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Abstract

The description of charge transport phenomena in polar oxide materials has up to now

numerous unclear points, unlike for what happens for semiconductors and conductors

where the band model explain exhaustively their properties. First studies on ionic insu-

lators highlighted the necessity to introduce new concepts and a new transport theory,

without which it would not be possible to explain convincingly the photo-electrical be-

haviour of these materials. One of these key concepts is the polaron, introduced the first

time by L. D. Landau in 1933, to explain some new properties exhibited by alkali halide.

A strong electron - phonon interaction characterizes these materials thanks to which

the electron can induce a local distortion through Coulombian interaction. This mech-

anism produces a potential well localizing the electron. A polaron can be thought as

a quasi-particle composed by a charge auto-localized and the relative lattice distortion

that moves as a whole. Under particular conditions, it can move by thermally assisted

hopping, diffuse in the material or be trapped by point defects having an attractive

potential. Moreover, the polaron constitutes a localized state in the band gap, which

can absorb the light releasing the trapped charge to higher energy levels. The coexist-

ence of all these processes, under specific conditions of illumination and temperature,

determine the light-induced charge transport phenomena, which are the object of this

thesis. The material chosen for this research is lithium niobate (LiNbO3). Besides its

technological interest, since it is largely applied for nonlinear optic and holography, it is

a prototype system for polaron study, among similar polar oxides. Another advantage

provided by this material is that its electrical transport properties can be studied in

a convenient way via optical measurements. The purpose of this study is the creation

of a predictive model describing transport properties of the material starting from its

microscopic composition and the external experimental conditions to which it is ex-

posed. We performed a set of experiments on a series of well-characterized samples

and compared them with the results of numerical modelling. The main results are a

quantitative estimate of some poorly known microscopic polaron parameters and, by

consequence, the development of a quantitative numerical tool able to predict the be-

haviour of the material, in a wide range of temperature and compositions. Several new

ideas concerning a semi-analytical modelling for this system were also developed and

tested, together with some interesting concepts for future research, traditionally not

applied in lithium niobate community, such as the physics of anomalous diffusion of

polarons among a disordered defect network.
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Introduction

Lithium Niobate (LN) stands out, among other ferroelectric oxides for its large use

in the realisation of acusto- and electro-optic as well as non-linear optical devices.

This material is also considered as a reference for other ferroelectric oxides, and it is

generally used as a “test bench” where new concepts and applications can be tested

both in fundamental and applied research [1].

In this scenario, lithium niobate is often taken as a paradigm for light induced charge

transport phenomena in oxide crystals. This is the physical basis of the so-called

photorefractive effect, which in LN is especially strong as a consequence of the high

electro-optic coefficients and of the fact that large internal electric fields (106−107V/m)

can be built up in the bulk simply by illuminating this material with visible low intensity

light [2]. The microscopic origin of these fields are related to the interplay between the

photogalvanic effect (i.e. the appearance of a bulk current density proportional to

the light intensity) and the charge transport mechanisms that determine the material

conduction [3]. The interest in these phenomena is timely because they bear a high

interest for practical applications: in the field of nonlinear and ultra-fast optics the

photorefractive effect is an unwanted drawback that limits the use of LN for high

intensity multiphoton processes [4], while in photorefractive holography this effect is

used to record high quality gratings, optical memories and demonstrate low-intensity

all-optical interactions [5]. Integrated optics as well needs to control those phenomena

due to the high cw light intensities obtained in waveguiding regions [6]. More recently,

the exploding field of ferroelectric photovoltaics has raised several questions on charge

transport processes in polar materials [7].

Initially these phenomena have been described by mutuating from semiconductor

physics a band model picture for charge transport [8]. These models were quite suc-

cessful in explaining the experimental data collected in the last decades [1], but as

pointed out in Ref. [9], this approach is valid as long as it is not necessary to deal

with the microscopic origin of the macroscopic parameters used in such descriptions.

Moreover, with the advent of high power (ultra-) short pulsed laser system and the

consequent observation of novel non-linear phenomena [4], it appeared obvious that

the microscopic description of charge transport in LN needed a deep revision. These

problems, discovered for lithium niobate, are part of a more general framework con-

cerning polar oxide materials such as KNbO3, KTiOPO4, BaTiO3, or LiTaO3. In those

systems the description of charge transport phenomena, unlike for what happens for

semiconductors and metals, cannot be based on band model to explain exhaustively
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their properties. A key concept in this respect is that of polaron, introduced the first

time by L. D. Landau in 1933 [10]. The strong electron - phonon interaction character-

izing these materials enables a charge carrier to induce a local distortion of the ionic

lattice through Coulombian interaction. This mechanism produces a potential well

localizing the charge carrier. Under certain conditions, a polaron can be thought as

a quasi-particle composed by a charge auto-localized together with the relative lattice

distortion that moves as a whole. In these conditions the charged particle cannot be

described as de-localised Bloch wave function which may recombine with acceptors at

any lattice site, as prescribed by the band model theory. On the contrary the charge is

more or less localized (in the case of LN, practically at a single ionic site) and its move-

ments can take place only by thermally assisted hopping transitions to adjacent sites.

Polaron hopping, in this context, refers to the phonon-assisted jumping of a carrier

through severely localized (collapsed) states [11]. More recently, the polaron concept

appeared to play an ubiquitous role in a wide range of solid state physics topics, such

as superconductivity, DNA replication, conductive polymers, ferroelectric photovoltaic

or THz wave damping [12, 7, 13].

Quite surprisingly, however, in spite of the fact that the role of polarons is nowadays

clear, to our knowledge a self-contained, detailed microscopic description of polaron

transport meant to replace old-fashioned band-like approaches is still lacking. It ap-

pears therefore of great interest to develop a quantitative understanding on this subject

by comparing different investigation methods and ad-hoc theoretical and numerical

modelling. In this context, lithium niobate serves as a reference material due to its

variety of small polaron features and to the abundance of literature on this respect.

Another advantage provided by this material is that its electrical transport properties

can be studied in a convenient way via optical measurements.

The main goals of this thesis work are therefore: (i) investigate by a combination of

different complementary techniques and in a wide range of experimental conditions the

charge transport mechanism in LN in order to put in evidence its polaronic features (ii)

clarify what is the role of the different polaronic centres in the transport. (iii) recognize

that LN, from the point of view of transport, can be considered as a disordered system

and adapt a suitable theoretical framework to this case. (iv) Ultimately, setting up a

quantitative and predictive modelling of charge transport in this material.

This work is the result of a successful international collaboration between the Phys-

ics and Astronomy Department of the University of Padova, the School of Physics of

the Osnabrück University in Germany, the laboratory M.O.P.S. of the Lorraine Uni-

versity/Supéléc in Metz, France and the Institute for Physical Research in Ashtarak,

Armenia. All the involved partners contributed with experimental analysis, theoretical

models, samples and ultimately deep and lively discussions. The material is organized

as follows:

In chapters 1 and 2 the state of the art of the problem is reviewed. Lithium niobate

is described by stressing the aspects that are necessary to deal with in the following

2
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chapters with special attention to classical charge transport phenomena description and

the physics of small polarons.

Chapter 3 describes a numerical tool developed in this thesis which will be used to

interpret the results of the experimental work. It is based on a Monte Carlo simulation

code describing the motion of the different polaron types in LN.

Chapter 4 describes the different samples used in this work, from their preparation

to their detailed characterization.

Chapter 5 deals with the two main experimental techniques used to study polaron

motion: transient absorption spectroscopy and photorefractive measurements. The first

of these two complementary approaches allows to obtain information on the relaxation

process of a photo-excited polaron population in non stationary conditions and give

information on the different types of polaron contributing to the transport; the second

permits to study the sample photoconductivity and the photogalvanic effect under

constant light illumination. As a distinctive feature of this work, all the analyses are

carried out as a function of temperature in the poorly explored range between 100 and

400 Kelvin, to test our theoretical modelling also from the point of view of temperature

dependence.

Chapter 6 and 7 illustrate and analyse the results, finally combining in a single

coherent view the different observations and numerical modelling.

Finally, Chapter 8 deals with the application of the theory of anomalous diffusion to

the polaron transport.
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State of the art
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1. Lithium Niobate

Lithium niobate single crystal (LiNbO3, or LN) is an oxide material whose properties

make it a great candidate for many linear and non-linear optical applications such

as waveguides [6], electro-optic modulators, second harmonic generators, holographic

devices and sensors [14]. It is an artificial crystal, described the first time in 1928

by Zachariasen [15] and synthesized in large crystal sizes for the first time in 1965

by Ballman using the Czochralski technique [16]. It exhibits strong ferroelectric, pyro-

electric and piezo-electric features and it is colourless and insoluble in water and organic

solvents. In this chapter its fundamental properties are reported.

1.1. Phase diagram and crystal structure

Lithium niobate is one of the four compounds of the pseudo-binary system Li2O−Nb2O5,

besides Li2Nb28O71, Li3NbO4 and the lithium triniobate LiNb3O8. The first phase dia-

gram of this system was created in 1958 [17] and was refined in the following years

thanks to thermal and density analysis, as well as to X ray diffraction, obtaining the

one presented in figure 1.1.1. As it can be seen LN has a variable composition having

the solid phase in the range of Nb2O5 between 50% and 54%. In this interval there is

only one point in which the liquid phase has the same composition of the solid one, the

so-called congruent composition, corresponding also to the maximum melting temper-

ature of 1253➦. From the thermodynamic point of view this composition, minimizing

the Gibbs free energy, gives the most stable phase of lithium niobate: this implies

that energetically the preferred structure is a defective one having a Li2O-deficient

structure. The figure 1.1.1 shows also that, according to the composition, there is a

different Curie temperature between the ferroelectric and the para-electric phase. Sev-

eral physical properties related to optics and subsequently to photo-induced transport

phenomena do strongly depend on the [Li] / [Nb] ratio, as it will be shown in next

chapters. Literature values defining the numerical value of the congruent composition

are somehow dispersed. In this work x = [Li] / ([Li] + [Nb]) = 0.4845 is considered,

according to one of the most recently result obtained in [1].

The structure of lithium niobate at room temperature belongs to the rhombohedral

(trigonal) space group R3c and the point group is 3m. This structure is stable up to

the Curie temperature (TC) where a transition to the non polar point group 3̄m occurs.

In the trigonal system three are the possibles choices for the elementary cell namely

hexagonal, rhombohedral or orthogonal. The former two are convenient for crystallo-

7



1. Lithium Niobate
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Figure 1.1.1.: Schematic phase diagram of the pseudo binary system Li2O−Nb2O5

near the congruent and stoichiometric composition of LiNbO3 [18].

graphic aims and structural investigations, but for most applications the orthogonal

setting is the preferred one, therefore tensor components of the material properties are

usually given with respect to its x, y and z axes, which are all orthogonal. Among all

the possibilities the hexagonal unit cell is the only one here briefly described because the

only one later used to simulate the results (chapter 3). In this cell, represented in figure

1.1.2, the c axis corresponds to the z-axis of the orthogonal cell and to the optical axis.

It is defined as the axis about which the crystal exhibits a three-fold rotation symmetry,

with the positive end point toward the crystal face where a positive charge appears by

cooling the material. This cell, has the form of a right parallelepiped with a rhombo-

hedral base defined by two equal lengths a = b = 5.150 ± 0.002 Å having an angle of

120➦ between them and the third one in the normal plane equal to c = 13.867±0.005 Å

[19]. The x axis corresponds to the [1 1 -2 0] direction in this setting, while the y axis

to the [1 -1 0 0].

The lithium niobate structure at temperatures below its Curie point, consists of

planar sheets of oxygen atoms in a slightly distorted hexagonal close-packed config-

uration. The octahedral interstices formed by this oxygen structure in the congruent

composition are one-third filled by lithium atoms, one-third by niobium and one third

is vacant, following along the c axis the order Vacancy - Li - Nb (figure 1.1.3 a). In this

phase cations do not occupy the central position of the octahedra but Li ions are shifted

with respect to the O planes by about 44 pm, and the Nb ions by 27 pm from the centre

of the octahedra. These shifts are the origin of the spontaneous polarization. The

positive polarization direction is conventionally the one for which the Li displacement

with respect to oxygen planes is positive.

Since the chemical bond between niobium and oxygen is essentially covalent, the Nb

8



1.2. Defect structure
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Figure 1.1.2.: Hexagonal unit cell of lithium niobate with interatomic distances and
axis lengths indicated [20].

and 6 atoms of oxygen are considered as a single entity. This fact, together with the one

that Li atoms are highly decentered with respect to the centre of the oxygen octahedra

leads to adopt the vision illustrated in the figure 1.1.3 b/c where a sequence of octahedra

and triangle of oxygen is considered instead of the one of connected octahedra. In the

paraelectric phase, above Curie temperature, lithium atoms lie in the centre of oxygen

planes, while niobium ions are located at the centre of oxygen octahedral making this

phase non-polar.

1.2. Defect structure

As already mentioned the congruent composition is the most energetically favoured

and the one normally encountered in commercially available samples. This structure

is Li deficient and naturally defective, so that it is of main importance to understand

and evaluate its impact on the physical properties of the material, especially for what

concerns charge transport.

1.2.1. Intrinsic defects

As already mentioned, the congruent composition is characterized by a Li fraction of

x = [Li] / ([Li] + [Nb]) = 0.4845, corresponding to about 6% empty Li sites in the

lattice. Charge compensation for such deficiency can be described by several possible

processes of Li2O outdiffusion. Using the Kröger-Vink notation [21], the formation of

defects can be described by the following equations:

(LiNbO3) → Li2O+ 2V
′

Li +V2 
O (1.2.1)

9



1. Lithium Niobate

Neutral

b) Paraelectric Phase c) Ferroelectric Phase
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+c
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Figure 1.1.3.: (a) Crystal structure of congruent LiNbO3. (b) Paraelectric phase. (c)
Ferroelectric phase [20].

(LiNbO3) → 3Li2O+ 4V
′

Li +Nb4 Li (1.2.2)

(LiNbO3) → 3Li2O+ 4V5′

Nb + 5Nb4 Li (1.2.3)

which are respectively known as Oxygen vacancy model, Lithium vacancy model and

Niobium vacancy model. The equation 1.2.1 assumes that the lithium vacancies are

compensated by oxygen vacancies, as it usually occurs in the oxides perovskites. On

the contrary the equation 1.2.2 implies that some VLi are filled by Nb ions, forming the

so called niobium antisites NbLi, whereas the equation 1.2.3 states that all the lithium

vacancies are filled with niobium antisites, leading to the formation of niobium vacancy,

VNb. Density measurements [22] rather early discarded the first model, because they

showed an increase in the density of LiNbO3 with decreasing of Li2O content, which is

inconsistent with the oxygen vacancy model. On the contrary experimental results can

be justified by assuming the presence of niobium antisites. Evidently the formation of

NbLi costs less energy than that of VO and therefore only the two latter compensation

mechanisms can be taken into account. Calculations of the defect formation reveal that

the mechanism 1.2.2 is the most energetically favourable, but this was in contradiction

with the first result of Abrahams and Marsh [23], according to which Nb ions occupy

4.9% of the Li site in the crystal, i.e. the empty Li sites are mostly populated by Nb.

However, further structure results led to different conclusions. According to precise

data of X-ray and neutron diffraction [24] only 1% of the Li sites are occupied by Nb,

whereas about 4% of the Li sites are empty. These data support again the Li vacancy

model 1.2.2. Nowadays, the lithium vacancy model is commonly accepted as valid.

NbLi antisite defect has been identified clearly, using Electron Paramagnetic Res-

onance (EPR) technique and related studies [25]. In the ground state of a congruent

crystal, NbLi is present in the diamagnetic charge state Nb5+Li (4d
0), but after a two-

10



1.2. Defect structure

photons, X-ray irradiation or a reduction treatment and subsequent illumination of the

crystal, the paramagnetic configuration Nb4+Li (4d
1) can be observed, indicating that

this defect can work as an acceptor for electrons. Thanks to optical absorption meas-

urements, it has been possible to achieve a better understanding of role of NbLi in the

lithium niobate crystals and explain its double nature (paramagnetic and diamagnetic).

It appears that this defect produces a shallow level in the bandgap at a depth of about

1.7 eV absorbing in the near infrared. This point is better clarified in chapter 2 in the

framework of the polaron model.

1.2.2. Extrinsic defects

It is a common practice to introduce dopants into metal oxides to improve their tech-

nological performance and numerous examples are available from the areas of sensors,

electronics and optoelectronics. In particular in lithium niobate an extrinsic defects

consists in any other elements out of Li, Nb and O that can enter in the crystal during

the growth or subsequent treatments. In order to understand the precise role that the

dopant plays in modifying the properties of the oxide the primary information required

is its exact location in the host lattice. In principle, these ions might occupy either

of three available octahedra sites (Li, Nb, and empty octahedron) or even interstitial

sites. However, according to the data obtained with EXAFS, EPR, ENDOR or RBS

technique, the impurity ions independently of their charge state are localized on the Li

sites. The only ion which unambiguously occupies the Nb5+ site in LiNbO3, is Ta5+

[26].

Charge transport processes in LN are strongly influenced by extrinsic defects, as de-

termined by the marked sensitivity of photorefractive effect to the presence of impurit-

ies. Concerning this, the dopants usually employed can be divided into two categories:

❼ materials which increase the resistance to the optical damage, as Mg, Zr, Zn

and Hf, whose role is to increase the material conductivity [1]; the first optical-

damage-resistant composition found was LiNbO3 : Mg, for which it was detected

a critical concentration of about 5mol% MgO for the congruent melt, referred to

as a threshold, above which the optical damage drastically falls off by more than

two orders of magnitude [27];

❼ dopants enhancing the photorefractive properties of the crystal, as Mn, Cu, Fe,

among which the latest one is the most widely used because the most strongest

photovoltaic active impurity. In this case the role of the impurities is bivalent,

depending on their oxidation state: on one hand they act as photo-active donor

centres (reduced impurities), on the other they decrease the material conductivity

(oxidized impurities).

Pure lithium niobate crystals are transparent in the near-IR, the visible and the near-

UV region up to 3.8 eV, but iron doping provides new energy levels in the middle of

11



1. Lithium Niobate

the band gap, in the visible range of the absorption spectrum. This strong broad

band is responsible for the photo-excitation of free electrons from iron deep level, a

necessary condition for the realization of the photorefractive effect. Thanks to its

important role iron has been intensively studied and all microscopic parameters, as

position, charge state, optical absorption etc. are available from literature. The Fe

impurity exists in LiNbO3 only in two valence states Fe2+ and Fe3+, and these states

represents respectively donors and acceptors centres in photorefractivity. Site-selective

investigation of site symmetry and site occupation of iron in Fe-doped lithium niobate

crystals had been studied for example. by T. Vitova et al.[28], revealing that Fe2+ and

Fe3+ site symmetries and positions in the LN matrix are very similar, i.e. the Fe2+ and

Fe3+ atoms are both octahedral coordinated by six oxygen atoms and both occupy the

Li site.

Once the iron concentration (NFe = NFe2+ +NFe3+) is chosen in the crystal growth

procedure, it is possible to change the ratio NFe2+/NFe3+ (reduction degree) by oxidation

or reduction processes, allowing a full decisional power on this parameters. As this

dopant controls the photoconductivity and the photogalvanic effect it is important to

give a precise estimation of its concentration and of the concentration of its two charge

states: the optical absorption technique is a great candidate to absolve this purpose.

(see section 4.3.1) The first characterization of the optical absorption processes in bulk

Fe : LiNbO3 samples was realized by Clark et al. [29] and subsequently formalized by

Dischler et al. [30]. In particular, in this work the ordinary optical absorption at 532 nm

is used to determine the Fe2+ absolute concentration, as proposed for bulk Fe : LN by

Berben et al. [31], whose experimental results lead to the following cross section:

σ532nm = (3.95± 0.08) · 10−18cm2

The Fe3+ concentration can be obtained as difference between NFe and NFe2+ as-

suming known the total Fe concentration or, as firstly reported by Ciampolillo et al.

[32], by exploiting the isosbestic point at 342 nm found in Fe-diffused lithium niobate

samples. Indeed, it was demonstrated that the absorbance at 342 nm is proportional

only to the total iron regardless its reduction degree.

Typical concentration of intentional iron doping do not exceed 0.1mol% because, as

demonstrated by Peithmann et al. [33], higher concentrations lead to a degradation

of photorefractive properties. However, Fe is also often encountered as a contaminant

after the growth process, with a typical concentration that in the best cases is of few

ppm.

1.3. Permittivity and refractive indices

In anisotropic crystals, as it is the case for LN, the relationship between the electric

displacement D and the electric field E is tensorial and can be written as D = ǫ̂E

12



1.4. Pockels effect

where ǫ̂ is the second-rank permittivity tensor. Permittivity is often given in terms

of the permittivity of the vacuum ǫ0, obtaining the so-called relative permittivity or

dielectric constant ǫ̂r and in this way ǫ̂ = ǫ0ǫ̂r. Due to the crystallographic structure and

the symmetry properties of lithium niobate, its permittivity tensor, in the orthogonal

cell, can be represented by a 3× 3 matrix with the form:

ǫ̂r =




ǫ11 0 0

0 ǫ11 0

0 0 ǫ33


 (1.3.1)

where it is possible to notice that only the diagonal elements are not-zero and that the

permittivity has the same value for any electric direction perpendicular to the c-axis.

The temperature dependence of the tensor is not trivial [34] as reported for exemple for

ǫ33 in figure 1.3.1. It exhibits a continuous decrease while the temperature decreases

and it converges to steady values of ǫ33 = 25.4 ± 0.1 below 50 K. The compositional

dependence is taken into account in relation to the experimental measures reported by

Turner et al. [35]. In the melting ratio range from [Li] / [Nb] = 0.852 to [Li] / [Nb] =

1.083 they found that δǫ3/ǫ3 = −0.075.

At optical frequencies the permittivity of a material is usually described in terms of

its refractive index. In particular lithium niobate presents two refractive indices, an

extraordinary one (ne) and an ordinary one (no), which refer respectively to optical

beams polarized parallel to the z -axis and to the x or y axes of the crystal respectively.

Their dependence on temperature, light wavelength and composition of the material is

taken into account in a generalized Sellmeier equation proposed by Schlarb and Betzler

[36]. In particular the Schlarb’s approach is valid not only for pure LiNbO3 crystals,

but also in the case of doping with optical damage-resistant ions, allowing to exploit the

refractive indices as a sensitive method to determine the composition of the material.

1.4. Pockels effect

The Pockels effect, named also linear electro-optic effect, is a second order process,

discovered in 1899 by Friedrich Pockels. It consists in a linear modification of the

refractive index when the material is exposed to an electric field. Due to its linear

nature in the electric field, this effect can occur only in non centro-symmetric material,

as LiNbO3. This effect is usually described in term of the optical indicatrix, i.e. an

ellipsoid surface whose central section is perpendicular to the direction of propagation

of the incident beam and whose principal axes are identified as the refractive index of

the material, according to the polarization of the propagating beam. The behaviour of

the indicatrix can be represented as a power series of the electric field E

△
(

1

n2

)

ij

=
3∑

k=1

rijkEk +
3∑

k,l=1

sijklEkEl (1.4.1)
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Figure 1.3.1.: Unclamped relative permittivity ǫ33 of congruent lithium niobate covering
the temperature range of 7K < T < 300K at f = 5760Hz and λ =
632.8 nm [34].

where rijk and sijkl are are the coefficients relative to the linear and quadratic electro-

optic effects, usually named respectively Pockels effect and Kerr effect. Although lith-

ium niobate presents high linear electro-optic effect, higher-order terms can generally

be neglected, because in this material no quadratic electro-optical effect can be signific-

antly observed for applied electric fields up to 65 · 106V/m [37]. Due to the anisotropy

of the material, Eq. 1.4.1 assumes a tensorial form and in the Voigt notation 1 the

linear electro-optic tensor r̂ results:

r̂ =




0 −r22 r13

0 r22 r13

0 0 r33

0 r42 0

r42 0 0

−r22 0 0




(1.4.2)

Thus, the electro-optic effect in LiNbO3 can be described by only four independent

coefficients. In particular for an electric field aligned along the optical axis of the

material, the change in the refractive index at first order is provided by the following

relation:

△ne = −1

2
n3er33Ez (1.4.3)

△no = −1

2
n3or13Ez

1When the tensor is symmetric (rijk = rijk), as in the case of LN, the first two indices ij can be
contracted in only one indices p so that rijk = rpk according to the convention ij = 11 → p = 1,
ij = 22 → p = 2, ij = 33 → p = 3, ij = 23 → p = 4, ij = 32 → p = 4, ij = 13 → p = 5,
ij = 31 → p = 5, ij = 12 → p = 6 and ij = 21 → p = 6.
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Figure 1.4.1.: Unclamped Pockels coefficient r33 of congruent lithium niobate covering
the temperature range of 7K < T < 300K at f = 5760Hz and λ =
632.8 nm [34].

where no and ne are respectively the ordinary and the extraordinary refractive index of

the material. The only electro-optic coefficient playing an active role in this work is the

r33, equal to r33 = 30pm/V at room temperature for congruent materials [20], because

only extraordinary polarized light is employed, as it will be shown below in section

5.2.2. Recently is was measured by C. Herzog et al. [34] that the linear electro-optic

coefficient r33 has a temperature dependence as shown in figure 1.4.1 where it can be

seen that it decreases by 20% upon cooling the LN crystal from room temperature to

10 K, converging to a steady value of r33 ≈ 24 ± 0.7 pm/V below 50K. The electro-

optic tensor shows also a dependence on the crystal composition, as reported by Toro

et al. [38] and by Mendez et al. [39]. They conducted the experiment on two different

near-stoichiometric samples ([Li]/[Nb] = 0.992± 0.002) grown with the same technique

used for the samples of this thesis, i.e. by mixing congruent LiNbO3 powder with a

6% K2O flux, obtaining respectively r33 = 29.4 ± 0.2 pm/V and r33 ≈ 29.5 pm/V at

λ = 632.8 nm. It is interesting to notice that identical measure on near-stoichiometric

samples grown with different techniques leads to complete different results. For example

in [40], where the sample is grown from a 58.0mol% Li2O melt by the continuous-

charge double-crucible Czochralski method, the r33 instead of decrease increases to

r33 = 38.3± 1.4 pm/V.

1.5. Photogalvanic effect

The photogalvanic effect (PG), known also as bulk photovoltaic effect (BPVE), is a

dominating charge transport mechanism initiating the photorefractive effect in mater-

ials such as LiNbO3 or LiTaO3, enabling a variety of optical applications, including
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1. Lithium Niobate

Figure 1.5.1.: Excitation of impurity centres with an asymmetric potential by an uni-
form illumination results in an asymmetric momentum distribution for
non-equlibrium electrons (or holes). This, in turn, results in the appear-
ance of the photovoltaic current along the ĉ direction of the crystals [41].

holographic data storage, phase conjugating mirrors, optical filters, etc. [3]. It was

observed the first time in lithium niobate in 1974 by Glass et al. [2], who noticed that

when this crystal is exposed to uniform light a steady short-circuit current appears (jpg),

proportional to the light intensity and to the absorption coefficient of the material α.

Furthermore according to Glass the proportionality constant, known as Glass constant

(kG), depends on the nature of the absorbing centre and on the wavelength. According

to his explanation, the photo - excited charge has a higher probability of being ejected

in the +c direction rather than in the opposite direction −c due to asymmetry of the

polar lattice, as it can be seen in figure 1.5.1. Therefore, electrons excited from the

donor defect into the conduction band would exhibit a net drift along the positive c

axis (axis of spontaneous polarization) without being driven by a macroscopic electric

field or a concentration gradient. This microscopic process results in a net macroscopic

current of the order of 10−7A/m2 under cw illumination of about 300W/m2 and for

moderately iron doped samples ([Fe] ∼ 0.05mol%).

More rigorously, the PG effect is described by a third-rank tensor βikl = β∗ikl, express-

ing the details of the response of the photogalvanic current jpg to the light intensity I,

through

jpg, i = βikleke
∗

l · I (1.5.1)

where the components ek, e
∗

l represent unit vectors of the light electric field.. The

tensorial nature of the PG was first verified by Fridkin and Magomadov [42]. The

crystal symmetry makes the βikl tensor to have only four non-vanishing independent

components [3]:

βzzz

βzyy = βzxx
(1.5.2)

βyyy = −βxxy = −βxyx = −βyxx
βxxz = β∗xzx = βyzy = β∗yyz

(1.5.3)

For the elements in Eqs. 1.5.2 and 1.5.3, z is directed along the c axis, with y perpen-
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1.5. Photogalvanic effect

dicular to c (within a glide mirror plane) and x perpendicular to both in a right-handed

system. The elements in Eq. 1.5.2 refer to j||c, and those in Eq. 1.5.3 to j⊥c.
For linearly polarized light, only the real part of βikl contributes to ji and therefore

the corresponding tensor is symmetric in the k, l indices (linear photovoltaic effect or

LPG).

Schirmer et al. [43], from data presented by Festl et al. [44], derives βzzz = 40·10−91/V

as having the same value of βzxx = 40 ·10−91/V , for a Fe2+ concentration of 6 ·1018 cm−3

and a photon energy of 2.48 eV. The values of both these elements increase linearly

with energy up to 2.7 eV, above which βzxx starts to dominate slightly. The value of

βyyy is 2 · 10❂91/V at 2.48 eV, rising to 6 · 10−91/V at 3.0 eV. From data presented by

Karabekyan [45] the value of βxxz can be derived to be about 0.8 · 10−91/V for the Fe2+

concentration investigated by Festl et al. In summary, both βzzz and βzxx(= βzyy), with

j||c, are comparatively large and of nearly the same size, while βyyy and βxxz, with j⊥c,
are smaller by one to two orders of magnitude. Karabekyan has also investigated the

dependence of these four significant tensor components on photon energy: an identical

dispersive behaviour was found.

From the value of the tensor, nearly the same current is produced with a linearly

polarized light along any one of the three axis of the crystal, leading to a 1D problem. In

particular, during the experimental measurements described in section 5.2 the external

light is chosen linearly polarized along the y direction. In this situation jx = jy = 0

and jz = βzyyEyE
∗

y .

