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Abstract

High-throughput assays are transforming the study of biology, and are generating a rich,
complex and diverse collection of high-dimensional data sets. Building systematic knowledge
from this data is a cumulative process, which requires analyses that integrate multiple sources,
studies, and technologies. The increased availability of ensembles of studies on related
clinical populations, assaying technologies, and genomic features poses two categories of
very important multi-study statistical components: 1) common factors shared across multiple
studies; 2) study-specific factors. To capture these two different quantities, in this thesis
we propose a novel class of factor analysis models, both under a frequentist and Bayesian
approach.

In the frequentist approach an ECM algorithm is provided to obtain the maximum
likelihood estimates. Moreover, we propose a Bayesian approach to apply the method to
settings with more variables than subjects. In modeling dependencies among many variables,
a sparse structure underlying the associations among genes is assumed.

Both methods allow to perform joint analysis of multiple high-throughput studies. The
results are helpful for combining multiple studies, identifying reproducible biology across
studies and interesting study-specific components, and removing idiosyncratic variation that
lacks cross-study reproducibility.





Abstract

Le analisi scientifiche su un alto numero di campioni (high-throughput assays) stanno
trasformando gli studi biologici. In particolare gli high-throughput assays generano una
ricca, complessa e varia collezione di dati a più dimensioni.

Estrarre informazioni significative in maniera sistematica da questo tipo di dati richiede
un processo progressivo che si basa sull’analisi simultanea di risorse, studi e tecnologie
differenti.

La crescente disponibilità di numerosi studi clinici su rilevanti gruppi, popolazioni e
diversi studi genetici genera due categorie: la prima, una categoria relativa ai fattori condivisi
da tutti gli studi ed una seconda, relativa a fattori specifici di ogni studio.

Per catturare queste due differenti categorie abbiamo proposto, nell’ambito di tale tesi,
una nuova classe di modellizzazione di analisi fattoriale che abbiamo sviluppato in un
approccio sia frequentista che Bayesiano.

Nell’approccio frequentista, è stato proposto un algoritmo ECM per la stima di massima
verosimiglianza dei parametri. Inoltre, in questa tesi, si è proposto un approccio Bayesiano per
adattare questo modello ad un contesto di più variabili che soggetti, p > n. Nel modellizzare
la dipendenza tra variabili, si è assunta una struttura sparsa per sottolineare le associazioni
tra i geni.

Entrambi i metodi hanno consentito di modellizzare i diversi studi. Inoltre, i risultati
hanno permesso di poter identificare un segnale biologico riproducibile e comune in tutti gli
studi, nonché ad eliminare quella parte di varianza che oscura questo segnale.
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Chapter 1

Introduction

1.1 Overview

This thesis deals with the issue of parameter estimation when a generalization of factor model
for high-dimensional biological data is entailed.

High-throughput assays are transforming the study of biology, and are generating a
rich, complex and diverse collection of high-dimensional data sets. Building systematic
knowledge from this data is a cumulative process, which requires analyses that integrate
multiple sources, studies, and technologies.

As a result of multiple studies, most components from high-throughput biology experi-
ments show variation arising both from biological and artifactual sources. Indeed, biological
differences include natural variations in different samples. Artifactual differences are related
to the different measurements or platforms in which gene expression data are collected
(Irizarry et al., 2003; Kerr, 2007; Shi et al., 2006). As noted in Garrett-Mayer et al. (2007),
the fact that the determinants of both technological and biological variation differ across
studies and laboratories implies that study-specific and laboratory-specific effects occur in
most biological data sets. Study-specific effects can be so large to cover the biological signal
under investigation for many genes (Aach et al., 2000).

While some biological features reappear across studies, genuine biological signal is more
likely than spurious signal to be reproducibly present in multiple studies.

The increased availability of ensembles of studies on related clinical populations, assaying
technologies, and genomic features poses two categories of very important multi-study
statistical questions: i) To what extent is biological signal reproducibly shared across multiple
studies? ii) How can this common signal be extracted? Furthermore, these questions need to
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be answered by considering the challenges of learning common biological features shared
among the studies and isolating the variation specific to each study.

1.2 Main contributions of the thesis

This work builds on extensive experience with multi-study analysis, including work on
Bayesian multi-study analysis (Dominici et al., 1997, 1999; Muller et al., 1999), integrative
correlation (Cope et al., 2014; Garrett-Mayer et al., 2007; Parmigiani et al., 2004), cross-study
differential expression (Scharpf et al., 2009a), multi-study gene set analysis (Tyekucheva
et al., 2011) and comparative meta-analysis (Riester et al., 2014; Waldron et al., 2014a).

This thesis aims at answering to both questions by extending previous literature ap-
proaches in two directions: frequentist analysis and Bayesian analysis. The focus is in
particular on gene expression measurements.

The structure of the thesis is as follows. Chapter 2 describes the type of data, the main
model frameworks introduced in literature to describe the data considered and the crucial
problem of distinguish the reproducible biological signal from the study-specific component.
Particular attention is on dimension reduction techniques, and factor analysis applied in
this field. Factor Analysis (FA) have been used in several gene expression studies. Among
others, Wang et al. (2011) used FA in gene expression, and Blum et al. (2010) adopted FA
for multiple testing developed by Friguet et al. (2009). Finally, Runcie and Mukherjee (2013)
used a sparse factor model by Bhattacharya and Dunson (2011).

In research applications, joint analyses of multiple genomic data sets have begun more
than a decade ago, they are now increasingly common and can be highly successful (Ciriello
et al. (2013); Gao et al. (2014); Hayes et al. (2006); Huttenhower et al. (2006); Pharoah et al.
(2013); Riester et al. (2014)). Yet, the formal investigation of the questions listed above in
high dimensions from a statistical standpoint is relatively new, and has been identified as a
critical need in several venues, including a recent NAS workshop on Statistical Challenges
in Assessing and Fostering the Reproducibility of Scientific Results (National Academy of
Sciences, 2015).

In Chapter 3 we propose a dimension-reduction approach that allows for joint analysis
of multiple studies, achieving the goal of capturing biological factors. To this end, we
propose a a generalized version of FA, able to handle multiple studies simultaneously. The
proposed approach allows to learn the common biological features shared among the studies,
identifying the unique variation present in each study. Chapter 3 is focused on the frequentist
approach, and an Expectation-Conditional Maximization (ECM) algorithm is proposed for
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parameter estimation. Several simulation studies are performed in order to assess properties
of such method.

Chapter 4 describes some applications of the method. The published data sets employed
are curated data collection for gene expression of patients with ovarian cancer (Ganzfried
et al., 2013). Two different applications are provided and it is shown how the proposed
method can identify the stable signal across multiple biology studies.

In Chapter 5 we propose a Bayesian approach to apply the method described in Chapter
3 to settings with more variables than subjects for which a frequentist approach is not
feasible. In modeling dependencies among many variables, a sparse, parsimonious structure
underlying the associations among genes is assumed. Indeed, the sparsity assumption implies
that within a set of genes, only a few are interacting (Tegner et al., 2003). Bayesian sparsity
model have been considered in genomic application and with different approaches: lasso
prior (Hans, 2009; Park and Casella, 2008), shrinkage prior (Bhattacharya and Dunson, 2011)
and spike and slab prior (Carvalho et al., 2008; George and McCulloch, 1993, 1997). There
we focus on the latter one. By means of simulated data we evaluate the performance of the
proposal method, an application to the ovarian cancer data sets is also included, illustrating
the usefulness of the Bayesian approach.

The most original contribution of the thesis is the attention given to the two distinct
components of variation in data, namely the part of communality across the studies related
to the genuine biological signal, and the study-specific part associated to the artifactual and
biological sources of variation. The key idea of the model is that the signal which shows such
stability is more likely to capture genuine biology. At the same time, the proposal enables a
more reliable identification of artifacts and thus facilitate more efficient experimental designs,
driving technological advances.





Chapter 2

Some statistical methods in genomic
applications

This chapter provides an introduction to the analysis of biological data and, in particular,
gene expression data. The methods described in this thesis can have many applications,
but we apply them to microarray gene expression. The chapter has been divided into three
sections. The first section provides basic concepts on microarrays and describes the basic
principles behind a microarray experiment. The second section deals with the representation
and extraction of information from microarray experiments in the context of data integration.
The third section addresses different methods for dimension reduction techniques in genomic
applications. Particular attention will be given to factor analysis (FA).

2.1 Microarray experiments

The analysis of high-dimensional biological data sets is related to functional genomics (Do
et al., 2006). A typical experiment of this kind amounts to observing the expression levels of
an extensive quantity of genes simultaneously, named gene expression microarray analysis
(Alberts, 2008).

