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SYNOPSIS 

 

 “Errare humanum est, sed in errore perseverare diabolicum” is probably one of 

the most famous quote by Seneca. The central message of this quote is that humans are 

error-prone by nature, and that immediate steps need to be taken to ensure that the same 

errors are avoided in the future. Indeed, reacting efficiently to our errors is a 

fundamental ability to interact with the outside world. For this reason error reactivity is 

the focus of a growing body of research in cognitive neuroscience. In this respect, the 

study of the brain mechanisms underlying error processing has greatly advanced in the 

last few years. The discovery of specific event-related potentials, such as the error-

related negativity (ERN), and of neural networks associated to error commission have 

contributed to our understanding of the processes taking place after error commission.  

If, on the one hand, the findings obtained in neuroimaging studies on error 

processing seem to be robust and consistent, on the other hand how such neural activity 

translates into a differential movement pattern has yet to be fully understood. So far 

what is known is that people tend to respond more slowly after making an error, an 

effect termed post-error slowing (PES; Rabbitt, 1966). PES has been traditionally 

hypothesized to reflect a strategic increase in response caution, aimed at preventing the 

occurrence of new errors. This interpretation of PES, however, has been challenged on 

multiple fronts. Firstly, recent investigations have suggested that errors may produce a 

decrement in performance accuracy and that PES might occur because error processing 

has a detrimental effect on subsequent information processing. Secondly, this research 

has been criticized because of the limited ecological validity of speeded RT tasks.  
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The present work aims to extend previous literature by investigating for the first 

time the post-error effect in the context of realistic goal-directed actions. For this 

purpose I examined the effect of errors on both the preparation and the execution of 

reach-to-grasp movements. The introductory section of this thesis will focus on some of 

the most important empirical data acquired during the last years of research in 

experimental psychology and cognitive neuroscience regarding error-reactivity. In 

Chapter 1, after a detailed introduction to behavioral adjustments following errors 

(sections 1.1 and 1.2), a set of neuroimaging studies investigating the neural 

mechanisms underlying error-reactivity will be exposed (section 1.3). Then, I shall 

review the most important theoretical accounts of error-reactivity (section 1.5). In 

Chapter 2, I shall introduce the experimental window used to explore PES in the context 

of goal directed actions, namely the reach to grasp movement. The second part of the 

present thesis concerns the experimental work I undertook. Chapter 3 provides a 

description of the general methodology common to the entire experimental work. In the 

first experiment (Chapter 4) a novel task to study error-reactivity will be described. 

Participants were asked to reach out and grasp a steel ball positioned upon a wooden 

support, without knock it over. In addition to RTs, a kinematical analysis was 

performed in order to asses if error-reactivity extends at the level of movement 

execution. In a subsequent experiment (Chapter 5), a similar paradigm was adopted, but 

the task was chiefly concerned with a reaching movement. This experiment was ran 

with the specific aim to investigate whether error-reactivity has a different impact on the 

grasping and the reaching components or whether it produces an unspecific slowdown 

of the whole movement. In Chapter 6, I shall describe an experiment in which 

kinematical analysis was coupled with transcranial magnetic stimulation (TMS) in order 
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to measure corticospinal excitability after an error and whether behavioral and neural 

measures do correlate in such circumstances. In a further experiment (Chapter 7) the 

effect of error observation on the reach-to-grasp movement was examined via 

kinematical analysis. A general discussion (Chapter 8), contextualizing the results 

obtained by the studies presented in the present thesis will follow. Overall, these studies 

will help to understand how error-reactivity influence our behavior and the way errors 

are interpreted and evaluated by the human mind. 
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1. POST-ERROR ADJUSTMENTS 

 

Error commission is usually followed by several physiological and behavioral 

changes. For instance, heart rate deceleration (Danev & de Winter, 1971), pupil dilation 

(Critchley at al., 2005) and an increase of skin conductance response (O’Connell et al., 

2007) have been observed after an error. From a behavioral standpoint, the most 

reported adjustments following an error are the post-error slowing and the post-error 

improvement of accuracy. In the following sections these post-error adjustments will be 

exposed in detail.  

 

1.1. Post-error slowing 

In the mid-1960s Rabbitt observed for the first time the so called post-error 

slowing effect (PES) (Figure 1), a slowing down of the onset of actions subsequent to 

erroneous actions (Rabbitt, 1966). Rabbitt  (1966) investigated error-reactivity using a 

4-choice and a 10-choice task. The task required that participants responded to a light 

signal by touching a corresponding position within a grid with the index finger. This 

early experiment demonstrated that responses following an error were slower than 

average correct RTs. In a subsequent study, Laming (1968) further examined error 

related RT changes, by means of a line judgement task. At the beginning of each block 

participants were shown two initial lines. During the experimental session, a single line 

was presented and participants had to decide at which of the two initial lines it 

corresponded. Laming (1968) observed that post-error trials were slower than post-

correct trials and that responses were more accurate after an error. In a similar study, 

Desmet and colleagues (2012) asked participants to judge the accuracy of simple 
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multiplication equations. Reaction times were slower after making a wrong judgement 

than after making a correct judgement.  

Since the pioneering work of Rabbit (1966) and Laming (1968) the study of error-

reactivity advanced enormously, and many interesting features of the PES effect have 

been unveiled. 

 

Figure 1. Response times as a function of errors, error corrections and correct responses for both a 10 choice 

and a 4 choice task. Post-error slowing consists in slower reaction times in trials following the error (EC + N) than 

the mean correct responses. From Rabbitt (1966). 

 

An important distinctive characteristic of the PES is that decays over time. 

Jentzsch and Dudschig (2009) investigated the time course of PES by manipulating the 

inter-trial interval (ITI) in a categorization task. The ITI was either short (500 ms) or 

long (1000 ms). The PES effect was present in both conditions, but it was much larger 

under short ITI condition. Danielmeier and Ullsperger (2011) obtained similar results 

using a flanker task, showing that long ITIs (> 1000 ms) tend to decrease the PES 

amplitude. Overall, these studies indicate that the PES effect is a micro-adjustment 
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consisting in trial-by-trial modifications determined by the commission of errors, rather 

than a macro-adjustments producing long-term strategic modifications (Botvinick et al., 

2001). 

Another common finding is that the PES effect can be observed after unconscious 

errors. Cohen, Van Gaal, Ridderinkhof and Lamme (2009) using a Go-Nogo task, 

compared two conditions: the first condition included visible No-Go cues, and 

participants were driven to commit “conscious errors”, whereas in the second condition 

No-Go cues were masked and subjects committed “unconscious errors”. Although the 

effect size was very small (3.1 ms), results showed a PES effect after unnoticed No-go 

errors, which suggests that error-reactivity effects are probably dissociated from the 

conscious experience of error detection. 

The PES effect is also present after the so called partial errors (Figure 2). Some 

EMG studies have observed muscle twitches from the hand related to the erroneous 

response in about 15-20% of overt correct responses (Burle at al., 2002; Allain, Burle, 

Hasbroucq, & Vidal, 2009). These covert activations are supposed to be partial errors 

that once detected are aborted and corrected before reaching the overt response 

threshold. The fact that correct responses preceded by partial errors tend to be slower 

than those which are not, provides supporting evidence for the existence of an on-line 

control process that corrects error response tendencies and implements strategic 

adjustment. 
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Figure 2. Vertical dashed line indicates the mechanical response. The bottom trace presents the EMG activity 

of the muscle involved in the correct response. The top trace shows a partial error, that is a small burst on the 

incorrect muscle, preceding the mechanical response. From Burle et al. (2002). 

 

1.2. Post-error improvement of accuracy 

In addition to RTs, post-error accuracy has been used to investigate behavioral 

adjustments following an error. Several studies have reported that fewer errors are made 

after an error compared to after a correct response (e.g., Laming, 1968; Maier, Yeung, 

& Steinhauser, 2011; Danielmeier et al., 2011). However, behavioral findings are not 

clear with respect to Post-Error Improvement of Accuracy (PIA). Indeed, some studies 

did not found any difference between post-error and post-correct trials in terms of 

accuracy (e.g., Hajcak, McDonald, & Simons, 2003; King et al., 2010). For instance, 

Hajcak and colleagues (2003), used a modified version of the Stroop task and asked 
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participants to respond to whether or not the color and name of the stimulus matched. 

Results did not show any difference between post-correct and post-error trials in terms 

of accuracy. Other research reported a decrease in accuracy after an error (e.g., Rabbitt 

& Rodgers, 1977; Fiehler, Ullsperger, &Von Cramon, 2005). Rabbitt and Rodgers 

(1977) investigated the post-error accuracy in an a choice task. Participants were 

requested to identify some numbers presented on the computer screen by a bottom-

press. Results showed that post-error responses were not only slow, but also inaccurate. 

Other investigations reported that the PIA effect is present only after aware error, but 

not after unnoticed errors. This evidence was observed for the first time by Klein and 

colleagues (2007) using an antisaccade task. Subjects were asked to fixate a central 

point on the screen and to look away from an abruptly appearing peripheral stimulus. 

When participants did not succeed in disengaging the gaze from the peripheral stimulus 

the trial was classified as an error. To distinguish consciously perceived errors from 

unperceived errors, after each trial, subjects had to indicate whether or not they had 

noticed an error. Results indicated that performance accuracy tended to improve after an 

aware error, whereas no evidence of PIA was observed after unperceived errors. 

A reason of why PIA results are not unequivocal, is that post-error accuracy can 

be biased by both inter-individual differences and task difficulty. In particular, when 

participants commit too many errors, or when the error rate is too low, there is a 

reduced chance to improve the performance after an error, regardless the adoption of a 

more cautious response criterion (Danielmeier & Ullsperger, 2011). Likewise, if the 

task is too difficult participants do not have any chance to improve their accuracy. In 

these situations, post-accuracy is a misleading measure of post-error performance.  
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A core topic in error-reactivity literature concerns the relation between PES and 

PIA. Some investigators contend that the PES and PIA might represent different 

processes, as they do not necessarily occur together (Danielmeier & Ullsperger, 2011). 

An evidence in favor of this hypothesis is that, contrary to the PES effect, short inter-

trial intervals (ITIs) (< 500 ms) are usually associated with a post-error decrease in 

accuracy (Jentzsch & Dudschig, 2009; Danielmeier & Ullsperger, 2011). Danielmeier 

and Ullsperger (2011), using an arrow version of the flanker task, investigated post-

error accuracy in four conditions, in which the RSI was 200, 750, 1500, or 3000 ms, 

respectively. Results showed that post-error accuracy tended to decrease at short RSIs. 

Instead, long ITIs (> 750) tend to elicit a post error increase in accuracy (e.g., Marco-

Pallares, Camara, Munte, & Rodriguez-Fornells, 2008; Maier, Yeung, & Steinhauser, 

2011). Marco-Pallares and colleagues (2008) investigated post-error accuracy by means 

of a modified version of the Eriksen flanker task. Participants were instructed to identify 

a central letter on a screen, flanked by four distractors, with either their right (letter H) 

or left (letter S) hand. Distractors could be either congruent, that is requiring the same 

response as the target (SSSSS, HHHHH), or incongruent (HHSHH, SSHSS), that is 

priming the erroneous response. The ITI was set to 1000 ms. Results showed a large 

PIA effect, whereas the effect size of PES was reduced.  

In addition to behavioral methods, several studies have investigated error 

reactivity by means of neurophysiological technics. These studies are important because 

some of the main theories put forward to explain post error behavior heavily rely on the 

neurophysiological changes following an error. In the ensuing section, I will outline the 

neural mechanisms underlying error reactivity.  
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1.3. Neuroanatomical basis of error-reactivity 

A first description of the neural mechanism involved in error processing stems 

from experiments using event related potentials (ERPs; Danielmeier & Ullsperger, 

2011). ERPs are small transient electrical voltages originating from the brain in 

response to specific stimuli or events. They are measured recording the electrical 

activity by means of a number of electrodes, placed on the scalp according to 

international standards for electrode placement (Luck, 2014), such as the International 

10/20 System (Figure 3A). ERPs reflect the postsynaptic activity of pyramidal neurons 

during information processing (Peterson et al., 1995), and therefore each ERP is 

associated with the brain activity elicited by specific mental operation (Luck, 2014). 

ERPs studies have revealed two main components which consistently emerge after an 

error: the error related negativity (ERN) and the error positivity (PE) (Figure 3B). 

 

Figure 3. A) International 10/20 System. B) Graphical representation of the error-related negativity (ERN) 

and positive error (Pe). 
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The ERN (also termed as Ne) and the PE were observed for the first time by 

Falkenstein and colleagues (1991) in a speeded choice RTs task. Participants were 

presented on a screen the letters “J” or “F”, in random order. They were asked to 

respond to each letter by pressing the corresponding key on a keyboard, as fast and 

accurately as possible. Falkenstein and colleagues (1991) observed that errors gave rise 

to a ERN, that is a response-locked negative deflection, peaking between 50 and 100 ms 

after the execution of errors, maximal over fronto-central scalp locations (typically the 

10-20 location Fz). Falkenstein and colleagues (1991) observed that the ERN was 

followed by the PE , a slow positive wave with a diffuse parietal scalp distribution and a 

maximum amplitude between 200 and 500 ms from the erroneous response. Two 

temporally independent peaks are involved in the PE (Figure 3B): an early PE occurring 

between 200-400 ms after error commission, and a late PE occurring after 300-600 ms 

(Falkenstein et al., 1991).  

Several studies have tried to understand the functional meaning and the 

peculiarities of these two ERPs. The ERN is considered to reflect error-reactivity 

processes. Indeed, the ERN amplitude is correlated to compensatory processes, such as 

the PES (West & Travers, 2008). West and Travers (2008) investigated the relation 

between the ERN amplitude and PES using a counting Stroop task. The task required to 

indicate the number of digits appearing on a screen. In the congruent condition the 

number of digits was equal to the identity of digits (e.g., 4444), whereas in the 

incongruent condition the identity and the number of digits were different (e.g., 444). 

West and Travers (2008) found a strong correlation between the ERN and PES and 

suggested that processes reflecting the ERN modulate the behavioral effects following 

errors. Another important characteristic of the ERN is that is has been observed 
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irrespective of the response modality (Holroyd, Dien, & Coles, 1998). Holroyd and 

colleagues (1998) using an Eriksen Flankers task, in which subjects were asked to 

respond with either their hands or their feet, demonstrated that the ERN could be 

observed in both response conditions. These findings suggest that the ERN is effector-

independent and can be generated by the activity of a generic error-processing 

mechanism (Holroyd et al., 1998). Moreover, the ERN amplitude is modulated by the 

degree of mismatch between the error and the correct response (Vocat, Pourtois, & 

Vuilleumier, 2011). Indeed, Vocat and colleagues (2011) asked participants to reach 

and touch with their index finger a target dot on a touchscreen. Interestingly, the 

amplitude of ERN was modulated by the severity of errors. In particular, the ERN 

amplitude increased when pointing accuracy decreased, indicating that the error-

detection mechanisms, reflected by ERN, encode the degree of mismatch between the 

correct response and the response given by participants.  

With regard to the PE, Falkenstein and colleagues (1991) proposed that it reflects 

conscious error recognition. This hypothesis was partially confirmed by Endrass and 

colleagues (2007). They asked participants to indicate the position of a peripheral circle 

appearing on a screen, and then to rate with a button press if their response had been 

correct or incorrect. Results showed that whereas the late PE (400-600 ms) shows an 

increased positivity for aware compared with unaware errors, the early PE (200-300 ms) 

shows no dissociation between aware and unaware errors (Endrass et al., 2007).  

Dipole modelling have located the source of the ERN and PE in the medial frontal 

cortex (MFC ) (Botvinick et al., 2001). In particular, the neural generator of these 

components is supposed to be the anterior cingulate cortex (ACC), an important hub 

located in the medial wall of the frontal lobes, that regulates thought and action at the 
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service of achieving goals and context demands (Botvinick et al., 2001). The ACC can 

be divided into three subregions: the dorsal ACC (dACC), the perigenual ACC 

(pgACC), and the subgenual ACC (sgACC). While the pgACC, and the sgACC are 

implicated in emotional functions (Etkin, Egner, & Kalisch, 2011; Bush, Luu, & Posner, 

2000), the dACC is considered a crucial area for cognitive control functions (Botvinick 

et al., 2001). Indeed, the dACC is engaged by tasks in which competing responses must 

be overcome (e.g., the Stroop Task) and an increase of cognitive control is necessary to 

minimize the processing of distractor information (Botvinick et al., 2001). Several 

neuroimaging studies have confirmed that the dACC is involved in cognitive control. 