In the case of a 1D problem, equation 1.5.1 can be rewritten according to the Glass

phenomenological formula:

jpg = kGαI (1.5.4)

In this approximation equation 1.5.4 can be also re-expressed in terms of more useful

experimental quantities by the formula:

jpg =
qαI

hν
φLpg = qsN

I

hν
φLpg (1.5.5)

where q is the charge of the photo-excited carriers, α = sN is the absorption coefficient

(with s the cross section and N the concentration of the photogalvanic centres, respect-

ively), I is the light intensity and hν is the photon energy. The parameter LPG has

the dimension of a distance and its physical meaning is the average distance travelled

by the photo-excited carriers before stopping contributing to the current. Experiments

on LiNbO3 suggest a very strong connection of photogalvanic effect to the nature of

the impurities, as it is outlined in paragraph 2.2, in particular for iron doping. Typical

values of Lpg for iron doped samples were found by Glass et al. [2] of Lpg = 0.8 Å from

measurements at λ = 514 nm and Lpg = 1.3 Å at λ = 473 nm. φ is the efficiency of the

process, i.e. the probability of creating an electron contributing to the PG effect by an

absorbed photon. This factor was introduced in the early days of photorefractivity to

explain the apparent contradiction between the measured values of the space charge
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1. Lithium Niobate

Figure 1.6.1.: Representation of the main steps creating the photorefractive effect [48].
The first step, the directional photoionization, is depicted in more detail
in figure 1.5.1.

field and the mobility-lifetime product of photoexcited carriers. Its physical meaning,

for the moment purely phenomenological, will be better discussed in section 2.2.

1.6. Photorefractive effect

Electro-optic photoconductive materials exhibit a peculiar phenomenon, known as

photorefractive effect (PR), with a variety of applications in photonics and optoelec-

tronics [46, 5]. It consists in a refractive index variation of the material exposed to a

non homogeneous light pattern. In lithium niobate this variation is the result of mainly

three steps , as shown in figure 1.6.1. The first one is the directional photo-ionization

of electrons, i.e the photogalvanic effect (see section 1.5), which produces as second

step a diffusion and a redistribution of the electric charge inside the material building

up subsequently a strong space charge field ESC in the material. The third step arises

thanks to the Pockels effect, because the internal field in turn modifies the refractive

index of the material, as described in paragraph 1.4. This effect was observed for the

first time in 1966 by Ashkin et al. [47] in LiNbO3 and in LiTaO3 when they observed

that any beam propagating in the crystal gave origin to a slowly-growing refractive

index variation distorting the wave front of the beam itself.

The first model of the photorefractive effect was proposed by Chen [48] in 1968 where

he highlighted that the index variation in a material submitted to radiation can be

exploited to record information carried by the light signal. He proposed a model based

on the band transport, where the photo-induction mechanism is explained. This model

consider a photorefractive material presenting donor impurities, named ND, sufficiently
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1.6. Photorefractive effect

far away from the conduction band, so that the thermal excitation can be neglected. A

part of these impurities, having a density N+
D, is ionized, so that they are apt to accept

a moving charge. The generated charges moves in the conduction band, until they are

trapped at another ionized impurity elsewhere in the crystal. If the charge is trapped in

an illuminated zone it can be again photo-excited and the mechanism continues as long

as it is trapped in a dark zone. In this way charge transfer from illuminated to dark

zone is realized and this new charge distribution generates an internal static electric

field in turn modifying the refractive index via the electro-optic effect. This donor

impurity is a transition metal which act as photorefractive centres, such as the iron. Its

two possible valence states, Fe2+ and Fe3+, are deep states in the band gap which can

behave as donor and acceptor respectively for the free charge carriers. The efficiency

of this effect, i.e. the △n achieved, depends on the concentration of the two valence

states, as outlined in [49]. Since the photorefractive effect in Fe : LiNbO3 crystals is one

of the fundamental techniques employed in this thesis, the role of this extrinsic defects

and its effect will be more deeply explained during the work.

The charge carriers that contribute to the photorefractive effect can be electrons or

holes. Not always one of them dominates over the other one, so that they can both

contribute to the charge transport as demonstrated by Orlowsky and Krätzig [50]. The

contribution of electrons and holes depends not only on the dopant used, but also on its

reduction degree and on the wavelength of incident light. In the case of this thesis, in

which a green laser light is exploited and only iron doping is considered, electrons can be

considered the predominant charge carriers involved in the transport mechanism. This

is rigorously true for continuous illumination measurements (see chapter 5.2, instead for

transient measurements, made at high light intensities, also holes may play a significant

role (see chapter 5.1).

The magnitude of this effect is largely determined by the values of the electro-optic

coefficients that convert the space charge field into a refractive index change. Under

suitable conditions, it leads to observable effects in the range of △n ∼ 10−5 for intens-

ities down to mW/cm2, indicating that electric fields of the order of 104V/m are built

in the crystal. On the other hand, the response time is determined by the time needed

to build up the space-charge field so it is related to light intensity and carrier mobility.

Typical values ranges from few seconds to tenths of minutes. The photorefractive effect

is reversible because it can be completely erased by intense uniform incoherent illumin-

ation restoring the initial charge configuration in a temporal window comparable to the

one needed for its creation. This properties is highly exploited in this work permitting

to perform repeated experimental measures in the same samples but eventually under

different physical condition, as temperature or illumination.

19



1. Lithium Niobate

1.7. Kukhtarev-Vinetskii model for charge transport

The equations used at present for describing charge transport, and by extension photore-

fractive phenomena, are overwhelmingly based on the work of the Kiev group [8] leading

to the well known Kukhtarev’s model. This is believed to represent the best comprom-

ise between the complexity of real crystals and the simplicity of description. A simpler

phenomenological description based on the spatial symmetry of the nonlinear medium

has been later formulated, with the great advantage that its equations use a relatively

small number of phenomenological parameters [9]. In fact, as discussed in the latter

work, all the microscopic details of the transport process can be embedded in few phe-

nomenological parameters which are sufficient to provide a self-consistent mathematical

description of photoexcitation, conduction and space charge field build up. On the other

hand these two models do not give any indication on how those parameters depend on

the structure of the sample. For instance, the well-known fact that the charge mobility

depends strongly on the crystal Li/Nb ratio cannot be explained. Moreover the values

of the mobility parameter
(
< 10−4 cm2/Vs

)
is way too low to be compatible with any

conduction - band state. Hopping models based on the concept of localized carriers,

like the one detailed in this thesis have been proposed as an alternative approach. In

CW experiments, where it is possible to neglect two-photon processes, and assuming

that charges follows normal diffusion laws, band or hopping transport mechanism leads

to similar descriptions, as it was demonstrated by Feinberg et al.[51]: in this sense

the mathematical framework of band-like model can be kept to calculate the evolution

of the space charge field, while other more correct microscopic models are needed to

determine the value of the macroscopic parameters entering into the phenomenological

equations. However, as it will be detailed in the rest of this thesis, if different hopping

centres are considered, it may happen that normal diffusion laws breaks down, which

requires to review the equations used for transport description.

The Kukhtarev–Vinetskii equations, known also as one-centre model, describe the

photorefractive effect provoked by an illumination profile in the low intensity regime

into iron-doped LN and may be written as:

∂N+

∂t
= sφN

I

hν
− γN+ne (1.7.1)

∂ne
∂t

=
∂N+

∂t
+

1

e
∇ · j (1.7.2)

j = eµeneE + µekBT ∇ne + jpg = jdrift + jdiffusion + jpg (1.7.3)

∇ ·E =
e

εε0

(
N+ − ne

)
(1.7.4)

Here ne is the concentration of photoelectrons, N+ and N are the concentrations of

ionized and non-ionized centres, in our case Fe3+ and Fe2+ respectively, sφ is the

absorption cross section times the process efficiency φ for the donor centre (Fe2+) (see

20



1.7. Kukhtarev-Vinetskii model for charge transport

Section 1.5) and γ is the recombination constant. The first two equations of the set

describe the carrier balance, the third equation gives the current density, and the last

one expresses Gauss’s law.

Concerning equation 1.7.3:

❼ the first term correspond to the Ohmic current arising under external or internal

electric field

jdrift = eµeneE = σ (Eext +Eint) (1.7.5)

❼ the second term represents the diffusion transport of photo-carriers occurring

under a spatially non uniform illumination, which leads to a non-uniform density

of mobile charges;

jdiffusion = µekBT ∇ne (1.7.6)

❼ the third one is the photogalvanic contribution already mentioned in section 1.5:

jpg = qsN
I

hν
φLPGĉ (1.7.7)

.

The four equations describe the spatial and temporal evolution of the internal electric

field that develops as a consequence of a stationary but spatially modulated illumination

profile. The process is based on the excitation of electrons from Fe2+ to the conduc-

tion band, after moving by photogalvanic effect, diffusion and drift, finally re-trapped

elsewhere by Fe3+. This model assumes that only electron contribute to the transport

and two approximations are widely used to derive expressions of the photorefractive

response in the low-intensity limit, namely the terms ∂ne/∂t (second equation) and ne

(fourth equation) may be neglected. The approximation exploits the smallness of the

electron lifetime τe in comparison with the characteristic time of the photorefractive

response. Usually in the low intensities regime this condition is very well justified. In

addition the model is valid for moderate iron doping, indeed for iron concentration

superior to NFe = 20 · 1024m−3 the refractive index variation is no more linear with

the Fe3+ concentration [33]. The solution for this problem proposed by Nee et al. [52]

considered that in the case of strong doping there is a direct migration from Fe2+ to

Fe3+ by tunnelling, situation not consider by Kukhtarev equations. We further note

here that 1.7.1, 1.7.5 and 1.7.6 are derived assuming normal diffusive transport. This

point will be further addressed in Chapter 8.

A rigorous treatment of the photorefractive effect with the set of four equations could

be done only numerically, indeed they are non-linearly coupled and in general difficult

to solve without further simplifying assumption. It is possible to predict analytically

the result only in some specific cases which, in spite of the simplicity of assumptions, are

interesting to study to find a minimum set of parameters governing the phenomena.

For example the model developed by Zozulya and Anderson [53] solves the problem
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for a static Gaussian beam focused at the surface of a Fe:LN sample, with the beam

polarized along the z direction and propagating along the x-axis of the crystal. In this

case the analytical solution predicts a general characteristics, i.e. the refractive index

variation in the illuminated zone corresponds to a decrease of the index with respect to

the bulk value. Another interesting case which allows to solve equations is the one for

uniform spatial illumination [54]. In this case equation 1.7.3 can be simplified in the

following way:

j(t) = σE(t) + βNIĉ = jdrift + jpg (1.7.8)

where β = qs φ
hνLPG and σ = eµene is the internal conductivity. In general the latter is

the sum of two term σ = σph+σdark, respectively the photo- and the dark conductivity,

however the second term has an active role in transport measurement only in regime

of high temperature, not discussed in this thesis work, so this term can be neglected

[52]. In this approximation of uniform spatial illumination is possible also to study in

a simple way the time development of the electric space charge field, which in a scalar

approximation assumes the form of a saturated exponential time evolution:

E(t) = Esat

(
1− e−t/τd

)
(1.7.9)

where the time constant τd, the so-called dielectric relaxation time, is given by:

τd =
εε0
eµene

=
εε0
σph

. (1.7.10)

The space charge field consequently evolves in a time scale of τd, which for LN, is in

the order of tens of seconds at room temperature, and one hour around T = 80K.

To evaluate σph, generally one starts from Eq. 1.7.1 and considers that in quasi-

equilibrium condition ∂N+

∂t ≈ 0, from which ne = s
γ

N
N+φ

I
hν . Substituting in σ and

neglecting the dark conductivity, one gets:

σph = eµe
s

γ

N

N+
φ
I

hν
= eµeτsNφ

I

hν
(1.7.11)

where τ−1 = γN+ is the carrier lifetime, not to be confused with the dielectric relaxation

time τd. Eqs. 1.7.10 and 1.7.11 show that the time constant for the build up of the

space charge field is inversely proportional to the intensity of the optical field.

The value of Esat can be derived by the stationary situation, when the photogalvanic

current is exactly counterbalanced by the drift current, so that the total current j of

equation 1.7.3 is zero. The electric field in this condition reaches its maximum value

that, according to eqs. 1.7.7 and 1.7.11 is given by: :

Esat =
jpg
σph

=
Lpg

µeτ
(1.7.12)

Typical values of the saturation space charge field are in the range 106 − 107 V/m. It
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1.7. Kukhtarev-Vinetskii model for charge transport

should be noted that the saturation space charge field does not depend on the light

intensity, nor on the charge generation efficiency φ .

Another interesting solution of the Kukhtarev’s model is the one discussed in [55]

where the light profile is supposed to be a 1D Gaussian beam along the x direction,

but invariant with respect to the y and z direction, i.e. with intensity distribution:

I(x) = I0 exp

(
− x2

2w2

)
(1.7.13)

This case corresponds to a Gaussian beam with largely different diameters in the x

(thin) and y (thick) directions, propagating along the z direction and assuming that

the diffraction of the beam can be neglected, which is the case when the crystal thickness

is smaller than the Rayleigh range of the beam. The crystal’s c-axis is oriented parallel

to the gradient direction of the Gaussian beam, i.e. the x axis. The spatial extent of the

Gaussian beam along the direction perpendicular to the c-axis is assumed to be infinite.

The polarization of the light beam is assumed to be perpendicular to the crystal’s c-

axis. Additionally, the crystal is short-circuited to avoid parasitic charge buildup at the

surfaces. In this geometric configuration and in the steady-state situation the electric

field assumes the form:

E(x) = −Esat
I(x)

I(x) + ID
(1.7.14)

where ID is the dark intensity, whose main source in this case is thermal excitation of

mobile charges, while I is the intensity profile expressed by formula 1.7.13. Through

the linear electro-optic effect, the crystal’s refractive index perturbation follows the

saturated Kerr-type non-linearity

△n(x) = △nsat
I(x)

I(x) + ID
(1.7.15)

where △nsat = n3rEsat/2. Equation 1.7.15 displays another important property of the

obtained refractive index profile: the saturation. If I (x) ≪ ID in 1.7.15 the refractive

index contrast is proportional to the illumination profile, △n(x) = △nsat I(x)ID
. On the

contrary, if I (x) ≫ ID the refractive index profile saturates to the limiting value △nsat.
An analytical solution of the model can be obtained also in the case of an external

sinusoidal external light. The complete mathematical description can be found in [56].
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2. Polarons in Lithium Niobate

The polaron is one of the main concept on which the charge transport theory of polar

oxide materials is based. This concept was introduced the first time by L. D. Landau

in 1933 to explain new optical properties exhibited by alkali halides [10]. Landau ob-

served that these materials are characterized by a strong electron-phonon interaction,

thanks to which the charge carrier (electron or hole) can distort the surrounding lat-

tice via Coulomb and short-range interactions. The displacement of the surrounding

ions leads to a potential well, in which the free carrier can localized. Since this type

of electron-phonon coupling was first considered in ionic (polar) materials, the quasi-

particle composed of the self-trapped carrier and the accompanying ionic displacements

was called polaron. Nowadays this term is used in a wider scope, and one may associate

polaron with the fact that the surrounding lattice is “polarized” by the carrier’s charge.

Depending on the spatial range of the interaction it has to be distinguished between

large and small polarons [12]. In the former case the radius of the displacement pattern

is considerably larger than one lattice constant. In the second case, with the increasing

of the coupling strength, the polaronic radius shrinks, restricting the potential well to

a single lattice site, so that the electron density does not extend beyond a trapping

cation site. This latter object is then called a small polaron. While the movement of a

large polaron may be described like the one of a free electron in the conduction band

with an increased effective mass [57], small polarons merely move by hopping between

nearest neighbour sites.

Small polarons are the only ones present in lithium niobate at sufficiently high tem-

perature, due to the strong electron-phonon interaction characterizing the material,

for this reason the term polaron in this work refer uniquely to the small one. In LN

they can be seen as localized defect states in the band gap, which can absorb the light

releasing the trapped charge to higher energy levels under the Franck-Condon principle

[58]. Upon favourable conditions they can move by thermally assisted jumps and dif-

fuse in the material, even if very slowly since they only move when the surrounding

lattice move. Furthermore, they can be captured by defects having an attractive or

negative potential. The coexistence of all these process originates a peculiar transport

phenomena influencing the charge transport phenomena and the optical properties of

Lithium Niobate.
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2. Polarons in Lithium Niobate

a)  Free 

   polaron

b)  Antisite-bound

         polaron

c)  Bipolaron d)  Hole polaron 

Nb
5+

Nb
5+

VLi

Nb

Nb

Figure 2.1.1.: Visualization of the orbital ground states of polarons in LN. a) one elec-

tron trapped in regular niobium site forming a free small polaron Nb4+Nb b)
one electron localized at the niobium antisite defect forming an antisite-
bound polaron Nb4+Li . c) two electrons self trapped in a regular niobium
site and in an antisite defect forming a bound bipolaron Nb4+Li : Nb4+Nb.
The two vertical double arrows indicate the relaxation of the Nb ions
towards each other, increasing the bipolaron binding energy. d) hole self
trapped at an oxygen ion in the vicinity of a VLi, forming an hole polaron
O−.

2.1. Physics of small polarons

In order to deal adequately with the features of the different kind of polarons in lith-

ium niobate, it is essential to understand their microscopic structures and the related

physical properties [58]. The main features of this quasiparticle are described using

Holstein’s one-dimensional Molecular Crystal Model (MCM) [59]. A model of the real

situation would have to describe the polaron localized at one cation site in a three-

dimensional crystal by an appropriate relaxation of its neighbour ions. Despite of this,

the MCM model employed a simpler arrangement where only two neighbours are as-

sumed, forming a one-dimensional chain. Result of this 1D model can be sequentially

applied to a more realistic 3D case using slight corrections.

Free small polarons

Electrons self-trapped at regular Nb5+Nb(4d
0) ions of the LN lattice forms the most simple

polaron species, the free small polaron Nb4+Nb (figure 2.1.1 a). It is the most shallow

polaron state known in LiNbO3 and it is characterized by a broad optical absorption

band in the near infrared spectra range, centred at MF = 1.09 eV (corresponding

to a wavelength of 1280 nm) [60] immediately below the conduction band (see figure

2.1.5). It is interesting to point out that this energy peak is rather high, if compared

with that of polarons in other oxide materials, e.g. BaTiO3 (0.6 eV) or TiO2 (0.7 eV),

indicating that the coupling of free electrons to the LN lattice is extraordinarily strong.
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2.1. Physics of small polarons
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Figure 2.1.2.: Energy contribution to the stabilization of a small polaron.

Free polarons were identified initially only in samples doped with Mg or Zn above the

optical-damage resistance threshold, through electrical measurements on the crystal

photo-conductivity [60]. This type of doping indeed eliminates all antisite defects,

essential condition to detect a free small polaron: if some antisite defect are present,

the electron tends to be trapped there, forming a bound polaron, a more stable state

compared to the free one [61].

According to MCM model, the polaron formation of a free electron on a regular Nb

site can be depicted as shown in figure 2.1.2. The localization raises the kinetic energy

of the electron and thus, to ensure the formation of the polaron, this energy must be

overcompensated by an energy lowering. This is provided by the displacement of the

neighbouring ions and, possibly, also by an additional long range Coulomb force. In

this way the electronic energy is decreased, in the first order approximation, by −V Q,

where V is a phenomenological constant expressing the energy gain proportional to

the deformation and Q is an independent parameter describing the deformation. The

energy paid to distort the lattice must be quadratic in the deformation, KQ2. The total

energy of the polaron, is thus expressed by the formula:

E = KQ2 − V Q (2.1.1)

The minimum of the energy occurs at Qmin = V/2K and in this case the energy assumes

the value:

Emin =
❂V 2

4K
= ❂EF . (2.1.2)

defined as the so-called polaron deformation-stabilization energy (DSE).

In this condition the electronic and elastic energy are then respectively:

Eele
min = ❂V Qmin = ❂

V 2

2K
= ❂2EF (2.1.3)

Eela
min = KQ2

min =
V 2

4K
= EF (2.1.4)

The optical absorption by a small electron polaron mainly consists in a charge transfer
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Figure 2.1.3.: a) Energy of the system electron + lattice. The electron is self-trapped at
the initial cation site and light-induced charge transfer transitions occur
to another cation site which is not distorted in the absence of electron. b)
Scheme (a) with energies shown as depending on the relative coordinate
q.

transition of the self-trapped electron to an equivalent site. This idea is presented

in figure 2.1.3(a). In the initial site the lattice is distorted because of the presence

the electron, but when light-induced charge transfer transition occurs, the electron is

transferred to another cation site in the lattice, which is not distorted in the absence

of the electron. In this vision the initial site can be modelled as a displaced oscillator,

whereas the situation of the final site is represented by an unbiased oscillator, having

the electronic energy equal to zero. The transition energy is thus only determined by

the distortion at the initial site. On the basis of the simplifying assumption that the

stabilizing distortion at the initial site does not influence the electron energy at the final

one, the energy to be expended for the photon-induced electron transfer is: Eele
final −

Eele
initial = 0 − (−V Qmin) = 2EF . Finally, after the light-induced electron transfer

to the new site, the lattice adjusts to the presence of the relocated electron. This is a

spontaneous process which is not influenced by the absorbed photon. The corresponding

absorption band is therefore centred aroundM = 2EF , so from absorption measures it is

possible to know the polaron energy, which in the case of free polarons is EF = 0.545 eV.

Moreover, by using a modelling typical of defect physics [58], the line-shape of the

absorption band can be shown to be a Gaussian function, characterized by a half width

at half maximum:

W 2 = 4EF~ω0 ln(2) (2.1.5)

where ~ω0 is the energy of the phonon mode associated to the lattice distortion of the

polaronic effect. The shape of the predicted optical absorption of free small polarons

is based on the assumption that the absorbed photon transfers the trapped electron

from the ground state orbital at the initial site to an analogous ground state orbital

at one equivalent final site. This approach however fails when higher-energy tails of

the absorption band are considered, essentially because the final situation presents an

increased density of states with respect to the starting one, due to the various possible
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2.1. Physics of small polarons

destination sites that the excited charge can choose to localize at. For this reason it

is a common practice to fit only the low-energy half of the polaron absorption peak

with a Gaussian function to measure the value of the unknown parameters EF and ~ω0.

For free polarons, a standard value ~ω0 = 0.1 eV is assumed for polar oxides, from

which one calculates the width Wtheo = 0.39 eV, almost identical with the observed

one, Wexp = 0.37 eV.

Bound small polarons

If an electron (hole) is captured by a defect ion, positively (negatively) charged with

respect to the replaced regular cation of the lattice, it is attracted locally by the extra

potential of the defect. In addition a polaron-like stabilization by lattice distortion can

occurs. We shall label such defects as bound polarons, if the optical absorption features

are dominated by polaron-like transitions to next neighbours.

The extra attracting influence active in the case of a bound polaron causes a pre-

localization of the carrier already before the lattice distortion sets in, so that the total

energy of the polaron tends to be larger with compared to the free case. Furthermore,

the defect-induced energetic inequivalent between the initial and final sites will reduce

the intensity of the charge transfer transition, because the mixture of initial and final

site states will be more asymmetric, leading to a greater activation energy of the process.

Examples for electron bound polarons in the case of LiNbO3, are electrons bound to

a Nb5+Li antisite defect, forming Nb4+Li (see figure 2.1.1 b) or localized in a Fe3+ forming

a Fe2+. Spectroscopy measurements highlights that Nb4+Li polarons are generally not

observed in thermal equilibrium, all the available charges being stored in deeper defect

levels such as Fe2+ or, as it will be discussed in the following paragraph in Nb4+Li −Nb4+Nb

bipolarons. However, by optical or thermal excitation, their concentration can be in-

creased. In particular, pump-pulse experiments demonstrate that a measurable bound

polaron concentration of Nb4+Li can be created using ns or fs pulses of visible light, which

subsequently relaxes to the equilibrium value in some finite time [4], transforming back

to Fe2+.

For Nb4+Li and Fe2+ polarons the polaronic distortion (the distortion induced by the

electron) is known: in the first case by a theoretical study from Nahm and Park [62]

and S. Sanna [63] and in the second one by a direct measurement made by Sanson et

al. [64]. In the first case of the antisite, according with [62], the self trapped electron

originates a shift in the six oxygen ions by 0.04 Å (about 1% of the bond length) along

the positive c axis and more precisely, the study reported in [63] calculates that the

average interatomic distance NbLi −O grows from 2.014 Å to 2.066 Å. Also in the case

of iron the oxygen octahedron relaxes so that the average distance Fe−O passes from

∼ 2.03 Å to ∼ 2.12 Å. A microscopic vision of the electron wave function localized in a

Nb4+Li and Fe2+ site is shown in figure 2.1.4.

The absorption processes of such defects are expected to be quite similar to those of
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2. Polarons in Lithium Niobate

Figure 2.1.4.: (left) Electronic charge difference Nb4+Li −Nb5+Li [63]. (right) Electronic

charge difference Fe3+Li − Fe2+Li [64]. The electron is strongly localized
around the cation and the electron wave-function do not exceed the oxy-
gen octahedra in both cases.

free small polarons. However, because of the defect potentials attracting the electron,

in such cases the equilibrium level is expected to be lower if energetically compared to

the one of free polarons. According to MCM model the electron energy 2.1.1 assumes

now the form of:

E = KQ2 − V
′

Q− ε (2.1.6)

where ε represents the extra energy due to the defect attraction and V is replaced

by V
′

to consider that the different interaction between ions and free charge can give

a different coupling constant with respect to the free polaron case. The energy is

minimized for Qmin = V
′

/2K , analogously for the case of free polaron, which gives:

Emin = −EP − ε (2.1.7)

where EP = −V ′2/4K. In this case the absorption band is peaked at M = 2EP + ε.

For antisite-bound polaron in lithium niobate, this value was found at MP = 1.69 eV,

while for Fe-bound polaron MFe = 2.62 eV in the middle of the band gap [58] (see

figure 2.1.5). From theory (see equation 2.1.7) and from the absorption band peak

alone one cannot estimate a precise value for EP but rather a range, depending on

the value of ε. For the antisite polaron the maximum value allowable compatible with

observed data is EP = 0.845 eV, corresponding to a extra defect attraction εP = 0.

This has as conclusion that the bound nature of the polaron, determined by the extra

energy ε, decreases when the polaron deformation-stabilization energy EP increases, till

reaching the extreme situation in which the polaron transform into a free one (εP = 0),

even if the electron is localized on a defect. To gain more information, one can use

the equation for the Half Width of the absorption peak (Eq. 2.1.5) together with an

estimation of the phonon energy ~ω0. Assuming for all the bound polarons in Lithium

Niobate the value obtained for the free polaron, ~ω0 = 0.1 eV, we obtain the values

for the polaron energies reported in table 2.1.1. However some care should be taken
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2.1. Physics of small polarons

Type of polaron M (eV) W (eV) Ei(i = F, P, Fe) (eV) εi (eV)

free (F) 1.09 0.37 0.54 0

antisite - bound (P) 1.69 0.40 0.58 0.53

Fe - bound (Fe) 2.62 0.44 0.70 1.22

Table 2.1.1.: Parameters related to the peak energies, M , and the widths, W , of dif-
ferent polaron absorption bands. M and W are fitted parameters [58].
Ei are the polaron DSE and εiare the defect energy contribution derived
from M and W assuming ~ω0 = 0.1 eV.

in assuming that both normal and defective sites possess the same phonon energy. For

example it has been shown theoretically that the lattice surrounding the NbLi antisite

defect can display an anomalously large deformation upon capture of an electron [62].

This suggests that, due to the different structure of the defective site, the local lattice

is softer and therefore the energy of the local vibrational mode is somehow different

from the regular one. This point will be further addressed in Sec. 6.3. If the DSE

energy is known, εi can be calculated inverting the formula of the absorption band

peak, εi =M − 2Ei, obtaining values reported in the la column of table 2.1.1.

Hole polarons

Small hole polarons in LN consist in a hole self trapped at an oxygen ion in the vicinity

of a cation vacancy, most probably VLi (figure 2.1.1 d). As in general O− hole polarons

are most frequently produced optically by creation of an electron-hole pair from ener-

getic photons or by multiple photon absorption processes [65], it is not astonishing that

they were found in materials whose functions derived by interaction with intense light,

such as LiNbO3. Hole polarons are in this respect interesting because they can anni-

hilate with an electron polaron, most probably in a non-radiative way. They therefore

are a possible relaxation channel for a population of light-induced polarons whenever

intraband photo-excitation processes are considered [66].

Hole polarons exhibits a broad absorption band in the visible range, centred at EHP ∼
2.5 eV (corresponding on a wavelength of about 500 nm) [67]. The optical absorption of

O− is described by a photon-assisted hopping of the hole between equivalent adjacent

O ions, which are located around the Li vacancy, thus restricting the hole polaron to

one single VLi. Since the spatial relation of the Li vacancies among themselves and to

NbLi antisite defects is not well known and the structure of the defect O− − ion next to

VLi has not been clarified definitely, the contribution of hole polarons to the thermally

and optically activated charge transport in LiNbO3 is to date still unclear. Therefore

also no definite values can be given for the hole polaron binding energy and thermal

activation energy.
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Figure 2.1.5.: Position of the centre of small polaron absorption band in the lithium
niobate band gap. Value refers to the conduction band.

Bipolarons

This polaron type is constituted by two electrons self-trapped at a cation site, or at

two neighbouring cation sites, attracting each other by their joint lattice distortion. In

addition cation site can be equal or different. The ground state of this polaron type in

reduced congruent non doped LiNbO3 was found to be of the type Nb4+Li : Nb4+Nb, where

one electron is self-trapped in a antisite defect, while the other one in a regular niobium

site [68] (figure 2.1.1 c). Since one of the binding cations (NbLi) is a defect ion with a

different attracting charge, the ground state of such two-site bipolaron, populated by

two antiparallel electrons, is characterized by a molecular orbital with a preponderance

of electron probability density at the more attracting one. The electronic ground state

of Nb4+Li (4d
1), i.e. the antisite defect having trapped one electron, has axial symmetry

with respect to the trigonal axis and, since the same can be expected for Nb4+Nb, the

orientation of the ‘Nb–Nb’ molecule along the c axis will be most stable. In the presence

of bipolarons a broad absorption band emerges, which is centred at EBP = 2.5 eV

(corresponding to a wavelength of 500 nm) and covers the whole visible spectral range,

giving to the samples a greyish colour [69]. Light illumination or elevated temperatures

lead to a dissociation of bipolarons in favour of metastable Nb4+Li and Nb4+Nb polarons.

Deducing the polaron energy is not straightforward as for single polarons, because

in this case the model would have to be transformed in a two-site one, so standard

consideration of the MCM model cannot be applied.

Self-trapped excitons

The self-trapped exciton (STE) in LN is an electron-hole pair with strong coupling

to Nb5+ and O2− respectively within a single niobium-oxygen octahedron, which self

localizes using a polaron-like mechanism. The absorption properties of STEs in LN

are not known so far, but it may be speculated that they behave according to the

general characteristics for STE in oxides materials, i.e. with an absorption feature in

the blue/green spectral range [70]. Moreover, this defect is recognized as the origin

of a luminescence in the blue - green spectral range, so that generally the presence

of STEs in lithium niobate is probed by performing luminescence experiments with
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2.1. Physics of small polarons

a sufficiently intense and energetic pulsed laser, in order to promote band-to-band

excitation. However this defect is extremely sensitive to the temperature and to the

presence of defects, both aspects leading to a quenching of the photo-luminescence

signal. Concerning the second aspect, it has been postulated that STE in LN appear

in two modifications, depending whether the material is of stoichiometric composition

or if some near-neighbouring NbLi antisite defects are present [71].