Measurements of gene expression are crucial for biological understanding. Indeed, they
are relevant to understanding common and complex diseases, such as cancer, detecting
strategies to treat and prevent such diseases (Schulze and Downward, 2001). However, at
the same time, they need particular attention since the quantity of data generated from each
experiment is enormous and the biological signals of interest can be dominated by some sort
of errors (Speed, 2003).
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Most measurements from high-throughput experiments display variation arising from
both biological and artifactual sources, due for example to technological and laboratory-based
differences between studies.

For instance, biological differences include natural variations in different samples. On
the other side, technological and laboratory-based differences are associated with different
measurement laboratories or platforms in which gene expression data are collected (Irizarry
et al., 2003; Kerr, 2007; Shi et al., 2006). Indeed, several techniques are available for
measuring gene expression, and the data are currently collected on a diverse platform.

Microarray platforms are different from one another in some features that can influence
their precision and efficiency (Deshwar and Morris, 2014). Although the most modern
platforms (e.g., Affymetrix, Agilent, ABI, and Illumina) provide data of similar quality, they
need to be normalized in the correct way (Shi et al., 2006).

However, some variations and study-specific effects could remain and sometimes could
influence, if not included in analysis, the biological signal.

As noted in Garrett-Mayer et al. (2007), the fact that the determinants of both technologi-
cal and biological variation differ across studies and laboratories implies that study-specific
and laboratory-specific effects occur in most biological data sets. Study-specific effects can
be so large to cover the biological signal for many genes (Aach et al., 2000).

2.1.1 Ovarian cancer data

In this context, we analyze data related to ovarian cancer. As reported in Waldron et al.
(2014b), ovarian cancer is one of the most lethal cancer causing a large number of deaths
among women. It has been studied in numerous clinical investigations (Siegel et al., 2012).

Multiple databases of gene expression data offer the potential to identify sets of genes
predictive of cancer survival and of patient resistance to chemotherapy, using thousands of
samples from multiple laboratories. In order to develop reproducible biomarker discovery, a
data resource must be accurate and retain clinical variables of known importance as much as
possible.

We have chosen some publicly available ovarian cancer (OC) microarray gene expres-
sion studies (Ganzfried et al., 2013) included in the curatedOvarianData package in
Bioconductor (Gentleman et al., 2006). The package focuses on the study of the tumour
and provide information regards patient survival and clinical annotation. Other main factors
of interest included drug resistance, and the stage of OC.

The curatedOvarianData is a database of different studies and provide an optimal
microarray data resource for genomic analysis. The package has standardized gene expression
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studies and clinical data for 2970 ovarian cancer patients from 23 studies computed on 11
different platforms.

In the curatedOvarianData package, the problem of the multiple probe sets was solved
by setting the genes with multiple probe sets at the highest mean across all data sets. The
resulting data sets are then normalized.

Gene expression data are from public databases and provide information about platforms,
stage of patients and percents of patients diagnosed with Stage III or Stage IV OC.

In this context we have chosen four data sets. Table 2.1 provides an overview of the
studies with corresponding references.

Study Samples Platform Late Stagea (%) Reference
GSE9891 285 Affy U133Plus 2.0 85 Tothill et al. (2008)
GSE20565 140 Affy U133Plus 2.0 48 Meyniel et al. (2010)
GSE26712 195 Affy U133a 96 Bonome et al. (2008)

TCGA 578 Affy HT U133a 90 Network et al. (2011)

Table 2.1 Data sets: a only FIGO Stages III and IV

The total samples is n = 1198. For each data set the genes of interest in this research are
the ones in common across the studies.

2.2 Data integration

To increase the reliability and efficiency of biological investigations, it is critical to combine
data from several studies. As a result of multiple studies, some components can be found to
be related across studies, revealing interesting common features across different populations,
such as parameters that capture the relationship between genes and phenotypes.

However, as reported above, when considering multiple studies, most measurements from
high-throughput experiments display variation arising from both biological and artifactual
sources. Due to these challenges, the most critical step in cross-study analysis of gene
expression is to identify a subset of genes that is biologically reproducible across studies and
to more reliably remove idiosyncratic variation that lacks cross-study reproducibility.

The increased availability of ensembles of studies on related clinical populations, assaying
technologies, and genomic features gives rise to two important statistical questions: i) To
what extent is biological signal reproducibly shared across multiple studies? ii) How can
this common signal be extracted? Furthermore, these questions need to be answered by
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considering the challenges of learning common biological features shared among the studies
and isolating the variation specific to each study.

There are several natural approaches for combining information from microarray studies.
We will give a brief description of the three main ones.

2.2.1 Notation

Let us introduce some notation. We consider S studies, each with the same P genomic
variables. The generic study s has ns subjects and, for each subject, P-dimensional centered
data vector xis with i = 1, . . . ,ns.

2.2.2 Individual study analyses

The first approach is to compute, separately for each study, statistics that summarize the
relationship between each gene and the phenotype of interest. For example, one procedure is
to combine the studies using methodologies such as combination of p-values (Rhodes et al.,
2002). In this paper one-sided statistical tests are applied for the two null hypotheses, i.e. no
genes are overexpressed and no genes are underexpressed in the context of prostate cancer.

Instead, Li and Ghosh (2012) propose ‘assumption weighting’, a weighted hypothesis
testing was used for between-study variation.

Wang et al. (2004) introduce a Bayesian approach in order to integrate microarray data
on matched genes from three different studies.

Garrett-Mayer et al. (2008) provide simple expression measures in order to compare
different studies or platforms. They evaluate the “reliability” of gene expression across
studies. They explain that when it has been considered only one genomic study, it can be
hard to determine whether or not gene levels are “reliably” measured. There is the need to
compare the same gene expression levels across two studies measured on different platforms.
They are able to assess whether there is consistency by comparing the genes. If a gene varies
in all the platforms, there is consistency. Gene reliability is defined through a correlation
measure across studies. The integrative correlation (IC) is denoted by rss+1

p

rss+1
p =

∑
P
p=1,p ̸=p+1(ρsp(p+1)− ρ̄sp)(ρ(s+1)p(p+1)− ρ̄(s+1)p)√

∑
P
p=1,p̸=p+1(ρsp(p+1)− ρ̄sp)2 ∑

P
p=1,p̸=p+1(ρ(s+1)p(p+1)− ρ̄(s+1)p)

2
, (2.1)

where ρsp(p+1) is the correlation between genes p and p+1 in study s, and ρ̄sp is the average
correlation between gene p and all the other P genes. This gene-specific measure can be used
to detect which genes tend to be measured consistently across studies. Some genes showed
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negative or absent trends due to different gene signal across studies. This fact can be related
to, for example, artifacts of the experimental conditions. In this way Garrett-Mayer et al.
(2008) choose genes to be included in the analysis based on their reliability, and they could
compared the association between gene and phenotype.

Garrett-Mayer et al. (2008) amount to meta-analytic approach to analyze gene expression
data. They not combine the data of different studies, but instead perform comparative
analyses.

These methods and approaches define simple tools for the comparison and the combina-
tion of measures across two or more studies. In this approach, simple statistics are computed
separately for each study.

2.2.3 Cross-study normalization methods

At the extreme of study combination, there are cross-study normalization methods that
combine the sample measurements of each study into a single data set, in order to apply a
single-study analysis.

Shen et al. (2004) use a Bayesian mixture formulation, to merge and analyze four different
microarray studies to develop an inter-study "signature" in breast cancer. They combine
multiple studies on a common probability scale and determine a meta-signature associated
with breast cancer survival.

Hayes et al. (2006) analyze three diverse cohorts of patients with lung cancer using the
IC approach. Through the IC a subset of genes is selected, and clusters of genes define tumor
subtypes.

Johnson et al. (2007) propose a method for adjusting “batch effect”, i.e. differences due to
experimental conditions. Many components can cause batch variations, such as the different
platforms. The method proposed by Johnson et al. (2007) tries to solve the problem of batch
effect by adding a parameter, related to batch effect for gene p, in a regression model. Then,
they compare all the studies after adjusting for the batch effect.

Shabalin et al. (2008) develop another cross-platform method. Let define the platform
a = 1, . . . ,A of each study. In their approach, the observed value xpsa is a scaled block mean
plus noise. The block mean is constant for a determined set of genes and sample values, and
it is the same in each platform a. The slope and the variance of the noise depend on the gene
p and the platform a. More precisely, Shabalin et al. (2008) assume that

xpsa = Aα⋆(p),β ⋆
a (s),abpa + cpa +σpaεpsa. (2.2)



10 Some statistical methods in genomic applications

The functions α⋆ and β ⋆
a with a = 1, . . . ,A, define the determined sets of genes and

samples, respectively. The numbers Aα⋆(p),β ⋆
a (s),a are the block means, while bpa and cpa

represent sensitivity and offset parameters, respectively, that are specific to each gene p and
platform a. In short, their method is based on the concept that there exist a group structure
across studies defined by a common and constant gene profile.

