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“Human beings do not live forever, Reuven. We live less than the time it

takes to blink an eye, if we measure our lives against eternity. So it

may be asked what value is there to a human life. There is so much

pain in the world. What does it mean to have to suffer so much, if

our lives are nothing more than the blink of an eye?. . . I learned a

long time ago, Reuven, that a blink of an eye in itself is nothing; but

the eye that blinks, that is something. A span of life is nothing; but

the man who lives the span, he is something. He can fill that tiny

span with meaning, so its quality is immeasurable though its

quantity may be insignificant. A man must fill his life with meaning,

meaning is not automatically given to life. It is hard work to fill

one’s life with meaning- that, I do not think you understand yet. A

life filled with meaning is worthy of rest. I want to be worthy of rest

when I am no longer here.”

Chaim Potok, The Chosen, 1967





Abstract

Cancer is an extremely complex disease, both in terms of its causes and

consequences to the body. Cancer cells acquire the ability to prolifer-

ate without control, invade the surrounding tissues and eventually form

metastases. It is becoming increasingly clear that a description of tumors

that is uniquely based on molecular biology is not enough to understand

thoroughly this illness. Quantitative sciences, such as physics, mathe-

matics and engineering, can provide a valuable contribution to this field,

suggesting new ways to examine the growth of the tumor and to investi-

gate its interaction with the neighboring environment. In this dissertation,

we deal with mathematical models for avascular tumor growth. We eval-

uate the effects of physiological parameters on tumor development, with

a particular focus on the mechanical response of the tissue.

We start from tumor spheroids, an effective three-dimensional cell culture,

to investigate the first stages of tumor growth. These cell aggregates repro-

duce the nutrient and proliferation gradients found in the early stages of

cancer and can be grown with a strict control of their environmental condi-

tions. The equations of the model are derived in the framework of porous

media theory, and constitutive relations for the mass transfer terms and

the mechanical stress are formulated on the basis of experimental observa-

tions. The growth curves of the model are compared to the experimental

data, with good agreement for the different experimental settings. A new

mathematical law regulating the inhibitory effect of mechanical compres-

sion on cancer cell proliferation is also presented. Then, we perform a

parametric analysis to identify the key parameters that drive the system

response. We conclude this part by introducing governing equations for

transport and uptake of a chemotherapeutic agent, designed to target cell

proliferation. In particular, we investigate the combined effect of com-

pressive stresses and drug action. Interestingly, we find that variation in



tumor spheroid volume, due to the presence of a drug targeting cell pro-

liferation, depends considerably on the compressive stress level of the cell

aggregate.

In the second part of the dissertation, we study a constitutive law de-

scribing the mechanical response of biological tissues. We introduce this

relation in a biphasic model for tumor growth based on the mechanics of

fluid-saturated porous media. The internal reorganization of the tissue

in response to mechanical and chemical stimuli is described by enforcing

the multiplicative decomposition of the deformation gradient tensor asso-

ciated with the solid phase motion. In this way, we are able to distinguish

the contributions of growth, rearrangement of cellular bonds, and elastic

distortion, occurring during tumor evolution. Results are presented for a

benchmark case and for three biological configurations. We analyze the

dependence of tumor development on the mechanical environment, with

particular focus on cell reorganization and its role in stress relaxation.

Finally, we conclude with a summary of the results and with a discussion

of possible future extensions.
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Sommario

Il cancro è una malattia estremamente complessa, sia per quanto riguarda

le sue cause che per i suoi effetti sul corpo. Le cellule del cancro acqui-

siscono la capacità di proliferare senza controllo, invadere i tessuti vicini

e infine sviluppare metastasi. Negli ultimi anni sta diventando sempre

più chiaro che una descrizione dei tumori basata unicamente sulla bio-

logia molecolare non può essere sufficiente per comprendere interamente

la malattia. A questo riguardo, scienze quantitative come la Fisica, la

Matematica e l’Ingegneria, possono fornire un valido contributo, sugge-

rendo nuovi modi per esaminare la crescita di un tumore e studiare la

sua interazione con l’ambiente circostante. In questa tesi ci occupiamo di

modelli matematici per la crescita avascolare dei tumori. Valutiamo gli ef-

fetti dei parametri fisiologici sullo sviluppo del tumore, con un’attenzione

particolare alla risposta meccanica del tessuto.

Partiamo dagli sferoidi tumorali, una cultura cellulare tridimensionale, per

studiare le prime fasi della crescita tumorale. Questi aggregati cellulari

sono in grado di riprodurre i gradienti di nutriente e proliferazione che si

ritrovano nei tumori avascolari. Inoltre, possono essere fatti crescere con

un controllo molto severo delle condizioni ambientali. Le equazioni del

modello sono derivate nell’ambito della teoria dei mezzi porosi dove, per

chiudere il problema, definiamo opportune relazioni costitutive al fine di

descrivere gli scambi di massa tra i diversi componenti del sistema e la

risposta meccanica di quest’ultimo. Tali leggi sono formulate sulla base

di osservazioni sperimentali. Le curve di crescita del modello sono quin-

di confrontate con dati sperimentali, con un buon accordo per le diverse

condizioni. Presentiamo, inoltre, una nuova espressione matematica per

descrivere gli effetti di inibizione della crescita da parte della compres-

sione meccanica sulle cellule cancerose. In seguito, eseguiamo uno studio

parametrico per identificare i parametri chiave che guidano la risposta del

sistema. Concludiamo infine questa parte introducendo le equazioni di



governo per il trasporto e il consumo di un agente chemioterapico, studia-

to per essere efficace sulle cellule proliferanti. In particolare, consideriamo

l’effetto combinato di stress meccanici compressivi e di tale farmaco sullo

sviluppo del tumore. A questo proposito, i nostri risultati indicano che

una variazione di volume degli sferoidi tumorali, a causa dell’azione del

farmaco, dipende sensibilmente dal livello di tensione a cui è sottoposto

l’aggregato cellulare.

Nella seconda parte di questa trattazione, studiamo una legge costituti-

va per descrivere la risposta meccanica di tessuti biologici. Introduciamo

questa relazione in un modello bifasico per la crescita tumorale basato

sulla meccanica di mezzi porosi saturi. La riorganizzazione interna del

tessuto in risposta a stimoli meccanici e chimici è descritta attraverso la

decomposizione moltiplicativa del gradiente di deformazione associato con

il moto della fase solida del sistema. In questo modo, risulta possibile di-

stinguere i contributi di crescita, riarrangiamento dei legami cellulari e

distorsione elastica che prendono luogo durante l’evoluzione del tumore.

In seguito, presentiamo risultati per un caso di test e per tre configurazio-

ni di interesse biologico. In particolare, analizziamo la dipendenza dello

sviluppo del tumore dal suo ambiente meccanico, con un’attenzione par-

ticolare sulla riorganizzazione dei legami tra le cellule e il suo ruolo sul

rilassamento degli stress meccanici.

Infine, concludiamo la discussione con un breve riassunto dei risultati

ottenuti e un resoconto dei possibili sviluppi.
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Chapter 1

Motivation and thesis layout

1.1 Introduction

Cancer is the name that is currently given to a collection of related diseases. In

most of the different types of cancer, some cells in the body start to divide without

stopping, and eventually spread into surrounding tissues. In normal tissues, healthy

cells grow and divide according to the needs of the organism. When cells grow old

or become damaged, they are eliminated, and new cells take their place. However,

when cancer develops this carefully controlled process breaks down. As multiple

alterations accumulate, old or damaged cells survive when they should die, and new

cells form even if they are not needed. These extra cells divide uncontrolled and may

result in abnormal masses called tumors. Malignant cancerous tumors can spread

into surrounding tissues, displacing the neighboring healthy cells. In addition, as the

tumor develops, some cancer cells are able to detach from the original tumor mass

and travel to distant organs in the body through the circulation. Eventually, these

cancerous cells may form metastases, i. e. new tumors far from the original formation.

Nowadays, cancer figures among the leading causes of mortality worldwide, with

approximately 14 million new cases and 8.2 million cancer-related deaths in 2012

[173]. Despite new technological advances and significant efforts (projected national

expenditures for cancer care are expected to total nearly $157 billions in 2020 just in

the United States [118]), the initial hopes put in the war on cancer have been largely

disillusioned. Since the 50’s, age-adjusted cancer mortality rates have declined by

only 11% [50]. Prevention, screening and treatment success with some cancers have

saved millions of lives, but the prognosis for many with metastatic cancer is still as

gloomy as it was nearly 50 years ago.

Looking at these premises, researchers from quantitative disciplines such as physi-

cists, mathematicians, and engineers have contributed to cancer research over the

1



1.1 Introduction Chapter 1

last years [155]. One contribution results from discoveries and technological devel-

opments, which have led to advances in medical imaging and radiation therapy for

the diagnosis and treatment of tumors. A second important contribution is brought

by bio-informatics, providing the tools to handle large datasets of genome sequences,

gene expression patterns and cell-signaling networks. Finally, a third contribution has

recently gained interest. This direction involves a more quantitative investigation of

the physical processes underlying the evolution of a tumor. Mathematical models for

tumor growth are part of this contribution, and constitute the framework in which

this thesis is set.

The aim of this dissertation is to develop mathematical tools that are able to

examine the complex interactions between solid tumors and their host microenviron-

ment. We explore the impact that such tools could have on identifying the factors

driving tumor evolution. The theoretical framework is also used to test hypotheses on

tumor dynamics, and the ensuing results suggest a series of experiments to validate

our conclusions.

In this thesis, we focus on two main aspects related to the growth of a tumor

mass. First, we analyze the case of a tumor grown in vitro, and then we compare

model predictions to experimental results. We extend the modeling framework to

include the effects of a chemotherapeutic agent on tumor development, and study the

influence of mechanical stress on drug efficacy. After that, we discuss a constitutive

relation for the tumor mechanical response, which is able to account for cellular

adhesion mechanisms. We model different cases of biological interest, investigating

the influence of the tumor external environment.

Among the innovative contributions of this research, we would like to highlight a

few results:

• we validate our equations with experimental data from tumor spheroids

• from these experiments, we obtain results that confirm and extend the validity

of previous findings reported in literature

• we suggest a new mathematical expression that is able to describe growth inhi-

bition by mechanical compression

• our theoretical results suggest a possible interaction between the tumor and its

mechanical environment that could influence tumor treatment with chemother-

apeutic agents

2



Chapter 1 1.2 Outline of the thesis

• we adapt an existing model for the elasto-visco-plastic response of a tissue to our

framework, and investigate the effects of different healthy surrounding tissues

on tumor development

1.2 Outline of the thesis

The thesis is organized as displayed in Figure 1.1. Chapter 2 provides an introduction

about cancer biology. We discuss the current understanding of cancer initiation and

development. At the end of the chapter, we provide a brief review on mathematical

modeling in cancer.

Chapter 3 covers the modeling of in vitro tumor growth. We report on exper-

iments concerning the evolution of tumor spheroids freely growing in the culture

medium and subjected to an external mechanical pressure. We compare the model

predictions with the experimental results, and suggest a new constitutive relation

that is able to describe the effect of growth inhibition by mechanical stress. Then,

we perform a parametric study of the model equations, to evaluate the influence of

key parameters on tumor evolution. Finally, we discuss the action of a drug on the

spheroid growth curves, and evaluate the possible implications of mechanical stresses

on therapy effectiveness.

Chapter 4 deals with the constitutive law for the tumor tissue. We present the

main assumptions in our framework and summarize the model equations. Then,

we investigate a sample problem to highlight the influence of plastic distortions on

the mechanical and fluid dynamic response of the tissue. We conclude the chapter

with three benchmarks from cases of biological interest, namely the growth of a

spherical tumor in culture medium, embedded in a host tissue, and in the presence

of a heterogeneous environment.

Finally, Chapter 5 draws the conclusions of the work and gives some hints for

future developments.

3



1.2 Outline of the thesis Chapter 1

Introduction to cancer biology

- biological aspects
- mathematical modeling of cancer

Models for tumor spheroids

- compression experiments
- parametric study
- anticancer agents

Constitutive law for tumor tissues

- mathematical formulation
- compression benchmark
- biological cases

Conclusions and future developments

Figure 1.1: Outline of the thesis.
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Chapter 2

Introduction to cancer biology

Cancer has been known since the first activities of human societies have been recorded.

One of the first evidences dates back to a transcription of a 2500 BC manuscript, con-

taining the teachings of an Egyptian physician. The author describes one of the cases

- among different pathological conditions - as a “bulging mass in the breast”, cool,

hard, dense and spreading insidiously under the skin [154]. In fact, he is giving a

vivid description of breast cancer. However, even if the illness is documented in such

early years, death by cancer was not so common in the past [100]. One of the main

reasons for this is that cancer appears as an aged-related disease. In ancient societies,

where a plethora of other illnesses destroyed many lives, people did not live enough

to take cancer. Now that infectious diseases have been controlled, the proportion of

the population at risk for cancer has increased dramatically. Although cardiovascular

diseases are still the main cause of death in the ageing population (at least in de-

veloped countries), cancer is a major problem. Nowadays, cancer control, and even

more cancer prevention, are main health issues. Nevertheless, cancer research has

a wider significance. Almost all multicellular organisms, animals as well as plants,

are affected by this illness. Cancer involves mainly alterations in cell proliferation,

differentiation and development, so that understanding the processes underlying the

disease can help to elucidate the basic mechanisms of life.

The astonishing diversity of the anatomical designs in living beings is allowed

by the cellular organization of tissues. Much of this variability can be endorsed to

the individual cells: these serve as building blocks for organ and tissue construction,

showing great autonomy and adaptability [192]. These features enable the cells to

contribute substantially to the maintenance of the whole organism, in terms of wound

healing or replacement of worn parts. At the same time, this autonomy poses a serious

danger, in that cells may assume roles that are unsuitable for normal tissue function-

ing. Actually, the information encoded in the genome is subjected to corruption by
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different mechanisms, diverting the cells to phenotypes which may show highly ab-

normal characteristics. Alterations in cell proliferation programs stand among these

inappropriate changes. Such alterations, in turn, may lead to large populations of

cells that no longer submit to the standard rules of the tissue. As normal cells are

carefully programmed to collaborate with their neighbors for the survival of the whole

organism, cancer cells appear to be focused on one single task: making more copies

of themselves [192].

In his monograph on cancer, published in 1838, Johannes Müller provided a sys-

tematic analysis of the microscopic features of benign and malignant human tumors

[78]. He attributed cancer to formation of new cells inside a diseased organ, with a

potential to spread to other parts of the body. This early results served as a starting

point to the forthcoming research, devoted to characterize the tumor cells and iden-

tify the differences with their normal counterpart. Nowadays, we have access to a

wide array of information concerning cancer cells. Recent technological improvements

have provided huge datasets for the genetic sequences in the cancer genome, together

with their expressed proteins. The molecular pathways underlying the alterations in

tumors are becoming clearer, so that conceptual maps of the cell internal circuitry are

being sketched [80]. As our understanding of cancer genetics has improved, new drugs

and therapies have been introduced, improving the prognosis for certain treatments.

However, many cancers are still difficult to treat and conceptually appealing therapies

have proven only marginally effective for patient survival (to this regard, see [141] for

a critical review on the contrasting effects in nanotechnology-based therapies). More-

over, some of the questions asked by the early cancer pathologists are still lacking

an answer. As cleverly stated in [100], even the most advanced technology in cancer

research is not able to provide valuable results if it is not applied properly. That is,

now that almost anything seems technically possible, the real issue for researchers

is to identify the right questions to ask. As we gain better understanding of cancer

and its interactions with the host environment, we realize that cancer is a complex

problem that requires due consideration of all the factors to be solved.

In this thesis, we show mathematical and computational tools that are able to

analyze the interactions between solid tumors and their host environments. Through

these tools, we investigate the effects of such interactions on the development of the

tumor mass and we provide some insights into possible treatments.
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2.1 From normal cells to cancer

With a strong simplification, we may say that the rebel cells forming a tumor are the

result of normal development gone wrong [192]. Even though the organism is endowed

with extraordinary safety measures, cancer cells in some way learn to escape them and

prosper. Therefore, we begin this dissertation by examining the normal functioning

of cells and tissues, providing a small account for the different safeguards. Then, we

analyze how a failure in the cellular machinery can lead to cancer.

2.1.1 The structure and function of normal tissues

A tissue is a collection of similar cells sharing the same origin that together carry out

a specific function. We distinguish between four main tissue groups: the epithelium

is a tissue composed of specialized cells that line the surfaces of blood vessels and

organs throughout the body; the connective tissue supports, connects or separates

different types of tissues in the body. It contains the extracellular matrix and the

fibroblasts entrusted with its remodeling; the muscles in animal bodies are part of

the muscle tissue; and the nervous tissue makes up the bulk of the brain and the

nervous system. The term mesenchyme refers generally to all supporting tissues

collectively (including connective tissue, muscles and bone). On the other hand,

the epithelial cells responsible for the functional elements of an organ are termed

the parenchyme. The specific cells are grouped into organs, which share a standard

pattern (see Figure 2.1). There is a layer of epithelium, made of specialized cells

performing the actual organ function, supported by a layer of connective tissue -

the stroma. Blood vessels, nerves and lymphatic vessels pass through the stroma

and provide nutrients and nervous control for the specific tissue cells. A thin, semi-

permeable basement membrane separates the epithelium from the mesenchyme. In

normal development there is a controlled mechanism that allows individual organs

to reach a fixed size. If a tissue suffers an injury, the surviving cells in most organs

start to divide and replace the damaged cells. As soon as it is completed, this process

stops and the system returns to an equilibrium (termed homeostasis). To maintain

this complex structure in homeostasis, the number of each cell type must be carefully

controlled, so that cellular proliferation and apoptosis (i.e. controlled cell death) are

rigorously balanced. When a somatic (i.e. non-germline) stem cell senses the loss

of a differentiated cell, it divides either symmetrically into two new stem cells or

asymmetrically into a stem cell and a progenitor cell. The latter can further divide

or differentiate into the desired cell type, which has then to move to the correct
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Figure 2.1: Scanning electron micrograph of a chick corneal epithelium.
Adapted from [192].

position and assume its function. An involved system of biochemical signals (growth

factors) regulates this complex process. Cells secrete such factors and their response

to them is governed by the activation of certain receptors on the cell surfaces. When

the cell surface receptors are engaged, a cascade of biochemical signals activates or

deactivates the genes in the cell nucleus. Such environment-mediated changes to

gene expression are termed epigenetic events. The activated genes then govern the

production of proteins within the cell, which in the end are responsible for cell cycle

and function. It is becoming clear that the microenvironment influences dramatically

gene expression, so that the behavior of a cell is largely determined by its interactions

with the extracellular matrix, neighboring cells, and soluble local and systemic cues

[135, 2, 16].

2.1.2 The cell cycle

A cell reproduces by performing a highly regimented sequence of events in which

eventually duplicates its contents and then divides in two. This cycle of duplication

and division, known as the cell cycle, is the essential mechanism by which all living

things reproduce. Figure 2.2 shows a schematic for the different stages of the cycle.

Since many cells require much time to grow and double their mass of proteins and

internal structures, most cell cycles have gap phases to allow time for growth. During

the first of such gap stages of the cycle, G1, the cell physically grows, synthesizes

proteins and builds organelles, and prepares for DNA duplication. In the following
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Figure 2.2: The four phases of the cell cycle. Adapted from [2].

synthesis phase, S, the DNA is then copied and in the second gap phase, G2, the cell

undertakes the final preparations for DNA division. In the final mitosis phase, M,

two copies of the genetic material are separated into two daughter nuclei, and the

cytoplasm and organelles are divided into the two newborn cells.

The cyclin-dependent kinases (Cdks) are important components of the cell-cycle

control system. Their activities rise and fall as the cell progresses through the cycle,

leading to cyclical changes in the phosphorylation of intracellular proteins regulating

main events of the cell cycle [2]. These changes in Cdk activity are controlled by a

vast array of enzymes and other proteins. Among the different regulators, cyclins

are known to play a key role. Cdks are dependent on cyclins for their activity:

Cdk protein kinase activity (i.e. the ability of modifying other proteins by adding

phosphate groups to them) is possible only when Cdks are bound to a cyclin. The

assembly and activation of cyclin-Cdk complexes at specific stages of the cell cycle

results from cyclical changes in cyclin protein levels.

The different stages of the cell cycle are separated by numerous checkpoints. Each

of these cellular roadblocks is designed to check for critical errors or malfunctions in

the cell. The cell has the opportunity to repair damaged DNA and control the pro-

gression through the cycle. One of the most important checkpoints is the restriction

point (R) in the late G1 phase, where the cell either commits to division, entering

the S-phase, or exits the cycle [144]. Cells that exit the cycle rest in a quiescent

state, in a phase of the cycle termed G0. Numerous checkpoints are present as well

in the S and G2 phases to control DNA damage and its repair. Since these check-

points are responsible for controlling cell progression into the cycle, they play a role

of paramount importance in cancer initiation and progression. Indeed, the failure
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of a checkpoint for DNA damage may lead to increased genetic instability and the

following acquisition of cell mutations.

2.1.3 Genes involved in carcinogenesis

Correct interpretation of the growth signals by the cells is fundamental to healthy tis-

sue development. Often, cells receive both growth promoting and inhibiting signals.

Their final behavior results from the balance between the contrasting stimuli and the

pattern of expressed genes. Genes that are critical for cancer can be grouped into

two major classes, according to whether the cancer risk arises from significant or poor

activity of the gene product. Genes of the first class, inducing a gain-of-function mu-

tation that can drive a cell towards cancer, are called proto-oncogenes. Their mutant

or overexpressed forms are called oncogenes. Genes of the second class, in which a

loss-of-function mutation can lead to cancer, are called tumor suppressor genes. For

both the cases, the mutation may drive the cell towards cancer directly, by causing the

cell to proliferate when it should not, or indirectly. This second case may happen for

mutations that cause genetic instability, that is induce high frequency of mutations

within the cell genome. In this way, the occurrence of other inherited changes is has-

tened, stimulating tumor progression. The genes whose alteration results in genomic

instability represent a subclass of cancer-critical genes that are sometimes denoted as

genome maintenance genes. Mutations in oncogenes and tumor suppressor genes can

have similar effects in promoting cancer development. Overproduction of a certain

signal for cell proliferation, for example, may result from either type of mutation.

Interestingly, the techniques that led to the discovery of these two gene categories

are quite different. In particular, the mutation of a single copy of a proto-oncogene

converting it into an oncogene has a dominant effect on a cell. Thus, an oncogene

can be identified by its effect when it is added to the genome of a suitable tester

cell. On the other hand, the cancer-causing alleles for the tumor suppressor genes

are generally recessive. Often, both copies of the normal gene have to be removed or

inactivated before an effect can be recorded. This behavior is schematized in Figure

2.3.

Normal cells can rely on different DNA repair mechanisms to cope with uncon-

trolled proliferation. Cycle checkpoints can detect errors in DNA replication and

halt the process, until the damage is repaired. If repair happens to be impossible,

the pathways for cell apoptosis are triggered. Tumor suppressor genes are known to

play key roles in these checkpoints, in particular in the one present at the transition
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Figure 2.3: Schematics for cancer-critical mutations, falling into domi-
nant and recessive cases. Adapted from [2].

between G2/M phases, right before mitosis. However, these genes can be damaged,

leaving the cell more vulnerable and subjected to additional genetic damage.

2.1.4 Possible causes of genetic damage

The genetic material in the cell is susceptible to damage by altering the chemical

bonds between the molecules or the molecules themselves. This can occur as a con-

sequence of exposure to chemicals reacting directly with the bases or the backbone of

the DNA. Also, high energy radiation interacting with the tissue may generate reac-

tive chemical species harmful to the genetic material. Chemical and physical agents

that are able to damage the DNA are generally termed carcinogens. One of the first

evidences of such substances dates back to 1915, when a Japanese pathologist and

his assistant induced tumors on the ears of rabbits using coal tar, demonstrating the

carcinogenic properties of the latter [192]. Several components of coal tar were later

identified, being common products of combustion. Some of these hydrocarbons were

subsequently found in the condensates of cigarette smoke as well.

One of the possible mechanisms of action for carcinogens may be through the

production of reactive oxygen species, following their metabolization. Such chemicals

can lead to formation of DNA adducts, where the radicals bind to the DNA. These
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substances can deform DNA, altering the sequence of the bases in ways that can-

not always be repaired. Other DNA damage may be caused by excess energy that

can alter the chemical bonds or introduce reactive species. This is the case of UV

radiation, which can induce some forms of skin cancer. Other radiations of shorter

wavelengths, such as X-rays, can penetrate deeply in the tissue and affect cells in

the lower layers. High energy photons damage DNA directly by double-strand DNA

breaks or, alternatively, alter the DNA base pairs distorting the DNA structure. A

third source of genome damage is given by pathogens. DNA viruses insert their own

genetic sequences into the host cells and alter cellular function. Sometimes, the in-

sertion of external sequences can lead to disabling of a tumor suppressor gene or

activation of an oncogene. Finally, some deficient genes may just be inherited, rather

than obtained from genetic lesions. Inheriting defective tumor suppressor genes may

lead, for example, to increased incidence of a particular type of cancer in certain

families.

2.1.5 A bit of nomenclature

Cancer cells are characterized by two main features: they reproduce in spite of the

normal restraints on cell growth and division, and they invade regions of the organ-

ism usually restricted to other cells. An abnormal cell that proliferates out of control

will give rise to a neoplasm, i.e. a new and abnormal growth. As long as the cells

from the neoplasm have not become invasive, the tumor is said to be benign. For

these types of tumors, removing or destroying the mass is usually enough for a com-

plete cure. A true cancer arises when the tumor becomes malignant, that is, when

its cell acquire the ability to invade the surrounding tissues. Invasive cancer cells

are able to enter the blood and lymphatic vessels, and form secondary tumors called

metastases. Generally, the more widely the cancer spreads, the harder it becomes to

eradicate. In fact, metastases are what kills the patient in general. A classification

for different cancers is given traditionally according to the tissue and cell type of

origin. For example, carcinomas are cancers that arise from epithelial cells. This

type of tumor is the most common among human cancers, accounting for about 80%

of the cases [2]. Among carcinomas there are tumors arising from the epithelial cell

layers of the gastrointestinal tract, as well as the skin, mammary gland, pancreas,

liver, lung, ovary, prostate and urinary bladder. The remainder of malignant tumors

arise from nonepithelial tissues. The first major class of nonepithelial cancers derive

from connective tissues. These tumors, called sarcomas, constitute about 1% of the
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tumors in the clinic. The second group of nonepithelial cancers arise from cells be-

longing to blood-forming tissues - hematopoietic - including the cells of the immune

system. Leukemias and lymphomas are included in this class. Finally, the third ma-

jor grouping of nonepithelial tumors arises from cells that form the components of

the central and peripheral nervous system. Included here are gliomas, glioblastomas,

neuroblastomas, schwannomas and medulloblastomas. Even if they comprise only

1.3% of all diagnosed cancers, these are responsible for about 2.5% of cancer-related

death [192]. Together with the set of names for malignant tumors, there is a related

nomenclature for benign ones: for example, an adenoma is a benign epithelial tumor

with a glandular organization; the corresponding type of malignant tumor is called

adenocarcinoma. Most cancers have features that reflect their origin. It is the case of

basal-cell carcinoma, where tumor cells derive from keratinocyte stem cells in the skin

and generally continue to synthesize cytokeratin intermediate filaments. Cells from

a melanoma, instead, originate from pigment cells in the skin and often continue to

make pigment granules. Note that cancers originating from different cell types behave

generally very differently. Regarding the two previous examples, basal-cell carcino-

mas are only locally invasive and metastasize rarely. On the other hand, melanomas

can become highly malignant and often form metastases.