STEs are generally studied at low-temperatures, using time- resolved luminescence

measurements, in which a ns- laser pulse is used to excite a photoluminescence signal

that decays with time. The luminescence decays can be described, according to Zatryb

et al. [72], by the first time derivative of a stretched-exponential function:

I(t, T ) = I0(T )t
β−1exp

[
−

(
t

τ(T )

)β(T )
]

(2.1.8)

With increasing temperature the luminescence decay time is found to decrease from

the milli- to the microsecond time range [73, 74]. A striking feature is the temperature-

dependent change of the exponent β(T ) (0 < β(T ) < 1) that decreases by increasing

the temperature, qualitatively representing the transition of a mono-exponential (at

low temperatures) to a typical stretched exponential (at higher temperature) function.

Furthermore, the decay time τPL(T ) remains nearly constant for temperatures below

100K with a value of 10−4 s whereas an Arrhenius-like behaviour is found for T > 100K

[75].

Small polaron absorption cross sections

To resume, five type of small polarons can act in lithium niobate samples considered in

this work, free, antisite-bound, Fe-bound, hole and bipolaron. In order to adequately

investigate the properties of the material a precise knowledge of the number densities of

the various polarons created in the samples is desirable. To achieve this, the information

on the polarons cross section is necessary. For what it concerns iron, its value was

already calculated by Kurtz et al. [76] combining optical absorption, Mössbauer and

EPR measurements, while for others centres this study is reported by Merschjann

et al. [77] employing pump-multiprobe experiments, such of the type described in

chapter 6. The result of these studies is reported in figure 2.1.6 where it can be seen

that all polarons are accompanied by strong, broad absorption bands. In particular

bipolarons, hole and Fe-bound in the blue–green (λ ∼ 500 nm), antisite-bound in the

red (λ ∼ 760 nm) and free in the near-infrared spectra (λ ∼ 1250 nm). In table 2.1.2,

values of the cross section at the wavelengths of interest for this work are reported.

Some values were calculated in [77, 76] while others one are extracted from the assumed

absorption band of figure 2.1.6 [58].

It is remarkable to notice that the values of σ(500 nm) at the maxima of the specific

absorption bands are apparently very similar for three types of different small po-

33



2. Polarons in Lithium Niobate

Figure 2.1.6.: Absorption cross section for small polarons of lithium niobate [77]. F
refers to free, P to ansite-bound, HP to holes and BP to bipolarons.

F P Fe2+ BP HP

10−22m2

1310 nm 6± 2 1.5 0 0 0

785 nm 3.1 7± 2 0.3 3.1 0.1

633 nm 1.8 6.1 1.2 9.6 2.2

488 nm 0.8 3.9 4.5± 0.8 14± 2 4± 1

445 nm 0.6 3.5 4 13.8 4.1

Table 2.1.2.: Cross section of polarons species. Values having the error are calculated
in [77, 76] while other are recovered from figure 2.1.6.

larons. Only bipolarons have a different behaviour because its absorption cross section

is roughly twice as large as that for single small polarons.

2.2. Photogalvanic effect in polaron model

Schirmer et al. [43] give a comprehensive study on the photogalvanic effect in Fe:LN

presented in section 1.5, but interpreting it with the polaron model. The main idea

is that when an electron, initially trapped in some donor center, is photo-excited by a

photon it experiences a transition to a de-localized state in the conduction band. In

this initial stage the lattice cannot follow the charge dynamic, which propagates for

some extent in a coherent way before losing its surplus energy and self-localizing into

a small polaron. The formation of free polarons from optically created nonthermalized

electrons has been proven experimentally by Qui et al. [78] and by Sasamoto et al. [61]

by using a pump-probe setup to occur in a time scale below 0.1 ps.

In the model it is assumed that Fe exactly replaces a Li site of the defect-free crystal

and that the structural positions of Li and Nb remain unchanged with respect to the
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Figure 2.2.1.: Arrangement of Fe2+Li and neighbouring Nb5+Nb ions in LiNbO3, assuming
atomic positions unchanged with respect to the defect-free crystal. The
lengths of the inter-ionic vectors are given in Å. (a) Cut along a yz glide
mirror plane (b) Projection on a xy plane (perpendicular to c) [43].

defect-free crystal. The initial direction along which the charge is emitted as a Bloch

wave is determined by the Fermi golden rule, the different matrix elements of the

transition being given by the geometrical arrangement of the ions surrounding the

donor center. As indicated in figure 2.2.1 on the right, there are three equivalent Nb

ions in the plane perpendicular to c [i.e., Nb(1), Nb(2), and Nb(3)], which are lying

above Fe, and three further ones [Nb(4), Nb(5), and Nb(6)] below Fe. The Fe − Nb

bonds d1, d2, and d3 all enclose an angle of 77➦ with c (figure 2.2.1 a). For the second set

of Nb ions (d4, d5, and d6), the angle is 61➦. Since these latter bonds are considerably

longer than the former ones, they contribute less to the total absorption. Among the

bonds extending along the c axis, d7 is shorter than d8 and thus leads to a stronger

absorption. Only the bonds d1 to d6 have projections perpendicular to c, and therefore

transitions along these bonds are caused by ordinarily polarized light. Instead their

projections on the c axis are rather small and, thus, the absorption by extraordinarily

polarized light is dominated by transitions along d7.

In a general, an extraordinarily polarized light produces a net current
−→
j along the c

direction according by the formula:

jz ∝
∑

i=1,2,3,7

jz,i −
∑

i=4,5,6,8

jz,i (2.2.1)

where the first and the second sums are related to the current along the positive and the
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2. Polarons in Lithium Niobate

negative directions of the c axis, respectively. Each of the ji components is proportional

to the electron displacement projected in the z direction li,z weighted by the related

transition probabilities pi. In this vision the mean transport length along the c-axis,

indicated as photogalvanic length in expression 1.5.5, is expressed by the formula:

Lpg =

∑
i=1,2,3,7 pi (~ω) lz,i −

∑
i=4,5,6,8 pi (~ω) lz,i∑

i=1,...,8 pi (~ω)
(2.2.2)

The eight lengths lz,i can be much longer than LPG (which is only the difference between

the motion distance in the positive and negative directions) and are estimated to be

in the range of few nm [43]. This indicates that the electron moves at most several

NbNb − NbNb distances coherently along the c axis before the lattice relaxes around

it to form a Nb4+Nb small polaron ground state. The indicated dependence of Lpg on

~ω expresses the fact that lz,i depends on photon energy. It is finally important to

notice that the ionic movements triggered by the light-induced transfer of the electron

adjusting to the new position represents also a current and in a complete description

this would have to be considered because it contributes to the total photovoltaic effect.

Despite of this, the removal of the electron from a Fe bound polaron shifts the ion

of about 2% of the bond length along the negative c axis, thus such photo-induced

ionic currents can be neglected in comparison with the much longer electronic transfer

lengths.

After the end of this initial stage, the electron self-localizes into a polaron and can

move only by thermally assisted hopping (see Section 2.3). The polaron has now two

possible choices to continue its life: to move away or to jump back to the same initial

site it came from, both processes being thermally activated but with a different energy

barrier (see Fig. 2.3.1). This is believed to be the microscopic interpretation of the

parameter φ introduced in Eq. (1.5.5), which denotes here the probability for the

polaron to not go back to the starting site [79]. Being a thermally activated process, φ

is expected to be temperature - dependent. Moreover it also depends on the distance

between the final site and the initial empty donor centre, i.e. on lz,i and thus on the

excitation wavelength. In addition, also the macroscopic electric field, developing across

the end faces of the crystal under the flow of the PG current, if not short circuited,

tends to drive the electron back to its home site Fe3+Li . A part of the photo-excited

electrons is therefore lost with a probability 1 − φ in short time after being excited.

It may be assumed that those polarons that are still present after a sufficiently long

time are the surviving ones that succeeding hopping away and lost any memory on

the starting position. One further aspect to consider is that the presence of a strong

illumination
(
I > 60MW/cm2

)
during the initial stage of the photo-emission process

may significantly increase the photogeneration efficiency [79]. This phenomenon is due

to the possibility that an additional photo excitation process take place before the newly

localized particle performs its first hop. In this case the electron is pushed further away,

reducing the probability to go back to initial donor site.

36



2.3. Thermally activated polaron hopping

2.3. Thermally activated polaron hopping

The standard and simplest model traditionally considered to describe the thermal ac-

tivated hopping between small polarons is the one proposed by Holstein in 1959 (MCM

model)[59]. In order to accomplish the hopping between sites, thermally induced fluc-

tuations of the surrounding lattice have to create a situation in which the electron

energies at the initial and the final sites are equal. This facilitates the tunnelling of

the electron between both sites in the related thermally excited state of the crystal

[11]. In this model the transition between sites having different energies is mediated

by phonons, which play an active-assisting role to conduction, in evident contrast with

the band models. After the transfer, the lattice around the final site relaxes in such a

way that the polaron forms again. The hopping energy barrier, activating the mobility

of small polarons, is then the minimum energy needed to establish the lattice distor-

tion leading to the coincidence of the involved electronic energies. A small-polaron

hop may therefore be regarded as a three-step process. A jump begins when, (i) amidst

atoms’ thermal vibrations, extraordinarily large atomic displacements occur near a self-

trapped carrier. (ii) Appropriate large-amplitude fluctuations enable the self-trapped

carrier to transfer between sites. (iii) Finally these transitory large-amplitude atomic

displacements relax, dissipating energy to the vibrations of surrounding atoms [12].

Exchange of vibration energy between atoms, governed by the vibrations’ dispersion,

is crucial to phonon-assisted hopping [12]. Moreover, in small polarons, electron are

strongly self-trapped at one site and it is the presence of a non-vanishing electronic

overlap term which allows electron transitions to a neighbouring site. According to

these considerations the correct formula describing the charge carrier hopping has to

introduce a strong dependence on the space separation between initial and final site.

The MCM model is a one dimension model of two vibrating molecules in the non-

adiabatic regime, that occurs when ion vibrations are sufficiently fast compared to the

electron hopping frequency. In order to present a more intuitive visualization of the

absorption and transport processes of small polarons, it is advantageous to introduce a

transformation from the site-centred coordinates Q of figure 2.1.2(a) to those emphas-

izing the equivalence of initial and final site. The more symmetrized representation is

found by the transformation q = Q1❂Q2 where Q1 is the distorted coordinate, while

Q2 the undistorted one. In this vision, depicted in figure 2.1.3(b), the total energy can

be rewritten as:

Ẽ =
1

2
Kq2➧

1

2
V q. (2.3.1)

the energy minima now occur at qmin = ∓V/2K. Equation 2.1.2 become:

Emin,q = − V 2

8K
= −Ei

2
. (2.3.2)

where Ei is the DSE of the polaron (i = F, P, Fe). In this alternative presentation

the polaron hopping can thus be viewed as a transition between two symmetrically
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2. Polarons in Lithium Niobate

arranged parabolic potential sheets. Figure 2.1.3(b) also shows that the energy barrier

for an electron to jump from one molecule to another is given by the intersection point

of the two parabolic sheets, which is equal to:

Ui =
Ei

2
(2.3.3)

This condition neglects the fact that the electron wavefunction, jumping back and forth

the initial and the final site, may alter the energy barrier to be crossed of a quantity J .

This is the electron “resonance energy” coming from the constructive interference of the

wavefunction [80, 12]. In a one-dimensional tight binding model according to the usual

polaron notation, this corresponds to one half of the bandwidth 2J of the rigid lattice,

i.e. the energy barrier that one electron would need to cross to jump from a site to the

other if the ions remained fixed and periodically placed. According to the above model,

equation 2.3.3 is fulfilled when the electronic bandwidth 2J is small compared to the

deformation - stabilization energy (DSE) of the small polaron involved in the hopping

defined in section 2.1. This situation, indicated as “non adiabatic hopping” correspond

to the case in which the lattice is able to re-adapt quickly to the electron motion.

Although the motion of the polaron in its well is adiabatic, the chance of electron

tunnelling from one molecule to the other during an excited state (corresponding to a

point on the parabola branches of Fig. (2.1.3)) is low, so that the electron wavefunction

loses its coherence and EP − J ≈ EP .

The non-adiabatic hopping requires that the lattice possesses sufficient thermal en-

ergy to move quickly, so that the non-adiabatic approximation is considered valid only

for temperatures above ΘD/2 where ΘD ≈ 503K is the Debye temperature for lithium

niobate [81]. However this estimate is quite rough. Experimental results obtained by

Faust [60] show that the the Arrhenius behaviour of the conductivity in compensated

LN is preserved till 150K, indicating that the non-adiabatic approximation in LN is

valid at least down to this temperature.

In the conditions detailed above, Holstein obtained an explicit expression for the

polaron hopping frequency:

νii =
J2
ii

2~

√
π

kTEi
exp

(
−Ei/2

kT

)
(2.3.4)

where J is the resonance energy and E the DSE energy. From the Einstein’s diffusion

equation, the mobility of a system of polarons is readily obtained [80]:

µi =
ed2

kT
νii (2.3.5)

where d is the hop distance. However the above expressions are applicable only if

the initial and the final site are of the same type, and if the sites are located on

a regular lattice. In this work we need to consider also the possibility of hopping
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2.3. Thermally activated polaron hopping

between non-equivalent sites (such as between a bound hopping to a free polaron, for

example), placed on arbitrary distances (see 2.1). A proper generalization is provided

by the semi-classical Marcus theory developed in 1956 [82], originally applied in biology

and biochemistry to describe the rates of the electron transfer in reactions – the rate

at which an electron can jump from one chemical species (called the electron donor)

to another one (called the electron acceptor). The hopping rate generalized to two

arbitrary polaron sites is therefore:

νij =
J2
ij

2~

√
π

kTΩ
exp

(
−Uij

kT

)
(2.3.6)

where the subscript i and j indicate the type of the initial and the final site respectively

(i, j = F, P, Fe), k is the Boltzmann constant, T is the absolute temperature, Ω the

reorganization energy of Marcus theory, corresponding to the energy paid to rearrange

the lattice and here equal to (Ei +Ej) sum of the elastic energies of the two polarons,

Uij is the energy barrier and Jij is the transfer integral.

The latter is defined as the half of the electronic bandwidth, i.e. the difference

between the maximum and minimum energy allowed for the electron during the hop,

and describes the dependence of the hopping frequency on the distance between sites.

It is modelled with an exponential function type [80]:

Jij = J0
ijexp

(
− rij

2aij

)
(2.3.7)

where J0
ij is in the order of the ionization energy of the atom, rij is the distance

separation between sites and aij is an orbital parameter describing the localization

radius of the electronic wave-function with respect to the cation site. Equation 2.3.7

states that the closer the sites, the higher the hopping frequency. As we are dealing

with small polarons (localized essentially at one lattice site), the orbital parameter

should not exceed the cation-oxygen length, which is about 2 Å. For the case of the

free polaron hopping, encountered in stoichiometric or compensated LN, the conduction

at high temperature is ensured only by free small polaron hopping on NbNb sites. An

estimation for J in this case has been provided in ref. [83, 84] giving JFF = 35meV.

The energy barrier of the formula 2.3.6 depends again on the type of sites involved

(through the indexes i and j). An explicit expression can be derived in the non-adiabatic

approximation by finding the intersection between the two parabolic energy surfaces

similar to those shown in Figure 2.1.3. In a similar way the effect of an external applied

field can be modelled. The hopping energy barrier assumes the form [85]:

Uij =

(
Ei − εi−εj−e−→rij ·

−→
E

2

)

Ei + Ej
(2.3.8)

where
−→
E is the applied electric field, −→rij the distance between two sites, εi(j) is the
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P-F

UF-F

UF-Fe

UFe-P

U
Fe-F

final site

energy in eV Free (F) antisite (P) Fe

initial site

Free (F) 0.273 0.069 0.003

antisite (P) 0.634 0.290 0.043

Fe 1.378 0.853 0.350

Figure 2.3.1.: Hopping energy barrier (equation 2.3.8) calculated for no applied electric
field and using the values for the different polaron energies detailed in
ref. [58] .

extra energy due to the defect attraction (see equation 2.1.6), and Ei(j) is the DSE of

the polaron, equal in modulus to the polaron elastic energy. In Fig. 2.3.1 are sketched

all the possible hopping processes of small electron polarons in Fe-doped LN. From the

values reported in Table 2.1.1, the relative thermal energy barriers are calculated with

equation 2.3.8 in absence of electric field. Note that for i = j and no applied field,

equation 2.3.8 gives back the Holstein result, Uii = Ei/2.

Equation 2.3.6 shows that when several parallel hopping processes are allowed, it is

not straightforward to assess which one is going to dominate. At a certain temperatures,

some processes may be very frequent for example because the centres involved are close

to each other due to a high concentration. However, by rising the temperature, the

frequency of other hopping processes may become more important depending on the

respective activation energy. In particular, it may happen that at sufficiently high

temperatures, the “thermal” term 2.3.8 compensates for a small “spatial” term 2.3.7,

enabling a frequent hopping between distant sites.

2.4. Excitation and relaxation of polaron populations

The type of polarons contributing to the transport as well as their dynamic depends on

the combination of various factor, as external light wavelength and intensity or sample’s

characteristics (i.e. presence of deep or shallow centre) and the temperature. Carrier

formation and recombination is described by microscopic models based on pump and

probe experiments, and here we discuss two of them in which the pulse pump laser
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Figure 2.4.1.: Schematic description of the different excitation and decay paths of po-
larons in LN : Fe according to the Herth’s model [66].

is centred at λ = 532 nm, and the pulse duration in the ns regime: this is the same

situation later used in the experimental part (see section 5.1).

The first complete study of the interplay between different polaron species at room

temperature in Fe:LN sample ([Fe ] = 0.1mol%, cFe = (5.5±0.2)·1023m3) can be found

in the article of Herth et al. [66]. The pump peak light intensity was I = 410MW/cm2

and probes were λ = 785, 458, 488, 514 nm. With such illumination conditions, it was

shown that one and two photon absorption compete during the excitation. The one

photon absorption involves iron centre, as previously described in section 2.2, while

the two photon absorption, from valence to conduction band generate an hole in the

valence band and an electron in the conduction band. The hole is subsequently trapped

by a O2− near a lithium vacancy, forming an O− hole polaron, while the electron is

quickly trapped in a Nb4+Li . In this condition the three polaronic centres involved in the

transport are Fe, P , H, as sketched on figure 2.4.1.

The two-photon absorption is, in this way, a second independent generation path

of P polarons, besides the common Fe2+ excitation. After the pulse has finished, the

Nb4+Li polarons decay by hopping towards empty Fe3+ centres, which is observed in a

given time τ1. Hole polaron in this model are supposed to be less mobile than electron

polarons. After a longer time, the Fe2+ can release their electron to holes, till the

original situation is restored. This process is characterized by a lifetime τ2 > τ1 .

Another interesting case, in which the polaron interplay is studied, is the one outlined

by Merschjann et al. [86] in an undoped LN sample with different reduction degrees,

at room temperature. Two extreme situations are considered here: the first one of a

highly oxidized sample, the second one of an highly reduced one, both studied with a

pump intensity of Ip = 670GW/m2. The resulting model is sketched in figure 2.4.2.

In the case of the oxidized sample, a study in function of the intensity evidences that

the one and two photon absorption compete during the excitation, as in the case studied

by Herth et al. Electrons are excited from the valence band to the conduction band via

a two-photon process, leaving a hole in the valence band. The carriers form F and P
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2. Polarons in Lithium Niobate

Figure 2.4.2.: Schematic description for the different mechanisms of excitation and re-
combination of small polarons in unreduced (left) and (right) reduced
LiNbO3 [86].

polarons, as well as bound hole polarons at oxygen ions adjacent to a lithium vacancy.

When the excitation is finished the relaxation occurs mainly via recombination among

Nb4+Li and O−. In this case to explain completely the results an additional centre was

postulated, which was identified with residual extrinsic Fe2+/3+ impurity, naturally

present also in undoped materials, which contribute to the dynamic in the same way

as already mention by Herth et al [66].

In the case of a highly reduced undoped sample no evidence for the two-photon

absorption is found. These samples are characterized by a large concentration of bi-

polarons in the ground state. The results evidence that the external light pump can

dissociate them, exciting one of the electrons to an adjacent Nb site, resulting in the

formation of a free polaron, while the second electron remains as a bound polaron.

Due to its absorption band (EBP = 2.5 eV), the optical dissociation of bipolarons is a

one photon process. The subsequent polaronic recombination proceeds via the direct

recombination of Nb4+Nb and Nb4+Li polarons.

The case of this study showed that not only the light intensity, but also the reduction

degree of the sample plays a key role in the balance between one and two photon

absorption and consequently in the creation of hole polarons. In particular for the

wavelength of λ = 532 nm, if a deep donor centre, is present in sufficient amount, the

two-photon absorption process can be disregarded.
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3. Monte Carlo algorithm

General analytical solutions to the hopping transport problem discussed in the preced-

ent chapter are difficult to obtain in the situation we are dealing with, on the contrary,

the problem is well suited for numerical solutions. There are two principals numerical

methods that can be used. The first one consists in performing Monte Carlo simulations

of the hopping process. The second one consists in solving the balance equation relating

the occupation probabilities of sites and the flow of charge carriers between them. In

this work the first one is used to implement the small polaron theory based on Marcus-

Holstein’s model (section 2.3). The Monte Carlo method is the most direct numerical

approach to simulate the hopping transport model and it is the best choice when it

is necessary to simulate large systems, because it can be implemented with the least

amount of computer memory per site. The simplest approach consists in simulating

one single electron at a time. This situation corresponds to low electron density system

where interaction between electrons can be ignored. The electron, randomly placed at

an initial site, performs a random walk in a randomly generated structure. Furthermore

for each hop the final position is randomly reached, but weighted by hopping frequency

to each possible destination sites. The main idea is to consider that a polaron has been

somehow generated in a random position of a Fe:LN lattice characterized by a given

concentration of shallow defects (NbLi antisites) and deep traps (Fe3+Li ). We then study

its random motion by performing a set of randomly decided hops among the different

sites, as shown in figure 3.1.1. The code computes the rest time on each visited site

and the next destination site by taking into account the Marcus-Holstein hopping fre-

quency. It counts also the time, the number and the type of sites visited before polaron

is captured by a perfect trap (Fe3+ trap), as well as the final position reached. All the

procedure is repeated with a sufficiently high number of polarons, until a satisfactory

statistics is reached. The output of this code will be used to interpret the experimental

results detailed in the next chapters.

3.1. System Model

This simulation program mimic the experimental conditions detailed in chapter 5. In

the case of transient measures (Section 5.1) we consider that a light pulse with a dur-

ation of few ns is able to excite, from deep donor states, a certain number of polarons,

which decay back to the deep traps levels with a certain dynamics. The main goal in

this case is to simulate the relaxation of the polaron population. Since our experimental
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Figure 3.1.1.: Example of polaron path, calculated at T = 300K for a congruent com-

position, [Fe3+] = 0.52 · 1025m−3, a = 1.6 Å, c = 1.5 Å, EP = 0.75 eV,
EF = 0.54 eV, EFe = 0.70 eV, J = 0.1eV, SPT = 1.

data considers only a time range starting several hundreds of ns after the pulse, we can

assume that all the Site Correlation Effects (see Section 2.2) have finished and that the

polaron at the beginning of our time window occupy a position completely uncorrel-

ated with respect to the original donor site. Moreover, in agreement with Sasamoto

et al.[61] we assume that in presence of antisite defects, which is the case for all the

samples studied in this work, any free polaron is rapidly captured by an antisite. The

initial position of the polaron is therefore randomly chosen in a NbLi site. For the con-

ditions used, we may consider that free polarons (F ), antisite - bound polarons (P ) and

iron traps (Fe) are the only polaronic centres to deal with, so that the thermokinetic

interplay between NbLi or FeLi with NbNb along the hopping transport is considered.

Since the thermal hopping frequency from Fe towards any other site, calculated using

Eq. 2.3.6 with a reasonable choice parameters, is very small, the simulation is stopped

each time a Fe trap is reached. To be as close as possible to real situation in simulat-

ing measurements at high light intensities (transient measurements discussed in chapter

5.1) it must be considered that the initial pulse is probably sufficiently intense to empty

a large part of Fe2+ donors. Since our samples are characterized by a non-negligible

ratio
[
Fe2+

]
/
[
Fe3+

]
ratio in the dark, this means that the polarons produced with our

experimental conditions are enough to increase considerably the traps initially present

in the material just after the pulse. We modelled this effect in our simulation by de-

creasing in an appropriate way the trap concentration each time a polaron is launched.

All those procedures are repeated until a sufficient statistics has been reached.

The program can be used also to simulate the transport measurements described in

Section 7. In this case the illumination is continuous and produces bound polarons by

releasing only electrons trapped on deep trap centres. Since here illumination is much

less intense, we can suppose that the number of photo-excited polarons is small and

we can well approximate concentration of the Fe traps with their value in the dark. In
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this case what is simulated is the average distance covered by the polaron before being

trapped by a Fe ion.

In principle it is possible to simulate the behaviour of the material in any temperature

range. In practice we are limited to the validity conditions of the non adiabatic hopping

approximation (see sec. 2.3), which for lithium niobate means T > 250K. We expect

that below this temperature the results may be inaccurate.

To resume the MC simulations can mimic the relaxation after pulse excitation in

Fe:LN materials of various Fe and NbLi concentrations provided that: (i) Fe3+ is the

only deep trap for photo-excited polarons (hole presence disregarded), (ii) the site

correlation effect (SCE) is excluded and (iii) The non-adiabatic approximation holds.

The structure of the material generated in the algorithm is the one described in

chapter 1 and in particular the unit cell described in the hexagonal base, having six

lithium and niobium sites (Fig. 1.1.2) is employed. A supercell is built by replicating a

given number of unit cells in order to create a lattice sufficiently wide to avoid systematic

errors due to the repetition of given diffusion paths that would occur in a too small

structure. Periodic boundary conditions are implemented to avoid surface effects. Point

defects, i.e. niobium antisites and Fe ions corresponding to shallow and deep traps,

substitute randomly a lithium site, with a probability depending on the respective

concentration CP and CFe. In more detail the probability for a lithium site to be

occupied by a shallow trap is pP = CP

CLi
and similar for deep traps. While the niobium

sub-lattice is fixed, the lithium sub lattice containing the random defect configuration

can be kept equal or refreshed for each new polaron to evaluate the presence of possible

memory effects or average over different defective configurations respectively.

3.2. Hop procedure

The electron performs a random walk in the system of sites described in the previous

section. When the electron is located at site i, the probability that the next jump takes

place toward a site j is given by:

pij =
νij
Γi

(3.2.1)

where νij is the hopping frequency from site i to j, (formula 2.3.6), Γi =
∑

j νij is the

total rate of hopping away from site i . The selection of the final site j is established

through the Gillespie algorithm: a method well established for simulating chemical

reactions but which can be applied also in this context [87]. The jump to be performed is

decided by a random number x, generated in the range [0, 1] from a uniform distribution

and finding the j such that:
j−1∑

k=1

pik ≤ x <

j∑

k=1

pik (3.2.2)

It ensures that when the electron jumps from site i each site j is selected with the

probability pij , as shown in figure 3.2.1. In practice only the right-hand inequality
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Figure 3.2.1.: A destination site is selected by picking a random number x, and finding
the interval in which it falls. The destination site corresponding to that
interval is selected, in this case site 5 [87].

needs to be tested. One starts from k = 1 and adds one term at time to the sum,

stopping as soon as the sum exceeds x. The time that the electron spends on the site i

before hopping is calculated as

τ =
T

Γi
(3.2.3)

where T for each hop is randomly generated according to an exponential distribution

with unit expectation value and unit variance.

A technical difficulty that can arise in Monte Carlo simulation is the problem of so-

called soft-pairs, sketched in figure 3.2.2. If two equal sites are spatially close and their

hopping energy barrier is small compared to kT , the jump frequency between these

two sites will be high in both directions. The electron that arrives at one of these sites

may jump backwards and forwards a large number of times before escaping from this

pair of sites. Normally this type of hops are very fast, therefore for each step the total

time of the simulation advances only by a small amount. It is possible that the electron

escape from this pair of sites but it will be necessary to follow it for a large number

of hops, making the simulation inefficient. Moreover the problem is most severe when

sites are randomly placed and the localization length is small, as in the case studied

in this thesis. The electron in principle can even remain trapped in this condition for

an infinite time, stopping the simulation. This particular situation is not an artefact

of the simulation but it is a real physical effect occurring during the hopping. For this

reason these cases are not eliminated, but handled following the procedure described

in [87]. The surrounding idea is to consider the soft pair formed by the two sites a

and b as a new unique centre and to modify the hopping rates in the vicinity of the

soft-pair eliminating the transition from a to b, but preserving the rate of escaping

from the pair. In doing this the local properties of the system are changed to make the

simulation more efficient, but the global transport properties are preserved. If x is a

possible destination site for a or b the hopping frequencies νax and νbx are replaced by

the hopping frequency out of the soft pair:

νsf−x =
Γbνax + νbxνab

Γb + νab
(3.2.4)

A way to verify if the soft-pair algorithm works properly is comparing results obtained

without this approximations. Globally the results must be the same but with the

advantage of a smaller execution time. When the final destination is decided several
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Figure 3.2.2.: The sites a and b form a soft pair. The transition from a to b is removed,
and the other rates from this new site are modified preserving global
transport properties.

scenario can occur, according to the choice of the initial parameters described in the

next section:

❼ if the final site is a Fe3+ and a Light-Induced Absorption simulation is in progress,

this site disappear from the counting of possible final sites and the simulation

restarts with a new polaron without refreshing the defect configuration (trap-

refilling effect). In this way we model the fact that, due to the random nature of

the defective lattice, not all traps are equivalent and those with higher probability

to be visited are the first to disappear;

❼ in all other cases (transport measurements) the hop procedure restarts till when

either a fixed number of hops is reached (to prevent soft pair loop) or when a

time decided by the user is reached;

When the simulation ends, for every polaron, several informations necessaries for the

sequent analysis are stored: the final (x, y, z) electron position in the lattice calculated

with respect to the initial generation site, the time spent to arrive in this position and

the number and type of hops performed during its path. With all this information it is

possible to construct also the population variation of free, Nb4+Li and Fe polarons separ-

ately in a simple way. Every time that, during the hopping, the polaron A transforms

into a B , the total concentration of A decreases and at he same time the one of polaron

B increases. Those transformation events are plotted as a function of the time like in

Fig. 3.4.1. These normalized graphs can be interpreted as the survival probability of

each single polaron species.

3.3. Simulation parameters

The simulation accepts from the user different kind of parameters, concerning every

aspect of the experiment.
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sample parameters

❼ shallow traps concentration: it corresponds to the antisite concentration, therefore

it allows to mimic the sample compositions, from congruent to stoichiometric one;

❼ deep traps concentration: this is the initial Fe3+ concentration at the beginning

of the experiment.