2.2.4 Joint modeling

A third approach, intermediate between the two above, is to integrate biological information
from different studies using a joint model. In this approach, only selected common features
can be selected across studies. For example, these features could be parameters that capture
the relationship between genes and phenotypes. Several methods have followed this approach.

Conlon et al. (2007) perform a Bayesian meta-analysis model. In their approach, the
standardized expression means are not the same in each study, but there is a study-specific
mean from a common population distribution. Inter-study variability is studied as a parameter
in the model.

A hierarchical Bayesian model is performed by Scharpf et al. (2009b) to identify genes
that show differential expression between two phenotypes.

A Bayesian mixture model is assumed in Xie et al. (2010).

In this thesis we adopt the latter, intermediate approach to integrate the diverse genomic
studies, i.e. joint models, and we propose dimension-reduction tools that allow for joint
analysis of multiple studies.

In the next section we show some different dimension reduction techniques and their
practical consequences.

2.3 Factor models for biological data

In biological applications with large amount of data, dimension reduction techniques are
required in order to summarize the information of interest and to capture the intrinsic
biological characteristic or signal of the studies.

In the dimension reduction methods, the “best” way of reducing the dimension of data
matrix is crucial. Indeed, if they are not used carefully there can be an enormous loss of
information (Härdle and Simar, 2003).

Many methods are considered in the genomic field. Principal Component Analysis (PCA)
were applied in genome-wide association studies (Hirschhorn and Daly, 2005; Price et al.,
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2006). A very widely approach, a generalization of (PCA), is the Co-Inertia Analysis (CIA)
(Culhane et al., 2003; Meng et al., 2014). CIA finds, as the PCA, the “best” axis, i.e. the axis
that maximizes the variance of the observed variables through its spectral decomposition
after transforming the data into a table of chi-square values. The chi-square values give the
associations between each gene or variables and each array.

We develop methods that are generalized version of Factor Analysis (FA), able to handle
multiple studies simultaneously. In the next section we will describe the FA in more details
and its properties in biological data.

In order to describe the application of FA in the biological context, we give a brief
description of FA (Mulaik, 2009, Section 8), its distributional properties and some modeling
choices.

2.3.1 Factor analysis

We consider S studies each with the same P genomic variables. The generic study s has
ns subjects and centered data matrix xps, p = 1, . . . ,P. In the standard FA, the observed
variables in study s are decomposed into Js factors related to the source of study-specific
variation.

Factor loadings relate linearly the observed variables to the latent factors. In particular,
let l js be a study-specific factor and λ p js, j = 1, . . . ,Js be its loadings. The FA assumes that
the vector xps for a generic subject i and for centered variable p is decomposed as:

xps =
Js

∑
j=1

λ p jsl js + eps, (2.3)

where eps is a Gaussian error term with covariance matrix Ψs = diag(ψ1s, . . . ,ψps).

In order to extend the notation to the matrix form, let xis the p×1 observation vector,
and let lis, i = 1, . . . ,ns the Js ×1 latent random specific vector, and Ωs, s = 1, . . . ,S be the
P× Js corresponding factor loading matrix, where Js < p.

Equation (2.3) can be rewritten as:

xis = Ωslis + eis i = 1, . . . ,ns , (2.4)

where eis is a Gaussian error term. In particular, we assume that the marginal distribution
of lis is multivariate normal with mean 0 and covariance matrix I js , where I indicates the
identity matrix.
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The p×1 random error vector es has a multivariate normal distribution with mean 0 and
covariance matrix Ψs with Ψs = diag(ψ2

s1
, . . . ,ψ2

sp
).

FA aims at explaining the dependence structure among high-dimensional observations
through a decomposition of a P×P covariance matrix Σs given by

Σs = ΩsΩ
⊤
s +Ψs . (2.5)

Given Ωs and Ψs, the expected value of the factors for the study s can be computed
through the linear projection

E[lis|xis] = Ω
⊤
s Σ

−1
s xis,

with i = 1, . . . ,ns. These properties imply the so called local independence, namely:

Cov(Xs|ls) = Ψs.

This means that, given the latent variables, the manifest variables are conditionally
independent. The conditional distribution of Xs is equal to:

Xs|ls ∼ Np(Ωsls,Ψs)

Figure 2.1 A graphical representation of the factor analysis performed in one study
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If we conduct only one FA in one study, s, a possible schematic schematic representation
is that provided in Figure 2.1. The heatmap 2.1 provides a graphical representation of
the factor loadings, each rectangle is a factor loadings estimation. The darker rectangle
corresponds to the the higher influence of latent factor on the genes or observed variables.
Consequently, in this graphical representation we could underline pathways highly expressed
genes.

To obtain a model free from identification problems, FA must be further constrained.

A specification of Ωs and Ψs generates one and only one Σs; conversely different Ωs

can generate the same Σs. Indeed, if Ωs is replaced by Ω
∗
s = ΩsTs, where Ts is a square

orthogonal matrix ( TsT⊤
s = T⊤

s Ts = I), we obtain

Ω
∗
s (Ω

∗
s )

⊤ = ΩsTsT⊤
s Ω

⊤
s . (2.6)

From these properties follow that

Σs = Ω
∗
s (Ω

∗
s )

⊤+Ψs = ΩsΩ
⊤
s +Ψs.

Therefore, Σs is not uniquely identified. There are many ways of identifying the model by
imposing constraints on Ωs, including constraints to orthogonal Ωs matrices and constraints
such that Ω

⊤
s Σ

−1
s Ωs is diagonal. The alternative preferred here is to constrain so that Ωs is a

block lower triangular matrix (Geweke and Zhou, 1996; Lopes and West, 2004), showed in
Figure 2.2.

Notwithstanding this condition is largely used in classical FA settings, it should be notice
that it induces an order-dependence among the variables (Frühwirth-Schnatter and Lopes,
2010). As stressed in Carvalho et al. (2008), the choice of the first Js variables is an important
modeling decision, to be made with some care.

2.3.2 Choice of the number of factors

A crucial step in the explorative FA is the choice of the appropriate number of factors
(Guttman, 1954). There are many approaches for that choice. The latent factors explain
the correlation between the manifest variables, so that it is important to carefully select
their number. There are some approaches using the spectral decomposition of Σs and other
approaches based on suitable tests.

Guttman (1954) made several proposals. In particular, he showed that, in a situation of
perfect fit of the model to the observed data, the minimum number of factors is equal to the
number of the eigenvalues of the correlation matrix greater than one. This quantity is called
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Figure 2.2 A schematic representation of the block lower triangular matrix.

“inferior boundary of Guttman”. It is a very widely used rule, but often it is inadequate, since
it is efficient only with small samples.

Another procedures is the Scree plot, or Cattell’s scree test (Cattell, 1966). It is a
procedure based on the eigenvalues represented in a plot. When the eingenvalue decreases,
we stop to include further factors in the model.

Horn (1965) proposed parallel analysis (PA), a method based on simulation to determine
the number of factors to retain. PA compares the observed eigenvalues extracted from the
correlation matrix to be analyzed with those obtained from uncorrelated normal variables.
From a computational point of view, PA uses a Monte Carlo simulation, since “expected”
eigenvalues are obtained by simulating normal random samples that parallel the observed
data in terms of sample size and number of variables. A latent factor is considered significant
if the associated eigenvalue is larger than the mean of those obtained from the random
uncorrelated data. Various studies indicate that PA is an appropriate method to determine the
number of factors (Humphreys and Montanelli, 1975). Zwick and Velicer (1986) found that,
among the methods analyzed, PA is the most accurate.
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These methods are explorative in nature but further analyses, in some context and
especially with the presence of large amount of data, need to be done.

More formal analyses may be based on some tests on the model fit, such as the likelihood
ratio test, see Mulaik (2009, Section 8.3.5) for some details.

2.3.3 Factor analysis in the genomic field

Let consider now s = 1, . . . ,S studies as in Figure 2.3.

Figure 2.3 A schematic representation of the factor analysis performed in different studies

Factor analysis is largely used in multiple gene expression studies. Wang et al. (2011)
use FA to obtain a unified gene expression measure from multiple platforms. Blum et al.
(2010) use FA for multiple testing by Friguet et al. (2009) to characterize simple patterns of
heterogeneity in gene expression data sets. And, finally, Runcie and Mukherjee (2013) use
the sparse factor model by Bhattacharya and Dunson (2011) to capture subsets of important
biological factors that control the variation in high-dimensional phenotypes.
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The standard FA, given in equation (2.3), is performed in the first two studies in Table
2.1, Tothill et al. (2008) and Meyniel et al. (2010).

