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SUMMARY 

The classical theory of solid mechanics is rooted in the assumption of a continuous distribution 

of mass within a body. It employs partial differential equations (PDEs) with significant 

smoothness to obtain displacements and internal forces of the body. Although classical theory 

has been applied to wide range of engineering problems, PDEs of the classical theory cannot 

be applied directly on a discontinuity such as cracks. Peridynamics is considered to be an 

alternative and promising nonlocal theory of solid mechanics that, by replacing PDEs of 

classical theory with integral or integro-differential equations, attempts to unite the 

mathematical modelling of continuous media, cracks and particles within a single framework. 

Indeed, the equations of peridynamic are based on the direct interaction of material points over 

finite distances. Another concept, derived from the peridynamic approach to cope with 

engineering problems with discontinuities, is that of the peridynamic differential operator 

(PDDO). The PDDO uses the non-local interaction of the material points in a way similar to 

that of peridynamics. PDDO is capable to recast partial derivatives of a function through a 

nonlocal integral operator whose kernel is free of using any correction function. In this 

dissertation, application of peridaynamics and PDDO, to three different important engineering 

problems including fatigue fracture, thermo-mechanics and sloshing phenomena, is examined 

comprehensively.  

To cope with fatigue fracture problems, an algorithm has been developed in such a way that 

the increment of damage due to fatigue is added to that due to the static increment of the 

opening displacement. A one degree of freedom cylinder model has been used to carry out an 

efficient comparison of the computational performance of three fatigue degradation strategies. 

The three laws have been implemented in a code using bond based peridynamics (BBPD)  to 
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simulate fatigue crack propagation. Both the cylinder model and the bond base peridynamics 

code provide the same assessment of the three fatigue degradation strategies.  

To deal with thermo-mechanical problems, an effective way is proposed to use a variable grid 

size in a weakly coupled thermal shock peridynamic model. The proposed numerical method 

is equipped with stretch control criterion to transform the grid discretization adaptively in time. 

Hence, finer grid spacing is only applied in limited zones where it is required. This method is 

capable of predicting complex crack patterns in the model. By introducing fine grid 

discretization over the boundaries of the model the surface (softening) effect can be reduced. 

The accuracy and performance of the model are examined through problems such as thermo-

elastic and thermal-shock induced fracture in ceramics. 

Finally to investigate sloshing phenomena, the PDDO has been applied to the solution of 

problems of liquid sloshing in 2D and 3D tanks with potential flow theory and Lagrangian 

description. Moreover, liquid sloshing in rectangular tanks containing horizontal and vertical 

baffles are investigated to examine the robustness and accuracy of PDDO. With respect to other 

approaches such as meshless local Petrov-Galerkin (MLPG), volume of fluid (VOF) and and 

local polynomial collocation methods the examples are solved with a coarser grid of nodes. 

Using this new approach, one is able to obtain results with a high accuracy and low 

computational cost. 
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Chapter 1 Introduction 

 

Natural phenomena are often described by partial differential equations, which assume 

the continuity of both the unknowns and the field domain where the equations are defined. 

Such assumptions break down when simulation of problems containing discontinuities, such 

as cracks, comes into the picture.  

In this chapter, a brief review on the literature of various topics, related to the 

discontinuity in engineering problems, is investigated. Then, the advantages and disadvantages 

of several major approaches to solve engineering problems with discontinuity, in particular 

those aimed at modeling fatigue fracture, thermo-mechanical and sloshing phenomena are 

discussed.  

1.1 Fatigue phenomena in structural mechanics  

Until a few decades ago, machines and components only were designed based on classical 

methods of strength calculation. In spite of precise calculation, damage occurred repeatedly in 

aircraft and aerospace structures, ships, rail vehicles and reactor components with catastrophic 

consequences. Sensational events such as crashes of Comet aircraft in 1953 and 1954 

(Blumenauer and Pusch 1993) and recently, the catastrophic Aloha Airlines accident, 
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(Fig.(1.1)) have shown that considerably more research is needed with respect to the safe 

design of machines, components and structures.  

 

Figure 1.1. Destruction of the canopy due to material fatigue during an Aloha Airlines flight in 1988 (Richard 

and Sander 2016). 

Fatigue is a weakening process of a component, which is subjected to fluctuating stresses, at 

stress levels much lower than its monotonic fracture strength. Fatigue is categorized as a time-

dependent failure that may happen without any recognisable warning. In fact, 95 percent of all 

mechanical failures are attributed to the fatigue phenomenon (Richard and Sander 2016).  

Therefore, fatigue is a major cause of structural failure in engineering structures. Prediction of 

fracture propagation under cyclic loading is a challenging problem for two main reasons: from 

a theoretical point of view the discontinuous nature of fracture phenomena conflicts with the 

underlying mathematical structure of classical continuum mechanics, and from a more practical 

side the slow damaging effect of a large number of load cycles (high cycle fatigue) is not easy 

to model. Fatigue failure generally is divided into three distinct phases, namely: crack 

initiation, incremental crack growth, and the final fracture.  
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Basically, theoretical models to describe the fatigue phenomenon are categorised into three 

different classes: fatigue-life models, phenomenological models, and progressive damage 

models. (Degrieck and Van Paepegem 2001) . Fatigue-life models use cyclic stress amplitude 

VS number of cycles to failure (S-N) curves to predict fatigue life without consideration of 

crack initiation and propagation. Phenomenological models describe the degradation of 

macroscopically observable material properties due to fatigue loading and progressive damage 

models take into account the actual underlying damage mechanisms to predict fatigue 

degradation of the continuum. 

The classical approach to fatigue problems, also referred to as Stress Controlled Fatigue or 

High Cycle Fatigue, provides information about material behaviour under cyclic loads through 

S-N or Wöhler diagrams. This diagram is generated by fatigue tests made on cylindrical test 

bars. This approach is based on the safe life philosophy for designing against fatigue fracture; 

hence, the number of the stress cycles to failure can be estimated through it. Although S-N 

curves have been applied for numerous fatigue failure analyses, they have some shortcomings. 

The major drawback of these curves is that they are obtained by testing standard specimens 

under laboratory conditions. Therefore, the tests are not completely capable of capturing the 

manufacturing defects. Moreover, obtaining these curves for High Cycle Fatigue is time-

consuming and expensive. A typical example of S-N (Wöhler) diagrams is given below. 
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Figure 1.2. A typical example of S-N (Wöhler) diagrams (Richard and Sander 2016). 

Generally, fracture and damage are due to the small defects or cracks that are already in the 

components, e.g. manufacture faults or arise later as a result of imposing service loads. The 

size of these cracks might grow and thus lead to the second or third stage of fatigue, fracture 

growth or failure of the whole structure. 

For processes of crack propagation, the conditions directly at the crack tip are significant. 

Based on classical continuum theory, infinite (singular) stresses emerge at crack tips (Griffith 

1921). This conclusion underpinned the concept of Linear Elastic Fracture Mechanics (LEFM).  

Based on LEFM, pre-existing crack is essential to consider the crack growth in a material. By 

using additional criteria such as critical energy release rate or stress intensity factor, this theory 

is equipped for the solution of crack propagation problems. Moreover, the plastic zone at the 

crack tip is small compared to the crack or component dimensions and the global behaviour of 

the structure is linear elastic.  

LEFM theory is still capable of simulating many engineering problems by applying the Finite 

Element Method (FEM) as the numerical solution. Nevertheless, the failure analysis cannot be 

carried out always satisfactorily due to complex issues such as dislocations, presence of micro 

cracks and anisotropy. 
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FEM is the most popular computational technique for structural computations. It is robust and 

has been thoroughly developed for static, dynamic, linear and nonlinear mechanical systems. 

FEM, or various modified versions of the FEM, have been used to simulate fatigue crack 

growth (Allix and Corigliano 1996; Branco et al. 2015; Leray et al. 2008; Point and Sacco 

1996; Schellekens and Borst 1993). The boundary element method (BEM) is also applied to 

fatigue crack problems (Benedetti and Aliabadi 2010; Benedetti and Aliabadi 2015; Benedetti 

et al. 2009; Kuhn and Partheymüller 1999). Using the FEM approach the component is divided 

into finite elements. In the case of crack problems, both crack edges have to be assigned 

separate nodes. FEM models are based on the classical continuum mechanics theory, which 

cannot directly be used to simulate problems with discontinuities since they require extra 

relationships that control the crack growth speed and direction. Due to the singular stress fields 

near the crack, generally a very fine mesh is needed in the crack tip area. This derives from the 

theory that the governing equations of FEM is derived. In order to numerically solve problems 

with discontinuities within the framework of classical mechanics, special techniques are 

needed. For example, the FEM with a re-meshing technique is widely used to model fatigue 

crack growth (Branco et al. 2015). However, implementation of automatic remeshing 

techniques is not easy in 3D cases (Baydoun and Fries 2012), and it is costly to remesh 

geometries when multiple cracks exist. Hence, while FEM models remain the most popular for 

structural computation, it is limited and suffers from the presence of undefined spatial 

derivatives at the crack surface. 

The extended finite element method (XFEM) allows cracks to pass through the elements 

leading to better approximations of crack paths without remeshing. It has been introduced by 

(Belytschko and Black 1999). Moes and Belytchko have included a traction-separation law to 
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model cohesive cracking (Moës and Belytschko 2002). Lately, this method has been used to 

simulate 3D fatigue crack growth (Shi et al. 2010). Nevertheless, one common problem for 

XFEM is that additional criteria are needed to guide crack growth speed, direction, and 

coalescence or branching. 

Cohesive zone model (CZM) is a model in which formation of the fracture is regarded as a 

gradual phenomenon where separation of the surfaces involved in the crack takes place across 

an extended crack tip known as cohesive zone. Accordingly, cohesive tractions emerge in this 

zone to resist the separation of the layers. The CZM model firstly developed by (Dugdale 1960) 

and (Barenblatt 1962). They investigated the inelastic behaviour of materials at the crack tip 

using CZM theory. Based on their assumption a plastic zone exists near the crack tip where 

stresses act across the crack. This cohesive zone removes the problem of an infinite stress 

concentration along a lower-dimensional crack-front by spreading out the area where 

mechanical energy is spent to create the crack surfaces. The significant merits of this model 

over conventional models such as LEFM are: 

 It is capable of efficiently predict the behaviour of uncracked structures with blunt 

notches, while the presence of an initial crack is essential for LEFM to be applicable. 

 The non-linear zone dimension is arbitrary, while in other methods this dimension 

must be negligible in comparison with other dimensions. 

Cohesive forces occur in CZM when material elements are being pulled apart. While the 

cohesive surfaces separate, traction raise up to its maximum level and then reduces to zero 

which results in whole separation. Despite physical separation, CZM maintains continuity 

conditions mathematically. Hence, it eliminates stress singularity and limits it to the strength 
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of the material. The cohesive zones under Barenblatt and Dugdale assumptions are represented 

in Figure 1.3 respectively. In Dugdale model, the stress along the cohesive zone is constant and 

it is suitable for macroscale modelling; however, in Barenblatt’s model the stresses relate to  

molecular cohesive forces. The Barenbatt’s model is under two main assumptions (Konstanze 

2014): 

1. The length of the cohesive zone, czl  , is small compared to other dimensions and 

remains constant for a given material. 

2. The distribution of the stresses is based on ( )x , where x  is the distance from crack 

tip, this distribution is independent of the global loading conditions. 

 

(a) 

 

(b) 

Figure 1.3. (a) Barenblatt cohesive zone model and (b) Cohesive zone model by Dugdale (Konstanze 2014). 

The first application of the cohesive zone model within the FEM framework was proposed by 

Hillerborg for mode I (Hillerborg et al. 1976); however, the CZM model proposed by 

Hillerborg to Barenblatt’s model is that the cohesive stress is not a function of the distance 

from the crack tip, x , but is the function of crack width. In cohesive zone FEM models, It is 

essential to have a prior knowledge of actual crack path; since in the simulation, crack can only 

propagate in the parts where cohesive zone elements are located. Interface elements equipped 
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with cohesive zone models have been used (Alfano and Crisfield 2001; Alfano and Crisfield 

2003; Benedetti and Aliabadi 2013; Blackman et al. 2003; Chen et al. 1999; Crisfield and 

Alfano 2002; Ostergaard et al. 2011; Qiu et al. 2001) in the cases in which the crack path is 

predictable. However, due to the complexity of the problem, usually advanced knowledge of 

crack path in practice is not available. Mesh dependency is another limitation of the use of 

cohesive zone FEM models. 

Peridynamics, a recently presented continuum theory, has been proposed by Silling in (Silling 

2000) to overcome the restrictions related to the differential formulation of methods based on 

the classical theory. It is a non-local continuum theory which is considered to be an alternative 

and promising nonlocal theory of solid mechanics that is formulated suitably for discontinuous 

problems such as crack propagation. Peridynamics is based on integral equations and does not 

make use of spatial differentiation, for these reasons it is better suited to describe problems 

affected by discontinuities (Bobaru et al. 2016; Madenci and Oterkus 2014; Silling 2000). A 

distinguishing feature of the peridynamic approach is that it allows for spontaneous formation, 

interaction, and growth of discontinuities in a consistent framework (Xu et al. 2008). It is also 

capable of being coupled with other methods based on the classical continuum theory as a 

strategy to address their shortcomings for problems involving damage (Seleson et al. 2013; 

Seleson et al. 2015; Shojaei et al. 2017; Wildman et al. 2017; Zaccariotto et al. 2018; 

Zaccariotto et al. 2017). Using this method, promising results have been obtained in dynamic 

brittle fracture in glass (Ha and Bobaru 2010; Ha and Bobaru 2011; Hu et al. 2013; Kilic and 

Madenci 2009), fiber-reinforced composites (Ghajari et al. 2014; Hu et al. 2012), functionally 

graded materials (Cheng et al. 2015) and corrosion damage (Chen and Bobaru 2015; Chen et 

al. 2016). 
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A peridynamic model for fatigue cracking has been proposed in the recent past by Silling and 

Askari (Silling and Askari 2014), which enables the simulation, in a single model, of the three 

phases of fatigue failure: crack initiation, fatigue growth and final failure controlled by quasi-

static crack growth. In (Silling and Askari 2014), dynamic relaxation method is used to obtain 

the static solution, and fatigue crack growth is demonstrated by using a standard compact 

tension test and torsional load on a rod. Based on this study (Silling and Askari 2014), 

peridynamic based software can simulate crack initiation without any initial crack; however, 

this issue is still open and the fatigue examples in this study avoid this problem by adopting an 

initial crack. References (Zhang and Bobaru 2016; Zhang et al. 2016a) study fatigue crack 

propagation to obtain the static solution by using a conjugate gradient energy minimization 

method, which is matrix-free and much faster than dynamic relaxation method, see (Le 2014). 

Two critical damage parameters that improve computational efficiency and maintain stability 

in the numerical solution process are also introduced. In a recent work (Hu et al. 2015; Hu and 

Madenci 2017) peridynamics is applied to the prediction of fatigue life and residual strength in 

composite laminates. Moreover, by using peridynamic approach, mixed-mode fatigue crack 

propagation has been investigated in (Jung and Seok 2017). Other studies to simulate fatigue 

phenomena based on the peridynamic theory can be found in (Baber and Guven 2017; Jung 

and Seok 2016; Oterkus et al. 2010). 

1.2 Thermal shock in brittle materials 

Thermal shock is a phenomenon characterized by significant inhomogeneous stresses suddenly 

occurring in brittle material such as ceramic due to a transient temperature. Complex crack 

patterns may emerge on ceramics as a crucial outcome of thermal shock induced stresses. 
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Ceramics have a wide range of application in high-temperature industries such as aircraft 

propulsion (Levine et al. 2002; Opeka et al. 2004), hypersonic vehicles, marine propulsion and 

thermal protection structures due to their stability above the melting point of metal alloys. 

Hence, a basic understanding of thermal shock failure is required in the design of the 

aforementioned structures (Padture et al. 2002).   

Numerous experimental and numerical studies have been done over the last few decades to 

investigate the mechanisms of thermal shock failure in ceramics. Among the experimental 

studies, Jiang et al (Jiang et al. 2012) and Shao et al (Shao et al. 2011) have explored thermal 

shock in thin rectangular ceramic specimens, while in the studies by Honda and Liu (Honda et 

al. 2009; Honda et al. 2002; Liu et al. 2015) the thermal shock in circular ceramic specimens 

is explored comprehensively.  

Thermal shock cracks generally exhibit periodic and hierarchical damage patterns. In the 

studies by (Bažant et al. 1979; Nemat-Nasser 1978; Nemat-Nasser et al. 1978), the length and 

stability of the crack patterns have been scrutinized theoretically. Among the theoritical studies, 

thermal shock resistance has been investigated from the viewpoint of stress and energy 

(Hasselman 1963; Kingery 1955). Later, thermal shock parameters related to the fracture 

initiation, crack propagation and arrest criteria of ceramic specimens were investigated in 

(Hasselman 1969; Schneider 1991). An energy minimization method was also proposed by 

(Jenkins 2005), to determine the crack depth and spacing array in a shrinking slab due to sudden 

temperature variation. 

Yet, available computational techniques based on the classical theory of continuum mechanics 

cannot accurately describe how complex crack patterns nucleate and evolve. Hence, several 

researchers have introduced a wide range of computational techniques to solve the problem 
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and equipped computational methods based on the classical theory with the capability to 

precisely describe crack propagation phenomena. Among the numerical methods, the 

Boundary Element Method (BEM) was used to simulate quenching thermal shock (see (Bahr 

et al. 1988; Tarasovs and Ghassemi 2014)).  Later, the eXtended Finite Element Method 

(XFEM) with nodal enrichment (Menouillard and Belytschko 2011; Rokhi and Shariati 2013; 

Zamani and Eslami 2010), the phase field method (Bourdin et al. 2014; Chu et al. 2017), 

damage-mechanics-based model (Tang et al. 2016) and non-local damage model (Li et al. 

2015) have all been applied to reproduce the multiple cracking patterns in the quenching test 

with different levels of success. The majority of these techniques make use of ad-hoc 

modifications and simplifying assumptions. Furthermore, their application to 3D problems 

generally turns out to be very complex. 

As explained in Section 1.1 Peridynamics theory addresses discontinuous problems in 

solid mechanics. In (Kilic and Madenci 2009; Xu et al. 2018), single and multiple pre-existing 

initial cracks due to prescribed thermal temperature history (without applying any thermo-

mechanical coupling) are simulated by the peridynamic approach. Furthermore, the 

peridynamic formulation was developed for multiphysics problem e.g. thermal diffusion  in 

(Gerstle et al. 2007). Soon afterwards, heat transfer equations for 1D and 2D problems were 

reformulated in (Bobaru and Duangpanya 2010) and (Bobaru and Duangpanya 2012) 

respectively. Moreover, Oterkus et al (Oterkus et al. 2014b) carried out a detailed investigation 

of thermal diffusion problems by using state-based peridynamic (SB-PD) theory.  

Recently, thermo-mechanical coupled problems via peridynamic approach is receiving 

increasing attention from researchers. An important feature of peridynamic in thermo-

mechanical problems is to apply the same discretization to study both thermal transient and 
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mechanical problems. Additionally, both models are capable of simulating the onset of fracture 

surfaces. In 2014, Agwai and Oterkus et al investigated thermo-elastic problems without any 

crack propagations via the peridynamic numerical approach (Agwai 2011; Oterkus et al. 

2014a). Lately, thermal cracking of uranium dioxide in fuel pellets and simulation of thermal 

shock cracking in ceramics using bond-based peridynamic (BB-PD) have been thoroughly 

explored in (Oterkus and Madenci 2017). Furthermore, in (D’Antuono and Morandini 2017), 

2D and 3D thermal-shocks of ceramic slabs are simulated via SB-PD solution. Other 

applications of the peridynamic theory to simulate thermal-shock crack propagation in brittle 

materials e.g. rocks can be traced in (Wang et al. 2018a; Wang et al. 2018b). 

Peridynamic computational methods are computationally more expensive than the methods 

based on classical theories e.g. FEM due to their non-local nature. However, in conventional 

peridynamic approach, a constant horizon size and uniform grid should be assumed all over 

the domain in order to get rid of ghost forces and spurious reflections of waves. Hence, the 

efficiency of the peridynamic approach is strongly affected when the fine grid spacing is used 

all over the domain; however, the finest grid size is only needed in the zones which suffer from 

discontinuity or surface effects (Gu et al. 2017a). There have been many attempts so far to 

maintain the computational accuracy and reduce computational time of peridynamic approach 

such as coupling of peridynamic models with other methods (Seleson et al. 2013; Shojaei et al. 

2016; Zaccariotto et al. 2018), parallel computing techniques (Lee et al. 2017; Mossaiby et al. 

2017) and adaptive refinement algorithms (Dipasquale et al. 2014; Gu et al. 2017a; Ren et al. 

2016; Shojaei et al. 2018) . Among aforementioned adaptive refinement techniques, the one 

introduced by Shojaei et al (Shojaei et al. 2018) is used to solve dynamic problems such as 

elastic waves and cracks propagation with a high accuracy and low computational cost. 
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1.3 Sloshing problems in tanks 

Sloshing of tanks with free surface fluid is the concern of many engineering applications as in 

ballast tanks of ships (see (Mitra et al. 2012)), interaction of dam-reservoirs, fuel tank of aircraft 

or aerospace structures and marine transportation of liquefied natural gas. The sloshing 

problem is a dominant phenomenon when the frequency of an external motion is near the first 

natural frequency of the system. Consequently, an intensive oscillation occurs in tanks and 

hence they need to be well-designed for preventing damage to the structures. Insertion of 

baffles inside the liquid tanks is one of the common ways to tackle this problem (see (Ibrahim 

2005; Liu and Lin 2009)). 

In the process of computational fluid dynamics (CFD), there are three well-known methods to 

simulate fluid flow i.e. Eulerian, Lagrangian and Arbitrary Lagrangian–Eulerian (ALE) 

approaches. In an Eulerian description, fluid is permitted to flow through a fixed set of 

computational grids (See (Zienkiewicz and Taylor 2000)). On the other hand, in a Lagrangian 

description, which recently received a considerable attention in CFD, computational grids 

move with the fluid domain and its boundaries. Lagrangian description can be traced in studies 

by (Boroomand et al. 2016; Idelsohn et al. 2003; Radovitzky and Oritz 1998; Ramaswamy and 

Kawahara 1986; Ramaswamy and Kawahara 1987b; Shingareva and Celaya 2007; Wu et al. 