❼ photo-excited carriers concentration: this parameter is used to describe trap re-

filling effect. According to the photo-excitation model assumed here (see chapter

6), almost all the Fe2+ present in the dark are emptied by the pump pulse laser,

so that the concentration of Fe3+ traps present in the sample subsequent to the

pulse can be taken to be equal to the total Fe concentration
[
Fe3+

]
≃ [Fe].

Likewise, this number gradually decreases to the dark concentration value dur-

ing the recombination process between photo-excited carriers and Fe3+. The

photo-excited carriers concentration assumes the meaning of the initial number

of polarons created by the pump which will refill a part of the Fe3+ traps. Setting

this parameter to zero corresponds to neglect this effect and it is therefore used

to simulate continuous-wave experiments and/or an the behaviour of an oxide

sample, for which only a negligible amount of Fe2+ are excited by the laser with

compared to the amount of trap.

These parameters are experimentally known from sample characterization discussed in

chapter 4, and reported in table 4.3.1, 4.3.2, 4.3.3.

hopping frequency parameters

❼ DSE and defect energies of free, bound and iron polarons (see Section 2.1)

❼ orbital characteristic lengths: they correspond to the orbital parameters of for-

mula 2.3.7. As here we consider three centres (F, P, Fe) there are in principle

3× 3 = 9 possible hop combinations corresponding to 9 different possible values

of aij . However, we can reduce the number of unknown parameters based on

the following considerations: (i) the distance - dependent part of the hopping

frequency must be symmetric, so that aij = aji. (ii) Since the Nb-O octahedra

structure is very similar between NbLi antisite defect and the NbNb regular site,

we consider that the transfer integrals between those sites should not be very dif-

ferent. For the same reason, we can assume that all the transition to and from Fe

site are described by the same transfer integral. (iii) Additionally we can neglect

the hopping process from Fe towards other polarons because Fe is considered a

“perfect” trap. Therefore the parameters aFe,F or aFe,P play no role. This leads

to the following simplifications:

aFF = aFP = aPF = aPP = a
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3.3. Simulation parameters

aFFe = aPFe = c

❼ transfer integral pre-factor : it corresponds to the pre-factor J0
ij of formula 2.3.7.

As for the orbital parameter, in principle 9 different values are possible, however

it is possible to reduce the number of unknown parameters using the same consid-

erations adopted for the orbital length: (i) due to the symmetry of the hopping

process, the pre-factor must be symmetric, so that J0
ij = J0

ji. (ii) Since the Nb-O

octahedra structure is very similar between NbLi antisite defect and the NbNb

regular site, we consider that the transfer integrals between those sites should not

be very different. For the same reason, we can assume that all the transition to

and from Fe site are described by the same transfer integral. (iii) Additionally

we can neglect the hopping process from Fe towards other polarons because Fe is

considered a “perfect” trap, therefore the parameters JFe,F or JFe,P play no role.

This leads to the following simplifications:

JFF = JFP = JPF = JPP = J1

JFFe = JPFe = J2

Finally, as the simulation results are weakly dependent on the pre-factor Ji, for

sake of simplicity we can set J1 ≈ J2 = J ∼ 0.1eV. This value is estimated from

Ref. [83] which measured the transfer integral at high temperature in Fe:LN,

where the conduction is due essentially to free polarons. The data are probably

not very accurate, yet, as stressed before, this parameter is not strongly affecting

our results.

experiment parameters

❼ temperature: setted equal to the experimental value.

❼ electric field : it corresponds to the saturation value of internal space charge field

and for this reason it is applied only along the ĉ axis of the crystal.

❼ experimental time: stops the simulation if the polaron has not encountered a

deep trap before this time limit. It is used to simulate transport properties as a

function of time in trap-free samples. In all the other cases, this time must be

chosen to be larger than the duration of the experiment.

simulation parameters

❼ polaron creation site: in this work the creation of the polaron is randomly chosen

in a antisite defect but the possibility to create it in a regular Nb site is allowed,

for example to study the dynamic in a stoichiometric composition.

❼ polaron numbers: The number of iterations for the code, corresponding to the

total simulated paths. This value has to be chosen depending on the quality of

the statistics needed to describe a particular experiment.
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3. Monte Carlo algorithm

❼ max hop per polaron numbers: this the maximum number of hops that each

electron can perform. To simulate completely the transport this condition has

not to be fulfilled before the condition on the experimental time is satisfied. It

has an active role in the case in which the user disable the soft-pair mechanism,

in fact if a soft-pair occurs it is nearly impossible to fulfilled the condition on the

experimental time in a reasonable computing time and it is necessary to impose

another way to stop the electron hopping. After some tests a compromise value

was fixed at 10000 hops.

❼ soft-pair pair threshold (SPT): this parameter comprised between 0 and 1 allows

the user to set the tolerance for the soft-pair algorithm. The condition to start

the soft-pair routine when a hop between two sites a and b is computed is given by

pab > SPT AND pba > SPT , where pab(ba) is the probability that, among all the

possibilities, the destination site for a hop starting from a (b) will be b (a). For

SPT = 1 no soft pair will be considered and the simulation is “exact” but very

slow; for SPT = 0, all the possible hops are treated as soft pair. A compromise

must be reached to describe accurately the system in the shortest possible time.

❼ lattice dimension: typical lattice dimensions are are (na, nb, nc) = (80, 80, 80)

unit cells, corresponding to (La, Lb, Lc) = (412, 412, 1108.8) Å.

3.4. Soft-pair approximation and trap refilling effect

The typical simulation output for the polaron population decay is presented in fig-

ure 3.4.1(left), where in addition the results including the soft pair approximation is

discussed. Three curves represent the population variation of three considered po-

larons, free (F ), antisite-bound (P ) and Fe-bound (Fe) in a congruent sample having

[Fe3+] = 0.52 · 1025m−3 at room temperature. All polarons are created initially on

a NbLi site and this result evidences that during the time their number decrease till

the relaxed situation, because electron are trapped by Fe3+, increasing the amount of

Fe2+. Bound polarons can also convert in free ones and vice versa: the efficiency of

those processes determines the overall concentration of the different polaron species at

a given time. For the choice of input parameters shown in figure 3.4.1(left), practic-

ally no free polarons are present. The same simulation was repeated with a soft-pair

threshold of 0.8. The approximation is very good, and in this case the computation

time on a standard laptop decreased from 122 to 100 minutes. This time benefit can

be much larger in case that the sample characteristics allow for the presence of a larger

concentration of soft pairs and can play a crucial role when, to reduce the statistical

noise, is necessary to simulate a large number of polarons.

In figure 3.4.1(right) the influence of the trap-refilling effect is demonstrated. Here

only the normalized population decay of shallow-bound polarons is presented for sim-

plicity. The situation chosen for this test is the one of an highly reduced sample
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Figure 3.4.1.: (left) Typical output of polarons population variation with addition soft-
pair effect influence (soft-pair threshold of 0.8, no trap-refilling). (right)
Influence of trap-refilling effect considering SPT = 1. Both effects are
simulated at room temperature and using a = 1.6 Å, c = 1.5 Å, EP =
0.75 eV, EF = 0.54 eV, EFe = 0.70 eV, J = 0.1eV.

([Fe2+]/[Fe3+] = 260%) doped with 0.1mol%, for which
[
Fe2+

]
= 1.37 · 1025m−3 and

[Fe3+] = 0.52 · 1025m−3. In the case “with trap-refilling” we consider that the pump

pulse is sufficiently intense to empty all the available donor centres Fe2+ present in the

sample so that the concentration of deep traps just after the pulse is equal to the total

amount of iron present in the sample. In the particular case simulated here, just after

the pulse, [Fe3+] = [Fetot] = 1.89 · 1025m−3 with an initial total light induced polaron

concentration of 1.37 · 1025m−3. Every time that an electron recombines with a Fe3+,

this deep trap disappears (trap refilling effect) so that the trap concentration gradu-

ally reduces from the initial concentration to the dark value [Fe3+] = 0.52 · 1025m−3.

This situation is compared to the simulation in which this effect is neglected and the

initial deep trap concentration remains unchanged and equal to the dark value of

[Fe3+] = 0.52 · 1025m−3. In the first case the system at the beginning has a larger

trap concentration compared to the second one and for this reason the decay is faster.

Clearly this effect can be neglected in case that the concentration of photo-excited car-

riers is small compared to the trap concentration, i.e. when the sample is very oxidized

and/or when the light intensity is small.

3.5. Influence of the electric field

The other informations stored during the simulation, i.e. the final (x, y, z) electron

position in the lattice calculated with respect to the initial generation site and the

number and type of hops performed during its path, serves to study the diffusion and

to simulate experimental photoconductivity data. An example is shown in figure 3.5.1

(left) in which the distribution of the final positions projected on the z axis is shown for

two different diffusion times. In this example a system containing only antisite-bound

polaron with congruent stoichiometry is considered at room temperature. The distri-
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Figure 3.5.1.: (left) Distribution of final bound polarons after a fixed time without ap-
plied electric field. (right) Effect of the saturation value of internal space
charge field along ĉ direction. Other parameters used in these simulations
are a = 1.6 Å, c = 1.5 Å, EP = 0.75 eV, EF = 0.54 eV, EFe = 0.70 eV,
J = 0.1eV, SPT = 1.

bution is symmetric, as it can be expected, and its mean value is zero. In addition the

distribution broadens with the time due to polaron diffusion. An analysis of simulation

results shows that the pronounced central peak arises from three contributions: (i) a

certain amount of polaron do not perform any hop in the selected time window, (ii)

another part is stopped from the birth in a soft pair situation (the final position can be

either the initial position either the first neighbour), (iii) the rest performs closed-loop

paths coming back to the initial position. We will return to a more detailed treatment

of those aspects in Chap. 8.

The right side of the figure shows what happens when the internal space charge elec-

tric field reaches the saturation value. In addition to the distribution broadening, the

mean value of the distribution is no longer zero, but assumes a value which depends

on the intensity of the electric field. Having a look in the jump frequency rate formula,

Eq. 2.3.3, an electric field of magnitude
∣∣∣−→E

∣∣∣ adds a contribution to the hopping activa-

tion energy which lowers the activation energy for jumps concordant with it and raises

the hopping activation energy for jumps in the opposite direction. In this situation,

longer-range hops whose rates are suppressed by their relatively large field-free activa-

tion energies are enabled by the application of a sufficiently strong electric field, giving

rise to an asymmetry in the distribution.

To remain in the validity of the model, it is necessary to remain in the hopping regime.

This is possible only if the electric field is not strong enough, so that the stochastic

behaviour dominates on the electric field-forced one. This condition is satisfied if the

energy added by the electric field is small compared to the thermic one, i.e. ed
∣∣∣−→E

∣∣∣ ≪
kBT , where e is the elementary charge, and d is the mean distance between hopping

sites. This condition evidences that the limit value of the field depends on the type

of hop and temperature. In the case of hops between free polarons d = 3.765 Å,
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3.6. Influence of orbital lengths and polaron energies

so that at room temperature Emax ∼ 7 · 107 V/m. For bound polarons it is possible

to calculate roughly the mean distance as d = (2πNB)
−1/3, where NB is the bound

polarons concentration. In the case of a congruent sample NB = 1.89 · 1026m−3so that

the mean distance results equal to d ∼ 9 Å. In this condition, at room temperature,

Emax ∼ 2 · 107V/m.

3.6. Influence of orbital lengths and polaron energies

In the following we give some qualitative examples on the effect of the different sim-

ulation parameters on the output of our code. We focus here on the analysis of the

decay curves and, for sake of simplicity, we concentrate here on the role of three para-

meters, which are the ones forming the object of section 6.3, namely a, c, and EP .

According to the hypothesis on the characteristic orbital length parameter (Sec. 3.3),

a governs electron hops among NbNb sites, among NbLi sites and mixed NbNb −NbLi

hops. Changing this parameter physically means changing the overlap between the

electron wave functions centred on these sites. The impact of this parameter on the

results of the simulation is demonstrated in the first row of figure 3.6.1 where the sur-

vival probability of the Nb4+Li polaron population is shown, only at low (T = 200K)

and high temperature (T = 400K) for simplicity. Graphs show simulation data only

from 10−7 s because these parameters affect only the long tail of bound polaron decay.

At 200K the influence of a is limited, all the curves decaying within a similar time

range. However, increasing the temperature the effect of a becomes more marked. The

graph shows that increasing this orbital length the bound polaron mean life time de-

creases but the global shape of the decay curve remains unchanged. This can be easily

understood having a look on the hopping frequency formula 2.3.6 and considering that

the population lifetime must be proportional to the inverse of the hopping frequency:

τ ∼ ν−1. The larger the hopping frequency, (and this is the case increasing a), the

faster the electron moves along its path to be finally captured by an iron.

The orbital length parameter c governs electron hopping between NbNb or NbLi po-

larons toward Fe3+. Increasing this parameter affects the efficiency of the trapping

events. Also in this case, an increase of c produces a shortening of the polaron life-

time, as expected. However, here the influence appears to be more evident at low

temperature. An inspection of the different hop types performed by the polarons in the

two temperature regimes, explains the reason for the observed dependencies. For the

particular choice of parameters used for these simulations, it appears that at low tem-

perature, almost all the polarons starting on a NbLi antisite are captured by a Fe trap

in one single hop (Fig. 3.6.2, left). Very rare conversion to free polarons is allowed, and

practically no F → F hops are observed as it is demonstrated by the average numbers

displayed in Table 3.6.1. In this situation the decay curve represents essentially the

distribution of the hopping times necessary to perform the single trapping event. The

paths that are performed in a larger number of hops correspond practically always to
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Figure 3.6.1.: (first row) Influence of a orbital length at T = 200K and T = 400K . The
simulated system is a congruent one, having

[
Fe3+

]
= 0.38 · 1025m−3 and

considering trap-refilling (initial total light induced polaron concentration
of 0.01 · 1025m−3). Other parameters are c = 1.5 Å, EP = 0.75 eV, EF =
0.54 eV, EFe = 0.70 eV, J = 0.1eV, SPT = 1. (second row) Influence of
c orbital length in the same temperature ranges for a congruent sample
having

[
Fe3+

]
= 1.89 ·1025m−3 and considering trap-refilling (initial total

light induced polaron concentration of 1.37 · 1025m−3). Other simulation
parameters are a = 1.6 Å, EP = 0.75 eV, EF = 0.54 eV, EFe = 0.70 eV,
J = 0.1eV, SPT = 1. [Note: we chose two different samples for these
studies because a great amount of Fe3+masks the effect of a, and vice
versa a less amount of traps do not permit to appreciate the influence of
c ].
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Figure 3.6.2.: Distributions of the number of hops to trapping for the simulations shown
in Figure 3.6.1 for the congruent sample having

[
Fe3+

]
= 1.89·1025m−3at

T = 198K and T = 398K, initial total light induced polaron concentra-
tion of 1.37 · 1025m−3, a = 1.6 Å, c = 1.5Å ,EP = 0.75 eV, EF = 0.54 eV,
EFe = 0.70 eV, J = 0.1eV, SPT = 1.

〈
nPP

Ntot

〉 〈
nPF

Ntot

〉 〈
nFP

Ntot

〉 〈
nFF

Ntot

〉 〈
nPFe

Ntot

〉 〈
nFFe

Ntot

〉
〈Ntot〉

T = 198K 0.12 2.6 · 10−4 2.6 · 10−4 2.5 · 10−4 0.87 0 27

T = 398K 0.13 0.11 0.10 0.25 0.40 5.8 · 10−3 57

Table 3.6.1.: Average hop types normalized over the total for the simulation shown in
Figure 3.6.1 for the congruent sample having

[
Fe3+

]
= 1.89 · 1025m−3,

initial total light induced polaron concentration of 1.37 · 1025m−3, a =
1.6 Å, c = 1.5 Å, EP = 0.75 eV, EF = 0.54 eV, EFe = 0.70 eV, J = 0.1eV,
SPT = 1.

soft-pair situations composed by two antisites NbLi ↔ NbLi sufficiently close to each

other. By increasing the temperature, the situation gradually changes (3.6.2, right):

the polaron is able to perform a larger number of hops before being captured by a Fe

trap and it can even perform some hops as a free polaron (See Table 3.6.1). It should be

noted here that the average number 〈nPF 〉 of “conversion” hops (NbLi → NbNb) is very

close to the one of the reciprocal process 〈nFP 〉 (NbNb → NbLi) indicating that often

the polaron jumps back and forth between an antisite and a regular Nb site without a

real transport. The influence of a is therefore weak at low temperatures and stronger at

high ones because this parameter is effective only if several hops are performed. In other

words, a rules the “transport” regime. Conversely, the influence of c is more evident at

low T because in this temperature range all the processes amount to trapping ones. Of

course, these observation strongly depend on the particular choice of the sample para-

meters: in a material with very low trap concentration, the transport regime continues

also at low T . Those points will be addressed in greater detail in section 6.4.1.

The third dependence here studied is the effect of the Nb4+Li deformation stabilization

energy (DSE) , EP , the energy gained only from the deformation of the lattice (without
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Figure 3.6.3.: Influence of polaron binding energy EP at low and high temperature. In
this test the composition is congruent,

[
Fe3+

]
= 1.89 ·1025m−3, the trap-

refilling is considered (initial total light induced polaron concentration of
1.37 · 1025m−3), a = 1.6 Å, c = 1.5 Å, EF = 0.54 eV, EFe = 0.70 eV,
J = 0.1eV, SPT = 1.

the defect attraction contribution) which is equal and opposed to the energy required

to deform the lattice to its new equilibrium position upon capture of an electron on the

NbLi site. According to the Marcus - Holstein polaron hopping model, the elastic energy

of the polaronic sites affects the temperature dependence of the hopping frequency

through the information on energy barrier of the process (Eqs. (2.3.6, 2.3.8)). The

value for EP = 0.58 eV, already discussed in Sec. 2.1 will be studied and tested in this

work, so we show here qualitatively the impact of this parameter on the output of our

simulations. The maximum value compatible with the observed optical resonance at

M = 1.69 eV allowed from theory (see equation 2.1.7) is EP = 0.845 eV, corresponding

to a extra defect attraction εP = 0.

In figure 3.6.3 the result of the influence of this parameter as a function of temperature

is reported. The behaviour is, as a function of the temperature, not trivial. At low

temperatures, this parameter affects only the long time tails of the decay. Moreover

the smallest energy value is the one that produces the shortest decay time. On the

contrary, at high temperature the opposite behaviour is observed and the simulation

corresponding with the highest value of EP are the ones that decay faster. Around

room temperature there is the crossing point for which three energies lead more or less

to the same result, with survival probabilities nearly superimposed each others.
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This chapter is devoted to the presentation of experimental procedures used to grow,

prepare and characterize the lithium niobate single crystals doped in volume with iron

used in this work. The crystal growth was performed by Czochralski technique; the

prepared samples were characterized from the structural and compositional point of

view with different techniques (HR-XRD, Raman and optical absorption) before using

them for the main experimental tests.

4.1. Czochralski technique

The Czochralski technique is a well established technique generally employed in the

realization of single crystals of semiconductor, metal and oxides material. This one was

used the first time in 1964 to grow with success lithium niobate single crystal [16] and

up to know it is the best technique to prepare this material.

This method is based on the controlled solidification of the liquid phase around a

seed of the material that has to be grown. The process is divided into several steps,

sketched in figure 4.1.1. The seed is the nucleation element for the crystallization and in

the case of this work it is obtained by commercial wafer of pure LiNbO3 and mounted

on a suitable holder so that the ĉ crystallography axis is kept vertical. The seed it

is immersed vertically in the melt material, which is contained in a platinum crucible

initially maintained at a temperature higher than the melting point. When the seed

is in contact with the melt, the solid-liquid interphase and the relative meniscus is

formed. In this initial phase the temperature plays a fundamental role: it has not

to be too low to in order to avoid an uncontrolled polycrystalline aggregation around

the seed, on the other hand it cannot be too high neither to avoid the melting of the

seed. The optimized thermal condition is achieved adjusting its value in way in which

the solidification and fusion rate equals each other, creating an equilibrium situation.

At this point, the growth is initiated by pulling up slowly the seed with a speed of

about 2mm/h. This breaks the balance between the mass fluxes and forces the solid

phase to grow at expense of the liquid one. If the thermal conditions inside the growth

chamber are optimized, a large crystal can be grown free of macroscopic defects such

as cracks or bubbles. In addition, to grow the crystal in optimum condition, the solid-

liquid interphase has to be homogeneous and planar and this condition is achieved by

spinning the seed around its axis with constant speed, typically between 30 and 5 rpm.

This motion permits indeed to contrast internal convective motion due to the thermal

59



4. Samples

Figure 4.1.1.: Schema of Czochralski procedure. (a) The material is fused, (b) the
seed is moved down toward the melt, (c) the seed touches the melt and
the liquid-phase interface is formed, (d) the seed is pulled up ad the
neck formation starts, (e) shoulder formation, (f) body formation (g)
separation from the melt and (h) crystal cooling till room temperature.

gradient of the melt. The initial phase of the grow consists in the creation of the neck of

the boule, having more or less the seed dimension. The next phase is the creation of the

shoulder (figure 4.1.1 c) during which the diameter of the crystal increases. The final

step is the body growth, performed with a constant diameter and which constitutes

the part with the best crystallographic quality. The control of the crystal diameter

during the different steps of the growth is performed by an automatic control system

which tunes the temperature of the growth chamber. The feedback is performed by

measuring the weight of the crucible containing the melt: the rate of mass variation is

proportional to the area of the section of the crystal boule, and therefore on the square

of the radius. The typical result of the growth process is shown in figure 4.1.2. The

diameter is about 2 cm, while its length is of about 5 cm.

4.1.1. Melt composition

Three series of samples were producted for this work. The first two are composed of

congruent samples (Nb/Li ratio equal to 0.94, see Sec. 1.2.1) but with different iron

concentrations (Series sample A and B). Those series of samples are conceived to study

the effect of different trap concentrations. The starting power for these samples is a

mixture of commercial congruent LiNbO3 (Sigma Aldrich 99.999) and Fe2O3 powders.

The Fe contents in the melt was chosen equal to 0.1mol%, 0.05mol% and 0.02mol%.

The third sample series (referred as C) is the one having a fixed deep trap concen-

tration but a different amount of shallow traps (i.e. niobium antisites). In particular

three samples, doped with Fe 0.11mol%, with different stoichiometry were grown at

the Institute for Physical Research in Ashtarak (Armenia). High-purity compounds of
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4.2. Sample preparation

Figure 4.1.2.: Typical LN crystal produced by Czochralski technique.

Nb2O5 from Johnson-Mattey, and Li2CO3 from Merck, in powder form, were used as

the starting materials for sintering of the lithium niobate charges of different composi-

tion, via solid state reaction. The appropriate amount of iron was added to the initial

charges of LN in the form of Fe2O3 oxide (Merck) and thoroughly mixed. This kind of

growth is known to produce samples with a composition which is not constant along

the growth direction. Therefore the precise composition of the final samples cannot be

assumed to be equal to the one of the melt and need to be characterized as explained

in Sec. 4.3.2.

4.2. Sample preparation

Poling

After being grown, each lithium niobate boule is not uniformly polarized domain but

generally contain residual residual ferroelectric domains of inverted polarization which

may interfere with the subsequent optical characterization. To overcome this problem,

a poling treatment has been performed on all the as-grown crystal boules. This process

consist in heating the boules at high temperature, generally 50 C above the Curie point

(TC = 1150 C ∼ 1210 C, going from the congruent to the stoichiometric composition).

An electrical current of some tenths of mA is then applied to the crystal boule in a

direction parallel to the z axis by platinum-wire connections. During the application the

current, while the material is above the Curie temperature, it can be observed that the

voltage difference between the positive and negative electrodes decrease exponentially

till a constant value is reached. This happens because the LN structure is rearranging

orienting all the domains along one direction. When the constant value is reached the

poling process, which normally takes a time around one hour, is terminated. With

the current applied, the crystal is finally slowly cooled through the Curie point to

TC − 50 C. The current is then switched off and the crystal is slowly cooled down to

room temperature.

The poling was performed in two slightly different configurations for the three sample

series, obtaining in any case the same result. For the congruent sample series (A and

B) the poling was performed after the growing, heating again the three boules in a
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tubular horizontal oven (Gero Hochtemperaturöfen GmbH) and applying a dc current

of 10A/m2. The two electrodes through which apply the current have to be parallel

to each other and both perpendicular to the ĉ axis. They are obtained by cutting

the shoulder and the bottom of the boule with a diamond blade and covering the two

surfaces with platinum paste. The off- congruent series (C) was poled directly during

the growth process applying to the crystal-melt system a dc electrical current of about

10A/m2.

Orientation and cut

The subsequent phase is the orientation and cut of the boule along the chosen crystallo-

graphic axis. The boules are glued to a special goniometric sample holder and roughly

oriented according to the boule morphology and to the seed axis. The sample holder is

then attached to a South Bay 540 cutting machine, equipped with a diamond-coated

Cu-alloy blade. A small slab of the boule is then cut and analyzed using a Philips

MRD diffractometer in the Bragg Brentano geometry, in order to obtain the miscut

angle between the chosen crystallographic direction and the cut surface. The results of

this analysis are then used to finely tune the crysal orientation on the cutting machine

and a set of samples is then produced.

For this work x-cut samples are used, i.e. with the main surface perpendicular to

the crystallographic [1 1 0] direction. Typical sizes of about 5× 10mm and thicknesses

varying between 1 and 3 mm are used. The final preparation stage is surface lapping

and polishing to optical grade. The lapping is the removal of material to produce

a smooth unpolished surface and a midrange abrasive solution composed by alumina

particles having dimension of 3µm is normally used. The polishing is exploited to pro-

duce a scratch-free specular surface using an SF1 alumina colloidal suspension particle

dimension of 0.1µm. This treatment was performed by the lapping machine Logitech

PM5. The final result is a sample having a flat surface with roughness in the nanometer

range.

Thermal treatments

While the total iron concentration (NFe = NFe2+ +NFe3+) is chosen in the crystal growth

procedure, it is possible to change reversibly the ratio NFe2+/NFe3+ (reduction degree)

by oxidation or reduction processes. The [Fe2+] concentration in the as-grown samples is

typically of the order of 1024 at/m3 or less. This quantity can be altered, and in particular

increased, by performing reduction treatments in an Ar + H2(2%) atmosphere at a flux

of 90Nl/h at a temperature of 500 ➦C. The reduction degree is determined by changing

the duration of the treatments and eventually, by performing some subsequent air

annealing for few hours to produce a homogeneous colouration of the samples. On the

contrary, to decrease the [Fe2+] oxidation treatments are performed in O2 atmosphere

at a flux of 90Nl/h at a temperature of 500 ➦C for several hours.
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Figure 4.3.1.: Absorption coefficient for sample series B and C. Its value at 532 nm is
used to calculate the amount of Fe2+.

Every thermal treatments are performed heating the sample with a rate not superior

to 300➦/h, to avoid the damage of the crystal by thermal stresses, using a tubular

horizontal oven (Gero Hochtemperaturöfen GmbH).

4.3. Sample Characterization

After the preparation procedure, the compositional and structural properties of each

sample are investigated by optical absorption and Raman spectrometry. The meas-

urements were performed respectively at the Physics and Astronomy Department of

the University of Padova and at the Laboratoire Matériaux Optiques, Photonique et

Systèmes of Université Lorranie et Supéléc (Metz, France).

The samples analysed in this work are labelled according to the following convention:

[Series name]/[Fe3+concentration (1019 cm−3)]/[NbLi concentration (1019 cm−3)]. Thus

for example the sample B/0.34/19.0 is the sample of the series B containing 0.34·1019 cm−3Fe3+

and 19.0 · 1019 cm−3 antisites.

4.3.1. Iron concentration

In photorefractive applications using Fe : LiNbO3, concentrations of Fe
2+ and Fe3+ ions

are two of the most important factors in determining the performance of the material.

Indeed Fe2+ and Fe3+ ions serve here respectively as source and traps of electrons.

In this work the ordinary optical absorption at 532 nm is used to determine the

Fe2+ absolute concentration, as proposed by Berben et al. [31]. The transmittance

TS of each sample is measured by a Perkin-Elmer V- 670 spectrometer in the range
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Sample [Li] % [NbLi] [Fetot]
[
Fe2+

] [
Fe3+

]
R %

name nominal 1019cm−3 1019cm−3 1018cm−3 1019cm−3

A/0.36/19.0 48.45 19.0 0.37 0.14± 0.01 0.36± 0.01 3.9± 0.2

A/0.87/19.0 48.45 19.0 0.95 0.79± 0.05 0.87± 0.05 9.1± 0.5

A/0.5/19.0 48.45 19.0 1.89 14± 1 0.5± 0.1 262± 20

A/1.84/19.0 48.45 19.0 1.89 0.54± 0.03 1.84± 0.03 2.9± 0.5

Table 4.3.1.: Sample series A. Summary of parameters for the group of samples having
the same composition but different total iron concentration used in tran-
sient measurement. The reduction degree is defined as R = [Fe2+]/[Fe3+].

between 300 and 900 nm, by using ordinarily polarized light, with an accuracy on

the single measure for every wavelength of 0.3%. To isolate the contribution to the

optical absorption deriving only from iron, TS is normalized to the transmittance TC

relative to a calibration standard obtained from a pure undoped lithium niobate crystal,

obtained in the same experimental conditions. Then, from the normalized spectra, the

absorbance A = −ln(Ts/Tc) is calculated. This quantity permits to compute the

absorption coefficient due only to the presence of the iron αFe = A/d, where d is the

sample thickness. Typical results for α are shown in figure 4.3.1. This quantity in turn

is linked to the Fe2+ concentration by the formula:

[Fe2+] =
α532nm

σ532nm
(4.3.1)

where σ is the cross section σ532nm = (3.95± 0.08) · 10−18 cm2. Results of this charac-

terization are summarized in table 4.3.1, 4.3.2 and 4.3.3.

To determine the reduction degree [Fe2+]/[Fe3+] of each sample, not only the con-

centration of filled traps, but also that of empty ones has to be known. The [Fe3+]

direct measurement was attempted by measuring the total [Fe] concentration using the

method reported by Ciampolillo et al. [32] which is based on measuring the absolute

absorption coefficient at 342 nm. However at this wavelength the transmittance of our

samples is so small that, even after reducing their thickness, the absorption coefficient

could not be measured. We decided to assume that the nominal [Fe] concentration is

equal to the nominal one and to estimate [Fe3+] by difference.

