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SUMMARY 

 

 

Acute myeloid leukemias (AMLs) that harbor translocations involving the MLL gene on 

chromosome 11q23 generate fusion transcripts that give rise novel fusion proteins with 

potent oncogenic properties and capable to destabilize the normal transcriptional 

activities. MLL fusion oncoproteins have been shown to initiate leukemic transformation 

primarily by overexpression of a specific set of genes, including HOXA4, 5, 6, 7, 9, 10 

(overall defined as “HOXA-code” genes), MEIS1 (a cofactor of “HOXA-code” proteins) 

and MYB. It‘s well established that the majority of these genes are involved in normal 

programs of self-renewal, maintenance and proliferation of hematopoietic stem cells 

and early progenitors. Therefore is not surprise that the deregulation of the stemness 

genetic programs due to MLL fusion oncogenes is a crucial step for leukemic 

transformation. To identify new stemness genes involved in MLL-mediated 

transformation we performed gene set enrichments analysis (GSEA) using public 

database of geneset profiles of normal hematopoietic cells in a cohort of pediatric AML 

previously analyzed. These analyses identified a series of genes more highly expressed in 

MLL-rearranged AML including the well known HOXA9, HOXA5 and MEIS1, together 

with an apparently novel gene: ZNF521 or zinc finger protein 521  

ZNF521 encodes for a zinc finger protein and, like HOXA9, is strongly expressed by CD34+ 

hematopoietic stem cells and drastically decreases during differentiation. To evaluate 

the importance of ZNF521 in MLL-rearranged AML, we performed a series of functional 

and mechanistic studies to uncover the role of ZNF521 in MLL-rearranged cells. We used 

lentiviral vectors to silencing the ZNF521 and expression vectors to induce MLL-fusion 

proteins such as MLL-AF9. These studies, both in vitro and ex vivo, demonstrate that the 

growth inhibition, reduced clonogenicity and cell cycle arrest induced by ZNF521 

depletion is mediated through enhanced myeloid differentiation. Moreover, we 

demonstrate that ZNF521 is a direct target of MLL-fusion oncoproteins such as MLL-AF9 

and MLL-ENL.  

Collectively, these findings identify ZNF521 as critical effector of MLL fusion in 

leukemogenesis that might be targeted to overcome the differentiation block associated 
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with MLL-rearranged AML and thus highlight ZNF521 as potential therapeutic target in 

treating this subtype of aggressive leukemias 
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RIASSUNTO 

 

 

Il gene MLL è spesso coinvolto in traslocazioni cromosomiche che causano la formazione 

di nuovi trascritti di fusione in grado di codificare delle proteine chimeriche con elevate 

proprietà oncogeniche e di de-regolazione dell’attività trascrizionale. Le oncoproteine 

MLL di fusione sono capaci di iniziare la trasformazione leucemica provocando una 

overespressione di diversi geni, tra cui quelli più critici sono gli HOXA4-10 (che 

complessivamente costituiscono l’HOXA-code), MEIS1 (un cofattore delle proteine HOXA-

code) e MYB. La maggior parte di questi geni sono implicati nei normali programmi di 

self-renewal, mantenimento e proliferazione della popolazione cellulare ematopoietica 

staminale e dei progenitori. È evidente che la deregolazione dei programmi genetici 

associati alla staminalità, provocata dalla presenza degli oncongeni MLL di fusione, ha un 

ruolo cruciale nella trasformazione leucemica delle cellule ematopoietiche.  

In questo studio abbiamo identificato, tramite GSEA (Gene Set Enrichment Analysis), i 

profili genetici delle cellule CD133+ normali ottenuti da database pubblici e, 

successivamente abbiamo valutato la loro espressione in una serie di leucemie acute 

mieloidi (LAM) pediatriche precedentemente analizzate in altri studi di espressione 

genica. I risultati mostrano che tutti i target noti degli oncogeni MLL di fusione (HOXA, 

MEIS1) sono up-regolati esclusivamente nelle LAM con traslocazioni del gene MLL. 

Abbiamo inoltre osservato che tra i geni maggiormente  up-regolati è presente anche 

ZNF521, un gene che codifica per una proteina appartenente alla famiglia delle proteine 

zinc-fingers. Come HOXA9, anche ZNF521 è altamente espresso nelle cellule 

ematopoietiche staminali CD34+ e la sua espressione diminuisce rapidamente durante il 

differenziamento. Per valutare l’importanza di ZNF521 nelle LAM con traslocazioni del 

gene MLL abbiamo eseguito una serie di studi funzionali e meccanicistici in vitro ed ex 

vivo con cellule primarie, utilizzando sia vettori lentivirali per il silenziamento del gene 

ZNF521, sia vettori di espressione di diversi oncogeni con traslocazioni di MLL. Questi 

studi hanno dimostrato che il silenziamento di ZNF521, che ne determina una 

diminuzione di espressione ed induce le cellule a differenziare, causa un’inibizione della 

proliferazione cellulare, una drastica riduzione della clonogenicità e l’arresto del ciclo 



6 
 

cellulare in fase G1. Inoltre, abbiamo dimostrato che ZNF521 è tra i target diretti delle 

oncoproteine MLL di fusione, ed è quindi attivamente coinvolto nella trasformazione 

leucemica in seguito alle traslocazioni del gene MLL.  

In conclusione, ZNF521 si è rivelato essere un nuovo importante effettore degli oncogeni 

MLL di fusione e un fattore cruciale nel mantenimento dello stato indifferenziato delle 

cellule mieloidi leucemiche che presentano riarrangiamenti del gene MLL e potrebbe 

quindi dimostrarsi un importante nuovo target terapeutico. 
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INTRODUCTION 

 

 

1. HEMATOPOIESIS 

 

Hematopoiesis is the process that gives rise to all blood cellular components during 

embryonic development, and throughout adulthood to produce and replenish the 

hematopoietic system. It is estimated that this process provides to produce almost 1010 

cells every hour for replenish continuously aged or damaged blood cells (Williams, 1995). 

This system of generative activity is tightly regulated by progressive restriction of cell 

fate potentials initiating from hematopoietic stem cells (HSCs) to lineage-restricted 

progenitors that produce all lineages of mature blood cells (Figure 1).  
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Figure 1: Hematopoiesis. 

The figure shows the development of hematopoietic stem cells (HSC). All blood cells are derived from 

HSCs, which are at the basis of the adult blood cell differentiation hierarchy. HSCs can be subdivided into 

self-renewing HSCs and multipotent progenitors. These include common lymphoid progenitor (CLP) and 

common myeloid progenitor (CMP). CMP further divides to give rise to more differentiated progenitors, 

committed to granulocytes and macrophages (GMs), and megakaryocytes and erythroid cells (MEPs). CLP 

produces progenitors committed to T cells and B cells. Successive division and differentiation of these 

progenitors give rise to fully differentiated B- and T-cells. CMPs maturation generate neutrophils, 

eosinophils, basophils, monocytes, platelets and erythrocytes.  

 

Deregulation along the developmental pathway leads to various hematological disease 

like anemia, immunodeficiencies or leukemia. Therefore, a deeper knowledge of the 

mechanisms that finely regulate this balancing is pivotal for understanding of both 

normal hematopoietic development and pathogenesis of hematopoietic disease.  

All cellular blood components are derived during fetal and adult life through a 

mechanism that is conserved across vertebrates and involve two waves: the primitive 

wave and the definitive wave  (Galloway, 2003). The primitive wave, which involves an 

erythroid progenitor, gives rise to erythrocytes and macrophages during early embryonic 

development (Palis, 2001; Madhumita, 2013) and is predominantly marked by erythroid 

progenitor to produce red blood cells that facilitate tissue oxygenation during growing 

embryo (Orkin and Zon, 2008). The primitive wave is transitory, however, and these 

erythroid progenitors are not pluripotent and do not have renewal capability. By 

contrast, definitive hematopoiesis occurs later in development, notably at different time 

points in different species. In vertebrates, a definitive wave involves hematopoietic stem 

cells (HSCs) that originate in the aorta-gonad-mesonephros (AGM) region of the 

developing embryo. In humans, HSCs are produced in yolk sac and placenta from where 

they migrate to the fetal liver and then to the bone marrow, which is the location for 

HSCs in adults (Dzierzak, 2007; Cumano, 2007). 
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1.1. HSC: the paradigm of self-renewal and differentiation. 

 

The integrity of the hematopoietic system depends on a large number of blood cell 

lineages being continuously replenished from a rare population of pluripotent 

hematopoietic stem cells (HSCs), representing a paradigm for how multi-lineage diversity 

can be achieved from a common stem cell through lineage commitment and subsequent 

differentiation (Kondo, 2003). Hematopoiesis requires a continuous production of 

progenitors and mature blood cells from HSCs through differentiation processes. In fact, 

HSCs sustain lifelong production of all blood cell types through finely balanced divisions 

leading to self-renewal and differentiation. Differentiation is associated with a loss of 

self-renewal capacity, requiring HSCs as a population to self-renew to maintain itself. 

The fate choice of HSCs to either self-renew or differentiate is controlled by a complex 

interplay between intrinsic mechanisms and extrinsic signals from the surrounding 

environment or stem cell niches (Moore, 2006).  

Extrinsic (environmental) signals are predominantly derived from stromal cells and their 

products (Wineman, 1996; Blazsek, 1995). The marrow, in particular, contains specialized 

environments that regulate the balance of HSC self-renewal and differentiation and 

comprise what has been termed the stem cell niche. In fetal and adult mammals, HSCs 

predominantly reside in fetal liver (FL) and bone marrow (BM), respectively. However, 

HSCs do not originate in FL or BM, but rather migrate from other tissues to these sites 

during embryonic development. In mammals, most blood cells have relatively short 

lifespans. For this reason, HSCs continuously differentiate into multiple lineages of 

different blood cell types, simultaneously replicating themselves through self-renewal to 

prevent depletion of the stem cell pool in the BM. Nevertheless, external environmental 

signals must integrate with intrinsic molecular machinery to control the fate choices of 

individual HSCs. Such genetic mechanisms predetermine the behavior of HSCs and thus 

should limit the generation of HSC heterogeneity (Muller-Sieburg, 1996; Abkowitz, 1998; 

Chen, 2000). 

The changes in gene expression over the course of hematopoietic differentiation are 

profound and complex. The number of differentially expressed genes is similar within 

hematopoiesis and across human tissues, suggesting comparable complexity. In fact, cell 
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fate specification involves the action of primary lineage determinants (transcription 

factors, TF) that initiate and resolve mixed lineage patterns of gene expression by 

activating lineage appropriate genes and repressing alternate lineage genes (Laslo, 

2006). Knockouts or forced expression experiments on model organisms (e.g., mice, 

zebrafish, chicken, drosophila, xenopus) were performed to understand the functions of 

the critical transcription factors. In details, it is possible to see in Figure 2 the expression 

of the most important TF during the blood development. The knockdown of these genes 

leads to a block in differentiation, meaning a crucial role of the down-regulated gene, in 

the process of cell maturation 

 

 

 

Figure 2: Transcription Factors during blood cell development.  

Red bars indicate the stages at which hematopoietic development is blocked in the absence of a given 

transcription factor, as determined through conventional gene knockouts. Abbreviations: LT-HSC, long-

term hematopoietic stem cell; ST-HSC, short-term hematopoietic stem cell; CMP, common myeloid 
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progenitor; CLP, common lymphoid progenitor; MEP, megakaryocyte/erythroid progenitor; GMP, 

granulocyte/macrophage progenitor; RBCs, red blood cells. Figure adapted from  (Orkin and Zon, 2008) 

 

 

In the last years, many studies focused on the analysis of gene regulatory networks that 

direct cell fate decisions within the hematopoietic system. Gene disruption studies have 

shown that GATA-1 is necessary for erythroid and megakaryocyte development whereas 

PU.1 is required for the generation of myeloid (macrophage and granulocyte) and 

lymphoid lineages (Scott, 1994; Orkin, 1998). Based on the findings that PU.1 and GATA-

1 could inhibit each other’s molecular activities (Rekhtman, 1999; Zhang, 1999), it was 

proposed that this cross-antagonism is critical for generation of 

megakaryocyte/erythroid versus myeloid progenitors (Cantor, 2002).  

Runx1 is a member of the runt family of transcription factors and plays an important role 

in definitive hematopoiesis (Wang et al., 1996). Knockout experiments in mice reveal 

that ablation of Runx1 means losing definitive erythroid, myeloid and lymphoid cells, 

indicating its importance in definitive hematopoiesis. Runx1 knockdown also leads to a 

decrease in the expression of cmyb, which belongs to the myb family of proto-oncogenes 

(Kalev-Zylinska, 2002; Burns, 2005; Gering, 2005). Further experiments on zebrafish 

reveal the importance of other genes during hematopoietic development. In fact in an 

early stage of development, cells co-expressing tal1, gata2, lmo2, fli1 and etsrp, appear 

to be indispensable for both endothelial and hematopoietic differentiation (Paik, 2010). 

A remarkable feature of transcription factors in the hematopoietic system is that the 

majority are involved in chromosomal translocations or with somatic mutations in 

human hematopoietic malignancies. Furthermore, experimental manipulation of the 

genes for such factors in mice often promotes malignancy; in fact hematopoietic cell fate 

is tightly associated with the origins of leukemias. 