2016; Zandi et al. 2012). In intermediate description, which is known as ALE, computational 

grid movement is independent of fluid motion. This approach and its applications can be found 

in the studies by (Durate et al. 2004; Lo and Young 2004; Nithiarasu 2005; Ramaswamy and 

Kawahara 1987a; Zhang et al. 2015). 

Liquid sloshing in a tank can be investigated numerically, analytically and experimentally.   In 

(Faltinsen 1987), the author proposed an analytical solution based on potential flow theory for 
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linear sloshing problems. In the works by (Choun and Yun 1996; Choun and Yun 1999) 

sloshing in a bottom-mounted rectangular block tank using the small amplitude wave theory is 

investigated. In the work by (Faltinsen et al. 2005), linear and nonlinear problems have been 

presented using experimental results and analytical solutions. For analytical/experimental 

studies, one may trace the studies by (Akyildiz and Unal 2005; Akyildiz and Unal 2006). 

As the development of computer technology, the use of numerical tools in the absence of 

analytical solutions has become increasingly popular. Linear and nonlinear numerical 

approaches have been proposed to efficiently and accurately simulate the non-breaking waves 

in the sloshing problems (see for instance (Boroomand et al. 2016; Boroomand et al. 2017; 

Chen and Nokes 2005; Chen et al. 2007b; Frandsen 2004; Pal 2012a; Ramaswamy and 

Kawahara 1986; Shobeyri and Yourdkhani 2017; Wu and Chang 2011; Zandi et al. 2012; Zandi 

et al. 2017; Zhang et al. 2016b). 

Among the aforementioned numerical studies the finite element method (FEM) needs mesh 

generation inside the domain as well as the boundaries at each time step which makes the 

problem more time consuming and complicated; however, in other numerical methods such as 

the boundary element method (BEM) mesh generation is only needed on the boundaries. 

Recently, a new type of numerical approaches known as mesh-free methods (Nguyen et al. 

2008) is the interest of many scientists. The advantage of these methods is that no mesh 

generation is needed neither in the domain nor on the boundaries. In the past decades, many 

mesh-free methods have been proposed to accurately and efficiently model the non-breaking 

waves in the sloshing problem, such as radial basis function collocation method (RBFCM), 

exponential basis functions (EBFs), Smoothed Particle Hydrodynamics (SPH), Reproducing 

Kernel Particle Method (RKPM), Generalized Finite Difference Method (GFDM), etc. 
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 To exemplify, the RBFCM is a mesh-free approach which is capable of modeling 2D/3D 

nonlinear sloshing problems using few sets of collocation points both inside the domain and 

on the boundaries. Another mesh-free method, which is capable of simulating linear/nonlinear 

sloshing based on pressure theory, is known as the EBFs (Boroomand et al. 2010; Shojaei et 

al. 2015). It falls within the category of Trefftz methods (Chen et al. 2009; Chen et al. 2007a). 

In this method a linear summation of EBFs is assumed as an approximation to the solution. 

This collocation technique is used only on a set of boundary nodes; however, it cannot be used 

in problems with singular points due to the smoothness of the basis functions.  

The SPH method was firstly developed by Gingold and Monaghan to investigate astrophysical 

problems (Gingold and Monaghan 1977). This method is based on a non-local interaction of 

the material points (or particles) located in a subdomain of finite distance (domain of 

interactions). The domain of interaction is defined by a smoothing or characteristic length 

where the field variable function and its derivatives are approximated. Additionally, the field 

variable function has to be smoothed by a kernel, which has significant influence on the proper 

satisfaction of boundary conditions. Later, this method has been generalized and developed to 

cope with CFD problems (Ren et al. 2014; Shao et al. 2012).  

The Reproducing Kernel Particle Method (RKPM) (Li and Liu 1998; Li and Liu 1999a; Li and 

Liu 1999b) also utilizes non-local interactions between the particles. It can remove some of the 

shortcomings of SPH by introducing a correction function to the kernel of integral 

transformation. RKPM employs the fundamental notions of the convolution theorem, window 

functions and multiresolution analysis. However, the issue of the boundary conditions persists 

and for different boundary conditions with respect to the order of spatial derivatives, different 

correction functions are needed.   
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GFDM is one of the most promising domain-type meshless methods. This method firstly 

proposed by Benito et al in 2001 (Benito et al. 2001) has then been used in many engineering 

problems (Gu et al. 2017b; Salete et al. 2017; Zhang et al. 2016b; Zhang et al. 2016c). One of 

the significant merits of this scheme is to produce a well-conditioned sparse system of linear 

equations by coupling the Taylor series expansions and the weighted moving least-squares 

(MLS). In fact, derivatives of field variables can be evaluated at each node by linear 

combinations of nearby function values with various weighting coefficients without any mesh 

generation nor numerical quadrature. More recently, this simple method has been used in the 

solution of moving-boundary problems  (Zhang et al. 2016b; Zhang et al. 2016c). 

Lately, a new mesh-free method known as PDDO has been proposed by Madenci. (Madenci et 

al. 2016; Madenci et al. 2017). Indeed, PDDO and its concept comes from the Peridynamic 

theory  which enables to reformulate classical continuum mechanics based on non-local 

interaction of a material point with other points within a finite distance known as horizon. Later, 

this feature was used in PDDO to obtain a non-local scalar field and its derivatives up to any 

order over a domain. Furthermore, the intensity of interaction between the material points is 

specified via a weight function. The capability of this operator is to construct solutions to 

ordinary, partial differential equations and derivatives of scattered data.  

Another appealing feature of this method is to recast the numerical differentiation up to an 

arbitrary order through integration by using orthogonality properties of Peridynamic functions. 

Therefore, field equation and its derivatives are valid everywhere in the domain/boundaries 

regardless of the singularities or jump discontinuities. One of the advantages of this numerical 

approach is to obtain a unified solution for PDEs without any special treatment or derivative 

reduction process.  Aforementioned merits of PDDO inspired the author to apply this mesh-
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free method to liquid sloshing problems in which the derivatives of the scalar field plays an 

important role to the accuracy of velocities and geometry updating (Bazazzadeh et al. 2019).  

Installing baffles inside liquid tanks is also a crucial issue in liquid sloshing problems (Liu and 

Lin 2009; Shao et al. 2015). Due to the fact that usually baffles are very thin, many numerical 

methods are still incapable of capturing the detailed flow phenomenon near the baffle tip. The 

method applied in the present study (PDDO), can be considered as a good candidate for such 

type of problems, as it can calculate the derivatives of the potential flow, near the singular 

points such as the tip of the baffle, with a suitable accuracy (Bazazzadeh et al. 2019).    

1.4 Outlines of the present study 

The chapters of the thesis are organized as follows:  

In Chapter 2 an overview of the peridynamic formulation and its discretization by a meshless 

approach is presented.  

In Chapter 3, a cylinder model (Galvanetto et al. 2009) is used to efficiently compare the 

computational performance of three fatigue laws. Three fatigue degradation strategies have 

been implemented in conjunction with a bilinear constitutive law. The computational 

performance of the three fatigue degradation strategies is examined by making use of various 

discretization parameters. Then the same constitutive laws and fatigue degradation strategies 

are implemented in a peridynamic based computational code.  

In Chapter 4, we aim to use a variable grid size for the solution of thermal shock problems with 

a peridynamic framework as the extension of the study performed by (Shojaei et al. 2018).  

In Chapter 5, the PDDO numerical solution is applied to solve 2D/3D incompressible fluid 

flow problems. To this end, a second order finite difference algorithm for time marching of the 
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solution is employed. Then, the efficiency of the method in the presence of geometric 

discontinuities such as installing horizontal/vertical baffles is investigated.  

Chapter 6, contains a summary of the findings as well as overall conclusions and insights 

obtained from the research. Additionally, suggestions for future research are made. 
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Chapter 2 Overview of the peridynamic theory 

 

2.1 Equations of motion 

   Assume that a body, composed of material points with an initial configuration , occupies a 

2D/3D space. The generic position of each material point in the reference configuration is 

represented by x  (hereinafter referred to as point x ) (see Figure 2.1). Each point interacts with 

other surrounding points even if they are not in contact, provided that the distance between 

them is less than a threshold value   called the horizon. The relative position or bond between 

material points, x  and x  , with respect to the reference configuration is defined as: 

ξ x x                          (2.1) 

also for the relative displacement of these two material points we have: 

( , ) ( , )t tη u x u x               (2.2) 

A peridynamic vector state A  is a mapping that associates a vector denoted A x x  with 

each bond ξ x x within a neighborhood of any point x . 

An infinitesimal volume, xdV  , is associated to each  point.  Based on SB-PD, the equation of 

the motion, at time instant 0t , can be written as 

2

2
( )

( ) ( , ) [ , ] [ , ] ( , )
H

x t t t dV t
t x

x

ux T x x x T x x x b x     (2.3) 

   Hereinafter the bold letters represent vectors, one dot and two dots over a letter represent first 

order and second order time derivatives, respectively, T  stands for the force vector state field, 
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which the material point x  exerts on material point x . In Eq. (2.3), by keeping x  fixed and 

altering material point x  with the volume of dVx  , the integral is performed over ( )H x , 

which is the sphere of radius   centered in x  i.e. two material points interact only within a 

finite distance,  . , u  and b   are the mass density, displacement field and body density 

force respectively. It should be mentioned that the governing equation of motion in 

peridynamics shares some similarities with that of traditional molecular dynamics as a 

summation of interactions between neighboring material points/particles are involved in both. 

In molecular dynamics, a material is viewed as a collection of individual particles of finite size; 

however, from the peridynamic view-point a material is a collection of material points of 

infinitesimally small size. Therefore, peridynamics is a continuum theory. 

As a consequence of the integration domain assumed in Eq (2.3), the equation of motion of 

peridynamics is restricted to the integration of the of the forces in ( )H x  which is a spherical 

neighborhood (in 3D) centered at the material point x , defined by: 

3( ) R    H x x x x            (2.4) 

for two-dimensional and one-dimensional problems ( )H x  becomes a circle or a line, 

respectively.   
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Figure 2.1. Kinematics of the reference and deformed configurations for a peridynamic continuum. 

In ordinary state based peridynamics (OSB-PD) pairwise force states are not equal (

[ , t] [ , t]T x x x T x x x ) although they are co-axial (see Figure 2.2 (b)); however, in 

non-ordinary state based peridynamics (NOSB-PD) pairwise force states are neither equal nor 

co-axial (see Figure 2.2 (c)). On the other hand, in BB-PD the interaction between two material 

points is totally independent of other bonds. Hence, the force state field that two points exert 

on each other are equal in magnitude but opposite in sign ( [ , t] [ , t]T x x x T x x x ) 

(see Figure 2.2 (a)). Therefore, Eq. (2.3) can be simplified for BB-PD and takes the following 

form: 

( )

( ) ( , ) ( ( , ) ( , ), ) ( , )
H x

t t t dV txx u x f u x u x x x b x     (2.5) 

in which, u , ( , )tb x  and f  are the displacement, applied body force per unit of volume and 

the pairwise force function of each bond respectively. 
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(a) 

 

(b) 

 

(c) 

Figure 2.2. (a) BB-PD Pairwise equilibrated force densities (b) OSB-PD Ordinary unequal aligned force 

densities (c) NOSB-PD arbitrarily oriented force densities. 

Based on the given definitions, ξ  is the undeformed bond length and ξ η  is the deformed 

bond length; see Figure 2.1. 

Based on Newton’s third law, the force function, f , the following condition for conservation 

of linear momentum should be satisfied: 

( , ) ( , )f η ξ f η ξ                                                                                                         (2.6) 

Moreover, conservation of angular momentum requires: 

( ) ( , )η ξ f η ξ 0                          (2.7) 

which means the force vector between two material points must be parallel to their current 

relative position η ξ . 

As a consequence, looking at Eqs (2.6) and (2.7), a general form of ( , )f η ξ  can be expressed 

as (Silling 2000): 

( , ) ( , )( ),    ,Ff η ξ η ξ η ξ η ξ            (2.8) 
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in which, ( , )F η ξ  stands for an appropriate scalar valued function. 

2.2 Elasticity 

In BB-PD elastic behavior (elasticity) of a material is considered by defining the 

concept of microelasticity. A material is known as microelastic if it satisfies the following 

condition (Silling 2000): 

( , ) 0,    closed curve ,   df η ξ η ξ 0           (2.9) 

where dη  is the differential vector path length along . From line integral represented in Eq. 

(2.9), similar to elasticity in the classic theory, it can be noticed that the net work done by the 

response force along any closed curve is zero i.e. it is path independent. Based on Stoke’s 

Theorem, if 1 2 3( , , )f f ff  is continuously differentiable with respect to 1 2 3( , , )η , then 

a necessary condition for Eq. (2.9) to hold is:  

3 32 1 2 1

2 3 3 1 1 2

( , ) ( ) ( ) ( ) ,    f ff f f ff η ξ i j k 0 ξ 0   (2.10) 

Since the force field is conservative and irrotational, one can calculate the peridynamic force 

from a scalar-valued differentiable function w  known as micropotential by: 

( , ) ( , ),    ,wf η ξ η ξ η ξ
η

         (2.11) 

It can be proved that the micropotential depends only on the relative displacement vector, η , 

through the scalar distance between the deformed points (Silling and Askari 2005b). Therefore, 

for isotropic microelastic peridynamic models a scalar-valued function ŵ  is defined by: 

ˆ( , ) ( , ),    ,w wη ξ η ξ ξ η ξ         (2.12) 
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By replacing of the above equation in Eq. (2.11), regarding  Eq. (2.8) a general peridynamic 

force function, aligned with the relative position vector, for microelastic material is achieved 

by: 

( , ) ( , )( ),    ,Hf η ξ η ξ ξ η ξ η ξ                                             (2.13) 

in which, H  is a scalar-valued even function: 

ˆ
( , ) ( , ),    ,    ,wH p p p

p
ξ ξ η ξ η ξ          (2.14) 

Above equation is similar to that in Eq. (2.8) although, in Eq. (2.14), the dependence of the 

scalar part of the expression on the relative distance is concluded. 

2.3 Linear form of the peridynamic   

In the general framework of peridynamics large deformation is permitted. This theory 

can be applied to various problems regarding large deformations. By making the assumption 

of a small deformation, such that ( ) 1η ξ ξ ξ  for all ξ . A Taylor expansion on η  of 

first order to Eq (2.8) a peridynamic force function can be written by: 

( , ) ( ) ( , )f η ξ C ξ η f 0 ξ         (2.15) 

in which C  is a second-order tensor , known as micromodulus, of the peridynamic force, and 

thus it can be calculated as: 

( ) ( , )fC ξ 0 ξ
η

         (2.16) 

the above formula can be expanded by: 
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11 1

31 2

2 2 2

1 2 3

3 3 3

1 2 3

( , )( , ) ( , )

( ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , )

ff f

f f f

f f f

0 ξ0 ξ 0 ξ

fC ξ 0 ξ 0 ξ 0 ξ 0 ξ
η

0 ξ 0 ξ 0 ξ

     (2.17) 

Also with respect to Eq (2.8), the micromodulus tensor can be achieved by: 

( ) ( , ) ( , )F FC ξ ξ 0 ξ 0 ξ I
η

       (2.18) 

in which,  is the dyadic or tensor product between two vectors and I  is an identity matrix 

which yields a tensor of second order. The condition expressed in Eq (2.10) for a microelastic 

material implies that: 

,    for , 1,2,3ji

j i

ff i j         (2.19) 

Accordingly, by introducing the above condition to Eq (2.16), one can conclude the 

mircromodulus must be symmetric for a linear microelastic material as: 

( ) ( ),    TC ξ C ξ ξ          (2.20) 

To satisfy of the above expression, sufficient and necessary condition is that there should be a 

scalar-valued even function ( )ξ  through which (Silling 2000): 

( , ) ( )F
ξ 0 ξ ξ ξ ξ

η
         (2.21) 

in which  

2( ) ( , )Fξ
ξ 0 ξ

ηξ
         (2.22) 

Hence, for a symmetric micromodulus we have: 
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( ) ( ) (0, )FC ξ ξ ξ ξ ξ I         (2.23) 

Consequently, the linearized bond-based peridynamic force function can be explicitly 

reformulated in a general form as: 

( , ) ( ) ( , ) ( , )Ff η ξ λ ξ ξ ξ 0 ξ I η f 0 ξ       (2.24) 

For a microelastic material, using ( , ) ( , )F H pη ξ ξ  (Silling 2000), presents:  

1( ) ( , ),    H p
p

ξ ξ ξ ξ η
ξ

       (2.25) 

Finally, the linearized peridynamic force function for a microelastic material is obtained as: 

1( , ) ( , ) ( , ) ( ) ( , )H H
p

f η ξ ξ ξ 0 ξ I ξ ξ η f 0 ξ
ξ

    (2.26) 

2.4 Force per unit area 

Force per unit area establishes a link between the BB-PD and the classic theory of elasticity. 

Assuming that an infinite body  undergoes a homogeneous deformation, one may choose a 

point x   in  and a unit vector n  passing through the point. The body is divided into two 

parts  and  by a plane normal to the vector as (Figure 2.3): 

: ( ) 0 ,    : ( ) 0x x x n x x x n    (2.27) 
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Figure 2.3. Definition of areal force density (Silling 2000). 

Assuming that  is a set of collinear points in , one can write: 

ˆ ˆ: ,0s sx x x n          (2.28) 

In the direction of n  the areal force density, ( , )τ x n , at x   is defined (Silling 2000): 

ˆˆ ˆ( , ) ( , )dV dlxτ x n f u u x x                                        (2.29) 

where, ˆdl  stands for the differential path length over .  

Assuming that homogenous deformation is independent of x  , one can propose a meaningful 

representation of a stress tensor as: 

( , ) ,    τ x n σn n                        (2.30) 

Since the calculation of the force per unit area, τ , is performed with respect to the reference 

configuration, stress tensor presented in Eq. (2.30) is a Piola-Kirchhoff stress tensor. 

Force vector state field, T , for a 2D plane stress model is given by 



28 

 

[ , t]2(2 1)[ , t]
1 3 [ , t]

d d
avg

xk e T x e
q

Y x x x
T x x x ξ

Y x x x
 

           (2.31) 

in which k  and  are the material parameters which relates to Young’s modulus E  and 

Poisson’s ratio , while the position of point x  at time t  is denoted by , ( , )t ty x x u x .  

Therefore, one may obtain the extension scalar state as 

, ( , ) ( , )e t t tx ξ y x y x ξ         (2.32) 

where the deviatoric component is given by 

3
de e x            (2.33) 

In Eq. (2.31),  is the thermal expansion coefficient and  is a scalar influence function that 

allocates a weight to each bond with different ξ . The mean value of the change in 

temperatures, avgT  , in Eq. (2.31), between two material points is defined as 

0 0( ) ( )
2avgT          (2.34) 

in which , 0 , represents the reference temperature whereas  and indicate the temperature 

at material points x  and x  respectively. 

Furthermore, the weighted-volume corresponding to ( )H x   is demonstrated by q x x . In 

Eq. (2.31) and Eq. (2.33), the peridynamic counterpart of volume dilatation that indicates the 

relative volume change  /V V  in plane stress case can be expressed by 

2 2 1
1

x e
q

          (2.35) 
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2.5 Unstressed configuration condition 

A configuration is known as unstressed if the following condition is observed (Silling 

2000):  

( , ) ,    τ x n 0 n            (2.36) 

Above condition restricts the scalar-valued function F  discussed in this chapter. 

Setting 0x  and taking 1n e , one may rewrite Eq. (2.28) as: 

1ˆ sx e             (2.37) 

in which, 1e  is chosen based on a set of orthonormal basis vectors as 1 2 3, ,e e e . 

Then we have: 

1ˆ sξ x x x e              (2.38) 

Furthemore, according to the Eq. (2.8), for 0η , one can write: 

( , ) ( , ) ( , )Ff η ξ f 0 ξ 0 ξ ξ           (2.39) 

 Similarly, the areal force density, by Eq. (2.29), in the direction of 1e  is given by: 

1 1 10
( , ) ( , )( ) XF s s dV dsτ 0 e 0 x e x e         (2.40) 

Since corresponding arguments in Eq. (2.40) are expressed in the vector form, one may convert 

the integration variables into spherical coordinates as (see Figure 2.4): 

1 2 3cos( ),   sin( )cos( ),   sin( )sin( )r r r       (2.41) 

in which r ξ . Hence, Eq (2.40) can be written as: 

1cos ( ) 2 2 4
1 0 0 0 0 0

2( , ) (0, )( cos ) sin (0, )
3

r s r
F r r r d d dsdr F r r dr0 e        (2.42) 

Therefore, based on Eq. (2.36), Eq. (2.42) can be written as: 
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4

0

2 (0, ) 0
3

F r r dr            (2.43) 

The above formula denotes the aforementioned restriction on F  (Silling 2000). 

 

Figure 2.4. Changing of the coordinates (Silling 2000). 

2.6 Poisson’s ratio in bond-based peridynamics 

The assumptions of the BB-PD theory impose a fixed value of the Poisson’s ratio. This 

limitation is due to the nature of bonds that are characterized based on only pairwise 

interactions. This limitation is solved in the state-based version of peridynamics (Silling et al. 

2007), however, SB-PD is computationally much more expensive than the BB-PD. In this 

section, it has been proven how a fixed value for Poisson’s ratio is determined by equating the 

stress tensor of the areal force density concept with that obtained by the classical stress tensor. 
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The two stress tensors are compared considering the same strain in a homogeneous linear 

elastic body. 

Assuming an infinite linear unstressed microelastic body, in the reference configuration, 

undergoes a homogeneous deformation as 1 11u c X  and 2 3 0u u , one can replace the 

displacement components in Eqs. (2.1) and (2.2) as: 

1 11 1 2 3, 0c         (2.44) 

Note that 1 2 3{ , , }u u u  are the components of the displacement field u (Silling 2000). 

One may substitute the obtained relative displacements (Eq. (2.44)) into Eq. (2.24) and write: 

 

3
11 1 1

2
11 1 2

2
11 1 3

[ ( ) ( , ) ]
( , ) ( )

( )

c F
c
c

ξ 0 ξ

f η ξ ξ

ξ

          (2.45) 

Similarly, the nine components of the stress tensor σ  can be determined with respect to Eq. 

(2.29) by: 

ˆ( ) ,    for , 1,2,3ij j i jf dV dl i jXe                              (2.46) 

Derivation of the first three components, using the change of variable rule, explained in Eq. 