For instance, Metzler-Baddeley and colleagues (2012) showed that subjects with 

amnestic mild cognitive impairment presented a reduction of the white matter in the 

anterior cingulum bundle, and performed worse on control-demanding tasks. The 

involvement of the ACC in error monitoring was observed for the first time by Carter 

and colleagues (1998), that used fMRI to determine the neural areas associated with 

incorrect responses in an AX continuous performance task. Participants were shown a 

stream of letters, with the instruction to identify the letter “X”, preceded by the letter 

“A”. Results showed that erroneous responses were accompanied by a specific 

activation of ACC. Other studies observed that the activation of ACC is often inversely 

related to the actual number of errors committed (Holroyd & Coles, 2002; Yeung et al., 

2004), such that a reduced ACC activity coincides with increasing errors. These 

findings gave rise to the idea that the ACC plays a key-role in error processing and in 

error detection (Kiehl, Liddle, & Hopfinger, 2000; Menon et al., 2001). This hypothesis 

is supported by a series of studies in patients with unilateral focal lesions of the ACC 

showing impairments in post-error adjustments and a reduced ERN amplitudes (e.g., Di 
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Pellegrino, Ciaramelli, & Ladavas, 2007) and by some single-unit studies in monkeys 

that observed a post-error increased activity in the anterior cingulate cortex (e.g., Ito, 

Stuphorn, Brown, & Schall, 2003). 

Several fMRI studies pointed out that, in addition to the ACC, a post-error 

increased neural activity can be observed in the dorsolateral prefrontal cortex (dPFC). 

The dPFC is located in the lateral surface of the frontal lobes and it is involved in a 

variety of higher order executive functions essential for goal-directed behavior, such as 

action planning (Mushiake et al., 2006) and self-control (Hare et al., 2009). 

Interestingly, the dPFC activity seems to increase when more top-down control is 

needed to accomplish the task (MacDonald, Cohen, Stenger, & Carter, 2000). For 

instance, MacDonald and colleagues (2000) observed that the Stroop interference effect 

was smaller when the dPFC activity increased, which suggests that the dPFC activity 

leads to the implementation of more top-down control reducing interference effects in 

incongruent trials. The role of the dPFC in error-reactivity is far to be clear. It was 

proposed that while the ACC monitors the occurrence of errors, acting as an error-

monitoring system, the dPFC elicits an increase of top-down support after an error and 

leads to the implementation of post-error adjustments (Botvinik et al., 1999). Other 

studies have associated dPFC activity with error awareness. Harty and collegues (2014) 

stimulating the dPFC by means of the anodal transcranial direct current stimulation 

(tDCS) found that participants significantly improved error awareness. This finding 

indicated the presence of a causual relation between the activity of the dPFC and self-

awareness of making errors. It is noteworthy, however, that recent studies failed to 

replicate these results. For instance, Masina and colleagues (2018) using an online 
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single-pulse TMS paradigm, did not confirm the involvement of the dPFC in error 

awareness. 

 Together these findings indicate that the MFC and dPFC are involved in error-

reactivity. In particular, the role played by these areas in terms of error-reactivity 

becomes important for the development of theories to explain PES as outlined below. 

 

1.4. Theories of error-reactivity 

To explain PES two theoretical accounts have been put forward, namely 

functional and non-functional (Houtman & Notebaert, 2013). Functional accounts, such 

as the conflict monitoring (Botvinick et al., 2001), the inhibition (Ridderinkhof, 2002), 

and the reinforcement learning (Holroyd & Coles, 2002) theories, propose that PES is 

the byproduct of a compensatory control mechanism serving the purpose of improving 

subsequent performance. PES is thus interpreted as the result of a more cautious 

response strategy aimed at producing a PIA. However, PES might not necessarily be the 

expression of an adaptive mechanism. In this perspective, Non-functional accounts, 

such as the Orienting account (Notebaert et al., 2009), and the Bottleneck theory 

(Dudschig & Jentzsch, 2009) suggest that error-monitoring has a detrimental effect on 

the subsequent information processing and predict a post-error decrease of accuracy. 

The following paragraphs summarize the principal theory explaining PES as a 

functional or a non-functional effect. 

 

1.4.1. Functional accounts 

One of the most prominent theory of error reactivity is the conflict monitoring 

theory (CMT; Botvinick et al., 2001), according to which the PES is an adaptive 



 23 

strategy aimed to avoid future errors. The CMT contends that cognitive control is 

recruited by a mechanism that detects incompatible action tendencies coexisting in our 

cognitive system. In this framework, two components are supposed to be involved: a 

conflict monitor process, associated with the activity of the dACC, and an 

implementation system, located in the dPFC. Once conflict is detected, the conflict 

monitoring process modulates the activity of the dPFC, calling for an increase in 

response threshold, which produces slower and more accurate performance. Consistent 

with the monitoring-control loop perspective, several behavioral research found that 

distractor effects are abolished in trials following a response conflict. For instance, 

Gratton and colleagues (1992) observed that in a flanker task congruency effects tend to 

decrease after incongruent trials compared to congruent trials. In line with the CMT, the 

Gratton effect is produced by the response conflict from the previous trial, which 

signals a need for control that modulates response times and error rates on the 

subsequent trial (Botvinick et al., 2001). Analogous effects have been observed in the 

Stroop task. Kerns and colleagues (2004) found that the Stroop effect was smaller after 

trials with incompatible word-color pairing than after trials with compatible pairings. 

Moreover, they observed a negative correlation between the ACC activity and the level 

of interference on the subsequent trial, which supports the idea that a strong ACC 

engagement leads to an increase of top-down control. Further support for the CMT 

comes from several fMRI studies showing that in high-conflict trials the amplitude of 

dPFC activity predicts the degree of behavioral adjustment on the subsequent trial (e.g., 

Egner & Hirch, 2005). As aforementioned in the previous section, when a response is 

executed, a simultaneous activation of correct and incorrect responses can be observed 

in EMG trace. In line with this evidence, error can be interpreted as a particular form of 
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highly conflictual response occurring when incorrect response tendencies (i.e., partial 

errors) are not successfully overridden. Therefore, according to CMT, the PES effect 

occurs because of response conflict associated with errors. The idea that the PES is a 

post-conflict effect has been supported by some fMRI studies (e.g., Garavan, Ross, 

Murphy, Roche, & Stein, 2002; Kerns et al., 2004; Chevrier & Schachar, 2010). For 

instance, Kerns and colleagues (2004), using the Stroop color-naming task observed that 

the ACC activity predicts the dPFC activity, which in turn, showed a positive 

correlation with both the amplitude of adjustments following incongruent trials as well 

as the magnitude of PES. In accord with the CMT, this result supports the view that the 

ACC is involved in conflict monitoring, whereas the PFC implements a more 

conservative response strategy after highly conflict trials as well as after erroneous 

responses. 

In contrast to the CMT, the inhibition account (Ridderinkhof, 2002; Marco-

Pallares et al., 2008) suggests that the dPFC activity and PES are spuriously correlated. 

In particular, the inhibition account posits that the error monitoring system implements 

post-error adjustments by inhibiting the primary motor cortex (M1). As a result, motor 

activation will reach response threshold later, leading to longer RTs, but also to higher 

accuracy in trials following an incorrect response. To test this hypothesis, Danielmeier 

and colleagues (2011) examined neural activity in sensory color and motion-related 

brain areas after error commission. Participants were showed a cloud of colored dots 

moving to the left or to the right side of the monitor. The task required to identify the 

color of the dots, ignoring the motion direction. Danielmeier and colleagues (2011) 

found that after an error an attentional shift toward task-relevant stimulus features and 

away from task-irrelevant features occurred. In particular, results showed that after an 



 25 

error, the activity in perceptual areas that encoded colors increased, whereas the 

processing of distracting stimuli features tended to decrease. Crucially, the PES effect 

correlated with a decrease of motor system activity. Similar results were obtained by 

King and colleagues  (2010). He measured the activation of the fusiform face area 

(FFA, Kanwisher et al., 1997) after an error in a face discrimination task. King and 

colleagues (2010) instructed participants to identify the gender of male and female faces 

presented on the left or on the right side of the monitor. They found a post-error 

increased activity of FFA, which suggested that faces received more attention after an 

error. Again, a negative correlation between PES and response-related sensorimotor 

cortex was observed. Further support to the inhibition account was also given by 

Marco-Pallares and colleagues (2008) who examined oscillatory electrical brain activity 

after an error in a flanker task. Results showed that PES correlated with an increased 

beta band power, which reflects motor inhibition and motor stopping (Kuhn et al., 2004; 

Marco-Pallares et al., 2008). The studies summarized above support the hypothesis that 

motor inhibition plays a crucial role for PES, but it does not rule out the hypothesis that 

the post-error motor inhibition could be triggered by other cognitive process, as 

suggested by the CMT (Danielmeier & Ullsperger, 2011).  

A third  functional explanation of error reactivity was provided by the 

reinforcement learning account (RLA; Holroyd & Coles, 2002). This theory draws on 

artificial intelligence models of learning (Sutton & Barto, 1988) and on physiological 

evidence from the field of reward-guided learning in primates. According to RLA, the 

basal ganglia (BG) is the location of an error monitoring system computing predictions 

on whether the outcomes associated with the ongoing action are favorably or 

unfavorably. When events are worse than expected, as in the case of errors, the 
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midbrain dopamine system sends error signals to the ACC, which processes this error 

information and improves task performance by implementing strategic adjustments. 

Error signals, conveyed from the BG, consist in phasic decreases of the mesencephalic 

dopaminergic system activity (Holroyd & Coles, 2002). Converging lines of evidence 

support a role for dopamine in error-reactivity. Patients with neurological disorders 

characterized by a dopaminergic dysfunction (e.g., Parkinson's and Huntington's 

disease) exhibit an abnormal PES effect (Stemmer et al., 2007). Moreover, some studies 

showed that antidopaminergic drugs (e.g., Haloperidol) tend to attenuate the PES effect, 

whereas amphetamine, which blocks dopamine uptake and promotes its release, 

enhances the PES amplitude (de Bruijn et al., 2004). In this respect, the PES may be 

considered a marker of dopaminergic dysfunction in neurological and psychiatric 

disorders (Wardle, Yang, & de Wit, 2012). Although the RLA offers an interesting 

framework to understand error-reactivity, neurochemical mechanisms underlying this 

theory are difficult to investigate in humans (Ullsperger, Danielmeier, & Jocham, 2014). 

Indeed, many hypotheses of this theory can be tested only using invasive methods, such 

as drug administration or intra-cortical recording. For this reason, only a paucity of 

studies have investigated RLA predictions about error-reactivity. 

 

1.4.2. Non-functional accounts 

Over the last 10 years, functional accounts of error reactivity have been 

challenged on multiple fronts. In particular, the evidence that PIA and PES are 

dissociated, and the results of some studies showing a decrease of accuracy after an 

error (e.g., Rabbitt & Rodgers, 1977; Fiehler et al., 2005) gave rise to non-functional 

accounts, interpreting the PES as a non-adaptive effect. Notebaert and colleagues (2009) 
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proposed the Orienting account. This theory suggests that PES is produced by the 

interference caused by an error-evoked orienting response. Since errors are unexpected 

events, they divert attention from the task, producing both a PES and a decrease in post-

error accuracy. Therefore, according to this account, it is not the error itself that elicits 

the slowing, but rather the attentional orientation toward that event. To test this 

hypothesis, Notebaert and colleagues (2009) compared a condition in which errors were 

infrequent with a condition where, instead, correct trials were infrequent. The task 

required to identify the color of a square presented on the screen. The brightness of the 

colors was adjusted in order to manipulate the difficulty of the task and to define three 

conditions, characterized by a different level of accuracy (35, 55, 75% accuracy). 

Results showed that in conditions where errors were infrequent, a PES effect was 

present. However, when participants committed many errors and correct trials were 

rare, a post-correct slowing was observed. The orienting account posits that a lower 

level of surprise is expected for participants who make more errors and this, in turn, 

reduces the PES effect (Notebaert et al., 2009; Notebaert & Verguts, 2011; Steinborn, 

Flehmig, Bratzke, & Schroter, 2012; Wessel, Danielmeier, Morton, & Ullsperger, 

2012). In order to corroborate this hypothesis, Notebaert and colleagues (2009) 

compared the reaction to erroneous responses with the reaction to oddball stimuli. 

Crucially, results showed that RTs tended to increase both on trials following infrequent 

acoustic signal and on trials following an erroneous response, which supports the idea 

that errors act as “oddballs” that divert attentional resources from the task and, thus, 

impair subsequent performance. Steinborn and colleagues (2012) tested the Orienting 

account using a serial mental addition and comparison task. The task required to solve 

an addition, compare the solution with an adjacent number, and indicate the larger 
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number value by means of a button-press. After the task, participants were classified 

into three groups differing in overall accuracy. Steinborn and colleagues (2012) found 

that less accurate participants presented a decreased PES. Similar results were obtained 

by Fiehler and colleagues (2005). Participants were assigned to two groups. The first 

group was instructed to correct errors by pressing the correct button right after the 

response (correction-instructed group). Instead, the second group was not informed of 

the possibility to correct errors (non-instructed group). The non-instructed group was 

more cautious and committed relatively fewer errors than correction-instructed group. 

In line with the Orienting account, Fiehler and colleagues (2005) observed a PES effect 

only for the non-instructed group, whereas no post-error effects were found in the 

correction-instructed group. The Orienting account is also supported by some ERPs 

studies. Nunez Castellar, Kuhn, Fias and Notebaert (2010) observed that the P3 

amplitude correlates with the PES. The P3 reflects, among other things, the processing 

of an orienting response (Friedman et al., 2001). Van Der Borght, Schevernels, Burle, 

and Notebaert (2016) examined the effect of errors on early visual ERP components, 

using a flanker task followed by a visual discrimination task. In the flanker task 

participants had to focus on a central letter and ignore surrounding letters, whereas in 

the visual discrimination task they had to categorize a target-stimulus, which could be a 

diamond or a triangle. The main result of this study was that, after an erroneous 

response in the flanker task, the amplitude of the N1 decreased in the visual 

discrimination task. Since the N1 component is associated with focal attention processes 

(Luck, 2014), Van Der Borght and colleagues (2016) argued that after an error an 

attentional drop occurs, which makes more difficult to focus attention on the stimulus of 

the visual discrimination task.  
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However, the detrimental effect of errors on subsequent information processing 

may not necessarily depend on an error-evoked orienting response. In contrast with the 

Orienting account, the Bottleneck theory (Dudschig & Jentzsch, 2009) suggests that the 

PES effect is the byproduct of a “processing overflow”. Indeed, error processing 

consists in the detection of an error and in the identification of what determined it. Such 

elaboration subtracts cognitive resources from a limited central information processor. 

As a result, when an error occurs, if the RSI is not long enough, its elaboration can 

interfere with performance of the following trial, because fewer resources are available. 

Support for the bottleneck theory comes from the evidence that PES is significantly 

larger when the ITI is short, and it is reduced when more time is given to process an 

error (e.g., Danielmeier & Ullsperger, 2011; Dudschig & Jentzsch, 2009). In a recent 

study, Houtman and Notebaert (2013) tried to dissociate between the Bottleneck and 

Orienting account. For this purpose, at the beginning of each trial participants were 

shown an irrelevant signal, consisting in a green J standing for “correct” or a red F letter 

standing for “incorrect”. Red signals determined similar effects to errors on the 

subsequent performance, as red color is associated with danger and evokes avoidance 

motivation (Elliot et al., 2007). The frequency of these two signals was manipulated, so 

that in one group the letter J was more frequent and the letter F infrequent, and 

viceversa. Afterward, the task required to perform a rapid serial visual presentation 

(RSVP) task. This task consists in identifying a target letter, placed inside a stream of 

numbers presented in quick succession. The Orienting account would predict an 

interaction between the frequency of the two signals and the target detection accuracy. 

Instead, the Bottleneck account would predict a performance deterioration only after the 

error-like red signals. Results showed that, after an irrelevant red signal, target detection 
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was less accurate, irrespective of frequency, providing support for the Bottleneck theory 

(Houtman & Notebaert, 2013).  

To conclude, there appears to be evidence for both functional and non-functional 

accounts of error reactivity and that these accounts are not mutually exclusive 

(Danielmeier & Ullsperger, 2011). Indeed, the functional and non-functional aspects of 

error reactivity may follow different time courses. Errors may first elicit an orienting 

response, and then, if enough time is available, trigger strategic adjustments aimed at 

improving the subsequent performance. It is noteworthy that realistic actions have 

slower time course that choice RT tasks, and thus more opportunity to benefit from 

strategically implemented control. 
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2. THE EXPERIMENTAL WINDOW: THE REACH-TO-GRASP MOVEMENT 

 

The reach to grasp movement is amongst the most important daily-life movement. 