2.1.6 Some insights into carcinogenesis

Even after the cancer has metastasized, it is usually possible to trace its origin back

to a single primary tumor, in a specific organ. Primary tumors are thought to derive

by cell division from a single cell that initially experienced some heritable change.

Afterwards, additional alterations accumulate in some of its descendants, allowing

them to outgrow their neighbors. Notably, by the time of its first detection, a typical

human cancer will have been developing for already many years, containing a billion

cancer cells or more [2]. Strange as it may seem, many lines of evidence suggest that

most cancer cells originate from a single aberrant cell. Then, if this is the case, the

abnormal cell needs to pass on its abnormality to its progeny, the aberration being

heritable. Therefore, development of cancer cell clones has to depend on genetic

changes. As previously anticipated, tumor cells contain somatic mutations, that is

they display one or more alterations in their DNA sequence that distinguish them from

the normal cells surrounding the tumor. Cancers may also be driven by epigenetic

changes, i.e. persistent, heritable changes in gene expression that happen without

alteration of the DNA sequence. Somatic mutations that alter DNA sequence appear

to be frequent in different cancers, and cancer is in this sense a genetic disease.
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An estimated 1016 cell division occur in a normal human body in the course of a

typical lifetime [2]. Even in an environment free of mutagens (agents causing genetic

mutations), mutations would occur spontaneously at an estimated rate of about 10−6

mutations per gene per cell division. This estimate is due to the existing limitations

on the accuracy of DNA replication and repair. Therefore, during a typical lifetime,

every single gene has possibly undergone mutation on about 1010 separate occasions.

Among the resulting mutated cells, a large number will sustain deleterious mutations

in genes regulating cell growth and division, which may cause the cells to disobey

the normal restrictions on proliferation. Given these estimates, it seems reasonable

to ask ourselves why cancer occurs so rarely. A possible explanation is based on the

fact that a single gene mutation is not likely enough to convert a healthy cell into a

cancerous one. The development of a cancer typically requires a substantial number

of independent, rare genetic and epigenetic alterations to occur in the lineage deriving

from a single cell. The observed incidence of cancer as a function of age is a clear in-

dication of this behavior. In fact, for most types of cancers the incidence rises steeply

with age, as it would be expected if cancer was caused by a progressive accumulation

of a set of mutations in a single lineage of cells. These indirect arguments have now

been confirmed by sequencing of the genomes of tumor cells from cancer patients

and characterizing the mutations that they contain. The progressive accumulation of

mutations in a number of different genes helps to explain the phenomenon of tumor

progression, in which an initial mild disorder of cell behavior evolves gradually into

an actual cancer (see Figure 2.4 describing cancer progression in the uterine cervix).

Thus, tumor progression involves a large element of chance and usually takes many

years. At each stage of progression, some individual cell acquires an additional muta-

tion or epigenetic change that, said with the language of natural selection, provides a

selective advantage over its neighbors. The new abilities gained by the cell may ease

its thriving in the tumor environment, which is usually characterized by harsh condi-

tions (such as low levels of oxygen or poor nutrient concentrations). The offspring of

the best-adapted cells continue to divide, eventually giving rise to the dominant clones

in the growing mass. Since new mutations arise continuously within the tumor mass,

different subclones may gain advantage and predominate. These may be overtaken

in turn and outgrown by their own sub-subclones. The increasing genetic diversity

encountered in cancer progression is one of the main factors that makes treatment

difficult.
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Figure 2.4: Stages of progression in the development of cancer of the
epithelium of the uterine cervix. Adapted from [2].

2.1.7 Distinctive traits of cancer cells

A large cell population number creates the opportunity for mutations to occur, but the

driving force for cancer development resides in the selective advantages possessed by

the abnormal cells. A mutation or epigenetic change can confer a significant advantage

by increasing the rate at which a cell clone proliferates or by enabling it to continue

proliferating despite the controlling signals. Cancer cells grown in culture typically

display a transformed phenotype, showing an altered shape, motility, and response to

growth factors. Contrary to normal cells, which do not divide unless attached firmly

to the substrate, transformed cells often divide even if held in suspension. Moreover,

normal cells are inhibited from moving and duplicating when the culture reaches

confluence - i.e. cells reach a high density. Instead, transformed cells continuously

move and divide even after confluence, piling up in layers in the culture dish. What

is observed in culture gives a hint of the possible misbehaviors happening in a tumor

growing into a host tissue. However, cancer cells in the body show additional features

that mark them out even more from normal cells.

In general, when sufficient oxygen is present, normal tissue cells fully oxydize

almost all the carbon in the glucose they uptake to obtain CO2, subsequently lost

as a waste product by the body. Growing tumors need lots of nutrients to obtain

the building blocks for new macromolecules. Indeed, most tumors have a metabolism

which is more similar to the one of a growing embryo, than to that of an adult tissue.
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In particular, tumor cells consume glucose greedily, importing this substance from

the blood at a rate much higher than neighboring normal cells. Only a small fraction

of this imported glucose is used for ATP production by oxidative phosphorylation.

Instead, a significant quantity of lactate is produced, with many of the remaining

carbon atoms derived from glucose that are diverted for use as raw materials needed

by the growing tumor cells. This tendency for exaggerated glucose consumption and

altered energy metabolism observed in cancer cells is called the Warburg effect, from

Otto Warburg observation in 1924 [188]. Remarkably, the abnormally high glucose

uptake allows to image tumors selectively by whole-body scans (employing techniques

such as PET and using suitable contrast agents), providing a way to monitor cancer

progression.

As mentioned in the previous sections, powerful safety mechanisms guard against

the troubles caused by deranged cells. Some of these mechanisms operate to halt

cell proliferation, leading eventually to apoptosis. Cancer cells require additional mu-

tations to elude these defenses against cellular misconduct. Such mutations drive

the cell into an abnormal state, unbalancing metabolic processes and production of

cell components. To thrive, cancer cells must accumulate mutations that disable the

normal safeguard mechanisms, which would otherwise induce such cells to commit

suicide. Note that, even if cancer cells fail to undergo apoptosis, this does not mean

that they rarely die. In fact, the interior of large solid tumors is characterized by

massive cell death. This results from extremely difficult living conditions, with severe

competition among cancer cells for nutrients. Typically, cells die due to necrosis, al-

lowing the tumor to grow only if the cell birth rate outpaces the death one. According

to this explanation, tumor double in size over a timescale that can be much slower

than the doubling time for cell proliferation.

Most of normal human cells display a limit to the number of times they can

divide when stimulated to proliferate in culture. After a certain number of population

doublings, they stop dividing. This internal counting mechanism is termed replicative

cell senescence and it generally depends on progressive shortening of the telomeres -

a telomere is a region of repetitive nucleotide sequences at each end of a chromosome

[80]. The replication of telomere DNA during the S phase depends on the enzyme

telomerase, which maintains a special telomeric sequence protecting chromosome ends

from deterioration. Since many proliferating human cells are deficient in telomerase,

their telomeres shorten with every division, their protective action deteriorates, and a

DNA damage signal is eventually created. The altered chromosome ends can trigger

a permanent cell-cycle arrest, causing a normal cell to die. Remarkably, cancers cells
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are able to avoid replicative senescence in different ways. They can keep telomerase

active as they proliferate, so that their telomeres do not shorten; otherwise, they can

evolve alternate mechanisms for elongating their chromosome ends. Regardless of the

strategy adopted, the striking result is that the deranged cells continue proliferation

under conditions in which normal cells would instead stop.

2.2 The stages of solid tumor growth

Once a tumor has established an outpost in the host tissue, it starts a stage of rapid

growth and becomes an in situ cancer. Further development of a solid tumor is

generally divided into three main phases, namely the (i) avascular, (ii) vascular, and

(iii) metastatic stages.

2.2.1 Avascular solid tumor growth

Said quite simply, avascular tumor growth is the growth of tumors in the absence

of blood vessels. As the tumor grows from a small cluster of initial cancer cells, it

interacts with the external environment of the host tissue. It mechanically displaces

and compresses the surrounding tissues, including the existing vasculature and lym-

phatics. The tumor degrades and remodels the extracellular matrix (ECM) both

biomechanically - by inducing strains in the matrix - and biochemically. This second

form of chemical remodeling is usually performed by the secretion of matrix degrading

enzymes (MDEs) such as matrix metalloproteinases (MMPs) [17]. MMPs degrade the

ECM that, in turn, can release ECM-associated growth factors that further fuel tumor

growth [80]. Moreover, ECM degradation by MDEs increases the tumor ability to

expand into the surrounding tissues, both by reducing the mechanical stiffness of the

matrix and by providing additional space for the growing mass [116]. Tissue invasion

results from the dual contribution of proliferation-induced pressure and proteolytic

degradation of the surrounding tissues. Such expansion forces sheets, or fingers, of

tumor cells along lines of least mechanical resistance in the neighboring regions [100].

Notably, there is supporting evidence that the tumor may induce epigenetic changes

in the adjacent stromal cells, fostering development of the cancer [80, 54]. Even the

action of cells from the immune system is affected by the presence of the tumor. The

immune cells operate in conflicting ways: tumor-antagonizing and tumor promot-

ing immune cells can be found, in different proportions, in many neoplastic lesions

[44, 80].
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In this early stage of cancer, the tumor has not yet established its own vascular

network. Thus, it must rely upon the host tissue for delivery of required substances

- such as oxygen, glucose or growth factors - via diffusion from the surrounding

vascularized tissues. Nutrients enter the tumor and are uptaken by proliferating

cancer cells. In particular, oxygen diffuses over distances of the order of 100-200 µm

into tissue, before dropping to levels insufficient for cellular metabolism [29]. When

the tumor radius exceeds this diffusion limit, oxygen can no longer reach the tumor

interior, and only cells at the tumor border still experience an adequate oxygen supply.

An hypoxic region is formed in the tumor center, contributing to the selection of more

aggressive cancer cells. At this stage, rapid cell proliferation in the outer regions is

still able to increase the overall tumor volume. However, as the tumor mass expands,

the size of the hypoxic regions increases and oxygen levels continue to drop in the

center. If the oxygen concentration drops to critically low levels, then hypoxic cells

start to die by necrosis. During this process, the contents of the cell - organelles and

biological chemicals - are released into the microenvironment and are slowly degraded

over time. The cellular water content eventually escapes through the interstitial space

in the tumor, together with degraded cellular material that is subsequently removed

by immune cells. The tumor starts to lose volume and, as the size of the necrotic

core grows, the rate of volume gain from proliferation eventually balances with the

rate of volume loss by necrosis. After some time, this leads to a steady tumor size,

with a characteristic diameter of about 1-2 mm.

2.2.2 Vascular tumor growth

The second stage of cancer development can be interpreted as a consequence to the

hypoxia and nutrient deprivation encountered during avascular tumor growth. The

ultimate response is tumor angiogenesis, a process in which the tumor induces en-

dothelial cells (ECs) to form a new vasculature, supplying the cancer cells with the

nutrients necessary for their proliferation. Actually, the observation that angiogenesis

occurs around tumors was made nearly 100 years ago, and the hypothesis that tumors

produce a diffusible angiogenic substance was put forward in 1968 [29].

Nowadays, it is known that hypoxia is able to trigger a number of biological

changes in most animal cells [194]. Hypoxia inducible-factors (HIFs) are present

within cells regardless of oxygen levels. However, under normoxic conditions, HIF-1α

(a member of the HIF family) results to be inactivated. On the contrary, when sta-

bilized by hypoxic conditions, HIF-1α upregulates several genes to promote survival
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in low-oxygen conditions. In particular, genes that increase cellular motility are ac-

tivated, and at the same time cells start to secrete tumor angiogenic growth factors

(TAFs), such as the vascular endothelial growth factor (VEGF) [29]. TAFs diffuse

outward from the hypoxic regions of the tumor and eventually reach the neighboring

blood vessels.

Healthy blood vessels are composed of tightly connected ECs, surrounded by a

basement membrane and other supporting cells - such as smooth muscle cells and

pericytes [102]. When the TAF gradient is detected by the ECs, they begin to secrete

matrix degrading enzymes that are able to break down the basement membrane and

the ECM. This allows the ECs to migrate from the original blood vessel towards

the TAF source in the tumor. The first migrating ECs are termed sprout tips and,

immediately behind them, other ECs start to divide and migrate. Eventually, they

align and form tubes of polarized ECs, surrounding a vascular lumen. These events

are represented schematically in Figure 2.5. The new vessels then link with the old

Figure 2.5: Tumor-induced sprouting angiogenesis. Adapted from [102].
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ones and form a network of loops during a process called anastomosis. The resulting

neovasculature provides the tumor with a direct supply of oxygen and other nutrients.

Note that the final vasculature architecture is actually determined by the balance of

pro- and anti-angiogenic growth factors (competing in the so called angiogenic switch),

as well as by the mechanical stresses arising in the tumor and in the new blood vessels

[91].

Nourished by this new vascular network, cancer cells begin a stage of rapid prolif-

eration. However, even if critical for further tumor development, the tumor angiogenic

network is far from being efficient. Due to their pathological nature, tumor blood ves-

sels are often leaky, displaying large gaps between ECs. The newly formed vessels are

tortuous and the regular branching patterns observed in healthy tissues are almost

lost. In addition, the basement membrane outside the vessels may not be fully formed

and some of the newly born vessel walls may be composed of a mosaic of tumor cells

and ECs [89, 29, 92]. The resulting inefficiency hinders fluid flow and drug delivery in

tumors. Eventually, it gives rise to harsh conditions that select even more malignant

clones of cancer cells.

2.2.3 Tissue invasion and metastasis

Cancer cells spread and multiply at new sites in the body through a process called

metastasis. This aspect is what causes most of cancer related deaths, however it also

remains the least understood. Indeed, it is estimated that metastasis accounts for

90% of deaths from cancer [2]. After it had spread throughout the body, a cancer

becomes almost impossible to eradicate by surgery or radiation. Remarkably, metas-

tasis itself is a multistep process, which is often referred to as the invasion-metastasis

cascade [80]. During this stage of tumor development, cancer cells invade local tis-

sues and vessels, move through the circulation, leave the vessels, and then establish

new cellular colonies at sites far from the primary tumor (Figure 2.6). Each of these

events is a complex process, in which most of the underlying mechanisms are still not

clear. Cancer cells are able to build metastases after escaping the constraints that

keep normal cells in their proper places. Malignant tumors are indeed characterized

by a certain degree of invasiveness, showing disorganized patters of growth and irreg-

ular borders, with extensions into the surrounding tissues. Although the molecular

changes underlying this invasive behavior are still not understood, it is clear that

invasiveness requires a disruption of the mechanisms keeping cells tethered to their

proper neighbors and to the ECM. Moreover, it is becoming increasingly apparent
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that a crosstalk between the cancer cells and the tumor stroma is involved in acquir-

ing the capabilities needed for invasion. Malignant phenotypes do not seem to arise in

a strictly cell-autonomous manner, and their occurrence cannot be understood solely

by the analysis of tumor cell genomes.

For carcinomas, the cellular tendency to move away from the original site re-

sembles the epithelial-mesenchymal transition (EMT), occurring in some epithelial

tissues during normal development. By co-opting a process involved in various steps

of embryonic morphogenesis and wound healing, carcinoma cells can concomitantly

acquire multiple features enabling invasion. The second step of metastasis, that is

the establishment of colonies in distant organs, begins with cell entry into the circu-

lation. To accomplish this, invasive cancer cells have to cross the walls of blood or

lymphatic vessels. The latter, displaying larger radii and more deformable walls than

blood vessels, allow cancer cells to enter in small clumps. Then, such clumps may

become trapped in lymph nodes, giving rise to lymphnode metastases. Cancer cells

entering blood vessels, instead, seem to do so singly. Modern techniques for sorting

cells according to their surface properties are able, in some cases, to detect these cir-

culating tumor cells (CTCs) in samples of blood from cancer patients [77]. This task

is extremely difficult, since CTCs are only a minute fraction of the total blood-cell

Figure 2.6: Steps in the invasion-metastasis cascade. Adapted from [2].
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population. Only a small proportion of the cancer cells that enter circulation suc-

ceed in making its exit, settling in new sites. Very few cells manage to survive and

proliferate in the foreign environment, starting metastases. Experiments have shown

that fewer than one in thousands, perhaps one in millions, are successful in this se-

quence of events [2]. Note that the migrating cells may fail to survive in the alien

environment, or they may only thrive for a short period - forming a micrometastasis

- before dying out. Moreover, many cancers are discovered before forming metastatic

colonies and can be cured by removing the primary tumor. However, an undetected

micrometastasis can remain dormant for many years before revealing its presence by

forming a secondary tumor, long after the primary tumor has been removed.

To conclude this section, it is interesting to note that without the proper tumor-

host interaction, the destination microenvironment will not support the newly ar-

rived cancer cells and the following formation of metastases. In 1889 Stephen Paget,

an English surgeon, noticed that mechanical forces alone could not account for the

metastatic dissemination of a tumor [139]. Later work showed that, while CTCs are

found in the vasculature of multiple organs, only certain sites develop metastatic tu-

mor deposits. As reviewed in [142], some clinical findings in cancer patients show that

solid tumors have a propensity to set home preferentially to distinct organs, as it is

seen in metastasis of melanoma to the lung and brain. The metastatic cells behave like

seeds from certain plants, which thrive exclusively in distinct favorable ecosystems -

an idea which is known as the seed and soil hypothesis. Even though mechanical forces

are employed in delivering the tumor cells to secondary sites, successful colonization is

strongly dependent on a receptive microenvironment. Indeed, recent evidences show

that this distant microenvironment is arranged prior to cancer cell arrival, creating

a “landing site” for future metastatic growth. This modified microenvironment in a

distant host tissue is sometimes referred to as the pre-metastatic niche. Remarkably,

the existence of such a primed environment implies that metastases to a particular

organ are not a random occurrence, but rather an already determined event.

2.3 Mathematical models for cancer

As shown in the previous sections, cancer understanding is made difficult by a wide set

of problems. The involved spatial and temporal scales span from the biochemistry

of DNA mutation to grown tumors. Consequently, several mathematical modeling

approaches have been used to investigate these problems. Here we discuss a brief

history of mathematical models for cancer developed over the past years. For an
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extended discussion, we refer the reader to the reviews in [14, 10, 153, 33, 158, 24,

164, 3].

In general, statistical techniques can be applied to experimental data to reveal

correlations between observable phenomena. Then, it is necessary to postulate hy-

potheses to establish the reasons underlying these correlations, stating which physical

processes are involved and how they interact [24]. Biological experiments for testing

these hypotheses may be extremely time-consuming, expensive, or even impossible

with the current technologies. In such cases, mathematical modeling can play an

intermediate role, providing an independent check for the consistency of the hypothe-

ses. If a model derived from such hypotheses is not able to reproduce the observed

phenomena, then the original statements have to be modified before carrying on the

work. Moreover, mathematical models can improve the design of experiments by

highlighting which measurements are required to test a particular theory, or whether

supplementary information can be obtained by collecting additional data. Finally,

the parameters that feed the equations in the models can be varied over a large set,

providing a thorough characterization of the system. These ideas are summarized in

Figure 2.7, where the different stages involved in the formulation of the mathematical

model are represented. Actually, mathematical modeling is an iterative process and

experimental data

biological 
hypotheses

model formulation and 
refinement

model solution and 
validation

model predictions

Figure 2.7: Different stages involved in mathematical modeling.
Adapted from [24].

the success of its predictions relies on a continuous collaboration between experimen-

talists and theoreticians.
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2.3.1 Models for avascular tumor growth

One of the earliest models for cancer initiation was developed by Armitage and Doll

in 1954 [11]. The model is derived by the analysis of cancer mortality statistics,

comparing different cancer types. The theory states that the age distribution of a

cancer is proportional to a power of age, with an exponent related to the number

of changes needed for cancer progression. Although the theory provides an excellent

description for cancers of the colon, stomach and pancreas, it fails to describe some

of the others. In addition, the authors’ findings do not provide a mechanistic insight

into the functional changes responsible for the disease progression.

By the analysis of similar incidence statistics for retinoblastoma, Knudson pro-

posed that only two changes (or “hits”) are needed to cause the disease [101]. There-

fore, for children with familial retinoblastoma that are born with the first hit only

another mutation is required, increasing the chances of developing the tumor. No-

tably, the identification of the RB1 tumor suppressor gene in 1987 confirmed this

two-hit hypothesis.

Among the earliest spatio-temporal models for avascular tumor growth, Greenspan

describes how the size and structure of a spherical tumor change when different hy-

potheses on cell viability and proliferation are considered [73]. According to the

hypotheses that were used in this work and in similar ones, the tumor is assumed to

remain radially symmetric for all the discussion. Cell proliferation is regulated by a

single, diffusible growth factor that is supplied externally, such as oxygen. Growth

inhibiting factors can be produced internally and affect the mitotic rate of the cells.

Notably, the distribution of a growth factor in the tumor regulates its local dynam-

ics, with expansion occurring when cell growth exceeds death and regression in the

opposite case. The integration of these contributions over tumor volume leads to an

equation similar to the following one:

dR

dt
=

1

R2

∫ R

r=0

F (c)r2 dr,

relating the time evolution of the tumor radius R(t) to c(t), the concentration of

growth factor in the spheroid. Here, F (c) models the influence of the growth factor

on the net cell growth rate at each point of the spherical tumor. If c represents a

nutrient, for example, F can be thought to increase as c increases, and it will possibly

reach the maximum value for a large value of c. Then, the spatial distribution of c is

determined by the solution of the following diffusion equation:

∂c

∂t
=

D

r2
∂

∂r

(
r2
∂c

∂r

)
− g(c, R),
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where D represents the diffusion coefficient of the growth factor, and g describes

its local rate of consumption. This latter function is specific for the growth factor

used and might depend on the proliferation state of the cells. Threshold values of

the growth factor can delineate regions of cell proliferation, quiescence or necrosis.

Then, the resulting distribution of cell populations can be compared with tumor

histologies. Interestingly, models of this form show good qualitative - and sometimes

also quantitative - agreement with experimental data. Typically, these models predict

an evolution of the tumor radius that is exponential with time for the first days, when

the concentration of the growth factor is high over the whole domain. After that, a

transient linear phase follows and finally the tumor reaches an equilibrium size at

which the rates of cell growth and death balance. Asymptotic techniques can be

applied for some physically relevant conditions, leading to analytical solutions. These

can be used to evaluate physical quantities of interest, such as the growth speed, in

terms of model parameters [189].

Due to the many simplifications, these early models have limited applicability. In

particular, the presence of a unique cell population is limiting, since the stochastic

appearance of different cell clones cannot be investigated. At the same time, cell

metabolism is controlled by a single diffusible species, whereas multiple metabolites

are actually involved. Extensions and modifications of these original models became

numerous during later years (see the reviews in [146, 10, 158] for a detailed account).

Significant developments include relaxing the hypothesis of radial symmetry and the

inclusion of different cell populations within the tumor. For example, in a subsequent

paper Greenspan used classical perturbation theory to predict how the boundary of

an invasive tumor develops, departing from spherical symmetry [74]. Cristini and

coworkers, on the other hand, employed sophisticated numerical methods to solve a

nonlinear system of equations and relate the irregular boundaries of the tumor to key

parameters of the model [41]. Interestingly, their findings show that highly vascu-

larized tumors remain compact in shape while growing, whereas those with limited

availability of nutrients tend to develop invasive protrusions, eventually leading to

tumor fragmentation.

Mechanical aspects were incorporated at later times, starting with equations for

cell movements depending on a cellular “pressure”. In the model of Greenspan [74],

for example, the cell culture is regarded as an incompressible fluid composed of cells

and cellular debris in which a distribution of sources and sinks is present (given by cell

proliferation and necrosis, respectively). Cell movement is due to pressure gradients

arising from the boundary of the tumor, where nutrient and pressure levels are high,
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towards the tumor center, where the nutrient and pressure levels are low. In addition,

surface tension or cell-cell adhesion are assumed to maintain a compact tumor shape,

countering the expansive forces due to growth. Remarkably, the analysis of the equa-

tions show that the strength of cellular adhesion influences tumor morphology. In

particular, strong adhesion yields radially symmetric tumors, whereas weak adhesion

leads to irregular tumor boundaries.

Several authors have developed biomechanical models where the tumor is consid-

ered as a mixture of interacting components [21, 23, 58, 195]. Usually, the model is

composed of two main phases: tumor cells and interstitial fluid. Some of these mul-

tiphase models are based on porous media theory. Generally, in this kind of models

different balance equations regulate the exchange of mass and momentum among the

constituents [26, 159, 32, 6, 167, 8]. Since the mathematical models developed in this

dissertation belong to this second group, we discuss below some examples from these

categories.

In [195], the authors develop and simulate a diffuse interface continuum model for

multispecies tumor growth. The model is able to account for adhesive forces among

the cell species, introducing an adhesion energy from continuum thermodynamics.

Using an efficient numerical scheme, the authors are able to solve the equations for

the different cell populations and the substrate components. They present simulations

for unstable avascular tumor growth in two and three dimensions. Interestingly, the

tumors at the end of the simulations display complex shapes, dependent on different

cell adhesions.

In [6], Ambrosi and Preziosi report on a mathematical model for tumor growth

that accounts for adhesion mechanisms between tumor cells. The ECM is described

as an elastic compressible material, while the constitutive relationship between the

stresses and the strains within the cellular constituents is obtained via a multiplicative

decomposition of the deformation gradient tensor. This decomposition results in the

splitting of the total deformation into a growth, a plastic and an elastic part. On the

basis of biological considerations, a yield condition on the cellular mechanical stresses

is postulated, separating the elastic and dissipative regimes. Finally, numerical tests

display how mechanical stress is able to influence tumor growth, and where it is able

to generate cellular reorganization.

Sciumè and coworkers [167] present a multiphase model for avascular tumor growth

based on porous media mechanics. They describe the tumor as composed by the ECM,

which constitutes the solid skeleton of the porous material, tumor cells, healthy cells

and interstitial fluid. Also, tumor cells are divided into proliferating and necrotic,
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whereas a nutrient is transported into the interstitial fluid. The model is able to

account for different interfacial tensions between cells and interstitial fluid, and dis-

tinct mechanisms for cell-ECM adhesion. They study three different cases, namely

the growth of a tumor spheroid, an avascular tumor embedded in a host tissue, and a

tumor cord model. When host cells are present, the relative difference in adhesion to

the ECM between the former and tumor cells drives tumor infiltration. Subsequently,

the model has been extended to account for different interfacial tensions between tu-

mor cells, healthy cells and interstitial fluid [165], for a deformable ECM [166], and

for the presence of TAF and ECs to model angiogenesis [160].