(2.41), gives: 

1

11 1 1 1

cos ( ) 2 3 2
11 0 0 0 0

6 4
11 110 0

ˆ( )

[ ( )( cos ) (0, )( cos )] sin

2 2( ) (0, ) ( )
5 3

X

r s r

f dV dl

c r r F r r r d d dsdr

c r r dr F r r dr c

e

     (2.47) 
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1

12 2 1 2

cos ( ) 2 2 2
11 0 0 0 0

ˆ( )

[ ( )( cos ) sin cos ] sin

0

r s r

f dV dl

c r r r r d d dsdr

Xe

     (2.48) 

1

13 3 1 3

cos ( ) 2 2 2
11 0 0 0 0

ˆ( )

[ ( )( cos ) sin sin ] sin

0

r s r

f dV dl

c r r r r d d dsdr

Xe

     (2.49) 

in which, on the basis of Eq. (2.43) 0  , and  is defined by: 

6

0

2 ( )
5

r r dr            (2.50) 

Likewise, other six components of σ can be calculated. To illustrate, for the components in the 

direction of 2e  the variables in Eq. (2.41) should be changed to: 

1 2 3sin( )sin( ),   cos( ),   sin( )cos( )r r r       (2.51) 

then we obtain: 

11

0 0

0 0
3

0 0
3

cσ            (2.52) 

On the other hand, the stress tensor based on classical theory of isotropic linear elasticity can 

be written as: 

112
2 0

2 0

c
σ           (2.53) 

which can be simplified as: 
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11

2 0 0
0 0
0 0

cσ           (2.54) 

in which, and  are the shear modulus and Lame’s first parameter, respectively.  

Equating Eq. (2.52) with Eq. (2.54) gives the following results: 

1 5, ,    
3 4 6

E              (2.55) 

in which,  and E  indicate the Poisson’s ratio and Young’s modulus, respectively. Based on 

aforementioned analysis, the obtained results indicate that for a linear microelastic isotropic 

material under a homogenous deformation using BB-PD model, the value of the Poisson’s ratio 

is fixed to 0.25. The unknown term , is dependent of  and E   and is not directly measurable 

(Silling 2000).   

Likewise, it can be proven that Poisson’s ratio for plane strain cases is 1/ 4  and for plane 

stress cases is 1/ 3  (Huang et al. 2015). 

2.7 Prototype microelastic brittle (PMB) material model 

One of the simple constitutive models, which has been widely used in peridynamics 

framework, is the prototype microelastic brittle (PMB) (see (Silling and Askari 2005b)). In 

PMB type material, there is a linear relationship between peridynamic force, f , and the 

mechanical bond stiffness MEc . One may establish this relationship via the bond relative 

elongation or stretch. This stretch is defined as:   

s
ξ η ξ

ξ
           (2.56) 
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For a PMB type material it is easy to insert the failure of a bond by considering that peridynamic 

bonds can be broken only when their stretch exceeds the elastic limit, 0s  , known as the critical 

stretch (Silling and Askari 2005b). The details on how to determine it will be presented in 

Section 2.8. Once the bond fails it cannot be recovered i.e. failure is an irreversible 

phenomenon. Furthermore, the bond does not fail in compression. 

In the scalar valued function H , defined in Eq. (2.13), there is a linear relationship between 

the bond stiffness and the bond stretch:  

( ) ( )
( , ) ME avgc s T

H
ξ ξ

η ξ ξ
η ξ

        (2.57) 

in which,  is a history dependent scalar-valued function that takes either a value of 0 or 1 

depending on the status of the bond as: 

01   if   ( , ) ,    0
( )

0   else
s t s t tξ

ξ          (2.58) 

Therefore, the peridynamic force function for a PMB material can be written as: 

( , , ) ( , ) ( )ME avgt t c s T ξ + ηf u u x x
ξ + η

       (2.59) 

For the sake of simplicity, one can take ξ  and η ξ . Based on the definition of 

stretch it can be concluded that ( )avgs T  and thus with respect to Eq. (2.57) we have: 

( ) ( )ME avg MEH c s T c          (2.60) 

Under “small displacement” assumption, one can take ( )MEc ξ  as a constant function so that the 

above equations is simplified by: 

( , ) ( )    if   ME avgc s T ξf η ξ ξ η ξ
ξ

     (2.61) 
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Based on Eq (2.11) the potential energy density of a bond, or the micropotential of a single 

bond can be obtained by: 

22

2

( )
ˆ ( )

2 2
ME avgME

ME

c s Tcw Hd c d      (2.62) 

The total elastic potential energy W  at that point can be computed by integrating the above 

micropotential over all the bonds within the neighborhood of a given point 

1( ) ( , )
2 X

XH
W w dVx η ξ         (2.63) 

The factor 1 2  before the integral is due to the fact that the potential energy of a bond is shared 

between its two interacting points. Then, by substituting Eq (2.62) in Eq (2.63) and using 

spherical coordinates we have: 

2 2 4
2

0

( ) ( )1 ( )4
2 2 4

ME avg ME avgc s T c s T
W d       (2.64) 

In the framework of the classical theory of elasticity, it is also possible to calculate the strain 

energy density of a point using the following given tensors: 

ij ijsε              (2.65) 

2ij ij ij kkε ε            (2.66) 

The Eqs. (2.65) and (2.66) can be rewritten in a matrix form as: 

( ) 0 0
0 ( ) 0
0 0 ( )

avg

avg

avg

s T
s T

s T
ε          (2.67) 

(2 3 )( ) 0 0
0 (2 3 )( ) 0
0 0 (2 3 )( )

avg

avg

avg

s T
s T

s T
σ     (2.68) 
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The strain energy density in the classical theory of elasticity is determined by: 

2
2 2 9 ( )1 3 (2 3 )( ) 3 ( ) ,   1 4

2 2 2
avg

ij ij avg avg

K s T
W s T E s T    (2.69) 

where K  is the bulk modulus of the material. Considering the restriction of 1 4  in Section 

2.6 the rest of the parameters can be stated as follows: 

2
2(1 ) 5

E E
           (2.70) 

2
(1 2 )(1 ) 5

E E
          (2.71) 

2
3(1 2 ) 3

E EK            (2.72) 

Hence, bond constant MEc can be obtained by Equating Eq (2.64) with Eq (2.69) as follows: 

4 4

18 12
ME

K Ec   3D case         (2.73) 

The same procedure to find the restricted Poisson’s ratio and to determine the bond constant 

can be followed for a two-dimensional peridynamic model. In this way, the elastic energy can 

be calculated for both plane stress and plane strain conditions. Then the following results can 

be obtained (Huang et al. 2015): 

3

3

9 Plane stress

48 Plane strain
5

ME

ME

Ec

Ec
          (2.74) 

Moreover, for the 1D case one can write (Bobaru et al. 2008): 

2

2
ME

Ec
A

             (2.75) 

where A  is the cross section area.   
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2.8 Failure criterion  

In this section, we briefly discuss the introduction of failure into a BB-PD model. As 

discussed earlier for a PMB material the failure criterion is based on a maximum stretch (or 

critical stretch) 0s  that a bond can withstand during its performance. A schematic diagram of 

the peridynamic force versus the bond stretch for a PMB material is represented in Figure 2.5. 

In order to obtain 0s , the procedure introduced in (Silling and Askari 2005b) is followed. 

Macroscopic material properties such as the critical energy release rate of the material 0G  can 

be linked to The critical bond stretch, 0s . 

 

Figure 2.5. peridynamic force versus bond stretch.  

A crack grows when the energy per unit area of fracture surface is dissipated. In peridynamics, 

separation of a body into two parts occurs when all the bonds (across a fracture surface) that 

initially connected the points on the opposite sides are broken. By assuming a complete 

separation of the fracture surface and neglecting the other dissipative mechanisms, one is able 

to find the relationship between 0s  and 0G . 

The required work to break a single bond in PMB material can be calculated by: 
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0 0
2

2 0
0 0 0

( ) ( )
2

s s csw H s d H s ds          (2.76) 

It is needed to break all the bonds crossing a surface to obtain a new fracture surface. The 

energy per unit surface area, required to break all the bonds, is taken to be equal to the critical 

energy release rate 0G  derived from Griffith’s theory (Griffith 1921). This criterion is nonlocal 

since the Griffith’s criterion is based on the energy balance of the whole material surrounding 

the crack. The mentioned released energies, due to propagation of crack, can be related as:  

2 2 52 arccos( ) 20 0
0 0 0 0

( ) sin
2 10

z

z

cs csG d d dzd       (2.77) 

Evaluation of fracture energy, 0G . For each point p along the dashed line, 0 z , the work 

required to break the bonds connecting p to each point q in the spherical cap is summed by the 

integrals in Eq. (2.77) using a spherical coordinate system centered at p. 

where the domain of integration and the variables are illustrated in Figure 2.6.  

 
Figure 2.6. Variables involved in the computation of the critical stretch value. 

Furthermore, it is possible to obtain critical stretch, 0s , in terms of the critical energy release 

rate of the material 0G  (Ha and Bobaru 2010; Silling and Askari 2005b). 
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G
E

       (2.78) 

A bond is considered broken and is removed from the following calculations when  

0avgs T s            (2.79) 

The damage level of point x  at time t  can be expressed by 

( )

( )

( , )
( , ) 1

x
H x

x
H x

t dV
t

dV

ξ

x          (2.80) 

In Eq. (2.80),  , indicates the ratio of the number of broken bonds to the total number of bonds 

originally connected to the point x . The damage level , ,  takes a value between 0 and 1, 

0 1 . 1  means there is no interaction between the point and all surrounding points 

within its horizon, while 0  denotes an undamaged state. 

2.9 Spatial Discretization of the model 

We discretize the solution domain with a set of grid points called nodes (see Figure 

2.7), to approximate the peridynamic equation.  



40 

 

 

Figure 2.7. Peridynamic material points and their interactions. 

By adapting the one-point Gauss quadrature rule to proceed with the spatial integration, one 

can discretize Eq. (2.5) as 

1
( ) ( , ) ( ( , ) ( , ), ) ( ) ( , )

N

j i j i j j
j

t t t V tx u x f u x u x x x ξ b x     (2.81) 

where, i  is the point of interest and j   denotes the family nodes located in the horizon of a 

node i  . jV   represents the volume of the collocation point jx  . Moreover, j  is the volume 

correction factor which determines the portion of jV  falls within the neighbourhood of source 

node ix  . In this study, j  value is determined as proposed in (Yu et al. 2011): 

1                            for   0.5

0.5
    for   0.5 0.5

0                            otherwise

j

x

x
x x

x

ξ

ξ
ξ        (2.82) 

The node of interest at which the volume is centered in known as the source node. Eq. (2.82) 

expresses that the volume of nodes close to the boundary of the neighborhood ( )iH x  falls only 
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partially within the horizon of the source node. Additionally, the distance between two adjacent 

nodes x y  is referred to as the grid spacing. 

2.10 Dynamic relaxation method 

Although peridynamics widely has been used to simulate dynamic crack propagation, a few of 

works focus on quasi-static problems. In this thesis, we use the explicit dynamic relaxation 

method to investigate thermo-mechanical problems (inertia effects are not considered). 

Dynamic relaxation method firstly introduced by Day (Day 1965) and then implemented into 

peridynamics for quasi-static solutions in (Huang et al. 2015; Kilic and Madenci 2010).  To 

employ the dynamic relaxation method in peridynamic equation of the motion, one may 

introduce artificial damping in Eq. (2.81) as 

1
( , ) ( , ) ( ( , ) ( , ), ) ( ) ( , )

N

j
j

t C x t t t V tΛu x Λu f u x u x x x ξ b x    (2.83) 

where Λ  is the fictitious diagonal density matrix and C  represents the damping 

coefficient. There are many different ways to determine the density matrix, Λ ; however, in 

this study it is taken as (see  (Kilic and Madenci 2010; Underwood 1983) ) 

21
4ii ij

j
t K           (2.84) 

where ijK  is the stiffness matrix of the equation system under consideration. By considering 

the linearize version of the response function for small displacements, an absolute row sum of 

the stiffness matrix is given by 

2/
4

1 1

. 9 1eNN

ij j
j i j

kK e ξξ e

ξ ξ
        (2.85) 
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where e  is a unit vector along x  , y  and z  directions. , j , N , eN  and k   are internal bond 

length,  integration weight associated with point jx  , total number of nodes, number of 

collocation points in the ith subdomain and bulk modulus of the material respectively.  

The values for damping ratio C  is taken, 6 710 :10C  kg/(m3.s), as proposed by (Huang et al. 

2015). 

In this thesis, time integration is performed by using the central-difference explicit integration.  

Given displacement and acceleration of each node ix  at nt ,( n
iu , n

iu ), velocities and 

displacements at 1n
n MEt t t  can be obtained by (Kilic and Madenci 2010): 

1/2 1/2 12 2 / 2n n n
ME ME MEC t t C tu u Λ F      (2.86) 

1 1/2n n n
MEtu u u          (2.87) 

1 1/2 1

2
n n nME
i i i

tu u u          (2.88) 

Hence, the solver can advance to the next time step by: 

2
1 ( )

2
n n n nME
i i ME i i

ttu u u u         (2.89) 

where MEt  stands for the constant mechanical time step, In order to start the aforementioned 

integration the velocity at 1/2t  is given by 

1/2 1 0 / 2MEtu Λ F           (2.90) 

2.11  Loading and boundary conditions 

Application of boundary conditions in peridynamics is another significant issue which 

is different from the classical continuum theory. This difference is due to the nonlocal nature 
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of peridynamics. Since integral operators , rather than partial differential operators, are used to 

calculate the peridynamic equilibrium equations the traction boundary conditions should be 

applied over a volume similarly to body forces. 

 It is noteworthy that all the calculations are under the assumption that a source node is located 

inside an infinite body. This assumption is not valid for nodes close to the boundaries of the 

body. This problem is due to an unwilling effect called softening effect (Bobaru and Ha 2011; 

Kilic and Madenci 2010) for peridynamic models. The prescribed boundary condition, should 

be imposed over a layer of nodes across the corresponding boundaries. The thickness of the 

layer usually is taken as the horizon value . 

2.12 Equations of thermal diffusion 

The SB-PD theory for heat conduction problem was firstly introduced by Oterkus et al (Oterkus 

et al. 2014b). The non-local interaction between material points, for thermal diffusion problems 

using the peridynamic framework, is related to the exchange of heat energy. Hence, a material 

point is able to exchange heat with the points located in its integration domain, ( )H x . (see 

Figure 2.7) Consequently, a transient form of the SB-PD thermal diffusion equation can be 

written as 

( )

( , ) [ , ] [ , ] ( , )v s
H x

c t h t h t dV h txx x x x x x x x      (2.91) 

where ( , )h tx   represents the heat flow scalar state and ( , )sh tx  is the heat source due to 

volumetric heat generation. In Eq. (2.91), , vc  and ( , )tx   are the density of the material, 

specific heat capacity and temperature at point x  respectively. 
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One may assume that the heat density allocated to material points, x   and x  ,  is just a function 

of the temperature difference between these points i.e. the heat density flow that point x  exerts 

on point x  ( [ , ]h tx x x ) and the point x   exerts on point x  ( [ , ]h tx x x ) are equal in 

magnitude but opposite in sign. Accordingly, the heat density flow in BB-PD for the heat 

diffusion problem takes the following form 

1 1( , ) [ , ] [ , ] ( )
2 2h h hf h t h t f fx x x x x x x x     (2.92) 

Therefore, by substituting Eq.(2.92) in Eq.(2.91), the BB-PD heat conduction equation can be 

written as 

( )

( , ) ( , , , , )v h s
H

c t f t dV hx
x

x x x        (2.93) 

in which, the pairwise heat flow density function, hf  , is given by 

( , , )( , , )h TH
tf t c x xx x

ξ
         (2.94) 

where, the temperature difference between the material points x  and x  at any time, ( , , )tx x

, can be expressed by 

( , , ) ( , ) ( , )t t tx x x x         (2.95) 

In Eq. (2.94), THc  stands for the thermal microconductivity. This parameter can be determined 

by calculating the thermal potential of a material point. (see ref. (Bobaru and Duangpanya 

2012; Oterkus et al. 2014b)). The thermal micro-modulus THc  in terms of the thermal 

conductivity  and of the horizon radius, , for 1D, 2D and 3D cases are given by 
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2

3

4

2 one dimensional

6 two dimensional

6 three dimensional

TH

TH

TH

c
A

c
h

c

        (2.96) 

in which, A  and h   represent the cross-section area and thickness respectively.  

Time can be discretized into instants as 1 2 3, , , , nt t t t  . By adapting the one-point Gauss 

quadrature rule to proceed with the spatial integration, one can discretize Eq. (2.93) as 

( )
1

( ( ))
N

n n n
v i h j i j s i

j
c f V hx x         (2.97) 

in which, n  stands for time step number, i  is the point of interest and j   denotes the family 

nodes located in the horizon of a node i . jV   represents the volume of the collocation point jx

. Various time integration can be adapted to numerically evaluate the Eq. (2.97). In this study, 

forward difference time marching scheme has been employed as 

1
( )

1
( ( ))

N
n n n nTH
i i h j i j s i

jv

t f V h
c

x x       (2.98) 

where, THt  is the thermal time step size. It is necessary to restrict this time step size in order 

to assure the stability condition of the numerical integration. Based on a Von Neumann stability 

analysis in (Oterkus et al. 2014b; Silling and Askari 2005b), thermal stability condition can be 

expressed by 

1

v
TH N

TH
j

j

ct
c V
ξ

         (2.99) 
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2.13 Thermal boundary conditions 

Thermal diffusion boundary conditions might be imposed as temperature,  , which stands 

for Dirichlet boundary conditions on the surface of the domain indicated by F  . To impose 

this boundary condition, it is only necessary to assign a temperature field to each material 

point located at F  (see Figure 2.8). 

 

Figure 2.8. Thermal boundary conditions. 

On the other hand, Neumann boundary condition can be imposed in the forms of heat flux, 

convection and radiation. In order to impose heat flux, a heat generation per unit volume 

(volumetric heat generation) should be assigned to the collocation points located at 1S  (see 

Figure 2.8) as 

1
1

1

. .S
S

f S

dQQ
V

q n q n
        (2.100) 

in which Q  stands for volumetric heat generation. Furthermore, q  , fV  and   are the heat 

flux,  volume of the material points and grid-spacing respectively. 
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Another type of Neumann boundary condition, which is used to simulate heat transfer between 

the surface of a body and its surrounding medium e.g. ceramic quenching test, is defined as the 

convection boundary condition. Convection boundary condition can be defined as  

1( , ). ( , ) St h tq x n x x        (2.101) 

where, h ,  is the convective heat transfer coefficient,  and  ( , )tx  are the temperature of 

the fluid surrounding the domain and the temperature of the body on 2S  surface respectively 

(see Figure 2.8). Consequently, similar to Eq. (2.100), volumetric heat generation due to 

convection boundary condition is given by 

2
1( , ) ,s Sh x t h tx x         (2.102) 

The third Neumann boundary condition is radiation. Similarly, heat generation per unit volume 

for radiation heat transfer is assigned to the material points located at 3S  (see Figure 2.8) as  

4 4
3

1( , ) , for s ss Sh t tx x x        (2.103) 

where  ,  and ss  are the Stefan-Boltzmann constant, emissivity of the surface and 

temperature of the surface surrounding the body respectively. 
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Chapter 3 Peridynamic implementation of 

different fatigue formulations      

 

3.1 Introduction 

The aim of this chapter is to develop new computational tools to study fatigue crack 

propagation in structural materials. In particular we compare the performance of different 

degradation strategies to study fatigue crack propagation phenomena adopting peridynamic 

based computational methods. Three fatigue degradation laws are proposed. The first and the 

third laws simulate the degradation process reducing the material stiffness as the number of 

load cycles increases, while the second fatigue law reduces the failure stretch as the number of 

load cycles increases. Initially a cylinder model is used to compare the computational 

performance of the three fatigue laws. Then the fatigue degradation strategies are implemented 

in a peridynamic framework to study fatigue crack propagation phenomena, very few papers 

adopt this method. The results obtained using the cylinder model allow a comparison on the 

robustness of the three degradation strategies with respect to variations of two discretization 

parameters: grid spacing and number of cycles per load increment. The findings of the cylinder 

model are confirmed then by peridynamic based simulations. Both cylinder model and 

peridynamic simulations show that the third proposed degradation law is unique in its 

combination of high accuracy, high stability and low computational cost.  
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3.2 Explanation of a mathematical cylinder model 

The mathematical model consists of a cylinder of radius R which rolls on a horizontal surface 

initially composed of two coinciding zero-thickness layers, see Figure 3.1 (a) and ref. 

(Galvanetto et al. 2009). One of the layers is fixed and the other adheres to the surface of the 

cylinder at the contact point C. The upper layer remains adhered while the cylinder rotates and 

the contact point moves to the right (see Figure 3.1 (b)). In the initial state the contact point is 

at x=0 (see Figure 3.1), the rotation, , of the cylinder is zero and the line OA, on the cylinder 

cross section, is vertical. The value of the rotation of the cylinder is defined as the angle 

between the line OA and the vertical line connecting O to the current contact point. 

 
(a) 

 
(b) 

Figure 3.1. (a) Cylinder model in its initial configuration (b) The cylinder model after a rotation  has 

occurred, adhesion between the layers is represented as a discrete system of springs. 

If a clockwise moment is applied, the cylinder will rotate in the same direction and it will move 

to the right of its initial position and one layer will be lifted and separated from the other one, 

as shown in Figure 3.1 (b). An adhesion stress acting between the two layers opposes the 

motion of the cylinder. The model represents one of the two symmetric halves of the tip of a 

crack opening in mode I as depicted in Figure 3.2. 
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Figure 3.2. Pure moment loading for mode I specimen. 

3.2.1 Continuum equations of the model 

The model has only one degree of freedom, the rotation of the cylinder . The coordinate of 

the contact point conX  represents the crack length, which is linked to the rotation  as 

conX R   (3.1) 

The applied moment, aM , is in equilibrium with the reaction moment, tM , due to the stresses 
in the interface  

0

( ) ( )
conX

t conM x X x dx    (3.2) 

3.2.2 Discretization of the model 

The motion of the cylinder detaches the two layers. The adhesion between them can be 

represented as a discrete system of vertical springs, with uniform spacing l, that oppose the 

separation, Figure 3.1.b. The springs are initially unstressed but become stressed as the two 

layers separate behind the advancing contact point. 