For this reason, its kinematical organization and the neural bases underling it have been 

extensively investigated by cognitive neuroscientists. In the following paragraphs I will 

review the principal studies that paved the basis of our current understanding of human 

prehension and why it is suitable to test my experimental hypotheses. 

 

2.1. The static and dynamic characteristics of the reach to grasp movement 

The modern study of human hand movements has been pioneered by the British 

biologist John Napier (1960) that provided the first taxonomic description of human 

handgrips by describing two main types of grasping, namely power and precision grip 

(Figure 4). With a power grip the object is clamped by means of a flexion of the fingers 

toward the palm, with the thumb acting as a reinforcing agent to enable large force to be 

applied. Instead, the precision grip consists in a thumb opposition to one or more 

fingers, and it is usually employed for accurate movements. 

 

Figure 4. Examples of power grip (a) and precision grip (b). From Castiello, 2005. 
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Napier provided a qualitative descriptions of handgrips using photographs of the 

hand. It is noteworthy, however, that the final grip is preceded by a dynamic pre-shape 

phase, during which the fingers shape in order to prepare the hand to match with the 

features of the to-be-grasped object. These dynamic aspects were first examined by 

Marc Jeannerod (1981; 1984) who, using high speed cinematographic techniques, 

provided a quantitative description of the reach to grasp movement. Jeannerod (1981) 

identified two major components of the prehension: the reaching component, 

concerning the transport of the hand near the target object, and the grasping component, 

consisting in the opening of the hand followed by a gradual closure of the grip. In order 

to provide a quantitative description of the reaching component, Jeannerod (1984) 

measured the position of the wrist during the movement, considering each frame of the 

video, and then computed the tangential velocity and acceleration of the wrist trajectory. 

Instead, the grasping component was measured considering the distance between the 

index finger and the thumb during the movement. Jeannerod (1981; 1984) observed that 

the reaching movement was represented by a right-skewed velocity profile, 

characterized by a ballistic pre-planned phase followed by a low-velocity phase 

controlled by visual guidance (Jeannerod, 1981). As regards the grasping movement, 

Jeannerod (1981) observed that the maximum grip aperture (MGA) exceeded of about 

20% the size of the object being picked up, and occurred at around 50-70% of the 

movement duration (Jeannerod, 1984). Marteniuk and colleagues (1990) obtained 

similar results, founding that the amplitude of MGA increased by 0.77 cm for each 

increase of 1 cm of the object size. 

Beside describing the principal kinematical characteristics of the reach to grasp 

movement, Jeannerod (1981) investigated the underlying visuomotor processes, 
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proposing that the reaching and grasping component were based on independent and 

separate visuomotor mechanisms. This hypothesis, known as visuomotor channels 

hypothesis (VCH), has been the subject of intensive investigations and will be discussed 

in the following paragraph. 

 

2.2. The visuomotor channels hypothesis 

The core idea of the VCH is that each component of the prehension arises from 

two discrete and independent visuomotor channels. In this view, a visuomotor channel 

is a specialized mechanism that generates appropriated motor responses by processing a 

limited number of features of the object. The VCH holds that the reaching movement 

involves the transport channel, which would be sensitive to the extrinsic properties of 

the object, such as the object’s location (Jackson, Jackson, & Rosicky, 1995) and 

distance from the object to the observer (Chieffi & Gentilucci, 1993; Jeannerod, 1984). 

Instead, the grasping component would involve the manipulation channel, which would 

be based on the intrinsic properties of the object, such as fragility (Savelsbergh, 

Steenbergen, & van der Kamp, 1996), size of the contact surface (Bootsma, Marteniuk, 

MacKenzie, & Zaal, 1994; Castiello, Bennett, & Stelmach, 1993), texture (Weir, 

MacKenzie, Marteniuk, & Cargoe, 1991) and weight (Gordon at al., 1991). 

In order to accomplish successfully a reach to grasp movement, the transport and 

manipulative components must be temporally synchronized. In this respect, Jeannerod 

(1984) noted that the time at which fingers starts to open was correlated with the 

beginning of the reaching movement (Jeannerod, 1984). Moreover, the time of the 

maximum grip aperture is correlated with the time of wrist peak deceleration 

(Jeannerod, 1984). On the basis of these results, Jeannerod (1984) proposed that 
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reaching and grasping are temporally coupled and their organization is programmed by 

a central plan, which ensured the execution of these independent components in a single 

coordinated act. This idea was confirmed and data replicated only by Wallace, Weeks 

and Kelso (1990), that studied the relation between the MGA and the velocity of the 

movement. Participants were assigned to two conditions: the comfortable condition, in 

which  participants had to reach out and grasp a wooden dowel at normal speed, and the 

fast condition, in which they had to perform the reach to grasp movement as fast as 

possible. Results showed that the relative time of MGA, occurring within 60–70% of 

the duration of the movement, was consistently invariant despite the speed of the 

movement.  

Another fundamental assumption of the VCH is that the transport and 

manipulation channel are informationally distinct, in the sense that the information used 

by one channel is not available to the other. Jeannerod (1981) investigated this 

prediction, using a visual perturbation paradigm. Initially, participants were showed a 

spherical object. As soon as they moved the hand to grasp it, an oval-shaped object was 

unexpectedly superimposed on the sphere. Jeannerod (1981) observed that the shape-

perturbation effect was confined to the grasping component, whereas no effects for the 

reaching component were found. In a following study, Paulignan and colleagues (1991) 

presented to subjects concentric objects consisting of an inner dowel, surrounded by a 

larger cylinder. These objects, made of translucent material, could be illuminated 

independently by means of some LEDs positioned below them. Each trial began with 

illumination of the dowel or the cylinder. In perturbed trials, the light illuminating the 

dowel was unexpectedly shifted to the cylinder, creating the illusion of a sudden 

increase of the dowel size. Instead, when the light was shifted from the cylinder to the 
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dowel, participants had the impression of a sudden decrease of the cylinder size. Results 

showed that the perturbation of the object’s size did not affected the wrist kinematic 

landmarks, but only the grasping component, supporting the hypothesis that the 

reaching component is not influenced by the intrinsic proprieties of the object. Further 

evidence in favor of the VCH was provided by Chieffi and colleagues (1992). 

Participants were asked to grasp a plastic sphere positioned on a carrier driven by an 

electrical motor. The sphere moved toward the subject at four constant velocities. 

Results showed that the time and amplitude of the maximum peak velocity of the wrist 

were lower when the plastic sphere was faster. However, no effect was found for the 

grasping component. Chieffi and colleagues (1992) argued that, as the object velocity is 

an extrinsic property of the object it could only influence the transport component, 

leaving the grasping component unaffected. 

In addition to behavioral evidence, several neurophysiological, 

neuropsychological and neuroimaging studies have confirmed that the two components 

of prehension are anatomically separable though interconnected. These studies will be 

described below. 

 

2.3. Neural pathways underlying reaching and grasping 

Knowledge of the neural network underlying reaching and grasping have gained a 

great advance in the last 20 years. Monkey neurophysiological studies and 

neuropsychological studies on humans have provided converging evidence in support of 

the VCH. In the next sections, I will make an overview of the principal findings that 

resulted from these studies. 
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2.3.1. Macaques studies 

The studies conducted on macaques have revealed different neural pathways 

involved in reaching and grasping (Figure 5). The anterior intraparietal sulcus (AIP) and 

the premotor cortex (F5) have been found to be related to the grasping movement 

(Castiello, 2005). In monkeys, the AIP is located in the rostral part of the posterior bank 

of the intraparietal sulcus and it is a key-area for the visual guidance of hand 

movements (Baumann et al., 2009; Gallese et al., 1994). Single-cell recording studies 

showed that these neurons are responsive to shape, orientation and size of object 

(Murata et al., 2000). Gallese and colleagues (1994) found that a focal lesion of the AIP 

produces deficits of hand orientation and hand preshaping. Therefore, the AIP seems to 

be involved in the visual guidance of hand movements (Gallese et al., 1994) and in 

particular, in the extraction of visual and spatial characteristics of graspable objects 

(Murata et al., 1997).  

 

 

Figure 5. Anatomical localization of grasping (white circles) and reaching (black circles) neural regions in 

monkeys. From Turella & Lingnau (2014). 
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The AIP is richly connected with the F5 area (Luppino et al., 1999; Stark et al., 

2007). This area, located in the rostral part of the ventral PMC, is supposed to encode 

specific grip types depending on the object to grab and on the goal of the action (Stark 

et al., 2007; Murata et al., 1997; Fluet et al., 2010). Fogassi and colleagues (2001) found 

that the inactivation of F5, in particular a lesion of the posterior bank of the inferior 

arcuate sulcus, determines an abnormal hand shaping and produces inappropriate hand 

postures for the object size and shape. 

For the reaching component three crucial areas have been found in monkeys: V6A 

(Bosco et al., 2010), MIP (Johnson et al., 1996), and the dorsal premotor cortex (F2vr; 

Caminiti et al., 1991). Area V6A is located in the anterior bank of the parieto-occipital 

sulcus. This area includes visual neurons and transmits visuospatial information to 

frontal areas for the visual control of the reaching movement (Bosco et al., 2010). A 

lesion to V6A disrupts the capacity to correctly plan the trajectory of the reach 

movement and to adjust online the position of the arm (Bosco et al., 2010). 

The medial intraparietal area (MIP) is supposed to process the spatial coordinates 

of the target, and to transform them into a representation used by the motor system in 

order to define the direction and trajectory of the reach movement (Cohen & Andersen, 

2002). Rushworth and colleagues (1997) observed that the inactivation of the MIP 

produces a disruption of the ability to coordinate the arm and an abnormal coordination 

of the hand in shoulder-centered space. 

 

2.3.2. Human studies 

The VCH is not only supported by monkey neurophysiological studies but also by 

neuropsychological and neuroimaging technics (Turella & Lingnau, 2014), which have 
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found a similar dissociation between reaching and grasping in humans (Figure 6). The 

first neurophysiological evidence supporting the VCH came from lesion studies, 

investigating the motor deficits induced by parietal lesions (e.g., Jeannerod, Decety, & 

Michel, 1994; Binkofski et al., 1998; Davare et al., 2006). Jeannerod and colleagues 

(1994) described a 35year-old patient (A.T.) with an extensive posterior parietal lesions, 

presenting a specific bilateral deficit in grasping. A.T. had abnormal anticipatory 

opening of fingers resulting in a clumsy and inaccurate grasping, whereas reaching was 

much less impaired. A similar misgrasping has been observed in patient suffering from 

optic ataxia, a visuomotor disorder following lesions of the posterior parietal cortex. 

Jeannerod found that patients with optic ataxia showed abnormal finger grip aperture 

and did not present the usual correlation between the maximum grip aperture and object 

size (Jeannerod, 1986). 

With the advent of neuroimaging, particularly fMRI, considerable progress has 

been made in understanding the neural substrates of reaching and grasping. In 

particular, two distinct parietofrontal circuits have been observed to contribute to the 

control of prehension: a dorsolateral parietofrontal circuit (grasp network), controlling 

the distal musculature involved in the grasping component, and dorsomedioal 

parietofrontal circuit (reach network), controlling the proximal muscles involved in 

reaching component.  

The grasp network involves the anterior part of the intraparietal area (AIP) and the 

ventral premotor cortex (PMv; Godschalk, 1991; Raos et al., 2004; Begliomini et al., 

2007). AIP is supposed to process information about the intrinsic proprieties of the 

object (Davare, Rothwell & Lemon, 2010). Binkofski and colleagues (1998) observed 

that a lesion of the AIP causes a delayed and inappropriate aperture formation. In line 
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with these results, Davare and colleagues (2006) examined the involvement of the AIP-

PMv circuit in the reach to grasp movement, inducing a virtual lesion by means of 

TMS. In conventional virtual lesion paradigms, quick repetitive burst of magnetic 

stimulation are applied in order to transiently disrupt the functioning of the cortical area 

of interest. Davare and colleagues (2006) reported that a virtual lesion of the AIP alters 

the preshaping of the hand, whereas the reaching movement remains intact. The PMv 

seems to play a key-role in the preshaping of the hand (Davare et al., 2006). A virtual 

lesion in PMv disrupts the correct positioning of fingers on the object, suggesting that 

this area is also implicated in contact point selection (Davare et al., 2006).  

 

Figure 6. Anatomical localization of grasping (white circles) and reaching (black circles) neural regions in 

humans. From Turella & Lingnau (2014). 

 

The reach network includes the medial intraparietal area (MIP; Andersen & Cui, 

2009), the dorsal premotor cortex (PMd; Sakata & Taira, 1994) and the superior parietal 

occipital cortex (SPOC; Gallivan, Cavina-Pratesi & Culham, 2009). MIP is involved in 

the encoding of the visual coordinates of the reach object (Torres, Quiroga, Cui & 

Buneo, 2013).  
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A virtual lesion in MIP leads to errors in the initial direction of movements 

(Davare, Zénon, Desmurget & Olivier, 2015). PMd is thought to plan high level 

kinematic parameters such as the speed and direction of the reach movement (Torres et 

al., 2013). PMd lesions disrupt the temporal and kinematical organization of the 

reaching movement (Davare et al., 2015). As regard the SPOC, this area is more 

activated when subjects are showed reachable objects than objects beyond the reach of 

the hand (Gallivan et al., 2009). This may suggest that the SPOC may control the visual 

control of the reaching movement (Gallivan et al., 2009). The primary motor cortex 

(M1) is a downstream target of the grasp and reach network. The M1 is located in the 

precentral gyrus of the frontal lobe (Brodmann areas 4,6,8) and contains a 

somatotopical representation of each part of the body (Figure 7). The arm and the hand 

are represented in two distinct areas at the level of the M1 and are dorsolaterally located 

between the trunk and the face area. 

 

Figure 7. The motor homunculus in primary motor cortex. (Source: http://brainconnection.positscience.com). 
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The above-mentioned studies demonstrate that the existence of two independent 

visuomotor mechanisms is well supported by behavioral, neuropsychological and 

neuroimaging evidence. However, some studies have challenged the VCH on both 

theoretical and empirical grounds. This body of data will be discussed in the next 

paragraph. 

 

2.4. Limitation of the visuomotor channels hypothesis 

A crucial prediction of the VCH concerns the impermeability of visuomotor 

channels. In other words, changing an extrinsic feature (e.g., the position) of an object 

should impact only on the reaching component, whereas modifying an intrinsic feature 

of the object (e.g., the size) should have a specific influence on the grasping component 

(Jeannerod 1981, 1988; Paulignan & Jeannerod, 1996). This critical prediction has been 

tested by several studies, and some of them provided evidence that questioned the VCH, 

showing that, in some circumstances, reaching and grasping are influenced at the same 

extent by both the intrinsic and extrinsic proprieties of the object (Castiello et al., 1993; 

Jakobson & Goodale, 1991; Marteniuk, Leavitt, MacKenzie, & Athenes, 1990; Chieffi 

et al., 1992; Gentilucci et al., 1991). For instance, some investigations observed that 

object size can affect the transport component (Marteniuk et al., 1990; Jakobson & 

Goodale, 1991; Gentilucci et al., 1991). Marteniuk and colleagues (1990) conducted an 

experiment in which  participants were required to reach out and grasp ten disks 

differing in size, by means of a precision grasping. For the grasping component, results 

showed an anticipation of the MGA time as the disk size decreased. Crucially, for the 

reaching component, the movement time (MT) tended to increase as the object size 

decreased. Using a similar task, Jakobson and Goodale (1991) confirmed these results, 
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and further noted that the maximum height of the wrist tended to increase with larger 

objects. Gentilucci and colleagues, (1991) investigated whether the reaching component 

was influenced by the handgrip used to grasp the object. Participants were required to 

grasp a large cylinder by means of a power grasping or a small sphere by using a 

precision grasping. Results showed that the transport time was longer and peak velocity 

was higher when participants used the power grasping respect to when they used the 

precision grasping, again demonstrating a dependence between reaching and grasping. 

Coherently, the manipulation of the extrinsic features of the object have been observed 

to influence the manipulative component. Paulignan and colleagues (1990) presented to 

participants three identical dowels, positioned concentrically at 10, 20, 30 degrees from 

the mid-sagittal plane of the participant. These objects, made of translucent material, 

could be independently illuminated by means of some LEDs, placed below them. 

Participants were required to reach out and grasp the central illuminated dowel. 