In [8], the authors develop a mathematical model for avascular tumor growth in the

brain. The tumor grows in a three dimensional setting, where the domains for the gray

and white matter and the cerebrospinal fluid are constructed from magnetic resonance

images. The tumor and the host tissue are modeled as biphasic porous materials, and

the effects of radiotherapy are also incorporated in the modeling framework. They

observe that the different mechanical properties and the spatial configuration of the

tissues surrounding the tumor affect its growth, resulting in strong spatial variation

of cellular proliferation and significant deformations of the host tissues.

Models like those presented above are termed continuum models, since they de-

scribe how cell populations change without distinguishing between individual cells.

In continuum models, the tumors are considered as continuous masses containing a

small number of different cell populations, usually neglecting subcellular phenomena.

This kind of models is suited for cases where the number of cells in the system is

very large, but it should be avoided when describing small clusters of cells, such as

metastases. When the number of cells is small, it is possible to use discrete models

that view the tumor as a collection of interacting cells. Each cell has assigned its set

of parameters and behavioral rules, allowing to study tumor invasion and emergence

of clonal subpopulations. The parameters governing cell behavior can be chosen using

measurable biological and physical quantities, such as the cell duplication times or

their membrane deformation in response to mechanical loading [130, 182, 3].

For example, Quaranta and coworkers [152] use cellular automata models to inves-

tigate the influence of the microenvironment, in particular the oxygen concentration,

on the development of a tumor. They show that for low oxygen levels the tumor

diverges from its initial phenotype and exhibits a large diversity in population, with

aggressive phenotypes becoming dominant.

Another example is given in the work by Kim and colleagues [97]. They develop a

hybrid model in which a continuum approach is used in regions with high cell density,
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whereas a discrete description is used for regions with a small number of cells. In

this way, the authors are able to analyze the effects of cellcell adhesion and variable

growth rates at the cellular level, even by maintaining some features of the continuum

description.

Recently, in [9] the authors integrate biological and computational approaches to

derive a hybrid cellular automata model for bone metastases arising from prostate

cancer. The model is able to account for the key players in disease progression,

reproducing the steps of invasion from prostate to bone. Notably, the temporal

evolution of the metastases is highlighted, and the application of clinically relevant

therapies to the computational model illustrates the potential of this approach in the

clinic.

2.3.2 Models for tumor angiogenesis

One of the first mathematical models for tumor angiogenesis was developed in 1985

by Balding and McElwain [12]. In this work, the authors present a simple model for

tumor angiogenesis to describe a set of experiments in which tumor cells stimulate the

migration of new blood vessels in the rabbit cornea. The model considers a generic

TAF, as well as capillary tips and vessels. Following their notation, we denote by c

the TAF concentration, and by ρ and n the capillary and tip densities, respectively.

They assume that the TAF, produced by the tumor cells, diffuses towards neighboring

vessels. In one dimension, with x representing the distance from the vasculature to

the tumor center, these assumptions lead to the following equation for c:

∂c

∂t
= Dc

∂2c

∂t2
,

whereDc denotes the TAF diffusion coefficient. Capillary tips are assumed to emanate

from existing vessels and tips at a rate that increases with the TAF levels. Moreover,

the tips move by chemotaxis along spatial gradients of TAF and form anastomoses.

Combining these effects, the authors derive this equation for the tip density:

∂n

∂t
= − ∂

∂x

(
nχ

∂c

∂x

)
+ α0cρ− β2nρ,

where χ is the chemotaxis coefficient, α0 is the rate of appearance of new tips, and

β2 is a death term for tips due to anastomosis. The capillary density is assumed to

increase only by tips movement so that:

∂ρ

∂t
= −χn

∂c

∂x
− γ1ρ,
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where γ1 is a death term for capillaries. Numerical simulations of this model and its

extension [25] are able to reproduce several distinctive features of angiogenesis, such

as the peak in capillary density tips preceding a peak in the density of capillaries.

Interestingly, by altering the key parameters, the models have been used to compare

different tumor treatments. For example, by reducing the chemotaxis coefficient it is

possible to mimic the effect of a therapy that blocks EC chemotaxis. Alternatively,

adding a reaction term in the TAF equation can describe the effect of a particular

drug. Other models, based on similar equations, have been extended to include the

growth of the tumor during angiogenesis and the intake of nutrients from the new

vessels [140]. More detailed models have been developed by Levine et al. [109, 110],

taking into account more cell populations, chemical factors and their related receptors.

In particular, they include specific pro- and anti-angiogenic factors, together with the

interactions between the ECs lining the blood vessels and other cell types, such as

pericytes and macrophages.

Some of the following models have focused on the extension of the problem to two

and three dimensions (see, for example, [138]). Indeed, one dimensional models are

not able to account for the morphology of the vascular network, which plays a major

role in the delivery of the nutrients to the growing tumor. In addition, the remodeling

of the vessels and the effects of the blood flow on the evolving vasculature have been

usually neglected. To meet these requirements, a new class of hybrid models has

been developed. In general, these include reaction-diffusion equations for nutrient

transport and consumption (in a continuum approach), coupled to cellular automata

describing the interactions between normal and tumor cells (in a discrete framework).

For example, Stokes and Lauffenburger [176] couple a probabilistic equation de-

scribing the movement of ECs to a continuum distribution of TAF. Their results show

that vessels grow directed to the TAF source (i.e. the tumor) only if a chemotactic

response of the ECs is enabled. Moreover, a level of random motion is necessary in

the equations for EC movement, to produce vessel anastomosis and capillary loop for-

mation. Interestingly, the authors report that the predicted vessel extension rate and

network structure are quantitatively consistent with experimental observations of in

vivo angiogenesis. They suggest that the rate of vessel outgrowth is strongly dictated

by the EC migration rate. Therefore, in vitro migration assays, where this migration

rate can be carefully quantified, may constitute an useful tool for pre-screening of

possible tumor angiogenesis treatments. This result is noteworthy, since it highlights

the importance of mathematical modeling as a bridge between in vitro and in vivo

experiments.
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In another work, McDougall and colleagues present a model describing the ves-

sel network response to perfusion-related haemodynamic forces [123]. In contrast to

previous models where the effects of blood flow were neglected or evaluated a pos-

teriori, the blood perfusion generated by this approach has a direct impact during

capillary growth, inducing radial adaptations and network remodeling. A parametric

study is performed to test the influence of model parameters, and the delivery of a

chemotherapeutic drug is investigated. Notably, the model is used to identify possible

therapeutic targets that could improve tumor treatment.

As a last example we consider the work in Frieboes and coworkers [61], where

the authors extend the diffuse interface model in [195] (previously mentioned for

nonlinear solid tumor growth). There are several extensions, including the tracking

of multiple viable cell species, the onset and aging of discrete tumor vessels, and

the incorporation of individual cell movements using a hybrid continuum-discrete

approach. It is shown that the module describing tumor growth is characterized by a

morphological instability. Depending on the conditions of the microenvironment, this

instability can lead to tumor invasion via individual cells. This intrinsic feature of

the tumor growth module is then enriched by the coupling with the vascular network,

which undergoes continuous remodeling. Blood vessels can shut down if subjected to a

sufficiently high cellular pressure, given by extensive proliferation. This phenomenon

affects the intake of nutrients dramatically, leading to hypoxic regions which in turn

trigger a higher release of angiogenic regulators.

Finally, note that this field of cancer modeling is currently very active and several

models are missing from this brief account. We refer the interested reader to the

reviews in [33, 162] for an extended report on the subject.

2.3.3 Models for cancer treatment

Mathematical models constitute a powerful tool to dissect the mechanisms regulat-

ing tumor growth. Moreover, mathematical modeling can contribute to the rational

design of optimal treatment protocols, involving surgery, chemotherapy and radio-

therapy. They can even aid the development of new therapies, suggesting strategies

for the cure (see the recent reviews in [45, 124]).

In 1988, Jain and Baxter [90] develop a continuum model to identify the causes

of poor drug distribution in vascular tumors. They find that the irregular blood

flow, arising in the angiogenic vascular network, hinders significantly the delivery of

a therapeutic agent. Moreover, it is shown that high interstitial fluid pressure in the

tumor interstitium plays a similar role, by reducing the extravasation of molecules and
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driving fluid radially outward from the tumor. These predictions have been verified

experimentally [19] and, remarkably, have stimulated the development of vascular

normalization therapies.

In the same period, several contributions towards mathematical modeling of can-

cer treatment response were brought forward. In particular, Norton and Simon [137]

study the growth kinetics of tumors during chemotherapy, finding that the tumor

grows following a sigmoidal curve. Starting from model results, they argue that

a certain class of tumors may require intensive treatment to achieve beneficial re-

sponse. This prediction was validated later, in a trial with patients affected by breast

cancer [39]. Coldman and Goldie [40] presented a stochastic model for chemotherapy

of tumors in 1986. The authors derive probabilistic equations for the cell dynamics,

studying cell resistance to therapy. They introduce a treatment with two drugs and

show how the model can be used to make deductions on the best scheduling ther-

apy. Remarkably, these early works have inspired several researchers to investigate

optimum administration schedules for various situations. For example, in [36] the

authors develop an evolutionary mathematical model incorporating data from cell

cultures. They investigate sensitive and resistant cancer cell dynamics under differ-

ent treatment schedules. The model predicts alternative therapeutic strategies that

could prolong the clinical benefit of current drugs against the resistant cells, delaying

the development of resistance.

Other approaches have focused on the response to radiotherapy using the linear-

quadratic law, an empirical formula that relates the proportion of cells that survive

exposure to a dose of radiation. For instance, Wheldon and colleagues [193] derive

an extension of this formula for radiation treatment schedules. In particular, they

extend the linear-quadratic model to account for exponential regrowth of the tumor

between treatments. Using analytical calculations, the authors are able to derive

expressions for the interval between treatments and the optimal radiation dose that

should be applied to maximize tumor cell death. Other mathematical studies of

radiation treatments have also included the effects of hypoxia [196], more complex

growth laws [122] and cellular heterogeneity [99]. An interesting approach is presented

in [156]. Here the authors incorporate the linear-quadratic law into a continuum

model of glioma cell density, describing cell invasion, proliferation and death due to

therapy. Using in vivo radiation dose schedules as a reference, the authors investigate

the spatio-temporal delivery of radiation dose, treatment response and recovery time

for different treatment schemes. Then, a recent study [106] used a mathematical

model for glioblastoma treatment response. The authors investigate the effects of
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cell differentiation on therapy outcomes. They find that enrichment in a resistant

stem-like cancer cell population could prolong survival by increasing the time to

disease recurrence. Their strategy was also validated with a randomized mouse trial,

showing significant improved survival in the optimized schedule group. As a last

example, Stiehl and colleagues [174] derive a mathematical model for patient survival

in acute myeloid leukemia. Model results support the evidence that proliferation and

self-renewal rates of leukemia stem-like cells have greater impact on the disease course

than the same rates in leukemia progenitor cells. By using patient-derived data, it is

possible to estimate prognostic factors that otherwise cannot be measured directly.

2.4 Conclusions

It is becoming increasingly clear that cancer is not a typical illness, whose causes can

be easily identified. Rather, it appears as a non-deterministic disease, which does

not progress as a fixed succession of specific mutations in some genes. There are

many molecular routes that lead to clinically identical cancers [125], and the final

development of the illness is driven by a multitude of factors, ranging from the tumor

microenvironmental details to ageing and lifestyle.

Like other phenomena occurring in living beings, a fundamental understanding of

cancer cannot arise from the bare characterization of all its components [125]. Actu-

ally, there is a need for a wider perspective than molecular biology alone would be able

to offer. This new angle of view may benefit from cross-disciplinary collaborations

between physicists, cancer biologists, mathematicians and engineers [155]. Theoreti-

cal and computational tools developed inside the framework of the physical sciences

can be used to disentangle the complex interactions underlying cancer progression.

Among these tools, mathematical models provide a valuable test bench for verify-

ing hypotheses, identifying key biological mechanisms, and optimizing experimental

protocols.

To date, most of the mathematical models that have been developed are focused

on a qualitative description of the phenomena they are addressing. Many approaches

are still descriptive, as detailed data on specific quantities of interest are missing. In

fact, as the predictive ability of a model strongly depends on its proper parameteri-

zation, it is essential to obtain accurate parameter estimates from in vitro or in vivo

systems or clinical trials [3]. This kind of information is still poor and a closer collabo-

ration between experimental researchers and theoreticians is highly encouraged. The

successful integration of these different approaches is crucial for the understanding of
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the complexities underlying cancer and, we hope, to devise effective strategies for a

cure.

In conclusion, there still might be a long way to go for finding effective treatments

for cancer, with great efforts and even some disillusions. However, the opportunity

to improve patients’ quality of life makes it a journey that it is worth to take.
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Chapter 3

Predicting the growth and drug
response of tumor spheroids

3.1 A model for multicellular spheroids

3.1.1 Introduction

Cancer is a complex disease involving primarily uncontrolled cell proliferation and

migration to distant regions of the body [113]. From the second half of the last

century the scientific community has become more and more aware of the difficulties

that arise when treating this illness. Nowadays it is clear that a combined effort from

all the physical sciences is necessary to advance our understanding of the disease and

promote the discovery of new cures [125, 106]. The pioneering works of Greenspan and

coworkers [73, 74] paved the way for the development of mathematical models that

could investigate the basic principles underlying cancer progression and predict the

outcome of therapies. Most continuum models, as the one presented in this work, deal

with the avascular phase of tumor growth. During this stage of cancer progression, a

small cluster of cancer cells arise in a healthy tissue due to mutations that alter their

biochemical pathways. This small region of abnormal cells grows at the expense of the

host counterpart, nourished by oxygen and nutrients that diffuse from the vasculature

nearby [89, 70]. At a certain point the external nutrients are not enough to sustain the

expansion of the growing mass, leading to the formation of cell proliferation gradients

starting from the outer regions of the tumor. As time passes by, cancer cells at the

center of the tumor experience severe hypoxia and critical conditions that lead to the

Section 3.1 of this chapter is based upon the work in: Mascheroni P, Stigliano C, Carfagna
M, Boso D P, Preziosi L, Decuzzi P, Schrefler B A (2016), “Predicting the growth of glioblas-
toma multiforme spheroids using a multiphase porous media model”, Biomechanics and Modeling
in Mechanobiology, 15(5), 1215-1228.
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death and consequent necrosis of some of them. Finally a steady state arises, where

cell proliferation at the tumor border balances cell death at the tumor center [55]. The

subsequent stage of cancer progression is termed the vascular phase, where tumor cells

recruit new blood vessels from the host vasculature through tumor angiogenesis. In

this second stage the cancer resumes its previous growth and eventually enters the last

stage of the illness, the metastatic phase, where malignant cells evade the tumor area

to form metastases at distant regions of the body. Since the study of the first stage

can be performed in a more controlled experimental setting, a large set of literature is

devoted to the analysis of avascular tumor growth in vitro. Experiments are usually

carried out on tumor spheroids, three dimensional aggregates of cancer cells that grow

in an approximately spherical shape [181, 96, 185, 127]. The investigations on tumor

spheroids allow evaluating the extent of the gradients of nutrients and cell proliferation

and, more recently, the action of a mechanical stress exerted on the cell aggregates.

Helmlinger and coworkers [83] grow tumor spheroids in gels with varying stiffness,

and report a decrease in proliferation for stiffer gels. Another example of spheroids

grown in gels with varying stiffness is found in [93]. There, cell proliferation and

motility are investigated for different concentrations of collagen in the gel matrix.

In that work, a positive correlation between increasing concentrations of collagen

and cell invasion is reported, followed by an opposite effect on the growth of the

spheroids. The original work of Helmlinger is extended in [35], where the authors

perform similar experiments and introduce new tools to quantify spheroid deformation

and variations in cell proliferation and apoptosis. Another set of experiments is

presented in [47], where tumor spheroids are subjected to asymmetric stress fields by

the use of microstructured substrates. Finally, Montel and Delarue in two subsequent

papers [128, 46] apply mechanical forces on the surface of tumor spheroids through

the osmotic effect of Dextran solutions with different concentrations. All these studies

report a decrease of tumor cell proliferation as a consequence of the applied stress,

even though they are carried out via different experimental configurations.

The earliest continuummodels applied to spheroid growth focus on the dependence

of cell proliferation on nutrients and other biochemical factors, as reported in the

comprehensive reviews of [148, 114]. They are based on mass balance laws for cells and

advection-reaction-diffusion equations for nutrient evolution. Later models include

more components and the mechanical interaction between them. For these cases,

which are usually defined in the framework of mixture theory or porous media theory,

momentum balance equations and constitutive relations are needed for describing the

mechanical response of each component [5, 148, 51, 67]. Among the first, [32, 64]
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incorporated the effect of mechanical stress on cell proliferation obtaining results

matching experimental observations. There followed several papers, in which this

example of mechanotransduction is investigated with similar approaches [98, 37, 38,

131].

This work arises as an extension of the modeling framework presented in [167]. The

model is specialized to tumor spheroids and the solution procedure is simplified, as all

the new equations are formulated in spatial coordinates with no need of a reference

configuration. A set of experiments is carried out on spheroid cultures to validate the

equations. The comparison with the experiments is performed both with spheroids

growing freely in the culture medium and subjected to increasing mechanical loads,

giving in each case a good match. The experiments suggested the presence of a master

curve, a common growth curve underlying the spheroid growth dynamics. Finally, a

new constitutive relation is proposed to describe the inhibitory effect of the stress on

cell proliferation, with a better performance in terms of matching the experimental

results when compared to the existing laws in literature. The remainder of the work is

organized as follows. Section 3.1.2 introduces the mathematical framework, based on

the Thermodynamically Constrained Averaging Theory (TCAT), and the differences

with the original model. In the last part of that section, the equations are specialized

to the case of tumor spheroids. Section 3.1.3 presents the experimental setup for

the two culturing conditions. Finally, results from the simulations are presented in

Section 3.1.4 and the discussion follows in Section 3.1.5.

3.1.2 Mathematical model

This mathematical model is developed in the framework of porous media theory, and

the governing equations are derived through the TCAT [71, 72]. We start by defining

the problem in terms of microscopic relations amongst the constituents. The TCAT

approach is used to transform these microscopic laws into mathematically and physi-

cally consistent macroscale relationships, which describe the tumor at the tissue scale.

By doing so, the complexity due to the high spatial variability at the microscale is

overcome and equations for average quantities describing the tumor behavior are for-

mulated directly. The closed form of the problem is finally obtained by introducing

constitutive relations into the macroscale conservation equations. Detailed informa-

tion about the mathematical model and its derivation are found in previous works

of our research group [167, 165, 166]. Here we describe the behavior of the following

constituents, or phases: (i) the tumor cells (TCs), which partition into living (LTCs)

and necrotic (NTCs) cells, and (ii) the interstitial fluid (IF) (Figure 3.1). The ex-
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IF

ECM

LTC

NTC

Nutrient

Figure 3.1: Constituents of the biphasic system.

tracellular matrix (ECM) is considered together with the tumor cells and the union

of the two entities constitutes the solid skeleton of the tumor. The interstitial fluid

phase flows through the pores of this solid matrix, carrying nutrients, growth factors

and waste products. Cell proliferation is related to nutrient concentration, whereby

cells stop to proliferate and, after some time, undergo necrosis and lysis, if subjected

to low levels of nutrients or high levels of mechanical stress. In the following equa-

tions, the superscripts “t” and “f” will denote the union of the tumor cells and ECM

and the interstitial fluid, respectively.

3.1.2.1 Governing equations

The solid portion of the tumor is modeled as a porous solid with porosity εf , and its

volume fraction is defined as εt = 1 − εf . Hence, the interstitial fluid occupies the

rest of the volume and the sum of all the volume fractions has to be unity:

εt + εf = 1. (3.1)

We write the governing equations for the tumor volume fraction (εt), the interstitial

fluid pressure (pf), the nutrient mass fraction (ωox) and the necrotic mass fraction

(ωNt). These equations are obtained from the general form of the mass and momentum

balance equations of phases and species, according to the TCAT derivation.
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The mass balance equations for the phases are written as:

∂t
(
εtρt

)
+ div

(
εtρtvt

)
− Γf→t

gr + Γt→f
ly = 0, (3.2)

∂t
(
εfρf

)
+ div

(
εfρfvf

)
+ Γf→t

gr − Γt→f
ly = 0, (3.3)

where ρα is the density and vα the velocity of phase α (α = t, f). The terms Γf→t
gr

and Γt→f
ly account for the inter-phase exchange of mass related to cell growth and cell

lysis, respectively. The solid tumor phase is composed of two subpopulations, namely

necrotic and living cells. The necrotic portion is described by the mass fraction ωNt,

so that the mass fraction of living cells is ωLt = 1 − ωNt. We assume that there is

no diffusion for the necrotic and living species, and that necrotic cells exchange mass

with the interstitial fluid through the lysis term. The mass fraction of necrotic tumor

cells (ωNt) and living tumor cells (ωLt) are thus given by:

∂t
(
εtρtωNt

)
+ div

(
εtρtωNtvt

)
− εtrNt + Γt→f

ly = 0, (3.4)

∂t
(
εtρtωLt

)
+ div

(
εtρtωLtvt

)
+ εtrNt − Γf→t

gr = 0, (3.5)

where rNt represents an intra-phase exchange term accounting for the rate of death

of living tumor cells.

The evolution of the mass fraction of oxygen (ωox), the unique nutrient considered

here, follows the equation:

∂t
(
εfρfωox

)
+ div

(
εfρfωoxvf

)
− div

(
εfρfDoxgradωox

)
+ Γox→t

ox = 0, (3.6)

where Dox is the diffusion coefficient of oxygen in the extracellular space and Γox→t
ox is

a mass exchange term accounting for nutrient consumption by tumor cells metabolism

and growth. Note that the mass exchange term Γox→t
ox in equation (3.6) is included

in the reaction term Γf→t
gr of equations (3.2) and (3.3), since this quantity is related

to the exchange of mass and nutrients between the two phases (for more details see

[167] and the references therein).

Following porous media theory [111, 143], the mechanical stress exerted on the

solid phase is described through the effective stress tensor σt
eff, given by:

σt
eff = σtot + αBp

fI, (3.7)

where I is the unit tensor, σtot is the total stress tensor, pf is the fluid pressure in

the interstitial fluid and αB is Biot’s coefficient defined by:

αB = 1− K

KT

, (3.8)
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with K bulk modulus of the unsaturated skeleton and KT bulk modulus of the solid

phase. Then, we can state the linear momentum balance law for the tissue as [111]:

divσtot = div
(
σt

eff − αBp
fI
)
= 0. (3.9)

The relative velocity of the interstitial fluid phase is given by a Darcy type equation

obtained by TCAT [72]:

εf
(
vf − vt

)
= − k

µf
grad pf , (3.10)

where k is the intrinsic permeability of the solid matrix and µf is the dynamic viscosity

of the interstitial fluid. The equations of state for the phases can be approximated as

[163]:

1

ρf
∂ρf

∂pf
=

1

KL

, (3.11)

1

ρt
∂ρt

∂ (⟨nt · σt · nt⟩)
≃ 1

ρt
∂ρt

∂pf
=

1

KT

. (3.12)

Here 1/KL and 1/KT are the liquid and solid compressibility, respectively, and the

quantity ⟨nt ·σt ·nt⟩ is the normal stress at the solid surface averaged over the solid

surface [163]. Considering (3.11)-(3.12), equation (3.2) can be written as:

∂εt

∂t
+

εt

KT

∂pf

∂t
+ div

(
εtvt

)
+

εt

ρt
vt · grad ρt − 1

ρt
(
Γf→t
gr − Γt→f

ly

)
= 0. (3.13)

Following the same steps for equation (3.3), it is possible to obtain:

∂εf

∂t
+

εf

KL

∂pf

∂t
+ div

(
εfvf

)
+

εf

ρf
vf · grad ρf + 1

ρf
(
Γf→t
gr − Γt→f

ly

)
= 0. (3.14)

Then, summing (3.13) and (3.14) gives:(
εt

KT

+
εf

KL

)
∂pf

∂t
+ div

(
εtvt + εfvf

)
− ρf − ρt

ρfρt
(
Γf→t
gr − Γt→f

ly

)
= 0, (3.15)

where the gradients of the densities have been neglected and the constraint in (3.1)

has been exploited. Substituting (3.1) and (3.10) in (3.15) leads to:(
1− εf

KT

+
εf

KL

)
∂pf

∂t
+divvt−div

(
k

µf
grad pf

)
− ρf − ρt

ρfρt
(
Γf→t
gr − Γt→f

ly

)
= 0. (3.16)
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3.1.2.2 Constitutive relation for the stress

In order to close the system of equations it is necessary to define a constitutive relation

for the stress in the tumor phase. A series of experiments based on single-cell force

spectroscopy [13, 151, 81, 63] suggests the following phenomenological description at

the microscale. When cells are well separated from each other, they do not experience

any interaction. As soon as the distance between two cells is below a certain threshold

they start attracting each other and, once cells are in contact, an adhesive force builds

up if they tend to be pulled apart. If the two cells are further pushed together, a

repulsive force is observed. This repulsive force tends to high values as cells become

more and more packed. Note that, in the context of porous media theory, the volume

fraction of tumor cells can be chosen as a surrogate for cell distance. In mathematical

terms, this can be written as a pseudo-potential law [23] (see [149] for qualitative

analyses on this kind of nonlinear systems) that describes the stress in the tumor

tissue:

Σ
(
εt
)
=

⎧⎪⎨⎪⎩α (εt − εt0)
2

[
1− εtn

(1− εt)β
− 1

(1− εt)β−1

]
, if εt > εt0

0, otherwise

(3.17)

A schematic of cell behavior is shown in Figure 3.2, displaying the evolution of Σ for

different volume fractions. Note that with this description the ensemble of tumor cells



t

t

0

Figure 3.2: Scheme for the stress function Σ. The two insets represent
forces acting on the cells for different degrees of tumor volume fractions.
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and ECM behaves like an elastic fluid and the effective stress follows the relation:

σt
eff = −Σ

(
εt
)
I, (3.18)

with Σ defined in (3.17) and positive in compression.

3.1.2.3 Mass transfer relations

The reaction terms in equation (3.2) represent tumor cell growth and lysis, respec-

tively. In particular, the first term is related to cell proliferation and depends on the

exchange of mass between the interstitial fluid and the living portion of the tumor.

Its form is given by:

Γf→t
gr = γt

gG (ωox)H
(
σt

eff

)
ωLtεt, (3.19)

where the coefficient γt
g accounts for the nutrient uptake and for the mass of interstitial

fluid that becomes tumor due to cell growth. The function G accounts for the effect

of nutrient level on cell growth, while H describes the inhibition of cell growth due to

the mechanical stress exerted on the cells. Finally, the factor ωLtεt accounts for the

volume fraction of viable tumor cells (i.e. only viable cells can proliferate).

