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Abstract

Since their discovery, cosmic rays (CRs) are one of the most studied phe-

nomena in the Universe. The origin of the spectrum, which extends for more

than 12 orders of magnitude, is still debated. Up to ∼ 1015 eV, CRs are

accelerated in the Galaxy, and Supernova Remnants (SNRs) are the most

likely candidates to accelerate them. If an expanding SNR interacts with

molecular clouds, particles accelerated in the expanding shock can produce

high-energy photons, the observation of which can provide valuable infor-

mation about the accelerated particles population. Of particular interest

are combined γ-ray and radio observations: accelerated particles emit ra-

dio waves via synchrotron emission and γ rays via bremsstrahlung, inverse

Compton and nucleon-nucleon interaction.

Thanks to its unprecedent angular resolution and sensitivity, the Fermi

Gamma-ray Space Telescope is the γ-ray detector ideal for the study of ex-

tended structures in the Galaxy.

We present the analysis of Fermi Large Area Telescope γ-ray observations

of HB 21 (G89.0+4.7). We detected significant γ-ray emission associated

with the remnant: the flux above 100 MeV is 9.4 ± 0.8(stat) ± 1.6(syst) ×

1011 erg cm2 s−1. HB 21 is well modeled by a uniform disk centered at

l = 88.◦75± 0.◦04, b = +4.◦65± 0.◦06 with a radius of 1.◦19± 0.◦06.

The γ-ray spectrum shows clear evidence of curvature, suggesting a cutoff

or break in the underlying particle population at an energy of a few GeV.

We complement γ-ray observations with the analysis of the WMAP 7 yr

data from 23 to 93 GHz, achieving the first detection of HB 21 at these

frequencies. In combination with archival radio data, the radio spectrum

shows a spectral break, which helps to constrain the relativistic electron

spectrum, hence parameters of simple non-thermal radiation models.
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In one-zone models multi-wavelength data favor the origin of γ rays from

nucleon-nucleon collisions. A single population of electrons cannot produce

both γ rays through bremsstrahlung and radio emission through synchrotron

radiation. A predominantly inverse-Compton origin of the γ-ray emission

is disfavored because it requires lower interstellar densities than the ones

inferred for HB 21.

In the hadronic-dominated scenarios, accelerated nuclei contribute a total

energy of ∼ 3 × 1049 erg, while, in a two-zone bremsstrahlung-dominated

scenario, the total energy in accelerated particles is ∼ 1× 1049 erg.
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Sommario

Fin dalla loro scoperta, i raggi cosmici sono uno dei fenomeni piú studiati

nell’Universo. L’origine del loro spettro, che si estende per piú di 12 ordini

di grandezza, è ancora incerta e dibattuta. Fino ad energie dell’ordine di

1015 eV, si ipotizza che i raggi cosmici siano accelerati all’interno della Ga-

lassia, e che i resti di supernova siano i principali acceleratori. Espandendosi,

un resto di supernova può interagire con le nubi molecolari presenti nel mezzo

circostante, in questo caso le particelle accelerate possono produrre fotoni di

alta energia la cui osservazione può fornire informazioni sulla popolazione dei

raggi cosmici. Di particolare interesse sono le osservazioni combinate nella

bade γ e radio: le particelle accelrate emettono nel radio tramite radiazione

di sincrotrone, e nel γ tramite Bremsstrahlung, effetto Compton inverso e

interazione inelastica nucleone-nucleone.

Grazie alla sua ottima risoluzione angolare e precisione spaziale, il Tele-

scopio Spaziale Fermi è il rivelatore di raggi gamma ideale per lo studio di

sorgenti estese.

La tesi presenta l’analisi effettuata con dati Fermi della sorgenet estesa

HB 21 (G89.0+4.7). Riveliamo significativa emissione γ associata al resto

di supernova: il flusso sopra 100 MeV è di 9.4 ± 0.8(stat) ± 1.6(syst) ×

1011 erg cm2 s−1. Dal punto di vista morfologico, l’emissione è ben modellata

da un disco uniforme, centrato alle coordinate Galattiche l = 88.◦75±0.◦04, b =

+4.◦65± 0.◦06 di raggio 1.◦19± 0.◦06.

Lo spettro γ mostra un’evidente curvatura che suggerisce un taglio o

un’interruzione dello spettro nella popolazione di particelle che generano lo

spettro γ, ad energie di qualche GeV.

Insieme ai dati γ , sono stati inclusi anche dati provenienti dal radio

usando 7 anni di dati raccolti dall’esperimento WMAP da 23 a 93 GHz,
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che hanno portato alla prima osservazione di HB 21 a queste frequenze.

Unendo tali dati ai quelli di archivio, si è potuto osservare come lo spettro

radio presenti un’interruzione. Tale caratteristica aiuta a determinare lo

spettro degli elettorni relativistici e, quindi, anche i parametri dei modelli di

radiazione non termica.

Nei modelli di singola zona, i dati su piú lunghezze d’onda favoriscono

un’origine dei raggi γ da collisioni nucleone-nucleone. Una singola popola-

zione di elettroni non può spiegare contemporaneamente sia l’emissione di

Bremsstrahlung nel γ che quella di sincrotrone nel radio. L’effetto Compton

inverso, invece, non può riprodurre bene lo spettro γ perché richiedereb-

be basse densità del mezzo interstellare, molto piú basse di quelle calcolate

intorno a HB 21.

Quindi, nello scenario adronico, i nuclei accelerati forniscono un’energia

di ∼ 3× 1049 erg, mentre in uno scenario in cui le zone di emissione di radio

e γ siano diverse e l’emissione γ è dominata dal Bremsstrahlung, l’energia

totale in particelle accelerate è di ∼ 1× 1049 erg.



Chapter 1
Introduction

Cosmic Rays (cosmic rays (CRs)) are very high-energy particles, mainly orig-

inating outside the Solar System. They produce showers of secondary parti-

cles that impact and penetrate the Earth’s atmosphere and sometimes even

reach the surface. They are composed primarily of high-energy protons and

atomic nuclei, and, since their discovery in 1912 by Victor Hess, their origin

is still debated. Their spectrum extends for ∼ 12 order of magnitude but,

just a fraction of it (up to ∼ 1015 eV) is of Galactic origin.

In the Galaxy, one class of objects that can provide such big energy to

the particles are Supernova Remnant (SNR). A SNR is the structure result-

ing from the explosion of a star in a supernova. The supernova remnant is

bounded by an expanding shock wave, and consists of ejected material ex-

panding from the explosion, and the interstellar material it sweeps up and

shocks along the way. The connection between SNRs and CRs was first

suggested by Walter Baade and Fritz Zwicky in 1943. The mechanism that

can accelerate particle up to ∼ 1018 eV was first proposed by Enrico Fermi

and it is known as “shock wave acceleration”. Indeed, Enrico Fermi pro-

posed in 1949 a model for the acceleration of CRs through particle collisions

1
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with magnetic clouds in the interstellar medium. This process, known as the

“Second Order Fermi Mechanism”, increases particle energy during head-on

collisions, resulting in a steady gain in energy. A later model to produce

Fermi Acceleration was generated by a powerful shock front moving through

space. Particles that repeatedly cross the front of the shock can gain signif-

icant increases in momentum. This process is known as “First Order Fermi

Mechanism”. The modeling of SNRs can provide useful information on the

acceleration mechanism of CRs, the maximum energy reached and the phys-

ical processes involved.

In particular, combined observations in γ-ray and radio waveband can

help to model the spectrum of SNRs: accelerated particles emit in radio via

synchrotron emission and in gamma via bremsstrahlung, inverse Compton

and nucleon-nucleon interaction.

The most recent and sensitive detector in the so-called High Energy (HE)

γ-ray band is the Fermi Large Area Telescope (LAT) telescope. Fermi LAT

provides a continuous scan of the sky from 20 MeV to 300 GeV with unprece-

dent sensitivity and angular resolution. These characteristics make Fermi

LAT a good instrument to investigate the γ-ray sky and, in particular, ex-

tended sources in the Galactic plane.

This thesis is the product of the last three years in which I worked in the

Fermi LAT collaboration, in particular performing the analysis of the region

around HB 21, a mixed morphology SNR interacting with molecular clouds.

This class of SNRs are of particular interest for the study of the CRs accel-

eration processes. Molecular clouds can be target of the particle accelerated

in SNR shock, revealing that SNRs can accelerate energetic particles.

This thesis is divided into two parts: the first one deal with general

information about SNRs, Fermi LAT and the diffuse background.
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In chapter 2 I will describe the common features of the SNRs, their clas-

sification and evolution. Particular emphasis will be given at the mechanism

for the particle acceleration at the shocks and to the non-thermal emission

processes in SNRs. This last section will be useful for the modeling of the

source I will analyze using the Fermi data. Finally, I will describe how SNRs

can accelerate Galactic CRs and the observation that confirm this hypothesis.

In chapter 3, I will give an overview on the Fermi LAT and its perfor-

mance including the calculation of the systematic uncertainty due to effective

area. I will also describe the high-level data analysis used for the thesis.

Finally, in chapter 4, I will describe the Galactic interstellar emission

in the γ-ray band, including information on multi-wavelength tracers of in-

terstellar matter and an overview of models of interstellar emission for the

analysis of Fermi LAT data. A section will be devoted to the discussion on

the alternative models the collaboration developed for the estimation of the

systematic uncertainties due to the modeling of diffuse emission.

The second part of the thesis deals with the Fermi LAT analysis I per-

formed during these three years. In particular, in chapter 5, using 4 yr of

Fermi data, I will describe the morphological and spectral analysis on HB 21

whose goal is to determine the best spatial and spectrum shape that model

the γ-ray emission. Then, using also 7 yr of WMAP data combined with

archival radio data, I will describe how we model the multi-wavelength spec-

trum of HB 21.

Chapter 7 summarizes the results of our analysis on SNR HB 21 and

discuss the future work on SNRs.

To help the reader, a list of acronyms (section Acronyms) and the table

of contents (Contents) is present at the end of the thesis.
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Supernova Remnants and the

Fermi Large Area Telescope
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Chapter 2
Supernova Remnants

This chapter is devoted to the description of SNRs. SNRs are structures

resulting from the explosion of stars in supernovae (SN). SNRs are delimited

by the expanding shock waves. They consist of ejected materials and by

all the interstellar medium the shock sweeps up and accelerates during the

expansion. Starting from a brief history of the discovery of these objects,

I will move to the classification looking at the morphological structure of

SNRs. Then I will describe, in section 2.2, the evolution of a shell type SNR

and, in section 2.3, I will describe the particle acceleration processes and the

physical information one can obtain from the modeling. In section 2.4, I will

explain the mechanism that produce the particle spectrum and i will discuss

the energetics required to assert that SNR are the main candidates to explain

the origin of Galactic cosmic rays (2.5).

2.1 Supernova remnants

The first evidence of SNRs consisted in observations of optical nebulae as-

sociated with historical and known SN. A big step toward the understand-

7
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ing of these objects was made when radio interferometry developed in the

early 1950’s. With this technique, populations of extended objects with non-

thermal radio spectra were discovered. The spectrum of these sources was

determined to be a power-law (Sν ∝ να) with index α ∼ −0.5. A power law

distribution cannot be generated from particles in thermal equilibrium which

is described by Planck’s law. In 1953, Shklovskii associated the synchrotron

unresolved radiation with remnants of unseen SN (Shklovskii, 1953). The

most complete radio catalog of SNRs was made in 2009. The Green (2009)

catalog provides the radio features of almost 250 Galactic SNRs. According

to Shkolovskii (Reynolds, 2008), SNRs are sources of non-thermal popula-

tions of electrons with a power-law distribution in momentum. Standard

synchrotron physics relates a power law electron population with the pho-

ton population. If the first has a distribution N(E) = kE−s, the latter is

described with a power law with index α = (1 − s)/2. From observations,

the photon index, α, is close to -0.5, so s ∼ 2, close to 2.7 which is the slope

observed for CRs at GeV energies. The discrepancy suggests that SNRs may

be the sources of CRs, once the effect of diffusion to the Earth which soften

their spectrum, is taken into account.

In 1949, Fermi proposed collisionless shock acceleration as a mechanism to

accelerate charged particles: it consisted in collisions through magnetic mir-

ror between charged particles and interstellar clouds. This idea was proposed

for SNRs as well, but it presents a number of problems for this application:

the acceleration is too slow, and the spectrum depend on a free parameter,

the escape timescale (Reynolds, 2008). For further details on acceleration of

charged particles see section 2.3.1.

In 1981 Reynolds and Chevalier proposed that diffusive shock acceleration

(DSA) could accelerate electrons to the synchrotron-X-Ray-emitting energy
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in the shell of an historic SNR, the SN 1006 AD to explain the absence of

features in the X-ray spectrum. In 1983 Lagage and Cesarsky calculated the

maximum energy attained by DSA to be almost 1014 eV.

The ASCA satellite resolved SN 1006 AC showing that the spectral fea-

tures of this source vary with position. In the late ’90s, two synchrotron

dominated shell SNRs were discovered: RX J1713.7-3946 (Koyama et al.,

1997; Slane et al., 1999) and Vela Jr (Aschenbach, 1998; Slane et al., 2001).

Esposito et al. (1996) published a list of possible associations between

known SNRs and unidentified Galactic-plane γ-ray sources, observed with the

EGRET space telescope. The Fermi LAT improves the situation because it

has a better angular and energy resolution compared with the previous space

born γ-ray experiment.

The discovery of the TeV photon occurred in the early 2000s. Although

earlier γ-ray satellites such as SAS-2 and COS-B had imaged the γ-ray sky

with angular resolution of few degrees and located several discrete sources,

predictions of γ-ray emission from shell SNRs began in earnest under EGRET

stimulus (Reynolds, 2008). Enomoto et al. (2002) reported the emission

from G 347.3-0.5 emission with the CANGAROO air-Cherenkov telescope in

Australia and Aharonian et al. (2007) the emission from G 266.2-1.2 with

the HESS experiment in Namibia.

SNRs are the most likely candidates to accelerate Galactic CRs: observa-

tions of these objects can provide valuable information on such a process. In

particular, high-energy γ-ray emission can pinpoint the presence of energetic

leptons or ions, constraining the acceleration efficiency and the maximum

energy of accelerated particles.
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2.1.1 Classification of Supernova remnants

The explosion of a SN, progenitor of a SNR, deposits its energy in the nearby

medium in a shell. Both initial conditions (such as mass and progenitor) and

environment (density enhancements and Rayleigh-Taylor instabilities) could

affect the morphology of the remnant.

(a) (b) (c)

Figure 2.1: Three different examples of SNRs: a) Cygnus Loop is an example

of shell-like SNR. Image credit: Levenson et al. b) Crab Nebula is an example

of filled center SNR. Image credit: S. L. Snowden (USRA, NASA/GSFC) c)

IC443 is a mixed morphology SNR. Image courtesy of Jonathan Keohane.

for the description of each type, see the text.

From this brief description it is clear that a number of different morpho-

logical types of SNRs are possible looking at the emission of these object in

different wavebands. The original classification is based on optical emission

fatures of SN. There are two big classes of SN: Type I and Type II. The first

includes object in which there is no H line at the maximum light; in the lat-

ter, sources have this features. SN type I have a sub-classification depending

on the presence of other emission lines: in type Ib there is the lack of Si II

(6150 Å) line and in type Ic the He line is not present. Type II SN has a

sub-classification, too. Two of three classes are characterized by features of

source lightcurves after maximum light: type IIP has a plateau and type IIL
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a linear decline after maximum light. The last type is IIn which presents

narrow lines emission features.

This classification reflects the origin of SN. Type Ia is the so called

thermonuclear SN: it comes from nuclear burning of the carbon-oxygen white

dwarf to iron-peak elements that produce ∼ 1051 erg. Type Ib, Ic and II all

come from explosion of massive stars powered by gravitation (core collapse).

In particular, for type Ib cores have eject H envelopes and, for type Ic, both H

and He envelopes have been ejected. Type II SN come from stars with mass

∼ 8 M� which explode in a red supergigant (type IIP) with the possibility

of lower-mass H envelopes (type IIL).

Considering X-ray and radio emission, SNRs can be divided into three

categories: shell type, Crab-like (also known as plerions or filled center) and

mixed morphology (also known as composite).

In a shell-like SNR the shock wave plows through the space and heat any

material along its path producing shells of hot gas. An example of shell like

SNR is the Cygnus Loop shown in figure 2.1a.

A Crab-like SNR is a shell-type SNR but has a pulsar in the middle. The

pulsar produces a Pulsar wind nebula (PWN) detectable as non thermal X

radiation filling the entire shell. The name derives from the Crab nebula

(figure 2.1b), the remnant of the supernova explosion of 1054 AD reported

in Chinese annuals. The emission appears more similar to a blob than to a

shell: this is due to the high energy jets from the central pulsar.

Finally, mixed morphology SNR appears shell like in radio and filled

center in X-ray. The X-ray emission is due to the palsma of tehrmal electrons,

in contrast to the non-thermal origin of the plerions. Two examples of this

type of SNR are IC 443 (shown in figure 2.1c) and HB 21, whose analysis I

will develop in chapter 5.
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2.2 The evolution of Supernova remnants

The progenitor is important in determining the evolution of the SNR; the

main quantities that are relevant are initial density and velocity profile. Most

of this section is taken from Reynolds (2008) Now on I will consider spher-

ically symmetric Core Collapse (CC) explosion. Inhomogeneities on small

scales should not produce large departures from results assuming spherical

symmetry, but major inhomogeneities1 would not be well described by these

results. The roughly spherical shape of most of young SNRs indicates that

such departures do not typically dominate the gross evolution. After a first

time interval in which the energy of explosion drive the expansion, the object

is freely expanding and ejecta density profile can be described by: ρ ∝ r−n

with n ∼ 10 − 12. CC progenitor modifies the surroundings with mass loss

episodes or, at least, with fast wind during the main-sequence lifetimes and

in red supergigant (RSG) with a slower, denser wind. This, in turn, pro-

duce circumstellar medium (CSM) density profile ρ ∝ r−s with s = 2. This

behavior is confirmed by X-ray and radio emission observations. CSM and

ejecta could be in-homogeneous but, at small scales there are no deviations

from spherical symmetry approximation.

If the shock is a discontinuity in flow velocity, which, otherwise, is con-

stant with value u1 and u2 in up- and downstream respectively one can write:

u2

u1

≡ 1

rcomp
=
γ − 1

γ + 1
+

2

γ + 1

1

M2
(2.1)

p2

p1

=
2γ

γ + 1
M2 − γ − 1

γ + 1
(2.2)

where rcomp ≡ ρ2/ρ1 is the compression ratio,M≡ v/c the Mach number, γ

the ratio of specific hits and p the pressure. For the common case γ = 5/3

1such as jet-driven SN or circumstellar medium (CSM) in equatorial disks
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and M2 � 1, one can obtain:

rcomp =
ρ2

ρ1

=
γ + 1

γ − 1
= 4

p2 =
2ρ1u

2
1

γ + 1
=

3

4
µ1mpn1u

2
1

kT2 =
3

16
µ2mpu

2
1

where µ is the mean mass particle and n1 the upstream particle number

density. Note that these relations are valid only if energy loss owing to

radiation is negligible. Ejecta with mass Mej with initial velocity
(

2ESN
Mej

)1/2

of the order of 103− 104 km s−1 has high Mach numberM & 103, so a blast

wave is formed.

Behind the blast wave, ejecta expand almost freely and cool adiabatically;

the velocity behaves as an Hubble low: v ∝ r. Then, SN blast wave encoun-

ters modified CSM or undisturbed Interstellar Medium (ISM) and the shock

slows down and the interior ejecta decelerates. This ejecta could be then re-

heated by an inward-facing shock: this phase is known as ejecta-driven phase.

The reverse shock has a velocity up to ∼ 1000 km s−1 and it is responsible for

X-ray emission from the ejecta. If the reverse shock is spherically symmetric,

the contact between the shock-heated ISM or CSM and shock-heated ejecta

presents a discontinuity (across which p is constant). These two distinct

structures, persist until the mass of the swept up is greater than the mass of

the ejecta: in this case, the two structures evolve self-similarly. The behavior

during the evolution is well described by the so called Sedov self-similar solu-

tion for adiabatic point explosion in a uniform medium of negligible pressure.

In this case, the radius of the blast-wave is given by R ∝ t(n−3)/(n−s) where

n = 10− 12 and s = 2 in CC case.

The time tch necessary to move from ejecta-driven to Sedov phase con-

sidering Mej mass of the ejects, E the explosion energy and ρ0 the ambient
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density is found to be:

tch = E−1/2M
5/6
ej ρ

−1/3
0 . (2.3)

Sedov phase ends when the shock is slow enough that the radiative cooling

takes place and adiabatic approximation breaks down. Also in this condition,

it is possible that some parts of the remnant could cool before the others.

Also interior may still remain hot enough to provide pressure (pressure-driven

snowplow).

For fully ionized, cosmic-abundance gas, the gas volume cooling function

can be approximates as: Λ(T ) = 10−16T−1 erg cm3 s−1. using that approx-

imation, at the transition to radiative evolution ttr, the radius Rtr and the

mass of the ejecta Mtr are given by:

ttr = 2.9× 104E
4/17
51 n

−9/17
0 yr (2.4)

Rtr = 19E
5/17
51 n

−7/17
0 pc (2.5)

Mtr = 103E
15/17
51 n

−4/17
0 M�. (2.6)

Note that, most important phases for particles acceleration are pre-Sedov

and transition to the Sedov phase. In the pre-Sedov phase, the maximum

energy rises rapidly as the shock velocity remains high and deceleration is

small (for details on maximum energy see section 2.3.3). After a transition

at a time of order tch (given in the 2.3), the rate of increase slows.

2.3 Particle acceleration in SNRs

Radio emission features can be explained with the presence of ultra-relativistic

(E ∼ 104mec
2) electrons. The radio brightness is too high to arise from com-

pression of intestellar electrons and magnetic field (Reynolds, 2008). The
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process that explains the presence of high energy electrons in SNRs is the

diffusive shock acceleration and particle scattering across the shock of the

remnant.

2.3.1 Diffusive shock acceleration

The description and hysitry of DSA are taken from Baring (1997). Fermi

(1949) first postulate that CRs could be produced via collisionless shock

acceleration in interstellar clouds. The elegance of Fermi’s idea is that, when

particles are confined this diffusive process naturally produces power-law CR

distribution.

It was realized that shocks in plasma could also provide diffusive accel-

eration in an efficient manner, tapping the dissipative potential of the flow

discontinuity by transferring the shock’s kinetic energy to non-thermal pop-

ulations both upstream and downstream of the shock, at the same time as

heating the downstream gas. This last process is the so called diffusive shock

acceleration (DSA) or first-order Fermi mechanism.

The modern era of shock acceleration theory began with a collection of

papers in 1977-78 (Krymskii, 1977; Bell, 1978; Axford et al., 1977; Blandford

and Ostriker, 1978).

