
 

 

  

 

 

Università degli Studi di Padova 

Centro Ricerche Fusione (CRF) 

 

Universidade de Lisboa 

Instituto Superior Técnico (IST) 

 

Università degli Studi di Napoli Federico II 

 

 

JOINT RESEARCH DOCTORATE IN FUSION SCIENCE AND ENGINEERING 

Cycle XXXII 

 

 

MODELING OF MHD INSTABILITIES IN EXISTING AND 

FUTURE FUSION DEVICES IN VIEW OF CONTROL 

 

 

 

 

 

 

Coordinator: Prof. Paolo Bettini  

Supervisor: Prof. Fabio Villone 

 

 

 Ph.D. Student: Matteo Bonotto 

 

 

Padova, 02/12/2019 



 

 

 



A voi che avete creduto in me.



ii



Abstract
In this thesis, an improved version of the CarMa code is presented, called

CarMa-D, for the analysis of Resistive Wall Modes (RWMs) in thermonuclear
fusion devices, simultaneously considering the effects of volumetric three-
dimensional conducting structures and in presence of the effects associated
with plasma dynamics, toroidal rotation or drift-kinetic damping.

The CarMa-D code is the result of the coupling of the CARIDDI code,
for the eddy current analysis in the conducting structures, with the MARS-K
code, for MHD stability computations. The strength point behind CarMa-D
is that the new coupling strategy does not rely on the simplifying assump-
tions of neglecting the plasma mass, toroidal rotation and kinetic damping
physics, assumptions on which relies the CarMa code. Under these hypoth-
esis, the plasma response to external perturbations depends on the dynamic
of the perturbation itself: this behaviour is modelled through a matrix-based
Padé rational function. The approximated plasma response is then combined
with the equation for the eddy current induced in the metallic structures,
in order to obtain a linear system of differential equations as the original
CarMa version, but with a higher number of degrees of freedom to model
the dynamics of the plasma. The new version overcomes the main limitations
of the original computational model, in particular: (i) the massless assump-
tion for the plasma is removed, allowing modeling of global modes growing
on ideal-kink time scales; (ii) the effects of toroidal plasma flow and drift
kinetic damping can be rigorously included into the new model, providing a
powerful tool to study macroscopic phenomena where both plasma dynam-
ics and 3-D conducting structures play important roles. The mathematical
model has been also generalized to take into account multiple toroidal mode
numbers (multi-modal CarMa-D). The code has been successfully tested with
a reference equilibrium of a plasma with circular cross-section, and then used
to study RWM stability analysis of the modes n = 1 and n = 2 on JT-60SA
Scenario 5.

Finally, additional effort has been made to write the CarMa-D mathe-
matical model in a way suitable for a state-space representation, in order
to exploit its features in a model-based feedback control strategy to actively
suppress RWMs.
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Sommario
In questo lavoro viene presentata una versione migliorata del codice

CarMa, chiamato CarMa-D, per lo studio di Resistive Wall Modes (RWMs)
nei reattori a fusione termonucleare. Tale codice è in grado di rappresentare
accuratamente le strutture conduttrici tridimensionali della macchina, e con-
siderare simultaneamente nel modello gli effetti dovuti alla dinamica del
plasma, alla toroidal rotation e agli effetti drift-cinetici.

CarMa-D è il risultato dell’accoppiamento dei codici CARIDDI, per lo
studio delle correnti indotte nelle strutture conduttrici, e MARS-K per anal-
isi di stabilità MHD nel plasma. Punto di forza della strategia di accoppi-
amento alla base di CarMa-D è che non si basa sulle ipotesi semplificative
su cui si basa la versione statica di CarMa, ovvero non vengono trascurati la
massa del plasma, toroidal rotation e l’effetto del damping cinetico. In questo
modo la risposta del plasma a perturbazioni esterne dipende dall’andamento
temporale della perturbazione stessa: questo andamento viene approssimato
per mezzo di funzioni razionali di Padé a coefficienti matriciali. Il passo
successivo è dato dalla combinazione della risposta di plasma approssimata
con l’equazione delle correnti indotte nelle strutture passive, per ottenere
un modello matematico desctitto come un sistema di equazioni differenziali
lineari formalmente uguale alla versione statica di CarMa, ma con un nu-
mero maggiori di gradi di libertà per tener conto della dinamica di plasma.
La nuova versione del codice supera le principali limitazioni del modello
originale, in particolare: (i) considerando la massa del plasma è possibile
modellare modi con dinamiche molto veloci, come l’external-kink ideale, (ii)
il modello è in grado di tener conto rigorosamente di toroidal rotation e
damping cinetico. Questi vantaggi rendono CarMa-D uno strumento po-
tente, in grado di studiare fenomeni macroscopici in cui sia la dinamica del
plasma, che gli effetti 3-D delle strutture, sono marcati. Inoltre, il modello
matematico risultate è stato generalizzato per tener conto della simulazione
più armoniche toroidali simultaneamente (multi-modal CarMa-D). Il codice
è stato poi testato con successo su un equilibrio di riferimento dato da un
plasma a sezione circolare, e successivamente per lo studio di stabilità per i
modi n = 1 e n = 2 su JT-60SA, Scenario 5.

Infine, si è dimostrato come il modello matematico di CarMa-D possa es-
sere scritto in una formulazione state-space, in vista di un successivo impiego
nella progettazione di un controllo in retoazione per la stabilizzazione attiva
dei RWMs.
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Resumo
Esta tese apresenta uma versão aprimorada do código CarMa, chamado

CarMa-D, para o estudo de Resistive Wall Modes (RWMs) em reatores de
fusão termonuclear. Este código é capaz de representar com precisão as
estruturas condutoras tridimensionais da máquina e considerar simultanea-
mente no modelo os efeitos devidos à dinâmica do plasma, à toroidal rotation
e aos efeitos cinéticos da deriva.

CarMa-D é o resultado do acoplamento dos códigos CARIDDI, para o
estudo das correntes induzidas nas estruturas condutoras, e MARS-K, para
análise da estabilidade da MHD no plasma. A força da estratégia de acopla-
mento na base do CarMa-D é que ela não se baseia nas hipóteses simplifi-
cadoras nas quais a versão estática do CarMa se baseia, ou seja, a massa
plasmática, a rotação toroidal e o efeito do amortecimento cinético não são
negligenciados. Dessa forma, a resposta do plasma a perturbações externas
depende do curso temporal da própria perturbação: essa tendência é aprox-
imada por meio de funções racionais de Padé com coeficientes de matriz.
O próximo passo é a combinação da resposta do plasma aproximada com a
equação das correntes induzidas nas estruturas passivas, para obter um mod-
elo matemático descrito como um sistema de equações diferenciais lineares
formalmente iguais à versão estática do CarMa, mas com um número maior
que graus de liberdade para levar em consideração a dinâmica do plasma. A
nova versão do código supera as principais limitações do modelo original, em
particular: (i) considerando a massa do plasma, é possível modelar modos
com dinâmica muito rápida, como a torção externa ideal, (ii) o modelo é ca-
paz de leve em consideração a rotação toroidal e o amortecimento cinético.
Essas vantagens tornam o CarMa-D uma ferramenta poderosa, capaz de estu-
dar fenômenos macroscópicos nos quais são marcadas a dinâmica do plasma
e os efeitos 3-D das estruturas. Além disso, o modelo matemático resultante
p foi generalizado para levar em consideração a simulação de múltiplas har-
mônicas toroidais simultaneamente (emph multimodal CarMa-D). O código
foi então testado com sucesso em uma balança de referência e posteriormente
para o estudo de estabilidade para os modos n = 1 e n = 2 no JT-60SA,
Cenário 5.

Finalmente, foi demonstrado como o modelo matemático do CarMa-D
pode ser escrito em uma formulação state-space, em vista de um uso subse-
quente no projeto de um controle de retenção para a estabilização ativa de
RWMs.
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Foreword

The work presented in this thesis has been carried out during these three
years of Ph.D in Fusion Science and Engineering, under the title Modeling
of MHD instabilities in existing and future fusion devices in view of control.
The title of the work underlines how the modeling activity has meant to be
oriented to control purposes, in order to develop an accurate and reliable
mathematical model viable to be the starting point for control activities.
For this reason, keeping in mind the aim of the work, the author has tried
to conciliate different points of view from different multi-physical problems,
but being mainly bound to an engineering approach.

Within the broad topic of MHD instabilities, this work focuses on the
Resistive Wall Modes. This kind of instabilities arise if the plasma pressure
exceeds a certain threshold, causing a kink deformation of the outer part of
the plasma. The Resistive Wall Modes pose a strong limit to increase the
plasma pressure and pursuit steady state economic production of thermonu-
clear fusion energy.

The dynamic of RWMs is strongly influenced by the resistive wall geom-
etry. Many computational tools have been developed to deal with RWMs,
all of them sharing the strategy of coupling a MHD solver to a eddy current
code. To get rid of this coupling problem, some simplifying assumption must
be made, both on the MHD and on the electromagnetic point of view. This
work is focused on the coupling strategy behind one of this codes, the well-
known CarMa code, obtained from the coupling of CARIDDI and MARS.
On one hand, unique feature of CarMa is being able to rigorously model the
actual conducting structures geometry, including the thickness of the resis-
tive wall. On the other hand, some simplifying assumptions are made, such
as disregarding the plasma mass, no toroidal flow is present and no kinetic
damping is taken into account. Within these assumptions, CarMa has been
used extensively to study the stability of RWMs.

However, if the instability is close to the ideal wall beta limit, or when
the toroidal flow and the kinetics effects are taken into account, CarMa is no
longer a reliable tool. The accurate modelling of these effects is desirable for
several reason. At first, for realistic machines the range of growth rates that
can be expected for a RWM can vary in a quite broad range between the
slow RWMs and the ideal MHD modes, thus the inertia effects cannot simply
be neglected. In addition to this, toroidal rotation and kinetic damping
physics are key features for RWMs stability problem, because it has been
proved that plasma rotation, combined with magnetic feedback, can lead to
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a complete stabilization of RWMs. Furthermore, recent results show that for
modes faster than the conventional RWMs, but slower than the ideal MHD
modes, the thin wall approximation made in almost every computational
tools, except CarMa, lead to a complete neglect of the non linear energy
storage in the resistive wall, effect which can contribute to the stabilization.
It follows that improving the coupling strategy behind the CarMa code to
take into account all the previous features could provide a computational
tool which is ideally the state of the art of the RWMs modelling for stability
analysis and active stabilization in presence of 3-D conducting structures.

The first part of work has the aim to develop a new coupling strategy be-
tween CARIDDI and MARS, named CarMa-Dynamic (CarMa-D), without
relying on the aforementioned assumptions. If the plasma inertia is con-
sidered, the relation between the magnetic field perturbation as input and
the plasma response as output is no longer static, as the previous case, but
depends on the (complex) frequency of the perturbation itself. The plasma
response to external perturbation is a key step in the coupling strategy, be-
cause it is necessary to describe the reaction of the plasma to the eddy current
induced inside the resistive wall by the RWM. The key point of this formu-
lation is the following one: instead of searching a closed relation to model
the frequency dependent plasma response, a numerical approach is exploited,
describing the response by means of a matrix-based Padé rational function.
This means that we are dealing with an interpolation of the plasma response,
which depends on the choice of the basis points. Starting from this point, the
coupling strategy is completely reformulated, finally leading to a modified
RL equation formally equivalent to the static CarMa, but able to take into
account the plasma dynamics in the RWMs stability analysis. In addition
to this, the mathematical model is further generalized to take into account
an arbitrary amount of toroidal mode numbers (multi-modal CarMa-D).

CarMa-D is then extensively tested against a tokamak plasma with a
circular cross-section, and surrounded by an axisymmetric resistive wall with
a coherent shape. The testing activity follows different steps, in order to
assess CarMa-D reliability and robustness. Two different damping physics
models have been considered, (i) the parallel sound wave damping and (ii)
the self-consistent, full toroidal drift kinetic model; moreover, different values
of toroidal rotation have been considered for both the cases. For the analyzed
situations, it has been shown that the Padé rational function is able to model
the plasma dynamics in a very accurate way, and the resulting CarMa-D
successfully deals with equilibria where the simultaneous effects of plasma
dynamics, toroidal flow and kinetic damping are prominent.

In the second part of the work CarMa-D is used for a RWM stability
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analysis on the JT-60SA, since many complications would arise when con-
sidering a realistic device. For example, realistic plasma configurations are
characterized to be highly elongated, and the geometry of the passive con-
ductors are expected to be less stabilizing. A detailed study of the effects
of this 3-D geometry on the stability of both the toroidal modes n = 1 and
n = 2 has been performed, and it has turned out that the modes growth
rates increase of one order of magnitude if the realistic 3-D geometry of the
stabilizing plates is considered, if compared to an axi-symmetric poloidally
continuous conducting structure. In addition to this, a noticeable toroidal
mode coupling appears due to the holes and ports present in the real ge-
ometry. These results provide further motivation regarding the need of an
effective stabilization.

Finally, additional effort is made to write the CarMa-D mathematical
model in a way suitable to be casted as a state-space representation. This is
a crucial step needed to exploit CarMa-D features in a model-based feedback
control strategy. Unlikely the original CarMa, CarMa-D cannot be written
straightforwardly in a state-space form, due to the new matrix-based cou-
pling strategy. This can be done rigorously, only by algebraic manipulation
of the system matrices without any simplifying assumption.

Further work will concern the application of CarMa-D to several cases of
interest, such as, for example, additional work related to JT-60SA and the
application to ITER, both concerning the stability analysis as well as the
design and the implementation of a model-based feedback controller.
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1.1 The issue of energy supplying

The Stone Age didn’t end for lack of stone, and the oil age will
end long before the world runs out of oil.

These words have been credited to Ahmed Zaki Yamani, former Minister of
Oil for and Mineral Resources of Saudi Arabia, who was in charge for more
than twenty years. The meaning of this sentence is clearly related to the fact
that, at some point of the world’s history, the Oil supplying will no longer be
viable, with respect of other energy sources. Obviously, the same statement
can be clearly extended to the other fossil fuels, underlying the need of other
solutions.

The word viable here is meant broadly speaking. Of course, there are eco-
nomic issues, related to the fact that the discovery and exploitation of new
sites will be more and more expensive if compared to other kinds of fuels, up
to the point that it will not worth the trouble. On the other hand, together
with these economic issues, there are alarming and undeniable environmen-
tal problems related to the extensive consumption of fossil fuels. We cannot
burn all of the remaining fossil fuel resources (oil, gas and coal) without
catastrophic global warming [1]. For this reasons, environmental consid-
erations are for sure more important than the aforementioned economical
reasons, and this further stresses the need of a progressive reduction of the
use of fossil fuels. Our society requires environmentally friendly solutions
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Chapter 1: Controlled thermonuclear fusion

Figure 1.1: Nuclear binding energy curve.

for energy production, and nuclear fusion seems to be the best candidate to
satisfy this task.

Nuclear fusion consists in the combination of two (or more) atomic nuclei,
giving rise to one or more different subatomic particles. The difference in
mass (mass defect) between the reactants and products is manifested as the
release of energy. The mass defect arises due to the different atomic binding
energy of the nuclei before and after the reaction. Any nucleons with low
binding energy, if suitably triggered, can change its configuration to a more
stable one through the release of a certain amount of energy. Thus, the
more the binding energy is, the more the atomic configuration is stable. The
binding energy of the fusion reactions is reported in Fig. 1.1. As can be seen,
the elements with the smallest mass per nucleon (candidates for fusion) have
also the smallest binding energy per nucleon, meaning that they can release
more energy if compared to the largest mass nucleons (candidates for fission).
For this reason, fusion reactions have an energy density many times greater
than nuclear fission, making, from the point of view of energy per unit of
mass, fusion much more appealing than fission [2].

Among the many possible fusion reactions, by far the easiest to initiate
are the reactions between deuterium (2D) and tritium (3T). These nucleons
are isotopes of hydrogen, respectively with one and two additional neutrons.
Specifically, four different nuclear reactions are considered relevant for fusion
purposes:

2D + 2D −−→ 3He (0.8 MeV) + n (2.5 MeV)
2D + 2D −−→ 3T (1 MeV) + p (3 MeV)
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Figure 1.2: Nuclear fusion cross-sections for reactions 2D + 2D, 2D + 3T and
2D+ 3He.

Figure 1.3: approximate amounts of remaining fuel resources given in world en-
ergy units (1 weu = 2.4 terawatt years) [3], existing resource at current prices (red)
and resource of lithium from seawater (blue) .
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2D + 3T −−→ 4He (3.5 MeV) + n (14.1 MeV)
2D + 3He −−→ 4He (3.7 MeV) + n (14.6 MeV)

where p, n are respectively proton and neutron. The energy is released by
means of kinetic energy of the reaction results, and divided among these
particles depending on the inverse of their mass, following the momentum
conservation. The cross-section for these reaction, which gives measure of
the probability of a fusion reaction as a function of the relative velocity of
the two reactant nuclei, is reported in Fig. 1.2. As can be seen, the reaction
2D+ 3T is the easiest to obtain.

The first reactions occur with an equal probability and at the same time.
In addition, deuterium is widespread in nature and can be found in seawater
with a percentage of 0.0115% [4]. On the other hand, tritium is almost
not available in nature, because it is a radioactive β−unstable isotope of
the hydrogen, with a half-life of ≈ 12.3 years [5], making any storage in long
term facilities not feasible. A possible solution can be the breeding of tritium
directly inside the reactors from lithium (6L), through the so-called breeding
blankets, where a lithium mantle interacts with the slowed down neutrons to
produce tritium [6]. Lithium can be found in seawater with a concentration
of ≈ 0.02 ppm [7], giving a total amount of 230 billion tonnes of lithium
supply. This is clear if Fig. 1.3 is considered, where the approximate amounts
of remaining fuel resources is shown [3]. The x-axis uses weu as unit, the
world’s current electricity production in a year as a unit of energy (1 weu =
2.4 terawatt years). The lithium availability is shown both for current world
reserves (red, ≈ 103 weu) and if the lithium present in seawater is considered,
which can be extracted in minimal cost and can be guessed ≈ 25× 106 weu
(blue stripe in Fig. 1.3). Moreover, the aforementioned abundance of natural
widespread deuterium can be considered, in terms of weu, of more or less
5× 1010 weu, making fusion even more appealing. This solutions opens the
possibility of exploiting the 2D+ 3T reaction, which is, as already mentioned,
the easiest to initiate.

The environmental impact of fusion is expected to be low, making this
solution definitely more attractive than fission. The net result of the D-T
fusion is a small amount of helium, a inert gas. On the other hand, it si
true that the neutrons produced in the D-T reactions would cause the acti-
vations of the structural materials of fusion reactors, such as steel, tungsten
and so on, but the use of specific low activation materials (i.e. EUROFER
[8], a reduced-activation steel) ensures short-lived radionuclides, making the
activation of structures decays to recyclable levels in less than 200 years [9].
This is a negligible amount of time if compared to the ≈ 106 years of typical
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nuclear fission products [10].
Fusion power plants are expected to be also safe and reliable to faults

during operations, because, if the conditions necessary to obtain the D-T re-
actions are not fulfilled, the process simply extinguishes in few microseconds
so there are no runaway scenarios to consider [3]. Such sudden termination
of the operation would be clearly dangerous for the health of the reactor,
but there are no other issues for the operators or the population. Some ac-
tivation could be releases in case of mechanical failure, but the analysis of
worst case accidents reveals that a design in which the evacuation is never
necessary is achievable [9].

However, the extreme conditions needed to obtain the fusion reactions
are very challenging to be reproduced, because the nucleons have to be main-
tained (confined) to extremely high levels of pressure and temperature. In
these conditions, nuclei are accelerated to high enough speed to overcome
their mutual electrostatic repulsion, and are brought close each other enough
such that the attractive nuclear force overcomes the repulsive Coulomb force.
Up to now, two are the most attracting confinement solutions developed by
scientists: magnetic and inertial confinement. The first exploits magnetic
field to confine the hot plasma, a fully ionized gas, inside the fusion cham-
ber. In the latter, fuel pellets are heated and compressed by means of a
sufficiently powerful set of shock waves, typically obtained with high-energy
beams of laser light. Both the solution ensures promising results; however,
in this work the attention will be focused on the magnetic confinement only.

1.2 Introduction to magnetic confinement

Extremely high temperatures, well above the ionization energies, are needed
to reach a significative cross-section. At these temperatures, the fusion reac-
tants exist in a plasma state. Being the plasma a fully ionized gas, its charged
particles can be bound, as a result of the Lorentz force, to the magnetic field
lines so that they are confined in certain region of space [11]. This is the
principle of magnetic confinement nuclear fusion, in which strong magnetic
fields are used to confine the hot plasma in order to generate thermonuclear
fusion power. In general, a fusion plasma is said to be confined when it is
maintained, through a suitable configuration of magnetic fields, in a desired
position and shape. The most important task is to keep the hot plasma at
a certain distance from the wall, to avoid both the wall to be damaged and
the plasma to be cooled down.

The simplest magnetic field geometry that can be used is the straight
cylinder. However, this kind of configuration is not viable for the purpose of
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fusion energy production, because the plasma would escape from both the
ends of the cylinder. A possible solution to achieve a certain confinement
even in straight cylinder configuration is to exploit the so-called magnetic
mirrors, in which the field strength is increased at both ends using additional
magnetic coils. However, a sufficiently good confinement can never been
achieved with this configuration, mainly because of the instabilities generated
by end losses. For this reason, the magnetic-mirror approach was studied
until mid 80s, when it was finally abandoned.

To prevent losses, the obvious solution is to bend the straight cylinder
onto a toroidal shape. This can be easily done simply by winding coils
(toroidal field coils) around the toroidal vacuum chamber. On one hand,
this would avoid the typical losses of the magnetic mirror machines, but
further issues on the confinement arise. Indeed, having a toroidal geometry
would make the problem of confinement hard to deal with, because expansion
forces in the radial direction would arise. This is due to purely geometrical
reasons: giving a net radial expansion force due to the pressure (the so-called
tire tube force [12]). In addition, the field on the outer side of the torus is
lower than the field on the inner side. Such asymmetry would cause the ions
and electrons to drift across the field, eventually hitting the wall of the torus.
A possible solution would be not only to bend the magnetic field line into a
torus, but also to twist them around in an helical shape [13].

To implement these solutions, different configurations have been pro-
posed and developed in last decades. The main are the tokamak [13], the
Reverse Field Pinch (RFP) [14], the stellarator [15], and many others, all of
them with different particularities and features. Due to its relation with the
work carried out in this thesis, only the tokamak device is briefly introduced
in the next part of the chapter.

1.2.1 The tokamak device

Among the different concepts of fusion devices, tokamak has been the leader
for many years in terms of overall performance, making this type of reactor
to serve as the reference configuration against which all other concepts are
compared [12]. A schematic view of a tokamak device can be seen in Fig.
1.4.

The tokamak is an axisymmetric device with strong toroidal magnetic
field and significant toroidal current. This concept has been developed by
Soviet researchers in the late 1950s, when they noted that the plasma would
be more stable with an helical configuration of the magnetic field lines in
the toroidal direction. This particular features was achieved by adding a DC
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Figure 1.4: Schematic view of a tokamak device.

toroidal current, because the superposition of the resulting poloidal field with
the already present toroidal field would give twisted field lines, increasing the
stability of order of magnitudes.

In the classical tokamak devices, the needed DC toroidal plasma current
is given by the central solenoid through a time varying current. These coils
work as the primary element of a transformer, inducing a toroidal current
in the plasma column (transformer coil in Fig. 1.4). The toroidal field is
provided by the toroidal field coils instead (red in Fig. 1.4). Additional coils
needed for plasma shaping are present, responsible for the vertical magnetic
field needed to counteract the radial expansion forces (Bv if Fig. 1.4).

Even if tokamak reactors have achieved many goals from both techno-
logical and physical point of view, there are still many open issues. At first,
an important technological problem facing the tokamak is the large toroidal
field needed to provide MHD stability, requiring a set of high-B toroidal
field magnets. Such high magnetic field cannot be easily obtained simply
by means of conventional resistive magnets, due to the extreme heat loads
caused by the Joule effect, but super-conducting magnets are often required.
This would rise both the complexity of the problem, as well as the cost.
Other technological issues are related to the extremely harsh conditions due
to the tremendous level of heat loads and irradiations to which the inner
walls are subjected, requiring the development of special ad-hoc materials.

