following Remark 2.73 some easily verifiable con-
siderations which can be deduced by Theorems 2.71 and 2.72.

Remark 2.73. With the same notations of Theorems 2.72 and 2.74, let
(b, ω, 0, φh, φd, f) ∈ U . Then the following statements hold.

(i) If U [b, ω, 0, φh, φd, f ] 6= 0, then the energy integral of u[b, ω, ε, φh, φd, f ]
diverges as ε→ 0+.

(ii) If n = 2 and U [b, ω, 0, φh, φd, f ] = 0, then the energy integral of
u[b, ω, ε, φh, φd, f ] converges to the energy integral of uh[b, φh, f ] as
ε→ 0+, and therefore its limit value as ε→ 0+ vanishes only if f = 0.

(iii) If n ≥ 3, and U [b, ω, 0, φh, φd, f ] = 0, and f 6= 0, then the energy
integral of u[b, ω, ε, φh, φd, f ] diverges as ε→ 0+.

(iv) If f = 0 then the energy integral of u[b, ω, ε, φh, φd, f ] is identically
equal to 0 for all ε > 0 in the right neighborhood of ε = 0 where
u[b, ω, ε, φh, φd, f ] is defined.

2.3.7 Proof of Theorems 2.71 and 2.72

Theorem 2.74. With the notation of the previous subsection 2.3.2, we de-
note by P ≡ (P 1, P 2, P 3) the map of B × Em,λ × (Cm−1,λ(∂Ωh,Rn))2 ×
Cm−1,λ(∂Ωd,Rn)×Rn to Cm−1,λ(∂Ωh,Rn)×Cm−1,λ(∂Ωd,Rn)×Rn defined
by

P 1[b, ω, ε, φh, φd, f, µh, µd, c](xh) ≡ K∗[b, φh, µh](x) (2.117)

+εn−1

∫
∂Ωd

n∑
i=1

[
T (b,DΓ(i)(b, ω + εφh(x)− φd(y)))

·νφh ◦ φh(x)
]
µd

i (y)σ̃[φd](y) dσy + f(x), ∀ x ∈ ∂Ωh,
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P 2[b, ω, ε, φh, φd, f, µh, µd, c](x) (2.118)
≡ H[b, φd, µd](x) + α(x)(V [b, φd, µd](x) + c)

+
∫

∂Ωh

n∑
i=1

[
T (b,DΓ(i)(b, φd(x)− ω − εφh(y)))

·νφd ◦ φd(x)
]
µh

i (y)σ̃[φh](y) dσy

+α(x)
∫

∂Ωh

Γ(φd(x)− ω − εφh(y))µh(y) σ̃[φh](y) dσy, ∀ x ∈ ∂Ωd,

P 3[b, ω, ε, φh, φd, f, µh, µd, c] ≡ (1− δ2,n) c (2.119)

+δ2,n

(∫
∂Ωh

µh σ̃[φh] dσ +
∫

∂Ωd

µd σ̃[φd] dσ
)
,

for each (b, ω, ε, φh, φd, f, µh, µd, c) in B × Em,λ × (Cm−1,λ(∂Ωh,Rn))2 ×
Cm−1,λ(∂Ωd,Rn) × Rn, where V [b, φd, µd] ≡ vφd(∂Ωd)[b, µd] ◦ φd (cf. sub-
section 1.3.2 of the previous chapter.)

Let (b, ω, ε, φh, φd, f, µh, µd, c) belong to B×Em,λ
+ ×(Cm−1,λ(∂Ωh,Rn))2×

Cm−1,λ(∂Ωd,Rn)× Rn. We set

µ ≡
{
ε1−n µh ◦ (ω + εφh)(−1) on ω + εφh(∂Ωh),
µd ◦ (φd)(−1) on φd(∂Ωd),

(2.120)

Ω ≡ A[ω, ε, φh, φd], (2.121)

a ≡
{

0n×n on ω + εφh(∂Ωh),
α ◦ (φo)(−1) on φd(∂Ωd),

(2.122)

g ≡
{
ε1−nf ◦ (ω + εφh)(−1) on ω + εφh(∂Ωh),
0 on φd(∂Ωd).

(2.123)

Then, we have
P [b, ω, ε, φh, φd, f, µh, µd, c] = 0 (2.124)

if and only if either one of the following two conditions is satisfied.

(i) n = 2 and the pair (µ, c), with µ defined by (2.120), satisfies (2.96)
with Ω, a and g defined by (2.121), (2.122) and (2.123), respectively.

(ii) n ≥ 3, and c = 0, and the function µ defined by (2.120) satisfies (2.95)
with Ω, a and g defined by (2.121), (2.122) and (2.123), respectively.

In particular, there exists a unique triple (µh, µd, c) of Cm−1,λ(∂Ωh,Rn) ×
Cm−1,λ(∂Ωd,Rn) × Rn which satisfies equation (2.124) for each given 9-
tuple (b, ω, ε, φh, φd, f, µh, µd, c) of the set B×Em,λ

+ × (Cm−1,λ(∂Ωh,Rn))2×
Cm−1,λ(∂Ωd,Rn)× Rn.

Let (b, ω, 0, φh, φd, f, µh, µd, c) belong to B×Em,λ×(Cm−1,λ(∂Ωh,Rn))2×
Cm−1,λ(∂Ωd,Rn) × Rn. Then the triple (µh, µd, c) of Cm−1,λ(∂Ωd,Rn) ×
Cm−1,λ(∂Ωd,Rn)× Rn satisfies equation

P [b, ω, 0, φh, φd, f, µh, µd, c] = 0, (2.125)
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if and only if the function µh ◦ (φh)(−1) is the unique solution of

K∗
I[φh][b, µ

h ◦ (φh)(−1)] = −f ◦ (φh)(−1) (2.126)

and either one of the following two conditions is satisfied.

