
Segmentation of Color and Depth Data

Based on Surface Fitting

Giampaolo Pagnutti

Ph.D. School on Information Engineering

University of Padova

Advisor: Prof. Pietro Zanuttigh

January 30, 2017

Sede Amministrativa: Università degli Studi di Padova

Dipartimento di Ingegneria dell’Informazione

Scuola di Dottorato di Ricerca in: INGEGNERIA DELL’INFORMAZIONE

Indirizzo: SCIENZA E TECNOLOGIA DELL’INFORMAZIONE

Ciclo: XXVIII

Titolo della tesi: SEGMENTATION OF COLOR AND DEPTH DATA BASED

ON SURFACE FITTING

Direttore della Scuola: Prof. Matteo Bertocco

Coordinatore d’indirizzo: Prof. Carlo Ferrari

Supervisore: Prof. Pietro Zanuttigh

Dottorando: Giampaolo Pagnutti

Abstract

This thesis presents novel iterative schemes for the segmentation of scenes ac-

quired by RGB-D sensors. Both the problems of objects segmentation and of

semantic segmentation (labeling) are considered.

The first building block of the proposed methods is the Normalized Cuts al-

gorithm, based on graph theory and spectral clustering techniques, that provides

a segmentation exploiting both geometry and color information. A limitation is

the fact that the number of segments (equivalently, the number of objects in the

scene) must either be decided in advance, or requires an arbitrary threshold on

the normalized cut measure to be controlled. In addition, this method tends to

provide segments of similar size, while in many real world scenes the dimensions

of the objects and structures are widely variable. To overcome these drawbacks,

we present iterative schemes based on the approximation with parametric NURBS

surfaces (Non-Uniform Rational B-Splines). The key idea is to consider the results

of the surface fitting as an estimation of how good the current segmentation is.

This makes it possible to build region splitting and region merging procedures, in

which the fitting results are compared at each step against the previous ones, and

the iterations are moved forward based on whether they turn out to be improved

or not, until an optimal final solution is reached. The rationale is that, if a segment

properly corresponds to an actual object in the scene, the fitting result is expected

to be good, while segments that need to be subdivided or merged with other ones

are expected to give a larger error. A discussion of several possible metrics to eval-

uate the quality of the surface fitting is presented. In all the presented schemes,

the employment of NURBS surfaces approximation is a novel contribution.

Subsequently, it is described how the proposed iterative schemes can be coupled

with a Deep Learning classification step performed with CNNs (Convolutional

Neural Networks), by introducing a measure of similarity between the elements of

an initial over-segmentation. This information is used together with the surface

fitting results to control the steps of a revised iterative region merging procedure.

In addition, some information (fitting error, surface curvatures) resulting from the

NURBS fitting on the initial over-segmentation is fed into the Convolutional Neural

v

vi

Networks themselves. To the best of our knowledge, this is the first work where

this kind of information is used within a Deep Learning framework. Finally, the

objects segmentation resulting from the region merging procedure is exploited to

effectively improve the initial classification.

An extensive evaluation of the proposed methods is performed, with quantita-

tive comparison against several state-of-the-art approaches on a standard dataset.

The experimental results show that the proposed schemes provide equivalent or

better results with respect to the competing approaches on most of the considered

scenes, both for the task of objects segmentation and for the task of semantic la-

beling. In particular, the optimal number of segments is automatically provided by

the iterative procedures, while it must be arbitrarily set in advance on several other

segmentation algorithms. Moreover, no assumption is done on the objects shape,

while some competing methods are optimized for planar surfaces. This is provided

by the usage of NURBS surfaces as geometric model, since they can represent both

simple entities as planes, spheres, cylinders, and complex free-form shapes.

Sommario

In questa tesi vengono presentati schemi iterativi per la segmentazione di scene

acquisite da sensori di colore e profondità. Sia il problema della segmentazione in

diversi oggetti che il problema della classificazione semantica vengono affrontati.

Un primo componente dei metodi proposti è l’algoritmo Normalized Cuts, ba-

sato su teoria dei grafi e analisi spettrale, che fornisce una segmentazione basata

sia sulle informazioni di colore che di geometria. Una limitazione di questo metodo

è il fatto che il numero delle regioni (equivalentemente, il numero degli oggetti nel-

la scena) deve essere deciso a priori, oppure richiede l’impostazione di una soglia

arbitraria sulla metrica normalized cut per essere controllato. Inoltre, il meto-

do tende a restituire segmenti di dimensioni similari, mentre le scene reali spesso

contengono oggetti e strutture di grandezza molto variabile. Per superare questi

limiti, vengono proposti schemi iterativi basati sull’approssimazione mediante su-

perfici parametriche NURBS (Non-Uniform Rational B-Splines). L’idea principale

consiste nel considerare il risultato dell’approssimazione come una stima di quanto

sia buona la segmentazione corrente. Questo rende possibile costruire procedure

di tipo region splitting e region merging in cui i risultati dell’approssimazione so-

no confrontati ad ogni passo con i precedenti, e l’iterazione viene proseguita in

base al fatto che essi risultino migliorati oppure no, fino ad ottenere un risultato

ottimale. L’assunzione di fondo è che se un segmento corrisponde ad un oggetto

della scena ci si aspetta che l’approssimazione mediante superfici risulti buona,

mentre segmenti che devono essere ulteriormente suddivisi o uniti ad altri debbano

corrispondere ad un errore maggiore. Per valutare la bontà dell’approssimazione

vengono discusse diverse possibili metriche. In tutti gli schemi presentati, l’impie-

go dell’approssimazione mediante superfici NURBS è in particolare un contributo

nuovo.

In seguito, viene descritto come per gli schemi iterativi proposti possano essere

proficuamente utilizzate anche le informazioni di classificazione ottenute tramite

l’impiego di reti neurali convoluzionali (CNN). Infatti, in base alla classificazione

viene introdotta una nozione di similarità tra gli elementi di una sovrasegmenta-

zione iniziale, e questa informazione viene utilizzata assieme al risultato dell’ap-

vii

viii

prossimazione mediante superfici ottenendo una variante della procedura iterativa

di tipo region merging precedentemente sviluppata. Inoltre, alcuni dati risultanti

dall’approssimazione (errore, curvature delle superfici) vengono forniti in ingres-

so alle stesse reti neurali convoluzionali; in base alla nostra conoscenza, questo è

il primo lavoro in cui dati di questo tipo vengono utilizzati in un’architettura di

tipo Deep Learning. Infine, la segmentazione in oggetti ottenuta dalla procedura

iterativa viene sfruttata per raffinare ulteriormente la classificazione iniziale.

Viene presentata una estensiva valutazione dei metodi proposti, mediante con-

fronto quantitativo con diversi metodi allo stato dell’arte su un dataset standard.

I risultati sperimentali mostrano come gli schemi proposti ottengano risultati equi-

valenti o migliorati rispetto ai metodi concorrenti sulla maggior parte delle scene

considerate, sia per il problema della segmentazione nei diversi oggetti che per il

problema della classificazione semantica. In particolare, il numero ottimale di regio-

ni risultanti viene automaticamente determinato dalle procedure iterative, mentre

deve essere arbitrariamente deciso a priori in diversi algoritmi di segmentazione.

Inoltre, non vengono poste assunzioni sulla forma degli oggetti nelle scene, a diffe-

renza di vari metodi concorrenti che sono ottimizzati per superfici planari. Questo

è reso possibile dall’utilizzo delle superfici NURBS, che possono rappresentare in-

differentemente sia elementi semplici come piani, sfere, cilindri che forme articolate

e complesse.

Contents

1 Introduction 1

1.1 Problem description . 1

1.2 Related works . 3

1.3 Outline of the proposed methods 5

2 Joint segmentation of color and depth data 9

2.1 Spectral clustering . 9

2.2 Geometry and color segmentation 11

3 Surface fitting on segmented data 15

3.1 Surface fitting . 15

3.2 Fitting metrics . 19

3.3 Numerical stability and performances 27

4 Segmentation schemes based on surface fitting 31

4.1 Region splitting . 31

4.2 Region merging . 36

4.3 Combined region splitting and merging 40

4.4 Experimental results . 44

5 Segmentation schemes based on deep learning and surface fitting 53

5.1 Classification with deep learning . 53

5.2 Region merging . 58

5.3 Experimental results . 62

6 Conclusions 69

Bibliography 71

ix

Acknowledgements

I am deeply grateful to Pietro Zanuttigh for his friendly and helpful guidance

as my PhD advisor.

I wish to thank all the researchers and PhD students in the LTTM group

at the University of Padova for many inspiring conversations and for the fruitful

collaboration. In particular, Ludovico Minto contributed to the research work of

this thesis with the implementation of the Convolutional Neural Networks used for

the semantic labeling.

I am grateful to my colleagues and managers at solidThinking Inc. for their

encouragement to pursue my doctoral studies.

Finally, my deepest gratitude goes to my wife Ornella for her generous and

unconditional support.

xi

To Martina and Valeria, my brightest stars

and to Ornella, their mom

Chapter 1

Introduction

This chapter introduces the tasks addressed by this thesis, that is, the problems

of objects segmentation and semantic labeling. They are described in Section 1.1,

while Section 1.2 presents a survey of the related literature. An outline of the

whole thesis and an overview of the proposed methods is provided by Section 1.3.

1.1 Problem description

One of the first tasks to understand a scene acquired by some sensor is to

subdivide it into the separate objects and elements it consists of. This is called

objects segmentation, or simply segmentation.

Scene segmentation on color images is a long-term research topic, which is far

from being fully solved despite the huge amount of literature dedicated to it. Even

the best performing methods are not able to provide a fully reliable solution in all

conditions, since the problem is ill-posed and intrinsically difficult. For example,

there can be separate touching objects with the same color, which are very hard

to distinguish. Conversely, a single object can be made of portions with different

colors, and it is not easily determined whether they should be separated or not.

The past recent years have seen a growing diffusion of low cost consumer depth

cameras, as the Microsoft Kinect or the Asus Xtion. As illustrated in Figure 1.1,

these sensors acquire a color image coupled with a depth map. By using the sensor

calibration information, from this data it is possible to obtain a 3D point cloud,

where each element has three spatial coordinates and an associated RGB color.

The cloud is structured, since each point corresponds to a position on the sensor

rectangular grid (or, equivalently, to a pixel on the depth map). Notice that while

the color information is generally complete, there can be missing areas in the depth

map caused by occlusions or bad light conditions deceiving the sensor.

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Example of depth cameras (left), the acquired color image and depth
map (center), the corresponding 3D colored point cloud (right).

Depth data is a very valuable aid for segmentation, since it conveys information

about the 3D structure of the scene. Notice that the availability of spatial positions,

coupled with the fact that the points are arranged on a grid, makes it possible

to reconstruct the orientation of the object surfaces. Thanks to this geometric

information, the segmentation problem can be restated as the attempt to partition

a set of samples comprising both visual and spatial clues. The process becomes

similar to what is done by the human brain, when the disparity between the images

perceived by the two eyes is combined with the features observed from the color

data, and they are used together to separate the different objects based on prior

knowledge. Following this rationale, the segmentation methods presented in this

thesis all exploit both color and depth information.

Color Objects
image segmentation

Figure 1.2: A sample scene with a manually created ground truth for the ob-
jects segmentation problem. All the object instances (e.g., the chairs) are given a
different color.

A closely related problem is semantic segmentation, in which it is attempted to

1.2. RELATED WORKS 3

assign each point of the scene to some predefined class (labeling). Notice that this

automatically provides a subdivision of the scene, by considering as segments the

regions that are assigned the same label. The difference with respect to objects

segmentation is that separate object instances belonging to the same class are

not distinguished. For example, in Figure 1.2 (showing an objects segmentation)

the different chairs, walls and windows are considered as separate items, while in

Figure 1.3 (semantic segmentation) they are labeled the same way since belonging

to the same class. In this thesis, we propose schemes that address both the objects

segmentation and the semantic segmentation tasks.

Color Semantic
image segmentation

Bed Objects Chair Furniture Ceiling Floor Picture/Deco

Sofa Table Wall Windows Books Monitor/TV Unknown

Figure 1.3: The same scene of Figure 1.2 with the ground truth for the semantic
segmentation task. Each pixel is assigned to one of the predefined listed classes.

1.2 Related works

A large number of works address image segmentation. A survey of the best

known ones is in [51]. As already pointed out, this is a long-term research field

for which many techniques based on different insights have been proposed. Among

them, the approaches based on graph theory and clustering algorithms have been

particularly successful [6, 48, 18]. Anyway, despite the huge amount of research

none of the existing methods can provide fully satisfactory results in all the possible

conditions, since it is very difficult to properly estimate the scene structure from

color data alone.

Even if the usage of depth data for segmentation purposes is a quite recent

research field, several approaches jointly exploiting color and geometry information

have already been proposed. A recent review is presented in [59]. A simple solution

4 CHAPTER 1. INTRODUCTION

is to perform two independent segmentations on the color data and on the depth

data, and then join the two results as in [5].

In general, several clustering techniques originally applied to images can be

directly adapted to joint depth and color segmentation, and different approaches

based on this idea have been proposed. In [3] Mean Shift clustering [6] is applied

to 6D vectors containing both the color and the spatial components for each sam-

ple, while superparamagnetic clustering is used in [54]. A joint color, spatial and

directional clustering method associated to a planar region merging scheme is used

in [28] and in the refined version of the same approach proposed in [27].

A method based on graph cuts is applied in [9] for joint color and depth segmen-

tation. The approach of [37] exploits Normalized Cuts segmentation [48] together

with saliency maps. In [11] a segmentation scheme also based on Normalized Cuts,

that is able to automatically balance the relevance of color and depth, is proposed.

This approach, extended to include also orientation information as described in

Section 2.2 , is used at the intermediate steps of our iterative schemes.

Region splitting and region growing methods have also been proposed. The

approach of [12] starts from an initial superpixel segmentation and then joins the

segments based on a saliency metric. Superpixels and region merging are used

also in [58] where graph-based criteria are used for the merging stage. Superpixels

are combined together also in [16] , that computes regions corresponding to planar

surfaces with an approach based on Rao-Blackwellized Monte Carlo Markov Chain.

This idea is extended for the segmentation of multiple depth maps in [50].

In [46] a graph cuts method is applied to a mixture of planes and NURBS

surfaces, with the relations between the surface patches learned by a support vec-

tor machine from user annotated training data. This work bears some indirect

resemblance to our schemes for the fact that NURBS surface fitting is employed,

even though in our case the approximation results are directly used to control the

iterative procedures and this is a fully different approach. A planar model is used

also in [52], where dynamic programming is exploited to extract the flat surfaces

inside indoor scenes.

Some approaches deal with the close but less general problem of separating

the foreground from the background [20, 26, 38, 33, 57]. In [57] two likelihood

functions, based on color and depth data, are used together for this purpose. The

work of [20] uses two distinct Gaussian Mixture Models in the depth and color

spaces to represent the foreground and combine them in a Bayesian framework.

Mixture of Gaussians are used in [26] as well. Both this approach and [38] consider

also temporal constraints in depth and color videos. Finally some works as [36,

35, 4] try to solve the segmentation and the stereo disparity estimation problems

1.3. OUTLINE OF THE PROPOSED METHODS 5

together.

Several works address the problem of classifying the segments after separating

them, thus dealing with the tasks of objects segmentation and labeling together.

Among these, [24] performs a hierarchical segmentation based on the output of con-

tour extraction. Another combined approach is presented in [49], where an initial

over-segmentation based on the watershed algorithm is followed by a hierarchical

scheme. Combined segmentation and labeling are also addressed in [45] that ex-

ploits a MRF superpixel segmentation associated with a tree-structured approach.

The semantic segmentation problem is typically addressed by using machine learn-

ing approaches. Ren et al. [45] exploit an over-segmentation with Markov Random

Fields followed by a tree-structured algorithm. The works of [13] and [39] use Con-

ditional Random Fields (CRF) instead. The approach of [13] combines CRF with

mutex constraints based on geometry data, while the method of [39] combines 2D

segmentation, 3D geometry data and contextual information. The work of [2] is

based on a proposal process that generates spatial layout hypotheses followed by

a sequential inference algorithm.

Recently, deep learning algorithms have been exploited for the semantic seg-

mentation with notable results [31, 7, 47]. A pioneer work among these is [7],

that uses a multiscale Convolutional Neural Network (CNN). The method of [47]

achieves a very high accuracy exploiting Fully Convolutional Networks. The ap-

proach of [25] is based on a Convolutional Neural Network that acts on geometric

features. Wang et al. [56] use two different CNNs, one for color and one for depth,

and then a feature transformation network that separates the information shared

by the two clues from the one specific to each of them. The work of [15] provides

a semantic labeling together with depth and normal estimations using a multi-

scale CNN. Finally, the method of [55] uses a deep learning approach to extract

superpixel features that are afterwards classified by support vector machines.

1.3 Outline of the proposed methods

This thesis is organized as follows. Our implementation of the Normalized Cuts

algorithm exploiting both geometry and color information is presented in Chap-

ter 2. It extends the approach of [11] by including also the normals information,

and is one of the two main building blocks of our iterative segmentation schemes.

The second one is the approximation with NURBS surfaces, that is detailed in

Chapter 3.

Then, Chapter 4 describes a first set of methods we propose. They are unsuper-

6 CHAPTER 1. INTRODUCTION

vised, since they rely on surface fitting alone to control the recursive procedures,

without requiring any preliminary training stage. The first one is the region split-

ting method, exposed in Section 4.1. In this scheme, an initial segmentation into

two clusters is performed with the Normalized Cuts algorithm of Chapter 2. Then,

corresponding NURBS surfaces are determined by means of least squares approx-

imation, and the mean squared error (MSE) between the positions measured by

the sensor and the corresponding points on the approximating surfaces are deter-

mined. Subsequently, the segments with greater MSE get further subdivided into

sub-segments, that get fitted by NURBS surfaces as well obtaining corresponding

MSE values. The fact that MSE (properly weighted based on segments size) be-

comes better or worse is used as criterion to accept or reject the subdivision. The

rationale is that, if a segment properly corresponds to an actual object in the scene

(and thus it is not to be further split), the fitting error is expected to be small,

while segments that need to be further subdivided are expected to give a larger

error. By iterating the procedure until no more subdivisions that improve the MSE

are possible, a binary tree is obtained, and the final nodes are the elements of the

segmentation proposed as result. We proposed this method initially in [43], and

then in [42] where a discussion of several possible fitting error metrics other than

the MSE is presented. These metrics are described in Section 3.2.