As was already said, there are still open problems from the physical point
of view as well. Future tokamaks are expected to be steady state devices,
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to be a viable option for energy production [16, 17]. To achieve this goal,
clearly the major problem is related to the strong poloidal current, which
cannot be induced by the central solenoid any more, being this solution
not feasible for steady state operation. Fortunately, there is a naturally
occurring transport driven current, known as the bootstrap current, due to
the collisions between trapped and passing particles [18]. One method to
address this problem involves a new type of tokamak operation, known as
advanced tokamak (AT) [19]. The combination of feedback stabilization and
the control of current and pressure profiles would produce a large bootstrap
current, with the aim of sustaining fully non-inductive discharges. However,
improving the fraction of bootstrap current would require the rise of plasma
pressure beyond the MHD beta limit, causing severe MHD instabilities to
occur. The need of some kind of stabilization of the arising MHD instabilities
is crucial. Specifically, this particular problem will be discussed extensively
in the next part of the work.
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The first part of this chapter is devoted to a brief introduction of the
equilibrium and stability properties of magnetically confined fusion plas-
mas. The mathematical formulation is carried out in the framework of a
fluid theory, the so-called Magnetohydrodynamic (MHD), with the aim of
deriving the single fluid, ideal MHD equations, and discuss some of their
basic properties, regarding in particular the equilibrium and stability of a
plasma configuration in toroidal geometry. The second part is focused on a
particular MHD instability which can occur in toroidal devices, the external
kink, imposing a strong limit to the achievable performances. The derivation
follows the discussions of Refs. [1, 2, 3, 4, 5].

2.1 Introduction to ideal MHD theory

The ideal MHD equations give the simplest fluid model to describe the
macroscopic properties of equilibrium and stability in magnetized plasmas.
Even though the description of many important plasma phenomena goes
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Chapter 2: Introduction to Plasma equilibrium and stability

beyond the ideal MHD (such as, for example, radiation, RF heating and
current drive, resonant particle effects and many others), this model is still
very useful to provide an accurate description of macroscopic plasma behav-
ior, such as equilibrium and stability. In particular, ideal MHD helps to
answer to basic questions as: How does a given magnetic geometry provide
forces to hold a plasma in equilibrium? Why are certain magnetic geometries
more stable against macroscopic disturbances than others? Why do fusion
configurations have such technologically undesirable shapes as a torus or a
toroidal-helix?

2.1.1 Ideal MHD equations

A rigorous and formal derivation of ideal MHD equations should start from
the fundamental and inclusive kinetic description of the plasma [2]. Within
this formulation, plasma is described by means of electron and ion distribu-
tion functions fα(~r, ~v, t) (where α is the species):(

∂fα
∂t

)
c

=
∂fa
∂t

+ ~v · ∇fα +
Zαe

mα
( ~E + ~v × ~B) · ∇vfα (2.1)

where the left-hand side is the collision operator, ~v the particles velocity, e
the electric charge of the electron, mα the mass for each species, Zα = 1

for ions and Zα = −1 for electrons, ~E the electric field and ~B the magnetic
field. It is assumed that the plasma is fully ionized and consists of two
species, electrons and singly charged ions.

The Maxwell’s equations in vacuum are then considered:

∇× ~E = −∂
~B

∂t
(2.2)

∇× ~B = µ0
~J +

1

c2

∂ ~E

∂t
(2.3)

∇ · ~E =
σ

ε0
(2.4)

∇ · ~B = 0 (2.5)

where ~J the current density, σ the electric charge density, µ0 and ε0 respec-
tively magnetic permeability and electric permittivity of vacuum, and c the
speed of light. The full set of kinetic-Maxwell equations are then considered
together. This model provides a detailed and complete description of plasma
behavior; however, the complexity of the model makes it impossible to be
solved, even numerically, for any non-trivial geometry.

The macroscopic behavior of plasma can be described by averaging Eq.
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(2.1) over a sufficiently large number of particles. This averaging is done
taking the appropriate moments of the kinetic equation [3]. The arising
model is no longer written in terms of distribution functions, but of fluid
equations both for the ion and the electron species (the so-called two-fluid
equations), in which physical variables such as density, velocity, and pressure
are considered.

However, these equations are still not useful since there is no prescrip-
tion for closing the system, being more unknowns than equations. For this
purpose, the plasma is considered ideal, meaning that we are neglecting the
electrical resistivity, the viscosity, and the heat flux through the boundary.
In addition to this, further simplification can be made through the following
asymptotic assumptions:

1. neglect high frequency, short-wavelength information from the Maxwell’s
equations by letting ε0 → 0. This means that the displacement current
ε0∂ ~E/∂t and the net charge ε0∇ · ~E are neglected in Eqs. (2.3) and
(2.4).

2. neglect electron inertia by letting me → 0. This means that the elec-
tron have and infinitely fast response with respect to ions.

Under these assumptions, the combinations of fluid equations with Maxwell’s
equations gives the ideal MHD system:

∂ρ

∂t
+∇ · ρ~v = 0 (2.6)

ρ

(
∂~v

∂t
+ ~v · ∇~v

)
= −∇p+ ~J × ~B (2.7)

∂p

∂t
+ ~v · ∇p = −Γp∇ · ~v (2.8)

∂ ~B

∂t
= ∇×

(
~v × ~B

)
(2.9)

∇× ~B = µ0
~J (2.10)

∇ · ~B = 0 (2.11)

where Γ is the specific heat ratio. The Ohm’s law for ideally conducting
plasma ~E + ~v × ~B = 0 has been implicitly used.

2.1.2 Equilibrium in toroidal configurations

The first goal in order to obtain suitable conditions to reach fusion is to
confine the hot plasma, in order to keep it isolated from the wall. The task
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Figure 2.1: Schematic layout of a tokamak geometry and the coordinate system
used in the derivation of equilibrium equation.

of finding magnetic geometries suitable for this purpose is one of the goal of
MHD equilibrium theory. Research from the last 70 years has lead to the
discovery of many different configurations such MHD equilibrium properties.
As was already said in the previous chapter, the most common feature of the
current fusion concepts is that almost each device is constructed in the shape
of a torus, to obtain magnetic configurations with closed magnetic field lines.
In this subsection, the problem of toroidal force balanced is addressed for
such configurations which are symmetric with respect to an axis, known as
axi-symmetric configurations. A schematic view of an axi-symmetric toroidal
geometry for a tokamak device, as well as the coordinate system used in the
discussion, can be seen in Fig. 2.1.

The MHD system of equations (2.6) - (2.11) can lead to the equations
governing the plasma equilibrium. Since the aim is the derivation of an
equilibrium equation, it is natural to assume zero velocity, and constant
quantities; therefore:

∂

∂t
= 0 (2.12)

an additional hypothesis is assuming zero velocity ~v = 0. In this case, the
system of equations (2.6) - (2.11) reduces to:

~J × ~B = ∇p (2.13)
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Figure 2.2: Definition of Sψ for the computation of the poloidal flux ψ(r, z) .

∇× ~B = µ0
~J (2.14)

∇ · ~B = 0 (2.15)

Two important properties follow from the force balance equation (2.13),
and can be obtained multiplying the left-hand side by respectively ~J and ~B

to obtain:

~J · ∇p = 0 (2.16)
~B · ∇p = 0 (2.17)

This means that both the magnetic field and the current field lines lie
on constant pressure surfaces, without any component along the direction of
the pressure gradient. The magnetic field lines cannot intersect these surface
of constant pressure, which have therefore also constant values of magnetic
flux (the so-called iso-flux surfaces).

We define at this point two scalar functions related to the total surface in-
tegrals of the magnetic and current density vector fields through the poloidal
area element:

ψ =
1

2π

∫
Sψ

~B · n̂ dSψ (2.18)

F =
1

2π

∫
Sψ

~J · n̂ dSψ (2.19)

where the poloidal area element is defined as shown in Fig. 2.2, and n̂ is the
unit vector normal to Sψ.

These quantities are used to recombine the Eqs. (2.13) - (2.15), which
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are vector equations, to obtain the Grad-Shafranov equation, a single par-
tial differential equation for the normalized poloidal flux ψ = ψ(r, z) and
describing the equilibrium of an axi-symmetric toroidal configuration:

∆∗ψ = −µ0r
2 dp

dψ
− 1

2

dF 2

dψ
(2.20)

where the elliptic operator ∆∗ is called Shafranov operator, and is defined
as:

∆∗ = r
∂

∂r

(
1

r

∂

∂r

)
+
∂2

∂t2
(2.21)

The solution of Eq. (2.20) provides the constant flux (and pressure) sur-
faces in real axi-symmetric tokamak geometry. The functions p(ψ), F (ψ) are
completely arbitrary, and must be determined from considerations different
than the simple toroidal force balance, such as determined experimentally,
or from a transport calculation, or using some suitable parametrization func-
tions [6].

2.1.3 Stability

In this section, the MHD equations are assumed to be solved, and the result-
ing equilibrium calculated. The fact that the equilibrium exists means that
the sum of all the forces acting on the plasma is zero. Such equilibrium can
be either stable or unstable. The task of stability analysis consists, given an
infinitesimal perturbation, in understanding if the arising perturbed forces
tend to restore the plasma to its original equilibrium state, or otherwise to
increase the perturbation itself.

Linearization of MHD equations for small displacements

The most common technique used to deal with the stability problem is the
study of the linear stability. To do this, all the quantities of interest in the set
of ideal MHD equations (2.6) - (2.11) are linearized around their equilibrium
point:

f(~r, t) = f0(~r) + f1(~r, t) (2.22)

where f0 is the zeroth order value (equilibrium), and f1 the first order per-
turbation, assumed such as |f1/f0| � 1.

Equations (2.6) - (2.11) are then written in terms of def. (2.22), neglect-
ing the higher order terms, to obtain:

∂ρ1

∂t
= −∇ · ρ0~v1 (2.23)
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ρ0
∂~v1

∂t
= −∇p1 + ~J0 × ~B1 + ~J1 × ~B0 (2.24)

∂p1

∂t
= −~v1 · ∇p0 − Γp0∇ · ~v1 (2.25)

∂ ~B1

∂t
= ∇×

(
~v1 × ~B0

)
(2.26)

in addition, for Eqs. (2.10) - (2.10) we have:

∇× ~B0 = µ0
~J0 ∇ · ~B0 = 0 (2.27)

∇× ~B1 = µ0
~J1 ∇ · ~B1 = 0 (2.28)

At this point, it is useful to define the quantity ~ξ such as:

~v1 =
∂~ξ

∂t
(2.29)

it follows that ~ξ represents the infinitesimal displacement of the plasma from
its equilibrium state. Equations (2.23), (2.24) and (2.25) can be written in
terms of ~ξ as an initial value problem:

ρ1 = −~ξ · ∇ρ0 − ρ0∇ · ~ξ (2.30)

p1 = −~ξ · ∇p0 − Γp0∇ · ~ξ (2.31)
~B1 = ∇×

(
~ξ × ~B0

)
(2.32)

here vanishing initial conditions have been assumed, corresponding to the
situation where the plasma is, at the time t = 0, in its equilibrium point.

Equations (2.30) and (2.32) are than put into Eq. (2.24) to obtain:

ρ0
∂2~ξ

∂2t
= ~J0 ×

[
∇×

(
~ξ × ~B0

)]
+

1

µ0

{
∇×

[
∇×

(
~ξ × ~B0

)]}
+

+∇
(
~ξ · ∇p0

)
+ Γ∇

(
p0∇ · ~ξ

)
(2.33)

= F (~ξ) (2.34)

where F (~ξ) is the so-called force operator. This is a wave equation that can
be directly used to compute, through integral over the whole system volume,
the change in potential energy of the plasma due to the perturbation.

The equations can be further simplified recalling the normal mode expan-
sion, which gives a more efficient way to investigate the problem. This can
be done by considering in Eq. (2.22) perturbed quantities of the following
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form:
f1(~r, t) = f1(~r)e−iωt (2.35)

under this assumption, the momentum equation (2.34) becomes:

−ρ0ω
2~ξ = F (~ξ) (2.36)

which has clearly the form of an eigenvalue problem, being ~ξ the eigenfunc-
tion and ω2 the related eigenvalue.

The energy principle

If compared to the initial value problem, the normal mode approach is more
suitable to the analysis of the stability property, and less numerically heavy
from the computational point of view. However, it is still not the most
efficient way to just determine a “yes or no” answer with respect to plasma
stability, and investigate the marginal stability. To this purpose, in this
subsection at first some details on the force operator are given, to present
then the Energy Principle, which is the most efficient way to investigate
marginal stability.

An important mathematical property of the MHD force operator defined
as Eq. (2.33), is its being a self-adjoint operator. Formally, this means that,
given two vector fields ~ξ and ~η, it holds that:∫

~η · F (~ξ) dV =

∫
~ξ · F (~η) dV (2.37)

This property can be proved writing the right-hand side of the integral (2.37)
of F (~ξ) eo Eq. (2.33), and arranging the resulting relation by a series of
algebraic manipulations and integrations by parts. Here, the proof of the
fact that F (~ξ) is self-adjoint is not reported; a detailed explanation can be
found in Ref. [2].

The self-adjoint property of F (~ξ) suggests that the stability problem can
be casted into a variational form, without solving the differential equation
(2.33). Without going into details, this can be exploited by taking the dot
product of ~ξ, which is the complex conjugate of ~ξ, to both the sides of Eq.
(2.36), and then integrating over the plasma volume to obtain the relation:

ω2{~ξ} =
δW{~ξ, ~ξ}

K{~ξ, ~ξ}
(2.38)

where δW represent the change in potential energy associated with the per-
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turbation and K the kinetic energy of the system. These quantities are
defined as:

δW{~ξ, ~ξ} = −1

2

∫
~ξ · F (~ξ) dV (2.39)

K{~ξ, ~ξ} =
1

2

∫
ρ~ξ · ~ξ dV (2.40)

Since ω2{~ξ} is a functional of ~ξ, it follows that any allowable trial function
~ξ producing an extremum in the value of ω2 is an actual eigenfunction of the
ideal MHD normal mode equation, with eigenvalue ω2 equal to Eq. (2.38).

Equation (2.38) states that for any displacement ~ξ such that δW < 0,
then ω2 < 0, and the system is unstable. This leads to the ideal MHD Energy
Principle: if δW ≥ 0 for all allowable displacements, then the system is
stable; if at least one displacement is found to give δW < 0, then the system
is unstable. The physical basis for the Energy Principle is the fact that the
energy is exactly conserved in an ideal MHD system. It follows that the
most negative eigenvalue ω2 is related to the absolute minimum in potential
energy δW . For this reason, any study of stability/instability of the system
can be determined only by examining the sign of δW through the sign of ω2.

The change in potential energy δW defined as (2.39) can be formulated,
through a suitable sequence of integrations by parts, in different forms de-
pending on how these integrations are performed. The first is the so-called
standard form of δW , particularly useful because a boundary term appears
by appropriate integrations by parts, which can be used to evaluate the con-
tribution to the stability of the vacuum region between the plasma and the
conducting wall. Conversely, one can obtain the “intuitive form” of δW , in
wich the boundary term is no longer present, but the form is more suitable
for providing physical insight into the nature of the various occurring MHD
instabilities.

The previous discussion, which can be considered the traditional deriva-
tion of the Energy Principle, was carried out considering the plasma sur-
rounded by a perfectly conducting wall, exactly enclosing the plasma bound-
ary and without a vacuum region in between. Therefore, this formulation
does not allow any local displacement on the plasma boundary. This de-
scription can be further generalized to this case, giving so-called Extended
Energy Principle. Such formulation is of particular interest and usefulness
because the most dangerous MHD instabilities involve the perturbation of
the plasma surface, not allowed for the previous case.

The derivation of the Extended Energy Principle requires that F (~ξ) has
to remain self-adjoint when also the vacuum region is considered. This can be
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done through a suitable manipulation of the boundary therm which arises
in the integral (2.37) and takes into account the energy associated to the
vacuum region [2]. In this framework, the total potential energy of the
perturbed system can be written as:

δW = δWF + δWS + δWV (2.41)

where δWF is the contribution from the plasma (fluid), δWS from the in-
terface between plasma and vacuum, and δWV is the contribution from the
vacuum region. More specifically:

δWF =
1

2

∫
VF

[
|δ ~B|2

µ0
− ~ξ⊥ · ( ~J × ~B) + Γρ0|∇ · ~ξ|2+

+ (~ξ⊥ · ∇p0)∇ · ~ξ⊥
]
dV

δWS =
1

2

∮
S
|n̂ · ~ξ⊥|2n̂ · ∇

s
p+

B2

2µ0

{
dS

δWV =
1

2

∫
V

|δ ~B|2

µ0
dV

where ~ξ⊥ is the component of the displacement perpendicular to the
equilibrium magnetic field and the brackets JK mean the jump condition at
the plasma–vacuum interface. The extended energy principle forms the basis
for much of linear stability theory, especially for fusion plasmas.

2.1.4 Note on the inertia-free approximation

Before going on, it is useful to spend some words about the so called inertia-
free approximation, being relevant in the next chapters.

Depending on the possibility of neglecting the plasma inertia, two dif-
ferent models to describe the MHD problem arise [7]. Let us consider the
momentum equation (2.7), here written in term of the convective derivative:

ρ
d~v

dt
= −∇p+ ~J × ~B (2.42)

this equation describes the behavior of a plasma under the action of electro-
dynamic forces. On the right-hand side of the equation, both the pressure
gradient forces and the electrodynamic forces can be seen. A look at this
equation is sufficient to see that two extreme cases are possible, each char-
acterizing a large group of confinement methods.

If the inertia term on the left-hand side of the equation is small if com-
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pared to the terms on the right hand side, it can be disregarded as well:

∇p = ~J × ~B (2.43)

in this case, the gas-kinetic and magnetic pressures permanently balance
each other.

Conversely, for the other case, the timescale of the phenomena is com-
pared to the Alfvén time τA, defined as the inverse of the Alfvén frequency
ωA:

τA =
1

ωA
=

√
µ0nimi

BR0
(2.44)

where ni is the ion number density, mi is the ion mass and R0 is the machine
major radius. If the timescale of interest has the same order of magnitude
of the Alfvén time, the electrodynamic force will be balanced by "inertial
forces", giving rise to:

ρ
d~v

dt
= ~J × ~B (2.45)

Characteristic of this type of plasma-magnetic field interaction is the short
duration of the process, characterized by order of magnitude equal to a/v,
where a is the distance traversed by the plasma under the action of the ac-
celerating forces, and v is the velocity attained. In cases of practical interest,
the duration of this acceleration process should be of the order of 10−6 to
10−5 sec, which is comparable with the timescale of the Alfvén phenom-
ena. It follows that, if such "fast" phenomena have to be considered, the
assumption of inertia-free is not suitable.

2.2 External kink instabilities and Resistive Wall
Modes

Extensive theoretical and experimental analysis in fusion devices has lead,
among decades, to further and deeper understanding in the ideal MHD sta-
bility properties of fusion plasmas, allowing the identification of the exter-
nal kink instabilities as the major obstacle to increase the plasma pressure
and pursue steady state economic production of fusion energy. Substan-
tial improvements have been achieved in the field of stabilization of these
instabilities, partly because of the deeper awareness gained in the passive
stabilizing mechanism proper to the plasma under certain operational condi-
tions, and for the continuous improvement of the modelling activity and the
active control strategies. In the following part of the section, at first a brief
introduction on the historical background of the RWMs problem is reported,
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followed by a discussion on the different stabilization mechanisms.

2.2.1 Background

The energy production is one of the main goals for the magnetically confined
thermonuclear fusion. To this purpose, extensive effort has been spent in
order to optimize plasma configurations to increase as much as possible the
fusion power and achieve steady state operation. Since the fusion density
scales roughly as 〈p〉2 [8, 9], high performance in producing fusion energy
implies high values of:

βT =
2µ0〈p〉
B2
T

where 〈p〉 is the average plasma pressure, and BT the strength of the toroidal
magnetic field.

Plasma with high pressure is more likely to operate close to one (or more)
stability limit(s) related to ideal MHD instabilities. Among these, the ideal
kink has been considered for a long time the major limitation to achieve
high performances. However, even though a lot of experiments were termi-
nated by instabilities growing slower than Alfvén timescales, there were no
experimental evidence to relate these instabilities to external kinks. Impor-
tant advantages in the understanding of these phenomena comes from the
theoretical investigation of the stability properties of the MHD model, in par-
ticular through the MHD Energy Principle already presented in subsection
2.1.3. These properties have been studied analytically at first by Shafranov
in 1970 [10], then followed by many further improvements.

However, the most prominent advancements in understanding MHD sta-
bility properties was carried out with the development of large ideals MHD
stability codes (ERATO [11], KINX [12], PEST [13], and many others [8]).
Extensive analysis were carried out with these computational tools, and one
of the most remarkable result was the so-called Troyon’s scaling limit: specif-
ically, the maximum value of achievable βN was:

βTroyonN = βT,max
aBT
I
≈ 2.8

where I is the toroidal plasma current and a is the minor radius. This value
was found to be the same for a wide variety of current and pressure profiles.
This result was obtained assuming that no external conducting wall was
present. In addition to this, neither dissipation nor rotation was considered
for the plasma.

The effect of a finite-conducting wall surrounding the plasma was inves-
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Figure 2.3: Comparison of experimental achieved βT as function of the normalized
current I/aBT for major tokamaks until 1994 [15].

tigated by Pfirsch and Tasso [14]. In particular, their work showed that
replacing an ideally conducting wall with a resistive wall cannot stabilize an
unstable plasma. The effect of the wall was to significantly reduce the insta-
bility growth rate, from the Alfvénic timescale, to the characteristic decay
time of the eddy current induced in the wall. Such instabilities were then
called Resistive Wall Modes.

Experimental studies have been carried out to validate the Troyon’s limit.
In particular, some results previous to 1994 and reviewed in Ref. [15] are
reported in Fig. 2.3, where the experimental achieved values of βT are plotted
as function of the normalized current I/aBT (here I is the total plasma
current and a the minor radius). It is clear that the value of βT achievable
in tokamaks is bounded by a straight line corresponding to βN = 3.5. But,
also βN > βTroyonN , meaning a higher maximum value of βN is achievable.
Further investigation has lead to find out that the reason was the stabilizing
effect of the conducting wall, which was not included in the computation of
Troyon’s limit.

Further requirements to operate with higher values of βN was imposed
with the development of the so-called Advanced Tokamak (AT) scenarios
[16]. The aim was to reach fully non inductive steady-state operations, max-
imizing the fraction of the self-generated bootstrap current [17]. Specifically,
the plasma bootstrap current was verified to be proportional to the plasma
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poloidal beta:

βP =
〈p〉2µ0

〈B2
P 〉

(2.46)

where 〈B2
P 〉 is the averaged value of the poloidal magnetic field. The high

values of βP and βT require consequently a high βN [8], leading to the need
of stabilize the external kinks.

In the early 1990s, higher βT discharges was obtained by an extensive
use of Neutral Beam Injection (NBI). The MHD instabilities arising in that
situations were found to be less unstable than what was predicted, being the
growth time smaller than the characteristic wall time. The explanation of
this effect was given by Bondeson and Ward [18], who correlate the momen-
tum injection provided by NBI to the more stable modes. In particular, it
was explained that low n external kinks, where n is the toroidal mode num-
ber(i.e. the periodicity along the toroidal direction), could be fully stabilized
in presence of a resistive wall if the plasma rotates with at a certain fraction
of the sound speed. This study has paved the way to the investigation of
passive stabilization mechanism, called in such way in contraposition to the
active (feedback) stabilization. These methods are exploited in a synergic
way in present machines, and are expected to be so also in future devices.

2.2.2 Stabilization of resistive wall mode

When βN > βno−wallN , i.e. the no-wall stability threshold, the plasma is
expected to be unstable to the RWM. In this case, some stabilization mech-
anisms are required to maintain the plasma stable and avoid sudden and
abrupt loss of confinement. The stabilization mechanisms can be both pas-
sive and active: the first comes from the combination of the plasma rotation
with the energy dissipation inherent to the plasma and already presented in
the previous subsection, while the latter can be achieve through an active
feedback control system. A brief description of both of them will follow in
the next part of the discussion.