(iii) n = 2 and the pair (µ, c), with µ ≡ µd◦(φd)(−1), is a solution of (2.97)
with Ω ≡ I[φd], a ≡ α ◦ (φd)(−1),

g(ξ) ≡
(∫

∂Ωh

f σ̃[φh] dσ
)(

T (b,DΓ[b, ξ − ω])|φd(∂Ωd)νφd (2.127)

+α ◦ (φd)(−1)(ξ)Γ[b, ξ − ω]|φd(∂Ωd)

)
, ∀ξ ∈ ∂Ωd,

and d ≡
∫
∂Ωh f σ̃[φh] dσ.

(iv) n ≥ 3, and c = 0, and the function µd ◦ (φd)(−1) is a solution of (2.95)
with Ω ≡ I[φd], a ≡ α ◦ (φd)(−1), and g defined by (2.127).

In particular, for each fixed (b, ω, 0, φh, φd, f, µh, µd, c) in the set B×Em,λ×
(Cm−1,λ(∂Ωh,Rn))2 × Cm−1,λ(∂Ωd,Rn) × Rn there exists a unique triple
(µh, µd, c) of Cm−1,λ(∂Ωh,Rn)×Cm−1,λ(∂Ωd,Rn)×Rn which satisfies equa-
tion (2.125).

Proof. The statement follows by a straightforward verification based on the
theorem of change of variables in integrals and by the previous Theorem 2.61.
We only note that, if (b, ω, 0, φh, φd, f) ∈ B × Em,λ × Cm−1,λ(∂Ωh,Rn) is
fixed, then the first component of equation (2.107) is equivalent to (2.126).
By statement (i) of Lemma 2.26 equation 2.126 admits a unique solution
µh ◦ (φh)(−1) ∈ Cm−1,λ(φh(∂Ωh),Rn). Moreover, by Theorems 2.11, 2.12,
2.16, HI[φh][b, µh ◦ (φh)(−1)] is orthogonal to each constant function defined
on φh(∂Ωh). In particular,

∫
φh(∂Ωh) HI[φh][b, µh ◦ (φh)(−1)] dσ = 0. So we

have ∫
∂Ωh

µh σ̃[φh] dσ =
∫

φh(∂Ωh)
µh ◦ (φh)(−1)dσ

=
∫

φh(∂Ωh)
µh ◦ (φh)(−1) + HI[φh][b, µ

h ◦ (φh)(−1)] dσ

=
∫

φh(∂Ωh)
K∗

I[φh][b, µ
h ◦ (φh)(−1)]dσ = −

∫
∂Ωh

f σ̃[φh] dσ.

Then, by the second and third component of (2.107), µd satisfies either
condition (iii) or condition (iv) of the theorem.

By Theorem 2.74 it makes sense to introduce the following.
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Definition 2.75. With the notation of the previous subsection 2.3.2, let c ≡
(b, ω, ε, φh, φd, f) ∈ B×Em,λ×Cm−1,λ(∂Ωh,Rn) with ε > 0 or ε = 0. We de-
note by (µ̂h[c], µ̂d[c], ĉ[c]) the unique triple (µh, µd, c) ∈ Cm−1,λ(∂Ωh,Rn)×
Cm−1,λ(∂Ωd,Rn)× Rn which satisfies (2.124) or (2.125), respectively.

We shall show that (µ̂h[·], µ̂d[·], ĉ[·]) admit a real analytic continuation
around a “degenerate” sextuple c0 ≡ (b0, ω0, 0, φh

0 , φ
d
0, f0) ∈ B × Em,λ ×

Cm−1,λ(∂Ωh,Rn). To do so we need the following Proposition 2.76 and
Lemma 2.77, which can be proved by a slight modification in the proof of
Proposition 2.65 and Lemma 2.66, respectively.

Proposition 2.76. With the notation of subsection 2.3.2, the set B×Em,λ×
(Cm−1,λ(∂Ωh,Rn))2 × Cm−1,λ(∂Ωd,Rn) × Rn is an open subset of the Ba-
nach space Rn+2×Cm,λ(∂Ωh,Rn)×Cm,λ(∂Ωd,Rn)× (Cm−1,λ(∂Ωh,Rn))2×
Cm−1,λ(∂Ωd,Rn)× Rn, and the operator P is real analytic.

Lemma 2.77. With the notation introduced in subsection 2.3.2, let d0 ≡
(b0, ω0, 0, φh

0 , φ
d
0, f0, µ

h
0 , µ

d
0, c0) belong to B × Em,λ × (Cm−1,λ(∂Ωh,Rn))2 ×

Cm−1,λ(∂Ωd,Rn) × Rn and let P [d0] = 0. Then the partial differential
∂(µh,µd,c)P [d0] of P with respect to the variable (µh, µd, c) at d0 is a linear
homeomorphism of the Banach space Cm−1,λ(∂Ωh,Rn)×Cm−1,λ(∂Ωh,Rn)×
Rn onto Cm−1,λ(∂Ωh,Rn)× Cm−1,λ(∂Ωh,Rn)× Rn.

Now, by the Implicit Mapping Theorem, we deduce the following.

Theorem 2.78. With the notation introduced in subsection 2.3.2, let c0 ≡
(b0, ω0, 0, φh

0 , φ
d
0, f0) be an element of B × Em,λ × Cm−1,λ(∂Ωh,Rn). Then

there exist an open neighborhood U0 of c0 in B × Em,λ × Cm−1,λ(∂Ωh,Rn),
and an open neighborhood V0 of (µ̂h[c0], µ̂d[c0], ĉ[c0]) in Cm−1,λ(∂Ωh,Rn)×
Cm−1,λ(∂Ωd,Rn)× Rn and a real analytic operator (Ph,Pd,D) of U0 to V0

such that
(Ph[c],Pd[c],D[c]) = (µ̂h[c], µ̂d[c], ĉ[c]) (2.128)

for all c ≡ (b, ω, ε, φh, φd, f) ∈ U0 with ε > 0. Moreover, the graph of
(Ph,Pd,D) coincides with the set of zeros of P in U0 × V0.