4.3.2. Niobium antisite characterization

Crystals grown from Li-deficient, stoichiometric or Li-surplus melts have compositions

differing from the one of the melt, with the composition changing strongly along the

growth direction. In addition the crystal composition does not uniquely depends on

the melt composition, as geometrical and other growth parameters strongly influence

the growth process. A linear relationship between the Li deficiency and the broad-

ening of Raman peaks was established for compositions ranging from congruence to
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Sample [Li] % [NbLi] [Fetot]
[
Fe2+

] [
Fe3+

]
R%

name nominal 1019cm−3 1019cm−3 1018cm−3 1019cm−3

B/0.34/19.0 48.45 19.0 0.37 0.37± 0.02 0.34± 0.02 11± 2

B/0.82/19.0 48.45 19.0 0.95 1.17± 0.09 0.82± 0.09 14± 2

B/1.6/19.0 48.45 19.0 1.89 3.3± 0.1 1.6± 0.1 21± 3

Table 4.3.2.: Sample series B. Summary of parameters for the group of samples hav-
ing the same composition but different total iron concentration used
for continuous-wave measurements. The reduction degree is defined as
R = [Fe2+]/[Fe3+].

stoichiometry for the first time by Okamoto et al. [88]. Subsequently in [89] this rela-

tionship was extended also to the sub-congruent range. This technique can be used to

characterized in a convenient way the composition of our samples.

All the samples were measured in the X(zz)X backscattering configuration using the

LabRAM Aramis equipment, in order to obtain the A1(TO1) modes, corresponding to

Nb/O vibrations in x-cut samples [90]. The modes were fitted by Lorentzian functions

in order to measure their FWHM Γ and from the equation [89]:

XC = 69.39− 0.123× ΓA1(TO1) (4.3.2)

the molar concentration XC can be obtained. In the following we will assume that Fe

doping is not going to change significantly our results, because its molar concentration

is one order of magnitude smaller than that of NbLi antisites. However, in this work a

different instrument with respect to the one mentioned in [89] was used, so the formula

4.3.2 has to be checked. The spectral line profile used in this analysis is Lorentzian which

width is due to the “true”Raman line shape convoluted with a “instrumental” function,

which depends on the instrument used, on the wavelength etc. As the convolution of

two Lorentzian functions is again a Lorentzian whose width is equal to the sum of the

widths of the two functions, it can be considered that a change in the setup may affect

only the intercept of equation 4.3.2, while the slope may be considered as accurate. To

estimate the correct intercept, a reference sample is needed. The congruent composition

is by definition the one in which the crystal composition is equal to the melt composition

and can be expected to be the one with the highest compositional uniformity. In the

following therefore sample C/1.8/19.0, grown from the congruent melt is considered as

reference.

The molar value XC is now converted in an information on the NbLi concentration.

Let XC = [Li]
[Li]+[Nb] be the Li/Nb ratio expressed in decimal notation. According to

the widely accepted defect model for non – stoichiometric lithium niobate, i.e. one

antisite is compensated by four Li vacancies discussed in section 1.2.1, the LiNbO3

molecular formula assuming the presence of y moles of antisites is Li1−5yNb1+yO3. As
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Sample [Li] % [NbLi] [Fetot]
[
Fe2+

] [
Fe3+

]
R%

name measured 1019cm−3 1019cm−3 1018cm−3 1019cm−3

C/1.8/19.0 48.45± 0.03 19.0± 0.4 20.9 2.4± 0.1 1.8± 0.1 13± 3

C/1.8/17.5 48.58± 0.03 17.5± 0.4 20.9 3.1± 0.2 1.8± 0.2 17± 3

C/1.9/6.4 49.49± 0.03 6.4± 0.4 20.9 1.5± 0.1 1.9± 0.1 8±1

Table 4.3.3.: Sample series C. Summary of parameters for the group of samples having
the different composition and similar total iron concentration used for
continuous-wave measurements. The reduction degree is defined as R =
[Fe2+]/[Fe3+].

a consequence, the ratio XC is given by:

XC =
(1− 5y)

(1− 5y) + (1 + y)
(4.3.3)

Solving for y, the moles of antisites present into one mole of LN can be calculated in a

straightforward manner by:

y =
2XC − 1

4XC − 5
(4.3.4)

To transform the molar concentration into volume concentration it is sufficient to mul-

tiply it by 1.88 × 1022cm−3. The results of this characterization is summarized in the

second column of table 4.3.3.
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5. Experimental techniques

The photo-electrical transport properties of samples described in previous chapter were

determined by two distinct experimental approaches. The first one, carried out at the

Osnabrück University (Germany), is based on the Light-induced Absorption spectro-

scopy (LIA) which has been proved in oxide dielectrics (LiNbO3, TiO2, ZnO, ... ) to

successfully connect the build-up and decay of a transient absorption to the forma-

tion and disappearance of short-lived small polarons, upon nanoseconds pulses light

exposure. This transient measure concerns the study of the mean lifetime of polarons

and their interplay during the hopping as a function of the temperature. The second

characterization, carried out in the Physics and Astronomy Department of Padova Uni-

versity, concerns the study of photo-generation and transport properties of polarons,

under continuous-wave illumination conditions as a function of temperature, through

the study of the photo-galvanic current Jpg and the photoconductivity σph. The setup

used for this latter characterization was assembled, tested and automatized during the

first year of work and it is based on photorefractive effect and digital holographic tech-

nique, i.e. the acquisition and processing of holograms by a digital sensor. In this

chapter the two setup are discussed.

5.1. Transient measurements

5.1.1. Absorption and light-induced absorption

The transmission of light through a material of thickness d can be described, omitting

scattering and reflection losses, by Lambert-Beer’s law:

I(ω, t, d) = I(ω, t, d = 0) · e[−α(ω,t)·d] (5.1.1)

where I(ω, t, d = 0) and I(ω, t, d) are the incident and transmitted light intensities, re-

spectively and α(ω, t) the frequency-dependent absorption coefficient. The absorption

of a crystalline material is divided into two parts: a fundamental absorption α0, and

the sum of the absorptions of all photosensitive centres αi. Examples for such centres

in LiNbO3 are metastable small polarons (see chapter 2). The fundamental absorption

is originated from the electronic transitions between valence band and conduction band

and here it is assumed that it does not depend on the experimental conditions (time, il-

lumination, etc.), but solely on the light frequency ω. On the other hand the absorption
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of the different centres may well depend on time, temperature and illumination:

α(ω, t) = α0(ω) +
∑

i

αi(ω, t) (5.1.2)

The absorption by photosensitive centres is the product of the respective absorp-

tion cross sections si(ω) and their time-dependent number densities Ni(t), with i =

F, P, Fe, H, BP, ...:

αi(ω, t) = Ni(t)➲si(ω) (5.1.3)

If the number densities of the different centres are changed, e.g., upon intense light

illumination, one may split Ni(t) into a time-independent and a time-dependent part.

This leads to

αi(ω, t) = [N0,i +Nli,i(t)]➲si(ω) = α0,i(ω) + αli,i(ω, t), (5.1.4)

where αli,i(ω, t) is the time-dependent light-induced absorption change (or simply light-

induced absorption) for the respective centre. Combining Eqs. 5.1.4 and 5.1.2 one

obtains the formula for the time-dependent total absorption, namely

α(ω, t) = α0(ω) +
∑

i

α0,i(ω) +
∑

i

αli,i(ω, t) = α(ω) + αli(ω, t). (5.1.5)

Thus the total absorption of the crystal can be described as a sum of the steady-state

absorption α(ω) and the light-induced absorption αli(ω, t). In order to get the light-

induced absorption from experimental data one may rewrite Lambert-Beer’s law using

equation 5.1.5:

I(ω, t, d) = I(ω, t ≤ 0, d = 0)➲exp[❂α(ω)➲d]➲exp[❂αli(ω, t)➲d] = (5.1.6)

= I(ω, t ≤ 0, d)➲exp[❂αli(ω, t)➲d]

from which the formula for the light-induced absorption is obtained:

αli(ω, t) = ❂

1

d
➲ln

[
I(ω, t, d)

I(ω, t ≤ 0, d)

]
. (5.1.7)

The important measures are thus the sample thickness d and the intensities of the trans-

mitted probe light prior to the laser pulse I(ω, t ≤ 0, d) and after the pulse I(ω, t, d).

Usually light-induced absorption changes are transient, i.e., they vanish after a certain

time, showing characteristic decay curves αli(t). It is possible to deduce information

about the examined material from these time spectra, especially about charge-transport

processes. It is important also to notice that α, obtained from 5.1.7, gives an informa-

tion only about the variation of the population with respect to the steady state situation

at t < 0. The technique employed here exploits a pump-probe setup employing ultra-

short ns pulses, so that optically induced short-lived small polarons can be generated
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Figure 5.1.1.: Schema of setup for measurements of light-induced absorption changes.
Legend: shutter (SH), dichroich mirror (DM), pinhole (PH), lens (L),
filters (F1, F2, F3, F4), PIN diode detector (D1, D2, D3, D4), trigger
diode (DT ).

with the pump laser and subsequently studied optically by probe lasers. In this case

different probe lasers are used to exploit the particular absorption features of the dif-

ferent polaron centres to obtain some selectivity to the types of polaron and to their

evolution.

5.1.2. Experimental setup and analysis

The experimental setup for the measurement of light-induced absorption changes is

reported in figure 5.1.1. The laser source is a Q-switched Nd:YAG frequency-doubled

at λ = 532 nm with a pulse duration of FWHM = 8ns and a maximum pulse energy of

Emax ≈ 290mJ. The laser is operated solely in 10Hz mode and single pulses are selected

by a computer-controlled fast shutter (SH). In order to obtain different pulse energies

an intensity-adjuster is applied, consisting of a λ/2 - retardation plate and a Glan-

Thomson laser polariser. Both optical components are mounted in motorized rotation

stages allowing for arbitrary adjustment of both pulse energy and light polarization with

constant pulse duration. Four ordinary polarized continuous wave probe lasers enabled

a simultaneous time-resolved detection of the changes in the absorption at different

wavelengths (λ = 445 nm, 488 nm, 785 nm, 633 nm, 1310 nm) as close as possible to the

maximum of the absorption band of different type of polarons 2.1.2. The probe beams

impinge on the sample with an angle of about 5➦ relative to the surface normal. The

probe light intensity is chosen as low as possible to avoid any perturbation in the

polaron population. Typical values are about 160MW/cm2, corresponding to a power

of 5mW. The intensity of the transmitted probe light is detected after the sample by

Si-PIN diodes in the visible and InGaAs-PIN diodes in the infrared spectral range (D1,

D2, D3, D4) and recorded by a fast digital storage oscilloscope. Diodes are preceded
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by coloured glass edge filters and interference laser-line filters to avoid the detection

of undesired wavelengths. Integrated amplifier circuits assures a voltage signal directly

proportional to the output current of the diodes and in this way signals obtained from

this diode-amplifier system are proportional to the incident light intensity. According

to formula 5.1.7 it is not necessary to know this proportionality constant because does

not appear in the expression for αli(ω, t). An additional Si-PIN diode (DT ) detecting

the scattered pump light is used to trigger the measurement. Pulsed lasers emit strong

electromagnetic pulses originating from both flash-lamp bursts and Q-switching that

can severely damage any electronic devices and affect measured signals. In order to

minimize this effect diode-amplifiers systems are encapsulated in braze tubes and all

signal cables are kept as short as possible. Electromagnetic pulses are also transmitted

via the metallic optical table, so that every element on it has to be electrically isolated.

For the purpose of the temperature-dependent measurements of αlia two different

sample holders are employed, according to the temperature range. In the case of low

temperature measurements, the sample is mounted on a helium cryostat, which permits

to control the temperature in the range between 100 and 300K. In the high temperat-

ure regime a two-stage Peltier stack is used. It is clamped on a water cooled aluminium

block upon which a copper plate is fixed with thermal adhesive. Using a PID tem-

perature control and a Pt100 resistance temperature sensor it is possible to adjust the

sample temperature between 10➦C and 150➦C with an overall accuracy of one degree.

A typical light-induced absorption spectrum results from the merging of three spectra

collected in three different time windows. The first time range goes from hundreds of

ns to 0.1ms with a fix resolution of 1 ns; the second goes from 0.1ms to 0.1 s with a

fix resolution of 1ms; the third one is chosen so that the complete relaxation of αlia

is recorded and its time resolution is decided accordingly. Typical value of the second

range are 10 − 100 s according to the temperature. In order to improve the signal-to-

noise ratio, every time range is recorded four times and the averaged is computed.

5.2. Continuous-wave Measurements

This characterization is conducted in the regime of low light intensities in the validity

regime of Kukhtarev –Vinetskii model with one-photoactive centre that in our case is

Fe2+, on congruent samples with different iron concentration, (sample series B), and on

samples having different stoichiometry but with the same iron concentration (sample

series C). In addition these quantities are computed in function of the temperature, in

the regime between 100K and room temperature. The technique here used exploits the

pronounced photorefractive effect of Fe:LN to characterize the material properties. The

main advantages with respect to direct photoelectrical techniques are that it allows the

measurement of very small currents without special need for sample preparation (no

electrical contact or sophisticated electrometer are needed). This technique is also very

well suited to perform in situ measurement such as the ones required here. The idea
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is to activate, using a low power cw laser, a photogalvanic current inside the material.

This process leads to the formation of a space charge field inside the sample, that can be

visualized as a refractive index variation inside the material. Therefore, by measuring

the refractive index variation as a function of time, one can obtain the dynamics of the

space charge field build up and from this calculate the sample photoconductivity, the

photogalvanic current and the saturation value of the space charge field.

5.2.1. Space charge field recording

Transparent samples

As discussed in Sec. 1.7, for some specific illumination patterns it is possible to find

analytical solutions to the Kukhtarev equations. In this case we choose to use a 1-D

illumination profile, which is assumed to be uniform along the vertical direction and to

have a Gaussian profile in the horizontal one, as sketched in figure 5.2.1. Neglecting

beam diffraction and absorption, the intensity profile is thus given by Eq. 1.7.13, here

reported for reader’s convenience:

I(x) = I0 exp

(
− x2

2w2

)

In this case, the space- and time- dependent evolution of the space charge field is given

by [55]:

E(x, t) = −Esat

[
I(x)

I(x) + ID

]
·
[
1− exp

(
− t

τd(x)

)]
(5.2.1)

where we made use of the“local”approximation [54], which consists in using the solution

of the Kukhtarev equations for the case of uniform illumination (see Sec. 1.7) also in the

case of a slowly varying illumination profile, provided that the intensity - dependent

quantities are expressed in terms of the “local” intensity value. Therefore (see Eqs.

1.7.10 and 1.7.11):

τd(x)
−1 =

σph(x)

εε0
=

e

εε0
µeτsNφ

I(x)

hν

Due to the electro-optic effect, the space charge field is readily mapped into a refractive

index variation △n(x, t) = 1
2r33n

3
eE(x, t). Here r33 is the pertinent component of the

electro-optic tensor (Sec. 1.4) and ne is the extraordinary refractive index at the probe

wavelength. In our setup (see next section) what is measured is the total phase shift

accumulated by an optical wave travelling through the modified refractive index region,

compared to the unchanged sample, so that:

∆ϕ =
2π

λ
d∆n (5.2.2)

where d is the sample thickness and λ is the wavelength of the probe laser.
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Figure 5.2.1.: 1D illumination scheme on the sample used for photorefractive measure-
ments. The vertical direction is assumed to be uniform while the hori-
zontal one have a Gaussian profile. The absorption direction, discussed
later in paragraph “Absorbing sample”, is also reported.

Absorbing samples

Eq. 5.2.2 is valid only if the intensity profile is not changing along the propagation

distance, i.e. αd≪ 1, which is not true in the case of absorbing samples. If absorption

is taken into account, the expression for I(x) in eq. 5.2.1 must be substituted with:

I(x, z) = I0 exp

(
− x2

2w2
− αz

)

where α is the absorption coefficient, measured in Sec. 4.3.1. This gives a z dependence

to E(x, z, t) and therefore to ∆n(x, z, t). By integrating along the sample thickness:

△ϕ (x, t) =
2π

λ

ˆ d

0
△n (x, z, t) dz (5.2.3)

and solving the integral in the centre of the illumination profile (assuming I0 ≫ ID) we

obtain the value of the phase modulation at x = 0, i.e. corresponding to an illumination

intensity I0

△ϕ (0, t) =
2π

λ
△nsat

{
d+

1

α

[
Ei

(
t e−αd

τd(0)

)
− Ei

(
t

τd(0)

)]}
(5.2.4)

where Ei is the exponential integral function defined as Ei (x) = −
´

∞

−x
e−t

t dt and

λ = 632.8 nm is the wavelength of the probe laser. It is now possible to fit the ex-

perimental results by equation 5.2.4 to extract the following parameters as a function

of temperature:

△nsat =
1

2
r33n

3
eEsat (5.2.5)

and

τd(0) =
e

εε0
µeτsNφ

I0
hν

(5.2.6)
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Figure 5.2.2.: Schema of the setup for continuous-wave measurement consisting of:
beam expander (BE), cylindrical lens (CL) f = 150mm, mirrors (M),
dichroic mirrors (DM), cryostat (C), focusing lens (L1) f = 150mm,
polariser (P), attenuator (A), spatial filter (SF).

5.2.2. Digital Holographic setup

The digital holographic technique refers in general to the acquisition and processing of

holograms by a digital sensor. This well known technique is applied [91, 92] to Fe:LN

to measure the light-induced refractive index change in photorefractive materials. The

advantage of this technique compared to other photorefractive characterizations [56]

is that it is robust, insensitive to mechanical vibrations and not affected by the beam

fanning problem (i.e. the beam self-defocusing) occurring in photorefractive Fe:LN.

Those requisites are necessary due to the fact that in our experimental conditions, the

measurements can be very slow.

To measure the photorefractive properties of Fe:LN as a function of the temperature,

the setup schematically illustrated in figure 5.2.2 has been assembled and tested. The

system is based essentially on a pump-probe scheme. The green line has as source a He-

Ne laser λ = 543 nm with a power of 4mW, expanded (BE) and focused on the sample

with the aid of a cylindrical lens (CL), obtaining a vertical blade of light having uniform

intensity profile along the vertical direction (y) and a nearly – Gaussian one in the

horizontal one (x ). In this condition the beam can be modelled as I(x) = I0exp(− x2

2w2 )

, where w is the waist beam, in our case equal to (75±1)µm. The Rayleigh range of the

beam is about 1 cm and the sample is placed in the middle of it, so that the profile of the

green beam can be considered to remain almost constant inside the sample. The sample

is mounted with the crystallographic ĉ direction perpendicular to the light blade and

short-circuited by a conductive paste painted on the sample edges. The temperature

control is obtained in the range between 100K and room temperature with a stability

of 0.1K by a double-chamber nitrogen optical cryostat with quartz windows. The

maximal temperature stability at low temperature guaranteed by the system is three

hours. The peak intensity of the green laser arriving on the sample surface has been
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Figure 5.2.3.: Example of the interferometric image acquired with the CCD at T =
240K after 20 minutes of exposure to the green beam.

measured by taking into account losses due to the cryostat windows and is given by

I0 = 280W/m2. This value assure that in the subsequent analysis the one centre model

approximation can be used and that two-photon process can be neglected. Finally, a

green LED of incoherent light covering the whole sample surface is used to “clean” it

after each measurement runs, exploiting the reversible feature of the photorefractive

effect.

The second part of the setup is a Mach-Zehnder interferometer and it is conceived

to monitor the variation of the refractive index as a function of the time. The light

source is a He-Ne laser λ = 632.8 nm having a power of 5mW spatially filtered (SF)

and attenuated to not alter the △n induced by the green laser. The object beam

is superimposed to the green beam and transmitted through the sample using two

dichroic mirrors (DM). and the interferometric figure obtained recombining the object

and reference beam is measured by a CCD with 1280×7800 pixels array (pixel dimension

3µm). The set of lenses (L1) forms a 4 f system and it is set in order to create an

image of the sample’s output surface at the CCD plane. In this way the measurement

is performed in near field conditions, just after the sample surface, so that the fact that

the beams can be eventually distorted by the photorefractive effect in the far field is not

a problem. Finally a polariser setted in front of the CCD selects only the extraordinary

component of △n. A typical output of this system is shown in figure 5.2.3 where the

fringes distortion is due to the modulation of △n produced by the green beam.

The system is fully computer controlled by a dedicated software, allowing to perform

a set of measurement cycles in the same conditions but at different temperatures. In

particular the time exposure of the two lasers and of the LED is controlled by shutters,

the CCD is directly connected to the PC and takes a picture of the sample according

to a time step decided by the user. Also the temperature controller of the cryogenic

system is computer-controlled, permitting to monitor the temperature at every time

frame.
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k
0

-k0

Figure 5.2.4.: Fourier transform of the image 5.2.3 with the applied bandwidth filter on
the peak centred at k = +k0 .

5.2.3. Measurements and analysis

The experimental measurement consists in studying the temporal evolution of the re-

fractive index at a given temperature. To achieve this purpose, interferometric figures,

similar to the one reported in figure 5.2.3, are stored in a computer as a function of

time, starting from the moment the green laser is switched on. The time of the meas-

urement must be chosen to cover the full temporal evolution of △n and in this way

reduce the error in the estimation of the saturation value. Subsequently all the images

are analysed with the mathematical algorithm reported in [91], here briefly presented.

On the CCD plane, the complex amplitude due to the object beam can be written as:

o (x, y) = o0e
iϕ(x,y) (5.2.7)

assuming that the crystal is a pure phase object and the variation of the refractive

index affect only the phase. On the other hand, the complex amplitude of the reference

beam is:

r (x, y) = r0e
i2π(νxx+νyy) (5.2.8)

where k0 = 2π

(
νx

νy

)
is the wave vector of the reference beam projected on the CCD

plane. In this vision the intensity in the CCD plane, collected by images as the one

shown in figure 5.2.3, can be described by I (x, y) = |o (x, y) + r (x, y) |2. By Fourier

transforming the interferometric image, three main peaks appear in the frequency space

as shown in figure 5.2.4. One centred at k = 0 corresponding to the spatial average of

the image (the main peak in the centre of the image), and two satellites symmetrically

placed at k = ±k0. These two peaks carry the information on the object creating the
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Figure 5.2.5.: Typical phase variation map obtained through Fourier analysis. This
particular map is obtained for the sample B/0.82/19.0 at T = 295K
after 30 minutes of exposure to the green beam.

△ϕ distortion on the interference fringes. In the particular case of this work, fringes

in the real space are tilted at 45➦ with respect to the vertical light blade. Accordingly,

the two satellite peaks are located at the same angle of the Fourier image. All others

peaks present in the Fourier transform image 5.2.4 correspond to spurious reflections,

creating others interferometric patterns on the real image. The information carried out

by the fringes can be isolated from other components applying a bandwidth filter in

the Fourier space, i.e. selecting a window centred at k0. Shifting it in the centre of

the frequency space and back transforming the results, it is possible to calculate the

complex amplitude of the object beam o (x, y). The 2D wrapped phase of the object

beam is then obtained in a straightforward manner by computing

ϕ (x, y) = arctg

{
Im [o (x, y)]

Re [o (x, y)]

}
(5.2.9)

Due to the non-invertibility of the arctan function out of the [0, 2π] interval, the

results are correct modulo 2π, i.e. the image is wrapped. The 2D phase unwrapping

procedure of a real image is not trivial because several sources of errors can affect the

result, such as technical noise, under sampling or abrupt phase changes [93]. Addition-

ally an error in processing one single pixel in the wrapped phase image can affects sev-

eral other pixels within the image provoking the error propagation. A typical wrapped

phase image analysed in this work normally contain hundreds of thousands of pixels

so a stable algorithm to analyse images is necessary: a phase unwrapping algorithm

that processes one single pixel incorrectly may make all the phase information in the

image unusable. The most stable algorithm for the type of analysis presented here

results is the 2D-SRNCP based on non-continuous paths [94]. In addition the inform-

ation carried by the matrix is also affected by the phase front shape of the beam, the

intrinsic transmittivity of the sample, surface defects etc. so a reference image without
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Figure 5.2.6.: (left) 1D profile obtained from the integration of figure 5.2.5 along the
vertical direction at T = 300K. (right) Time dependence of the maximum
amplitude of the phase map obtained at T = 140K, the red line is a fit
with Eq. (5.2.4). Both images are extracted from the analysis of the near
stoichiometric sample C/1.94/6.39 .

△n modification has to be acquired as background and subtracted from others images

to overcome this problem.

All this procedure giving the△ϕ (x, y, t) map as a function of the time was completely

automatized in Matlab. A typical result is presented in Figure 5.2.5. The phase profile

is integrated along the vertical direction to improve the signal to noise ratio,obtaining

a 1D profile △ϕ (x, t)(figure 5.2.6 left). This procedure is repeated for all the frames

recorded during the exposure of the crystal to the beam. The resulting set of 1D profile

are fitted one by one with a peak function to determine precisely the peak maximum

△ϕ (0, t) as a function of the time, obtaining graphs as the one reported in the right

side figure 5.2.6. Those data are fitted by Eq. 5.2.4 to obtain △nsat and τd(0) as a

function of temperature. We stress here that if the same datasets were fitted by Eq.

5.2.2 an evident misfit would have been present in the long time part of the curve and

the resulting parameters would have been affected by a large systematic error, especially

in the determination of τd(0).
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6. Transient measurements

The first task to undergo before any modelling of the transport phenomena is to es-

tablish what is the role played by the different polaronic centres. Indeed up to this

date, polaron formation and decay is described by models restricted in terms of certain

temperature ranges, stoichiometry and dopings [66, 71, 95] which, though consistent in

itself, reveal serious inconsistencies when connected. The restrictions of these models

naturally contradict to the demand of a comprehensive microscopic model for lithium

niobate.

In particular in the first part of this chapter, an extension at low temperature of the

Herth model [66], describing the behaviour of Fe:LN samples for the conditions adopted

in this study, is discussed.

Having established the general scenario of our system, in the second part of the

chapter, transient measurements are analysed with the Monte Carlo simulations to

tune the microscopic parameters of the hopping frequency rate, such as the orbital

length and the polaron energy.

6.1. Light induced absorption results

In Fig. 6.1.1 LIA measurements on the samples series A, characterized by an in-

creasing concentration of deep traps, is shown at T = 298K and 198K, probing

simultaneously the transient absorption at different combination of the wavelengths

488, 445, 785, 633, 1310 nm. The pump intensities in the various experiments were ad-

justed to maximize the signal to noise ratio of the experimental decay: A/1.84/19.0:

I ∼ 100MW/cm2; A/0.5/19.0: I ∼ 40MW/cm2: A/0.36/19.0 I ∼ 60MW/cm2;

A/0.87/19.0 I ∼ 200MW/cm2. For what concerns the sample A/0.36/19.0, whose

results are not reported, the 785 nm probe shows a signal similar to the one reported

for other samples while the signal at 488 nm remains below the limit of detectability.

All the data demonstrates the previously reported behaviour: after the pulse, a

marked increase of the absorption is detected at all the probe wavelengths, which de-

cay to the dark value after some time, with a dynamics that depends on the probe

wavelength. The amplitude of the LIA signal in the red/infrared correlates directly

with the concentration
[
Fe2+

]
present in the samples (see Table 4.3.1), suggesting that[

Fe2+
]
is the main source for photoexcitation of the centres probed at 785 nm [86](see

2.4). The blue absorption instead, appears to be almost insensitive to the
[
Fe2+

]
con-

tent.
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Figure 6.1.1.: Experimental results of light induced absorption on the samples
A/0.5/19.0 (a), A/0.87/19.0 (b) and A/1.84/19.0 (c). For each sample,
the results at room and low temperature are shown. [Data obtained in
collaboration with School of Physics of the Osnabrück University. Figure
(c) reprint courtesy of S. Messerschmidt, School of Physics, Osnabrück
University]
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Figure 6.1.2.: Temperature dependence of the stretching factor β (left). Arrhenius plot
of the characteristics time τ (right) for the wavelength of 785 nm obtained
from fitting with KWW-function of LIA decays on samples A/0.36/19.0,
A/0.5/19.0 and A/0.86/19.0 [97].

At room temperatures, the transient absorption in the red spectral range vanishes

almost completely within a few milliseconds, while the absorption in the blue spectral

range increases in nearly the same period of time.

At T = 198K, the curve dynamics are slowed down. However in the blue spectral

range a striking new feature is revealed in the shape of the decays. This signal is not

only slowing down but appears also stretched, so that after the pump pulse, a constant

non-zero absorption change is observed at 445 nm and 488 nm up to the millisecond

time regime, followed by a significant increase of αli in the time regime where the red

absorption has almost vanished completely. The blue absorption signal vanishes to zero

after a duration of tens of seconds.

The observed decay spectra are in general described using an empirical stretched

exponential function, named after Kohlrausch, Williams, and Watts [96]. This so-called

KWW function is given by:

αli(t) = α0
liexp[−(t/τ)β ] (6.1.1)

where α0
li is the absorption coefficient at t = 0 (not to be confused with the experi-

mentally determined amplitude at the beginning of the time window of our data), β is

the stretching factor 0 < β < 1, where β = 1 denotes the case of a mono-exponential

relaxation and τ the characteristic lifetime. Berben et al. [31] were the first to apply

equation 6.1.1 or a weighted sum of up to two KWWs to describe the decay of αli(t)

in LiNbO3 : Fe. In addition they observed that this stretched exponential decay is not

a peculiarity of LiNbO3 : Fe, but it is common to a range of doping elements.

785nm According to previous absorption measurements on small polarons [31, 77] the

absorption at 785/633 nm is attributed mainly to the presence of NbLi (See table
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Figure 6.1.3.: Temperature dependence of the stretching factor β (left) and the char-
acteristics time τ [97] (right) obtained from fitting with KWW-function
of LIA decays on sample A/1.84/19.0 .[Left plot reprint courtesy of S.
Messerschmidt, School of Physics, Osnabrück University]

2.1.2). This curve can be fitted by a single KWW, as it is shown for sample

A/1.84/19.0 in Fig. 6.1.1 (c). Repeating this analysis on samples A/0.36/19.0,

A/0.5/19.0 and A/0.86/19.0 we obtain the values of β(785 nm) and of τ(785 nm)

in the whole temperature range (Fig. 6.1.2). It can be seen that β(785 nm) shows

an increasing trend with the temperature for all the samples. The temperature

dependence of the characteristic time is expressed in an Arrhenius plot, where

a slope break is visible for all the samples, at a temperature between 200K and

room temperature.

488/445nm The probe wavelength of 488/445 nm according to absorption cross section

of the different polarons (see Table 2.1.2), is sensitive to Fe2+, Nb4+Li , bipolarons

and hole polarons. Due to this polaron mix these wavelengths show a more

complicated behaviour, as it is reflected by the non trivial shape of αli which

initially increases and after decreases. This signal can be described as a sum of

two stretched exponential functions:

αli(t) = α0
1 exp[−(t/τ1)

β1 ] + α0
2 exp[−(t/τ2)

β2 ] (6.1.2)

This wavelength has been studied in more detail in sample A/1.84/19.0, due

to an improved signal to noise ratio which allowed to obtain a reliable fit at

these wavelengths. In this case, the most striking result is a different trend for

the KWW β1(488/445 nm) and β2(488/445 nm) exponents of the blue probe as

a function of temperature. Contrarily to the exponent of the infrared probe

β(785 nm) those exponents decrease with the temperature, as shown in Fig. 6.1.3.