Rotational stabilization

If a NBI system is used for plasma heating, not only energy, but also toroidal
angular momentum, is injected into the plasma. The mode couples with
the rotation through a dissipation mechanism, causing the plasma to slowly
rotate with respect to the conducting wall. If the toroidal angular momentum
is prominent, the low n, pressure driven, external kink can be completely
stabilized by the resulting rotation of the plasma with respect to the resistive
wall. In their explanation, Bondeson and Ward [18], have considered that the
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Figure 2.4: Growth rate γ and slip frequency ∆ω = ωrot − ω, normalized by the
wall time τW , as a function of the resistive wall position. Also the no-wall external
kink growth rate is reported [18].

momentum transfer from the plasma to the mode occurred by the Landau
damping mechanism, showing that a critical rotation value of a fraction of
Alfvén speed was sufficient to fully stabilize the mode, opening a stability
window from low βN to the ideal-wall limit.

The nature of this stabilizing effect can be seen in Fig. 2.4, where the
mode growth rate γ and slip frequency ∆ω = ωrot−ω, normalized by the wall
time τW , are computed for different position of the wall location (here d is
the radius of the wall and a of the plasma). The rotation of the plasma with
respect to the resistive wall is modelled through a fake rotation of the wall
with angular velocity ωrot. The ideal kink mode is stable with d/a < 1.7. If
the resistivity of the wall is taken into account, the resulting RWM occurs,
which is stable when the slip frequency ωτW of RWM is large with respect
to the wall, due to the momentum transfer from the plasma to the mode.
Note the shaded region of 1.4 < d/a < 1.7 in which both γRWM and the
extended γideal are expected to be negative.

Theoretical, numerical, and experimental studies have been carried out
to further understand these passive stabilization mechanisms. In particular,
from the numerical point of view it is worth mentioning the development
of the stability code MARS-K, based on the drift-kinetic approach to com-
pute the complete RWM eigenfunction with the self-consistent inclusion of
diamagnetic and magnetic drifts [19]. This code has been extensively used
to study the critical rotation and damping mechanisms for RWMs, giving a
strong improvement to the knowledge on passive stabilization.
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Present and further effort are oriented to the combination of this bene-
ficial passive stabilizing effect with the active feedback control, in order to
reach operational regimes at higher values of βN .

Feedback stabilization

The slowing down effect provided by the resistive wall on the external kink
growth rate opens to the possibility of the use of active feedback strategy,
to obtain a synergic effect with both active and passive stabilization.

Following the results reported in [18], Bondeson suggested that a rotating
plasma would cause the current induced into the wall to rotate with respect
to the wall itself, avoiding the wall current and the mode perturbed current
to grow in phase, and thus leading to stabilization. Following this idea, the
concept of rotating real or virtual walls was proposed and developed [20].

Bishop proposed to use a feedback coils system covering the entire surface
of the torus, to artificially reproduce the effect of the ideally conducting
structures, replenish the flux leakage though wall [21]. This is the so-called
intelligent shell concept, and requires, in principle, a high number of saddle
coils supplied and driven with a degree of freedom suitable to ensure that
the replenish of the flux leakage is ensured locally.

The toroidal calculations the RWM feedback control was were first pre-
sented by Liu and Bondeson [22], with a simple arrangement of actuator
and sensor coils, and considering thin axi-symmetric conducting structures.
This analysis, carried out with the MARS-F code, shows that the mode can
be fully stabilized with a simple set of coils and one array of sensor coils
located at one poloidal location, in contraposition to original configuration
proposed by Bishop [21]. In order to characterize the effectiveness of differ-
ent sensor and feedback configurations, further studies have been done using
a lumped parameters model in terms of fluxes produced by the plasma and
the feedback coils, considering into the computation also the response of the
conducting structures, but modelled as a thin shell [23]. It has turned out
that better performance can be obtained with poloidal field sensors rather
than the radial sensors.

Since both the feedback coils and the plasma interact with every passive
conductors close to them, it is clear that a reliable model of such structures
should be consider fundamental in the study the plasma stability during
feedback. This modelling activity should be devoted to take into account
the real geometry of the system, in which specifically the 3-D features of the
stabilizing wall can play a crucial role [24, 25, 26, 27]. For this reason, many
computational tools have been developed in recent years, such as KINX [12],
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VALEN, [28, 29], STARWALL [30, 31] and CarMa [32, 33]. These codes
have been extensively used to design new (and optimum) feedback systems,
as well as for the interpretation of experimental results.

In this work, particular attention will be focused specifically on the
CarMa code, in order to overcome some of these weaknesses can be too
limiting in some particular cases.
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3.1 Introduction

As was already said in the previous chapter, one of the most stringent lim-
itations to reach high performances in toroidal fusion devices is given by
external ideal MHD modes of low toroidal mode number n [1, 2], driven ei-
ther by the plasma current or pressure. These instabilities produce magnetic
field perturbations, which induce stabilizing image currents in the metallic
structures placed around the plasma. Such image currents, flowing inside
the resistive wall, reduce the mode growth rate from the Alfvén time scale
(microseconds) to the characteristic time of the passive structures (the so
called wall time), that is the penetration time of the perturbed magnetic
field. This fact motivates the name of Resistive Wall Modes (RWMs) for
these instabilities. This time ranges go from several milliseconds for the ex-
isting devices to about 0.3s for ITER [3, 4]. Since RWMs typically grow on
millisecond timescale, it is hence possible to get stabilization with magnetic
feedback. Many different strategies have been applied to tackle active con-
trol of RWMs. Both experimental and modelling examples can be found on
a variety of Tokamak devices [5, 6, 7], and extensions of the virtual shell
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concept for stabilization of multiple RWMs have been applied to Reversed
Field Pinch experiments as well [8, 9, 10, 11].

It is well known that the three-dimensional characteristics of conducting
structures, as well as the geometry of the feedback coil system, play an
important role in determining the mode dynamics. It is therefore important
to implement modelling tools that allow to take these characteristics into
account.

The CarMa code [12, 13] is a computational tool developed for the pur-
pose of studying RWM instabilities coupled with conducting structures [14].
CarMa takes rigorously into account the real geometry of conducting struc-
tures, such as the thickness of the conductors. Many other tools have been
developed with the same purpose [15, 16, 17, 18, 19], all of them using a
thin-wall approximation [20] for the passive conductors. This approximation,
however, has been found valid only for relatively slow modes. As reported
in [21] and [22], when the instability is faster than the conventional RWM
(γτw >> 1, where γ is the mode growth rate and τw the wall characteris-
tic time) the skin effect of the induced wall current can make the thin-wall
approximation unacceptable, because the magnetic energy stored inside the
wall is coupled in a non-linear way with the RWM growth rate. The CarMa
code can overcome this approximation, taking advantage of a volume integral
solution of the eddy current problem.

CarMa has been successfully used in existing devices, such as JET [23]
and RFX-mod [24], with applications to RWM control modelling [25] and
control system optimization [26]. Predictive simulations have been carried
out for future devices as well, such as JT-60SA [27] and ITER [28, 29].

However, the coupling strategy behind CarMa code suffers of some limi-
tations: the main one is the assumption of static plasma response to exter-
nal magnetic field perturbation, the so-called massless approximation. This
means that the plasma inertia and any associated Alfvén-wave-like phenom-
ena can be neglected on the time scale of interest [30].

This chapter is devoted to a brief presentation of the CarMa code, pay-
ing particular attention to the decoupling problem of the plasma response
computations.

3.2 Decoupling in the problem of plasma response
computation

Analysis of the resistive wall mode (RWM) feedback stabilization in toka-
maks requires knowledge of the plasma reaction to the slowly varying exter-
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nal helical perturbations [31].
The time scale of the RWM dynamics is determined by the wall time,

which is the decay time of the mirror current on the wall. In all cases, the
timescale is much longer than the force balance equilibration time inside
the plasma, therefore the plasma can be considered in equilibrium at each
moment. This mean that, during the RWM evolution, the plasma can be
considered in an equilibrium configuration perturbed by the RWM (or, gener-
ally, any slow instability) and evolving with the mode developing. Tokamak
reactors usually operate with equilibrium where the normalized kinetic to
magnetic pressure exceed the so-called no-wall limit [4, 32, 33]: this is a
operational region where the RWMs become danger, and can lead to the
sudden and abrupt loss of confinement.

The key step on the calculation of the perturbed equilibrium is the sepa-
ration of the magnetic field produced by the plasma from the total magnetic
field found from the perturbed equilibrium calculations. This is clearly in-
dispensable to find the external field (due to currents flowing both in active
and in passive conductors) necessary to maintain the plasma configuration
in equilibrium. To this purpose, a closed control surface Se, placed between
the plasma region and the vacuum vessel [34], is chosen: that surface splits
the space in two regions: the plasma region and the external environment.
The magnetic field normal to the control surface is the boundary condition
required to make the magnetic field unique in regions. The control sur-
face allows one to completely separate the formulation of the interaction
between RWM and conducting structures into two simpler problems: (1) a
MHD problem of the linear plasma response computation to external per-
turbations, and (2) the electromagnetic field problem of the calculation of
the eddy current induced inside the conducting structures that surround the
plasma.

Once the coupling surface has been identified, the decoupling problem
can be written considering the contributions to the total perturbed magnetic
field on the coupling surface. The total perturbed magnetic field is given by:

~B = ~Bpl + ~Bex (3.1)

therefore, to find the external field it is necessary to find the contribution
~Bpl, that is the plasma response.

In the next section, the coupling strategy used for the CarMa code will be
described, which is a numerical procedure developed to decouple the plasma
contribution from the total magnetic field perturbation.

33



Chapter 3: The static CarMa model

(a) (b)

Figure 3.1: Cross section: sample (a) and circular cross section (b).

3.3 Plasma response with the Mars code

The procedure at the basis of the CarMa code aims to couple self consistently
the computation of the eddy currents in the metallic structures surrounding
the plasma to the solution of the plasma ideal MHD equations in their linear
approximation. The coupling procedure, which is an extension of the n = 0

presented in [35], is described in details in [12, 36].
In the following description, the upper case letters are referred to equi-

librium quantities, while the lower case letters to their first order variations
with respect to the reference equilibrium. The coordinate system is toroidal
(R,φ, Z), and (ρ, θ) are the minor radius and the poloidal angle with respect
to a given pole (R0, Z0) on the poloidal plane

The equilibrium is assumed to be toroidally symmetric: the region of
space occupied by the plasma in its reference equilibrium, called Vp, has trace
Γ in the poloidal plane. The plasma is assumed not to be in contact with
the wall, therefore a coupling surface Se with trace Γe can always be defined
between the plasma and the conducting wall, without any intersection with
them. In fig. 3.1a a schematic overview of the problem can be seen, while
in fig. 3.1b a more realistic case for a plasma with circular cross-section is
reported. In particular, the trace of the coupling surface (red) can be seen
between the cross-section (blue) and the conducting wall, which have been
deliberately drown thicker for the sake of clearness.

The most important assumption behind the following coupling procedure
is that the plasma is assumed to be static: since the focus is to capture the
slow branch part of the plasma dynamic response, it is suitable to assume
that the plasma inertia, for the timescale of interest, is negligible (mass-less
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approximation). Under this assumption, the plasma mass is neglected, no
toroidal flow is considered and the plasma equilibrium fluid velocity ~v = 0:
the governing equations inside the volume Vp are the single fluid, linearized
MHD linear system obtained from the combination of Eqs (2.24), (2.31),
(2.32) and (2.28):

0 ≈ −∇p1 + ~J1 × ~B0 + ~B1 × ~J0 (3.2)

p1 = −~ξ · ∇P0 − ΓP0∇ · ~ξ (3.3)
~B1 = ∇× (~ξ × ~B0) (3.4)

µ0
~J1 = ∇× ~B1 (3.5)

0 = ∇ · ~B1 (3.6)

where the involved quantities have been presented in subsection 2.1.3.
For the study of Resistive Wall Modes stability, the mass-less approx-

imation is justified because the evolution of such instabilities is normally
determined by the wall eddy current dynamics, thus the plasma mass plays
a minor role. For this reason the plasma mass can be neglected, leading to
a plasma response to external magnetic perturbation which is static. How-
ever, there are cases when the plasma inertia cannot be neglected, for in-
stance when the plasma is close to the ideal-wall beta limit, or when the
plasma flow effects are important [37]. In these cases, in principle, CarMa
cannot be used to study these instabilities, because the assumptions behind
the coupling strategy are no longer valid.

Before going on, it is useful to remember that the original version of the
coupling strategy was developed involving the MARS-F code, presented in
[38], which solves the set single-fluid MHD equations (3.2)-(3.6). Recently,
newer version of the MARS code have been presented, called MARS-K, able
to self consistently model the drift kinetic effects, toroidal plasma flow and
flow shear on global MHD modes [39]: however, the description of the cou-
pling strategy refers to the fluid MHD equations (3.2)-(3.6), as was for the
original version of the code.

The equation for the vacuum region outside Vp and bounded by the
surface Se are:

∇× ~B1 = 0 (3.7)

∇ · ~B1 = 0 (3.8)

At this point, the components of the perturbed magnetic field normal and
tangential to the coupling surface Se are expanded in poloidal and toroidal
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Fourier harmonics. Since in the next part of the work only perturbed quan-
tities will be considered, unless specified, the quantities will be written ne-
glecting the subscript 1. Thus:

~B · n̂|Se = BN (ρ, θ, φ) |Se= BN (ρ(θ), θ, φ) =
∑
n

∑
m

bn,mN ei(nφ+mθ) (3.9)

~B × n̂|Se = BT (ρ, θ, φ) |Se= BT (ρ(θ), θ, φ) =
∑
n

∑
m

bn,mT ei(nφ+mθ) (3.10)

where n̂ is the normal unit vector outgoing from Se. For the mode analysis,
only one specific toroidal harmonic component n and a suitable spectrum of
poloidal harmonics m = [M1,M2] is considered. It is clear that, in principle,
an infinite number M of poloidal harmonics are required: for a realistic
implementation only a finite number M , high enough to ensure the desired
accuracy, is chosen.

For a fixed toroidal harmonic n and a chosen spectrum of M poloidal
harmonics, what we aim is to find a linear mapping between the components
of the perturbed magnetic field normal and tangential to the coupling surface,
such as:

bT = KbN (3.11)

This is done in a numerical way solving the set of MHD equations (3.2)-
(3.6) M times in the domain bounded by Se. For each computation, a set
of boundary conditions on normal component bN of the total magnetic field
is imposed, and the solution of each computation would give the tangential
component bT on Se. In particular, for each computation, the boundary
conditions are linearly independent. A set of used boundary conditions can
be seen in figure 3.2.

The single toroidal mode description can be easily justified noting that,
since the MHD equations are linear and the computational boundary axi-
symmetric, imposing a set of boundary conditions whit a single toroidal mode
n would give a computed b on Se exhibiting only the same single toroidal
mode n.

The sufficiency of the normal magnetic field as a boundary condition can
be understood from the properties of Laplace’s equation [34]. The control
surface lies in the vacuum region just outside the plasma boundary and
concatenates the plasma. Assuming that there is no net perturbed plasma
current, which is the case of helical perturbations, the perturbed magnetic
field b is curl free on either side of the control surface. Thus b = ∇ϕ, with ϕ
a suitable Laplacian-free scalar potential ∇2ϕ = 0. The Laplace’s equation
gives a unique answer for b if n̂ · ∇ϕ is given on a closed surface with n̂ the
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Figure 3.2: Some of the M linearly independent boundary conditions on the nor-
mal field for the problem (3.2)-(3.6). Both real and imaginary part of the spatial
distribution bN (θ) and the related Fourier harmonics bN .

surface normal.
Starting fromM linearly independent boundary conditions we can obtain

M independent solutions of the MHD equations:

sol. 1 b
(1)
T = k1,1b

(1)
N + ...+ k1,Mb

(M)
N

... (3.12)

sol. M b
(M)
T = kM,1b

(M)
N + ...+ kM,Mb

(M)
N

where b(m)
T is the vector ofM Fourier coefficient for the tangential component

of the magnetic field, referred to themth set of boundary conditions. Writing
the problem in a matricial form we obtain:[

b
(1)
T | b

(2)
T | ... | b

(M)
T

]︸ ︷︷ ︸
BT

= K
[
b

(1)
N | b

(2)
N | ... | b

(M)
N

]︸ ︷︷ ︸
BN

(3.13)

and finally:
K = BTB

−1
N (3.14)

For large poloidal spectra, the matrix BN of Fourier coefficient could be
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ill-conditioned, leading to a inaccurate computation of the inverse B−1
N : in

this case, a suitable regularization technique could be required to compute
B−1
N . An example will be analyzed later in the next chapters.
The same procedure is repeated for vacuum equations (3.7),(3.8), still im-

posing the same boundary conditions on Se. This gives the vacuum solution
inside Se, meaning that no plasma is present. We obtain:

K̃ = B̃TB
−1
N (3.15)

The computation of K̃ is shortly justified: with simple electromagnetic
reasoning, the quantity [40, 31]:

jeq =
1

µ0
n̂× (b− b̃) (3.16)

=
1

µ0
(bT − b̃T ) (3.17)

is an equivalent surface current density flowing on Se and producing, outside
Se, the same magnetic field as the plasma for each imposed normal field
boundary conditions. Relation (3.17) can be written as:

jeq = µ−1
0 (K − K̃)bN = FbN (3.18)

defining the matrix F that maps the poloidal harmonics of the total per-
turbed magnetic field, normal to Se, onto the harmonics of the equivalent
current density on Se.

It is important to note that the magnetic field tangential to the coupling
surface has two components, poloidal bT,θ and toroidal bT,φ. The previous
computations should be performed for both bT,θ and bT,φ exactly in the same
way, to have a complete description of the tangential magnetic field, and
giving rise to both the poloidal and toroidal components of the equivalent
current density.

The second step in the decoupling problem is to link bexN , harmonics
of the external perturbed fields normal to Se, to the total field bN . Here
external refers generally to any magnetic field provided by the external en-
vironment to keep the plasma in equilibrium: since the aim of this work is
at first to study the dynamic of RWMs in the presence of three dimensional
conducting structures and in view of control, here we are going to consider
as external field both the eddy current effect plus the contribution of any
feedback control circuit.

Since bplN = Hjeq, where H is a M × M matrix computed from the

38



Chapter 3: The static CarMa model

Biot-Savart integral, it follows that:

bplN = HFbN = GbN (3.19)

and then:

bexN = bN − bplN (3.20)

= bN −GbN (3.21)

= (E −G)bN (3.22)

where E is the identity matrix, and bexN is the vector of poloidal harmonics
associated with the normal field on Se due to external currents that, for the
given excitation in the total field bN , complement the plasma reaction in
producing the total field normal component bN . The final relation is:

bN = (E −G)−1bexN (3.23)

= WbexN (3.24)

In equation (3.23) the matrix (E −G) is assumed to be invertible: de-
tailed considerations about the physical meaning of possible rank deficiency
can be found in [12].

Equation (3.23) is a key relation in the decoupling problem, because it
gives the normal component of the total magnetic field on Se, including
also the plasma response, for a given normal component of the external
field acting as excitation. It is a M ×M matrix which can be viewed as a
permeability matrix, first introduced in [34]. The main difference with [34]
is that the computations to obtain W involves all the Fourier harmonics of
the truncated poloidal spectrum, rather than the no-wall kink eigenfunction
[41].

3.4 Coupling strategy

In this section, the coupling problem between the current outside the cou-
pling surface and the plasma response to such external perturbation will be
discussed. In particular, since we are interested in the study of the RWMs
stabilization, the external perturbations come from both the current from
excitation coils and the eddy current induced inside the conducting structure
by the mode evolution.

The computational electromagnetic problem is treated through an inte-
gral formulation [42] which assumes as primary unknown the current density
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in conducting structures: with this formulation, only the conducting domain
Vc (see Fig. 3.1) must be discretized, and the regularity conditions at infin-
ity are automatically taken into account. This formalism allows to treat self
consistently the three-dimensional volumetric geometry, without falling into
any thin-plate approximation of the conductors, like for instance in [16, 43].

The first variation of electric field is expressed as:

~e = −∂
~a

∂t
−∇ϕ (3.25)

where ~a is the corresponding first order variation of the magnetic vector po-
tential such that ~B1 = ∇ × ~a and it is computed from the current density
~j via the Biot–Savart law. The Ohm’s law ~e = Θ · ~j, where Θ is the resis-
tivity tensor of the conducting structures, can be written using the weighted
residual approach to obtain the weak form of the problem [44]:∫

Vc

~w · (Θ · ~j − ~e) dVc = 0 (3.26)

for every test function ~w.
The current density is defined through the following linear combination

of the basis functions:
~j =

∑
i

IiJi (3.27)

and divergence free condition on ~j is imposed by introducing the electric
vector potential ~t, such as ~j = ∇×~t, adopting edge element shape functions
tk for the discretization of the domain Vc, and imposing the gauge condi-
tion ~t · ~w = 0 for the uniqueness of ~t. This gauge is conveniently imposed
directly on the basis functions, introducing the tree-cotree decomposition of
the mesh and eliminating the degrees of freedom associated to tree edges. An
automatic and self-consistent treatment is performed for topologically com-
plex domains and for conductors with electrodes to be coupled with external
circuits [45].

At this point, recalling the definition (3.27), it follows that:

~j =
∑
i

Ii∇× ti (3.28)

and using Galerking method we can write equation (3.26) in a finite element
approach, which reduces to a linear system of ordinary differential equa-
tions in the unknown i, i.e. the vector of discrete currents induced in the

40



Chapter 3: The static CarMa model

conducting structures, of dimension N3D. The problem can be written as:

L
di

dt
+Ri = −du

dt
+Dv (3.29)

and can be solved using a suitable stepping integration method. Here v is
the vector of voltages applied to externally fed electrodes Σi, and:

Lij =
µ0

4π

∫
Vc

∫
V ′
c

∇× ti(~r) · ∇ × tj(~r′)
|~r − ~r′|

dV ′dV (3.30)

Rij =

∫
Vc

∇× ti ·Θ · ∇ × tjdV (3.31)

ui = −µ0

4π

∫
Vc

∇× ti · ~asdV (3.32)

Di,j = −
∫

Σi

∇× ti · n̂dS (3.33)

Here ~as is the contribution to the magnetic vector potential by the current
densities external to the conducting structures, in particular of the plasma.
To take into account the plasma contribution we define, for the coupling sur-
face Se discretized in Ne points in the poloidal plane, the following matrices:

• the mutual inductance matrixM , of dimension N3D ×Ne, linking the
3D conducting structures and the equivalent surface currents on Se;

• the matrix Q, of dimension Ne ×N3D, that maps each set of discrete
currents i into the magnetic field component normal to the coupling
surface Se.

Relations (3.18), (3.23) can be rearranged to obtain:

jeq = FbN (3.34)

= F
(
E −G

)−1
bexN (3.35)

= F (E −G)−1Qi (3.36)

= FWQi (3.37)

As was already said, relations are computed for a single toroidal mode num-
ber n. However, the complex Fourier series in (m,n) used by MARS and
reported in Eqs (3.9) - (3.10) requires a symmetric choice of n, therefore
any computation should be repeated for the coupled toroidal modes (−n, n).
Nevertheless, it can be proved that under suitable hypothesis, for the Fourier
coefficients holds the equality c(m,n) = c(−m,−n), where c is the complex con-
jugate of c. For this reason, the plasma response can be computed with
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MARS only for the mode n, taking advantage of the property of the com-
plex Fourier series to have the information also for −n.

Taking advantage of the previous consideration, the perturbed magnetic
flux u produced by the toroidal harmonics (−n, n) of the plasma current is:

u = M
∑

(n,−n)

∑
m

j(m,n)ei(nφ+mθ) (3.38)

= M
∑

(n,−n)

j(θ)(n) (3.39)

=
∑

(n,−n)

M (n)j(θ)(n) (3.40)

= M (n)j(θ)
(n)
N +M

(n)
j(θ)(n) (3.41)

In particular, the fact that j(θ)(−n) = j(θ)(n) has been exploited.
The operator M in eq. (3.39) is the mutual inductance between the

total (i.e. both toroidal components (n,−n)) current j(θ) and the passive
conductors, whileM (n) refers only to one single toroidal harmonic. However,
since in the following part of the work only a single couple of toroidal mode
number is considered, the superscript (n) will be dropped, and (3.41) will be
performed implicitly to consider both n and −n).