We are now ready for the proof of Theorems 2.71 and 2.72.

Proof of Theorem 2.71. Let U0 be the open neighborhood of c0 introduced
in Theorem 2.78. We set

U (1)[c](ξ) ≡
∫

∂Ωd

Γ(ξ − φd(y))Pd[c](y) σ̃[φd](y) dσy +D[c] (2.129)

and

U (2)[c](ξ) ≡
∫

∂Ωh

Γ(ξ − ω − εφh(y))Ph[c](y) σ̃[φh](y) dσy, (2.130)
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for all ξ ∈ A[ω, ε, φh, φd] and for all c ≡ (b, ω, ε, φh, φd, f) ∈ U0. Then let U
be an open neighborhood of c0 contained in U0 and such that condition (i)
of Theorem 2.71 holds. By Proposition 2.39, U (1)[·]|clΩ, U (2)[·]|clΩ are real
analytic operators of U to C(clΩ,Rn). Moreover we have

u[c](ξ) = U (1)[c](ξ) + U (2)[c](ξ), ∀ ξ ∈ clΩ,

for all c ≡ (b, ω, ε, φh, φd, f) ∈ U with ε > 0. So, by taking U [c] ≡
U (1)[c]|clΩ + U (2)[c]|clΩ, statement (ii) of the Theorem follows. Statement
(iii) is an immediate consequence of Theorem 2.74.

Proof of Theorem 2.72. Let c ≡ (b, ω, ε, φh, φd, f) ∈ U with ε > 0. Then, we
have∫

A[ω,ε,φh,φd]
E[b](u[c], u[c]) dξ =

∫
φd(∂Ωd)

u[c] ·
[
T (b,Du[c])νφh

]+
dσ

−
∫

ω+εφh(∂Ωh)
u[c] ·

[
T (b,Du[c])νω+εφh

]−
dσ.

We denote by I1[c] and by I2[c] the first and the second term in the right
hand side, respectively. Then

I1[c] = −
∫

φd(∂Ωd)

(
U (1)[c] + U (2)[c]

)
(2.131)

·α ◦ (φo)(−1)
(
U (1)[c] + U (2)[c]

)
dσ

and

I2[c] = −ε1−n

∫
ω+εφh(∂Ωh)

U (1)[c] · f ◦ (ω + εφh)(−1) dσ (2.132)

−ε1−n

∫
ω+εφh(∂Ωh)

U (2)[c] · f ◦ (ω + εφh)(−1) dσ,

where U (1)[c] and U (2)[c] are defined as in the proof of Theorem 2.71. By
arguing as in the proof of Theorem 2.70 one verifies that right hand side
of (2.131) and the first term in the right hand side of (2.132) have a real
analytic continuation in the whole of U . So, we denote by E(1)[·] the real
analytic operator on U which is defined by

E(1)[c] ≡ I1[c]− ε1−n

∫
ω+εφh(∂Ωh)

U (1)[c] · f ◦ (ω + εφh)(−1) dσ,

for all c ≡ (b, ω, ε, φh, φd, f) ∈ U with ε > 0.
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We now recall that, Γ(b, ε z) = δ2,n
1
2π

b+2
2(b+1)(log ε) + ε2−nΓ(b, z), for all

b ∈ B, ε > 0, z ∈ Rn \ {0} (cf. definition (2.6).) So, by (2.129) and (2.130),
the second term in the right hand side of (2.132) equals

−δ2,n

2π
b+ 2

2(b+ 1)
(log ε)

∫
∂Ωh

Ph[c] σ̃[φh] dσ ·
∫

∂Ωh

f σ̃[φh] dσ

−ε2−n

∫
∂Ωh

V [b, φh,Ph[c]] · f σ̃[φh] dσ. (2.133)

We set,

E(2)[c] ≡ − 1
2π

b+ 2
2(b+ 1)

∫
∂Ωh

Ph[c] σ̃[φh] dσ ·
∫

∂Ωh

f σ̃[φh] dσ,

E(3)[c] ≡ −
∫

∂Ωh

V [b, φh,Ph[c]] · f σ̃[φh] dσ,

for all c ∈ U . Then, by Propositions 1.40 and 2.39 and by Theorems 2.71,
E(2)[c] and E(3)[c] depend real analytically on c ∈ U .

Now, to conclude the proof it remains to verify statements (i) and (ii).
To do so, we exploit Theorem 2.74. By equation (2.126) we deduce that

E(2)[b, ω, 0, φh, φd, f ] = − 1
2π

b+ 2
2(b+ 1)

(∫
∂Ωh

f σ̃[φh] dσ
)2

,

for all (b, ω, 0, φh, φd, f) ∈ U . So, E(2)[b, ω, 0, φh, φd, f ] = 0 if and only
if
∫
∂Ωh fσ̃[φh] dσ = 0. Moreover, if this is the case, then both the func-

tions U (1)[b, ω, 0, φh, φd, f ] and U (2)[b, ω, 0, φh, φd, f ] are identically equal to
0, which implies that E(1)[b, ω, 0, φh, φd, f ] = 0. Besides we have

E(3)[b, ω, 0, φh, φd, f ] =
∫

E[φh]
E[b](uh[b, φh, f ], uh[b, φh, f ]) dξ

for all (b, ω, 0, φh, φd, f) ∈ U , where

uh[b, φh, f ] ≡ vφh(∂Ωh)[b,Ph[b, ω, 0, φh, φd, f ] ◦ (φh)(−1)]

is the unique solution of the exterior Neumann boundary value problem in
E[φh] with boundary data −f ◦ (φh)(−1) (note that, if n = 2 the condition∫
∂Ωh fσ̃[φh] dσ = 0 is necessary.) Therefore E(3)[b, ω, 0, φh, φd, f ] = 0 if and

only if E[b](uh[b, φh, f ], uh[b, φh, f ]) = 0 in E[φh], if and only if uh[b, φh, f ] ∈
RE[φh] (cf. Lemma 2.2), if and only if [T (b,Duh[b, φh, f ])νφh ]− equals 0 (cf.
Theorem 2.4.) Summarizing, we have E(3)[b, ω, 0, φh, φd, f ] = 0 if and only
if f = 0.
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2.4 Inhomogeneous interior data