Although up to now, several studies have shown and unveiled many aspects concerning 

the molecular mechanisms regulating HSC self-renewal versus differentiation, but many 

other are still to be elucidate. 
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2. LEUKEMIA  

 

Leukemia is defined as cancer of the blood forming system and characterized by 

proliferation of abnormal white blood cells, not fully developed and called blast or 

leukemia cells in the bone marrow. 

As a result, there is a loss of hematopoietic function due to the lack of mature 

granulocytes and monocytes as well as decreased red blood cell and platelet production. 

These abnormal precursor cells are capable of proliferation and cell division, but lack the 

capacity to differentiate (Borer, 1989). Leukemia can be divided into an acute and 

chronic form; acute leukemias are characterized by the clonal expansion of 

hematopoietic progenitor cells caused by a maturation arrest combined with enhanced 

proliferation resulting in a fast increase of immature blood cells. In contrast, in chronic 

leukemia, abnormal blood cells have a slower expansion of terminally differentiated cells 

that can still execute their normal function. A further division can be made depending on 

the lineage of the progenitor cell that is affected. When the leukemia originates from a 

lymphoid progenitor cell, it is named a lymphocytic or lymphoblastic leukemia, and when 

it originates from the myeloid lineage, it is called a myeloid or myelogenous leukemia. 

This identifies the 4 major types of leukemia: acute myeloid leukemia (AML), acute 

lymphoblastic leukemia (ALL), chronic myeloid leukemia (CML) and chronic lymphocytic 

leukemia (CLL). In children, chronic leukemias are very rare, ALL comprises the largest 

part (75-80%), and AML accounts for 15-20% of pediatric leukemias (Cordell, 1999). 

 

 

2.1. Leukemia Stem Cell: an hallmark in AML 

 

For several years uncontrolled proliferation was considered the distinguishing property 

of any malignant disease. The definition of a cancer stem cell (CSCs) is based on its 

functional properties, that is a malignant cell that has the ability to self-renewal and also 

to differentiate into multiple cell types to recapitulate the cell populations of the original 

tissue  (Jondan, 2007).  
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The Cancer Stem Cell Model, also known as the Hierarchical Model proposes that tumors 

are hierarchically organized CSCs lying at the apex (Bonnet, 1997).In the cancer stem cell 

model, within the cancer population of the tumours there is a small subset of cancer 

cells, CSCs, which constitute a reservoir of self-sustaining cells with the exclusive ability 

to self-renew and maintain the tumor. Considering that. it is difficult to completely 

eradicate them during treatment, they have become an intriguing target for future 

cancer therapy.  

Much of the evidence about the cancer stem-cell hypothesis has come from studies in 

hematologic malignancies. First experimental evidence, suggesting the existence of 

Leukemic stem cells (LSCs), resulted from observations made almost 40 years ago: it was 

demonstared by Park and collaborator in the 1971 that only 1 out of 10,000-100,000 

mouse myeloma cells obtained from mouse ascites were able to form colonies in semi-

solid medium (Park, 1971). Similarly, human leukemia cells from AML patients also 

formed colonies at very low frequency suggesting the presence of a small number of 

LSCs within the bulk of leukemic blasts (Sabbath, 1985; Griffin, 1986). 

The first conclusive evidence for CSCs came in 1997. Bonnet and Dick isolated a 

subpopulation of leukemia cells that expressed surface marker CD34, but not CD38 

(Bonnet, 1997). The authors established that the CD34+/CD38− subpopulation is capable 

of initiating tumors in NOD/SCID mice that were histologically similar to the donor.  

(Bonnet, 1997; Lapidot, 1994).   

It has been demonstrated that only a small number of LSCs can restore themselves and 

maintain the disease, whereas the majority of leukemia cells are in a more mature state 

unable to initiate the disease. It is also known as LSCs share analogous processes of the 

self-renewal and somehow differentiation of normal stem cells (Krause, 2007). In 

particular, it was discovered that similar signaling pathways involved in the control of 

self-renewal of HSCs are also key elements maintaining stemness in LSCs. These 

pathways include the well-known PI3K/Akt/mTOR (Fransecky, 2015), Wnt/beta-catenin 

(Wang, 2010; Lento, 2013), Hedgehog (Mar, 2011; Irvine, 2012), NF-kB (Kagoya, 2014; 

Zhou, 2015), Notch (Liu, 2013) and Bcl-2 (Domen, 2000; Lagadinou, 2013).  

Although LSCs have the capacity for self-renewal and differentiation, evidence has shown 

that a substantial number of LSCs are found in a quiescent G0 phase (Guzman, 2001).  
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This could provide a possible reason for the failure of chemotherapeutics to eliminate 

LSCs as they commonly target rapidly cycling populations. 

In AML, the origin of LSCs can be the result of accumulation of genetic disorders. It has 

been rationally postulated that LSCs arise from HSCs as the result of accumulation of 

oncogenic mutations, based on the observation that stem cells persist for long periods 

and undergo a number of cell divisions increasing the likelihood to obtain the minimum 

number of mutations necessary for malignant transformation (Lapidot, 1994; Bonnet, 

1997; Warner, 2004). Alternatively, LSCs may also result from more differentiated 

progenitor cells that have reacquired the capacity for self-renewal and accumulated 

additional mutations for malignant transformation (Cozzio, 2003; Warner, 2004).  

The intensive molecular investigation over the past two decades has shed new light on a 

large number of recurrent genetic lesions that have been identified to be associated with 

different subtypes of leukemias.  

One of these aberrations can be attribute to MLL translocations. It is well documented 

that MLL gene rearrangements are able to transform myeloid non-self-renewing 

progenitor cells into LSCs in AML (Krivtsov, 2006; Passegue, 2006). In fact, generation of 

knock-in mouse models, as well as model of transduced BM experiments, has 

demonstrated how MLL fusion oncogenes are able to induce leukemic transformation in 

normal hematopoietic cells. First, Corral demonstrates that Mll–AF9 fusion knock-in 

mouse model, that constitutively expressed MLL-AF9, develops AML (Corral, 1996). 

Subsequently, Collins and colleagues developed a conditional knock-in model that 

produced Mll-Af9 by interchromosomal translocation, similar to the mechanism for 

translocation formation in human cells. This mouse model also had a propensity for 

leukemia development (Collins, 2000). A similar approach was used to develop a 

conditional Mll–Enl knock-in model, which also led to a rapid onset of AML (Forster, 

2003). Moreover, important insights into MLL fusion-mediated leukemia development 

came from a study that assessed leukemogenic transformation of committed myeloid 

progenitors by MLL–ENL (Cozzio, 2003). A particularly important aspect of this work was 

the demonstration that mouse myeloid leukemias can originate not only from HSCs but 

also from committed myeloid progenitors that have no inherent self-renewal 

capabilities. As GMPs (Granulocite-Macrophage Progenitors), similar to all committed 

myeloid progenitors, do not possess self-renewal activity (Na Nakorn, 2002), MLL–ENL 
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expression appears to be able to re-activate at least some aspects of hematopoietic cell 

self-renewal. Expression of MLL–AF9 in GMPs leads to leukemogenic transformation of 

GMPs to LSCs (Krivtsov, 2006; Somervaille, 2006). Intriguingly, C/EBPα is a key myeloid 

transcription factor, which is required for the formation of granulocytic monocytic 

progenitors (GMPs) during normal hematopoiesis (Zhang, 2004). Ohlsson and colleagues, 

comparing human MLL-rearranged AML and normal progenitors gene expression profiles 

identified C/EBPα as a putative collaborator in MLL-rearranged AML. They found that 

deletion of C/EBPα rendered murine hematopoietic progenitors completely resistant to 

MLL-ENL–induced leukemic transformation, whereas C/EBPα was dispensable in already 

established AMLs. This data show that C/EBPα collaborates with MLL-ENL to activate a 

group of genes that, together with Hoxa9 and Meis1, are responsible for the early events 

that transform normal hematopoietic cells into malignant cancer cells. (Ohlsson, 2014). 

Therefore, these observations open important questions regarding how the deregulation 

of some genes and transcription factors with a role in stemness may contribute to the 

leukemia. Furthermore, seen that the balance of self-renewal and commitment to 

differentiation is dramatically deregulated in leukemic cells a better understanding at the 

molecular mechanism will be a fundamental source for molecular-based therapies in the 

future.  

 

 

2.2 Characteristic of MLL-rearranged AML 

 

Leukemias harboring rearrangements that involved the MLL (Mixed Lineage Leukemia) 

gene on chromosome 11q23 possesses unique biological and clinical characteristics. 

Genetic alterations in the MLL gene are associated with more than 70% of infant 

leukemias, but are less frequent in older children leukemias. Approximately 10% of adult 

leukemias bears MLL-translocations and MLL-related translocations are also commonly 

observed in secondary acute leukemias after topoisomerase inhibitor treatment  (Felix 

CA, 1998). It is a disease characterized by an extremely dismal prognosis, in part due to 

its poor responses to the conventional therapeutic treatment, such as chemotherapy 

(Balgobind BV, 2011; Slany, 2009).  
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These aberrations juxtapose the amino-terminus of MLL with the C-terminus of the 

fusion partners, destroying the normal histone methyltransferase function of MLL adding 

the heterologous functions of the fusion partner (Figure 3). 

MLL rearrangements generate a large variety of oncogenic MLL fusion proteins. To date, 

more than 60 different fusion partners have been identified, among which the most 

common ones are nuclear proteins with transcriptional activating activity (Krivtsov, 2007; 

Monroe, 2010; Yokoyama AL, 2010). 

Wild Type (WT) MLL is a very large, 431 kDa protein with many different identified 

domains that mediate protein-DNA, protein-protein, or protein-RNA interactions. The 

MLL protein is proteolytically cleaved into an N- and a C-terminal fragment by the 

protease TASPASE1 (Hsieh, 2003). The MLL N-terminal fragment has a Menin binding 

region, 3 AT hooks, a repression domain, 4 PHD fingers, an atypical bromo-domain and a 

FYRN (Phenylalanine and Tyrosine Rich N-terminus) domain. The MLL C-terminal 

fragment has the transcriptional activation domain, a FYRC (Phenylalanine and Tyrosine 

Rich C-terminus domain).  

The chromosomal break point region is just before PHD. Hence the fusion protein 

contains a portion of MLL N-terminus through the repression domain fused in frame with 

a C-terminal partner protein fragment. The rest of the N-terminus (from the PHD finger 

region to the TASPASE1 cleavage site) and the whole of MLL-C fragment is deleted in the 

MLL fusion protein as shown in Figure x.  

Therefore, MLL fusions do not conserve the TASPASE1 cleavage site, which has been 

shown to cause resistance to cell cycle specific degradation (Liu, 2010). 

Nevertheless, the deleted regions are frequently, but not always, represented in the 

reciprocal translocation product. In addition, the MLL gene is also involved in other 

aberrations such as partial tandem duplications (PTD) that occur in nearly 8% of AML 

patients with normal cytogenetic features (Figure 3). 
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Figura 3: Structure of MLL fusions  and onco-MLL complex.  

 

 

Intriguingly, only six frequent partner proteins (AF4, AF9, ENL, AF10, ELL, AF6) constitute 

the bulk (>80%) of all clinical cases of MLL leukemia  (Meyer, 2009) (Table 1), whereas 

the remaining fusions proteins were cloned each from a few isolated, mostly adult 

patients. These MLL rearrangements can be classified into five groups, according to 

differences in cellular location and putative function (Table 1) (Krivtsov, 2007).  
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Table 1: Classification of MLL fusions. MLL rearranges with a large number of partner genes. Each 

rearrangement can be classified into 5 groups based on putative function and cellular location of the 

chimera. (Table rearranged from  Krivtsov, 2007) 

 

 

• The first group is characterized by fusion partner genes encoding the nuclear DNA-

binding proteins AF4 (ALL1 fused gene from chromosome 4), AF9, AF10, ENL 

(eleven nineteen leukemia gene) and ELL (eleven nineteen lysine-rich leukemia 

gene). Taken all together, these aberrations account for more than 80% of MLL 

translocation in leukemia patients.  

• The second group involves cytoplasmic proteins such as AF6, AFX, GAS7, EEN, AF1p 

and Eps15. These fusion partners are found in more than 10% MLL rearranged 

leukemias. The common feature of this group of protein is coiled-coil 

oligomerization domains that are important for their transformation potential  

(So, 2003).  

• The third group of fusion partners includes septins (SEPT2, SEPT5, SEPT6, SEPT9 and 

SEPT11), which are cytoplasmic proteins playing a role in mitosis and cytoskeletal 

structure  (Hall, 2004). This group characterize only the 2% of MLL associated 

leukemias. 

• The fourth group is characterized by the histone acetyltransferases p300 and CBP. 

MLL is fused with these proteins retaining histone acetyltransferase activity, 
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although TA domain, which mediates interaction of p300/CBP with wildtype MLL, 

does not exist in MLL fusions  (Ida, 1997; Hall, 2004). These MLL fusions are also 

observed in 2% of MLL associated leukemias.  

• The fifth group contains only MLL–partial tandem duplication (MLL–PTD). MLL–PTD 

results from a variable number of duplication of exons 5 to 12 that are inserted 

before exon 11 or 12. MLL–PTD is found in 4-7% normal karyotype AML patients 

and also often associated with trisomy 11 abnormality  (Shiah, 2002) 

Approximately 50% of pediatric AML cases with an MLL rearrangement consist of 

t(9;11)(p22;q23). The other 50% predominantly include t(6;11)(q27;q23), 

t(10;11)(p12;q23), t(11;19)(q23;p13.1) and t(11;19)(q23;p13.3) (Raimondi, 1999) as 

shown in Figure 4. 