However, in perturbed trials, at the onset of the movement, the light quickly shifted 

from the central dowel to the one placed to the right or to the left, giving the impression 

of a sudden shift of the object position. Results showed that after the perturbation the 

grip aperture tended to slightly decrease and then resumed a normal preshape in order to 

grasp the object. Haggard and Wing (1991), replicated these results, finding that if the 

arm is perturbed during the reach to grasp movement, compensatory adjustments are 

implemented for both the wrist trajectory and grip aperture. In their experiment, a 

mechanical device was attached to the participant’s arm. During the reach to grasp 

movement the device delivered mechanical perturbations, by pulling on the participant’s 

arm for about 250 ms. This perturbation elicited a rapid adjustment of the wrist, 

consisting in a reacceleration of the arm during the reaching of the object location. In 
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addition, the grip aperture showed a double peak indicating a reorganization of the 

grasping component following the perturbation.  

At neurophysiological level, some studies challenged the strict neural dichotomy 

between reaching and grasping (e.g., Battaglini et al., 2002; Fattori et al., 2010). 

Battaglini and colleagues (2002) investigated the effect of lesions to V6A area in 

monkeys. Results showed that V6A lesions did not specifically impair the reaching 

movement, but also provoked a deficit in wrist orientation and grasping. These findings 

were confirmed and extended by Fattori and colleagues (2010). They trained two 

macaque monkeys to reach and grasp five objects: a ball with by means of a whole-hand 

prehension, a handle by inserting the fingers in the gap behind it (finger prehension), a 

ring by inserting the finger into it (hook prehension), a plate by opposing the thumb to 

the other fingers (primitive precision grip), and a small object in a container by means 

of a precision grip (Figure 8). 

 

 

Figure 8. Stimuli and grip types used by Fattori and colleagues (2010). 

 

Using a single-cell recording method, Fattori and colleagues (2010) observed that 

some neurons in V6A area were selectively activated depending on the grip used in the 

task. On the basis on this result, they suggested that V6A neurons are not only involved 

in the reaching movement, but they also play a key-role in grip selection (Fattori et al., 
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2010). Similarly, some fMRI study in humans suggest that reaching and grasping are 

underpinned by overlapping areas. Gallivan and colleagues (2011) asked participants to 

grasp the top and the bottom of a cube, or to reach and touch the side of the cube. They 

found similar parieto-occipital and dorsal premotor activation for reaching and grasping 

movements. 

The data reported above certainly weaken the proposal of two independent 

channels and suggest that, to some extent, there is a cross-talk between the two 

components of prehension (Castiello et al., 1993; Chieffi & Gentilucci, 1993). Although 

not definitive, the results of these studies have fueled a vast body of research that has 

contributed to understand the influence of object features on human prehension. It is 

noteworthy, however, that reaching and grasping are not only constrained by the 

extrinsic and intrinsic properties of the object but also by the characteristics of the 

previous movement. In the next paragraph, I will describe one of the most reported 

sequential effects, that is the hysteresis effect (Kelso, Buchanan, & Murata, 1994). 

 

2.5. The hysteresis effect 

The way human beings reach and grasp an object is influenced by preceding 

motor events. Indeed, even simple actions, such as reach out and grabbing a glass, are 

based on a motor plan. Motor plans are not necessarily created from scratch, but are 

often based on the previous ones, which can be, at least in part, readopted again (Dixon, 

McAnsh, & Read, 2012). This phenomenon, known as hysteresis effect, was observed 

for the first time by Rosenbaum and Jorgensen (1992) using a grip preference task. 

Participants stood in front of a bookshelf with 14 shelves vertically arranged. They were 

asked to reach out and grab an horizontal rod positioned on a stand, either approaching 
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the rod from above by using an overhand grip, or approaching the rod from below by 

using an underhand grip. After grabbing the rod, participants had to place the marked 

side of the rod against one the14 targets positioned on each shelf, and then return the bar 

to the cradle. This procedure was repeated for each target, once from top to bottom, 

once from bottom to top. Rosenbaum and Jorgensen (1992) observed that participants 

tended to use an overhand grip for upper target and a underhand grip for lower target. 

However, the type of grip used for the central targets varied as a function of the grip 

used in the previous trial. In other words, participants tended to perseverate the grip 

adopted in the previous trial until the posture was not so uncomfortable to compromise 

the correct accomplishment of the task. The hysteresis effect has been observed in a 

great variety of task. For instance, Jax and Rosenbaum (2007) using an obstacle 

avoidance task investigated whether the curvature of recent hand paths influenced the 

hand paths on the subsequent trial. Participants were seated in front of a screen, which 

showed the position of their arm and hand, tracked by means of infrared markers. A 

target appeared on the screen, and participants had to reach it as fast as possible, 

avoiding an obstacle, if one was present. Jax and Rosenbaum (2007) observed that when 

participants avoided successfully an obstacle to reach a target, they tended to use the 

same trajectory in the following trial, even if the obstacle was not present. Similar 

hysteresis effects have been found for the grip aperture. Dixon and Glover (2009) asked 

participant to reach out and grasp some disks placed in front of them, differing in size. 

Results showed a potent tendency to perseverate in grip aperture during the latter 

portion of a movement to grasp a disc. 

To conclude, the hysteresis effect is consistent with the idea that motor control is 

a very efficient process, which, instead of creating a new motor plan for every action, 
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economizes resources recycling recently executed motor parameters. In this sense, a 

prehension movement cannot be investigated exclusively considering the proprieties of 

the object, but it is also important to consider its recent motor history. A point worth 

noting is that until now research on hysteresis has focused the investigation on 

sequential effects arising from sequences of correct movements. In daily life, however, 

carrying out a task does not always run smoothly and people can fail to perform a reach-

to-grasp movement, which begs the question - how and to what extent the failure to 

grasp an object influences the following movement? This is the main question that 

drove my entire experimental work, which will be presented in the next section. 

 

2.6. The present research 

Generally, with just a few exceptions (see Anguera, Seidler, & Gehring, 2009; 

Krigolson & Holroyd, 2007; Vocat, Pourtois, & Vuilleumier, 2011), error reactivity has 

been investigated by means of speeded reaction time (RT) tasks and most studies have 

measured only arbitrary button-press responses (Gehring, Liu, Orr, & Carp, 2011). 

However, as pointed out by Gehring and colleagues (2011), most daily life movements 

have a slower time course than speeded RT response, and more realistic and 

ecologically valid tasks may afford a better opportunity to investigate error-reactivity. 

Moreover, since the functional meaning of PES is yet unclear, it might be useful to 

explore error-reactivity by using richer measures than RT, which limits the investigation 

to pre-movement processes. For instance, the consequences of self-generated errors on 

the kinematics of goal directed actions has yet to be investigated at the time the present 

thesis work started. 

In light of these consideration, the overarching aim of my thesis was to investigate 
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the consequences of errors in the context of goal directed actions. To do this, I explored 

error reactivity effects on both the preparation and the execution of reach-to-grasp 

movements. Movement preparation includes the relevant sensory and perceptual 

processes preceding movement initiation (Haith, Pakpoor, & Krakauer, 2016). 

Traditionally, it is assessed through the measurement of RT (Wong, Haith, & Krakauer, 

2015). Instead, movement execution is customarily assessed via kinematical analysis 

and allows investigating the added benefit of monitoring and occasionally adjusting 

motor programs in flight (Erlhagen & Schöner, 2002). A further aim of my thesis was to 

verify whether error-reactivity has a different impact on the grasping and reaching 

components or whether it produces an unspecific slowing of the whole movement 

execution. For this purpose, in Experiment 1 (Chapter 4) I investigated the effects of 

errors on the planning and the execution of the prehension movement. Participants were 

asked to reach out and grasp a steel ball positioned on a wooden support, without 

knocking it over. The tracking of the movement was performed by means of six infrared 

cameras recording the position three infrared reflective markers taped to the wrist, the 

index finger and thumb. The index finger and the thumb markers were used to measure 

the grasping component of the movement, whereas the wrist marker was used to 

measure the reaching component. 

 In Experiment 2 (Chapter 5), in order to clarify some aspects concerned with the 

results obtained in Experiment 1, I adopted an “only reach” task. This was specifically 

done in order to investigate the effect of errors on the reaching component when it is not 

embedded in a reach to grasp movement. The task required participants to reach out and 

touch a wooden support without dropping it. The kinematical analysis was performed 

by tracking the position of the wrist marker during the movement.  
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In Experiment 3 (Chapter 6), I combined kinematics with TMS. In particular, I 

compared the amplitude of the motor-evoked potential (MEP) after correct and 

erroneous reach to grasp movements. Indeed, the amplitude of the elicited MEP has 

been considered as a marker of excitability of the corticospinal tract (CST). Therefore, 

the use of a MEPs analysis can be an useful tool to measure the post-error inhibition of 

motor planning.  

Recently, some evoked related potential (ERP) studies have shown that when 

participants monitor errors made by other individuals a negative-going ERP component, 

similar to the error-related negativity (ERN), can be recorded in the observer (oERN; 

Bates, Patel, & Liddle, 2005; van Schie et al., 2004). However, the effects of error 

observation on the execution of a goal-directed movement has never been investigated 

before. Thus, in Experiment 4 (Chapter 7), I examined whether the vicarious experience 

of errors influences the observer's prehension movement. In this experiment, the task 

required that participants and a confederate alternated in reaching out and grasping a 

steel sphere positioned on a wooden support. 
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3. GENERAL METHODS 

 

In this chapter will be described the methods and the procedures shared by all 

the experiments included in the present thesis. 

 

3.1. Participants’ characteristics 

All the participants who took part in the present experiments showed right-handed 

dominance (Oldfield, 1971), and reported normal or corrected-to-normal vision. They 

gave informed written consent to participate in the studies. Participation was voluntary. 

The experimental procedures were approved by the Institutional Review Board at the 

Padua University and were in accordance with the declaration of Helsinki.  

 

3.2. Apparatus and procedures 

Participants were tested in a well-lit room. They were seated on a height 

adjustable chair, the thorax pressed gently against the front edge of the table (90 X 90 

cm) and the feet were supported. A head-chin-rest was used to restrict head movements 

in order to maintain a constant viewing distance from the target. The target object was 

placed along the mid-sagittal plane of the participant, 55 cm away from the edge of the 

table and consisted of a steel ball (0.5 cm Ø), positioned on a wooden support (1 cm in 

width and 20 cm in length). The starting position implied the ulnar side of the hand 

placed upon a starting switch (11 X 8 cm) aligned to the participants’ body midline and 

placed 22 cm away from the edge of the table. A container (11 X 8 cm), into which the 

steel ball had to be placed once grasped, was positioned 4 cm from the starting pad. 
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3.3. Recording techniques 

Movements were recorded by using the 3D-optoelectronic SMART-D system 

(Bioengineering Technology & Systems, B|T|S|), equipped with six infrared cameras 

(sampling rate 140 Hz) placed in a semicircle at a distance of 1.2 m from the table. 

Three infrared reflective markers (0.25 mm Ø) were taped to the wrist (radial aspect of 

the distal styloid process of the radius), the thumb (ulnar side of the nail) and (3) the 

index finger (radial side of the nail). To optimize the tracking of all markers, the 

optoelectronic system was calibrated before data collection by adjusting the camera 

position, roll angle, zoom, focus, threshold and brightness. These procedures were 

followed by a static and dynamic calibration. For the static calibration, a three-axes 

frame of 5 markers at known distances from each other was placed in the middle of the 

table. For the dynamic calibration, a three markers wand was moved throughout the 

workspace of interest for 60 s. Coordinates of the markers were reconstructed with an 

accuracy of 0.3 mm over the field of view. The standard deviation of the reconstruction 

error was 0.2 mm for the x, y and z axes. 

 

3.4. Data processing 

The SMART-D Tracker software package (B|T|S|) was used to produce a 3-D 

reconstruction of the marker positions as a function of time. The data were  filtered 

using a finite impulse response linear filter (transition band = 1 Hz, sharpening variable 

= 2, cut-off frequency = 10 Hz; D’Amico & Ferrigno, 1992). The wrist marker was used 

to measure the reaching component of the action, whereas the finger and the thumb 

markers were used to measure the grasping component of the action. 

 



 51 

3.5. Data analysis 

Post-error adjustments were computed using the robust method (PEArobust) 

proposed by Dutilh and colleagues (2012). This method consists in comparing trials 

following (E + 1) and immediately preceding (E - 1) an error. Post-error analyses were 

restricted to sequences of trials comprising E - 1 and E + 1 correctly performed trials. 

Post-correct adjustments (PCArobust) were computed in a similar manner, considering 

triplets of correct trials.  

Linear mixed-effects (LME) models were used to compare post-error and post-

correct adjustments for each kinematic component and for RTs. Error rates were 

analyzed using a Generalized mixed-effects (GLME) models with a binomial link 

function (Pinheiro & Bates, 2000) after coding error and correct responses with 1 and 0, 

respectively. Statistical analysis was performed using the computing environment R (R 

Core Team, 2012), and the packages lme4 (Bates, Maechler, Bolker, & Walker, 2015) 

and lmerTest (Kuznetsova, Brockhoff, & Christensen, 2013). For the LME and GLME 

models, random effects consisted of Participants and Blocks. The random structure was 

selected by means of AIC (Akaike’s information criterion) weights (Wagenmakers & 

Farrell, 2004). Models were fitted using maximum likelihood (ML). p-values were 

estimated by likelihood ratio tests of the full model against the null model. For LME 

analyses Cohen’s d indices as measure of effect sizes (Cohen, 1988) were reported, 

whereas for GLME analysis I reported the odds ratio statistic (OR, see Szumilas, 2010). 

Visual inspection of residual did not show any obvious deviation from normality and 

homoscedasticity. In order to evaluate the relative evidence for the alternative 

hypothesis (H1) compared to the null hypothesis (H0), I performed statistical 

comparisons using the Bayesian approach implemented in the BayesFactor package for 
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R (Morey, Rouder, & Jamil, 2014). The default Cauchy distribution centered on zero 

with rate [r] = 0.707 was used. The traditional interpretation of Bayes Factor (Jeffreys, 

1961) suggests that a BF greater than 3 represents a sufficient support for the alternative 

hypothesis, whereas values less than 1 indicate that the data support the null-hypothesis. 
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4. EXPERIMENT 1: THE GRASPING SIDE OF POST-ERROR SLOWING 

 

The interpretation of PES has been challenged on multiple fronts. Firstly, recent 

studies have proposed that errors may produce a decrease in performance accuracy and 

that PES may occur because of the detrimental effect that errors exert on subsequent 

information processing (see section 1.5.2). Secondly, previous research has been 

questioned because of the limited ecological validity of speeded RT tasks, commonly 

adopted to study the PES effect (see section 2.6). 

In the present study, I examined error-reactivity in the context of goal-directed 

actions. In particular, I investigated the extent to which the PES effect influences the 

execution of the reach to grasp movements. For this purpose, besides considering RTs, I 

conducted a kinematical analysis in order to explore the kinematical reorganization of 

the grasping and reaching components after an error. Participants were asked to reach 

out and grasp a steel ball, without knocking the wooden support over. In order to 

correctly perform this task, participants had to carefully transport the hand in the 

proximity of the target and accurately close the fingers upon the steel ball.  

I hypothesized that whether error reactivity effects extended to movement 

execution, I should find evidence of post-error adjustments also at kinematical level. 

Moreover, functional and non-functional accounts of error reactivity have a different 

prediction with respect to the post-error accuracy. Indeed, if errors lead to a more 

cautious movement execution, as suggested by functional accounts, I expected to find a 

post-error improvement of accuracy. Conversely, if error processing has a detrimental 

effect on subsequent information processing, as suggested by non-functional accounts, 

then I expect to find a decrease in post-error accuracy. A further aim of this experiment 
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is to investigate whether erroneous movements have the ability to elicit the hysteresis 

effect. If errors produce an hysteresis effect then I expect to find a post-error decrease of 

accuracy, as the motor system would perseverate in implementing an erroneous 

kinematics on the following trial. 

 

4.1. Method 

4.1.1. Participants 

As there were no previous studies investigating error reactivity in the context of 

goal directed actions upon which to refer for an a priori power analysis, I selected a 

target sample size of 15 subjects (8 females, 7 males) with a mean age 26 (SD = 3.5 

yrs), which would give 82.1% power to detect a large effect (f = 0.4) at an α level of 

p = .05 (GPOWER 3.1; Erdfelder, Faul, & Buchner, 1996). 