2.4.1 Description of the problem

In this subsection we introduce a Dirichlet boundary value problem in a
perforated domain with a non-homogeneous data in the interior and we
investigate the behavior of the solution and of the corresponding energy in-
tegral as the hole shrinks to a point. Our approach to the problem stems
from Lanza de Cristoforis [24]. Let Ω0 be a fixed bounded open connected
subset of Rn. Let m ∈ N \ {0} and λ ∈]0, 1[. Let Ωh and Ωd be bounded
open subsets of Rn of class Cm,λ with Ωh, Ωd, Rn \ clΩh, Rn \ clΩd con-
nected. Let Em,λ be as in subsection 2.2.1. We denote by Em,λ

Ω0
the subset

of Em,λ of the quadruples (ω, ε, φh, φd) with clI[φd] ⊂ Ω0. Then, for each
(b, ω, ε, φh, φd, gh, gd) ∈ B×Em,λ

Ω0
×Cm−1,λ(∂Ωh,Rn)×Cm−1,λ(∂Ωd,Rn) with

ε > 0 and for each vector valued function F defined on Ω0, we consider the
following Dirichlet boundary value problem in the domain A[ω, ε, φh, φd] ≡
I[φd] \ ω + cl(εI[φh]),

L[b]u = F in A[ω, ε, φh, φd],
u = gh ◦ (ω + εφh)(−1) on ω + εφh(∂Ωh),
u = gd ◦ (φd)(−1) on φd(∂Ωd).

(2.134)

Under reasonable conditions on F , problem (2.134) has a unique solution
u = u[b, ω, ε, φh, φd, gh, gd, F ] and such a solution can be written in the form

u[b, ω, ε, φh, φd, gh, gd, F ]
= P [b, F ] + u[b, ω, ε, φh, φd, gh − P [b, F ] ◦ (ω + εφh), gd − P [b, F ] ◦ φd, 0],

where

P [b, F ](ξ) ≡
∫

Ω
Γ(b, ξ − η)F (η) dη, ∀ ξ ∈ Ω, (2.135)

is the Newtonian potential of F in Ω.
Our purpose is to investigate the behavior the solution of (2.134) and of

its energy integral for ε→ 0+. By Theorem 2.53, we know that we can rep-
resent u[b, ω, ε, φh, φo, gh, gd, 0] in terms of the function γn(ε) and in terms
of real analytic operators of the variable (b, ω, ε, φh, φo, gh, gd). Thus, what
remains to be done here is to choose an appropriate Banach space for F
so that P [b, F ], P [b, F ] ◦ (ω + εφh), P [b, F ] ◦ φd depend real analytically on
(b, ω, ε, φh, φd, F ). Now, for a large variety of choices of function spaces for
F , P [b, F ] depends real analytically on (b, F ), and this is so in particular for
the Schauder spaces Cm,λ. Less clear instead is the choice for the function
spaces for F , P [b, F ] ◦ φ in order that P [b, F ] ◦ φ depends real analytically
on (b, φ, F ) when φ is in a Schauder space. Then we resort to results on
composition operators of Preciso [38], [39], which indicate that the right
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choice for the space for F , P [b, F ] is a Romieu class, and thus the corre-
sponding real analyticity results for P [b, F ] ◦ φ of Lanza de Cristoforis [23,
Lemma 2.15], where a regular perturbation problem for the Poisson equa-
tion has been treated (such results concern the Newtonian potential relative
to the Laplace operator ∆ but the proof given there applies with only minor
modifications to the present situation, where the Newtonian potential rela-
tive to the operator L[b] is considered.) Then we can prove Theorems 2.80
for the behavior of the solution of (2.134), and Theorem 2.82 for the behav-
ior of the corresponding energy integral, which extend the corresponding
Theorems 2.53 and 2.55 for F = 0.

2.4.2 Introduction of the Romieu classes

For all bounded open subsets Ω of Rn and ρ > 0, we set

C0
ω,ρ(clΩ,Rn) ≡

{
u ∈ C∞(clΩ,Rn)

∣∣∣ sup
β∈Nn

ρ|β|

|β|!
‖Dβu‖C0(clΩ,Rn) < +∞

}

and

‖u‖C0
ω,ρ(clΩ,Rn) ≡ sup

β∈Nn

ρ|β|

|β|!
‖Dβu‖C0(clΩ,Rn), ∀ u ∈ C0

ω,ρ(clΩ,Rn) .

As is well known, the Romieu class
(
C0

ω,ρ(clΩ,Rn), ‖ · ‖C0
ω,ρ(clΩ,Rn)

)
is a Ba-

nach space.
Then we have the following technical lemma.

Lemma 2.79. Let m ∈ Nn, λ ∈]0, 1[ and ρ > 0. Let Ω be a bounded open
connected subset of Rn. Let Ω1 be an open connected subset of Rn of class
C1 such that clΩ1 ⊂ Ω. Then the following statements hold.

(i) If Ω2 is a bounded open subset of Rn such that clΩ2 ⊂ Ω1, then there ex-
ists ρ1 ∈]0, ρ] such that the map of B×C0

ω,ρ(clΩ,Rn) to C0
ω,ρ1

(clΩ2,Rn)
which takes (b, F ) to P [b, F |clΩ1 ]|clΩ2 is real analytic.

(ii) The map of {(b, F, ξ) ∈ B × C0
ω,ρ(clΩ,Rn)× Rn | ξ ∈ Ω1} to Rn which

take (b, F, ξ) to P [b, F |clΩ1 ](ξ) is real analytic.