 

 

 

 

 

Figure 4: The distribution of translocation partners of MLL in pediatric AML. More than 60 different 

fusion partners of MLL have been identified, however t(9;11)(p22;q23) is the most common translocation 

that occurs in MLL-rearranged AML, accounting more than 40% of cases. Other frequent rearrangements 

are caused by the translocation t(10;11)(p12;q23), t(6;11)(q27;q23), t(11;19)(q23;p13) and 

t(1;11)(q21;q23) accounting for 13, 5, 11 and 3% of cases, respectively. Figure from (Balgobind, 2011) 
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Interestingly, over 80% of human AML containing MLL-rearrangements exhibit strong 

expression of  

genes normally restricted to HSC including, HoxA7, HoxA9, HoxA10 and Meis1  (Afonja, 

2000; Ferrando, 2003; Lawrence, 1999). Some of them, generally genes highly expressed 

in human AML with MLL-AF9 translocation, have been demonstrated to regulate survival 

and self-renewal of LSCs (Faber, 2009; Wong, 2007). Among them, HoxA9 and Meis1 

represent the best-characterized MLL downstream target, which take part of a wider 

transcriptional program critical for self-renewal of MLL LSCs. Therefore, identification 

and functional characterization of target genes directly or indirectly regulated by MLL 

fusions, is pivotal to understand the origin of the MLL-related leukemia as well as the 

abnormal function of HSCs, which will be crucial in order to develop new molecular-

based therapies. 

 

 

3. MLL GENE IS REQUIRED DURING DEVELOPMENT AND 

HEMATOPOIESIS 

 

MLL is the mammalian homolog of the Drosophila protein found in trithorax and is a 

member of the evolutionarily conserved trithorax group (trxG) family of proteins that 

positively regulate gene transcription and act antagonistically to the Polycomb group 

(PcG) proteins (Djabali, 1992; Gu, 1992; Ringrose, 2004). It belongs to the MLL family of 

SET domain containing histone methyltransferases that methylates histone H3 on lysine 

4 (Milne, 2002; Shilatifard, 2012). The H3K4Me3 mark at gene promoters is associated 

with active transcription (Figure 5). In fact, MLL positively regulates the expression of 

target genes including multiple homeodomain (Hox) genes through H3K4 methylation of 

gene promoters (Milne, 2002). Hox genes are transcription factors that participate in the 

development of multiple tissues, including the hematopoietic system (Abramovich, 

2005). Mouse models have conclusively shown Mll to have a crucial role in the control of 

Hox gene expression and in the development of the axial skeleton and hematopoietic 

systems of mammals. In fact, homozygous deficiency for MLL results in early embryonic 

lethality at embryonic day 10.5 (E10.5), exhibiting multiple patterning defects, and 
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heterozygous deletion of MLL incurs homeotic transformation, indicating altered Hox 

gene expression (Yu, 1995; Yagi, 1998; Ayton, 2001). Other experiments on Mll-deficient 

mice demonstrated that ESCs without Mll were unable to differentiate into any 

hematopoietic cell types in adult animals or in the fetal liver (Ernst, 2004a). Moreover, 

Ernst and colleagues, using an in vitro system, have demonstrated that the block in 

hematopoietic development was accompanied by global reduction in Hox gene 

expression and could be rescued by the reintroduction of individual Hox genes (Ernst, 

2004). 

In other experiments conducted in adult mice, the conditional ablation of Mll 

demonstrated its critical role to maintain adult hematopoietic stem cells (McMahon, 

2007). Despite interaction with active transcription factors, MLL interacts also with 

multiple proteins that suppress gene expression, such as histone deacetylase 1 (HDAC1) 

and HDAC2, CYP33, PcG proteins PC2 and CTBP (Xia, 2003). 

Besides its known role in embryonic development and hematopoiesis, MLL also 

orchestrates cell cycle progression at least through regulating the expression of cyclins 

and CDK inhibitors (Milne, 2005-B; Xia, 2005; Takeda, 2006; Kotake, 2009). 

 

 

 

Figure 5: Structure of wild type MLL and the MLL complex. MLL is a very large, 431 kDa protein with many 

different identified domains that mediate protein-DNA, protein-protein, or protein-RNA interactions.  MLL 

is part of a large chromatin modifying complex in which the SET domain of MLL has histone 

methyltransferase and histone acetyltransferase activity. During the formation of this complex, MLL 
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protein is proteolytically cleaved into an N- (MLL-N) and a C-terminal (MLL-C) fragment by the protease 

Taspase I. The MLL-N fragment has a Menin binding region, 3 AT hooks, a repression domain, 4 PHD 

fingers, and a CxxC domain. The MLL-C fragment has the transcriptional activation domain, and associates 

with histone acetyltransferases to ensure histone modification and methyltransferase activity. The 

chromosomal break point region is just before PHD.  

 

 

3.1. MLL-rearranged AML is a leukemic stem cell disease 

 

The mixed lineage leukemia is a subtype of leukemia that arises in particular in infants. It 

seems thus likely that the translocation occurs in uterus (Eguchi, 2006). In fact 

environmental factors to which the fetus is exposed in utero may have an important role 

in the development of MLL-rearranged AML, which seem to occur because of 

inappropriate non-homologous end joining of double-strand breaks (Aplan, 2006). 

Normal MLL associates with other factors to activate the transcription of many genes. 

The MLL-N is involved in target selection and is retained in the fusion proteins: for this 

reason it seems that MLL fusions will share many target loci with wild type MLL. This 

assumption has been confirmed for the clustered HOX homeobox genes that are under 

control of MLL as well as of MLL fusion proteins. Remarkably, it has been demonstrated 

that expression of an MLL fusion gene (MLL-AF9) GMPs induces a ‘‘HSC stem cell-like’’ 

signature that includes various HOX genes (Krivtsov, 2006). The acquisition of a stem cell 

signature by leukemic GMPs may contribute to self-renewal of leukemia stem cells. The 

HOX factors, together with their cofactor Meis1, positively regulate the pool size of HSC 

and lineage-specific hematopoietic progenitors by promoting cellular proliferation as 

well as arresting cellular differentiation (Azcoitia, 2005; Lawrence, 2005;  Wang, 2005). 

The dysregulation of Hox genes and Meis1 was directly linked to malignant 

hematopoiesis. In normal hematopoiesis, the expression pattern of the Hox genes and 

Meis1 is dynamic, present at high levels in stem cells and early precursors and quickly 

down regulated as progenitors differentiate (Sauvageau, 1994). Therefore, a continuous 

ectopic HOX expression will block differentiation and create a rapidly proliferating pre-

leukemic precursor pool (Figure 6). There are many other genes regulated by MLL-
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rearrangements, but for certain, HOX deregulation is the most important factor for MLL 

fusion induced leukemogenesis (Milne, 2005;  Zeisig, 2004;  Horton, 2005; Ernst, 2004).  

 

 

 

 

Figure 6: The role of HOX as well as Meis1 proteins in control of hematopoiesis. Transcription factors, as 

Hox genes and Meis1 control hematopoietic differentiation. The expression of these genes must be finely 

downregulated during differentiation. Therefore presence of ectopic factors, such as MLL chimeras,  will 

deregulate expression of these genes causing a block of maturation and promoting a self-renewing of 

precursor cells (figure adapted from (Slany RK, 2009)). 

 

 

There are accumulating evidence that suggest how the cell of origin , in which a genetic 

lesion occurs, can contribute to the emergence of distinct tumor subtype. In particular, 

Armstrong’s group demonstrates that there is a difference in MLL-AF9-mediated 

leukemia, depending if the cells of origin are HSCs or GMPs (Krivtsov, 2013). In particular, 
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they demonstrate how MLL-AF9 transformed HSCs are more aggressive than MLL-AF9 

transformed GMPs. Functionally defined LSCs are immunophenotypically similar, but 

they have differences in gene expression and DNA methylation that are determined by 

the cell of origin. The Gene expression profile resulting from this study show how 

leukemia that originates from HSCs retains enhanced expression of a set of “stem cell 

associated” genes. Therefore, the expression of MLL-AF9 in GMPs activates a stem cell 

associated program, but the expression of MLL-AF9 in HSCs allows maintenance of a 

more extensive stem cell-derived program that influences the LSCs behavior. All these 

findings indicate that many genes involved in self-renewal process in normal HSCs are 

shared in LSCs and allow the maintenance of a stem cell profile in MLL-related leukemia. 

Thus, investigating genes involved in the differentiation block is a fundamental in order 

to understand the basis of the aggressiveness of this disease.  

 

 

4. ZNF521 

 

The Zinc Finger Protein (ZNF521) (also known as early hematopoietic zinc finger protein 

(EHZF); EVI3 or Zfp521 in mouse) is a transcription factor with 30 Krüppel-like zinc finger 

(ZF) domains and contains an N-terminal 12-amino acid motif that interacts with the 

nucleosome remodelling and histone deacetylation (NuRD) complex, which is conserved 

among other ZF transcriptional repressors, including FOG-1, FOG2, BCL11A and SALL 

family members (Bond, 2004; Lin, 2004), Initially, ZNF521 was identified in a comparative 

analysis of the transcriptional profile between human CD34+ hematopoietic progenitors 

and mature peripheral blood leukocytes (Bond HM, 2004).  This analysis has revealed 

that ZNF521 is abundantly expressed in human CD34+ progenitors and then declines 

rapidly during cytokine-driven differentiation (Bond, 2004). However, it has been shown 

that ZNF521 is also widely expressed all along the body including brain, muscle, heart, 

kidney, spleen, lymph nodes, placenta, thymus, fetal liver and bones (Bond, 2004). In 

particular, it is highly expressed in mesenchymal condensations, in prehypertrophic 

chondrocytes in the growth plate as well as in osteoblasts and osteocytes during 

endochondral bone development (Hesse, 2010; Liu TM, 2013). In all these cell types, it 
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appears to control cell differentiation, as well as the function of mature cells by 

modulating the activity of specific transcription factors. Previous studies in 

hematopoietic cells have shown that ZNF521 negatively regulates Early-B Cell Factor 1 

(EBF1) activity via its C-terminal domain, thus influencing B cell differentiation (Mega, 

2011). It has been also shown that ZNF521 through its NuRD interaction suppresses the 

GATA-1 activity during erythropoiesis (Hong, 2005). Being that GATA-1 a master 

regulator of erythroid cell maturation by activating erythroid-specific genes and 

repressing genes associated with the undifferentiated state, the activity of ZNF521 may 

be critical for the differentiation of hematopoietic progenitors.  

Recently studies, have also demonstrated that other transcription factors such as PU.1 

and HOXC13, can synergistically cooperate to regulate ZNF521 expression (Yu, 2016). Yu 

and colleagues demonstrate that transgenic mice over-expressing Hoxc13 and Pu.1 also 

have increased Zfp521 expression in the fetal liver, the site of B-cell differentiation 

during development. 

Thus, in a hematopoietic context these observations lead to speculate that ZNF521 could 

play a critical and specific role in human hematopoiesis. This latter, it is also corroborate 

by the observations that ZNF521 expression is frequently deregulated in hematopoietic 

malignant cells. Early studies have shown that ZNF521 mRNA is highly expressed in 

several AML samples (FAB M2, M3 and M4) as well as CMLs (Bullinger, 2004; Bond, 

2004). Intriguingly, in a study conducted on 363 adult acute leukemia was found that 

MLL rearrangements associate with high levels of ZNF521 (Kohlmann, 2005). Moreover, 

it has been described in a case of B cell-progenitor ALL, a translocation resulting in the 

fusion of PAX5 gene with ZNF521 gene (Mullighan, 2007) and most recently was 

identified ZNF521/Zfp521 as a partner to develop B-lineage ALL positive for both E2A-

PBX1 and E2A-HLF chimeric gene product (Sera, 2016).  

Collectively, these findings demonstrate that a deregulated expression of ZNF521 may 

contribute to leukemic transformation  
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AIM OF THE THESIS 

 

 

MLL-fusion proteins are potent inducers of oncogenic transformation, and their 

expression is considered to be the main oncogenic driving force in approximately 10% of 

AML patients. These oncogenic fusion proteins activate specific set of genes, of which 

the overexpression of hoxa9 and MEIS1 has demonstrated to play a synergistic causative 

role in MLL leukemogenesis. Since that both HOXA9 and MEIS1 play an important role in 

the HSC self-renewal/proliferation, we asked whether others transcriptional regulators 

of HSCs might have relevance in MLL-induced leukemia.  

By gene set enrichment analysis (GSEA) we compared the publically datasets for genes 

normally upregulated in HSCs (CD133+) to our pediatric AML patients. The use of GSEA 

analysis allowed us to identify ZNF521 as a new gene among the well-known genes such 

as HOXA9 and MEIS1 in AML patients carrying MLL rearrangements. ZNF521 encodes for 

a transcription factor that in normal and malignant hematopoiesis has initiate to be 

studied and its misexpression expression have been causally linked to acute leukemia. 