A constitutive law for the springs has to be defined to describe the mechanical behavior of the 

interface which is progressively damaged: the force in the spring eventually reduces to zero 

(representing complete failure) as the layer separation increases. 
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The value of R is to be chosen as very large compared to the displacement at which the stretched 

springs fail so that the springs can be considered to remain vertical while they are stressed. 

3.2.2.1 Kinematics 

Once conX  is known and given the spring spacing l, it is easy to identify the number of springs 

that become active (n) and their coordinates ( 1,2,3, )ix i n . 

Figure 3.3 shows that simple geometry is sufficient to define the elongation iv of the i-th spring 

and its distance id  from the contact point. 

 

Figure 3.3. Angle, opening displacement and distance from contact point of springs. 

Since the springs have a zero initial length, the elongation will be defined as the vertical 

displacement ( iv ) of the top of the spring. Moreover it was previously mentioned that the spring 

eventually degrades as the displacement is increased and the stress finally reduces to zero. If 

cv defines the critical displacement at which failure occurs, then the angle at which such a 

displacement is achieved is given by (Figure 3.3): 

1cos cR v
R

  (3.3) 
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3.2.2.2 Equilibrium 

As the cylinder advances, a number of springs become active. The interface stress ( i ), which 

is a function of the opening displacement ( ( )i if ) can be obtained by using an interface 

constitutive law. 

The interface stress of each spring can then be used to find the spring force ( iF ) generated by 

multiplying this value i  by the area which the spring ‘represents’. For dimensional reasons 

the cylinder is assumed to have a width of 1. The interface area associated with a typical spring 

is therefore 1· l. An exception is for the area of the first spring which is taken as 1· l/2. The 

value of the force for a typical spring is given by 

1i iF l   (3.4) 

The moment ( iM ) generated by the spring force with respect to the contact point (C) is obtained 

by multiplying the force by the distance to the current contact point 

i i iM d F   (3.5)  

and the total moment ( tM ) generated by the springs is found by adding the moments iM  of 

all the active springs 

1

n
t ii

M M ,  (3.6) 

This is the moment which has to be applied to the cylinder to maintain it in equilibrium for a 

given applied rotation. The critical moment cM , which is the minimum value of the moment 

to break the interface is (Galvanetto et al. 2009): 

c cM G R   (3.7) 
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where Gc is the critical energy release rate. The moment Mc of the cylinder model can be found 

by imposing static equilibrium for a rotation of magnitude . 

3.3 Interface constitutive laws 

As it was mentioned previously, a constitutive law is required to describe the behaviour of  

as a function of v . The constitutive law should be defined in such a way that for every value 

of  there is a unique value of . In this research the bilinear interface constitutive law has 

been considered (Alfano and Crisfield 2001; Alfano and Crisfield 2003; Crisfield and Alfano 

2002; Galvanetto et al. 2009; Peerlings et al. 2000; Qiu et al. 2001; Robinson et al. 2005). There 

are two parameters, additional to the critical displacement value, cv , that are needed to define 

an interface constitutive law: the critical energy release rate ( cG ) and the maximum stress value 

( 0 ). In the present case of the bilinear law the elastic limit relative displacement ( 0v ) is also 

required (Galvanetto et al. 2009; Peerlings et al. 2000; Robinson et al. 2005). 
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Figure 3.4. Mode I bilinear interface constitutive law. 

The critical energy release rate is a physical quantity used in Linear Elastic Fracture Mechanics 

(LEFM) for defining a criterion of propagation of the delamination in the interface. Its value is 

measurable in lab tests. It is indirectly used in the definition of the constitutive laws by equating 

the areas under the stress-displacement curves to the critical energy release rates. Therefore, 

the total energy dissipated during the delamination is correctly computed at each point although 

it is not released instantaneously as is assumed in LEFM (Alfano and Crisfield 2001).  

0 is the maximum displacement for which the spring behavior is still linear elastic, whereas 

the ratio ( 0 0/ v ) is clearly linked to the stiffness of the interface. 

The constitutive behavior for monotonic increasing relative displacement v will be described 

below. 

The bilinear interface law, as seen in Figure 3.4, is divided into three parts: linear elastic, 

stiffness degradation and failure. In the first part a linear-elastic behavior is assumed for a 

relative displacement that is increased from zero, where there is no stress ( 0 ), until it 
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reaches the elastic limit 0v . At the elastic limit the stress assumes its maximum value, 0 . The 

linear-elastic part of the law is described by the following expression: 

00K v v v   (3.8) 

where K  is the initial stiffness of the interface and is given by 

0 0/K v   (3.9) 

The second part of the interface constitutive law defines the behavior between the elastic limit 

and the critical displacement cv . Once the elastic limit is exceeded the interface starts to be 

degraded. This degradation is described by the following relationship:  

0 0
0

c
c

c

v v v v v
v v

  (3.10) 

The third and last part of the interface constitutive law is for relative displacement values that 

are equal or larger than the critical displacement value. When this critical displacement value 

is reached or exceeded the element fails irreversibly so that no stress can be carried by the 

interface: 

0 cv v   (3.11) 

As it was stated previously the critical energy release rate cG  is equal to the area under the 

v curve, so in this case 

0

2
c

c
vG   (3.12) 

Therefore of the four parameters cG , cv , 0v , 0  only three are independent. 

The constitutive law of the interface can be written as well in terms of a damage variable D as: 
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(1 )K D v   (3.13) 

where the damage variable  is: 

0

0
0

0

0 0

1

c
c

c

c

D v v

v v vD v v v
v v v
D v v

  (3.14) 

The increment of the opening displacement from 1v  to 2v  ( 2 1v v ) causes an increment of the 

damage variable: 

0
2 1 0 1 0 2

0 1 2

1 1 , ,c
c c

c

v vD D D where v v v v v v
v v v v

, 2 1v v (3.15) 

3.4 Fatigue damage 

If the fatigue phenomenon is involved a time-like independent variable has to be considered, 

the number of cycles N of the external load. The applied load history consists of two 

components: quasi-static ramping phase and fatigue phase as shown in Figure 3.5. 
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(a) 
 

(b) 

Figure 3.5. (a) Envelope cyclic load approach and (b) envelope of the displacement for a large number of cycles. 

In order to simplify the calculation process some assumptions are made (Peerlings et al. 2000). 

The first one is related to the cyclic load which is assumed to be sinusoidal and oscillating 

between zero and a maximum value. Since it would be very computationally expensive to 

simulate the relative displacement history for every load cycle in each spring, the load 

numerically applied to the structure is taken as constant and equal to the maximum value of the 

actual cyclic load as shown in Figure 3.5. Consequently, the relative displacement calculated 

at the crack tip will be the envelope of its true cyclic variation with time, as shown in Figure 

3.5(b) (Galvanetto et al. 2009; Peerlings et al. 2000; Robinson et al. 2005). 

We assume that the total damage rate in a spring can be obtained as the sum of the static and 

the fatigue damage rates as follows 

s fD D D   (3.16) 

sD  is the rate of static damage due only to the increase in magnitude of v ; fD  represent the 

fatigue damage increment due to the repetition of the load cycles and is greater than zero even 
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if v  is constant. As the novelty of this work is in the fatigue part we use the same static damage 

rate based on the bilinear constitutive law for all different fatigue approaches.  

3.4.1 Static damage rate 

The static damage rate with respect to time can be obtained from Eq. (3.14) as 

0
02

0

s c
s c

c

D v v vD v v v
t v v v

  (3.17) 

One may integrate Eq. (3.17) over an increment of the number of load cycles ( N ) as 

0

0

1 1c
s N N s N

c N N N

v vD D
v v v v

  (3.18) 

in which, s ND  and s N ND  denote the static damage component corresponding to the opening 

displacements Nv  and N Nv  where N N Nv v . Eq. (3.18) provides the same expression as 

Eq. (3.15) and therefore clarifies that the static damage component is due only to the increment 

of the opening displacement. 

Once the sum of static and fatigue damage increments has been computed, Eq. (3.13) is used 

to compute the stress in the spring. 

Three strategies are considered to estimate the fatigue part of the damage. 

3.4.2 First fatigue degradation strategy 

In the first strategy, originally presented in (Galvanetto et al. 2009; Robinson et al. 2005) the 

fatigue rate is assumed to have the following form: 
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f D
f

c

D vD Ce
N v

  (3.19) 

C ,  and  are parameters to be determined by fitting of experimental data. The physical 

meaning of Eq. (3.19) is that the fatigue damage rate is bigger for bigger relative displacement 

v  and for higher values of the current total damage.  

Integrating Eq. (3.19) over a number of loading cycles ( N ), one may write the increment of 

fatigue damage as 

1

1
D

f N N f N
c

vCD D N e
v

  (3.20) 

Moreover, based on the reference (Galvanetto et al. 2009), D  and v  are taken as 

(1 )
(1 )

N N N

N N N

D D D
v v v

  (3.21) 

where  value is 0.7. Additionally, by putting (3.18) and (3.20) into Eq. (3.16), the total 

damage increment, based on the bilinear constitutive law and stiffness degradation damage (see 

Figure 3.6), can be obtained as 

1

0

0

1 1
1

Dc
N N N

c N N N c

static fatigue

vv v CD D N e
v v v v v

 (3.22) 
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Figure 3.6. First (and third) fatigue law based on stiffness degradation strategy. 

Note that in usual numerical procedures the only unknown variable in Eq. (3.22) is N ND , it 

appears on both sides of Eq. (3.22) which makes it implicit and nonlinear. 

3.4.3 Second fatigue degradation strategy 

The second fatigue degradation strategy, originally proposed by the authors in (Zaccariotto et 

al. 2015b), is based on the reduction of the value of the failure displacement, due to the 

fatigue phenomenon (Figure 3.7). It can be assumed that the failure elongation of a spring in 

each increment of load cycle, N ,  is a function of displacement as follows. 

0( )n
c N N c N N Nv v B v v N   (3.23) 

where B  and n  are parameters related to the material behavior when it is subjected to fatigue 

load cycles and c N Nv  is the failure displacement of a spring after N N  loading cycles. 

The total damage at the end of each load cycle increment can be obtained as 

0

0 0

1 1c N N
N N

c N N N N

v v
D

v v v v
  (3.24) 

Accordingly, the total damage increment in this approach is given by 
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0 0

0 0 0 0

1 1 1 1c N N c N
N N N

c N N N N c N N

v v v v
D D

v v v v v v v v
 (3.25) 

In the above formula if 0N , only the static damage takes place due to the increment of 

external load so that Eq. (3.25) is simplified to 

0 0 0

0 0 0 0 0

Static Damage

1 1 1 1 1 1c N c N c N
N N N

c N N N c N N c N N N N

v v v v v v
D D

v v v v v v v v v v v v
 (3.26) 

which is consistent with Eq. (3.18). In Eq. (3.24), the dependence on the number of cycles is 

implicit in c N Nv  (see Eq. (3.23)) and in the value of the current displacement. Since N ND  

doesn’t appear on both sides of Eq. (3.25), this numerical approach, differently from the first 

strategy, is explicit. 

 

Figure 3.7. Second fatigue law, failure stretch shortening. 

3.4.4 Third fatigue degradation strategy 

In the third law, which has not presented before, it is assumed that the derivative of fatigue 

damage with regard to N  is given in Eq. (3.27) 
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m
f

f
c

D vD A
N v

  (3.27) 

In the above formula, A  and m  are constants related to the material behavior while v  

represents the elongation of the spring. Eq. (3.27) differs from Eq. (3.19) because in (3.27) the 

damage rate does not depend on the current value of total damage D. 

Updated fatigue damage for crack growth can be determined as (see references (Bak et al. 2016; 

Peerlings et al. 2000)) 

N N
f

f N N f N
N

D
D D dN

N
  (3.28) 

Using a mid-point rule, one may approximately calculate the integral of the fatigue damage 

rate as 

1 ( )
2

mN N
f N N N

c cN

D v vdN A N
N v v

  (3.29) 

Accordingly, by combining Eq.s (3.29) and (3.18) in Eq. (3.16), the increment of total damage 

due to an increment N  of the number of cycles is given by the following expression, explicit 

in the unknown N ND : 

0

0

1 1 1 ( )
2

m

c N N N
N N N

c N N N c c

static fatigue

v v v vD D A N
v v v v v v

 (3.30) 

Note that in the third law, as in the first one, damage directly affects the stiffness of the 

springs as shown in Figure 3.6. 
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3.5 Comparison of the performance of the three fatigue 

degradation strategies applied to the cylinder model 

In this section we compare the computational performances of the three fatigue degradation 

strategies proposed in Section 3.4. The fatigue phenomena considered are described by the 

following Paris law, based on the experimental data gathered from (Asp et al. 2001), (the 

specimen is under pure mode I loading): 

0

Im

con
I c

c

X GC G G G
N G

   (3.31) 

where IC  and Im  are material parameters, conX  and N  represent the crack length and 

number of load cycle respectively. G , cG  and 0G  express the maximum, critical and threshold 

energy release rates respectively. For the cylinder model, using Eq. (3.7), one may rewrite Eq. 

(3.31) as 

Im

con a
I

c

dX MC
dN M

  (3.32) 

IC  and Im   assume the values given in Table 3.1, provided in reference (Bak et al. 2017). In 

a log-log graph representing /condX dN vs / cG G Paris law is a straight line, as shown by the 

red line in Figure 3.8.  
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Figure 3.8. Paris law and results produced by the three fatigue degradation strategies.. 

  Parameter   
Value 

    0.00308 mm/cycle 

    5.4     
   0.260  Nmm/mm2 
    100 mm 
 l     0.005 mm 
    100 
    30 N/mm2 

 0v     10-6 mm 
 cv     0.01733 mm 
Table 3.1. Parameter values of Paris law and cylinder model. 

The parameters of the three fatigue degradation strategies are chosen so that they reproduce the 

Paris law and the relevant results are shown in Figure 3.8. The parameter values are shown in 

Table 3.2. These parameters should be chosen using a curve fitting approach to generate the 

same slope for the linear part of Paris law which means the same material used for the three 

fatigue degradation strategies.  

 

IC

Im

cG
R

N
0
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Figure 3.9(a) and Figure 3.9(b) show the excellent agreement among the results obtained with 

the three fatigue laws for two cases 0.2a cM M and 0.3a cM M . Given the initial static ramp 

of the load phase, the crack fatigue propagation starts from a value different from zero. 

 

  Fatigue laws 
  

Model specific parameters   

 First      

 Second      

 Third     

Table 3.2. Parameters used in the three proposed fatigue degradation strategies. 

 

 
(a) 

 
(b) 

Figure 3.9. Crack length 
con

X  for (a) 0.2
a c

M M  and (b) 0.3
a c

M M  using the three different strategies in the 

cylinder model. 

As depicted in Figure 3.9, the fatigue crack propagation is divided into two phases. At the 

beginning of crack propagation, one may observe a slow increase of the crack length, which 

demonstrates the crack initiation phase, and then the crack grows more quickly with a constant 

slope which determines the steady state part of fatigue crack propagation. It is also apparent 

62 10 , 0.5, 2.0C
2540, 3.8B n

61.099 10 , 3.0A m
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that the slope /condX dN is bigger for the case 0.3a cM M . All three proposed approaches are 

able to produce the same slope, /condX dN , with an excellent agreement.  

All the codes are developed using standard Matlab 2016 language.The run times reported later 

are measured on an Intel Core i7-6700HQ 2.60 GHz CPU, on a 64 bit Windows 10 Enterprise 

system.  

It takes 59.84 CPUs and 57.32 CPUs to solve this example using the second and third fatigue 

laws respectively when 0.2a cM M  , while this computational time in the first law is 68.01 

CPUs which is approximately 15-20% slower than the other two. 

Normalized stress vs. displacement graphs are shown in Figure 3.10 for an energy release rate 

of 0.5 cG G , i.e. the applied moment is 0.5a cM M . The three graphs show the stress-

elongation curve ( v curve) for the same spring in the constant slope propagation phase. The 

three approaches generate a similar curve due to the simultaneous action of increasing 

displacement and fatigue cycles. For all cases the area under the v fatigue curve 

approximates well the green area which represents half of the area under the static bi-linear 

law.  

 
(a) 
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(b) 

 
(c) 

Figure 3.10. Single spring behavior under static and fatigue load using (a) the First, (b) the second and (c) the 

third approach. The green area represents half of the triangular area under the bi-linear law, which is a measure 

of the energy dissipated during static crack propagation.  

 

In many practical problems, the applied G  is not constant. So, following what was done also 

in (Bak et al. 2016), we compare the performance of the three fatigue degradation strategies 

when used with a variable G (i.e a Ma in the case of the cylinder model). We alter the applied 

moment instantly as shown in Figure 3.11. The response to this energy release change can be 

observed in the crack length vs. the number of load cycles as depicted Figure 3.11. It can be 

noticed that there is a good agreement between all proposed approaches and the Paris law. The 

results of the theoretical Paris law are obtained by integrating numerically Eq. (3.31) to 
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evaluate the crack length as a function of energy release rate as (see Reference (Bak et al. 

2016)) 

( )
m

con
con

c

G X
X C dN

G
  (3.33) 

 

 

 

  

Figure 3.11. Blockwise constant energy release rate G  in the cylinder model. 

Moreover, in many engineering problems gradual energy release changes occur. Assuming the 

energy release rate as a function of crack length, one may change the loading condition in a 

way to obtain an increasing/decreasing energy release rate as depicted in Figure 3.12.  
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Figure 3.12. Simulation linear dependency of the energy release rate ratio ( ) /con cG X G  on the crack length. 

For increasing aM  the first fatigue degradation strategy provides results slightly better than 

the third law, whereas the results of the second law are worse. For decreasing Ma the three laws 

have a similar performance (see Figure 3.13). 

  
(a) 
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(b) 

 
(c) 

Figure 3.13. Crack growth for a linearly variable energy release rate as a function of the crack length using (a) 

the First, (b) the second and (c) the third approach. 

3.5.1 Stability of the results with respect to variations of discretization 

parameters 

The results presented in the previous section seem to suggest that the performance of the three 

degradation strategies are rather similar; the second law has a worse performance in the case 

of increasing Ma; and the first law requires a longer computational time than the other two, but 

the overall behavior of the three laws does not exhibit apparent differences. In this section we 
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want to compare the stability of the results provided by the three laws with respect to variations 

of two important discretization parameters: l , the spring spacing, and N , the increment of 

load cycles in one step. The best approach is the one for which the slope /condX dN  is affected 

the least by changes in l  and N . All parameters are given in Table 3.2. The applied moment 

is set to be 0.2a cM M  and the "exact slope" is generated by adopting small values of N

(=100) and l  (=0.005mm). The ‘exact slope’ is the same for all fatigue degradation strategies. 

Note that smaller values of l  and N  increase the computational cost of the procedure but 

reduce the error in the slope /condX dN . We consider values of l  in the range

0.005 mm 0.21 mml , which is divided into 206 uniform subintervals of amplitude equal 

to 0.001 mm. N  is considered in the range 100 60000N , which is divided into 600 

uniform subintervals. Consequently, 123600 different parameter pairs are taken into account 

to produce three contour plots of the error, shown in Figure 3.14. For every pair of values ( l 

, N) the relevant slope is computed and compared to the value of the ‘exact slope’. Different 

colors in Figure 3.14 represent different percent errors in the computed slope with respect to 

‘exact slope’. Analyzing these error-plots, we observe that as l  and N  increase the error in 

general rises. The region of small error (green zone) is much wider for the third law and much 

smaller for the second. Therefore, the third law, not only is computationally cheaper than the 

other methods for the same values of l and N, but also can be used with larger values of l  

and N . 
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(a) 

 
(b) 
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(c) 

Figure 3.14. Error plots using bilinear constitutive law for (a) first (b) second and (c) third fatigue laws. 

3.6 Peridynamics fatigue model 

Bond based peridynamics (BBPD) is a non-local theory of continuum proposed in Reference  

(Silling 2000). Since the formulation of the theory avoids differentiations and is only based on 

spatial integration BBPD is particularly suited for describing crack propagation problems. For 

a point, x , and time, t  , the peridynamic static equilibrium equation is written as (see Figure 

2.2 (a)) 

ˆ 0( ( , ) ( , ), )dV ( , ) [ , ]
x

f
H

t t t for and t t tx0 f u x u x x x b x x  (3.34) 

 

3.6.1 Spatial Discretization  

Solution domain is discretized with a set of grid as depicted in Figure 3.15, to approximate the 

peridynamic equation. 
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Figure 3.15. A spatial discretization for a peridynamic model. 

By adapting the one-point Gauss quadrature rule to proceed with the spatial integration, 

one can discretize Eq. (3.34) as 

1
0 ( ( , ) ( , ), ) ( ) ( , )

N

j i j i j j
j

t t V tf u x u x x x ξ b x  (3.35) 

 

 

6.2 Pairwise force function 

As described in Chapter 2,for a PMB material the stretch in a bond is related to the pairwise 

function f   by Eq. (2.59)   (Silling and Askari 2005a). When the stretch reaches its limit value,

0s , the bond breaks so that the global behaviour of the system is nonlinear. In this section the 

constitutive law of the bond ( )f f s  is assumed to be bilinear of the type presented in Section 

3.4. The stretch of the bond plays the same role as the elongation of the spring. 0s  is the elastic 

limit, and cs  is the failure limit of the stretch, as shown in Figure 3.16. According to Reference 

(Zaccariotto et al. 2015a), 0G in Eq. (2.78), is the energy required to start the damaging process. 
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The ratio between cG  and 0G , called kr , is defined as (see Reference (Zaccariotto et al. 

2015a)): 

0 0

c c
r

G sk
G s

  (3.36) 

Equation (41) provides the value of sc for the bilinear constitutive law. 

 

(a) 

 

 

(b) 

Figure 3.16. magnitude of the bond force f vs bond stretch s  law: (a) elastic brittle material (b) elastic-

progressively damaging material. 

 

Using a bilinear constitutive law, one may define the pairwise force function magnitude, f , 

as 

0

0

(s) 0
(s) (1 )

(s) 0
c

c

f c s s s
f c D s s s s

f s s
  (3.37) 

in which, D , represents the total damage (sum of the static damage and the fatigue damage) in 

the bond. 

The damage rate is defined according to the equations shown in Section 3.3. Accordingly, static 

damage is given by 
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max 0
max max 0

max 0

max 0
max 0

max 0

c

c
s

c

c

s s s s s s s
s s s

D
s s s s s s

s s s

 (3.38) 

where,  maxs  is the maximum value of the stretch in the deformation history of the bond. 