The second reaction term in equation (3.2) accounts for cell lysis in the necrotic

cell population (NTCs). Its form is given by:

Γt→f
ly = γt

fω
Ntεt. (3.20)

Here, γt
f takes into account the degradation of cellular membranes and the mass

conversion into interstitial fluid. Since ωNtεt is the volume fraction of necrotic cells,

the lysis term is active only on the dead part of the tumor tissue.

The rate of necrosis of tumor cells in equation (3.4) is described by the relation:

εtrNt = γt
nI (ω

ox)ωLtεt, (3.21)

where the parameter γt
n regulates the rate of cell death. The function I describes cell

necrosis by lack of nutrient. By doing so, cell death is considered to solely depend on

nutrient concentration. Note that equation (3.21) can be readily modified to include

also other effects, such as the action of a particular drug or mechanical stress.

During the growth of the tumor, nutrients are subtracted from the interstitial

fluid, so that the mass exchange term in equation (3.6) takes the form:

Γox→t
ox = γt

0

ωox

ωox + cox
ωLtεt. (3.22)
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This expression is validated experimentally in [30, 31] and takes into account the

dependence of nutrient consumption on the local level of nutrient in the tissue. The

two oxygen uptake parameters γt
0 and cox describe respectively the order of magni-

tude of oxygen uptake in the tumor and the oxygen mass fraction at which oxygen

consumption is reduced by half. The functions G, H and I are derived from phe-

nomenological arguments and are selected to be similar to the available literature on

the topic [23, 158, 195, 98, 167, 131]. In particular, the following set is assumed:

G(ωox) =

⟨
ωox − ωox

crit

ωox
env − ωox

crit

⟩
+

, (3.23)

H(σt
eff) = 1− δ1

⟨Σ⟩+
⟨Σ⟩+ + δ2

, (3.24)

I(ωox) =

⟨
ωox
crit − ωox

ωox
env − ωox

crit

⟩
+

. (3.25)

Here ωox
crit is the oxygen threshold value below which cell growth is inhibited, the

constant ωox
env is the environmental mass fraction of oxygen, and the Macaulay brackets

⟨·⟩+ indicate the positive value of their argument. Since ωox within the spheroid can

only be equal or smaller than ωox
env, it follows that the brackets will return a number

between one (ωox = ωox
env) and zero (ωox ≤ ωox

crit) [165, 166]. The constants δ1 and

δ2 (with δ1 < 1) account for the action of mechanical stress on cell proliferation,

modeling the inhibitory effect of compression on tumor cells duplication [83, 35, 129].

Note that the expression for H is different from the usual forms assumed in literature.

Indeed, some authors use a linear expression, as for example in [159, 98, 178], whereas

others consider an inversely proportional relation [23]. However, as it will be shown

in the next sections, the relation in equation (3.24) is able to better describe the

experimental results.

3.1.2.4 The tumor spheroid case

The mathematical model presented above is extended in view of the comparison with

the experiments. In this work the focus is on modeling tumor spheroids, which are an

aggregate of tumor cells approximately of spherical shape [180, 104, 53]. As a starting

point, we adapt the equations of the more general model for spherical symmetry. If the

constituents are assumed incompressible and the densities of the phases are supposed

to be equal (ρt = ρf ≡ ρ), equation (3.15) becomes:

div
(
εtvt + εfvf

)
= 0. (3.26)
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Note that, in this way, Biot’s coefficient takes the value αB = 1. In spherical symme-

try, equation (3.26) reads:

1

r2
∂

∂r

[
r2

(
εtvt + εfvf

)]
= 0, (3.27)

which, by symmetry, gives:

vf = −εt

εf
vt = − εt

1− εt
vt. (3.28)

Substituting the new relation into equation (3.10) gives the expressions for the phase

velocities as:

vt =
k

µf

∂pf

∂r
, vf = − εt

1− εt
k

µf

∂pf

∂r
. (3.29)

From the point of view of the motion of the phases, since the hydraulic conductivity

k/µf is a positive constant, (3.29) implies that the interstitial fluid is directed opposite

to the pressure gradient while tumor cells move along it. When the interstitial fluid

pressure is higher in the tumor center, the interstitial fluid flows towards the boundary

of the tumor whereas tumor cells move in the direction of the tumor center as observed

experimentally in [49, 92] and already discussed in [23]. This mechanism enables the

recirculation of interstitial fluid in the tumor tissue: tumor cells in the inner regions

of the tumor become necrotic due to nutrient deprivation and turn into interstitial

fluid after lysis. This fluid flows towards tumor periphery and can be employed

by proliferating cells. From the equilibrium equation for the total stress (3.9), and

equations (3.7) and (3.18), we arrive at the important relation:

∂pf

∂r
= −∂Σ

∂r
= −Σ′∂ε

t

∂r
, Σ′ ≡ ∂Σ

∂εt
. (3.30)

The final system of equations for spherical symmetry and with the new expressions

for the velocities reads:

∂εt

∂t
− 1

r2
∂

∂r

(
r2εt

k

µf
Σ′∂ε

t

∂r

)
− 1

ρ

(
Γf→t
gr − Γt→f

ly

)
= 0, (3.31)

∂
(
ωNtεt

)
∂t

− 1

r2
∂

∂r

(
r2ωNtεt

k

µf
Σ′∂ε

t

∂r

)
− 1

ρ

(
εtrNt − Γt→f

ly

)
= 0, (3.32)

∂ [(1− εt)ωox]

∂t
+

1

r2
∂

∂r

(
r2ωoxεt

k

µf
Σ′∂ε

t

∂r

)

− 1

r2
∂

∂r

[
r2

(
1− εt

)
Dox∂ω

ox

∂r

]
+

1

ρ
Γox→t
ox = 0. (3.33)
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The growth of the spheroid is modeled as a free-boundary problem, and the interface

constituted by the tumor cells moves with velocity vt:

dR

dt
= vt = − k

µf
Σ′∂ε

t

∂r

⏐⏐⏐⏐
r=R

, (3.34)

with R being the radius of the spheroid. To close the differential problem in (3.31)-

(3.33) it is necessary to define a set of boundary and initial conditions. In particu-

lar, no-flow boundary conditions are assumed at the spheroid center, while Dirichlet

boundary conditions are assumed on the tumor external surface:

∂εt

∂r
=

∂ωNt

∂r
=

∂ωox

∂r
= 0, in r = 0, (3.35)

εt = εtext, ωNt = 0, ωox = ωox
env, in r = R. (3.36)

Note that the first condition in (3.36) implies prescribing an external stress on the

tumor surface, since from (3.17) and (3.18) we have:

Σ
(
εtext

)
= Σext. (3.37)

In the case of a stress-free growing spheroid, the external volume fraction satisfies:

Σ
(
εtext

)
= 0, εtext = εtn. (3.38)

Finally, the following initial conditions are assumed throughout the domain:

εt = εtext, ωNt = 0, ωox = ωox
env, for 0 < r < R at t = 0. (3.39)

3.1.3 Materials and methods

3.1.3.1 Cell culture and spheroid formation

Human multiforme glioblastoma U-87 MG cells (ATCC) are grown at 37 ◦C at 5%

CO2 in EMEM (HyClone) supplemented with 50 U/mL penicillin, 50 µg/mL strep-

tomycin and 10% FBS (v/v). Multicellular U-87 MG spheroids are prepared by the

liquid overlay method [179, 28]. Briefly, serum free EMEM medium with 2% (w/v)

agar is prepared and sterilized; 50 µL of the agar solution is added to the bottom of

each well of the 96-well plates to prevent cell adhesion onto the well surface. Plates

are allowed to cool down before use. U-87 MG cells are counted and then seeded

at different densities: 1000, 5000 and 10000 cells/well. Plates are centrifuged for 5

min at 1000 x g. Spheroid diameter is measured every 2 days using Nikon Eclipse

Ti microscope (Nikon) with NIS-Element software. The culture medium is replaced

with fresh medium every 3 days.
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3.1.3.2 Cell viability and spheroid compression experiments

For the compression experiments, Dextran is added to the culture medium to exert

mechanical stress on the spheroids as reported in [128, 129, 46]. Briefly, cell culture

medium is mixed with the purified Dextran (Mw = 100kDa) and the resulting solution

is placed at 37 ◦C to obtain full solubilization. To test the effect of the Dextran solu-

tions on U-87 MG cell viability, XTT assay is performed [175]. In particular, 10000

cells are plated in each well of 96-well plate. After 24 h, the medium is substituted

with different concentrations of Dextran medium (20 g/l, 55 g/l and 80 g/l). After 72

h of incubation, the XTT assay is performed according to the manufacturers protocol.

The same solutions of Dextran at different concentrations are prepared to test the

effect of different mechanical pressures on the surface of the spheroids. In particular,

5000 U-87 MG cells are seeded in 48-well plates (day 0), as reported before, and the

Dextran medium is added after spheroid formation (day 3) at a concentration of 20

g/l to exert 1 kPa, 55 g/l to exert 5 kPa and 80 g/l to exert 10 kPa. The stress act-

ing on the spheroids is estimated as in [128, 129, 46] via the following mathematical

expression:

p = 286c+ 87c2 + 5c3,

where p is the obtained external mechanical pressure (Pa), and c is the concentration

of Dextran (% w/w). This expression was originally derived to describe the osmotic

pressure of Dextran solutions in colloidal systems [18] and then validated to hold also

for the spheroid compression experiments [129].

Spheroid diameter measurement and medium replacement follow the same proce-

dures described above.

3.1.4 Results

3.1.4.1 Evolution of tumor spheroids

The mathematical framework presented above is applied to analyze the growth of a

multicellular tumor spheroid in vitro. In particular, the growth of the tumor mass is

investigated, including necrotic tumor cells and the consumption of nutrient (oxygen)

over time. The geometry of the problem and the boundary conditions are described in

Figure 3.3. Note that all the boundary value problems in the thesis have been solved

using the commercial finite element software COMSOL Multiphysics (COMSOL, Inc.,

Burlington, MA, USA). At the boundary B1, the TC volume fraction (εt), the oxygen

mass fraction (ωox), and the necrotic cell mass fraction (ωNt) are fixed over time.

Then, zero fluxes for all phases are imposed at the symmetry boundaries B2. Finally,
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B1

B2

B2

Boundary 1:

Boundary 2:

Type: imposed values

Due to the symmetry of 
the problem there are no 
normal fluxes

Type: imposed fluxes

Spherical 
symmetry

   



 



ox ox t t

env ext

Nt

,

0

Initial conditions:
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Nt
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0
r

Figure 3.3: Scheme for the geometry of a tumor spheroid immersed in
cell culture medium. The initial and boundary conditions for the differ-
ential problem are reported on the right.

the initial values for the tumor cell volume fraction, the oxygen mass fraction, and

the necrotic cell mass fraction are selected as prescribed by (3.39) and reported in

the figure. All other governing parameters are listed in Table 3.1. Numerical results

for the evolution of the three principal variables of the model are shown in Figure

3.4. In Figure 3.4.a, the volume fraction of tumor cells in the spheroid is plotted

for different times over the spheroid radius. Initially, the tumor is composed only by

living tumor cells and interstitial fluid. After a few days, necrotic tumor cells appear

in the center of the spheroid. Living tumor cells are restricted to the outer portion of

the tumor, where there is still enough nutrient to support their growth. At day 25,

necrotic cells occupy the main portion of the spheroid, constituting the necrotic core,

while the proliferating portion of the tumor is further reduced. Since tumor growth is

described by equations (3.19) and (3.23), only tumor cells that experience an oxygen

level over the critical threshold are allowed to proliferate. This means that the living

tumor cells that can actually proliferate are distributed only over a small portion of

the radius near the external boundary, called the proliferative rim. The remaining

portion of living cells are non-proliferating cells that can resume proliferation after an

increase in the level of nutrient. Note that the volume fraction of IF is approximately

constant over time, apart for a small increase at the spheroid center and reduction

at the spheroid periphery. These are due, respectively, to the lysis term active at the
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Table 3.1: Parameters for the simulation of spheroid growth.

Symbol Parameter Unit Value Reference

ωox
env Environmental oxygen mass fraction (−) 7.0× 10−6 [134, 133]

ωox
env Environmental oxygen mass fractiona (−) 7.7× 10−6 [134, 133]

cox Coefficient for oxygen consumption (−) 1.48× 10−7 [30, 31]

γt0 Coefficient for oxygen consumption kg/(m3 · s) 3.0× 10−4 [30, 31]

β Parameter in the expression for Σ (−) 0.5 [23]

εtn Parameter in the expression for Σ (−) 0.8 [23]

εt0 Parameter in the expression for Σ (−) 1/3 [23]

k Intrinsic permeability of the tumor tissue m2 1.8× 10−15 [136]

µf Dynamic viscosity of IF Pa · s 1.0× 10−3 [167]

Dox Oxygen diffusion coefficient m2/s 3.2× 10−9 [167]

ρ Density of the phases kg/(m3) 1.0× 103 [167]

ωox
crit Critical oxygen mass fraction (−) 2.0× 10−6 -

γtg Coefficient for cell proliferation kg/(m3 · s) 5.4× 10−3 -

γtn Coefficient for cell necrosis kg/(m3 · s) 1.5× 10−1 -

γtf Coefficient for cell lysis kg/(m3 · s) 1.15× 10−2 -

α Parameter in the expression for Σ Pa 1.0× 105 -

aValue used for the simulations with compressed spheroids. Since the wells used to culture the
spheroids are larger, a higher value for the available oxygen is considered

tumor center and to the fluid consumption induced by cell growth at the boundary.

The evolution of the oxygen mass fraction, the sole nutrient species considered

here, is shown in Figure 3.4.b. Each line is plotted over the spheroid radius, every

5 days from the beginning of the simulation. As the spheroid grows, gradients of

oxygen concentration develop from the tumor boundary to the center of the spheroid.

After a few days the oxygen mass fraction reaches a plateau at the center of the

tumor, with a value below the critical threshold ωox
crit. This can be explained by

considering that necrotic cells do not consume oxygen, and therefore do not alter

the oxygen profile. Moreover, oxygen consumption is proportional to the amount of

oxygen available through equation (3.22), and this contributes to a decreased slope

in the curves towards the center of the spheroid.

Finally, the evolution of the necrotic mass fraction is presented in the graph of

Figure 3.4.c. The necrotic portion of the tumor develops from the center towards the

boundary. As the interface between living and necrotic TCs is diffuse, the separation

between the two is smooth and the model can account for perinecrotic regions.
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Figure 3.4: a Volume fraction of tumor cells, plotted as the differ-
ence between the volume fraction inside the spheroid and at the spheroid
boundary (here, εtext = εtn, since the spheroids are not compressed). b
Mass fraction of oxygen. c Mass fraction of necrotic tumor cells. All the
variables are plotted over the spheroid radius with each line drawn every
five days from the beginning of the simulation.

3.1.4.2 Spheroids grown with different initial cell densities

The computational model is validated against data from tumor spheroid cultures.

U87-MG cells, a human glioblastoma cell line, are cultured with a standard protocol

(see Section 3.1.3). The experimental set up is shown in Figure 3.5. The bottom

of standard cell culture wells is covered with agarose, in order to prevent adhesion

of tumor cells. Cells are seeded at different initial numbers (1000, 5000, 10000) and

rapidly form spheroids suspended in standard culture medium. The evolution of the

spheroid radii is then recorded over time via optical microscopy and the resulting

growth curves are plotted in Figure 3.6.a. It is possible to distinguish between the

first stages of growth, characterized by an exponential/linear behavior, followed by a

phase of growth saturation where the radius reaches a steady value.

After recording the curves, a series of simulations is run to reproduce the exper-

imental data. The growth curves corresponding to the best fit of the experimental

data are shown in Figure 3.6.b. The governing parameters are taken from literature

when they are available and we use the same order of magnitude of the experimental

values when they refer to other cell species. Table 3.1 lists the parameters used in

this study together with the ones determined by the fit of the curves. There is a good

agreement with the experimental data, for all the three different initial cell seeding

numbers. The model captures the growth dynamics both in the first fast-growing
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Figure 3.5: Optical images for the growth of U-87MG spheroids from
day 5 to day 21. The scale bar is 200 µm, and the spheroids are taken
from the 10000 seeded cells initial condition. The last image represents a
scheme of the culture protocol.

phase and in the later phase of growth saturation. Note that the same parameters

are used for fitting all the three curves and only the initial radii of the spheroids are

changed, showing a good quality of the fit.

This experiment is useful for validating the model and displays a second remark-

able result. The different initial seeding of tumor cells affects the initial radius of

the tumor spheroid, which increases from about 100 µm to almost 190 µm. The data

show that, although being constituted by a larger initial number of tumor cells, bigger

spheroids reach the same final radius of smaller ones. This result agrees with what

is reported in literature about the existence of a steady radius for growing spheroids

[181, 55, 27, 59], which in our case takes approximately the value of 475 µm. Inter-

estingly, the model reproduces the same behavior of the experiments with the steady

state being reached after 25 days from cell seeding. As the spheroids grow freely in the

culture medium, the only mechanism to stop cell proliferation is given by equations

(3.23) and (3.25), in which it is assumed that cell mitosis and necrosis depend only

on the local level of nutrient. Therefore, in this modeling framework, the hypothesis

of nutrient deprivation is sufficient to explain the phenomenon of growth saturation

and the existence of an asymptotic radius for the spheroid.

As a further remark about these results, in Figure 3.6.c the previous curves are

shifted of the proper amount with respect to the different initial conditions. It is
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Figure 3.6: Growth curves recorded from the free growth experiments.
a Each curve represents a different initial condition in terms of seeded
cells. N ≥ 4 spheroids are considered for each condition. Points are
experimental data, error bars are the standard deviations of the mea-
surements. b Solid lines result from fits with the mathematical model.
c Growth curve obtained by superimposing the evolution of the radii of
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interesting to see that they coalesce to a single master curve. Spheroids grown from

a different initial radius follow the same curve, showing that there exists a common

dynamics regulating the growth of these cellular aggregates.

3.1.4.3 Compression experiments

The application of a constant mechanical stress on the surface of the growing spheroids

is investigated in the following experiments. Addition of Dextran to the cell culture

medium produces an osmotic pressure on the outermost layer of cells located on the

spheroid surface. The osmotic pressure acts as a network stress directed to decrease

the volume occupied by the spheroids [128, 129, 46]. This compressive force can

be calibrated experimentally as in [18, 20]. An empirical law is then provided to

relate the concentration of Dextran in the solution to the external pressure exerted

on the surface of the spheroids. Three pressure conditions are explored following the

approach described in Section 3.1.3, namely 1 kPa, 5 kPa and 10 kPa, plus a control

experiment (CTRL) with no external pressure. Cell viability is checked as reported

in Section 3.1.3, in which it is shown that the addition of Dextran does not alter cell

death or growth. The results are presented in Figure 3.7, where the growth of the

spheroids is followed for 18 days after the addition of Dextran. Figure 3.7.a shows

optical images of sample spheroids referring to the control and to the most compressed

condition for different time instants. Starting from a similar initial radius (about 200

µm), the two spheroids reach considerable different volumes at day 18. It is possible

to observe that the compressed spheroid grows to a lesser extent compared to the

stress free case.

The growing curves for the other external applied pressures are collected in Fig-

ure 3.7.b. The highest value for the radius is reached in the spheroids grown in the

absence of any external compression. When Dextran is added to the medium and

the osmotic stress builds up, both the growth rate and the final diameter decrease. If

the applied pressure is released, the growth of the aggregates resumes. This suggests

that the effect of the stress is reversible (see Figure 3.8), as shown in the seminal

work of Helmlinger [83]. The effect of the external pressure on the growth of the

spheroid is included in the model through equation (3.24), which describes the inhi-

bition of cell proliferation due to the applied mechanical stress on the tumor cells.

The most common mathematical expressions for the inhibiting function reported in

literature are based on linear or inversely proportional assumptions [159, 23, 98, 131].

These forms are tested against the experimental data in Figure 3.9, together with an

exponential relation and a MichaelisMenten-like expression. The data in Table 3.2
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Figure 3.7: a Optical images of U-87MG spheroids grown under the
effect of the Dextran solutions. The first row shows the control experi-
ments and the second row a spheroid under the highest compression. The
scale bar is 200 µm, and the initial seeding is 5000 tumor cells. b Ex-
perimental results for the compression experiments. The points are the
experimental data, the error bars represent the standard deviations of the
measurements. For each condition, N = 5 spheroids are considered.
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Figure 3.8: Growth curve for the spheroids under the highest compres-
sion, monitored over 52 days. The points are the experimental data and
the error bars represent the standard deviations of the measurements.
The red dashed line indicates the time instant when the external stress
is removed from the spheroids. After the stress release, the spheroids
resume their growth.

represent the values of the parameters that provide the best fits to the experimental

curves. The linear relationship, applied in Figure 3.9.a, underestimates the inhibition

effect for low compressions, leading to larger values of the radius for the 1 kPa and

5 kPa cases. At the same time, for larger compressions the linear relationship gives

overestimates for the inhibition, resulting in smaller radii for the 10 kPa curve than

experimentally measured. The exponential relationship is applied in Figure 3.9.b, in

which it is possible to observe an improvement for high compressions but a similar

underestimation for the 1 kPa and 5 kPa curves. Another improvement can be seen

in Figure 3.9.c, referring to the inversely proportional expression. In this case there is

a good agreement with the experimental data for all the curves, except for the 1 kPa

case. The best results are obtained with the Michaelis-Menten-like law, represented

in Figure 3.9.d. All the different compression levels are well described by the model,

together with the final radii reached by the spheroids.

3.1.4.4 Effect of the growth inhibition parameters

The effect of an external stress acting on the cellular component of the spheroid

can be evaluated through a parametric study on the growth inhibition parameters
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Figure 3.9: Fit of the experimental data for the compression experi-
ments. Results from the linear (a), exponential (b), inversely propor-
tional (c), and Michaelis-Menten-like (d) assumptions for the function H
in Equation (3.24).
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Table 3.2: Different mathematical expressions for the growth inhibition
function in Equation (3.24).

Growth inhibition Mathematical expression δ1 δ2

Linear H = 1− δ1⟨Σ⟩+ 7.38× 10−5 1/Pa -

Exponential H = exp (−δ1⟨Σ⟩+) 1.30× 10−4 1/Pa -

Inversely proportional H = 1/ (1 + δ1⟨Σ⟩+) 2.27× 10−4 1/Pa -

Michaelis-Menten-like H = 1− δ1⟨Σ⟩+/ (δ2 + ⟨Σ⟩+) 7.13× 10−1 - 1.54× 103 Pa

δ1 and δ2 of equation (3.24). The growth curves obtained by varying one of the two

parameters and keeping the other fixed for the case of an external pressure of 5 kPa

are presented in Figure 3.10. The two solid lines represent reference values assumed
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Figure 3.10: Parametric study for the growth inhibition parameters in
Equation (3.24). Effects of δ1 (a) and of δ2 (b) on the growth of the
spheroids.

by the parameters. In particular, “zero” indicates the curve obtained by setting both

δ1 and δ2 to zero, while “fit” is the curve obtained with the values in Table 3.2. The

effect of different values for δ1 is shown in Figure 3.10.a. The arrow points in the

direction of increasing δ1, while for δ2 we take the value in Table 3.2. From the top

curve to the bottom one we consider values for δ1 that are, respectively, -50, -25, +25,
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+50 and +75% of the reference value in Table 3.2. As δ1 increases, tumor cells sense

more the effect of external stresses on their proliferation. This results in smaller final

radii of the spheroids and in slower growth rates. If the value of δ1 is sufficiently high,

then the tumor starts to shrink and an equilibrium radius no longer exists.

The same investigation, this time for δ2, is reported in Figure 3.10.b. In this case,

the arrow points in the opposite direction, indicating that an increase in δ2 leads to

an increase of the final radius. This difference can be easily explained by considering

that H in equation (3.24) is directly proportional to δ1 and inversely proportional to

δ2. However, it is possible to note that the effect of varying δ2 is less pronounced

on the growth curve, since its reference value in Table 3.2 is much smaller than the

pressures in the compression experiments.

These results indicate collectively a double effect of the external environment

in limiting the growth of the tumor. Tumor growth may be hindered by nutrient

deprivation, but also by external stresses exerted by regions close to the tumor.

3.1.5 Conclusions

In the present study, a recent model for tumor growth has been extended to describe

the evolution of tumor spheroids. A set of experiments is carried out and the resulting

data are compared to numerical predictions. The experimental growth curves validate

the model equations both for the free-growth case, in which the cells are cultured in

three dimensions in standard culture medium, and for the mechanically compressed

setup, in which the spheroids are subjected to an external pressure. In addition to

providing the data for the validation, the first series of experiments highlights the

existence of a master curve (Figure 3.6.c). This common growth trend supports the

hypothesis of describing the cell aggregates as a dynamical system, which behavior

can be predicted, at least as a first approximation, by the laws of mechanics. The

results of the model in terms of tumor volume fraction, oxygen mass fraction and

necrotic mass fraction are reported and appear in line with the results of the original

model in [167]. The second set of experiments about spheroids compression extends

the work in [46] by adding another cancer cell species (U87-MG) to their study. The

observed evolution curves are similar to their findings and confirm the hypothesis of an

inhibitory effect of external stress on cancer cell proliferation. Regarding the descrip-

tion of this phenomenon, the experimental data are exploited to design a constitutive

relationship that performs better, compared to the existing laws, in describing the

evolution of the system.
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Several simplifying assumptions are considered in the work and the model is cer-

tainly open to further improvements. In particular, here only one nutrient species,

namely oxygen, diffuses in the interstitial fluid and regulates the proliferation of tu-

mor cells. Although the action of other chemicals is implicitly included in the mass

transfer term in (3.19), modeling additional nutrients, growth and necrosis factors

could provide supplementary insights into the evolution of the tumor system [34, 91].

Another point that should be addressed is the choice of the constitutive relations used

to close the differential system. Most of these laws, as it happens frequently in liter-

ature, are derived from phenomenological arguments and deserve more experimental

work to be linked to the biology of what they are describing. In particular, here it

is assumed that the compression of the spheroids induces inhibition of cell growth,

without modifying the apoptosis rate of the cells. This hypothesis is still a matter of

debate in literature - see for example [129] and comments therein. Here, it is adopted

to account for the experimental observations in [46], in which the experimental setup

is similar to the one in this work. A systematic comparison of different compression

modalities may improve the understanding of this phenomenon and the design of more

accurate constitutive laws. Finally, here a very simple mechanical description of the

tumor ensemble is considered, function of the volume fraction of the tumor cells. This

assumption provides a great simplification of the mechanical equations and describes

accurately the data, however it does not take into account several phenomena related

to the stress experienced by the cells inside the tumor tissue. For example, viscous

effects existing at smaller time-scales than cell proliferation are neglected, as well as

cellular adhesion bonds breakage and formation during the evolution of the tumor

mass [6, 150].

As a possible development of the current work, we plan to perform further exper-

iments. These will provide better estimates for the model parameters and, as new

data will be collected, will provide quantities that could be compared to the output

of the model equations. A part of the future experimental work will be also devoted

to the biochemical understanding of the growth inhibition process due to mechani-

cal stress. Even if some work is already present in literature [46, 54], many details

remain obscure as well as a proper implementation of the phenomena in the growth

equations.