DSA at SNR blast waves is the favored production mechanism for the

production of Galactic cosmic-rays. It can naturally explain the formation

of a power-law spectrum by a shock wave.

To have a DSA two components are needed: the shock, which is a velocity

jump, and a diffusion center, such as the magnetic field waves.

A shock forms when some material propagates in a medium with speed

higher than the reaction speed of the medium itself. The natural travelling

speed of a perturbation in a medium depends on its density ρ and pressure
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P and it is given by the sound speed:

cs =

√
∂P

∂ρ
. (2.7)

Using the polytropic equation state

P ∝ ργ (2.8)

it becomes:

cs =

√
γP

ρ
=

√
γkbT

m̄
(2.9)

where T is the temperature of the medium, m̄ the mean atomic mass, and kB

the Boltzmann constant. If something is travelling at a velocity higher than

the speed velocity of the medium, sounds waves steepen to form a shock wave

that is a discontinuity in the hydrodynamical profile. The shock compress

and heats the medium so it can respond to perturbation. The strength of

the shock is measured by the ratio between its proper speed and the local

speed of sound, and it is called Mach number.

The Fermi mechanism always applied to collisionless shock so to all those

non-linear preturbancies that have energy and momentum transfer between

particles mediated by plasma processes, with Coulomb scattering negligible.

To understand this process we have to consider a flow defined by speeds u1

and u2 (with u2 < u1) on the two different sides of the shock as shown in

figure 2.2. In the rest frame of the shock, we consider particles speed v0

initially in the upstream side of the shock. These particles diffuse around via

collisions with magnetic turbolence of the plasma until they cross the shock

and move downstream. This kind of diffusion tends to isotropize the angular

distribution of the particles in the frame in which the upstream plasma is

at rest. After a period, in which the particles interact with the upstream

medium, now they collide with magnetic turbolence that is associated with
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the downstream plasma. If also this plasma tends to isotropize the particles,

this populatin sees a plasma moving towards it upon arrival downstream.

The velocity of this flow is ∼ |u1 − u2|. The process of quasi-isotropization

leads to an increase in average of the particle speed in the rest frame of the

shock interface.

Figure 2.2: A schematic depiction of of a particle motion in a shock. The

plasma flow speed are: u1 in the upstream region, and u2 in the downstream.

it is also shown the mean accelerated particle speed vi after i shock crossing.

Speeds after the shock crossing are ordered as: v0 < v1 < v2 < ... < vi. (from

Baring, 1997)

Some of the particles will return to upstream side of the shock, and these

will see the upstream plasma moving towards them. Subsequent diffusion

back and forth across the shock leads to increase in particle speed, so many

shock crossing afford significant acceleration. For non-relativistic particles,

the velocity increase is proportional to ∼ |u1−u2|. This mechanism is known

as first-order (or diffusive) shock acceleration.

Second-order Fermi acceleration consists in the same process by random

shocks, which results in a velocity increase proportional to |u1−u2|2. in both

cases, first and second order, the diffusion yield to a power-law distribution

of the particles. The second-order Fermi acceleration is a minor contribution
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in dynamics of SNRs. To estimate when this process becomes dominant we

can consider the acceleration time to energy E. For a stochastic acceleration

and DSA it assume the form (Reynolds, 2008):

tacc(stoch) ∼
(
λmfp
c

)(vA
c

)−2

tacc(DSA) ∼
(
λmfp
c

)(ush
c

)−2

(2.10)

where vA is the Alfven speed, λmfp the scattering mean free path andMA2 ≡

ush/vA is the Alfven Mach number of downstream flow. The ratio of the

acceleration rates is:
tacc(DSA)

tacc(stoch)
∝M−2

A2.

Under normal conditions, DSA is more rapid so we assume that it is the

primary mechanism to produce energetic charged particles in SNRs shocks.

Although the power-law index of the accelerated particles is independent

of the shock obliquity, the acceleration efficiency is strongly dependent on

the angle θB1 that the upstream magnetic field makes with the shock normal

(Baring et al., 1993).

To understand the importance of the obliquity in DSA an analysis of

particle scattering through the shock front is necessary.

2.3.2 Particle scattering

We consider particle scattering with an energy dependent mean free path

λmfp. Additional condition for this simplify description of the particle scat-

tering, is that the scattering is resonant so we can express λmfp as a func-

tion of the gyroradius (rg) in the mean magnetic field (Reynolds, 2008):

λmfp = ηrg = η
(
E
eB

)
where the last sentence is valid in ultra-relativistic

conditions (E � mc2) and η is the gyrofactor.
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Resonant scattering from circular polarized magneto-hydrodynamic (MHD)

waves (Alfven waves) with frequency equal to the gyrofrequency (Ωg), will

result in diffusion. Given the gyrofrequency of a particle with Lorentz factor

γ, Ωg = eB/γmc, the resonance condition can be written as:

Ωg = k · v (2.11)

so more energetic particles need longer λ to scatter. If k ⊥ v no resonance is

possible, so to scattering to 90◦is not possible, even if it is observed. Probably

90◦takes place using other physical processes (Reynolds, 2008).

The scattering results in an effective mean free path depending on gyro-

radius and in a diffuse coefficient κ(x,E) for a particle with energy E. The

expression of κ along the direction of the magnetic field is given by:

κ‖ = κ(x,E) =
1

3
λmfpc =

1

3
η
Ec

eB
. (2.12)

The diffusion coefficient κ⊥ arises from the assumption that a particle is

displaced one gyroradius perpendicular to field and lies with every parallel

scattering. In this condition, κ⊥ has the form (Reynolds, 2008):

κ⊥ =
κ

1 + (λmfp/rg)2
≡

κ‖
1 + η2

. (2.13)

If θ is the angle formed by the diffusion coefficient with the magnetic field

B, the coefficient can be decomposed in the two perpendicular directions:

κ = κ‖ cos2 θ + κ⊥ sin2 θ. For shock acceleration process, we are interested

only in scattering along the shock normal.

A common quantity taken into account is the obliquity θBn which is de-

fined as the angle between the shock normal and the upstream magnetic

field. An interesting case is when θBn ∼ 90◦: in this condition we have a per-

pendicular shock. The gyromotion bring back and forth particles from the

shock even in the absence of scattering. This mechanism is called shock drift
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acceleration: particles gain energy as result of grad B drift perpendicular to

the shock and along induced electric field E = −u1 × B
c

(Reynolds, 2008).

2.3.3 Acceleration rates and maximum energies

The length scale for particle diffusion ahead of the shock can be calculated as

κ/u, so the timescale can be written as κ/u2. More in detail, we can calculate

the time to accelerate a particle from momentum pi to p (Reynolds, 2008):

τacc =
3

u1 − u2

∫ p

pi

(
κ1

u1

+
κ2

u2

)
dp′

p′
. (2.14)

Using equation 2.13, for a shock with compression ratio rcomp and under the

additional assumption of κ1 = κ2 and p� pi the previous equation becomes

(Reynolds, 2008):

τacc(p)(parallel) =
3κ(p)

u2
1

rcomp(rcomp + 1)

rcomp − 1
. (2.15)

Considering scattering non-isotropic obliquity plays an important role in the

estimation of the acceleration time:

τacc(θBn) = RJτacc(θBn = 0) (2.16)

where RJ < 1 is given by (Reynolds, 1998):

RJ =
κ1(θBn,1)/u1 + κ2(θBn,2)/u2

κ1(0)/u1 + κ2(0)/u2

is independent on E because κs depend all on E.

The estimation of the maximum energy is important for understanding

CR origin and the high-energy emission from SNRs. The maximum energy

reached is directly connected with the age limitation: there is a finite amount

of time in which the SNR can accelerate particles. The three main processes

the limit the age are:
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1. finite size of the remnant

2. radiative losses

3. increase of the diffusion coefficient, and so the particle can escape up-

stream.

In any of this case, the particle distribution function results in a power law

with exponential cutoff at some energy Emax. For each of the different limit

on age, we can estimate a different maximum energy (Reynolds, 2008):

Emax(age) ∼ 0.5u2
8t3BµG(ηRJ)−1 TeV (2.17)

Emax(loss) ∼ 100u8(ηRJBµG)−1/2 TeV (2.18)

Emax(escape) ∼ 10BµGλ17 TeV (2.19)

where u8 ≡ u1/108 cm s−1, t3 ≡ t/1000 yr, λ17 ≡ λmax/1017 cm and B

the upstream magnetic field. All the discussion above is intended for Emax

obtained from a gradual drop-off of emission. Synchrotron X-rays emission

can be produced at ν � νmax(Emax) (Reynolds, 2008).

Emax(age) rises rapidly in the pre-Sedov phase. After the transition, at

the time tch, we ca re-write this maximum energy as (Reynolds, 2008):

Emax(age) = 5Emax(age)(tch)

(
1− t

tch

)−0.2

which is valid only for particles present from the earliest time.

Note that single-particle approach is valid for every shock geometry.

This is considered the main acceleration process in SNRs. But the SN

material ejected during the explosion moves with a high velocity. The for-

ward and backward shocks are formed due to ejecta interaction with a cir-

cumstellar medium. The circumstellar gas is compressed at the forward

shock while while the backward shock propagates into the supernova ejecta.
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This phenomenon is not considered in the linear DSA described above but

has to be taken into account using nonlinear treatments of DSA. nonlinear

DSA (NLDSA) have predicted that at strong shocks a significant fraction of

the shock kinetic energy is transferred to CRs. This induces highly nonlinear

back-reactions from CRs to the underlying flow, creating a shock precursor

(e.g., Amato and Blasi, 2006; Vladimirov et al., 2006; Kang and Jones, 2007)

that compresses inflowing plasma upstream of the dissipative subshock. As

reported in Kang et al. (2012), the acceleratin in the SNRs shock, considering

the NLDSA, was faster at earlier times, when the shock speed is faster.

2.3.4 Injection and magnetic field amplification

The mechanism for which few particles are promoted to the energy of the

shock is known as injection problem. The shock layer is expected to be few

thermal ion gyroradii thick; ions have only few times the mean energy in

order to have gyroradii larger than the shock thickness. Particles scatter

back and forth the shock and become injected and this process produces

thermal leakage.

For electrons gyroradius is always too small to let the particles injected.

Another mechanism is responsible to the injection of electrons. This has to

depend on remnant parameters such as upstream obliquity or neutral frac-

tion. These parameters have a direct consequence on X-ray TeV emission.

A suggested process there is the plasma instabilities but there are still unre-

solved problems (Reynolds, 2008).

Shocks in SN and SNRs amplify pre-existing magnetic field. This leads

to streaming instabilities of upstream CR in parallel shock. Also in this

case, there are some unknown features such as: the dependence of shock

obliquity, the persistence of oscillation in B as a field with non-zero mean,
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the dependence of effect on shock speed or the presence of upstream neutrals

(Reynolds, 2008).

Caprioli et al. (2008) found that, starting from an evaluation of magnetic

field amplification, the compression ratio can be calculated. This leads to a

value of 6-10 for modified DSA, much smaller than that assumed considering

standard theory, which predicts a value of 4. This estimation is in agreement

with some observations which suggest values between 7 and 10 Völk et al.

(see 2005).

2.4 Non-thermal radiation processes in SNRs

Four basic radiative processes are capable of producing emission in SNRs.

Three are leptonic: synchrotron radiation (in radio frequencies, described in

section 2.4.1), non-thermal bremsstrahlung (section 2.4.3) and Inverse Comp-

ton (IC) scattering (section 2.4.2). The most common mechanism in SNRs

which involves hadrons is the decay of π0 mesons produced by scattering

of protons with cosmic-ray ions (section 2.4.4). This is the only hadronic

mechanism taken into account for the SNRs modeling of the spectrum. Last

two leptonic emission mechanisms and the hadronic one produce radiation in

γ-rayband. Most of the material used in this chapter is taken from (Longair,

2011), for section2.4.1, (Vietri, 2006), for section 2.4.3, and (Reynolds, 2008)

for sections 2.4.2 and 2.4.4.

2.4.1 Synchrotron radiation

Synchrotron radiation is produced by charged particles, usually electrons or

positrons with relativistic velocities, that are deflected in a magnetic field B.

Higher the speed, lower the wavelength of the radiation emitted that usually
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has the peak in the radio frequencies. To derive equations for synchrotron

luminosity (i.e. radiated power), first consider the case of a single particle of

mass m, energy E = γmc2 and charge e moving with velocity v in a uniform

magnetic field B.

The trajectory of this particle makes an angle of αp (the so-called pitch

angle) with the direction of magnetic field. The particle’s trajectory descrive

an helix or a spiral along the magnetic field along the field line, due to the

~v× ~B force. The spiral radius of curvature is known and given by a = v
ωr sinαp

,

where ωr = eB/γm is the gyro-frequency.

The total emission can be written in terms of component along the two

different polarizations parallel and perpendicular to the magnetic field direc-

tion. A detailed derivation of these components is given in Longair (2011);

here i will just report the main points. The two emission components can be

written as:

dI⊥(ω)

dΩ
=

e2ω2

12π3ε0c

(
aθ2

γ

cγ2

)2

K2
2/3(η) (2.20)

dI‖(ω)

dΩ
=

e2ω2θ2

12π3ε0c

(
aθγ
cγ

)2

K2
1/3(η) (2.21)

where K1/3 and K2/3 are the modified Bessel functions of order 1/3 and 2/3,

and θ2
γ = 1 + γ2/θ2 and η = ωaθ3

γ/3cγ
3 are two additional variables.

the final step is to integrate over dω. Since most of the radiation is

emitted within a very small angle θ with the respect to the pitch angle of the

electron, it can be assumed that the dΩ = 2π sinαpdθ because the element

of solid angle varies very little over dθ. in addition, since the radiation is

concentrated in a small angle about αp, we can take the integral limits to
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±∞. Therefore, the integrals can be written as:

I⊥(ω) =
e2ω2a2 sinαp

6π2ε0c3γ4

∫ +∞

−∞
θ4
γK

2
2/3(η)dθ (2.22)

I‖(ω) =
e2ω2a2 sinαp

6π2ε0c3γ2

∫ +∞

−∞
θ2
γθ

2K2
1/3(η)dθ. (2.23)

The integrals have been evaluated by Westfold (1959). The equation 2.23

can be written in term of two additional functions:

F (z) = x

∫ ∞
x

K5/3(z)dz (2.24)

G(x) = xK2/3(x) (2.25)

with x = 2ωa/3cγ3 = 2η/θ3
γ. Substituting one can find:

I⊥(ω) =

√
3e2γ sinαp
8πε0c3

(F (x) +G(x)) (2.26)

I‖(ω) =

√
3e2γ sinαp
8πε0c3

(F (x)−G(x)). (2.27)

This integration represent the energy emitted in the two orthogonal po-

larization during one period of the electron in its orbit in a time Tr = ν−1
r =

2πγm/eB. To obtain emissivities j⊥,‖(ω), it is necessary to divide equations

2.27 for Tr. The total emissivity of a single electron is the sum of j⊥(ω) and

j‖(ω):

j(ω) = j⊥(ω) + j‖(ω) =

√
3e2γ sinαp
8πε0c3

F (x). (2.28)

In figure 2.3 it is graphically shown the form of the F (x) function.

To evaluate the radiation spectrum for a distribution of electron energies

it is necessary to know the shape of this distribution. Using a general form

for the distribution of electron energies N(E)dE, the energy radiated in the

angular frequency range ω to ω + dω can be attributed to electrons with

energies in the range E + dE so

J(ω) =

∫ ∞
0

j(ω)N(E)dE. (2.29)
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Figure 2.3: The spectrum of synchrotron radiation of a single electron shown

with logarithmic axes. The function is plotted in terms of x = ω/ωc = ν/νc

where ωc is the critical angular frequency ωc = 2πνc = (3/2)(c/v)γ2ωg sinαp

where αp is the pitch angle of the electron and ωg is the gyro-frequency.

2.4.2 Inverse Compton scattering

Inverse Compton (IC) scattering, is the process via which ultra-relativistic

electrons scatter low energy photons to high energies so that the photons

gain energy at the expense of the kinetic energy of electrons.

An extremely relativistic electron, with Lorentz factor γ encountering a

photon with initial energy Eγi much less than the electron’s rest energy in

the electron’s rest frame, will up-scatter it in energy by factor of γ2 and

redirect it along the electron’s direction of motion, with cross section σT ≡

(8πr2
e/3) = 6.65 × 10−25 cm2, where re = 2.82 × 1013 cm is the classical

electrons radius (Reynolds, 2008).

An isotropic photon field dnγ(Eγi)/dV photons cm−3 erg−1 is scattered

by a single electron of energy E = γmec
2 to a spectrum of outgoing photons
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given by (Jones, 1968):

dnγ,e
dEγdt

=
3

4

σT c

γ2

mec
2

Eγi

dnγ(Eγi)

dV
dEγi × (2.30)

×
[
2q ln q + (1 + 2q)(1− q) +

Γ2
K−Nq

2(1− q)
2(1 + ΓK−Nq)

]
where

q ≡ Eγ
4Eγiγ(γ − Eγ/mec2)

and ΓK−N ≡ 4γEγi/mec
2.

Then the emergent photon spectrum is given integrating equation 2.31 over

the electron spectrum, written as N(γ) = N(E)dE/dγ = N(E)mec
2, is given

by (Reynolds, 2008):

dnγ
dEγdtdV

=

∫
N(γ)dγ

∫
dnγ,e
dEγdt

. (2.31)

When Klein-Nishina effects are negligible, the spectrum has the same shape of

the electron spectrum. if the latter has a maximum energy Emax, the photon

spectrum will have a cutoff at corrisponding frequency νmax ∼ γ2<Eγi>,

where <Eγi> is an average incident photon energy. Below the cutoff, IC

has the same slope of the synchrotron spectrum, with index α = (1 + s)/2

(Reynolds, 2008).

One of the mostly likely source of seed photons for IC scattering is the

Cosmic Microwave Background (CMB). Typical value of radiation densities

in the vicinity of SNRs are one order of magnitude less (see Gaisser et al.,

1998) than the local radiation density. for the CMB radiation, the photon

spectrum dnγ(Eγi)/dV of equation 2.31 is a blackbody at a temperature

T = 2.73 K.

2.4.3 Bremsstrahlung emission

Bremsstrahlung emission is the radiation of a particle changing its momen-

tum for an interaction, usually with anoter particle of a different species.
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In a gas composed by ions and electrons, the main source of bremsstrahlung

emission is the interaction between electrons or protons and ions, because ion-

ion collisions generates small accelerations due to the high mass involved.

Thermal electrons provide the bulk of thermal continuum. Electrons with

energies above the shock thermal energies of a few tens of keV at most, will

contribute a power-law spectrum with the same phton index Γ as their en-

ergy distribution index s. An electron with energy E emits photons up to

∼ E/3, so the same TeV electrons that contribute keV synchrotron photons,

will contribute TeV bremsstrahlung photons. Beginning around 100 MeV,

bremsstrahlung photons are emitted by the same electrons that produce radio

emission (Reynolds, 2008).

If the electron spectrum is Ne(E) electrons cm−3 erg−1, and it encounters

protons with density nH cm−3, Gaisser et al. (1998) estimate that

dnγ
dEγdtdV

∼ 7× 10−16nHNe(Eγ) photons erg−1 s−1 cm−3. (2.32)

The full photon spectrum is obtained by integrating the equation 2.32

over the electron distribution.

2.4.4 Nucleon-nucleon interaction

The main radiative mechanism by which energetic hadrons might take them-

selves evident, is photon emission by the decay of π0 mesons produced in in-

elastic scattering of cosmic-ray ions form thermal protons. It is the dominant

mechanism and it is the only hadronic process considered in the modeling of

SNRs. Above the π−creation threshold of 1.242 GeV, the cross section for

p+ p→anything is just the geometrical cross section of a proton (Reynolds,

2008): σ ∼ (10−13 cm)2 ∼ 10−26 cm2, little varying with proton energy. Al-

most all the products are pions and, one third of them are π0s that decays
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into pairs of γ-ray π0 → γ + γ in ∼ 1.78 · 10−16 s (Longair, 2011). The

secondary π0 spectrum Qπ0 (in unit of pions cm−3 s−1 erg−1) produced by

the interaction of an incident flux of energetic protons Fp(E) with gas with

a thermal proton density of nH cm−3 is (Stecker, 1971):

Qπ0(Eπ) = 4πnH

∫ inf

Emin(p)

dEpFp(E)
dσ(Ep, Eπ)

dEπ
. (2.33)

The differential cross section dσ(Ep, Eπ)/dEπ involves details of strong-interaction

physics. The minimum energy required to produce a pion with energy Eπ is

given by:

Emin(p) = mpc
2 + 2Eπ +mπc

2

(
2 +

mπ

2mp

)
. (2.34)

An isotropic distribution of π0s will decay through π0 → γ + γ to produce

photons with a spectrum peaking at energy mπ/2 = 68 MeV and dropped

symmetrically on either side. The higher the energy of the π0s, the broader

the peak. The photon spectrum is given by:

dnγ
dEγdtdV

= 2f

∫ inf

Emin(π)

dEπ
Qπ0(Eπ)

pπ
(2.35)

where pπ is the pion momentum. To produce a photon of energy Eγ, the

minimum pion energy required is Emin(π) = Eγ + (m2
πc

4/4Eγ); the factor f

in equation 2.35 is a factor that takes into account the γ-ray produced from

He and heavier elements in both projectile and target populations: a good

estimation of this factor is f = 1.45.

The photon production at a given energy is dominated by protons near the

threshold for production of pions, for the steep spectra, so the spectrum from

an arbitrary distribution of energetic protons turn on around ∼ 70 MeV, and

then follows the spectral shape of the proton distribution. If that distribution

N(Ep) protons erg−1 s−1 cm−3changes slowly with energy, one can obtain:

dnγ
dEγdtdV

∼ 10−16nHN(Eγ) photons erg−1 s−1 cm−3. (2.36)
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2.4.5 Parametric models of the gamma-ray yield from

hadronic interactions

In this section I will concentrate on models used to predict the γ-ray yield

from hadronic interactions. Most of the section is taken from Dermer et al.

(2013) and Kamae et al. (2005). As told in 2.4.4, the threshold for the

π−creation is of 1.242 GeV. There are two class of processes that can produce

γ-ray emission: the so called primary and secondary leptonic emission.

Due to the dominant abundance of protons in the CRs, the most impor-

tant process that contributes to the γ-ray diffuse emission is:

p + p→ γ +X

where X is anything else made from reactions besides γ rays. This is known

as primary hadronic emission.

The secondary leptonic emission is produced mainly by the decay of π0

produced through nuclear collisions. The production of γ rays is mostly

mediated by the production and decay of neutral pions. In this case, γ rays

are produced through the decay of π0:

π0 → 2γ.

So it is essential to understand the cross section of the processes that produce

neutral pions. The main interaction is between protons and hydrogen, the

most abundant element in the ISM:

p + H→ π0 + anything.