It follows that the voltage therm du/dt of equation (3.29) can be written
as:

du

dt
=

( ∑
(n,−n)

M (n)F (n)W (n)︸ ︷︷ ︸
S(n)

Q(n)

)
di

dt
(3.42)

= [SQ+ SQ]
di

dt
(3.43)

= 2RE
[
SQ

]di
dt

(3.44)

= X
di

dt
(3.45)

We will clarify shortly the reason for introducing matrix S = MFW , of
dimension N3D×M and mapping the external perturbed field bexN to the per-
turbed magnetic flux u produced by the plasma reaction to this perturbation
and linked to the passive structures. The matrix X, whose dimensions are
N3D×N3D, is the response matrix, and describes the plasma response to ex-
ternal perturbations: this matrix takes into account consistently the plasma
response and links this response to the eddy currents induced inside the
passive structures. Since rank(F ) = rank(W ) = M , then rank(SQ) = M ,
withM number of poloidal harmonics, and therefore rank(SQ+SQ) = 2M ,
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and typically isM << N3D. The fact that the rank ofX is much lower than
its dimensions can be used to improve the performance of the algorithm used
for the computation of the mode eigenvalue [46].

This procedure let us to modify the eddy current problem (3.29):

(L+X)︸ ︷︷ ︸
L∗

di

dt
+Ri = Dv (3.46)

where L∗ is the perturbed inductance operator that takes into account the
plasma contribution. The mode growth/damping rate can be found looking
for the unstable/stable mode of the modified eddy current equation (3.46).

Thanks to Eq. (3.44), it is clear that X has real entries, and so has L∗.
For this reason, the eigenvalues are expected to appear in complex conjugate
pairs, referring to the pair of modes (−n, n).

Moreover, the total perturbation of the magnetic field can be obtained,
outside the coupling surface Se,

b =
(
Ce +BsFWQ

)
i =

(
Ce + Y

)
i (3.47)

where Ce,Bs are matrices that come from the discretization of Biot-Savart
integral.

Equations (3.46) - (3.47) can be easily written in a state-space form:

di(t)

dt
= Ai(t) +Bu(t) (3.48)

b(t) = Ci(t) (3.49)

a form particularly suitable for the design of an active control feedback sta-
bilization.

It is important to note that X and Y , respectively in (3.46) - (3.47) can
be written with the same formalism to describe MHD instabilities occurring
for any toroidal mode number n, where, for each, n, the symmetric −n is
automatically considered. In particular, we can expand X = X(0) +X(1)...

in (3.46) to include a larger content of toroidal mode numbers:

L∗ = L+
∑
n

S(n)Q(n) (3.50)

= L+
∑
n

X(n) (3.51)

the contribution of each toroidal mode n > 0 is computed separately, as
described above, thanks to the linearity of the model, and the contribution
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of the symmetric modes n < 0 automatically kept into account following
(3.44).

A particular feature of the CarMa code is the ability to take rigorously
into account the coupling between modes with different n that occurs for
non axisymmetric wall, even in case of linear MHD [47].

3.4.1 Some numerical considerations

In order to make such methods convenient for large-scale problems, "fast
techniques" have been implemented in the CARIDDI code [46]. Firs of all,
it is the use of an inverse iteration scheme for the computation of the mode
eigenvalue. This scheme is widely used in Magneto-Hydrodynamic stability
analysis, because it allows the computation of individual eigenvalues, with a
fast convergence, starting from a sufficiently close initial guess. The imple-
mentation of this method in the CARIDDI code relies on the preconditioned
GMRES iterative method for the efficient solutions of linear system required
by the inverse iteration, since the use of a direct solver is unpractical for large-
scale problems. In addition to this, the computations are further speeded-up
both thanks to the peculiar features of this surface-based coupling between
plasma and conductors, and to an efficient low-rank approximation of the
sub-matrices of the inductance operator L representing interactions between
far sources [48]: these sub-matrices are related to non-adjacent cells (sub-
regions), and are described by a low-rank QR factorization [49] based on the
full Modified Gram-Schmidt (MGR) to improve the computational efficiency
[50]. It is worth noting that an ad-hoc strategy, based on the superposition
of a regular grid to the finite element mesh, is used to identify well separated
elements from adjacent ones.
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4.1 Why improving the static CarMa code?

It was already said in Chap. 3 that the CarMa code relies on some as-
sumptions to couple self-consistently the codes MARS and CARIDDI: these
assumptions are that the plasma mass is disregarded, no plasma flow is
present and no kinetic damping is taken into account. Within these hypoth-
esis, CarMa has been used extensively to study the stability of RWMs, which
occur on timescales orders of magnitudes slower than Alvén-like phenomena.
However, if the instability is close to the ideal wall beta limit, the mass-less
plasma approximation is no longer valid. As was already pointed out in Ref.
[1], for realistic machines the range of growth rates that can be expected for
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a RWM can vary in a quite broad range between the slow RWMs and the
ideal MHD modes, and it has been not properly explored yet in the theory
[2, 3]. For this reason, a computational tool able to deal with broad range
of external modes in a robust and accurate way seems to be necessary.

In addition to this, also toroidal rotation and kinetic damping physics
are key features for the modelling or RWMs stability problem [4]. It has
been demonstrated that plasma rotation, combined with magnetic feedback,
can lead to a complete stabilization of RWMs [5, 6]. The stabilization comes
from the combined effect of the inherent dissipation inside the plasma coupled
with plasma rotation: this was first predicted in Ref. [7], and experimen-
tally demonstrated conclusively in DIII-D experiments [8]. The stabilization
process can be modelled by using MARS, relying on two different damping
models and including non uniform plasma rotation: in particular, these mod-
els are the sound wave damping model [9] and the kinetic damping model
[10]. The former damping model is implemented in the MARS-F code, al-
ready presented previously in this work and used as MHD solver for the
static CarMa code, while the latter have been implemented in the MARS-K
code [11]. MARS-K solves the nonlinear eigenvalue problem arising from the
combination of the full set of single fluid linear MHD equations with the per-
turbed kinetic pressure tensor, analytically derived by solving the linearized
drift kinetic equation [12, 13].

Furthermore, other considerations should be made on the contribution
of the resistive wall for the modes faster than the conventional RWMs, but
slower than the ideal magnetohydrodynamics modes. The vast majority of
the models developed for the study of RWMs stability relies on the thin wall
approximation, assuming the normal component of the magnetic perturba-
tion to be constant across the wall. This means that the skin effect of the
induced current is neglected, and this is reasonable for the case of slower
modes, when the penetration depth of the induced current is much bigger
than the wall thickness [1]. However, it has been recently demonstrated that,
for the modes faster than the conventional RWMs, the skin effect makes the
wall reaction nonlinear, and this energy exchange can contribute to the sta-
bilization [14].

For all these reasons, the goal of coupling a dynamic plasma response
model, able to take into account plasma rotation together with drift kinetic
damping physics, with an eddy current code able to rigorously model 3D
features, such as the thickness of the wall and the real geometry of the
feedback coils, could provide a computational tool which is ideally the state of
the art of the RWMs modelling for stability analysis and active stabilization.

The chapter is organized as follows: at first a set of Padé rational func-
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tions is used to model the dynamic plasma response, then this rational inter-
polation is used to couple the plasma response equation to the eddy current
equations, to obtain an improved version of the CarMa code, named CarMa-
D (dynamic), formally equivalent to the static CarMa but able to take into
account the plasma dynamics in the RWMs stability analysis. In addition
to this, the mathematical model is then generalized to take into account an
arbitrary amount of toroidal mode numbers (multi-modal CarMa-D). Addi-
tional considerations on the computational cost of the new procedure are
also reported.

4.2 Dynamic plasma response and matrix-based ra-
tional approximation

The inertia-free approximation, from the point of view of the matrix K
already introduced in Eq. (3.11), leads to a static relation between the
normal and tangential components of the perturbed magnetic field on the
coupling surface. When the plasma is close to the ideal-wall beta limit,
or when the plasma flow effects are important, such assumption is no longer
valid, and all the quantities involved in plasma response matrix computation
in Sec. 3.3 should depend on the dynamics of the perturbation field, hence
on the plasma dynamics. Thus, working in the Laplace domain, system (3.2)
- (3.6) can be written as [15, 16, 17]:

ρ
(
s+ inΩ

)
~v1 = −∇p1 + ~J1 × ~B0 + ~B1 × ~J0

− ρ
[
2Ωẑ × ~v1 + ( ~v1 · ∇Ω)R2∇φ

]
(4.1)(

s+ inΩ
)
p1 = − ~v1 · ∇P0 − ΓP0∇ · ~v1 (4.2)(

s+ inΩ
)
~B1 = ∇× ( ~v1 × ~B0) + ( ~B1 · ∇Ω)R2∇φ (4.3)

µ0
~J1 = ∇× ~B1 (4.4)

0 = ∇ · ~B1 (4.5)

where s is the complex Laplace variable, corrected by the Doppler shift inΩ,
Ω is the plasma rotation frequency along the toroidal direction φ̂, R the
plasma major radius, ρ is the unperturbed plasma density, and ẑ the unit
vector in the vertical direction. Other quantities have already been defined in
Chap. 3. The set of equations (4.1) - (4.5) are the full set of linearized MHD
equations, written in term of perturbed velocity ~v1, in which the plasma
inertia is not neglected.

Drift-kinetic effects are included in the MHD model through the equation
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involving the perturbed kinetic pressure tensors [11]:

p = p1I + p‖b̂b̂+ p⊥(I− b̂b̂) (4.6)

where p is the pressure tensor, p1 is the scalar pressure perturbation, p‖ and
p⊥ are respectively the components of the kinetic pressure perturbations par-
allel and perpendicular to the equilibrium magnetic field, I is the unit tensor
and b̂ = ~B0/| ~B0|. The full pressure tensor p is self-consistently included into
the MHD formulation by replacing the term p1 in the momentum equation
(4.1).

From the aforementioned considerations it follows that, if the plasma
mass is taken into account, a certain dependance of the matrix K on the
complex Laplace variable s is expected, giving rise to a dynamic mapping
K(s). From a formal point of view, the matrix K(s), which has now to be
considered a matrix function, can be computed as done in Sec. 3.3. To this
purpose, the system of equations (4.1) - (4.5) is written in a reformulated
way [15], and solved for frequency dependent boundary conditions bN (s) on
the coupling surface: {

sDx = Ax

bN
∣∣
Se

= bN (s)
(4.7)

where x is the vector of unknowns, and the matrices D, A are obtained
through numerical discretization of the differential equations (4.1) - (4.5)
[18].

This means that Eq. (3.18) becomes:{
bT = K(s)bN

b̃T = K̃bN
⇒ jeq = µ−1

0 (K(s)− K̃)bN = F (s)bN (4.8)

where the vacuum matrix K̃ clearly does not depend on the plasma dynam-
ics. Equations (3.19) becomes:

bplN = HF (s)bN = G(s)bN (4.9)

then Eq. (3.22):
bexN =

(
E −G(s)

)
bN (4.10)

and finally Eq. (3.23):

bN =
(
E −G(s)

)−1
bexN (4.11)

= W (s)bexN (4.12)
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where W (s),F (s) are now matrix functions that describe, together, the
frequency dependent plasma response to externally applied magnetic field
perturbation.

The arbitrary dependence of the plasma response with respect to the
perturbation frequency can be treated as a dynamical linear system: equa-
tions (3.18), (3.23) and (3.29) are written showing the explicit dependence
of the response matrices with the respect of s. Assuming vanishing initial
conditions, we obtain:

sLi+Ri+ sMjeq = Dv

bN = W (s)bexN = W (s)Qi

jeq = F (s)bN

(4.13)

every entry of the matrices F (s) endW (s) is a scalar function of the variable
s.

This system of equations describe the coupled problem of the plasma
response to external field perturbation together with the eddy current equa-
tion, without any assumption of neglecting the plasma mass. It would be
desirable to have an analytic relation for the matrix functions W (s), F (s).
However, in this work, the problem is addressed in a numerical way, looking
for a suitable set of matrix-based interpolating functions. For this purpose,
we recall a result already proved in [19] for cylindrical geometry, stating that
the plasma response is a rational function, also called Padé interpolation,
of the complex variable s. The Padé approximation, which has been widely
adopted in many fields as a model reduction technique, has been used also
for representing the plasma response for feedback stabilization of RWMs
[15, 20, 21, 22].

The Padé approximant for a scalar function is the rational function de-
fined as [23]:

R(s) =

∑kn
i=0 ais

i∑kd
i=1 bis

i + 1
(4.14)

where kn and kd are the approximation degree and are not imposed to be
equal. Here R(s) is said to be the Padé approximant of order [kn/kd]. In-
deed, since F (s),W (s) are matrix-based functions of s, the relation (4.14)
is generalized as:

F (s) =

∑k
i=0Ais

i∑k
i=1Bisi +E

(4.15)
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W (s) =

∑k
i=0Cis

i∑k
i=1Disi +E

. (4.16)

where E is the identity matrix, Ai,Bi,Ci,Di are the matrix coefficients of
the interpolation. Here the same degree k, called degree of the interpolation,
for both numerator and denominator is considered. Another possible solu-
tion can consider directly the product P (s) = F (s)W (s) for the rational
interpolation:

P (s) =

∑k
i=0Apis

i∑k
i=1Bpisi +E

(4.17)

In general, since this Padé approximation is related to matricial func-
tions, the denominators of (4.15)-(4.16)-(4.17) have to be intended as:

F (s) =
N(s)

D(s)
=

( k∑
i=1

Bis
i +E

)−1( k∑
i=0

Ais
i

)
(4.18)

and the domain of this rational function clearly does not allow a singular
matrix functionD(s). This point will be discussed later also from a physical
point of view.

It is clear that, for a given degree k, the first approach with Eqs. (4.15)-
(4.16) ensures a higher number of degrees of freedom (DoF) if compared to
Eq. (4.17). Conversely, to have the same number of DoF of Eqs. (4.15)-
(4.16), the choice of Eq.(4.17) requires a higher degree k. It is useful to
stress the point that, as will be seen in the next section, the computations of
the coefficients Ai,Bi,Ci,Di,Api,Bpi requires some matrix inversion oper-
ations, and this can be problematic in some cases, because the broad poloidal
spectrum of Fourier harmonics required to model highly elongated equilib-
ria can lead to very ill-conditioned response matrices. For this reason, the
considerations on numerical accuracy of the strategy are as much impor-
tant as physics-based considerations on the strategy itself, and will be kept
in mind going through the discussion. On the other hand, choosing Eqs.
(4.15)-(4.16) will require two inversions to compute the coefficients both of
F (s) andW (s), rather than a single inversion required for the computation
of P (s) coefficients. This means the propagation of a certain error both on
Ai,Bi and on Ci,Di. For this reason, the choice of Eq. (4.15) and (4.16)
over Eq. (4.17) is neither obvious nor a priori known. This aspect will be
widely discussed in the next chapter.

Since the relations required to obtain the matrix coefficients are the same
for (4.15), (4.16) and (4.17), in the following part of the section only the
relations for P (s) are considered. For this reason, for simplicity the subscript
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p of coefficients Aip,Bip of Eq. (4.17) will be neglected.
To compute coefficients Ai,Bi the rational function (4.17) is suitably

manipulated. Equation (4.17) means:

P (s) =
(
Bks

k + ... +E
)−1(

Aks
k + ... +A0

)
(4.19)

therefore (
Bks

k + ... +E
)
P (s) =

(
Aks

k + ... +A0

)
(4.20)

and so(
Bks

k + ... +B1s
)
P (s)−

(
Aks

k + ... +A0

)
= −P (s) (4.21)

With this approach, the plasma response is approximated through a ma-
trix based rational interpolation of the reference one, computed starting from
MHD equations (4.1) - (4.5). Dealing with an interpolation problem means
that the coefficients Ai,Bi have to be computed starting from the knowl-
edge of the matrix function P (s), which has to be interpolated, on a certain
number of frequencies si (the so-called basis points). For a given degree k,
the coefficients of (4.17) require the choice of 2k + 1 basis points. These
points consist in a suitable set of complex frequencies chosen along the com-
plex plane, and used as input frequencies of the forcing problem (4.7): this
means that, given 2k + 1 values of si = σi + iωi as complex excitation fre-
quency, for each si the plasma response P (si) has to be computed solving the
MHD kinetic-hybrid equations (4.1) - (4.5) running MARS-K. This is one of
the main differences with the static CarMa code, in which the computation
of the (static) plasma response has to be computed just once for vanishing
excitation frequency |s| → 0.

With this approach the problem of finding the interpolation coefficients
is solved exactly, because 2k + 1 values are needed to find 2k + 1 degrees
of freedom. Equation (4.21) is then written for these basis points in order
to obtain a block-matrix linear system, where each unknown is a M ×M
matrix, being M the number of Fourier harmonics of the poloidal spectrum.

Among all possible sets of basis points, a desirable choice can be to force
the function P (s) to pass over two particular points:

• s = 0, to match the static response:

A0 = P (s = 0) (4.22)

this means that the coefficient A0 is exactly the same matrix of the
static CarMa code;
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• |s| → +∞, to match the response at infinite frequency :

lim
|s|→+∞

P (s) = B−1
k Ak = P∞ (4.23)

whit this particular choice, equation (4.21) becomes

Bk

(
P (s)− P∞

)
sk +

k−1∑
i=1

(
BiP (s)−Ai

)
si = P0 − P (s) (4.24)

the remaining 2k − 1 coefficients Ai,Bi can be obtained performing 2k −
1 times the response computations with MARS-K for different value of s.
Hence also the problem of choosing suitably the interpolation frequencies is
very important.

Here follows the explicit procedure to compute coefficients Ai,Bi for
some of the lowest interpolation degrees k, as well as for the general kth
order case. In the next part, the following redefinitions α(s) = P (s)− P∞,
β(s) = P0 − P (s) are used.

k = 1 : since A0 = P0, only the coefficients A1,B1 are needed, and one
basis point because A1 follows directly from the knowledge of P∞ as shown
in (4.23). For this simple case, an analytical relation can be easily found:

B1 =
1

s
β(s)α(s)−1 (4.25)

A1 = B1P∞ (4.26)

k = 2 : there are 3 DoF, respectively A1,B2,B1, therefore 3 basis points
(s,P (s)) are needed. The following linear system with matrix-valued un-
knowns can be obtained from (4.24):

[
B2 B1 A1

]s2
1α(s1) s2

2α(s2) s2
3α(s3)

s1P (s1) s2P (s2) s3P (s3)

−s1E −s2E −s3E

 =
[
β(s1) β(s2) β(s3)

]
(4.27)

this leads to the computation of A1,B2,B1. The remaining coefficient A2

can be computed from (4.23):

A2 = B2P∞ (4.28)
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k > 2 : the number of DoF is 2k−1, respectively Bk, .., B1, Ak−1, .., A1,
and the same number of basis points is needed. From Eq. (4.24) we obtain
the general relation:

[
Bk .. B1 Ak−1 .. A1

]


sk1α(s1) . . . skkα(sk)

sk−1
1 P (s1) . . . sk−1

k P (sk)
...

...
...

s1P (s1) . . . skP (sk)

−sk−1
1 E . . . −sk−1

k E
...

...
...

−s1E . . . −skE


︸ ︷︷ ︸

Z

=
[
β(s1) . . . β(sk)

]
︸ ︷︷ ︸

R

(4.29)
with the following solution:[

Bk .. B1 Ak−1 .. A1

]
= RZ−1 (4.30)

the remaining coefficient Ak can be computed from (4.23) as for the previous
case. Matrix Z is square with dimension M(2k − 1)×M(2k − 1), while R
has dimension M × (2k − 1).

It is worth noting that the matrix Z can be very ill-conditioned, or even
singular to machine working precision. This rank deficiency can happen be-
cause the information in the pairs (si,P (si)) are linearly dependent, and this
can be due to several reasons. One possible case is that the plasma response
is almost constant for all the range of frequencies, and this is the case where
the massless approximation holds and the static CarMa coupling strategy
should be properly used. Another possible issue can be a non appropri-
ate choice of the basis points for the interpolation, that could be erroneously
placed in a "flat region" of the plasma response giving rise to a set of linearly
dependent pairs (si,P (si)).

On the other hand, even if the basis points are chosen correctly, in some
cases it can happen that the matrix Z is ill-conditioned, requiring a spe-
cial treatment. For example, in case of a broad poloidal spectrum needed
to model highly elongated equilibria. This issue will be discussed in the
following. The same drawback could be encountered when the interpola-
tion degree k increases to have more DoF. Since Eq. (4.29) goes with the
factor sk, the matrix Z formally equivalent to a Vandermonde matrix typ-
ical of Vandermonde polynomial interpolation [24]. Normally, polynomial
interpolation theory suggests the use of non-Vandermonde polynomials (for
example Newton or Lagrange forms are suggested instead), but, for this spe-
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cific case, a sufficiently low degree should be sufficient, because theoretical
considerations shows that, for a cylindrical plasma, the system exhibits a
second order dynamics [19]. In addition to this, the Vandermonde polyno-
mials N(s),D(s) in (4.18) are suitable to be coupled easily with the eddy
current equation in the system (4.13).

It follows that these cases require a special treatment of the system (4.29),
and a regularization technique can be used to find the solution. If the simple
least-square method is not adequate to solve the linear system, the result can
be obtain recalling the Truncated Singular Value Decomposition (TSVD)
with truncation index t [25], which gives the factorization of the matrix Z
as:

Z = UΣV T (4.31)

where Σ is the diagonal matrix of the singular values (σ1, ..., σt), U ,V are
orthogonal matrices (UT = U−1, same for V ), and t the desired truncation
index. The solution is then obtained as:[

Bk .. B1 Ak−1 .. A1

]
= RUTΣ−1V (4.32)

the conputation of the inverse Σ−1 is not expensive because Σ is diagonal.
This strategy gives an exact relation to find the interpolation coefficients,

because it requires 2k−1 values, assuming to match the response at vanishing
and infinite frequency, to obtain 2k + 1 unknowns: whit this approach the
interpolated function is constrained to pass in the basis points, therefore the
error is supposed to be zero in these points (in the limit of small condition
number of Z), but can be unacceptably high outside these points.

Another approach could be the use of a lest-square method to impose the
trend of the interpolation function not starting from 2k − 1 points, but in a
"global" way. Whit this approach, a certain number Ni >> 2k + 1 of MHD
simulations are performed with MARS-K to obtain P (si),β(si): the matrices
Z,R of Eq.(4.29) have now respectively dimension M(2k − 1) ×MNi and
M × Ni, giving rise to a over-determined linear system where the matrices
have to be solved with a regularization technique, such as Truncated Singular
Value Decomposition (TSVD) with a suitable truncation index.

4.3 Frequency dependent coupling scheme

The matrix-based rational interpolation functions, presented in the previous
paragraph, are used to improve the static CarMa coupling scheme. The fol-
lowing description is carried out only for the case of interpolating directly
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P (s), while the mathematical procedure needed in case of separate interpo-
lation of F (s) and W (s) follows the same steps and can be found in details
in Appendix A.

Using (4.17) in the system of Eq. (4.13) leads to:{
sLi+Ri+ sMjeq = Dv

jeq =
(∑

i s
iBi

)−1(∑
i s
iAi

)
Qi

(4.33)

the second equation of the system can be written as:(∑
i

siBi

)
jeq =

(∑
i

siAi

)
Qi (4.34)

therefore, system (4.33) becomes:{
sLi+Ri+ sMjeq = Dv(∑

i s
iBi

)
jeq −

(∑
i s
iAi

)
Qi = 0

(4.35)

This system can be written, through the definition of the block matrices
Lia,Ra, as a kth order system of differential equations in the Laplace domain
for the vector of unknowns x = [i jeq]:

sk

[
0 0

−AkQ Bk

]
︸ ︷︷ ︸

Lak

[
i

jeq

]
︸ ︷︷ ︸

x

+...+ si

[
0 0

−AiQ Bi

]
︸ ︷︷ ︸

Lai

[
i

jeq

]
+ ...

+ s

[
L M

−A1Q B1

]
︸ ︷︷ ︸

La1

[
i

jeq

]
+

[
R 0

−P0Q E

]
︸ ︷︷ ︸

Ra

[
i

jeq

]
=

[
Dv

0

]
︸ ︷︷ ︸

u

(4.36)

Here the fact that A0 = P0 and B0 = E, already underlined in the previous
paragraph, have been used. With a compact formalism we obtain:( k∑

i=1

siLai

)
x+Rax = u (4.37)

where u = [Dv 0]T is the vector of the input quantities.
The kth order system of differential equations can be written as a first

order system through the following change of variables [26]:
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x = y1

sy1 = y2

...

syk−1 = yk

(4.38)

and the new system of differential equations becomes

s


E

E
. . .