A better description of the interactions between the tumor and its external mi-

croenvironment (biochemical and mechanical) may contribute to the understanding

of the disease progression, and to the design of new therapeutic treatments.
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3.2 Model analysis through a parametric study

3.2.1 Introduction

In Section 3.1, we specialize the modeling framework in [167] for tumor spheroids.

A set of experiments on U-87 spheroids is carried out to validate the equations and

test new constitutive relations. Comparison with experiments is performed both

with spheroids freely suspended in the culture medium and subjected to different

mechanical loads.

Even though the model is simplified with respect to the original work, it still re-

tains a significant degree of complexity. The equations are strongly coupled, nonlinear

effects arise, and understanding the role of the different parameters appears to be dif-

ficult. For example, in the previous Section, it is not clear which model parameters

have a significant effect on the growth of the spheroids.

Here, we perform a parametric analysis on a set of governing coefficients appearing

in the model equations. We test the effect of parameter variation on the spheroid

growth curve and in particular on the final radius reached by the cell aggregate.

Finally, we provide a discussion of the results and summarize our findings in the

conclusions.

3.2.2 Summary of the mathematical model

Here, we recall briefly the equations derived in the previous section. The tumor tissue

is modeled as a biphasic porous medium, composed of the following constituents, or

phases: (i) the tumor cells (TCs), which are divided into living (LTCs) and necrotic

(NTCs) cells, and (ii) the interstitial fluid (IF). In the language of porous media the-

ory, the union of TCs and extracellular matrix (ECM) constitutes the solid skeleton

of the system, whereas the IF represents the fluid phase permeating the pores. The

IF carries nutrients, growth factors and waste products. For the sake of simplicity, we

consider only one nutrient in our model, namely oxygen (ox), which diffuses in the IF

and is consumed by LTCs. Adequate levels of nutrient are necessary for cell prolifera-

tion, otherwise they start necrosis and lysis. Finally, we assume cell duplication to be

influenced by the local level of mechanical stress, with cells proliferating poorly when

Section 3.2 of this chapter is based upon the work in: Mascheroni P, Boso D P, Stigliano C,
Carfagna M, Preziosi L, Decuzzi P, Schrefler B A (2016), “A parametric study of a multiphase
porous media model for tumor spheroids and environment interactions”, VII European Congress
on Computational Methods in Applied Sciences and Engineering - ECCOMAS 2016, ECCOMAS
Proceedings.
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subjected to compression. In the following, t and f will denote quantities related to

the solid and fluid part of the biphasic system, respectively.

We denote the volume fractions of the solid and the fluid by εt and εf , respectively.

We assume that the fluid permeates completely the voids left by the solid skeleton,

and apply the saturation constraint:

εt + εf = 1. (3.40)

Then, we write the governing equations for the tumor cell volume fraction (εt), the

interstitial fluid pressure (pf), the oxygen mass fraction (ωox) and the necrotic cell

mass fraction (ωNt). Below, we report the balance laws as appear for the tumor

spheroid growth case. We refer the interested reader to Section 3.1.2 for the full

derivation. In particular, we solve the system of equations given by:

∂εt

∂t
− 1

r2
∂

∂r

(
r2εt

k

µf
Σ′∂ε

t

∂r

)
− 1

ρ
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)
= 0, (3.41)
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Here r is the radial coordinate over the spheroid radius; k is the intrinsic permeability

of the solid matrix; µf is the dynamic viscosity of the IF;Dox is the diffusion coefficient

of oxygen; and ρ is the density of the phases. As described in detail in Section 3.1.2, Σ

is a quantity relating the mechanical stress in the tumor to the solid volume fraction.

In the equations above we make use of Σ′, the derivative of Σ with respect to εt. This

quantity can be computed analytically from the expression reported in Section 3.1.2,

Equation (3.17).

The mass exchange terms appearing in equations (3.41)-(3.43) have the form:

Γf→t
gr = γt

g

⟨
ωox − ωox

crit

ωox
env − ωox

crit

⟩
+

H (Σ)ωLtεt, (3.44)

Γt→f
ly = γt

fω
Ntεt, (3.45)

εtrNt = γt
n

⟨
ωox
crit − ωox

ωox
env − ωox

crit

⟩
+

ωLtεt, (3.46)

Γox→t
ox = γt

0

ωox

ωox + cox
ωLtεt. (3.47)
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Here γt
g, γ

t
f , γ

t
n and γt

0 are coefficients that account for the nutrient and IF mass

that becomes tumor due to cell growth; the degradation of cellular membranes and

the following mass conversion into IF; the rate of cell death; and the oxygen uptake

rate in the tumor, respectively. The quantity ωLt = 1 − ωNt represents the mass

fraction of LTCs, and guarantees that growth, death and oxygen uptake are active

only on the living portion of the spheroid. The Macaulay brackets ⟨·⟩+ appearing in

Equations (3.44) and (3.46) return the positive value of their argument. Since the

oxygen mass fraction inside the spheroid is equal or smaller than its environmental

level in the culture medium ωox
env, the brackets in equation (3.44) will return a value

between unity (for ωox = ωox
env) and zero (for ωox ≤ ωox

crit). Note that here ωox
crit is the

oxygen threshold level below which cell proliferation is inhibited. Equation (3.45)

describes cell lysis occurring in the NTCs, whereas a consideration similar to the one

for Equation (3.44) holds true for equation (3.46), which describes TC death due to

the lack of nutrient. Finally, Equation (3.47) describes the uptake of oxygen by LTCs

and accounts for the dependence of nutrient consumption on its local level. Here cox

is the oxygen mass fraction at which oxygen consumption is reduced by half. Note

that the function H in Equation (3.44) describes the inhibition of cell proliferation

due to the mechanical stress exerted on the TCs. Even though several alternatives are

given in the literature, in Section 3.1.4 we provide a mathematical expression for this

quantity that is able to describe accurately our experimental observations on spheroid

growth under a controlled external compression. Accordingly, in the following we set:

H = 1− δ1⟨Σ⟩+
δ2 + ⟨Σ⟩+

. (3.48)

We model the growth of the spheroid as a free-boundary problem, where the

interface constituted by the TCs moves with velocity vt, given by:

dR

dt
= vt = − k

µf
Σ′∂ε

t

∂r

⏐⏐⏐⏐
r=R

, (3.49)

with R being the external radius of the spheroid. The closed form of the differential

problem is obtained by defining a set of boundary and initial conditions. In particular,

spherical symmetry requires no-flow boundary conditions at the spheroid center, while

we assume Dirichlet boundary conditions on the tumor external surface:

∂εt

∂r
=

∂ωNt

∂r
=

∂ωox

∂r
= 0, in r = 0, (3.50)

εt = εtext, ωNt = 0, ωox = ωox
env, in r = R. (3.51)

Finally, we assume the following initial conditions over the spheroid radius:

εt = εtext, ωNt = 0, ωox = ωox
env, for 0 < r < R at t = 0. (3.52)
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3.2.3 Results and discussion

In Section 3.1.4, we have performed numerical simulations of the Equations in (3.41)-

(3.43) and we have recorded the resulting growth curves, namely the evolution of the

spheroid radius over time. We have analyzed both the case of spheroids freely growing

in their culture medium, and the case where an external compression is applied. The

values of the governing parameters are obtained from the literature, when they are

available, and from the fit of the experimental curves.

Here, we investigate the dependence of the growth curves on a set of these param-

eters, summarized in Table 3.3. We start our analysis from R0, the initial radius of

the spheroid. In Figure 3.11 we report the behavior of the growth curve for different

initial spheroid radii. Note that in all the following figures the curve in red is the one

corresponding to the reference value in Table 3.3. We consider spheroids with initial

radii of 90, 117.5, 145, 172.5 and 200 µm. For all the different conditions, in particular

for the small initial radii, it is possible to visualize the three stages characterizing the

growth of the spheroids [181, 27, 59]: the exponential phase in the first days of growth,

where the cells proliferate in a nutrient-rich environment; the linear phase, where the

the tumor mass becomes larger and the nutrient starts to run low; and the growth

saturation phase, where a significant portion of the spheroid is necrotic and only a

small rim of cell proliferates at the tumor border. Notably, although the spheroids

with the larger initial radii are comprised of more tumor cells than the others, they

reach a similar final radius, of about 475 µm. This behavior is consistent with our

assumption of growth as limited by nutrient deprivation. For a fixed level of external

oxygen (ωox
env), only a fixed number of TCs is allowed to coexist in the spheroid mass.

This condition is met sooner for the spheroids with larger initial radii and later for

the others, as shown in the curves and observed experimentally in Section 3.1.4.

Table 3.3: Parameters considered in this study. The reference value is
the one used in Section 3.1.4.

Symbol Parameter Reference value Unit

R0 Initial radius of the spheroid 145 µm

ωox
crit Critical mass fraction of oxygen 2.0× 10−6 -

γtg Coefficient related to growth 5.4× 10−3 kg/(m3 · s)
γtn Coefficient related to necrosis 1.5× 10−1 kg/(m3 · s)
γtf Coefficient related to lysis 1.15× 10−2 kg/(m3 · s)
α Coefficient in the definition of Σ 1.0× 105 Pa
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Figure 3.11: Spheroid growth curves for different initial radii.

Next, we study the effect of a variation in the critical level of oxygen ωox
crit. The

resulting growth curves are shown in Figure 3.12. We consider values for ωox
crit

of 1.0 × 10−6, 2.0 × 10−6, 3.0 × 10−6, 4.0 × 10−6, 5.0 × 10−6 and 6.0 × 10−6 (the

black arrow points in the direction of increasing values of ωox
crit; this holds true also

for the following figures, in which the black arrow indicates increasing values of the

investigated parameter). The choice of this parameter affects significantly the final

radius reached by the spheroids. In particular, higher values of the critical level of

oxygen provide smaller final radii. This follows from the modeling choice in Equation

(3.44), where cell proliferation is a linear function of the oxygen critical level. If this

threshold value is high when compared to the external mass fraction of oxygen, only

a small portion of the spheroid is able to proliferate and the final radius is reduced.

The next parameter that we consider is the growth coefficient γt
g. In Figure 3.13,

we consider values of this coefficient that are ±25, ±50 and ±75% of the reference

value. Also for this parameter, the final radius reached by the spheroid strongly

depends on its value. Interestingly, γt
g seems to regulate the time scale of the phe-

nomenon. For small values of the growth coefficient, at the end of the simulations

the spheroid is still in the first stages of growth. On the contrary, for higher values of

γt
g the spheroid reaches faster its final radius. We also observe that the steady radius

increases for increasing values of the growth coefficient. Indeed, growth saturation is

established when the net production of new tumor mass is zero. This means that, in a

given time interval, the number of new cells produced by growth has to be equivalent

to the number of cells undergoing lysis. This number is approximately given by the
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Figure 3.12: Spheroid growth curves for different critical levels of oxy-
gen.

number of necrotic cells times the lysis rate. If the lysis rate is fixed, as in the present

case, and the growth coefficient is increased, there is a net production of TCs and

the radius grows further. To reach a new steady condition, the necrotic core of the

spheroid has to increase in size, so that the number of cells undergoing lysis is again

equal to the number of generated TCs. This idea can be tested through a variation of

the parameters that regulate cell death, namely γt
n and γt

f , together with a consistent

variation of the growth coefficient γt
g. If we double each of these constants at the

same time, we expect the steady radius of the spheroid to be unaltered, since we have

maintained the original ratio between cell production and removal. This condition is

shown in Figure 3.13, by the gray dashed line. Note that the final radius is the same

as the one obtained with the reference value, but now the time needed to reach the

steady state is significantly reduced.

Then, we consider the case of a variation in the coefficient γt
n, regulating the

necrosis of the LTCs. The influence of this parameter is shown in Figure 3.14. For

this coefficient, we analyze values that are ±25, ±50 and +75% of the reference value.

As shown in the Figure, the variation of γt
n has a very little effect on the resulting

growth curves. The shape of the curve is not significantly altered and the final radius

has a variation of less than 5%. This is probably due to the fact that this term is

active on a population of TCs that is still alive, but is located in a region of the

spheroid where the nutrient level is below the critical threshold. This condition is

poorly encountered in the spheroids at this stage of their growth [127], resulting in

the small influence of this parameter.
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Figure 3.13: Spheroid growth curves for different values of the growth
coefficient.
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Figure 3.14: Spheroid growth curves for different values of the necrosis
coefficient.
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Figure 3.15: Spheroid growth curves for different values of the lysis
coefficient.

The fifth parameter that we study is the lysis coefficient γt
f . Figure 3.15 shows

the results of considering values for this parameter that are ±25, ±50 and ±75% of

its reference value. We first observe that the effects of varying the parameter only

appear after day 8. This is consistent with the onset of a necrotic population inside

the spheroid, which occurs after a few days from the beginning of the simulation.

Figure 3.15 shows that the value of the lysis coefficient has a significant impact on

the spheroid final radius. Notably, there is a saturation effect for high values of γt
f .

This may be due to the limited amount of NTCs that exists in the necrotic core at

fixed γt
n, and that can therefore undergo lysis.

Finally, we study the effects of varying α in the mathematical expression for Σ.

The value of the derivative Σ′ is directly proportional to this parameter, as shown in

Section 3.1.2. We vary the value of α for the ±25, ±50 and ±75% with respect to its

reference value. Even though we apply a significant variation, there is no apparent

effect in the growth curves, which appear superimposed. This finding may point to

the fact that the dynamics of the system, at least for the set of parameters considered,

are mainly governed by the constitutive relations for the mass exchange between the

phases.

3.2.4 Conclusions

In this Section, we have performed a parametric study on a mathematical model for

tumor spheroid growth that was presented in Section 3.1. The influence of a set of
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parameters on the growth curves of the spheroids has been evaluated, and we have

provided a discussion of the results. In summary, some of the parameters show a little

effect on the growth dynamics, such as the mechanical coefficient α and the coefficient

related to necrosis γt
n. On the other hand, other parameters have a significant impact

on the final radius reached by the spheroids, namely the critical oxygen mass fraction

ωox
crit, the coefficient related to growth γt

g and the coefficient related to lysis γt
f .
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3.3 Effects of anticancer treatments

3.3.1 Introduction

A major hurdle to chemotherapy success is resistance of tumor cells to therapeutic

agents. In general, resistance may arise as an intrinsic cellular response or as a re-

sult of drug treatment [198]. It is known that the presence of a low-proliferating cell

population is one of the leading factors contributing to drug resistance in solid tu-

mors [132, 184]. In fact, several chemotherapeutic agents are effective against rapidly

dividing cells. Moreover, as certain normal tissues display high rates of cellular divi-

sions (such as the gut mucosal and bone marrow cells), there exists a toxicity limit

determining the maximum administrable drug dose [43].

Such resistance mechanisms, dependent on the proliferative activity of tumor cells,

are generally investigated in vitro through the use of tumor spheroids [185]. Contrary

to conventional monolayer cultures, tumor spheroids display heterogeneous cell pop-

ulations, including quiescent and necrotic cells, together with resistant phenomena to

different chemotherapeutic drugs [127]. Cell quiescence results both from the lack of

nutrients and growth factors within the tumor, and from adhesion interactions be-

tween cells of the same type. Indeed, cells from healthy tissues display a mechanism

of contact inhibition that regulates proliferation in a crowded environment [1]. This

mechanism allows cells to stop proliferation as soon as a threshold is reached at a given

site. Tumor cells exhibit an analogous behavior, even though to a significant lesser

extent than their healthy counterpart, and with more relevance in three-dimensional

cultures than in monolayers [172].

The biochemical pathways underlying contact inhibition are still an active area

of research. They are linked to adhesive interactions between neighboring cells, me-

diated by adhesion proteins such as cadherins [2]. Moreover, these mechanisms in-

clude a series of proteins involved in cell cycle regulation. To this regard, the G1

checkpoint, also known as the restriction point (R), represents a fundamental step in

the cell cycle, controlling cell commitment to mitosis [144]. Regulation of this cell

checkpoint depends on the retinoblastoma protein (pRb). In particular, the hypo-

phosphorylated form of pRb prevents progression from the G1 to the S phase of the

cell cycle, inhibiting cell duplication. On the other hand, phosphorylation of pRb

leads to its inactivation allowing the cell to undergo mitosis. Phosphorylation of

Section 3.3 of this chapter is based upon the work in: Mascheroni P, Boso D P, Preziosi L,
Schrefler B A, “Evaluating the influence of mechanical stress on anticancer treatments through a
multiphase porous media model”, submitted to Journal of Theoretical Biology.
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pRb depends on cyclin-dependent kinases (Cdks), which in turn are subject to the

action of cyclins [48]. Finally, the activity of the whole complex is further regulated

by several inhibitor proteins, in particular the cyclin-dependent kinase inhibitor p27

[84, 145]. Interestingly, an over-expression of this protein has been observed following

cell-cell contact in three-dimensional cultures, as compared to the levels expressed

in monolayers [171, 172, 197]. The adhesive interactions between cells inside tumor

spheroids lead to upregulation of p27, which results in cell arrest in a quiescent phase

of the cycle. Recently, the expression of p27 has been investigated through a series

of experiments involving mechanical compression of three-dimensional cell aggregates

[46]. Results show that a controlled compressive stress on tumor spheroids inhibits

cell proliferation by an over-expression of p27, blocking the cancerous cells at the

restriction point of the cell cycle.

At the beginning of this Introduction, we have observed that the presence of

a non-proliferating cellular fraction has important consequences on the therapeutic

efficacy of different chemotherapeutic agents. Notably, previous works have shown

that a reduction in p27 expression in tumor spheroids could lead to better outcomes

in terms of drug performance [171, 172, 197]. However, experiments quantifying the

influence of mechanical stress on drug efficacy have still to be performed. Note that,

interestingly, the compressive stresses that can be induced in tumor spheroids are of

the same order of magnitude of those measured in vivo [22, 177, 54], in the range of

a few kPa.

Phenomena concerning the mechanisms of drug action, as well as the mechani-

cal characterization of the state of a tissue, are difficult to investigate from a pure

biological and biochemical framework. To this end, mathematical models provide a

valuable tool for establishing which of the biophysical features of the tumor and the

stroma are responsible for the observed behaviors. As recalled in Chapter 2, several

review papers discussing different approaches to cancer modeling have been published

[158, 148, 24, 164, 3]. Some models describe the action of a therapeutic agent on tu-

mor spheroids [190, 69, 60], whereas others take into account in vivo settings, as in

[86, 95, 131]. There are also models addressing the effects of mechanical stress on tu-

mor development, such as those in [98, 177, 112]. However, to our knowledge, there is

a lack of mathematical models focusing on the interactions between anticancer agents

and the mechanical environment surrounding the tumor.

The aim of this Section is to develop a theoretical framework that is able to

take these interactions into account, providing new insights into mechanics-mediated

drug resistance. In the following, we specialize our study to tumor spheroids. We
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address the effects of a chemotherapeutic agent, supposed to target cell proliferation,

on these cell aggregates. Then, we evaluate the influence of mechanical compression

on treatment efficacy.

The remainder of the Section is organized as follows. Section 3.3.2 describes

the mathematical model; the governing equations are presented, together with the

assumed constitutive relations and parameter values. In Section 3.3.3 we report the

results of the model. We start from the effects of different drug concentrations on the

spheroid growth curve. Then, we consider a range of mechanical pressures acting on

the spheroid surface and investigate their interactions with the treatment. Finally, we

test different mathematical expressions for the drug-induced cell death term. Section

3.3.4, at the end, presents some concluding remarks.

3.3.2 Governing equations

3.3.2.1 Balance laws

We build upon the mathematical model in Section 3.1 to describe the transport of

chemotherapeutic agents within an avascular tumor. The tumor is modeled as a

biphasic porous material, and the governing equations are derived from porous media

theory. Again, we denote by t the solid phase of the porous medium, constituted by

tumor cells (TCs) and ECM. The interstitial fluid (IF) constitutes the fluid phase (f),

and permeates the pores of the cellular scaffold. In our description, TCs are divided

into living (LTC) and necrotic (NTC) fractions. In addition, we assume that the IF

carries a nutrient, namely oxygen (ox), and a drug (ch). We consider a saturated

material, where the IF fills all the voids of the porous medium. This results in the

saturation constraint:

εt + εf = 1, (3.53)

where εα denotes the volume fraction of phase α (α = t, f). The mass balance

equations for the phases in the biphasic system are given by:

∂t
(
ρtεt

)
+ div

(
εtρtvt

)
= Γf→t

gr − Γt→f
de , (3.54)

∂t
(
εfρf

)
+ div

(
εfρfvf

)
= −Γf→t

gr + Γt→f
de . (3.55)

Here, ρα is the true mass density and vα the velocity of the α phase (α = t, f).

As before, Γf→t
gr is the term responsible for mass exchange between IF and TCs,

dependent on cell proliferation. Γf→t
de represents instead mass exchange between TCs

and IF resulting from cell death and their following degradation. In this case, we
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need to include in the previous exchange term the action of the chemotherapeutic

agent. Oxygen and drug are described as species dissolved into the IF, and their

mass balance reads:

∂t
(
εfρfωox

)
+ div

(
εfρfωoxvf

)
− div

(
εfρfDoxgradωox

)
= −Γox→t

ox , (3.56)

∂t
(
εfρfωch

)
+ div

(
εfρfωchvf

)
− div

(
εfρfDchgradωch

)
= −Γch→t

ch , (3.57)

where ωβ denotes the mass fraction of species β and Dβ is its diffusion coefficient

(β = ox, ch). The terms Γox→t
ox and Γch→t

ch represent oxygen and drug uptake by

TCs, respectively. We describe the evolution for living and necrotic TCs through the

system:

∂t
(
εtρtωLt

)
+ div

(
εtρtωLtvt

)
= −εtrNt + Γf→t

gr , (3.58)

∂t
(
εtρtωNt

)
+ div

(
εtρtωNtvt

)
= εtrNt − Γt→f

de . (3.59)

Consistently with before, we have denoted by ωLt and ωNt the mass fractions of living

and necrotic cells, respectively. Here εtrNt is an intra-phase mass exchange term,

accounting for the transfer of TCs from living to necrotic. Note that, by summing

(3.58) and (3.59) we obtain (3.54) assuming that:

ωLt = 1− ωNt. (3.60)

The last equation is obtained from the balance law for momentum. Following

Section 3.1.2, we have:

σt
eff = σtot + αBp

fI, (3.61)

where we used the same notation as before for the total and effective stress tensors

and for the IF fluid pressure. Then, the linear momentum balance equation for the

tissue reads [111]:

divσtot = div
(
σt

eff − αBp
fI
)
= 0. (3.62)

3.3.2.2 Constitutive relations

In Section 3.1.2, constitutive relationships for the effective stress and the mass transfer

terms have been formulated. In particular, we have assumed the following form for

the effective stress:

σt
eff = −Σ

(
εt
)
I, (3.63)

with Σ given by Equation (3.17).
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The growth term Γf→t
gr takes the same form as in Section 3.1.2. For the sake of

completeness, we report it below:

Γf→t
gr = γt

g

⟨
ωox − ωox

crit

ωox
env − ωox

crit

⟩
+

(
1− δ1

⟨Σ⟩+
⟨Σ⟩+ + δ2

)
ωLtεt. (3.64)

The rate of TC death in Equation (3.54) is given by:

Γt→f
de = Γt→f

d,ly + Γt→f
d,ch, (3.65)

where the two contributions are related to cell lysis and drug action. In particular,

the first term accounts for cell lysis and is given by the form already used in Section

3.1.2:

Γt→f
d,ly = γt

fω
Ntεt. (3.66)

The second term takes the form:

Γt→f
d,ch = fchγ

t
c1ω

chωLtεt. (3.67)

Here, γt
c1 accounts for the rate of drug-induced cell death. The function fch is related

to the mechanism of action of the drug that is considered. Since we are interested in

drugs that target TC proliferation, we assume fch to depend on the growth term in

(3.64):

fch (ω
ox,Σ) =

Γf→t
gr

max
(
Γf→t
gr

) =

⟨
ωox − ωox

crit

ωox
env − ωox

crit

⟩
+

(
1− δ1

⟨Σ⟩+
⟨Σ⟩+ + δ2

)
. (3.68)

In this way, the drug is most effective on the TCs that are well nourished and not

compressed. Note that, depending on the particular drug that is considered, different

choices for fch are possible (for example, in this framework it is possible to simulate

drugs targeting hypoxia or specific cellular species in the tumor).

The rate of necrosis of living tumor cells in Equations (3.58) and (3.59) is described

by the same relation that we presented in Section 3.1.2, given by:

εtrNt =

⟨
ωox − ωox

crit

ωox
env − ωox

crit

⟩
+

ωLtεt. (3.69)

Also for the oxygen consumption, we have the same expression as in Section 3.1.2,

that is:

Γox→t
ox = γt

0

ωox

ωox + cox
ωLtεt. (3.70)

Finally, the mass transfer term related to drug uptake in equation 3.65 takes the

form:

Γch→t
ch = γt

c2ω
chωLtεt, (3.71)

where we assumed the simplest kinetics for drug uptake (i.e. linear), with γt
c2 ac-

counting for the drug uptake rate by LTCs [60, 191].
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3.3.2.3 Model specialization to tumor spheroids

The equations of the model can be specialized to the case of tumor spheroids, fol-

lowing a similar procedure to that in Section 3.1.2. The resulting system for the TC

volume fraction, necrotic mass fraction, and oxygen and drug mass fractions can be

summarized as:

∂εt

∂t
− 1

r2
∂

∂r

(
r2εt

k

µf
Σ′∂ε

t

∂r

)
− 1

ρ

(
Γf→t
gr − Γt→f

de

)
= 0, (3.72)

∂
(
ωNtεt

)
∂t

− 1

r2
∂

∂r

(
r2ωNtεt

k

µf
Σ′∂ε

t

∂r

)
− 1

ρ

(
εtrNt − Γt→f

d,ly

)
= 0, (3.73)

∂ [(1− εt)ωox]

∂t
+

1

r2
∂

∂r

(
r2ωoxεt

k

µf
Σ′∂ε

t

∂r

)

− 1

r2
∂

∂r

[
r2

(
1− εt

)
Dox∂ω

ox

∂r

]
+

1

ρ
Γox→t
ox = 0, (3.74)

∂
[
(1− εt)ωch

]
∂t

+
1

r2
∂

∂r

(
r2ωchεt

k

µf
Σ′∂ε

t

∂r

)

− 1

r2
∂

∂r

[
r2

(
1− εt

)
Dch∂ω

ch

∂r

]
+

1

ρ
Γch→t
ch = 0. (3.75)

Here, we have adopted spherical symmetry, and r is the radial coordinate over the

spheroid radius. The parameters k and µf are the intrinsic permeability of the cellular

scaffold and the dynamic viscosity of IF, respectively. They arise by assuming Darcy’s

law for the relative velocity of the two phases, as specified in Section 3.1.2. Moreover,

we take the phases to be incompressible and assign a common value for their densities,

which we denote by the constant ρ. Finally, here we make use of Σ′, the derivative

of Σ with respect to εt.