There are also other three minor channels for the production of π0:

p + He → π0 + anything

α + H → π0 + anything

α + He → π0 + anything.
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plus additional minor channels involving nuclei heavier than He that account

for an additional 10%. Taking as 1.00 the channel p−H, the rates are: 0.28

for p-He, 0.09 for α−H and 0.02 α−He (Dermer, 1986), so the dominant

channel is p−H.

The production of pions near threshold is mostly mediated by resonances

like: ∆(1232), ∆(1600) and N(1440), all of which decay through a π0 to

make γ-rays. Furthermore, there are baryonic and mesonic decays. In the

formes class are Λ and Λ̄, Σ0 → Λ + γ and Σ+, with only the Σ0 in a direct,

non-π0 γ-ray channel. Meson-decay channels are K+, K−, KL and K0
S → 2γ.

The goal is to calculate the cross section of these processes to reconstruct

the observed γ-ray spectrum. Cross section are tuned with values taken from

accelerators, i.e. from the CDF collaboration at Fermilab.

Dealing with quite complex processes, there are two approaches: the an-

alytic (such as Dermer, 1986) and the numeric (i.e. Kamae et al., 2005,

2006) one. Starting from measurements and similar model, in the analytic

approach one calculates analytically the γ-ray yield through some approxi-

mations, while in the numeric approach one simulates the interactions and,

in such a way, calculate the final γ-ray yield.

For the modeling in chapter 6, we use the Kamae et al. model, developed

with the numerical approach.

2.5 SNRs as source of galactic cosmic rays

In this chapter I will discuss the SNR paradigm stressing the strengths and

the limitations of this assumption and explaining also the connections with

observations.

CR spectrum is ∝ E−(s+δ) where s is the source spectral index (∼ 2) and
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δ is the diffusion coefficient which depends on particle rigidity (Blasi, 2011).

In addition to that, in a magnetic field B expressed in Gauss, an electron

of energy E radiates with a power frequency peak of ν = 1.82 · 1018 E2 B Hz

corresponding to an energy of Eγ = 14.7
(
νGeV

BµG

)1/2

GeV. This kind of high

energetic charged particles were already known as cosmic rays.

2.5.1 Propagation of Galactic CRs in the Galaxy

Here I will give an overview on how CRs propagates in the Galaxy. For this

discussion I will follow (Blasi, 2011). For a complete overview and modeli-

sation of the propagating processes of energetic particles in tenuous plasma,

see (Drury, 1983).

The sources in this model are all located in an infinitely thin disk with

radius Rd and the diffusion coefficient is constant within a halo of size H.

The CRs density is given by:

nCR(E) ≈ N(E)RSN

2πR2
d

H

D(E)

where RSN is the rate of supernova explosion, N(E) ∝ E−γ spectrum of

CRs produced by an individual SNR, and D(E) the diffusion coefficient.

The diffusion coefficient can be expressed as

D(E) = 1028
( ρ

3 GV

)δ
cm2 s−1

where ρ = E/Z is the particle rigidity.

If the particles considered are ultra-relativistic protons, their velocity is

c, Z = 1 and the flux observed at the Earth is:

φ(E) = c
nCR(E)

4π
. (2.37)
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To fit both B/c ratio and anti-proton data, the approximation D28/Hkpc ∼ 1

is needed. Under this assumption equation 2.37 becomes:

φCR(E) ≈ 2.4E51ξCRR
−2
d,15RSN,30(γ − 2)3δE−2.73

TeV TeV−1 m−2 s−1 sr−1

where E51 = ESN/1051 erg, ξCR is the CR acceleration efficiency, Rd,15 =

Rd/15 kpc and RSN,30 the rate of supernova explosion in unit of 30 per year.

A flux of 8.7 · 10−2 TeV−1 m−2 s−1 sr−1 can be observed at the Earth for a

number of combination of ξ and δ. Reference values of these two parameters

are: ξ ∼ 7% for δ = 1/3, ξ ∼ 11% for δ = 0.54 and ξ ∼ 58% for δ = 0.7.

These are lower limits to the required efficiencies. From these values it is

clear that it is necessary to include also dynamical reaction of accelerated

particle in the theory of particle acceleration. In addition also streaming

instabilities induced by the accelerated particle has to be included because

they lead to a magnetic field amplification upstream the shock.

If resonant streaming instability is excited and in absence of damping,

the variation of magnetic field from the initial value B0 can be estimates as:

δB ∼ B0

√
2MAξCR

where MA � 1 is the Alfvenic Mach number.

The two processes described above are the most important effects in CRs

propagation in the Galaxy.

The flux and energy spectrum of CRs are object of an intense study since

their discovery in 1912 by Victor Hess. The energy spectrum of CRs extends

to energies of about ∼ 1020 eV and even beyond as shown in Figure 4.2. The

CR spectrum has two distinct features showed in Figure 4.2:

- a break at 2.3 × 1011 GeV (as suggested by Adriani et al., 2009, but

not confirmed by recent observations with AMS)
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- the so-called knee at ∼ 1015 eV

- a second knee at ∼ 1017 eV

- an ankle at ∼ 1019 eV.

. It is believed that all particles below the knee are of galactic origin for

energetic reason as discussed in section 2.5.2: the expected energies reached

inside the Galaxy extends at least to the knee. Furthermore, the ultra high

energy cosmic rays (UHECRs) above the ankle are produced and accelerated

outside of the Galactic Disk such as AGN, Gamma-ray Bursts (GRBs), young

pulsars, Radiogalaxies and Clusters of galaxies (Aharonian, 2004). Beyond

the ankle, powerful accelerators are needed which are supposed to be located

outside the Galaxy.

2.5.2 The SNR paradigm

In this section I will try to explain strengths and limitations of the SNR

paradigm. For further details, see Blasi (2011) from which I extract this

overview.

The spectrum of CR extends over 13 order of magnitude as shown in

figure 2.5. The spectrum is measures up to ∼ 1011 TeV by the Auger ex-

periment. The CR spectrum has two distinct features: the so called knee

and ankle around 1015 eV and 1019 eV respectively. The particles below

the knee are of galactic origin because the Galactic magnetic field confined

them. This hypothesis is also supported by the γ-ray observations of the

local group of Galaxies. The UHECRs above the ankle are produced and ac-

celerated outside the Galactic Disk, in the Halo of our Galaxy, or in powerful

extragalactic objects such as AGN, Radiogalaxies and Cluster of Galaxies.
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Figure 2.4: Summary of measurements of the all-energy spectrum of CRs.

Taken from Aharonian (2004).
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Figure 2.5: The overall differential energy spectra of CRs from various exper-

iment. Prominent features in the spectrum are indicated: the knee at 1015 eV

and the ankle at 1019 eV. The frequencies of the arrival energies are indi-

cated, as well as the energies attainable in various accelerator experiments

(from Longair, 2011)
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The extragalactic origin is a good candidate for the highest energy CRs be-

cause the large scales permit acceleration to energies beyond the capabilities

of galactic environment and particles of these energy are not confined in the

Galaxy.

For energetic reasons, SNRs, together with superbubbles, are considered

sources of Galactic CRs because they can provide the energy required to

explain the CR flux observed at the Earth.

Superbubbles are regions excavated in the ISM by repeated SN explosions,

rather than in isolated SNRs. These regions are very active in that several

SNRs occur in a relatively short period of time (a few tens million years), and

conditions might be better suited for particle acceleration to higher energies

(Blasi, 2013). The explosion take place in a metal rich environment, so it

can explain some anomalies in the chemical composition of CRs. Particle

acceleration may be taking place due to several different processes, from

shock acceleration in the winds, to shock acceleration at shocks formed during

supernova explosions, to second order acceleration in the turbulent magnetic

field deriving from merging winds and SN ejecta. It has also been proposed

that the maximum energy that can be achieved is higher than in isolated

SNR, although these estimates are somewhat based on simple arguments

that may fail to properly represent reality. But all are just hypothesis not

well supported by observations.

The SNR paradigm is the assumption that identifies SNRs as sources of

of Galactic CRs.

The three main requirements of this paradigm are:

1. SNRs may accelerate with typical efficiency of ∼ 10− 20%;

2. chemical abundance of the nuclei is well described;
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3. multyfrequency spectra of individual remnants are well modeled;

The acceleration mechanism that takes places in SNRs is the DSA (de-

scribed in 2.3.1) even if the energetic requirement stress the fact that the

standard test-particle approximation does not represent correctly the CR ac-

celerating process. In particular the reaction of accelerated particles onto

the accelerator cannot be neglected and it is responsible of spectral features

such as spectral concavity. The reaction of accelerated particles has to be in-

cluded in DSA also because the standard diffusion coefficient typical of ISM

only leads to maximum energies of CRs in range of ∼ GeV rather than the

observed ∼ 106 GeV. The only way to accommodate this discrepancy is to

argue that the accelerated particles generate the magnetic field structure on

which they may scatter.

Note that particle acceleration process is strongly dependent upon the

environment in which the supernova goes off.

Evidences of efficient CR acceleration

There are three main smoking gun to confirm the SNR paradigm. First of all

the observation of X-ray emission form rims. Non-thermal X-ray emission

is produced by synchrotron emission of high energy electrons in magnetic

field. Emission is dominated by the region downstream the shock where

the magnetic field is stronger and has a cutoff at a frequency which is in-

dependent to the magnetic field and given by: νmax ≈ 0.2u2
8 keV where

u8 = ush/(108 cm s−1) is the shock velocity in units of 1000 km s−1. This leads

to a maximum energy of Emax ≈ 10B
−1/2
100 u8 TeV where B100 = B/100 µG is

the magnetic field in units of 100 µG. The extension of the emitting region

at ν ∼ νmax is given by: ∆x ≈
√
D(Emax)τobs(Emax) ≈ 0.04B

−3/2
100 pc. Typi-

cally ∆x ∼ 10−2 pc which gives a magnetic field in the downstream region of
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100−300 µG or, in the upstream region, of 20−80 µG. For example in SNR

SN 1006, narrow rims (∼ 10 − 20 pc) downstream can only be reproduced

for efficient particle acceleration scenario.

The second “smoking gun” is given by collision-less shocks in partially

ionized plasma. Blast waves give rise to collision-less shocks. These shocks

are due to plasma processes that affect the ionized component of the plasma.

Neutral component is affected by the presence of the shock and particle

acceleration only if it exchanges an electron with a ion. This happens only if

they are moving at different speed, so in three cases: 1) the temperatures of

ion and the neutral are different, 2) the temperatures are the same but the

two atoms lie in a different point of the thermal velocity distribution, or 3)

the bulk velocities of the two components are different. The signature of this

process is the appearance of Balmer lines, that can be both narrow or broad.

The narrow lines are due to the neutrals that keep the same temperature that

they have upstream and did not suffer the charge exchange; the broad lines

are produced by neutrals produced through charge exchange (hot ions before

the process). Looking at these two lines, one can estimate the temperature

of the two components. The signature, in γ-ray band, of SNRs as sources of

galactic CRs, is the pion decay bump (Ackermann et al., 2013).

The last evidence of the SNR paradigm is the maximum energy and the

knee. From spectrum of individual elements in CRs, one can see that the

spectrum decline at ∼ few 106 GeV for protons and even before for heavier

nuclei. To produce the CR spectrum is necessary to introduce the amplifi-

cation of magnetic field by ∼ 100, using Bohm diffusion. The amplification

value is similar to that extrapolated from X-ray observations. For energies

above ∼ few 106 GeV chemical composition must become heavier and, then,

the spectrum of the Galactic CR ends at energy of ∼ 108 GeV and a transi-
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tion from Galactic to extragalactic origin happens.

In addition, together with radio data, γ-ray data help to constrain the

processes involved in the acceleration of particles in SNRs. Radio data are

used to parametrize the particle population which emits via synchrotron

radiation. The particles, accelerated via leptonic and hadronic processes

described in section 2.3, and emits in the γ-ray waveband. From this analysis,

values of the magnetic field and maximum energy reached by the particles

can be obtained. Typical values confirms the hypothesis that SNRs are the

main sites for the acceleration of Galactic CRs.

Problems of the SNR paradigm

The issues concerning the SNR paradigm are two: the γ-ray observations and

the X-ray lines. In this waveband the association between the detected flux

to a π0 decay is problematic because the emission can be associated also with

IC scattering of accelerated electrons. In addition most of Fermi SNRs has

a steep γ-ray spectrum (index ∼ 2.4 − 3) unlike the flat or concave spectra

predicted by the model. Note that steep spectra are observed in old SNRs

with nearby molecular clouds that can be a target for inelastic CR collisions.

The are cases in which X-ray lines are not detected, for example in SNR

RX J1713-3946. These non-observation is problematic for a scenario in which

the detected γ-rays are of hadronic origin.



Chapter 3
The Fermi Large Area Telescope

The LAT is the main instrument on board the Fermi γ-ray space telescope1.

The satellite was launched on June 11, 2008 from the Kennedy Space Center

(Florida, USA). The LAT is a pair conversion telescope detecting photons

from ∼ 20 MeV to > 300 GeV and scanning the whole sky every ∼ 3 h. The

other instrument on board Fermi is the Gamma-ray Burst Monitor (GBM), a

detector designed to detect the transient phenomena from 8 keV to 40 MeV.

In this chapter, I will give an overview on the detector, its performance

and the techniques for high level data analysis. In section 3.1, I will describe

all the components of the Fermi LAT detector; in section 3.3, the event

reconstruction and classification are presented; in section 3.4, I will explain

the Instrument Response functions (IRFs).

3.1 The Large Area Telescope

The LAT is a pair conversion telescope detecting photons from ∼ 20 MeV to

> 300 GeV.

1http://fermi.gsfc.nasa.gov

41
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Figure 3.1: Schematic view of the Fermi LAT (Atwood et al., 2009). A

tower (tracker and calorimeter) is shown for explanation. Details of all

the components are available in the text. The telescope’s dimensions are

1.8 m × 1.8 m × 0.72 m for a total mass of 2789 kg.
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Figure 3.1 shows its structure; the detector is an array of 4 × 4 towers

each composed by:

1. a tracker (for details see § 3.1.1)

2. a calorimeter (see §3.1.2)

An anti-coincidence detector completely covers the array of towers and pro-

vides a first discrimination between events due to the background (charged

particles) and γ-rays (see §3.1.3).

Being a space experiment, the quantity of data that can be downloaded

to the ground has to be limited to ∼ 1 Mbps. To achieve this goal, most

of events triggered by CR have to be rejected in a first on-board analysis,

described in section 3.2.

Another requirement for the detector, is that almost all the pair-conversion

events started in the tracker have to pass in the calorimeter for energy mea-

surements. This is obtained with an accurate design of the tracker and

calorimeter part, that I will describe in next sections.

The discussions about detector building and performance are taken from

Atwood et al. (2009).

3.1.1 The tracker

Each tracker module has 18(x, y) tracking planes, consisting of two lay-

ers (x and y) of single-sided Silicon Strip Detectors (SSD). The converter-

tracker (TKR) (see figure 3.2) is made of 16 planes of high-Z material (Tung-

sten, placed immediately above each x-y plane) in which the γ-rays can be

converted in a e+e− pair. These planes are interleaved with detectors to mea-

sure the point of passage of charged particles, hence to track their trajectories
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and derive the direction of the impinging gamma ray primary. Strips’ planes

are arranged into an hodoscopic configuration.

The tracker is designed to satisfy two different and opposite requirements:

good efficiency in converting γ-rays into pairs, and a good spatial resolution.

The first is obtained increasing the thickness of the W converting foils in

order to have the maximum number of radiation length. The latter goal is

reached using thin converter in order to avoid multiple scattering. To balance

the need of thin converters (for a good Point Spread Function (PSF) at low

energies) and the need of converting materials (necessary for the effective area

at high energies), the tracker was divided into two parts named “front” and

“back”. The front region has 12(x, y) tracking planes with thin converters

foils, each 0.03 radiation lengths to optimize the PSF at lower energies. The

back converters (4(x, y) planes after the front-section) are ∼ 6 times thicker

to maximize the effective area at higher energies2

The support structure is a stack of 19 composite panels (trays) supported

by a carbon-composite sidewalls that are useful also for the heat conduction

to the base of the tracker. The structure is a low-mass, carbon-composite

chosen for its long radiation length which prevent γ-rays conversion far from

the SSD.

3.1.2 The calorimeter

The main purposes of the Calorimeter (CAL) is to measure the energy depo-

sition due to the electromagnetic shower from the incident γ-ray and image

the shower development profile. This last capability is also important to

provide a good discrimination method between the shower produced by the

2The discussion of the LAT performances, the PSF and the effective area, is postponed

to section 3.4.
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Figure 3.2: Illustration of the design of LAT tracker. This picture shows the

conversion of the γ-rays which, ideally, take place as close as possible to the

W foils. (Atwood et al., 2009)
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γ-ray and the hadronic events.

The calorimeter is composed by 96 CsI(Tl) crystals; each CAL module

size is 2.7 cm × 2.0 cm × 32.6 cm and it is located below a TKR tower. In

each tower the crystals are optically isolated from each other and arranged in

8 layers. The total vertical depth of the calorimeter is 8.6 radiation lengths.

Each module is rotated 90◦ with respect to the crystal in the previous layer, to

obtain an hodoscopic array. The segmentation along two coordinates allows

to reconstruct the longitudinal coordinate of the passing ionizing particle.

Along the crystal, the difference in light yield at the two extremes allows

the reconstruction of the third coordinate. From the longitudinal shower

profile, an unbiased estimation of the initial shower energy is derived by

fitting the measurements to an analytic description of the energy-dependent

mean longitudinal profile. To allow the energy reconstruction of events up

to ∼ 300 GeV, the calorimeter needs to be heavy ∼ 1800 kg. On the other

hand, this may cause problems with the signal veto, as described in the next

section.

3.1.3 The anti-coincidence detector

The main handle to reject charged particles is provided by the Anti-Coincidence

Detector (ACD). For this reason, the main requirement is to have a high ef-

ficiency in detecting the charged particles (at least 0.9997 for detection of a

single charged particles entering the Field of View (FoV) of the LAT).

Another effect that has to be avoided using the ACD is the so called back-

splash effect. This effect is due to the isotropically distributed secondary

particles (mostly 100− 1000 keV photons) from the electromagnetic shower

created by the incident γ-ray. In the ACD, the shower can Compton scatter

and produce a false veto signal. This effect is the so-called back-splash and it
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is caused by the heavy-mass calorimeter. To suppress the back-splash effect,

the ACD is segmented and the veto is given only by tiles near the incident

incoming particle: such a restriction reduces significantly the area of ACD

contributing to the back-splash effect.

The ACD is made of plastic scintillators tiles chosen for their efficiency,their

well understood behavior and inexpensive technology. Scintillation light from

each tile is collected by wavelength shifting fibers (WLS) coupled with two

photomultiplier Tubes (PMTs) for redundancy.

3.2 Trigger and on-board filtering

In this section, I will give a brief overview on the trigger and the on-board

filtering of the LAT. For a more detailed description, see Ackermann et al.

(2012a).

Each sub-system provides a trigger primitive: a combination of them

starts the LAT data taking. The first trigger primitive is generated by the

tracker, which is issued when 3 x-y consecutive planes have a signal above

threshold. This signals a potential track in a tower. This request is very

efficient because often a particle hits more than a track and/or cross more

than 3 layers in a same tower.

Another trigger primitive is given by the calorimeter: there is a trigger

whenever a crystal ends in the calorimeter is higher than a defined value.

There are two types of thresholds: the low-energy (E > 100 MeV) and the

high-energy (E > 1 GeV) threshold.

There is also a veto for the charged particles and it is given by ACD.

The trigger system has a programmable list of ACD tiles associated with

each TKR tower. If ACD shadowing is enabled an additional trigger is given
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when a triggered TKR signal in a tower happens in coincidence with a veto

signal in the ACD tiles associated to the same tower.

Finally, there is also a veto for heavily-ionized particles: this signal is

used for calibration purpose on the CAL.

There is also an additional trigger primitive, used for diagnostic and cal-

ibration purposes: the PERIODIC trigger. It runs at a nominal frequency of

2 Hz during all science data taking.

The trigger provided by the TKR and the CAL are tower based. Trigger

primitives are collected by the Central Trigger Unit. All the possible combi-

nations of the triggers are mapped into so-called trigger engines: some trigger

requests are allowed to open a trigger window of fixed duration (700 ns) and

the set of primitives collected in this time interval is compared to a table of

allowed trigger conditions (see Ackermann et al. (2012a)). In case a trigger

condition is satisfied, a global trigger (or trigger accept) is issued and event

acquisition commences. The ACD veto is used to reject background events

and the primary source of trigger is the TKR primitive signal.

The on-board filter consists of a few event selection algorithms running

in parallel, each independently able to accept a given event for inclusion in

the data stream to be downlinked. Every event are filtered in three different

ways (Ackermann et al., 2012a):

1. by the GAMMA filter which is design to accept γ rays

2. by the HIP filter which select heavy ions events for CAL calibration

3. by the DIAGNOSTIC filter which enriches the downlinked data with in-

formation about sensor performance and selection biases.

The GAMMA filter consists of a hierarchical sequence of veto tests: if an

event fails a test, does not reach the next step and it is marked for rejec-
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tion. This filter has the goal of rejecting events from background or not well

reconstructed and its main steps are (Ackermann et al., 2012a):

- reject events with a pattern of ACD tiles that are consistent with CRs

and do not have a CAL signal, making them unlikely that the ACD

hits were from a backsplash

- accept all events with a total energy deposed in the CAL greater than

a programmable threshold (20 GeV)

- reject events that have a TKR trigger associated with an ACD tile

pattern

- reject events for which a significant energy deposition in the CAL (>

100 MeV) is present but the pattern of hits in the TKR is unlikely to

produce any track

- reject events for which the tracks match with individual ACD tiles and

provided the energy in the CAL is less than a threshold currently set

at 5 GeV

- reject events that do not have at least one track on-board reconstructed

The on-board filter software is highly optimized for speed, and terminates

processing of each event as soon as it is possible to reach a decision (Acker-

mann et al., 2012a).

3.3 Event reconstruction and classification

In this section, I will describe the process that leads to the reconstruction

of a γ-ray from the signatures present in the detector. I will discuss only
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pass7 event reconstruction and performance presently used for released data,

including those used for my analysis in chapter 5. A new event reconstruction,

entirely based on on-flight data, pass8, will be soon released, but I will

not discuss it in this thesis. As i will not discuss the upgrade of pass7

reconstruction, the pass7rep. First step to reconstruct events is the track

reconstruction, described in §3.3.1: the found tracks are guides for what is

expected in the calorimeter and also for the ACD event types. Then I will

describe the energy reconstruction done using the CAL data (§3.3.2). Finally,

in §3.3.3, the event classification is shown: this last step is useful to classify

events to discriminate between photons coming from the background and

those associated to a γ-ray source.