(iii) If Ω2 is a bounded open subset of Rn of class Cm,λ, the map of B ×
C0

ω,ρ(clΩ,Rn)× Cm,λ(∂Ω2,Ω1) to Cm,λ(∂Ω2,Rn) which takes (b, F, φ)
to P [b, F |clΩ1 ] ◦ φ is real analytic.

Proof. Let F ≡ (Fi)i=1,...,n be a vector valued function on a bounded open
subset Ω of Rn. By (2.6) we have

P [b, F ] =
b+ 2

2(b+ 1)
P∆[Fi]i=1,...,n −

b

2(b+ 1)
Q[F ],
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where P∆[Fi] denotes the Newtonian potential corresponding to the Laplace
operator and Q[F ] is defined by

Q[F ](ξ) ≡ 1
|∂Bn|

∫
Ω

(ξ − η)
|ξ − η|n

(ξ − η) · F (η) dη, ∀ ξ ∈ clΩ.

By Lanza de Cristoforis [23, Lemma 2.15], statements (i), (ii) and (iii) hold
with P [b, F ] replaced by P∆[Fi], i = 1, . . . , n. Moreover, by a straightforward
modification of the proof of Lanza de Cristoforis [23, Lemma 2.15], we can
also verify that statements (i), (ii) and (iii) hold with P [b, F ] replaced by
Q[F ]. Then the proof of the Lemma can be easily completed.

2.4.3 Solution of the singularly perturbed problem

By Therem 2.53 and by Lemma 2.79, we deduce the following.

Theorem 2.80. Let the notation of subsection 2.4.1 hold. Let ρ > 0.
Let f0 ≡ (b0, ω, 0, φh

0 , φ
d
0, g

h
0 , g

d
0 , F0) belong to B × Em,λ

Ω0
× Cm,λ(∂Ωh,Rn) ×

Cm,λ(∂Ωd,Rn) × C0
ω,ρ(clΩ0,Rn). Let W0 be the neighborhood of the point

b0 ≡ (b0, ω0, 0, φh
0 , φ

d
0) introduced in Proposition 2.44, and let V (1), V (2)

be as in Lemma 2.52. Let Ω be a bounded open subset of Rn such that
clΩ ⊂ I[φd

0] \ {ω0}. Then there exist an open neighborhood U of f0 in
B × Em,λ

Ω0
× Cm,λ(∂Ωh,Rn)× Cm,λ(∂Ωd,Rn)× C0

ω,ρ(clΩ0,Rn), and real an-

alytic operators U (1) and U (2)
ij , i, j = 1, . . . , n̄, of U to C(clΩ,Rn) such that

the following conditions hold.

(i) clΩ ⊂ A[ω, ε, φh, φd] for all (b, ω, ε, φh, φd, gh, gd, F ) ∈ U .

(ii) (b, ω, ε, φh, φd) ∈ W0 for all (b, ω, ε, φh, φd, gh, gd, F ) ∈ U .

(iii) We have

u[f ](ξ) = U (1)[f ](ξ) +
n̄∑

i,j=1

(
γn(ε)V (1)[b] + V (2)[b]

)−1

ij
U

(2)
ij [f ](ξ),

(2.136)
for all ξ ∈ clΩ, and all f ≡ (b, ω, ε, φh, φd, gh, gd, F ) ∈ U with ε > 0,
where γn(ε) ≡ log ε if n = 2, and γn(ε) ≡ ε2−n if n ≥ 3, and we
abbreviated (b, ω, ε, φh, φd) as b.

(iv)
U (1)[b, ω, 0, φh, φd, gh, gd, F ](ξ) = ud[b, φd, gd, F ](ξ),

for all ξ ∈ clΩ and for all (b, ω, 0, φh, φd, gh, gd) ∈ U , where ud[b, φd, gd]
is the solution of the Dirichlet boundary value problem in I[φd] with
boundary data gd ◦ (φd)(−1) and interior data F |I[φd].
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(v) Let f ≡ (b, ω, 0, φh, φd, gh, gd, F ) ∈ U , we denote by f ε, bε the points
(b, ω, ε, φh, φd, gh, gd, F ) and (b, ω, ε, φh, φd), respectively, for all ε > 0.
Then

lim
ε→0+

n̄∑
i,j=1

(
γn(ε)V (1)[bε] + V (2)[bε]

)−1

ij
U

(2)
ij [f ε](ξ) = 0

uniformly for ξ ∈ clΩ.

Proof. Let Ω1 be an open connected subset of Rn of class C1 such that
clI[φd

0] ⊂ Ω1, clΩ1 ⊂ Ω0. Let U be an open neighborhood of f0 in B×Em,λ
Ω0

×
Cm,λ(∂Ωh,Rn)×Cm,λ(∂Ωd,Rn)×C0

ω,ρ(clΩ0,Rn) such that (b, ω, ε, φh, φd) ∈
W0, and clΩ ⊂ A[ω, ε, φh, φd], and clI[φd] ⊂ Ω1, for all (b, ω, ε, φh, φd, gh,
gd, F ) ∈ U . Thus we have

u[f ] = P [b, F |clΩ1 ] + u[b, ω, ε, φh, γh[f ], γd[f ], 0], (2.137)

for all f ≡ (b, ω, ε, φh, φd, gh, gd, F ) ∈ U , where γh[f ] ≡ gh−P [b, F |clΩ1 ]◦(ω+
εφh) and γd[f ] ≡ gd−P [b, F |clΩ1 ]◦φd for all f ∈ U with ε > 0. By statement
(iii) of Lemma 2.79, the maps which take f to γh[f ] and γd[f ] are real analytic
from U to Cm,λ(∂Ωh,Rn) and to Cm,λ(∂Ωd,Rn), respectively. Then, by
Theorem 2.53, possibly shrinking the neighborhood U of f0, the second term
in the right hand side of (2.137) admits a functional analytic representation
as in the right hand side of (2.136). Let Ũ (1) and Ũ

(2)
ij , i, j = 1, . . . , n̄,

be the corresponding real analytic operators. We denote by U (1) and U
(2)
ij ,

i, j = 1, . . . , n̄, the operators which take f ∈ U to P [b, F |clΩ2 ]|clΩ + Ũ (1)[f ]
and Ũ

(2)
ij [f ], i, j = 1, . . . , n̄, respectively. Then, by Lemma 2.79 (i) and

Theorem 2.53, U (1) and U (2)
ij , i, j = 1, . . . , n̄, are real real analytic operators

of U to the space C(clΩ,Rn) and satisfies conditions (iii), (iv) and (v) of the
Theorem.