 

4.1.2. Procedure and design 

The experimental setting is represented in Figure 9A. Before each trial the shutter 

goggles were closed and the participant held the ulnar side of the hand placed upon the 

starting switch with the tip of the index and the tip of the thumb in contact with each 

other (Figure 9B). As soon as the shutter goggles became transparent, participants were 

asked to reach out and grasp the steel ball by means of a precision grip (Figure 9B), lift 

it and deposit it into the container. The task required executing the movement as fast 

and accurately as possible, without knocking the wooden support over. If the wooden 

support was dropped the trial was considered as an error. During the inter-trial interval, 

when the shutter goggles were opaque, the experimenter put the steel ball (and the 

wooden support in the case of error) back in the correct position. The inter-trial interval 
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varied randomly from 6500 to 8500 ms. Each session consisted of 3 blocks of 40 trials 

separated by a 3-min break. Participants underwent a practice session of 10 trials before 

the experimental session began. The experiment lasted approximately 50 minutes. 

 

 

Figure 9. Graphical representation of the experimental set-up (A) and the designated start position 

for reach-to-grasp (B). 
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4.1.3. Dependent variables 

RT was defined as the time between the opening of the shutter glasses and the 

release of the starting switch, which corresponded to the movement onset. Movement 

onset was calculated as the time at which the tangential velocity of the wrist marker 

crossed a threshold (5 mm/s) and remained above it for longer than 500 ms. End of 

movement was defined as the time at which the hand made contact with the target and 

quantified as the time at which the hand opening velocity crossed a threshold (5 mm/s) 

after reaching its minimum value and remained under it for longer than 500 ms. The 

time from the onset to the end of the movement was defined as total movement time. 

For the reaching component (see Figure 10A) I considered reaching time (the interval 

between the onset of the movement and the time at which the wrist velocity reached its 

minimum value after the peak of wrist velocity), the amplitude of maximum peak 

velocity (the maximum velocity of the wrist during the reaching phase), the amplitude 

of peak wrist deceleration (the amplitude of maximum deceleration of the wrist during 

the reaching phase), and the time of maximum peak wrist deceleration (the time at 

which the maximum wrist deceleration occurred). The grasping component was 

computed based on the relative distance between the markers located on the index 

finger and the thumb. For this component (see Figure 10B), grasping time (the time 

from the beginning of fingers opening up to their contact with the target), the amplitude 

of maximum opening velocity (the maximum velocity reached during the opening phase 

with reference to the distance between the thumb and the index finger), the amplitude of 

maximum closing velocity (the maximum velocity reached during the closing phase 

with reference to the distance between the thumb and the index finger ), and the time of 

peak grip aperture (the point in time at which the index finger and the thumb reached 
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the maximum distance) were considered. 

 

 

Figure 10. Graphical representation of the experimental variables. Panel A: plot of wrist velocity 

(solid line) and wrist acceleration (dashed line). Panel B: plot of grasping velocity (solid line) and grip 

aperture (dashed line). 
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4.1.4. Principal component analysis 

A principal component analysis (PCA) with Oblimin rotation was applied to 

decompose the data into their underlying factors and reduce the number of temporal and 

kinematic variables so as to obtain a protection against the Type I error. RTs were not 

included in this analysis. On the basis of Kaiser’s rule (Kaiser, 1960), I selected three 

components having eigenvalues above 1, which accounted for 82% of the variance 

(40%, 21%, 21%, respectively). Weights of the kinematic parameters for the first three 

components are reported in Table 1.  

 

Table 1. Weights of the kinematic parameters for the first three components of the reach to grasp movement. 

 Component 1 Component 2 Component 3 

Movement time (ms)  .972 .001 -.015 

Reaching time (ms) .918 .011 .082 
Grasping time (ms) .959 .004 -.002 
Time of peak grip aperture (ms) .536 -.011 -.441 
Time of peak wrist deceleration (ms) .650 -.097 -.040 
Maximum opening velocity (mm/s) .071 .012 .965 
Maximum closing velocity (mm/s) -.072 -.004 .780 

Peak wrist velocity (mm/s) .114 .998 -.052 
Peak wrist deceleration d((mm/s2) -.181 .894 .083 

 

The first component had positive weights for total movement time, reaching time, 

grasping time, the time of peak grip aperture and the time of peak wrist deceleration. 

This component can be interpreted as a global descriptor of the reach-to-grasp timing. 

The amplitude of peak wrist velocity and the amplitude of peak wrist deceleration 

showed a positive correlation with the second component. This component can be 

interpreted as a descriptor of reaching kinematics. Finally, the amplitude of maximum 

opening velocity and the amplitude of maximum closing velocity weighted substantially 

on the third component, suggesting that it can be interpreted as a gripping velocity 
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component. The three components were positively correlated with each other, ranging 

from .20 to .44. All analyses were performed using the R package ‘psych’ (Revelle, 

2012). 

 

4.1.5. Data analysis 

The data analysis followed the procedure outlined in paragraph 3.5. The PESrobust 

was computed with respect to the three kinematical components and RT. Outliers were 

eliminated by refitting the model after removing data points with absolute standardized 

residuals exceeding 3 standard deviations (less than 2%). I discarded 67 of the total of 

1.800 trials because of technical problems. 

 

4.2. Results 

4.2.1. Accuracy 

The overall error percentage was 18%. Post-error changes in error-rate were 

evaluated by comparing post-error error rates with post-correct error rates. A GLME 

analysis, with random intercept for Participants and Blocks, showed that subjects were 

more accurate following an error (16.2% error-rate) than following a correct response 

(20% error-rate), z = -2.23, p = .025, OR= 0.68. 

 

4.2.2. Reaction times 

The mean post-correct and post-error RT adjustments are shown in Figure 11. A 

LME analysis, with random intercept for Participants (modeling both slopes and 

intercepts) and Blocks (modeling intercepts only), revealed a significant difference 
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between post-correct and post-error adjustments χ2 = 6.37, p = .011, BF > 100, d = 0.44. 

Contrast analysis showed a significant post-error slowing (PESrobust = 42.80ms ± 12.21), 

t (193) = 3.50, p < .001, BF = 56.73, d = 0.25. After a correct response, subjects showed 

a post-correct speeding, that is, a statistically significant decrease in RTs (-15.18ms ± 

4.96) on the following trial, t (810) = -3.06, p = .002, BF = 8.20, d = 0.10. 

 

 

Figure 11. Mean post-correct and post-error adjustments in RTs. Vertical bars indicate 

standard error of the mean. Positive values indicate a slowing down. 

 

4.2.3. Reach-to-grasp timing 

 The mean of post-correct and post-error adjustments of the Reach-to-grasp timing 

are shown in Figure 12A. A LME analysis, with random intercept for Participants and 

Blocks (modeling intercepts only), revealed a significant difference between post-

correct and post-error adjustments χ2 = 27.85, p < .001, BF > 100, d = 0.21. 
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After an error, subjects showed a significant post-error slowing (PESrobust = 0.097 

± 0.032), t (195) = 2.98, p = .003, BF = 11.80, d = 0.21, whereas after a correct trial a 

post-correct speeding was present (-0.851 ± 0.015), t (806) = -5.64, p < .001, BF > 100, 

d = 0.20. 

 

4.2.4. Reaching kinematics 

 The mean of post-correct and post-error adjustments of the Reaching Kinematics 

component are shown in Figure 12B. A LME analysis, with random intercept for 

Participants (modeling both slopes and intercepts) and Blocks (modeling intercepts 

only), revealed no significant difference between post-correct and post-error 

adjustments, χ2 = 0.04, p = .829, BF = .09, d = 0.02. Neither a significant post-error 

slowing (PESrobust = 0.012 ± 0.010, t (200) = 1.20, p = .228, BF = 0.03, d = 0.08) nor a 

post-correct adjustment (0.008 ± 0.005, t (815) = 1.72, p = .082, BF = .33, d = 0.06) was 

found. 

 

4.2.5. Gripping velocity 

 The mean of post-correct and post-error adjustments of the Gripping velocity are 

shown in Figure 12C. A LME analysis, with random intercept for Participants and 

Blocks (modeling intercepts only), revealed a significant difference between post-

correct and post-error adjustments, χ2 = 10.88, p < .001, BF = 17.1, d = 0.26. After an 

error, subjects showed a significant reduction of gripping velocity (PESrobust = -0.101 ± 

0.040), t (199) = -2.53, p = .012, BF = 3.60, d = 0.18. After a correct trial, a significant 

post correct speeding was found (0.040 ± 0.018), t (804) = 2.13, p = .033, BF = 0.75, d 

= 0.07. 
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Figure 12. Mean post-correct and post-error adjustments of the reach to grasp timing (panel A), 

the reaching kinematics (panel B), and the gripping velocity (panel C) components. For the reach to grasp 

timing, positive values indicate a slowing down. For the reaching kinematics and the gripping velocity 

component, negative values indicate a slowing down. Vertical bars represent standard error of the mean. 
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4.3. Discussion 

The present study had two aims. First, to investigate error-reactivity in the context 

of goal-directed actions, in order to examine whether PES effects impact on realistic 

and complex movements. Second, to verify if error reactivity influences the motor 

execution of the reach to grasp movement. As an aside, I wanted to test if the hysteresis 

effect was present after erroneous movements. Results showed that error reactivity 

effects are present during motor execution, but not in a generalized manner. Indeed, I 

found that when reach to grasp is the task, error reactivity effects influenced in a 

targeted manner only the grasping component kinematical parameterization, whereas 

reaching seems to be impermeable to PES effects. Moreover, the present data 

demonstrated that the hysteresis effect does not emerge after an error. 

 

4.3.1. The motor preparation phase 

At the level of motor preparation, in line with the previous literature, results 

showed that errors lead to a slowdown of RT. The PES occurred despite I adopted a ITI 

(from 6500 to 8500) longer than those used by previous studies to investigate error 

reactivity (from 200 to 5000; e.g., Hajcak, McDonald, & Simons, 2003; Marco-Pallares 

et al., 2008; King, Korb, von Cramon, & Ullsperger, 2010; Danielmeier et al., 2011; 

Caudek, Ceccarini, & Sica, 2015). Dutilh and colleagues (2012b), found that with ITIs 

longer than 1000 ms, PES can be attributed almost entirely to a strategic increase in 

response caution. Therefore, given that we used very long ITIs, our results seem to be 

driven by a strategic planning phase, in which the strategic influences of error reactivity 

are more evident. This idea is confirmed by the fact that performance accuracy tends to 

increase after an error, supporting the functional of theories of error-reactivity. 
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4.3.2. The motor execution phase 

The present data showed that error reactivity effects also extend to motor 

execution, albeit in a selective manner. In fact, I found that PES effects are confined to 

the reach-to-grasp timing and to the parameterization of the grasping component, 

whereas no effects were found for the reaching component. Contrary to the grasping 

component, the reaching component seems to be immune to error reactivity effects. A 

possible explanation for these results may reside in the task we employed for this study, 

in which grasping kinematics were directly involved in error commission. In fact, in our 

task all errors occurred during the grip closure phase, when fingers made contact with 

the target. This might lead to the implementation of strategic post-error adjustments 

confined to the grasping component, and it may be aimed to improve the control of digit 

placement upon the target as to ensure successful completion of the task. In these terms, 

error-reactivity could be considered as a very efficient process, which, instead of 

inducing a general slowing of the movement, limits its effects in a targeted manner to 

the component which is directly involved in error commission. To test this idea, in 

Experiment 2 (Chapter 5) an ‘only reaching’ condition was included in order to verify 

whether the reaching component is impermeable to error-reactivity effects even when 

the reaching movement is not embedded in a prehension movement involving also the 

grasping component.  

Another aspect that should be noted is that my results are inconsistent with the 

idea that the hysteresis effect is elicited by erroneous movements. In fact, if errors had 

produced a hysteresis effect, the motor system would have perseverated in 

implementing an erroneous movement kinematics on the following trial, increasing the 

probability of new errors. However, we did not find any evidence of a post error 
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decrease of accuracy. This may suggest that error reactivity processes lead to an 

updating of action plan which overwrites any detrimental effect of preceding motor 

events. 
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5. EXPERIMENT 2: POST-ERROR SLOWING IN REACHING 

 

The results of Experiment 1 (Chapter 4) left open the question of whether error-

reactivity processes are confined at the level of the grasping component, or whether 

error-reactivity impacts on the component directly involved in error. To investigate this 

aspect in the present experiment participants performed two conditions, namely a reach-

to-grasp and a reaching condition. The reach-to-grasp condition was the same as for 

Experiment 1. For the reaching condition, the task required the participants to reach out 

and touch the wooden support with their fist, without knocking it over. In this 

experiment, the accuracy of the reaching component was examined not only in terms of 

error-rates, but also in terms of submovements’ organization and endpoint variability. 

With respect to submovements, previous studies have reported that reaching movements 

consist of two consecutive phases: a primary submovement, and a homing-in phase 

(e.g., Elliott, Helsen, & Chua, 2001; Khan & Franks, 2003; Meyer et al., 1988). The 

primary submovement is represented by a bell-shaped velocity profile, and it has been 

interpreted as a ballistic movement portion driven by the initial control plan. The 

inaccuracy of the initial control plan can be adjusted during the homing-in phase, at the 

time proprioceptive and visual feedback are used to reduce any spatial difference 

between hand and target positions. This is achieved by means of corrective adjustments, 

termed as secondary submovements. The production of secondary submovements is 

considered as one of the major mechanisms of movement accuracy regulation (e.g., 

Houk et al., 2007; Novak, Miller, & Houk, 2002). Endpoint variability of the reaching 

movement measures the variability of wrist position at the end of the reaching 

movement (Gordon, Ghilardi, Cooper, & Ghez, 1994; Eliasson, Rosblad, & Forssberrg, 



 67 

2004). The range of the distribution of movement’s endpoints reflects the precision of 

the reaching movement (e.g., Eliasson et al., 2004). 

At the level of motor preparation, I expected to find a PES for both the reach to 

grasp and the reaching conditions as for Experiment 1. With respect to motor execution, 

if the influence of error-reactivity processes is only evident at the level of the grasping 

component, then the results for the reach-to-grasp condition should be the same as those 

obtained for Experiment 1. If error reactivity processes strategically slow down the 

component directly involved in error commission, then kinematic parameterization for 

the reaching condition should be modulated by PES effects. Otherwise, if reaching is 

immune to PES effects, then no changes at the level of kinematics (including the 

endpoint variability of the reaching movement and the number of submovements) and 

error-rates should be present. 

 

5.1. Method 

5.1.1. Participants 

A total of 15 subjects participated in the experiment, eleven women and four 

men, with a mean age of 23.1 years (SD = 2.8). None of them had participated in 

Experiment 1. 

 

5.1.2. Procedure, design, data processing 

In the present experiment, two conditions were performed: a reach-to-grasp 

condition and a reaching condition. The reach-to-grasp condition was the same as for 

Experiment 1. Procedure and sequence of events for the reaching condition were the 

same as for the reach-to-grasp condition except that participants were asked to reach out 
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and touch the wooden support with their fist, hitting with the metacarpophalangeal 

index joint a target area (1 X 3 cm) placed 3 cm from the top of the support (see Figure 

13).  

 

Figure 13. Schematic representation of the reach to-grasp movement and markers’ positioning upon the 

anatomical landmark of interest. 

 

Participants had to execute the movement as fast and accurately as possible, 

without knocking the wooden support over. Each subject performed a total of 240 trials. 

The two experimental conditions (reach-to-grasp and reaching) were presented in 

blocks of 40 trials. Order of blocks was counterbalanced across participants. The 

experimental session was preceded by 20 practice trials. The experiment lasted 

approximately 100 minutes. RTs and error-rates were computed as for Experiment 1.  

For the determination of whether in post error and post correct trials the reaching 

component differed with regard to the total number of secondary movements, I 

performed a submovements analysis. The end of the primary submovement was 

identified by the first of any of the following secondary submovements (see Meyer et 

al., 1988, Figure 14): reversals in the trajectory (Type 1 submovement), defined as a 

zero-crossing from positive to negative value occurred in the velocity profile; 

reaccelerations towards the target (Type 2 submovement), defined as a zero-crossing 

from negative to positive value occurred in the acceleration profile; decreases in the rate 

of deceleration (Type 3 submovement), defined as a zero-crossing from positive to 
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negative value appeared in the jerk profile. Only secondary movements emerging 

during the deceleration phase were considered, because corrective adjustments usually 

emerge in close proximity to the target (Fradet, Lee, & Dounskaia, 2008). 

 

 

Figure 14. Examples of discrete movements with secondary submovements of type 1, 2, and 3. The vertical 

line represents the hypothetical end of the primary submovement.  
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The endpoint variability of the reaching movement was defined as the mean 

Euclidean distance between the endpoint of each trial and the overall average endpoint 

position of each participant (Darling & Gilchrist, 1991; Rossetti, 1994). 