3.3.1 Track reconstruction

Spatially adjacent strips are grouped together to form clusters and the co-

ordinates of these clusters are used to reconstruct the track of the incoming

particles. Each cluster has a precise z location identified by the silicon hit

by the photon. The x and y location is reconstructed using the centroid of

the activated strips.

The core of the tracking system is the algorithm that generates tracks hy-

pothesis. A track hypothesis is a trajectory that can be rejected or accepted

based on its consistency with the sensors readouts. The generation of algo-

rithms is combinatoric with constraints to the number of trial trajectories

considered because of the limited computing power. Two main algorithms

are used for events reconstruction: the Calorimeter-Seeded Pettern Recogni-

tion (CSPR) and the Blind Search Pattern Recognition (BSPR). The first

one uses information from the calorimeter: for most of the LAT science anal-

ysis, some energy deposition in the calorimeter is required. When present,
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the centroid and the shower axis in the calorimeter can be computed using

moments analysis (for details see Atwood et al. (2009)). This algorithm as-

sume that the energy centroid lies close to the trajectory. The first hit in

the tracker is chosen as the furthest layer from the calorimeter: also in this

case a (x,y) coordinate is given. Now these two points are connected with

a straight line: if a subsequent hit is found to be close to this line, a track

hypothesis is generated and so on for all the layers. The covariance matrix

is also propagated and provides an estimation of the goodness of the track

reconstructed. The propagation of covariance matrix includes the material

crossed so it provides an estimation of the errors due to the scattering. The

quality of the reconstructed track is derived from the values of χ2, number

of hits, number of gaps, etc. Note that, for energies higher than 1 GeV the

research of subsequent hits is limited to a cone around the direction provided

by the calorimeter moments analysis to limit the back-splash effect.

Instead, the BSRP algorithm does not use information from the calorime-

ter: the second hit is randomly chosen from the next closest layer to the

calorimeter. Then the trajectory is projected to the next layer and if an hit

is sufficiently close to the projection, a trial track is generated.

The final stage consists in combining the track into vertices. First the best

track is recognized. From this track, the algorithm loops on all reconstructed

track and calculates the distances from the best track. Then, if the distance

is less than 6 mm, a vertex solution is generated by covariantly combining

the parameters of the two tracks. Looking at the first hit, the z-axis location

can be located in the center of the tungsten foil, in the silicon detector or

within the core material of the tracker tray, above the first hit. Also in this

case a quality parameter is calculated from the χ2 of the combined tracks,

the distance of closest approach, etc.
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3.3.2 Energy reconstruction

For each calorimeter crystal, the signal from two ends are combined to provide

the total energy in the crystal and the position where the energy is deposited.

The centroid of the energy deposition is calculated through principal moment

analysis. The shower direction is given by the eigenvector with the smallest

eigenvalue. The trajectory of the best tracks from the tracker is used also

to estimate the energy correction necessary to take into account the leakage

out of the calorimeter and the gaps between the crystals. To do this, two

algorithms are applied for each event: a Parametric Correction (PC) based

on barycenter of the shower, and a fit to the Shower Profile (SP) for the

longitudinal and transverse development of the shower. Note that the SP

method starts to work with energies higher than 1 GeV so the only algorithm

that covers the entire energy range is the PC method.

3.3.3 Event classification

To classify the events according to their quality and their probability to be

produced by a gamma ray, some quantities have to be extracted (Ackermann

et al., 2012a).

The reconstructed quantities are difficult to analyze, so they have to be

transformed in figures of merit (FoMs), that are more convenient to han-

dle. Among all reconstructed energies and directions, one of them has to

be extracted to perform the analysis. In addition also “secondary” FoMs are

generated to have other physical parameters such as the distance between the

ACD and the TKR trace, or an estimation of the confidence of the energy

associated with the event analyzed. The performance of the FoMs is well

studied and described with Monte Carlo (MC) simulations.
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The first step to tag an event as probable charged-particle background is

the ACD analysis. The cases for which an event is classified as “background”

are two: a significant energy deposition in the ACD and a hit directed to

less sensitive areas of ACD. Note that also the cases in which the best

reconstructed track does not represent a γ ray event is taken into account:

this is the so called Charged Particles in the Field-of-View (CPF) analysis.

Once the ACD analysis has sealed the detector to the best of our capabilities,

the analysis proceeds with a TKR analysis. Events from the CR background,

are all those that saturate the energy deposition in the TKR planes and have

high energy deposition in the first hit layer. Those events are flagged to

remove them from high purity data.

The analysis for background discrimination is based on identifying the

topology of γ events. This is performed studying the signatures of events

in dedicated MC simulations (for details see §3.3.6 Ackermann et al. 2012a).

From this procedure the probability that an event comes from a γ-ray inter-

action is derived. The next step involves CAL information: general cuts for

events coming from the bottom and the sides of the LAT are applied. As for

TKR, events are divided into five branches and the probability that an event

is a γ ray is derived.

Looking at the probability that an event is gamma-like or background-

like, it is possible to classify all events. All data are divided into four cate-

gories according to their purity and probability of contamination from back-

ground: TRANSIENT, SOURCE, CLEAN and ULTRACLEAN. The TRANSIENT class

is used for the analysis of transient source. A high purity in data is not

required therefore the constraints in this class are weak: minimal cuts on

quality estimators PE and Pcore, lower limit on event energy of 100 MeV,

event energy after all corrections must not be higher than 5 times the energy
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deposited in the CAL and from CPF analysis the event must not be flagged

as charged particle.

The SOURCE class is applied to perform the analysis of point sources.

It is obtained starting from the TRANSIENT class with some additional re-

quirements such as: the event must not be flagged as background based on

topological analysis of the TKR and CAL reconstruction and there is an

energy dependent cut on the direction reconstruction quality. The required

background contamination is ∼ 1 Hz in the LAT FoV. This class has most

of the photons clustered near the position of the point sources and the back-

ground events can be modeled as a isotropic background (Ackermann et al.,

2012a).

The CLEAN class is constructed starting from the SOURCE class and it

is useful to study diffuse γ-ray emission and any analysis that need low

background contamination (∼ 0.1 Hz in LAT FoV). The selection includes:

the rejection of an event if it passes through the holes of ACD, the acceptance

of the events if it passes the cuts of the ACD designed to remove hadronic

CRs.

Finally the ULTRACLEAN class is optimized for the study of extragalactic

diffuse γ-ray emission. The requirement for the background level is ∼ 40%

lower than the CLEAN class. This selection is done imposing a constraint in

the value of the total probability of having a γ-ray event Pall (Ackermann

et al., 2012a). Note that all events classes discussed above are nested and

for each step, the contamination in the data set decreases, as the detection

efficiency.
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3.4 The instrument response functions

The Instrument Response functions (IRFs) take into account the effects of

the detector. They provide a description of the instrument in terms of trans-

formation probability from the true physical value to the reconstructed quan-

tities. The IRFs not only depend on the instrument itself but also on the

reconstruction algorithms and on the background rejection. The IRFs can

be expressed as:

R(E,Ω|E ′,Ω′; t)

where E ′ and Ω′ are the reconstructed photon energy and direction and E and

Ω are the true values. The differential count rate is given by the convolution

of the source flux per unit of area at the detector with the IRFs:

dN

dtdEdΩ
(E,Ω, t) =

∫
dE ′dΩ′R(E,Ω|E ′,Ω′; t) dN

dtdE ′dΩ′dS
(E ′,Ω′, t).

For the LAT, the IRFs are usually factorized in three different components:

1. the effective area Aeff (E
′,Ω′, s) is the product of γ-ray conversion prob-

ability and the efficiency for a given event selection (s) for a photon of

reconstructed energy E ′ and incidence angle Ω′;

2. the Point Spread Function P (Ω′|E,Ω, s) is the probability density to

reconstruct the direction Ω′ for a γ-ray with true energy E and direction

Ω in the event selection s;

3. the energy dispersion D(E|E ′,Ω, s) is the probability density of mea-

suring the energy E ′ for a γ-ray photon (E,Ω) in the event selection

s.

So the instrument response factor can be re-written as

R(E|Ω, |E ′,Ω′; t) = T (t)Aeff (E
′,Ω′, s)P (Ω′|E,Ω, s)D(E|E ′,Ω, s)
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where the term T (t) accounts for temporal variations, e.g. off time.

In next sections I will briefly describe the LAT performance, as captured

by the IRFs parametrization, for the IRFs for the SOURCE selection class,

so now on the dependence on s will be ignored. The performance plots are

taken from Ackermann et al. (2012a).

3.4.1 The effective area
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Figure 3.3: Left panel : on–axis effective area as a function of energy. Right

panel : effective area at 10 GeV as a function of incidence angle. Both graphs

take into account events from P7SOURCE V6 class.

The effective area can be parametrized as:

Aeff (E,Ω) = Ageo(E,Ω)Pconv(E,Ω)εdet(E,Ω)εrec(E,Ω)

where Ageo and Pconv are the total geometric area and the conversion prob-

ability as a function of energy and incident direction; εdet and εrec represent

the instrument detection efficiency and the efficiency of the reconstruction

algorithms and the cuts for the background rejection, respectively. Know-

ing the effective area, it is also possible to determine the rate at which the
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instrument will detect a signal:

dNs

dt
=

∫
E

∫
Ω

Aeff (E,Ω)F (E,Ω)dEdΩ

where F (E,Ω) is the source flux.

In Figure 3.3, the plots of effective area for SOURCE class are shown. As

already told in §3.1.1, the tacker is divided in two parts: the first part, made

of 12 layers of 3% radiation length tungsten converter, called Front and

a second part, made of 4 layers of 18% radiation length tungsten converter,

called Back. These sections have different PSF due to multiple scattering and

for each of these case the plot is presented. Figure 3.3 shows the effective

area for the total tracker considering both front and back part.

3.4.2 Systematic errors on the effective area

The overall estimate on the uncertainty on effective area (Aeff ) is shown in

figure 3.4.

This estimation takes into account only the largest deviation observed,

which is defined as the mismatch between the front-converting and the back-

converting events (Ackermann et al., 2012a). To calculate errors, three con-

sistency check are made (Ackermann et al., 2012a):

1. comparing the events from the front and from the back of the detector

2. comparing events from the sides or corners

3. comparing on-axis and off-axis events.

In addition to that, fluxes measured with different event classes are compared.

By doing so, the accuracy of the measured efficiency loss are estimated for

each of the selection cuts to go from one event class to the next. This analysis
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Figure 3.4: Systematic uncertainty band on Aeff as a function of energy.

From Ackermann et al. (2012a).

is performed using data from the Vela pulsar, a sample of AGN and from the

Earth limb.

As shown in figure 3.4, uncertainties can be quoted as: 10% at 100 MeV,

then there is a decrease to 5% at 560 MeV, and a new increase at 10% to

10 GeV and above. Note that, under 100 MeV, systematic errors on Aeff

are very uncertain, so analysis below this energy are not recommended. It

is important to note that these errors are expectations about the overall

uncertainty of Aeff at various energies, and do not include any expectations

about what types of deviations we might expect within the stated uncertainty

bands, nor about the point-to-point correlations in any systematic biases of

Aeff (Ackermann et al., 2012a).

To calculate systematic errors, we adopt the method of the bracketing

IRFs. The idea to do this analysis is modify the IRFs to simulate the worst

case scenarios and repeat the analysis extracting the quantities of interest.

This process can be applied for the systematic error calculation of fluxes or



3.4. THE INSTRUMENT RESPONSE FUNCTIONS 59

spectral parameters. The modified Aeff can be written as:

A′eff (E, θ) = Aeff (E, θ) · (1 + ε(E)B(E))

where ε(E) =
δAeff (E)

Aeff (E)
and B(E) is an arbitrary bracketing function that take

values in the [−1, 1] range. The simplest bracketing function is B(E) = ±1

that minimize and maximize Aeff .

To maximize the effect on the spectral index in a power-law fit, we choose

a functional form that changes sign at the pivot energy E0 (Ackermann et al.,

2012a):

B(E) = ± tanh

(
1

k
log(E/E0)

)
where the parameter k controls the slope of the transition near E0.

As Ackermann et al. (2012a) stress, the systematic error estimates result-

ing from this technique represent conservative estimates within the instru-

mental uncertainties, rather than random variations.

3.4.3 Energy dispersion
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Figure 3.5: Left panel : on–axis energy resolution as a function of energy.

Right panel : energy resolution at 10 GeV as a function of incidence angle.

Both graphs take into account events from P7SOURCE V6 class.
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The energy dispersion is a measure the energy dispersion around the true

value and it is shown in figure 3.5. The probability density is generally asym-

metric and it is a known characteristic of thin electromagnetic calorimeter,

such as the LAT CAL. This feature makes the energy redistribution difficult

to parametrize. For the low energy tails, there are not big problems because

most of the sources analyzed are steeply falling with energy. For the high-

energy part, overestimating the event energy can lead to overestimate the

hardness of the source spectrum. To avoid this effect, the event selection is

carefully tuned to suppress the high-energy tail, rejecting events for which

the energy correction might be overcompensated.

In-flight validation of the energy response function is not obvious because

there are not astrophysical sources that provides a spectral line at a well

defined energy to calibrate the instrument (e.g. Ackermann et al., 2012b).

3.4.4 The point spread function

At low energies the PSF is mainly determined by multiple scattering. If

we consider this as the only consideration on the PSF, this has to become

narrower as E−1. But, as reported in Ackermann et al. (2012a), the PSF

value decrease as ∼ E−0.78 at low energies as shown in Figure 3.6. This effect

can be explained with the missed hits in the tracker and hard scattering

process. All these effects are predicted in MC simulations.

Above few GeV the narrowing of PSF is limited by the limited hit resolu-

tion of SSDs. At a normal incidence, this effect can be quantified in ∼ 0.1◦.

The transition to this precision dominated regime is calculated via MC sim-

ulation and it is expected to occur between ∼ 3 GeV and ∼ 20 GeVas can

be observed in Figure 3.6.
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Figure 3.6: 69% (solid lines) and 95% (dashed lines) containment angles in

function of energy for the P7SOURCE V6 event class.

3.5 Fermi LAT data analysis

The aim of this section is to provide an explanation to the Fermi LAT analy-

sis. The LAT collaboration developed high-level analysis tools, called Science

Tools (ST), to study the LAT data. These tools are publicly available through

the FSSC3. The ST include tools for studying the temporal behavior of the

pulsar, rapid simulation of LAT observation, data reduction and likelihood

analysis. In this section, I will concentrate only on the last two aspects,

which are relevant for the analysis I made in chapter 5.

The Fermi LAT collaboration developed two type of analysis: the UNBINNED

and the BINNED analysis. UNBINNED treats each single event separately,

BINNED allows to reduce memory and CPU usage by binning in direction

and energy.

3http://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone

http://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone
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3.5.1 Data selection and analysis

The first step of the high-level analysis is the event selection. We perform

the cut based on the energy, Region of Interest (RoI) and energy event class.

Usually, the energy selection is from 100 MeV to 300 GeV even if the LAT

could reconstruct photons with energies down to 20 MeV. For this last en-

ergy range (from 20 MeV to 100 MeV), huge systematic errors due to effective

area calculation and interstellar emission model are introduced. Usually, the

RoI is a circle centered at the source position and with a radius of ∼15◦.

Smaller RoI could be used to avoid contamination from high emitting re-

gions not completely modeled by background model (e.g. Galactic Plane,

Cygnus region, etc.). To take into account the effect on γ-ray emission from

Earth’s atmosphere (its contribution is significant for zenith angles > 103◦),

we perform a cut on the zenith angle. With this cut, we select only events for

which the reconstructed direction is less than 100◦from the local zenith. The

exposure is normalized excluding all the time intervals for which the zenith

angle is > 100◦. This is a strategy developed for point source study. It is

also possible to select smaller time intervals to plot curves of the source flux

along the time.

For the temporal cut, we take into account all the time intervals in which

the LAT is in calibration mode or in non-standard data-taking configuration.

We also exclude time intervals whee the LAT boresight is rocked with respect

to the local zenith by more than 52◦mostly for pointing purpose. These steps

of analysis are common for both UNBINNED and BINNED analysis. Now on I

will describe only BINNED analysis because this is the technique I will use for

analysis in chapter 5.

After all these preliminary cuts, we calculate the cubic counts map: we

divide all the energy range into slices and, for each energy slide a squared
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count map is computed. This map, with the livetime cube, the exposure map

and the source map, are the basic input for the minimization of the Likeli-

hood (explain in section 3.5.2). The second map needed for the likelihood

calculation is the livetime cube: this is a 3D map covering the full sky of

the integrated livetime as a function of inclination with respect to the LAT

z-axis. The map reports, for each point in the sky, the integrated livetime

in function of the incidence angle. This along with the Aeff , is needed to

calculate the exposure which is the constant of proportionality between mea-

sured counts and flux of the source. This step is necessary to speed up the

exposure computation. Then the exposure map is computed: it covers the

same region of the sky as the counts maps and has separate planes for dif-

ferent energies spanning the energy range of the counts maps. Note that the

exposure needs to be recalculated if the RoI, zenith angle, time, event class,

or energy selections applied to the data are changed. For the binned analy-

sis, this also includes the spatial and energy binning of the 3D counts map.

The last step, before the likelihood maximization, is the computation of the

source map: to do this map a XML model is needed. This model contains

all the sources contributing to the RoI emission and two background model,

one taking into account the extragalactic isotropic emission and the other

miming the galactic interstellar emission (for further details on background

model see §4). The source map is a 3D counts map with all the contribu-

tion from the sources present in the XML model multiplied by exposure and

convolved with the effective PSF.

Then the maximum likelihood analysis can be performed. In next session

I will describe all the details for this kind of analysis.
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3.5.2 The maximum likelihood analysis

The main problems in fitting the Fermi LAT data is the limit statistic and the

presence of high background level. In addition, also the angular resolution is

a problem for fitting the Fermi LAT data for two reasons. First the angular

resolution is rapidly varying with energy. Secondly, it is not possible to

associate uniquely a photon to a source, specially for sources very close each

other or in background dominated areas (e.g. Galactic plane) To solve these

features, the statistical approach adopted is the Likelihood analysis based on

Poisson statistics. The γ-ray data analysis is based on Mattox et al. (1996),

which perform an analytic study for the likelihood of the EGRET data.

The likelihood value quantify the relative extend to which the data sup-

port a statistical hypothesis. The estimate is the value of the parameters

that maximize the likelihood value.

The likelihood ratio is the value of the likelihood of the null hypothesis

for the data divided by the likelihood of the alternative hypothesis for the

same data. Wilks (1938) states that the -2 times natural logarithm of the

likelihood ratio behave as the χ2 with n degrees of freedom, where n is the

difference of degrees of freedom in the null hypothesis model and the degrees

of freedom of the alternative model.

The likelihood is the probability of the observed data for a specific model

of high-energy γ-ray emission. It is the product of the probability for each

pixel (Mattox et al., 1996):

L =
∏
ij

pij

where

pij =
θ
mij
ij e−θij

nij!

is the Poisson probability of observing nij counts on pixel ij with the number
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of counts predicted by the model θij. To easily manipulate this value, the

natural logarithm of this quantity is calculated:

lnL =
∑
ij

nij ln(θij)−
∑
ij

θij −
∑
ij

ln(nij!).

Because the last term is model independent, it is not useful for the calculation

of the likelihood ratio test so it is possible to neglect it, so the previous

formula becomes:

lnL =
∑
ij

nij ln(θij)−
∑

θij. (3.1)

The first term causes lnL to increase as the model predicts counts in pixels

where they actually occur. The second term demands that model counts be

parsimoniously allocated.

To estimate the significance of a source, the likelihood ratio test is used.

We assume as null hypothesis that no point source exists at the position under

consideration, the alternative hypothesis being of course that the point source

does exist. The quantities extracted from the fit of the two models are: the

value of lnL0 from the first fit, and the value of lnL1 from the second one.

The logarithm of the likelihood ratio is lnL0 − lnL1. The point-source Test

Statistics (TS) is defined as:

TS ≡ −2(lnL0 − lnL1) (3.2)

and it is expected to behave as the χ2 with n degrees of freedom, where n

is the difference of degrees of freedom in the null hypothesis model and the

degrees of freedom of the alternative model (Wilks, 1938).
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Chapter 4
The diffuse gamma-ray Sky

The majority of Supernova Remnants are located in the Galactic plane, a

region where the dominant backgrounds for γ-raystudy for sources are the

γ-ray emission from interstellar gas due to cosmic-ray interactions and IC

from interaction with Interstellar radiation field (ISRF). In this chapter, I

will briefly illustrate the physical processes producing interstellar emission

(§4.1 and 4.2), and how this emission is modeled for the analysis of LAT

sources (§4.4.2 and 4.4.1). Then I will describe how the FermiLAT col-

laboration developed models to estimate the systematic uncertainties of the

diffuse interstellar emission model (see section 4.5).

4.1 The tracers of the interstellar medium

The understanding of the nature and the physical properties of ISM is of

crucial importance in astrophysics. For an accurate study of sources located

in the Galactic plane, a good and detailed knowledge of the diffuse interstellar

emission is necessary. Stars do not sit in vacuum, but they stay in a rich

intestellar environment populated by gas, CRs and electromagnetic field. The

67
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diffuse γ-ray sky is the result of the interaction of CRs with ISM. To map it

in details, we have to know the distribution of CRs in the ISM (see chapter

2), the composition of intergalactic gas and interstellar magnetic field which

give information on the synchrotron emission. In this section, I will give a

brief overview on the tracers of ISM and the techniques we can adopt to

estimate interstellar magnetic field.

The mass of the interstellar gas is ∼ 10% of the visible mass of the Galaxy.

In the Galactic plane, close to the Sun, the overall gas density can be as high

as ∼ 106 particles cm−3 (Longair, 2011) but the variations from place to

place are huge.

To understand the composition of the interstellar medium, we combine

several multi-wavelength tracers, details about which are given in this section.

4.1.1 Neutral interstellar gas

There are five main bandwidths in which investigate the presence of neutral

interstellar gas: the 21− cm line of neutral hydrogen, sub-mm for molecular

lines such as the CO, optical, ultraviolet and X-ray. In this section I will

describe the emission mechanisms that proivde us with tracers of the neutral

ISM.