In addition to the region splitting scheme, a region merging iterative method

is proposed in Section 4.2. It applies an initial over-segmentation, and then de-

termines the adjacent segments based on compatibility criteria that depend on

the 3D positions, on the normal directions and on the color information along the

boundaries of the segments. For each couple of adjacent segments, the union is

considered and approximated by a parametric NURBS surface (similarly as in the

region splitting method). The corresponding fitting error is compared to the one

calculated on the two separate segments, and the union operation is accepted if

the error is improving. As in the previous region splitting method, the assumption

is that if a segment actually represents a single object of the scene, and then must

not be merged with the adjacent ones, the approximation error is expected to be

already optimal, while it is expected to improve for segments corresponding only

to portions of the objects. This scheme was presented in [41].

An additional method is proposed in Section 4.3 by combining the previous

ones, that is, a region splitting iterative scheme is first applied, followed by a sub-

sequent region merging procedure, both leveraging the NURBS surfaces approxi-

mation and the analysis of the corresponding fitting error to control the iterations.

An extensive evaluation of the proposed methods is presented in Section 4.4, where

a quantitative comparison against several state-of-the-art approaches on a standard

1.3. OUTLINE OF THE PROPOSED METHODS 7

dataset is performed.

Chapter 5 describes how the proposed iterative schemes can be coupled with

a deep learning classification step performed with CNNs (Convolutional Neural

Networks). We test two CNN architectures, both detailed in Section 5.1. After

a learning stage on a training set, the implemented CNNs provide the probabil-

ity values for each scene pixel to belong to each considered class. This gives a

discrete probability density function (PDF) for every segment of a preliminary

over-segmentation, by averaging over the segment pixels. Then, by estimating how

two PDFs are similar to each other, one can determine a similarity score for each

couple of adjacent segments. This gives the opportunity to develop a variant of

the previous region merging scheme, where the similarity scores are used together

with the surface fitting errors to control the iterative procedure. This method

is described in Section 5.2 and a first implementation was presented in [40]. In

the extended version proposed here, some information (fitting error, surface cur-

vatures) resulting from the NURBS fitting on the initial over-segmentation is used

as input for the CNN, in addition to the color and geometry data. Moreover, af-

ter obtaining the final segmentation from the merging procedure each segment is

classified by checking the most probable label on each of its points (as computed

by the CNN) and choosing the most common one. Section 5.3 presents the experi-

mental results obtained by this scheme and the comparison against state-of-the-art

methods, both for the task of objects segmentation and for semantic segmentation.

Finally, Chapter 6 draws the conclusions.

Chapter 2

Joint segmentation of color and

depth data

Our iterative segmentation procedures apply a variant of the Normalized Cuts

method [48], revised in order to use geometric information in addition to color

data. We use this algorithm both at the intermediate steps of our region splitting

methods, and to provide the initial over-segmentation in our region merging meth-

ods. Section 2.1 briefly introduces the Normalized Cuts method, while Section 2.2

provides the details of our implementation.

2.1 Spectral clustering

In the Normalized Cuts method, introduced in [48] for images, the segmentation

problem is restated as the partitioning of a weighted graph containing a node for

each image pixel. The graph is fully connected, that is, all the couples of nodes

are linked by an edge. The corresponding weight is some measure of similarity

between the two pixels, typically depending both on their color difference and on

their spatial proximity.

Given two groups of nodes A and B partitioning the graph, their cut is de-

fined as the sum of weights of the edges that must be deleted to make A and B

disconnected, that is

cut(A,B) =
∑

i∈A,j∈B

wij (2.1)

where wij is the similarity between nodes i and j. A possible segmentation method

could consist in minimizing the cut, since this is equivalent to remove the links

corresponding to low similarity. However, this does not provide an optimal solution,

since the minimum cuts usually involve small sets of isolated graph nodes. A better

9

10 CHAPTER 2. JOINT SEGMENTATION OF COLOR AND DEPTH DATA

criterion can be obtained by minimizing the normalized cut, defined as

Ncut(A,B) =
cut(A,B)

assoc(A, V)
+

cut(A,B)

assoc(B, V)
(2.2)

where assoc(A, V) =
∑

i∈A,j∈V wij is the sum of similarities between the nodes in

A and all the nodes in the graph. Ncut(A,B) is a measure of the disassociation

between the groups, normalized to keep their total edge connections (and then

their size) into account. Similarly, a measure of the total normalized association

within the two groups A and B can be defined as

Nassoc(A,B) =
assoc(A,A)

assoc(A, V)
+
assoc(B,B)

assoc(B, V)
. (2.3)

Since assoc(A, V) = assoc(A,A) + cut(A, V \ A), it is

Ncut(A,B) = 2−Nassoc(A,B) , (2.4)

then minimizing the disassociation between the groups is equivalent to maximizing

the association within each group.

Since the problem of computing the optimal Ncut is NP-complete, Shi and

Malik [48] show that an approximate solution can be obtained by considering the

generalized eigenvalue problem

(D −W)y = λDy (2.5)

where D is a diagonal matrix storing the total connections exiting from each node,

Dii =
∑

j wij, and W is the matrix of the weights wij. Eq. 2.5 is equivalent to the

regular eigenvalue problem

(
I −D−1/2WD−1/2

)
z = λz (2.6)

and from the eigenvector corresponding to the second smallest eigenvalue it is

possible to obtain the partition of the graph into two groups. To achieve the

final segmentation, the two groups are then recursively repartitioned (2-way Ncut)

until a threshold on the Ncut value is reached. Alternatively, the number of final

segments can be decided in advance and the final segmentation is obtained by

considering all the top eigenvectors simultaneously (K-way Ncut).

The Normalized Cuts method is an effective approach for segmentation and is

a generic framework, since it can be used with different similarity formulations. A

drawback is that the weights matrix W grows as the square of the number of ele-

2.2. GEOMETRY AND COLOR SEGMENTATION 11

ments to be clustered, and this is a problem both in terms of required memory and

of computation time needed for the eigenvalues calculation. An efficient approxi-

mation is proposed in [19], that exploits a technique for the numerical solution of

integral eigenfunction problems known as the Nyström method. In this approach, a

subset of the input points is randomly chosen and partitioned with highly reduced

computational burden, then the solution is propagated to the complete points set

(see [19] for further details). Notice that this method requires the number of final

segments to be set in advance. This is not a limitation for our iterative procedures,

since in our region splitting method we perform a binary segmentation at each step

(see Section 4.1), while in the region merging schemes we apply the Normalized

Cuts only for the initial over-segmentation (see Section 4.3). On this one, the

number of initial segments can be quite arbitrary, since it is just an upper bound

for the final number that is determined by the iterative scheme itself.

2.2 Geometry and color segmentation

In our implementation, we extend the idea of clustering multidimensional vec-

tors containing both the color and the 3D position of the samples presented in [11],

by considering also the normal direction of the surfaces. This orientation informa-

tion used together with the spatial position makes it possible to better subdivide

the different geometrical elements.

We build a nine-dimensional representation of the scene samples pk, k =

1, . . . , np by combining geometry and color data. For this, first of all the depth and

color cameras are jointly calibrated (the approaches of [29] or [10] can be used for

this). After calibration it is possible to obtain the 3D coordinates x(pk), y(pk), z(pk)

of each sample in the 3D space, together with the corresponding color information

given by the three R(pk), G(pk), B(pk) components. The 3D points represent a

surface thanks to the implicit connectivity information given by the regular grid of

the depth map, then we can compute the directions perpendicular to this surface

with the border and depth dependent smoothing scheme of [32]. This results in a

further normal vector nx(pk), ny(pk), nz(pk) associated to each sample.

The 9D vectors obtained this way contain different types of information, then

they can not be directly fed to the clustering algorithm of previous section. In

order to obtain a suitable representation, color values are first converted to the

CIELab perceptually uniform space, in order to give a perceptual significance to

the distance calculated on the color components. The color of each sample pk is

12 CHAPTER 2. JOINT SEGMENTATION OF COLOR AND DEPTH DATA

then represented by the vector

pc
k = [L(pk), a(pk), b(pk)] , k = 1, . . . , np . (2.7)

The geometric positions are simply represented by the 3D coordinates x(pk), y(pk),

and z(pk), that is by the vector

pg
k = [x(pk), y(pk), z(pk)] , k = 1, . . . , np . (2.8)

Finally, orientation information is given by the 3 components of the normal vectors:

pn
k = [nx(pk), ny(pk), nz(pk)] , k = 1, . . . , np . (2.9)

The segmentation algorithm must be insensitive to the scaling of the point-

cloud geometry. Moreover, geometry and color distances must be evaluated on

consistent representations. Therefore, the color data are normalized by the av-

erage standard deviation σc of the L, a and b components, obtaining the vectors

[L̄(pk), ā(pk), b̄(pk)]. Following the same rationale, the geometry components are

normalized by the average standard deviation σg of the point coordinates, providing

the vectors [x̄(pk), ȳ(pk), z̄(pk)]. Similarly, the normal vectors [n̄x(pk), n̄y(pk), n̄z(pk)]

are obtained by normalizing the three orientation components by their average

standard deviation σn. Considering the above normalized information vectors to-

gether, each point is finally represented as

pf
k = [L̄(pk), ā(pk), b̄(pk), λ1x̄(pk), λ1ȳ(pk), λ1z̄(pk),

λ2n̄x(pk), λ2n̄y(pk), λ2n̄z(pk)], k = 1, . . . , np
(2.10)

where the λ1 and λ2 parameters control the relative contribution of the three

types of information. High values of them increase the relevance of the spatial

position and surface orientation, while low values increase the relevance of color

information. They can be automatically tuned by extending the approach used

in [11] to balance between color and geometry data, at the price of an increased

computational complexity. As detailed in Chapter 4, in the preliminary versions of

our iterative schemes we set λ1 and λ2 heuristically. In the final and more advanced

ones instead we equally weight the color, position and orientation information, then

we are able to avoid using these parameters whose proper setting was critical.

Once obtained the above 9D vectors, the Normalized Cuts clustering method

with Nyström acceleration described on previous Section 2.1 can be applied to

partition them. In Sections 4.1 and 4.3 we describe in detail at which steps of

2.2. GEOMETRY AND COLOR SEGMENTATION 13

our iterative segmentation methods we perform this operation. After the cluster-

ing algorithm, to avoid tiny regions caused by noise we apply a refinement stage

removing the ones smaller than a predefined threshold Tp (we reassign them to

the neighboring region that shares the longest common boundary). In case the

clustering is applied to obtain the initial over-segmentation for a region merging

procedure, we also split the disjoint segments into their connected components, to

let the merging scheme reassign them to the proper region if needed.

Figure 2.1 shows the result of Normalized Cuts clustering on a sample scene.

The algorithm is applied in order to partition the scene into 50 segments. The

refinement stages with the small segments removed and the disjoint regions split

into connected components are also shown. Notice that the normals information

is necessary to separate surfaces with similar colors and close spatial positions but

with different orientations, as the wall and the ceiling on the top left corner.

(a) (b)

(c) (d)

Figure 2.1: Segmentation of a sample scene. (a) Color Image. (b) Clustering
performed on 9D vectors including spatial and color information (50 segments).
(c) Result after reassignment of regions smaller than Tp = 600 pixels to nearest
cluster (46 segments). (d) Final result after splitting disjoint segments into their
connected components (52 segments).

Chapter 3

Surface fitting on segmented data

A key idea in the presented work is to apply a surface approximation scheme to

the regions of a segmentation, to evaluate its accuracy and improve it with recursive

splitting or merging procedures. Section 3.1 of this chapter briefly introduces the

NURBS surfaces, that are the model we adopt for the approximation, and provides

the details about our fitting implementation. Section 3.2 presents several possible

metrics that can be used to evaluate the fitting results, while Section 3.3 discusses

the numerical stability and the performances of the fitting algorithm.

3.1 Surface fitting

NURBS (Non-Uniform Rational B-Splines) are piecewise rational polynomial

functions expressed in terms of proper bases. A complete overview of this topic

can be found in [44], to which we refer for all the basic definitions and properties.

They are frequently used in software applications in which 3D shapes need to be

handled, thanks to their capability to represent both primitive objects as planes,

spheres, cylinders without approximation, and free-form organic surfaces. The

representation is given by parametric curves and surfaces expressed in a concise

way by means of control points, whose coordinates are the coefficients of the linear

combinations in terms of the bases functions. Namely, a parametric NURBS surface

is defined as

S(u, v) =

∑n
i=1

∑m
i=1Ni,p(u)Nj,q(v)wi,jPi,j∑n

i=1

∑m
i=1Ni,p(u)Nj,q(v)wi,j

(3.1)

where the Pi,j are the control points, the wi,j are the corresponding weights, the

Ni,p are the univariate normalized B-spline basis functions, and p, q are the degrees

in the u, v parametric directions respectively. In our implementation we set the

weights all equal to one, thus our fitted surfaces are non-rational (i.e., spline) and

15

16 CHAPTER 3. SURFACE FITTING ON SEGMENTED DATA

Eq. 3.1 reduces to

S(u, v) =
n∑
i=1

m∑
j=1

Ni,p(u)Nj,q(v)Pi,j . (3.2)

In order to obtain a linear system from Eq. 3.2 we need to choose the (uk, vk)

values in the 2D parametric domain corresponding to the 3D points Pk to approx-

imate (that is, the ones that belong to the segment to fit). For this, we consider

that each point is related to an element of the rectangular grid given by the sensor

pixel arrangement, then we set the corresponding surface parameter value as the

2D pixel location on the image plane of the camera.

As to the degrees in the u and v directions, we initially set them equal to 3. Since

the number of surface control points gives the degrees of freedom in our model, we

set it adaptively depending on the number of input samples. In order to do this,

we consider the horizontal and vertical extents of the segment to fit. Let W be the

horizontal image size and H the vertical size (for example W = 640 and H = 480

in case of Kinect data). First, we set the values Nu and Nv = H
W
Nu , that is, the

maximum number of control points in the u and v parametric directions, to be

used in case of a segment covering the whole image. For smaller ones we determine

the number proportionally to the segment extents as follows. Let u0, u1 and v0, v1

be the minimum and maximum pixel values on the sensor grid corresponding to

the segment in the horizontal and vertical directions. We set the number of control

points in the u, v parametric directions respectively as

n = max

{
3,

[
Nu

u1 − u0
W

]}
, m = max

{
3,

[
Nv

v1 − v0
H

]}
. (3.3)

Notice that since the minimum number of control points for a cubic spline is 4,

for smaller segments we lower the surface degree to quadratic in order to allow 3

control points as actual minimum. In our methods we set Nu = 15 or Nu = 20.

This choice of parameters provides enough degrees of freedom to represent the

shape of any common object, and the adaptive scheme at the same time prevents

the fitting to always be more accurate for smaller segments, independently on how

the segmentation algorithm was successful in detecting the objects in the scene.

Figure 3.1 shows a sample segmentation, and for each segment the numbers n,

m of control points determined accordingly to its extents (in this example it is

Nu = 20).

Once determined the (uk, vk) parameter values corresponding to the points to

fit, the surface degrees and the number of control points in the u, v parametric

directions, we use the methods of [44] to obtain the NURBS knots, needed for the

3.1. SURFACE FITTING 17

Color image Sample segmentation

n = 3,m = 3 n = 5,m = 3 n = 13,m = 7 n = 4,m = 4 n = 13,m = 12

n = 3,m = 4 n = 3,m = 3 n = 4,m = 3 n = 4,m = 8 n = 3,m = 3

n = 5,m = 3 n = 10,m = 7 n = 6,m = 4 n = 3,m = 4 n = 5,m = 9

n = 3,m = 4 n = 5,m = 5 n = 3,m = 3 n = 12,m = 12 n = 3,m = 3

Figure 3.1: A sample segmentation with the binary masks for each region, and the
corresponding numbers of control points (in the u and v parametric directions)
used for the NURBS surface approximation.

18 CHAPTER 3. SURFACE FITTING ON SEGMENTED DATA

definition of the Ni,p basis functions. Finally, by considering Eq. 3.2 evaluated at

(uk, vk) and equated to the points to fit, we obtain the linear system

NX = P (3.4)

where:

• N is a np by nm matrix, where np is the number of points to fit and nm is

the total number of control points. The k-th row contains the basis functions

evaluated at the parameter values corresponding to the k-th point to fit, that

is, the Ni,p(uk)Nj,q(vk) terms listed with a single index ranging from 1 to nm.

• X is a nm by 3 matrix with the x, y, z unknown coordinates of the control

points as columns.

• P is a np by 3 matrix with the x, y, z coordinates of the points to fit as

columns.

It is always np > nm, then the linear system is over-determined. We solve it in

the least squares sense, thus obtaining the surface control points.

Figure 3.2 shows a NURBS surface fitted over one region of a sample segmen-

tation. The grid of control points is shown (3× 4 in this case). The portion of the

surface that actually corresponds to the segment points is highlighted in magenta.

Notice that since we use bivariate tensor product NURBS surfaces [44], the para-

metric domain is always rectangular, while the segment shape on the sensor grid

is usually irregular. This makes the surface larger then the segment itself, anyway,

the fitting accuracy is evaluated only on the overlapping area. The surface portion

extending outside the segment points is not relevant for our purposes then.