The aim of the present study was to establish whether the identified ZNF521 gene is 

required in MLL leukemogenesis. In order to achieve this, we investigated the role of 

ZNF521 in MLL-rearranged AML, through the study of the knockdown of ZNF521 in a 

series of human MLL-rearranged cell lines and patient-derived xenograft cells. We 

analyzed the contribution of ZNF521 to leukemogenesis by a series of functional and 

mechanistic studies and investigated the ZNF521-dependent molecular pathway using as 

model THP-1 AML cell line. 
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MATHERIALS AND METHODS 

 

 

1. PATIENT SAMPLES AND CELL LINES 

 

All of the pediatric AML patient samples were obtained at the time of diagnosis from the 

University-Hospital of Padua and stratified according to the AIEOP AML 2002/01 protocol 

AML 2002/01 (Pession, 2013). Patient characteristics are listed in Table 1.  

 

 

Non-MLL-rearranged (n = 34)  MLL-rearranged (n = 16) 

normal karyotype  13 

(38%) 

 t(10;11)(MLL-AF10) 5 (31%) 

t(15;17)(PML-RARα) 6 

(18%) 

t(9;11)(MLL-AF9) 5 (31%) 

inv16(CBFB-MYH11) 3 

(9%) 

t(6;11)(MLL-AF6) 3 (19%) 

t(8;21)(AML1-ETO) 8 

(23%) 

11q23 others * 3 (19%) 

FLT3-ITD + 4 

(12%) 

  

 

Table 1: Genotype features of the 50 childhood AML patients analyzed for ZNF521 expression  by qRT-

PCR analysis. 

*t(11;19)(MLL-ENL) n=1; t(11;19)(MLL-ELL) n=1; t(X;11)(MLL-SEPTIN6) n=1 

 

 

 

Seven BM samples from healthy donors were obtained as control. All human myeloid cell 

lines (THP-1, NOMO-1, OCI-AML4, ML2, HL60, K562, Kasumi-1, NB4, U-937, SEM and 

REH) were obtained from DSMZ (Braunschweig, Germany) and 293T cells were obtained 

from ATCC (Manassas, VA, USA). All cell lines were maintained under standard conditions 

suggested by the manufacturer.  
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2. QUANTITATIVE REAL TIME PCR  

 

Total RNA was extracted with Trizol reagent (Invitrogen) and reverse transcribed into 

cDNA using the Superscript III First-Strand Synthesis System (Life Technology). The mRNA 

levels of ZNF521, PU.1, C/EBPα, HOXA9 and MEIS1 were measured by quantitative RT-

PCR (qRT-PCR) with SYBR green on an AB 7900HT real time system (Applied Biosystem) 

using the comparative Ct method and the GAPDH gene expression as internal control 

(Schmittgen, 2008). The primer sequences for quantitative qRT-PCR are listed in Table 2.  

 

 

Sequence of the primers used in this study 

 

Primers for qRT-PCR 

Gene 
name 

Forward 5’ → 3’ Reverse 5’→ 3’ 

GAPDH AGGGCTGCTTTTAACTCTGGT CCCCACTTGATTTTGGAGGGA 

ZNF521 ACTGAAGTTTGGCAGGAGAG TGGGATATTCAGGTTCATGTT 

PU.1 AGAAGACCTGGTGCCCTA CCAGTAATGGTCGTCATGGC 

C/EBPα AACATCGCGGTGCGCAAGAG TTCGCGCTCAGCTGTTCCA 

HOXA9 AAAACAATGCTGAGAATGAGAGC TATAGGGGCACCGCTTTTT 

MEIS1 TGATCAGCAGGCAAAGATTG CATACTCCCTGGCATACTTTG 

 

Primers for ZNF521 promoter^  

Gene 

name 

Forward 5’ → 3’ Reverse 5’→ 3’ 

ZNF521
P1 

AGCTGCTAGCACATTAAACTATACCAAAGA
AATCCA 

AGCTAAGCTTAAAACTATACTCAGTTCCCAGT
TCC 

ZNF521
P2 

AGCTGCTAGCTCCATGTGACGTTCTTAAATG
C 

AGCTGCTAGCTTAGCCACTGCAGAAAGGTAA
A 

ZNF521
P3 

AGCTGCTAGCTGACGTTCTCATTGTAGCTG
GT 

AGCTAAGCTTATGAAGCCAAAGCCATCATC 

ZNF521
P4 

AGCTGCTAGCTCCAGGCAGTTTACAGGTTA
GA 

AGCTGCTAGCCTGTACGTAATCACTGAGGAA
ATCAT 

ZNF521
P3.1 

AGCTGCTAGCTGACGTTCTCATTGTAGCTG
GT 

AGCTAAGCTTATGAAGCCAAAGCCATCATC 

ZNF521
P3.2 

AGCTGCTAGCAAGTTGCTGCATTCTGCTCA AGCTAAGCTTTTTCCTTTCGTGTGGTAGCC 

ZNF521
P3.3 

AGCTGCTAGCTATCACACATAACTTGGGAC
CAC 

AGCTCTCGAGGTGGAAATTAAGAGATTCAGA
ATACG 
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Primers for ChIP analysis 

Gene 
name 

Forward 5’ → 3’ Reverse 5’→ 3’ 

HOXA9 AATGCGATTTGGCTGCTTTTTTATGGC TCAAATCTGGCCTTGCCTCTG 

ZNF521
p3.3 

ACACATAACTTGGGACCACAC GTCTAACCTGTAAACTGCCTGGA 

 

 

shRNA sequences in Mission shRNA pLKO.1-puro-CMV-TurboGFP 

shZNF52
1_9004 

GTACCGGATCACTTGAAGATCCACTTAACTCGAGTTAAGTGGATCTTCAAGTGATTTTTTTG 

shZNF52
1_9710 

CCGGACAAGTTGCAGCAGCATATTTCTCGAGAAATATGCTGCTGCAACTTGTTTTTTG 

shScram GGACAAGTTGCAGCAGCATATTTCTCGAGAAATATGCTGCTGCAACTTGTTTTTT 

 
Table 2: List of Primers used in this study. ̂ The restriction enzyme sites are underlined. 

 

 

3. LENTIVIRAL SHRNA VECTOR, TRANSDUCTION AND FACS-SORTING   

 

For knockdown studies, two shRNAs against ZNF521 and a control scrambled shRNA 

(shScram) were used (Mission pLKO.1-puro-CMV-TurboGFP system, Cat Number 

TCRN0000229710 and TCRN0000229004, Sigma-Aldrich) (see Table M2 for shRNA 

sequences). Lentiviral cell transduction was performed as described previously 

(Indraccolo, 2002). After culture in fresh medium and 96 hours after infection, GFP-

positive cells were sorted using a MoFlo XDP cell sorter (Beckman Coulter) and used for 

further experiments. Alternatively, cells were gated for GFP expression and subjected to 

flow cytometry analyses. ZNF521 knockdown efficiency was measured by qRT-PCR and 

western blot analyses.  
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4. PLASMIDS CONSTRUCTS, TRANSIENT TRANSFECTION AND 

LUCIFERASE ASSAY 

 

pMSCV-neo-Flag-MLL-AF9, MSCV-PML-RARA-IRES-GFP, MSCV-AML1-ETO-GFP, 

pCMVMLL-3xFlag and pCMVMLL-ENL-3xFlag have been previously described (Abdul-

Nabi, 2010; Liu, 2007; Tan, 2011). Flag-tagged proteins were previously verified by 

Western blot with anti-Flag M2 antibody (Sigma), as well as the GFP-tagged proteins by 

expression of green fluorescence protein (GFP) in vitro.  

Wild-type ZNF521 promoter from -4493 to + 65 relative to the transcription start site 

(TSS) was divided in four genome fragments [P1 (-3810 to 4993), P2 (-2560 to 3970), P3 (-

1060 to 2729) and P4, +62 to -1260)] and each one was isolated from a genomic DNA 

obtained from a pool of buffy coat by PCR amplification using primer pairs containing 

specific restriction sites. All PCR products were purified, sequenced and cloned in TOPO 

TA cloning kit (Invitrogen). P1 and P3 plasmids were XhoI/HindIII-digested and the 

fragments were recloned into XhoI/HindIII sites downstream of the luciferase gene of the 

pGL42.8 luciferase vector (Promega) to generate ZNF521P1-luc and ZNF521P3-luc 

constructs, respectively. Similarly, P2 and P4 plasmids were NheI/XhoI-digested and the 

fragments inserted into NheI/XhoI sites of pGL42.8 vector to generate ZNF521P2-luc and 

ZNF521P4-luc constructs, respectively. The genome fragment P3 (-1060 to 2729) was 

subdivided in three smaller parts [P3.1 (-2101 to -2729), P3.2 (-1533 to -2143) and P3.3 (-

1060 to -1610)] and each part was PCR amplified from genomic DNA using primers 

containing specific restriction sites and cloned in TOPO TA vector. P3.1 and P3.2 plasmids 

were XhoI/HindIII-digested and the fragments were recloned into XhoI/HindIII sites of 

pGL42.8 vector to generate ZNF521P3.1-luc and ZNF521P3.2-luc constructs. P3.3 plasmid 

was NheI/XhoI-digested and the fragment recloned into NheI/XhoI-digested pGL42.8 to 

generate ZNF521P3.3 construct. (Primers used for genomic DNA amplification are listed 

in Table M2).  

For luciferase assay, 293T cells were cotransfected with 0.5 µg of the reporter plasmid, 1 

µg of expression plasmid or empty vector and 0.5 µg of Renilla luciferase reporter vector 

(Promega) as internal control for normalization of transfection efficiency, for a total of 2 

µg of combined plasmids per well. The cells were then harvested at 48 hours after 
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transfection using a Dual-Luciferase reporter assay system (Promega) and the Victor3 TM 

1420 Multilabel Counter (PerkinElmer). Data are presented as the mean ratio for 

triplicate experiments. 

 

 

5. CHROMATIN IMMUNOPRECIPITATION (CHIP) AND PCR DETECTION 

 

ChIP assay was performed using the Imprint Chromatin Immunoprecipitation kit (Sigma), 

according to the manufacturer's protocol with minor modifications. Briefly, 293T cells 

(3.5 × 106 cells) were transfected with 10 µg of Flag-MLL-AF9 or Flag-MLL-ENL expression 

plasmids. 48 hours post transfection, were cross-linked with 1% formaldehyde (Sigma) 

for 15 minute at room temperature. Subsequently, the lysed cells were isolated and 

sonicated on ice to shear DNA into fragments of 200 bp to 1 kb. Then, the chromatin 

complexes were incubated into pre-treated Stripwells (Sigma) with anti-Flag M2 

monoclonal antibody (Sigma), or normal mouse IgG (Sigma) as indicated. The input DNA 

was isolated from sonicated lysates before immunoprecipitation as a positive control. 

Purified DNA was then resuspended in TE buffer (10 mM Tris-HCL and 1 mM EDTA, pH 

8.0) for PCR. ChIP assay from 2 x106 of MLL-AF9-expressing NOMO-1 cells or HL60 cells 

was performed as above reported using a N-terminal MLL monoclonal antibody (Santa 

Cruz Biotechnology) or a C-terminal MLL polyclonal antibody (Sigma) or a mouse IgG 

(Sigma) as indicated. Purified ChIP DNA was amplified by regular PCR. Primers amplifying 

the ZNF521 promoter region and the HOXA9 promoter region used for the ChIP PCR are 

listed in Table 2.   

 

 

6. MICROARRAY ANALYSIS 

 

Total RNA from sorted THP-1 cells transduced with shRNAs was isolated using Trizol as 

above reported and processed for microarray analysis using the Affymetrix GeneChip 
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3’IVT express Kit (Affimetrix) after RNA quality control using Agilent 2100 Bioanalyzer 

(Agilent). Gene expression profile was performed using a Human Genome U133 2.0 Plus 

chip (Affymetrix), as previously described (Bresolin, 2010). The data were RMA-

normalized using R software (http://www.r-project.org/) with BioConductor package 

(www.bioconductor.org). Shrinkage t test was used to identify differentially expressed 

genes between shScram and shRNA ZNF521 THP-1 cells selected with a local FDR <0.05 

(FDR). Hierarchical clustering analyses were performed using Euclidian distance and 

Ward’s methods. Gene set enrichment analysis (GSEA) was performed using GSEA 

version 2.0 software (Broad Institute; http://www.broadinstitute.org/gsea) with genes 

ranked by difference of class and statistical significance by 1000 gene set permutations. 

Gene set permutation was used to enable direct comparisons between shScram and 

shRNA ZNF521 results (<7 replicates). Median of probes was used to collapse multiple 

probe sets to a single value per gene for each sample. Gene sets with a FDR <0.05 were 

declared to be statistically significant. The microarray gene expression data have been 

submitted in NCBI’s Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) 

under accession GSE79110 

 

 

7. WESTERN BLOT AND IMMUNOFLUORESCENCE STAINING 

 

Western blot and immunofluorescence were performed using standard procedures. The 

antibody against ZNF521 was from Novus Biologicals (72009). Gamma-Tubulin (T6557), 

Actin (A5316), Flag M2 (F3165) antibodies were from Sigma Aldrich. For 

immunofluorescence analysis, antibody against CDKN1A/p21 (2947S) was from Cell 

Signaling and antibody against CDKN1B/p27 (610241) was from BD Biosciences.  