Likewise, the increment of static damage can be obtained with respect to Eq. (3.18) as 

follows 

0

0

1 1c
s N N s N

c N N N

s sD D
s s s s

  (3.39) 

Moreover, similar to the cylinder model, the increment of total damage in each bond for the 

first fatigue strategy is given by (see Eq. (3.22)) 

1

0

0

1 1
1

Dc
N N N

c N N N c

static fatigue

ss s CD D N e
s s s s s

 (3.40) 

where,  

(1 )sN N Ns s   (3.41) 

Similarly, for the second fatigue law, the total damage of each bond at the end of a load cycle 

can be obtained as (see Eq. (3.24)) 

0

0 0

1 1c N N
N N

c N N N N

s s
D

s s s s
  (3.42) 

Finally, for the third fatigue law, the increment of total damage of each bond, considering 

Section 3.4.4, can be written as (see Eq. (3.30) 
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0

0

1 1 1 ( )
2

m

c N N N
N N N

c N N N c c

static fatigue

s s s sD D A N
s s s s s s

 (3.43) 

 
6.3. Nonlinearity of the system 

The problem becomes nonlinear after the bonds get damaged, therefore, stiffness matrix of 

the structure is not constant anymore. Various techniques have so far been used to satisfy the 

equilibrium in the whole structure. In this thesis, the Newton-Raphson (N-R) method is 

adapted to solve Eq. (3.35) and update the stiffness matrix in each iteration. 

Using the conventional finite element concept, one is able to write the relationship between 

external and internal forces as follows: 

extKu F    (3.44) 

in which, K  represents the global stiffness matrix of the structure, u and extF  stand for the 

nodal displacements and external force vector respectively.  

An out of balance force in the whole system is generated due to the nonlinearity of the 

problem. Therefore, the out of balance force vector is represented by 

int ext extg F F Ku F    (3.45) 

The equilibrium is satisfied when the norm of  g   is lower a given tolerance. 

According to the Newton-Raphson solution, it is needed to calculate the derivatives of g  

with respect to the nodal displacement vector, u , as follows 

ext
g KKu F K u
u u u

   (3.46) 
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At a given point in which 0u u  , the term 
0

|u u
g
u

 stands for the tangent stiffness matrix, 

TK  . One may calculate each component of this matrix by 

1
ij

N
im

T ij m
m j

KK K u
u

   (3.47) 

in which, N, represents the total number of degrees of freedom. i and j denote the rows and 

the columns of the K  and TK   respectively. For a single bond, tangent stiffness matrix, TK  

, in different conditions is given by 

0

0

0T

T c

T c

s s

s s s

s s

K K
KK K u
u

K 0

   (3.48) 

Above equation expresses that for a bond which still has elastic linear behavior the tangent 

stiffness matrix does not change and it is equal to the stiffness matrix of the bond. On the other 

hand, when a bond passes the linear elastic limit, 0s  , and its stretch is less than failure stretch, 

cs  , tangent stiffness matrix, TK   should be calculated from Eq. (3.47). In the case that the 

stretch of a bond exceeds the failure stretch, cs , the bond is removed from the whole structure 

and its tangent stiffness matrix, TK   is equal to zero.  

Numerical models with static damage have been comprehensively investigated in (Zaccariotto 

et al. 2015a). Deformations of the structures have been compared to the exact and FEM 

numerical solutions and the results are in a good agreement (Zaccariotto et al. 2015a). Since 

the main contribution of this work is on the fatigue damage, the authors just present the 
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examples with static and fatigue damage to further validate the fatigue degradation strategies 

in a peridynamic framework. 

3.6.2 Double cantilever beam peridynamic example 

In order to verify the indications of the cylinder model, a double cantilever beam is simulated 

with a BBPD based code as depicted in Figure 3.17. The beam has the length of 0.0161L  m 

and width of 0.0029W  m. Its Young’s modulus and pre-crack length are specified as 

70E  GPa, 0.005a  m. The applied moment is 0.048 NmaM  which is sufficient to 

introduce static damage in several bonds during the initial static ramp. Furthermore, based on 

Eq. (3.36): 20rk .  

 

(a) 

 

(b) 

Figure 3.17. Double cantilever beam model discretized with a BBPD software; (a) Initial structure with a pre 

crack of 0.005a m (b) Deformed structure after 4×106 load cycles (a scale factor of 20 has been applied to 

displacement values). 

Assuming a constant horizon size, 43.75 10  m, and the grid spacing, l , namely 

/m l , we are able to examine the efficiency of each fatigue low by using m -convergence 

approach, three different values of m and l are used as: 2,3,4m and 

4 4 51.8971 10 ,1.25 10 ,9.4298 10l  m respectively. In Figure 3.18, the slope of the lines 
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‘crack-length vs number of cycles’ in the third law converge for m  values equal to 3 and 4. 

Due to the fact that 3m  is computationally less expensive than 4m  , 3m  is employed 

for the rest of analysis. 

 

(a) 

 

(b) 
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(c) 

Figure 3.18. Slope of the lines ‘crack-length vs number of cycles’ by using fixed values of  and N (

43.75 10  and 1000N ) and different m values for the (a) first (b) second and (c) third fatigue laws. 

This example has been solved using different grid spacing as 56.27 10 ml , 

41.06 10 ml  and 41.25 10 ml ; and different increments of load cycles, N= 1000, 

10000 and 50000 for the first and the third proposed fatigue laws, in contrast, due to 

convergence problems we used smaller values of 500, 1000 and 10000 for the second fatigue 

law. (See Table 3.3). 

In this example, the crack length with respect to the number of load cycles, N , is computed 

by using the three fatigue strategies (See Figure 3.20). 
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Table 3.3. Ranges of N  and l  investigated using the first (purple triangle),  

the second (red square) and the third (green circle) fatigue laws 

          N  
l (m) 

500 1000 10000 50000 

56.27 10  ------ ------  ■ ▲● 

 41.06 10  ■ ▲■● ▲■● ▲● 

41.25 10  ■ ▲■● ▲■● ▲● 

 

Assuming a constant parameter, 3m , one can examine the efficiency of the fatigue laws via 

 -convergence approach (see Figure 3.19). The horizon size, , is reduced and the grid 

spacing is equal to /l m   . 

 

Figure 3.19. H  - Convergence with a fixed m ratio. 
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(c) 

Figure 3.20. Number of cycles vs. crack length for different values of  and N for (a) the first (b) the second 
and (c) the third laws. 

Figure 3.20 shows the second law to be much more sensitive to parameter variations than the 

other two: it does not work for N= 50000 and for smaller values of N provides results that 

are clearly more scattered than those produced by third law. Moreover the comparison between 

Figure 3.20 (a) and Figure 3.20 (b) shows that if the lines in Figure 3.20 (a) obtained for N= 

50000 are neglected, since there is no equivalent counterpart in Figure 3.20 (b), the results of 

the second law are worse even than those of the first law. Finally comparing Figure 3.20 (a) 

and Figure 3.20 (c) confirms the findings of the cylinder model: the third law is much more 

stable than the other two and provides very similar values of the slope of the line ‘crack-length 

vs number of cycles’ in a reasonably wide range of values of and N. 

Additionally, Figure 3.20 shows that the third fatigue law is less sensitive than the other two to 

the horizon size, . 
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Both the cylinder model and the DCB discretized with the peridynamic based code confirm 

that the third law is the best of the three considered in the present work because it is more stable 

with respect to the variations of the discretization parameters and it is cheaper from a 

computational point of view. 

3.6.3 Experimental validation of the model 

To further validate the presented numerical methods, we simulate a DCB test, which is taken 

from an experimental study (Juntti et al. 1999), using a BBPD code. Due to the good 

convergence and high computational speed of the third fatigue law which represented in 

previous sections, hereinafter we only use the third law for the rest of the examples. In this 

example, we investigate the effectiveness of the selected fatigue degradation strategy by 

comparing with the experimental data (Juntti et al. 1999). The specimen used for this 

simulation is shown in Figure 3.21. The beam has the length of 0.15L  m, thickness of 

0.0031W  m and width of 0.02B  m. Its Young’s modulus, Poisson’s ratio and pre-crack 

length are specified as 120E  GPa, 0.3  and 0.035a  m. Although the specimen is 3D 

we simplify it into a 2D plain strain peridynamic model. The specimen arms are loaded under 

pure mode I with opposing moments as depicted in Figure 3.2. (This type of loading with 

constant applied moment, aM , cause a constant crack growth length so that the energy release 

rate is independent of crack length). Bilinear constitutive law parameters are set as: 260cG  

J/m2 and 4.38rk . Moreover, fatigue constant parameters of the selected fatigue approach are 

shown in Table 4.3. 
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Figure 3.21. Geometry of the specimen. 

The energy release rate under pure mode I for a DCB test, is related to the applied moment, 

aM  , as (Mi and Crisfield 1996) 

2
aMG

B E I
   (3.49) 

where, I ,  is the second moment of area of the specimen arm.  
 

Table 3.4. Parameters used in the proposed fatigue degradation strategies for the DCB model. 

  Fatigue law   Model specific parameters   

 
Third 

 

710 , 4.0A m   
 

 

In a log-log graph representing /condX dN vs / cG G , the third fatigue law using 3m  and 

4m  , is able to produce the linear part of Paris plot (see Figure 3.22). 
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Figure 3.22. Paris plot for mode I with experimental and BBPD numerical results. 

3.6.4 Center cracked beam with a hole 

In this section, fatigue crack propagation is simulated in a single notched beam with a hole by 

using the third fatigue law (see Figure 3.23). Experimental data on this test can be found in 

(Miranda et al. 2003). As shown in Figure 3.23, the beam is loaded in two points at the top and 

supported in two other points at the bottom. This problem has been solved under plain strain 

conditions with the physical parameters of:  205E GPa,  0.3 , 0.025a m and 100P  

N. Bilinear constitutive law parameters are set as: 51.07 10cG  J/m2 , 
31.143 10 , 4m   

and 4.00rk . Moreover, fatigue constant parameters are taken as: 82.1 10  and 4.0m

. 
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Figure 3.23. Beam with a center crack, loaded in two points and supported in two points. 

The solution domain is discretized with a 106×438 uniform grid of nodes which results in 

45,390 nodes. This example has been solved up to 
56.7 10  load cycles using 50000N  

cycles. As shown in Figure 3.24, the crack path grows toward the center hole. Moreover, the 

crack path is in a very good agreement with experimental data in (Miranda et al. 2003).  

 

Figure 3.24. Comparison of the crack paths between numerical results and experimental results. 
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Chapter 4 Simulation of thermo-mechanical 

problems in brittle materials using an adaptive 

multi-grid peridynamic method 

 

4.1  Introduction 

In this chapter, a thermo-mechanical coupled peridynamic model using adaptive grid 

refinement technique is developed to investigate the complex crack propagation path in 

ceramics. By introducing couple grids with different spacing, an efficient algorithm is 

established to apply the refinement adaptively. Compared to the standard peridynamic model 

with the uniform grid, this approach allows to increase the resolution of analysis merely in the 

critical (discontinuous) zones.  Moreover, no loss of volume is observed between different grid 

zones (Shojaei et al. 2018). Loss of volume is an important issue, and it can be considered as 

one of the sources of ghost forces (see (Bobaru and Ha 2011; Dipasquale et al. 2014)).  The 

performance of this approach is explored in solving 2D thermo-elastic problems and then it is 

applied to study the fracture of disk shape ceramic specimens under central thermal shock. 

Finally, the proposed numerical approach is adapted to investigate thermal shock behavior of 

thin rectangular and circular slabs. The accuracy of the method is scrutinized by comparing the 

numerical results with the Finite Element Method (FEM), experimental data in the literature 
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and standard peridynamic with uniform discretization. An excellent agreement is achieved at a 

much smaller computational cost.  

4.2 Problem description 

Assume that the solution domain, ,is divided into two subdivisions:  and . The 

subdivision which is discretized by a grid spacing x  and a horizon  is known as , 

whereas, the subdivision with the finer grid spacing x x  and characterized by a horizon 

  is represented by . In this study, it is assumed that the finely discretized zone  grows 

only where it is essential (see Figure 4.1). This algorithm is used in order to efficiently optimize 

the use of computational resources. 

 

(a) 

 

(b) 

Figure 4.1. Adaptive refinement strategy. 

4.3 Coupling grids with different grid size 

Using this new technique, one is able to couple any two peridynamic grids with various grid-

spacing. This technique is usable for both mechanical and the thermal parts of the procedure. 
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To illustrate, a 1D problem domain which is partially described by a coarse grid and partially 

by a fine grid is considered as depicted in Figure 4.2. Green squares are related to the main 

coarse grid while the yellow circles are the main nodes of the fine grid. The curved lines 

demonstrate the peridynamic bond interactions. In Figure 4.2, the m  ratio is 2m  i.e. each 

node interacts with two nodes on each side. Although various m  values and horizon sizes can 

be adapted in this model, for the sake of simplicity the horizon size is taken as 2 x . By 

adding some fictitious coarse and fine sets of nodes and activating them on the boundaries of 

the domain where the two grid spacing are supposed to be coupled, one can construct the linear 

system of the equations for a unique physical system. The distance, 0l , between the two 

portions is considered to be smaller than both  and .The fictitious nodes for the coarse 

and fine grid spacing are represented by unfilled-dashed squares and circles respectively. 

Moreover, the red square and circles shown in Figure 4.2 stand for the fictitious nodes activated 

where the two sets of grids are coupled. In fact, the activated fictitious nodes are used to make 

the real nodes located near the interface between the parts seem surrounded by a complete 

horizon (of their own type), as they are subjected to force interactions from the other part by 

means of the fictitious nodes. Hence, by using this method, the problem of surface effect in the 

interface zone between parts with different grid spacing may be reduced. 
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Figure 4.2. The coupling strategy in 1D problem. 

By using the stiffness matrix, K , for the equilibrium of the system, some non-standard terms 

emerge in the rows corresponding to the equilibrium of the real nodes, connected to the 

fictitious nodes. For the real nodes which are not connected to the fictitious nodes, usual 

equations illustrated in (Belytschko 1989; Bobaru et al. 2015) are used. 

The stiffness matrix of a bond between two generic nodes, ix  and jx , based on small 

deformation assumption, is given by 

, 1 1
( )

1 1
ME TH

i j

c
VVk ξ

ξ
         (4.1) 

As for instance, node 3, in Figure 4.2, represents a node interacting only with the real nodes. 

The equilibrium of the equations for this node can be written as: 

31 1 32 2 31 32 34 35 3 34 4 35 5 3

31 1 32 2 31 32 34 35 3 34 4 35 5 3

ME ME ME ME ME

TH TH TH TH TH s

k u k u k u k u k u F
k k k k k h

  (4.2) 

in which  
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j i
ij

j i

x x

x x
           (4.3) 

iF  and ( )s ih  are the external force and heat source applied to node i  respectively, 

ME ME i jk c V V  and TH TH i jk c V V  . 

In contrast, for the nodes connected to active fictitious nodes, some non-standard terms appear 

in the equilibrium equations. As for instance, the equilibrium equation of node 4  is 

42 2 43 3 42 43 45 46 4 45 5 46 6 4

42 2 43 3 42 43 45 46 4 45 5 46 6 (4)

ME ME ME ME ME

TH TH TH TH TH s

k u k u k u k u k u F
k k k k k h

  

           (4.4) 

The displacement and temperature at node 6 ( 6u , 6 ), can be obtained by a linear interpolation 

between node e and f. Therefore, Eq. (4.4) takes the following form: 

42 2 43 3 42 43 45 46 4 45 5 46 4

42 2 43 3 42 43 45 46 4 45 5 46 (4)

ME ME ME ME ME e e f f

TH TH TH TH TH e e f f s

k u k u k u k u k c u c u F

k k k k k c c h

           (4.5) 

in which, ec  and fc  are the linear combination coefficients related to the values of the 

geometric parameters of the two grids. 

Similarly, the equilibrium equations for node 5 assumes the following form: 

53 3 54 4 53 54 56 57 5 56 57 5

53 3 54 4 53 54 56 57 5 56 57 (5)

ME ME ME ME e e f f ME g g h h

TH TH TH TH e e f f TH g g h h s

k u k u k u k c u c u k c u c u F

k k k k c c k c c h
 

(4.6) 

In an analogous way, for a node located in the fine grid zone and connected to the activated 

fictitious nodes e.g. e equilibrium equations is given by: 
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( )

ec ME c ed ME d ec ed ef eg ME e ef ME f eg ME g e

ec TH c ed TH d ec ed ef eg TH e ef TH f eg TH g s e

k u k u k u k u k u F

k k k k k h
  

           (4.7) 

And hence it becomes 

4 4 5 5 5 5

4 4 5 5 5 5 ( )

ec ME ed ME e e ec ed ef eg ME e ef ME f eg ME g e

ec TH ed TH e e ec ed ef eg TH e ef TH f eg TH g s e

k c u c u k c u c u k u k u k u F

k c c k c c k k k h
 

(4.8) 

where MEk and THk  represent ME ME i jk c V V  and TH TH i jk c V V  . Finally, writing the 

equilibrium equations for every node, one can construct the linear systems of equations for 

mechanical part of the problem as follows: 
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42 43 42 43 45 46 45

53 54 53 54 56 57

4 5 5

5

46 46

56 56 57

0
0 0
0 0 0

0 0

ME ME ME ME

ME ME ME

ec ME ec ME ed ME

fd ME

e ME f ME

e ME f ME

k k k k
k k k

c k c k c k
c k

c k c k
c k c k c 57

0

                                                                   

g ME h ME

ed e ME ec ed ef eg ME ef ME eg ME

fd e ME fe ME fd fe fg fh ME fg ME fh ME

k c k

c k k k k

c k k k k k

2 2

3 3

4 4

5 5                                  
e e

f f

g g

h h

u F
u F
u F
u F
u F
u F
u F
u F

 

            

           (4.9) 

In a similar way, linear systems of equations for the thermal part is given by: 
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42 43 42 43 45 46 45

53 54 53 54 56 57

4 5 5

5

46 46

56 56 57

0
0 0
0 0 0

0 0

TH TH TH TH

TH TH TH

ec TH ec TH ed TH

fd TH

e TH f TH

e TH f TH

k k k k
k k k

c k c k c k
c k

c k c k
c k c k c 57

0

                                                                   

g TH h TH

ed e ME ec ed ef eg TH ef TH eg TH

fd e TH fe TH fd fe fg fh TH fg TH fh TH

k c k

c k k k k

c k k k k k

2 (2)

3 (3)

4 (4)

5 (5)

( )

( )

( )

( )

                                  

s

s

s

s

e s e

f s f

g s g

h s h

h
h
h
h
h
h
h
h

 

(4.10) 

It can be noticed that the stiffness matrixes of the system in Eq. (4.9) and (4.10) are not 

symmetrical. However, for quasi-static materials, crack propagation can be investigated by 

using explicit time integrations e.g. central difference or Verlet. In order to consider the inertia, 

one may simply attribute the mass to each node proportional to its volume by a lumped mass 

matrix. Moreover, to conserve the total mass in the system, it is essential that the distance 

between the parts of the model, 0l  , is calculated as follows: 

0 ( ) / 2l x x           (4.11) 
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For 2D and 3D cases, the same approach is applicable. As shown in Figure 4.3, the square 

domain is discretized by two sets of grid spacing. In Figure 4.3, the fine and coarse grids are 

disconnected and we use 2m although different values of m  can be considered. The distance 

between the coarse and fine grids are represented by x  and x  respectively. Accordingly, 

the horizon sizes of the two parts are:  2 x  and 2 x  .  

 

 

(a) 
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(b) 

Figure 4.3. (a) Two still disconnected portions of a 2D model discretized by two different grid spacing, and (b) 

introduction of fictitious nodes to connect the portions. 

 

 

 

In Figure 4.3, node A used as an indication of fine grid. This node should interact with all the 

real and the fictitious nodes of its own type located in its horizon.  . The red circle nodes are 

the activated fictitious nodes which their values should be determined by the linear 

interpolation of the four real nearest family nodes surrounding them. Furthermore, node B is 

an indication of the coarse grid as shown in Figure 4.3. It also interacts with the family nodes 

of its own type located in its horizon. Red square nodes are the activated fictitious nodes which 

their displacement are interpolated by the bi-linear interpolation of the four real nearest family 

nodes surrounding them. After finding the displacement of the fictitious activated nodes, one 
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is able to calculate the forces acting on the real nodes. Since the forces of the coupling bonds 

are acting only on the real nodes, the rows corresponding to the equilibrium of the real nodes 

connected to coupling bonds will contain some non-standard terms. The presented coupling 

method can easily be extended to the 3D cases as a generalization of the 2D case. 

4.4 Adaptive refinement 

The proposed coupling method is applicable to thermal shock crack propagation problems. By 

means of this new method, one may apply the fine grid in the zones where cracks are prone to 

nucleate or propagate, while in the remaining parts of the body a coarser grid is used. Moreover, 

it is very efficient to expand the fine grid adaptively where large strain gradients are present. 

Hence, it is needed to know when to substitute a few nodes, located in the coarse grid zone, to 

a larger number of nodes of the fine grid. Considering two generic nodes in the coarse grid 

zone as ix  and jx  , one may write the stretch of the bond  linking them at the time, nt  , as 

follows (see Figure 4.4 (a)) 

( ) ( )
1

n n
j j i in

ij
j i

s
x u x u

x x
        (4.12) 

The stretch of the bonds corresponding to the coarse grid, should be checked at each time 

step. Nodes ix  and jx  known as critical nodes when the stretch of the bond between them 

lays within the following range: 

0 0 , 0 1n
ij avgs s T s         (4.13) 
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where, is the thermal expansion coefficient. To assure that no crack reaches the horizons of 

the coarse grid, the complete zone within the horizon of the critical nodes should be substituted 

by the fine grid. Hence, nodes ix and jx with their family nodes are switched to the fine grid 

nodes at time instant 1nt  Figure 4.4 (b). The higher values of , the narrower zone of a coarse 

grid is modified by the fine grid. In contrast, a larger zone of the coarse grid should be 

transformed to a fine grid by using the smaller values of  . Since in the explicit time 

marching, displacements, mass and velocity have to be assigned to the previously non-existing 

nodes. Therefore, the aforementioned new method is used to determine the values of 

displacement and velocities by using linear and bi-linear interpolation in 1D and 2D problems 

respectively.     