For the reach-to-grasp condition, I extracted the same dependent kinematic 

variables as for Experiment 1, whereas for the reaching condition, I considered the 

reaching time, the time and the amplitude of peak wrist velocity, the time and the 

amplitude of peak wrist deceleration. Furthermore, for both conditions, the reaching 

component was also investigated considering the primary submovement length (distance 

covered in the primary submovement, calculated as a percentage of the total movement 

length), and the homing-in phase duration (the time from the end of the primary 

submovement to the end of the entire movement). 

 

5.1.3. Principal component analysis 

In order to simplify data interpretation, I performed a PCA (with Oblimin 

rotation) for each condition. For the reach-to-grasp condition four components were 

selected (Table 2), namely a global descriptor of the reach-to-grasp timing 

(comprising the total movement time, the reaching time, the grasping time, the time 

of peak grip aperture and the time of peak wrist deceleration), a reaching kinematics 

component (the amplitude of peak wrist velocity and the amplitude of peak wrist 

deceleration showed a positive correlation with the second component), a grasping 

submovements component (including the primary submovement length and the 

homing-in phase duration), and a gripping kinematics component (including the 

amplitude of maximum opening velocity and the amplitude of maximum closing 

velocity). The four selected components accounted for 78% of the variance (33%, 
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17%, 14%, 14% respectively). The four components were correlated with each 

other, ranging from .04 to -.26. 

 

Table 2. Weights of the kinematic parameters for the first four components of the reach to grasp condition. 

 Component 1 Component 2 Component 3 Component 4 
Movement time (ms)  .963 -.005 -.009 -.007 

Grasping time (ms) .823 .102 .086 

 

-.119 
Reaching time (ms) .957 .006 .025 -.013 
Time of peak grip aperture (ms) .641 -.143 -.141 -.116 
Time of peak wrist deceleration (ms) .610 -.283 -.117 .083 
Maximum opening velocity (mm/s) .045 .043 .049 .893 
Maximum closing velocity (mm/s) -.166 -.036 -.041 .799 
Peak wrist deceleration (mm/s2) .140 .959 -.083 .050 
Peak wrist velocity (mm/s) 

 

 

 

 

 

 

-.182 .900 .067 -.039 
Homing-in phase duration (ms) .227 -.008 .869 .092 
Primary submovement length (%) -.239 -.027 .845 -.070 
      

For the reaching condition, three components were selected (Table 3), which 

accounted for 79% of variance (31%, 27%, 21%, respectively). The first component, 

comprising the reaching time, the time of maximum peak wrist deceleration, and the 

time of maximum peak wrist velocity, can be interpreted as a global descriptor of 

the reaching timing. The amplitude of peak wrist velocity and the amplitude of peak 

wrist deceleration showed a strong correlation with the second component, and can 

be considered as a reaching kinematics component. Finally, the primary 

submovement length and the homing-in phase duration weighted substantially on 

the third component, suggesting that it can be interpreted as a reaching 

submovements component. The three components were correlated with each other, 

ranged from -.02 to .21. 
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Table 3. Weights of the kinematic parameters for the first three components of the reaching condition.  

 Component 1 Component 2 Component 3 
Reaching time (ms) .708 -.039 -.088 
Time of maximum peak wrist velocity (ms) .864 .033 .143 
Time of maximum peak wrist deceleration (ms) .805 -.067 -.100 
Peak wrist deceleration (mm/s2) .063 .983 -.027 
Peak wrist velocity (mm/s) -.057 -.955 .019 
Primary submovement length (%) .320 -.029 .855 

Homing-in phase duration (ms) -.359 .021 .826 

 

5.1.4. Data analysis 

The same approach to data analysis and model comparison adopted for 

Experiment 1 was used. Outlier removal led to the discarding of ~1.75 % and ~0.95% of 

trials from the reach-to-grasp condition and reaching condition, respectively. Because of 

technical problem, we removed 22 trials from the reach-to-grasp condition and 9 trials 

from the reaching condition. 

 

5.2. Results 

5.2.1. Grasping condition 

Accuracy. The overall error percentage was 21.3%. A GLME analysis, with 

random intercept for Participants and Blocks, showed that subjects were more accurate 

following an error (17.7% error-rate) than following a correct response (23.1% error-

rate), z = -3.54, p < .001, OR = 0.58. 

 

Submovements analysis. The average number of submovements was 2.35 ± 2.12. 

A LME analysis, with random intercept for Participants and Blocks (modeling 

intercepts only), did not revealed any difference between post correct (2.32 ± 2.06) and 
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post error (2.44 ± 2.30) trials in terms of total number of submovements (χ2 = 1.79, p = 

.180, BF = 0.09, d = 0.05). 

 

Endpoint variability. The mean of the endpoint variability of the reaching 

movement was 8.03mm ± 4.52. A LME analysis, with random intercept for Participants 

and Blocks (modeling intercepts only), did not show any difference between post 

correct (8.02mm ± 4.38) and post error (8.05mm ± 4.93) trials in terms of endpoint 

variability (c2 = 0.02, p = .885, BF = 0.09, d = 0.01). 

 

Reaction times. The mean post-correct and post-error RT adjustments are shown 

in Figure 15. A LME analysis, with random intercept for Participants and Blocks 

(modeling intercepts only), revealed a significant difference between post-correct and 

post-error adjustments χ2 = 37.16, p < .001, BF > 100, d = 0.45. Contrast analysis 

showed that when an error was committed, subjects showed a significant post-error 

slowing (PESrobust = 103.55ms ± 28.21), t (246) = 3.67, p < .001, BF = 93.39, d = 0.23. 

After a correct response, subjects showed a post-correct speeding (-32.93ms ± 8.7), t 

(774) = -3.76, p < .001, BF = 89.18, d = 0.13. 

 

Reach-to-grasp timing. The mean of post-correct and post-error adjustments of 

the Reach-to-grasp timing are shown in Figure 16A. A LME analysis, with random 

intercept for Participants and Blocks (modeling intercepts only), revealed a significant 

difference between post-correct and post-error adjustments, χ2 = 41.18, p < .001, BF > 

100, d = 0.48. After an error, subjects showed a significant post-error slowing (PESrobust 

= 0.175 ± 0.044, t (235) = 3.95, p < .001, BF = 259.44, d = 0.25), whereas after a correct 
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trial a post-correct speeding was present (-0.130 ± 0.022), t (769) = -5.80, p < .001, BF > 

100, d = 0.20. 

 

 

Figure 15. Mean post-correct and post-error adjustments in RTs. Vertical bars indicate standard error of the 

mean. Positive values indicate a slowing down. 

 

Reaching kinematics. The mean of post-correct and post-error adjustments for the 

Reaching kinematics component are shown in Figure 16B. A LME analysis, with 

random intercept for Participants and Blocks (modeling intercepts only) did not show 

any difference between post-correct and post-error adjustments, χ2 = 3.10, p = .077, BF 

= 0.35, d = 0.12. Neither a significant post-error slowing (PESrobust = -0.023 ± 0.024, t 

(243) = -0.96, p = .334, BF = 0.03, d = 0.06) nor a post-correct adjustment (0.020 ± 

0.011, t (775) = -1.76, p = .078, BF = 0.01, d = 0.06) were found. 
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Figure 16. Mean post-correct and post-error adjustments for the kinematic components of the grasping (left 

panel) and the reaching (right panel) condition. Vertical bars represent standard error of the mean. 
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Grasping submovements. The mean of post-correct and post-error adjustments of 

the Grasping submovements component are shown in Figure 16C. A LME analysis, 

with random intercept for Participants and Blocks (modeling intercepts only), did not 

show any difference between post-correct and post-error adjustments χ2 = 1.63, p = 

.201, BF = 0.29, d = 0.09. Contrast analysis did not show any evidence of post-error 

slowing (PESrobust = 0.094 ± 0.068), t (245) = 1.37, p = .169, BF = 0.03, d = 0.08), or 

post-correct speeding (-0.007 ± 0.039), t (769) = -0.19, p = .841, BF = 0.04, d = 0.007). 

 

Gripping velocity. The mean of post-correct and post-error adjustments of the 

Gripping velocity is shown in Figure 16D. A LME analysis, with random intercept for 

Participants and Blocks (modeling intercepts only), revealed a significant difference 

between post-correct and post-error adjustments, χ2 = 6.49, p = .010, BF = 3.12, d = 

0.19. After an error, subjects showed a significant reduction of gripping velocity 

(PESrobust = -0.100 ± 0.041), t (244) = -2.41, p = .016, BF = 2.44, d = 0.16. No evidence 

of post-correct adjustments (0.018 ± 0.023) was found, t (766) = 0.81, p = .413, BF = 

0.02, d = 0.03. 

 

5.2.2. Reaching Condition 

Accuracy. The overall error percentage was 21.5%. A GLME analysis, with 

random intercept for Participants and Blocks, showed no significant difference of post-

error (21% error-rate) and post-correct (19.5% error-rate) accuracy, z = -0.20, p = .840, 

OR = 0.97. 
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Submovements analysis. The average number of submovements was 3.08 ± 3.02. 

A LME analysis, with random intercept for Participants and Blocks (modeling 

intercepts only), did not revealed any difference between post correct (3.01 ± 2.80) and 

post error (2.97 ± 2.76) trials in terms of total number of submovements (c2 = 0.31, p = 

.572, BF = 0.04, d = 0.01). 

 

Endpoint variability. The mean of the endpoint variability of the reaching 

movement was 8.82mm ± 13.03. A LME analysis, with random intercept for 

Participants and Blocks (modeling intercepts only), did not show any difference 

between post correct (10.75mm ± 6.01) and post error (10.10mm ± 6.64) trials in terms 

of the endpoint variability (c2 = 2.49, p = .114, BF = 0.36, d = 0.12). 

 

Reaction times. The mean post-correct and post-error RT adjustments are shown 

in Figure 17. A LME analysis, with random intercept for Participants (modeling both 

slopes and intercepts) and Blocks (modeling intercepts only), revealed a significant 

difference between post-correct and post-error adjustments, χ2 = 6.61, p = .010, BF > 

100, d = 0.41. Contrast analysis showed a significant post-error slowing (PESrobust = 

43.11ms ± 11.88), t (191) = 3.62, p < .001, BF = 85.46, d = 0.26. After a correct 

response, a post-correct speeding (-13.72ms ± 4.60) was present, t (838) = -2.95, p = 

.003, BF = 5.95, d = 0.10. 
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Figure 17. Mean post-correct and post-error adjustments in RTs. Vertical bars indicate standard 

error of the mean. Positive values indicate a slowing down. 

 

Reaching timing. The mean of post-correct and post-error adjustments of the 

Reaching timing component are shown in Figure 16E. A LME analysis, with random 

intercept for Participants and Blocks (modeling intercepts only), did not show any 

difference between post-correct and post-error adjustments, χ2 = 3.34, p = .067, BF = 

0.44, d = 0.14. Contrast analysis did not show any evidence of post-error (PESrobust = 

0.066 ± 0.052, t (195) = 1.27, p = .204, BF = 0.31, d = 0.09) or post-correct adjustment 

(0.036 ± 0.024, t (836) = -1.48, p = .136, BF = 0.21, d = 0.05).  

 

Reaching kinematics. The mean of post-correct and post-error adjustments of the 

Reaching kinematics component are shown in Figure 16F. A LME analysis, with 

random intercept for Participants and Blocks (modeling intercepts only), did not show 

any difference between post-correct and post-error adjustments χ2 = 0.50, p = .475, BF = 

0.11, d = 0.05. Contrast analysis did not show any evidence of post-error slowing 



 79 

(PESrobust = 0.006 ± 0.021), t (197) = 0.28, p = .778, BF = 0.10, d = 0.02), whereas a 

post-correct speeding was present (0.023 ± 0.010), t (842) = -2.19, p = .028, BF = 0.01, 

d = 0.07). 

 

Reaching Submovements. The mean of post-correct and post-error adjustments of 

the Reaching submovements component are shown in Figure 16G. A LME analysis, 

with random intercept for Participants and Blocks (modeling intercepts only), did not 

show any difference between post-correct and post-error adjustments χ2 = 1.60, p = 

.205, BF = 0.18, d = 0.10. Contrast analysis did not show any evidence of post-error 

slowing (PESrobust = -0.059 ± 0.082), t (195) = -0.72, p = .472, BF = 0.15, d = 0.05), or 

post-correct speeding (0.061 ± 0.042), t (836) = 1.46, p = .142, BF = 0.21, d = 0.05). 

 

5.3. Discussion 

The core aim of the present study was to investigate whether the immunity of the 

reaching component from error reactivity effects is also present in an “only reaching” 

task. With respect to the reach to grasp condition the results mirrored those obtained for 

Experiment 1, in the sense that the failure to reach out and grasp an object slows down 

the temporal aspects of the subsequent action with specific reference to the grasping 

component, without affecting the reaching component. For the reaching condition, I 

found a PES effect at the level of RT, but however, the motor execution of reaching 

movement resulted impermeable to error-reactivity effects. This statement is supported 

by error rates, endpoint variability and submovements analyses. Such results strengthen 

the hypothesis that error-reactivity effects extend to motor execution, but seem to be 

limited to the grasping component.  
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5.3.1. The motor preparation phase 

The results of the present study showed that, at the level of RTs, the PES effect is 

present in both the reach to grasp and the reaching condition. However, only the 

grasping component seems to benefit of the adaptive component of error reactivity, in 

terms of accuracy. Conversely, for the reaching component, no evidence of post error 

improvements of accuracy was found. In fact, I did not find any difference between post 

error and post correct trial with respect to error-rates, number of submovements and 

endpoint variability, which suggests that the reaching accuracy regulation is not 

influenced by error-reactivity effects. 

 For the reach to grasp condition of the present experiment, I found a larger PES 

in RT than in Experiment 1. This result may depend on the fact that Experiment 2 lasted 

much longer than Experiment 1, and besides, grasping conditions and reaching 

conditions were interleaved. A variety of studies have reported that PES is influenced 

by the control demands of the task (e.g., Hogan, Vargha‐Khadem, Kirkham, & 

Baldeweg, 2005; Schroder, Moran, Infantolino, & Moser, 2013; Regev & Meiran, 

2014). For instance, Schroder and colleagues (2013) manipulated cognitive demands in 

a flanker task by reversing stimulus-response mappings between blocks. They found a 

larger PES in the more-demanding S-R reversal blocks than in nonreversal blocks. Our 

results are in line with previous literature suggesting that task demands play an 

important role in PES emergence. 

 

5.3.2. The motor execution phase 

At the level of motor execution, for the reach to grasp condition, results mirrored 

those of Experiment 1. Coherently, no post error adjustments were found for the 
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reaching condition. These results support the Visual Channel Hypothesis (VCH) by 

Jeannerod (1981). According to the VCH the visuomotor mechanisms responsible for 

prehension are structured in a modular way. The “reaching channel” extracts from the 

visual world information on the spatial location of the objects and activates those 

muscles which are relevant to carry the hand to the object location. The “grasping 

channel” extracts information concerning the size and shape of the object and 

transforms it in the activation of distal muscles relevant to grasp the object. The VCH 

has been challenged on multiple fronts (see section 2.4), however the very fact that I 

found error-reactivity effects only for the grasping component speaks in favor of a 

modular organization of the reach to grasp movement. These results will be discussed 

more fully in the General Discussion (Chapter 8). 
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6. EXPERIMENT 3: POST-ERROR SLOWING: A MULTIMODAL 

TECHNIQUES STUDY 

 

The functional accounts of PES suggest that error commission leads to the 

implementation of strategic adjustments by inhibiting the activation of the motor system 

in order to buy more time and enable more controlled responding (Ridderinkhof et al., 

2002). According to the inhibitory account, errors increase the strength of selective 

suppression on the post-error trial (Marco-Pallares et al., 2008) by activating a right 

hemispheric network including the pre-SMA, IFC and STN, associated with motor 

stopping and motor inhibition (Aron et al., 2007). Similarly, the CMT holds that an 

error-monitoring system, based on the activity of the ACC, triggers cognitive control 

processes by activating the rDLPFC, which decreases activity in the response priming 

unit (Botvinick et al., 2001). 