Figure 3.2: NURBS surface (right) fitted over the highlighted segment in the sam-
ple scene (left).

3.2. FITTING METRICS 19

3.2 Fitting metrics

The goal of the surface approximation scheme of previous section is to provide

a tool in our methods to evaluate how the elements of a candidate segmentation

actually give a good representation for the objects in the scene. Our assumption

is that there is a relationship between the fitting accuracy and the quality of

the segmentation. In particular, we expect that if a segment contains multiple

objects, the different depth values along their borders or the sharp edges will affect

the fitting. This is visible in Figure 3.3, that shows a surface fitted over two

segments. The surface is colored based on the pointwise fit error, that is, for each

3D sample Pk in a segment, we consider the corresponding 3D position S(uk, vk)

on the fitted surface, and we calculate the fit error as the Euclidean distance

|Pk − S(uk, vk)| between the two locations. In the figure color map, low and large

fit errors correspond to dark blue and red respectively. Notice how the large fit

error (red area) between the teddy head and the monitor portion clearly reveals

that the two segments do not actually belong to the same object.

Figure 3.3: A 3D NURBS surface fitted over two regions of a sample segmentation.
The red areas correspond to larger displacement between the points and the fitted
surface.

The same can be seen on Figure 3.4, that shows the colored pointwise fit error

map for all the regions in the sample segmentation of previous section. Notice

how the segments S2 and S4, that span different objects, contain large red areas

showing large fit errors. The corresponding fitted NURBS surfaces are shown with

a shaded visualization on Figure 3.5, where it is visible how their shape is affected

by the underlying structure of the scene objects.

Since we want to obtain iterative region splitting or region merging schemes

based on these ideas, we need to associate some measure of the fitting accuracy to

the whole segments. Namely, we want to define some measure ei for segment Si,

20 CHAPTER 3. SURFACE FITTING ON SEGMENTED DATA

Color image Sample segmentation

S0 S1 S2 S3 S4

S5 S6 S7 S8 S9

S10 S11 S12 S13 S14

S15 S16 S17 S18 S19

Figure 3.4: Pointwise fit error maps for all the regions in the sample segmentation
of previous section. Dark blue and red correspond respectively to low and large fit
error.

3.2. FITTING METRICS 21

Figure 3.5: Detailed view of the fit error maps for segments S2 and S4 from previous
figure (top), and the corresponding fitted NURBS surfaces (bottom).

22 CHAPTER 3. SURFACE FITTING ON SEGMENTED DATA

dependent on the fitting results, to be used in a condition like

ei0|Si0|+ ei1|Si1|
ei|Si|

< Te (3.5)

where Si0 and Si1 are sub-segments candidate to replace Si in a region splitting

scheme, or conversely Si is their union in a region merging scheme. The weights

are the cardinalities of the two segments, while Te ≤ 1 is a threshold that accounts

for noise in the data. In the discussion about the results on Section 4.4 we present

some tests with the three different values 0.8, 0.9 and 1. Notice that with the

latter value the criterion makes the segmentation with Si replaced by Si0 and Si1

accepted if there is any improvement in the accuracy, independently on how large

the improvement is.

In a region splitting method, the subdivision of Si into Si0 and Si1 is accepted if

Eq. 3.5 is satisfied, and discarded if not. Conversely, in a region merging method

the fusion of Si0 and Si1 into Si is accepted if Eq. 3.5 does not hold. In both

cases, the rationale is that the split or merge operation is accepted if improving

the fitting accuracy, and discarded otherwise.

To define a possible metric ei, we propose two different approaches. In the

first family the fitting accuracy is considered, then ei is defined in terms of the

pointwise fitting error. We define four metrics following this rationale, that is,

the Mean Square Error (MSE), the Mean Absolute Error (MAE), the Variance of

the Error (VE) and the Number of points with a Large Error (NLE). The second

idea consists in analyzing the curvature of the fitted surfaces, since we expect

edges or jumps in the depth values to result in large curvature values or variations.

Based on this idea we define other five metrics, that is, the Variance of the MaX

Curvature absolute value (VMXC), the Variance of the MEan Curvature (VMEC),

the Variance of the Gaussian Curvature (VGC), the Mean of the MaX Curvature

absolute value (MMXC) and the Number of points with a Large Curvature (NLC).

The definition of these metrics is given in the following sections, while a comparison

between the results obtained with each of them is presented in Section 4.4.

Mean Square Error (MSE)

This metric is the Mean Square Error (MSE) between the 3D positions Pk in

segment Si and the points obtained on its NURBS approximation by evaluation at

the corresponding parameter values (uk, vk), that is:

eMSE
i =

∑
Pk∈Si

|Pk − S(uk, vk)|2

|Si|
. (3.6)

3.2. FITTING METRICS 23

The MSE is directly related to the fitting accuracy. By employing it, we exploit

the already mentioned idea that properly segmented regions should be accurately

fitted and then provide a low MSE value, since containing a single object surface,

while segments enclosing multiple surfaces at different depths can not be accurately

fitted and will give higher MSE values. With this metric, the criterion of Eq. 3.5 to

perform a subdivision of segment Si into Si0 and Si1 in a region splitting procedure,

or conversely to reject the union operation in a region merging scheme, becomes

eMSE
i0 |Si0|+ eMSE

i1 |Si1|
eMSE
i |Si|

< Te (3.7)

where Te is the threshold already introduced.

Mean Absolute Error (MAE)

We obtain another metric directly related to the fitting accuracy as the Mean

Absolute Error (MAE) between the 3D positions in segment Si and the correspond-

ing points evaluated on the NURBS fitted surface. We define it similarly to the

MSE, except for the fact that the absolute values are used instead of their squares,

that is:

eMAE
i =

∑
Pk∈Si

|Pk − S(uk, vk)|
|Si|

. (3.8)

While the MSE gives more importance to large errors due to the square operation,

this metric assigns a more uniform weight to the fitting errors. The criterion to

evaluate the segmentation becomes

eMAE
i0 |Si0|+ eMAE

i1 |Si1|
eMAE
i |Si|

< Te (3.9)

where Te is as above.

Variance of the Error (VE)

This metric measures the Variance of the Error (VE) between the 3D positions

in segment Si and the corresponding points evaluated on the NURBS approxima-

tion, that is:

eV Ei =

∑
Pk∈Si

(
|Pk − S(uk, vk)| − eMAE

i

)2
|Si|

. (3.10)

Instead of taking the absolute error value into account, this metric considers its

deviation from the mean. The rationale is that the discontinuities could produce

large errors in restricted areas, and yet there can be large areas with small errors

24 CHAPTER 3. SURFACE FITTING ON SEGMENTED DATA

at the same time. The criterion for the splitting and merging schemes involves the

ratio between the variances before and after the segment subdivision, as for the

other metrics:
eV Ei0 |Si0|+ eV Ei1 |Si1|

eV Ei |Si|
< Te (3.11)

where Te is as above.

Number of points with a Large Error (NLE)

Following the same rationale, that is, considering the possible presence of lo-

calized regions with large fitting errors, we define another metric based on the

number of points with an associate absolute error greater than a threshold Tle.

The idea here is that the samples corresponding to an edge or close to the jumps

between two objects in the same segment should be detected since having an error

larger than the threshold, while the error should stay within it for the other ones.

A drawback is that properly setting the threshold Tle is critical to obtain optimal

results. A proper value should depend on the amount of noise on the depth camera

data. For the comparison of these metrics discussed on Section 4.4 we set the value

to 0.1 (our data are in meters).

As to the criterion to evaluate the segmentation, an improving subdivision of a

segment should make the sum of the number of samples eNLEi0 + eNLEi1 with a large

error on the two parts smaller than the number of points eNLEi with a large error

on the original segment, that is:

eNLEi0 + eNLEi1

eNLEi

< Te (3.12)

where Te ≤ 1 is the threshold previously defined (notice that in this case two

thresholds are required).

Variance of the MaX Curvature absolute value (VMXC)

For this metric, we consider the two principal curvatures κ1 and κ2 of the

NURBS approximating surface at the locations corresponding to the points in Si

(i.e., the maximum and minimum local curvature values, see [14]). We expect

that for segments containing multiple objects, the fitted surface would show high

oscillations caused by the depth jumps, corresponding to large curvature values.

Therefore, we take the maximum of the absolute values of the principal curvatures,

κmax = max(|κ1|, |κ2|), and we consider as error metric its variance over the points

3.2. FITTING METRICS 25

in the segment Si

eVMXC
i =

∑
Pk∈Si

(
κmaxk − eMMXC

i

)2
|Si|

(3.13)

where

eMMXC
i =

∑
Pk∈Si

κmaxk

|Si|
(3.14)

is the mean of κmax over Si (notice that we denote by κmaxk the value of κmax for

the NURBS fitting surface at the location corresponding to Pk). The criterion to

accept the segmentation of Si into segments Si0 and Si1 is then

eVMXC
i0 |Si0|+ eVMXC

i1 |Si1|
eVMXC
i |Si|

< Te (3.15)

where Te is as for the previous metrics.

Variance of the MEan Curvature (VMEC)

Similarly as above, we consider as error metric the variance eVMEC
i of the mean

curvature, H = 1
2
(κ1 + κ2). That is, considering eMMEC

i =
∑

Pk∈Si
Hk

|Si| which is the

mean of H over Si, it is

eVMEC
i =

∑
Pk∈Si

(
Hk − eMMEC

i

)2
|Si|

(3.16)

where Hk is the mean curvature of the NURBS fitting surface at the location

corresponding to Pk. This is a variation of metric VMXC, based on the idea that

the maximum curvature absolute value could be very high because of just one of

the two principal curvatures, and then a metric based on the mean curvature could

be more adequate for some shapes. Moreover, by taking the absolute values it

is possible that information about large variations between positive and negative

curvature values gets lost, while it is taken into account by using the mean curvature

instead. The criterion for the segmentation is then

eVMEC
i0 |Si0|+ eVMEC

i1 |Si1|
eVMEC
i |Si|

< Te (3.17)

where Te is as above.

26 CHAPTER 3. SURFACE FITTING ON SEGMENTED DATA

Variance of the Gaussian Curvature (VGC)

We obtain another variation of metric VMXC by considering the variance of

the Gaussian curvature K = κ1κ2. That is, the metric is

eV GCi =

∑
Pk∈Si

(
Kk − eMGC

i

)2
|Si|

(3.18)

where eMGC
i =

∑
Pk∈Si

Kk

|Si| is the mean ofK over Si (andKk is the Gaussian curvature

of the NURBS approximation at the location corresponding to Pk). Notice that the

previous considerations about using the mean curvature instead of the maximum

curvature absolute value hold for the Gaussian curvature too. The corresponding

criterion for the segmentation is

eV GCi0 |Si0|+ eV GCi1 |Si1|
eV GCi |Si|

< Te (3.19)

where Te is as above.

Mean of the MaX Curvature absolute value (MMXC)

In addition to the curvature variance as an indicator of surface oscillations, we

consider large values of the curvatures themselves as an index of poor segmentation,

since they are expected to correspond to sharp edges, or gaps between separate

objects. Following this rationale, we consider eMMXC
i defined in Eq. 3.14, that is,

the mean of κmax maximum of the absolute values of the principal curvatures over

the points in a segment Si, as a further error metric. The corresponding criterion

for the segmentation is

eMMXC
i0 |Si0|+ eMMXC

i1 |Si1|
eMMXC
i |Si|

< Te (3.20)

where Te is as above.

Number of points with a Large Curvature (NLC)

To investigate the presence of local regions with large curvature values, we also

take into account the number of points for which the maximum of the absolute

values of the principal curvatures κmax is greater than a threshold Tκ. This is

roughly equivalent to counting the points that correspond to edges or gaps between

the objects. Clearly it is not straightforward how to set the threshold Tκ, since an

optimal value would depend both on the noise in the data and on the shape of the

3.3. NUMERICAL STABILITY AND PERFORMANCES 27

objects. For our results we set it to 10, corresponding to a radius of curvature of

0.1. Then, the criterion we obtain for the segmentation is

eNLCi0 + eNLCi1

eNLCi

< Te (3.21)

where eNLCi is the number of points in the segment Si for which κmax is greater

than Tκ, and Te is as for the previous metrics (two thresholds are required then).

3.3 Numerical stability and performances

In this section we provide some details about how we solve the linear least

squares problem given by Eq. 3.4. First of all, care must be taken since the data

acquired by sensors like the Kinect are noisy, and this can make the linear system ill

conditioned. Also, the fact that the NURBS surfaces are defined on a rectangular

parametric range while the segments to approximate may have irregular shapes

can make matrix N rank deficient. Then, to check the behavior on real data we

have tested several algorithms.

A widely used method for solving the least squares problem is to consider the

normal equations

NTNX = NTP (3.22)

for which a solution always exists (it is also unique when N is full rank since

NTN is symmetric positive definite). Stability problems can arise when NTN is

ill conditioned. A more stable approach, suitable also for the case where NTN

is singular, is to calculate the SVD decomposition of N , even if computationally

more expensive (see [21] for a thorough discussion). An even higher stability can

be obtained with truncated SVD or Tikhonov regularization [21]. Clearly, the

choice of the proper method to use is highly dependent on the problem to solve

and on the data. Considering this, we have tested the following methods (in our

implementation we use Eigen [22], an optimized C++ linear algebra library):

• (SVD) Singular values decomposition of matrix N .

• (TSVD) Truncated singular values decomposition.

• (SVDTR) Singular values decomposition with Tikhonov regularization.

• (LDLT) Robust Choleski decomposition of matrix NTN . This method ex-

ploits the fact that NTN is positive definite (semidefinite if N is rank defi-

cient).

28 CHAPTER 3. SURFACE FITTING ON SEGMENTED DATA

• (LU-FP) LU decomposition of matrix NTN with full pivoting. This method

provides one of the non-unique solutions also if N is rank deficient and thus

NTN is singular.

• (LU-PP) LU decomposition of matrix NTN with partial pivoting. This

method assumes NTN to be invertible, than it can not be applied if N

is rank deficient.

Table 3.1 lists the timing results of the tested methods on the sample segmen-

tation of Figure 3.1. For each of the 20 regions the number np of points to fit and

the number nm of NURBS surface control points are shown (recall that they are

respectively the number of rows and columns of matrix N , see Section 3.1). The

table also reports the condition number κ(N) of matrix N , defined as the ratio

between its maximum and minimum singular values (+∞ means that N is not full

rank and NTN is singular). Table 3.2 shows the MSE values calculated between

the segments and the NURBS surfaces obtained with the various methods.

First, we notice that there is a huge speed difference between the SVD-based

methods and the ones based on solution of the normal equations, as expected.

Among the latter ones, LU-PP is not suitable since it does not guarantee a valid

result when NTN is singular (this happens for segments S2, S4 and S18). More

interestingly, the speed penalty of the SVD-based methods is not balanced by any

improvement on the results accuracy, since the differences on the resulting MSE

values are negligible, as evident in Table 3.2. In particular, the LDLT method

provides the same values of SVD decomposition. Moreover, by comparing SVD

against TSVD, we observe that there are noticeable differences regarding the MSE

values only for segments S2 and S18, two cases where NTN is singular. These

differences are however very small (0.16% and 0.1% respectively), then it turns out

that there is no gain in using regularization techniques for our purposes. This may

seem unexpected considering the noise on data coming from the employed RGB-

D sensors, but it can be justified by the high numerical stability of the NURBS

B-spline bases [44].

We have obtained similar outcomes on all the sample segmentations used to

test the various methods. Based on this results, in all our segmentation schemes

we use the LDLT method.

3.3. NUMERICAL STABILITY AND PERFORMANCES 29

np nm κ(N) SVD TSVD SVDTR LDLT LU-FP LU-PP
S0 1123 9 17,0 < 5 < 5 < 5 < 5 < 5 < 5
S1 3141 15 164,1 < 5 < 5 15 < 5 < 5 < 5
S2 20740 91 +∞ 797 796 812 46 36 31
S3 6514 16 45,4 15 < 5 < 5 < 5 < 5 < 5
S4 37311 156 +∞ 3842 3843 3851 156 165 156
S5 3729 12 79,7 < 5 < 5 < 5 < 5 < 5 < 5
S6 1293 9 25,0 < 5 < 5 < 5 < 5 < 5 < 5
S7 9183 12 139,7 < 5 15 15 < 5 < 5 < 5
S8 21297 32 5872,6 94 109 93 < 5 < 5 < 5
S9 2667 9 123,2 < 5 15 < 5 < 5 < 5 < 5
S10 2115 15 108,9 < 5 < 5 < 5 < 5 < 5 < 5
S11 28583 30 1722,2 119 125 125 15 < 5 15
S12 9193 24 1619,8 20 15 31 < 5 < 5 < 5
S13 11987 12 19,8 11 < 5 < 5 < 5 < 5 < 5
S14 22302 45 8956,5 218 203 218 15 25 < 5
S15 1033 12 106,8 < 5 < 5 < 5 < 5 < 5 < 5
S16 14065 9 9134,7 33 31 46 < 5 15 < 5
S17 802 9 16,5 < 5 < 5 < 5 < 5 < 5 < 5
S18 39879 144 +∞ 4354 4187 4218 140 156 156
S19 1043 9 29,0 < 5 < 5 < 5 < 5 < 5 < 5

Total 9514 9339 9424 372 409 358

Table 3.1: Comparison of times (milliseconds) taken by the different solution meth-
ods for each segment Si in the sample segmentation of Figure 3.1. The table also
lists the number of rows np and columns nm of matrix N , and its condition number
κ(N).