 

(a) 
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(b) 

Figure 4.4. Variation of the model within two consecutive time steps;(a) the curved bond is the one that 

identifies two critical nodes of the coarse grid, (b) the coupled model after the refinement. 

4.5 The step by step procedure of the method 

1. Defining of constant parameters: 

 Mechanical constants: E  ,  ,  , MEt ,  , MEc  , C .  

 Thermal constants: vc , , , 0 , , THt , , THc . 

 As recommended in (Kilic and Madenci 2010), for the mechanical part the time 

step of 1 ( 1MEt  ) can be used. Furthermore, in thermomechanical coupling 

the total time step, t , should be less than both mechanical and thermal time 

steps , min ,ME THt t t . 

2. Pre-processing: 
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 Build the grid sets, define node type, horizon sets, mark the fictitious nodes, 

define pre-cracks. 

 Applying the mechanical and the thermal initial conditions. 

3. Thermal analysis for step (n+1) and evaluate, 1n , by Eq.(2.98). 

4. Evaluate the displacements of the real nodes using the dynamic relaxation scheme 

through Eqs. (2.86)-(2.89). 

5. Calculate displacement of the fictitious nodes, 
1n

iu  ,using linear or bilinear 

interpolation. 

6. Evaluate the accelerations of the real nodes, 
1n

iu , by Eq. (2.83).  

7. Calculate the stretch of the active bonds in the fine grid zone by Eq. (2.56). 

8. Check if the stretch of the bonds exceeds its critical value, based on Eq, (2.79), the 

bond should be broken and removed from the calculations. 

9. Evaluate the damage level of the real nodes in the fine grid zone using Eq.(2.80). 

10. Calculate the stretch of the active bonds in the coarse grid zone by Eq.(4.12). 

11. Check if the stretch of the bonds in coarse grid is within the range defined in Eq. 

(4.13), mark the node to be switched from coarse to fine. 

12. Apply the refinement technique as described in Section 4.4. 

13. Save the updated accelerations, velocities, displacements and temperature values as 

the initial values for the next time step  

14. Repeat from step 3 for the next time step. 

The whole solution procedure can be cast in a flowchart shown in Figure 4.5.  
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Figure 4.5. Step by step procedure of the method. 

All the codes are developed using standard C++ language which facilitates using the code on 

different platforms.The run times reported later are measured on an Intel Core i7-6700HQ 2.60 

GHz CPU, on a 64 bit Windows 10 Enterprise system. I/O times are excluded from the timings. 

The Microsoft Visual C++ 2015 compiler has been code are parallelized using OpenMP 

directives. 

employed to compile the codes. To achieve maximum performance, most parts of the 
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4.6 Numerical Examples 

4.6.1 Example I: Thermomechanical Analysis of a plate with a Hole 

In this example, deformation of a plate with a hole, due to non-uniform heating, is 

investigated: no crack propagation is simulated (see Figure 4.6). Therefore, we first determine 

the temperature distribution all over the domain and boundaries. Correspondingly, deformation 

is evaluated by using adaptive dynamic relaxation method. This benchmark has been 

investigated  in (Oterkus 2015). The Problem is solved in plane-stress conditions with 

9200 10E  Pa, 616 10  1/K, 7850  kg/m3 and 1/ 3  . The plate has a thermal 

conductivity 20  W/m K, and specific heat 500vc  J/kg K. The initial temperature of the 

plate is 20 °C. The right and left boundaries are subjected to constant temperatures as: 

*( / 2, , ) 500x L y t °C and  *( / 2, , ) 20x L y t °C. The remaining boundaries are 

insulated. 

To impose the mechanical boundary conditions, the left and the right side of the plate is 

subjected to zero displacement constraints as: ( / 2, , ) 0, ( / 2, , ) 0u x L y t u x L y t  , 

whereas other boundaries are free of tractions. This example is solved for a duration of 1000t  

s with the time integration interval of 0.01t  s, which results in 100000 steps. 

The plate is discretised with three models: Uniform, Non-uniform I and Non-uniform II. In the 

Uniform model the grid spacing is 45 10x y  m. Non-uniform I is a coupled model 

with 310x  m and 45 10x  m. Additionally, Non-uniform II is a coupled model with 

310x m and 40.25 10x  m. The fine parts are shown in Figure 4.6  by  . The fine 

parts are chosen randomly without any symmetric axis. The fine grid zones in Figure 4.6 are 

neither parallel nor perpendicular to the plate sides. To obtain the converged solution, initially 
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this model is simulated with the Uniform grid model. Finding the proper value of x  , we 

compare the contour plots of the temperature, horizontal and vertical displacements in Figure 

4.7-Figure 4.9. The results of the Non-uniform I and Non-uniform II model are in an excellent 

agreement with the Uniform one.  Moreover, the plate is simulated in Abaqus 6.13 by the finite 

element method (FEM). Then, the temperature profile and displacements contour plots are 

compared with the BB-PD results. The comparison indicates remarkable agreement. 

 
Figure 4.6. Problem domain, boundary conditions, and the zones with fine grid in Example I. 

 
(a) 
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(b) 

 
(c) 

 
(d) 

 
Figure 4.7. Temperature predictions after 1000 s: (a) Non-uniform I PD (b) Non-uniform II PD (c) Uniform PD 

and (d) FEM models. 

 

 
(a) 
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(b) 

 
(c) 

 
(d) 

 

Figure 4.8. Horizontal displacement predictions after 1000 s: (a) Non-uniform I PD (b) Non-uniform II PD(c) 

Uniform PD and (d) FEM models. 

 
(a) 
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(b) 

 
(c) 

 
(d) 

 

Figure 4.9. Vertical displacement predictions after 1000 s: (a) Non-uniform I PD (b) Non-uniform II PD(c) 

Uniform PD and (d) FEM models. 

For further validation of the present method, two nodes, (0.035,0.005)Ax  and 

(0.04,0.0085)Bx  are chosen to investigate the time history of the horizontal displacement 

and temperature by three models. The time history of the horizontal displacement for nodes 

Bx  and Ax  are shown in Figure 4.10 (a) and Figure 4.10 (b) respectively. The results for both 

of the nodes are in an acceptable agreement; however, better agreement of the three models 
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can be observed for node B. Moreover, time history of the temperature for nodes Bx  and Ax  

are depicted in Figure 4.10 (c) and Figure 4.10 (d) respectively. The results are in an excellent 

agreement and no significant numerical perturbation can be observed. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.10. The time history of (a) horizontal displacement of node Bx  (b) horizontal displacement of node Ax

(c) temperature of node Bx  (b) temperature of node Ax . 

4.6.2 Example II: Pre-cracked disk specimen under central thermal shock 

In this example, we investigate the thermo-mechanical crack propagation in a pre-cracked disk 

using the adaptive multi-grid peridynamic method. This example has already been used as an 

experimental test to measure the thermal-shock resistance of different materials such as 

ceramics (Awaji et al. 2002; Honda et al. 2009; Honda et al. 2002). In this test, the center of a 
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disk is heated at its both sides over the circular area as depicted in Figure 4.11. Due to the 

central constant heat flux and the existence of the pre-crack, the inhomogeneous temperature 

distribution occurs over the disk which leads to the inhomogeneous thermal expansion and 

stress in the domain. The thermal shock fracture takes place when the emerged tensile stress 

reaches a certain value.  

 

Figure 4.11. Geometry and boundary conditions for the thermal shock fracture problem in a disk. The red area 

denotes an imposed body heat flux. 

Based on the experiments done in (Awaji et al. 2002; Honda et al. 2009; Honda et al. 2002), 

three different crack paths are observed in Figure 4.12.  The first type of the crack path is a 

straight line from the pre-crack to the opposite side of the disk as depicted in Figure 4.12 (a). 

The second type of the crack path begins from the pre-notched crack tip propagates into two 

branches inside the heating area as shown in Figure 4.12 (b).  The third type of the crack path 

resembles the second one; however, the crack branches outside of the heating area as depicted 
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in Figure 4.12 (c). This example also has been solved using phase filed numerical solution in 

(Chu et al. 2017) and all three types of crack paths have been observed.  

 

Figure 4.12. Three types of crack paths in experiments from (Honda et al. 2009; Honda et al. 2002) (a) Crack grows straightly 

through the heating area (b) crack branches in the heating area (c) crack branches outside of the heating area 

As shown in Figure 4.11, the radius of the disk and the pre-notched crack size are chosen as: 

0.015R  m and 0.002a  m. Regarding the data available in literature (Honda et al. 2002), 

the problem is solved in plane-stress conditions with 9380 10E Pa, 66.6 10  1/K, 

3900  kg/m3 , 26.95cG  J/m2 and 1/ 3 . The plate has a thermal conductivity 21 

W/m K, and specific heat 961.5vc  J/kg K. An adiabatic boundary condition is imposed 

around the disk. The value of the central heat flux in Eq. (2.98)is sh  (kW/m3), the radius 

of the heating area is r  as depicted in Figure 4.11.  

Initially, a uniform peridynamic model is taken as the reference solution with the grid spacing 

of 0.0003x m. Then, the adaptive refinement solution is considered by using a refined 

model ( 0.0003x m and 0.0006x m). This example is solved for a duration of 

0.059t  s with the time integration interval of 
510t  s, which results in 59000 steps. 

Moreover, the radius of the heating part and the heat flux for this example are taken as: 

750000  (kW/m3) and 5r  mm. 
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 The contour plots of the damage obtained by the proposed method and Uniform model at 6 

different instants are depicted in Figure 4.13. A very good agreement is observed between the 

crack paths obtained using both uniform and non-uniform model. 

 

    t = 0.585 s              

(a) 

 

    t = 0.585 s              

(g) 

 

     t = 0.586 s              

(b) 

 

   t = 0.586 s  

(h) 
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    t = 0.587 s              

(c) 

 

    t = 0.587 s              

(i) 

 

     t = 0.588 s             

(d) 

 

     t = 0.588 s             

(j) 
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     t = 0.589 s              

(e) 

 

 

     t = 0.589 s              

(k) 

 

    t = 0.59 s              

(e) 

 

    t = 0.59 s              

(l) 

 

Figure 4.13. Example II. Damage at different time instances (a)-(e) in the adaptive refinement model (f)-(l) in 

the Uniform model. 

Moreover, horizontal and vertical displacement components for the temperature distribution 

reported in (Figure 4.14) and their comparison to the refined model are shown in Figure 4.15. 

Remarkable agreement between the uniform and the refined model is achieved. 
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(a) 

 

(b) 

 

Figure 4.14. Example II: Temperature predictions after 0.59 s: (a) adaptive refinement model (b) the Uniform 

model. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

 

Figure 4.15. Example II: Vertical displacement predictions after 0.59 s (a) adaptive refinement model (b) the 

Uniform model and horizontal displacement predictions after 0.59 s (c) adaptive refinement model (d) the 

Uniform model. 

In Table 4.1, the runtime of each simulation and the number of real nodes are reported.  

Table 4.1. Comparison of the computational resources used 

 by Uniform and refined models in Example II. 

 Number of real nodes 

    Refined 

  Uniform  Coarse Fine 

0t  s 
7825 

3741 343 

0.59t  s 1833 2996 
Run time  521.60 s 175.31 s 

 

For a better comparison to the experimental results and the phase field numerical solution, one 

can change the radius of the heating part, r  , and the heat flux,  , to observe different crack 

paths.  
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(c) 
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(d) 

 

3
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(e) 

 

3

3.75 mm
500000 k /mW

r
 

(f) 

 

Figure 4.16. (a)-(c) Crack path results of the phase-field solution (d)-(e) adaptive refinement solution when the 

disk is broken completely with different heating radius r and heat flux γ for the central thermal shock of a disk. 

In Figure 4.16 (d), these parameters are: 5r  mm and 250000  (kW/m3) for both phase 

filed and peridynamic adaptive refinement models. We observe that the crack grows in a 

straight line without any branching. In Figure 4.16 (e), the heating parameters are changed to 

5r  mm and 750000  (kW/m3) and we observe in both simulations the branching occurs 

inside the heating area. In the third case (Figure 4.16 (f)), the heating parameters are taken as: 

3.75r  mm and 500000  (kW/m3) and the branching of the crack takes place outside of 

the heating area. In all three cases, the obtained crack path by the present solution is in a 
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remarkable agreement with the Phase field solution and the experimental results obtained by 

(Chu et al. 2017) in Figure 4.12.  

4.6.3 Example III: Quenching test of rectangular specimen under central 

thermal shock 

In this example, complex crack patterns induced by thermal shocks using the adaptive 

refinement peridynamic method is investigated. The quenching test is a benchmark to measure 

the thermal-shock resistance of different kinds of materials. In the experiments done by (Shao 

et al. 2011), rectangular ceramic slabs are heated to the certain temperature and then dropped 

into a water bath. Accordingly, some parallel cracks start to grow from the lateral surface of 

the slab due to the quenching phenomenon. The slabs with a higher initial temperature show 

extreme shrinkage and hence, more cracks with longer depth emerge on the boundaries of the 

slabs. For the first time, a method based on energy minimization has been established to 

calculate the periodic array and selective crack growth by (Jenkins 2005). Furthermore, other 

numerical simulation of this example can be traced in the literature (See (Bourdin et al. 2014; 

Chu et al. 2017; D’Antuono and Morandini 2017; Giannakeas et al. 2018; Wang et al. 2018b)); 

however, due to the complexity of the crack patterns, a large number of elements or nodes is 

needed which increase the computational time drastically. Hence, we consider two models for 

this example, one Uniform model with only fine grid spacing ( 0.00014x m), and an 

adaptive refined model ( 0.00014x m and 0.00028x m) then the efficiency of the 

refined model is investigated by comparing these two models with the experiment data. 

The rectangular slab has the length of 0.05L  m and width of 0.01W  m as shown in Figure 

4.17.  



119 

 

Based on the experimental model in (Shao et al. 2011), the problem is solved in plane strain 

conditions with 9340 10E Pa, 67.2 10  1/K, 3950  kg/m3 , 42.27cG  J/m2 and 

1/ 4  . The plate has a thermal conductivity 18  W/m K, and specific heat                

880vc  J/kg K. Convection boundary condition is imposed around the plate as represented in 

Figure 4.17. This example is solved for a duration of 1t  s with the time integration interval 

of 510t  s, which results in 100000 steps. 

The initial temperature is taken as 0 680 K while the temperature of the surfaces contacted 

with water is 300  K. 

 

Figure 4.17. Example III: Numerical model of the ceramic specimen subjected to 2D quenching. 

The contour plots of the damage obtained by the proposed numerical solution and the uniform 

model at 1t   s are represented in Figure 4.18. Qualitatively, an acceptable agreement is 

obtained between the crack paths of the two models. Moreover, the experimental results of 

(Shao et al. 2011) depicted in Figure 4.19 are in a very good agreement with both PD numerical 

models. 
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(a) 

 
(b) 

 

Figure 4.18. Example III: Damage predictions after 1.00 s: (a) adaptive refinement model (damage only related 

to the fine grid) (b) the Uniform model. 

 

Figure 4.19. Experimental results of quenching test by (Shao et al. 2011). 

In order to compare the crack paths quantitatively, one may analyse the crack frequency chart 

as shown in Figure 4.20. For this analysis only the cracks which their length is greater than 

10% of the plate half-width are considered. In the study by (D’Antuono and Morandini 2017), 

this example has been solved by OSB-PD numerical solution and the results have been 
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compared to the experimental solution. By using OSB-PD, the number of total cracks with the 

length of 0.05-0.45 mm is 52 while this number in the experimental model is 56. In this study, 

55 and 57 cracks have been obtained using the adaptive refined model and the Uniform model 

respectively and we observe that a better agreement with the experimental results is achieved. 

Analyzing Figure 4.20, one can obtain that the crack frequency trend line (dotted line) in the 

adaptive refined model is much more in agreement with the experimental data. 

 

Figure 4.20. Example III:  Crack frequency diagram and 5th order interpolation of the results 

Additionally, in Table 4.2, the runtime of each simulation and the number of real nodes are 

reported. Consequently, the proposed refinement technique not only reduces the total run time 

of the code but also conforms well to the experimental data.   
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Table 4.2. Comparison of the computational resources used 

 by Uniform and refined models in Example III. 

 Number of real nodes 

    Refined 

  Uniform  Coarse Fine 

0t  s 
24921 

3741 0 

1.0t  s 1799 17000 
Run time  2016.31 s 817.60 s 

 

Moreover, temperature field at 1t  s and its comparison to the refinement model are 

represented in Figure 4.21. Very good agreement between the Uniform and the refined model 

is achieved. 

 
(a) 

 
(b) 

 
Figure 4.21. Example III: Temperature predictions after 1.00 s: (a) adaptive refinement model (b) the Uniform 

model. 

4.6.4 Example IV: Pre-cracked disk specimen under central thermal shock 

To further validate the proposed numerical solution, the thermal shock in a circular 

ceramic plate is investigated in this example. In the experiments done by (Liu et al. 2015), thin 
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circular ceramic plates are heated to the certain temperature and then dropped into a water bath. 

These thin plates are stacked together by two thick circular plates on the outside to set the 

adiabatic condition at the interior surfaces of the thin circular specimens. 

The circular slab has the radius 0.065R  m as shown in Figure 4.22.  Based on the 

experimental model in (Liu et al. 2015), the problem is solved in plane-stress conditions with 

9370 10E Pa, 3980  kg/m3 , 12.16cG  J/m2 and 1/ 3  . The convection boundary 

condition is imposed around the layer of the plate with the thickness of   as represented in 

Figure 4.22. The plate has a temperature-dependent thermal conductivity, specific heat and 

thermal expansion as shown in Figure 4.23.  

 

(a) 

 

(b) 

Figure 4.22. Geometrical and loading conditions in example IV: (a) schematic diagram (Liu et al. 2015) and (b) 

numerical model. 

The material of the thin circular ceramic specimens is 99% Al2O3.  The initial 

temperature is taken as 0 250 °C while the temperature of the surfaces contacted with water 

is 15  °C. This example is solved for a duration of 0.45t  s with the time integration 

interval of 510t  s, which results in 45000 steps. 
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(c) 

Figure 4.23. The temperature-dependent thermal properties of (a) thermal expansion, , (b) the thermal 

conductivity, γ, and (c) the specific heat capacity, cv,  in 99% Al2O3 ceramics versus temperature. 

The contour plots of the damage obtained by the proposed numerical solution and Uniform 

model at 0.45t  s are represented in Figure 4.24. The numerical results illustrate that complex 

multiple crack paths are initiated from the edge of the circular ceramic specimen and propagate 

towards the center of the specimen. Acceptable qualitative and quantitative agreement is 

obtained between the crack paths of the two numerical models and experimental one. 

Moreover, the number of total cracks in both simulations as well as the experimental model is 

15. Also, the number of long cracks, which their length is more than 50% of the radius of the 

specimen, is equal to 4 in all the models.  
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(a) 

 

(b) 

 

 

(c) 

Figure 4.24. Example III: Damage predictions after 0.45 s: (a) the Uniform model (b) adaptive refinement model 

(damage only related to the fine grid) (c) experimental model by (Liu et al. 2015). 

Additionally, in Table 4.3, the runtime of each simulation and the number of real nodes are 

reported. In this example also the total runtime of the simulation is significantly reduced by 

using the proposed adaptive refinement technique. 
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Table 4.3. Comparison of the computational resources used 

by Uniform and refined models in Example IV. 

 Number of real nodes 

    Refined 

  Uniform  Coarse Fine 

0t  s 
17181 

4281 0 

0.45t  s 1504 10904 
Run time  706.04 s 226.34 s 

 

Then, the temperature profile and displacements contour plots for the adaptive refined model 

and the Uniform model are compared with each other as shown in Figure 4.25 and Figure 4.26. 

The comparison indicates striking agreement. 

 

(a) 

 

(b) 

 

Figure 4.25. Example IV: Temperature predictions after 0.45 s: (a) adaptive refinement model (b) the Uniform 

model. 
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Figure 4.26. Example IV: Horizontal displacement predictions after 0.45 s (a) adaptive refinement model (b) the 

Uniform model and vertical displacement predictions after 0.45 s (c) adaptive refinement model (d) the Uniform 

model. 
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Chapter 5 Application of the Peridynamic 

differential operator to the solution of sloshing 

problems in tanks 

 

5.1 Introduction 

In this chapter we aim at applying the Peridynamic differential operator (PDDO) to 

incompressible inviscid fluid flow with moving boundaries. Based on the potential flow theory, 

a Lagrangian formulation is employed to cope with nonlinear free-surface waves of sloshing 

water in 2D and 3D rectangular and square tanks. In fact, PDDO recasts the local differentiation 

operator through a nonlocal integration scheme. This makes the method capable of determining 

the derivatives of a field variable, more precisely than direct differentiation, when jump 

discontinuities or gradient singularities come into the picture. The issue of gradient singularity 

can be found in tanks containing vertical/horizontal baffles. The application of PDDO helps us 

to obtain the velocity field with a high accuracy at each time step that leads to a suitable 

geometry updating for the procedure. Domain/boundary nodes are updated by using a second 

order finite difference time algorithm. The method is applied to the solution of different 

examples including tanks with baffles. The accuracy of the method is scrutinized by comparing 

the numerical results with analytical, numerical, and experimental results available in the 

literature. Based on our investigations PDDO can be considered a reliable and suitable 
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approach to cope with sloshing problems in tanks. The study paves the way to apply the method 

for a wider range of problems such as compressible fluid flow. 

5.2 The Peridynamic differential operator (PDDO) for 2D 

problems 

We consider a scalar field, ( )f f x  , over a material point x . The variation of this scalar field 

depends on the interaction of material point x  and other material points x  located in a finite 

distance known as horizon length .  