For each data set, the Immune System pathway is analyzed. The Immune System is of
particular interest, as knowledge gained drives the development of targeted therapy (such
as new antibody therapies) and tumor marker-based diagnostic tests (Méhes et al., 2001).
For each study, the Immune System genes of interest are only those in common across the
various studies.
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Figure 2.4 Heatmap of the factor loadings obtained performing a separated factor analysis in
the studies GSE9891 and GSE20565 as in Table 2.1

The heatmap in Figure 2.4 shows the estimated factor loadings, Ω1 = {λ11,λ21,λ31,λ41,

λ51,λ61} for the GSE9891 study and Ω2 = {λ12,λ22,λ32,λ42, λ52,λ62,λ72} for the GSE20565
study, obtained by performing a separated FA in each study. Each column λis is thus the ith

loading vector of the sth study.
Figure 2.4 suggests that there are loading vectors in each study that exhibit a common

pattern. This point is further explored in Figure 2.5, obtained starting from the cross-
study pairwise correlation of some loading vectors, Ω1 = {λ11,λ21,λ31,λ41,λ51,λ61} for the
GSE9891 study and Ω2 = {λ12,λ22,λ32,λ42,λ52,λ62,λ72} for the GSE20565 study. We note
that taking the cross-study pairwise correlation is meaningful since the same variables or
genes are considered in each study. In Figure 2.5 darker lines denote larger correlations (in
absolute value) compared to lighter ones, so that three of the loading vectors of the GSE9891
study are strongly correlated with four corresponding factors in the GSE20565 study.
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GSE9891

λ11 λ21 λ31 λ41 λ51 λ61
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λ12 λ22 λ32 λ42 λ52 λ62 λ72
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0.4-0.6
0.2-0.4

Figure 2.5 Graphical representation of the absolute value of correlations of the specific factor
loadings obtained with factor analysis. Correlations smaller than .25 are not shown.

Highly correlated loading vectors are more likely to represent common factors, as they
assign factor loadings that have similar pattern and interpretation across studies. On the other
hand, some loading vector of GSE9891 exhibit no correlation with any loading vector of
GSE20565 (e.g. λ41). These loadings are then related to the uniqueness of the specific study.
From a statistical perspective, it is important to focus on the common features shared among
the studies, and on the connection with the biological signal. Then, a secondary important
goal is the interpretation of study-specific variations that are only present in a single data set.

In order to meet the challenge of integrating multiple studies, we develop a generalized
version of FA. The rest of this thesis will be devoted to such generalization.





Chapter 3

Multi-study factor model

In this chapter, we develop and study the multi-study factor model. In Section 3.1 we give a
general description of the method, and why such analysis may be useful for genomic data.
Furthermore, we introduce the model and the main assumptions in Section 3.2. Then we
develop an estimation algorithm in Section 3.3 and we study the features and behavior of the
proposed algorithm by means of some simulation study in Section 3.4.

3.1 Methods

As already surveyed in Chapter 2, gaining knowledge from high-dimensional studies is a
cumulative process that requires integration of multiple, somewhat diverse studies, and relies
critically on methods of analysis.

The methodology proposed here has three main goals. First, we combine multiple studies
to identify common factors that are consistent across the studies. Second, we identify an
additional variability component, specific of single studies, that is captured by study-specific
latent factors. Third, the analysis of study-specific latent factors allow to identify possible
idiosyncratic variation that lacks cross-study reproducibility.

Indeed, the model allows for a residual component, defined for each study and for each
variable.

While the thesis is focused on genomic applications, the methods developed here can be
applied to other situations where similarities and differences are warranted across multiple
data sets.

In biological context, the approach proposed in this work can be applied to a large
and different scale of studies. These studies may be microarray/ gene expression RNA-seq,
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genome-wide association study (GWAS), or Electronic Medical Record (EMR) from different
sources or systems.

Moreover, our tools enable a more reliable identification of artifacts and thus facilitate
more efficient experimental designs and guide technological advances.

3.2 The multi-study factor model

In the social science literature, there is an extensive amount of methods developed for factor
structures shared among different groups, forming the body of multigroup factor analysis
methods; see, among many others, Jöreskog (1971); Meredith (1993); Thurstone (1931). Such
large class of methods are generally focused on exploring measurement invariance among
different groups, that typically results in testing whether the data support the hypothesis of
a common loading matrix across groups. Here the emphasis is different, and even though
there are some mathematical features in common with the models of multigroup FA, the
existence of some study-specific factor loadings is always assumed, with equality assumed
across studies only for a further set of loadings. The details are given as follows.

The Multi-study Factor Analysis (MFA) model proposed here can handle multiple studies,
and allows to identify the common biological features shared among the studies, isolating
the unique variation present in each study. The observed variables in study s are decomposed
into K factors shared with the other studies, and Js factors reflecting its unique sources of
variation. Factor loadings relate linearly the observed variables to the latent factors.

Let fk be a common factor, and φkp, k = 1, . . . ,K be its loadings; also let l js be a study-
specific factor and λp js, j = 1, . . . ,Js be its loadings. The MFA assumes that the response
xps for a generic subject i for variable p is decomposed as:

xps =
K

∑
k=1

φpk fk +
Js

∑
j=1

λp jsl js + eps, (3.1)

where eps is the Gaussian error term.

We extend the notation in the matrix form included also the index i for the subject. Let
fi be the common factor, and Φ be its P×K common factor loading matrix and, moreover,
let lis be the study-specific factor with i = 1, . . . ,ns and Λs, s = 1, . . . ,S be its P× Js specific
factor loading matrix. MFA assumes that the P-dimensional centered response xis can be
written as

xis = Φfi +Λslis + eis , (3.2)

where eis is the Gaussian error term.
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In MFA, the study s presents ns subjects, P genomic variables and K + Js factors. We
further assume that the marginal distribution of lis is multivariate normal with mean vector
0 and covariance matrix I js , and the marginal distribution of fi is multivariate normal with
mean vector 0 and covariance matrix Ik, where I indicates the identity matrix. Furthermore,
the p×1 random error vector eis has a multivariate normal distribution with mean vector 0
and covariance matrix Ψs with Ψs = diag(ψ2

s1
, . . . ,ψ2

sp
). As a result, the marginal distribution

of xis is multivariate normal with mean vector 0 and covariance matrix

Σs = ΦΦ
⊤+ΛsΛ

⊤
s +Ψs. (3.3)

Figure 3.1 An illustrative example

A graphical representation of the results of model (3.2) is given in Figure 3.1. Our model
is able to capture the genuine common biological features observed in multiple studies,
identical for each study, and isolating the artifactual and biological sources of variation
unique for each study.
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A key consequence of the assumptions of model (3.2) is that the covariance matrix Σs

decomposes as 3.3, with the three terms reflecting the variance of the common factors, the
variance of the study-specific factors, and the variance of the errors.

3.2.1 Some distributional properties

The fundamental assumptions of the MFA have already been given but here more details are
provided. We focus here on a given subject, dropping the i index.

The first relevant implication implies a structure for the variance of a manifest variables,
namely

Var(xps) = E(xps −µps)
2 = φ

2
p1E( f 2

1 )+ · · ·+φ
2
pKE( f 2

K)+

+ λ
2
p1sE(l

2
1s)+ · · ·+λ

2
p1sE(l

2
1s)+E(e2

ps) =

= φ
2
p1 + · · ·+φ

2
pK +λ

2
p1s + · · ·+λ

2
p1sE(l

2
1s)+ψps = (3.4)

=
K

∑
k=1

φ
2
pk +

Js

∑
j=1

λ
2
p js +ψps.

The variance of xps is thus composed of three parts. The first, ∑
K
k=1 φ 2

pk, arises from what is
common to all the studies. We called it study commonality. The second component, ∑

Js
j=1 λ 2

p js,
arises from what is common to all xss and called it study specific. The complementary part,
ψps, is the variance specific to that particular xps.