30 CHAPTER 3. SURFACE FITTING ON SEGMENTED DATA

κ(N) SVD TSVD SVDTR LDLT LU-FP LU-PP
S0 17.0 0.001332 0.001332 0.001332 0.001332 0.001332 0.001332
S1 164.1 0.001697 0.001697 0.001726 0.001697 0.001697 0.001697
S2 +∞ 0.000806 0.000807 0.001081 0.000806 0.000806 0.000806
S3 45.4 0.000104 0.000104 0.000104 0.000104 0.000104 0.000104
S4 +∞ 0.005537 0.005538 0.005944 0.005537 0.005537 NaN
S5 79.7 0.000536 0.000536 0.000539 0.000536 0.000536 0.000536
S6 25.0 0.000081 0.000081 0.000081 0.000081 0.000081 0.000081
S7 139.7 0.000037 0.000037 0.000038 0.000037 0.000037 0.000037
S8 5872.6 0.000434 0.000434 0.000438 0.000434 0.000434 0.000434
S9 123.2 0.000635 0.000635 0.000647 0.000635 0.000635 0.000635
S10 108.9 0.000219 0.000219 0.000250 0.000219 0.000219 0.000219
S11 1722.2 0.000146 0.000146 0.000146 0.000146 0.000146 0.000146
S12 1619.8 0.001608 0.001608 0.002001 0.001608 0.001608 0.001608
S13 19.8 0.000037 0.000037 0.000037 0.000037 0.000037 0.000037
S14 8956.5 0.000098 0.000098 0.000100 0.000098 0.000098 0.000098
S15 106.8 0.002624 0.002624 0.002704 0.002624 0.002624 0.002624
S16 9134.7 0.000278 0.000278 0.000290 0.000278 0.000278 0.000278
S17 16.5 0.000089 0.000089 0.000089 0.000089 0.000089 0.000089
S18 +∞ 0.000113 0.000113 0.000118 0.000113 0.000113 NaN
S19 29.0 0.000072 0.000072 0.000072 0.000072 0.000072 0.000072

Avg. 0.000824 0.000824 0.000887 0.000824 0.000824 NaN

Table 3.2: Comparison of the MSE values (square meters) obtained with the differ-
ent solution methods for the same segmentation of previous table. The condition
number κ(N) of matrix N is also shown (notice that N is rank deficient for seg-
ments S2, S4 and S18). In the NaN cases the LU-PP method failed to provide a
solution and early exited due to a division by zero.

Chapter 4

Segmentation schemes based on

surface fitting

After introducing the main building blocks in the previous chapters, we present

a first family of iterative segmentation schemes. They rely on the surface fitting

results to control the iterations, and do not require any knowledge or learning

stage on the input data. The first one is the region splitting scheme, detailed in

Section 4.1. In Section 4.2 the region merging scheme is presented, while Section 4.3

describes how a third method can be obtained by combining the previous ones.

Section 4.4 discusses the experimental results.

4.1 Region splitting

A general overview of our region splitting method is shown in Figure 4.1. First,

the nine-dimensional point cloud representation of Eq. 2.10 is built and used as

initial input. Then, a binary segmentation using the method of Section 2.2 is

applied, and a NURBS surface is fitted on each of the two resulting segments

as described in Section 3.1, in order to determine the corresponding fitting error

values. As seen in Section 3.2, different possible fitting error metrics can be used,

either based on the evaluation of the fitting error or on the curvature of the fitted

surfaces. In [42] we perform a detailed comparison, whose results are presented

also in Section 4.4 of this work. According to that evaluation, the error metric

given by the Mean Square Error (MSE) between the depth samples in the segment

and the corresponding points on the approximating NURBS surface is the most

adequate in general. We will refer to the MSE as fitting error in the following then,

unless otherwise specified.

At each next step of the procedure, the segment with the greatest fitting error is

31

32 CHAPTER 4. SURFACE FITTING SEGMENTATION SCHEMES

Color
data

9D point
vectors

 Conversion
to CIELab

Normalised cuts
spectral clustering

(x,y,z)
point set

Geometry
data

Segment
1

1/sc1/sg

NURBS
fitting

Segment
2

NURBS
fitting

 Surface
fitting accuracy

improved
?

No

Yes

Yes

Keep
the split

Discard
the split

Maximum
number of splits

reached ?

Size
 constraint
 satisfied

?

Size
constraint
 satisfied

?

Yes

Yes

Is there
any segment

to split ?

Select segment with
worst fitting accuracyYes

No

Normals
computation

1/sn

 Depth of tree,
size and error

constraints
satisfied ?

Mark segment
as not to be split

No No

Yes

No

No

l1 l2

End

Pre-processing Split phase

Figure 4.1: Overview of the region splitting approach.

examined, and it is further split provided it is not too small, or the recursion has not

yet produced enough segments. If the split operation improves the fitting accuracy,

it is accepted, and the segment is replaced by the two sub-segments. Otherwise

the operation is discarded, that is, the segment is kept unchanged and marked

as not to be considered for splitting anymore. The procedure then continues by

processing the next segment with greatest fitting error.

More in detail, consider an intermediate step during which segment Si is the one

being processed, its fitting error ei being the largest one. The following conditions

are checked in order to consider Si for a split operation:

1. The size of Si must be greater than 2Tp, otherwise the split would produce

at least one segment smaller than Tp. This is consistent with the choice of

not allowing segments smaller than Tp made in Section 2.2 (recall that Tp

is the minimum segment area enforced by the segmentation final refinement

step). For the 640 by 480 pixels images used in the results a reasonable value

is Tp = 800.

2. The fitting error ei must be greater than a threshold Tferr = 0.0005. The

idea is that if this is not the case, the segment is already representing very

accurately an object in the scene and there is no point in further dividing it.

We consider this condition only when using fitting metrics associated to the

fitting error (that is, not to surface curvature).

3. The number of recursive splits starting from the initial scene and leading to

Si must be smaller than a threshold Td = 10. In other words, the depth of

4.1. REGION SPLITTING 33

the recursion tree must be smaller than Td on the branch containing Si (an

example of the tree structure is shown in Figure 4.2).

4. A maximum number of total splits Ts must not have been reached yet. This

is equivalent to setting a maximum number of possible segments. Notice that

this is only an upper bound, differently from many segmentation algorithms

on which the actual number of segments is decided in advance. We set Ts = 50

for our results.

If condition 4 is violated the procedure is stopped, while if any of conditions 1,

2, 3 does not hold, Si is kept as part of the final segmentation and the algorithm

continues on another branch of the tree. This happens also if the subdivision of Si

fails to actually create two sub-segments, since one between Si0 and Si1 is smaller

than Tp and the post-processing refinement step described on Section 2.2 merges

it again with the other one (this is a rare case actually).

If all the above conditions hold, Si is split into sub-segments Si0 and Si1, and

the corresponding fitting errors ei0 and ei1 are computed. The fact that the error is

improved or not with respect of the original segment is used as criterion to accept

or reject the split operation. To check this, the weighted average of the fitting

errors on the sub-segments is compared to the one of the original segment, that is:

ei0|Si0|+ ei1|Si1|
ei|Si|

< Te (4.1)

where the weights are the number of points belonging to the segments and Te ≤ 1

is a suitable threshold. As to the latter, in [42] we test several values (0.8, 0.9

and 1, as anticipated on Section 3.2). The experimental results, reported also in

Section 4.4 of this work, show that the simple choice Te = 1 (that is, just ensuring

that the fitting accuracy improves even by a small amount) is the best option.

If the constraint of Eq. 4.1 is satisfied, the splitting operation improves the

fitting accuracy, and we consider this as an indication that it provides a better

scene representation by recognizing the different surfaces (i.e., objects). Then,

we replace segment Si with the sub-segments Si0 and Si1. If the condition is not

satisfied, the split is discarded and the algorithm moves to the next segment to

process, leaving Si unchanged.

In summary, at each step of the splitting phase the previously introduced con-

ditions are checked for the segment with the greatest fitting error, that is:

(|Si| ≥ 2Tp) ∧ (|ei| ≥ Tferr) ∧ (depth(Si) < Td)

∧ (count(i) < Ts)
(4.2)

34 CHAPTER 4. SURFACE FITTING SEGMENTATION SCHEMES

where depth(Si) is the depth of Si in the recursive tree structure, and count(i) is the

number of split operations made until the current iteration. If the conditions are

satisfied the segment is split, and the operation is accepted if improving the fitting

accuracy, discarded otherwise. Then, the next available segment with greatest

fitting error is processed. The procedure is applied recursively to all the segments

and the generated sub-segments, until either the maximum number of splits is

reached, or there are no more available segments satisfying all the conditions.

The whole process is summarized in Algorithm 1 and a visual scheme is shown

in Figure 4.1. In the pre-processing step, the scheme includes the λ1, λ2 parameters

used to control the relative contribution of color, positions and normals information

(see Section 2.2). Actually, except in [42] where we propose the region splitting

method without using the normals (equivalent to setting λ2 = 0), for our results

we set λ1 = λ2 = 1, that is, we equally weight the three types of information.

The result is a tree structure like the one of Figure 4.2, where the leaves are

the elements of the final segmentation. An example of the progressive subdivision

into gradually smaller segments produced by this approach is shown in Figure 4.3.

Algorithm 1 Split algorithm

while there are still segments available to split do
Select segment Si with the largest fitting error
if Si satisfies all conditions of Eq. 4.2 then

Split Si into Si0 and Si1 (Section 2.2)
if (|Si0| < Tp) ∨ (|Si1| < Tp) then

Remove Si from the list of segments available to split
continue

end if
Fit a NURBS surface on Si0 and Si1 (Section 3.1)
Compute fitting errors ei0 and ei1
if fitting errors satisfy Eq. 4.1 then

Add Si0 and Si1 to the list of segments available to split
else

Remove Si from the list of segments available to split
continue

end if
else

Remove Si from the list of segments available to split
continue

end if
if maximum number of splits reached then

return
end if

end while

4.1. REGION SPLITTING 35

S0

S00

S000

S0000 S0001

S00010 S00011

S001

S0010 S0011

S00110 S00111

S01

S1

S10

S100

S1000 S1001

S10010

S100100 S100101

S10011

S101

S11

S110 S111

S1110

S11100 S11101

S111010

S1110100 S1110101

S111011

S1111

S11110

S111100 S111101

S11111

S111110 S111111

0

7

8

12 12

25 25

8

9 9

17 17

7

0

1

2

4 4

6

10 10

6

2

1

13 13

14

19 19

20

27 27

20

14

15

24 24

15

16 16

Figure 4.2: Tree structure originated by the region splitting algorithm on a sample
scene. The progressive indexes of the split operations are shown on the edges. The
colored nodes correspond to the final segments, and the meaning of the colors is as
follows. Red� : further segmentation was attempted but rejected since not satisfy-
ing the fitting accuracy improvement constraint. Orange� : the segmentation was
rejected since one of the resulting sub-segments would be smaller than Tp. Light
green� : not split since smaller than 2Tp. Bright green� : not split since fitting
error smaller then Tferr. Green� : stopped since the maximum tree depth Td was
reached.

36 CHAPTER 4. SURFACE FITTING SEGMENTATION SCHEMES

Color image Iteration 1 Iteration 2 Iteration 5

Iteration 10 Iteration 15 Iteration 20 Final result

Figure 4.3: Execution of the splitting procedure on the sample scene of Figure 3.4.
The images show the segmentation after 1, 2, 5, 10, 15, 20 iterations and the final
result (iteration 30).

4.2 Region merging

The region splitting method of previous section is a top-down approach, that

starts from the input scene and progressively refines it until a final segmentation is

obtained. We develop our region merging method as a bottom-up process instead,

that is, we start from an initial over-segmentation and we analyze the neighboring

segments with the goal to join the adjacent ones belonging to the same surface

or object in the scene. As before, the accuracy of the NURBS surface fitting is

the criterion we use at the intermediate steps to decide whether to merge the

neighboring segments or not.

The workflow of this merging procedure is displayed in Figure 4.4. The initial

over-segmentation is obtained with the approach of Section 2.2, with the spectral

clustering algorithm applied to the 9D vectors of the scene. In this preliminary

step, the number of segments is chosen so that we can reasonably expect all the

objects to be divided into one segment at least (we use 50 segments in our results).

As to the λ1, λ2 parameters used to control the mutual relevance of color, positions

and normals information, for our results we set λ1 = 1.5 and λ2 = 0.5 (that is,

we weight the positions and normals data slightly more and slightly less than the

color clue respectively).

Then, a NURBS surface is fitted on each segmented region Si using the approach

of Section 3.1 and the corresponding fitting errors ei are computed. The algorithm

starts by sorting all the segments in decreasing order based on the fitting error, thus

producing an ordered list LS where the segments with larger fitting errors come

4.2. REGION MERGING 37

Initial segmentation

Color
data

9D point
vectors

 Conversion
to CIELab

Normalised cuts
spectral clustering

(x,y,z)
point set

Geometry
data

1/sc

l1

1/sg

Normals
Computation

l2

1/sn

Merge phase

NURBS fitting
on merged segments

 Surface
fitting

accuracy
improved

?

Yes

No

Select the merging
providing the largest fitting

 accuracy improvement

Discard
the merging

Are there
couples of
segments
 to join ?

Select the segment with
the largest fitting error Yes

No

End

Find all the adjacent
segments and try to merge

No

Figure 4.4: Overview of the region merging approach.

first. It also analyzes all the segments and builds an adjacency matrix, storing

for each couple of segments whether they are adjacent or not. Two segments are

considered as adjacent if they satisfy the following conditions:

1. They must be connected on the depth map lattice (using 4-connectivity) and

the length lcc of the shared boundary CC (highlighted in red in the example

of Figure 4.5) must be bigger than a threshold Tl. For the 640 by 480 pixels

images used in the results a reasonable value is Tl = 15.

2. The depth values on the shared boundary must be similar. In order to check

this, we compute the difference ∆Zi between the depth values on the two sides

of the edge for each point Pi in the common boundary CC (in the example

of Figure 4.5 the orange arrows show which differences are considered). The

number of points ldcc in the shared boundary with a depth difference smaller

than a threshold Tz = 0.2m is then computed. The ratio between ldcc and the

total length of the shared boundary must be greater than a threshold R (the

same value is used also in the following Equations 4.4 and 4.5 and we set it

to 0.6), that is:

|Pi : (Pi ∈ CC) ∧ (∆Zi ≤ Tz)|
|Pi : Pi ∈ CC |

=
ldcc
lcc

> R . (4.3)

3. Also the color values must be similar on both sides of the common contour.

We check this as for the depth values, except for the fact that we consider

the difference ∆Ci between the values in the CIELab color space. Namely,

38 CHAPTER 4. SURFACE FITTING SEGMENTATION SCHEMES

we compute the color difference ∆Ci between the samples on both side of

the shared boundary, we determine the number of points lccc for which this

difference is smaller than a threshold Tc = 6, and we require the ratio between

lccc and the total length to be greater than R, that is:

|Pi : (Pi ∈ CC) ∧ (∆Ci ≤ Tc)|
|Pi : Pi ∈ CC |

=
lccc
lcc

> R . (4.4)

4. The same condition is required also for normal information. That is, the

angle between the two normal vectors ∆θi is computed for each couple of

samples on the two sides of the shared boundary. The number of points lncc

for which the angle between the normal vectors is smaller than a threshold

Tθ = 5◦ is computed, and again the ratio between lncc and the total length

must be greater than R, that is:

|Pi : (Pi ∈ CC) ∧ (∆θi ≤ Tθ)|
|Pi : Pi ∈ CC |

=
lncc
lcc

> R . (4.5)

If all the above conditions hold the two segments are marked as adjacent. Notice

that the checks are performed in the presented order, and in case any of them is

not satisfied the following ones are skipped. This allows us to avoid unnecessary

computations, since we exclude most couple of segments before computing all the

depth, color and normal differences along the contour.

��

��

��

��

Figure 4.5: Example of boundary region with the common contour between two
sample segments S1 and S2. The arrows show along which edges of the contour
the differences used in Equations 4.3, 4.4, 4.5 are calculated.

The procedure then selects the segment with the largest fitting error and tries

4.2. REGION MERGING 39

Algorithm 2 Merge algorithm

Compute LS (list of segments) and sort it according to ei
For each segment Si compute the set Ai of adjacent segments
i = 1 (select as Si the first segment in LS)
while i < length(LS) do

for all segments Sj adjacent to Si do
compute fitting error on merged segment Si∪j
check if the condition of Eq. 4.6 is satisfied

end for
if at least one merge operation satisfies Eq. 4.6 then

Select the merge operation leading to best fitting accuracy improvement
(the corresponding segment is S∗j)
Remove Si and S∗j from LS
Add Si∪j∗ to LS
Compute Ai∪j∗
i = 1 (Si is the first segment in LS)

else
i = i+ 1 (Si is the next segment in LS)

end if
end while

to join it with all the ones that are adjacent (according to the previously introduced

criteria). In detail, let Si be the segment with the greatest fitting error ei. The

algorithm considers each adjacent segment Sj (with fitting error ej), and tries to

join Si and Sj obtaining the segment Si∪j. Then, a NURBS surface is fitted over

the merged segment Si∪j, the corresponding fitting error ei∪j is computed and it is

compared against the weighted average of the fitting errors on Si and Sj:

ei|Si|+ ej|Sj|
ei∪j(|Si|+ |Sj|)

> 1 . (4.6)

Notice that this condition is the reverse of Eq. 4.1 used in the splitting method,

since it requires that the weighted fitting accuracy is better on the union than on

the two separate parts (the opposite is requested in the splitting scheme).

If the fitting accuracy improves, that is, the condition of Eq. 4.6 is satisfied,

the merging operation between Si and Sj is candidate to be accepted, otherwise

it is discarded. The procedure is repeated for all the segments adjacent to Si and,

among the ones for which the merging operation would improve the fitting error

(if any), the segment S∗j that provides the maximum improvement according to

Eq. 4.6 is selected. The two segments Si and S∗j are then merged, and the list

LS is updated by removing them and inserting their union Si∪j∗ in the position

corresponding to its fitting error ei∪j∗ . The adjacency information is also updated

40 CHAPTER 4. SURFACE FITTING SEGMENTATION SCHEMES

by considering Si∪j∗ adjacent to all the segments that were adjacent to either Si

or S∗j . In case instead there are no merging operations with Si that would improve

the fitting error, the algorithm just moves to the next segment in LS.