As explained in (Madenci et al. 2016), by considering the Taylor series expansion of a scalar 

field, ( ) ( )f fx x ξ , PDDO in a two-dimensional domain, ( , )x yx can be constructed as 

22

0 0

1 ( )( ) ( )
! !

x yx
yx

yx
x y

n nn
nn

x y nn
n n x y

ff R
n n x y

xx ξ x      (5.1) 

in which, ( )R x  denotes the reminder, , 0,1, 2x yn n  and ( , )x yξ x x . In Eq.(5.1) if 

( ) 0R x  , it can be expressed by 

2 2 2
2 2

2 2

( ) ( ) 1 ( ) 1 ( ) ( )( ) ( )
2 2x y x y x y

f f f f ff f
x y x y x y
x x x x xx ξ x   (5.2) 

One may multiply Peridynamic functions, ( )x yp pg ξ , which possess an orthogonality property, 

to each term of Eq. (5.2) and then integrate it over the horizon of each node, xH  , in which the 

family members of node x  are located in, by   
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2 2
2 2
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x x x
ξ ξ ξ

x
ξ

 

  (5.3) 

where, xp and yp represent the order of differentiation with respect to x  and y . Since in this 

study derivatives up to second order are needed (the solution of a Laplace equation shall be of 

concern), , 0,1, 2x yp p  through the integration. Thus, PDDO in 2D problems is expressed as  

( ) ( ) ( )
x y

x y

yx x

p p
p p

pp H

f f g dV
x y

x x ξ ξ         (5.4) 

Peridynamic functions, x yp pg  , in Eq. (5.4) should possess an orthogonality property as  

1 ( )
! !

y x yx

x x y y
x

n p pn
x y n p n pH

x y

g dV
n n

ξ              (5.5) 

where 
x xn p  and 

y yn p stand for Kronecker delta. The construction of Peridynamic functions,

,x yp pg  is given by 

22

0 0
( ) ( )

x
x y y yx x

x y x y

x y

q
p p p qp q

q q q q x y
q q

g a a wξ ξ        (5.6) 

in which, ( )
x yq qw ξ , are the weight functions which correspond to each term , yx qq

x y  in the 

polynomial expansion. As, explained in (Madenci et al. 2016) , the weight function determines 

the degree of non-local interaction between the nodes and their family nodes. Although  

( )
x yq qw ξ  can be different for each term of Taylor series expansion, for the sake of 
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simplification,  ( )
x yq qw ξ  can be the same for each term as ( ) ( )

x yp pw wξ ξ . Hence, Eq. (5.6)

can be expressed by 

2 2
00 10 01 20 02 11( ) ( )( )x y x y x y x y x y x y x yp p p p p p p p p p p p p p

x y x y x yg w a a a a a aξ ξ    (5.7) 

in which the weight function, ( )w ξ , is constructed based on a Gaussian distribution as follows 

22 /( )w e ξ
ξ          (5.8) 

where  represents the horizon length. In order to find unknown coefficients, yx

x y

pp
q qa a , in 

Eq.(5.7), one may put Eq. (5.7) in Eq. (5.5)and generate a linear system of equations as: 

22 2

( )( )
0 0 0

x
x y x y

x y x y x y x y

x y x y

q
p p p p

n n q q q q n n
q q q q

A a b        (5.9) 

To simplify Eq.(5.9), the coefficient matrix, A , the matrix of unknown coefficients, a , and 

the vector b  can be formed as:  

2 2

2 3 2 2

2 2 3 2

2 3 2 4 2 2 3

2 2 3 2 2 4 3

2 2 3 3 2 2

1

( )
x

x y x y x y

x x x y x x y x y

y x y y x y y x y

H
x x x y x x y x y

y x y y x y y x y

x y x y x y x y x y x y

w dVA ξ     (5.10) 

00 10 01 20 02 11
00 00 00 00 00 00
00 10 01 20 02 11
10 10 10 10 10 10
00 10 01 20 02 11
01 01 01 01 01 01
00 10 01 20 02 11
20 20 20 20 20 20
00 10 01 20 02 11
02 02 02 02 02 02
00 10 01 20 02 11
11 11 11 11 11 11

a a a a a a
a a a a a a
a a a a a a
a a a a a a
a a a a a a
a a a a a a

a        (5.11) 

and  
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1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 1

b         (5.12) 

Therefore, to satisfy the orthogonality property of PD functions, we just need to solve Eq. (5.9)

as 

1a A b           (5.13) 

Having found the constant coefficients of the PD functions, x y

x y

p p
q qa , one can compute 

Peridynamic derivatives explicitly using Eq (5.4): 
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                         (5.14) 

As a result, PDDO enables the determination of different order of partial derivatives of the 

spatial functions using the simple integration in Eq.(5.14). This feature provides accurate 

derivatives without performing any numerical differentiation or employing any kernel 

functions.  

In the subsequent section, the way of applying the recalled formulation to the solution of free-

surface fluid problems as well as proper satisfaction of boundary conditions are explained. 
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5.3 Governing Lagrangian equations in 2D domain 

Let consider a 2D domain, , containing incompressible inviscid fluid as depicted in Figure 

5.1. The portions of the boundary for this domain is taken as S F , in which, S  

denotes the fluid-tank interface whereas F  indicates the free surface of the fluid (see Figure 

5.1). In fluid dynamics, for an irrotational velocity field, potential flow theory can be used. 

This theory describes the velocity field as the gradient of a scalar function  

u            (5.15) 

For an incompressible fluid e.g. water, the divergence of the velocity is 

0u           (5.16) 

Consequently, velocity potential, , has to satisfy the Laplace equation 

 2 0  in            (5.17) 
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Figure 5.1. Problem domain and its boundaries. 

We define the fluid boundary conditions in terms of velocity potential. The boundary 

conditions at the fluid-tank interface can be expressed as 

T T
Sn u n u              (5.18) 

where n  is the outward vector normal to the fluid boundaries (Figure 5.2) and Su  represents 

the external predefined velocity exerted to the fluid-tank interface so that the boundary 

condition on S  is given by 

T
Sn

n u , on S           (5.19) 
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Figure 5.2. Discretization of the domain and boundary nodes. 

On the other hand at the free surface, F , dynamic free surface boundary conditions 

(DFSBC) based on Lagrangian theory can be expressed by (Wu and Chang 2011) 

1( ) ( . )
2 2

d Hg y
dt

, on F        (5.20) 

in which, H  represents the water depth. In the above formula, precise evaluation of   is 

crucial to obtain a desirable convergence solution over the time. In the following section this 

evaluation will be explained comprehensively. 

5.4 The solution procedure in 2D domain 

In order to discretize the field equation and the boundary conditions, the family of each node 

should be determined. Then the degree of interaction with the family nodes is specified by the 

weight function expressed in Eq.(5.8). The horizon shapes can be taken arbitrarily although 

here they are considered to be circles with a radius of m x . In which x  stands for the 

average distance between distributed nodes. The size and shape of the family nodes depend 
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on the efficiency of the computational solution; however, it should satisfy the nonlocal 

characteristics of the field equations. The PD function, ( )x yp pg ξ , is unique for each node and 

its value relates to the distribution of family nodes. 

To illustrate numerical implementation, the two-dimensional differential field equation is 

expanded as 

2 2

2 2 ( , ) 0 ,x y x y
x y

        (5.21) 

in which, (x, y)  is the unknown field variable. The boundary conditions expressed in 

Section 5.3 can be rewritten in the following form 

F

(x, y ) p(x)
2

(x , y) (y)
2

(x , y) (y)
2

(x, y) (x, y) (x, y)

H
y

L q
x

L r
x

s

           (5.22) 

where ( )p x , ( )q y , ( )r y  and ( , )s x y  are known functions.  

The integration is performed by a summation over all the family nodes within the horizon of 

ix  Thus, based on Eq.(5.21), a system of algebraic equations in terms of the PD unknowns, 

(x , y ),j j  can be formed as 

20 02( , y ) ( , y ) (x , ) V 0j i j i j i j i j j j
j

g x x y g x x y y     (5.23) 
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where jV  represents the volume of each node. i  and j  are the index of the collocation points 

and their family pointes respectively. 

As for instance, Cx  in Figure 5.2, represents a node positioned in the fluid domain,  . 

Recasting Eq (5.21) in terms of the integral operators introduced in Eq.(5.14), and evaluating 

the equation at Cx  results in 

(C) (C)

20 02( ) ( ) ( ) ( ) 0
X XH H

g dV g dVx + ξ ξ x +ξ ξ       (5.24) 

The above equation based on Eq. (5.23) can be discretized as follows: 

0CC C C Cm m m Cn n nk V k V k V       (5.25) 

where, 20 02( ) ( )Cj Cj Cj Cj Cjk g gξ ξ  , and Cj j Cξ x x   

Likewise, the boundary conditions are imposed at boundary points. Therefore, the boundary 

conditions given in Eq. (5.19)and Eq. (5.20) can be expressed in terms of PD unknowns, 

(x , y )j j , as  

01

1

10

1

10

1

00
F

1

( , ) (x , y ) V p(x ) for y
2

( , ) (x , y ) V ( ) for
2

( , ) (x , y ) V ( ) for
2

( , ) (x , y ) V (x , ) for ( , )

j j j i j i j i i
j

j j j i j i j i i
j

j j j i j i j i i
j

j j j i j i j i i i i
j

Hx y g x y

Lx y g x y q y x

Lx y g x y r y x

x y g x y s y x y

    (5.26) 
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Then, we perform the same procedure for Ax  and Bx  which are representative of two nodes 

with Neumann and Dirichlet boundary condition, respectively. Consequently, recasting the 

boundary relations given in Eq. (5.22) and evaluating at the nodes respectively leads to: 

(A) (A)

10 01
(A)( ) ( ) ( ) ( ) ( )

X X

x y
H H

n g dV n g dV q yx + ξ ξ x +ξ ξ     (5.27) 

and 

(B)

00
( )( ) ( ) ( )

X

B
H

g dV s xx + ξ ξ        (5.28) 

Therefore, discretizing the above equations results in: 

( )( )AA A A Ad d d Ae e e Ak V k V k V q y      (5.29) 

and 

(B)(x )BB B B Bg g g Bf f fk V k V k V s      (5.30) 

where, 10 01( ) ( )Aj x Aj Aj y Aj Cjk n g n gξ ξ  , and 00 ( )Bj Bj Bjk g ξ . 

By merging Eq. (5.23) and Eq.(5.26), a linear algebraic system based on the PDDO approach 

can be formed as 

kφ u            (5.31) 

in which k  is the global matrix, φ is velocity potential unknown values whereas  u  is the 

point-wise boundary/domain condition. To illustrate, one may expand Eq. (5.31) as 
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0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

A

d

e

A

AA A Ad d Ae e B

BB B Bg B Bf B g B

CC C Cm C Cn C f

C

C

m

n

u
k V k V k V

k V k V k V u
k V k V k V

u

            

           (5.32) 

The rows of k  represent each collocation point located in the domain/boundaries while the 

columns of k are associated with the family points. k  is a square matrix and  the entries of 

k , when node j  is a family point of point i , is given by 

02 20

10 01

00

( , y ) ( ) ( )

( , y ) ( ) n ( ) n

( , y ) ( )

i i i j ij ij

i i S i j ij x ij y

i i F i j ij

x k g g

x k g g

x k g

ξ ξ

ξ ξ

ξ

       (5.33) 

Correspondingly, boundary/domain conditions, u , for  all types of nodes are defined as 

0

( ) ( )

0

( , y ) 0
( , y ) ( ) or (y ) or r(y ) n n

1( , y ) (x , y ) ( ) ( . )
2 2

i i i

i i S i i i i i x i x y i y

t

i i F i i i i i i i i
t

x u
x u p x q u u u

Hx u s u g y dt

 (5.34)  
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By replacing Eqs. (5.33) and (5.34) into Eq. (5.32), and solving a linear system of equations 

the unknown values of the φ  vector would be obtained by 

1
φ k u         (5.35) 

 Having found the velocity potential, one can calculate the velocity field vector, u , based on 

Eq. (5.14), by performing integration over family nodes as follows 

10

01

( ) ( )

( ) ( )

i

i

x i
H

y i
H

u g dV
x

u g dV
y

ξ

ξ

       (5.36) 

where i  index stands for the collocation point number. The velocity field vector, u , should be 

calculated numerically with respect to (5.36), as 

10

1

01

1

( ) ( )

( ) ( )

r

x i ij j j
j

r

y i ij j j
j

u g V
x

u g V
y

ξ

ξ

       (5.37) 

in which j  and r  are the index of family pointes and the total number of points located in a 

horizon, respectively. Hence, spatial derivatives of potential flow function (velocity) is 

determined accurately using the simple integration in Eq. (5.37). 

In many numerical solutions this procedure is done by getting derivatives from the 

approximated potential flow field function which reduces the accuracy especially near the 

corners of a tank or near the baffle structures of complex shape. 
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5.4.1 Time marching 

We assume the total solution time has been divided into small increments. Accordingly, 

Laplace equation with the aforementioned boundary conditions is solved in each time step to 

predict the velocity potential and the velocity field in the entire domain. Therefore, the rigid 

body movements of the tank, as well as the liquid free-surface boundary conditions are updated. 

Nonlinear terms are taken into account to predict the new DFSBC for the next time step.  

Consequently, by using a second order finite difference scheme in time domain, DFSBC is 

formulated as (Wu et al. 2016; Wu and Chang 2011) 

1
( ) ( 2)

F
1(x , y ) ( ) ( ) 2 ( ) .

2 2

n
n n

i i i i
i

Ht g y   (5.38) 

Therefore, one may recast Eq. (5.34) as 

( ) ( )

1
( 2)

( , y ) 0
( , y ) ( ) or (y ) or r(y ) n n

1( , y ) (x , y ) ( ) 2 ( ) .
2 2

i i i

i i S i i i i i x i x y i y

n
n

i i F i i i i i
i

x u
x u p x q u u u

Hx u s u t g y

(5.39) 

In order to find the new configuration of the domain, kinematic free-surface boundary 

condition is expressed as 

d
dt
x

       (5.40) 

Using Eq. (5.40) and the second order finite difference scheme which is denominated as a  
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leap-frog time marching approach, we are able to obtain the new configuration of the nodes 

as 

( 2) ( 1)2 ( )n n ntx x         (5.41) 

5.4.2 The step by step procedure of the method 

After defining the problem geometry, to give an insight into the implementation of the 

method, we clarify the step by step procedure.  

1. The method is capable of dealing with irregular distribution of nodes; nonetheless, we 

suggest to use a regular distribution of nodes at the first time step. 

2. Choosing a set of family nodes for each node based on its horizon length, . 

3. Evaluate the k  using Eq. (5.33). 

4. Evaluate the u  as defined in Eq. (5.39). 

5.  Solve the linear algebraic system in Eq. (5.35), and determine the velocity potential 

value,  , for each node. 

6. Evaluate the velocity of each node using Eq. (5.37). 

7. Update the velocity potential values of the free surface nodes based on Eq. (5.38). 

8. Calculate the final configuration using Eq. (5.41). 

9. Replace the configuration, ( 1)nx  , at (n-1) time step with the configuration at (n-2) 

time step, ( 2)nx . 

10. Replace the velocity potential vector, ( 1)n  , at (n-1) time step with the velocity 

potential vector at (n-2) time step, ( 2)n . 

11. Repeat the procedure from step 3. 

The whole solution procedure can be cast in a flowchart shown in Figure 5.3. 
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Figure 5.3. Step by step procedure of the method. 

All the codes are developed using standard Wolfram Mathematica language on an Intel Core 

i7-6700HQ 2.60 GHz CPU, on a 64 bit Windows 10 Enterprise system. 
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5.5 Governing Lagrangian equations and the solution procedure 

in 3D domain 

By considering the second order Taylor series expansion of scalar field, ( ) ( )f fx x ξ , 

PDDO in a three-dimensional domain, ( , y, z)xx  can be constructed as 

2 22

0 0 0

1 ( )( ) ( )
! ! !

x y zx x x
yx z

yx z
x y z

n n nn n n
nn n

x y z nn n
n n n x y z

ff R
n n n x y z

xx ξ x      (5.42) 

Similar to the 2D procedure, A , the matrix of unknown coefficients, a , and the vector b  for 

3D domain can be formed as:  

2 2 2

2 3 2 2 2 2

2 2 3 2 2 2

2 2 2 3 2 2

2 3 2 2 4 2 2 2 2 3

1

( )
x

x y z x y z x y x z y z

x x x y x z x x y x z x y x z x y z

y x y y y z y x y y z x y x y z y z

z x z y z z z x z y z x y z x z y z

x x x y x z x x y x z x y

H
w ξA

3 2

2 2 3 2 2 2 4 2 2 3 2 3

2 2 2 3 2 2 2 2 4 2 3 3

2 2 3 3 2 2 2 2 2

2 2 3 2

x z x y z

y x y y z y x y y y z x y x y z y z

z x z y z z x z y z z x y z x z y z

x y x y x y x y z x y x y x y z x y x y z x y z

x z x z x y z x z x z x y z x z
3 2 2 2 2

2 2 2 3 3 2 2 2 2
x y z x z x y z

y z x y z y z y z x y z y z y z x y z x y z y z

dV  

(5.43) 
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   (5.44) 

and 

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 2 0 0 0 0
0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

b       (5.45) 

Therefore, to satisfy the orthogonality property of PD functions, we just need to solve  

1a A b           (5.46) 

Having found the constant coefficients of the PD functions, x y z

x y z

p p p
q q qa , one can compute 

Peridynamic derivatives explicitly as: 
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      (5.47) 

For an incompressible fluid in a 3D domain, differential field equation is expanded as 

2 2 2

2 2 2 ( , , ) 0 , ,x y z x y z
x y z

     (5.48) 

Similar to the 2D formulation, a linear algebraic system for 3D problems can be formed as 

kφ u           (5.49) 

The entries of k , when node j  is a family point of point i , is given by 

200 020 002

100 010 001

000

( , y , z ) ( ) ( ) ( )

( , y , z ) ( ) n ( ) n ( ) n

( , y , z ) ( )

i i i i j ij ij ij

i i i S i j ij x ij y ij z

i i i F i j ij

x k g g g

x k g g g

x k g

ξ ξ ξ

ξ ξ ξ

ξ

    (5.50) 

Correspondingly, boundary/domain conditions, u , for  all types of nodes are defined as 
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( ) ( ) z( )

( , y , z ) 0
( , y , z ) n n n

1( , y , z ) (z ) ( . )
2 2

i i i i

i i i S i x i x y i y i z

i i i F i i i i

x u
x u u u u

Hx u g

     (5.51) 

Solving a linear system of equations the unknown values of the φ  vector would be obtained 

by Eq.(5.35).  

The velocity field vector, u , in 3D problems should be calculated numerically as 

100

1

010

1

001

1

( ) ( )

( ) ( )

( ) ( )

r

x i ij j j
j

r

y i ij j j
j

r

z i ij j j
j

u g V
x

u g V
y

u g V
z

ξ

ξ

ξ

       (5.52) 

5.6 Benchmark 

To check the convergence rate (CR), we employ the PDDO method to solve a problem 

governed by Laplace equation in the domain shown in Figure 5.4. Dirichlet boundary 

conditions, derived from an exact solution, not expanded by polynomial basis, are imposed as: 

sin( )cosh( )exu x y          (5.53) 
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(a) (b) (c) 

Figure 5.4. (a) The domain, (b) regular distribution of nodes and, (c) irregular distribution of nodes with 35% 

irregularity. 

To evaluate the accuracy of the method, we compute the error in the L2 displacement norm 

and H1 semi-norm given by: 

2 1

1/2 1/2
2 2

1 1

2 2

1 1

,

N N
ex ex
i i i i

i i
N NL H

ex ex
i i

i i

u u
e e

u
      (5.54) 

The convergence plot with respect to both L2 norm and H1 semi-norm are depicted in Figure 

5.5 which shows the method monotonically converges to the exact solution by a CR of more 

than 2.  
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(a) 

 

(b) 

Figure 5.5. Convergence plot for (a) regular and (b) irregular discretization of domain. 

5.7 Examples 

5.7.1  Standing wave in a rectangular tank 

Water sloshing with an initial free surface profile is a simple benchmark that has been 

validated by different numerical methods (Idelsohn et al. 2004; Lo and Young 2004; 

Radovitzky and Oritz 1998; Ramaswamy and Kawahara 1986; Suzuki et al. 2007; Zandi et 
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al. 2012). In this problem, an initial cosine wave is assigned to the free surface in a 

rectangular tank as depicted in Figure 5.6. 

 

Figure 5.6. The standing wave problem. 

The initial boundary condition is given to the free surface of the tank as     

0 ( ) cos[k(x / 2)]x A          (5.55) 

in which,   and  are the wave amplitude and the wavelength respectively, whereas  

is the initial free surface displacement. Additionally, the wave number is represented by 

2 / .k    

In (Wu and Taylor 1994) an analytical solution is proposed to evaluate the wave elevation at 

the center of the tank by taking account the nonlinear effects. The wave elevation is

1 2( ) (t) (t)t , where for the first term we have 

1 2( ) cos( )t A t          (5.56) 

and the second term is expressed by 

 
2

2 2 2 4 2 2 4
2 2 2 2 2 2 2 42

2

1( ) 2(A ) cos (2 ) [k g (k g 3 )cos( t)]
8

At t
g

 (5.57) 

where 

1/2[k g tan(k H)]n n n          (5.58) 

A 0 ( )x
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/nk n            (5.59) 

In this simulation, the length and the depth of the water in the equilibrium state are 2L  and 

0.5H  m respectively. Water density and gravity constant are set to 1000  kg/m3 and 

9.81g  m/s2. Moreover, wave amplitude and the wavelength are considered as 0.1A H  

and 2  m, respectively. The boundary condition values in terms of the PD unknowns, 

(x , y )j j , for this example are expressed as (See Figure 5.1). 

01
2

1

10
1

1
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3

1

00 ( 2)

1

( , ) (x , y ) V 0 for ( , )

( , ) (x , y ) V 0 for ( , )

( , ) (x , y ) V 0 for ( , )

1( , ) (x , y ) V ( ) 2 ( ) .
2 2

j j j i j i j i i S
j

j j j i j i j i i S
j

j j j i j i j i i S
j

n
j j j i j i j i

j

x y g x y x y

x y g x y x y

x y g x y x y

Hx y g x y t g y
1

Ffor ( , )
n

i i
i

x y

            

           (5.60) 

where  

2 2
( 1) 10 01

1 1
. ( ) ( )

r r
n

ij j j ij j ji
j j

g V g Vξ ξ      (5.61) 

And iy  in Eq. (5.60) at 0t  (s) is given by 

0 cos[k(x / 2)]
2i
Hy A         (5.62) 
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Figure 5.7. Comparison of the calculated wave heights at the center of the tank. 

 The wave height at the center of thank is shown in Figure 5.7. In this example, t  is taken 

0.01 s, and the domain is discretized with a uniform 41×11 grid of nodes with a grid spacing 

0.05x m. The result obtained by PDDO is in a good agreement with the second order 

theory, 1 2( )t ; however, there is a disparity between linear theory, 1( )t  and the 

PDDO solution. Thus, PDDO has a good accuracy to model nonlinear effects of the motion. 