We note that, if n ≥ 3, the right hand side of (2.136) admit a real
analytic continuation in the whole of U , while for n = 2, the right hand side
of (2.136) displays a logarithmic behavior.

2.4.4 The corresponding energy integral

In the proof of Theorem 2.82 we need the following technical lemma, which
can be verified by a straightforward modification of the proof of Lanza de
Cristoforis [24, Proposition 2.2].

Lemma 2.81. Let the notations introduced in subsection 2.4.1 hold. Let Ω1

be a bounded open connected subset of Rn of class C1 such that clΩ1 ⊂ Ω0.
Let (b0, ω, 0, φh

0 , φ
d
0, F0) ∈ B × Em,λ

Ω1
× C0

ω,ρ(clΩ0,Rn). Then there exist an
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open neighborhood V1 of (b0, ω, 0, φh
0 , φ

d
0, F0) in B × Em,λ

Ω0
× C0

ω,ρ(clΩ0,Rn)
and a real analytic operator Π of V1 to R such that

Π[b, ω, ε, φh, φd, F ] =
∫

A[ω,ε,φh,φo]
E[b](P [F |clΩ1 ], P [F |clΩ1 ]) dξ,

for all (b, ω, ε, φh, φd, F ) ∈ V1 with ε > 0.

Theorem 2.82. Let the notation of subsection 2.4.1 hold. Let ρ > 0. Let
f0 ≡ (b0, ω, 0, φh

0 , φ
d
0, g

h
0 , g

d
0 , F0) belong to the set B×Em,λ

Ω0
×Cm,λ(∂Ωh,Rn)×

Cm,λ(∂Ωd,Rn) × C0
ω,ρ(clΩ0,Rn). Let W0 be the neighborhood of the point

b0 ≡ (b0, ω0, 0, φh
0 , φ

d
0) introduced in Proposition 2.44, and let V (1), V (2)

be as in Lemma 2.52. Then there exist an open neighborhood U of f0 in
B×Em,λ

Ω0
×Cm,λ(∂Ωh,Rn)×Cm,λ(∂Ωd,Rn)×C0

ω,ρ(clΩ0,Rn) and real analytic

operators E(1) and E(2)
ij , i, j = 1, . . . , n̄, of U to R, such that (b, ω, ε, φh, φd) ∈

W0 if (b, ω, ε, φh, φd, gh, gd, F ) ∈ U and∫
A[ω,ε,φh,φd]

E[b](u[f ], u[f ]) dξ (2.138)

= E(1)[f ] +
n̄∑

i,j=1

(
γn(ε)V (1)[b] + V (2)[b]

)−1

ij
E

(2)
ij [q],

for all f ≡ (b, ω, ε, φh, φd, gh, gd, F ) ∈ U with ε > 0, where we abbreviated
(b, ω, ε, φh, φd) as b.

Moreover, if f ≡ (b, ω, 0, φh, φd, gh, gd, F ) belongs to U and we set f ε ≡
(b, ω, ε, φh, φd, gh, gd, F ), bε ≡ (b, ω, ε, φh, φd) for all ε > 0, then

lim
ε→0+

E(1)[f ε] +
n̄∑

i,j=1

(
γn(ε)V (1)[bε] + V (2)[bε]

)−1

ij
E

(2)
ij [f ε] (2.139)

=
∫

I[φd]
E[b](ud[b, φd, gd, F ], ud[b, φd, gd, F ]) dξ

+δ2,n

∫
E[φh]

E[b](uh[b, φh, gh], uh[b, φh, gh]) dξ,

where ud[b, φd, gd, F ] is the solution of the Dirichlet boundary value prob-
lem in I[φd] with boundary data gd ◦ (φd)(−1) and interior data F |I[φd], and
uh[b, φh, gh] is the solution of the Dirichlet exterior boundary value problem
in E[φh] with boundary data gh ◦ (φh)(−1) (cf. Definition 2.31.)

Proof. Let Ω1 be an open bounded open connected subset of Rn of class C∞

such that clI[φd
0] ⊂ Ω1 and clΩ1 ⊂ Ω0. Then we have

u[f ] = u1[f ] + P [F |clΩ1 ]
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for all f ∈ B×Em,λ
Ω0

×Cm,λ(∂Ωh,Rn)×Cm,λ(∂Ωd,Rn)×C0
ω,ρ(clΩ0,Rn) with

ε > 0, where

u1[f ] ≡ u[b, ω, ε, φh, φd, gh − P [F |clΩ1 ] ◦ (ω + εφh), gd − P [F |clΩ1 ] ◦ φd, 0]

is the solution of the homogeneous Dirichlet boundary value problem in
A[ω, ε, φh, φd] with boundary data gh ◦ (ω + εφh)(−1) − P [F |clΩ1 ]|ω+εφh(∂Ωh)

and gd ◦ (φd)(−1) − P [F |clΩ1 ]|φd(∂Ωd). Then, by Theorem 2.3, we have∫
A[ω,ε,φh,φd]

E[b](u[f ], u[f ]) dξ (2.140)

=
∫

A[ω,ε,φh,φd]
E[b](u1[f ], u1[f ]) dξ

+
∫

A[ω,ε,φh,φd]
E[b](P [F |clΩ1 ], P [F |clΩ1 ]) dξ

−2εn−1

∫
∂Ωh

(P [F |clΩ1 ] ◦ (ω + εφh))