The covariance between xps and xts, due to the previous assumptions, is equal to

Cov(xps,xts) = E(xps −µps)(xts −µts) =
K

∑
k=1

K

∑
h=1

φpkφthE( fk fh)+

+
Js

∑
j=1

Js

∑
i=1

λp jsλtisE(l jslis)+E(epsets)+
K

∑
k=1

Js

∑
i=1

φpkλtisE( fklis)+

+
K

∑
k=1

φpkE( fket)+
Js

∑
j=1

K

∑
h=1

λp jsφthE(l js fh)+
Js

∑
j=1

λp jsE(l jset)+ (3.5)

+
K

∑
h=1

φthE(eps fh)+
Js

∑
i=1

λtisE(epslis) =

=
K

∑
k=1

φpkφtk +
Js

∑
j=1

λp jsλt js.
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The covariance between the pth variable and the kth common latent factors is equal to

Cov(xps, fk) =
K

∑
h=1

φphE( fh fk) = φpk, (3.6)

and the covariance between the pth variable and the jth specific latent factors is equal to

Cov(xps, l js) =
Js

∑
i=1

λpiE(lisl js) = λp j. (3.7)

The (3.4-3.7) equations are particularly important. The (3.4) equation highlights that the
covariance between two manifest variables, xps and xts, p, t = 1, . . . ,P, is due to only the
common and specific factors, i.e. the common factors shared between the studies and the
specific factors shared between the variables in the study s. Moreover, the factor loadings,
common and specific, can be explained as the covariance between the manifest variables and
the latent factors, common and specific, in the (3.5), (3.6) and (3.7) equations.

Given Φ, Λs and Ψs, the expected value of the specific factor for the study s is given by
the linear projection

E[lis|xis] = Λ
t
sΣ

−1
s xis,

with i = 1, . . . ,ns. In the same way, the conditional expected value of the common factors
given x1s, . . . ,xnss is equal to

E[fi|xis] = Φ
t
Σ
−1
s xis.

The conditional expected values result from the joint normality of data, common and
specific factors

 Xs

f
ls

∼ N


 0

0
0

 ,
 Σs Φ Λs

Φ
t IK 0

Λ
t
s 0 IJs


 .

The above distribution implies the local independence property, namely

Cov(Xs|f, ls) = Ψs.

This means that, for fixed the common and specific latent variables, the manifest variables
are conditionally independent. The conditional distribution of xis is equal to

xis|fi, lis ∼ Np(Φfi +Λslis,Ψs).
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This result is required for fitting the model by the Expectation-Maximization (EM) algorithm,
as exposed in what follows.

Notice that, given the observed variable xis, the common factor and the specific factor are
not independent so that

Cov[lis, fi|xis] = Φ
T
Σ
−1
s Λs.

The method proposed can be applied to many settings when the aim is to isolate com-
monalities and differences across different groups, population or studies. Here the focus is
on the biological signal shared among the studies, removing study-specific features related to
idiosyncratic error. This is only one of the applications of the MFA model. There might be
other applications where the goal is to capture some study-specific features of interest and,
instead, remove some common factors shared among the studies. Other applications may
focus on capturing both common and specific factors, without removing any of them.

3.2.2 Set of identifiability conditions

To obtain an identifiable model, the MFA model must be further constrained to avoid
orthogonal rotation indeterminacy, similarly to the classic FA model. Lack of identifiability
can be simply assessed by considering the model for a subject in the sth study. Let Ωs =

[Φ,Λs] be the P× (K + Js) loading matrix for the sth study. If we define Ω
∗
s = ΩsQs, where

Qs is a square orthogonal matrix with (K + Js) rows, it readily follows that Ω
∗
s (Ω

∗
s )

⊤ =

ΩsQsQ⊤
s Ω

⊤
s = ΩsΩ

⊤
s , so that

Σs = Ω
∗
s (Ω

∗
s )

⊤+Ψs = ΩsΩ
⊤
s +Ψs ,

and Σs is not uniquely identified.

The standard factor model (2.4) identifies the parameters by imposing constraints on the
matrix of factor loadings. One possibility often used in practice is to take Ωs in (2.4) as being
a block lower triangular matrix (Geweke and Zhou, 1996; Lopes and West, 2004).

Here we adapt this approach to the MFA model, and specify Ωs = [Φ,Λs] to be block
lower triangular, as illustrated in Figure 3.2. With note that in such choice the matrices Φ

and Λs are not interchangeable, and the number of elements of Λs set to zero is larger than
the corresponding number for Φ.

The matrix representation of Ωs is then
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Ωs =



φ11 0 0 · · · 0 0 · · · 0
φ21 φ22 0 · · · 0 0 · · · 0
φ31 φ32 φ33 · · · 0 0 · · · 0

...
...

... . . . ...
...

...
...

φk1 φk2 φk3 · · · φkk 0 · · · 0
φ(k+1)1 φ(k+1)2 φ(k+1)3 · · · φ(k+1)k λ11s · · · 0

...
...

...
...

...
... . . . ...

φ j1 φ j2 φ j3 · · · φ jk λ j1s · · · λ j js
...

...
...

...
...

...
...

...
φp1 φp2 φp3 · · · φpk λp1s · · · λp js



.

Like in the standard FA models, assuming a block lower triangular form for Ωs resolves
the orthogonal rotation indeterminacy, for the same reason exposed in Geweke and Zhou
(1996, pp. 565-566). There is residual labeling issue, as we can change the sign simultane-
ously to all the elements of the loading matrices and to all the latent factors without changing
the model. This could be fixed by constraining the sign of a subset of loadings, but for
maximum likelihood estimation of the model parameters this issue is largely inconsequential,
as will be commented on later.

After assuming a suitable choice for Ωs, it is important to note that the total number of
elements in the sample covariance matrix Cxsxs for the sth study must be less or equal to the
free parameters in the covariance matrix Σs, implying that the following set of S conditions
must hold

P(K + Js)+P− (K + Js)(K + Js −1)
2

≤ 1
2

P(P+1) , s = 1, . . . ,S .

This provides an upper bound on the number of the total latent dimension, common plus
specific (K + Js)

P = 6 −→ K + Js ≤ 3

P = 12 −→ K + Js ≤ 7

P = 20 −→ K + Js ≤ 14.

In MFA, we estimate the common and study-specific factor loadings by considering the
constraints described above.
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Figure 3.2 Construction of Ωs.

3.3 Maximum likelihood estimation

The parameters to be estimated in the MFA consist of θ = (Φ,Λs,Ψs)
⊤, as for notational

simplicity in both (2.4) and (3.2) we assume that the observed variables in each study have
been centered at the sample means.

Consequently, the marginal distribution of xis given Φ,Λs,Ψs is multivariate normal with
mean vector 0 and covariance matrix Σs = ΦΦ

⊤+ΛsΛ
⊤
s +Ψs. The log-likelihood function

corresponding to the MFA assumptions is given by

ℓ(θ) = log
S

∏
s=1

ns

∏
i=1

p(xis|θ) =
S

∑
s=1

{
−ns

2
log |Σs|−

ns

2
tr(Σ−1

s Cxsxs)
}
,

where Cxsxs is the sample covariance matrix for the sth study.
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In order to maximize ℓ(θ), we equate to zero its partial derivatives with respect to Φ, Λs,
and Ψs. With a certain amount of algebra it is found that the score function for the specific
factor loadings is

∂

∂Λs
ℓ(θ) =−ns

(
Λ
⊤
s Σ

−1
s −Λ

⊤
s Σ

−1
s CxsxsΣ

−1
s

)
, (3.8)

whereas, for the common factor loadings is

∂

∂Φ
ℓ(θ) =

S

∑
s=1

{
−ns

(
Φ

⊤
Σ
−1
s −Φ

⊤
Σ
−1
s CxsxsΣ

−1
s

)}
, (3.9)

and for the covariance matrix of the error term is

∂

∂Ψs
ℓ(θ) =−ns

2
(Σs −ΣsCxsxsΣs) . (3.10)

In the following, we compute the Maximum Likelihood Estimate (MLE) by the Expecta-
tion Conditional Maximization (ECM) algorithm.

3.3.1 Computation of MLE using the ECM algorithm

The Expectation-Maximization (EM) algorithm is a standard technique to compute maximum
likelihood (ML) estimates, especially suitable for the context of missing data problems.

Maximum likelihood of the MFA can be conceptualized as MLE in a multivariate normal
model with missing data. Indeed, in MFA the observed variables are influenced by two
different latent components, namely the common latent component, through Φ, and the
specific latent component, through Λs.

The EM algorithm (Dempster et al., 1977; Rubin and Thayer, 1982) compute the maxi-
mum likelihood estimations treating the latent variables, i.e. f and ls, as observed variables.