H I 21-cm line The emission of this particular transition is at 1420 MHz

that corresponds to λ0 = 21 cm. The radiation comes from the transition

between the two levels of the hydrogen 1s ground state, slightly splitted by

the interaction between the electron spin and the nuclear spin with transition

from S = 1 electron spin to S = 0. Because of the quantum properties of

radiation, hydrogen in its lower state will absorb 1420 MHz and the obser-

vation of 1420 MHz in emission implies a prior excitation to the upper state.
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This is an almost totally forbidden hyperfine transition: the spin of electron

and proton from parallel became anti-parallel. The transition rate is:

A21 = 2.85 · 10-15 s−1

where A21 is the Einstein’s coefficient and represents the transition probabil-

ity per unit of time between the upper energy level 2 and the lower energy

level 1. This value means that this transition happens once every 107 yr

for each atom. In spite of the low emission probability, the large amounts

of interstellar hydrogen makes the line clearly detectable. Because of their

small transition probability, collisions and other processes have enough time

to reach the dynamical equilibrium between hydrogen atoms in the lower and

upper states. The ratio between the number of atom in the excited and the

number in ground state is given by the Boltzmann equation:

N2

N1

=
g1

g2

exp

(
−hν0

kT

)
where T is the excitation temperature and gn is the statistical weight of the

state (g2/g1 = 3).

The two easier cases for studying the interstellar medium are: the opti-

cally thin and the optically thick regime.

In the first case, if the emitting region is optically thin, only spontaneous

emission takes place and the emissivity κ12 is given by:

κ12 =
g2

g1 + g2

nHA21hν0

=
3

4
nHA21hν0

where nH is the number density of atomic hydrogen atoms and A21 is the

Einstein’s coefficient defined above. If the hydrogen is distributed along the

line of sight of the observer, the flux S received is given by:

S =

∫
κ21(r)

4πr2
Ωr2dr
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where Ω is the solid angle subtended by the beam and r the distance along

the line of sight. From this relation one can calculate the intensity received

I =
S

Ω
=

3

16π
A21hν0

∫
NHdr.

The integral is also known as total column density, so the value of the intensity

is also a measure of the total column density. Due to the small probability

transition the 21-cm line is very narrow. If the neutral hydrogen is in motion,

the Doppler effect is clearly visible and detectable in the Galaxy even if also

turbolent motion inside gas clouds can affect the measurements. This effect

can be used to separate different clouds along the lines of sight.

The other simple case is the optically thick regime. If there are high

emitting radio sources and there are H clouds along the line of sight, we have

an absorbed spectrum. If hν � kT , the spectrum is that of a black-body1:

χνIν = χν
2kT

λ2
=
κ21

4π
.

If ∆ν is the line width, the emissivity per unit of frequency interval is

κ21 = 3
4
NHA21h

ν0
∆ν

and the absorbing coefficient

χν =
3

32π

A21hc
2

ν2
0kTS

ν

∆ν
NH

where TS is the so-called spin temperature defined as the excitation tempera-

ture of the hyperfine levels defined by the Boltzmann equation. If the bright-

ness temperature Tb is much greater than the spin temperature (Tb � TS)

the intensity Iν becomes

Iν = I0(ν)e−χν l

where l is the path length through the cloud. Note that, to calculate this

quantity, the knowledge of TS is needed.

1intensity given by: Iν = 2kT
λ2
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The determination of N(H) I requires to know for each position (i.e. each

velocity v) the spin temperature and the optical depth τ :

N(H I) ≡ C

∫
TSτ(v)dv (4.1)

with C = 1.823× 1018 atoms cm−2 (K km s−1)−1.

The measurements of neutral hydrogen are interesting because we get

some information from absorption and emitting spectrum. From the ab-

sorption measurement, we investigate small scale structures and on velocity

dispersion along the line of sight on the scale of the angular size of the back-

ground sources. From the emitted spectrum we can calculate the large scale

distribution of neutral gas.

Molecular radio lines The importance of observing molecules in the ra-

dio band is that there is no extinction due to interstellar dust as it happens

in the optical waveband. The physical processes that leads to emission are

associated with transitions between electronic, vibrational and rotational lev-

els. Each of those corresponds to a characteristic energy range. The highest

energies are reached by electronic transitions, and the peak is in the optical

waveband; the vibrational transition are associated with molecular binding

between atoms of molecules and the spectral region in which they emit is the

infrared (hν ∼ 0.2 eV); finally, the rotational level transitions derive from

quantization of angular momentum and produce emission in the sub-mm

domain.

Molecular lines provide information about denser region of interstellar

gas than the 21-cm line emission because the molecules can be dissociated

by ultraviolet and optical photons. Typically, this phenomenon happens for

clouds with densities of nH ∼ 109−10 m−3.

The most abundant molecule in the universe is H2 but it has no electric
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dipole moment so there are no rotational transitions. The presence of molec-

ular gas is assured by observations in UV: molecular hydrogen was detected

in absorption in the UV region of the spectrum through its electronic tran-

sitions. These observations confirmed that H2 is present in large quantities

in in the interstellar gas.

The next most abundant molecule is CO. It is often assumed that the

CO line intensities trace the column densities of molecular hydrogen. A

probable explanation of the usage of CO as a tracer of H2 is, if CO exist,

H2 must also exist because the excitation is due to collisions with molecular

hydrogen molecules. We can use CO instead of H2 because, in the conditions

in which C and O form CO molecules, also hydrogen atoms can produce H2

molecules. The proportionality between CO luminosity and H2 is assured by

viral masses, infrared (IR) and γ-ray emission.

Optical and Ultraviolet absorption lines To emit in the optical wave-

band atoms must have excited states at energies larger than 4 eV from the

ground state so only few species emit. The species observed in stellar spectra

are: Na I, Ca II, Ca I, K I, Ti II and Fe I. For higher energy transitions, we

must look at the ultraviolet region (100-300 nm). In this band there is a wider

range of interstellar atoms and molecules to be studied. For interpreting the

absorption lines, one must know the absorption cross section σ(ν) which can

be analytically calculated for simpler cases or derived from laboratory ex-

periments. The cross section depends on the frequency, ν. The frequency

dependence of the absorption cross-section depends upon the mechanism of

the line broadening. This feature could have two explanations. The first is

Doppler effect: the absorbing atoms are moving or the bulk motion within

the clouds, producing the broadening of the absorption line. The second ex-
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planation is the so called “natural broadening”: atoms remain a finite time

∆t in excited state. In this case the broadening can be estimated from the

Heisenberg’s uncertainty principle

∆E ' h

∆t
=⇒ ∆ν ' h∆t−1.

If the medium is optically thin, the optical depth τν =
∫
σiNidl measures the

total column density of the i atomic species.

X-ray absorption In the X-ray band, the photoelectric absorption is the

process responsible of the emission in this waveband. An approximation of

the absorption curve is (Longair, 2011)

τX = 2 · 10−26

(
hν

1 keV

)−8/3 ∫
NHdl

where the integral is the column depth of atomic hydrogen. The photoelectric

absorption takes place within the source itself or in the intergalactic medium,

for example in our Galaxy.

Interstellar dust An important part of the ISM is dust, which is respon-

sible of patchy obscuration observed in optical images of the Galaxy. It

contains a large fraction of the heavy elements present in the interstellar

medium. Dust is also present in most environments in the Universe, unless it

is heated to temperatures above material’s sublimation temperature, which

is about 103 K. Emission due to dust is observed in shells of dying stars and

supernova when the temperature falls below 103 K. In optical and infrared

the effect due to the presence of dust is described with an extinction law

S ∝ e−τ where τ is the optical depth depending on wavelength as τ ∝ λ−x

(x ≈ 1 in optical and 1.6 . x . 1.8 in infrared). Studies in optical, infrared

and ultraviolet wavebands show that interstellar dust must be composed of a
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number of different components. Interstellar dust causes two major observ-

able phenomena:

1. absorption of ultaviolet and optical radiation

2. re-radiation of the radiation absorbed in IR.

From accurate study of interstellar dust, we can understand its composition.

Using both HI , Lyman α and H2 Lyman-Werner bands in the UV band it

is possible to derive the hydrogen column density in the diffuse ISM (Bohlin

et al., 1978). In addition, in interstellar dust are also present small aro-

matic molecules known as polycyclic aromatic hydrocarbons, or PAHs. the

molecules typycally consist of ∼ 50 carbon atomsin the form of planes of

exagonal benzene rings.

4.1.2 Ionized interstellar gas

The four main processes I will describe in this section to detect ionized in-

terstellar gas are: free-free emission, permitted (and forbidden) transitions

in gaseous nebulae, dispersion measurement of pulsar, and Faraday rotation

of linearly polarized radio signals.

Free-free emission Free-free emission, also known as thermal Bremsstrahlung

emission, is produced by thermal electrons scattering off ions without being

captured: the electrons are free before the interaction and remain free after-

wards.

It produces a flat spectrum up to hν ≈ kT (with T the plasma temper-

ature) beyond which there is an exponential cutoff. The Bremsstrahlung

intensity along the line of sight can be evaluated as Iν ∝
∫
n2
ET
−1/2dr.
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From this relation we can conclude that, for radio spectra of compact re-

gion of ionized hydrogen, Iν ∝ ν2 (Longair, 2011). For very low frequencies

(ν ≤ 10 MHz) absorption by the diffuse ionized interstellar gas becomes im-

portant and the Galactic plane can be observed in absorption against the

background of Galactic non-thermal radio emission. The X-ray band, ther-

mal Bremsstrahlung is due to intergalactic gas and in the shell of SNRs.

The soft X-ray emission from the plane of the Galaxy is interpreted as

the diffuse thermal bremsstrahlung of the hot component of the interstellar

gas which is also responsible for the ultraviolet O VI absorption lines (Lon-

gair, 2011). This hot gaseous component is responsible of ultraviolet O VI

absorption line at a temperature Tgas ∼ (1− 3) · 106 K.

All these components give a global image of the variety of species present

in the ISM.

Permitted and forbidden transitions Strong emission lines are ob-

served from high-density regions of interstellar gas and are generated by the

emission from atoms excited by ultraviolet emission of hot stars; the envi-

ronment in which this emission takes place are in the vicinity of new forming

stars or near stars dying. Heating and ionization of gas are driven by radia-

tion emitted from stars. These processes take place only if hν ≥ 13.6 eV = Ei

which is the ionization potential of hydrogen. Hydrogen recombination lines

are the strongest observed and responsible of cooling. They are observed

from diffuse warm component of interstellar gas so they can be of difficult

interpretation due to absorption from the environment. The emission from

Hα lines is present in the entire sky and i Galactic regions with |b| > 10◦ and

can be roughly approximated by a cosec|b| relation which indicates emission

from a thin disk. Further information on temperature and density can be
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obtained from forbidden lines of [N II], [S II] and [O III]. For example in

optical bandwidth, the forbidden levels are populated by collisions with en-

ergy within few eV from the ground state. For C, N, O, Ne, S the accessible

levels are metastable (with excitation energy of . 5 eV. The only way to

return to the ground state is through a transition violating the rules of elec-

tric dipole. Using these lines, one can determine densities and temperature

of the emitting line regions. We can distinguish two cases:

- low density region: there is the emission of a photon and the intensity

line is proportional to the rate of collisional excitation

- high density region: the phenomenon it takes place is de-excitation by

electron collision, so there is a suppression of emission line.

So, calculating the ratio between different forbidden lines from the same

region, the electron density can be obtained. The medium considered is

ionized but globally neutral so, the number of electrons and protons are the

same as it is the same the density of electrons and that of the hydrogen.

Dispersion measure of pulsars An estimate of the column density of

free electrons in the Galaxy (
∫
nedl) can be obtained by measuring the time

delay of arrival times of radio pulses as a function of frequency. In the radio

waveband (ν ≈ 102 − 103 MHz), the ratio between the plasma frequency2

(νp =
√

e2ne
4π2ε0me

= 8.98n
1/2
e Hz) and the frequencies considered is smaller

than one (νp � ν) so the velocity of the wave-packet (vgr) can be expressed

as:

vgr = c
[
1− 1

2

(νp
ν

)2
]
. If the pulse is emitted at t = 0, the arrival time of the

2the plasma frequency is defined as the natural collective oscillation frequency of a

charge species in a plasma, in the absence of a magnetic field.
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signal is

Ta =

∫ l

0

dl

vgr
=

∫ l

0

dl

c

[
1 +

1

2

(νp
ν

)2
]

=
l

c
+

e2

8π2ε0mec

1

ν2

∫ l

0

nedl

so a measure of Ta is also an estimation of the electron density. pulsars of

known distance are used to build maps of ionized gas in the Galaxy. These

models are then used to calculate distances of other pulsars (i.e. Taylor and

Cordes, 1993; Cordes and Lazio, 2002).

Faraday rotation of linearly polarized radio signals Ionized interstel-

lar gas is permeated by magnetic fields and constitutes a magnetized plasma

or magnetoactive medium. The Faraday rotation is the effect for which the

position angle of the electric vector of linearly polarized emission is rotated

while propagating along the magnetic field direction. A linearly polarized

wave can be decomposed on the two eigenstates of circular polarization. If

νg/ν � 1 (where νg = 2.8 · 1010 B Hz is the gyrofrequency with B expressed

in Tesla [T]), the reflective index of the two modes are: n2 = 1− (νp/ν)2

1±(νg/ν)cosθ

where νp is the plasma frequency and θ is the angle between the magnetic

field and the direction of the incident wave. When two elliptically polarized

components are added together at depth l through the region, if νp
ν
� 1 and

νg
ν
� 1

∆n =
ν2
pνg

ν3
cosθ =⇒ ∆φ =

2πν∆n

c
dl

where ∆φ is the phase difference. The electric vector is rotated of ∆θ =

∆φ
2

=
πν2pνg

cν2
cosθdl and, resolving for θ

θ =
π

cν2

∫ l

0

ν2
pνgcosθdl = 8.12 · 103λ2

∫ l

0

neB‖dl

where l is measured in pc and B‖ is the magnetic field parallel to the line

of sight expressed in T. θ/λ2 is the rotation measure: the sign of this quan-

tity gives information about the weighted mean direction of magnetic field



78 CHAPTER 4. THE DIFFUSE GAMMA-RAY SKY

along the line of sight. Observing the sources (that emit linearly polarized

radiation) we can have information on neB‖ along the line of sight.

4.2 Galactic diffuse emission

Galactic diffuse emission dominates other components of the γ-ray sky in

the GeV domain and has a wide distribution with most emission coming

from the Galactic plane. It is a superposition of γ-rays produced in the

interstellar medium by interactions between CRs nuclei and gas, electron

Bremsstrahlung due to gas nuclei, IC scattering of soft photons by CR elec-

trons, and an isotropic component supposedly of extragalactic origin. Galac-

tic diffuse emission encodes the distribution of CRs and ISM throughout the

Milky Way (e.g. Abdo et al., 2009b). Modeling such component is crucial

for extracting a residual isotropic emission and affects how the extragalactic

background is derived. In addition, the diffuse γ-ray emission is a natu-

ral background for many signals such as point sources or annihilating Dark

Matter (DM). The ratio between hadronic component of the Galactic γ-ray

diffuse emission and IC or Bremsstrahlung mechanism above a few hundred

MeV and below ∼ 10 GeV is highly dependent on the sky region observed.

An example is shown in figure 4.1 for 0◦ ≤ l ≤ 360◦ and 10◦ ≤ b ≤ 20◦ where

the hadronic component dominates IC and Bremsstrahlung emission.

The diffuse γ-ray emission gives information on the origin and propaga-

tion of CR which are made of primary protons, nuclei and electrons. All these

particles are accelerated to relativistic energies by powerful objects like SNRs

(§2). At the same time, a major fraction of species in CRs have a secondary

origin. These particles are nuclei of the (Li, Be, B) group, anti-particles pro-

duced by the interaction of primary CRs with ambient interstellar gas and
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Figure 4.1: Fermi LAT data with an a priori model based on local cosmic-

ray data and does not use γ-ray data, source, and unidentified background

(UIB) components for sky region reported in the figure (0◦ ≤ l ≤ 360◦,

10◦ ≤ |b| ≤ 20◦). The UIB component was determined by fitting the data

and sources over all Galactic longitudes for the high-latitude region |b| ≥ 30◦

for the full LAT energy range. The modeled components are displayed with

lines: π0-decay (red), Bremsstrahlung (magenta), and IC (green). The areas

represent: UIB (gray and solid area), source (blue and hatched area), and

total made of UIB, source and model (black and hatched area). Fermi LAT

data are red dots with red/hatched area as statistical error. Taken from

Abdo et al. (2009a).
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with thermal plasma inside accelerators.

The flux and energy spectrum of CRs are object of an intense study since

their discovery in 1912 by Victor Hess. The energy spectrum of CRs extends

to energies of about ∼ 1020 eV and even beyond as shown in Figure 4.2. The

CR spectrum has two distinct features showed in Figure 4.2:

- a break at 2.3 × 1011 GeV (as suggested by Adriani et al., 2009, but

not confirmed by recent observations with AMS)

- the so-called knee at ∼ 1015 eV

- a second knee at ∼ 1017 eV

- an ankle at ∼ 1019 eV.

. It is believed that all particles below the knee are of galactic origin for

energetic reason as discussed in section 2.5.2: the expected energies reached

inside the Galaxy extends at least to the knee. Furthermore, the UHECRs

above the ankle are produced and accelerated outside of the Galactic Disk

such as AGN, GRBs, young pulsars, Radiogalaxies and Clusters of galaxies

(Aharonian, 2004). Beyond the ankle, powerful accelerators are needed which

are supposed to be located outside the Galaxy.

The diffuse galactic γ-ray emission is the radiation components produced

in interactions of electronic and nucleonic components of CRs with the inter-

stellar gas and photon fields. The study of this component provides informa-

tion about the density and energy spectra of CRs also in external galaxies.

At the present state of art there are still unknown features on CRs (see sec-

tion 2.5) mainly because it is not obvious that the locally observed CRs can

be taken as representatives of the whole galactic population of relativistic

particles. Furthermore, the identification and separation of the truly diffuse
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Figure 4.2: Summary of measurements of the all-energy spectrum of CRs.

Taken from Aharonian (2004).
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γ-ray emission is not an easy task because of a non-negligible contamination

of weak unresolved discrete sources (e.g. Aharonian, 2004).

Figure 4.3: Spectra of diffuse γ-rays predicted by the propagation model

for different sky regions. Blue dots are EGRET data, while red crosses are

FermiLAT data. Figure taken from Zhang et al. (2010)

The CR propagation equation for a particular particle species can be

written as (e.g. Strong et al., 2007, and references therein):

∂ψ(~r, p, t)

∂t
= q(~r, p, t) + ~∇ · (Dxx

~∇ψ − ~Vψ) +
∂

∂p
p2Dpp

∂

∂p

1

p2
ψ

− ∂

∂p

[
ṗψ − p

3
(~∇ · ~V)ψ

]
− 1

τf
ψ − 1

τr
ψ (4.2)

where ψ(~r, p, t) is the CR density per unit of total particle momentum p at

position ~r, ψ(p)dp = 4πp2f(~p)dp in terms of phase-space density f(~p), q(~r, p)
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is the source term including primary, spallation and decay contributions,

Dxx is the spatial diffusion coefficient, ~V the convection velocity, diffusive

reacceleration is described as diffusion in moentum space and is deterined

by the coefficient Dpp, ṗ ≡ dp/dt is the momentum gain or loss rate, τf is

the time scale for loss by fragmentation, and τr the time scale for radioactive

decay.

4.3 The GALPROP code

To create model of propagation of CRs in the Galaxy some propagation codes

or semi-analitical models can be used. A number of codes are developed

to solve numerically the diffuse equation of CRs in Galactic environment.

Among other, let us cite: DRAGON3, USINE4 or GALPROP. The FermiLAT col-

laboration adopted the GALPROP code. GALPROP5 is a code created to (Strong

et al., 2007):

1. make simultaneous predictions of all relevant observation of CR nuclei,

electrons and positrons, γ-rays and synchrotron radiation

2. prevent the limitations of analytic and semi-analytic methods and take

advantage of the improvement in computing power as CR, γ-ray and

other data become more accurate

3. include the current knowledge of the structure of the Galaxy and the

source distribution.

3http://dragon.hepforge.org/DRAGON
4http://lpsc.in2p3.fr/index.php/fr/activites-scientifiques/ams-cream/

codes/usine
5http://galprop.stanford.edu

http://dragon.hepforge.org/DRAGON
http://lpsc.in2p3.fr/index.php/fr/activites-scientifiques/ams-cream/codes/usine
http://lpsc.in2p3.fr/index.php/fr/activites-scientifiques/ams-cream/codes/usine
http://galprop.stanford.edu
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I will give a brief overview of the GALPROP code taken from Strong et al.

(2007) because is the code used within the FermiLAT collaboration. Detailed

information about this package are available in Strong and Moskalenko (1998)

paper. The propagation equation 4.2 is solved numerically on a spatial grid,

either in 2D with cylindrical symmetry in the Galaxy or in full 3D. The

boundaries of the model in radius height, and the grid spacing are customiz-

able. The distribution of CR sources can be freely chosen to represent SNR,

being the mechanism to accelerate CR particles as described in chapter 2.

Interstellar gas distribution are based on current H I, CO surveys and dust

measurements, and the interstellar radiation field is based on a detailed cal-

culation (Porter et al., 2008). The numerical solution proceeds in time until

steady-state is reached.

First, the propagation equation is solved for heaviest nuclei (e.g. 64Ni),

then the solution is used to compute the source term for its spallation prod-

ucts. The solution is propagated in turn down to protons, secondary electrons

and positron, and anti-protons.

Primary electrons are treated separately. Normalization of protons, he-

lium and electrons to experimental data is provided. γ-rays and synchrotron

are computed using interstellar gas data, for pion-decay and Bremsstrahlung,

and the ISRF model for IC. Spectra of all the species are an output of the

computation.

GALPROP goal is to be realistic. It includes crude approximations but it

resorts the reality. This code does not calculate trajectories and does not

consider presence of structures in the background, such as superbubbles. For

these cases other techniques may be more appropriate, and they provide a

future goal for further developments of GALPROP.
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4.4 Modeling the background gamma-ray emis-

sion for the Fermi LAT high level analy-

sis.

4.4.1 Interstellar diffuse emission

About 99% of the mass of the interstellar medium is gas and ∼ 90% of this

gas is made of atomic (H I) or molecular hydrogen (H2). H I is traced by

its 21− cm line radiation, as described in section 4.1.1, H2 has no dipole so

cannot be directly observed in its cold phase, which is the dominant state in

which we can find this gas. These lines are used to derive maps of the atomic

hydrogen column density N(H I), derived from the 21-cm line temperature

under the assumption of a uniform spin temperature, and the molecular

hydrogen column density N(H2), assumed to be proportional to the CO line

intensities W (CO).

For the FermiLAT high level analysis I performed in chapter 5, the back-

ground model provided by the collaboration is based on two years of data

taking. The model used to fit the γ-ray data is composed of linear combina-

tion of:

- atomic hydrogen from the all-sky Leiden-Argentina-Bonn (LAB) (Kalberla

et al., 2005) composite survey. The column densities are derived as-

suming a constant spin temperature of 200 K

- velocity integrated CO intensities W (CO) obtained from the Center

for Astrophysics compilation (Dame et al., 2001)

- templates for IC emission obtained with the GALPROP code (see §4.3)

- dust optical depth maps used to account for gas not traced by the lines
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- dedicated spatial templates for large-scale regions of excess emission

such as: Loop I (including north spur region), Galactic lobes, galactic

plane excess, earth limb events.