For immunofluorescence analysis, 5 × 104 FACS-sorted cells were harvested 7 days after 

transduction and cytocentrifuged onto slides at 500 rpm for 5 minutes (Cytospin 4 

cytocentrifuge, Thermo Scientific). Cells were fixed in 4% formaldehyde for 15 minutes, 

permeabilized with PBS containing 0.1% Triton X-100 (Sigma) for 10 minutes, and 

blocked with 5% BSA in PBS for 30 minutes at room temperature, followed by incubation 
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with primary antibodies in 1% BSA-PBS overnight at 4°C. The following day, slides were 

washed with PBS and incubated with the secondary antibody Alexa Fluor 594 Goat Anti-

mouse IgG (H+L) (1:2000, Life Technologies) for 1 hour at room temperature. Nuclei 

were stained with 4′,6-diamidino-2-phenylindole (DAPI, 1:10000; Sigma) for 13 minutes. 

A minimum of 50 cells/sample was scored in three different fields in at least three 

independent cytospin preparations. Cells were visualized and counted by a confocal 

microscope (Vico, Eclipse Ti80, Nikon) equipped with a digital camera. Images were 

captured with ImageProPlus software (Media Cybernetics). 

 

 

8. CELL FUNCTION ANALYSIS  

 

8.1 Cell viability and clonogenic assay  

 

Viability assay was performed using the colormetric diphenyltetrazolium bromide (MTT) 

Cell Proliferation Kit I (Sigma) and measured via Victor 3 Microplate reader 

(PerkinElmer). Briefly, FACS-sorted GFP positive cells (5 × 104) from cell lines and/or ex 

vivo primary patient-derived cells were collected 4 days after transduction and seeded 

(in triplicates) in 96-well culture plate. At a designated time point, cell viability was 

measured by adding 10 µl of MTT solution (5 mg/ml) to each well. After 3 hours of 

incubation, the absorbance (OD) of each well was measured at 570 nm using a 

microplate reader (Victor 3; PerkinElmer). Cell proliferation was calculated by the 

following formula: (mean OD ZNF521-shRNA wells)/(mean OD shScram-control wells) × 

100%. For the clonogenic assay, 2 × 103 cells at day 4 of transduction were FACS-sorted 

and then resuspended and seeded in methylcellulose medium (MethoCult H4534; Stem 

Cell Technologies). After 14 days, colonies were counted under 20x magnification with a 

stereoscope after exposure to MTT (Sigma) for 3 hours at 37° C. 
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8.2. Cell cycle, apoptosis assay  

 

Cell-cycle analysis was performed by flow cytometric analysis of propidium iodide-

stained cells at 7 days after shRNA transduction. Briefly, 2.5 × 105 cells were washed in 

PBS and then fixed in 70% ethanol and put at -20°C overnight. The samples were 

rehydrated in cold PBS, treated with lysis buffer containing RNase and 0.1% Triton X-100 

(Sigma) and stained with propidium iodide (PI). Cell cycle distribution was measured on 

gated GFP-positive cells. Analyses were performed using the Cytomics FC500 flow 

cytometer (Beckman Coulter, Brea, CA) and MultiCycle Cell Cycle Analysis Software 

(Phoenix Flow Systems, San Diego, CA). A minimum total of 10.000 gated events were 

collected for each sample. Cell death was measured at day 4 and day 7 after transduction 

using AnnexinV-Fluos staining kit (Invitrogen) and analyzed by flow cytometry. Briefly, 

2.5 × 105 cells were resuspended in 100 µl of 1x annexinV-binding buffer and incubated 

with 1 µl of allophycocyanin-conjugated annexinV (Invitrogen) and 1 µl of DAPI (1:10000, 

Sigma) for 15 minutes at room temperature. The apoptotic cells (AnnexinV+/DAPI-) were 

determined on gated GFP-positive cells as described above.  

 

 

8.3. Expression of CD11b and CD14, morphological analysis and cell 

differentiation induction  

 

PE-conjugated anti-CD11b (BD Biosciences) and Phycoerythrin-Cyanin (PC7) anti-CD14 

(Beckman Coulter) were used to analyze myeloid differentiation. Briefly, on day 7, 2 × 

105 transduced cells were harvested, washed and labeled with conjugated antibodies in 

PBS for 15 minutes in the dark. Then, cells were washed and analyzed by flow cytometry 

of gated GFP-expressing cells as previously reported. The expression of the cell surface 

markers was analyzed with a Cytomics FC500 flow cytometer (Beckman Coulter, Brea, 

CA). Cell morphology was determined on cytospin preparations. Four days after 

transduction, GFP positive cells were FACS-sorted and placed in culture. Three days later 

(7 days post-transduction), 0.5 × 105 cells were harvested and washed in PBS buffer and 
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spun onto slides for 5 minutes at 500 rpm using a Shandon CytoSpin4 cytocentrifuge and 

the slides were stained with a Wright-Giemsa stain. Images were taken at 40x 

magnification using a Nikon microscope (Vico, Eclipse Ti80, Nikon) and acquired with 

ImageProPlus software (Media Cybernetics). For the differentiation induction with ATRA 

(1µM; Sigma) or Securinine (15 µM; Sigma), after 3 days of treatment cells were 

collected and analyzed for cell morphology, level of ZNF521 transcripts and protein 

expression as previously described. 

 

 

9. STUDIES WITH AML PATIENT-DERIVED XENOGRAFT CELLS  

 

Primary MLL-AF9-expressing cells were obtained from BM samples of diagnosed AML 

pediatric patients stored in the BioBank of the laboratory of Pediatric Hematology of the 

University Hospital of Padua, (Italy) according to the guidelines of the local ethics 

committee. Initial AML xenografts were established by tail vein injection with 8 × 106 

primary cells suspended in 300 μl of PBS in 6- to 8-week-old NSG mice, which were 

purchased from Charles River (Wilmington, MA, USA). All animal experiments were 

performed in accordance with institutional guidelines and established protocols 

(Agnusdei, 2014). Engraftment was monitored by weekly blood collections and flow 

cytometry analysis with antihuman CD45 (BD Biosciences). The engraftment rate was 

defined by the number of days required for the transplanted human CD45+ cells to reach 

at least 20% in the peripheral blood. Human leukemic cells from the spleens of engrafted 

mice were collected and cultivated in RPMI supplemented with 10% Human serum 

(Euroclone), antibiotics, and cytokines SCF, FLT-3L and TPO (40 ng/ml for each), IL-3 and 

IL-6 (20 ng/ml for each). (All cytokines were obtained from Inalco, Milan, Italy). For ex 

vivo experiments, two independent biological replicates were performed. 

 

 

 



38 
 

10. DATA ANALYSIS 

 

Data are presented as mean ± SD. Each experiment was performed at least 3 times, 

except where stated otherwise. The differences were examined using 2-tailed t test, 

Mann–Whitney U-test or kruskal-Wallis one-way analysis of variance followed Dunn’s 

test as appropriate (GraphPad Prism; GraphPad). Results were considered significant at 

P<0.05. 
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RESULTS 

 

 

1. GSEA analysis of upregulated stemness genes in pediatric AML 

 

One of the most important features of AML carrying MLL rearrangements is that to show 

an up-regulation of stem cell-associated genes including HOXA and MEIS1. In order to 

identify other uncharacterized stemness genes, we interrogated public signatures based 

on CD133+ cell populations isolated from normal/healthy versus gene expression profiles 

of 82 pediatric AML samples (61 with normal MLL and 21 with MLL rearrangements) 

previously analyzed. As shown in Figure X, among the canonical upregulated genes, 

whose overexpression are hallmarks of MLL-rearranged AML, we observed the ZNF521 

gene. Interestingly, ZNF521, which encodes a transcription factor, is a marker of HSC 

(Matsubara, 2009) with potential role in the regulation of HSC homeostasis, but with 

unknown function in MLL-mediated leukemogenesis. 
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Figure 7. Gene Set Enrichment Analysis (GSEA). Heat map displaying the Jaatinen hematopoietic stem 

cell_upregulated gene in CD133+ versus CD133- normal cells in 82 AML pediatric samples including 21 

MLL-rearranged. among the top five most differentially expressed genes (red box), ZNF521 appears among 

the genes most upregulated in aml samples with MLL rearrangements (gray lanes) than AML sample 

without MLL rearrangements (yellow lanes). 

 

 

2. ZNF521 IS ABERRANTLY OVEREXPRESSED IN PEDIATRIC MLL-

REARRANGED AML  

 

Previously, by use of microarray analysis, we found a frequent ZNF521 overexpression in 

pediatric AML with MLL rearrangements (Pigazzi, 2011). To validate these data and 

analyze the relationship between ZNF521 expression and distinct MLL-fusion genes, we 

performed quantitative real-time PCR (qRT-PCR) in an independent cohort of 50 pediatric 

AML patients (16 MLL-rearranged and 34 non-MLL-rearranged; Table 1) and 7 normal 

bone marrow (BM) controls. We found that ZNF521 was expressed at significantly higher 
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level in AML patients with MLL rearrangements compared to non-rearranged AML and 

normal controls (P<0.001, Figure 8). 

 

 

Figure

 

 

Figure 8. ZNF521 is aberrantly overexpressed in MLL-rearranged AML. (A) qRT-PCR for the expression of 

ZNF521 in 16 MLL-rearranged AML (MLL), 34 non-MLL-rearranged AML (Non-MLL) and 7 normal control 

(NC). The results are normalized to GAPDH and analyzed by 2−ΔCt method. NS, not significant, **P<0.001, 

kruskal-Wallis test. (B) qRT-PCR analysis of ZNF521 expression in a representative panel of   human 

leukemic cell lines normalized to GAPDH and analyzed by 2−ΔCt method. Data are represented as mean ± 

SD of three independent experiments. y axis is linear. Inset, dot plots of mean ZNF521 mRNA levels in 

MLL15 rearranged and non-MLL-rearranged cell lines from data presented in (B). *P<0.05, Mann–Whitney 

U-test. 

 

 

The analysis of ZNF521 expression between the most frequent MLL rearrangements 

detected in pediatric AML did not reveal significant difference based on MLL fusion 

partners (data not shown). In addition, we analyzed the expression of ZNF521 in 6 MLL-

rearranged and 6 non-MLL-rearranged human leukemic cell lines. Similarly, leukemic cell 

lines with MLL rearrangements, with the exception of those carrying MLL-AF4 fusion 
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transcripts, showed significantly higher ZNF521 mRNA levels compared to cell lines with 

other abnormalities (P<0.05, Figure RB). Thus, our data indicate that ZNF521 is likely 

involved in MLL-mediated transformation in AML.   

 

 

3. ZNF521 DEPLETION REDUCES CELL VIABILITY AND CAUSES CELL 

CYCLE ARREST WITHOUT INDUCING APOPTOSIS OF MLL-REARRANGED 

AML CELL LINES.  

 

To determine whether ZNF521 is functionally important in MLL-rearranged AML, we first 

examined the effects of ZNF521 knockdown on the cell proliferation using a panel of 

human MLL-rearranged AML cell lines, including, THP-1, NOMO-1 (both expressing MLL-

AF9), ML-2 (expressing MLL-AF6) and OCI-AML4 (expressing MLL-ENL). To suppress 

ZNF521, we used GFP-tagged lentiviral vectors expressing anti-ZNF521 shRNAs (ZNF004 

and ZNF710) or a non-targeting shRNA sequence (shScram). After assessing transduction 

efficiency by flow cytometry (range 30-80%) (Figure 9 and data not shown), GFP-positive 

cells were sorted and maintained under standard cell culture conditions for subsequent 

analysis. 
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Figure 9. Flow cytometry analysis and gating strategy of shRNA transduced human MLL-rearranged AML 

cell lines. Transduced cell lines were GFP-sorted at day 4 and analyzed or maintained in culture for further 

evaluation. Otherwise transduced cells were analyzed after being gated for the GFP+ cells. Representative 

flow cytometry dot plots of gated GFP+ cells after transduction with GFP lentiviral expressing shRNA 

against ZNF521 (ZNF004 and ZNF710) or expressing non-targeting shRNA sequence (shScram) are 

presented. The selected area indicates the sorting gates and includes the percentage of cells in each 

sorting gate. Gates were set to collect GFP high and GFP low-expressing cells. SSC, side scatter. 
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As expected, in all four cell lines downregulation of ZNF521 varied between 60% and 75% 

compared to ZNF521 mRNA expression in shScram-transduced cells, and this correlated 

with a decrease in ZNF521 protein amount (Figure 10).  

 

 

 

Figure 10. shRNA-mediated knockdown of ZNF521 in MLL-rearranged AML cell lines. (A) ZNF521 mRNA 

levels evaluated by qRT-PCR on GFP+ sorted cells after 4 days of transduction with shScram and ZNF521 

shRNAs (ZNF004 and ZNF710). The results are relative to shScram-transduced cells, normalized to GAPDH 

and analyzed by 2
−ΔΔCt

 method. Data are represented as mean ± SD of three independent experiments. (B) 

Western blot analysis for ZNF521 of cells used in (A). ϒ-tubulin was used as loading control. 
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In addition, ZNF521 knockdown progressively reduced viability of all the transduced cell 

lines (Figure 11A), and it inhibited colony formation ability of MLL-rearranged cells, 

measured 2 weeks after transduction (Figure 11B). In order to get a deeper insight, cell 

cycle analysis and apoptosis induction were assessed in GFP-positive MLL-rearranged 

cells. At day 7, we observed an accumulation of cells in G1 phase (17%-77%) in three out 

of four cell lines (THP-1, NOMO-1 and ML-2) expressing anti-ZNF521 shRNAs. This was 

most likely due to S phase reduction (from 29% to 65%) rather than G2/M alterations 

(Figure 11C). However, annexin V/DAPI assay measured at day 4 and day 7 demonstrated 

that ZNF521 knockdown did not caused increased apoptosis (Figure 11D), suggesting 

that ZNF521 may be involved in proliferation and differentiation of MLL-rearranged cells 

rather than in cell survival.  