Choosing some starting values for all the parameters, we need to write down the complete
log-likelihood of (xis, fi, lis) for i = 1, . . .ns given the parameters θ = (Φ,Λs,Ψs). If f and ls
were observed, the log-likelihood would be

lc(θ) =
S

∑
s=1

{
−ns

2
log |Ψs|−

1
2

ns

∑
i=1

(xis −Φfi −Λslis)⊤Ψ
−1
s (3.11)

(xis −Φfi −Λslis)−
1
2

fif⊤i − 1
2

lisl⊤is

}
.
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More in details, the complete log-likelihood is

lc(θ) =
S

∑
s=1

{
−ns

2
log |Ψs|−

1
2

ns

∑
i=1

(xis −Φfi −Λslis)⊤Ψ
−1
s

(xis −Φfi −Λslis)−
1
2

fif⊤i − 1
2

lisl⊤is

}
=

S

∑
s=1

{
−ns

2
log |Ψs|−

1
2

ns

∑
i=1

(xis −Φfi −Λslis)⊤Ψ
−1
s (xis −Φfi −Λslis)

}

=
S

∑
s=1

{
−ns

2
log |Ψs|−

ns

2
tr

(
Ψ

−1
s

∑
ns
i=1 (xis −Φfi −Λslis)⊤

ns
(3.12)

(xis −Φfi −Λslis)
ns

)}

=
S

∑
s=1

−ns

2
log |Ψs|−

ns

2
tr

Ψ
−1
s

∑
ns
i

(
xisx⊤is +Φfif⊤i Φ

⊤+Λslisl⊤is Λ
⊤
s

ns

−2xisf⊤i Φ
⊤−2xisl⊤is Λ

⊤
s +2Φfil⊤is Λ

⊤
s )

ns

)}
.

To find the maximum likelihood estimations, the EM algorithm uses the complete log-
likelihood (3.12).

There are two steps in each cycle of the EM algorithm. First, at the E step of the tth

iteration, we find the expectation of lc(θ) by integrating over the latent variables fi and lis
conditional distributions, with the parameter θ held fixed at the value θ t−1.

E {lc(θ)|xis,θ t−1}= E

[
S

∑
s=1

ns

∑
i=1

log{p(xisfilis|θ)p(fi|θ)p(lis|θ)})|xis,θ t−1

]
.

The second step of the EM algorithm, the M-step, requires to maximize the expected
log-likelihood, and such maximization yields the next value θt of the parameter

∂E [lc(θ)|xis,θ t−1]

∂θ
= 0.

Using the new value we can then proceed to the next t +1 iteration.

EM algorithms have two main properties (Dempster et al., 1977). First, each EM iteration
increases the log-likelihood. Second, it converges to a local maximum of the log-likelihood.

In some contexts, handling the complete data could be complex. Indeed, finding a
maximum of the log-likelihood especially with many parameters can be hard. A trivial
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approach, generally, consists in dividing a large problem into several smaller ones (McLachlan
and Krishnan, 2007, Section 5.2, p. 160). With many parameters, we could consider some
parameters as known, and estimate the remaining ones.

This is the main idea of the ECM algorithm where the M-step of the EM algorithm
is replaced by some conditional M-steps in which each step maximizes one parameter
conditional to the remaining ones held fixed at their previous values.

The ECM algorithm has the same important properties of convergence of the EM algo-
rithm (McLachlan and Krishnan, 2007, Section 1.7, p. 28).

E-step

As we saw from equation (3.12), finding the expectation of lc(θ) given xis for each s= 1, . . . ,S
and θ t−1 requires finding the conditional expectation of the following quantities

Cxsxs =
∑

ns
i=1 xisx⊤is

ns
, Clsls =

∑
ns
i=1 lisl⊤is

ns
,

Cxsls =
∑

ns
i=1 xisl⊤is

ns
, C f f =

∑
ns
i=1 fif⊤i

ns
,

Cxs f =
∑

ns
i=1 xisf⊤

ns
, C f ls =

∑
ns
i=1 fil⊤si

ns
.

For each quantity defined above we compute the conditional expectation given the
parameters and the observed data:

Txsxs = E [Cxsxs|xis,θ t−1] = Cxsxs, (3.13)

Txsls = E [Cxsls|xis,θ t−1] = Cxsxsδ
⊤
s ,

Txs f = E [Cxsf|xis,θ t−1] = Cxsxsδ
⊤,

Tlsls = E [Clsls|xis,θ t−1] = δ sCxsxsδ
⊤
s +∆s,

T f f = E [Cff|xis,θ t−1] = δCxsxsδ
⊤+∆,

T f ls = E [Cfls|xis,θ t−1] = δCxsxsδ
⊤
s +Cov[lis, fi|xis,θ t−1],

where

δ = Φ
⊤

Σ
−1
s , (3.14)

δ s = Λ
⊤
s Σ

−1
s ,

∆ = Var[fi|xis] = Ik −Φ
⊤

Σ
−1
s Φ,

∆s = Var[lis|xis] = Ijs −Λ
⊤
s Σ

−1
s Λs .
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CM-step

The CM-step of the ECM algorithm maximizes the expected log-likelihood to find the
estimate of a parameter conditional to the other parameters found at the previous steps,
lc(θ (t+1)|θ (t)). In our case θ = {Φ,Λs,Ψs}, so the CM update is then developed in three
steps:

1. CM1 starts with the update of the error covariance matrix Ψs keeping the other
parameters at their initial values

Ψ
new
s = diag

(
Cxsxs +ΦTffΦ

⊤+ΛsTlslsΛ
⊤
s −2TxsfΛ

⊤
s (3.15)

− 2TxslsΛ
⊤
s +2ΦT f lsΛ

⊤
s

)
.

2. CM2 updates Φ keeping Λs at the initial value and Ψs at the CM1 value

vec(Φnew) =
S

∑
s=1

(
T⊤

f f ⊗nsΨ
−1new
s

)
(3.16)

vec
(

nsΨ
−1new
s Txs f −nsΨ

−1new
s ΛsT⊤

f ls

)
,

where ⊗ is the Kronecker product, vec is the vec operator and the linear equation is
solved by the Lyapunov Equation, see for example Van Loan (2000).

3. CM3 updates Λs keeping Φ at the CM2 value and Ψs at their CM1 value

Λ
new
s =

(
Txsls −Φ

newT f ls

)(
Tlsls

)−1
. (3.17)

Stopping Rule

It is really important to stop the algorithm when it arrives at convergence. The stopping
criterion usually adopted with the EM algorithm is in terms of either the size of the relative
change in the parameter estimates or the log-likelihood. One example is provided by Zhao
et al. (2008).

For notation simplicity, let lc(θ (t+1)) = l(t+1) be the complete log-likelihood obtained at
(t +1) iteration. Zhao et al. (2008) stop the EM algorithm if

l(t+1)− l(t) < tol ,
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or t > Kmax with tol = 10−6 and the maximal number of iteration, Kmax = 5000.

Instead, Böhning et al. (1994) exploit Aitken’s acceleration procedure, (McLachlan and
Krishnan, 2007, Section 4.9, p. 142). This is the rule adopted here. It is applicable in the
case where the sequence of log likelihood values

{
l(t)
}

linearly converges to a value l⋆.
Under this assumption,

l(t+1)
A = l(t)+

1
1− c(t)

(l(t+1)− l(t)) ,

where c(t) = (l(t+1)− l(t))/(l(t)− l(t−1)). The ECM can be stopped if

|l(t+1)
A − l(t)A |< tol .

3.4 Simulation studies

Some simulation experiments are designed to evaluate the ECM algorithm performances in
estimating the MFA model parameters, and to assess the strategy for selecting the dimension
of the latent factors. For the latter task, the following procedure is proposed. Given some
data sets composed by S studies, the first step is to determine the total latent dimension for
each study. For the MFA model, the latter is defined as

Ts = K + Js . (3.18)

The total latent dimension Ts for each study can be determined through techniques used in
the standard FA, such as Horn’s parallel analysis (Horn, 1965), Cattell’s scree test (Cattell,
1966) and the use of indexes, such as the RMSEA (Steiger and Lind, 1980). Afterwards,
some model selection techniques can be employed to select the value of the number K of
latent factors sharing a common loading matrix Φ. The dimension Js are then obtained as
Ts −K.

This methodology has been tested by designing a simulation study mirroring the results
obtained for the data of Table 2.1, considering the same p = 100 variables in each case.
Therefore, S = 4 studies are considered, with the dimension of the latent factors reported in
Table 3.1.

Three simulation scenarios are considered. In Scenario 1 there are no common factors,
i.e. K = 0, in Scenario 2 we set K = 1, and finally in Scenario 3 we set K = 3. In each case,
the data are generated by parameter values akin to those estimated with the data.
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Table 3.1 Settings for the simulation studies.

S ns K + Js

1 285 6
2 140 7
3 195 11
4 578 10

3.4.1 Parameter estimation via the ECM algorithm

We first analyze the performances of the ECM algorithm for a given selection of K and Js,
s = 1, . . . ,S. In particular the results obtained with the ECM algorithm and by a standard
optimizer are compared. The standard optimizer employed is the box-constrained Limited-
memory Broyden-Fletcher-Goldfarb-Shannon (L-BFGS) method (e.g. Byrd et al., 1995), as
implemented in the R function optim. Such method are denoted as direct optimizer, to stress
that it was taken for benchmarking the ECM algorithm, without any particular effort to tailor
the optimization to the model at hand.