After selecting the next segment with the greatest fitting error, the algorithm

continues as above and it iterates until no more segments can be considered for a

merge operation. The procedure is summarized in Algorithm 2 and its progress

on a sample scene is displayed in Fig. 4.6, where a graph representing the various

merge operations and the resulting segmentations at several iterations are shown.

46|P46 40|P40

58|P58 44,46

2

65|P65

30|P30 40,44,46

3

12|P12

24|P24

16|P16 4|P4

56,65

6

13|P13

33|P33

2|P2

14|P14

64|P64 13,40,44,46

4

15|P15

57|P57

13,14,40,44,46,61

7

8|P8

49|P49

17|P17

6|P6

8,29

8

18|P18

54|P54

17,20

9

19|P19 20|P20

19,31

1 0

21|P21

9

22|P22

21,26

1 1

23|P23

22,43

1 2

26|P26

23,27

1 3

27|P27

1 1

28|P28

1 3

29|P29 31|P31

8

32|P32

1 0

0|P0

19,31,32

1 4

34|P34

0,21,26

1 5

35|P35

34,58

1

36|P36

35,50

1 6

37|P37

10,36

1 7

38|P38

37,53

1 8

39|P39

38,41

1 9

1|P1 41|P41

1,22,43

2 0

42|P42

1 9

43|P43

42,45

2 1

44|P44

1 2

45|P45

2

3|P3

2 1

47|P47 48|P48 5|P5 50|P50

5,62

2 2

51|P51

1 6

52|P52 53|P53

13,14,25,40,44,46,52,61

2 4

7|P7

1 8

55|P55

7,13,14,25,40,44,46,52,61

2 5

56|P56 25|P25

6

9|P9

13,14,25,40,44,46,61

2 3

59|P59

9,11

2 6

60|P60 61|P61

7,13,14,25,37,40,44,46,52,53,56,60,61,63,65

3 5

62|P62

13,40,44,46,61

5

63|P63

2 2

10|P10

56,63,65

2 7

11|P11

1 7 2 6

1

2,54

0 0

1 4

7,13,14,25,37,40,44,46,52,53,56,61,63,65

3 5

3 4

2 5

2 4

2 3

7

5

4

3

37,53,56,63,65

3 4

3 2

3 2

2 7

0,1,8,9,10,11,17,20,21,22,23,26,27,29,35,36,38,41,42,43,45,50

8,10,29,35,36,42,45,50

3 9

8,29,35,50

3 6

2 8 2 8

10,36,42,45

3 6

3 13 1

0,1,9,11,17,20,21,22,23,26,27,38,41,43

3 9

0,21,23,26,27

3 8

3 0

3 0

1 5

1,9,11,17,20,22,38,41,43

3 8

9,11,17,20

3 7

2 9 2 9

1,22,38,41,43

3 7

3 3

3 3

2 0

Initial segmentation Iteration 8 Iteration 16

Iteration 24 Iteration 32 Final result

Figure 4.6: Example of the merging procedure on the scene of Figure 4.9, sixth
row. The images show the initial over-segmentation, the merging output after 8,
16, 24, 32 iterations and the final result (iteration 41). The graph shows the merge
operations between the various segments. The colors in the images correspond to
those of the graph nodes.

4.3 Combined region splitting and merging

The region splitting and region merging schemes of the previous sections are

both capable to provide good segmentation results, as will be discussed in Sec-

tion 4.4. However, with the recursive splitting algorithm alone it is sometimes

4.3. COMBINED REGION SPLITTING AND MERGING 41

Pre-processing

Color
data

9D point
vector

 Conversion
to CIELab

(x,y,z)
point set

Geometry
data

1/sc1/sg

Normal
computation

1/sn

Normalised cuts
spectral clustering

Segment
1

NURBS
fitting

Segment
2

NURBS
fitting

No

Yes Discard
the split Maximum

number of splits
reached ?

Size
 constraint
 satisfied

?

Size
constraint
 satisfied

?

Yes

Yes

Is there
any segment

to split ?

Select segment with
worst fitting accuracyYes

No

 Depth of tree,
size and error

constraints
satisfied ?

Mark segment
as not to be split

No No

Yes

No

Split phase

Merge phase

NURBS fitting
on merged segments

 Surface
fitting

accuracy
improved

?

Yes

Select the merging
providing the largest fitting

 accuracy improvement

Discard
the merging

Are there
couples of
segments
 to join ?

Select segment with
worst fitting accuracy

Yes

No

End Find all the adjacent
segments and try to merge

No

Figure 4.7: Overview of the combined region splitting and merging approach.

difficult to balance the trade-off between an over-segmentation of the scene and

the recognition of all the objects and structures in it. In particular, in some split-

ting steps the binary segmentation can mistakenly divide a single object due to

misleading clues. If this happens, a final merging stage recombining the multiple

segments corresponding to the same scene object would improve the final result.

On the other hand, the region merging scheme is performed on a generic over-

segmentation, that does not take the surface fitting results into account. Using the

surface fitting approach also in this preliminary step is more consistent, and can

provide an improvement in the final segmentation.

Based on these premises, we propose an additional segmentation method by

combining the region splitting and the region merging ones. That is, we apply a

variation of the region splitting scheme to obtain the initial over-segmentation that

is used as input for the region merging procedure. An overview of this combined

approach is shown in Figure 4.7. We refer to Section 4.1 and to Section 4.2 for

the details about the two single methods, and we describe in the following the

modifications we make in order to use them in the combined procedure.

Regarding the region splitting phase, an important point is that we now aim to

42 CHAPTER 4. SURFACE FITTING SEGMENTATION SCHEMES

obtain an over-segmentation rather than the final result. To achieve this, we drop

the condition of Eq. 4.1, thus accepting a split operation even if not improving

the surface fitting accuracy. Notice that the fitting results still remain relevant

in the process, since we keep the fact that at each step the segment that gets

processed is the one with the largest fitting error. With this modification, the

iterative procedure keeps subdividing the obtained regions, until either they have

all become too small to be further split, or one of thresholds Td (maximum split

tree depth) or Ts (maximum number of segments) have been reached. About the

latter, notice that the Ts = 50 value we set is consistent with the choice of 50

regions in the initial over-segmentation provided by the normalized cuts algorithm

for the region merging method alone.

As to the merging phase, in the combined approach we simplify the conditions

required on the neighboring segments to be considered as adjacent, by using the

value 0.5 (instead of 0.6) for the threshold R of Section 4.2. The Equations 4.3,

4.4 and 4.5 then become:

|Pi : (Pi ∈ CC) ∧ (∆Zi ≤ Tz)|
|Pi : Pi ∈ CC |

> 0.5 , (4.7)

|Pi : (Pi ∈ CC) ∧ (∆Ci ≤ Tc)|
|Pi : Pi ∈ CC |

> 0.5 , (4.8)

|Pi : (Pi ∈ CC) ∧ (∆θi ≤ Tθ)|
|Pi : Pi ∈ CC |

> 0.5 , (4.9)

that is, the compatibility conditions regarding the depth, color and orientation

values are requested along at least half (instead of 60%) of the common boundary.

To balance this, in our experimental results we use the slightly tighter threshold

values Tz = 0.15m, Tc = 5 and Tθ = 2◦ (instead of Tz = 0.2m, Tc = 6 and

Tθ = 5◦ used for the region merging scheme alone). Regarding the other steps and

parameters of the algorithm we do not make any other change.

As will be discussed in Section 4.4, this combined scheme obtains improved

results with respect to each of the two single methods alone. The progress of both

the splitting and the merging phase on a sample scene is shown in Figure 4.8.

On that one, it is visible how the merging iterations are successful in recombining

portions of regions that were mistakenly subdivided during the splitting phase

(e.g., the background wall or the person).

4.3. COMBINED REGION SPLITTING AND MERGING 43

Split iteration 1 Split iteration 2 Split iteration 10

Split iteration 20 Split iteration 30 Split final result

39 43

35 21 5 8,39

0

14

3,10,26,27,29,30,31,32,33,36,37,38,41,43,44

2 0

9

14,15

1

13

9,16

3

15 25

1

3

4,25

4

23

3,27

5

16 17

3

24

9,16,17

7

2

4,24,25

6

6 1 22 36 7

36,37

8

8 26

0

27

26,29

9

10

5

29

10,41

1 0

30

9

31

30,33

1 1

32

31,36,37

1 2

33

26,29,32

1 3

18

1 1

19 0 37 38

8

34

3,27,38

1 4

40 41 42

1 0

4 44

4

10,41,44

1 5

20 11 28 12 8,14,15,39

2 2 67

3,10,26,27,29,30,31,32,33,36,37,38,41,44

2 0

3,26,27,29,32,38

1 9

1 7

1 3

1 7

1 4

10,30,31,33,36,37,41,44

1 9

1 8

1 5

30,31,33,36,37

1 8

1 6

1 6

1 2

Initial segmentation Merge iteration 4 Merge iteration 8

Merge iteration 12 Merge iteration 16 Merge final result

Figure 4.8: Combined splitting and merging procedure on the scene of Figure 4.9,
sixth row. The first group of images show the segmentation after 1, 2, 10, 20,
30 iterations of the splitting phase and the final over-segmentation (iteration 50),
which is used as input for the merging phase (first image in the second group).
The other images in the second group show the merging output after 4, 8, 12, 16
iterations and the final result (iteration 21). The graph in the middle shows the
merge operations between the various segments (in the second group of images the
colors correspond to those of the graph nodes).

44 CHAPTER 4. SURFACE FITTING SEGMENTATION SCHEMES

4.4 Experimental results

We perform an experimental evaluation of the proposed methods by first an-

alyzing their results on a small sample dataset, then by comparing them against

state-of-the-art approaches on the large and challenging NYU Depth Dataset V2

(NYUv2) [49].

Results on the LTTM dataset

The first and simpler dataset was acquired at the LTTM laboratory [43] and is

available at http://lttm.dei.unipd.it/downloads/segmentation. It contains

6 different images with the corresponding depth maps acquired by PrimeSense de-

vices (i.e., Kinect v1 and Xtion sensors). Ground truth information obtained by

manual segmentation is also available. It is a small dataset but contains a large va-

riety of different structures and objects with varying shapes, colors and properties,

then it is a good starting point to evaluate the various proposed approaches. It

also represents a completely different environment from the NYUv2 dataset, then

it is useful to ensure that our methods have not been over-fitted on that dataset.

We present the segmentation results obtained with the approaches of [11], [42],

[41] and with the proposed combined region splitting and merging method (re-

ferred to as Split+Merge in the following). This is an interesting test to compare

our approaches and also understand the relevance of the various components, since

the first cited work directly segments the scene into the desired number of regions

with an approach based on spectral clustering, that can be considered as a sim-

plified version of the segmentation scheme of Section 2.2. The second one exploits

the region splitting scheme of Section 4.1, simplified to not consider the orien-

tation information, while the third one leverages the region merging approach of

Section 4.2.

The visual results are shown in Figure 4.9, and Table 4.1 lists the numerical

values obtained by comparing the results and the ground truth. Starting from

the visual results, on Figure 4.9 it is clear how the Split+Merge method obtains

better performances than the compared approaches. The approach of [11] tends

to over-segment the considered scenes and has some difficulties in properly cap-

turing all the objects. In particular the background is completely wrong in some

scenes (e.g., 5 and 6), since the geometry dependent term combined with the bias

towards segments of similar size of the normalized cuts algorithm [48] forces the

large regions to be divided into multiple pieces. Notice how in our approaches the

merging scheme solves this problem by recombining together segments belonging

http://lttm.dei.unipd.it/downloads/segmentation

4.4. EXPERIMENTAL RESULTS 45

to the same surface. The approach of [42] produces less segments but is not able

to recognize all the objects (e.g., in scenes 4 and 5). Notice in particular how this

splitting approach alone can hardly recognize all the scene objects and at the same

time avoid over-segmentation, while the Split+Merge method can perform a larger

number of splitting steps without affecting the final result since over-segmentation

issues get fixed in the merging phase. Since the approach in [42] does not exploit

orientation information, to fully evaluate the performances of the splitting algo-

rithm we show also the results of a modified implementation that takes normals

into account. This version then exactly corresponds to the splitting scheme of Sec-

tion 4.1. It can be noticed that the orientation information allows some surfaces to

be better captured, e.g., the background in scene 2 and the table in scene 5. The

region merging scheme [41] is the one that obtains results closer to the Split+Merge

approach. Both the methods avoid the creation of small segments caused by noise

or by complex surfaces, and at the same time they properly extract most of the

structures in the scene. Moreover, the use of orientation information makes the

various walls and the surfaces with different orientation properly recognized (e.g.,

the table in row 3). However, notice how the background (especially in scenes 1

and 2) is properly captured only by the Split+Merge approach, while [41] fails to

correctly recognize the various background surfaces. In general in the Split+Merge

approach the objects are well recognized, and there are very few segments extend-

ing over separate objects at different depths.

The visual evaluation is confirmed by the numerical results, as shown by Table

4.1. In order to compare the results with ground truth data we use two different

metrics, the Variation of Information (VoI) and the Rand Index (RI). A description

of these metrics can be found in [1], in particular notice that lower values correspond

to better results for the VoI metric while higher values are better for the RI metric.

The table lists the average values of the two metrics on the six considered scenes.

It shows that according to both metrics the Split+Merge approach outperforms all

the compared ones. The VoI metric value is better by a large gap with respect to

[11] and [42]. The merging approach has closer performances, as already noticed

also on the visual results, but the Split+Merge scheme is able to outperform it

anyway with an average VoI score of 1.69 against 1.74. The behavior is similar for

the RI metric, with which the Split+Merge approach is the best one with a score

of 0.91. Notice that the approaches exploiting orientation information provide in

general better performances.

46 CHAPTER 4. SURFACE FITTING SEGMENTATION SCHEMES

Approach VoI RI
(Clustering) [11] 2.71 0.81
(Split) [42] 2.01 0.83
(Split+normals) [42] 1.92 0.88
(Merge) [41] 1.74 0.88
(Split+Merge) 1.66 0.91

Table 4.1: Comparison of the performances of the proposed Split+Merge method
with [11, 42, 41]. The table shows the average value of the VoI and RI metrics on
the six scenes of the LTTM dataset.

Color Depth Ground [11] [42] [42]+n [41] Split+
image map truth (Clust.) (Split) (Split) (Merge) Merge

Figure 4.9: Segmentation of some sample scenes with the proposed Split+Merge
method and with the approaches of [11], [42] and [41]. The black regions in the
results correspond to samples without a valid depth value from the Kinect that are
not considered for the segmentation.

4.4. EXPERIMENTAL RESULTS 47

Fitting metrics comparison

We report also some results about the various fitting metrics defined in Sec-

tion 3.2. In [42] we apply the region splitting method (without using orientation

information) to the six scenes of the LTTM dataset, and we compare the segmenta-

tion performances obtained with each of the available fitting metrics. We test also

the values 0.8, 0.9 and 1 for the threshold Te of Eq. 3.5 (recall that Te determines

the required amount of improvement on the fitting error of two subsegments to

accept a subdivision operation in the splitting scheme).

Table 4.2 shows the accuracy of the obtained segmentations according to the RI

metric. A first basic result is that on average error based metrics produce better

results than curvature based approaches, even if this is not true for all the metrics

and all the scenes. Notice in particular that none of the metrics is the best on all

the considered scenes. The number of points with a large error (NLE) provides

the best average results. The MSE and MAE metrics both provide good results

(they behave similarly, as expected). Curvature based metrics provide on average

slightly lower performances. The best one among them is the NLC (number of

points with a large curvature) metric, that is the best on scene 4 and has average

performances similar to the MSE and MAE. The other curvature metrics have

lower scores according to this metric, but not too far from the error based ones.

Finally notice that according to the RI measure the choice Te = 1, equivalent to

simply ensuring that the metric values improve even by a very small amount, is

the best option for all metrics except VMEC.

Table 4.3 shows the results according to the VoI metric. MSE with T = 1 is

the best option, even if NLE gets very close to the MSE score. MAE and VE also

achieve good results. Again, curvature based approaches have low performances,

with the exception of NLC, that is the only curvature based approach with close

results to those of the error based approaches.

Given these results, we consider the MSE metric with Te = 1 as the most

adequate choice in general. All the results of our approaches listed in this section

are obtained with these options.

Regarding this, notice that Table 4.1 reports VoI and RI scores of 2.01 and 0.83

respectively, instead of 1.90 and 0.85 as in Tables 4.2 and 4.3 (see the MSE, Te = 1

case). This is because the values in [42] are calculated considering the black regions

made of invalid points (i.e., not acquired by the sensor) as valid segments both on

the segmentation and on the ground truth, thus overestimating the segmentation

accuracy. Table 4.1 lists the correct values instead, obtained with the invalid points

ignored.