Lk


︸ ︷︷ ︸

L∗


x

y1
...

yk−1


︸ ︷︷ ︸

y∗

+


0 −E

0
. . .
. . . −E

Ra L1 · · · Lak−1


︸ ︷︷ ︸

R∗


x

y1
...

yk−1

 =


u

0
...
0


︸︷︷︸
u∗

(4.39)

With obvious redefinitions, the systems is written as:

sL∗y∗ +R∗y∗ = u∗ (4.40)

This is the CarMa-D system of differential equations, formally equivalent to
Eq. (3.46), but with a higher number of states to take into account the higher
order plasma dynamics. In particular, both R∗,L∗ are sparse matrices, and
their dimensions are k(M + N3D) × k(M + N3D), with N3D the number of
discrete unknown of the eddy current problem.

As was already discussed before, if the previous approach is used to study
a resistive wall mode in the so called typical RWM regime, e.g. if the insta-
bility growth time has the same order of magnitude of wall time, the matrix
L∗ in Eq. (4.40) can be singular to the machine working precision. In the
static limit, when the growth rate is small if compared to the wall time, the
matrices Ai,Bi in Eq. (4.36), with i > 1, are all zeros. This means that the
matrix L∗ is rank deficient, and the eigenvalue of the dynamical matrix of
the system −(L∗)−1R∗, which is the growth/damping rate of the RWM, can
not be computed anymore because L∗ is not invertible. On the other hand,
the matrix R∗ is always invertible, because it is the composition of the iden-
tity matrix with Ra, which always has a full rank. A possible solution to this
problem is to compute the eigenvalues of the system −(R∗)−1L∗, to obtain
the growth/damping time of the instability rather than the growth/damping
rate: the growth rate then follows as the inverse of the growth time.

It can be proved that an analytical relation is available for the block
inversion of −(R∗)−1, avoiding the numerical computation for the entire

62



Chapter 4: The Dynamic CarMa model

matrix and limiting it to blocks −(Ra)
−1Lai. This latter step is also not

expensive, because matrix Ra is sparse. It follows that:

(R∗)−1 =


R−1
a La1 · · · R−1

a Lak−1 R−1
a

−E
. . .

−E

 (4.41)

therefore, the matrix −(R∗)−1L∗ becomes:

−(R∗)−1L∗ = −


R−1
a La1 · · · R−1

a Lak−1 R−1
a

−E
. . .

−E



E

E
. . .

Lk



= −


R−1
a L1 · · · R−1

a Lak−1 R−1
a Lk

−E
. . .

−E

 (4.42)

The block matrix of (4.42) have the following structure:

R−1
a La1 =

[
R−1L R−1M

P0QR
−1L−A1Q P0QR

−1M −B1

]
(4.43)

R−1
a Lai =

[
0 0

−AiQ −Bi

]
(4.44)

It is worth nothing that the ratio between CarMa and CarMa-D number
of DoF scales almost linearly with the interpolation order k, being N3D >>

M :
DoFCarMa−D
DoFCarMa

=
k(M +N3D)

N3D
≈ k (4.45)

However, the matrix −(R∗)−1L∗ is sparse, with a dense square block on
the upper left corner: this block is related to the R−1

a L1 in (4.42), which is
exactly the static CarMa matrix. This means that the number of non-zeros
of the system matrix is almost due to the passive block, and therefore:

nnzCarMa−D
nnzCarMa

=≈ 1 (4.46)

this will be shown in details in the next chapters. This means that, even if
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the number of unknowns is much higher, if the problem is solved through a
suitable sparse linear algebra toolbox, the computational effort to find the
eigenvalues does not grow linearly with the interpolation degree .

4.3.1 Notes on the eigenvalues of CarMa-D for the static
limit

We consider as static limit the case when the growth rate of the RWM is
small if compared to the Alfvén time. In this case the static approximation
for the plasma response holds, and, as mentioned in the previous subsection,
the matrices Ai,Bi in Eq. (4.36), with i > 1, are all zeros. It is useful to
do some considerations on the rank of the matrix (4.43), as well as on its
eigenvalues, to find some relation with static CarMa.

For this purpose, at first the simplest case of 2nd degree interpolation of
P (s) is considered. For this case, the system matrix (4.42) is:

−(R∗)−1L∗ = −

[
R−1
a La1 R−1

a La2

−E 0

]
(4.47)

and, in the static limit, its blocks are equal to:

R−1
a La2 =

[
0 0

−���A2Q ��B2

]
=

[
0 0

0 0

]
(4.48)

and

−R−1
a La1 = −

[
R−1L R−1M

P0QR
−1L−�

��A1Q P0QR
−1M −��B1

]
(4.49)

= −

[
R−1L R−1M

P0QR
−1L P0QR

−1M

]
(4.50)

= −

[
E

P0Q

] [
R−1L R−1M

]
(4.51)

= abT (4.52)

from result (4.51), it follows that, in the static limit, the sub-matrix−R−1
a La1

has dimension (N3D + M) × (N3D + M) and rank N3D, while the system
matrixR−1

a La2 has dimension 2(N3D+M)×2(N3D+M) and rank N3D+M .
To compute the eigenvalues of Eq. (4.47), the following relation for the
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determinant of a 2× 2 square block matrix is recalled [27]:

det

[
A11 A12

A21 A22

]
= det

(
A22

)
det
(
A11 −A12A

−1
22 A21

)
(4.53)

whereA11 = R−1
a La1,A12 = R−1

a La2,A21 = −E,A22 = 0. The eigenvalues
of Eq. (4.47) can be computed solving the characteristic equation:

det
(
−(R∗)−1L∗ − λE

)∣∣
k=2

= 0 (4.54)

where

det
(
−(R∗)−1L∗ − λE

)∣∣
k=2

= det

[
−R−1

a La1 − λE 0

E −λE

]
(4.55)

= det
(
−λE

)
det
(
R−1
a La1 − λE

)
(4.56)

it follows from Eq. (4.56) that −(R∗)−1L∗ has eigenvalue λ = 0 with multi-
plicity N3D +M , plus other eigenvalues of the block −R−1

a La1, whose rank
is N3D as shown in Eq. (4.51). Its eigenvalues are the eigenvalues of the
matrix:

−aTb = −
[
R−1L R−1M

] [ E

P0Q

]
(4.57)

= −R−1L−R−1MP0Q (4.58)

= −R−1
[
L+MP0Q] (4.59)

= −R−1
[
L+X] (4.60)

whereX has already been defined in Eq. (3.45) as the static plasma response
matrix, meaning that Eq. (4.60) gives exactly the static CarMa system. For
this reason, the block −R−1

a La1 exhibits in total N3D+2M zeros eigenvalues
corresponding to the zero growth times due to the instantaneous plasma
response, and other N3D non vanishing eigenvalues corresponding to the
inverse of those obtained from the static CarMa system.

Thus, in the static limit −(R∗)−1L∗ has, for 2nd degree interpolation,
N3D zero eigenvalues plus N3D non-zero eigenvalues equal to those of the
static CarMa model.

To generalize previous result for an arbitrary kth interpolation degree,
at first the case k = 3 is considered. The system matrix from Eq. (4.42) is,
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in the static limit:

−(R∗)−1L∗ = −

R−1
a La1 R−1

a La2 R−1
a La3

−E 0 0

0 −E 0

 (4.61)

= −

R−1
a La1 0 0

−E 0 0

0 −E 0

 (4.62)

and, for the eigenvalues:

det
(
−(R∗)−1L∗ − λE

)∣∣
k=3

= det

 R−1
a La1 − λE 0 0

E −λE 0

0 E −λE


(4.63)

= det
(
−λE

)
det
(
−(R∗)−1L∗ − λE

)∣∣
k=2

(4.64)

which means that the eigenvalues of −(R∗)−1L∗, for k = 3, are the same
obtained for the case k = 3 plus N3D zero eigenvalues.

It follows that, in the static limit, the matrix −(R∗)−1L∗ of Eq. (4.42)
has dimension 2k(N3D+M)×2k(N3D+M) and rank k(N3D+M)×k(N3D+

M), with only N3D non-zero eigenvalues due to the static CarMa block in
Eq. (4.43).

4.4 Multi-modal analysis of RWMs based on dy-
namic plasma response

4.4.1 Considering the coupled modes (n,−n)

For a given toroidal mode number n, the aforementioned formulation does
not consider directly the coupled −n, as was done with static CarMa trough
Eq. (3.38). For this purpose, the system (4.13) is written showing explicitly
the components of the modes (n,−n):

sLi+Ri+ sM (n)j
(n)
eq + sM (−n)j

(−n)
eq = Dv

j
(n)
eq = P (n)(s)Q(n)i

j
(−n)
eq = P (−n)(s)Q(−n)i

(4.65)

in case of interpolating directly P (s).
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In principle, system (4.65) shows that the frequency dependent plasma
response, such as the rational interpolation procedure, should be performed
both for the coupled toroidal modes (j

(n)
eq , j

(−n)
eq ). This is actually not neces-

sary, because from the property of the Fourier series that c(m,n) = c(−m,−n)

follows that:
M (−m,−n)j(−m,−n)

eq = M
(m,n)

j
(m,n)
eq (4.66)

Therefore:

j(−n)
eq = P (−n)(s)Q(−n)i (4.67)

=

( k∑
i=1

B
(−n)
i si

)−1( k∑
i=1

A
(−n)
i si

)
Q(−n)i (4.68)

=

( k∑
i=1

B
(n)
i si

)−1( k∑
i=1

A
(n)
i si

)
Q

(n)
i (4.69)

= P
(n)

(s)Q
(n)
i (4.70)

System (4.65) can be written to obtain an analogous form of Eq. (4.36)

sk
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−A(n)
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(n)
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k Q
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k
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 L M (n) M
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1 Q(n) B

(n)
1 0

−A(n)
1 Q

(n)
0 B
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1


︸ ︷︷ ︸

La1

y∗+

+

 R 0 0

−P0Q E 0

−P 0Q 0 E


︸ ︷︷ ︸

Ra

y∗ = u∗ (4.71)

where now y∗ = [i j
(n)
eq j

(−n)
eq ] and u∗ = [Dv 0 0].

It is worth noting that, since the block system of equations (4.36) is
considered, there is no explicit summation as Eq. (3.43). Therefore it is not
possible to exploit step reported in Eq. (3.44) to compute the sum between
complex conjugate terms, in order to have pure real quantities. The fact
that these matrices have complex entries will be used in Chap. 6 to explain
a small discrepancy on the imaginary parts of eigenvalues expected to be
complex conjugate.

The matrices Lai,Ra have been redefined to include the effect of both
the toroidal modes (n,−n), but the kth order system of differential equation
(4.71) is formally equivalent to the one in Eq. (4.36) for a single n. Thus
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the discussion for the single mode already carried out in section 4.3 follows
exactly the same steps, leading to the system block matrix −(R∗)−1L∗ of
Eq. (4.42), but the block matrices R−1

a La1, R−1
a Lai of Eqs. (4.43)-(4.44)

have been modified to take into account both the toroidal modes (n,−n):

R−1
a La1 = R−1L R−1Mn R−1M

n

P n
0 Q

nR−1L−An
1Q

n P n
0 Q

nR−1Mn −Bn
1 P n

0 Q
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n

P
n
0Q

n
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1Q
n

P
n
0Q

n
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n
0Q

n
R−1M

n −Bn
1


R−1
a Lai = 0 0 0

−An
iQ

n Bn
i 0

−An
iQ

n
0 B

n
i


The analysis of the coupled modes (n,−n) was possible, wit static CarMa,

keeping the dimensions of the system matrix unchanged. This was due to the
mass-less approximation, which leads to a static plasma response. Therefore
the plasma equivalent current density jeq, which is the plasma reaction to
external perturbation, is linear with respect to such perturbation, allowing
the contributions of the modes (n,−n) to be directly added. On the other
hand, the CarMa-D coupling strategy is based on the rational interpola-
tion of plasma response matrix: for this reason, the plasma response is no
longer linear with respect to the perturbation, and the direct sum of the two
contributions is no longer usable. For this reason, modelling of the symmet-
ric modes (n,−n) requires two different equations for the harmonics of the
current density (j

(n)
eq , j

(−n)
eq ) in the system (4.13).

4.4.2 Frequency dependent coupling scheme for multiple toroidal
modes

It has already mentioned in paragraph 3.4 that one of the features of static
Carma is the capability of take into account several toroidal modes at once,
thanks to the linearity of the system. This property follows directly from the
inertia-free approximation, as described in the previous subsection, and the
plasma response matricesX(n) for different toroidal modes can be computed
with MARS for several toroidal modes and just added together, as done in
Eq. (3.50). The toroidal mode coupling is then self-consistently taken into
account from CARIDDI, because of the full 3D computational capabilities.
It is worth noting that the aforementioned strategy for static CarMa does not
require additional equations, thus the total number of DoF is independent
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from the number of toroidal modes considered.
With the mathematical formulation used to derive CarMa-D model, the

rational approximation is involved requiring a further manipulation of the
system (4.33) to include additional toroidal modes. The following description
will be carried out only for the case of interpolating directly P (s).

In principle, the distribution of the equivalent current density jeq on the
coupling surface is given for a desired number of toroidal modes:

jeq(θ, φ) =
∑
n

∑
m

j(n,m)
eq ei(mθ+nφ) (4.72)

=
∑
n

j(n)
eq (θ, φ) (4.73)

where n is the toroidal mode number. The term j
(n)
eq (θ, φ) is the spatial dis-

tribution of the equivalent surface current density already defined in (3.16),
and computed through (3.18) for the single toroidal mode number n.

For a toroidal spectrum n ∈ [n1, n2], the voltage induced by the mode
evolution of Eq.(4.33) is written in terms of eq. (4.72):

u = sMjeq (4.74)

= s

n2∑
n=n1

[
M (n)j(n)

eq +M
(n)
j(−n)
eq

]
(4.75)

and the system (4.65) becomes, writing explicitly the toroidal modes:
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(4.76)

If we now follow, for this new system of equations, the same steps made
in section 4.3 for Eqs. (4.33), (4.36), we can obtain a system of differential
equations which is formally equivalent to (4.37), but with Lai,Ra defined as
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follows to include different toroidal modes:

Lai =



0 . . .
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Ra =



R 0 . . .

−An1
0 Q

n1 Bn1
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0 Q
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0
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0 Q
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0 Q
n2 B
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(4.79)

Since formulation (4.76) leads to Eq. (4.37), also the changing of variables
(4.38) can be adopted, giving straightforwardly the first order system of
differential equations (4.40). Also the considerations on the rank-deficiency
of the operator L∗ already done for the single mode case are still valid: for
this reason the stability analysis is carried out studying the unstable growth
time rather than the growth rate, exactly as was done for the single mode
analysis.

Exploiting the formal analogy with Eq. (4.40) for the single mode anal-
ysis, its easy to understand that relations (4.43), (4.44) are still valid for the
case of multiple toroidal modes, but with a different meaning for the block
matrices R−1

a Lai. Here, for a clear description, only the particularization of
matrices (4.43) and (4.44) for two toroidal modes (n1, n2) are reported, and
can be seen in Eqs. (4.80)-(4.81). The generalization to an arbitrary num-
ber of modes is straightforward. To write the matrix (4.80) with a slightly
compact notation, the matrix T (ni) is introduced:

T (ni) = P
(ni)
0 Q(ni)R−1
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It is useful to make some considerations about the number of DoF arising
for CarMa-D system, related in particular with the number of toroidal modes
considered. For static CarMa, the modelling of multiple toroidal modes
would not make the number of DoF raising. Conversely, since the rational
interpolation of plasma response matrix used in the CarMa-D, 2N equations
should be added to the system (4.13) for the modal of N toroidal modes.
This means that the number of DoF rises from 2k(M +N3D) for the single
mode problem of Eq. (4.42) to 2k(2NM+N3D) for the multi-modal system.
However, since N3D >> M for any devices andM ≈ N for RFPs [28, 29, 30]
it follows that:

DoFCarMa−D
DoFCarMa

=
2k(2NM +N3D)

N3D
≈ 2k (4.82)

thus CarMa-D has 2k-times the number of DoF of static CarMa. As a matter
of fact, this can be seen as a disadvantage of CarMa-D. Nevertheless, the
actual reference quantity to understand the computational complexity of a
model is the number of non-zeros. It can be proved that:

nnzCarMa−D ≈ nnzCarMa (4.83)

as was for the single mode analysis. This result will be shown for a real case
in chapter 6.

4.5 Conclusions

The modelling of RWMs stability and control requires an accurate descrip-
tion of the three dimensional structures, such as the conducting wall and the
feedback actuators. For this purpose, the static CarMa code has been de-
veloped. The assumptions made to couple the codes MARS and CARIDDI
are that the plasma mass is disregarded, no plasma flow is present and no
kinetic damping is taken into account. However, such assumption are, for
some cases, too stringent: this happens if the mode evolves on a timescale
much shorter than the wall time, if the toroidal rotation is present, or if ap-
propriate kinetic damping model is required to describe the stabilizing effect
given by the inherent energy dissipation inside the plasma.

For this reason, a new coupling strategy based on a dynamic plasma
response model is presented. Starting from theoretical considerations, the
dynamic plasma response has been approximated through suitable matrix-
based Padé rational functions, providing a frequency dependent plasma re-
sponse model. This model has been used to develop CarMa-D, a new cou-
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pling strategy not depending on the aforementioned assumptions. This up-
dated version overcomes certain limitations of the original computational
model: in particular, (i) the massless assumption for the plasma is removed,
allowing modeling of global modes growing from typical RWM regime to
ideal-kink time scales; (ii) the effects of toroidal plasma flow and drift ki-
netic damping can be included into the new model, providing a powerful tool
to study macroscopic phenomena where both the plasma dynamics and the
3D conducting structures play important roles (e.g. the resistive wall mode
and the plasma response to ac resonant magnetic perturbations).

Additional effort has been made to include multiple toroidal modes in
the mathematical description, to obtain a computational tool capable to
take rigorously into account an arbitrary number of toroidal modes and their
coupling in presence of three dimensional structures.

Moreover, some considerations in case of the static limit has been also
done: it has been proved that, if the assumptions made for the static cou-
pling scheme holds, CarMa-D recovers exactly the same eigenvalues of static
CarMa.
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In order to see if CarMa-D model is able to deal with plasma dynamics,
considering also toroidal flow and kinetic damping physics, it has been tested
with a reference benchmark problem to provide an idea of its effectiveness
as well as to address its possible weaknesses. The benchmark case is the
stability analysis of a plasma with circular cross section, already used to test
the static CarMa code [1].

The main information are summarized in the Fig. 5.1. The plasma has
a major radius of R0 = 2m a minor radius of a = 0.4m, and the pressure
and safety factor profiles are also reported in fig. 5.1. As shown, the circular
plasma is enclosed by a coupling surface with circular poloidal trace placed
between the plasma boundary and the circular resistive wall (Fig. 5.1). More
details on the resistive wall, such as the wall time, will be given in Sec. 5.1.
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Figure 5.1: Summary of the test case used in the validation part: (a) plasma
cross-section, trace of the coupling surface and stabilizing wall; (b) 3-D view of
the axisymmetric stabilizing wall; (c) p profile; (d) q profile; (e) - (f) real (red)
and imaginary (blue) parts of the eigenvalue, normalized by the resistive wall time
τW , for the two different damping mechanism considered (respectively sound wave
damping and kinetic damping).
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To highlight the strength of CarMa-D, two different damping physics
mechanism are used for the same equilibrium. At first, the parallel sound
wave damping model is used, described in detail in [2]. This model includes,
through a numerically adjustable coefficient, a viscous term in the momen-
tum equation to represent parallel sound wave damping, which can be tuned
varying the aforementioned coefficient. The second model is the MARS-K
self consistent, full toroidal drift kinetic model [3], able to introduce kinetic
effects in the plasma description. For both damping models, a scan of the
mode eigenvalue are reported in Fig. 5.1 (e)-(f) (real and imaginary part,
normalized by the wall time) for different values of normalized toroidal ro-
tation ΩE/ωA, with ωA Alfvén frequency. In these computations carried out
with MARS-F and MARS-K, the toroidal rotation is assumed to be con-
stant along the minor radius. These will be the reference results, to which
the computations of CarMa-D will be compared.

For both the damping mechanisms, at first the rational approximation
technique used in the new coupling strategy will be analyzed, to show its
effectiveness to model frequency dependent plasma response. After this step,
the validation of CarMa-D is performed exactly as done in [4], performing
a scan of the wall resistivity η: in the limit of infinite resistivity, the no-
wall growth rate of the ideal kink mode must be recovered, which has the
same order of magnitude of Alfvén-like phenomena, and therefore strongly
depends on the dynamical effects.

An important consideration can be done on the choice of the basis points
(s,P (s)) needed for the interpolation coefficients. Since s = σ + iω, in
principle an infinite number of combinations of basis points are available:
here, we have considered three different paths along the complex plane where
the basis points are placed, named respectively complex (s = σ+iω, imposing
σ = ω for the computations), real (s = σ) and imaginary (s = iω) cases.
Fig. 5.2 shows these three sets of basis point on the complex plane. In the
next part of the work also the comparison between these different choices of
basis points has been done. The validation part has been devoted also to
understand which set of basis points is the most suitable for this test case.

5.1 Model of the passive structures

A reliable model of RWMs dynamics requires an accurate description of the
three dimensional conducting structures [5, 6]. Although CarMa is able, in
principle, to model conductors of any shape and geometry, since the primary
goal of this work is the validation of CarMa-D with MARS-K which assumes
the axisymmetric wall, the wall model of Fig. 5.1 (b) is considered.
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Figure 5.2: View, on the complex plane, of the three sets of basis points used for
the interpolation of plasma response: complex (red), real (blue), imaginary (green).

The conducting wall used for this case has a circular shape with thick-
ness δ = 5mm, placed at minor radius aw = 1.3a, and resistivity of η =

6.5 × 10−7Ωm. The wall times for some toroidal modes, that is the slowest
penetration time through the wall of a magnetic field perturbation with given
n periodicity, is reported in Tab. 5.1. In Figs. 5.3 to 5.8 an overview of the
image of the passive wall eigenvectors for different toroidal mode numbers:
the corresponding eigenvalue is the wall time for that specific n.

τw
n = 0 13.7ms
n = 1 4.7ms
n = 2 4.5ms

Table 5.1: Wall times for different toroidal mode numbers.

Since the equilibrium used as test case presents an unstable n = 1 insta-
bility, for the following part of the chapter the considered wall time used as
a normalization factor is the one of the n = 1 passive eigenvector, that is
τw = 4.7ms.

It is worth noting that a precise simulation of the RWM stability problem
should require an accurate model of also the resistive wall thickness, which
can be done self-consistently by CarMa, without any artificial trick such as,
for example, what was done with the VALEN code in [7]. Indeed, as was
already mentioned in the introduction, recently was proven that [8, 9] for
modes faster than conventional typical RWMs, the thin-wall approximation
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Figure 5.3: Eddy current pattern related to the n = 0 slowest passive eigenvector.

Figure 5.4: Eddy current pattern related to the n = 0 slowest passive eigenvector
(rectified view).
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Figure 5.5: Eddy current pattern related to the n = 1 slowest passive eigenvector.

Figure 5.6: Eddy current pattern related to the n = 1 slowest passive eigenvector
(rectified view).
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Figure 5.7: Eddy current pattern related to the n = 2 slowest passive eigenvector.

Figure 5.8: Eddy current pattern related to the n = 2 slowest passive eigenvector
(rectified view).
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can lead to inaccurate results because of the skin effect of the current induced
into the wall. Since this occurs when the wall width and the penetration
depth are comparable, it is clear that the number of mesh elements through
the shell along the minor radius should be adequate to model the skin effect,
especially because, in our analysis, the growth rate of the instability will
vary continuously from the typical RWM to the Ideal Kink one. But, since
MARS-K assumes the thin-wall approximation, only one mesh element along
the shell thickness will be considered.

5.2 Sound wave damping model

In this section, the parallel sound wave damping model is considered. The
behaviour of the mode eigenvalue versus the toroidal rotation can be seen in
the bottom part of Fig. 5.1 (e). Before going further on with the validation
part, it is useful to analyze the limitation of the static CarMa code.

5.2.1 Limitation of the static coupling strategy

The coupling procedure described in chapter 3 is based on the plasma re-
sponse computation with MARS-F code, as described in section 3.3. This
step is necessary to compute, with relations (3.14) and (3.19), the matrices
Kθ,Kφ,G. The matrices Kθ,Kφ give, for a unitary magnetic perturba-
tion normal to Se, respectively the poloidal and toroidal components of the
current density on Se, and G gives the plasma magnetic field reaction bplaN
normal to Se.