This can be done because energetic CRs uniformly penetrate all gas phases

in the ISM. This interstellar emission model (IEM), along with sources of

2FGL catalog (Nolan et al., 2012), an isotropic intensity to take into account

the extragalactic background and instrumental background, is fitted to the

data. The templates are divided into six galactocentric rings (described in

table ??) to allow for Galactocentric gradient of cosmic-ray.

rings rmin [kpc] rmax [kpc]

1 0.0 4.0

2 4.0 5.5

3 5.5 7.0

4 7.0 10.0

5 10.0 16.5

6 16.5 50.0

Table 4.1: Galactocentric rings radius in kpc.

Fitting these models to γ-ray data, the differential emissivity or normal-

ization for each template is derived. Summing the components, the Galactic
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diffuse emission differential intensity in photons sr−1s−1cm−2MeV−1 is 6:

dI

dE
(l, b) =

∑
i=rings

dqH I,i

dE
NH I(ri, l, b) +

∑
i=rings

dqCO,i
dE

WCO(ri, l, b)

+
dqEBV
dE

E(B − V )res(l, b) +
dqIC
dE

IIC(l, b)

where q is the emissivity of a particular component and E(B-V) the residual

map,tracing the total dust column density, obtained after subtracting the

part correlated to N(H I) and W (CO). The patches mentioned above are

regions of spatially uniform intensity whose shapes reproduce the shape of

the excesses in the γ-ray data. The intensity of the emission associated with

each patch is fitted for each energy band together with the other templates.

For energies above 20 MeV the model has been extrapolated to fit the

LAT data so the final model cube is made of 30 energy bins planes from

50 MeV to 600 GeV. The model provided by the collaboration gives the

Galactic differential intensity in photons sr−1s−1cm−2MeV−1.

The standard IEM is distributed as a cube summed over the components

which predicts the intensities of Galactic interstellar γ-ray emission in a grid

of directions and energies with its accompanying isotropic model described

in the next section.

4.4.2 Isotropic gamma-ray emission

An additional diffuse component with almost isotropic distribution in the

sky is observed and known as the isotropic γ-ray background. Due to its uni-

formity over the sky, it is thought to be of extragalactic origin and referred

to also as extragalactic γ-ray background (EGB). Most of it is attributed

6from Description and Caveats for the LAT Team Model of Diffuse Gamma-

Ray Emission available at http://fermi.gsfc.nasa.gov/ssc/data/access/lat/

BackgroundModels.html

http://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html
http://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html
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to unresolved discrete sources. The most recent determination of the EGB

spectrum based on LAT is reported in Dermer (2007). The dominant source

classes that may explain the origin of EGB: blazars and radio/γgalaxies,

interaction of CRs in star-forming galaxies, nonthermal radiation from clus-

ters of galaxies and GRB not detected by the instrument. There may also

be a truly diffuse component, not due to discrete sources due to cascades

initiated by photo-pion or photo-pair production of ultra-energetic CRs in-

teracting with photon of the extragalactic background light or cosmological

DM.

From the above description of the extragalactic background it is clear

that, for the Fermi LAT high-level analysis, also a template of the isotropic

background is necessary. The model has to reproduce all the extragalactic γ-

ray emission and also the CRs residual background: the residual intensity is

obtained after fitting the diffuse Galactic γ-ray emission model components

and the point sources.

The isotropic model is build fitting separately only the high latitude emis-

sion (|b| > 30◦), to minimize the effects of the Galactic ridge that can be sig-

nificant above 10◦from the plane. This contamination is particularly severe

at low energies because of the long tails of PSF.

An extrapolation of the data obtained, permits to continue the spectrum

at energies grater than 100 GeV.

4.4.3 Models limitations

Several errors can affect the models used for the high-level analysis, specially

the Galactic diffuse emission. The major limitations are:

- at low latitudes residuals obtained subtracting the model from the LAT

data are non-negligible and clumpy
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- the Galactic model does not include populations of unresolved Galactic

point sources but they can be absorbed by some templates

- the diffuse model, for energies below 120 MeV was not fitted to the

LAT data and it is less reliable

The CR residual background is handle as sources as γ-ray and the photon

IRF are used. But the acceptance for residual charged-particle background

is not the same as for gamma rays: the distribution of arrival directions

in the instrument coordinates is not the same as for gamma rays and the

assumption of being isotropic is only an approximation.

4.5 Systematic errors due to diffuse interstel-

lar emission

To calculate uncertainties due to diffuse Galactic γ-ray emission (DGE) (de-

scribed in sections 4.2 and 4.4.1), a grid of models is created. The idea of

this grid was already used by Ackermann et al. (2012d) to compare the back-

ground maps obtained during the first 21 months of the Fermi mission with

the diffuse background simulated using GALPROP.

The FermiLAT collaboration developed eight alternative IEM to give an

estimation of the systematic errors (de Palma et al., 2013). The model are

build adopting a different model building strategy from the standard IEM,

resulting in a different gas emissivities, or CO-to-H2 and dust-to-ratios. Mod-

els are created using GALPROP code, described in section 4.3. To build these

models a few parameters on the propagation model (GALPROP) are varied: the

source distribution (Case and Bhattacharya, 1998 and Lorimer et al., 2006),

the CR propagation halo heights (zh = 4, 10 kpc) and atomic hydrogen spin
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temperature (150 K and 104 K for optically thin hypothesis). It also allows

more freedom in the fit by separately scaling the IC emission and H I and

CO in 4 Galactocentric rings (for the definition of the rings see figure 4.4)

SNRs are believed to be the primary sources of Galactic CRs (see §2.5).

However, their Galactic distribution is not well determined (Ackermann

et al., 2012d). To account for this uncertainty, two different distributions

of the SNRs are considered: the Case and Bhattacharya (1998)7 and the

Lorimer et al. (2006). The first is a measured SNR distribution, while the

latter is the distribution of the pulsar. The distribution of the pulsar can be

used because pulsars are an SN explosion end state.

The main uncertainty deriving the column densities is the spin tempera-

ture TS used to correct the opacity of the 21 cm line. The TS value used in

the standard model for Fermi LAT analysis is 200 K. H I exists in a mix-

ture of phases in the range between 40 K and a few thousand kelvin. Since

the goal is to evaluate systematic uncertainties concerning the ISM model,

two values for the TS are chosen: 150 K and the optically thin assumption

(TS � 150 K). The choice of TS = 150 K is motivated by the fact that

the maximum observed brightness in the LAB survey is around 150 K and

TS must be greater than the observed brightness temperature (Ackermann

et al., 2012d).

Since the XCO factor may change with the Galactocentric radius, the

spatial distribution is not well known, so we allow to vary in this analysis. To

do that the template is divided into 4 Galactocentric annuli with boundaries:

0 kpc, 4 kpc, 8 kpc, 10 kpc and 30 kpc as shown in figure 4.4.

As reported by de Palma et al. (2013), this strategy for estimating sys-

7The validity of Case and Bhattacharya (1998) σ-D relation has been criticized but it

is used as an alternative to probe the effect of changing the CR distribution.
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Figure 4.4: Schematic representation of the H I and CO rings used for split

alternative IEMs crossed by line of sight at various Galactic longitudes. The

dot marks the sun position at 8.5 kpc. The figure is not in scale. Picture

taken from de Palma et al. (2013).
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tematic uncertainty from interstellar emission modeling does not represent of

systematics involved but this approach is able to obtain an indication about

some important systematic effects. As stressed in Ackermann et al. (2012d),

the study is limited due to the large number of DGE model parameters.

Only diffusive-reaccelaration models are considered for CR propagation. In

addition a smooth distribution of CR sources with homogeneous injection

spectra is assumed (Ackermann et al., 2012d).

We perform the analysis already done with the standard background and

we look at variations. In this way we are able to estimate the contribution

to the systematic errors due to DGE.
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Chapter 5
Gamma-ray analysis

SNRs interacting with molecular cloud (MC) are of particular interest for

the particle acceleration study. This because these kind of objects are the

most likely candidates to accelerate Galactic CRs. Furthermore, high-energy

γ-ray emission can pinpoint the presence of energetic leptons or ions and help

to constraint the acceleration efficiency and maximum energy of accelerated

particles. In particular I will present the analysis of HB 21 which present

significant emission in γ-ray band and extended emission in both γ-ray and

radio waveband. After an introduction in which I display the general in-

formation about HB 21 (section 5.1), I will describe the method used for

morphological (§5.2.2) and spectral analysis (§5.2.5). In section 5.2.6, I will

describe how we look for spectral variations across the remnant.

Most of the content of this chapter and of the next one have been pub-

lished as Pivato et al. (2013).

95
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5.1 General information about HB 21

HB 21 is a mixed morphology (MM) SNR, so it presents an inner part emit-

ting in X-ray band and an outer shell emitting radio waves as shown in figure

5.1.

Figure 5.1: ROSAT X-rays image of HB 21. Superimposed there is the

radio contours from emission at 408 MHz with the Canadian Galactic Plane

Survey: they range from 0.455 Jy to 0.890 Jy. The intensity range of this

image is 10−4− 2.1× 10−2 counts s−1 arcmin−2. From Pannuti et al. (2010).

In this section, I will give all the general information on HB 21 in or-

der to better understand the behavior of the source and its spectrum. The

interesting features are: the estimation of the distance (§5.1.1), of the age
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(§5.1.2) and the evidences of interaction of the remnant with molecular clouds

(§5.1.3).

5.1.1 Distance estimation

Estimating the distance of HB 21 is a non trivial problem to be solved and it is

crucial to modeling its spectrum. HB 21 is located close to the line of sight of

the MCs associated with the Cyg OB7 complex. Huang and Thaddeus (1986)

and Dame and Thaddeus (1985) suggested that there is interaction between

Cyg OB7 complex and HB 21 based upon its morphological appearance:

the Cyg OB7 seems to surround the eastern and southern part of the SNR.

They adopted the Cyg OB7 complex distance (0.8 kpc) as the distance of

HB 21, but there are no direct evidences of the interaction between these

two structures, so HB 21 distance appear to be only based on morphological

appearance. In addition to that, there is a poor morphological correlation

between CO and radio brightness as shown in Koo et al. (2001). For these

reasons the estimation of the distance to HB 21 is still uncertain.

Byun et al. (2006) gives an estimation of the distance based on X-rays

properties, pre-shock velocities, X-ray-absorbing column density and radio

surface brightness.

Looking at X-rays properties of HB 21, Byun et al. (2006) propose a

bigger distance of > 1.6 kpc. If the 0.8 kpc estimation is assumed, the X-ray

surface brightness is too faint. In addition, the SN explosion energy derived

considering this distance using X-ray data, is an order of magnitude lower

than the canonical value of 1051 erg for SN explosions (Byun et al., 2006).

To reproduce this value a greater distance of 1.7± 0.5 kpc is needed.

The pre-shock velocities of the shocked clouds can be used as distance

indicators. Byun et al. (2006) estimate the pre-shock velocities for clouds
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NW and S of −12 and −7 km s−1 respectively. Considering the Galactic

rotation curve with a constant rotation velocity of 220 km s−1, the kinematic

distances of these two clouds are 3.0 and 2.3 kpc respectively.

Another method to estimate the distance is to use the X-ray-absorbing

column density. The estimated velocity vX or distance dX is the velocity

(or distance) where the actual accumulated column density becomes equal

to the X-ray-absorbing column density. This value is derived from H I and

CO observations. The HI column density is given by (Byun et al., 2006)

N(H I) = 1.82× 1018TS

∫ r

+50

ln

[
1− Tb(v)

TS

]
dv cm−2 (5.1)

where TS is the spin temperature in K and v is in km s−1. For the value of

TS, considering that HB 21 is located toward the Galactic are, Byun et al.

(2006) choose 135 K. The accumulated column density is equal to the X-ray-

absorbing column density at v = −5.7+1.5
−1.8 km s−1. In this estimation is not

included the contribution of ionized hydrogen: to include it, the foreground

column density of ionized hydrogen has to be calculated. Considering the

electron number density of ne ≈ 0.0019 cm−3, the foreground column den-

sity is ∼ 0.6(d/1 kpc)1020 cm−2. With this correction the velocity becomes

(Byun et al., 2006): vX = −4.9 km s−1. Again, applying a Galactic rotation

curve and the galactocentric distance of the Sun (8.5 kpc), the corresponding

distance is 2.0± 0.3 kpc.

Looking at radio emission, a closer distance is preferred. Considering

the radio brightness of HB 21 and applying the Σ-D relation of Case and

Bhattacharya (1998), Byun et al. (2006) obtain a diameter of 41 pc, and a

distance of 1.3 kpc, even if it is known that Σ-D relation has an uncertainty

of a factor 2 in both directions.

Considering all the available distances with their uncertainties, Byun

et al. (2006) conclude that the distance of 1.7± 0.5 kpc is appropriate.
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5.1.2 Age estimation

The estimation of the age is directly related to the distance of HB 21.

The model considered for MM SNRs invokes evaporation of clouds that

are left relatively intact after the passage of the shock. In such case, the

X-ray-emitting gas is due to dense embedded molecular material that evapo-

rates in the SNR interior due to standard thermal conduction of the hot gas

(Lazendic and Slane, 2006). The remnant is considered still in an adiabatic

phase and the post-shock temperature is related to the observed temperature

in X-ray gas in the Sedov phase, scaled with a factor A (Lazendic and Slane,

2006):

Ts = ATSedov = 0.78kTXA (5.2)

where Ts refers to the case in which electron-ion equilibrium is assumed. The

relation for the temperature of shocked gas with adiabatic index γ = 5/3 is

used to derive the velocity of the blast wave (Lazendic and Slane, 2006):

vs =

(
16kTs
3µmH

)1/2

(5.3)

where µ = 0.604 is the mean atomic weight, and the age of the remnant is

t =
2rs
5vs

(5.4)

where rs is the radius of the blast wave.

Using this method, which is highly dependent on the SNR model applied,

Lazendic and Slane (2006) obtain vs = 670 ± 33 km s−1 and HB 21 age is

5000− 6000 yr.

If the angular size of the radio shell is used, the age is ∼ 7000 yr (Lazendic

and Slane, 2006).

The estimation of Lazendic and Slane (2006) is done assuming a distance

of 0.8 kpc. As told in the previous section, we adopt a distance of 1.7 kpc so
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the age has to be corrected considering this distance. The age of HB 21 is

obtained scaling the ∼ 7000 yr at 0.8 kpc to the value at 1.7 kpc using the

relation (Byun et al., 2006):

tSNR ∼ 1.5× 104d1.7 yr (5.5)

which gives an age of ∼ 1.5× 104 yr.

5.1.3 Interaction with molecular clouds

Koo et al. (2001) report the presence of shocked molecular clouds in the SNR

HB 21. The evidences ranges from a morphological evidence to the detection

of broad and/or shock excited emission lines from the various molecules. This

last feature is of crucial importance to understand the physical and chemical

processes associated with the molecular shock.

In figure 5.2 it is shown a map of the CO emission overlaid with the radio

emission of the remnant. The broad lines (showed in figures 5.3b and 5.3c)

are presumably emitted from the shocked gas which is located in warm dense

clumps with significant column densities so that the 2-1 lines are optically

thick (Koo et al., 2001).

There is no evidence for interaction of the SNR with molecular clouds

along the eastern boundary.

This can be one hint to search spectral variations across the remnant

also in γ-rays as done in section 5.2.6 As told before, HB 21 is a MM SNR.

There is a strong association between MM SNRs and evidence for interactions

between shock fronts and dense clouds revealed by OH masers (Yusef-Zadeh

et al., 2003). Therefore, MM SNRs are good candidates to be bright γ-ray

sources.
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Figure 5.2: 12CO integrated intensity map of HB 21. The velocity ranges

from v = +3.9 to −17.5 km s−1, and the integrated intensity varies from 0

to 64 K km s−1. Overlaid there is the 1420 MHz brightness map obtained

with the TRAO synthesis telescope. Figure from Koo and Heiles (1991).
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a ) b )

c )

Figure 5.3: Maps of the position of the CO peaks and their spectra. a) Chart

of the position of the CO peaks. b) CO spectra of the northern peak position

N1 and N2. c) CO spectra for the southern peaks S1, S2 and S3. From Koo

and Heiles (1991).
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5.2 Fermi LAT analysis

In this section I will describe the Fermi LAT analysis performed for this

source. In particular, after describing the data set used (§5.2.1), I will de-

scribe morphological and spectral analysis (sections 5.2.2, 5.2.6 and 5.2.5).

5.2.1 Fermi data set and background

Data for this analysis are accumulated from the beginning of scientific op-

erations on 2008 August 4 to 2012 June 14, selecting the low-background

P7SOURCE event class. The data analysis is performed using the LAT Science

Tools package (v9r27p1), available from the Fermi Science Support Cen-

ter1. For the morphological characterization we use only events with energy

> 1 GeV to profit from the narrower PSF in order to separate the γ-ray

emission associated with HB 21 from neighboring sources and interstellar

emission. We then use events down to 100 MeV to determine the spectral

energy distribution of the remnant. Below this energy the PSF becomes

much broader than the SNR and the uncertainties related to the instrument

response are larger. In both the morphological and spectral characterization

we consider photons with measured energies up to 300 GeV, but only find

a significant detection of the source up to energies of several 100 GeV due

to the limited number of events at high energies. I perform the analysis in

a 10× 10 RoI centered at the radio position of HB 21 (l = 89.◦0, b = +4.◦7).

The RoI approximately corresponds to the 68% event containment region for

the P7SOURCE events at 100 MeV and exceeds the 95% event containment

region for energies & 700 MeV (see figure 3.6). I adopt this narrower than

usual RoI in order to limit at the lowest energies the large uncertainties due

1http://fermi.gsfc.nasa.gov/ssc

http://fermi.gsfc.nasa.gov/ssc
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to the modeling of the bright interstellar emission from the nearby Cygnus

region (Ackermann et al., 2011, 2012c). I also exclude a few time intervals

when the LAT boresight was rocked with respect to the local zenith by more

than 52◦(mostly for calibration purposes or to point at specific sources) and

events with a reconstructed angle with respect to the local zenith > 100◦ in

order to limit the contribution from the Earths atmospheric γ-ray emission.

To take into account the latter selection criterion in the calculation of the

exposure, I exclude time intervals when any part of the RoI was observed at

zenith angles > 100◦.

The background is composed of diffuse emission and individual nearby γ-

ray sources. Diffuse emission is taken into account using the standard models

provided by the Fermi LAT collaboration2 for the P7SOURCE selection (see

Nolan et al., 2012). They include a model that accounts for the Galactic in-

terstellar emission from CR interactions with interstellar gas and low-energy

radiation fields, and an isotropic background spectrum that accounts for dif-

fuse γ-ray emission of extragalactic origin and residual background events

due to charged particle interactions in the LAT misclassified as γ-rays (for

details see chapter 4). I leave the normalization of the Galactic interstellar

model as a free parameter, yet fix the isotropic background spectrum because

it is difficult to separate it from the other components in such a small RoI

and it is more reliably determined over larger regions of the sky.

I include in the background model all the point sources present in the

2FGL catalog (Nolan et al., 2012) with distances less than 15◦ from the RoI

center and which are not associated with the SNR. I will discuss in section

5.2.2 the case of the source 2FGL J2051.8+5054, which is located at the

edge of the SNR. The spectral models used for background sources are those

2http://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html

http://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html￼
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reported in the 2FGL catalog. Fluxes and spectral indices are left as free

parameters in the fit if the source is within the RoI. Otherwise they are fixed

to the catalog values.

The background model and the various models for HB 21 are fitted to

the LAT data using a binned maximum-likelihood method based on Poisson

statistics (e.g. Mattox et al., 1996), as implemented in the gtlike tool (see

section 3.5). For this purpose data were binned on an angular grid with 0.◦1

spacing, and different binning in energy as detailed below. The analysis uses

the post-launch IRF P7SOURCE V6 (Ackermann et al., 2012a).

5.2.2 Morphological analysis

As a first step to perform an accurate analysis with the Fermi LAT data is

the morphological analysis. We notice that in the 2FGL catalog, there are 3

sources associated to HB 21 and an additional source (2FGL J2051.8+5054)

is located at the edge of the γ-ray emission. The aim of this analysis is

double: on one hand I want to understand if the γ-ray emission is likely due

to a single extended source or from different point sources, and on the other

hand, I want to understand which is the best fit template for the future γ-ray

analysis.

In figure 5.4a I show a count map of the RoI for energies > 1 GeV, to

visually illustrate the morphology of the γ-ray emission in the region. Figure

5.4b shows the model I adopt to take into account the background and figure

5.4c is what remains from the difference between the two previous maps: in

this way we can isolate the emission from the source we want to analyze.

The first model I consider is the one composed of only point sources; the

three point sources associated at HB 21 in the 2FGL catalog are: 2FGL J2043.3+5105,

2FGL J2041.5+5003 and 2FGL J2046.0+4954. In addition to the point-
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Figure 5.4: a) LAT counts map at energies > 1 GeV with color scale in

counts/pixel. We overlaid the positions of 2FGL sources (crosses for back-

ground sources and bold diamonds for the three sources associated with the

remnant and 2FGL J2051.8+5054). The inset in the top right corner shows

the effective PSF over the energy range considered for a power-law spectral

distribution with index 3.1. b) Background model map (calculated using

the best-fit parameters from the case where HB 21 was modeled as a disk).

c) Remaining emission associated with HB 21; overlaid are the positions of

the four point sources above, the best-fit disk (solid line) and the radio disk

(dashed line). The pixel size is 0.◦1 and all maps are smoothed for display

with a Gaussian kernel of σ=0.◦4.
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sources-only model, I consider three different spatial template: the disk, the

radio emitting region (figure 5.8a) and the X-ray emitting region (figure 5.8b).

For each model we evaluate the test statistic

TS = 2(lnL1 − lnL0) (5.6)

where L1 is the maximum-likelihood value for the model including the rem-

nant and L0 is the maximum-likelihood value for the model not including it

(null hypothesis). If the null hypothesis is verified (no γ-ray emission asso-

ciated to HB 21), TS is expected to be distributed as a χ2 with a number of

degrees of freedom given by the additional number of free parameters in the

model including the source, with the caveats discussed in Protassov et al.

(2002). For a detailed description of the maximum likelihood analysis, see

section 3.5.2.

To investigate if the additional source is part of the emission of the rem-

nant or is a source itself I perform the maximum likelihood fit including in

the model also the 2FGL J2051.8+5054 for each spatial template.

The results obtained are reported in table 5.1. If I compare the TS with

the model in which HB 21 is modeled by the point sources in the 2FGL Cat-

alog (Table 5.1) I find that the extended source provides a higher likelihood

for a lower number of free parameters in the fit. Therefore, I conclude that

the hypothesis of extended emission is preferred over four individual point

sources. All the spatial templates are fitted with a power-law spectrum.