Again, we model the growth of the spheroid as a free-boundary problem, where

the interface constituted by TCs is a material surface for the TCs that moves with

velocity vt, given by:
dR

dt
= vt = − k

µf
Σ′∂ε

t

∂r

⏐⏐⏐⏐
r=R

, (3.76)

where R is the external radius of the spheroid. The closed form of the differential

problem is then obtained by defining a proper set of boundary and initial conditions.

In particular, symmetry requires no-flow boundary conditions at the spheroid center,
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Table 3.4: Parameters used in the simulations considering the effects of
the drug.

Parameter Unit Value Reference

ωox
env (−) 7.7× 10−6 [134, 133]

cox (−) 1.48× 10−7 [30, 31]

γt0 kg/(m3 · s) 3.0× 10−4 [30, 31]

β (−) 0.5 [23]

εtn (−) 0.8 [23]

εt0 (−) 1/3 [23]

k m2 1.8× 10−15 [136]

µf Pa · s 1.0× 10−3 [167]

Dox m2/s 3.2× 10−9 [167]

ρ kg/(m3) 1.0× 103 [167]

ωox
crit (−) 2.0× 10−6 [120]

γtg kg/(m3 · s) 5.4× 10−3 [120]

γtn kg/(m3 · s) 1.5× 10−1 [120]

γtf kg/(m3 · s) 1.15× 10−2 [120]

α Pa 1.0× 105 [120]

ωch
env (−) 8.696÷ 271.76× 10−9 [60]

Dch m2/s 9.375× 10−14 [60]

γtc2 kg/(m3 · s) 1.157× 10−2 [60]

γtc1 kg/(m3 · s) 5.0× 104 -

while we enforce Dirichlet boundary conditions on the tumor external surface:

∂εt

∂r
=

∂ωNt

∂r
=

∂ωox

∂r
=

∂ωch

∂r
= 0, in r = 0, (3.77)

εt = εtext, ωNt = 0, ωox = ωox
env, ωch = ωch

env, in r = R. (3.78)

Finally, we assume the following initial conditions over the spheroid radius:

εt = εtext, ωNt = 0, ωox = ωox
env, ωch = 0, for 0 < r < R at t = 0. (3.79)

3.3.2.4 Model parameters

The parameters used in the model are listed in Table 3.4. In this Section, we need to

add the values for the parameters appearing in the equations governing drug transport

and uptake. For these quantities we assume the values in [60], obtained for spheroids

treated with Doxorubicin. Actually, the parameter governing drug-induced cell death,

γt
c1, depends on the particular therapeutic agent and cell line that are considered. Here

it is selected to produce a reasonable response of the model when TCs are subjected

to the given drug concentrations.
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3.3.3 Results

3.3.3.1 Tumor spheroid growth in the presence of a drug

In this section we test the effects of a drug that targets cell proliferation in a three-

dimensional cell aggregate. First we consider tumor spheroids that grow suspended

in culture medium, subjected to different drug concentrations. We assume drug con-

centration at spheroid boundary to start from zero and, following a ramp, to reach

the final value ωch
env after 3 h. In Figure 3.16, we show the evolution of the spheroid

radius over time for different drug mass fractions (i.e. ωch
env = 0.086, 0.347, 1.391,

2.717× 10−7). Here, the arrow points in the direction of increasing ωch. We consider
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Figure 3.16: Effect of different drug concentrations on spheroid growth.
The red line refers to a spheroid grown in the absence of drug. The other
lines are for ωch

env = 0.086, 0.347, 1.391, 2.717× 10−7.

the normalized value of the spheroid radius, namely the ratio between the value of the

radius at time t and the initial radius of the spheroid (200 µm in this case). The red

line represents a spheroid grown in the absence of drug. We can distinguish between

the first stages of growth, displaying an exponential/linear behavior, followed by a

phase of growth saturation where the radius tends to a steady value. Low concentra-

tions of drug do not alter the shape of the growth curve, whereas for high levels of

the chemotherapeutic agent the spheroid starts to shrink and, for the highest value

of ωch, growth is almost completely inhibited. This behavior closely resembles the

growth curves obtained for example in [96, 127], where spheroids from various cell

lines are subjected to different drugs.
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ch 8

env
3.478 10 20 d, t   

Figure 3.17: Drug mass fraction inside the spheroid at day 20 and for
ωch
env = 3.478× 10−8.

Figure 3.17 shows the drug mass fraction inside the spheroid for an intermediate

value of ωch, at the end of the simulation. Note the steep gradient of drug appear-

ing from the boundary towards the center of the cell aggregate. In this case, the

therapeutic agent can exert its effect only over the outermost region of the spheroid.

This phenomenon arises as a consequence of poor diffusion of the drug molecules

inside the tissue, and due to drug uptake by proliferating TCs. Interestingly, similar

results are obtained in the experimental literature analyzing the penetration of free

drug into a spheroid (see for example [187, 68]). Moreover, some researchers couple

the therapeutic agent to a nanoparticle, enabling a larger penetration into the tumor

[96, 187]. This latter kind of results can be integrated in the current model, once

suitable mechanisms for nanoparticle delivery are hypothesized.

Then, we look for the value of drug mass fraction that is able to provide a reduction

of 50% in spheroid volume (usually identified with the label IC50, for “half maximal

inhibitory concentration” [42]). We find a value of ωch
env = 1.185 × 10−7, which we

will denote from now on with IC50. The growth curve relative to this drug mass

fraction is shown in Figure 3.18.a, where we report the evolution of the normalized

volume (i.e. the ratio between the spheroid volume at time t and its initial volume)

over time. Figures 3.18.b-f show the evolution of different quantities, namely oxygen,

necrotic and drug mass fractions, over spheroid radius and for different times. The

evolution of oxygen mass fraction is represented in Figure 3.18.b. Note the steep

oxygen gradient at the end of the simulation, from spheroid boundary towards its

interior. The necrotic mass fraction of TCs is displayed in Figure 3.18.c. A necrotic
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Figure 3.18: Comparison between a spheroid grown without an external
drug (ND) and one treated with a drug mass fraction equal to IC50.
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population appears after a few days from the beginning of the simulation and gives

rise to a necrotic core at later days. Both Figures 3.18.b and 3.18.c refer to a spheroid

not treated with the drug, whereas the second row of Figures (3.18.d-f) pertains to

a spheroid grown in the presence of a drug with a mass fraction equal to IC50. The

drug mass fraction over the spheroid radius is presented in Figure 3.18.d. Note that,

after a few days from the beginning of the simulation, the therapeutic agent is mainly

distributed over the spheroid periphery. Figure 3.18.e shows the oxygen mass fraction

in the drug-treated spheroid. We can observe a behavior similar to the one in Figure

3.18.b, but this time over a smaller spheroid. Finally, the necrotic mass fraction in a

spheroid subjected to the drug is shown in Figure 3.18.f. Compared to Figure 3.18.c,

here the necrotic core is less extended and appears at later times in the simulation.

This may be due to a smaller mass fraction of LTCs that can undergo necrosis,

deriving from LTC killing by the chemotherapeutic agent.

3.3.3.2 Effect of mechanical compression on drug efficacy

In Section 3.1, we investigated the effects of an external mechanical pressure on the

growth curves of tumor spheroids. Figure 3.19 report these previous findings, in

terms of the evolution of the normalized volumes of spheroids subjected to different

compressive stresses. We consider four compression levels, ranging from 1 kPa to 10
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Figure 3.19: Normalized volumes of spheroids grown under different
external mechanical pressures.

kPa. The growth of the most compressed spheroid shows a 7-fold reduction when

compared to the control (grown in the absence of an external stress). Note that
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the inhibitory effect of compressive stresses is included in the equations through the

constitutive relation in (3.64). We make use of these results to test our newly intro-

duced framework for drug transport and uptake in the spheroid. In particular, we

apply the same external mass fraction of drug (IC50) to each of the compression tests.

Then, we check for variations in spheroid volumes with respect to the case with no

drug added to the culture medium (Figure 3.20 and 3.21). Figure 3.20 compares the
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Figure 3.20: Comparison of the normalized volumes of spheroids sub-
jected to different mechanical stresses, grown in the absence of drug (ND)
or subjected to a drug concentration of IC50.

normalized volumes of spheroids undergoing different compressive stresses. We test

spheroids in the absence (ND) or presence (IC50) of a chemotherapeutic drug. Both

the series, ND and IC50, exhibit the same decreasing trend, although with a slower

volume reduction for drug-treated spheroids. The variation between the two volumes

for each compressive condition is shown in Figure 3.21. According to the definition

of IC50, the control case exhibits a 50% reduction in volume. Interestingly, the series

displays a percentage variation decreasing with the extent of mechanical compression,

as highlighted by the black arrow. The case undergoing maximum compression shows

a variation of about 30% in volume reduction. The observed behavior arises as a con-

sequence of a lower proliferation index within the spheroid. In fact, mechanical stress

inhibits cell proliferation via Equation (3.64) of the model, providing smaller values

for the growth term as compression increases. Since our discussion is based on drugs

that target cell duplication, growth inhibition is responsible for a cell population over

which the therapeutic agent is less effective. Note that this effect could be relevant for

in vivo applications: a drug concentration that is known to be effective in a particular
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Figure 3.21: Variation in spheroid volume due to the action of a
chemotherapeutic drug at different external mechanical pressures.

regime (such as 3D cultures) could not provide the same results when the tumor is

subjected to mechanical compression.

3.3.3.3 Analysis of different drug-induced death terms

To confirm that model results are not biased by the particular choice of the term

in (3.67), we test different mathematical expressions accounting for drug-induced

cell death. The simplest hypothesis, assumed in (3.67), considers cell death to be

proportional to the local amount of drug. In the following, we will refer to this case

as the “linear” one. We introduce two additional relationships, given by:

Γt→f
d,ch = fch

m1ω
ch

ωch +m2

ωLtεt, (3.80)

Γt→f
d,ch = fchp1

(
ωch

)p2
ωLtεt. (3.81)

In (3.80), we assume a dependence of the Michaelis-Menten type; in (3.81) the assume

relationship takes the form of a power law. Note that, as the functional dependence

on the local drug concentration changes, these relations give rise to new values for

the inhibitory concentration IC50. We report the new IC50 and the values for the

parameters that characterize the above expressions in Table 3.5. Once the new forms

for the drug-induced cell death term are implemented into the model, we perform the

same numerical tests of the previous Section to analyze the coupled effect of drug

action and mechanical compression. In Figure 3.22, we report the variation in terms

of spheroid volume induced by the drug for different compressive stresses. Like in
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Table 3.5: Parameter values for the relations assumed in the cell death
term.

Relation Parameter Value Unit IC50

Linear γtc1 5.0× 104 kg/(m3 · s) 1.185× 10−7

Michaelis-Menten m1 1.5× 10−2 kg/(m3 · s) 5.345× 10−8

m2 1.0× 10−7 (−)

Power law p1 2.5× 1011 kg/(m3 · s) 1.862× 10−7

p2 2 (−)
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Figure 3.22: Effect of different mathematical relations on spheroid vol-
ume variation.

Figure 3.21, the first series of data serves as a control and indicates a variation of 50%

with respect to the drug-free condition. The other series are related to the different

compression regimes and compare the model response for the different mathematical

relationships assumed for the death term. It is possible to observe that the variation

in volume reduction is similar to the linear case, analyzed in the previous section.

The effect of mechanical compression on drug efficacy described previously does not

seem therefore to be originated from the particular mathematical form adopted for

the death term in (3.67).

3.3.4 Conclusions

In this work, we introduce equations for drug transport and uptake by TCs in our pre-

vious mathematical model for avascular tumor growth. Then, we adapt the equations

for the tumor spheroid case and test the effects of a proliferation targeting drug on
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spheroid growth curves. We observe a qualitative agreement between model results

and experimental literature [96, 127]. After that, we simulate tumor spheroids un-

dergoing mechanical compressive stresses of different amplitudes, and consider their

volume reduction due to the presence of a therapeutic agent. Interestingly, we notice

a decreased growth inhibition efficacy of the drug in terms of the final volumes reached

by the spheroids. Finally, we test three different mathematical expressions for the

cell death term induced by the therapeutic agent. The resulting predictions are sim-

ilar for all the tested expressions, suggesting that the particular form of the adopted

constitutive relation does not influence model response. Taken together, these results

suggest that mechanical compression of tumor spheroids may compromise the efficacy

of a chemotherapeutic agent targeting cell proliferation.

As several simplifying assumptions are considered in the work, the model is cer-

tainly open to further improvements. In particular, here we model only one nutrient

species, i.e. oxygen, diffusing in the interstitial fluid and regulating TC proliferation.

Even though the presence of other chemicals is implicitly contained within the mass

exchange term in (3.64), including additional nutrients, growth and necrosis factors

could provide a more detailed description of the tumor system [34, 91]. Moreover,

since the particular physiochemical environment in which the tumor is embedded af-

fects significantly the outcomes of therapies (see for example [115, 168]), the inclusion

of additional factors could result in a better description of drug dynamics. Another

point requiring some attention is the proper choice of constitutive relations. As it

happens frequently in literature, most of these laws are derived from phenomeno-

logical arguments. More experimental work is needed to link the mathematical form

that is assigned to the various terms to the underlying biology. This kind of reasoning

should be applied to the constitutive relations accounting for the drug uptake and the

following effects on TCs, as well as the mechanical description of the tumor ensemble.

For the latter, here we consider a simple law, linking the stress in the tissue to the

local volume fraction of tumor cells. This assumption provides a great simplification

of the equations and is shown to give a good description of experimental observa-

tions, as shown in Section 3.1. However, it neglects several phenomena related to

the mechanical behavior of a biological tissue. For example, viscoplastic effects ex-

isting at smaller timescales than those of cell proliferation are not taken into account

[56, 66]. Also, breaking and formation of cellular bonds during tumor development

should be included to give a more complete description [7, 147]. Finally, we high-

light the need for experiments addressing the interactions between therapeutic agents

and tumor mechanical environment. These will serve to calibrate the parameters in
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the equations and to test model results. Part of future experimental work should

also be devoted to the biochemical understanding of the growth inhibition process

following mechanical stress. Although some work is already present in the literature

[35, 112, 46], several details remain to be elucidated. New investigations analyzing

the interactions between the tumor and its bio-mechanical environment should allow

a better understanding of disease progression, with the final goal of aiding the design

of effective therapeutic treatments.
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Chapter 4

Modeling the mechanical response
of the tumor tissue

4.1 Introduction

At the present time, a unifying description of cancer is still lacking. This happens

both because many tumors are characterized by different origins and features, and

the determinants of tumor progression are still partially unclear [192]. Cells in solid

tumors live in a rich environment, filled with water and proteins [113, 2]. Several nu-

trients diffuse into the interstitial fluid and are consumed by the cells to support their

survival and duplication. Among the other substances dispersed into the fluid, there

is also a plethora of chemical factors. In particular, growth promoting factors, growth

inhibitory factors, and chemotactic factors are able to trigger subcellular pathways,

eventually resulting in different cell behaviors. The extracellular space is also filled

by a network of cross-linked proteins, organized in the extracellular matrix (ECM).

This matrix constitutes a biological scaffold that provides structural and biochemical

support to the surrounding cells. By exerting forces on the proteins of the network,

cells can migrate towards different regions of the tissue, or proliferate once they have

formed stable bonds. The ECM is also subjected to continuous remodeling by cells, as

some of them produce matrix degrading enzymes while others secrete new filaments.

Remarkably, all these phenomena are influenced by the mechanical stress to which

the tissue is subjected, through mechanisms that are still an active area of research

[183, 82, 155]. Cell duplication depends on the balance between biochemical and me-

chanical inputs, too. While the dependence of cell growth on certain nutrients and

Chapter 4 of this dissertation is based upon the work in: Mascheroni P, Carfagna M, Grillo A,
Boso D P, Preziosi L, Schrefler B A, “An avascular tumor growth model based on porous media
mechanics and evolving natural configurations”, submitted to New Journal of Physics.
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growth factors is well documented (see for example [132]), several new studies are fo-

cused on determining the influence of mechanical stress on cell proliferation [107, 57].

In one of the first works about this subject, Helmlinger and coworkers [83] show that a

compressive stress is able to inhibit the proliferation of cells in tumor spheroids. These

findings are confirmed and extended by later works from the same group [35] and by

other researches that use different experimental methodologies [47, 128]. All these

phenomena constitute a complex framework, which is continuously enriched by new

discoveries and increasingly large data sets. Recently, Hanahan and Weinberg [79, 80]

published two landmark papers in which they summarize the characteristics shared

by malignant tumors. In general, these common traits are related to the occurrence

of a failure in cell control mechanisms, and lead to uncontrolled cell proliferation and

avoidance of self-death signaling.

Facing this complexities, physical scientists have started to apply the tools from

physics, mathematics and engineering to contribute to cancer research in the last years

[125]. The problem of describing cancer through mathematical models is, however, a

difficult one. On the other hand, such models may give some insight into the under-

standing of the illness, as discussed in Section 2.3. Several models in the literature

focus on the biochemical events occurring during the growth of a tumor. These are

generally formulated in terms of balance laws along with advection-diffusion-reaction

equations for modeling the evolution of nutrients, and suitable closure conditions for

the cell velocity field [7]. More recently, mathematical models started to consider the

mechanical aspects of tumor growth, including the dependence of cell growth and

death on compression, the effect of mechanical stresses on the tissues surrounding the

tumor, and the constitutive laws connecting stresses and deformations in the tumor

tissue [164]. Several models describe the tumor mass as a fluid, which in some cases

might be a strong simplification. However, significant theoretical difficulties may arise

when modeling tumors as solids. In fact, tumor cells duplicate and die, the ECM re-

models continuously, and the ensemble of cells is subjected to internal reorganization

and change in adhesion properties. In terms of continuum mechanics, it is difficult

to define a reference configuration from which deformations can be calculated, since

the material is continuously changing. A possible solution to this problem is found

by applying the theory of evolving natural configurations. As the basic concept has

its roots in the works of Skalak and Rodriguez [170, 157] (taking in turn inspiration

from classical theories in elastoplasticity [15, 103, 108]), Rajagopal and Humphrey

[87] apply this theory to describe the growth and remodeling of different tissues. The

method consists in splitting the evolution of the system in growth, plastic remodeling,
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and elastic distortions through a multiplicative decomposition of the deformation gra-

dient tensor. Starting from the early works of Ambrosi and Mollica [4, 5], considering

a purely elastic monophasic model to evaluate residual stresses in tumor spheroids,

Ambrosi and Preziosi in [6] develop a multiphase framework in which internal cell

reorganization is also taken into account. The flow rule for cell bond reorganization

was further studied in the works of Giverso and Preziosi [66] to describe experiments

of cell aggregate compression.

In this Chapter, we extend the modeling framework mentioned above by including

the effect of a nutrient on the tumor growth dynamics. Two cell populations are also

taken into account, describing proliferating and necrotic tumor cells. Moreover, we

test the influence of external healthy tissues with different mechanical properties on

tumor development. These new features are analyzed in three cases of biological in-

terest, namely the growth of a tumor spheroid in the culture medium, in a host tissue,

and in a three-dimensional configuration. The dependence of tumor development on

the external mechanical environment is investigated, with particular attention to cell

reorganization and its impact on stress relaxation.

The Section is then organized as follows. In section 4.2, we introduce the math-

ematical model, with a focus on the decomposition of the deformation gradient. In

section 4.3, we simplify the model to study a trial case, namely the compression of a

soft tissue. In section 4.4, we present the numerical results for three tumor growth

conditions. Finally, we draw our conclusions and propose further research in Section

4.5.

4.2 Mathematical model

In our model, a tumor mass is described as a biphasic system comprising a solid and

a fluid phase. The solid phase (s) is assumed to consist of cells and ECM. These

constitute a scaffold that will be described as a solid medium in the sequel. The fluid

phase (f) is identified with the tumor’s interstitial fluid. We hypothesize that only

two types of cells are relevant for our purposes: the proliferating cells (p) and the

necrotic cells (n), included in the solid phase. On the other hand, the fluid phase

comprises only a nutrient (N). Clearly, many other chemicals are present in this fluid

constituent, even though they are not explicitly accounted for here. In some tests

studied in this work, we shall also consider the presence of a soft host tissue and of

a stiff host tissue (e.g., bone), which surround the growing tumor. In our model, we

shall assume that these tissues occupy three different subdomains of the same region
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of space, and that both the soft and the stiff host tissue comprise a solid and a fluid

phase, which, in analogy with the notation used for the tumor, are associated with

the apices (s) and (f). Again, we use (N) for identifying the nutrient constituent of

the fluid in the soft and stiff host tissue.

4.2.1 Balance equations

We indicate by Kt the region of space occupied by the system at time t, and we

assume that Kt is partitioned into three disjoint sets, i.e., Kt = Tt⊔Ht⊔Bt. Here, Tt

represents the tumor tissue, Ht is a soft host tissue, and Bt denotes a stiff host tissue,

e.g., the bone. Since the majority of the processes, such as growth and mass exchange

among the system’s constituents, take place in the tumor we start our discussion by

considering first only the balance laws holding in the interior of Tt.

We assume that the pore space of the cellular scaffold, which represents the solid

phase, is completely filled with the fluid. The system is thus constrained by the

saturation condition

εf + εs = 1, (4.1)

where εα is the volume fraction of the αth phase (α = f, s). The different constituents

(or species) in the phases are described through their mass fraction ωβ, with β = p, n

in the solid phase, and β = N in the fluid phase. The mass balance laws for the

constituents of the solid phase (i.e., the proliferating and necrotic cells) are given by

∂t (ε
sρsωp) + div (εsρsωpvs) = Γp→n

p + Γf→p
p , (4.2)

∂t (ε
sρsωn) + div (εsρsωnvs) = Γp→n

n + Γn→f
n . (4.3)

Here, ρs and vs denote the mass density and the velocity of the solid phase, respec-

tively. The terms Γp→n
p , Γf→p

p , Γp→n
n , and Γn→f

n are sources and sinks of mass that

account for the mass exchange processes among the constituents of the system under

study. More specifically, Γp→n
p is the rate at which proliferating cells become necrotic,

and Γf→p
p is the mass uptake of the proliferating cells due to the exchange of mass

with the fluid phase. Analogously, Γp→n
n is the increase of mass of the necrotic cells

at the expenses of the proliferating ones, and Γn→f
n denotes the rate at which necrotic

cells dissolve in the fluid phase. Summing together (4.2) and (4.3), and recalling the

constraint on the mass fractions, ωp+ωn = 1, we determine the mass balance law for

the solid phase as a whole, i.e.,

∂t (ε
sρs) + div (εsρsvs) = Γs, (4.4)
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where Γs is given by

Γs = Γp→n
p + Γf→p

p + Γp→n
n + Γn→f

n . (4.5)

In particular, we choose Γp→n
p and Γp→n

n such that they balance each other, i.e.,

Γp→n
p + Γp→n

n = 0 ⇒ Γp→n
p = −Γp→n

n , (4.6)

which implies the equality

Γs = Γf→p
p + Γn→f

n . (4.7)

In addition to (4.2) and (4.3) we consider also the mass balance law of the fluid phase

as a whole and of the nutrient, i.e.,

∂t
(
εfρf

)
+ div

(
εfρfvf

)
= Γf , (4.8)

∂t
(
εfρfωN

)
+ div

(
εfρfωNvf

)
+ divJN = ΓN→p

N (4.9)

where ρf and vf are the mass density and the velocity of the fluid phase, respectively,

ωN is the mass fraction of the nutrient, and JN is the mass flux vector of the nutrient,

which is generated by the difference between its own velocity and vf . We assume that

JN obeys standard Fick’s law, which yields the expression JN = −εfρfDNgradωN,

where DN is the diffusion tensor. Finally, Γf is the rate at which the fluid phase

exchanges mass with the solid phase, and ΓN→p
N is the term describing the uptake

of nutrients from the interstitial fluid to the proliferating cells. Since the biphasic

system under study is assumed to be closed with respect to mass, Γs and Γf must

satisfy the condition

Γf + Γs = 0, ⇒ Γs = −Γf . (4.10)

In addition to the mass balance laws (4.2), (4.3), (4.8), and (4.9), we also consider the

momentum balance laws associated with the solid and the fluid phase. By neglecting

all external body forces, such as gravity, the local form of these balance laws can be

written as

∂t(ε
sρsvs) + div (εsρsvs ⊗ vs) = divσs + (ms + Γsvs) , (4.11)

∂t(ε
fρfvf) + div

(
εfρfvf ⊗ vf

)
= divσf +

(
mf + Γfvf

)
, (4.12)

where σα and mα + Γαvα (with α = f, s) are, respectively, the Cauchy stress tensor

of the αth phase and the gain or loss of momentum of the αth phase due to the

interactions with the other one. We remark that Γαvα is directly related to the mass

transfer between the phases, while mα is due to overall contact forces exchanged by
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the fluid and the solid phase at the interface. Since the system is assumed to be

closed with respect to momentum, the closure condition

(ms + Γsvs) + (mf + Γfvf) = (ms +mf) + Γs(vs − vf) = 0 (4.13)

is enforced. In the following, however, we neglect inertial forces and the contribution

Γs(vs − vf). This allows to rewrite the momentum balance laws (4.11) and (4.12) as

divσs +ms = 0, (4.14)

divσf +mf = 0, (4.15)

while the closure condition (4.13) becomes

ms +mf = 0. (4.16)

Finally, adding together (4.11) and (4.12) leads to the balance law of momentum for

the system as a whole, i.e.,

div(σs + σf) = 0. (4.17)

Equations (4.1)-(4.17) must be studied in conjunction with the balance laws per-

taining to the subdomains Ht and Bt. The saturation constraint applies also in each

of these two subdomains, i.e., it holds that

εs + εf = 1, in Ht ⊔ Bt. (4.18)

Moreover, since in this work it is assumed that in Ht and Bt cells do not proliferate

or die, it is sufficient to consider only one mass balance law for the solid phase as a

whole, in which neither mass sources nor mass sinks appear. Thus, the mass balance

law (4.4) becomes

∂t (ε
sρs) + div (εsρsvs) = 0, in Ht ⊔ Bt. (4.19)

In addition, the mass balance law for the fluid phase as a whole and for the nutrient

read

∂t
(
εfρf

)
+ div

(
εfρfvf

)
= 0, in Ht ⊔ Bt, (4.20)

∂t
(
εfρfωN

)
+ div

(
εfρfωNvf

)
+ divJN = 0, in Ht ⊔ Bt. (4.21)
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Finally, similarly to (4.14)–(4.17), also in this case the linear momentum balance laws

and the closure condition ms +mf = 0 must apply, i.e.,

div(σs + σf) = 0, in Ht ⊔ Bt (4.22)

divσf +mf = 0, in Ht ⊔ Bt. (4.23)

If the fluid phase can be regarded as macroscopically inviscid and the constituents

are assumed to be incompressible, the stress tensors of the solid and the fluid phase

can be chosen constitutively as [117]

σs = −εspfI + σs
eff , in Tt ⊔Ht ⊔ Bt, (4.24)

σf = −εfpfI, in Tt ⊔Ht ⊔ Bt, (4.25)

in which I is the identity tensor, pf represents the fluid pressure, and σs
eff is referred

to as the effective Cauchy stress tensor of the solid phase.