The computation of Kθ,Kφ,G are performed starting from some suit-
able boundary conditions for bN on Se (see fig. 3.2). If this computation
succeeds, starting from the total normal field perturbation bN related to a
certain RWM, and computed by MARS, one should recover the tangential
field components bT,θ, bT,φ related to this perturbation, and the normal field
bplaN due to the plasma from these relations:

bT,θ = KθbN (5.1)

bT,φ = KφbN (5.2)

bplaN = GbN (5.3)

Figure 5.9 shows a good agreement on the computation of both bplaN = GbN
and bT = KbN .

The accuracy of these outcomes has an impact on the computation of
matrixW . As can be seen from Fig. 5.10, where both the Fourier harmonics
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Figure 5.9: The normal components given by MARS-F as input boundary condi-
tions are shown in both real and imaginary part (top). Comparison between refer-
ence (red, MARS-F) and reconstructed (blue) magnetic field on the coupling surface
(normal and tangential components).
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Figure 5.10: Comparison between the total perturbed magnetic field bN given by
MARS-F (red) and the reconstructed with the matrixW , as well as the comparison
of the external field bexN .
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and the poloidal distribution is reported, there is a small discrepancy between
the reference values from MARS (written as bex,MARS

N ) and the reconstructed
quantities. In particular, if one tries to estimate the external contribution
bexN to the total perturbed magnetic field from the just computed bN , b

pla
N ,

the results suffer of a small discrepancy. Some shrewdness can be done
to improve the accuracy, such as, for example, improving the number of
points of the coupling surface. However, in some cases the accuracy cannot
be improved any more if the assumptions necessary for the static CarMa
coupling are not satisfied: this happens in this case because toroidal rotation
is considered.

These coupling matrices have been combined as described in chapter 3
to give rise to the static CarMa system, and have been used to analyze the
stability of the circular plasma already presented. The recovered unstable
eigenvalue is close to the reference one given by MARS-F, so the perfor-
mances of static CarMa are acceptable:

γτw
MARS-F 2.08 + 0.24i
CarMa 2.05 + 0.23i

Table 5.2: Comparison between RWM growth rate given by MARS-F and by static
CarMa for fluid model, for the toroidal rotation ΩE/ωA = 0.02.

However, if we consider a much more resistive wall, i.e. the resistivity is
increased by a factor of 105, any stabilizing effect vanishes, and the resulting
instability is of the order of the no-wall ideal kink timescale. The static
coupling procedure gives a static relation for the plasma response, therefore
the growth rate of the mode has a linear dependance with the respect to
the passive structures resistivity. For this reason, increasing the resistivity
by the factor 105 gives a growth rate multiplied by the same factor. On
the other hand, the mode growth rate should not raise that much, but is
expected to saturate to the no-wall ideal kink growth rate:

γτw
Mars-F 123.8 + 42i
CarMa (2.1 + 0.2i)× 105

Table 5.3: Comparison between ideal kink growth rate given by MARS-F and by
static CarMa for fluid model.
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5.2.2 Rational approximation of frequency dependent plasma
response

Further considerations can be made with respect to the previous examples.
In particular, with the static coupling procedure, the plasma response to ex-
ternal perturbation is assumed to be constant and equal to the one computed
for vanishing frequency. In most realistic cases, where the mode growth rate
has the same order of magnitude of the wall time, this assumption is still
reasonable, but there are some cases in which this is too stringent.

For example, figure 5.11 shows the matrix P (s) computed for different
frequencies of the magnetic perturbation. As already said, for a given Fourier
spectrum of external magnetic field perturbation, and a given frequency,
the matrix function P (s) gives the harmonics of plasma reaction in terms
of equivalent current density on the coupling surface: as can be seen, the
relation between these harmonics changes substantially with the frequency.
We can also notice that there is a certain coupling between different poloidal
harmonics for a given range of frequency. This is reasonable because the
aspect ratio is large (R0/a = 5). But as soon as the frequency increases, the
matrix becomes mainly diagonal, ending up with only one dominant element,
related to the poloidal harmonic m = 1, at high frequencies.

The behaviour of two main entries of P (s) are shown in fig. 5.12 in terms
of s = σ+ iω along the complex plane to have a qualitative idea of the trend
of P (s).

The limitations of the static coupling strategy can be overcome recall-
ing a matrix-based rational approximation for the plasma response, as was
presented in paragraph 4.2. Since two possibilities are available, that are to
separately approximate F (s),W (s) or to work directly with P (s), both the
approaches have been investigated to understand which is the most reliable
and accurate.

It is worth to remember that the approximating functions are matrix-
based, meaning that the coefficients are M ×M matrix. To have an idea
of the quality of interpolation, the behaviour of the two main entries of
F (s),W (s) and P (s) are reported in Figs. 5.13 , 5.14, and 5.15. Since these
matrices are mainly diagonal, these main entries belong to the diagonal: in
particular, we will consider the entries related to harmonics m = (3,−3) for
F (s), m = (0, 1) forW (s) andm = (0, 3) for P (s). Figs. 5.13, 5.14 and 5.15
show these entries respectively for the three sets of basis points considered,
to have a general idea of the performance related to each set.

For a given interpolation order k, the DoF for the interpolation on
F (s),W (s) are two times the DoF for P (s), because we have two times
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Figure 5.11: Amplitude of |P (s)| at different values of Laplace variable s/ωA.

Figure 5.12: behaviour of two of the greatest elements of P (s) along the complex
plane.
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Figure 5.13: Reference versus interpolated plasma response matrix for the two
main entries of F (s),W (s) (1st and 2nd degree interpolation) and P (s) (2nd and
3rd degree interpolation) for the complex set of basis points. Fluid case.
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Figure 5.14: Reference versus interpolated plasma response matrix for the two
main entries of F (s),W (s) (1st and 2nd degree interpolation) and P (s) (2nd and
3rd degree interpolation) for the real set of basis points. Fluid case.
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Figure 5.15: Reference versus interpolated plasma response matrix for the two
main entries of F (s),W (s) (1st and 2nd degree interpolation) and P (s) (2nd and
3rd degree interpolation) for the imaginary set of basis points. Fluid case.
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Figure 5.16: View, on the complex plane, of the set of basis points used for the
least-square approach-

the number unknown coefficients. Taking this fact into account, it turned
out that very good accuracy can be found, starting from data obtained from
complex and real sets, with interpolation degree k = 2 for F (s),W (s) sepa-
rately and k = 3 for P (s). This can be seen in Figs. 5.13, 5.14. In addition to
the chosen interpolation degree, also the lower degrees are shown in the fig-
ures. In particular, the case k = 1 for F (s),W (s) was the fist improvement
the static CraMa coupling strategy [4].

On the other hand, the imaginary set of data looks less approriate to
this purpose, giving less accuracy in the interpolation. This can be explained
considering the behaviour of the two sample entries of P (s) in Fig. 5.12 along
the imaginary axis, the same reported in details in Fig. 5.15. The trend of
the functions is much more complicated than the two previous cases, and it is
reasonable that the interpolant of the same order should not be able to give
a good approximation of this trend. Nonetheless, trying to use higher k can
not improve the accuracy, because it would rise too much the ill-conditioning
of Eq. (4.29).

As was said at the end of Sec. 4.2, another way to deal with this problem
is choosing a number of basis points higher than the number of DoF, and use
a regularization technique to find the solution. The first drawback of this
approach is that no explicit constrain on the basis points can be imposed
for the interpolating functions: in particular, this can be problematic for
matching the static response (Eq. (4.22)), that can not be imposed explicitly.
For this reason, the set of points on the complex plane shown in Fig. 5.16
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Figure 5.17: Reference versus interpolated plasma response matrix for the two
main entries of F (s),W (s) (2nd degree interpolation) and P (s) (3rd degree inter-
polation) for the least-square approach.
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is used rather than the one already presented in Fig. 5.2. This should give
more weight to the information close to |s| = 0, and try to match the static
response without imposing the constrain explicitly.

The results, in the same format used for the previous cases, is reported
in Fig. 5.17. In some cases the transfer function is well approximated by the
interpolated one, but there is an evident worsening on the accuracy if com-
pared with the previous cases. For this reason, only the higher interpolation
degree are shown in the figure.

Since this last strategy is not effective for a proper interpolation, it will
not be considered in the next part of the work.

5.2.3 Scan of conducting wall resistivity

To assess the capabilities of the CarMa-D model, we consider the circular
equilibrium with the axisymmetric mesh shown in Fig. 5.1: the MHD model
relies on the fluid description, therefore no kinetic effects are taken into
account. In addition to this, the normalized toroidal rotation is ΩE/ωA =

0.01 and it is imposed to be constant along the radius.
The stability analysis of the mode is performed varying the resistivity of

the wall η from η/ηref = 10−1 to η/ηref = 106, with ηref = 6.5 × 10−7Ωm
the reference value (fig. 5.18 shows the eddy current pattern for the case
η/ηref = 1). The more the wall resistivity is increased, the less stabilizing
effect it has on the growing mode. In the limit of infinite resistivity, the
stabilizing effect vanishes, and the mode growth rate should saturate to the
no-wall ideal kink growth rate, as can be see in Fig. 5.19 (real and imaginary
part are shown). The timescale of the instability has the same order of

Figure 5.18: Eddy current pattern related to the unstable eigenvector for the
axisymmetric mesh. Fluid case with resistivity η/ηref = 1 and toroidal rotation
ΩE = ωA = 102.
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Figure 5.19: Reference scan of wall resistivity for the fluid case with MARS-F:
real part (blue) and imaginary part (red) of the eigenvalue.

magnitude of Alfvén phenomena: within this regimes, the dynamical effect
are not negligible, hence the mass-less approximation is no longer valid. The
CarMa-D code should be able, in principle, to model plasma dynamics that
occur in these regimes.

In the previous paragraph it has turned out that not all the sets of basis
points are equally suitable to be used for a proper interpolation. In the next
part of the work all the three sets of points have been considered, to have
additional awareness of their strengths and weaknesses: in particular, Figs.
5.20-5.21 show the outcome for the complex set of basis points, Figs. 5.22 -
5.23 for the real set and Figs. 5.24 - 5.25 for the imaginary set. Logarithmic
scale is used for all the figures.

In order to quantify the accuracy of the various sets of points, the per-
centage error has been defined as:

ε% = 100
|(γ + iω)− (γ + iω)ref |

|(γ + iω)ref |
(5.4)

and summarized in fig. 5.26 for all the cases. Logarithmic scale is still used,
and the colors are the same used for the previous figures.

It is clear, looking to the results, that the imaginary set of basis point
is less suitable than the other sets. In particular, the most effective is the
real set: this can be explained considering the fact that the real part of the
unstable eigenvalue is an order of magnitude bigger than the imaginary part,
as can be seen in Fig. 5.19, and choosing to interpolate the plasma response
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Figure 5.20: Results of the scan of wall resistivity for the fluid case and the
complex set of basis points: case of separate interpolation of F (s) andW (s). Real
and imaginary part are shown in logarithmic scale.

  

Figure 5.21: Results of the scan of wall resistivity for the fluid case and the com-
plex set of basis points: case of direct interpolation of P (s). Real and imaginary
part are shown in logarithmic scale.
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Figure 5.22: Results of the scan of wall resistivity for the fluid case and the real
set of basis points: case of separate interpolation of F (s) and W (s). Real and
imaginary part are shown in logarithmic scale.

  

Figure 5.23: Results of the scan of wall resistivity for the fluid case and the real
set of basis points: case of direct interpolation of P (s). Real and imaginary part
are shown in logarithmic scale.
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Figure 5.24: Results of the scan of wall resistivity for the fluid case and the
imaginary set of basis points: case of separate interpolation of F (s) and W (s).
Real and imaginary part are shown in logarithmic scale.

  

Figure 5.25: Results of the scan of wall resistivity for the fluid case and the
imaginary set of basis points: case of direct interpolation of P (s). Real and
imaginary part are shown in logarithmic scale.
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Figure 5.26: Percentage errors of the scan of wall resistivity for all the sets of
basis points for the fluid case. Logarithmic scale.

along the real axis allows to obtain more information rather than the other
choices of basis points.

In addition to this, interpolating directly the function P (s) gives much
more accurate results that interpolating F (s),W (s) separately. Specifically,
the degree k for P (s) gives, for the real set of basis points, a percentage error
always around 1% for all the range of resistivity.

On the other hand, from Fig. 5.26 the limitation of static CarMa is
clearly pointed out: for lower values of resistivity (η/ηref < 101), where the
stabilizing effect of the wall is prominent, the error is less than 10%, meaning
that the mass-less approximation holds and this approach is suitable to model
instabilities of such timescale. But as soon as the resistivity increases, this
approach is by far no longer suitable.

With the respect to the k = 1 degree interpolation on F (s),W (s), we can
see a considerable improvement with respect of static CarMa, but the results
are still not satisfying. This fact agrees with the consideration pointed out
in [10], and already presented in paragraph 4.2, that the system exhibits a
second order dynamics. It is also true that the said proof is developed in
cylindrical coordinates, but the aspect ratio of R0/a = 5 for this case let this
assumption to be reasonable.

Some of the results, for the real set of points, are also reported in table
5.4 to have a quantitative idea of CarMa-D accuracy.
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η/ηref = 1 η/ηref = 105

Mars 2.08 + 0.24i 123.8 + 42.3i
CarMa static 2.05 + 0.23i 204776 + 22793i
CarMa 1st ord. on F (s)W (s) 2.03 + 0.26i 96.4 + 64.3i
CarMa 2st ord. on F (s)W (s) 2.10 + 0.25i 125.3 + 38.6i
CarMa 3rd ord. on P (s) 2.08 + 0.24i 123.9 + 44.0i

Table 5.4: Growth rates for sound wave case with ΩE/ωA = 1 × 10−2 for two
different wall resistivities.

5.3 RWM with drift kinetic damping

In this section the self consistent, full toroidal drift kinetic model is consid-
ered as a benchmark problem. In this model, the damping effect is due to
the mode resonance either with bounce motion of both passing and trapped
thermal ions at fast plasma rotation, or with the magnetic precession drift
of trapped thermal ions and electrons at slow plasma rotation [11, 3]. The
same test case of Ref. [12] is used: only the precession drift resonances are
considered, and the bounce resonances, as well as other physics such as the
collisionality effects, are neglected. The validation of CarMa-D follows the
same steps used in the previous section for the fluid damping model, but
using the results from MARS-K as reference.

5.3.1 Rational approximation of frequency dependent plasma
response

The outcomes of matrix-based approximation for F (s), W (s) and P (s) is
shown, following the same methodology used for the fluid model, in Figs.
5.27, 5.28 and 5.29. for the three sets of basis points. The harmonic related
to every shown entries is specified for each subplot.

Like the sound wave case, both real and complex sets of basis points give
accurate results, but once again the real set is the more accurate. The trend
of the plasma response matrix is much more complicated along the imaginary
axis, requiring a higher number of DoF. Thus, also with the kinetic damping
model the imaginary set of points is not a suitable choice.

The set of points shown in Fig. 5.16 has not been considered for this case,
because, from the previous test, it has turned out to be very ineffective.

5.3.2 Scan of conducting wall resistivity

The same scan of wall resistivity performed for the fluid case is done, but
including the kinetic damping physics in the plasma description. The refer-
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Figure 5.27: Reference versus interpolated plasma response matrix for the two
main entries of F (s),W (s) (1st and 2nd degree interpolation) and P (s) (2nd and
3rd degree interpolation) for the complex set of basis points. Kinetic case.
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Figure 5.28: Reference versus interpolated plasma response matrix for the two
main entries of F (s),W (s) (1st and 2nd degree interpolation) and P (s) (2nd and
3rd degree interpolation) for the real set of basis points. Kinetic case.
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Figure 5.29: Reference versus interpolated plasma response matrix for the two
main entries of F (s),W (s) (1st and 2nd degree interpolation) and P (s) (2nd and
3rd degree interpolation) for the imaginary set of basis points. Kinetic case.
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ence scan of wall resistivity for this case, performed with MARS-K, is shown
in Fig. 5.30. The chosen value of toroidal rotation is ΩE/ωA = 10−2. The
benchmark results are shown from Figs. 5.31 to 5.36 with the same method-
ology of the previous case.

We can see from Figs. 5.34 and 5.37 (b) that the real set of basis point
gives still the most accurate results. However, the effectiveness of interpolat-
ing directly P (s) rather than F (s),W (s) separately seems no longer as clear
as was for the previous benchmark case: this can be seen from fig. 5.37 (b),
where both the cases gives an average error less than 5%. The interpolation
of F (s),W (s) (red curve) gives a narrow window of very good accuracy in
the region of η/ηref ≈ 101, when the typical RWM regime is expected. On
the other hand, the interpolation of P (s) is slightly less accurate in that
region, but there is an overall accuracy which suggest more robustness for
this approach.

Figure 5.38 compares of the eigenvectors, i.e. the spatial pattern of the
eddy current induced by the unstable mode, with both poloidal and toroidal
components computed by MARS-K and CarMa-D, assuming an interpolation
degree of k = 3 for P (s) and the real set of basis points. Excellent agreement
of the mode eigenfunction is obtained.

Some of the results, for the real set of points, are also reported in table
5.4 to have a quantitative idea of CarMa-D accuracy.

Figure 5.30: Reference scan of wall resistivity for the kinetic case with MARS-K:
real part (blue) and imaginary part (red) of the eigenvalue.
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Figure 5.31: Results of the scan of wall resistivity for the kinetic case and the
complex set of basis points: case of separate interpolation of F (s) andW (s). Real
and imaginary part are shown in logarithmic scale.

  

Figure 5.32: Results of the scan of wall resistivity for the kinetic case and the
complex set of basis points: case of direct interpolation of P (s). Real and imagi-
nary part are shown in logarithmic scale.
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Figure 5.33: Results of the scan of wall resistivity for the kinetic case and the
real set of basis points: case of separate interpolation of F (s) and W (s). Real and
imaginary part are shown in logarithmic scale.

  

Figure 5.34: Results of the scan of wall resistivity for the kinetic case and the
real set of basis points: case of direct interpolation of P (s). Real and imaginary
part are shown in logarithmic scale.
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Figure 5.35: Results of the scan of wall resistivity for the kinetic case and the
imaginary set of basis points: case of separate interpolation of F (s) and W (s).
Real and imaginary part are shown in logarithmic scale.

  

Figure 5.36: Results of the scan of wall resistivity for the kinetic case and the
imaginary set of basis points: case of direct interpolation of P (s). Real and
imaginary part are shown in logarithmic scale.

108



Chapter 5: CarMa-D: Validation

Figure 5.37: Percentage errors of the scan of wall resistivity for all the sets of
basis points for the kinetic case. Logarithmic scale.

Figure 5.38: Comparison of eigenvectors computed by MARS-K (black solid) and
CarMa-D (red circles) for 3rd order interpolaion on P (s) and real set of basis
points: standard RWM with η/ηref = 1 (a) and Ideal Kink with η/ηref = 105 (b).
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η/ηref = 1 η/ηref = 105

Mars 1.12 + 0.59i 260.5 + 37.3i
CarMa static 1.20 + 0.65i 120226 + 65324i
CarMa 1st ord. on F (s)W (s) 1.22 + 0.67i 187.7− 6.5i
CarMa 2st ord. on F (s)W (s) 1.18 + 0.63i 271.1 + 34.0i
CarMa 3rd ord. on P (s) 1.18 + 0.63i 267.6 + 36.0i

Table 5.5: Growth rates for drift kinetic case with ΩE/ωA = 1 × 10−2 for two
different wall resistivities.

5.3.3 Rotational stabilization of RWM at very low toroidal
rotation

In the previous sections it has turned out that the real set of basis point gives
much more accurate results if compared to the other sets, and the explana-
tion of this accuracy is related to the fact that the real part of the unstable
eigenvalue is much more greater than the imaginary part. To confirm this
statement, another test case with very low toroidal flow is considered. We
can see from Fig. 5.1 (f) that the kinetic effects (thermal particle preces-
sional drift resonances with the mode in this case) occur strongly at very
slow rotation frequency [13, 14, 3], providing an important stabilizing effect.
Without going through a detailed investigation of various kinetic damping
physics, it is interesting to see the effectiveness of CarMa and CarMa-D for
this particular case, because, at ΩE/ωA ≈ 5 × 10−4, we have ω >> γ (Fig.
5.1 (f)). If the previous assumption is correct, the imaginary set of basis
points is expected to be the most desirable choice.

Table 5.6 shows that static CarMa erroneously predicts a stable mode,
while CarMa-D is very accurate, showing the robustness of the approach.
The imaginary data is slightly more precise than the real data (last row of
Tab. 5.6), and this outcome verifies the conjecture that the choice of the
basis points is related to the amplitude of the real/imaginary part of the
eigenvalue. However, the real set of basis point gives still satisfying results.

It is worth nothing that static CarMa fails even if the mode is in the

η/ηref = 1

Mars 0.31− 1.12i
CarMa static −0.08− 0.98i
CarMa 3rd ord. (real) 0.26− 1.06i
CarMa 3rd ord. (imag) 0.33− 1.08i

Table 5.6: Growth rates for drift kinetic case with ΩE/ωA ≈ 5 × 10−4 for two
different values of wall resistivity.
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typical RWM regime, as discussed above, and the assumption of neglecting
the plasma inertia should be valid. This suggests that the new CarMa-D
model, based on the rational approximation of the plasma response, is able
to deal with equilibria where the simultaneous stabilizing effect of plasma
flow and kinetic damping are prominent.

5.3.4 Model of the 3-D passive structures

The capability of CarMa-D is further assessed by considering a 3-D model
of the conducting structures. The 3-D geometry is obtained by opening
a number of ports on the axisymmetric mesh already used for the previous
cases. The mode is expected to be more unstable because of the holes [1, 12],
and the aim of this benchmark activity is to understand how the effect of
3-D features affects CarMa and CarMa-D behaviour.

Figure 5.39 shows the same rotation scan already presented in Fig. 5.1
(f) for the kinetic case, but showing also the outcomes of CarMa-D both
for the axisymmetric mesh and the 3D mesh, and of static CarMa. With
the axisymmetric mesh (red), results given by CarMa-D agree well with the
reference MARS-K data (black). The presence of holes in the wall leads
to more unstable RWM: it is interesting to notice that CarMa-D (blue)
gives less pessimistic results than static CarMa (green), especially for the
case of ΩE/ωA ≈ 2.5 × 10−3. Moreover, for a very low toroidal rotation
ΩE/ωA = 5× 10−4, the mode growth rate predicted by CarMa-D for the 3D
mesh is the same of the axisymmetric case, because, being the mode growth
rate very small, also the amplitude of the eddy current is small, giving a
weak effect on the mode, and the geometry of the shell does not influence
much the mode evolution. On the other hand, static CarMa erroneously
predicts a stable mode. The imaginary part of the mode eigenvalue is not
strongly affected by the 3D features of the geometry.

An example of the eddy current pattern induced by the unstable mode
for the three-dimensional mesh and the case ΩE/ωA = 10−2 is shown in Fig.
5.40, where the pattern modification due to the holes can be seen.

5.4 Numerical considerations

The mathematical model of CarMa-D suffers from the fact that the higher
is the interpolation degree k, the higher is the number of DoF. This requires
some considerations to show if this is a real drawback from the computational
point of view. It was already mentioned that the number of non-zeros of
CarMa and CarMa-D is almost unchanged: here we report the computational
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Figure 5.39: Comparison of the mode eigenvalue, real (a) and imaginary (b)
part, computed by MARS-K (black) for different values of toroidal rotation ΩE/ωA,
with: CarMa-D and axisymmetric mesh (red), CarMa-D and 3D mesh (blue), static
CarMa and 3D mesh (green).