Although functional accounts share the idea that the motor system is biased by 

error commission, this hypothesis has never been tested. To examine this aspect, I 

investigated whether the excitability of the cortical spinal tract (CST) is influenced by 

the correctness of the previous motor act by means of the Transcranial Magnetic 

Stimulation (TMS). TMS is a non-invasive method for the stimulation of the nervous 

system. Through electromagnetic induction delivered by a stimulation coil, TMS can 

produce a transient and non-invasive depolarization of neurons, with the electric current 

passing across the scalp and skull without physical contact. The stimulation of M1 by 

means of TMS generates motor-evoked potentials (MEPs) that can be recorded from 

peripheral contralateral muscles with electromyography (EMG). The amplitude of the 

elicited MEP has been considered as a marker of excitability of the CST (Priori et al., 
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1998).  In the present experiment, I stimulated M1 with single Transcranial Magnetic 

Stimulation pulses (spTMS) and compared MEPs after correct and incorrect reach to 

grasp movements. I hypothesized that if the activity of the motor system during the 

preparation of the movement is decreased by error commission, then I should find 

evidence for a decrement of MEPs amplitude after an error. The spTMS was coupled 

with kinematical analysis in order to investigate both the added benefit of monitoring 

and occasionally adjusting motor programs in flight (Erlhagen & Schöner, 2002) and 

the potential correlation of the CST activity with the behavioral measures of the reach to 

grasp movement. 

 

6.1. Method 

6.1.1. Participants  

A total of 20 subjects (mean age = 22.3 years, SD = 2.25 years, 12 males) 

were recruited from the student population of the University of Padua. None of 

them had participated in the previous experiments. All participants were screened 

for TMS exclusion criteria and for neurological, psychiatric, and medical problems 

(Wassermann, 1998; Rossi et al., 2009). 

 

6.1.2. Procedure 

Before and after the experimental session, the baseline CST excitability was 

assessed by acquiring 15 MEPs while participants passively stared a white fixation 

cross, positioned at the edge of the table. In order to check for any changes related to the 

TMS per se, I compared the two baseline period (30 MEPs in total). The average 

amplitude of the two series was then utilized to compute participant’s individual 
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baseline for data normalization procedure.  

The experimental setting is represented in Figure 18A. In the present experiment, 

the task was identical to that reported in Experiment 1 (paragraph 4.1.2) except for what 

follows. Before each trial participants were asked to close their eyes and to hold their 

hand, as relaxed as possible, upon the starting switch. The sound of the TMS pulse 

served as a “Go” signal, after which participants were asked to open their eyes, reach 

out and grasp the steel ball by means of a precision grip, lift it and deposit it into the 

container. The task required executing the movement as fast and accurately as possible, 

without knocking the wooden support over. The inter-trial interval varied randomly 

from 6500 to 8500 ms. Each experimental session consisted of 180 trials. Participants 

underwent a practice session of 10 trials before the experimental session began. The 

experiment lasted approximately 200 minutes. 

 

6.1.3. Transcranial magnetic stimulation 

Single-pulse TMS (pulse characteristics: 100 µs rise time, 1 ms duration) were 

delivered on the participant’s left M1, in correspondence with the right representation of 

the first dorsal interosseous muscle (FDI) (Figure 18C), by using a 70 mm figure-of-

eight coil connected to a Magstim Bistim2 stimulator (Magstim Co., Whitland, United 

Kingdom). The coil was positioned on the head with a 45° angle with respect to the 

inter-hemispheric fissure (Figure 18B). The optimal scalp location (OSL), was selected 

by stimulating the presumed area of FDI until which the minimum TMS stimulation 

elicited the maximum MEP from the FDI muscle. During the experiment, the coil was 

held in the correct position by a mechanical arm. Moreover, the experimenters 

continuously checked the position of the coil with respect to the OSL. For each 
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participant, I computed the resting motor threshold, that is the minimum stimulation 

intensity at which TMS generate MEPs of at least 50 µV peak- to-peak amplitude in a 

relaxed muscle in 5 out of 10 consecutive trials (Rossini et al., 1994). During the 

experimental session, the pulse intensity was set at 120% of resting motor threshold. 

TMS stimulation was controlled by means of E-Prime V2.0 software (Psychology 

Software Tools Inc., Pittsburgh, PA, United States). 

 

Figure 18. (A) Graphical representation of the experimental set-up. (B) The TMS coil was 

placed over the participant’s left M1. (C) MEPs activity were measured from electrodes placed over 

the FDI muscles of the right hand. 

 

6.2. Data analysis 

6.2.1. MEP data 

Individual peak-to-peak MEP amplitudes (mV) were analyzed off-line using 

Brain Vision Analyzer (Brain Products BmbH, Munich, Germany). The MEP peak-to-

peak amplitude for FDI was used to measure participants’ CS excitability. I discarded 
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trials in which EMG activity was greater than 100 µV in the 100 ms window preceeding 

the TMS stimulation. To control for inter-individual variability, MEPs amplitude values 

obtained during the experimental session were divided by average MEPs amplitude of 

each participant recorded during the baseline blocks (MEP ratio = MEP obtained / 

average MEP baseline). MEP ratios were used as dependent variable. 

 

6.2.2. Behavioral data 

RT was defined as the time between the TMS Go signal and the release of the 

starting switch, which corresponds to the movement onset. 

Movement onset was calculated as the time at which the tangential velocity of 

the wrist marker crossed a threshold (5 mm/s) and remained above it for longer than 500 

ms. End of movement was defined as the time at which the hand made contact with the 

target and quantified as the time at which the hand opening velocity crossed a threshold 

(5 mm/s) after reaching its minimum value and remained under it for longer than 500 

ms. The time from the onset to the end of the movement was defined as total movement 

time. For the grasping component, I considered the amplitude of maximum closing 

velocity, that is the maximum velocity reached during the closing phase with reference 

to the distance between the thumb and the index finger. For the reaching component, I 

considered the amplitude of peak wrist deceleration, that is the maximum velocity of the 

wrist during the movement time. 

 

6.2.3. Data analysis 

The data analysis followed the procedure outlined in paragraph 3.5. Trials outside 

the range of ± 2.5 standard deviations were discarded (less than 2.9%). 
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6.3. Results 

6.3.1. Behavioral results 

Accuracy. The overall error percentage was 15.4%. A GLME analysis, with random 

intercept for Participants and Blocks, revealed that participant’s error rate did not 

significantly change after an error (21.1%) compared to a correct trial (14.1%), z = 

1.747, p = .081, OR = 1.24. 

 

Reaction times. The mean post-correct and post-error RT adjustments are shown in 

Figure 19A. A LME analysis, with random intercept for Participants (modeling 

intercepts only), revealed a significant difference between post-correct and post-error 

adjustments χ2 = 10.115, p = .001, BF = 8.11, d = 0.20. Contrast analysis showed that 

the post-error slowing was significantly different from zero (PESrobust = 10.61 ± 4.34), t 

(288) = 2.44, p = .007, BF = 2.45, d = 0.15, whereas, after a correct response, subjects 

showed a post-correct speeding (-5.58 ± 1.84), t (1959) = -3.025, p = .001, BF = 4.85, d 

= 0.07. 

 

Maximum closing velocity. The mean of post-correct and post-error adjustments of the 

Maximum closing velocity are shown in Figure 19B. A LME analysis, with random 

intercept for Participants (modeling intercepts only), revealed a significant difference 

between post-correct and post-error adjustments, χ2 = 11.92, p < .001, BF > 35.83, d = 

0.21. Contrast analysis showed that the post-error slowing was significantly different 

from zero (PESrobust = -24.51 ± 10.60), t (324) = -2.313, p = .010, BF = 1.80, d =0.14. 

No evidence of post-correct speeding was found after a correct response (2.18 ± 2.56), t 

(2091) = 0.852, p = .197, BF = 0.01, d = 0.01. 
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Figure 19. Mean post-correct and post-error adjustments of RTs (panel A), the Maximum closing 

velocity (panel B), and the Maximum wrist velocity (panel C). Vertical bars represent standard error of 

the mean. 
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Maximum wrist velocity. The mean of post-correct and post-error adjustments of the 

Maximum wrist velocity are shown in Figure 19C. A LME analysis, with random 

intercept for Participants (modeling intercepts only), revealed no significant difference 

between post-correct and post-error adjustments, χ2 = 1.10, p = .292, BF = 0.14, d = 

0.06. Contrast analysis showed that the post-error slowing was not significantly 

different from zero (PESrobust = -3.39 ± 4.32, t (330) = -0.785, p = .783, BF = 0.31, d = 

0.04), whereas a significant post-correct speeding (6.35 ± 3.60, t (2102) = 1.759, p = 

.039, BF = 0.22, d = 0.03) was present after a correct response. 

 

6.3.2. MEPs amplitude 

The raw MEP amplitude recorded for each participant at the beginning and at the 

end of the experimental blocks was not significantly different, t (503.8) = -0.321, p = 

.747). 

The mean of post-correct and post-error adjustments of the normalized MEPs 

amplitudes are shown in Figure 20. A LME analysis, with random intercept for 

Participants (modeling intercepts only), revealed a significant difference between post-

correct and post-error adjustments χ2 = 7.39, p = .006, BF= 2.54, d = 0.18. Contrast 

analysis showed that the post-error slowing was significantly different from zero 

(PESrobust = -0.178 ± 0.05), t (261) = -3.212, p < .001, BF = 18.9, d = 0.14. No evidence 

of post-correct speeding was found after a correct response (-0.02 ± 0.2), t (1658) = -

0.902, p = .183, BF = 0.09, d = 0.02. 
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Figure 20. Mean post-correct and post-error adjustments of MEPs amplitudes (normalized). 

Vertical bars indicate standard error of the mean. Negative values indicate a reduction of MEPs 

amplitude. 

 

6.3.3. Correlations between MEPs amplitude and kinematics 

No correlations emerged when correlating post-error MEP amplitudes with post 

error RTs (r = -.10, p = .114), Maximum closing velocity (r = -.06, p = .316) and 

Maximum wrist velocity (r = .001, p = .315). 

 

6.4. Discussion 

The goal of the present study was to investigate if the of excitability of the CST 

is modulated by performance accuracy of the previous trial. Results extended previous 

literature by demonstrating that the CST activity is reduced after an error, supporting 

the “functional” idea that the processing of an error leads to an inhibition of the motor 

system.  

In line with Experiments 1 and 2, behavioral results showed that error reactivity 

effects are not confined to the motor preparation of the reach to grasp movement, but 
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they also extend to the grasping component. Indeed, I found that errors not only lead to 

slowdown of the RTs, but they also impact on the Maximum Closing Velocity, whereas 

the Maximum wrist velocity seems to be impermeable to error after-effects.  

As concerns the CST activity related to FDI muscle, results showed a decrease 

of MEPs amplitude after an error, which suggests that the inhibitory circuits in M1 may 

contribute to the implementation of post error adjustments. Indeed, according to the 

inhibitory account (Ridderinkhof, 2002), the error monitoring system implements post-

error adjustments by inhibiting the primary motor cortex (M1). As a result, motor 

activation will reach response threshold later, leading to longer RTs after an error. 

Similarly, the CMT (Botvinick et al., 2001), suggests that the inhibition of the CST 

activity is trigger by a conflict monitoring system involving the DLPFC and the ACC. 

Previous literature supports the hypothesis that the PES effect depends on a decrease of 

motor system activity (see section 1.5.1). For instance, Marco-Pallares and colleagues 

(2008) examined oscillatory electrical brain activity in a flanker task, showing that the 

slowdown of RTs after an error is correlated with an increased beta band power, 

traditionally considered a marker of motor inhibition and motor stopping (Kuhn et al., 

2004; Marco-Pallares et al., 2008). Spruit, Wilderjans and van Steenbergen (2018) 

investigated how the cardiac effort (CE), that is the product of heart rate and systolic 

blood pressure, changes after an error. Results showed that the CE tends to increase 

after an error and correlates with the PES amplitude. Since the CE is thought to reflect 

inhibitory processes that contribute to suppress irrelevant information, the result of this 

study seems to support the idea that inhibition processes play a key-role in the 

implementation of the adaptive changes following errors. 
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Crucially, in the present study I did not find a PIA. A potential explanation of 

this result may reside in the fact that the experiment duration was longer than in the 

previous experiments and this may have affected the motivation of participants. The 

influence of motivation on error reactivity processes is well documented. Some studies 

found that the ERN increases when errors imply a monetary loss (Maruo, Schacht, 

Sommer, & Masaki, 2016; Stürmer et al., 2011). Maruo and colleagues (2011) 

investigated the effect of motivation on error-reactivity using a spatial Stroop task. A 

fixation cross was presented in the center of a screen and an arrow, pointing down or 

up, was shown above or below it. Participants were asked to indicate the pointing 

direction of the arrow, ignoring its location. In the reward condition, correct responses 

were rewarded with a small amount of money, whereas in the neutral condition 

participants’ performance was not incentivized. Results showed an increased ERN 

amplitude in the reward condition respect to the neutral condition, indicating that 

motivational aspects play an important role in error-reactivity. Using a similar task, 

Stürmer and colleagues (2011) found that PES was stronger in the monetary reward 

condition than in the control condition. The present experiment lasted about 3 hours and 

this may have questioned the full implementation of post-error adjustments. This 

hypothesis is also supported by the lack of correlation between the amplitude of MEPs 

and post-error adjustments. Moreover, it is noteworthy that the results of the present 

experiment are weaker than those found in Experiments 1 and 2, in terms of effect size. 

Therefore, further research is needed to better clarify how the post-error reduction of 

MEPs contributes to the implementation of post-error adjustments. 
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7. EXPERIMENT 4: YOUR ERROR IN MY HAND: AN INVESTIGATION OF 

OBSERVATIONAL POST-ERROR SLOWING 

 

For human beings, monitoring others’ errors is essential for efficient goal-directed 

behavior. Indeed, the mere observation of other individuals' errors provides a rich 

source of information that can be used to avoid potential errors and improve our 

performance without direct experience. Recently, some evoked related potential (ERP) 

studies have shown that when participants monitor errors made by other individuals a 

negative-going ERP component, similar to the ERN, can be recorded in the observer 

(oERN; Bates, Patel, & Liddle, 2005; van Schie et al., 2004). The neural generator of 

the oERN is supposed to be the anterior cingulate cortex (ACC) which also gives rise to 

the ERN (van Schie et al., 2004). In addition to electrophysiological studies, some 

behavioral investigations (Schuch & Tipper, 2007) pointed out that the PES effect is 

also present after error observation (observational PES; oPES). These results support 

the hypothesis about the existence of a ‘mirror’ error-monitor system, which may be a 

key mechanism for the acquisition of learned behaviors on the basis of the actions of 

others (Schuch & Tipper, 2007). Recent studies, however, have questioned the idea that 

the oPES is the consequence of simulation of the other person’s error processing 

(Schuch & Tipper, 2007). For instance, Castellar and colleagues (2011) showed that the 

oPES is also present when participants were asked to monitor a computer’s 

performance, demonstrating that the slowing after an observed error occurs even when 

neither visible behavior to imitate nor high-level processes can be simulated. 

To date, the oPES has been exclusively investigated by means of speeded reaction 

time (RT) tasks, measuring arbitrary button-press responses. With this in mind, the aim 
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of the present study is twofold. To examine the oPES in the context of realistic goal-

directed movements and to explore, for the first time, kinematical reorganization 

following the observation of an erroneous movement. The task required that participants 

and a confederate alternated in reaching out and grasping a steel sphere positioned on a 

wooden support. They were asked to perform the movement as naturally and accurately 

as possible, without knocking the wooden support over (i.e., the error). If oPES is not 

only evident at pre-movement level, but also during action execution, then I expected 

changes in kinematic parameterization as to reduce the probability of making an error in 

subsequent movements.  

 

7.1. Methods 

7.1.1. Participants 

Fourteen participants (mean age = 22.8 years, SD = 3.05 years, 8 males) were 

recruited from the student population of the University of Padua. I did not perform a 

power analysis to determine the sample size, because I employed an original task 

which, for the first time, allows to determine the influence of error observation on 

kinematics. Thus, running a power analysis is not recommended because it may lead 

to arbitrary decisions concerning sample size. 

 

7.1.2. Data processing 

RT was defined as the time between the opening of the shutter glasses and the 

release of the starting switch). Movement onset was defined from the tangential speed 

of the wrist marker using a threshold of 5 mm/s. Movement offset was defined as the 

time at which the hand made contact with the target and it was quantified as the time at 
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which the hand opening velocity crossed a threshold (5 mm/s) after reaching its 

minimum value and remained above it for longer than 500 ms. 