 

 

 

FIGURE 11: ZNF521 depletion impairs cell proliferation, induces cell cycle arrest but not apoptosis in 

MLL-rearranged cell lines. 
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(A) MTT cell viability assay in the MLL leukemic cells THP-1, NOMO-1, OCI-AML4 and ML2 transduced with 

ZNF521 shRNAs (ZNF004 or ZNF710) or non-targeting scramble control (shScram). GFP+ cells were sorted 4 

days after transduction and placed in appropriate medium. Graphs show percentage of GFP+ cells 

measured at day 4, day 7 and day 10, normalized to the percentage of shScram cells. Data are represented 

as mean ± SD of at least three independent experiments. *P<0.05, **P<0.001, ***P<0.0001, t-test. (B) 

Colony formation of GFP+ cells transduced with ZNF521 shRNAs or shScram. Error bars represent mean ± 

S.D. of three independent experiments. **P<0.001, ***P<0.0001, t-test. (C) Cell cycle distribution at day 7 

of ZNF521 knockdown cells and control shScram of gated GFP+ cells. Data are represented as mean ± SD of 

three independent experiments. **P<0.001, ***P<0.0001, t-test. (D) Percentage of apoptotic cells 

(Annexin V+/DAPI- and Annexin V+/DAPI+) measured after 4 and 7 days post-transduction of gated GFP+ 

cell population. Data are represented as mean ± SD of three independent experiments.   

 

 

To substantiate this hypothesis, GFP-sorted transduced THP-1 and ML-2 cells were 

collected on glass slides by cytospin and stained with antibodies against p21 (CDKN1A) 

and p27 (CDKN1B) cell cycle inhibitors (Roy, 2015). At day 7, we observed an increase of 

both p21 and p27 protein expression in ZNF521 knockdown cells, suggesting a prolonged 

G1/S transition as the main reason for the aforementioned cell cycle arrest (Figure 12). 

Taken together, these findings indicate that ZNF521 expression is essential in the growth 

potential of MLL-rearranged AML cell lines. 
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Figure 12. ZNF521 depletion increases the expression signal of p21 and p27. (A) Representative confocal 

imaging on cytospin preparations of THP-1 and ML-2 cell lines analyzed for p21 and p27 expression by 

immunofluorescence assay. Transduced cells with shScram or ZNF521 shRNAs (ZNF004 or ZNF710) at day 7 

were stained with anti-p21 and anti-p27 antibodies and Alexa Fluor 594-conjugated goat anti-mouse IgG 

(red). Corresponding nuclei were counterstained with DAPI (blue). Original magnification, x 40. Images 

were collected by confocal microscope (Vico, Eclipse Ti80, Nikon) and processed with ImageProPlus 

software (Media Cybernetics). Results are representative of at least three independent experiments for 

each cell line. (B) Percentage of p21 and p27 positive cells was quantified respect to total nuclei (see 

supplemental method). Data are mean ± SD of three cytospin preparations for each cell line of three 

independent experiments. * P<0.05, t-test 

 

 

4. DEPLETION OF ZNF521 INDUCES MYELOID DIFFERENTIATION OF 

MLL-REARRANGED AML CELL LINES. 

 

Given that ZNF521 can regulate lineage progression of different cell types, including 

hematopoietic cells (Bond, 2004; Matsubara, 2009; Mega, 2011), we analyzed whether 

ZNF521 depletion might influence differentiation in MLL-rearranged leukemic cells. Flow 

cytometry analysis of CD11b and CD14 myeloid markers was then performed on GFP-

positive cells and revealed a change of these markers in 3 out of 4 cell lines transduced 
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with ZNF521 shRNAs (Figure 13A). The phenotypic changes were also sustained by a 

more mature macrophage-like morphology observed in all these cell lines upon ZNF521 

depletion as compared with transduced control cells (Figure 13B). Additionally, 

maturation induced by ZNF521 depletion was also supported by upregulation of C/EBPA 

and PU.1 mRNA levels, two myeloid differentiation markers (Figure 13C). 

 

 

Figure 13. ZNF521 depletion induces myelomonocytic differentiation in MLL-rearranged cell lines.  

(A) Representative flow cytometry dot plots of gated GFP+ cells analyzed for CD11b and CD14 expression 

after 7 days of transduction. The mean percentage of CD11b+/CD14-, CD11b-/CD14+, CD11b+/CD14+ and 

CD11b-/CD14- cells of three biological replicates are shown below. (B) Representative Wright-Giemsa 

staining of cytospin preparations at day 7 of THP-1, NOMO-1, OCI-AML4 and ML2 GFP+ cells transduced 

with ZNF521 shRNAs or shScram. Original magnification, x 40. (C) qRT-PCR on THP-1 GFP+ cells for the 

expression of ZNF521, PU.1 and C/EBPα at day 7 post transduction with ZNF521 shRNAs or shScram. The 

results are relative to shScram-transduced cells, normalized to GAPDH and analyzed by 2
−ΔΔCt

 method. Data 

are represented as mean ± SD of three independent experiments. ** P<0.01, t-test. 
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Furthermore, a downregulation of ZNF521 expression occurred in response to treatment 

with all-trans retinoid acid (ATRA) and with Securinine, two differentiation agents 

administered to THP-1 and NOMO-1 AML cells, respectively (Figure 14).  

 

 

 

Figure 14. Effect of differentiation-induced agents on ZNF521 expression in human MLL-rearranged cell 

lines. (A) qRT-PCR (left panel) and Western blot (middle panel) analyses of ZNF521 in THP-1 cell line after 

treatment with 1µM ATRA for 72 hours compared with vehicle control (0.1% DMSO). For qRT-PCR data the 

ZNF521 mRNA expression is shown relative to vehicle control normalized to GAPDH and analyzed by 2
−ΔΔCt

 

method. Data are represented as mean ± SD of three independent experiments. *** P<0.001, t-test. 

Representative Wright-Giemsa-stained cytospin preparations of cells treated with 1µM ATRA for 72 hours 

(right panel). Original magnification, x 60. (B) Same experiments as in (A) were performed in NOMO-1 cell 

line after 72 hours of treatment with 15µM Securinine. qRT-PCR (left panel), Western blot (middle panel) 

analyses of ZNF521 expression and representative Wright-Giemsa-stained cytospin preparations of NOMO-

1 cell lines after 72 hours of treatment (right panel) are shown.  
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In particular, ATRA and Securinine, previously tested on these cell lines by others (Niitsu, 

2001; Gupta, 2011), were able to reduce ZNF521 mRNA and protein expression, and 

stimulate MLL-rearranged cell differentiation, supporting the hypothesis that ZNF521 is 

required to maintain those cells in an undifferentiated state.  

 

 

5. EFFECTS OF ZNF521 DEPLETION IN PATIENT-DERIVED AML 

XENOGRAFT CELLS. 

 

To extend our findings to primary cells containing MLL-AF9 oncogene, we transduced 

ZNF521 shRNAs in ex vivo cells obtained from patient-derived xenografts (Figure 15A). 

Two out of four patients harboring MLL-AF9 fusion protein (Table 4) resulted in 

successful engraftment into NSG mice.  

 

ID WBC,x10
9
/L FAB % BM 

blasts at 

diagnosis 

Disease 

status at 

biopsy 

karyotype 

1426 37.5 NA 90 Diagnosis 46,XY,t(9;11)(p22;q23) 

726* NA M5 80 Diagnosis 46,XY,t(9;11)(p22;q23) 

1315* 85.2 NA 80 Secondary 46,XY,7p,t(9;11)(p22;q23) 

1368 222.4 NA 80 Diagnosis 46,XY,t(9;11)(p22;q23) 

 

Table 4. Clinical features of patients for xenotransplantation into NOD/SCID mice.  

* Sample-patient successfully engrafted; NA not available. 

 

The kinetics of such engraftment, measured by percentage of human CD45+ cells in the 

peripheral blood varying between 22.3% to 42.2%, ranged from 47 to 67 days and led to 

expansion of leukemic cells with the same immunophenotype and cytogenetic features 

of the original patient sample (data not shown). Ex vivo experiments demonstrated that 

ZNF521 depletion strongly impaired viability and colony formation of mononuclear cells 

obtained from two primary MLL-AF9 AML patient-derived xenografts (Figure 15B,C). 

Most importantly, an increased expression of myeloid differentiation markers CD11b and 
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CD14 (Figure 15D) and morphological features of mature monocytes/macrophage blast-

like was observed (Figure 15E). These findings suggest that ZNF521 overexpression is 

critical to maintain an immature phenotype consistent with the MLL-rearranged cell lines 

results. 

 

 

 

 

Figure 15. ZNF521 depletion impairs cell growth and induces differentiation on primary MLL-AF9 AML 

patient-derived xenograft cells. (A) Flow chart of experimental procedure for analyzing the role of ZNF521 

in ex vivo cells obtained from patient-derived xenografts. Leukemic cells from patient #726 or patient 

#1315 were isolated from primary AML mice and infected with lentivirus encoding an shRNA to ZNF521 or 

shScram. Four days after transduction cells were FACS-sorted for GFP expression and cultured. (B) MTT cell 

viability assay in ex vivo cells. Data are represented as mean ± SD of three independent experiments. 

**P<0.001, t-test. (C) Clonogenic growth of transduced ex vivo GFP+ cells following 14 days in 

methylcellulose culture. Data are shown as the means ± SD for triplicate analyses. *P<0.05, **P<0.001, t-

test. (D) Representative flow cytometry dot plots showing expression of CD11b and CD14 in human CD45+ 

cells in the GFP+ cells population. Numbers indicate percentage of the four populations. The mean 
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percentage of CD11b+/CD14-, CD11b-/CD14+, CD11b+/CD14+ and CD11b-/CD14- populations of three 

biological replicates are shown in the right panel. (E) Representative Wright-Giemsa-stained cytospins of ex 

vivo GFP+ cells at day 4 post transduction with ZNF521 shRNA (ZNF004) or shScram. Original magnification, 

x 40.  

 

 

6. GENE EXPRESSION CHANGES AFTER ZNF521 DEPLETION IN THP-1 

CELLS. 

 

To investigate the gene expression pattern in MLL-AF9 AML cells expressing high levels of 

ZNF521, we performed microarray analysis of shZNF521- or shScram-transduced THP-1 

cells. Since that the differentiation was overt after 7 days of transduction as reported 

above, we performed gene expression profiling at day 4 after transduction. A total of 158 

genes showed a significant change of expression (>1.5-fold change, FDR<0.05), 58 were 

upregulated while 100 were downregulated (Figure 16A and Table 5).  

 

 

Probe set 

 

Gene 

Symbol 

 

IFDR 

 

Means_shZNF004 

 

Means_shScram 

 

1555340_x_at RAP1A 7.29E-14 3.272817153 11.69366146 

1555339_at RAP1A 7.29E-14 3.331697417 11.72192487 

203032_s_at FH 7.29E-14 2.593654642 7.004073844 

230659_at NA 7.29E-14 3.364707971 9.071419646 

209811_at CASP2 7.29E-14 3.498066564 6.977897606 

1555830_s_at ESYT2 7.29E-14 3.157621165 6.233288774 

228854_at NA 7.29E-14 4.507943084 8.700411129 

1554451_s_at DNAJC14 7.29E-14 3.443528107 6.599509088 

222611_s_at PSPC1 7.29E-14 3.892862189 6.940868082 

216125_s_at RANBP9 7.29E-14 4.214434937 6.786602432 

227762_at NA 7.29E-14 4.760415465 7.656360326 

242900_at NA 7.29E-14 3.972371741 6.289884015 

210465_s_at SNAPC3 7.29E-14 5.260781091 8.320937398 

209052_s_at WHSC1 7.29E-14 4.011707509 6.321660403 

224577_at ERGIC1 7.29E-14 5.026229524 7.551517562 

219209_at IFIH1 7.29E-14 9.661284664 6.360666226 

227834_at TXLNB 7.29E-14 5.734833216 3.702313322 

219243_at GIMAP4 7.29E-14 5.377588503 3.461148283 

216598_s_at CCL2 7.29E-14 8.428115374 5.381391593 

203596_s_at IFIT5 7.29E-14 7.756051699 4.938882008 
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227265_at FGL2 7.29E-14 6.933841791 4.350212792 