Based on Bernoulli’s equation, the total pressure consists of hydrodynamic and hydrostatic 

pressure as 

hydrostatic pressurehydrodynamic pressure

1 ( . ) ( )
2 2

Hp g y
t

       (5.63) 

Hence, using the second order finite difference method which is clarified in Section 5.4.1, 

one may evaluate the hydrodynamic pressure in each time step as 

1 1 1 .
2 2

n n
n n n
Hydrodynamicp

t
      (5.64) 
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t =1 (s)   

 

 

t=2 (s) 

 

 

t=3 (s) 

 

 

Figure 5.8. Velocity vector-plots and hydrodynamic pressure at different time steps. 

 

Snapshots of hydrodynamic pressure for three different time steps are depicted in Figure 5.8. 

In the same figure, the velocity vector plots at different time steps, derived from Eq. (5.37), are 

reported. The results show that the boundary conditions are imposed accurately in time. 
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5.7.2 Non-linear liquid sloshing under harmonic excitation 

5.7.2.1 Sloshing under resonant excitation 

In this section, liquid sloshing is investigated to have a better insight of PDDO accuracy with 

respect to the Meshless Local Petrov-Galerkin (MPLG) approach (see (Pal 2012b)).  

 

Figure 5.9. Sloshing under harmonic excitation domain. 

The geometrical dimensions of the tank are set as those chosen by Pal (Pal 2012b) so that: 

1.0H  m and 2.0L  m. The lowest natural angular frequency of the tank is 0 3.76 rad/s

(Pal 2012b). A periodic cosine excitation with a shaking frequency of  is considered 

on the x  direction as 

cosTx A t          (5.65) 

where 0.0000971A m is the displacement amplitude. This example is solved with the time 

step of 0.01t s; however this value in MLPG solution is taken as 0.003t s which is 3.3 

times smaller than the PDDO model.  

01.0
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Figure 5.10. Comparison of the calculated wave heights at the left wall of the tank. 

The discrete form of boundary conditions can be expressed by (See Figure 5.9) 
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           (5.66) 

where  

2 2
( 1) 10 01

1 1
. ( ) ( )

r r
n

ij j j ij j ji
j j

g V g Vξ ξ     (5.67) 

For this example we discretize the solution domain with a uniform grid of 17×9 nodes which 

results in 153 nodes. As reported in (Pal 2012a), for the MLPG solution a uniform grid of 

41 21 nodes, which results in 861 nodes, is employed. The free-surface elevation at the left 
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wall of the tank is shown in Figure 5.10. The PDDO solution is in good agreement with the 

solution of MLPG. 

5.7.2.2 Sloshing with high nonlinearity under resonant excitation 

In this example, liquid sloshing problem with strong nonlinearity is simulated and compared 

with experimental measurements, numerical results obtained with the volume of fluid method 

(VOF) (Liu and Lin 2008), and the linear analytical solution. The geometrical dimensions of 

the tank are set as those chosen by Liu and Lin (Liu and Lin 2008) as 0.15H  m and 0.57L

m. The lowest natural angular frequency of the tank is 0 6.0578 rad/s (Liu and Lin 2008). 

A periodic sinusoidal excitation with a shaking frequency of  is considered on the x  

direction as 

sinTx A t           (5.68) 

where 0.005A m is the displacement amplitude. Three gauges are set in the center, near the 

left boundary and right boundary of the tank (Figure 5.11). to measure the free surface 

displacement. Resonance effect occurs since the frequency of oscillation is equal to the natural 

frequency of the tank.  The discrete form of boundary conditions can be expressed by (see 

Figure 5.11) 

01.0
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where  

2 2
( 1) 10 01

1 1
. ( ) ( )

r r
n

ij j j ij j ji
j j

g V g Vξ ξ      (5.70) 

 

Figure 5.11. Side view of experimental setup and main dimensions (Liu and Lin 2008). 

The wave elevation histories of different probes are shown in Figure 5.12. This example is 

solved up to 6.7 s and the time step is chosen as 0.01t s.  
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(a) 

 

(b) 
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(c) 

Figure 5.12. Comparisons of the time series of surface elevation η at the position of (a) probe A; (b) probe B; 

and (c) probe C. 

The solution domain is discretized with a 12×5 uniform grid of nodes which results in 60 nodes. 

However, as reported in (Liu and Lin 2008), for VOF solution a 114×64 grid of nodes, that 

contributes to 7296 nodes, is employed. The results of PDDO are in a remarkable agreement 

with the experimental data of Liu & Lin (Liu and Lin 2008) and the VOF solution (Liu and Lin 

2008), whereas the linear analytical solution does not conform with them. Hence, we can 

conclude that PDDO is a precise tool for predicting nonlinear effects of motion. The maximum 

elevation of the free surface at t=6.18 s is almost two times greater than the initial water depth. 

Therefore, this example is a good indication of strong nonlinearity of the free surface fluid 

sloshing. The walls of the tank are set to be infinitely high; however, in the experiment test the 

wall heights are 30 cm as depicted in Figure 5.11.  

The snap shots of the free surface profile with their velocity vector plots in different time 

intervals, 6.22 : 6.74t s in Figure 5.13. 
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6.22t  s 

 

6.33t s 

 

6.43t s 

 

6.53t s 

 

6.64t s 

 

6.74t s 

Figure 5.13. Snapshots of free surface profiles with velocity vector-plots in the two-dimensional sloshing case in 

the time interval of t =6.22:6.74 s. 

One of the ways to evaluate the stability and efficiency of the proposed numerical solution is 

to investigate the histograph of the condition number (CN) of  the global stiffness matrix as 

reported in Figure 5.14. The (CN) of the global stiffness matrix can be evaluated as (Wu et al. 

2016) 

1
2 2

CN k k                                (5.71) 
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in which  stands for 2-norm of a matrix. Figure 5.14 shows that as the analysis proceeds in 

time CN grows significantly. This is due to the irregularity of discretization when a new 

configuration for the solution domain is obtained. The maximum value of (CN) is 2500 which 

is low enough to guarantee the stability of the linear system of equations. As can be seen, 

PDDO generates a well-conditioned sparse system of equations in time. In the same figure, the 

CN obtained by Wu et al (Wu et al. 2016) using a local polynomial collocation method with 

the same discretization is reported. 

 

Figure 5.14. The histograph of the global stiffness matrix for non-linear liquid sloshing under surge excitation. 

5.7.3 Liquid sloshing in a tank with baffles 

5.7.3.1 2D liquid sloshing in a tank with a horizontal baffle 

In order to prevent the violent free surface fluctuation, one may install horizontal and vertical 

baffles inside the liquid tanks. On the other hand, installing a rigid baffle can generate a sharp 

gradient of velocity potential near the tip of baffle which might be a source of instability for 
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the solution which use direct differentiation procedures. Using PDDO culminates in 

determining the derivatives of the velocity potential accurately at each time step and avoiding 

the instability of the solution. For the sake of verification, we consider a problem which can be 

found in the study by Liu & Lin (Liu and Lin 2009); shown in (Figure 5.15). The tank length 

and the water depth in the equilibrium state are 1.0L  m and 0.5H  m, respectively. A rigid 

baffle with the length of 0.4L  is placed at a depth of 0.4 m from the initial free surface and on 

the left boundary of the tank.  

A periodic sinusoidal excitation, sinTx A t , with a shaking angular frequency of 

5.29 rad/s  is considered, where 0.002A  m. In this example, a 51×26 uniform grid of 

nodes is employed. The problem is solved up to 10.0 s and the time step is taken 0.01t  s. 

The discrete form of boundary conditions are 
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As for instance, Ax  and Bx in Figure 5.15 (b), represent nodes positioned on the two surfaces 

of the baffle. In Eq. (5.72) each node interacts only with its family nodes located on the same 

side of the baffle as depicted in Figure 5.15 (b) (visibility criterion). 

 In Figure 5.16, we compare the results of PDDO for displacement with those obtained by Liu 

& Lin (Liu and Lin 2009) at the free surface.  

Good agreement is observed between two numerical solutions; however, using horizontal 

baffle does not influence the resonance phenomenon significantly. Hence, the elevation of the 

free surface wave grows over time with the current frequency. 

 

 
(a) 

 
 

(b) 
Figure 5.15. (a) 2D rectangular tank with a horizontal baffle (b) zoom in the baffle area. 
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Figure 5.16. Comparisons of the time series of surface elevation η  at the right boundary of the baffled tank. 

5.7.3.2 2D liquid sloshing in a tank with a vertical baffle 

The same tank with a vertical baffle is simulated in this section. A vertical baffle is set at the 

center of the tank (as depicted in Figure 5.17) and the excitation is the same as the previous 

problem. The height of the baffle is 0.75H . The grid and the time step are equal to those used 

in the previous example. This example is solved both with and without the baffle and the results 

of the free surface displacement on the right boundary are in an acceptable  agreement with Liu 

& Lin (Liu and Lin 2009) numerical solution. The discrete form of boundary conditions are 
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(a) 

 

(b) 

Figure 5.17. (a) 2D rectangular tank with a vertical baffle (b) zoom in the baffle area. 
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Figure 5.18. Comparisons of the time series of surface elevation η at the right boundary of the tank. 

As shown in Figure 5.18, by using a vertical baffle, the amplitude of the wave is significantly 

diminished. Velocity vector-plots of both simulations are depicted in Figure 5.19. It can be 

observed that vertical baffle obstructs the sloshing water so that the resonance phenomenon 

cannot occur with the current frequency.  

 

(a) 

 

(d) 
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(b) 

 

(e) 

 

(c) 

 

(f) 

Figure 5.19. Comparison of free surface profiles without baffles (a-c) and with a vertical baffle (d-f) at t= 0, 5 

and 10 (s). 

5.7.4 Solitary wave propagation 

In this section, a solitary wave propagation in a rectangular tank is simulated. In such problems, 

an initial configuration and velocity is imposed to the surface (see Figure 5.20). The wave goes 

back to its former position after colliding with the right wall.  

The solution of this problem by various numerical methods (Durate et al. 2004; González et al. 

2007; Lo and Young 2004; Nithiarasu 2005; Ramaswamy and Kawahara 1987a; Zandi et al. 

2012), experiments (Maxworthy 1976), and analytical solutions (Byatt-Smith 1971) can be 

found in the literature.   
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In this example, the length and the depth of the water in the equilibrium state are 160L m 

and 10H  m, respectively. Water density and gravity acceleration are set to 1000  kg/m3 

and 9.81g  m/s2. The discrete form of boundary conditions can be expressed by 
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where  

2 2
( 1) 10 01

0 0
1 1
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j j
g V u g V vξ ξ     (5.75) 

The initial boundary condition is given to the free surface of the tank as  

2
0 3

3( ) sech
4

Ax A x
H

         (5.76) 

in which, A  is the wave amplitude. The initial velocity components, based on Laitone’s work 

(Laitone 1960), are given by 

 

20 0
0 3

3sech
4

u g H x
H H

       (5.77) 

(3/2)
20 0 0

0 3 3

3 33 sech tanh
4 4

yv g H x x
H H H H

    (5.78) 

 
Aforementioned initial velocity components should be added to the velocities obtained In Eq. 

(5.37). 
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This problem is solved for different values of  0 / H  using a 81×6 uniform grid of nodes.  

 

Figure 5.20. Solitary wave propagation in a 2D rectangular tank. 

In Figure 5.21 the maximum run-up at the right wall is represented using different 

approaches. To evaluate the maximum run-up, Byatt-Smith (Byatt-Smith 1971) proposed an 

analytical first order equation as  

2 3
max 0 0 012

2
R O
H H H H

       (5.79) 

 
Comparing this analytical solution with other numerical approaches and experimental data, one 

may observe that it shows a slight deviation (less than 3%) of maxR
H

 vs 0

H
 the results obtained 

by PDDO are in agreement with the experimental data of Maxworthy (Maxworthy 1976). 

Moreover, other numerical approaches proposed by Zandi et al (Zandi et al. 2012)  and Lo & 

Young (Lo and Young 2004) are in a good agreement with PDDO numerical solution which 

shows the capability of this method to predict the precise maximum run-up. 
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Figure 5.21. The maximum run-up height at the right wall vs initial wave height. 

5.7.5 3D nonlinear liquid sloshing under sway and surge excitations in a 

square tank 

In this section, liquid sloshing is simulated in a 3D square tank as depicted in Figure 5.22.a. 

Experimental data on this test can be found in (Wu et al. 2015). This benchmark has been 

solved by other numerical solutions such as harmonic polynomial cell (HPC) method (Shao 

and Faltinsen 2014) and recently investigated by polynomial collocation method (Wu et al. 

2016). The length and the width of the tank are 1.0L B   m while the still water depth is 

0.25 m. A periodic oscillation, with the angle of 30  (See Figure 5.22.b), is considered 

having velocity projections in x  and y  directions as  
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where,  represents the angular frequency of the excitation and A  stands for the oscillation 

amplitude. In (5.80) xu  and yu  denote surge and sway velocities respectively. 

 

                                   (a) 

 

(b) 

Figure 5.22. . (a) Distribution of the nodes over the square tank (b) Top view of the square tank. 

The boundary condition values in terms of PD unknowns, (x , y )j j , in this problem is given 

by  
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in which, 



173 

 

2 2 2
( 1) 100 010 001

1 1 1
. ( ) ( ) ( )

r r r
n

ij j j ij j j ij j ji
j j j

g V g V g Vξ ξ ξ    

           (5.82) 

The lowest natural angular frequency of the tank is 0 4.4957 rad/s (Wu et al. 2016). The 

excitation frequency is 00.9 , where 0.005A m. A 14 14  uniform grid is emplyed in 

the x y  direction and 5 uniform vertical nodes are set in the z direction.  It should be 

pointed out that for this example PDDO uses 980 nodes while in the model proposed by (Wu 

et al. 2016) 1005 nodes are emplyed. This example is solved up to 28.0 s and the time step is 

chosen as 0.01t  s. 
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(b) 

Figure 5.23. Comparison of the surface elevations in the square obtained by the present method, polynomial 

collocation method and the experimental data (a) 00.9  (b) 00.93  . 

The wave Gauge is set with a distance of 0.0636 m from the left-lower corner of the tank on 

its diagonal as depicted in Figure 5.22.b. Comparison between PDDO numerical solution, 

polynomial collocation method in (Wu et al. 2016) and experimental data in (Wu et al. 2015) 

is shown in Figure 5.23. Excellent agreement is obtained between the three sets of results. The 

snap shots of the free surface elevation at different times, 22.2 : 22.8 st s , for 00.9  have 

been depicted in Figure 5.24. It can be observed that the left-lower corner of the tank has its 

lowest and highest elevation at t=22.2 s and t=22.8 s respectively while for the right-upper 

corner the elevation goes from its highest level at t=22.2 to its lowest elevation at t=22.8 s.  
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t=22.2 s 

 

t=22.3 s 

 

t=22.4 s 

 

t=22.5 s 

 

t=22.6 s 

 

t=22.7 s 
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t=22.8 s  

 

Figure 5.24. Snapshots of free surface elevation in different time intervals, 22.2 : 22.8 st s , for a 3-D square tank 

and 10.9 . 

5.7.6 3D nonlinear liquid sloshing in a cylindrical water tank 

In this example, a 3D cylindrical water tank is simulated by PDDO. The results are then 

validated with the results of the BEM and experimental data given in (Chen et al. 2007b). A 

tank with radius of  0.3R  m, and still water depth of 0.1h  m, is considered as shown in 

Figure 5.25. Based on the linear theorem, first natural frequency of the cylindrical tank is 

given by ((Chen et al. 2007b)): 

1
1 1tanhg h

R R
         (5.83) 

where 1  stands for the first root of the first derivative of the first-order Bessel function

1 1( )J . In this example, these parameters are evaluated as 1 1.84  and thus 0 5.74  rad/s.  



177 

 

 

(a) 

 

 

(b) 

Figure 5.25. (a) Distribution of the nodes over the cylinder tank (b) Top view of the cylinder tank. 

257 nodes are emplyed in the x y  direction and 5 uniform vertical nodes are set in the z 

direction. The total number of nodes used for this example is 1285. Note that although the 

number of nodes in this study is greater than the elements in (Chen et al. 2007b), the time step 

used in this study is 0.01t  s which is ten times higher than the time step employed in (Chen 

et al. 2007b). A harmonic excitation with the velocity oscillation of sineu A t  is 

considered; with 0.0005A  m, 5.16  rad/s for the first case, and 5.74 rad/s for the second 

case. In Figure 5.26, the wave elevation history at lateral wall (0, )R  is compared with the 

experimental data and the results given by Chen et al. (2007). It may be noted that the results 

of the PDDO are in good agreement with the BEM results while the results of both methods 

are in far agreement with the experimental data. The reason may be traced under the fact that 

the wave elevation is relatively small while the solution is performed in a nonlinear style. This 

may introduced some round-off errors in both numerical solutions. An acceptable agreement 

between PDDO numerical results and experimental results is observed especially when the 
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frequency of sloshing is equal to 0 5.74  rad/s. A resonance effect can be observed since the 

wave amplitude grows with the time (Figure 5.26 (b)).  

 

(a) 

 

(b) 

Figure 5.26. Comparison of the surface elevations at lateral wall (R,0) obtained by the PDDO method (Chen et 

al. 2007b) and experimental data with forced frequency: (a) 5.16  rad/s (b) 5.74  rad/s. 

The snap shots of the free surface elevation at different times, 13.15T :13.65Tt , for 

5.74 rad/s have been depicted in Figure 5.27. 
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t=13.15T 

 

t=13.45T 

 

t=13.25T 

 

t=13.55T 
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t=13.35T 

 

t=13.65T 

 

Figure 5.27. Snapshots of free surface elevation in different time intervals, 13.15 T : 13.65 Tt , for a 3-D cylinder 

tank and 5.74 rad/s. 
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Chapter 6 Conclusions 

In the present dissertation, a comprehensive study on engineering problems with discontinuities 

using the bond-based peridynamic model and the PDDO mesh-free method is studied. The 

main goal is to increase the accuracy and to reduce the computational cost of engineering 

simulations. Accordingly, Chapters 1 and 2 have been devoted to the literature review and to 

an overview of the bond-based peridynamic formulation and of its discretization. The main 

contributions of the work are presented in Chapters 3, 4 and 5. The following conclusions can 

be drawn from each chapter: 

- Chapter 3 

Chapter 3 compares three fatigue degradation strategies to be used in the simulation of fatigue 

crack propagation. The constitutive law of the material under static load is bilinear. The 

increment of damage due to fatigue is added to that due to the static increment of the opening 

displacement and is defined in three different ways. A mathematical cylinder model is 

employed to carry out a comparison of the computational efficiency of the three fatigue 

degradation strategies. 

Fatigue degradation strategy 1 assumes that the fatigue damage rate is a function of the opening 

displacement   and of the current value of the total damage D. In fatigue degradation strategy 

2 the damage directly affects the critical value of the opening displacement c  . Finally fatigue 

degradation strategy 3 assumes that the fatigue damage rate is a function only of the opening 

displacement .  

https://www.powerthesaurus.org/efficiency/synonyms
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Then the three laws are implemented in a code using bond based peridynamics to simulate 

fatigue crack propagation, and the sensitivity of the results to variations of the main 

discretization parameters is assessed. Both the cylinder model and the BBPD code provide the 

same assessment of the three fatigue degradation strategies. Two main conclusions can be 

obtained by the current work: 

1) The third fatigue degradation strategy is the best, among those investigated, to be used 

in BBPD codes. 

2) The cylinder model appears to provide reliable indications about the computational 

performance of the fatigue laws. 

 

- Chapter 4  

Chapter 4 presents an effective way to use a variable grid size in a weakly coupled thermo-

mechanical peridynamic model. The proposed numerical method is equipped with stretch 

control criterion to transform the grid discretization adaptively in time. Hence, finer grid 

spacing is only applied in limited zones where it is required. This method is capable of 

predicting complex crack patterns without any a priori hypothesis on crack onset and 

geometry. By introducing fine grid discretization over the boundaries of the model the 

surface (softening) effect is reduced significantly. The accuracy and performance of the 

model are examined through problems such as thermo-elastic and thermal-shock induced 

fracture in ceramics. Accordingly, the proposed numerical solution results are compared 

qualitatively and quantitatively to the experimental data, standard peridynamic with 

uniform grid size and FEM numerical solutions. A remarkable agreement is observed 

between all sets of results. The results confirm that the method is capable of producing the 
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results of a standard peridynamic model with uniform discretization at a much smaller 

computational cost.  

 

- Chapter 5  

In this study, Peridynamic differential operator for the first time is applied to the solution 

of problems of liquid sloshing in tanks and makes use of potential flow theory and 

Lagrangian description. PDDO is capable to recast partial derivatives of a function through 

a nonlocal integral operator whose kernel is free of using any correction function. The 

method is capable to produce a well-conditioned system of equations for the problem which 

is important for marching in time. In order to validate the method, 2D challenging liquid 

sloshing problems with strong non linearity have been solved and the results are compared 

with the other numerical/analytical/experimental results available in literature. Excellent 

agreement is obtained between the PDDO numerical solution and experimental/numerical 

results that exhibits nonlinear wave effects. To further validate the method, we investigate 

liquid sloshing in rectangular tanks containing horizontal and vertical baffles. The PDDO 

method is then applied to the solution of solitary wave propagation problem and the results 

are in a good agreement with experimental data and other numerical results available in 

literature. Moreover, 3D application of PDDO numerical method in sway and surge liquid 

sloshing is presented to show the robustness of the strategy. The examples are solved with 

a coarse grid of nodes with respect to some other approaches such as MLPG, VOF, and 

local polynomial collocation methods. The newly proposed method is unique in its 

combination of high accuracy, high stability and low computational cost. 
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6.1 Future works  

It must be pointed out that several future works can be carried out following the 

outcomes of the present study. Some of them are listed as:  

 Extension of the fatigue crack growth and thermal sock problems to 3D problems. 

 Three fatigue strategies described in Chapter 3, can be investigated in a SB-PD 

framework. 

 Inspired by the work of this dissertation, the author aim at parallelize the 

implementation of the present refinement approach explained in Chapter 4.  

  Fully-coupled Thermo-mechanical problems can be investigated using the adaptive 

refinement technique explained in Chapter 4.  

 Adaptive refinement technique described in Chapter 4, paves the way to future studies 

on concurrent multiscale modeling of materials and structures using peridynamic 

theory. 

 For further studies, PDDO can be applied to more complex problems such as viscus 

liquid sloshing in rectangular tank with/without baffles. 
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