Figure 5.40: Eddy current pattern related to the unstable mode for the 3-D mesh
with holes. Kinetic case with resistivity η/ηref = 1 and toroidal rotation ΩE/ωA =
10−2.
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time to compute the LU decomposition of the system matrix, as well as
the time required for a single step of the inverse iteration scheme for the
computation of the mode eigenvalue, a method widely used in Magneto-
Hydrodynamic stability analysis [15, 16]. All the computations have been
performed on the same machine with Intel Core i7 2.80GHz and 16GB of
Memory:

• static CarMa:

– nn = 2402, nnz = nn2 ≈ 6× 106, sparsity factor α = nnz/nn2 =

1 (the matrix is full);

– for inverse iteration: LU decomposition takes 0.2s, one step of
inverse iteration takes 10ms;

• F (s)W (s) 2nd ord:

– nn = 4864, nnz ≈ 6× 106, sparsity factor α = nnz/nn2 = 0.25;

– for inverse iteration: LU decomposition takes 1.55s, one step of
inverse iteration takes 11.3ms;

• P (s) 3rd ord:

– nn = 7251, nnz ≈ 6× 106, sparsity factor α = nnz/nn2 = 0.11;

– for inverse iteration: LU decomposition takes 1.65s, one step of
inverse iteration takes 11.8ms;

• P (s) 4th ord:

– nn = 9648, nnz ≈ 6× 106, sparsity fator α = nnz/nn2 = 0.06;

– for inverse iteration: LU decomposition takes 1.7s, one step of
inverse iteration takes 13ms;

We can note that, even if the number of non-zeros is practically un-
changed, the LU decompositions for CarMa-D requires more time. This can
be explained looking at Fig. 5.41, where the sparsity pattern for the k = 3

order interpolation of P (s) is reported. Such matrix is sparse, except for the
dense square block on the upper left corner related to the static CarMa block
R−1
a L1 in Eq. (4.42). Since we are dealing with a sparse matrix, a suitable

sparse linear algebra toolbox should be used. However, these methods use
the graph theory to minimize the so-called matrix fill-in [17], i.e. the entries
that change from an initial zero to a non-zero value during the execution
of an algorithm. It could happen that the very localized dense block does
not allow to obtain the desirable performance gain that could be achieved
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Figure 5.41: Sparsity pattern of matrix (4.42) for interpolation degree k = 3. The
matrix dimensions are 7251×7251 and the total number of non-zeros are ≈ 6×106.

with a sparse matrix with the same number of non-zeros, but with a regular
structure.

5.5 Conclusions

The CarMa-D code, whose mathematical model has been presented in the
previous chapter, is applied to a reference test case in order to provide an idea
of its effectiveness as well as to address its possible weaknesses. The test case
used is a circular shaped plasma enclosed in an axi-symmetric conducting
wall, already used to benchmark the static version of the code. For this
purpose, two different damping physics mechanism are used for the same
equilibrium: the parallel sound wave damping model and full toroidal drift
kinetic model.

For both the damping mechanisms, the matrix-based rational approxima-
tion technique used in CarMa-D shows that a good accuracy can be reached
interpolating the plasma response P (s) with a degree of k = 3. It turns out
that, for this specific test case, the interpolation along the real axis of the
complex plane gives results much more accurate than the other sets of basis
points.

In addition to this, the performed scan of the resistivity η of the conduct-
ing wall in the range η/ηref = [10−1, 106] underlines that, starting from the
data interpolated along the real axis, the new dynamic model can recover the
reference results provided by MARS-F/K with a percentage error less than
2% for the fluid model, and around 4% for the drift kinetic model. This is
valid also for the ideal kink instability, for which the plasma inertia plays
an essential role. It has also shown that the new CarMa-D model is able to
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deal also with equilibria where the simultaneous effects of plasma flow and
kinetic damping are prominent. In this case, the static CarMa model fails,
recovering a stable mode.

An additional test example with 3-D mesh has been considered. The
holes have a destabilizing effect, but it is very interesting to note that the in-
clusion of the drift kinetic damping effects in the model obtained by CarMa-D
gives less pessimistic results than what gives the static CarMa.

Numerical consideration on the computational cost of CarMa-D with
respect of CarMa are also reported, to understand how the computational
complexity scales with the additional number of DoF required by CarMa-D.
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6.1 Introduction

In the previous chapters, the new CarMa-D model has been at first presented,
and then validated with a simple test problem obtained by considering a
plasma with circular cross-section. CarMa-D has proven to be a reliable tool
to study RWM analysis, able to deal with instabilities with non negligible
dynamical effect and with the simultaneous combination of toroidal flow and
kinetic damping. In particular, this latter feature of CarMa-D is a situation
of particular interest, because of the strong stabilizing effect on the external
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kink instabilities that occurs for certain values of toroidal flow if a kinetic-
hybrid description of the plasma is used.

The validation with a circular plasma can be somehow optimistic and
must be extended to more general cases, because a cross section of circular
shape has a simple geometry if compared with those of real experiments. In-
deed, it is well known that tokamak performances are substantially improved
as the plasma cross section becomes more elongated [1]. Unlike the circu-
lar test case, this requires a higher number of Fourier harmonics to describe
quantities in the poloidal plane. To assess how CarMa-D behaves when deal-
ing with realistic devices, a test case has been taken from the forthcoming
JT-60SA tokamak.

6.1.1 The JT-60SA experiment

The super-conducting fusion reactor Japan Torus Super Advanced (JT-60SA)
[2, 3] is under construction in Naka, Japan, under the Satellite Tokamak
Project (STP) of the Broader Approach (BA) agreement between European
Union and Japan. The European Implementing Agency (EU-IA) is Fusion
for Energy (F4E) and the Japanese Implementing Agency (JA-IA) is the
Quantum and Radiological Science and Technology (QST). The aim of the
project is to conduct supportive and complementary work for the ITER
project towards supporting the basis for DEMO [4]. An overview of the
device can be seen in Fig. 6.1.

One of the major objectives of the JT-60SA Project is to provide a re-
search support for the ITER project, in order to accomplish the required
technical goals. Since ITER is expected to operate with long pulses (300-
500s) at Q=10 [5], many of critical issues need to be addressed. JT-60SA
can operate in the ITER-like configuration inductive mode under the break-
even-equivalent condition. This opens the possibility to investigate impor-
tant problems, such as disruption avoidance and mitigation, ELM control
for heat pulse reduction, heat load mitigation by radiative divertor and lim-
itation of serious MHD instabilities.

The main parameters of JT-60SA are summarized in Tab. 6.1 [6, 7]. As
can be seen, a significant amount of power is expected to be provided by
heating and current drive systems, up to 41MW for 100s. In particular, the
presence of off-axis Negative-NBI at 0.5 MeV and 10 MW power will allow
current profile tailoring to operate at Advanced Tokamak scenarios, with
fully non inductive current drive.

Whit these capabilities, JT-60SA device is expected to to explore ITER
and DEMO relevant plasma regimes, in terms of non-dimensional param-
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Figure 6.1: Overview of JT-60SA.

Toroidal field 2.25T
Plasma current 5.5MA
Major/minor radius 2.96/1.18m
Aspect ratio 2.5
Elongation 1.95
Triangularity 0.53
Plasma volume 132m2

H&CD power (total) 41MW
N-NBI (500 keV) 10MW
P-NBI (85 keV) 24MW
ECRH (110, 138GHz) 7MW
Flat-top duration 100s

Table 6.1: Nominal parameters of the JT-60SA tokamak.
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eters (such as normalized gyro radius ρ∗p, normalized collisionality ν∗ and
normalized poloidal beta βN ) [6]. The steady-state operations require to
maintain simultaneously high values of energy confinement, normalized beta
βN , bootstrap current fraction, normalized plasma density, and many other
parameters. Such high performances have never been achieved, and one of
the most important goals of JT-60SA is to reach and sustain such high per-
formances. The first step is to expand the operational boundaries, exceeding
the requirements for ITER. This means that, in terms of pressure limit, the
device is expected to operate above the no-wall MHD stability limit, such
as βN ≈ 3÷ 5.5. This is mandatory for an economically attractive compact
DEMO device, but, on the other hand, leads the plasma to be subjected to
global MHD instabilities.

6.1.2 Pressure driven kink instabilities in the Scenario 5 tar-
get plasma

In the following part of the work we turn attention to the stability anal-
ysis of Scenario 5 [6]. This scenario will establish the base for high βN ,
fully non-inductive current drive operation on JT-60SA. As main features,
it is characterized by reversed shear, plasma current Ip = 2.3MA, toroidal
magnetic field Bt = 1.72T and normalized beta βN = 4.3.

The considered reference equilibrium is has been obtained with integrated
modelling simulations performed with the CRONOS suite [8]. The scenario
implemented in this work is a low power version of the Scenario 5, with
17MW from NBI and 7MW from ECRH, and βN ≈ 3.6. In Figs. 6.2a - 6.2b
- 6.2c we show respectively the profiles of safety factor, pressure, and surface
averaged current.

For the target plasma scenario, recent work has shown that βN ≈ 3.6

lies beyond the no wall limits for both the modes n = 1 and n = 2, because
respectively of βnwN = 1.9 and βnwN = 2.3 [9]. The no-wall limits for these
toroidal modes are shown in Fig 6.2d. This mean that the n = 1 is the
most unstable mode for this equilibrium, but clearly both the modes require
simultaneous feedback stabilization to allow the operations at the target
value of βN . In the next part of the chapter, CarMa-D will be used to assess
this problem.

As a starting point, for the stability analysis the fluid model with no
toroidal rotation is considered, while future effort will be oriented to include
in the model drift-kinetic description of the plasma and toroidal rotation. In-
deed, we consider first the assessment of the problem with the fluid damping
model, and then providing a more physical and detailed description of the

120



Chapter 6: RWMs analysis on JT-60SA high β scenario

(a) (b)

(c) (d)

Figure 6.2: View of the profiles of safety factor (a), pressure (b), and surface
averaged current (c). Pressure scan for ideal kink mode (d). No-wall limits are
shown for n = 1 and n = 2. Ideal-wall limit is calculated for n=1 and stabilizing
plate position [9]

Figure 6.3: Three-dimensional view of the axysimmetric mesh (a) and particular
of the poloidal plane, with the coupling surface (red) and the plasma cross-section
(blue).
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synergic effect of kinetic damping (viscosity [10], kinetic resonance with par-
ticle drift motion [11, 12, 13, 14]) and plasma rotation. As a matter of fact,
these combined effects are expected to give a strong passive stabilization to
the aforementioned instabilities [9].

On the other hand, this fluid description has already been used as starting
point for stability analysis and feedback stabilization with the static CarMa
model. In particular, in Ref. [15] the stability analysis of the n = 1 RWM is
reported, at first with an axisymmetric mesh of the first wall, and then with
a detailed 3-D mesh of the conducting structures. The same detailed mesh
has been recently used also for preliminary study of multi-modal feedback
controls of the n = 1 and n = 2 RWMs [16].

6.2 RWM stability analysis with axi-symmetric con-
ducting structures

6.2.1 The conducting structures model

The first step to acquire confidence on CarMa-D results is to go through a
preliminary validation with MARS results, as done for the circular equilib-
rium. For this reason, an axisymmetric mesh is required, which can be seen
in Fig. 6.3a. Figure 6.3b shows also, in the poloidal plane, the coupling
surface and the cross-section of the plasma equilibrium.

In order to characterize the passive structures, the penetration times for
the slowest helical perturbations with n = 0, 1, 2 are reported in Tab. 6.2.
Detailed views of the related image currents of the passive eigenvectors can
be seen in Figs. 6.4 to 6.9.

For the same reasons already mentioned in section 5.1, only one mesh
element along the shell thickness is considered.

τw
n = 0 111.5mS
n = 1 84.4mS
n = 2 58.4mS

Table 6.2: Wall times for different toroidal mode numbers.

6.2.2 Notes on the static plasma response matrix

The highly elongated cross section (Fig 6.3b) of this equilibrium requires
a broad spectrum of Fourier harmonics to decompose the quantities in the
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Figure 6.4: Eddy current pattern related to the n = 0 slowest passive eigenvector.

Figure 6.5: Eddy current pattern related to the n = 0 slowest passive eigenvector
(rectified view).
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Figure 6.6: Eddy current pattern related to the n = 1 slowest passive eigenvector.

Figure 6.7: Eddy current pattern related to the n = 1 slowest passive eigenvector
(rectified view).
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Figure 6.8: Eddy current pattern related to the n = 2 slowest passive eigenvector.

Figure 6.9: Eddy current pattern related to the n = 2 slowest passive eigenvector
(rectified view).
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poloidal plane. For this specific case, the chosen spectrum is m ∈ [−9, 59].
Figure 6.10 shows a convergence analysis of the real and imaginary part of
the mode n = 1 growth rate as the number of harmonics M increases. The
convergence is reached for M = 60 poloidal harmonics.

Increasing the dimension of the poloidal spectrum has several drawbacks,
affecting in particular the computation of matrix K with Eq. (3.14), which
is a very important step in the procedure, because it is used to compute F
through Eq. (3.18), and W through Eq. (3.23).

The first drawback is that the MHD simulations with MARS require more
computational resources, as well as more time, because the computational
complexity for every single computation of Eqs. (3.12) scales with ∝ M2

[17]. Therefore, the entire procedure to compute the matrices K and K̃
as Eqs. (3.14) - (3.15), where each one requires to solve M times the MHD
equations in the domain bounded by the coupling surface, scales with∝ 2M3.
It is worth recalling that, for the matrix based rational interpolation, the
computation of K should be repeated N(2k+ 1) times, with k interpolation
degree and N number of considered toroidal modes, causing a dramatic
increase of the computational time.

The second drawback, which should be considered the most limiting one,
is related to the ill-conditioning of the involved matrices. This is particularly
problematic for the Eq. (3.14), which relies on the computation ofB−1

N . This
fact is particularly clear looking at the data shown in Figs. 6.11a to 6.11d,
where the quantities involved in Eq. (3.14) are shown. This is the case of
the n = 1 plasma response computation, but the same considerations hold
for the n = 2 mode. The boundary conditions (BCs) on the normal field
distributions, which have the same distribution already reported in Fig. 3.2,
are shown as the columns of the matrix in Fig. 6.11a: this is the M ×M
matrix BN built as Eq. (3.13). The same is done for BT in Fig. 6.11b. It is
clear that a narrow harmonic content of both the BCs and the resulting BT

is mainly centered around the harmonic m = 0. This means that the plasma
response, described through BT , exhibits an harmonic content similar to
that of the boundary conditions, meaning that the matrix K should be
"mainly" diagonal (see Fig. 5.11; the structure of P is very close to the one
of K). In addition to this, the amplitudes of BN and BT elements are very
close, requiring diagonal elements of the matrix K fo have almost unitary
amplitude.

This is however in contrast with the matrix K shown in Fig. 6.11c, ob-
tained performing the standard matrix inverse computation to getB−1

N . The
structure of this matrix, which is not even close to diagonal, and the ampli-
tude of the elements, are clearly not correct. On the other hand, performing
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Figure 6.10: Convergence of real and imaginary part of the eigenvalue, for the
mode n = 1, as function of the total number of poloidal harmonics used for Fourier
decomposition.

(a) (b)

(c) (d)

Figure 6.11: Quantities involved in Eq. 3.14 for the n = 1 plasma response:
input boundary conditions BN (a), output BT (b), and matrix K computed without
pseudo-inverse (c) and with pseudo-inverse (d).

127



Chapter 6: RWMs analysis on JT-60SA high β scenario

the same computation with a regularization technique, such as the TSVD
already reported in Eq. (4.31), leads to plausible results, as can be seen in
Fig. 6.11d. Here the chosen truncation index is t = 45, meaning that the 45
singular values out of the total 65 have been retained in the computation.
The value of the truncation index is linked to the extension of the noisy part
of the matrix in Fig. 6.11d for higher harmonics (i.e. m > 30). The choice
made here is a compromise, and has required the study of several cases.

It is worth noting that the aforementioned matrixK is the starting point
of the entire mathematical structure of both static CarMa and CarMa-D.
Failing the computation of this matrix would lead to inconsistent results also
for the case of static CarMa. A proper derivation of this matrix is therefore
mandatory, and one of the most important steps to take care about.

6.2.3 Stability analysis for toroidal modes n = 1 and n = 2

The CarMa-D multi-modal system, whose mathematical formulation has
been developed in subsection 4.4.2, has been used for the stability analy-
sis of the toroidal modes n = 1 and n = 2. The mode n = 0 has not been
considered here, for a couple or reasons. The first one is more "practical",
being the MARS code not able to treat easily the n = 0 component because,
in the mathematical model, some quantities are divided by the toroidal mode
number n. The response matrix for the case n = 0 has to be obtained ex-
ploiting other mathematical models, such as, for example, CREATE-L [18].
In addition to this, the mode n = 0 is expected to be weakly coupled to
the other modes. This fact has already been presented in Ref. [19] for the
ITER case, where the modes n = 0 and n = 1 are considered: the feedback
strategy have been designed with two separate controllers, because the two
modes are almost orthogonal.

For an axisymmetric mesh, the growth rates computed by MARS, and
used as reference results, are reported in Tab. 6.3. For every toroidal mode
number n, as expected, MARS-F recovers a couple of complex conjugate
modes. This is due to the toroidal symmetry of the problem.

n γτw γ

1 12.48 + 0.01i 1.39× 102 + 7i× 10−2

12.48− 0.01i 1.39× 102 − 7i× 10−2

2 10.57 + 0.22i 1.70× 102 + 3.52i
10.57− 0.22i 1.70× 102 − 3.52i

Table 6.3: Growth rates for the mode n = 1, 2 computed by MARS and normalized
by the corresponding wall times.
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n γτw γ

1 11.89 + 0.03i 1.410× 102 + 4.151i× 10−1

11.89− 0.03i 1.410× 102 − 4.154i× 10−1

2 10.17 + 0.50i 1.743× 102 + 8.494i
10.17− 0.50i 1.743× 102 − 8.494i

Table 6.4: Growth rates for the mode n = 1 and n = 2 computed by CarMa-D
and normalized by the corresponding wall times.

The CarMa-D model also recovers eigenvalues in pairs of complex con-
jugate modes, as was expected. All the unstable eigenvalues are shown in
Tab. 6.4. The small discrepancy on the imaginary part of the n = 1 mode is
due to the fact that the matrix (4.43) has complex entries, as was described
in Sec. 4.4: with the new CarMa-D formulation it is no longer possible to
simply add the contribution of different modes as done in Eqs. (3.43), and
exploiting Eq. (3.44) to obtain real matrices. This would not be appreciable
in infinite-precision arithmetics, but can be experienced here due to the finite
precision of the geometry discretization. However, agreement with MARS-F
results is accurate. The relative percentage error on the growth rate, and
defined as Eq. (5.4) is around 4.5% for both the modes.

A 1-D quantitative comparison with the n = 1 and n = 2 eigenvectors
computed by MARS-F is shown is Figs. 6.12a - 6.12b. Both the eigenvectors
agree well with the reference. A possible explanation of the small discrep-

(a) (b)

Figure 6.12: Comparison of eigenvectors computed by MARS-K (black solid) and
CarMa-D (red circles) for the modes n = 1 (a) and n = 2 (b).
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Figure 6.13: Eddy current pattern related to the n = 1 unstable eigenvector.

Figure 6.14: Eddy current pattern related to the n = 1 unstable eigenvector
(rectified view).
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Figure 6.15: Eddy current pattern related to the n = 2 unstable eigenvector

Figure 6.16: Eddy current pattern related to the n = 2 unstable eigenvector
(rectified view).
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ancy can be obtained remembering the regularization technique presented in
subsection 6.2.2.

Figures 6.13 - 6.14 show the eddy current pattern related to the n =

1 unstable mode, both in 3-D view and for the rectified wall. For every
toroidal mode number, only one unstable eigenvector is reported. The second
eigenvector, related to the complex conjugate eigenvalue, is identical, but
shifted of π/2n in the toroidal direction [20, 21]. With respect to the circular
case, due to the shape of the conducting structures the eddy current pattern
is strongly localized in the Low Field Side (LFS). This fact can be due also
to the lower aspect ratio (R0/a = 2.5, Tab. 6.1). The same effect can be
seen more prominent for the n = 2 mode in Figs. 6.15 - 6.16.

6.3 Effect of 3-D conducting structures on RWM
stability

The previous section showed a preliminary analysis of the problem, con-
sidering an axisymmetric mesh, in order to benchmark CarMa-D with the
MARS-F code. A more detailed model of the passive structures can be seen
in Fig. 6.17: two stabilizing plates are (internal and external) are described
in detail with holes and ports of the 3-D real geometry, while the vacuum
vessels (internal and external) are described as axisymmetric walls. The fre-
quency dependent plasma response model, tested in the previous subsection,
is now used to study the effect of a more realistic mesh on the instabilities
described above.

The axisymmetric mesh used to produce the results reported in subsec-
tion 6.2.3 was obtained by placing a closed conducting wall at the radial
normalized position r/a = 1.2, where a = 1.18m is the minor radius (see
Tab. 6.1). This position is close to the real radial position of the inner
stabilizing plate, but, in the real geometry, the stabilizing plate is made
of two layers very close to each other and not of a single close conducting
wall. In addition, these plates have a finite poloidal extension, and do not
completely surround the plasma. A detailed view of these structures on the
poloidal plane, together with the trace of the coupling surface and the plasma
cross-section, can be found in Fig. 6.18.

The case of a closed stabilizing plate without any hole is much more
optimistic than the real geometry: the two modes are expected to be much
more unstable than what was reported in Tab. 6.4, both for the reduced
poloidal extension of the stabilizing plate, and because of the holes [22]. The
effect of finite extension of the stabilizing plates was already pointed out
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Figure 6.17: View of the 3-D passive structures. The external vacuum vessels
have been represented partially to show the stabilizing plates.

Figure 6.18: View, in the poloidal plane, of the two nested vacuum vessels as well
as the two stabilizing plates. The trace of the coupling surface (red) and the plasma
cross-section (blue) are also represented.
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in Ref. [15], where the growth rate obtained with a closed axisymmetric
stabilizing plate was approximately γτW ≈ 6, while using a detailed model
of the stabilizing plate led to a growth rate γτW > 100.

The presence of the holes in the stabilizing plates makes the passive wall
model no longer axisymmetric. The eigenvalues therefore are no longer ex-
pected to be in complex conjugate pairs. This happens because the toroidal
symmetry is broken, giving rise to four unstable modes, each with a pecu-
liar eigenvector pattern. In addition to this, a non negligible toroidal mode
coupling is expected [22], because of the broken symmetry. To evaluate how
strong the mode coupling is, both the mono-modal (one mode at time) and
the multi-modal analysis has been performed.

The results of this analysis are reported in Tab. 6.5. It is worth noting
that, since the configuration is no longer axisymmetric, in principle the wall
time for a given n cannot be defined as the decay time of the slowest pas-
sive eigenvector with that n periodicity, as done in subsection 6.2.1 for the
axisymmetric case. However, the comparison between the obtained growth
rates and the wall times in Tab. 5.1 is still useful to have an intuitive idea of
the how much more unstable the modes are with respect to the axisymmetric
configuration.

The holes have a strong effect in breaking the symmetry of the wall,
and this can be understood from two different considerations. At first, the
breaking of symmetry leads to breaking also the degeneracy of the spectrum,
whose eigenvalues are no longer complex conjugate, and are not even close to
each others as in the case of a slight modification of toroidal symmetry [22].
Moreover, the toroidal asymmetry is pointed out by the difference between
the mono-modal and the multi-modal responses, showing the strong coupling
between different n’s that occurs for 3-D wall, even in case of linear MHD
[23]. This is due to the fact that, when a mode with a single n interact with
a 3-D wall, the eigenvector has not a single n periodicity, but spurious com-
ponents with different n arise. This spurious spectrum is related to the 3-D

mono-modal multi-modal
n γ γτW γ γτW
1 1.81× 103 152.7 1.95× 103 164.6

1.01× 103 85.2 1.02× 103 86.1
2 1.36× 103 79.8 1.33× 103 77.7

9.52× 102 55.6 9.24× 102 54.0

Table 6.5: Growth rates of the unstable modes for the 3-D mesh, mono-modal and
multi-modal analysis.
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Figure 6.19: Eddy current pattern related to one of the unstable eigenvectors on
the inner vacuum vessel.

Figure 6.20: Detailed view of the mode structure in the inner stabilizing plate.
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Figure 6.21: Eddy current pattern related to the most unstable n = 1 eigenvector
on vacuum vessels.

Figure 6.22: Eddy current pattern related to the least unstable n = 1 eigenvector
on vacuum vessels.
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Figure 6.23: Eddy current pattern related to most unstable n = 2 eigenvector on
vacuum vessels.