48 CHAPTER 4. SURFACE FITTING SEGMENTATION SCHEMES

Metric Te Scene Mean
1 2 3 4 5 6

1 0.70 0.90 0.89 0.84 0.87 0.91 0.85
MSE 0.9 0.67 0.90 0.60 0.78 0.83 0.90 0.78

0.8 0.67 0.84 0.60 0.75 0.84 0.86 0.76
1 0.67 0.90 0.89 0.84 0.88 0.92 0.85

MAE 0.9 0.67 0.84 0.60 0.77 0.82 0.85 0.76
0.8 0.67 0.79 0.60 0.77 0.82 0.81 0.75
1 0.90 0.91 0.60 0.84 0.89 0.85 0.83

VE 0.9 0.70 0.91 0.60 0.75 0.83 0.90 0.78
0.8 0.67 0.90 0.60 0.75 0.84 0.86 0.77
1 0.87 0.90 0.82 0.78 0.87 0.92 0.86

NLE 0.9 0.67 0.89 0.60 0.78 0.84 0.91 0.78
0.8 0.67 0.89 0.60 0.78 0.84 0.81 0.77
1 0.79 0.79 0.86 0.86 0.72 0.86 0.81

VMXC 0.9 0.79 0.79 0.87 0.86 0.70 0.86 0.81
0.8 0.79 0.79 0.84 0.86 0.70 0.85 0.81
1 0.79 0.79 0.89 0.87 0.72 0.87 0.82

VMEC 0.9 0.79 0.79 0.88 0.86 0.74 0.87 0.82
0.8 0.63 0.79 0.88 0.86 0.74 0.87 0.79
1 0.79 0.85 0.85 0.87 0.70 0.85 0.82

VGC 0.9 0.79 0.85 0.85 0.87 0.70 0.85 0.82
0.8 0.79 0.85 0.85 0.86 0.70 0.85 0.82
1 0.79 0.79 0.89 0.87 0.72 0.81 0.81

MMXC 0.9 0.63 0.79 0.60 0.78 0.73 0.82 0.72
0.8 0.63 0.79 0.60 0.78 0.70 0.81 0.72
1 0.86 0.79 0.87 0.87 0.88 0.81 0.85

NLC 0.9 0.70 0.79 0.86 0.87 0.75 0.82 0.80
0.8 0.70 0.79 0.60 0.78 0.70 0.70 0.71

Table 4.2: Results of the region splitting method [42] according to the RI metric
(higher is better), with different fitting metrics and Te values used. The Te value
giving the best result for each metric and the best results on each scene and on
average are marked in bold.

4.4. EXPERIMENTAL RESULTS 49

Metric Te Scene Mean
1 2 3 4 5 6

1 2.42 1.79 1.99 1.73 1.68 1.77 1.90
MSE 0.9 2.79 1.39 2.58 1.60 1.67 1.79 1.97

0.8 2.79 1.33 2.58 1.80 1.53 1.98 2.00
1 2.79 1.66 1.88 1.72 2.69 1.68 2.07

MAE 0.9 2.79 1.30 2.68 1.61 1.76 1.82 1.99
0.8 2.79 1.72 2.58 1.61 1.58 2.02 2.05
1 2.39 1.79 2.58 1.73 1.61 2.64 2.12

VE 0.9 2.42 1.40 2.58 1.80 1.65 1.78 1.94
0.8 2.79 1.39 2.58 1.80 1.53 1.98 2.01
1 2.84 1.55 2.23 1.60 1.54 1.67 1.91

NLE 0.9 2.79 1.51 2.58 1.60 1.53 1.75 1.96
0.8 2.79 1.51 2.58 1.60 1.53 2.02 2.00
1 2.73 1.72 2.60 1.59 2.49 2.49 2.27

VMXC 0.9 2.73 1.72 2.52 1.59 1.91 2.46 2.16
0.8 2.73 1.72 2.58 1.59 1.91 2.03 2.09
1 2.73 1.72 2.13 1.78 2.38 2.43 2.19

VMEC 0.9 2.73 1.72 2.18 1.71 2.12 2.43 2.15
0.8 3.03 1.72 2.10 1.59 2.12 2.14 2.12
1 2.73 1.85 2.53 1.79 1.92 2.56 2.23

VGC 0.9 2.73 1.85 2.53 1.79 1.92 2.57 2.23
0.8 2.73 1.85 2.53 1.71 1.92 2.37 2.19
1 2.73 1.72 2.06 1.78 2.38 2.26 2.15

MMXC 0.9 3.03 1.72 2.68 1.63 2.29 2.20 2.26
0.8 3.03 1.72 2.68 1.63 1.92 1.98 2.16
1 2.19 1.67 2.20 1.75 2.04 2.35 2.03

NLC 0.9 2.49 1.67 2.19 1.78 2.04 2.20 2.06
0.8 2.49 1.67 2.68 1.63 1.91 2.37 2.13

Table 4.3: Results of the region splitting method [42] according to the VoI metric
(lower is better), with different fitting metrics and Te values used. The Te value
giving the best result for each metric and the best results on each scene and on
average are marked in bold.

50 CHAPTER 4. SURFACE FITTING SEGMENTATION SCHEMES

Results on the NYUv2 dataset

We perform the main experimental evaluation of our proposed approaches on

the NYU Depth Dataset V2 [49], that is much larger and thus more interesting.

Since it has been widely used for the evaluation of joint color and depth seg-

mentation algorithms, it allows the comparison of our proposed schemes with the

state-of-the-art methods for this task. The dataset was acquired with a Kinect and

contains 1449 depth and color frames from a variety of indoor scenes. Ground truth

data is also available. Since on the original ground truth data there are sometimes

missing values in proximity of edges, for our numerical evaluation we use the up-

dated versions of the ground truth labels provided by the authors of [23]. Table 4.4

shows the comparison between our Split+Merge method, our region splitting and

region merging schemes, and some state-of-the-art approaches from the literature

(for some competing methods we use the results collected by [28]). The compared

state-of-the art approaches are the clustering and region merging method of [28],

including the recent improved version [27], the MRF scene labeling scheme of [45],

a modified version of [18] that accounts also for geometry information, the dynamic

programming scheme of [52] and the multi-layer clustering strategy of [34]. The

average values obtained by our Split+Merge method are 2.17 as to the VoI metric

and 0.89 as to RI. The VoI metric results show that our approach outperforms

all the compared ones and the improvement over most of them is relevant. The

two approaches that get performances closer to the proposed one are [27] and our

merging scheme [41], with VoI values of 2.20 and 2.23 respectively compared to

2.17 (recall that for VoI smaller is better). If the RI metric is considered, the

proposed Split+Merge method outperforms most compared approaches and ob-

tains results very similar to those of the state-of-the-art methods of [45] and [27],

with a small difference of just 0.01 and 0.02 respectively. Notice also that our

approach does not make any assumption about the presence of planar surfaces

differently from [28], [27] and [52], so it is expected to better generalizes to scenes

with non-planar surfaces (in the NYUv2 dataset all the scenes are indoor settings

with many planar surfaces like walls and furniture, while outdoor settings have a

larger variability). In addition the method of [45] exploits a learning stage, while

our proposed approaches do not assume any previous knowledge on the data.

A visual comparison on 7 different scenes from this dataset is shown in Fig-

ure 4.10. Notice that the scenes have been selected by the authors of [28]. In the

figure we show the results of our Split+Merge method only, since it is the best

performing among our proposed ones. Even if this dataset is more challenging,

the proposed Split+Merge approach provides a reliable segmentation on all the

4.4. EXPERIMENTAL RESULTS 51

considered scenes as shown in the last column of Figure 4.10. The obtained seg-

mentations are clearly better than the approaches of [18], [11] and [52] (columns

6-7-8). The comparison with the two best performing approaches, that is, [28] and

[45], is more challenging and there is not a clear winner. The various objects are

properly extracted by our approach and the background region is correctly handled

on most scenes. In addition, our method does not produce noisy small segments

in proximity of edges, an issue happening with other approaches on some scenes.

Some small errors are present, e.g., in the corridor and bed scenes (rows 2 and 3).

In particular the blanket of the bed scene (row 3) is quite critical since color data

is very noisy and the normals on the rough surface are very unstable.

The total computation time is comparable to that of a direct segmentation

with normalized cuts, since on most iterations both the spectral clustering and

the surface fitting algorithms are applied to small subsets of the scene (the surface

fitting actually adds just a small overhead to the segmentation time).

Approach VoI RI
Felzenszwalb et al. [18] 2.32 0.81
Ren et al. [45] 2.35 0.90
Taylor et al. [52] 3.15 0.85
Hasnat et al. (JCSA) [28] 2.72 0.87
Hasnat et al. (JCSA-RM) [28] 2.29 0.90
Hasnat et al. (JCSD-RM) [27] 2.20 0.91
Khan et al. [34] 2.42 0.87
(Clustering) [11] 3.09 0.84
(Split) [42] 2.62 0.75
(Split+normals) [42] 2.52 0.76
(Merge) [41] 2.23 0.88
(Split+Merge) 2.17 0.89

Table 4.4: Performances of the proposed Split+Merge method, of some state-
of-the-art approaches (first block) and of approaches corresponding to the sub-
components of the Split+Merge method (second block). The table shows the av-
erage values of the VoI and RI metrics on the NYUv2 dataset.

52 CHAPTER 4. SURFACE FITTING SEGMENTATION SCHEMES

Figure 4.10: Segmentation of some sample scenes from the NYUv2 dataset: (col-
umn 1) color data; (column 2) depth data; (column 3) ground truth; (column 4)
[28]; (column 5) [45]; (column 6) [18]; (column 7) [52]; (column 8) [11]; (column 9)
proposed Split+Merge method. The results for the competing methods have been
collected from [28].

Chapter 5

Segmentation schemes based on

deep learning and surface fitting

In this chapter we show how a classification step based on Convolutional Neural

Networks (CNNs) can be exploited to improve the results of one of the iterative

segmentation methods of previous chapter, the region merging scheme. We also

point out that the resulting algorithm is effective for the semantic labeling problem

as well. Section 5.1 describes the architecture of the CNNs used for the preliminary

classification step. In Section 5.2 we present a variant of the region merging algo-

rithm of previous chapter, revised in order to take advantage of the classification

returned by the CNN, and also to improve it. Finally, in Section 5.3 we discuss

the experimental results both for the objects segmentation problem and for the

semantic labeling task.

5.1 Classification with deep learning

In order to improve the region merging algorithm presented in Section 4.2, we

introduce additional clues besides the NURBS surface fitting accuracy to control

the merging operations. For this, we employ a machine learning stage that returns

classification data for the input scene, which can be used not only to produce

semantic labels but also to decide which regions of the initial over-segmentation

should belong to the same segment in the final segmentation.

The idea is to exploit the output of a Convolutional Neural Network (CNN)

trained for semantic image segmentation in order to compute a pixel-wise high-level

description of the input scene. For this, a descriptor vector is associated to each

pixel by considering the final layer of the network, a standard soft-max classifier.

This information is used to compute a similarity score between couples of adjacent

53

54 CHAPTER 5. DEEP LEARNING SEGMENTATION SCHEMES

segments and, at the same time, to provide the input image with semantic labels.

The similarity score is the information that we use to control the iterations of the

revised region merging scheme, as described in next Section 5.2 (the similarity

data is employed both to decide whether two adjacent segments should be merged,

and to determine in which order the couples of segments are selected to attempt a

merge operation).

To test different possible approaches, we develop two separate structures of

Convolutional Neural Networks. We refer to them as CNN1 and CNN2 to disam-

biguate in the following. In the first one, presented in [40], both color and normals

information are used as input. First, the normalized color and normal components

computed in Section 2.2 are combined into 6D vectors representing each point of

the scene as

pcnk =
[
L̄(pk), ā(pk), b̄(pk), n̄x(pk), n̄y(pk), n̄z(pk)

]
, k = 1, . . . , np . (5.1)

Then, a six channel input image is produced for each scene of the considered dataset

by arranging the vectors over the image pixels lattice.

A multi-scale architecture [17] is then used to achieve a greater expressiveness

without increasing the number of network parameters. Each image is passed as

input to the network at the three different scales 320× 240, 160× 120 and 80× 60,

both to account for the varying size at which similar objects may appear in the

scene, and to take advantage of increasingly larger contexts. The structure of the

network is shown in Figure 5.1.

U
ps

am
p

le
U

ps
am

p
le

C
o

nc
at

en
at

e

320x240x6

160x120x6

80x60x6

80x60x6

Color and
normals

data

C
O

N
V

 3
6

@
7x

7
TA

N
H

M
A

X
P

C
O

N
V

 6
4@

7x
7

TA
N

H
M

A
X

P

C
O

N
V

 2
56

@
7x

7

80x60x256

40x30
x256

20x15
x256

80x60x256

80x60x256

80x60x256

80x60x768

F
C

O
N

N
TA

N
H

F
C

O
N

N
S

M
A

X

Figure 5.1: Layout of the proposed Convolutional Neural Network CNN1.

Similarly as in [17, 8], the network can be divided in two parts. In the first

part a local representation of the input is extracted by applying a sequence of con-

volutional layers sharing their weights across the three scales. More in detail, the

three input scales are feed-forwarded through three convolutional layers (denoted

5.1. CLASSIFICATION WITH DEEP LEARNING 55

with CONV in Figure 5.1). The first two convolutional layers are followed by a

hyperbolic tangent activation function (TANH) and a max-pooling (MAXP) layer,

while the third one is applied as a simple bank of linear filters, producing the three

outputs corresponding to the three scales. The outputs are then upsampled and

concatenated to provide a vector of feature descriptors for each pixel. The second

part of the network is composed by two fully-connected layers (FCONN), with

hyperbolic tangent and soft-max (SMAX) activation functions respectively.

In our implementation the three convolutional layers have 36, 64 and 256 filters

respectively. All filters are 7× 7 pixels wide, while the fully-connected layers have

1024 and 15 units respectively. The filters in the first convolutional layer are

divided into 6 groups, and each group is connected to one of the 6 input channels

separately. In order to ease the convergence of the first layer filter weights, local

contrast normalization is applied to each channel independently.

The network is trained to produce a semantic segmentation of the input image

by labeling each pixel in the scene with one among 14 different semantic labels.

To this purpose, a multi-class cross-entropy loss function is minimized throughout

the training process. For this task, we obtain a suitable ground truth from the one

provided in [23] by clustering the original 894 categories of the NYUv2 dataset [49]

into 14 classes, as proposed in [8].

As in [17] we split the training process into two separate steps. The filter

weights of the three convolutional layers are first trained separately by applying

a simple linear classifier to the output of the first part of the network, with soft-

max activation and multi-class cross-entropy loss function. Next, the weights and

biases of the last two fully-connected layers are trained while keeping fixed the

convolutional weights as calculated in the previous step. Again, the multi-class

cross-entropy loss function is minimized.

The output of the soft-max activation function in the last fully-convolutional

provides the final predicted labels. In addition, as detailed later for both the CNNs

considered in our approach, it provides the descriptors that we use to define the

similarity measure between any two segments.

The second Convolutional Neural Network (CNN2) we propose is built from

the approach of the first one and of [17, 8] with several modifications. It does not

adopt any multi-scale input representation and it receives various clues as input,

namely:

• Color data, represented by the 3 components in the RGB color space.

• Geometric information, given by three channels containing for each sample

the horizontal disparity h1, the height above the floor h2, and the angle a be-

56 CHAPTER 5. DEEP LEARNING SEGMENTATION SCHEMES

tween the normal vector and the vertical direction. With this representation,

introduced in [25] and denoted as HHA, the classification results are usually

better than those obtained by directly using the positions and orientation

information.

• Surface fitting information, represented by three components containing the

fitting error e and the two principal curvatures κ1 and κ2 of the NURBS

approximating surfaces (by considering these data we assume that NURBS

surface fitting has been performed on the input over-segmentation).

By combining these different types of information we obtain 9D vectors that

represent the points of the scene as

pcgfk = [R(pk), G(pk), B(pk), h1(pk), h2(pk), a(pk), e(pk), κ1(pk), κ2(pk)] ,

k = 1, . . . , np .
(5.2)

These vectors are arranged over the image pixel lattice to produce, for each scene

in the considered dataset, a 9-channel input image.

A sequence of convolutional layers is then applied in order to extract a local

representation of the input. The architecture of the employed network is shown in

Figure 5.2.

320x240x3
RGB

320x240x3
h1h2a

320x240x3
eκ1κ2

C
O

N
V

 3
6@

7
x7

H
TA

N

C
O

N
V

 9
0@

7x
7

TA
N

H
M

A
X

P

80x60x256

L
IN

E
A

R
S

O
F

T
M

A
X

C
O

N
V

 9
0@

7x
7

TA
N

H

C
O

N
V

 9
0@

7
x7

TA
N

H

C
O

N
V

 3
6@

7
x7

H
TA

N

C
O

N
V

 1
2

8@
7

x7
TA

N
H

M
A

X
P

C
O

N
V

 1
28

@
7x

7
TA

N
H

C
O

N
V

 1
28

@
7x

7
TA

N
H

C
O

N
V

 3
6

@
7x

7
H

TA
N

C
O

N
V

 2
56

@
7x

7

C
O

N
V

 2
56

@
7x

7
TA

N
H

C
O

N
V

 2
56

@
7

x7
TA

N
H

Figure 5.2: Layout of the proposed Convolutional Neural Network CNN2.

More in detail, each 9-channel input image is processed through nine convolu-

tional layers, combined into three main blocks, each one containing three layers.

Every block contains three convolutional layers (CONV), all followed by a hyper-

bolic tangent activation function (TANH). The first two blocks include also a final

max-pooling (MAXP) layer, while the third convolutional layer of the last block

5.1. CLASSIFICATION WITH DEEP LEARNING 57

does not have any activation function. Finally, a pixel-wise soft-max classifier is

applied on top of the last convolutional layer.

In order to decrease the computation time, the input images are fed to the CNN

at the coarser resolution of 320× 240 (the resolution is then reduced to 160× 120

in the second main block and to 80×60 in the third one). The convolutional layers

have 90 filters in the first block, 128 in the second block and 256 in the last one. As

for the CNN1 network, all filters are 7× 7 pixels size. The final soft-max classifier

has a weight matrix of size 256× 14 and no bias.

The first layer filters are arranged into 9 groups so that the filters in the i-th

group are connected to the i-th input channel only. As in the CNN1 case, local

contrast normalization is applied to each input channel independently, so that the

filter weights in the first convolutional layer converge faster.