A second important point arises comparing the fitted parameters of the first (fast)

component of the decay at 488/445 nm with the one at 785 nm, as shown in Table

84



6.2. Discussion: multi-specie polaron transport

T λprobe α0
1 τ1 β1 α0

2 τ2 β2

(K) (nm) (m−1) (µs) (m−1) (µs)

293 785 191± 10 4± 2 0.29± 0.02 - - -

293 445 −72± 10 5± 3 0.39± 0.04 99± 10 4± 2 0.61± 0.06

198 785 238± 10 40± 10 0.18± 0.01 - - -

198 445 −41± 10 (20± 10) · 103 0.52± 0.05 82± 10 20± 10 0.9± 0.1

Table 6.1.1.: Parameters of the KWW functions used to describe the decays at 785 nm
and at 445 nmfor the LIA data of the sample A/1.84/19.0 shown in Fig.
6.1.1 (c) [97]. While at T = 293K the first part of the decays in the
blue and in the IR seem to have the same characteristic parameters, at
T = 198K the two curves are clearly non-compatible.

6.1.1 for the wavelength of 445 nm. At room temperature, the characteristic

parameters of the KWW function describing the decay at 785 nm, are quite close

to the ones describing the first part of the curve at 445 nm. This suggests that

the two curves are somehow related, in agreement with ref. [66] discussed in

Sec. 6.2.1. However, the low-T data clearly point out that this similarity is

not a general feature, as in these conditions the decay at 785 nm and the first

part of the curve at 445 nm are described by two completely different KWW

functions. To better illustrate this aspect, in Fig. 6.1.1(c) the fitted functions

at 445 nm (solid lines) are compared with a second fit (dashed line) in which the

constrain τ1(785 nm) = τ1(445 nm) is imposed, showing an evident misfit out of

experimental incertitude. The same result is obtained for 488 nm.

1310nm The probe at 1310 nm is sensitive mainly to free polarons and also to antisite-

bound ones (Table 2.1.2). The shape of the decay can also be fitted by a single

KWW function and the value of the obtained fitting parameters coincide, within

experimental accuracy, to the ones of the curve at 785 nm for all the experimental

conditions considered here. This indicates that the absorption at 1310 nm is most

probably a replica of the one at 785 nm and therefore that this absorption feature

can be attributed to bound polarons. The presence of free polarons could not be

detected in our LIA experiments for the conditions reported here.

6.2. Discussion: multi-specie polaron transport

6.2.1. Polaronic species involved in transport phenomena

The first task to accomplish, before going to a quantitative analysis of the decay curves,

is to establish a model for the relaxation process with a clear understanding of the types

of polaron involved. We will start by considering the five known species of polaronic

centres, namely free (F ), antisite - bound (P ), Fe (Fe), holes (H) and bipolarons (BP )
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and show that it is not possible to explain the totality of our observations by considering

only these ones. We then discuss the possibility that non-optically active self-trapped

excitons (STE) play a role in transport phenomena and propose an extension of the

Herth’s model [66] for the recombination path of optically generated polarons.

Free polarons

As discussed in Section 6.1, from our spectroscopic data we have no evidence of any

absorption feature that can be unambiguously attributed to free polarons. This does not

mean that free polarons are not playing any role, but simply that their concentration,

in the time window considered for our measurement is so weak that they cannot be

revealed by LIA. This is in agreement with the study conducted by Sasamoto et al.

[61], which states that in presence of antisite defects, optically excited free polarons

transform completely in bound ones in less than one picosecond. Therefore, the free

polarons that are eventually present in our system are very scarce and are due to

thermal excitation from deeper states.

Number densities calculation

The transient absorption at a given wavelength αlia(λ, t) is given by the contribution

of the different polaronic specie weighted by their respective cross section:

αlia(λ, t) =
∑

i

σi(λ) · △Ni(t)➲ (6.2.1)

where△Ni and σi(λ) are the concentration and the cross section respectively of the i−th
polaron specie. By considering the signals from several probe wavelengths, λ1, . . . λN ,

we can construct the following matrix equation for any fixed time step t:




αlia(λ1, t)
...

αlia(λN , t)


 =




σ1(λ1) . . . σM (λ1)
...

. . .
...

σ1(λN ) . . . σM (λN )







△N1(t)
...

△NM (t)


 (6.2.2)

Since the cross sections for the different polaron centres are known [77] (See Table

2.1.2), if the number of probe wavelengths is not less than the number of species in-

volved (N ≧ M), one can try to invert the matrix and find a quantitative estimate

for the concentrations of the different species. The procedure can be repeated for any

time step so that finally one can obtain explicitly the evolution of the different species

concentration. It is however important to notice that we need to choose a priori which

polaron species are involved in the transport mechanism. From the setup geometry,

the measurements are limited to the use of four probe lasers contemporarily, implying

that no more than four polarons types can be considered. Fortunately, as explained

in the preceding paragraph, free polarons can be disregarded and, in this hypothesis,
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Figure 6.2.1.: Small polaron population variation calculated from αli(785 nm, 488 nm)
in sample A/0.5/19.0 strongly reduced (left) at room temperature T =
298K and (right) at low temperature T = 198K, assuming a model
involving only Fe2+ and Nb4+Li .

the remaining types of polarons are exactly four. It should be kept in mind that this

procedure is strongly affected by the incertitudes in the cross section values, which in

some cases are difficult to estimate. We consider therefore this approach only as a

semi-quantitative test of our modelling.

Fe - P model

The simplest model that one can test is the model in which a direct excitation from

Fe2+ creates Nb4+Li bound polarons (free polaron formation can be considered as a

very short intermediate step, as explained above, and be disregarded). The bound

polarons then relax back to Fe traps by thermally activated hopping, cancelling out the

absorption changes. The motivation for this model is that, in agreement with section

2.4, in reduced samples it may be expected that one-photon excitation from Fe2+ is

the dominating mechanism. As it is possible that some holes can be created by exciting

one electron from the valence band to Fe3+ traps by two-photon absorption, we test

this model in the most favourable case of the strongly reduced sample (A/0.5/19.0,

see Tab 4.3.1). By inverting the matrix equation 6.2.2 using the wavelength of 785 nm

and 488 nm with the appropriate cross sections, one find the results reported in Figure

6.2.1. As it can be seen from graphs, while the model seems to give acceptable results

at room temperature, at T = 198K an apparent increase of the Fe2+ concentration for

long times is visible, even if the P population has already disappeared. This result is

obviously not physical and cannot be explained by the incertitude in the cross sections,

because this would simply affect the graphs with a multiplicative factor. These kinds

of results are even more evident in other samples (not shown), so that this simple

modelling seems to be applicable only at room temperature and for reduced samples.
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6. Transient measurements

Herth’s Model (Fe,P,H)

The first complete interpretation of results at room temperature of transient measure-

ments in Fe:LN samples can be found in the article of Herth et al. [66] and sketched

on figure 2.4.1. This model considers three polaronic centres involved in the transport:

i.e. Fe, P , H .

In the red spectral range, the initial absorption change αli(λ, 298K) is attributed to

the formation of Nb4+Li bound electron polarons excited either from the valence band

or Fe2+Li to the conduction band by a two-photon or one-photon process, respectively.

In detail a significant number of Fe2+ centres is emptied by the green pump pulse

via one-photon excitation and contemporarily hole polarons are created. The two-

photon absorption is, in this way, a second independent generation path of polarons,

besides the common Fe2+ excitation. The initial absorption in the blue spectral range

originates from the sum of a positive absorption change along with the formation of

valence band holes plus the Nb4+Li absorption, as well as a negative absorption change,

i.e., a transparency, due to the disappearance of Fe2+Li . When the Nb4+Li polarons decay

(the red signal decreases), the repopulation of empty Fe3+ centres leads to an increase

of αli in the blue spectral range. The best evidence for this explanation is the good

agreement between the decay time of the small bound polaron at 785 nm and the rise

time τ1 observed at 488/445 nm, as observed in Table 6.1.1. Finally from Fe centres

they recombine within the lifetime τ2 with the hole polarons. In Fe3+ traps electrons

are comparably stable, so they recombine with the hole polarons on the longer time

scale of seconds. No direct transition from Nb4+Li to O− was observed by Herth.

A quantitative check of this model is performed on sample A/1.84/19.0, using λ =

785 nm, 633 nm, 488 nm and reported in Figure 6.2.2 (left) at room temperature. Here

the sample used has the same doping and reduction degree of the one used by Herth.

It can be seen that the change in the concentration of bound polarons is smaller (in

absolute) than the one of Fe2+ of a factor ∼ 3. However according to Herth’s model,

bound polarons are produced both by excitation from Fe2+ and from P+H dissociation.

The bound polaron concentration change therefore must be always larger than that of

Fe2+.

Another inconsistency comes from the observation, already reported in Table 6.1.1

that the coincidence between the KWW parameters of the signal at 785 nm and the

first part of the curve at 488/445 nm does no longer hold by going to low temperat-

ure. Additionally, the temperature dependence of the KWW parameters is completely

opposed: while β1(785 nm) increases upon heating, β1(445/488 nm) decreases. These

findings invalidate the idea that the initial increase of the blue absorption is the spec-

ular process of the decay in the infrared and thus negates the direct repopulation of

Fe3+ by bound polarons.
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Figure 6.2.2.: Small polaron population variation calculated from
αli (λ = 785 nm, 633 nm, 488 nm) at room temperature for sample
A/1.84/19.0 assuming (left) Herth’s model and (right) Akhmadullin’s
model. Cross sections are deduced from figure 2.1.6.

Akhmadullin’s model (Fe,P,BP)

An alternative model, based not on holes but bipolarons, can be tested following the

idea proposed by Akhmadullin et al. [98], used to explain a change in the electrical

conductivity in the low temperature regime in congruent LN. In this view, when two

bound polarons come close to each other, one of the two can hop to the NbNb site in

proximity of the other polaron’s antisite NbLi, to create a more stable bipolaron state.

The advantage of this model is that it can explain the absorption in the green-blue

spectra because bipolaron absorption is sufficiently strong to compensate the transpar-

ency following from Fe2+ depletion (Table (2.1.2)). Moreover, being negatively charged,

BPs fulfil more easily than holes the charge conservation requirement, see Figure 6.2.2

(right). The same result is found with different combination of wavelengths, at low

temperatures, and also with other samples. Finally the bipolaron exhibits a higher

stability at low temperatures [68], which could explain the long KWW characteristic

time of the blue absorption.

Some points however remain unclear also in this case. First of all, to consider this

situation, it is necessary to suppose that only the one-photon absorption from Fe2+ is

the dominant process, even if it seems not to be the case due to the intensity pulse

and the sample reduction degree (R ∼ 3%). Second, it seems very unlikely that po-

larons can create the bipolaron metastable state instead of recombining directly with

a deep more stable Fe3+ which are present in abundant concentration. Third, ac-

cording to [68] bipolarons formation is very sensitive to the oxidation degree of the

sample, while our results seems to be quite independent on the sample reduction de-

gree (Fig. (6.1.1)). Fourth and perhaps conclusive argument against this model, is that

the constant non-zero blue absorption at low temperature was found also in a Mg-doped

([Mg=6.5]mol%) crystal at room temperature, where antisite defects are completely

compensated by Mg and therefore bipolaron formation cannot occur [99].
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6. Transient measurements

Self-trapped exciton model

To resume the observations detailed up to this point, it appears that, although highly

reduced samples at room temperature can be described considering a simple two-species

model (Fe and bound polarons), at least one additional centre has to be considered in

the relaxation of light -induced polaron population to provide a more general description

valid in all the explored conditions. Its characteristics are:

1. an absorption feature in the blue-green spectral range compensating for the light-

induced transparency expected from depletion of Fe2+ donors;

2. strongly temperature-dependent relaxation time, making its influence negligible

at room temperature in a strongly reduced sample;

3. a dependence from the stoichiometry, to explain results at room temperature on

a Mg:LN doped above threshold;

4. a valence preserving the charge conservation;

5. a temperature-dependent β(T ) explaining the behaviour of β1 (488 nm,T) and

β2 (488 nm,T) in equation 6.1.2.

We believe that a new centre can be considered as a possible candidate to explain

our data. This centre would be formed by an electron - hole pair self trapped in

the same Nb-O octahedron. This centre would therefore be very similar to the self-

trapped exciton (STE) described in Section 2.1, therefore formed by an electron - hole

pair self trapped in the same Nb-O octahedron, however it has to be mentioned that

a luminescence signal in the time range typical of the STE recombination was not

detected using our ns - setup. This fact indicates that STEs under consideration do

not decay radiatively (dark-STE). It is necessary to postulate that in congruent Fe:LN

not all the STE annihilate by emission of a photon and may live for a longer time and

decay either by nonradiative annihilation or by dissociation into an electron and a hole

polaron. Our view suggests that the population of dark-STEs decays exponentially.

As pointed out by [70] the trapped hole and electron, which a STE consists of, can

be excited optically and show a near UV and near-infrared absorption, respectively.

In particular its radiative recombinations in LN leads to a broad band spectra centred

around 500 nm, therefore it can be assumed that the hole of a STE in LN, similarly to

hole polarons, might absorb in the blue spectral range. The same assumption can be

done also for the dark-STE so that the hole of a dark-STE might absorb in the blue

spectral range, which is one of the criterion for the X centre to fulfil. The increased

delay of the absorption in the blue spectral range is observed by both (i) a decrease of

temperature and (ii) a doping with the antisite defect compensating material Mg. It

is known from luminescence measurements that these conditions largely increase the

STE number density [71, 74], fulfilling the second point of the above-mentioned list.
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Figure 6.2.3.: (a) Transport and absorption model with included proposed dark-STE
as well as (b) the intrinsic light emitting STE for lithium niobate after
pulse exposure. The numbers denoting different annihilation processes
between holes and electrons. For more details see text. [Reprint courtesy
of S. Messerschmidt, School of Physics, Osnabrück University].

The temperature dependent stretching exponent in the initial part of the transient

absorption in the blue (Fig. 6.1.3) shows the same behaviour as the one obtained

from time-resolved luminescence measurements [75]. Even if these two phenomena

occur on very different time scales they reflect the same microscopic mechanism, i.e.

a possible superposition of decay paths with different characteristic times. In this

sense, STEs show an increase of the beta exponent at low T because local relaxation

processes become more probable. We can therefore interpret the increase of β1(445 nm)

by decreasing T assuming that a higher fraction of the electron-hole pairs prefer to

annihilate rather than dissociate and hop away.

From a structural point of view we guess that, in comparison with STE, the dark-

STE has to be bound to a defect with increasing binding energy. The most probable

candidate for the defect centre is the lithium vacancy VLi where the hole is trapped,

similarly to the hole polaron. However, it can also be possible that in congruent material

the STE is trapped in the neighbourhood of an antisite defect or, in Mg-doped samples,

next to an MgNb-centre [100].

Figure 6.2.3 shows the proposed transport and absorption model with included dark-

STE intermediate state as well as the intrinsic light emitting STE. The excitation

mechanism is not affected by this modification, an electron is either excited from a

Fe2+Li centre or from the valence band to the conduction band by one- or two-photon

process respectively, forming an electron polaron and leaving a Fe3+Li or a hole. After

the excitation process electrons and holes move through the lattice as free polarons

and free holes hopping from one lattice site to another. The most holes are trapped

next to an lithium vacancy (VLi) and forming bound hole polarons. The electron is

captured by a Nb5+Li antisite defect forming a bound polaron which delays the further

transport. Four different recombination paths can be distinguished: (1) an electron

formerly bound to an antisite defect recombines directly with a hole polaron. (2) An

electron formerly bound to an antisite defect and an hole polaron, self trapped in the
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6. Transient measurements

same Nb-O octahedron, forms firstly a dark- STE in the presence of a defect, and

subsequently dissociates in a bound and a hole polarons. An electron formerly bound

to an antisite defect or bound in a dark-STE is thus caught by iron and forms Fe2+Li
polarons. (3) Such a Fe2+Li polaron recombines finally with a hole. (4) Furthermore,

a STE bound with strong coupling to Nb4+ and O− within a single niobium-oxygen-

octahedron can annihilate by emitting light (not observed in our samples). We like

to note that our approach can also be applied to the findings of Kampfe et al. [75]

considering the dark-STE as intermediate bound state in the recombination process of

small electron and hole polarons. In this case, it may become possible to get insight to

a second luminescence decay channel, that was not observed in our measurements.

To conclude this discussion, for the experimental conditions used, in the samples

A/0.36/19.0, A/0.5/19.0 and A/0.86/19.0 the main excitation path is the one-photon

excitation from Fe2+ to create Nb4+Li , while the main decay channel is constituted by

the opposite process (Fig. 6.2.1). The small discrepancies observed for long times and

for weak reduction degrees are ascribed to the presence of dark-STEs. Those STE may

recombine and disappear without contributing to the transport. Otherwise they can

“store” for a certain time an electron and a hole and dissociate after a given time to

saturate a Fe trap and finally recombine with a hole. In this interpretation, this latter

process is responsible for the small increase of the blue absorption at long times.

The individuation of the X centre is only the first step of the creation of a new model.

A more deeper analysis on the transport mechanism in function of the deep traps and

antisite concentration, as well as the external illumination, is now necessary. It could

be interesting to understand in which situation one of the proposed recombination path

can dominate on the other one. In addition to test quantitatively the proposed models

it would be necessary to find the absorption cross section of this centre to complete

and/or refine values of figure 2.1.6.

6.2.2. Lifetime of small bound polarons

Another important information that can be extracted from αlia is the lifetime of small

polarons. As discussed in the preceding sections, a direct solution of Eq. 6.2.2 is not

reliable due to the incertitudes in the polaron cross section values. However, according

to the discussion of Sec. 6.2.1 it can be considered that αlia(785 nm, t) is proportional

to the P population NP (t).

In the analysis of relaxation data for Fe:LN using the KWW equation, generally in

literature the lifetime of small bound polarons is taken equal to τ recovered from the

KWW fit function. However it is more meaningful to calculate the average lifetime

according to its mathematical definition:

〈τ〉 =
ˆ

∞

0
exp

[
−

(
t

τ

)β
]
dt =

τ

β
Γ

(
1

β

)
(6.2.3)
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Figure 6.2.4.: Arrhenius plot of the mean life time of Nb4+Li polaron, calculated using
data of Fig 6.1.2 [97]. The plot evidence a change in the transport mech-
anism around 200K. The high temperature regime is described by an
activation energy of EA ∼ 0.42 eV indicating a not well defined hopping
mechanism (see figure 2.3.1).
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6. Transient measurements

where Γ(x) is the gamma Euler function. This approach has the advantage of consid-

ering both the parameters τ and β, reported in figure 6.1.2, allowing for a comparison

between decays with different β [101].

The result of the 〈τ〉 calculation for the three samples of the A series (see Table 4.3.1)

is shown in figure 6.2.4 as a function of the temperature in an Arrhenius plot. It is

informative to compare this results with the one obtained by the analysis of τ , reported

on figure 6.1.2. The difference between the two methods of analysis is more pronounced

at low temperature, where the stretching factor is very low if compared to one. In the

case of τ analysis, for example, the energies activation values differ considerably with

respect to the one obtained analysing 〈τ〉.
The results give evidence of two distinct activation energies with the transition tem-

perature around 200K for all samples. The high temperature activation energy is the

same for all the three samples U(T > 200K) = (0.42 ± 0.01) eV. At low T , it was

possible to measure an activation energy only for the less doped sample, providing

U(T < 200K) = (0.08± 0.01) eV.

The total mean lifetime can be viewed as the sum of the time of each hop, which in

turn is the inverse of the corresponding hopping frequency, defined in Sec. 2.3:

〈τ〉 =
∑

n

τn =
∑

n

ν−1
i(n)j(n) (6.2.4)

where i(n) and j(n) labels the types of initial and final site of the n−th hop. According

to the relaxation model adopted (Sec. 6.2.1), i, j ∈ [P, F, Fe], so that the activation

energy of 〈τ〉 cannot in general be defined. It is however clear that if, on average, one

specific type of hop occurs more frequently than the others, the activation energy will

become closer and closer to the hopping barrier of the specific hop type:

〈τ〉 ∝ τ0ije
Uij

kT (6.2.5)

where τ0 is the lifetime of the specific hop ij. In this vision, if the slope of the Arrhe-

nius plot corresponds to one of the activation energies of figure 2.3.1, it would be

possible to understand the dominant transport mechanism. It can thus be supposed

that at low T the the most prominent process are the trapping hops Nb4+Nb → Nb5+Li
or Nb4+Li → Fe3+(expected energies: UFP = 0.069 eV and UPFe = 0.043 eV), in agree-

ment with the preliminary discussion of section 3.3 which pointed out that at low

T the polarons are trapped in one single hop. At room and high temperatures, the

activation energy appears to be intermediate between the hopping barriers for the

hops Nb4+Li −Nb4+Li , Nb4+Nb −Nb4+Nb or Nb4+Li −Nb4+Nb (UPP = 0.290 eV, UFF = 0.273 eV,

UPF = 0.634 eV) indicating that all these processes are simultaneously taking place.

We cannot however exclude that the energy barrier values, computed from published

data, may need a refinement. This topic is reported in section 6.4.1, with the aid of a

Monte Carlo simulation.
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6.3. Monte Carlo analysis of transient absorption decays

Sample
[
Fe3+

]
−1

[Fetot]
−1 ln (τ0) τ0

10−25m−3 10−25m−3 s

A/0.36/19.0 2.77 2.70 −24.9± 0.4 (1.5± 0.6) · 10−11

A/0.87/19.0 1.15 1.05 −25.4± 0.5 (9± 5) · 10−12

A/0.5/19.0 1.92 0.53 −26.1± 0.6 (5± 3) · 10−12

Table 6.2.1.: Prefactors of the exponential term in Eq. 6.2.5 determined from the data

of Fig. 6.2.4. [Fe3+] is the Fe3+ concentration in the dark, [Fe3+TOT] is
calculated assuming that after the pulse, all the Fe traps are empty.

The intercept τ0 of the linear part of the high temperatures datasets in Fig. 6.2.4

should be inversely proportional to the trap density according to Eq. 1.7.1. Values

reported in table 6.2.1 evidence that this is not the case. We believe that this discrep-

ancy can be attributed to the trap refilling effect discussed in Sec. 3.4, i.e. to the fact

that just after the pulse the number of total Fe traps is not the one in the dark, since

the pulse has emptied the largest part. This is confirmed by the fact that the lifetime

prefactor correlates much better with the inverse of the total Fe content. This point

will be considered again in Chapter 7.

6.3. Monte Carlo analysis of transient absorption decays

The aim of this section is to reproduce by the Monte Carlo code described in Chap. 3

the transient measurements for three different samples having different iron concentra-

tions, belonging to sample series A. As discussed in section 3.6, in our simulation we

consider primarily as free parameters the two orbital lengths a and c, describing the

distance dependence of the hopping frequency for the transport and trapping processes

respectively.

The output of the MC code is the population decay of single polaron species. As

already discussed in section 6.2.1 to achieve this purpose it is mandatory to convert

the LIA signals into the population decay for every polaron species. Unfortunately

this task cannot be fulfilled for the moment due to a lack of precise knowledge on

the cross section values of the STE and of other centres. However, according to the

discussion of Sec. 6.2.1, we may safely assume that in the experimental conditions here

adopted, the signal at λ = 785 nm is proportional to the population of Nb4+Li bound

polarons, decaying towards Fe traps. This allows comparing directly the population

variation resulting from the simulation with the absorption signal at λ = 785 nm.

Simulation are compared with experimental data in the time range from 10−7 seconds

(the experimental range). Due to the incertitude in the exact cross section value and

in the initial value of the absorption curve, which is sensitive to several experimental

artefacts, the simulation and the experimental data are normalized to 1 at the initial
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Figure 6.3.1.: Comparison between experimental results [97] (red) and MC simulations
(black) for sample series A for three exemplary temperatures.

point.

By comparing the absorption coefficients with the peak photon fluence of our pump,

we may consider that all Fe2+ ions are likely to be ionized after the pulse [66, 86], so that

the initial polaron concentration can be taken to be equal to the
[
Fe2+

]
concentration

in the dark. Finally, since the polaron formation time (< 1 ps)[61] is much shorter

than our pulse duration, we can assume that the polarons present immediately after

the pulse are those that were able to perform several (eventually photo-assisted) hops

from the position of the initial donor centre, so that their position after several ns can

be considered to be completely uncorrelated from the initial photo-generation site. The

so-produced light-induced polarons perform a random walk hopping among defective

NbLi sites (bound polarons) or regular NbNb sites (free polarons) until they are trapped

by a Fe3+ ion.

Systematic simulations with different input values for the orbital lengths a and c

were performed in order to reproduce the experimental results reported in chapter 5.1

for all the samples and all the measured temperatures with a unique set of parameters.

According to the experimental results of [60], the non-adiabatic approximation which

our code relies upon is acceptable down to 150K. However, to be more safe, we decided
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6.3. Monte Carlo analysis of transient absorption decays

to limit the comparison in the temperature range 200K < T < 400K.

A satisfactory agreement could not be reached, because at high temperature the

simulation curves remained too slow in comparison to experimental ones. To improve

the agreement we decided to use also the bound polaron DSE EP as free parameter. The

reason for this choice is that (i) energetic parameters have the largest impact, together

with orbital parameters, on the simulation results and (ii) the EP value reported in

Tab. 2.1.1 was calculated assuming for the bound polaron the same phonon energy

of the free one, but in fact no precise determination for this parameter is available,

taking into account that the bound polaron is a defective site. On the other hand, the

energetic parameters for the free polaron and for Fe appear to be well assessed (see

Section 2.1) so they will be retained.

In figure 6.3.1 the best result of this procedure is reported. Although some misfits

are still present, it should be stressed here that, by using only three parameters, we

can correctly reproduce the decay shapes for all the temperatures and trap concentra-

tions, with the only exception of sample A/0.87/19.0 and only for low T . The reasons

for this disagreement are still not clear. A tentative explanation is connected to the

observation that in this sample a pump intensity of 200MW/cm2 was used to obtain a

sufficient signal, which is significantly higher than the ones used for the other samples.

This may somehow invalidate the basic assumptions of our modelling, i.e. that the

signal at 785 nm is proportional solely to the NbLi population and that Fe3+ are the

only recombination centres. In fact the agreement becomes much better in the same

sample by increasing the temperature, which may hint that STEs contribute to this

wavelength at low temperature. Besides this pathological case, all the other datasets

are satisfactorily fitted by the simulation. A better agreement could probably be ob-

tained by allowing more free parameters or using more complex models, but we expect

no significant changes in the final values of a, c and EP obtained by our procedure.

The resulting set of three free parameters is:

EP = (0.75± 0.05) eV

a = (1.6± 0.1) Å

c = (1.5± 0.1) Å

Concerning orbitals parameters result, the values are in the range expected from theor-

etical consideration of section 2.1, indicating that the electron wave-function of free and

bound polarons are entirely confined in the oxygen octahedra, confirming their small

polaron nature.

Another main result is the refinement of the value of EP . The total Nb4+Li polaron

energy is known from spectroscopic data be equal to M = 2EP + εP = 1.69 eV, cor-

responding to εP = 0.53 eV for EP = 0.58 eV, as discussed in [58]. According to these

values, the electron would be strongly bound to the antisite (εP ) but the energy gained
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6. Transient measurements

final site

energy in eV Free (F) antisite (P) Fe

initial site

Free (F) 0.273 0.156 0.003

antisite (P) 0.551 0.375 0.038

Fe 1.378 1.018 0.350

Table 6.3.1.: Hopping energy barriers (equation 2.3.8) calculate for no applied electric
field. In red color the ones which differ from values of figure 2.3.1 calcu-
lated with the new polaron energy EP = 0.75 eV.

from the local deformation of the lattice (EP ) would be close to the one of a free NbNb

polaron, being EF = 0.54 eV its deformation-stabilization energy.

Our Monte Carlo results imply that the binding energy has the lower value:

εP = (0.2± 0.1) eV

This means that the Coulombic defect attraction of the bound polaron is relatively

weak. This appears to be reasonable if we consider that the anionic environments of

both polarons are very similar (a Nb atom inside an oxygen octahedron). We therefore

can expect a similar charge density distribution and a similar Coulombic attraction for

the electronic wavefunction. On the other hand, the cationic lattice structure of the

two centres is quite different. The NbLi site “feels” the proximity of the heavy NbNb

atom, which has been uncovered as origin of the the large relaxation as being computed

by the LDA methods in the bipolaron state Nb4+Nb : Nb4+Li [62]. From the width of the

Nb4+Li polaron optical absorption band, proportional to (EP~ωLO)
1/2(Eq. 2.1.5) our

new estimate for EP gives ~ωLO = (77 ± 5)meV. This is significantly less than the

phonon energy of the NbO6 breathing mode (109meV, i.e. 871 cm−1 according to

Raman data [102]). In other words the self-trapping is favoured on NbLi versus NbNb

mainly because the surrounding lattice is softer.

The refined energy value allows to recalculate the energetic barriers for the different

hopping processes (Table 6.3.1). This table therefore substitutes the one of figure 2.3.1

from now on.

6.4. Discussion

6.4.1. Hopping transport regimes

In the preceding paragraphs we established that, under low intensity illumination (I <

10MW/cm2), which is the regime of interest for CW lasers, the main role in the transport

phenomena is played by NbNb and NbLi polarons hopping until a they are trapped by

Fe3+ centres. One of the most intriguing question concerns the understanding of the role

played by the different types of polarons, by variation of the temperature, or of the NbLi
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Figure 6.4.1.: (left) NFF /Ntot in function of the temperature and [NbLi] concentration
for an undoped sample ([Fe] = 0). (right) NFF as a function of the
temperature and [Fe] concentration for a stoichiometric sample ([NbLi] =
0).

antisites and Fe concentration. With the analysis on the energy activation of the mean

lifetime (see section 6.2.2) we got an indication that, depending on the temperature,

different hopping processes can take place. It was only possible to conclude that at

high temperature a mix transport made by Nb4+Nb free and Nb4+Li bound polarons plays

the decisive role, while at low temperature the iron has a greater impact on the results.

Their respective parts in light-induced transport are still an open question. The present

section aims to study the interplay between these species and to predict which type

of transport should predominate, depending on temperature and trap concentrations.

This will be done with the help of the Monte Carlo simulation and of the refined

microscopic parameters established in Sec. 6.3.