I determine the position and extension of the γ-ray emission associated

with HB 21 from γ-ray data only using the pointlike tool, which is optimized

and widely validated against Monte Carlo simulations for this purpose (Lande

et al., 2012).

I model the source as a disk with a power-law spectrum and I determine

the position of its center (l, b) and radius r, along with flux and spectral index
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Table 5.1: Test statistic (TS) and degrees of freedom (d.o.f.) for the different

spatial models for the γ-ray emission associated to HB 21 considered in 5.2.2.

sources TS d.o.f.

Null hypothesis 0 0

4 point sources 256 10

disk 302 5

disk + 2FGL J2051.8+5054 316 7

X-ray image 212 2

X-ray image+ 2FGL J2051.8+5054 234 4

radio image 298 2

radio image + 2FGL J2051.8+5054 312 4

from LAT data, using an energy binning of 8 bins per decade. I considered

both the cases where 2FGL J2051.8+5054 is included as a separate point

source in the model or removed.

The TS for the case including separately 2FGL J2051.8+5054 in the

model is larger by 14 than the case with the disk only (Table 5.1). The

significance of the separate source hypothesis is below the threshold usually

required to claim a detection for LAT sources (TS> 25). Deeper observa-

tions are needed to determine if 2FGL J2051.8+5054 can be distinguished

as a source independent from the remnant. In the rest of the analysis, we

do not consider 2FGL J2051.8+5054 as a separate source and, therefore, we

remove it from the model.

I note that the results concerning the morphology of HB 21 are robust

regardless of whether 2FGL J2051.8+5054 is included as a separate source

in the model or not.
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Using the best fit disk, the significance of the detection of HB 21 is ∼ 29σ.

I also check parameters for disk plus additional source hypothesis and

single disk. In the first case I obtain l = 88.◦62± 0.◦05, b = 4.◦79± 0.◦06, and

r = 1.◦14 ± 0.◦07. In the second I have l = 88.◦75 ± 0.◦04, b = 4.◦65 ± 0.◦06,

r = 1.◦19± 0.◦06. Errors reflect statistical uncertainties only.

In Figure 5.4b I show the background model map obtained from the fit

with the disk, and in Figure 5.4c the background-subtracted count map where

the emission associated to HB 21 is visible.

For both radio and X-ray templates I compare the cases when 2FGL J2051.8+5054

is included in the fit as a background source or not.

From the results reported in table 5.1 I confirm that the morphology of

the remnant in γ-ray significantly differs, as expected, from the emission in

X-rays. Both the radio template and the γ-ray disk provide a good fit to

the data, though the first has less degrees of freedom, as shown in table 5.1.

Since the two models are not nested it is not possible to conclude which is

the best one.

I also check if the source size changes with energy. I do that separately

fitting a disk to the LAT data from 1 to 3 GeV and from 3 to 10 GeV. I

obtain r = 1.◦19± 0.◦09 in the lower-energy range and r = 1.◦24± 0.◦09 in the

higher-energy range. No significant change in size with energy is detected.

Given that the disk model provides the largest TS of all single source

models, and is derived from the γ-ray data, I use this model to compute the

spectrum of the remnant.

For the best fit γ-ray disk I also computed the systematic errors as de-

scribed in sections 3.4.2 and 4.5. I just consider errors due to interstellar

emission model, because IRFs variations does not affect the determination of

the disk characteristics but they just give a variation on the flux calculated
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from the data.

When the alternative interstellar emission models are used, the γ-ray disk

is systematically shifted toward the north-west part with respect to the radio

shell (with shifts in longitude between 0.◦19 and 0.◦24, and in latitude between

0.◦06 and 0.◦09), and the disk radius is systematically smaller by 0.◦18− 0.◦24

as summarized in figures 5.5 and 5.6. The significance of the detection of

HB 21 does not change sizably.

Figure 5.5: Disk obtained fitting the model with the alternative background

emission. The alternative disks are compared with the radio emission at

6-cm.

This effect is mainly due to the different approaches used to deal with

the dark gas, neutral interstellar gas which is not well traced by the linear

combination of column densities inferred from the 21-cm H I line and the

2.6-mm CO line, but which is traced by correlated residuals in dust emis-

sion/absorption and interstellar γ-ray emission (Grenier et al., 2005). Dust

residuals are used as a dark-gas template fitted to the γ-ray data in the

standard interstellar model, whereas they are used to correct the H I column
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a ) L parameter in degrees

b ) B parameter in degrees

c ) radius of the disk in degrees

Figure 5.6: Values of the coordinates and radius of the disk, changing the dif-

fuse intestellar model. The errors reported are statistical only. The straight

line is the value obtained with the standard background.
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densities in the alternative models assuming a dust-to-gas ratio independent

from γ-ray observations. This excess in the alternative models respect to

the standard background is clearly visible in figure 5.7. This leads to differ-

ent estimates of the gas column densities, therefore to different structures in

the interstellar emission models. Additionally, the standard model accounts

for enhanced interstellar emission toward the nearby Cygnus X complex (see

Ackermann et al., 2011, 2012c), whereas the alternative models do not. These

differences are found to have a significant impact on the determination of the

SNR morphology.

I note that for all the alternative models the disk extends beyond the rim

of the remnant in coincidence with the western molecular cloud, but leave

the faint south-east edge of the radio shell off as shown in figure 5.5.

5.2.3 Comparison with other wavelengths

As told before, HB 21 is a MM SNR interacting with molecular clouds.

In figure 5.8 I compare the γ-ray emission associated with HB 21 to

emission from the remnant at other wavelengths. Figure 5.8a compares the

γ-ray image with radio emission at 6-cm tracing non-thermal electrons.

Figure 5.8b compares the γ-ray morphology with X-ray emission from

the thermal plasma filling the center of the remnant, measured by ROSAT

(Voges et al., 1999). The ROSAT image was cleaned using the standard

background maps3.

Finally figure 5.8c compares the γ-ray emitting region with the distri-

bution of molecular material. Molecular column densities in the Local-Arm

region are traced by the CO line intensities at 2.6−mm (Dame et al., 2001;

Dame and Thaddeus, 2011) integrated over velocities with respect to the lo-

3Available from http://www.xray.mpe.mpg.de/cgi-bin/rosat/rosat-survey

http://www.xray.mpe.mpg.de/cgi-bin/rosat/rosat-survey
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Lorimer, z=10 kpc, TS = 105 K Lorimer, z=10 kpc, TS = 150 K Lorimer, z=4 kpc, TS = 105 K

Lorimer, z=4 kpc, TS = 150 K SNR, z=10 kpc, TS = 105 K SNR, z=10 kpc, TS = 150 K

SNR, z=4 kpc, TS = 105 K SNR, z=4 kpc, TS = 150 K

Figure 5.7: Ratio of the alternative background emission, respect to the

standard intestellar diffuse model at 1 GeV. The circle is 2◦ around HB 21,

and the box is a 10◦ × 10◦ RoI.
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Figure 5.8: Emission associated with HB 21 overlaid with contours from

emission at other wavelengths (see text for details): a) Radio emission inten-

sity at 6 − cm with a beam size of 0.◦16, smoothed with a Gaussian kernel

with σ=0.◦2. The seven contour levels are linearly spaced from 0 to 2.0 Jy

beam−1. b) Background-subtracted X-ray emission (ROSAT) smoothed with

a Gaussian kernel of σ = 0.◦25. The three contour levels are linearly spaced

from 0.36×10−3 to 2.13×10−3 counts s−1 arcmin−2. c) Intensities of the 2.6-

mm CO line in the Local-Arm region. The six contour levels are linearly

spaced from 1.5 K km s−1 to 28 K km s−1. We also show the positions of the

shocked CO clumps (diamonds) and clouds A and B (squares) given in Koo

and Heiles (1991).
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cal standard of rest within ±20 km s−1. I also show the positions of shocked

CO clumps and of two large CO clouds distributed along the boundary of

the radio shell (Koo and Heiles, 1991).

The γ-ray emission associated with HB 21 is broader than the central re-

gion filled by thermal X-ray emitting plasma. It compares well with the radio

shell, but appears to extend beyond the radio shell in regions where molecular

clouds are present. The brightest γ-ray regions coincide with the Southern

shocked CO clumps identified by Koo and Heiles (1991). This correlation

with CO suggests that at least part of the γ-ray emission from HB 21 may

be produced by accelerated particles colliding with dense interstellar matter.

5.2.4 PSR J2047+5029

As most of the SNRs, also HB 21 presents a neutron star in its shell. We note

that the radio pulsar PSR J2047+5029 is 0.◦5 away from the remnants radio

center (Janssen et al., 2009). While pulsars represent the largest Galactic

γ-ray source class, this particular pulsar likely contributes no detectable flux

to the RoI. I test this hypothesis adding a point source (in coincidence of

the radio pulsar) in the model and fitting it. The spectrum shape used is a

power-law with exponential cutoff. Looking at the TS value I obtain < 1 so

the source does not have a significant emission in γ-ray.

To strength this assumption we also look at the pulsar characteristics

obtained form the radio data. The spindown power is Ė ∼ 2× 1033 erg s−1,

lower than that of any known γ-ray pulsar, and three times lower than for

any young, radio-loud γ-ray pulsar (Abdo et al., 2013). That is, the pulsar

is probably below the deathline expected from the outer magnetospheric

emission models that best describe the LAT pulsars (Wang and Hirotani,

2011). Furthermore, the pulsar’s dispersion measure indicates a distance
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D = 4.4 kpc. The ratio
√
Ė/D2 = 2.3 × 1015 erg1/2 kpc2 (a proxy of the

expected γ-ray luminosity) is five times lower than for any known γ-ray pulsar

(see fig. 15 in Abdo et al., 2013). We also check the two-year LAT catalog,

but it shows no point source at the pulsar position Nolan et al. (2012), nor

does the 4-year catalog currently in preparation.

Nevertheless, we searched PSR J2047+5029 for γ-ray pulsations. It is not

part of Fermi ’s pulsar timing campaign (Smith et al., 2008), so we obtained

a timing solution based on Westerbork Synthesis Radio Telescope (SRT)

and Jodrell Bank radio data taken concurrently with the Fermi data4. The

ephemeris will be presented in future work (Janssen et al. 2013). We used it

to phase-fold the LAT data, over a grid of minimum energy cuts (100 MeV

to 1000 MeV, in 50 MeV steps) and maximum radius cuts (from 0.◦4 to

2◦from the pulsar position, in 0.◦1 steps). For pulsars with unknown γ-ray

spectral shapes and unknown pulse profile shapes, such grids amount to a

search for the maximum pulsar signal-to-background noise ratio. At each

grid location, we calculated the H-test, which never exceeded 3σ statistical

significance (see section 5 in Abdo et al., 2013). The pulsars energy flux

above 100 MeV is therefore lower than for any known γ-ray pulsar, that is,

below 2× 1012 erg cm2 s−1.

We conclude that the pulsar can be neglected when characterizing γ-ray

emission from HB 21.

5.2.5 Spectral analysis

I want to understand which is the best spectral shape to fit the LAT data.

The spectral energy distribution (SED) of HB 21 is determined over the

full energy range between 100 MeV and 300 GeV and using 35 logarithmic

4Janssen, and Stappers private communication
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energy bins for the likelihood analysis. The γ-ray emission is modeled with

the best-fit disk as described in section 5.2.2.

To do that I compare the hypothesis of a power law

dN

dE
= N0

(
E

100 MeV

)−Γ

(5.7)

with three different curved spectral models, in order to quantify the deviation

from the former spectrum, calculating the TS value for each case.

The three functional forms considered are:

1. log-parabola

dN

dE
= N0

(
E

1000 MeV

)−(α+β ln(E/1000 MeV))

(5.8)

2. smooth broken power law

dN

dE
= N0

(
E

100 MeV

)−Γ1
(

1 +

(
E

Eb

)(Γ2−Γ1)/0.2
)−0.2

(5.9)

with Γ1 and Γ2 being the spectral indices below and above the break

energy Eb, respectively

3. power law with exponential cutoff

dN

dE
= N0

(
E

200 MeV

)−Γ

exp

(
− E
Ec

)
(5.10)

where Ec is the energy cutoff.

I computed the TS for each alternative model compared to the power-law

hypothesis with the curved hypothesis. In table 5.2 we report the values

obtained.

All the curved models have a higher TS than the power law distribution.

For the following discussion I adopt the log-parabola because it yields the
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Table 5.2: TS and additional d.o.f. for the different functions used to model

the SED of HB 21. For each model we report the values of the best-fit

parameters.

spectrum shape ∆TS additional d.o.f. fit parameters

power law 0 0 Γ = 2.33± 0.03

log-parabola 92 1 α = 2.54± 0.05

β = 0.39± 0.04

smooth broken power law 41 2 Γ1 = 1.67± 0.02

Γ2 = 3.54± 0.05

Eb = 789± 65 MeV

power law with exponential cutoff 82 1 Γ = 1.42± 0.03

Ec = 958± 41 MeV
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largest improvement with respect to the simple power-law, with a ∆TS = 92,

corresponding to an improvement at a ∼ 9σ significance level in the energy

range from 100 MeV to 300 GeV. The total γ-ray energy flux from HB 21

results to be 9.4±0.8(stat)±1.6(syst)×1011 erg cm2 s−1 and the photon flux

1.48±0.2(stat)±0.4(syst)×107 ph cm2 s−1. The systematic errors shown in

this section are calculated perfoming the analysis with the alternative models

and extracting the root mean square of the variations with respect to the

values from the standard model. For completeness, I report the systematic

errors due to interstellar emission model on all the fit parameter of HB 21:

the results are shown in figure 5.9.

As shown in the figure 5.9a, Γ1 index is systematically lower in the al-

ternative models fit even if they are compatible within the statistical errors.

Also Γ2 index is systematically smaller fitting with the alternative models

as shown in figure 5.9b. For what concern the fluxes, they are all compati-

ble within the erros with the value obtained fitting with the standard IEM

(see figure 5.9c). These values are due to the different background consid-

ered: variations in components of diffuse emission, produce variations in the

indeces of spectrum.

I also computed the SED in a model independent way. I split the energy

range between 100 MeV and 60 GeV into 12 logarithmically spaced bins.

The model used is the same as the all energy range fit, but, for the source I

use a power law spectral model, instead of the curved spectrum and I let free

only the fluxes. Other spectral parameters are fixed to the 2FGL values for

background sources and to a power-law index of 2 for HB 21 (the results are

insensitive to this particular choice). When TS for an individual bin is < 9,

I calculate an upper limit at the 95% confidence level determined through

the likelihood profile method.
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a ) Γ1 index

b ) Γ2 index

c ) flux

Figure 5.9: Values of the fit parameters, changing the diffuse intestellar

model. The errors reported are statistical only. The straight line is the

value obtained with the standard background.
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I show the resulting SED in figure 5.10 with also systematic errors indi-

cated. Systematic errors due to interstellar emission model are then summed

in quadrature with the error due to the LAT effective area uncertainties for

display. The SED points are reported in table 5.3. The contributions due to

the modeling of interstellar emission and the LAT effective area are presented

separately. In the energy range considered, the systematic errors are driven

by the interstellar emission model. This independent way to compute the

SED confirm that the spectrum is curved as showed in the global fit.

Figure 5.10: Spectral energy distribution of HB 21. The line shows the best-

fit log-parabola model, the light-red filled area shows the statistical error

band and the dashed gray area shows the systematic uncertainties. The

bar markers correspond to statistical errors only, while lines show the larger

systematic errors. 95% confidence-level upper limits are given for energy bins

where the TS of the source is < 9.
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Bin-per-bin fit pinpoint the presence of a cutoff or a break in the γ-ray

dat: as will be discussed in section 6.4, this is a common feature in middle

age or old SNRs.
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5.2.6 Search for spectral variations across the remnant

HB 21 is known to interact with molecular clouds (§5.1.3) so the interaction

between particles accelerated by the SNR shock and the environment can

pinpoint the presence of CRs. A sign of this interaction in γ-rays could be

the variations of the emission spectrum across the emitting region. HB 21 is

a good candidate to perform this analysis because it is spatially resolved by

the Fermi LAT.

To further investigate this hypothesis, I repeat the spectral analysis, as

described in section 5.2.5 but splitting the best fit γ-ray disk into two or

three parts. The decision on how to split is taken looking at the overlays of

figure 5.8 and considering CO clouds as a preferred targets for CRs escaping

form the SNR. In 2012, Reichardt et al. claim a ∼ 2σ spectral variation

across the remnant: they fuond this value splitting the disk emitting region

into three parts. Even though such splitting forms slices too small to be well

resoled by the LAT, I check also this hypothesis to confirm or reject their

results. The splittings are showed in figure 5.11 and are:

1. radio-emitting area (modeled with a uniform disk centered at l = 89.◦0

b = +4.◦7 with radius 1◦) and the remainder of the best-fit disk (figure

5.11a);

2. southern shocked-CO region (modeled as a uniform disk centered at

l = 88.◦38 b = 4.◦50 and radius 0.◦35) and the remainder of the best-fit

disk (figure 5.11b);

3. disk split into two halves to separate the southern shocked CO area

from the rest (figure 5.11d);

4. finally, I test the division proposed by Reichardt et al. (2012) splitting

the uniform disk into three subregions covering 120◦ each (figure 5.11e).
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First I perform the analysis from 1 GeV to taking advantage of the better

PSF of the LAT (see figure 3.6). For this first analysis I uses a power-law

model: looking at figure 5.10, I notice that, above 1 GeV, the spectrum can

be approximated with a power law function. The results are reported in

table 5.4 where I also reported the values of the indexes for each region for

completeness.

Table 5.4: Likelihood values and spectral indices for the models described in

§5.2.6, splitting the single bestfit disk in different subregions. For each case

we report the number of d.o.f. and the spectral indices. Analysis performed

above 1 GeV.

model considered ∆TS ∆d.o.f. index index index

region 1 region 2 region 3

single disk 0 0 3.09± 0.12

a 2.8 2 2.98± 0.12 3.35± 0.10

b 4.2 2 2.88± 0.31 3.14± 0.15

c 2.2 2 2.86± 0.40 3.29± 0.10

d 1.6 4 2.92± 0.22 3.29± 0.21 2.95± 0.17

As shown in table 5.4, there are no significant improvement in likelihood

in splitting the disk into to or more parts as suggested from the ∆TS values

which indicate a significance in sub-splitting less than 2σ. This means that

there is no evidence of spectral variations across the γ-ray emitting region.

In addition, the indeces of the subregions are all compatible within statistical

uncertainties.

Then I perform also an analysis over the full energy range from 100 MeV
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Figure 5.11: Emission associated with HB 21 as in fig. 5.4c overlaid with the

boundaries of the templates used in the search for spectral variations across

the remnant described in 5.2.6.
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to 300 GeV. Each subregion is fitted using a log-parabolic function as the

uniform disk and normalization and indeces are set as free parameters. Also

in this case, I report the results in table 5.5 where also the fit parameters of

the log-parabola are reported.

Table 5.5: Likelihood values and spectral indices for the models described in

§5.2.6, splitting the single bestfit disk in different subregions. For each case

I report the number of d.o.f. and the spectral indices. Analysis performed

above 100 MeV.

model considered ∆TS ∆d.o.f. α β

single disk 0 0 2.54± 0.05 0.39± 0.04

a 13 3
αradio = 2.41± 0.09 βradio = 0.37± 0.06

αother = 3.48± 0.89 βother = 0.74± 0.39

b 13.4 3
αCO = 2.27± 0.06 βCO = 0.38± 0.04

αother = 2.61± 0.21 βother0.43± 0.03

c 8 3
α1 = 2.47± 0.06 β1 = 0.36± 0.03

α2 = 2.64± 0.09 β2 = 0.45± 0.03

d 3 6

α1 = 2.35± 0.15 β1 = 0.38± 0.10

α2 = 2.75± 0.29 β2 = 0.39± 0.17

α3 = 2.53± 0.18 β3 = 0.43± 0.13

Also in this case I don’t see any evidence of spectral variation across the

remnant: the only evidence is marginal, less than 3σ and the values of the

indices are compatible within the statistical errors. In this case, as in the

fit above 1 GeV, I do not consider systematic uncertainties because they are

irrelevant: they don’t add any new information on spectral indeces variations.
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In conclusion, I do not confirm the claim by Reichardt et al. (2012) of

a softer spectrum toward the clouds NW and A. Spectral variations are not

significant (< 3σ), even considering statistical uncertainties only. More data

and a better handling of the current dominating uncertainties related to

the modeling of interstellar emission (that were neglected in the study of

Reichardt et al., 2012) are required in order to further probe for possible

γ-ray spectral variations across HB 21.



Chapter 6
Radio data analysis and non-thermal

modeling of HB 21

Radio data are useful to constrain non-thermal emission models of HB 21.

This because particles emitting in radio via synchrotron emission. From their

spectrum, we can infer the electron distribution. Then, electrons, interact-

ing with the CMB photons and the material around HB 21, produce γ-ray

radiation. In this chapter, using also the WMAP data (§6.1), I will describe

the non-thermal modeling of HB 21 (§6.3) and a comparison with other SNR

detected by Fermi (§6.4).

6.1 WMAP analysis: observations and anal-

ysis

The radio morphology of HB 21 is shown in figure 5.8a and has the shape of a

large oblate shell. It has large angular diameter and high radio flux, so it is a

favorable target for observations with radio telescopes. High-resolution imag-

ing reveals bright filaments and indentations along the periphery (Leahy and

129
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Roger, 1998). The 7-year all-sky data of the Wilkinson Microwave Anisotropy

Probe (WMAP) are used to extend the radio spectrum of HB 21 above

10 GHz. Five bands are analyzed with effective central frequencies (νeff )

of 23 to 93 GHz Jarosik et al. (2011).

The RoI is a square 4◦ × 4◦ centered in the radio coordinates of HB 21.

For the modeling a spatial template plus a sloping planar baseline was used,

following Hewitt et al. (2012). For the spatial template we use the map of

HB 21 from the Sino-German 6-cm (at 4.8 GHz) survey (Gao et al., 2011,

resolution of 9.5′), shown, as overlay, in figure 5.8a.

On the background, there is a point source: 3C 418 (Hill, 1974). To

include it, a separate, free-normalized point source was included in the model

to account for the bright nearby extragalactic source. The templates are

smoothed to the WMAP beam at each band (Weiland et al., 2011) and fit

to the data.

Figure 6.1 shows an example of the WMAP skymap, best-fit model and

residual map for the Q band (61 GHz). Table 6.1 lists the beam sizes and

fitted fluxes with errors estimated from the root mean square (RMS) of the

fit residuals. The addition of a template for 3C 418 does not produce a

significant change in the measured fluxes of HB 21.

The global radio spectrum of HB 21 from 38 MHz to 93 GHz is shown

in figure 6.2. This WMAP analysis was included along with published flux

densities from the literature (Kothes et al., 2006, and references therein). It

is evident that a spectral break is present in the spectrum at high frequencies.