The network is trained to produce a semantic segmentation of the input im-

age by assigning each pixel to one of the 14 different classes proposed in [8], the

same ones used for CNN1. With both networks, in addition to obtaining the fi-

nal predicted labels, we leverage the output of the soft-max classifier to compute

the descriptors defining the similarity measure between two regions of the initial

over-segmentation. The output of the soft-max is a 3D array of size 80× 60× 14,

and we linearly interpolate it to the size of the input image so that a descriptor

vector ck = [c1k, . . . , c
14
k] is associated to each pixel pk. Each descriptor vector can

be considered as a discrete probability density function (PDF) associated to the

corresponding pixel, since its elements are non-negative and sum up to 1. Then,

a probability density function si = [s1i , . . . , s
14
i] can be associated to each segment

Si by simply averaging the PDFs associated to the pixels it contains, that is:

si =

∑
j∈Si

cj

|Si|
. (5.3)

Given two segments Si and Sj, their similarity can then be estimated by com-

paring their descriptors si and sj, which are two PDFs. An effective approach to

compare two PDFs consists in using the Bhattacharyya coefficient

bi,j =
∑

t=1,..,14

√
stis

t
j , (5.4)

then we consider this quantity as our similarity measure.

As an example, Figure 5.3 displays the proposed similarity score between neigh-

boring segments on a sample scene. The color of each boundary between two

segments is proportional to the corresponding bi,j value (darker corresponds to

58 CHAPTER 5. DEEP LEARNING SEGMENTATION SCHEMES

lower similarity values). In particular, notice in Figure 5.3a that most neighboring

regions corresponding to different objects have a low similarity value (dark gray

boundaries), while segments belonging to the same object share higher values (light

gray boundaries). In Figure 5.3b, the boundaries between segments resulting from

the final steps of the merging procedure (see Section 5.2) typically correspond to

low similarity scores (dark gray).

(a) (b)

Figure 5.3: Computation of bi,j on a sample scene. (a) bi,j values on the initial
over-segmentation. (b) bi,j values on the final result after all the merging steps.
The boundary colors are proportional to the similarity between the neighboring
segments (dark gray corresponds to low bi,j values, light gray to large ones).

5.2 Region merging

In this section we present our additional region merging segmentation method.

The scheme originates from the approach already described in Section 4.2, revised

to take advantage of the classification data obtained by the CNNs of previous

section, and to consider the task of semantic labeling in addition to objects seg-

mentation. We refer to Section 4.2 for the overall procedure then, and we highlight

here the main differences in this revised version.

The workflow using the CNN2 network of Section 5.1 is displayed in Figure 5.4.

In [40] we employ the simpler CNN1 network instead, as to the figure notice that

the difference in this case is that the HHA descriptors and the NURBS surfaces do

not need to be calculated, since they are not used as input.

After obtaining the initial over-segmentation and the classification from the

CNN, the algorithm starts by selecting the couples of segments that are candidate

to be joined. For this, it determines whether the neighboring segments can be

considered as adjacent as in the previous version, that is, by checking compatibility

conditions along their common boundary. The same constraints on depth, color

5.2. REGION MERGING 59

Pre-processing

Merge phase

 Over-segmentation and classification

320x240x6

160x120x6

Surface
fitting accuracy

improved?

No

Yes

Depth
data

Color
data

Segment
descriptors

Normalized cuts
spectral clustering1/σg

1/σn

1/σc

(x, y, z)
point set

Normals
computation

RGB to CIELab
conversion

Compute
similarity of

adjacent
segments

Sort and discard
below similarity

threshold

NURBS
fitting

NURBS
fitting Segment 1

Segment 2

Select two
segments

to be joined

Discard
union

Keep
union

Geometry
vectors

Normal
vectors

Color
vectors

NURBS
fitting

Convolutional
Neural Network

(CNN)

HHA
descriptors
computation

Figure 5.4: Overview of the revised region merging approach.

and orientation of Section 4.3 are used,

|Pi : (Pi ∈ CC) ∧ (∆Zi ≤ Tz)|
|Pi : Pi ∈ CC |

> 0.5 , (5.5)

|Pi : (Pi ∈ CC) ∧ (∆Ci ≤ Tc)|
|Pi : Pi ∈ CC |

> 0.5 , (5.6)

|Pi : (Pi ∈ CC) ∧ (∆θi ≤ Tθ)|
|Pi : Pi ∈ CC |

> 0.5 , (5.7)

in addition to the requirement that the common boundary CC itself must be longer

than Tl. We set Tl = 50 instead of the previous Tl = 15 to allow more neighboring

segments, in order to increase the effect of the similarity information returned by

the CNN. As to the other adjacency thresholds, we use Tz = 0.2 m, Tc = 8 and

Tθ = 4◦ in [40] (based on the CNN1 network) and we slightly change Tc = 10 for

the latest results based on the CNN2 network.

At this point, obtained the list LA of couples of adjacent segments, the algo-

rithm computes the similarity value bi,j for each couple based on the results of the

machine learning stage, as described in Section 5.1. The list LA is sorted according

to the values bi,j. This is a major difference with respect to the original region

merging scheme, since in that one the processing order of the segments depends

60 CHAPTER 5. DEEP LEARNING SEGMENTATION SCHEMES

on the surface fitting accuracy instead. Furthermore, the couples of segments with

a similarity value bi,j below a threshold Tsim are removed from LA and thus not

considered for a merging operation (we use Tsim = 0.75 in [40] and Tsim = 0.77

for the results obtained with the CNN2 network). The rationale is that we do not

want to merge segments with low similarity, that is, with different properties, since

they probably belong to distinct objects or parts of the scene.

The algorithm then processes the first couple in LA, that is, the one with the

highest similarity score. Let Si∗ and Sj∗ be the two segments and let Si∗∪j∗ be their

union. As in the original region merging scheme, a NURBS surface approximation

is calculated for the two segments and for their union, and the corresponding

fitting error ei∗ , ej∗ and ei∗∪j∗ are determined. As previously, the merge operation

is accepted provided it improves the fitting accuracy, that is:

ei∗|Si∗ |+ ej∗|Sj∗|
ei∗∪j∗(|Si∗|+ |Sj∗ |)

> 1 . (5.8)

If the condition of Eq. 5.8 is not satisfied, the merging operation is discarded.

Otherwise, the two segments S∗i and S∗j are merged. If this is the case, all the

couples involving any of them are removed from the list LA, and the adjacency in-

formation is updated by considering the union Si∗∪j∗ as adjacent to all the segments

that were previously adjacent to any of the two single segments. The descriptor

si∗∪j∗ associated to Si∗∪j∗ is then computed using Eq. 5.3 and the similarity scores

are calculated for all the new couples containing segment Si∗∪j∗ created by the

merge operation. These new couples are inserted in the list LA at the positions

corresponding to their similarity score, provided that the value is greater than Tsim.

The algorithm then selects the next couple in LA and the procedure is iterated until

no more segments can be considered for a merging operation.

After obtaining the final segmentation, a semantic label is also associated to

each segment by checking the descriptors of all its pixels (computed in Section 5.1),

and assigning the most common class to the segment itself. Then, the classification

data provided by the CNN is not only used as input in the region merging phase,

but is also improved at the end of the process.

In summary, this revised region merging algorithm exploits both the classifica-

tion information and the results of the NURBS surface fitting. The first is used to

decide which couples of neighboring segments are processed first, and to discard

those with a low similarity score. The second is used as a criterion to accept or

discard each single merge operation.

The procedure is summarized in Algorithm 3, and some intermediate steps on

a sample scene are shown in Figure 5.5.

5.2. REGION MERGING 61

Algorithm 3 Revised merge algorithm

Create list of couples of adjacent segments LA
For each couple of adjacent segments compute similarity bi,j by Eq. 5.4
Sort LA according to bi,j
Discard the couples with bi,j < Tsim
for each couple of adjacent segments {Si, Sj} in LA do

Compute fitting error on merged segment Si∪j
if Eq. 5.8 satisfied then

Remove all couples containing Si or Sj from LA
Compute the adjacent segments Sk to Si∪j
Insert the new couples of segments with bk,i∪j ≥ Tsim in LA and sort

end if
end for
Compute semantic labeling for all the segments

Initial segmentation Iteration 5 Iteration 10 Iteration 15

Iteration 20 Iteration 25 Iteration 30 Final result

Figure 5.5: Example of the merging procedure on the scene of Fig. 5.6, row 6. The
images show the initial over-segmentation, the merging output after 5, 10, 15, 20,
25, 30 iterations and the final result (iteration 32).

62 CHAPTER 5. DEEP LEARNING SEGMENTATION SCHEMES

5.3 Experimental results

To test the approach proposed in Section 5.2 and compare it with state-of-the-

art methods, we perform an experimental evaluation on the NYU Depth Dataset

V2 (NYUDv2) [49], already used in Section 4.4 to test the methods of previous

chapter. As previously mentioned, this dataset contains 1449 depth and color

frames from a variety of indoor scenes acquired with a Kinect v1 sensor. We use

the updated ground truth labels from [23] since the original ones have missing

areas.

We consider the subdivision into a training set with 795 scenes and a test

set with 654 scenes adopted by [23]. For the semantic labeling task we provide

the results on the test set, since this is the approach used by all the competing

approaches. Regarding the segmentation instead, most methods (including the

ones we proposed in the previous chapter) are usually evaluated on the complete

dataset. To obtain corresponding results with our method that requires a learning

stage, we perform two independent tests. In the first one we use the standard

training/test subdivision of the dataset, to train the CNN with the ground truth

labels and then obtain the scene descriptors on the test set. In the second one we

swap the train and test sets and perform the same procedure.

We consider both the Convolutional Neural Network architectures introduced

in Section 5.1 for the results comparison. Then, in the following we refer to the

region merging method of Section 5.2 as CNN1+Merge or CNN2+Merge to specify

whether the CNN1 or the CNN2 network was used for the classification. Concern-

ing the CNN optimization, for both CNN1 and CNN2 we use quadratic regular-

ization with coefficient 0.001. We update the network weights using stochastic

gradient descent with initial learning rate equal to 0.01, and constant decay by a

factor 0.5 every 15 epochs for CNN1. For CNN2 we apply an adaptive decay policy

reducing the learning rate by a factor of 0.7 after 10 epochs without improvement.

In case of CNN1, to mitigate the possible over-fitting we expand the dataset by

randomly rotating each sample by an angle between −6 and 6 degrees. We do not

apply any dataset expansion for CNN2 instead.

The proposed method produces a segmentation with semantic labels and it can

be exploited both as a segmentation algorithm and as a semantic classification

one. We present the results for the two different tasks separately in the next two

subsections.

5.3. EXPERIMENTAL RESULTS 63

Segmentation accuracy

Table 5.1 shows the comparison between our approach and some state-of-the-art

methods on the NYUDv2 dataset (for the competing approaches we use the results

collected by [28]). As in Section 4.4, the compared approaches are the clustering

and region merging method of [28], the MRF scene labeling scheme of [45], that

exploits Kernel Descriptors and SVM for machine learning, a modified version of

[18] that accounts also for geometry information, the dynamic programming scheme

of [52], the multi-layer strategy of [34] and the spectral clustering approach of [11].

As to the latter, recall that it can be considered as a simplified version of the

segmentation scheme of Section 2.2. We include in the comparison also our region

merging scheme [41] of Section 4.2 and our combined region splitting and merging

scheme of Section 4.3 (denoted as Split+Merge). In particular, notice that the

comparison with [41] gives an indication of the improvement obtained by using the

CNN descriptors, since also that method is based on an initial over-segmentation

and a merging iteration controlled by NURBS surface fitting (without any machine

learning stage). Concerning our method of Section 5.2, we list the results both for

the CNN1+Merge and the CNN2+Merge variants.

As in Section 4.4, in our evaluation we compare the results against ground

truth data using the Variation of Information (VoI) and the Rand Index (RI)

segmentation metrics. Recall that for the VoI metric a lower value is better while

a higher one is better for RI. The average VoI score of our CNN2+Merge method is

1.92. According to this metric the approach is the best among the considered ones,

with a significant gap with respect to all the competing approaches. Notice that

the difference with CNN1+Merge (same segmentation scheme with a less accurate

semantic classification) is very small. Much more significant differences concerning

the semantic labeling will be highlighted in the next subsection.

If the RI metric is considered, the average score of the CNN2+Merge method

is 0.91. This value is better than that of [18], [52], [11], [28], [45], [41] (our region

merging approach) and of our Split+Merge scheme, while it is exactly the same

of the best competing approach [27] and of the CNN1+Merge method [40]. As

previously mentioned for our methods based on surface fitting alone, we point out

that also our CNN-based approach does not assume the presence of planar sur-

faces, thanks to the NURBS surface approximation scheme, while some competing

methods (e.g., [28], [27] and [52]) rely on this clue. They obtain good results on

the NYUDv2 dataset where most of the surfaces are planar in this way, at the

price of reduced generalization capabilities when considering scenes with arbitrary

surfaces.

64 CHAPTER 5. DEEP LEARNING SEGMENTATION SCHEMES

Approach VoI RI
Hasnat et al. (2014) [28] 2.29 0.90
Hasnat et al. (2016) [27] 2.20 0.91

Ren et al. [45] 2.35 0.90
Felzenszwalb et al. [18] 2.32 0.81

Taylor et al. [52] 3.15 0.85
Khan et al. [34] 2.42 0.87
(Clustering) [11] 3.09 0.84

(Merge) [41] 2.23 0.88
(Split+Merge) 2.17 0.89

(CNN1+Merge) [40] 1.93 0.91
(CNN2+Merge) 1.92 0.91

Table 5.1: Average values of the VoI and RI metrics on the 1449 scenes of the
NYUDv2 dataset for our proposed approaches and for some state-of-the-art meth-
ods from the literature.

Some visual results for the proposed approach are displayed in Figure 5.6.

The images show how the approach is able to efficiently deal with challenging

scenes of different types. The initial over-segmentation divides the background

and the larger structures in several pieces, but they are properly recombined by

the proposed scheme thanks to the contribution of the CNN descriptors, that

make it possible to recognize which segments belong to the same structure. At

the same time most of the objects in the scene are correctly recognized and kept

separated. Furthermore the contours of the objects are well defined and there are

no noisy small segments close to the edges as in other approaches. Only a few

inaccuracies are present, on small objects in particular. The visual results confirm

that our CNN1+Merge and CNN2+Merge approaches achieve almost identical

segmentation results, even if some slight improvements given by the latter are

noticeable (e.g., the background wall on scene 450 and the corner between the two

background walls on scene 1110).

Classification accuracy

The proposed approach provides also a semantic label for each segment. In

order to evaluate the labeling accuracy we compare it with some state-of-the-art

approaches on the test set of the NYUDv2 dataset.

The compared approaches are the method of [7] that uses a multi-scale CNN,

the method of [30] that uses a hierarchy of super pixels to train a random forest

classifier, the method of [55] that leverages deep learning to extract superpixels

features and the method of [56] that exploits two different CNNs.

5.3. EXPERIMENTAL RESULTS 65

Color Initial CNN1+Merge CNN2+Merge
image over-segmentation Final result Final result

Figure 5.6: Segmentation of some sample scenes from the NYUDv2 dataset. The
figure shows the color images, the initial over-segmentation and the final results
for scenes 72, 330, 450, 846, 1105, 1110 and 1313.

66 CHAPTER 5. DEEP LEARNING SEGMENTATION SCHEMES

Table 5.2 lists the results. We consider two different metrics: the per-pixel

accuracy, that is, the percentage of correctly classified pixels, and the average

class accuracy, obtained by computing the percentage of correctly classified pixels

for each class independently and averaging the values. Notice that the second

number is smaller since classes with a low number of samples are typically harder

to recognize.

The proposed deep learning architecture CNN2 is able to obtain an average

pixel accuracy of 64.4% on the test set. By leveraging the segmentation output

of the merging iteration to assign a single label to each segment, as described in

Section 5.2, it is possible to refine the labeling and increase the accuracy to 67.2%.

This is an impressive result outperforming all the compared approaches, including

the very recent state-of-the-art methods of [30] and [56].

The results are confirmed also by the average class accuracy. The output accu-

racy of CNN2 is 51.7%, a remarkable result outperforming all compared approaches

except [56]. By refining it with the segmentation the accuracy increases to 54.4%,

outperforming all the compared approaches including [56]. Table 5.3 reports also

the accuracy for each class. Notice how the value is very high for several classes,

and quite low only for few of them (typically the uncommon ones, for which a

limited amount of training data is available).

A visual evaluation of the results on some sample scenes is shown in Figure 5.7.

Notice how the classification is accurate even in challenging situations (e.g., the

closed windows), and how the refinement provided by the segmentation largely

improves the edges accuracy. Only few errors are present, e.g., beds exchanged

with sofas that have a similar visual appearance.

In the proposed method, the CNN implementation is done using the Theano

deep learning library [53]. Even if the current implementation has not been op-

timized, the segmentation of a single image with the associated depth map takes

less than two minutes on average. Most of computation time is spent on the

initial over-segmentation (87s), performed with the normalized cuts approach of

Section 2.2. Notice that some simpler and faster superpixel segmentation scheme

could be employed for this step.

5.3. EXPERIMENTAL RESULTS 67

Approach Pixel Accuracy Class Accuracy
Couprie et al [28] 52.4% 36.2%
Hickson et al [30] 53.0% 47.6%
A. Wang et al [55] 46.3% 42.2%
J. Wang et al [56] 54.8% 52.7%

Proposed (CNN1 output) [40] 59.6% 42.8%
Proposed (CNN2 output) 64.4% 51.7%

Proposed (CNN2 with segmentation) 67.2% 54.4%

Table 5.2: Average values of the pixel and class accuracies on the 654 scenes in
the test set of the NYUDv2 dataset for our proposed approaches and for some
state-of-the-art methods from the literature.