Figure 6.24: Eddy current pattern related to the least unstable n = 2 eigenvector
on vacuum vessels.
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geometry. For this reason, the n = 1 mode in axi-symmetric geometry would
no longer have the same periodicity if a 3-D wall is considered, but would
be characterized by a certain spectrum, whose spurious toroidal components
would combine with the components of the same n’s related to the other
modes involved. This effect is particularly noticeable in this case through
the difference between the mono-modal and the multi-modal responses

Figure 6.19 shows the eigenvector related to the first unstable eigenvalue
on the inner vacuum vessel, which is the closest to the stabilizing plates. The
eddy current pattern is not as clean as the axisymmetric case shown in 6.13
- 6.15, even if the vacuum vessel is symmetric. This is due to the proximity
effect of the stabilizing plates. The current showing in the stabilizing plates
can be seen in detail in Fig. 6.20.

Figures from 6.21 to 6.24 show a rectified view of the eddy current induced
by the four unstable modes in both the stabilizing plates, following the same
order of Tab. 6.5. Clearly, a pure toroidal periodicity cannot be seen. A
predominant n = 1 component for eigenvectors of Figs. 6.21 - 6.22, and
n = 2 component for eigenvectors of Figs. 6.23 - 6.24, can be identified
instead.

6.4 Future work: combining active and passive sta-
bilization

The stability analysis carried out in Sec. 6.3 for the 3-D passive structures
suggest that strong stabilization is required for these modes. This stabi-
lization can be reached following multiple approaches, combining active and
passive strategies.

A RWM feedback control system is expected to be implemented in JT-
60SA, thanks to the presence of a dedicated set of active coils designed for
this specific task. These coils are organized in three toroidal arrays, each
one with six coils, which will be placed around some holes of the stabilizing
plate. Figure 6.25 shows the geometry of the coil system and its position
with respect to the stabilizing plate. Dedicated modelling activities have
already been performed, including the realistic 3-D geometry of the passive
structures [15], as well as a preliminary assessment of the feedback system
design for the simultaneous stabilization of the modes n = 1 and n = 2 with
a proportional controller [16].

On the other hand, passive stabilization usually arises from the combina-
tion of toroidal flow and different kinetic damping mechanisms, such as vis-
cosity [10] and kinetic resonance with the particles drift motions [11, 24, 25].
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The latter is due to the Landau resonance, through which the energy asso-
ciated with the mode is transferred to the particles.

For the case of JT-60SA Scenario 5, the effect of passive stabilization is
pointed out in both Figs. 6.26a - 6.26b. In particular, Fig. 6.26a shows
the mode growth rate as the factor αD is increased, in absence of toroidal
rotation. The factor αD multiplies the off-axis elements of the pressure tensor
in the MHD equation solved by MARS-K, and this scan describes a smooth
transition from the fluid (αD = 0) to the drift-kinetic description (αD = 1),
showing a stabilizing effect even if no rotation is present. On the other
hand, Fig. 6.26b shows the scan of toroidal rotation for the target plasma
and three re-scaled versions of the same equilibrium, but with increasing βN .
It can be noted that, for low rotation, the stabilization due to the resonance
with thermal ions precession drift is effective, leading to a strong effect on
the cases with higher βN . In particular, when the stabilization is stronger
(Ω/ωA ≈ 0.01), the normalized growth rate is γτW ≈ 1, which is one order
of magnitude less than what is obtained for the fluid case (see Tab. 6.4). All
these results came from MARS-K simulations, thus a closed axisymmetric
wall at r/a = 1.2 is used.

Taking advantage of these considerations, future developments for what
concerns control techniques will be oriented to the combinations of both ac-
tive and passive stabilizing effects [26, 27]. The CarMa-D model is a suitable
choice to be used for this purpose, because it is able to rigorously include
in the model the effects of toroidal plasma flow and drift kinetic damping.

Figure 6.25: 3-D representation of the stabilizing plate and the three toroidal
arrays of RWM control coils (RWMCC).
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Figure 6.26: Contribution of the kinetic effects to stabilization: scan of the drift
kinetic contributions (a) and scan of toroidal rotation for four different values of
βN for the target plasma (figures from [9]).

This strength point can be combined together with CarMa-D capability of
modelling in a detailed way the active/passive conductors, oriented to the
development of a more reliable and effective control strategy.

6.5 Conclusions

The super-conducting fusion reactor Japan Torus Super Advanced (JT-60SA)
is being built in Naka, Japan, under the Broader Approach (BA) agreement
between European Union and Japan. JT-60SA has the purpose of conducting
supportive and complementary work for the ITER project, and to support
the basis for DEMO development.

The device will be equipped with a dedicated set of active coils designed
for RWM feedback control, opening the possibility to develop a control sys-
tem aimed to the limitation of serious MHD instabilities. In particular,
future effort for what concerns control techniques will be oriented in the
combinations of both active and passive stabilizing effects. Thus, in order
to make such control system effective, accurate modelling should be per-
formed for both modelling in detail the active/passive conductors, and ex-
ploit an accurate description of the combined effect of drift-kinetic damping
and toroidal rotation.

For this reason, CarMa-D model has been used to perform preliminary
studies on Resistive Wall Modes stability of both the toroidal modes n = 1

and n = 2. For this part, plasma damping mechanisms rely in fluid de-
scription, and no toroidal flow is considered. The first part of the work was
a preliminary validation, considering a simplified axisymmetric mesh of the
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conducting structures, in order to use MARS-F results as reference. This
step has allowed to gain confidence on the capability of the model.

The second part of the work has involved the realistic geometry of the
stabilizing plates, with a detailed study of the effects of this 3-D geometry
on the stability of both the n = 1 and n = 2 RWMs. It has turned out that
the modes growth rates rise of one order of magnitude if the realistic 3-D
geometry of the stabilizing plates is considered. This outcome is a further
motivation on the need of an effective stabilization of this kind of instabilities.

The results have shown that additional effort is needed, in particular to
include in the model also toroidal flow together with drift-kinetic description
of the plasma. This is expected to take advantage of both passive and active
stabilization. In the previous chapter, the CarMa-D code has proven to be
a valid choice for this purpose.
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The results presented in the previous chapter made clear that the need
of a synergic integration of passive and active stabilizations is expected to
play a crucial role in present and future devices, in order to overcome the
limitations imposed by the Resistive Wall Modes and reach operational con-
ditions viable for fully non-inductive scenarios. For this purpose, CarMa-D
is a suitable choice, because it has proven to be an accurate and reliable
tool to model RWM dynamics, even if the simultaneous effects of plasma
dynamics, toroidal flow and kinetic damping are prominent.

Whit the aim of developing a model-based feedback control system, the
formalism of state-space representation is a powerful tool. This procedure
has been done for many devices using the static CarMa code [1, 2, 3], because
it allows to write straightforwardly the state-space model starting from the
modified RL equation [4]. Unfortunately, this is no longer possible if CarMa-
D modified RL equation is used, i.e. Eq. (4.39), because the matrix L∗

is rank-deficient. This particular feature was already treated is Sec. 4.3
with the aim of stability analysis through eigenvalues computation, and the
proposed solution is well suited for that specific purpose.

In this chapter, it is shown how CarMa-D RL system of equation can
be written in a state-space form only by performing algebraic manipulations
and arrangements of the block matrices.
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7.1 State-Space representation of a Linear Time In-
variant system

In mathematical physics, analytical mechanics and control theory, a state-
space representation means that a dynamical system is described by means
of a particular vector space of state variables. The arising state-space model
represents a physical system in which the inputs, outputs and states variables
are related by a system of first-order differential equations [5]. In addition
to this, if the dynamical system is linear, which is the case studied in this
work, the resulting differential equations may be written in matrix form.
Then a significant algebraization of general system theory can be exploited,
and this is one of the strength points of the state-space approach, providing
a favorable and compact way to model and analyze systems with multiple
inputs and outputs (MIMO systems).

A state-space model of a linear, time invariant (LTI) dynamical system
is usually written as:

dx(t)

dt
= Ax(t) +Bu(t) (7.1)

y(t) = Cx(t) +Du(t) (7.2)

where x(t) is the state vector, u(t),y(t) are respectively the input and output
vectors, and A,B,C,D are the matrices of the system.

The state space representation works in time domain, as opposed to the
transfer function method which works in the Laplace domain. However,
there is a straightforward connections between the two methods, that can
be underlined by taking the Laplace transform of Eq. (7.1), leading to:

X(s) = (Es−A)−1x(0) + (Es−A)−1BU(s) (7.3)

where E is the identity matrix and x(0) are the initial conditions. Taking
the Laplace transform also of Eq. (7.2) and considering Eq. (7.3) we obtain:

Y (s) = C
[
(Es−A)−1x(0) + (Es−A)−1BU(s)

]
+DU(s) (7.4)

The state space representation is of remarkable interest when a model-
based feedback controller is required, such as PID controllers, Pole placement
method, Linear Quadratic Regulator (LQR), and many others, especially for
MIMO systems.
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7.2 State-Space representation of CarMa-D system

As was already said, the CarMa-D modified RL equation (4.39) is not suit-
able to be written directly in a state space form, due to the fact that the
system matrix L∗ is rank-deficient. To understand this fact it is necessary
to look at the structure of the blocks of L∗. In order to make the description
more clear, relations (4.13), (4.36) and (4.39) from Chap. 4 are repeated in
the following. Specifically, system (4.13) shows the equations for the eddy
currents and for the plasma response external perturbations, assuming van-
ishing initial conditions for the current such as i(t = 0) = 0. This gives the
starting point of the development of CarMa-D coupling strategy:

sLi+Ri+ sMjeq = Dv

bN = W (s)bexN = W (s)Qi

jeq = F (s)bN

(7.5)

Then, by considering the Padé approximation defined as Eq. (4.17), one can
write the, kth order system of linear differential equations defined as (4.36):

sk

[
0 0

−AkQ Bk

][
i

jeq

]
+ ...+ si

[
0 0

−AiQ Bi

][
i

jeq

]
+ ...

+ s

[
L M

−A1Q B1

][
i

jeq

]
+

[
R 0

−P0Q E

][
i

jeq

]
=

[
Dv

0

]
(7.6)

and with the change of variable defined as (4.38) the modified RL equation
can be obtained:

s


E

E
. . .

Lk



x

y1
...

yk−1

+


0 −E

0
. . .
. . . −E

Ra L1 · · · Lak−1



x

y1
...

yk−1

 =


u

0
...
0


(7.7)

If the block matrix Lak is now considered, we see from Eq. (7.6) that:

Lak =

[
0 0

−AkQ Bk

]
(7.8)

meaning that the system is a Differential-Algebraic system of Equations
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(DAE) [6]: it contains both differential equations and algebraic equations.
This particularly occurs because, in general, the degree of the differential
equations of the system is not the same, but some equations have a lower
order than others. Here the first block of equations, which is related to the
eddy currents, have a first order dynamic; on the other hand, the second
block of equations, related to the rational interpolation of plasma response
matrices, has an kth order dynamic which depends on the interpolation
degree.

For the purpose of the stability analysis, the rank deficiency of L∗ has
been treated looking for the growth time of the instability, rather than for
the growth rate, and inverting the matrix R∗ to obtain the matrix (4.42).
On the other hand, if the State-Space system is needed, system (4.40) should
be suitably rearranged. To achieve this goal, we write L∗ showing explicitly
the structure of Lak:

L∗ =


E

E
. . . [

0 0

−AkQ Bk

]


the second-last block row of the matrix L∗ is all zero. This fact can be
exploited to partition and permutate the second-last block row with the last
one, doing the same procedure with the block columns:

L∗ =


E

E
. . .

0 0

−AkQ Bk

 (7.9)

⇒


E

E
. . .

Bk −AkQ

0 0

 =

[
L∗

11 L∗
12

L∗
21 L∗

22

]
(7.10)

The sub-matrices A11,A12,A21,A22 are then defined. The same manipula-
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tion is done to the R∗ matrix:

R∗ =



. . .
−E

−E
R 0 . . . L M

−P0Q E . . . −A1Q B1

 (7.11)

⇒



. . .
−E

−E
−P0Q E . . . B1 −A1Q

R 0 . . . M L

 =

[
R∗

11 R∗
12

R∗
21 R∗

22

]
(7.12)

and finally also to the rows of the vector of unknowns and to the source
term:

y∗ =

[
y∗1
y∗2

]
u∗ =

[
u∗

1

0

]
(7.13)

With this partition, and noting that L∗
21 = 0, L∗

22 = 0 from Eq. (7.10),
it follows that system (4.39) can be written as:

s

[
L∗

11 L∗
12

0 0

][
y∗1
y∗2

]
+

[
R∗

11 R∗
12

R∗
21 R∗

22

][
y∗1
y∗2

]
=

[
u∗

1

0

]
(7.14)

Now, with this arrangement, matrix L∗
11 has full rank, as can be seen in Eq.

(7.10). Equation (7.14) is then written as two separate systems of equations,
one of first-order differential equations, and the other one of algebraic equa-
tions. The second system can be solved with respect of y2 thanks to the fact
that L∗

21 = L∗
22 = 0:

sL∗
11y1 + sL∗

12y
∗
2 +R∗

11y
∗
1 +R∗

12y
∗
2 = u∗

1 (7.15)

R∗
21y

∗
1 + sR∗

22y
∗
2 = 0 (7.16)

From Eq. (7.16) it follows that:

y∗2 = −(R∗
22)−1R∗

21y
∗
1 (7.17)

and by inserting y2 into Eq. (7.15):

sL∗
11y

∗
1 − sL∗

12(R∗
22)−1R∗

21y
∗
1 +R∗

11y
∗
1 −R∗

12(R∗
22)−1R∗

21y
∗
1 = u∗

1 (7.18)
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with the following redefinitions:

s
[
L∗

11 −L∗
12(R∗

22)−1R∗
21

]︸ ︷︷ ︸
LSS

y∗1 +
[
R∗

11y
∗
1 −R∗

12(R∗
22)−1R∗

21

]︸ ︷︷ ︸
RSS

y∗1 = u∗
1 (7.19)

it follows directly:

A∗ = −L−1
SSRSS (7.20)

B∗ = L−1
SS (7.21)

where A∗,B∗ are the matrices of the dynamic equation of the State-Space
system for the CarMa-D model. In particular, with this procedure the matrix
A∗ has full rank. These matrices are formally equivalent to those of Eq.
(3.48), but with a higher number of states to model plasma dynamics. It
can be proved that the eigenvalues ofA∗ are exactly the inverse of the growth
times given by Eq. (4.42).

Equation (3.49) can be obtained by composing the matrix C∗ as:

C∗ =


C

0
. . .

0

 (7.22)

where C is the same of Eq. (3.49). Now, going back to the time domain we
obtain the desired state-space system:

dy∗1 (t)

dt
= A∗y∗1 (t) +B∗u∗

1(t) (7.23)

b(t) = C∗y∗1 (t) (7.24)

where the outputs b(t) are the magnetic field perturbations at given spatial
points around the torus.

7.3 Conclusions

The work presented in the previous section opens the possibility to use
CarMa-D model for control oriented purposes. A schematic overview of
the feedback control principle can be seen in Fig. 7.1. Here, the input quan-
tity r(t) is regulated through a negative feedback by a general controller.
The regulation is related to the output signal of the system in a real time
framework.
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{
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Cu(t)

Controller

r(t) y(t)u(t)+

−

Figure 7.1: Schematic view of a feedback control.

CarMa-D has been proved, through the validation work carried out in
the previous chapters, to be effective and reliable in every analyzed case. It
has shown capable to deal with such instabilities out of the capabilities of
static CarMa, giving very satisfactory results. In addition to this, CarMa-D
system lends itself to a state-space representation through suitable algebraic
manipulations. For this reason CarMa-D should be preferred for the design
of model-based control system rather than static CarMa.

Additional work will be done in order to obtain the CarMa-D state space
for the multi-modal RWM feedback stabilization of the n = 1 and n =

2 RWM for JT-60SA. This can be considered a natural extension of the
stability analysis presented in Chap. 6.

Further discussions should be done concerning the higher number of DoF
of CarMa-D. In this particular case, the high number of DoF are related both
to the complexity and level of detail required by the 3D mesh to ensure the
desired precision, and also for the change of variables defined in Eq. (4.38)
to obtain a first order system. It follows that this high number of DoF are
required, and cannot be cut down upstream. A possible solution of the high
number of DoF can be the use of a Model Order Reduction technique. Many
Model Order Reduction techniques have been developed in last decades, in
order to model the system behavior only by considering a small group of
dominant modes for the evolution of the system. The strategy to do this is
peculiar of each method. The main MOR techniques are optimal Hankel-
norm approximation [7], Balanced Truncation [8], Selective Modal Analysis
[9], Proper Orthogonal Decomposition [10], and Krylov subspace method
[11].

Recently Krylov subspace method has been used to cut down the compu-
tational complexity of a state-space model for the eddy current computation
in large-scale fusion devices [12]. This strategy has proven to be effective for
such particular problem, because the number of DoF was cut down of almost
a factor of 100. For this reason, further effort will be devoted to implement
Krylov subspace MOR technique to the CarMa-D state space model, and
exploit the low-order system for the control oriented modelling activities.

151



Chapter 7: Multimodal RWM active control

Bibliography

[1] G. Marchiori, M. Baruzzo, T. Bolzonella, Y. Q. Liu, A. Soppelsa, and
F. Villone, “Dynamic simulator of RWM control for fusion devices:
Modelling and experimental validation on RFX-mod,” Nuclear Fusion,
vol. 52, p. 023020, 01 2012.

[2] F. Villone, M. Ariola, G. De Tommasi, Y. Liu, S. Mastrostefano,
A. Pironti, and S. Ventre, “Multimodal RWM feedback control in
ITER,” 39th EPS Conference on Plasma Physics 2012, EPS 2012 and
the 16th International Congress on Plasma Physics, vol. 3, pp. 1374–
1377, 01 2012.

[3] L. Pigatto, P. Bettini, T. Bolzonella, M. Bonotto, Y. Q. Liu, G. Mar-
chiori, and M. Takechi, “Modelling multi-modal resistive wall mode feed-
back control in JT-60SA perspective high β scenarios,” pp. 46th EPS
Conference on Plasma Physics – 8 – 12 July 2019.

[4] A. Portone, F. Villone, Y. Q. Liu, R. Albanese, and G. Rubinacci,
“Linearly perturbed MHD equilibria and 3D eddy current coupling via
the control surface method,” Plasma Physics and Controlled Fusion,
vol. 50, no. 8, p. 085004, 2008.

[5] G. Marchesini and E. Fornasini, Appunti di teoria dei sistemi. Libreria
Progetto, 1983.

[6] T. R. Achim Ilchmann, Surveys in Differential-Algebraic Equations II.
Springer, 2014.

[7] D. Kumar and S. Nagar, “Model reduction by extended minimal degree
optimal Hankel norm approximation,” Applied Mathematical Modelling,
vol. 38, no. 11, pp. 2922 – 2933, 2014.

[8] S. Gugercin and A. C. Antoulas, “A survey of model reduction by bal-
anced truncation and some new results,” International Journal of Con-
trol, vol. 77, no. 8, pp. 748–766, 2004.

[9] A. Cenedese, M. Fagherazzi, and P. Bettini, “A novel application of
selective modal analysis to large-scale electromagnetic devices,” IEEE
Transactions on Magnetics, vol. 52, pp. 1–4, March 2016.

[10] K. Willcox and J. Peraire, “Balanced model reduction via the proper
orthogonal decomposition,” Aiaa Journal - AIAA J, vol. 40, pp. 2323–
2330, 11 2002.

152



Chapter 7: Multimodal RWM active control

[11] Z. Bai, “Krylov subspace techniques for reduced-order modeling of large-
scale dynamical systems,” Applied Numerical Mathematics, vol. 43,
no. 1, pp. 9 – 44, 2002. 19th Dundee Biennial Conference on Numerical
Analysis.

[12] M. Bonotto, P. Bettini, and A. Cenedese, “Model-order reduction of
large-scale state-space models in fusion machines via Krylov methods,”
IEEE Transactions on Magnetics, vol. 53, pp. 1–4, June 2017.

153



Chapter 7: Multimodal RWM active control

154



8 | Conclusions and further work

In this thesis, CarMa-D, an improved version of the CarMa code, is pre-
sented. This upgraded version of the code is capable of self-consistently
take into account, in addition to the three dimensional conducting struc-
tures, also plasma mass, toroidal rotation and kinetic damping physics for
the study of Resistive Wall Modes stability. The improvement of CarMa
coupling strategy to model all these phenomena provides a computational
tool which can be considered the state of the art of the RWMs modelling
for stability analysis and active stabilization in presence of 3-D conducting
structures.

CarMa-D has been presented in the first part of the work. The new
coupling strategy relies on a matrix-based Padé rational approximation to
model the frequency dependent plasma response. Starting from this point,
the original coupling strategy is completely reformulated, leading finally to
a modified RL equation formally equivalent to the static case, but able to
take into account the plasma dynamics in the RWMs stability analysis. In
addition to this, the mathematical model is further generalized to take into
account an arbitrary amount of toroidal mode numbers (multi-modal CarMa-
D).

CarMa-D has been extensively tested against a tokamak plasma with
a circular cross-section, and surrounded by a resistive wall with a coherent
shape. The testing activity follows different steps, in order to assess CarMa-D
reliability and robustness. Two different damping physics models have been
considered, (i) the parallel sound wave damping and (ii) the self-consistent,
full toroidal drift kinetic model; different values of toroidal rotation have
been considered for both cases. For the analyzed cases, it has been shown
that the Padé rational approximation is able to model the plasma dynamics
in a very accurate way, and the resulting CarMa-D successfully deals with
equilibria where the simultaneous effects of plasma dynamics, toroidal flow
and kinetic damping are prominent.

CarMa-D has also been used to study RWM stability on the JT-60SA
device, involving a realistic geometrical description of the stabilizing plates.
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A detailed study of the effects of this 3-D geometry on the stability of both
the toroidal modes n = 1 and n = 2 has been performed. It has turned
out that growth rate of the modes increase of one order of magnitude if the
realistic 3-D geometry of the stabilizing plates is considered instead of a sim-
ple shell, enclosing the plasma completely. In addition to this, a noticeable
toroidal mode coupling appears due to the holes and ports present in the
real geometry. These results provide further motivation regarding the need
of an effective stabilization.

Finally, additional effort has been made to write the CarMa-D mathe-
matical model in a way suitable to be casted as a state-space representation.
This is a crucial step needed to exploit CarMa-D features in a model-based
feedback control strategy. Unlikely the original CarMa, CarMa-D cannot be
written straightforwardly in a state-space form, due to the new matrix-based
coupling strategy. However, this goal is achieved simply through an algebraic
manipulation of the system matrices, without any simplifying assumption.

Further work will concern the application of CarMa-D to several cases of
interest, such as, for example, additional work related to JT-60SA and the
application to ITER, both concerning the stability analysis as well as the
design and the implementation of a model-based feedback controller.
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A | Formulas for F(s) e W(s)

For the case of rational interpolation of F (s),W (s) separately, the derivation
of eq. (4.37) follows the same steps done for interpolation of P (s). Using
eqs. (4.15),(4.16) in the system of equations (4.13) leads to:

sLi+Ri+ sMjeq = Dv

bN =
(∑

i s
iBi

)−1(∑
i s
iAi

)
Qi

jeq =
(∑

i s
iDi

)−1(∑
i s
iCi
)
bN

(A.1)

this system of equations can be written as a kth order system of differential
equations defining the block matrices Lia and Ra exactly as was already
done for the previous case, but with sligthly different meaning:

sk

 0 0 0

−AkQ 0 Bk

0 Dk −Ck


︸ ︷︷ ︸

Lak

 ibN
jeq


︸ ︷︷ ︸

x

+...+ si

 0 0 0

−AiQ 0 Bi

0 Di −Ci


︸ ︷︷ ︸

Lai

 ibN
jeq

+ ...

+ s

 L M 0

−A1Q 0 B1

0 D1 −C1


︸ ︷︷ ︸

La1

 ibN
jeq

+

 R 0 0

−W0Q 0 E

0 E −F0


︸ ︷︷ ︸

Ra

 ibN
jeq

 =

Dv0
0


︸ ︷︷ ︸

u

(A.2)

This system of differential equations can be straightforwardly written as
eq. (4.37), and consequently leads to (4.40). The same considerations lead
exactly to (4.42), where the block matrices are now:

R−1
a La1 =

 R−1L R−1M 0

F0W0QR
−1L− F0A1Q F0W0QR

−1M +D1 F0B1 −C1

W0QR
−1L−A1Q W0QR

−1M B1


(A.3)
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R−1
a Lai =

 0 0 0

−F0AiQ Di F0Bi −Ci
−A2Q 0 Bi

 (A.4)
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