Regardless of the optimization method adopted, the choice of the starting point is crucial
for achieving good performances. The following strategy, given the factor dimensions K and
Js, s = 1, . . . ,S, has been used.

1. A single data set is created by stacking the data of the four studies by row, obtaining a
single data set with n= n1+n2+n3+n4 = 578+285+195+140= 1198 observations
and p = 100 variables.

2. A Principal Components Analysis (PCA) is performed on the data set obtained at
the first step. The first K principal components are taken as the starting point of the
common factor loadings.

3. The variance of the K principal components is removed from each study.

4. A standard FA model is fitted to the data of each study separately. The factor loadings
and uniquenesses obtained from the standard FA are used as the initial values for Λs

and Ψs.

Figure 3.3 reports the log-likelihood function along the algorithm iterations for three
illustrative data sets, after starting the two algorithms from the same point. In particular,
the red line denotes the value of the log-likelihood function at the true parameter value, the
blue line denotes the value of the maximized log-likelihood for the ECM algorithm, and the
green line the corresponding value for the L-BFGS. Figure 3.3 shows the progress of the two
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Figure 3.3 Comparison of the log-likelihood function obtained with the ECM algorithm
(blue line) and with the direct optimizer (green line), whereas the red line represents the
log-likelihood calculated at the true parameter value. The functions are computed based on
three simulated data sets, one for each of the three scenarios.

algorithms for the first 250 iterations, with a clear suggestion of much faster convergence
for the ECM algorithm. Indeed, convergence is attained for both methods, but for the direct
optimizer the required number of iterations is much higher, around 20,000.

Table 3.2 Time of convergence (s) for each scenario.

Method Scenario 1 Scenario 2 Scenario 3
ECM 14.25 12.66 10.74

L-BFGS 89.79 83.41 75.62

The speed of convergence is reflected not only in the number of iterations, but also in
the processing time shown in Table 3.2. Moreover, the L-BFGS was plagued by severe
convergence problems when used for larger number of variables, i.e. P > 100.

In Figure 3.4 the parameter estimates obtained with the ECM algorithm are represented,
for 100 simulated samples in the Scenario 2. In particular, the empirical distribution of
the difference between the estimated Φ̂ and the true Φ are summarized by a boxplot for
each element of the matrix. The overall impression is that the estimation bias is generally
negligible. Here the sign indeterminacy alluded to in §3.2.2 is resolved by considering the
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Figure 3.4 Distribution of the differences between each elements of Φ estimated by the ECM
algorithm and the corresponding elements of Φ used to generate the data.

absolute value of the estimated loadings. Indeed, the local convergence property of the ECM
algorithm resolves this issue in any given data sets, but for comparing the results of several
simulated data sets some sort of post-processing is required. We note in passing that Adachi
(2012) reported that the EM algorithm in FA models always gives proper solutions when the
sample covariance and initial parameter matrices are proper. Likewise, the same result is
empirically found in all the simulated data sets performed for the MFA model.

Finally, the Likelihood Ratio Test (LRT) for choosing between K = 0 and K = 1 is
studied in order to confirm that standard likelihood asymptotics hold for the problem at hand.
This is actually the case, as shown in Figure 3.5, that represents the estimated distribution of
the LRT, obtained with 1,000 simulated data sets under Scenario 2, which is intermediate
between the other two scenarios. The empirical distribution of the LRT seems close to the
asymptotic distribution, and this also provides some further (albeit indirect) suggestion that
the ECM is actually able to correctly locate the MLE.
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Figure 3.5 Distribution of the LRT for choosing between K = 0 and K = 1, obtained by 1,000
simulated data sets under Scenario 2. The red line represents the asymptotic distribution, a
chi-square distribution with 192 degrees of freedom.

3.4.2 Selection of the latent factor dimensions

We consider here the problem of selecting the dimension of the latent space, again by means
of some simulation studies performed under the same three scenarios considered above. For
each data set, the same strategy aforementioned is followed, namely first Ts was chosen in
each study by means of standard FA techniques, and then K was selected.

We focus in particular on the problem of selecting K, tackled by applying standard model
selection techniques, such as the Akaike information criterion (AIC) (Akaike, 1974) and the
Bayesian information criterion (BIC) (Schwarz et al., 1978), for which there is an extensive
literature (Burnham and Anderson, 2002; Preacher and Merkle, 2012). The study of model
selection based on information criteria is still in progress in FA settings (Chen and Chen,
2008; Hirose and Yamamoto, 2014), so it seems useful to evaluate the behavior of both AIC
and BIC for choosing K. Along the two information criteria, the likelihood ratio test (LRT)
for choosing between nested models with different values of K was also considered.
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Table 3.3 shows the results obtained by model fitting simulations for 100 different data
sets generated independently from the MFA with K = 0, i.e. Scenario 1. The overall
impression is that all the three methods tend to choose the model with K = 0, but both AIC
and LRT outperform BIC.

Table 3.3 Comparison of model assessment methods in Scenario 1.

Method K = 0 K = 1 K = 2 K = 3 K = 4 K = 5
AIC 100 0 0 0 0 0
BIC 91 1 2 6 0 0
LRT 100 0 0 0 0 0

Table 3.4 reports the results for 100 different data sets generated independently from the
MFA with K = 1, i.e. Scenario 2. Here AIC outperforms both BIC and LRT, though the latter
is not much off the mark. The poor performance of the BIC is striking, as it often leads to a
model with K = 5, thus over-simplifying the selected model. Indeed, BIC penalizes model
complexity more strongly than AIC, so it is not surprising that BIC tends to prefer models
with more common factors and thus less parameters. What it is worrisome is the intensity of
such tendency for the problem at hand.

Table 3.4 Comparison of model assessment methods under Scenario 2.

Method K = 0 K = 1 K = 2 K = 3 K = 4 K = 5
AIC 0 100 0 0 0 0
BIC 0 0 0 2 6 92
LRT 3 97 0 0 0 0

Finally, Table 3.5 reports the results based on 100 different data sets are generated
independently from the MFA with K = 3, i.e. Scenario 3. Again, AIC seems the best
criterion, always leading to the selection of the true model.

Table 3.5 Comparison of model assessment methods under the Scenario 3.

Method K = 0 K = 1 K = 2 K = 3 K = 4 K = 5
AIC 0 0 0 100 0 0
BIC 0 0 0 1 23 76

Lik Ratio Test 0 0 0 91 9 0

The results of these three simulation studies point strongly towards the usage of AIC to
select the value of K. This will be the strategy employed in the following chapter.



Chapter 4

Ovarian Cancer application

In order to validate the proposed methods, we have analyzed the four studies described in
Table 2.1.

We have focused on common genes across studies and included in the Immune System
pathway and the DNA-repair pathway. The Immune System pathway is really important
in the field for the development of therapy (for example antibody therapies) and tumor
diagnostic tests (Méhes et al., 2001). The DNA-repair pathway is of particular interest for the
understanding of the insurgence of OC in the presence of reduced DNA repair capacity. For
each study, the Immune System and DNA repair genes of interest are the ones in common
across the studies. The analyses of this two pathways are developed in Section 4.1 and 4.2.
Section 4.3 provides a discussion.

4.1 Immune system

In the Immune system, three different sub-pathways are included "Adaptive Immune System"
(AI), "Innate Immune System" (II) and "Cytokine Signaling in Immune System" (CSI)
obtained from reactome.org and belonging to the Immune System pathway. These sub-
pathways do not have overlapping genes.

Initially, we have done some preliminary analyses in order to asses the total latent factor
dimensions, the number of common factors across studies and the number of specific factors
for each study. Using the AIC, the number of common factors is set to one, and the number
of specific factors for each study results as showed in Table 4.1.

We compare the prediction errors computed by MFA to those computed by standard factor
analysis (FA) applied separately to each study. We fit the MFA model and the standard FA
models leaving out 15% of the sample for independent validation. Predictions are obtained
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Table 4.1 Number of total and specific factors for each study, Table 2.1, in Immune System
pathway.

Study total latent factors specific latent factors
GSE9891 6 5

GSE20565 7 6
GSE26712 10 9

TCGA 9 8

as
MFA: x̂is = Φ̂f̂i + Λ̂

MFA
s l̂is FA: x̂is = Λ̂

FA
s l̂is

where Λ̂
MFA
s are the specific factor loadings estimated by MFA and Λ̂

FA
s are the factor

loadings estimated by FA. We evaluate the mean squared error of prediction, MSE =
1
n ∑

S
s=1 ∑

n
i=1 (xis − x̂is)

2 , using 15% of the sample in each study, set aside for test-set to
avoid overly optimistic conclusions. The MSE is 1.5% smaller for MFA than for FA. The
MFA is imposing a strong equality constraint on the first factor. This simple check illustrates
how this constraint allows to borrow strength across studies in the estimation of the factor
loadings, in such a way that the predictive ability in independent observations is slightly
improved.