Free polaron transport

Free polarons are generally believed to be the main charge carrier in LN [58]. To

evaluate quantitatively their role in charge transport we can calculate, for an average

polaron performing Ntot hops from its birth to its death, the fraction NFF/Ntot of

Nb4+Nb → Nb4+Nb hops performed as a free polaron. The calculation is performed by

simulating 5000 polarons using the microscopic parameters determined in Sec. 6.3

together with the fixed ones reported in Sec. 3.3. The experimental conditions (antisites

and Fe traps concentration and temperature) are varied, to explore the typical range

of parameters encountered in standard situations.

In the left side of figure 6.4.1 we investigate the effect of the sample composition and

of the temperature on the free polaron contribution to conduction. Here the Fe concen-

tration is set to zero. This situation therefore describe the impact of the stoichiometry

or of doping with photorefractive-resistant ions (Mg, Zn, Zr) on the conduction. It can

be seen that at room temperature, the reduction of the [NbLi] concentration initially

has a small influence on the amount of FF hops. It is necessary to eliminate about
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Figure 6.4.2.: (left) NBB/Ntot in function of the temperature and antisite concen-
tration for an undoped sample ([Fe] = 0). (right) NBB as a func-
tion of the temperature and [Fe] concentration for a congruent sample
([NbLi] = 19.0 · 1025m−3). Free polaron contribution has been disreg-
arded for simplicity. Note the different temperature range in the two
plots.

the 90% of the antisites before observing a steep increase in the free polaron contribu-

tion to the conduction. This result explains quantitatively the origin of the so-called

photorefractive threshold which is necessary to surpass to observe a marked decrease of

the photorefractive effect in undoped LN [1]. The situation is even more extreme at

low temperatures and, conversely, more gradual by heating the sample.

In the right side of figure 6.4.1, we consider now the impact of Fe doping from

the point of view of free polaron conduction. We consider a stoichiometric sample

to distinguish from the effect of shallow [NbLi] traps. The qualitative behaviour is

obviously similar. In this case it is interesting to note that at room temperature, even

for high Fe concentrations (2·1025m−3), the free polarons are always able to perform on

average several hops before being trapped. This is in contrast, as we will show below,

for the behaviour of bound polarons.

Bound polaron transport

As it has been shown in the above paragraph, when some antisites are present and

for not too elevated temperatures, (Fig. 6.4.1 (left)) only a limited percentage of the

hops that one polaron performs during its life are of the Nb4+Nb → Nb4+Nb type. In Fig.

6.4.2 (left) the same analysis is carried out for Nb4+Li → Nb4+Li hops. Here the situation is

reversed: if the temperature is not too high and the antisite concentration is close to the

congruent one, a large (on average) percentage of the total hops is constituted by direct

hops among antisite defects. This lead us to the important conclusion that in standard

conditions, i.e. a congruent material at room temperature (and below), the dominating

polaronic specie is the bound polaron, hopping directly among antisite defects. This

situation is completely different with respect to the free polaron case, because bound
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6.4. Discussion

EP (eV) UPF (eV) UFP (eV) UP,Fe (eV) UPP (eV)

0.58 0.635 0.07 0.043 0.290

0.75 0.551 0.156 0.038 0.375

0.84 0.516 0.211 0.036 0.420

Table 6.4.1.: Hopping barriers calculated from equation 2.3.8 for different values of

Nb4+Li energy, EP .

polarons hop on a disordered lattice, for which standard diffusion equations (Eq. 2.3.5)

may not be valid (see Chap. 8). Two important remarks are necessary: (i) the fact

that a large percentage of hops is performed as a bound polaron, does not necessarily

mean that charge transport is ruled by bound polarons: free polarons are so much

more mobile than bound ones that, even if they are very scarce, they can carry charge

in a very efficient way. (ii) Even if some hops are performed as free polarons, their

concentration remains negligibly small, because they perform their hops very quickly

before being very soon recaptured either by a Nb5+Li shallow trap or by a Fe3+ deep

trap. Therefore, the number of conversion per unit of time at which free polarons

are produced is much slower than the number of conversion per unit of time at which

they disappear, so that their equilibrium concentration remains very limited. This is

confirmed by our simulations that show that the free polaron population is always close

to zero in standard conditions (Fig. 3.4.1) and by our experimental LIA results (see

section 6.2.1).

The influence of iron traps on Nb4+Li polarons is shown in Fig. 6.4.2 (right). In

this case the contribution of free polaron can be disregarded because this analysis is

performed at low temperature for congruent composition, this allow to reduce greatly

the computational cost of this simulation. Here the situation is even more dramatic if

compared to the free polarons case, because at low temperature, even with a relatively

low concentration of deep traps, the bound polaron can perform at most one single

jump. The numbers showed in Fig. 6.4.2 (right) are an overestimation because of the

soft pair effect (see Sec. 3.1). In other words, the NbLi polaron can perform in some

cases a large number of hops between two close-by antisite defects, without contrib-

uting effectively to the transport. In any case, this graph can be used by looking the

conditions for which the number of hops become smaller than one. This means that at

low temperature, the bound polarons are directly trapped by a Fe3+ and the transport

process is no longer based on Nb4+Li → Nb4+Li hops but on Nb4+Li → Fe3+. This is in

agreement with the results of Fig. 6.2.4 which show a change in the activation energy

of the average hopping frequency by cooling down the sample. The measured activa-

tion energies are larger than the ones reported in Table 6.3.1. This is not surprising,

as the results of the simulations describe an average situation and the case of strictly

one single type of hopping process should be regarded as a limit situation. Therefore,

the measured activation energy (EA = (0.08± 0.01) eV) at low temperature in sample
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Figure 6.4.3.: Percentage fraction of hops per random walk performed as free (nFF )
or as bound (nPP ) polaron for EP = 0.75 eV (black symbols) and for
EP = 0.58 eV (red symbols) in sample A/0.5/19.0.

A/0.36/19.0 corresponds to a mix of hopping processes of the type Nb4+Li → Nb4+Li and

Nb4+Li → Fe3+, with an apparent activation energy in between the corresponding ones

(UPP = 0.375 eV and UPFe = 0.003 eV respectively).

To conclude this section, we stress here an important observation. If a and c are

fixed, the temperature above which one type of hopping processes become relevant with

respect to another is very sensitive to EP through the dependency on the energy barrier

of the process (equation 2.3.8). By increasing EP , the conversion barrier UPF for the

bound to free hops is decreased, while the trapping barrier UFP from free to bound state

would rise and thus reduce the efficiency of NbLi as a free polaron trap (Table 6.4.1).

In other words, by increasing EP we favour the hopping among regular NbNb sites with

respect to antisites NbLi at a given temperature. The significance of this vision stems

in the fact that bound and free polarons possess a very different mobility, so that it is

important to understand when the conduction becomes bound-polaron or free-polaron

dominated. As observed before, the mobility of free polarons is much greater than

the one of bound polarons, this explains why the observed decays previously reported

in figure 3.6.3 become faster at high temperatures for a larger EP value. To better

illustrate this finding, in Figure 6.4.3 it is shown the percentage of hops performed as

a free (nFF /Ntot) or as a bound polaron (nPP /Ntot) for sample A/0.5/19.0 assuming

EP = 0.75 eV or the value EP = 0.58 eV reported in literature [58]. It can be seen

that, with the former value, at room temperature the polarons performs already a 5%

of their hops among NbNb sites and a 22% among NbLi ones, the rest of the hops being

“conversions” NbLi → NbNb and vice versa. Setting EP = 0.58 eV, it is necessary to

increase the temperature up to about 600K to have a similar free polaron contribution;

in this case the transport, up to this temperature, would be composed at 50% by slow

hops on the random lattice of the antisite defects.

We can define a conversion temperature Tconv above which a thermal excitation of
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the polaron from NbLi to NbNb occurs as often as a hop to another NbLi. In Figure

6.4.3 this corresponds to the point where the curves relatives to nFF and nPP cross

each other, Tconv ∼ 350K for EP = 0.75 eV, while this is Tconv ∼ 650K in the other

case.

6.4.2. Trap size effect

Results of Section 6.4.1 show that different thermally activated hopping regimes can

exist on dependence of the sample composition and on the temperature. In this section

we introduce a simple model that can help to visualize and interpret those results by

resorting to the concept of trap size effect (TSE) first developed by Prof. L. Guilbert

[103] and partially discussed in [104]. The main idea of this model is to associate to

a deep (shallow) trap a spatial region around it, as shown in figure 6.4.4 and consider

that any polaron going into this region will surely be captured by the trap, and surely

not in the reverse case.

Given a polaron sitting on a certain site i and a trapping site j with lower energy at

a distance rij from the polaron, what is the probability for the polaron to be trapped

by the deep level, i.e. to hop towards the lower energy state instead of hopping on

an equivalent i site? The answer is found by comparing the hopping frequencies of

the two processes. From Eqs. 2.3.6, 2.3.7 and 2.3.8, depending on the values of the

characteristic energies and on those of the orbital lengths aii (for transport) and aij (for

trapping), the probability of being captured by the deep centre j for a fixed temperature

is a function of the distance between i and j. We define the trapping radius Rij as the

distance at which the probability of being captured by the deep centre is equal to the

probability to hop on an equivalent site:

νij (Rij , T ) = νii(rii, T ) (6.4.1)

where rii is the distance between two transport sites and νij is given by Eq. 2.3.6.

Clearly, if the distance between i and j is shorter than Rij , the polaron is likely to be

trapped, and vice versa. In Eq. 6.4.1 the hopping distance rii between the shallow

centres i, for the case of hopping on a disordered network, can be taken to be equal

to the most probable distance between two sites i, rii = (2πNi)
❂1/3, where Ni is the

concentration of i sites. For what is concerns the trapping radius, using the hopping

frequency 2.3.6 and solving the above-mentioned equation 6.4.1 it is possible to give an

analytical expression of Rij :

Rij(rii, T ) = aij

[
2 ln

(
J0
ij

J0
ii

)
− 1

2
ln

(
Ei + Ej

2Ei

)
+
rii
aii

+
Uii − Uij

kT

]
(6.4.2)

The last part of the formula shows that there is a dependence on rii and 1/T , evidencing

that the trapping radius becomes larger by decreasing the concentration of i centres
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6. Transient measurements

Figure 6.4.4.: Trap size effect versus temperature. Brown dotted circles are trapping
spheres surrounding NbLi traps (brown dots), dashed blue circles are
trapping spheres surrounding FeLi traps (blue squares). Random walks
(dotted arrows) shorten at decreasing temperature until they are reduced
to a single hop when the trapping spheres overlap. Efficient photoexcit-
ations (blue arrow) are those for which the polaron is formed outside the
Fe trapping sphere. Inefficient photoexcitations (red arrow) are those in
which the polaron is formed inside the trapping sphere.

and/or decreasing the temperature.

As said, the trapping radius is the distance below which a polaron hopping on i is

more likely to be trapped by j rather than continuing to hop. A detailed calculation

shows that, for the microscopic parameters used in this work, the trapping probability

p(rij) depends on the distance rij between the i and the j centres according to a step-like

function. It is therefore useful to introduce what we call the black-hole approximation

which amounts to approximate p(rij) with the Heavyside function 1 −H (r❂Rij), i.e.

to consider that if a polaron finds itself on a i site which is contained into a sphere of

radius Rij(rii, T ) centred onto a j centre, it will be certainly trapped in the next hop

[103].

Let us consider for example the situation demonstrated in Fig. 6.4.1 (left). For a

congruent sample and no Fe traps, the number of hops performed as a free polaron

decrease by decreasing the temperature, being almost zero for T < 200K. This result

can be interpreted in the framework of the TSE by considering that NbLi antisite traps

are surrounded by a trapping volume of radius RFP which depends on temperature.

By decreasing T , the trapping radius grows, according to Eq. 6.4.2. When its value

becomes comparable with the average distance between the NbLi antisites, the number

of hops performed as free polaron decrease drastically (see Fig. 6.4.4). Ultimately,

when the NbLi traps saturate the space, no free polaron can exist in the system: as

soon as they form, they become immediately captured by an antisite. For a congruent
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400K 300K 200K

RPFe 24 Å 29 Å 38 Å

RFP 7 Å 9 Å 13 Å

RFFe 14 Å 18 Å 25 Å

Table 6.4.2.: Trapping radius values calculated for a congruent sample at various tem-
peratures.

composition the average distance between antisites is rPP = 9 Å. From the Monte Carlo

fitting of transient absorption measurements (Sec. 6.3) we know that aFP = aFF =

a = 1.6 Å, and Ei = EF = 0.54 eV. Ej = EP = 0.75 eV while J0 and U calculation

are described in in section 3.3 and 2.3. For the free polaron the typical hopping length

is rFF = 3.765 Å, the inter-cationic distance. From these microscopical parameters we

calculate a trapping radius RFP = rPP = 9 Å at T = 300K, meaning that free polarons

can perform some hop starting from room temperature and above, in good agreement

with our data.

The same reasoning can be applied to other centres. In Table 6.4.2 the radius for

different trapping processes are calculated for different temperatures. In the case of

antisite defects trapped by iron, the average distance between Fe3+ is about 36 Å for

sample B/0.34/19.0, 26 Å for sample B/0.82/19.0 and 21 Å for sample B/1.6/19.0. At

200K the trapping radius of Fe3+ is 38 Å so that an antisite-bound polaron at this

temperature there can be only direct trapping Nb4+Li → Fe3+, as recognized in the

precedent paragraphs. On the other hand, at e.g. T = 300K we can have multi-

hop conduction in the less doped sample B/0.34/19.0, but not in the other two. At

T = 400K, bound polarons can hop in all samples except the most doped one. However,

at this temperatures, bound to free conversion become active so that the situation is a

little more complicated: the trapping radius of Fe towards F polarons is smaller than

the one of Fe towards NbLi and free polarons can be present and contribute to the

multi-hopping transport.

Formula 6.4.2 provides a simple tool to estimate approximately the dominant hopping

process, permitting to tailor in advance samples characteristics and temperature of work

according to the experimental application.
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Having established in Chap 5.1 the roles of the different centres as a function of tem-

perature and sample composition, and having tuned the parameters of the MonteCarlo

code, we are now ready to test those findings against charge transport under continuous

illumination. The situation in this case is a little different: instead of a decaying pop-

ulation of polarons, we have here a quasi-equilibrium situation, in which the trapped

charges are continuously replaced by photo-excited ones. Moreover, due to the low in-

tensity used in our measurements (I0 < 300W/m2), the presence of holes and STEs can

safely be neglected. The major experimental novelty of these experiments, compared to

results reported in literature (see e.g. [5]), is the dependence of macroscopic quantities

such as σph and jpg from the temperature: this will constitute a tough workbench to

test our approach. These studies were done on sample series B and C, i.e. in function

of the deep trap and the shallow trap concentration respectively.

7.1. Photorefractive measurements results

Using the setup described in Sec. 5.2.2, we recorded the dynamic of the space charge

field formation under continuous illumination at different temperatures on the two series

of samples B and C (see Tabs. 4.3.2 and 4.3.3). We recall that the first series is charac-

terized by a fixed antisite concentration and a variable deep trap concentration, while

the second series has a fixed deep trap content and a varying antisite concentration.

From the analysis, detailed in Sec. 5.2, the dielectric rise time τd of the space charge

electric field, and the refractive index variation in the stationary situation △nsat , are
computed (see Fig. 5.2.4 and Eq. (5.2.4)).

Next we make use of Eqs. 5.2.5 and 5.2.6 to obtain from those data the transport-

related quantities φµeτ and Esat. In doing this calculation we made use of the known

sample characteristics and of the experimental parameters obtained from our setup

characterization. The dependence of r33 on the temperature (see Fig 1.4.1) has been

taken into account. Changes in the dielectric constant due to temperature and sample

composition were instead disregarded because their contribution is expected below our

experimental accuracy (See Section 1.3).

7.1.1. Drift coefficient

The quantity µeτ obtained from our experimental data using Eq. 5.2.6, derives from

Kukhtarev’s original formulation, which assumed band-like transport (see Sec. 1.7).
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The physical meaning of µeτ is the distance Ldrift run by one particle from its birth to

its death per unit electric field; we call this quantity drift coefficient Λ:

µeτ =
Ldrift

E
= Λ (7.1.1)

Kukhtarev’s formulation was based on a normal diffusion approach, according to which

the mobility of a carrier is independent on the time. However, as it will be shown in

Chapter 8, this assumption may not hold for bound polaron conduction, which were

shown to be the main carriers in Fe:LN in standard conditions in Chapter 5.1. For this

reason we prefer here to be more general and use Eq. 7.1.1 as an operative definition

of Λ as the ratio Ldrift/E, without giving any explicit formulation for it. In Chapter 8

it will be shown that this is a good definition because, even in presence of anomalous

diffusion, the drift length Ldrift is proportional to the applied field E. On the other

hand, the drift coefficient Λ is nothing but the photoconductivity normalized to the

charge photo-generation rate es I0
hνN .

In Figure 7.1.1 our experimental results are given in terms of Λ times the unknown

charge photogeneration efficiency φ for the two samples series as a function of temper-

ature. The first striking result is that all the samples demonstrate qualitatively the

same dependence upon cooling: after an initial decrease, the φΛ product tends to a

constant value, showing that the transport process becomes athermal. Second, all the

curves appear to be inversely proportional to the deep trap concentration as in a log

plot they are just shifted one from the other (Fig. 7.1.1 (top)). This is in agreement

with photorefractive literature [105, 106, 33], according to which the drift length should

be inversely proportional to the deep trap concentration. The effect of antisite concen-

tration appear modest (Fig. 7.1.1 (bottom)), and the small differences between the

three samples of the C series appear to be related to the small change in the Fe content

(shown in Figure).

Those data can be put in relation with the findings of Chapter 5.1. As shown in

Fig. 6.2.4 the slope break occurring in sample A/0.36/19.0 occurs in the same tem-

perature range of the slope change obtained in photoconductive measurements. This

was related in Sec. 6.4.1 to a change in the hopping process. Schematically, we can ex-

pect at low T a single-hop regime, in which the newborn polarons are directly trapped

Nb4+Li → Fe3+. Slightly below room temperature, a multi - hop regime is expected with

polarons hopping on the disordered NbLi antisite lattice and a negligible contributions

of free polarons. Finally, above room temperature, a mixed conduction regime with

both free and bound polarons contribution is expected. However, as shown in Figs.

6.4.1 and 6.4.2 those regimes should depend also on the Fe concentration. This can be

understood using the Trap Size Model of Sec. 6.4.2 [103]. Assuming that the Fe traps

are surrounded by a finite size trapping region with a temperature-dependent radius

that become smaller upon heating. At low temperature the trapping spheres are large

and overlap: in this situation the polarons are immediately trapped. This situation
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Figure 7.1.1.: Arrhenius plot of the normalized photoconductivity for different deep
trap concentrations (top) and shallow trap concentrations (bottom).
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would correspond to the single-hop regime. By heating, the trap size is reduced and

when the spheres do not overlap any more, the multi-hop regime is enabled. Logic-

ally, samples with a low Fe concentration should attain this regime before the others,

which means that in Fig. 7.1.1 we should observe e.g. a slope change for the sample

B/0.36/19.0 at a lower temperature with respect to sample C/1.94/6.35. This seems

not to be the case here, as all the samples present more or less the same temperature

dependence. A possible explanation is that the Fe content is too similar between the six

samples to evidence a clear change in the conduction mechanism. Concerning samples

of the C series, the weak effect of the antisite concentration on the drift coefficient is

expected from the general results of Sec. 6.4.1, in which it was shown that in order

to raise significantly the free polaron contribution at room temperature, it is necessary

to kill the 90% of the antisites present in a congruent material. Moreover the high

iron doping level of about 1.9 · 1025m−3 is sufficient to ensure the single-hop regime

for bound antisite polarons till quite high temperatures, and most probably to mask

the effect of the different shallow trap concentration. An interesting observation in this

respect is that the linear dependence of φΛ is conserved also at low temperatures. This

means that even in the single hop regime the drift coefficient is inversely proportional

to [Fe3+].

7.1.2. Saturation Space Charge Field

The information on △nsat is converted to an information on the saturation space charge

field using Eq. 5.2.5. According to Eqs. 1.7.12 and 7.1.1, Esat =
Lpg

Λ so the results

here obtained give an independent information on Λ which can be compared with the

results of the preceding sections. In particular, it should be noted that here the Esat is

independent on the charge photogeneration efficiency φ. This result will be exploited

in the next sections.

Experimental data are reported in figure 7.1.2 for the sample series B and C. From

experimental values Esat grows by decreasing the temperature, as already mentioned

in [107]. It is also possible to see that Esat is proportional to the [Fe3+] concentration,

as expected from the photoconductivity measurements and in agreement with the lit-

erature [33]. Coherently with the results of Sec 7.1.1, the samples of the C series show

very similar results.

7.1.3. Photogalvanic length

By multiplying together the two experimental determinations of Λ and Esat for each

temperature, we obtain also an estimation for the effective photogalvanic length, intro-

duced in Sec. 1.5 and given by φLpg. The results are shown in Fig. 7.1.3. Although

some scattering is present, all the data, both from series B and C, seem to collapse on a

single curve which shows a weak temperature dependence. This is expected because the

photogalvanic length is a microscopic parameter that should depend essentially on the
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Figure 7.1.2.: Saturation space charge field for the sample series B and C, having re-
spectively a different Fe3+ and NbLi concentrations.
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7. Continuous-wave measurement

donor element (in our case Fe) and on the excitation wavelength (in our case 534 nm).

In particular, our data do not confirm the trend reported in [33] where the specific bulk

photovoltaic constant β∗ = jpg/(I cFe2+) shows a small increasing in function of the

total iron concentration. Concerning the room temperature value of φLpg, our results

are in line with the values published by Grousson et al. [108] which in a sample iron

doped with 0.015wt% (0.28mol%) obtained at room temperature φLpg = 0.2 Å with

λ = 546 nm.

Also those data contains the influence of the unknown parameter φ. In principle, the

photogalvanic length Lpg is an intrinsic property of the material, and this may suggest

that the weak temperature dependence is contained only on the free carrier generation

probability φ. This would not be surprising: as discussed in Sec. 2.2 the efficiency φ

is determined by a thermally activated hopping process. A rough theoretical estimates

for Lpg reports 1 Å [43]; assuming this value as independent on T , this leads to an order

of magnitude for φ ∼ 10% at room temperature and few percent at low T .

7.2. Monte Carlo analysis of photorefractive results

The results of the photorefractive measurements reported in the preceding section did

not allow to gain much insight on the microscopic charge transport process; in this

paragraph we will resort to the Monte Carlo analysis described in Chap. 3 to extract

as much information as possible.

Our simulation code permits to build a statistic of the positions of reached by a

bound polaron launched in an infinite medium under the influence of an electric field

E, assumed along the c axis, to conform to the geometry of our photorefractive meas-

urements (see Fig. 5.2.1). By calculating the first moment < z > of the final polaron

distribution, we can compute numerically the drift coefficient defined in Eq. 7.1.1:

Λnum =
< z >

E

The electric field is chosen equal to 5 · 106V/m for all the simulations, which is of

the order of magnitude of the experimentally determined space charge field values and

enough to evidence a shift of the particle distribution, but not too strong to ensure that

the dynamic of the system remains stochastic (see paragraph 3.5). The mean shift value

< z > induced by this field is in the order of few angstroms as shown in Figure 3.5.1

and it decreases by decreasing the temperature. To reduce the error on the final value

of < z > it is necessary to simulate a great number of polarons. The maximum number

of polarons simulated at low temperature is 106, a compromise choice between the error

on the result and the simulation time, of the order of several days. The microscopic

parameters were set in accordance with Sections 3.3 and 6.3, in particular a = 1.6 Å,

c = 1.5 Å, EP = 0.75 eV and J ∼ 0.1eV.

The result of the simulation cannot be compared directly with our data of Fig. 7.1.1
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Figure 7.1.3.: Temperature dependence of φLpg (normalized photogalvanic current) for
the sample series B and C, having respectively a different Fe3+ and NbLi
concentrations.
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Figure 7.2.1.: Graphs report the value of experimental Esat in function of 1/Λ, com-
puted from simulations for sample series B (top) and C (bottom) setting
a = 1.6 Å, c = 1.5 Å, EP = 0.75 eV, EF = 0.54 eV, EFe = 0.70 eV,
J = 0.1eV and E = 5 ·106V/m. From the linear fit (black line) of sample
B/0.34/19.0 it is possible to calculate Lpg.
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because of the presence of the unknown quantity φ. To circumvent this problem, we

compare the result of the simulations with Esat, (Fig. 7.1.2) because in this quantity

the only unknown is the value of the photogalvanic length Lpg which is relatively safe

to assume as a constant, independent on the sample and on the temperature. We

therefore operated as follows: for all the samples of the series B and C and for all the

temperatures we calculate the value of Λnum by setting the appropriate input conditions.

We then construct a graph in which the experimental Esat values measured in the same

conditions are plotted against 1/Λ. If the relation Esat = Lpg/Λnum holds, a straight

line should be observed whose slope gives directly the value of Lpg. In figure 7.2.1 the

results of this procedure are reported. It can be seen that the linear trend is obeyed only

for the sample B/0.34/19.0 and only for the points corresponding to the longest values

of Λnum. When the simulated drift length becomes too small, 〈z〉 ≤ 2 Å, corresponding

to 1/Λ ≥ 2 · 106(V/m)/Å, the results start to exhibit a nonlinear deviation and are

no longer in line with the expectations. An inspection of the results indicates that the

linear condition is attained when the transport process is in multi-hop regime. When

this regime is lost, i.e. by increasing the Fe content and/or decreasing the temperature,

our estimation of Λnum appears to be no longer reliable. The reason for this behaviour

are still under investigation. However it appears clear that they are somehow connected

to direct trapping regime, for which the drift distances are very small and require an

extremely high accuracy. We believe however that the simulation’s result in the multi-

hop regime are reliable. This is confirmed also by the fact that the slope of the linear

part of Fig. 7.2.1(top) gives Lpg = (0.80± 0.04) Å, in excellent agreement with the

value reported by Glass et al. [2].

Assuming that this value is independent on the material composition and on the

temperature, we can use it to evaluate the temperature dependence of φ by dividing

the data of Fig. 7.1.3 by Lpg. The result is reported in Figure 7.2.2, whose value go

from about 10% at low temperature to increase to about 15% at room temperature.

Finally by the knowledge of φ it is possible to correct the data of Fig. 7.1.1 to deduce

an experimental determination of the drift coefficient Λ, Fig. 7.2.3. As expected this

value is greater for the less doped sample and according with graphs it depends only

on the amount of deep traps. It can be seen for example that at room temperature for

the sample having [Fe3+] =1.54 · 1019cm−3 with an applied electric field of 5 · 106V/m
the polarons shifts along the z direction of < z >= 1.2 Å.

Considering accurate the simulation for the multi-hop regime, we can resort to the

results of the preceding section (Figure 6.4.2) to obtain some microscopic insight on

the measured results. In fact sample B/0.34/19.0 is the only one reaching a significant

hop number starting from a temperature T > 200K. This is in agreement with the

experimental data of Fig. 7.2.3 which shows for the sample B/0.34/19.0 an increase

of Λ starting from about T = 200K. Figure 6.4.3 shows that in a congruent material,

up to 250K the transport is accomplished by bound polarons Nb4+Li hopping between

antisite defects. In this case, the increase of Λ with the temperature is explained by
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Figure 7.2.2.: Results on the probability value that an electron generated by the ab-
sorbed photon is not re-trapped in the initial site, but participate to the
transport. Values are reported for sample series B and C.
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7.2. Monte Carlo analysis of photorefractive results

the fact that the trapping probability becomes less efficient, as it can easily visualized

using the trapping radius concept explained in Sec. 6.4.2. Above 250K, the additional

free polaron contribution start to become effective further increasing the mobility.

In conclusion, the obtained results demonstrate that our Monte Carlo code can be

used to calculate quantitatively the drift coefficient of iron-doped lithium niobate as a

function of temperature and composition, at least for not too doped samples and not too

low temperatures. This is precisely the situation encountered in practical applications,

where the Fe concentration is generally kept not too high and the sample is at room

temperature (or above). From the knowledge of Lpg and of φ a complete microscopic

modelling of photorefractive phenomena is possible.
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Figure 7.2.3.: Experimental drift coefficient of a particle under the action of an electric
field E in function of the temperature for sample series B and C obtained
from figure 7.1.1 and corrected by the factor φ.
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8. Anomalous polaron diffusion

In the last chapter, we provided experimental and numerical results on the drift coef-

ficient Λ using an operative definition (Eq. 7.1.1). In this chapter we attempt a more

detailed modelling of this parameter. The two main problems we have to deal with

are (i) a realistic description of the diffusion process for polarons and (ii) a theoret-

ical expression for their lifetime, in dependence of the diffusion mechanism and of the

microscopic details of the trapping process. For the moment we stick to the first prob-

lem by assuming a material free of deep traps. The study of the electrons diffusion in

the material plays a key role because it permits to study and eventually predict the

photo-electric transport properties, such as the mobility of the system when an electric

field is applied. The diffusion, at a microscopic level, is related to the random mo-

tion of individual particles in the material, and for lithium niobate a large literature is

found only in the case of free polarons diffusion, because, moving in the fix structure of

niobium site, their motion satisfies the hypothesis of the Brownian motion, for which

the normal diffusion theory, such as the second Fick’s law and the Einstein relation

linking diffusion and mobility, are valid [80]. Unfortunately this case resolves only a

very restrict range of practical applications, in particular the one of a stoichiometric

sample or the one of a congruent sample but only in high temperatures applications,

where the hopping F-F dominates (see section 6.4.1). For the moment, the standard

case of the congruent composition at room temperature or low temperatures, where the

antisite-bound polarons plays a key role, cannot be completely modelled. The problem

arises from the fact that this centre diffuses in a random lattice. The idea here is to

show how to deal with this problem by applying the theory of anomalous diffusion to

the case of lithium niobate, for which the standard diffusion of free polarons becomes

a special case.

8.1. Normal diffusion

It is useful to recall some concepts from standard diffusion theory. A particle is con-

sidered to be subjected to normal diffusion if its motion is of Brownian random walk

type. The latter is schematically displayed on a two dimensional lattice in figure 8.1.1.

In discrete time steps of span ∆t, the test particle is assumed to jump to one of its

nearest neighbour sites, here displayed on a square lattice with lattice constant ∆x,

with a random direction. If this random walk is followed for a very long time, a “nor-

mal”behaviour appears in the sense that the small steps cannot be seen, and the overall
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8. Anomalous polaron diffusion

Figure 8.1.1.: Schematic representation of a Brownian random walk. The walker jumps
at each time step t = 0,∆t, 2∆t, ..., n∆t to a randomly selected direction,
thereby covering the distance ∆x, the lattice constant [109].

motion is determined by the average effect of all of the steps.