To complete the mathematical model, we recall that the sets of equations (4.1)-

(4.17) and (4.18)-(4.23) must be accompanied by the following interface conditions,

which apply at the internal boundaries separating the three subdomains Tt, Ht, and

Bt:

vs · n|
Iαβ

= vs · n|
Iβα

, (4.26)

εfρfvf · n|
Iαβ

= εfρfvf · n|
Iβα

, (4.27)(
εfρfωNvf + JN

)
· n|

Iαβ
=

(
εfρfωNvf + JN

)
· n|

Iβα
, (4.28)(

σs + σf
)
· n|

Iαβ
=

(
σs + σf

)
· n|

Iβα
, (4.29)

ωN|
Iαβ

= ωN|
Iβα

, (4.30)

pf |
Iαβ

= pf |
Iβα

, (4.31)

where Iαβ is the interface between the αth and the βth subdomain, with α, β =

Tt,Ht,Bt, and n is the unit vector normal to Iαβ. We emphasize that the conditions

on vs · n, ωN, and pf require these quantities to be continuous across the interface,

whereas all other conditions are interface balance laws.
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4.2.2 Stress tensor and mechanical response

To assess the mechanical response of the system considered in this work, it is cru-

cial to remark that, similarly to Kt, also an undeformed (reference) configuration of

the whole system, K0, can be determined. The latter can be written as the disjoint

union K0 = T0 ⊔H0 ⊔B0. Here, T0, H0, and B0 denote, respectively, the subdomains

occupied by the tumor tissue, the soft host tissue, and the bone, each in its unde-

formed (sub)configuration. By introducing the solid motion as the one-parameter of

mappings

χs( · , t) : K0 → R3, X ↦→ x = χs(X, t) ∈ Kt ⊂ R3, (4.32)

where R3 denotes here the three-dimensional Euclidean space, it is possible to map

the global reference configuration K0 into Kt = χs(K0, t). More specifically, the

mappings χs( · , t) are continuous throughout K0, which means that the subdomains

T0, H0, and B0 are mapped into Tt = χs(T0, t), Ht = χs(H0, t), and Bt = χs(B0, t),

respectively. Moreover, vectors attached to the points X of the subdomains T0, H0,

and B0 are mapped into vectors attached to the points x = χs(X, t) of Tt, Ht, and

Bt through the deformation gradient tensor F , whose components are expressed by

FiI = ∂χs
i/∂XI , i, I = 1, 2, 3, in appropriate coordinate systems. However, since

χs( · , t) is generally not differentiable over all K0 (see the interface condition (4.26)),

but only piecewise differentiable (i.e., differentiable in each subdomain), the tensor

F is piecewise continuous in K0 and, consequently, it has to be defined separately for

each subdomain.

Because of the growth and remodeling occurring in the system, which lead to

variations of mass and shape as well as to a reorganization of its internal structure,

the global undeformed configuration K0 is generally not stress-free. To achieve a

stress-free state (also referred to as natural state in the literature), Kt (or K0) should

be torn up in small stress-free pieces. However, since the particles constituting the

subdomains of Kt have different material properties (indeed, neither Kt nor K0 rep-

resent a uniform body), each of its subdomains must be brought to a natural state

that is in general different from the other ones. To this end, we denote by Tν , Hν ,

and Bν the collections of stress-free body elements of Tt, Ht, and Bt, respectively. In

particular, we notice that, since the bone is assumed to undergo neither growth nor

remodeling, the collection Bν may be identified with the undeformed configuration

B0.

A fundamental hypothesis of our model is that both the tumor and the soft host

tissue exhibit hyperelastic behavior from the relaxed states Tν and Hν , respectively.

92



Chapter 4 4.2 Mathematical model

To account for this constitutive prescription in conjunction with growth and structural

evolution, we invoke the theory of evolving natural “configurations” [87]. We start

with the description of the mechanical response of the tumor. As anticipated above,

we consider the mechanical evolution of this tissue as dictated by three phenomena:

growth, plastic reorganization, and elastic distortion. Hence, we introduce the multi-

plicative decomposition of the deformation gradient tensor F [15, 103, 52, 108, 126],

as:

F = FeFa = FeFpFg, in T0. (4.33)

In (4.33), F is related to the global change of shape of the body, Fa represents the

total anelastic distortions responsible for the evolution of the internal structure of

the body, and Fe describes the total elastic distortion. Note that Fa maps vectors

attached to T0 into vectors attached to Tν , and Fe map vectors of Tν into vectors of Tt.

To sketch the conceptual meaning of (4.33), we follow the explanation given in [75].

Hence, we consider a body that is brought from T0 to its current configuration Tt by

the action of external loads. These, in general, are responsible for varying both the

shape and the internal structure of the body in T0. If structural changes occur, it is not

possible to bring back the body to T0 by simply removing the external loads. Rather,

if all the external loads were switched off, the body would occupy a configuration,

different from both Tt and T0, in which residual stresses may be present. To eliminate

these, one should ideally tear the body into small disjoint pieces, and let each of

them individually attain Tν . Note that, as the body elements in Tν may turn out to

be geometrically incompatible, Tν cannot be generally regarded as a configuration in

Euclidean space. According to Figure 4.1, we can then split the map from T0 to Tν in

two parts: the first, described by Fg, is related to growth and death processes, leading

to possible changes in the mass of the volume element; the second, given by Fp, is

due to internal reorganization of the body, in terms of rearranging of the adhesion

bonds between the cells. The determinant J of the deformation gradient F can be

written as:

J = JeJa = JeJpJg, (4.34)

where Ji = det (Fi) and i = e, p, g. We assume Fg to be purely volumetric, i.e.

Fg = gI, and Fp to be purely isochoric. It follows that Jg = g3, while Jp = 1.

In the sequel, we assume that the soft host tissue experiences remodeling (i.e., a

plastic reorganization of its internal structure). Thus, we specialize the decomposition

(4.33) to the case of no growth by setting

F = FeFa = FeFp, in H0, (4.35)
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reference configuration current configuration

conglomerate of natural states

F

growth remodeling

gF
eF

pF

0

g 

t

Figure 4.1: Schematic representation of the multiplicative decomposi-
tion of the deformation gradient tensor.

with Fa = Fp. Again, the determinant of the deformation gradient will be given by:

J = JeJa = JeJp, (4.36)

with Ja = Jp = 1. Note that the deformation gradient tensor is decomposed in the

same manner both for the tumor and for the soft host tissue. However, in the latter

we assume that no growth is present, leading to the identities Fg = I and g = 1.

The strain energy density of the system per unit volume of the undeformed con-

figuration K0 is denoted by

W0 =

⎧⎪⎨⎪⎩
JaWt

ν = JpJgWt
ν , in T0,

JaWh
ν = JpWh

ν , in H0,

Wb
0 , in B0,

(4.37)

where Wt
ν and Wh

ν are the energy densities per unit volume of the natural state of

the tumor and of the soft host tissue, respectively, and Wb
0 is the energy density of

the bone per unit volume of the undeformed configuration B0. We start with the

description of the mechanical response of the tumor and of the soft host tissue. Since

the materials are assumed to be isotropic, the strain energy densities can be written as

a function of the first three invariants of the elastic right Cauchy-Green deformation

tensor Ce = F T
e Fe. In particular, we have

W i
ν(Ce) = W̃ i

ν(I1, I2, I3), i=t,h, (4.38)
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where

I1 = tr (Ce) , (4.39)

I2 =
1

2

[
I21 − tr

(
C2

e

)]
, (4.40)

I3 = det (Ce) , (4.41)

and Ce is expressed piecewise as

Ce = F−T
a CF−1

a =

{
g−2F−T

p CF−1
p , in T0,

F−T
p CF−1

p , in H0,
(4.42)

tr (Ce) = tr (CBa) =

{
g−2tr (CBp) , in T0,

tr (CBp) , in H0,
(4.43)

Ba = F−1
a F−T

a =

{
g−2Bp, in T0,

Bp, in H0.
(4.44)

From the expression of the energy we can calculate the solid phase second Piola-

Kirchhoff stress tensor associated with the natural state of the subdomains T0 and

H0:

Si
ν,eff = 2

∂W i
ν

∂Ce

=
3∑

j=1

2
∂W i

ν

∂Ij

∂Ij
∂Ce

=
3∑

j=1

2bij
∂Ij
∂Ce

=
(
2bi1 + 2bi2I1

)
I − 2bi2Ce + 2bi3I3C

−1
e . (4.45)

with bij=
∂W i

ν

∂Ij
, and i = t, h. Note that the second Piola-Kirchhoff stress tensor asso-

ciated with the reference configuration can be obtained as the Piola transformation

Si
eff = JaF

−1
a Si

ν,effF
−T
a .

When the material response of the tumor is considered, i.e., for i = t, the effective

second Piola-Kirchhoff stress tensor is a constitutive function of F , g, and Bp, i.e.,

St
eff = St

eff (F , g,Bp). Moreover, recalling that the plastic distortions are isochoric,

i.e., Jp = 1, we finally obtain

St
eff = 2gbt1Bp + 2bt2

1

g
[tr (CBp)Bp −BpCBp] + 2bt3

J2

g3
C−1. (4.46)

It is worth to remark that, by virtue of the hypothesis of isotropy, the plastic behavior

of the system can be formulated in terms of Bp, rather than Fp. Although, on the

one hand, this leads to a loss of information, on the other hand, it brings about
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important simplifications. In this work we assume the Holmes and Mow form [85] for

the strain energy densities of the tumor and of the soft host tissue. This constitutive

behavior is able to capture the mechanical characteristics of soft hydrated tissues and

is expressed by the formula:

W i
ν = ai0 [exp (Ψ)− 1] , Ψ = ai1 (I1 − 3) + ai2 (I2 − 3)− βiln (I3) , (4.47)

where i=t,h, and ai0, a
i
1, a

i
2, β

i are coefficients related to material properties, i.e.,

ai0 =
2µi + λi

4
, ai1 =

2µi − λi

2µi + λi
, ai2 =

λi

2µi + λi
, βi = ai1 + 2ai2, (4.48)

Here, λi and µi are the Lamé constants of the solid scaffold, and βi is usually assumed

to be one. In equation (4.46), bij, j = 1, 2, 3, can be calculated from (4.45) as

bi1 = ai1
(
W i

ν + ai0
)
, (4.49)

bi2 = ai2
(
W i

ν + ai0
)
, (4.50)

bi3 = −βi

I3

(
W i

ν + ai0
)
. (4.51)

The relations in (4.49)-(4.51) can be substituted into the expression (4.46) for the

solid stress in the reference configuration.

Concerning the effective stress of the bone tissue, we choose an energy density

function of the Saint Venant-Kirchhoff type as

Wb
0 (E) = µb tr(E2) +

λb

2
[tr(E)]2, (4.52)

where µb and λb are the shear modulus and the first Lamé parameter of the bone,

respectively, and E = 1
2
(C − I) is the Green-Lagrange strain tensor. Consequently,

the constitutive part of the stress associated to the bone is given by

Sb
eff = 2µbE + λb tr(E)I. (4.53)

The momentum equation (4.17) of the whole biphasic system rephrases, in the

material configuration, as

Div
(
P s

eff − JpfF−T
)
= 0, (4.54)

where Div(·) denotes the material divergence operator, and P s
eff = FSs

eff . Note that,

in the civil engineering framework, the pressure pf is often identified with the fluid

pressure, and it is usually multiplied by the Biot coefficient αB (here taken equal to
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one) [111]. Since the system is subdivided into different tissue compartments, the

stress can be evaluated as

Ss
eff =

⎧⎪⎨⎪⎩
St

eff , in T0,

Sh
eff , in H0,

Sb
eff , in B0.

(4.55)

where the three Si
eff have been defined in (4.46) and (4.53), respectively.

The last equation in the model is the one governing the plastic distortions. This

can be expressed in terms of the time derivative of Bp as [6, 66, 67, 75, 76]:

Ḃp = − 2λp

∥dev (σs
eff)∥

⟨
∥dev (σs

eff)∥ −
√

2/3σy

⟩
+
Bp dev (Σ

s
eff) , (4.56)

where we denote by dev(·) the deviatoric part of the tensor to which it is applied

(i = t, h). Note that the use of Bp, rather than Fp, as a measure of plastic defor-

mations is allowed by the hypothesis of material isotropy [121, 169, 75]. In (4.56),

σs
eff is the effective Cauchy stress in the solid phase, obtained from the second Piola-

Kirchhoff tensor by the Piola transformation:

σs
eff =

1

J
FSs

effF
T . (4.57)

Then, σy is the yield stress, above which the plastic flow starts (as indicated by the

Macaulay brackets ⟨·⟩+ such that ⟨f⟩+ = f if f > 0 and ⟨f⟩+ = 0 otherwise). Finally,

Σs
eff is the material Mandel stress tensor in the solid phase, given by Σs

eff = F TP s
eff .

This remodeling activates in the tumor and in the soft host tissue, with a different

value of the yield stress for each tissue (σt
y and σh

y , respectively).

Notice that the equation for the plastic flow constitutes a phenomenological de-

scription of what happens at the cell scale: If we consider a cluster of cells subjected

to a sufficiently high tension, some of their adhesive bonds may break and reform in

other places. The mechanical energy required by the system for breaking the bonds

and reforming them in other places is not stored, being dissipated during the process.

Moreover, a cell aggregate subjected to a given load after reorganization will respond

elastically for small loads, as long as the bonds are not broken again [6]. The law

in (4.56) is thus stating the following: if the stress in the material is below a given

threshold, denoted here by σy, then the derivative of Bp is zero and no plastic flow

occurs. When the stress exceeds the threshold, the material evolves to release the

stress in excess, until the yield stress is reached or exceeded again. The parameter λp

gives an indication of the characteristic time for cell reorganization and the following

stress relaxation.
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4.2.3 Constitutive relations for the mass exchange terms

The exchange term Γs appearing in equation (4.4) is related to tumor cell proliferation

and death. Recalling equation (4.7), it is given by the sum of Γf→p
p and Γn→f

n . The

first quantity describes tumor growth and reads

Γf→p
p = γp

fp

⟨
ωN − ωN

cr

ωN
env − ωN

cr

⟩
+

(
1−

δ1⟨σ̄s
eff⟩+

⟨σ̄s
eff⟩+ + δ2

)
εf

εf0
ωpεs, (4.58)

where the coefficient γp
fp ≥ 0 accounts for the nutrient uptake and for the mass of

the interstitial fluid that becomes tumor due to cell growth, ωN
cr is the critical level of

oxygen below which cell proliferation is inhibited, ωN
env is the mass fraction of oxygen

in the environment, σ̄s
eff is the spherical part of the effective Cauchy stress tensor

associated with the solid phase, i.e., σ̄s
eff = −tr(σs

eff)/3, and the positive constants δ1

and δ2 (with δ1 < 1) account for the action of mechanical stress on cell proliferation.

Due to its form, the term in parentheses in (4.58) describes growth inhibition due to

tumor compression. Finally, εf0 is the initial volume fraction of the fluid phase. The

second part of Γs, namely Γn→f
n , takes the form:

Γn→f
n = −γn

nfω
nεs. (4.59)

This term is related to cell death from lysis in the necrotic population of the tumor.

The coefficient γn
nf takes into account the degradation of cellular membranes and the

mass conversion into interstitial fluid. Then, the rate of tumor cell death in equation

(4.2) is described by the relation

Γp→n
p = −γp

pno

⟨
1− ωN

ωN
cr

⟩
+

ωpεs, (4.60)

where the parameter γp
pno is related to the rate of cell necrosis. In this way, we assume

cell death to occur solely by nutrient deprivation. Finally, nutrient consumption by

tumor cells is described by:

ΓN→p
N = −γN

Np1

ωN

ωN + γN
Np2

ωpεs. (4.61)

Here, γN
Np1 and γN

Np2 are two coefficients regulating nutrient uptake by the cells. Note

that the mathematical expressions adopted for the mass exchange terms are sim-

ilar to the ones reported in Section 3.1, validated with data from tumor spheroid

experiments.
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4.2.4 Summary of the model equations

In this Section, we summarize the final form of the equations of the model. A thorough

derivation is available in Appendix A. Granted that εs can be expressed as

εs =
g3εsν
J

, (4.62)

where εsν is the solid volume fraction in the natural state, the final system of equations

to be solved is given by

ġ

g
=

1

3

Γs

εsρ
, (4.63)

ω̇p =
J

ρεsνg
3

(
Γp→n
p + Γf→p

p − ωpΓs
)
, (4.64)

Jεfρω̇N + ρQ ·GradωN +Div
(
ΨN

)
= J

(
ΓN→p
N + ωNΓs

)
, (4.65)

Div (Q) + J̇ = 0, (4.66)

Div
(
P s

eff − JpfF−T
)
= 0, (4.67)

Ḃp = − 2λp

∥dev (σs
eff)∥

⟨
∥dev (σs

eff)∥ −
√

2/3σy

⟩
+
Bp dev (Σ

s
eff) , (4.68)

where we introduced the Piola transformations of Darcy’s filtration velocity and Fick’s

mass flux

Q = JF−1εf
(
vf − vs

)
= −JF−1kF−TGrad pf , (4.69)

ΨN = −JεfρF−1DNF−TGrad ωN. (4.70)

The system in (4.63)-(4.68) is to be solved for the free unknowns

U = {g, ωp, ωN, pf , χs,Bp}. (4.71)

Note that the system is closed, since it features 13 scalar unknowns and (4.63)-

(4.68) constitute a set of 13 scalar equations. In (4.69) and (4.70), k and DN are

two isotropic tensors describing nutrient diffusivity and tissue hydraulic conductiv-

ity. They are given by the expressions k = kI and DN = DNI, respectively. The

equations (4.63)-(4.70) are obtained under the hypotheses that the mass densities of

the fluid and solid phases are constant and equal (ρs = ρf = ρ). In the following, we

consider only one nutrient species, namely oxygen.
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4.3 Benchmark case for tissue compression

In this Section, we test the model on a simple case, namely the unconfined compression

of a tissue specimen. We neglect the influence of growth, consider only one cellular

species, and do not include nutrient transport in our description of the problem. The

set of equations reduces to:

J̇ −Div
(
KGrad pf

)
= 0, (4.72)

Div
(
P s

eff − JpfF−T
)
= 0, (4.73)

Ḃp = − 2λp

∥dev (σs
eff)∥

⟨
∥dev (σs

eff)∥ −
√

2/3σt
y

⟩
+
Bp dev (Σ

s
eff) , (4.74)

where K is defined, according to (4.69), as K = JF−1kF−T .

In this benchmark, a tissue sample is inserted between two rigid and impermeable

parallel plates, and is compressed according to some prescribed loading protocol.

During compression, the boundaries that are not in contact with the plates can expand

freely, allowing the fluid to flow out from the specimen. Similarly to [76], we consider a

cylindrical specimen of biphasic material. Enforcing axial symmetry, we characterize

the cylinder by an initial height of h0 = 1 mm and an initial radius of r0 = 1.5 mm.

The lower boundary of the specimen is clamped at the lower plate of the experimental

apparatus and is kept fixed. Instead, the upper boundary is in contact with the

moving plate, and is assumed to expand frictionless. Finally, the lateral boundary of

the specimen is regarded as traction-free and permeable to fluid flow. The geometry

of the problem and the boundary conditions are then summarized in Figure 4.2.

For the initial conditions, we select the following set over the whole domain:

pf = 0, Bp = I, J = 1. (4.75)

For the upper plate, we consider the loading condition in Figure 4.3, where h is the

vertical component of the solid displacement. In the simulations, we take the final

displacement hc to be 0.15 mm, and the final instant of time of the loading ramp

as tr = 30 s. The material parameters used for this case are reported in Table 4.1.

Figure 4.4 highlights the influence of plastic distortions on the mechanical and fluid

dynamic response of the specimen. In Figures 4.4.a-b, we compare the fluid pressure

distribution and the spherical part of the solid effective Cauchy stress tensor (σ̄s
eff)

obtained in the poroelastic case (left column), with those obtained in the presence of

plastic distortions (right column). To simulate the poroelastic case, we used a value

100



Chapter 4 4.3 Benchmark case for tissue compression

Prescribed vertical displacement
Zero normal fluxes

B1

B1

Zero fluid pressureB2

B2

Zero normal and radial displacements
Zero normal fluxes

B3

B3

axial symmetry

1.5 mm

1 mm

Figure 4.2: Geometry and boundary conditions for the compression
benchmark.

ttr

hc

h

Figure 4.3: Loading condition for the upper plate in the compression
benchmark.

101



4.3 Benchmark case for tissue compression Chapter 4

(a)

(c)

(b)

135
10050

0

-15.5
0 50 140

363

0
10 20

23.6

-10.2
0 50 140

359

3
3.5 4

4.46 2.49
50 100

150

Figure 4.4: Comparison of the results for the compression benchmark
in the absence and in the presence of plastic remodeling. All quantities
are plotted in the deformed configuration of the specimen at time t = tr.
(a) pf in the poroelastic (left) and poroplastic (right) case. (b) σ̄s

eff in
the poroelastic (left) and poroplastic (right) case. (c) Von Mises effective
stress (left) and trace of Bp (right) in the poroplastic case.
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Table 4.1: Model parameters for the compression benchmark.

Symbol Parameter Reference value Unit

Kt Tissue bulk modulus 2.033× 105 Pa

µt Tissue shear modulus 2.225× 105 Pa

k Tissue hydraulic conductivity 3.772× 10−15 m2/(Pa · s)
εsν Solid volume fraction in natural state 0.2 (−)

σt
y Yield stress 2.0× 103 Pa

λp Coefficient in the plastic flow rule 5.0× 10−7 1/(Pa · s)

for the yield stress that is never reached by the stress in the tissue. In particular, we

set σt
y = 1.0× 1020 Pa, a value leading to a pure elastic response. For this situation,

it holds that Bp = I at all observed times. Instead, the stress exceeds the yield

threshold in the poroplastic case, and Bp evolves according to (4.74). This is shown

in Figure 4.4.c, displaying the von Mises effective stress (left) and the first principal

invariant of Bp (right) at the end of the loading ramp.

The influence of remodeling is shown through the modulation of the fluid pressure

distribution (Figure 4.4.a) and the lowering of the solid effective stress (Figure 4.4.b).

Interestingly, the evolution of plastic distortions affects the time trend of pressure both

in a qualitative and quantitative way. In Figure 4.5, the fluid pressure is evaluated at

the point of the lower boundary of the specimen lying on the symmetry axis. Solid

and dashed lines indicate the poroelastic and poroplastic case, respectively. It is
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Figure 4.5: Time evolution of the fluid pressure for the compression
benchmark. The poroelastic and poroplastic cases are represented by
solid and dashed lines, respectively.
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possible to notice that the fluid pressure attains its maximum at the end of the ramp

load in both the cases, but the maximum value in the poroelastic case is higher than

the one reached in the presence of remodeling. Also, the rate at which the pressure

tends to the stationary state appears much higher in the poroplastic case than in the

poroelastic one. These observations may result from the coupled nature of equations

(4.72)-(4.74). Indeed, the balance of momentum (4.73) relates the fluid pressure pf

to the solid effective stress P s
eff . This quantity is in turn influenced by the evolution

of the plastic distortions Bp, explaining the different behavior of the curves in Figure

4.5.

4.4 Benchmark cases for the tumor tissue

4.4.1 Introduction to the three cases

Hereafter, three benchmark tests are discussed. In the first case, we consider a tumor

spheroid growing in the culture medium. In the second benchmark, the spheroid grows

in a soft host tissue having spherical structure. Finally, in a third benchmark, we

present the results of a tumor growing in a three-dimensional heterogeneous domain,

in which the host tissue comprises both a soft material and a stiffer one, identified

with a bone tissue.

In the first case, the model consists of a sphere segment in axisymmetric con-

ditions. The spheroid has an initial radius of 100 µm and the initial solid volume

fraction εs is fixed at 0.8 over the domain. We assume the following initial conditions:

g = 1, ωp = 1, ωN = ωN
env, pf = 0, Bp = I, in T0. (4.76)

Moreover, the boundary conditions for the problem are summarized in Figure 4.6. On

the outer boundary of the spheroid, we assume a fixed value (ωN
env) for the nutrient

mass fraction and zero interstitial fluid pressure. Due to symmetry, no-flux boundary

conditions are imposed normal to the radius of the sphere segment.

The parameters used for this first benchmark test come from different sources,

and are reported in Table 4.2. Regarding the values used for the plastic flow rule, we

have referred to the work of Iordan et al. [88] for an estimate of the yield stress in

the tumor tissue. In addition, the value for the coefficient λp is derived from the cell

reorganization time τp by the expression:

τp ≃ 1

µtλp

,
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100 µm

TCs

zero normal fluxes
zero normal displacements

axial 
symmetry

zero fluid pressure
imposed oxygen value

Figure 4.6: Geometry of the problem and boundary conditions for a
tumor spheroid.

Table 4.2: Parameters used in the model for the tumor spheroid.

Symbol Parameter Unit Value Reference

εsν Solid volume fraction in the natural state (−) 8.0× 10−1 [66]

ρ Density of the phases kg/m3 1.0× 103 [167]

k Tumor hydraulic conductivity m2/(Pa · s) 4.875× 10−13 [159]

DN Nutrient diffusion coefficient m2/s 3.2× 10−9 [167]

ωN
cr Critical level of nutrient (−) 2.0× 10−6 [120]

ωN
env Environmental level of nutrient (−) 7.0× 10−6 [134, 133]

γN
Np1 Coefficient related to nutrient consumption kg/(m3 · s) 3.0× 10−4 [30, 31]

γN
Np2 Coefficient related to nutrient consumption (−) 1.48× 10−7 [30, 31]

γp
fp Coefficient related to growth kg/(m3 · s) 5.348× 10−3 [65]

γp
pno Coefficient related to necrosis kg/(m3 · s) 1.5× 10−1 [120]

γn
nf Coefficient related to lysis kg/(m3 · s) 1.15× 10−2 [120]

λp Coefficient related to cell reorganization time 1/(Pa · s) 8.334× 10−7 [56]

σt
y Yield stress Pa 1.0× 101 [88]

λt Lamé’s first parameter for the tumor Pa 1.333× 104 [159]

µt Shear modulus for the tumor Pa 1.999× 104 [159]

δ1 Coefficient related to growth inhibition (−) 7.138× 10−1 [120]

δ2 Coefficient related to growth inhibition Pa 1.541× 103 [120]

where we have considered a value for τp of the order of one minute, consistently with

the observations of Forgacs and colleagues [56]. The equations in the model were

solved using the finite element software COMSOL Multiphysics R⃝ (COMSOL AB,

Sweden).