210889_s_at FCGR2B 7.29E-14 9.3858295 5.882368351 

223551_at PKIB 7.29E-14 9.164302426 5.661218939 

204475_at MMP1 7.29E-14 7.330288469 4.387222797 

229450_at IFIT3 7.29E-14 11.66175734 6.924802655 

206488_s_at CD36 7.29E-14 8.995345742 5.33583655 

228766_at CD36 7.29E-14 7.475487386 4.405886495 

205686_s_at CD86 7.29E-14 5.675449214 3.327806002 

210895_s_at CD86 7.29E-14 7.799936929 4.402895353 

202973_x_at FAM13A 7.29E-14 7.555883194 4.23511804 

231120_x_at PKIB 7.29E-14 6.821698244 3.738890628 

204972_at OAS2 7.29E-14 7.437693218 3.962123467 

209555_s_at CD36 7.29E-14 7.849275842 4.152806423 

206584_at LY96 7.29E-14 7.396080064 3.888310801 

226757_at IFIT2 7.29E-14 10.04575707 5.214422189 

206637_at P2RY14 7.29E-14 6.443625151 3.174919145 

212956_at TBC1D9 7.29E-14 8.199774221 3.989995117 

227609_at EPSTI1 7.29E-14 10.61497537 4.856721475 

202086_at MX1 7.29E-14 11.59476291 5.268245207 

203153_at IFIT1 7.29E-14 10.51899342 4.701311253 

235276_at EPSTI1 7.29E-14 8.531841866 3.790497541 

214453_s_at IFI44 7.29E-14 10.18360475 4.365661325 

204439_at IFI44L 7.29E-14 9.343279892 2.623412862 

208450_at LGALS2 2.72E-12 6.376452482 4.13836002 

230520_at AIG1 3.62E-12 5.421414771 8.42334648 

225237_s_at MSI2 3.62E-12 4.302027085 6.63526392 

209875_s_at SPP1 3.62E-12 8.939636755 5.245139693 

239512_at SRSF4 5.43E-12 3.424633107 6.122115045 

215099_s_at RXRB 5.43E-12 3.360896669 5.182917746 

214022_s_at IFITM1 1.09E-11 9.639456366 5.780716705 

227242_s_at EBF3 1.40E-11 3.198777829 6.501337123 

209160_at AKR1C3 1.40E-11 6.237174611 3.467544531 

209409_at GRB10 1.52E-11 5.53032405 8.592046019 

226841_at MPEG1 1.52E-11 5.439137025 3.463256631 

206291_at NTS 8.04E-11 5.202834617 3.37912861 

235625_at VPS41 1.12E-10 4.019442688 6.888053529 

219352_at HERC6 1.12E-10 8.512887407 5.127299556 

242625_at RSAD2 1.12E-10 7.759363805 3.535304072 

227260_at NA 1.68E-10 3.468106472 5.812574528 

229128_s_at ANP32E 1.92E-10 3.065627289 8.041154478 

211825_s_at FLI1 2.56E-10 4.505153042 7.70808605 

204273_at EDNRB 1.21E-09 4.644985144 3.081504207 

220059_at STAP1 1.21E-09 6.948836147 3.9587154 

34449_at CASP2 2.22E-09 3.371752104 5.343900903 

202869_at OAS1 2.40E-09 8.708784226 3.999158316 

209925_at OCLN 2.53E-09 3.66215453 5.709879327 

213562_s_at SQLE 2.70E-09 3.41534405 6.727026189 

219895_at TMEM255A 3.97E-09 5.912972966 2.952282219 

212681_at EPB41L3 6.35E-09 6.875338979 4.226037005 

1552658_a_at NAV3 2.21E-08 4.719195295 7.76328231 

210139_s_at PMP22 2.21E-08 6.202295096 3.699815143 

229167_at PURA 4.17E-08 4.433892969 6.889873925 

217403_s_at ZNF227 5.67E-08 3.767873968 6.526712195 
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211559_s_at CCNG2 6.59E-08 4.422448321 8.428323945 

219196_at SCG3 6.59E-08 5.429712116 2.812053741 

213872_at NA 1.09E-07 3.010296172 7.791453316 

201693_s_at EGR1 1.09E-07 4.539918709 7.633098497 

210875_s_at ZEB1 1.09E-07 2.896438208 4.421607261 

222614_at RWDD2B 1.98E-07 3.450423478 5.86072941 

1553117_a_at STK38 2.10E-07 3.665817621 6.939115251 

244774_at PHACTR2 2.10E-07 3.853094162 6.851288289 

233292_s_at NA 3.41E-07 3.184355172 4.827088859 

214539_at SERPINB10 4.15E-07 4.10912414 7.005074609 

224046_s_at PDE7A 6.57E-07 3.65311398 6.146994073 

227803_at ENPP5 6.57E-07 4.717081416 3.098961165 

216917_s_at SYCP1 6.57E-07 5.727581378 3.442402712 

209723_at SERPINB9 6.57E-07 6.525317888 3.87000973 

206336_at CXCL6 6.57E-07 5.61551641 3.22831843 

1554614_a_at PTBP2 9.72E-07 2.851477818 6.01832904 

211450_s_at MSH6 9.72E-07 3.945522181 7.983327736 

1558028_x_at LINC00657 9.72E-07 3.881579348 6.677504769 

205408_at MLLT10 9.72E-07 4.396444854 7.251866597 

243835_at ZDHHC21 1.29E-06 3.131394065 4.933095838 

212009_s_at STIP1 1.29E-06 4.231623821 6.593862637 

235287_at CDK6 2.42E-06 2.962197505 5.106066397 

226134_s_at MSI2 2.42E-06 4.910426996 7.85923352 

242691_at NA 3.29E-06 3.255871284 5.303849989 

225864_at FAM84B 3.29E-06 3.477901748 5.450077376 

223220_s_at PARP9 3.29E-06 10.1340089 6.754157491 

205139_s_at UST 3.29E-06 6.260118791 4.052990312 

205997_at ADAM28 3.29E-06 6.747742756 4.12818658 

207723_s_at KLRC3 3.29E-06 6.848721055 3.928225706 

222863_at ZBTB10 5.30E-06 3.003991336 4.715064116 

228834_at TOB1 6.78E-06 3.10919356 6.508586179 

237346_at TGDS 6.78E-06 2.659434222 4.423719391 

239245_at NA 7.78E-06 2.830149135 4.556059038 

234023_s_at CENPJ 8.03E-06 2.838765479 5.393589327 

213470_s_at HNRNPH1 8.03E-06 4.388092403 7.884930732 

228746_s_at NA 1.37E-05 3.420014404 7.3567208 

222719_s_at PDGFC 1.37E-05 3.132188837 5.747502104 

226302_at ATP8B1 1.37E-05 4.729303393 2.953088663 

205992_s_at IL15 1.37E-05 5.108587768 3.02186665 

202411_at IFI27 1.37E-05 10.32098553 4.155674395 

205660_at OASL 2.00E-05 8.816232559 5.043755348 

201601_x_at NA 3.82E-05 9.514157211 6.172838679 

1553105_s_at DSG2 8.06E-05 3.716787789 7.380013058 

1555745_a_at LYZ 8.65E-05 3.657795152 8.966469996 

204156_at SIK3 0.000191614 3.014616564 5.596974796 

205883_at ZBTB16 0.000191614 3.9323087 6.382959729 

220773_s_at GPHN 0.000191614 3.965163502 6.331618458 

231955_s_at HIBADH 0.000191614 4.994812536 7.532474333 

205003_at DOCK4 0.000191614 6.547858789 4.336486424 

231504_at CCDC148 0.000191614 5.515141165 3.546226457 

228607_at OAS2 0.000191614 6.369024331 3.246325238 

208055_s_at HERC4 0.000210734 3.689389873 6.041702168 

209535_s_at NA 0.000283867 3.889135907 6.781673843 
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1555154_a_at QKI 0.000283867 4.751795874 7.783719526 

215991_s_at EMC1 0.000283867 2.249362269 3.683270007 

231274_s_at NA 0.000283867 3.425324062 5.435462999 

204698_at ISG20 0.000283867 8.165708071 5.327347603 

1554411_at CTNNB1 0.000376125 3.572852599 6.635933907 

219599_at EIF4B 0.000376125 4.228875606 7.030587927 

209055_s_at CDC5L 0.000376125 5.005916825 8.112529596 

220241_at TMCO3 0.000376125 3.662690418 5.589867462 

229787_s_at OGT 0.000598768 2.377767023 4.198765755 

221423_s_at YIPF5 0.000598768 4.764427984 7.983886289 

218031_s_at FOXN3 0.000598768 5.358068359 8.479315641 

227978_s_at ZADH2 0.000598768 4.560782669 6.978366066 

239827_at RGCC 0.000737413 2.922811434 4.531183441 

205552_s_at OAS1 0.000994295 8.52556634 4.199854718 

239131_at NA 0.001104595 2.869233639 4.766296652 

241699_at NA 0.001104595 2.524064046 3.903572868 

230265_at NA 0.001251697 3.971358386 7.268866264 

206420_at IGSF6 0.001251697 5.105353547 3.145928394 

213797_at RSAD2 0.001251697 7.200654765 4.091812827 

233878_s_at XRN2 0.001283386 4.250416536 8.047670115 

208047_s_at NAB1 0.001289249 2.984541409 4.570452219 

201295_s_at WSB1 0.001327936 3.992678087 7.276172187 

216015_s_at NLRP3 0.001658291 3.957640333 6.742987942 

205996_s_at AK2 0.001955832 6.117002334 9.595158229 

1552275_s_at PXK 0.002059935 4.965871756 8.855475104 

1569362_at ALCAM 0.002059935 2.854703141 4.974867187 

204426_at TMED2 0.002059935 4.787864769 8.339465929 

1555996_s_at NA 0.002059935 3.442752363 5.602525425 

215109_at RC3H1 0.002059935 3.362155971 5.244661583 

235306_at GIMAP8 0.002059935 4.411824265 2.656029179 

206544_x_at SMARCA2 0.00258171 4.255382491 7.791534959 

1555526_a_at 6-Sep 0.00258171 3.226981218 5.427391893 

243751_at CHD2 0.002932455 2.862859638 4.892477052 

224455_s_at ADPGK 0.002932455 4.545940524 7.377039775 

227404_s_at EGR1 0.002932455 6.017690069 9.554573831 

242277_at NA 0.004064267 2.948818284 4.971712234 

1554433_a_at ZNF146 0.004064267 4.586934708 7.705354771 

225742_at MDM4 0.004064267 3.634920337 5.721579115 

201075_s_at SMARCC1 0.004064267 5.677039327 8.919860071 

220220_at NA 0.004064267 2.721459192 4.259068431 

205746_s_at ADAM17 0.004064267 3.986940892 6.111574752 

232412_at FBXL20 0.004064267 3.011811652 4.544990573 

221039_s_at ASAP1 0.004609795 5.191490691 8.244705505 

224582_s_at NUCKS1 0.004609795 4.953985417 7.709158094 

239511_s_at SRSF4 0.004609795 2.671862785 4.037735602 

205321_at EIF2S3 0.009657355 4.505151046 9.214797982 

211089_s_at NEK3 0.009657355 3.153835382 5.417381302 

205123_s_at NA 0.009657355 3.148629261 5.292748903 

202269_x_at GBP1 0.009657355 5.830633782 3.51352209 

240771_at C1orf101 0.009657355 5.03064457 2.797264367 

203331_s_at INPP5D 0.009973264 4.808554468 7.500169639 

1570552_at NA 0.009973264 2.861867372 4.310545092 

239979_at NA 0.009973264 6.28946785 4.050437594 
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238511_at UBL7-AS1 0.014726225 3.881133701 6.361624354 

206785_s_at NA 0.014726225 4.160456492 2.549445938 

209754_s_at TMPO 0.017790649 3.93715112 6.449468774 

238846_at TNFRSF11A 0.017790649 4.856236144 3.122126895 

220735_s_at SENP7 0.02170125 2.719227978 4.817388541 

214908_s_at TRRAP 0.02170125 3.580343454 5.589555234 

233303_at NA 0.023432571 3.961680025 7.556922502 

231918_s_at GFM2 0.023432571 4.303872868 7.352626308 

210786_s_at FLI1 0.03509244 5.492847526 9.107798461 

216593_s_at PIGC 0.03509244 4.955690919 7.569466728 

229540_at RBPJ 0.03509244 3.648570198 5.510346371 

201971_s_at ATP6V1A 0.041216993 3.606919921 6.108703746 

227364_at NA 0.041216993 6.426258024 10.80594044 

222922_at KCNE3 0.041216993 2.993656568 4.937417089 

234977_at ZADH2 0.041216993 3.844053383 5.942264376 

227299_at CCNI 0.041216993 4.038234393 6.224050281 

207782_s_at PSEN1 0.041216993 4.654952249 7.164965461 

1553685_s_at SP1 0.041216993 3.317092537 5.001010317 

 
Table 5. THP-1 microarray (genes deregulated with >1.5-fold change, FDR<0.05) 

 

 

Gene Set Enrichment Analysis (GSEA) confirmed that ZNF521 depletion affected cell cycle 

progression and cell fate differentiation related genes (Brown, 2006) (Figure 16B,C). 

These results showed also positive enrichment of genes downregulated in CD133+ HSCs 

when compared with the CD133- cell (Jaatinen, 2006), and negative enrichment of 

embryonic stem cells (ESC) associated genes (Wong, 2008) (Figure 16D,E). The 

enrichment of stemness-related genes found by our analysis is in line with proposed role 

of ZNF521 in the regulation of hematopoietic stem cell homeostasis (Bond, 2008). 