As dependent variable, in addition to RTs, I considered the maximum height of 

the wrist trajectory from the working surface. As previously demonstrated, this measure 

shows consistent differences between situations in which two agents act within the same 

working space and situations in which agents act in isolation (Georgiou, Becchio, 

Glover, & Castiello, 2006; Becchio, Sartori, Bulgheroni, & Castiello, 2008; Quesque, 

Lewkowicz, Delevoye-Turrell, & Coello, 2013). For instance, wrist elevation is 

modulated according to the type of social interaction occurring between participants and 

by the level of involvement (e.g., action observation, cooperation, competition). And, of 

relevance for the present study, higher arm trajectories are evident when people share a 

reachable space independently from whether the aim to interact is made explicit or not 

(e.g., Quesque et al., 2013). Furthermore, it should be noted that the modulation of wrist 

elevation might represent a specific strategy aimed at improving the subsequent 

performance. An increase in hand elevation may ensure that fingers do not collide with 

the target or the support – as in our circumstances – during movement execution 

(Smeets & Brenner, 1999), and may lengthen the time window within which contact 

points can be established more precisely and firmly (Glover, 2004). 

 

7.1.3. Procedure and Design 

The experimental setting is represented in Figure 21. For each experimental 

session, two participants came into the lab and were introduced to each other. After 

receiving the instructions, they sat at a table in front of each other.  
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Figure 21. (A) Graphical representation of the experimental set-up. (B) Schematic representation 

of the reach to-grasp movement and markers’ positioning upon the anatomical landmark of interest. 

 

Unbeknown to the real participant, the other participant was a confederate. 

Spontaneous reports provided in post-experimental interviews indicated that 

participants were completely unaware that the partner was a confederate. Prior to each 

trial, the shutter goggles wore by the participants and the confederate were set in their 

opaque state. Both held the ulnar side of the hand upon a starting switch, with the thumb 

and index finger pinched together (Figure 21B). As soon as the shutter goggles opened, 
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one of the two agents were asked to observe the other reaching out and grasping the 

steel sphere by means of a precision grip (PG; Figure 21B) and deposit it into the 

container. Then, on the following trial, the agent who previously observed the 

movement performed the action (i.e., execution trials). The ‘observation’ and the 

‘execution’ trials were administered in an alternated fashion. The request for the 

‘execution’ trials was to perform the movement as naturally and accurately as possible, 

to avoid dropping the wooden support. If the wooden support fell down the trial was 

considered incorrect. An experimenter put the steel ball (and the wooden support in the 

case of error) back in the correct position during the inter-trial interval, which varied 

randomly from 6500 to 8500 ms. On the basis of a predetermined random sequence the 

confederate made an error rate of about 15% of the total number of trials. The 

confederate was covertly signaled by the experimenter when to make an error. Each 

session consisted of 3 blocks of 80 trials (40 execution trials and 40 observation trials) 

separated by a 3-min break. Participants underwent a practice session of 20 trials before 

the experimental session began. The experiment lasted approximately 90 minutes. 

 

7.1.4. Data Analysis  

The data analysis followed the procedure outlined in paragraph 3.5. Given the 

nature of the experimental manipulation, kinematic data were recorded and analyzed 

only for the ‘real’ participant. Post-error adjustments were computed using the robust 

method (PEArobust) proposed by Dutilh and colleagues (2012), that is by comparing the 

participants’ performance on trials following (E + 1) and immediately preceding (E – 1) 

a confederate’s error. For comparison purpose, in a similar manner to PEArobust, I also 

computed post-correct adjustments (PCArobust) considering triplets of correct trials. 
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7.2. Results 

7.2.1. Post-error adjustments after observing an error 

Accuracy. A GLME analysis, with random intercept for Participants and Blocks, 

revealed that participant’s error rate did not significantly change after observing an error 

(15.7%) compared to after observing a correct trial (12.5%), z = 1.604, p = .109, OR = 

1.32. 

 

Reaction Times. The mean post-correct and post-error RT adjustments are shown 

in Figure 22A. A LME analysis, with random intercept for Participants and Blocks 

(modeling intercepts only), revealed a significant difference between post-correct 

(PCArobust = -9.94 ms ± 5.62) and post-error (PEArobust = 36.85 ms ± 13.85) adjustments, 

χ2 = 10.56, p = .001, BF = 14.8, d = 0.29. Contrast analysis showed that PEArobust was 

significantly different from zero, t (956) = 2.79, p = 0.005, BF= 3.80, d = 0.21. 

 

Maximum Height of The Trajectory. The mean of post-correct and post-error 

adjustments of the maximum height of trajectory are shown in Figure 22B. A LME 

analysis, with random intercept for Participants and Blocks (modeling intercepts only), 

revealed a significance difference between post-correct (PCArobust = -0.64 mm ± 0.27) 

and post-error adjustments (PEArobust = 2.01 mm ± 0.61), χ2 = 14.503, p < .001, BF = 

97.87, d = 0.33. Contrast analysis showed that PEArobust was significantly different from 

zero, t (982) = 3.16, p = 0.001, BF= 10.34, d = 0.26. 
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Figure 22. Mean post-correct and post-error adjustments in RTs (panel A) and the maximum 

height of the trajectory (panel B). For RTs, positive values indicate a post-error slowing. For the 

maximum height of the trajectory, positive values indicate a post-error increase of the amplitude of 

maximum height reached by the wrist. Vertical bars indicate standard error of the mean. 

 

7.2.2. Post-error adjustments after own errors 

Accuracy. The overall error percentage was 20.3%. A GLME analysis, with 

random intercept for Participants and Blocks, revealed that participant’s error rate did 

not significantly change after an error (24.2%) compared to a correct trial (19.3%), z = 

0.583, p = .560, OR = 1.09. 

Reaction Times. The mean post-correct and post-error RT adjustments are shown 

in Figure 23A. A LME analysis, with random intercept for Participants and Blocks 
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(modeling intercepts only), did not show any significant difference between post-correct 

(PCArobust = -5.69 ± 5.59) and post-error (PEArobust = 5.78 ± 10.85) adjustments, χ2 = 

0.79, p = .373, BF = 0.14, d = 0.07. 

 

Figure 23. Mean post-correct and post-error adjustments in RTs (panel A) and the maximum 

height of the trajectory (panel B). For RTs, positive values indicate a post-error slowing. For the 

maximum height of the trajectory, positive values indicate a post-error increase of the amplitude of 

maximum height reached by the wrist. Vertical bars represent standard error of the mean. 
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Maximum Height of The Trajectory. The mean of post-correct and post-error 

adjustments of the maximum height of trajectory are shown in Figure 23B. A LME 

analysis, with random intercept for Participants and Blocks (modeling intercepts only), 

did not revealed any significance difference between post-correct (PCArobust = 0.16 ± 

0.30) and post-error adjustments (PEArobust = -0.05 ± 0.68), χ2 = 0.09, p = .759, BF = 

0.09, d = 0.02. 

 

7.3. Discussion 

The goal of the present study was twofold. To investigate whether the oPES is 

present when a more realistic, ecologically valid task is employed and whether error 

observation impacts on motor execution.  

In line with the previous literature, RTs analysis showed that error observation led 

to a slowdown during the motor preparation phase (Schuch & Tipper, 2007; Castellar et 

al., 2011). This finding demonstrates that the oPES is a strong empirical evidence, 

which can also be observed using more realistic and ecologically valid tasks. 

Interestingly, no evidence of post-error improvement of accuracy (PIA) was found in 

this study. This result argues against the strict association between oPES and post-error 

accuracy and supports the hypothesis that the oPES and PIA are dissociated and 

sensitive to different aspects of the task (Castellar et al., 2001). With regard to this 

issue, Castellar and colleagues (2001) pointed out that the oPES is modulated by social 

context (cooperation vs. competition), while post-error accuracy is sensitive to the 

nature of the agent involved in the interaction (human vs. computer). The relation 

between PES and PIA has been a topic discussed at length even in the context of 

individual task performance, and several studies demonstrated that the PES and PIA do 
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not always occur together and might represent different processes (for a review see 

Danielmeier & Ullsperger, 2011).  

After making an error, participants did not show any evidence of post-error 

adjustments on the following execution trial. Recent investigations indicate that PES 

tends to decay over time (Danielmeier & Ullsperger, 2011; Jentzsch & Dudschig, 2009). 

In particular, short inter-trial intervals (ITIs) (< 500 ms) are usually associated with a 

larger PES, whereas long ITIs (> 8000 ms; Williams, Heathcote, Nesbitt, & Eidels, 

2016) tend to elicit a decrease of PES. In our experiment participants were asked to 

observe the confederate undertaking the task before they again executed the movement. 

In these circumstances, the PES might not have survived because of the long interval 

between execution trials (~16 s). These results are consistent with the previous literature 

on oPES, suggesting that the aftereffects of the participant's performance tend to 

weaken when the task requires that the execution of the action is alternated with the 

observation of another person's action (e.g., Winkel et al., 2009). 

Crucially, the results of the present study demonstrated that the observation of 

another person's error does not only influence the observer's overt behavior in terms of 

RTs, but impacts on the unfolding of the movement. In particular, I found a post-error 

increase in wrist elevation, which may be interpreted as a compensatory strategy aimed 

at grasping the target with a larger safety margin (Smeets & Brenner, 1999). Indeed, an 

increase in hand elevation, ensured that the index finger and thumb did not collide with 

the target during movement execution. Moreover, increasing the height of wrist 

elevation may serve to improve the quality of visual information by means of which 

contact points are established. In fact, it should be noted that in the present study the 

target was positioned along the mid-sagittal plane of the participants, and thus the vision 
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of the target was partially covered by fingers during the gripping phase. An increase in 

wrist elevation may improve the visibility of the target during the honing phase as to 

adjust contact points and possibly the applied forces with the aim to avoid the falling of 

the support. In this sense, the oPES may be considered as a strategic adjustment, 

triggered by the mere observation of an error, aimed at improving the subsequent 

performance and avoid future errors. 
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8. GENERAL DISCUSSION 

 

The experimental work included in this thesis provides a new way to examine 

the cognitive control mechanisms underlying post-error adjustments. In particular, for 

the first time, I examined the impact of error-reactivity effects on the execution of a 

realistic goal-directed action, that is the reach to grasp movement.  

The principal finding stemming from Experiments 1 and 2 is that error-reactivity 

effects extend to movement execution, but they are confined to the grasping component, 

whereas the reaching component resulted impermeable to post-error effects. When the 

task involves grasping, a slowing in movement duration and a reduction in gripping 

velocity arise after the occurrence of an error. This might reflect advanced planning, 

which strategically prolongs the duration of the movement so that reach-to-grasp 

kinematics is scaled within this allotted time. Indeed, the motor control system relies on 

visual and proprioceptive feedback loops, and thus, the more time in which these loops 

can operate, the greater the influence control will exert (Glover, 2004). This type of 

programming keeps the timing of the commands independent from the spatial 

parameters of the movement. In other words, selection of the motor plan needing to be 

activated to carry out a given task keeping into account previous errors can be modified 

within a centrally generated temporal template that determines the co-ordination of a 

given action. This might be the easiest and most readily chosen organizational option of 

the neural system to compensate for the error. In this connection, the reduction of 

gripping velocity may serve to lengthen the time window within which contact points 

can be established more precisely and firmly. Several studies have investigated the 

effect of object properties and context on the planning of digit placement upon an object 
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(Fu, Zhang, & Santello, 2010; Lukos, Ansuini, & Santello, 2007; Zhang, Gordon, Fu, & 

Santello, 2010; Sartori, Straulino, & Castiello, 2011). In these studies, subjects grasped 

and lifted an object with the aim to prevent object tilt. For example, to do so when an 

object’s center of mass is shifted to the right (resulting in a clockwise tilt if 

uncompensated), a compensatory counter-clockwise moment was required at object lift 

onset. Subjects created a compensatory moment by placing the thumb lower than the 

index finger (Lukos et al., 2007). In this example, digit placement is modulated to 

ensure successful completion of the task. Our finding of a post error reduction in grip 

velocity might signify that after an error it is necessary to apply changes related to 

finger positioning in order to avoid the falling of the target. To do this, participants need 

a slower closing of the fingers during the honing phase as to adjust contact points and 

possibly the applied forces. The finding of adaptation of fingers’ closing velocity 

following an error extends to error coding the evidence that subjects’ grasping is 

anticipatory. Anticipatory planning implies that objects are grasped in such a way that 

allows for movement flexibility. In our task, such flexibility allows to keep into account 

errors when performing the subsequent movement. Thus, fingers’ movement trajectory 

was dependent on the outcome of the previous trial. In other words, the slowing of the 

reach-to-grasp timing after an error seems to reflect advanced planning related to the 

need to increase the control and avoid future errors. However, only the grasping 

components seems to benefit of the adaptive components of error-reactivity. Indeed, 

after a reaching error, I did not observe neither changes in terms of accuracy, nor a 

parametrical reorganization of the reaching movement. These results support the 

modular description of the reach to grasp movements provided by the VCH (Jeannerod, 

1981). A point worth noting is that the strict dichotomy between reaching and grasping 
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components has been occasionally questioned. Indeed, it has been revealed that the 

component controlling proximal movements can access information about stimulus size 

and accordingly can modify peak velocity and acceleration (e.g., Gentilucci et al. 1991; 

Jakobson & Goodale, 1991; Smeets & Brenner, 1999). This weakened the proposal of 

two independent channels, one responsible for the computation of the stimulus location 

and arm transport, and the other responsible for the computation of stimulus intrinsic 

properties and the organization of manipulation. However, the very fact that in our 

study changes in the organization of the reach-to-grasp movements due to error 

commission are only evident at the level of the grasping component speaks in favor of 

the possibility that the two components can be dissociated. In particular, our findings 

suggest that the impermeability of the reaching component to errors might be strategic, 

simplifying the processes underlying the reorganization of the movement sequence 

following an error. This proposal is corroborated by studies indicating that the hand 

closure event initiates during the deceleration phase, but the precise moment of the 

closure did not have any specific counterpart in the velocity profiles of the reaching 

component (Gentilucci et al., 1991; Jakobson & Goodale, 1991). However, it must be 

noted that this result may be related to the particular demands of the tasks we employed, 

and thus, further research with realistic and ecological tasks is needed to better clarify 

this issue.  

In Experiment 3, I tested the hypothesis according to which the processing of an 

error leads to an inhibition of the motor system. To examine this aspect, I compared the 

CST excitability after erroneous and after correct movements, by means of MEPs 

technique. The principal finding emerging from this experiment is that the amplitude of 

MEPs tends to decrease after an error, indicating that the inhibitory circuits in M1 may 
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contribute to the implementation of post error adjustments. However, an open question 

concerns to the brain networked areas that might cause the changes of the excitability of 

the CST here observed. A possible explanation is that the inhibition of M1 is triggered 

by a right hemispheric network including the pre-SMA, the IFC and the STN, whose 

activity has been found to correlate with PES (Ridderinkhof, 2002; Danielmeier & 

Ullsperger, 2011). An alternative hypothesis is that reduction of CST excitability is 

triggered by an error-monitoring system including the ACC and the DLPC, as suggested 

by the CMT (Botvinick et al., 2001). However, it should be noted that other non-frontal 

areas may bias the activity of M1. For instance, Gréa and colleagues (2002) found that a 

lesion of the posterior parietal cortex (PPC), and in particular of the intra-parietal 

sulcus, disrupts on-line adjustments during aiming movements. Coherently, the PPC 

may have a key role in error-reactivity, projecting to the DLPFC and to M1 (Amengual 

at al., 2013).  

In Experiment 4, I found that the observation of another person's error does not 

only influence the observer's behavior in terms of RTs, but impacts on the unfolding of 

the reach to grasp movement. In particular, the wrist elevation tends to increase after an 

error. This evidence may be interpreted as a compensatory strategy aimed at both 

increase safety margins between the target and fingers and to improve the visibility of 

the target during the honing phase as to adjust contact points and possibly the applied 

forces with the aim in order to avoid the falling of the support. The results of this 

experiment suggest that if the observed action is marred by an error, then onlookers 

internalize the observed “error” as to put in place error avoidance strategies when the 

observed action is subsequently performed. In this view, the activated motor 

representation does not merely reflect an automatic resonance mechanism of motor 
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structures paralleling observed movements. If this were the case error observation 

would inevitably determine an error during execution. Rather, it might reflect the 

interplay between an initial emulative process, which allows the observer to experience 

what is being observed, and a subsequent one which considers the 

consequences/outcome of the initially observed actions. 

The new insights emerging from this thesis highlight the importance of using 

ecologically valid paradigms to obtain a more detailed and generalizable picture of  

the cognitive control mechanisms underlying post-error adjustments. In particular, the 

analysis of movement execution by means kinematical analysis should be the reference 

standard of future studies. Moreover, more innovative approaches should be developed 

to explore error-reactivity in natural contexts. 
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