·
[
T (b,Du1[f ])νω+εφh

]
◦ (ω + εφh) σ̃[φh] dσ

+2
∫

∂Ωd

(P [F |clΩ1 ] ◦ φd) ·
[
T (b,Du1[f ])νφd

]
◦ φd σ̃[φd] dσ

for all f ≡ (b, ω, ε, φh, φd, gh, gd, F ) in the set B × Em,λ
Ω0

× Cm,λ(∂Ωh,Rn) ×
Cm,λ(∂Ωd,Rn)× C0

ω,ρ(clΩ0,Rn) with ε > 0.
By Theorem 2.55 and by statement (iii) of Lemma 2.79, the first integral

in the right hand side of (2.140) admits a representation as in the right hand
side of (2.138). Moreover, the corresponding limit (2.139) converges to∫

I[φd]
E[b](ud

0[f ], u
d
0[f ]) dξ + δ2,n

∫
E[φh]

E[b](uh
0 [f ], uh

0 [f ]) dξ, (2.141)

where ud
0[f ] ≡ ud[b, φd, gd − P [F |clΩ1 ] ◦ φd, 0] and uh

0 [f ] ≡ uh[b, φh, gh −
P [F |clΩ1 ](ω)] are the solution of the homogeneous Dirichlet boundary value
problem in I[φd] with boundary data gd ◦φd−P [F |clΩ1 ]|φd(∂Ωd) and the solu-
tion of the homogeneous Dirichlet exterior boundary value problem in E[φh]
with boundary data gh ◦ φh − P [F |clΩ1 ](ω), respectively. In particular, for
n = 2, uh[b, φh, gh − P [F |clΩ1 ](ω)] differs from uh[b, φh, gh] by a constant
function, and the second integral in (2.141) equals∫

E[φh]
E[b](uh[b, φh, gh], uh[b, φh, gh]) dξ.

By Lemma 2.81, the second integral in the right hand side of (2.140)
admits a real analytic continuation in the variable f around f0, and accord-
ingly it admits a representation as in the right hand side of (2.138) and the
corresponding E(1), E(2) equal Π and 0, respectively.
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We now consider the third and fourth integrals in the right hand side
of (2.140). By statement (iii) of Lemma 2.79, both the functions gh −
P [F |clΩ1 ] ◦ (ω + εφh) and gd − P [F |clΩ1 ] ◦ φd depend real analytically on
f ≡ (b, ω, ε, φh, φd, gh, gd, F ) ∈ B×Em,λ

Ω0
×Cm,λ(∂Ωh,Rn)×Cm,λ(∂Ωd,Rn)×

C0
ω,ρ(clΩ0,Rn). So, by arguing as in the proof of Theorem 2.55, we verify

that, possibly shrinking the neighborhood U of f0, there exist real analytic
operators H(1), H(2)

ij , i, j = 1, . . . , n̄, of U to Cm−1,λ(∂Ωh,Rn) and real

analytic operators H(3), H(4)
ij , i, j = 1, . . . , n′, of U to Cm−1,λ(∂Ωd,Rn) such

that

εn−1
[
T (b,Du1[f ])νω+εφh

]
◦ (ω + εφh) (2.142)

= H(1)[f ] +
n̄∑

i,j=1

(
γn(ε)V (1)[b] + V (2)[b]

)−1

ij
H

(2)
ij [f ],

[
T (b,Du1[f ])νφd

]
◦ φd (2.143)

= H(3)[f ] +
n′∑

i,j=1

(
γn(ε)V (1)[b] + V (2)[b]

)−1

ij
H

(4)
ij [f ],

for all f ≡ (b, ω, ε, φh, φd, gh, gd, F ) ∈ U with ε > 0, where as usual b ≡
(b, ω, ε, φh, φd). By such equations, and by Proposition 2.39, and by state-
ment (iii) of the previous Lemma 2.79, and by standard calculus in Banach
space, one easily deduces the existence of E(1), E(2) for the third and fourth
integral in the right hand side of (2.140).

To complete the proof we have to verify equation (2.139). To do so, we
compute the limit as ε→ 0+ for the right hand sides of (2.142) and (2.143).
First we note that

H(1)[b, ω, 0, φh, φd, gh, gd, F ]

= δ2,n

[
T
(
b,Duh

r

[
b, φh, gh − P [F |clΩ1 ](ω)

])
νφh

]
◦ φh,

H(3)[b, ω, 0, φh, φd, gh, gd, F ]

=
[
T
(
b,Dud

[
b, φd, gd − P [F |clΩ1 ] ◦ φd, 0

])
νφd

]
◦ φd,

for all (b, ω, 0, φh, φd, gh, gd, F ) ∈ U , where uh
r is the function introduced in

Definition 2.31 (cf. proof of Theorem 2.55.) In particular, for n = 2, we
have

Duh
r

[
b, φh, gh − P [F |clΩ1 ](ω)

]
= Duh

[
b, φh, gh − P [F |clΩ1 ](ω)

]
+ c1[b, ω, φh, gh, F ]Dvφh(∂Ωh)[b, α̃[b, φh]]

= Duh
[
b, φh, gh] + c1[b, ω, φh, gh, F ]Dvφh(∂Ωh)[b, α̃[b, φh]],

where α̃[b, φh] ∈ (KerHφh(∂Ωh)[b, ·])0 is defined as in Lemma 2.29, and
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c1[b, ω, φh, gh, F ] is a real constant. Now consider H(2)
ij . We have

H
(2)
ij [f ](x) =

(∫
∂Ωh

(gh − P [F |clΩ1 ](ω)) · T (i)
h [b]σ̃[φh] dσ

+
∫

∂Ωd

(gd − P [F |clΩ1 ] ◦ φd) · T (i)
d [b]σ̃[φd] dσ

)
·
([

T
(
b,Dvφh(∂Ωh)[b, T

(j)
h [b] ◦ (φh)(−1)]

)
νφh

]−
◦ φh(x)

+εn−1
n∑

k=1

∫
∂Ωd

[
T
(
b,DΓ(k)

(
b, ω + εφh(x)− φd(y)

))
·νφh ◦ φh(x)

] (
T (j)

d [b]
)

k
(y) σ̃[φd](y) dσy

)
,

for all x ∈ ∂Ωh and for all f ∈ U with ε > 0, where T (i)
h [b] and T (i)

d [b] are
defined as in Proposition 2.44 (cf. equation (2.83).) Clearly, for ε→ 0+, the
last factor in parentheses converges to[

T
(
b,Dvφh(∂Ωh)[b, T

(j)
h [b] ◦ (φh)(−1)]

)
νφh

]−
◦ φh. (2.144)

We recall that, for ε = 0, T (i)
h [b]◦(φh)(−1) is an element of KerHφh(∂Ωh)[b, ·].