Furthermore, GSEA revealed a negative enrichment with genes that are upregulated in 

MLL-rearranged pediatric AML compared with non-MLL-rearranged AML (Mullighan, 

2012) (Figure 16F,G). Interestingly, the ZNF521 depletion gene set revealed positive 

enrichment with genes that are upregulated in hematopoietic precursors conditionally 

expressing HOXA9 and MEIS1, including HOXA9 target genes upregulated in 

hematopoietic stem cells (Dorsam, 2004; Hess, 2006) (Figure 16H,I). In addition, genes 

up-regulated or downregulated upon knockdown of HOXA9 (Faber, 2009) were also 

similarly regulated in ZNF521-transduced THP-1 cells (Figure 16J,K).  
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FIGURE 16. Microarray results of ZNF521 depletion in THP-1 cells. (A) Hierarchical clustering analysis of 

differently gene expression profiles associated with transduced THP-1 cells with ZNF521 shRNA (ZNF004) 

or control shScram after 4 days of transduction. Each column represents a sample and each row represent 

a gene. Relative levels of gene expression are depicted with a color scale where red represents the highest 

level of expression and green represents the lowest level. (B-E) GSEA plot showing gene expression 

signature of (B) negative enrichment of cell cycle signature, (C) negative enrichment of downregulated 

genes in myeloid cell development signature, (D) positive enrichment of downregulated genes in HSCs 

signature and (E) negative enrichment of embryonic stem cell core signature. (F,G) GSEA plot showing 

negative enrichment of MLL signature up-regulated genes in pediatric AML. (H-K) GSEA showing 

enrichment of upregulated genes in HOXA9 up-regulated (H) and down-regulated (I) signatures in HOXA9 

knockdown cells, (J) positive enrichment of HOXA9 targets up-regulated and (K) negative enrichment of 

HOXA9 targets down-regulated in hematopoietic stem cells. The normalization enrichment score (NES) and 

the false discovery rate (FDR) values are indicated in each panel. Red and blue color bars indicated the 

positive and negative enrichment, respectively. 
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Considering individual genes, we found deregulated genes with known relevance in MLL-

fusion-mediated AML (TET1, CDK6 and Musashi2) (Huang, 2013; Placke, 2014; Park, 

2015) and in myeloid progenitors differentiation (CD14 and MEF2A) (Zheng, 2015) 

(Figure 17).  

 

 

 

 

Figure 17. Dot-plots of expression of CDK6, Msi2, TET1, CD44 and MEF2A genes selected from the 

microarray data of transduced THP-1 cells with ZNF521 shRNA (ZNF004) or shScram. FDR, false discovery 

rate. 

Taken together, these results indicate that ZNF521 expression negatively modulates 

genes involved in myeloid differentiation, and is required to maintain expression 

programs associated with MLL-induced transformation. 
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7. ZNF521 GENE PROMOTER IS ACTIVATES BY MLL FUSION PROTEINS.  

 

Finally, to investigate the molecular mechanism that upregulates ZNF521 in MLL-

rearranged AML, we performed luciferase reporter and ChIP assays using the Flag-tagged 

MLL-AF9 expression plasmid. To this end, we generated a series of constructs in which 

5.0 kb of the genomic region upstream of the ZNF521 transcription start site (TSS) was 

subdivided in 4 fragments (ZNF521P1, ZNF521P2, ZNF521P3 and ZNF521P4) and inserted 

into a pGL4-basic reporter plasmid (Figure 18A). Luciferase assays in 293T cells showed 

that MLL-AF9 strongly activated the promoter region that lay between -1.3 to -3 kb 

(ZNF521P3) of the TSS (Figure 18A). To further confirm the region of ZNF521 activated by 

MLL-AF9, we generated 3 constructs (ZNF521P3.1, ZNF521P3.2 and ZNF521P3.3) 

spanning the ZNF521P3 fragment (Figure 18B). We found that the pGL4-ZNF521P3.3 

construct showed the highest luciferase activity (Figure 18B), indicating that the MLL-AF9 

responsive elements likely reside between -1.0 and -1.6 kb upstream of the ZNF521 TSS. 

Furthermore, to determine whether ZNF521 activation was MLL fusion-dependent, we 

performed ZNF521-driven luciferase reporter assay in another MLL fusion gene (MLL-

ENL) and in two non-MLL-associated fusion genes such as AML1-ETO and PML-RARAα. 

We observed that both AML1-ETO and PML-RARAα yielded only a minimal luciferase 

activity compared with MLL-ENL that showed even a higher promoter binding affinity 

than MLL-AF9 (>2.5 fold) (Figure 18C). Besides, wild-type (WT) MLL did not affect 

luciferase activity under the same settings, providing evidence that only MLL-fusion 

proteins likely activate ZNF521 expression (Figure 18C). Consistent with these results, 

ChIP analyses showed that both MLL-AF9 and MLL-ENL bind to ZNF521 promoter region 

in transfected 293T cells (Figure 18D). In order to validate MLL-AF9 binding to the 

ZNF521 promoter in AML cells, we performed ChIP with lysate from NOMO-1 and HL60 

cell lines that endogenously expressing MLL-AF9 and WT MLL, respectively. Since that 

MLL-AF9 lacks the MLL-C portion of WT MLL, an anti-MLL N-terminal (MLLN) and an anti-

MLL C-terminal (MLLC) antibodies were used for this experiment. ChIP assays showed 

that MLLN bound specifically to the ZNF521 promoter region in NOMO-1 but not in HL60 

(Figure 18E; upper panel). By contrast, there was not apparently association with MLLC 

and ZNF521 in both NOMO-1 and HL60 cells (Figure 18E; lower panel). Together, these 
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findings demonstrated that ZNF521 promoter is specifically bound by MLL-AF9, and 

provide further evidence that MLL fusion oncoproteins may drive aberrant expression of 

ZNF521, which may in turn lead to a block in differentiation. 
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FIGURE 18. MLL-AF9 and MLL-ENL fusion oncoproteins bind to ZNF521 promoter. (A) An illustration of the 

4 fragments representing 5058 bp of ZNF521 promoter and their positions are indicated in the left panel. 

The numbers above each part are referred to the length (bp) of the genomic fragment that was PCR 

amplified and then cloned upstream of the luciferase coding sequence (luc) of PGL42.8 plasmid. In the 

right panel, horizontal bars represent the luciferase activity generate by each construct following transient 

transfection in 293T cells with MLL-AF9 plasmid. (B) An illustration of the 3 fragments of ZNF521P3 and 

their respective positions are shown in the left panel. The numbers above each part are referred to the 

length (bp) of the genomic fragment cloned into PGL42.8 plasmid. In the right panel, horizontal bars 

represent the luciferase activity generate by each construct as described in A. (C) Luciferase activity of the 

ZNF521P3.3 fragment after transient transfection in 293T cells with AML1-ETO, PML-RARα, wild-type (WT) 

MLL, MLL-ENL or MLL-AF9 is shown. For each panel (A, B and C), luciferase activity is expressed relative to 

the empty vector of each expression plasmid (white bars) and normalizes to Firefly/Renilla luciferase 

activities considering the empty pGL42.8 vector as 1. Data are represented as mean ± SD of three 

independent experiments. (D) Both MLL-AF9 and MLL-ENL fusion oncogenes associates with the 

ZNF521P3.3 promoter region. ChIP assays were performed with the crossed-linked genomic DNA isolated 

from 293T cells transfected with either Flag-MLL-AF9 or Flag-MLL-ENL and using anti-Flag and anti-IgG 

antibodies. Normal IgG was used as a negative control. Input DNA from sonicated chromatin and 

immunoprecipitated DNA were subjected to PCR amplification with primers spanning the ZNF521P3.3 

promoter region. PCR amplification with primers specific to the HOXA9 promoter region was used as 

positive control. Data from a representative of three replicate experiments are shown. (E) ChIP analysis of 

the ZNF521P3.3 promoter in NOMO-1 cells, which express MLL-AF9 and HL60 cells, which express WT MLL 

but not MLL-AF9, using antibodies directed to the N-terminus of MLL (MLLN; upper panel), C-terminus of 

MLL (MLLC; lower panel) or IgG. Immunoprecipitated chromatin samples were analyzed by PCR using 

primers corresponding to promoter ZNF521P3.3 region. Note that no PCR product for ZNF521 promoter 

was obtained when anti-MLLC, which recognizes only the WT MLL but not MLL-AF9, was used for 

immunoprecipitation.  
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DISCUSSION 

 

 

ZNF521 is a gene that showed a significant higher level of expression in MLL-related AML 

so as in HSCs and can be used as a marker. In this work, I present data showing that 

pediatric AML patients carrying MLL translocations have a significantly upregulation of 

ZNF521 expression independently of the fusion partner involved in the translocation 

with MLL. The overexpression of ZNF521 is a robust transcriptional feature of MLL-

rearranged AML, consistent across independent adult and pediatric microarray datasets 

(Kohlmann, 2009; Jo, 2009; Pigazzi, 2011). From these data, I started my study with the 

aim to decrypt the ZNF521 function as transcription factor in MLL-rearranged AML, and 

understand if it might deserve attention as potential therapeutic target.  

A major hallmark of leukemia and a consequence of MLL fusion proteins expression is a 

block in hematopoietic differentiation (Huntly, 2005). On this way, my data show that 

the most relevant effect of ZNF521 depletion was to enhance myeloid differentiation of 

leukemia cells as evidenced by changes in cell morphology, immunophenotype and 

increase of a myeloid-specific gene expression in MLL-rearranged cell lines and primary 

cells. The requirement of ZNF521 in the maintenance of an undifferentiated status 

associated with MLL-rearranged AML was also supported by the fact that ZNF521 

expression drastically decreased upon treatment with specific differentiation-induced 

agents, such as ATRA. The observed growth defect, cell cycle arrest and reduced colony 

formation upon ZNF521 depletion were secondary to cells entering into a differentiation 

program. Thus, MLL fusion proteins might promote leukemogenesis not only by HOXA9 

and MEIS1 upregulation, but also by keeping the ZNF521 overexpressed, which in turn 

contributes to a block of differentiation or to the maintenance of an undifferentiated 

state of leukemia cells.  

Consistent with this finding, others have reported that loss of ZNF521 enhanced 

erythroid differentiation and increased B-lineage maturation in cell lines and primary 

hematopoietic progenitor cell, respectively (Matsubara, 2009; Mega, 2011). Moreover, it 

is well established that Zfp521, the mouse counterpart of human ZNF521, in other 
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cellular contexts including, embryonic stem cells (ESCs), neural cells, osteoblasts and 

chondrocytes mainly function to control cell differentiation of primitive or mature cells 

by modulating the activity of specific transcription factors [46-49]. Consistent with these 

findings, our GSEAs in THP-1 cells depleted for ZNF521 showed enrichment of 

hematopoietic stem cells (HSCs)- and ESC-associated downregulated genes and sets of 

genes associated with differentiation program (Brown, 2006; Jaatinen, 2006). Based on 

these findings, we assumed that ZNF521 has not only a role in promoting self-renewal 

and maintenance of HSCs but it also acts in MLL rearranged AML. Furthermore, the 

results support the direct activation of ZNF521 by MLL fusion proteins increasing the 

importance of this transcription factor in the transformation of the leukemia cells. In 

fact, it is showed enrichment of set of genes related to MLL fusion-dependent 

transformation signatures as well as to HOXA9-mediated gene expression program 

(Dorsam, 2004; Faber, 2009; Mullighan, 2015). Thus, the events documented after 

ZNF521 depletion, which in part resemble what has been previously observed in MLL-

rearranged cells after loss of HOXA9, gave a further support that ZNF521 plays a critical 

role in MLL-fusion-mediated leukemia. Interestingly, the expression of either HOXA9, a 

canonical downstream target for MLL-rearranged leukemia (Ayton, 2003; Argiropoulos 

2007) or ZNF521 have been shown to be restricted to CD34+ progenitor cells (Dorsam, 

2004; Bond, 2008; Mullighan, 2012). Nevertheless, in gene-expression analysis, loss of 

ZNF521 does not affect HOXA9 expression, implying that both are MLL-dependent but 

might act in a non-mutually exclusive and additive manner. Supporting the idea that 

ZNF521 is particularly required for MLL-mediated leukemia, the data of luciferase 

reporter and ChIP assays revealed that ZNF521 is a direct target of both MLL-AF9 and 

MLL-ENL fusion proteins. We defined a genomic region of 555 bp in 5’ ZNF521 promoter 

that is thought to be crucial for ZNF521 activation by MLL fusion proteins.  

This finding is consistent with prior observations that showed how the modulation of 

MLL-AF9 levels resulted in concordant changes in ZNF521 expression in different human 

in vitro models (Abdul-Nabi, 2010; Fleischmann, 2014). Surprisingly, the inspection of 

ChIP-seq data from Bernt et al, (Bernt, 2011) did not show peak in the vicinity of the 

Zfp521 gene in an MLL-AF9 mouse leukemia model. Of note, this is also observed for 

other well-known targets of MLL fusion proteins such as EVI1 and PLZF (Arai, 2011; Ono, 

2013). About ZNF521, this can be explained by the different approaches used, and the 
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fact that in mouse BM Zfp521 is primarily expressed in the HSC fraction and significantly 

reduced in granulocyte-monocyte-progenitor cells (GMPs) 

(http://servers.binf.ku.dk/bloodspot/?gene=ZFP521&dataset=nl_mouse_data), in which 

the analysis has been done. Future ChIP-seq experiments on human transformed HSC 

will likely shed further light on ZNF521-MLL-AF9 target gene specificity. 

In summary, this study unravels the anti-differentiation function of ZNF521 in MLL-

rearranged cells and showed the mechanism by which ZNF521 participates in MLL-fusion 

mediated transformation. This data also indicate that ZNF521 is highly expressed in the 

majority of MLL-rearranged AML pediatric patients, and thus ZNF521 could be a 

potential molecular target for this subtype of aggressive leukemia. 
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