Class Accuracy Accuracy (CNN2
(CNN2 output) with segmentation)

Bed 58.0% 64.1%
Objects 43.2% 41.8%
Chair 35.4% 38.4%

Furniture 64.7% 70.2%
Ceiling 62.8% 64.2%
Floor 92.2% 93.7%

Picture / wall deco 30.5% 26.8%
Sofa 55.8% 66.5%

Table 42.0% 46.0%
Wall 83.7% 86.3%

Window 53.9% 55.8%
Books 23.8% 24.0%

Monitor / TV 26.2% 29.1%
Average 51.7% 54.4%

Table 5.3: Average accuracy for each of the 13 classes on the test set of the NYUDv2
dataset for our proposed CNN2+Merge approach (the unknown class has not been
considered consistently with the evaluation of all the compared approaches).

68 CHAPTER 5. DEEP LEARNING SEGMENTATION SCHEMES

Color CNN2 output Final labeling (CNN2
image labeling with segmentation)

Bed Objects Chair Furniture Ceiling Floor Picture/Deco

Sofa Table Wall Windows Books Monitor/TV Unknown

Figure 5.7: Semantic labeling of some sample scenes from the NYUDv2 dataset.
The figure shows the color images, the labeling from the Convolutional Neural
Network CNN2 and the refined labeling exploiting segmentation data for scenes
39, 280, 433 and 462.

Chapter 6

Conclusions

This thesis proposes novel region splitting and merging schemes for the joint

segmentation of color and depth information. Spectral clustering is used inside

tree-structured algorithms to progressively divide the scene into a set of segments,

that are then recombined by a recursive merging procedure into larger regions cor-

responding to the actual scene objects. The proposed approaches exploit a NURBS

surface fitting scheme to determine if each splitting or merging operation leads to

a more accurate representation of the 3D surfaces, and consequently whether it

should be accepted or discarded. The key idea consists in interpreting the surface

approximation error as a measure of the plausibility that each segment actually

corresponds to a single object or part of the scene. This gives a criterion to control

the steps of the iterative splitting and merging procedures. Experimental results

demonstrate that the proposed methods are capable to avoid over-segmentation

and at the same time properly segment the various structures in the scene, out-

performing several state-of-the-art approaches.

In addition, a joint segmentation and semantic labeling scheme exploiting deep

learning and an iterative merging procedure is proposed. In this approach, the

surface fitting information is used both to control the iterative merging steps and

as an additional input channel to improve the performances of the adopted Con-

volutional Neural Network. The joint usage of geometric clues and of a segments

similarity measure estimated from the CNN descriptors provides a way to properly

select the merging operations to be performed. As shown by experimental results,

this method achieves state-of-the-art performances both for the segmentation and

for the semantic labeling task.

69

Bibliography

[1] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. “Contour Detection and Hi-

erarchical Image Segmentation”. In: IEEE Transactions on Pattern Analysis

and Machine Intelligence 33.5 (2011), pp. 898–916 (cit. on p. 45).

[2] D. Banica and C. Sminchisescu. “Second-order constrained parametric pro-

posals and sequential search-based structured prediction for semantic seg-

mentation in RGB-D images”. In: Proceedings of IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR). 2015, pp. 3517–3526 (cit. on

p. 5).

[3] A. Bleiweiss and M. Werman. “Fusing time-of-flight depth and color for

real-time segmentation and tracking”. In: Proc. of DAGM Workshop. 2009,

pp. 58–69 (cit. on p. 4).

[4] M. Bleyer, C. Rother, P. Kohli, D. Scharstein, and S. Sinha. “Object Stereo-

Joint Stereo Matching and Object Segmentation”. In: Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition (CVPR). 2011 (cit.

on p. 4).

[5] F. Calderero and F. Marques. “Hierarchical fusion of color and depth infor-

mation at partition level by cooperative region merging”. In: Proc. IEEE Int.

Conf. Acoustics, Speech and Signal Processing ICASSP. 2009, pp. 973–976

(cit. on p. 4).

[6] D. Comaniciu and P. Meer. “Mean shift: a robust approach toward feature

space analysis”. In: IEEE Transactions on Pattern Analysis and Machine

Intelligence 24.5 (2002), pp. 603–619 (cit. on pp. 3, 4).

[7] C. Couprie, C. Farabet, L. Najman, and Y. Lecun. “Convolutional nets and

watershed cuts for real-time semantic Labeling of RGBD videos.” In: Journal

of Machine Learning Research 15.1 (2014), pp. 3489–3511 (cit. on pp. 5, 64).

[8] C. Couprie, C. Farabet, L. Najman, and Y. LeCun. “Indoor semantic segmen-

tation using depth information”. In: International Conference on Learning

Representations. 2013 (cit. on pp. 54, 55, 57).

71

72 BIBLIOGRAPHY

[9] M. Dahan, N. Chen, A. Shamir, and D. Cohen-Or. “Combining color and

depth for enhanced image segmentation and retargeting”. In: The Visual

Computer 28.12 (2012), pp. 1181–1193 (cit. on p. 4).

[10] C. Dal Mutto, P. Zanuttigh, and G. Cortelazzo. “A Probabilistic Approach

to ToF and Stereo Data Fusion”. In: 3DPVT. Paris, France, 2010 (cit. on

p. 11).

[11] C. Dal Mutto, P. Zanuttigh, and G. Cortelazzo. “Fusion of Geometry and

Color Information for Scene Segmentation”. In: IEEE Journal of Selected

Topics in Signal Processing 6.5 (2012), pp. 505–521 (cit. on pp. 4, 5, 11, 12,

44–46, 51, 52, 63, 64).

[12] Z. Deng and L. J. Latecki. “Unsupervised Segmentation of RGB-D Images”.

In: Proceedings of Asian Conference on Computer Vision (ACCV). Springer,

2014, pp. 423–435 (cit. on p. 4).

[13] Z. Deng, S. Todorovic, and L. Jan Latecki. “Semantic segmentation of RGBD

images with mutex constraints”. In: Proceedings of International Conference

on Computer Vision (ICCV). 2015, pp. 1733–1741 (cit. on p. 5).

[14] M. do Carmo. Differential Geometry of Curves and Surfaces. Prentice-Hall,

1976 (cit. on p. 24).

[15] D. Eigen and R. Fergus. “Predicting depth, surface normals and semantic

labels with a common multi-scale convolutional architecture”. In: Proceedings

of the IEEE International Conference on Computer Vision. 2015, pp. 2650–

2658 (cit. on p. 5).

[16] C. Erdogan, M. Paluri, and F. Dellaert. “Planar Segmentation of RGBD

Images Using Fast Linear Fitting and Markov Chain Monte Carlo”. In: Proc.

of CRV. 2012 (cit. on p. 4).

[17] C. Farabet, C. Couprie, L. Najman, and Y. LeCun. “Learning hierarchical

features for scene labeling”. In: IEEE Transactions on Pattern Analysis and

Machine Intelligence 35.8 (2013), pp. 1915–1929 (cit. on pp. 54, 55).

[18] P. Felzenszwalb and D. Huttenlocher. “Efficient Graph-Based Image Seg-

mentation”. In: International Journal of Computer Vision 59.2 (Sept. 2004),

pp. 167–181 (cit. on pp. 3, 50–52, 63, 64).

[19] C. Fowlkes, S. Belongie, F. Chung, and J. Malik. “Spectral grouping using the

Nyström method”. In: IEEE Transactions on Pattern Analysis and Machine

Intelligence 26.2 (2004), pp. 214–225 (cit. on p. 11).

BIBLIOGRAPHY 73

[20] J. Gallego and M. Pardàs. “Region based foreground segmentation combining

color and depth sensors via logarithmic opinion pool decision”. In: Journal of

Visual Communication and Image Representation 25.1 (2014), pp. 184–194

(cit. on p. 4).

[21] G. H. Golub and C. F. Van Loan. Matrix Computations (3rd Ed.) Baltimore,

MD, USA: Johns Hopkins University Press, 1996 (cit. on p. 27).

[22] G. Guennebaud, B. Jacob, et al. Eigen v3. http://eigen.tuxfamily.org. 2010

(cit. on p. 27).

[23] S. Gupta, P. Arbelaez, and J. Malik. “Perceptual Organization and Recog-

nition of Indoor Scenes from RGB-D Images”. In: Proceedings of IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR). 2013 (cit. on

pp. 50, 55, 62).

[24] S. Gupta, P. Arbeláez, R. Girshick, and J. Malik. “Indoor Scene Under-

standing with RGB-D Images: Bottom-up Segmentation, Object Detection

and Semantic Segmentation”. In: International Journal of Computer Vision

(2014), pp. 1–17 (cit. on p. 5).

[25] S. Gupta, R. Girshick, P. Arbeláez, and J. Malik. “Learning rich features

from RGB-D images for object detection and segmentation”. In: Proceedings

of European Conference on Computer Vision (ECCV). 2014, pp. 345–360

(cit. on pp. 5, 56).

[26] M. Harville, G. Gordon, and J. Woodfill. “Foreground segmentation using

adaptive mixture models in color and depth”. In: Proc. of IEEE Workshop

on Detection and Recognition of Events in Video. 2001 (cit. on p. 4).

[27] M. Hasnat, O. Alata, and A. Tremeau. “Joint Color-Spatial-Directional clus-

tering and Region Merging (JCSD-RM) for unsupervised RGB-D image seg-

mentation”. In: Pattern Analysis and Machine Intelligence, IEEE Transac-

tions on (2016) (cit. on pp. 4, 50, 51, 63, 64).

[28] M. A. Hasnat, O. Alata, and A. Tremeau. “Unsupervised RGB-D image

segmentation using joint clustering and region merging”. In: Proceedings of

BMVC. 2014 (cit. on pp. 4, 50–52, 63, 64, 67).

[29] D. Herrera C, J. Kannala, and J. Heikkila. “Joint Depth and Color Camera

Calibration with Distortion Correction”. In: IEEE Transactions on Pattern

Analysis and Machine Intelligence 34.10 (Oct. 2012), pp. 2058–2064 (cit. on

p. 11).

74 BIBLIOGRAPHY

[30] S. Hickson, I. Essa, and H. Christensen. “Semantic Instance Labeling Lever-

aging Hierarchical Segmentation”. In: Winter Conference on Applications of

Computer Vision. 2015, pp. 1068–1075 (cit. on pp. 64, 66, 67).

[31] N. Höft, H. Schulz, and S. Behnke. “Fast semantic segmentation of RGB-D

scenes with GPU-accelerated deep neural networks”. In: Joint German/Austrian

Conference on Artificial Intelligence. 2014, pp. 80–85 (cit. on p. 5).

[32] S. Holzer, R. Rusu, M. Dixon, S. Gedikli, and N. Navab. “Adaptive neighbor-

hood selection for real-time surface normal estimation from organized point

cloud data using integral images”. In: Proc. of IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS). 2012, pp. 2684–2689 (cit.

on p. 11).

[33] L.-H. Juang, M.-N. Wu, and F.-M. Tsou. “A dynamic portrait segmenta-

tion by merging colors and depth information”. In: International Journal of

Control, Automation and Systems 13.5 (2015), pp. 1286–1293 (cit. on p. 4).

[34] M. R. Khan, A. B. M. M. Rahman, G. M. A. Rahaman, and M. A. Has-

nat. “Unsupervised RGB-D image segmentation by multi-layer clustering”.

In: Proceedings of International Conference on Informatics, Electronics and

Vision. 2016, pp. 719–724 (cit. on pp. 50, 51, 63, 64).

[35] V. Kolmogorov, A. Criminisi, A. Blake, G. Cross, and C. Rother. “Bi-layer

segmentation of binocular stereo video”. In: Proceedings of IEEE Conference

on Computer Vision and Pattern Recognition (CVPR). Vol. 2. 2005, 1186

vol. 2 (cit. on p. 4).

[36] L. Ladicky, P. Sturgess, C. Russell, S. Sengupta, Y. Bastanlar, W. Clocksin,

and P. Torr. “Joint Optimisation for Object Class Segmentation and Dense

Stereo Reconstruction”. In: Proceedings of the British Machine Vision Con-

ference. 2010 (cit. on p. 4).

[37] J.-E. Lee and R.-H. Park. “Segmentation with saliency map using colour and

depth images”. In: IET Image Processing 9.1 (2015), pp. 62–70 (cit. on p. 4).

[38] J. Leens, S. Piérard, O. Barnich, M. Van Droogenbroeck, and J. Wagner.

“Combining Color, Depth, and Motion for Video Segmentation”. In: Com-

puter Vision Systems. 2009 (cit. on p. 4).

[39] D. Lin, S. Fidler, and R. Urtasun. “Holistic scene understanding for 3d object

detection with rgbd cameras”. In: Proceedings of International Conference on

Computer Vision (ICCV). 2013, pp. 1417–1424 (cit. on p. 5).

BIBLIOGRAPHY 75

[40] L. Minto, G. Pagnutti, and P. Zanuttigh. “Scene Segmentation Driven by

Deep Learning and Surface Fitting”. In: Proceedings of ECCV Geometry

meets deep learning workshop. 2016 (cit. on pp. 7, 54, 58–60, 63, 64, 67).

[41] G. Pagnutti and P. Zanuttigh. “Joint Color and Depth Segmentation Based

on Region Merging and Surface Fitting”. In: Proceedings of VISAPP. 2016

(cit. on pp. 6, 44–46, 50, 51, 63, 64).

[42] G. Pagnutti and P. Zanuttigh. “Scene segmentation based on NURBS surface

fitting metrics”. In: Proceedings of STAG. 2015 (cit. on pp. 6, 31, 33, 34, 44–

49, 51).

[43] G. Pagnutti and P. Zanuttigh. “Scene segmentation from depth and color

data driven by surface fitting”. In: Proceedings of IEEE International Con-

ference on Image Processing (ICIP). 2014, pp. 4407–4411 (cit. on pp. 6, 44).

[44] L. Piegl and W. Tiller. The NURBS Book (2Nd Ed.) New York, NY, USA:

Springer-Verlag New York, Inc., 1997 (cit. on pp. 15, 16, 18, 28).

[45] X. Ren, L. Bo, and D. Fox. “RGB-D scene labeling: Features and algorithms”.

In: Proceedings of CVPR. 2012 (cit. on pp. 5, 50–52, 63, 64).

[46] A. Richtsfeld, T. Morwald, J. Prankl, M. Zillich, and M. Vincze. “Segmen-

tation of unknown objects in indoor environments”. In: IROS. 2012 (cit. on

p. 4).

[47] E. Shelhamer, J. Long, and T. Darrell. “Fully Convolutional Networks for

Semantic Segmentation”. In: IEEE Transactions on Pattern Analysis and

Machine Intelligence (2016) (cit. on p. 5).

[48] J. Shi and J. Malik. “Normalized Cuts and Image Segmentation”. In: IEEE

Transactions on Pattern Analysis and Machine Intelligence 22.8 (2000), pp. 888–

905 (cit. on pp. 3, 4, 9, 10, 44).

[49] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. “Indoor Segmentation

and Support Inference from RGBD Images”. In: Proceedings of European

Conference on Computer Vision (ECCV). 2012 (cit. on pp. 5, 44, 50, 55,

62).

[50] N. Srinivasan and F. Dellaert. “A Rao-Blackwellized MCMC Algorithm for

Recovering Piecewise Planar 3D model from Multiple View RGBD Images”.

In: Proceedings of IEEE International Conference on Image Processing (ICIP).

2014 (cit. on p. 4).

[51] R. Szeliski. Computer vision: algorithms and applications. Springer Science

& Business Media, 2010 (cit. on p. 3).

76 BIBLIOGRAPHY

[52] C. J. Taylor and A. Cowley. “Parsing indoor scenes using RGB-D imagery”.

In: Robotics: Science and Systems. Vol. 8. 2013, pp. 401–408 (cit. on pp. 4,

50–52, 63, 64).

[53] Theano Development Team. “Theano: A Python framework for fast compu-

tation of mathematical expressions”. In: arXiv e-prints (2016) (cit. on p. 66).

[54] M. Wallenberg, M. Felsberg, P.-E. Forssén, and B. Dellen. “Channel Coding

for Joint Colour and Depth Segmentation”. In: Proceedings of DAGM. 2011,

pp. 306–315 (cit. on p. 4).

[55] A. Wang, J. Lu, G. Wang, J. Cai, and T.-J. Cham. “Multi-modal unsuper-

vised feature learning for rgb-d scene labeling”. In: Proceedings of European

Conference on Computer Vision (ECCV). 2014, pp. 453–467 (cit. on pp. 5,

64, 67).

[56] J. Wang, Z. Wang, D. Tao, S. See, and G. Wang. “Learning Common and

Specific Features for RGB-D Semantic Segmentation with Deconvolutional

Networks”. In: Proceedings of European Conference on Computer Vision

(ECCV). 2016, pp. 664–679 (cit. on pp. 5, 64, 66, 67).

[57] L. Wang, C. Zhang, R. Yang, and C. Zhang. “TofCut: Towards Robust Real-

time Foreground Extraction Using a Time-of-Flight Camera”. In: 3DPVT.

2010 (cit. on p. 4).

[58] J. Yang, Z. Gan, K. Li, and C. Hou. “Graph-Based Segmentation for RGB-

D Data Using 3-D Geometry Enhanced Superpixels”. In: IEEE Transactions

on Cybernetics 45.5 (2015), pp. 927–940 (cit. on p. 4).

[59] P. Zanuttigh, G. Marin, C. Dal Mutto, F. Dominio, L. Minto, and G. M.

Cortelazzo. Time-of-Flight and Structured Light Depth Cameras. Springer,

2016 (cit. on p. 3).

	Abstract
	Contents
	Introduction
	Problem description
	Related works
	Outline of the proposed methods

	Joint segmentation of color and depth data
	Spectral clustering
	Geometry and color segmentation

	Surface fitting on segmented data
	Surface fitting
	Fitting metrics
	Numerical stability and performances

	Segmentation schemes based on surface fitting
	Region splitting
	Region merging
	Combined region splitting and merging
	Experimental results

	Segmentation schemes based on deep learning and surface fitting
	Classification with deep learning
	Region merging
	Experimental results

	Conclusions
	Bibliography