Thus K∗
φh(∂Ωh)

[b, T (j)
h [b] ◦ (φh)(−1)] = T (j)

h [b] ◦ (φh)(−1). So the expression

in (2.144) equals T (j)
h [b]. Now consider H(4)

ij . We can verify that

H
(4)
ij [f ](x) =

(∫
∂Ωh

(gh − P [F |clΩ1 ](ω)) · T (i)
h [b]σ̃[φh] dσ

+
∫

∂Ωd

(gd − P [F |clΩ1 ] ◦ φd) · T (i)
d [b]σ̃[φd] dσ

)
·
( n∑

k=1

∫
∂Ωh

[
T
(
b,DΓ(k)

(
b, φd(x)− ω + εφh(y)

))
·νφd ◦ φd(x)

] (
T (j)

h [b]
)

k
(y) σ̃[φh](y) dσy

+
[
T
(
b, vφd(∂Ωd)[b, T

(j)
d [b] ◦ (φd)(−1)]

)
νφd

]+
◦ φd(x)

)
,

for all x ∈ ∂Ωd and for all f ∈ U with ε > 0 (cf. equation 2.86.) For ε→ 0+,
the last factor in parentheses converges to

n∑
k=1

[
T
(
b,DΓ(k)

(
b, φd(x)− ω

))
νφd ◦ φd(x)

] ∫
∂Ωd

(
T (j)

h [b]
)

k
σ̃[φh] dσ

+
[
T
(
b,Dvφd(∂Ωd)[b, T

(j)
d [b] ◦ (φd)(−1)]

)
νφd

]+
◦ φd(x),
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which is equal to

|φh(∂Ωh)|1/2
n∑

k=1

δjkT
(
b,DΓ(k)

(
b, φd(x)− ω

))
νφd ◦ φd(x)

+H[b, φd, T (j)
d [b]](x).

We recall that, for n = 2 and ε = 0, T (3)
d [b] = 0 (see proof of Lemma 2.52.)

Thus, for n = 2 and ε = 0, H(4)
i3 [f ] = 0 for all i = 1, . . . , 3.

We now summarize what we have seen for the limit value as ε → 0+ of
the terms on the right hand side of (2.140). By exploiting Lemma 2.52, we
find that the limit in (2.139) converges to∫

I[φd]
E[b](ud

0[f ], u
d
0[f ]) dξ + δ2,n

∫
E[φh]

E[b](uh[b, φh, gh], uh[b, φh, gh]) dξ

+
∫

I[φd]
E[b](P [F |clΩ1 ], P [F |clΩ1 ]) dξ

−2δ2,n

∫
∂Ωh

(
P [F |clΩ1 ](ω)

)
·
(
T (b,Duh[b, φh, gh])νφh

)
◦ φh σ̃[φh] dσ

−2δ2,nc[f ]λ[b′]−1

∫
∂Ωh

(
P [F |clΩ1 ](ω)

)
· T (3)

h [b] ◦ φh σ̃[φh] dσ

+2δ2,n

(∫
∂Ωh

gh · T (3)
h [b] σ̃[φh] dσ

)
(P [F |clΩ1 ](ω))

·
∫

∂Ωh

[
T (b,Dvφh(∂Ωh)[b, α̃[b, φh]])νφh

]−
◦ φh σ̃[φh] dσ

+2
∫

∂Ωh

(
P [F |clΩ1 ] ◦ φd

)
·
(
T (b,Dud

0[f ])νφd

)
◦ φd σ̃[φd] dσ

−2δ2,nλ[b′]−1

∫
∂Ωh

(
P [F |clΩ1 ] ◦ φd

)
·H(4)

33 [f ] σ̃[φd] dσ,

(2.145)

where c[f ] is a real constant and λ[b′] is defined as in Lemma 2.52. To
conclude the proof we show that third, fourth, fifth and sixth term in (2.145)
vanish. In fact, the third term vanishes because, by Theorem 2.3,∫

∂Ωh

(
P [F |clΩ1 ](ω)

)
·
(
T (b,Duh[b, φh, gh])νφh

)
◦ φh σ̃[φh] dσ

=
∫

φh(∂Ωh)

(
P [F |clΩ1 ](ω)

)
· T (b,Duh[b, φh, gh])νφhdσ

=
∫

E[φh]
E[b](P [F |clΩ1 ](ω), uh[b, φh, gh]) dt = 0,

and the fourth term vanishes because, for n = 2 and ε = 0, T (3)
h [b] = 0
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(cf. proof of Lemma 2.52), and the fifth term vanishes because, by Theo-
rem 2.13,∫

∂Ωh

[
T (b,Dvφh(∂Ωh)[b, α̃[b, φh]])νφh

]−
◦ φh σ̃[φh] dσ

=
∫

φh(∂Ωh)
K∗

φh(∂Ωh)[b, α̃[b, φh]] dσ =
∫

φh(∂Ωh)
α̃[b, φh] dσ = 0,

(cf. proof of Theorem 2.74) and finally the sixth term vanishes because, for
n = 2 and ε = 0, H(4)

33 [f ] = 0. Then, by Theorem 2.3, we deduce the validity
of formula (2.139).
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