In the second case, we consider the growth of an avascular tumor within a healthy

tissue. As mentioned in the previous section, the soft host tissue is modeled as an

elasto-visco-plastic solid where the elastic strain energy and the plastic flow rule are
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characterized by the same constitutive relations of the tumor. However, an indepen-

dent set of parameters is used for the healthy tissue, providing a different mechanical

response. At the interfaces between the different domains, COMSOL applies auto-

matically the conditions in (4.26). The geometry and boundary conditions of the

problem are shown in Figure 4.7. Similar to the numerical experiments in [167], the

400 µm

HCs

zero normal fluxes
zero normal displacements

axial 
symmetry

zero fluid pressure
imposed oxygen value

TCs

30 µm

Figure 4.7: Geometry of the problem and boundary conditions for a
tumor growing in a soft host tissue.

tumor and the host tissue are modeled as a sphere segment imposing cylindrical sym-

metry. The tumor occupies the region closer to the sphere center, with an initial

radius of 30 µm. From there, the host tissue extends until the outer boundary of the

computational domain, with an external radius of 400 µm. We consider an initial

solid volume fraction equal to 0.7 throughout the domain. The initial conditions for

the problem read:

g = 1, ωp = 1, in T0, (4.77)

ωN = ωN
env, pf = 0, Bp = I, in T0 ⊔H0. (4.78)

Regarding the boundary conditions, the nutrient mass fraction and the interstitial

fluid pressure on the outer boundary are set equal to ωN
env and zero, respectively.

To take into account the presence of a host tissue, we select a value for ωN
env that

corresponds to the average dissolved oxygen in the plasma of a healthy individual

[167]. Moreover, in this second case the growth coefficient γp
fp and the critical value

of oxygen ωN
cr take different values from before. On the other boundaries, zero flux is

imposed for the nutrient and the fluid due to symmetry. The parameters pertaining

to the healthy tissue are given in Table 4.3, whereas all the other parameters are the
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Table 4.3: Parameters used for the case of a tumor growing in a soft
host tissue.

Symbol Parameter Unit Value Reference

λh Lamé’s first parameter for the soft host tissue Pa 3.336× 103 [131]

µh Shear modulus for the soft host tissue Pa 5.0× 103 [131]

σh
y Yield stress for the soft host tissuea Pa 1.0× 103 -

λp Coefficient related to cell reorganization time 1/(Pa · s) 8.334× 10−8 -

γp
fp Coefficient related to growth kg/(m3 · s) 8.022× 10−3 [62]

ωN
cr Critical level of nutrient (−) 1.0× 10−6 -

ωN
env Environmental level of nutrient (−) 4.2× 10−6 [167]

a Value assumed when plastic rearrangement in the soft host tissue is taken into account.

same as in Table 4.2. We assume that cellular bonds are more stable for a tumor grown

in a host tissue than as a spheroid, and impose a larger time for cell rearrangement

and a higher value for the healthy tissue yield stress.

As a last case, we analyze the growth of a tumor in proximity to a blood capillary

and two different host tissues. The blood vessel constitutes the only source of nutrient,

influencing the development and spatial configuration of the tumor. A tissue with

the mechanical properties of a bone occupies a portion of the domain, whereas a soft

host tissue fills the rest of the geometry. We consider the ideal geometry of Figure

4.8.a, where the capillary is close to a spherical tumor. The capillary has a diameter

of 8 µm and the tumor starts with an initial diameter of 40 µm. This geometry has

two planes of symmetry, allowing to discretize only one quarter of the actual domain.

Figure 4.8.a shows the size of the other compartments of the problem. We enable

plastic deformations to develop in the soft host tissue, as well as in the tumor, and

fix the value of the yield stress of the soft host tissue as σh
y = 103 Pa. We assume a

higher value for the cell reorganization time than in the previous case, leading to a

lower value for λp. The initial conditions of the problem are stated below:

g = 1, ωp = 1, in T0, (4.79)

Bp = I, in T0 ⊔H0, (4.80)

ωN = ωN
cap, pf = 0, in Kt. (4.81)

Here ωN
cap is the mass fraction of the nutrient supplied by the capillary. The boundary

conditions for the problem are reported in Figure 4.8.b. In particular, the oxygen

mass fraction is fixed on the cylindrical surfaces of the capillary, where we set it equal

to ωN
cap. On the remaining lateral surfaces we impose zero oxygen flux. Because of
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soft tissue
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tumor
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B1 zero normal displacements
zero normal fluxes

B2 zero normal fluxes
zero fluid pressure

B3 zero normal displacements
zero normal fluxes
imposed oxygen mass fraction

B4 zero normal fluxes
zero fluid pressure
zero normal displacements

(a) (b)
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B2

B4
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Figure 4.8: Geometry and boundary conditions for a tumor growing in
a heterogeneous environment.

symmetry properties of the problem, our simulations consider only one quarter of

the overall geometry, and we need to impose symmetry boundary conditions for the

pressure and for the displacements on the surface B1 ∩K0 of Fig. 4.8.

The additional parameters for this case, including the mechanical response of

the bone tissue, are summarized in Table 4.4. For the latter, we assume a pure

Table 4.4: Additional parameters for the three-dimensional tumor
model.

Symbol Parameter Unit Value Reference

λb Lamé’s first parameter for the bone tissue Pa 5.769× 109 [105, 94]

µb Shear modulus for the bone tissue Pa 3.846× 109 [105, 94]

εb Bone porosity (−) 6.0× 10−1 [105, 94]

kb Bone hydraulic conductivity m2/(Pa · s) 3.0× 10−15 [105, 94]

R0 Tumor initial diameter µm 40 -

ωN
cap Capillary oxygen mass fraction (−) 4.2× 10−6 [167]

ωN
cr Critical oxygen mass fraction (−) 3.0× 10−6 -

γp
fp Coefficient related to growth kg/(m3 · s) 1.0× 10−2 -

λp Coefficient related to cell reorganization time 1/(Pa · s) 1.389× 10−8 -

hyperelastic behavior with a strain energy density of the Saint Venant-Kirchhoff type.
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The remaining parameter values are taken equal to those in Table 4.2 and Table 4.3.

4.4.2 Results

4.4.2.1 Growth of a tumor spheroid in vitro

In this section we report the results for a tumor spheroid growing suspended in the

culture medium. The radius of the spheroid as a function of time is plotted in Figure

4.9.a. Here, the solid line is the result of a numerical simulation where we employed
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Figure 4.9: Model results for a tumor spheroid (I).

the parameters in Table 4.2, whereas the dotted markers are experimental data taken
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from [120]. There is a good agreement with the experimental data, for each of the

growth stages of the spheroid. In Figures 4.9b-4.9d, we report the evolution of a

quantity over the radius of the spheroid for different times during the simulation.

In particular, Figure 4.9.b refers to the mass fraction of oxygen inside the spheroid.

Note, at later times, the formation of a nutrient gradient from the spheroid boundary

towards its interior. The mass fraction of proliferating tumor cells is shown in Figure

4.9.c. As the spheroid grows, cell death by necrosis appears at the tumor center,

evidenced by zero value of the mass fraction. After 20 days from the beginning of the

simulation, a necrotic core is clearly visible. Figure 4.9.d shows the evolution of the

interstitial fluid pressure inside the spheroid. During the first days the tumor increases

its radius and, to satisfy the closure relation in (4.10), the interstitial fluid flows

towards the center of the spheroid. As a consequence, the interstitial fluid pressure

decreases within the spheroid center. At later times the interstitial fluid pressure

rises inside the tumor, following cell death by lysis. Figure 4.10 shows a second set of

results. In Figure 4.10.a, the growth stretch ratio g is plotted at different times. This

quantity represents the spherical growth term in the multiplicative decomposition of

the deformation gradient. As the tumor mass grows, g increases over the spheroid

radius, assuming larger values at the spheroid boundary (where the nutrient level is

higher). Note that, after a few days, the value of g decreases within the spheroid

center. This is due to a reduction of tumor volume by cell death, and is included in

the lysis term of Γs in equation (4.7). The evolution of the trace of Bp is reported

in Figure 4.10.b. This quantity measures the plastic distortions occurring in the

tumor, which in our framework translate into cell rearrangement. We note that cell

rearrangement occurs over the whole spheroid domain, with a peak in the spheroid

interior that will be clarified in Figure 4.11. Then, Figure 4.10.c shows the variation

of the trace of Cauchy stress inside the tumor. As the tumor grows, the portion at the

boundary experiences compressive stresses, since tr(σs
eff) is negative. The situation

changes at the tumor interior, where the tissue is subjected to traction and tr(σs
eff) is

positive. Finally, Figure 4.10.d shows the effective stress of von Mises in the domain.

As shown in equation (4.68), we used this measure of stress to mark the onset of plastic

flow. From the graph it is possible to observe that the von Mises stress is constant

for the most part of the simulation, maintaining the threshold level imposed by the

yield stress. However, after 10 days from the beginning of the simulation, the stress

exhibits a peak that is gradually relaxed at later times. This stress peak occurs at the

same time as the formation of a necrotic population inside the spheroid, as displayed

in Figure 4.11. Here, the mass fraction of proliferating cells and the von Mises stress
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Figure 4.10: Model results for a tumor spheroid (II).

are displayed over the radius of the spheroid at day 5 (Figure 4.11.a), 10 (Figure

4.11.b) and 15 (Figure 4.11.c). At day 5, the spheroid is still entirely composed of

proliferating cells, and the von Mises stress is relaxing to the yield value. At day 10,

however, the oxygen threshold level falls below the critical threshold and a necrotic

population is formed at the spheroid core. Interestingly, the peak in von Mises stress

is at the same radial position of the transition between proliferating and necrotic cells.

The last snapshot, at day 15, shows an almost completely relaxed state of stress, even

if the transition between proliferating and necrotic cells is still present. A possible
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Figure 4.11: Proliferating cell mass fraction and von Mises stress in the
tumor spheroid at different times.

explanation of this phenomenon could reside in the growth term of equation (4.63).

Indeed, the growth stretch ratio decreases in the necrotic region, whereas it increases

for the portion of the spheroid where the cells are proliferating. According to the

picture portrayed by the multiplicative decomposition of the deformation gradient, the

elastic deformations evolve to accommodate the growth-induced stresses and result

in the peak occurring in the von Mises stress. This peak is later relaxed by cell

rearrangement, showing the local increase in Bp mentioned in Figure 4.10.b. This

result seems interesting, since models based on the multiplicative decomposition of

the deformation gradient account in general for only one growing species. Further

investigations are required to analyze this mechanical response and the possible links

to the underlying biology.

4.4.2.2 Growth of a tumor in a healthy tissue

To begin our analysis, we first test the model for the case in which plastic rearrange-

ment is turned off in the soft host tissue. These results are shown in Figure 4.12. In
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Figure 4.12: Results for a tumor growing in a host tissue (I).

particular, Figure 4.12.a represents the evolution of the tumor radius when the tumor

is embedded into host tissues of different stiffness. The line marked with “ref.” refers

to the reference case of a soft host tissue with the mechanical parameters of Table

4.3. The other lines represent a variation of the parameters µh and λh of the -75,

-50, -25, +25, +50 and +75% with respect to the reference value. As the stiffness

of the healthy tissue increases, the final radius of the tumor is reduced. This be-

havior is similar to the experimental observations of Helmlinger and coworkers [83],

where tumor spheroids are grown in gels of different compliances. The other panels

of Figure 4.12 show the evolution of other quantities over the radius of the domain

at different times during the simulation. The parameters of Table 4.3 were used for

the healthy tissue, considering the case of no remodeling in the latter. The radial

component of the displacement is shown in Figure 4.12.b. The point of maximum

displacement is at the tumor-host boundary, with a value increasing with time. In

accordance to this, the growth stretch ratio (displayed in Figure 4.12.c) is greater

towards the tumor boundary, where a higher concentration of nutrient is available

for growth. Then, Figures 4.12.d and 4.12.e report the variations in the radial and

113



4.4 Benchmark cases for the tumor tissue Chapter 4

circumferential stresses, respectively. Note that the two stress components are both

compressive and almost uniform in the tumor interior, while at the interface with the

healthy tissue radial stress diminishes and circumferential stress turns to tensile. This

result agrees with previous mathematical models investigating the evolution of stress

during tumor growth [159, 161, 186]. From the plots it is possible to observe that,

even if the yield stress in the tumor is of 10 Pa, the absolute magnitudes of radial

and compressive stresses are around a few kPa. This is due to the type of mechan-

ical loading applied on the tumor, which is mainly hydrostatic. Since the flow rule

depends on the deviatoric components of the stress, only small plastic deformations

are detectable within the tumor domain. Note that the compressive stress applied

on the tumor boundary influences also the evolution of the growth stretch ratio in

the tumor. In fact, Je decreases within the tumor as the tissue is compressed. From

equation (4.62), the solid volume fraction in the tumor increases and the porosity de-

creases accordingly. Since the growth stretch ratio depends on Γs and this latter term

is linear with respect to porosity (see equation (4.58)), this results in a reduction of

tumor growth. Finally, the evolution of the oxygen mass fraction is shown in Figure

4.12.f. As the tumor grows, oxygen gradients develop from the periphery to the tumor

center. At later times, not reached by the simulation, the oxygen level is expected to

fall under the critical threshold, giving rise to a necrotic cell population. The effect

of plastic remodeling in the soft host tissue is analyzed in Figure 4.13. Dashed lines
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Figure 4.13: Results for a tumor growing in a host tissue (II).

represent the case where plastic deformation is enabled in the healthy tissue, whereas

solid lines refer to the reference case of Figure 4.12, where remodeling is neglected.

For this analysis, we fixed the yield stress in the soft host tissue to be equal to 103 Pa
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and used for the parameters the values in Table 4.3. The effects of plastic remodeling

on the evolution of the tumor radius are shown in Figure 4.13.a. When compared

to the reference case, the tumor grows faster and to a larger extent, reaching a final

radius of about 90 µm. This behavior may be explained by considering the effect of

stress relaxation induced by plasticity. Indeed, the magnitude of the stresses in the

soft host tissue is significantly reduced when compared to the reference case. This is

shown in Figure 4.13.b and Figure 4.13.c, where the radial and circumferential stresses

are plotted over the radius of the domain at the last time-step of the simulation. The

steep transitions in the stress between the tumor and soft host tissue are considerably

smoothed out and the absolute value of the stress is greatly reduced. Lower mechan-

ical stresses on the tumor boundary constitute a weaker mechanical barrier that may

be less able to constrain tumor growth, leading to larger tumor sizes and host tissue

displacements. In addition, as mechanical stress influences cell proliferation through

the term in equation (4.58), smaller compressive stresses provide a minor degree of

growth inhibition.

4.4.2.3 Tumor growth in the presence of different host tissues

In this section, we investigate the growth of an avascular tumor in a heterogeneous

environment. Figure 4.14.a shows the total displacements at day 7 from the beginning

of the simulation. As the mechanical environment around the tumor is not the same

everywhere, the growth of the latter results to be asymmetric. Due to its larger

stiffness, the presence of the bone tissue limits the growth of the tumor mass along

one direction. Figure 4.14.b displays the value of the growth stretch ratio over the

tumor domain at day 7. Note that the higher values are obtained along the tumor side

closer to the capillary surfaces, where there is the maximum value for the nutrient

mass fraction. In addition, lower values are displayed over the tumor side that is

close to the bone tissue, consistently with Figure 4.14.a. The nutrient mass fraction

at day 7 is shown if Figure 4.14.c. The lowest values are attained at the tumor

center, where nutrient consumption is more pronounced. Finally, Figure 4.14.d shows

the trace of Bp at day 7 over the tissue external to the tumor. The area close to

the tumor boundary is subjected to the higher plastic remodeling. As the tumor

expands, the healthy tissue is displaced from its original position and the host cells

need to rearrange their relative bonds to accommodate the new configuration. The

asymmetric tumor growth pattern is highlighted in Figure 4.15, where we display the

lateral displacement of the tumor points shown in the inset. The two curves gradually

diverge, showing a different evolution over time of the growth rate for the points.

115



4.5 Conclusions Chapter 4

total displacements (µm), day 7 growth stretch ratio (-), day 7

nutrient mass fraction (-), day 7 trace of Bp (-), day 7

(a) (b)

(c) (d)

tumor removed

0
0 10 20 30

34.5 1
1 1.5 2 2.5

2.52

3.76
3.8 4.0 4.2

4.2
x10-6

3
10 30

57.5
50

Figure 4.14: Results for a tumor growing in a heterogeneous environ-
ment.

4.5 Conclusions

In the present Chapter, a mathematical model for avascular tumor growth is pre-

sented. The modeling framework is based on porous media mechanics and the con-

cept of evolving natural configurations, extending previous works in the literature.

We start by considering a test case for tissue compression, examining the effect of

plastic remodeling on the specimen mechanical response. Then, we consider the case

of a growing tumor spheroid, where proliferating tumor cells undergo necrosis if sub-

jected to low levels of nutrient. We analyze the evolution of different quantities, such

as the growth stretch ratio, oxygen mass fraction and mechanical stresses, over the

spheroid radius for different times. After that, we evaluate the effect of stress relax-
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Figure 4.15: Growth curve of two different points in the tumor.

ation induced by cell reorganization in the spheroid. Interestingly, when proliferating

cells become necrotic, we observe a peak in the von Mises equivalent stress, followed

by a progressive relaxation induced by the plastic contribution to the deformation

gradient. Then, we study the growth of a spherical tumor embedded in a healthy

tissue. We consider the effects of different mechanical properties of the latter on the

tumor. In particular, we vary the external tissue stiffness and we consider both the

case of no remodeling and evolving plastic distortions in the host tissue. We analyze

the effect of these features on the tumor radius and on the radial and circumferential

stresses inside the domain. We observe the influence of plastic reorganization on the

host tissue, and we note that the tumor grows larger in a host tissue where remodel-

ing is enabled. Finally, we consider the case of a tumor grown in a host tissue made

of two distinct compartments, i.e. a healthy soft tissue and a bone. The different

mechanical properties of the two tissues affect significantly the growth of the tumor

mass, which, starting from a spherical form, assumes an asymmetric shape at the end

of the simulation. Since one of the two domains is stiffer than the other, and since

the cancer cells proliferate more towards the region of least mechanical resistance, the

tumor extends more in the softer host tissue.

Several simplifying assumptions are considered in the study, and the work is cer-

tainly open to further improvements. The modeling framework is simplified with

respect to the more general model of [166], where tumor cells and host cells are

treated as fluids. In fact, the present model does not allow to take into account

migration of cells through the ECM [165], possible detachment of the cells from the
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ECM and from other cell populations, different stiffness of the cell population with

respect to the ECM with which they are here lumped, build-up of cortical tension

between healthy and tumor tissues, and possible invasion of the tumor tissue by the

healthy tissue or vice versa, mediated by these cortical tensions. It allows, however,

for displacement of the host tissue by the tumor and also investigation of possible

fingering.

For the future, we are planning to develop the model proposed here by taking

into account different phenomena. In particular, the adhesion mechanisms between

the cells and the ECM should be investigated in more detail. This will probably

lead to a modification of the plastic flow rule, including the effect of different adhe-

sion molecules, such as catherins and integrins. Moreover, cells belonging to different

cellular populations should display distinct adhesive characteristics, contributing to

a modified form of the yield stress. Model development requires experiments that

are able to provide better estimates for the model parameters. Furthermore, new

sets of data in terms of quantities that can be compared to the output of the model

equations are needed. Part of the future experimental work should also be devoted

to supply measures of the yield stress, with experiments like those in [88, 56, 119].

To this regard, it would be extremely interesting to investigate the mechanical re-

sponse of spheroids subjected to both compressive and shear stresses, also interfering

with the adhesion molecules by using different drugs. Describing more thoroughly

the interactions between the tumor and its external (biochemical and mechanical)

microenvironment should offer valuable insights into the understanding of the disease

progression, with the final aim of helping the design of new therapeutic treatments.
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In this work we presented different frameworks to deal with mathematical modeling of

growing tumors. Our discussion focused on two main topics, namely the development

of a mathematical model to describe tumor spheroid experiments, and a theoretical

framework that is able to account for cellular adhesion mechanisms in tissue mechan-

ics. In both cases, we extended results in the existing literature on the corresponding

topics, including phenomena that lead to new equations.

Starting with the model for tumor spheroids, we validated our set of equations

with experimental data from spheroids growing freely in the culture medium and

then subjected to a mechanical compressive load. Then, we proposed a new constitu-

tive relation for growth inhibition due to mechanical stress that describes the growth

curves better than the existing expressions in literature. After that, we analyzed the

model through a parametric study. Our results confirmed that model parameters

related to growth and death processes significantly influence the final radius reached

by the tumor. Finally, we introduced equations describing the transport and con-

sumption of a chemotherapeutic agent in the spheroids. We found a good qualitative

agreement between model results and experiments reported in literature, in terms of

spheroid volume reduction and limited drug diffusion inside the tumor. Interestingly,

our results suggest that the efficacy of drugs targeting cell proliferation may decrease

for spheroids subjected to mechanical compression.

In the second part of the discussion, we implemented a constitutive law for the

mechanical response of soft tissues and tested different cases. As a first example,

we studied the unconfined compression of a tissue specimen, and we evaluated the

effects of plastic remodeling on the tissue mechanical response. Then, we showed

results for three cases of biological interest, namely the growth of a spherical tumor

in culture medium, in a host tissue, and in a three-dimensional physiological config-

uration characterized by a heterogeneous environment. We analyzed the dependence

of tumor development on the mechanical properties of the neighboring tissues, with

particular focus on cell reorganization and its role in stress relaxation.
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For the future, we plan to include more nutrients and growth factors in our model-

ing framework. This should allow to take into account important interactions between

the tumor components and their chemo-mechanical surroundings. Also, there is a ur-

gent need for experimental works that investigate the cellular bases underlying the

compression experiments. Experiments are also needed to clarify the role of the exter-

nal environment on the performance of therapeutic agents in tumors. We would like

to give our contribution on these issues, in a manner similar to the work that we did

with tumor spheroids. Another possible development is the inclusion in the constitu-

tive relation of different adhesion mechanisms between cells and ECM. This will lead

to the derivation of a new plastic flow rule, that will improve our description of the

tumor system. Also for this second case, we are currently looking for collaborators to

design experiments that will address the mechanical response of cell aggregates and

its impact on tumor evolution.

We believe that this is a promising time for biomechanics and, in particular, for

cancer physics. Current tumor models include important biological features of can-

cer progression, and emerging modeling techniques are showing encouraging results

for clinical applications. It is becoming increasingly clear that cancer systems are

too complex to be investigated just on biological grounds, and this should promote

the dialog between mathematical and biomedical communities. Integration of ap-

proaches from physical sciences and cancer biology may lead to new discoveries in

tumor development, with the final aim of suggesting effective strategies for cancer

treatment.
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Derivation of the model equations

We derive the material form of the equations (4.63)-(4.66).

Starting from (4.4), for the mass balance equation of the solid phase we write:

Ds (εsρs) + εsρsdiv (vs) = Γs, (A.1)

where Ds (·) = ∂t (·) + vs · grad (·) denotes the material derivative of the argument.

From the identity J̇ = Jdiv (vs) we can write in the reference frame:

˙εsρs + εsρs
J̇

J
= Γs, (A.2)

˙Jεsρs = ˙JeεsρsJg + Jeε
sρsJ̇g =

˙JeεsρsJg + 3Jεsρs
ġ

g
= JΓs, (A.3)

with J̇g = Jgtr
(
ḞgF

−1
g

)
= 3Jg ġ/g. If we impose that the rate of change of mass

contributes entirely to the growth term, then we have:

εsρsJe = ρs0 = const. (A.4)

and equation (A.3) gives:
ġ

g
=

1

3

Γs

εsρs
, (A.5)

whereas equation (A.4) gives an expression for εs:

εs =
ρs0
ρsJe

=
g3ρs0
ρsJ

, (A.6)

and we also have that:

εsν = εsJe =
ρs0
ρs
. (A.7)

Note that, in general, ρs can depend on the mass fraction of the constituents, i.e.

ρs = ρs (ωp, ωn).
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The mass balance equation for the proliferating cells reads

Ds (εsρsωp) + εsρsωpdiv (vs) = Γp→n
p + Γf→p

p , (A.8)

˙εsρsωpJ = JΓsωp + Jεsρsω̇p = J
(
Γp→n
p + Γf→p

p

)
, (A.9)

ω̇p =
J

ρs0g
3

(
Γp→n
p + Γf→p

p − ωpΓs
)
=

1

εsρs
(
Γp→n
p + Γf→p

p − ωpΓs
)
, (A.10)

in which equations (A.4) and (A.5) are used. Similarly, for the necrotic portion of

the cells we can write:

ω̇n =
J

ρs0g
3

(
Γn→f
n + Γp→n

n − ωnΓs
)
. (A.11)

The mass balance equation for the whole solid-fluid system is obtained by summing

up the two mass balance equations for the solid and the fluid phase, which read

∂tε
s + div (εsvs) +

εs

ρs
Dsρs =

Γs

ρs
, (A.12)

∂tε
f + div

(
εfvf

)
+

εf

ρf
Dfρf = −Γs

ρf
, (A.13)

respectively. Summing equation (A.12) and (A.13) gives:

div (q) + div (vs) + εfβf + εsβs =

(
1

ρs
− 1

ρf

)
Γs, (A.14)

in which βj = Djρj/ρj, j = f, s represent the compressibility of the j-th phase, and

q = εf
(
vf − vs

)
. Note that

εfβf =
εf

ρf
[
Dsρf +

(
vf − vs

)
· grad ρf

]
= εf

Dsρf

ρf
+

grad ρf · q
ρf

. (A.15)

By employing (A.15) and applying a Piola Transformation of equation (A.14) we

obtain

Div (Q) + J̇ + J (1− εs)
ρ̇f

ρf
+

1

ρf
Q ·Grad ρf + Jεs

ρ̇s

ρs

= J

(
1

ρs
− 1

ρf

)
Γs, (A.16)

where we defined Q = JF−1q. Note that if the densities of the phases are assumed

to be constant and equal to each other the expression above can be simplified into:

Div (Q) + J̇ = 0, (A.17)
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with Q given constitutively as:

Q = −JF−1kF−TGrad pf . (A.18)

Here k is the hydraulic conductivity tensor of the solid.

For the nutrient species we rewrite the mass balance equation as:

Ds
(
εfρfωN

)
+ εfρfωNdiv (vs) + div

[
εfρfωN

(
vf − vs

)
+ JN

]
= ΓN→p

N , (A.19)

where JN = −εfρfDNgradωN. The term DN is the diffusivity tensor of the nutrient

dissolved into the interstitial fluid. This equation can be rewritten in the material

frame as:
˙

JεfρfωN +Div
(
ρfωNQ+ΨN

)
= JΓN→p

N , (A.20)

where the material diffusive flux is written as ΨN = −JεfρfF−1DNF−TGradωN. By

manipulating this equation, and knowing that

Df
(
εfρf

)
+ εfρfdiv

(
vf
)
= Γf , (A.21)

Ds
(
εfρf

)
+ div

(
ρfεfq

)
+ εfρfdiv (vs) = −Γs, (A.22)

˙
Jεfρf +Div

(
ρfQ

)
= −JΓs, (A.23)

we arrive at the final form of the nutrient mass balance equation, which reads

Jεfρf ω̇N + ρfQ ·GradωN +Div
(
ΨN

)
= J

(
ΓN→p
N + ωNΓs

)
. (A.24)
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