The radio spectrum was first fitted with a single power law, S(ν) = S0ν
−α

and to find a flux normalization at 1 GHz of S0 = 201 ± 3 Jy and an index

α = 0.50 ± 0.02. The fitted index is significantly steeper than α = 0.38

determined from fitting only the data below 10 GHz because it does not
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Figure 6.1: Example of the template fit to the WMAP data within a 4◦

square region of HB 21 in the Q band (61 GHz). The three panels present

the 7-year skymap image (left), the model resulting from a fit of the radio

template plus a sloping planar baseline and a point source at the position

of 3C 418 marked by a cross (center), and the fractional residuals (defined

as the fit residual divided by the model). The upper and lower limits of the

linear color bar are given beneath each image; data and model are on the

same scale.
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Table 6.1: WMAP Flux Density for HB 21. Five bands are analyzed with

effective central frequencies (νeff ) of 23 to 93 GHz (see section 6.1).

Band νeff beam FWHM Flux density

[GHz] [◦] [Jy]

K 22.7 0.93 34± 3

Ka 33.0 0.68 24± 4

Q 40.6 0.53 20± 5

V 60.5 0.35 17± 8

W 93.0 0.23 56 2σ upper limit.

account for the break at high frequencies.

Then a spectral break of ∆α = 0.5 at a frequency νb was included in the

spectral model. This is appropriate for synchrotron losses in a homogeneous

source of continuously injected electrons, as expected for middle-aged SNRs

(Leahy and Roger, 1998; Reynolds, 2009, section 2.1). Including one addi-

tional free parameter, the model produce a good fit to the radio spectrum.

The spectral break has a significance of 5.3σ by applying the F-test to com-

pare the χ2 fit to that of the simple power-law. The best fit parameters for

the radio spectrum of HB 21 are α = 0.38 ± 0.02 and νb = 5.9 ± 1.2 GHz.

Additionally, the spectrum was also fitted using a power law with an expo-

nential cutoff of the form, S(ν) = S0ν
α exp(ν/νc). This produces nearly as

good a fit, with α = 0.34± 0.02, νc = 29± 4 GHz, and a significance of 5.2σ.

The radio index, α, is related to the particle index, Γp, by Γp = 2α + 1.

The observed radio index below the break α = 0.38 gives Γp ∼ 1.8, which is

similar to the spectral index obtained with the Fermi LAT data in §5.2.5. We

explore physical mechanisms which could explain both the γ-ray and radio
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Figure 6.2: Integrated radio flux density of HB 21 as a function of frequency.

Data points below 10 GHz, circles, are from the literature (see Kothes et al.,

2006, and references therein). The new WMAP data points are shown as

open diamonds and presented in table 6.1. The upper limit is shown as a

downward filled triangle. The dashed red line shows a power-law fit to the

entire radio spectrum. The solid black line shows a fit to the data assuming

a spectral break as described in the text. The dot-dashed black line shows

the fit assuming an exponential cutoff.
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spectra in the discussion in §6.3.

The observed break in the high-frequency spectrum cannot be explained

by spectral variations across HB 21. Leahy (2006) studied spectral variations

using radio observations at 408 and 1420 MHz. Manual fits to 36 individual

regions across the SNR show variations between 0.2-0.8, with a mean spectral

index of 0.45 and a standard deviation of 0.16. The brightest regions tend

to have an index that is flatter than average and than the canonical spectral

index (0.5) from diffusive shock acceleration. Thus, fitting the radio spectral

index of the flux from the entire remnant leads to an even flatter global index

of 0.38.

6.2 Physical environment around HB 21and

emission mechanism

Before starting with the non-thermal modeling of HB 21 spectrum, a deeper

knowledge of the physical environment around the emitted area is needed.

The presence of optical [SII] but not oxygen line emission indicates slow

shocks < 100 km s−1 into ambient densities of at least 2.5 cm−3 (Mavro-

matakis et al., 2007). Shocked CO filaments are observed with densities of

order ∼ 102 − 104 cm−3 and small filling factors ≤ 0.1 (Koo et al., 2001).

For neutral gas, the mean ambient H I density for the expanding shell is

∼ 8 cm−3 at the considered distance. Reichardt et al. (2012) estimated the

molecular mass within HB 21 by integrating all CO line emission between the

velocity range from +0 to 20 km s−1. This estimate likely includes molec-

ular gas outside the SNR, but is a conservative upper limit. Adopting a

distance of 1.7 kpc as discussed in section 5.1.1, the maximum molecular

mass is 5.5× 104 M�, the diameter of the SNR is 55 pc, and the maximum
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volume-averaged molecular gas density is 25 cm−3. Therefore, we assume a

gas density of 15 cm−3, noting that this is uncertain by a factor of a few.

To model the source we have to understand which are the physical mech-

anism that can produce γ-ray emission in SNRs. There are three primary

mechanisms which can be classified into two scenarios: the hadronic scenario

and the leptonic scenario. In the so-called hadronic scenario the emission is

dominated by γ-ray radiated through the decay of π0 mesons produced in

collisions between accelerated nuclei with the ambient gas (see §2.4.4). In

the leptonic scenarios γ-ray emission results either from IC scattering of rel-

ativistic electrons on low-energy photon fields such as the CMB (§2.4.2), or

non-thermal bremsstrahlung (§2.4.3). As the matter density increases, the

bremsstrahlung contribution will rise and dominate over the IC at densities

& 1 cm−3, unless the photon field is greatly amplified above the CMB. HB 21

appears to have a high enough gas density that bremsstrahlung is expected to

dominate over IC emission. In modeling the non-thermal spectrum of HB 21

we explored models in which the assumed physical conditions are modified

such that each of these three emission mechanisms is dominant.

6.3 Non-thermal modeling

We have identified spatially extended γ-ray emission coincident with SNR

HB 21 indicating the presence of relativistic particles. Determining the

mechanism responsible for γ-ray emission is crucial in order to measure the

underlying particle population accelerated by the SNR. To do so, we model

emission from the remnant using isis, the Interactive Spectral Interpretation

System (Houck and Denicola, 2000). Non-thermal models of emission from

relativistic particles are included for arbitrary particle momentum distribu-



136CHAPTER 6. RADIO DATAANALYSIS ANDNON-THERMALMODELINGOF HB 21

tions (Houck and Allen, 2006) which are then fit to radio and γ-ray data.

The included prescriptions are in agreement with the results from Sturner

et al. (1997).

To constrain the emitting particle distribution we simultaneously fit radio

and γ-ray emission from non-thermal electrons and protons. We analyze two

different scenario: first we analyze the one-zone model in which the emission

originates from an area equal to the best-fit γ-ray disk (see §6.3.1). But HB 21

is knowing to interact with molecular clouds (§5.1.3) so we also analyze the

hypothesis in which the emission is from two different area (see §6.3.2).

6.3.1 One-zone model

Initially, we adopt the simplifying assumption that all emission originates

from a region characterized by a constant matter density and magnetic field

strength. This single emitting zone is assumed to be equal to the size of the

remnant derived from the best-fit γ-ray disk. Additionally, the population

of accelerated nuclei and electrons is assumed to be described by the same

particle distribution, here assumed to follow a power-law with an exponential

cutoff of the form

dN

dp
≈ ηe,pp

−Γp × exp

(
− p

pmax

)
(6.1)

where the ratio ηe/ηp gives the ratio of electrons to protons and p the mo-

mentum. The normalization and maximum energy cutoff are left as free

parameters, and adjusted to fit the data. An exponential cutoff in the mo-

mentum spectra of electrons is expected when energy losses exceed the rate

of energy gain from shock acceleration Webb et al. (1984). In practice, we

find that we do not have sufficient spectral coverage to differentiate strongly

between an exponential cutoff or a broken power law.
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One-zone models for all three scenarios are presented as SED fits in figure

6.3.

Parameters are given in table 6.2, including the total energy of accelerated

particles integrated above 1 GeV for protons, and above 511 keV for elec-

trons. We adjusted the ratio of electrons-to-protons to differentiate between

bremsstrahlung- and hadronic-dominated models. A ratio ηe/ηp ∼ 0.01 is

seen in cosmic rays at Earth around 10 GeV (Gaisser, 1991), but an even

lower ratio ∼ 0.001 may be expected from diffusive shock acceleration models

(Reynolds, 2009). We cannot robustly constrain ηe/ηp through our fits, so

we choose characteristic values for each scenario. While the chosen parame-

ters are not unique in their ability to fit the broadband spectrum, they are

representative.

Table 6.2: One-zone model parameters

Model index pmax nH Btot ηe/ηp We Wp

[GeV/c] [cm−3] [µG] [erg] [erg]

IC 1.76 100 0.1 2 1 1.3× 1050 2.1× 1051

brems. 1.76 19 15 24 0.1 6.4× 1048 3.0× 1048

π0-decay 1.76 8.1 15 140 0.001 3.0× 1049 1.1× 1047

Under our simple assumptions, a single zone with a single particle distri-

bution for both electrons and protons, we find that only hadronic models can

reproduce both the observed radio and γ-ray spectra. For ηe/ηp = 0.001 we

find a momentum cutoff of 10 GeV/c and a magnetic field of ∼ 90 µG. De-

creasing ηe/ηp results in a higher magnetic field strength to simultaneous fit

the synchrotron normalization and break in the radio. Bremsstrahlung domi-
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Inverse Compton

Bremsstrahlung

π0-decay

Figure 6.3: Single-zone models for which IC (top), bremsstrahlung (middle)

and π0-decay (bottom) are the dominant emission mechanism (see table 6.2

for parameters). In each model the radio data are fit with a synchrotron

component, shown as a black curve. The individual contributions of π0-

decay (long dashed), bremsstrahlung (short dashed), and IC emission from

CMB (dotted) are shown. The sum of the γ-ray emission is shown by the

solid curve. The leptonic and hadronic components are colored blue and red,

respectively.
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nates over neutral pion decay when ηe/ηp ≥ 0.05, but there is no combination

of magnetic field strength and momentum cutoff that can simultaneously pro-

duce the observed SED from one electron population, as can be seen in figure

6.3. To produce a model in which IC emission dominates, we must adopt a

density of ∼ 0.1 cm−3, which is well below gas density estimates. Therefore

an IC-dominated model is unlikely, and furthermore, cannot produce a good

fit to the data. The energetics of our hadronic model indicate ∼ 3× 1049 erg

in accelerated cosmic ray protons and nuclei, which is comparable to that

estimated for other old SNRs in a dense environment detected by Fermi.

The failure of leptonic models is largely due to an inability to fit both

the observed spectral breaks in the radio and γ-ray. To explain synchrotron

emission at a peak frequency ν from an electron in a magnetic fieldB, requires

the electron have an energy (Reynolds, 2009)

E = 14.7

(
νGHz

BµG

)
. (6.2)

For the observed radio break at ∼ 6 GHz and γ-ray break at ∼ 1 GeV to

be explained by the same electron population requires a magnetic field of

∼ 1 mG, which is far in excess of the magnetic field expected for a SNR in

such an evolved stage (unless the density is very high & 104 cm−3). However,

molecular clouds have a well-known multi-phase structure, so the density of

HB 21 is unlikely to be uniform, and the one-zone approximation may be

overly simplistic.

6.3.2 Two-zone model

As told before, one-zone model is too simplistic for HB 21, since it interacts

with MCs. We therefore try to relax the single-zone assumption by modeling

the radio and γ-ray emission as dominated by distinct regions. Allowing
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the normalization and spectrum of the radio emission to be separately fit

from γ-rays is physically motivated. Radio emission is observed from dense

filaments, but globally may be dominated by diffuse gas that fills a larger

volume. For SNRs W 44 and IC 443 the observed proton index from π0-decay

emission is softer than the electron index inferred from the radio spectrum

(Ackermann et al., 2013). Results are reported in figure 6.4 and, for all the

fit details, table 6.3.

Bremsstrahlung

π0-decay

Figure 6.4: Two-zone models for which Bremsstrahlung (top) and π0-decay

(bottom) are the dominant emission mechanism, as in figure 6.3 (see table 6.3

for model parameters).

In this two-zone scenario, we found that both bremsstrahlung- and hadronic-

dominated models can fit the data. The cutoff in the accelerated particle
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Table 6.3: Two-zone model parameters

Model index 1 pmax,1 index 2 pmax,2 ηe/ηp We Wp

[GeV/c] [GeV/c] [erg] [erg]

brems. 1.76 4 1.76 8 0.1 6.7× 1048 3.2× 1048

π0-decay 2.0 9 1.76 4 0.001 3.5× 1049 1.6× 1047

spectrum responsible for γ-rays need not match that responsible for the ra-

dio emission, due to the different physical conditions. It is also possible that

high-energy CR electrons may cool in the dense filaments formed by shock-

interaction with molecular clumps, or that CR protons may have largely

escaped from the SNR (Aharonian and Atoyan, 1996; Malkov et al., 2011).

In the latter case, we would expect that nearby clouds could be illuminated

by the escaping CRs, but the geometry of the clouds in relation to HB 21

is not well known. While multi-zone models appear as feasible as single

zone models, they are not well constrained due to the poor spatial resolu-

tion of the data at γ-rays and high-frequency radio. The energy in CRs in

bremsstrahlung-dominated two-zone models is several times 1048 erg, with a

comparable energy in accelerated nuclei and leptons.

6.4 Comparison with other SNRs detected

by Fermi

HB 21 is not the only one SNR interacting with MCs detected by the Fermi

LAT. Here we briefly discuss HB 21 in comparison to other γ-ray SNRs in

order to see similarities and differences among them. The total luminosity of
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HB 21 above 100 MeV at a distance of 1.7 kpc is (3.3± 0.6)× 1034 erg s−1.

Other γ-ray-detected MM SNRs, such as W 44 and IC 443, have luminosities

of ∼ 1035 erg s−1 and associated cloud masses of > 104 M�. While the total

CO line emission along the line of sight to HB 21 indicates a large cloud

mass, this could be due to the Cygnus OB7 complex, which lies along the

line of sight at a similar velocity to HB 21, but at a distance of only 0.8 kpc,

between us and the SNR. It is therefore possible that the low luminosity

of HB 21 is due to the SNR currently encountering only a relatively small

reservoir of material.

Flat radio indices, as for HB 21, are observed for other γ-ray detected

SNRs known to be interacting with molecular clouds, such as IC 443 and

W 44. Leahy (2006) proposed two mechanisms to produce the observed flat

spectrum: ionization losses due to emission from regions of high density,

and low-frequency absorption by thermal electrons in the post-shock cooling

regions. Alternatively, Uchiyama et al. (2010) proposed that re-acceleration

takes place in the compressed cloud, resulting in a hardening of the spectrum

of existing accelerated particles. Though it is likely interacting with a less-

dense environment than HB 21, the latter model was shown to plausibly

explain radio and γ-ray emission from SNR S147 (Katsuta et al., 2012).

HB 21 shows a cutoff or break in the γ-ray spectrum, as shown in the

spectral analysis i section 5.2.5, mirroring that of the underlying particle

spectrum, which is typical of middle-aged SNRs detected by the LAT (e.g.

the Cygnus Loop, Katagiri et al. 2011, and W28, Abdo et al. 2010). This

is in agreement with the circumstantial evidence for HB 21 itself to be a

middle-aged/old remnant. Given the long timescales for radiative losses via

proton-proton collision, bremsstrahlung or synchrotron losses for GeV parti-

cles, it is unlikely that such spectral curvature is produced by radiative losses.
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Several mechanisms have been proposed, including runaway CRs illuminat-

ing nearby clouds (Gabici et al., 2009), the aforementioned re-acceleration

in highly-compressed shocks at the interaction sites (Uchiyama et al., 2010),

and magnetic damping of Alfven waves in a partially ionized medium that

leads to a break in the particle spectrum (Malkov et al., 2011). All these

mechanisms appear viable for the case of HB 21, and could produce different

particle distributions for electrons and protons remaining in the SNR. Given

the many shared similarities with other MM SNRs, HB 21 appears to be an

extension of this γ-ray class to lower luminosities.
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Chapter 7
Summary and future perspectives

SNRs are advocated to be the main accelerators of Galactic CRs. Proving

this hypothesis is of fundamental importance for modern astronomy and as-

trophysics to better understand the role of CRs in the interstellar medium.

One way to achieve this goal is through mwl observations of SNRs to under-

stand which are the mechanisms and processes giving rise to the observed

non-thermal emission. An interesting case is provided by SNRs interact-

ing with molecular clouds because the escaping particle accelerated by SN

shocks can interact with the surrounding material: their emission spectrum

can provide further information on the CR acceleration mechanism.

In my thesis, I performed the Fermi LAT analysis of the region around

HB 21, a MM SNR interacting with molecular clouds. I detected a significant

γ-ray emission (∼ 29σ) associated with the remnant. The emission is best

modeled by a disk centered at (l, b) = (88.◦75 ± 0.◦04,+4.◦65 ± 0.◦06), with

a radius r = 1.◦19 ± 0.◦06, with a systematic uncertainty on the position of

∼ 0.◦25 and on the radius of ∼ 0.◦24, so it is well-resolved by the LAT for

energies greater than 1 GeV. The γ-ray emission extends over the whole area

of the non-thermal radio shell, larger than the X-ray emitting thermal core.
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The emission in γ-rays may extend beyond the radio shell in a region rich of

interstellar matter in the northwestern part of the SNR.

Further, the brightest γ-ray emitting region coincides with known shocked

molecular clumps. Both results suggest that collisions of shock-accelerated

particles with interstellar matter are responsible for the observed γ-ray emis-

sion. No spectral variations across the γ-ray-emitting region that would

further support this hypothesis were detected with the current observations.

The spectrum is best modeled by a curved function, indicative of a cutoff

or break in the spectrum of the accelerated particles, typical of middle-aged

and old SNRs in a dense interstellar environment. The total γ-ray luminosity

of HB 21 above 100 MeV is estimated to be (3.3± 0.6)× 1034 erg s−1, fainter

than other SNRs interacting with molecular clouds detected by the LAT.

This can be explained by the lower mass of the molecular clouds supposed

to be interacting with the remnant.

Reichardt et al. (2012) recently reported a lower luminosity for HB 21.

We assume a distance of 1.7 kpc, based on the arguments of Byun et al.

(2006), while their work assumes a nearer distance of 0.8 kpc adopted in

numerous earlier works. Taking this difference into account, our values of

the 0.110 GeV flux and the luminosity of SNR HB 21 are in agreement.

Even considering statistical uncertainties only, we do not find any significant

evidence for spectral variations across the SNR, as suggested for cloud NW

and A in their work.

We complemented the γ-ray analysis by exploiting the WMAP 7 yr ob-

servations from 23 to 93 GHz, obtaining the first detections of HB 21 at these

energies.

By combining WMAP with lower-energies radio observations, we found

that the radio spectral index of HB 21 steepens significantly above 10 GHz.
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This spectral feature in the radio helps to constrain the relativistic electron

spectrum and the allowed physical parameters in a simple non-thermal radi-

ation models.

An IC origin of the γ-ray emission is disfavored because it would require

unrealistically low interstellar densities to prevent bremsstrahlung from dom-

inating. Decay of π0 due to nuclei interactions can reproduce the data well.

Bremsstrahlung and synchrotron emission from a single population of ener-

getic electrons cannot reproduce both the γ-ray and radio SEDs.

Based on the most likely values for the ISM densities over the volume

of the remnant, in the hadronic-dominated scenario, accelerated nuclei con-

tribute a total energy of ∼ 3 × 1049 erg. This is reduced to several times

1048 erg under a two-zone bremsstrahlung-dominated model, with a compa-

rable energy in leptonic CRs.

The energy densities of the accelerated particles are consistent with the

SNR paradigm, requiring SNRs to convert ∼ 1050 erg of the explosion energy

into non-thermal nuclei and electrons.

7.1 Future perspectives

In this thesis, I evaluated also the systematic uncertainties due to the limited

knowledge of the behavior of the interstellar emission model. Alternative

models and the method are developed in the Fermi collaboration and, in

this work and other articles of the Fermi collaboration, the new method is

tested. This is a first step along the First Fermi SNRs Catalog whose work

is in progress. It will collect all the SNRs detected by Fermi including also

for all reported sources their multi-wavelength behaviour, the morphological

analysis in γ-ray and their modeling.
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A deeper look into the physics of particle acceleration in SNRs will be

possible with the upcoming new generation of γ ray telescopes, most notably

the Cherenkov Telescope Array (CTA) (Acharya and et al, 2013). The in-

creased sensitivity of CTA is likely to lead to the discovery of a considerable

number of other SNRs that are in the process of accelerating CRs in our

Galaxy. The high angular resolution will allow us to measure the spectrum

of γ ray emission from different regions of the same SNR in order to achieve

a better description of the dependence of the acceleration process upon the

environment in which acceleration takes place.

As shown in our analysis, in some SNRs there is the presence of a spectral

break in the spectrum. Using data from Fermi and CTA, one can try to

explain the origin of these spectral breaks.

Another interesting feature to study is the evolution of the γ-ray spectrum

in function of the SNR environment and age: the presence of molecular clouds

or dense environment can affect the evolution of SNRs.
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Acronyms

ACD Anti-Coincidence Detector

Aeff effective area

BSPR Blind Search Pattern Recognition

CC Core Collapse

CSPR Calorimeter-Seeded Pettern Recognition

CAL Calorimeter

CMB Cosmic Microwave Background

CPF Charged Particles in the Field-of-View

CR cosmic ray

CSM circumstellar medium

CTA Cherenkov Telescope Array

DGE diffuse Galactic γ-ray emission

DM Dark Matter
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d.o.f. degrees of freedom

DSA diffusive shock acceleration

EA effective area

EGB extragalactic γ-ray background

FoM figure of merit

FoV Field of View

GCR Galactic CR

GBM Gamma-ray Burst Monitor

GRB Gamma-ray Burst

IACT Imaging Atmospheric Cherenkov Telescope

IEM interstellar emission model

IC Inverse Compton

IRF Instrument Response function

ISRF Interstellar radiation field

IR infrared

ISM Interstellar Medium

LAT Large Area Telescope

LK Likelihood

MC Monte Carlo
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MC molecular cloud

MHD magneto-hydrodynamic

MM mixed morphology

NLDSA nonlinear DSA

PC Parametric Correction

PMT photomultiplier Tube

PSF Point Spread Function

PWN Pulsar wind nebula

RMS root mean square

RSG red supergigant

RoI Region of Interest

SAA South Atlantic Anomaly

SED spectral energy distribution

SN supernova

SNR Supernova Remnant

SP Shower Profile

SRT Westerbork Synthesis Radio Telescope

SSD single-sided Silicon Strip Detectors

ST Science Tools
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TKR tracker

TS Test Statistics

UHECR ultra high energy cosmic ray

UIB unidentified background

WIMP Weakly Interacting Massive Particle

WLS wavelength shifting fibers
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