To describe this situation mathematically, let us consider particle diffusion along the

z-coordiante in a 1D space. The equation describing this phenomena is expressed by

the equation (Fick’s second law):

∂W (z, t)

∂t
= K

∂2W (z, t)

∂z
(8.1.1)

where K is the diffusion coefficient and W the probability density function (PDF),

which specifies the probability that a particle is located at position z at time t. The

diffusion equation 8.1.1 is one of the most fundamental equations in physics, being a

direct consequence of the central limit theorem. The solution of this equation, if the

particle start from a point source W (z, 0) = δ(z) at z = 0, t = 0 , is:

W (z, t) =
1√

4πKt
e−z2/4Kt (8.1.2)

This one represents a Gaussian distribution with mean value equal to zero and variance〈
z2

〉
= σ2 = 2Kt growing linearly with the time.

If only free polarons hopping occurs, the diffusion can be completely described by

equation 8.1.1, because electrons move in a random way in the ordered structure of the

niobium sublattice, where all site are equivalent, as request in a Brownian motion.

8.2. Anomalous diffusion

The starting point for a mathematically rigorous understanding of anomalous diffusion

is the Continuous Time Random Walk (CTRW) model. This one is a generalization

of the Brownian motion model of diffusion, and was introduced first by Montroll and

Weiss in 1965 [110]. In the CTRW, a particle moves toward a given distance, and

then waits for a certain time before moving again. The diffusive transport described
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1

2

Figure 8.2.1.: Continuous time random walk (CTRW) model. CTRW process on a two-
dimensional lattice, generalising the Brownian situation from Fig. 8.1.1.
The waiting times are symbolised by the waiting circles the diameter of
each is proportional to the waiting time which is to be spent on a given
site before the next jump event occurs. In this schema jump lengths are
still equidistant [109].

in this theory refers to the movement in space of an ensemble of particles of a given

species, accomplished by random motions caused by thermodynamic fluctuations. The

main challenge from the normal to the anomalous theory concerns the change in the

definition of step length of the random walk. The CTRWmodel is based on the idea that

the length of a given jump, as well as the waiting time elapsing between two successive

jumps, follows some heavy tailed distribution drawn from a common PDF ψ(x, t), which

will be referred to as the jump probability distribution function (PDF). From ψ(x, t),

the jump length pdf assumes the form of λ(x) =
´

∞

0 ψ(x, t)dt while the waiting time

pdf is ω(t) =
´

∞

−∞
ψ(x, t)dx. A schematic cartoon of the CTRW model is drawn in

Fig. 8.2.1. Different types of CTRW processes can be categorised by the characteristic

waiting time τ =
´

∞

0 ω(t)tdt and the jump length variance σ2(t) =
´

∞

−∞
λ(x)x2dx,

being finite or diverging, respectively.

In this vision the general master equation governing the diffusion assumes the form

[109]:
∂W (z, t)

∂t
=0 D

1−α
t Kα

∂2W (z, t)

∂z2
(8.2.1)

whereKα assumes the meaning of a generalized diffusion constant, having the dimension

[Kα] = m2s−α and the fractional derivative operator for 0 < α < 1 is defined as:

0D
1−α
t W (z, t) =

1

Γ(α)

∂

∂t

t
ˆ

0

dt′
W (z, t′)

(t− t′)1−α (8.2.2)

and for this reason it is known also as time-fractional diffusion processes. The appear-

ance of fractional derivatives, inspite of the mathematical complexity of the formula,

is a very appealing approach, due to its formal proximity to the analogous standard

equations. α is the key parameter classifying the type of diffusion; for α = 1, Eq.
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Figure 8.2.2.: Comparison of the trajectories of a subdiffusive random walk (top) and
a Lévy walk (bottom). Whereas both trajectories are statistically self-
similar, the Lévy walk trajectory possesses a fractal dimension, charac-
terising the island structure of clusters of smaller steps, connected by a
long step. Both walks are drawn for the same number of steps (approx.
7000) [109].

8.2.1 becomes the standard Fick’s equation so that this case describes the normal dif-

fusion while all other cases are termed anomalous. The case α > 1 forms the family of

super-diffusive processes, for which the characteristic waiting time T is finite and the

jump length variance σ2 diverges, while the case α < 1 gives the sub-diffusive family,

where the characteristic waiting time T diverges, but the jump length variance σ2 is

still kept finite. These two situations are depicted in picture 8.2.2. In the bottom

it is shown the super-diffusive motion, named Lévy walk, where the overall position

is nearly completely determined by the long, rare steps - the “flights” and which are

followed by efficient trapping of particles in localized spatial regions, in contrast to the

more homogeneous picture of subdiffusion, in the top of the figure.

In the case of polarons diffusing in LN, as it will be shown below, it is found α < 1,

for this reason we restrict the following theory only to the the sub-diffusive case.

The most general fundamental solution of equation 8.2.1 is given in terms of Fox

H-function [111]:

W (z, t) =
1√

4πKαtα
H2,0

1,2

[ |z|2
4Kαtα

|(1−α/2,α)
(0,1),(1/2,0)

]
. (8.2.3)

This is a very useful representation on dealing mathematically with infinite expressions

whose coefficients involves gamma functions, naturally present in this formulation ac-

cording to the definition of the fractional derivative 8.2.2. Equation 8.2.3 describes

the time evolution of the spatial distribution of an ensemble of sub-diffusive particles

starting at the same position, analogously to what is done with normal diffusion.
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8.3. Sub-diffusion under a constant bias

Figure 8.2.3.: 1D Fox H-function after a time t = 1 for different values of α [112]. The
case of α = 1 represents the Gaussian distribution of the normal diffusion.

An alternative formulation of the Fox function based on a series expansion is available,

helping the implementation on a personal computer [109]:

W (z, t) =
1√

4Kαtα

∞∑

n=0

(−1)n

n!Γ(1 + α[n+ 1]/2)

(
z2

Kαtα

)n/2

(8.2.4)

For α = 1, Equation 8.2.3 reduces to the Gaussian diffusion profile, Eq. 8.1.2, as it

can be seen in figure 8.2.3, where the solution of 8.2.1 is plotted for various α using

the formulation 8.2.4 truncated at the 30th order. The variance of the distribution

8.2.3 is not trivial to compute, but in 1D case a solution is possible, leading to the

generalization of the Einstein-Stokes-Smoluchowski relation [109]:

〈
z2(t)

〉
=

2Kαt
α

Γ(1 + α)
(8.2.5)

where the variance of the distribution is no longer proportional to the time. As for the

normal diffusion, in the anomalous case it is possible from the time evolution of the

variance to compute the diffusion coefficient and, in addition, the degree of anomaly α.

8.3. Sub-diffusion under a constant bias

In this section, the treatment of normal and anomalous diffusion problems under the

influence of an external constant electric field is discussed.

In the case of normal diffusion, one of the simplest way to model the system is in

terms of the Fokker-Planck equation (FPE):

∂W (z, t)

∂t
=

[
∂

∂z

V (z)

µ
+K

∂2

∂z2

]
W (z, t) (8.3.1)

where µ is the mobility and V (z) is the potential associated to the presence of the
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electric field E. In this framework, it is possible to calculate the mobility of the diffusing

particles from the diffusion coefficient , trough the well known Einstein’s relation:

µ =
eK

kBT
(8.3.2)

The solution of equation 8.3.1 is once again a Gaussian distribution, with the only

difference that the first momentum of the distribution, i.e. its the mean value, is no

longer zero but is equal to:

< z(t) >F=
eE

2

< z2(t) >

kBT
= eE

Kt

kBT
(8.3.3)

where the last expression is obtained substituting equation 8.2.5 to < z2(t) >. Also in

this case single modes of the Fokker-Planck equation relax exponentially in time.

For the description of anomalous transport in the presence of an external field, a

fractional extension of the Fokker-Planck equation 8.3.1 is introduced, namely the frac-

tional Fokker-Planck equation (FFPE) [109]:

∂W (z, t)

∂t
=0 D

1−α
t

[
∂

∂z

V (z)

µα
+Kα

∂2

∂z2

]
W (z, t) (8.3.4)

where µα now is the generalized mobility of the system. With this mathematical de-

scription a generalisation of the Einstein-Stokes-Smoluchowski relation is possible, so

that the generalised mobility and diffusion coefficients are connected via the relation:

µα =
eKα

kBT
(8.3.5)

The solution of the fractional Fokker-Planck equation equation remains a Fox H-

function with the difference that first momentum of the distribution in 1D case is

equal to:

〈z(t)〉F = E
µαt

α

Γ(1 + α)
= vαt

α (8.3.6)

where vαis the “sub-velocity”, defined as:

vα(F ) = limt→∞Γ(1 + α)
〈z(t)〉
tα

(8.3.7)

Thanks to this theory, keeping constant the structure of all formulas, if compared to

the normal case, it is possible to show that all formulas recovered for standard normal

diffusion can be easily extended to the anomalous case, provided that the generalization

quantity now have to been considered. One example of this is the standard formula of

the mobility for polaron diffusion expressed in function of the hopping frequency ν and

the hopping length d (Eq. 2.3.5):

µ =
ed2ν

kT
(8.3.8)
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Figure 8.4.1.: (left) Final electron position distribution of a system containing only free
polarons in two different time instant. The histogram corresponding to
t = 8 · 10−8 s is fitted with a Gaussian distribution. (right) Variance of
the distribution as a function of the time. Results evidence a normal
diffusion of free polarons.

which in the framework of the subdiffusion theory must be substituted by:

µα =
ed2Γ(1 + α)να

kT
(8.3.9)

It is also possible to understand better the microscopic meaning of Λ. Ldrift is none

other than the first momentum of the distribution in presence of the electric field, so

from equation 8.3.6 and 8.3.9:

Λ =
ed2 < n >α

kT
(8.3.10)

where < n >= ντ is the average number of hops, given by the polaron lifetime τ

multiplied by the hopping frequency.

8.4. Results

8.4.1. Diffusion behaviour of free and Nb4+
Li

polarons

Making use of the Monte Carlo code developed in the preceding chapters, we try here

to test how the analytical model of anomalous diffusion can be applied to the case

of polarons diffusing in Lithium Niobate. In all the following paragraphs, the input

parameters of the code are chosen according to the values determined in Sections (3.3)

and (6.3). The concentration of deep traps is here set equal to zero, to study the pure

diffusion problem.

Free polarons

The simplest case that can be studied is a LN sample containing only free polarons.

This situation would ideally correspond to the case of a slightly reduced, stoichiometric
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Figure 8.4.2.: (left) Final polaron position distribution of a system containing only
antisite-bound polarons at a given time instant. The histogram is re-
produced by a Fox H-function distribution (red line) using α and Kα

calculated from the study of σ2(t). (right) Variance of the distribution as
a function of time. Results evidence a sub-diffusion behaviour of Nb4+Li
polarons. The red line is the best fit with a function σ2 = 2Kαt

α/Γ(1+α).

undoped sample or alternatively to the case of a compensated LN sample above the

photorefractive threshold. We simulate the distribution of free polarons after a given

time in a sample without antisite shallow defects. The result of the simulations is

reported in figure 8.4.1 for T = 300K. Graphs show clearly that the final polaron

distribution is a Gaussian function. By calculating the variance of the distribution, it

can be seen that it increases linearly with time. Free polarons thus diffuse normally

and isotropically in the three directions, as expected.

The analytical expression for the diffusion coefficient in the case of normal diffusion

in a cubic lattice is easily calculated as Kanal = 6d2νFF , where d = 3.76 Å is the

NbNb −NbNb distance on the cationic sublattice and νFF is the free polaron hopping

frequency given by Eq. 2.3.6, from which we have Kanal = 6 · 109 Å2/s, in perfect

agreement with the output of the simulation. This obviously validates the use of Eq.

2.3.5 for the case of free polaron conduction. We note here that, this result, obtained

at room temperature would be valid at any temperature (only the diffusion coefficient

would change, due to the temperature dependence of the hopping frequency), since the

hopping processes are always of the same type (F → F ) and therefore the temperature

factor in the hopping frequency act simply as an overall multiplicative constant.

Bound polarons

We consider now an hypothetical case in which the conduction can occur only by

bound polarons hopping among the antisite network. This case would correspond to a

congruent sample at moderate or low temperature (see Section 6.4.1). This situation

has been implemented in our Monte Carlo code by setting to zero the J0
PF transfer

integral prefactor for the hops P → F (see Sec. 3.3).
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The result of this study, performed at T = 300K is reported in figure 8.4.2. In the

left side of the figure the distribution of final particle position is reported after the fixed

time of t = 10−3 s. The distribution, characterized by a pronounced peak at the starting

position, is clearly not Gaussian. By computing the variance of the distribution along

the three axis of the material as a function of time, shown in the left side of figure 8.4.2,

the anomalous behaviour is confirmed . In particular a fit with the equation distinctive

of the anomalous diffusion σ2 = 2Kαtα

Γ(1+α) gives:

Kα = (51000± 4000) Å2s−α

α = 0.74± 0.01

highlighting that bound polarons sub-diffuse. This study performed at room temperat-

ures evidences the same subdiffusive exponent α at any temperature (as confirmed by a

similar test at 100K) which is therefore the characteristic exponent for bound polaron

transport. This is expected as in the case of the normal diffusion: what changes is the

diffusion coefficient, which have a Boltzmann dependence on the temperature. Using

the fitted value for Kα and α in Eq. 8.2.4 we are able to correctly reproduce the bound

polaron distribution after a given time (Figure 8.4.2 (left)).

8.4.2. Diffusion in an undoped congruent sample

As it was shown in the preceding paragraphs, free polarons diffuse with a characteristic

exponent α = 1, while bound polarons diffuse with α = 0.74±0.01 for all temperatures.

The natural question is to understand what is the behaviour of a real case, the undoped

congruent LN sample in which both species contribute to the transport. In this case

the maps 6.4.1 and 6.4.2 show that the conduction is for 70% made on antisite-bound

polarons and for the 20% by free-free hops at 300K. The rest of hops are conversion

between these two sites. Moreover, these percentages are temperature - dependent.

The result is shown in figure 8.4.3 where a simulation of the LN congruent system

was performed at room temperature using the same parameters as before. Considering

the bound and free polarons as two possible ways to perform the diffusion process, we

suppose that the overall second moment of the final distribution is the convolution of

the two respective distributions. We guess that the variance of the total process should

not be much different from the weighted sum of the respective variances, so that in

conclusion we expect for the congruent LN case a law of this kind:

σ2 = A · 2Kt+B · 2 Kα

Γ(1 + α)
tα (8.4.1)

where K, Kα and α are the characteristic parameters for free and bound polaron

diffusion respectively, and fixed to values determined in the preceding paragraphs, while
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Figure 8.4.3.: (left) Distribution of the polarons final position at two given times. For
short times the distribution is a Fox type while at long time it becomes a
Gaussian one. (right) Study of the variance of the distribution along x,y
and z direction in function of the time. The inset shows a zoom at short
times. The black line is a fit of the data with Eq. 8.4.1.

parameters A and B are the weight associated to the normal and anomalous diffusion

respectively. A fitting of data in Fig. 8.4.3 evidences a good agreement with the

proposed equation. The results of the fit are: A = (2.01± 0.06) · 10−4 and B =

(0.83± 0.09): the linear contribution has a much lower weight, as expected from the

fact that only a limited percentage of the total hops is performed as free polarons.

However in view of their much higher mobility, this behaviour dominates for long times.

For short times instead, the anomalous behaviour is more evident, as shown in the inset

of Figure 8.4.3. These findings are reflected also by the distribution shape, reported in

the left side of figure 8.4.3, which evidences that for the short time scale
(
t . 10−4 s

)
a

Fox H-function describes correctly the results, while for long times the Gaussian one is

more appropriate. These data explain why at cw intensities and for long times the usual

Kukhtarev’s equations predicts very well materials characteristics as normal diffusion

theory is a good approximation of the real case. On the contrary in the pulsed regime,

for example in the ns regime as the case of experiments performed in Section 6.1, the

sub-diffusion theory is more appropriate.

The same type of study is effectuated at low temperature, and reported in figure

8.4.4. In this regime from maps 6.4.1 and 6.4.2 conduction is for 98% made on antisite-

bound polarons and for the 0.1% by free-free hops. The diffusion coefficients at this

temperature are estimated by rescaling with a proper Boltzmann factor the values

obtained at room temperature (the energy barriers are taken from Tab. 6.3.1) and

are: K = 6.5 · 107 Å2/s and Kα = (102 ± 8) Å2/sα. By repeating the same analysis

performed above for the case at room temperature, we obtain A = (1.5± 0.9) · 10−6

and B = 6.8 ± 0.7. The large relative error in the A parameter is due to the fact

that by cooling down the temperature, the diffusion process is greatly slowed down

and the “normal” diffusion behaviour is not developed yet, so that our fit bears a large

uncertainty for the timescale considered. On the other hand, the smallness of A against
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Figure 8.4.4.: Study of the variance of the distribution along x,y and z direction in
function of the time at T = 210K. From the fit the anomalous coefficient
is α = 0.75± 0.01.

B indicates that in those conditions bound polaron conduction is dominating. However,

if a sufficient time is waited, the normal diffusion behaviour would be restored. Once

again, the appearance of normal or anomalous diffusion is a matter of the chosen time

window, which in turn is set by the shortest between the measurement time or the

polaron lifetime.

8.4.3. Polaron mobility in an undoped congruent sample

By combining Eq. 8.3.3 with 8.4.1 we can see that for the drift length a similar relation

giving the two independent contributions of free and bound polarons is obtained:

< z(t) >F,P=
eE

kT

[
A ·Kt+B · Kα

Γ(1 + α)
tα
]

(8.4.2)

According to the formula 8.4.2 the first momentum of the distribution, 〈z〉 grows linearly
with the electric field but not with the time. An example of the dependence with the

time is shown for the undoped congruent sample, simulated this time with a fixed

electric field of E = 5 · 106V/m at room temperature (Fig. 8.4.5). In this case the

timescale of the process is set by the lifetime of the polaron. In a perfect material where

polarons could live very long times (> ms), or where bound polarons are very scarce,

normal diffusion would dominate and the drift length would be proportional both to

the field and to the polaron lifetime, as in usual theoretical descriptions. Assuming that

the polaron lifetime is inversely proportional to the trap density, this would ultimately

give the standard relation for the drift coefficient (See Section 7.1.1):

Λ ∼ µτ =
µ

γ[Ntrap]

However, for short lifetimes, according to our approach, a more correct description
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Figure 8.4.5.: Mean value of the position’s distribution for given times in the case of
undoped congruent sample with an applied electric field of E = 5·106V/m
at room temperature

would be instead:

Λ ∼ A · µτ +B · µατα

where the drift coefficient is no longer inversely proportional to the trap density.

Note that for the samples used in this work the polaron lifetime at room temperature is

less than 10−4 s, so that probably we are in this regime. This finding should have some

measurable consequences on the photoconductivity (Eq. 1.7.11) and on the saturation

space charge field (Eq. 1.7.12). Unfortunately, the quality of our results in Fig. 7.1.1

is not sufficient to evidence this behaviour. The obtained results may be formulated in

a more explicit way:

Λ =
e2

kT

[
A · d2FF νFF τ +B · d2PP ν

α
PP τ

α
]

where τ is the polaron lifetime. The products AνFF τ and BναPP τ
α have the physical

meaning of “effective number of hops performed as free or as bound” and therefore

correlate directly with the results of Fig. 6.4.3. In total we get the simple formula:

Λ =
e2

kT

[
d2FF 〈nFF 〉+ d2PP 〈npp〉α

]

where all the microscopic details are embedded in the effective number of hops, 〈nFF 〉
and 〈npp〉. Unfortunately, an analytical way to compute those parameters has still not

been worked out.
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Conclusion

In this thesis the charge transport in iron - doped lithium niobate was investigated

from the point of view of polaron physics. The motivation for this work resides on

the fact that, despite the central role of polarons in this materials has been nowadays

accepted, charge transport is still described by equations which are derived considering

a band-like transport. The key issue in this respect are the impossibility to relate the

phenomenological parameters of the model to a true microscopic understanding.

A set of dedicated experiments were set up to this goal: several samples were pro-

duced by Czochralski growth, prepared and characterized with tailored characteristics

for this investigation. They were subsequently analysed by a set of complementary tech-

niques providing, to our knowledge for the first time, a comprehensive investigation of

charge transport in a wide temperature range. A setup for temperature-dependent

photorefractive characterization was designed and realized, and a dedicated simula-

tion software has been written and tuned to describe with sufficient predictive power

the charge transport processes. Finally, polaron diffusion in LN was for the first time

considered as a case of anomalous transport and the consequences were derived.

One of the main results of this analysis relates to the understanding that in Fe:LN

several polaronic species are contributing in parallel to the transport, the relative con-

tribution of each of them being established by the choice of the sample composition

or of the experimental conditions. We proved, both by experimental and numerical

results, that for typical compositions at low temperature (T < 270K) the polarons

prefer to hop directly between intrinsic NbLi antisite defects, so that their mobility

is defined by this process which obeys the laws of anomalous diffusion with a charac-

teristic exponent α = 0.74 ± 0.01. At higher temperatures, some hops start to occur

between regular NbNb sites. In this case the diffusion tends to become more and more

normal (α = 1) and standard equations apply. In general the transport appears as a

mixture of the two and, again, which of the two aspects dominates is established by

the experimental conditions and how the system is stimulated. The presence of other

centres such as holes or self-trapped excitons was discussed as well and shown to be

necessary to be taken into account when the system is pumped with a sufficiently high

intensity (I ∼ 100MW/cm2).

A large part of this work was devoted to develop a simulation code which was tested

against experimental data in order to determine a value for some poorly known mi-

croscopic parameters. The following results in particular were obtained: (i) orbital

parameters ruling the transfer integral for polaron hopping and trapping on a Fe site,
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8. Anomalous polaron diffusion

a = (1.6± 0.1) Å and c = (1.5± 0.1) Å respectively. (ii) Stabilization energy provided

to the antisite-bound small polaron by the lattice deformation EP = (0.75± 0.05) eV.

This result, significantly higher than previously published results was interpreted with

considerations on the lattice structure around the defect. (iii) photogalvanic length for

Fe2+ donors excited at 543 nm with low intensity light, Lpg = (0.80± 0.04) Å. (iv)

an estimation of the charge photo-generation efficiency as a function of temperature in

the range between 150 and 200 K. The knowledge of those parameter, together with

the developed code permits to simulate quantitatively the behaviour of the sample as

a function of the experimental parameters. This is a powerful tool of great interest

to design materials for applications requiring tailored polaron dynamics, such as for

example real time ns- polaron holography [4].

Our studies evidenced that at sufficiently low temperature (depending on the sample

composition), the charge transport process is no longer a diffusive one but occurs by

a two step excitation-recombination process. This regime, named single-hop regime, is

characterized by very short drift lengths and athermal behaviour. In those conditions

high values of the space charge field can be easily obtained: also this aspect can be of in-

terest for applications, for example for the realization of highly efficient photorefractive

diffraction gratings.

We also discussed the application of a simple model [103, 104] that helps to interpret

in a simple way almost all the experimental situations considered here. Although this

model cannot substitute a numerical computation, it comes handy to develop a general

understanding of the sample behaviour.

The perspective opened by our results are very wide. On one hand the application of

the anomalous diffusion theory to polaron transport is, to our knowledge, an absolute

novelty, whose effects should be especially visible on the short time scale and below

room temperature, which is precisely the regime of application of Transient Absorption

spectroscopy. In this context it would be interesting to realize a set of tailored exper-

iments to put in evidence the peculiarities of anomalous diffusion. From a theoretical

point of view it would be interesting to investigate the connection between anomalous

transport and stretched exponential relaxations, generally assumed as a phenomeno-

logical description of the polaron decay. The missing element in this respect is the

calculation of the survival probability of an anomalously diffusing particle in a medium

with distance-dependent trapping.

A second important and necessary development is re-expression of the Kukhtarev’s

equation taking into account the special characteristics of polaron transport. The ex-

pression for the photoconductivity generally used is rigorously valid only as approxima-

tion for normally diffusing (free) polarons and is not accurate in the short time limit or

at low temperature when bound polarons are involved. Also the trapping probability,

normally assumed to be proportional to the trap concentration, can be regarded as the

Smoluchowski’s limit for a normally diffusing particle in a medium with diluted traps

[113] and its validity needs to be better tested in the light of our results.

132



8.4. Results

From a computational point of view, it would be interesting to check the values of

the microscopic parameters obtained by us with theoretical estimates obtained by ab

initio methods. Also, the Monte Carlo code could be improved to add the effect of

other centres, such as hole recombination or to model the effect of energetic disorder

in the hopping frequency. This is expected to be an important point, especially at low

temperature [103].

From an experimental point of view, some new activities are already on the way.

The main limit of the samples used in this work is that they are characterized by a

Fe concentration which limited the study to temperatures above 200 K, as below this

temperature the single-hop regime is attained. It would be interesting to produce a

new series of less doped samples and test on them the methodology developed here.

We expect to be able to simulate the charge transport in a larger range and with great

accuracy, in order to confirm the results here obtained. Another possibility would be

to increase the temperature range towards higher temperatures by performing direct

electrical I-V characterization. In this way it would be possible to distinguish between

light induced and ionic conduction and explore a transport regime with a large number

of hops. Finally, the role of the photo-excitation processes needs to be investigated. It

would be very interesting, also in view of photovoltaic applications [7], to understand

the mechanisms determining Lpg and the photo-emission efficiency φ. Those quantities

are determined, as explained in [43], arise from an interplay between coherent (band-

like) and hopping transport so that it can be expected that the insights provided by

this work could be used also to better understand how to model and master them.
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A. Holographic Measurement

The standard technique normally exploited to measure indirectly macroscopic quantit-

ies connected to photorefractive and photogalvanic effect is the holographic technique,

schematically represented in Fig. A.0.1. In the case of this thesis this technique is not

well suited to extract all the desired experimental quantities. The complete mathemat-

ical description can be found in [56] and here only main concepts are briefly described,

to highlight the problem connected with this approach.

The interference of two plane waves produces a pattern of light described by:

I = I0 [1 + |m|cos (Kx+ φ)] (A.0.1)

where I0 is the sum of the intensities of the two beams, m is the fringes visibility and

K their spatial frequency. The fringes modulate the charges spatially and create, via

the photorefractive effect, a modulated space charge field ESC . Therefore this field has

a spatial dependence in addition to the well known temporal one. If the “first spatial

harmonic approximation” is assumed, i.e. m≪ 1, the electric field can be analytically

described in a simple way as a periodic real functions of coordinate x of the type :

ESC (x, t) = Esat (1 +mcos (Kx))

(
1− e−

t
τ

)
(A.0.2)

This produces in turn in the sample a refractive index modulation having the same

modulation of the space charge field. The refractive index modulation is always in phase

or counter-phase with the space-charge field and represents a volume phase grating or

hologram. The latter diffraction efficiency is computed experimentally as:

ηexp =
Id

Id + It
(A.0.3)

where Id is the the diffracted intensity while It the transmitted one. Formula A.0.3 can

be also theoretically described by the Kogelnik formula [114]:

ηteo = sin2
(
π∆nd

λ cosθ

)
(A.0.4)

where d is the grating thickness, λ is the beam wavelength and 2θ is the angle between

the incident beams. Equation A.0.4 assumes the simplifying approximation of an uni-

form refractive index modulation along the sample’s thickness, so that this one coincide

to the grating thickness.
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A. Holographic Measurement

Figure A.0.1.: Sinusoidal pattern of fringes and resulting space-charge field grating.

As already discussed, the photoconductivity of the material is express by the formula

σph = εε0
τ , therefore the parameter we are interested in is the characteristic rise/decay

time τ of electric space charge field. This is experimentally realized monitoring the

rise/decay of the diffraction efficiency, in fact substituting equation 1.4.3, expressing the

refractive index variation △n, and equation A.0.2, describing the temporal evolution

of the space charge electric field, in A.0.4 and inverting the formula, the diffraction

efficiency is linked to the electric space charge field by the expression:

ESC (t) ∝ sin−1
√
ηexp (t) (A.0.5)

To resume, from Id and It it is possible to compute τ by en exponential fit of the right

hand part of the equation A.0.5.

Even if this method is the most employed to extract information on photoconduct-

ivity it has some limitations. One of the main restriction for this work, which aim to

investigate all microscopic parameters governing photo-generated transport phenomena

in Fe:LN, is the impossibility to know the exact value of the space-charge electric field.

From equation A.0.5 this one can be computed only up to a multiplicative constant A.

This in turn prevents the possibility to know the exact value of the photogalvanic cur-

rent jpg = σphEsat, obliging to develop a dedicated experiment to study this quantity.

In principal the multiplicative constant A can be calculated, known the setup geometry

and sample’s characteristics but one of the main error source is the simplification that

the grating and sample thickness coincide and are equal to d. Samples considered in

this work have a thickness and an absorption coefficient so high that this approxim-

ation is not well satisfied. Moreover, from an experimental point of view, the high

refractive index of Fe : LiNbO3 may cause a lenslike effect: beams in the sample may

be focused or defocused in a different manner, passing through slightly different paths

along the crystal, affecting the quality of the interference pattern. In addition, due

to the holographic nature of the experiment, the result is very sensitive to vibrations

of the system, and this influences adversely measurements at low temperatures due to

vibration reported by the cryogenic mechanical system. The dielectric relaxation time
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constant τ is this regime is in the order of hours and the system stabilization is very

highly cost demanding.

For all this reasons a different method was exploited, based on a direct measure of

the refractive index variation induced by a laser beam and not on the measurement of

the diffraction efficiency of a grating.
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B. Input parameters for Monte Carlo

simulations

This is a typical input file for the Monte Carlo code developed in this work.

SAMPLE PARAMETERS

Shallow trap concentration
[
1025m−3

]
= 19.0

Initial deep trap concentration
[
1025m−3

]
= 0.36

Photo-excited carriers concentrations
[
1025m−3

]
= 0.01

EXPERIMENT PARAMETERS

Temperature [K] = 300

Electric field [V/m] = 5 · 106

SIMULATION PARAMETERS

Polaron creation (possible choice: Nb or NbLi) = NbLi

Polaron numbers = 5000

Max hop per polaron = 10000

Experimental time [s] = 10−2

Soft-pair threshold [0.5 < SPT < 1]= 0.9

Cell size x = 80

Cell size y = 80

Cell size z = 80

End site [possible choice: Fe or not significant] = Fe

Memory effect [possible choice: yes or no] = yes

POLARON PARAMETERS

Elastic energies [eV]

Deep 0.70

Shallow 0.75

Free 0.54

Polaron resonance energy [eV]

Deep 2.62

Shallow 1.69

Free 1.09
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B. Input parameters for Monte Carlo simulations

Orbital characteristics length
[
Å
]

Deep Shallow Free

Deep - c = 1.5 c = 1.5

Shallow c = 1.5 a = 1.6 a = 1.6

Free c = 1.5 a = 1.6 a = 1.6

Transfer integral prefactor Jij [eV]

Deep Shallow Free

Deep - J2 = 0.12 J2 = 0.12

Shallow J2 = 0.12 J1 = 0.11 J1 = 0.11

Free J2 = 0.12 J1 = 0.11 J1 = 0.11
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