Next, we focus on the analysis of the estimated factor loadings themselves. The heatmap
in Figure 4.1 depicts the estimates of the factor loadings, both common (highlighted in the
black rectangle) and specific ones.

To interpret the biological meaning of the common factor, we apply Gene Set Enrichment
Analysis (GSEA) for determining whether a given gene set is significantly enriched in a
list of gene markers (or significant pathways) ranked by their correlation with a phenotype
of interest (Mootha et al., 2003; Subramanian et al., 2005). We consider all the three sub-
pathways in the Immune System pathway In order to do that, the package Rtopper in R in
Bioconductor is used, following the method illustrated in Tyekucheva et al. (2011).

The resulting analysis shows that the common factor is significantly enriched by the AI
sub-pathway, suggesting that genuine biological signal may have been identified.

Further, we consider the cross-study pairwise correlations of the loadings involving the
study-specific factors shown in Figure 4.2. Three of the specific factors of the GSE9891 study
are strongly correlated with three corresponding factors in the GSE20565 study. Absolute
correlations range from 0.66 to 0.81.

Studies GSE9891 and GSE20565 use the same platform, Affy U133 Plus2.0, prompting
the conjecture that the three stronger correlations observed may be related to technological
rather than biological variation. To further probe this possibility, at least within the Immune
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GSE9891

φ1 λ11 λ21 λ31 λ41 λ51

GSE26712

φ1 λ13 λ23 λ33 λ43 λ53 λ63 λ73 λ83 λ93

GSE20565

φ1 λ12 λ22 λ32 λ42 λ52 λ62

TCGA

φ1 λ14 λ24 λ34 λ44 λ54 λ64 λ74 λ84

Figure 4.2 Graphical representation of the correlation of the specific factor loadings obtained
with the MFA. Darker grey lines correspond to higher correlations. Correlations smaller than
.25 are not shown.

System pathway, we analyze studies GSE9891 and GSE20565 separately from the other two
using MFA. The AIC chooses a model with K = 4 with a total of six latent factors in the
former study and seven in the latter one. The results are shown in Figure 4.3.
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Figure 4.3 Immune System pathway: Heatmap of the factor loadings obtained with the MFA
performed in the two studies, first two rows in Table 2.1.

Again, we performed the GSEA on the estimated factor loadings. The resulting analysis
shows that the first common factor is related to the AI system pathway, as was the only
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common factor shared between the four studies in the earlier analysis. In fact, the common
factor of the four studies analysis is highly correlated with the first common factors of the
two-study analysis, r = 0.60. The three remaining common factors are not related to any of
the remaining pathways, further corroborating the hypothesis that they may represent the
results of spurious variation induced by the specific platform used.

Some checking on the impact of the order-dependence induced by the block lower
triangular structure assumed for Ωs to address the identifiability problem was carried out.
In particular, the same analysis was repeated after permuting the genes. Despite some
discrepancies, the final conclusion is exactly the same. Namely, one common factor is
significantly enriched only with the AI system sub-pathway.

4.2 DNA-repair

We continue to validate our proposed procedures by analyzing the DNA-repair pathway.

As in the previous section the analysis is focused on common genes across studies and
included in the sub-pathways “Base Excixion Repair” (BER), “DNA damage” (DD), “Double-
Strand Break Repair” (DBR), “Nucleotide Exicixion” (NE), “Fanconi Anemia pathway” (FA)
and “Mismatch Repair” (MR) obtained from reactome.org belonging to the DNA-repair
pathway.

We assess the total latent dimensions through the standard FA techniques, the number of
common factors across the studies through the AIC criterion and, consequently, the number
of specific factors. The results lead again to one common factor shared across studies. The
total latent dimensions and the number of specific factor are showed in Table 4.2.

Table 4.2 Number of total and specific factors for each study in Table 2.1 for the DNA repair
pathway.

Study total latent factors specific latent factors
GSE9891 6 5
GSE20565 7 6
GSE26712 11 10

TCGA 10 9

Once again, to demonstrate the performance of our method we predict the mean squared
error leaving out the 15% of the sample for independent validation. The MSE based on MFA
for the four studies is 0.64 whereas the MSE based on FA 0.65. Also in this application, the
MFA slightly outperforms the standard FA.
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Next, we focus on the analysis of the data presented in Table 2.1 and the estimated factor
loadings. The heatmap in Figure 4.4 represents the estimates of the factor loadings, both
common (highlighted in the black rectangle) and specific.

To interpret the biological meaning of the common factor, we apply again the GSEA.
We considered all the six sub-pathways in the DNA-repair pathway to compare our gene
set using the package Rtopper. The results lead us to conclude that our gene set is related
with the only sub-pathway BER, so that also in this case the biological signal may have been
identified.

However, also in the DNA-repair application some specific factor loadings of the
GSE9891 study exhibit a similar pattern to that of specific loadings of the GSE20565
study. An example is provided in Figure 4.4 by the second column of the heatmap relative to
GSE9891 and the second column of the heatmap relative to GSE20565. They are strongly
correlated (> 0.6), while the correlations with other specific factor loadings in GSE26712
and TCGA are less than 0.3. The reason can be related to artifactual source of variations
since the studies are measured in the same platform, i.e. Affy U133 Plus2.0. For a better
understanding, we analyze the two studies, GSE9891 and GSE20565, separately.

Considering only two studies, as in Figure 4.5, the AIC chooses a model with K = 5 with
a total of six latent factors in the former study and seven in the latter one. The commonality
maybe come from the platform on which gene expressions are measured. In order to further
investigate this point, we perform again the GSEA on the estimated factor loadings for the
model with K = 5.

The resulting analysis shows that the first and the second common factors are not related
to the sub-pathways described before: they are not capturing the biological features but, for
example, the platform where the genes are measured. The others three common factors are
related to these sub-pathways:

• the third common factor is related to DD and MR;

• the fourth common factor is related to MR;

• the fifth common factor is related to DD.

The common factors in the two studies capture the biological signal of two relevant
pathways, the DD and MR.

In the DNA-repair pathway, subsets of genes contribute to diverse sub-pathway, in the
BER we found large amount (more than the 50%) of genes in common with the DD and MR.
Moreover, the common factor of the four studies analysis is highly correlated with the fourth
and the fifth common factors of the two-study analysis, r = 0.52 and r = 0.60.
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Figure 4.5 DNA Repair pathway: Heatmap of the factor loadings obtained with the MFA
performed in the two studies, first two rows in Table 2.1.

4.3 Discussion

The method presented in the last two chapters is able to extract information from multiple
studies.

Integration of different studies relies critically on specific methods of analysis. As already
mentioned, it is crucial in these kind of analysis to separate the two kind of information, that
related to the common part shared among studies and that described by the differences and
specificity of each study. Indeed, the most critical step in cross-study analysis is to identify
biological factors that are reproducible across studies and to remove idiosyncratic variation
that lacks cross-study reproducibility.
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The method is simple and it is based on a generalized version of FA able to handle
multiple studies simultaneously. Indeed, we develop dimension reduction tools that allow for
joint analysis of multiple studies and capture the two types of information.

The simulations of Chapter 3 and real data analysis of this chapter suggest that the model
is worthy of serious consideration.

The MFA model can be applied to many settings when the aim is to isolate commonalities
and differences across different groups, population or studies. Differently from the focus of
the thesis, there might be other applications where the goal is to capture some study-specific
features of interest and, instead, remove some common factors shared among studies. Other
applications may focus on capturing both common and specific factors, without removing
any of them. Indeed, the approach illustrated could be extended in several directions. It
will be relevant for a wide variety of genomic platforms (e.g. microarrays, RNA-seq, SNPs,
proteomics, metabolomics, epigenomics), as well as datasets in other fields of biomedical
research, such as those generated by exposome studies or Electronic Medical Record (EMR).

Overall, this analysis illustrates the strength of this method, namely its ability to capture
biological signal and to isolate the source of variation coming, for example, from the different
platforms by which gene expressions are measured.





Chapter 5

Sparse Bayesian multi-study factor
model

In this chapter we focus on the sparse setting where the number of variables is larger than the
number of subjects. In Section 5.1 a general description of the sparsity approach is given, and
how the problem of p > n has been tackled by means of Bayesian methods in the literature.
In Section 5.2 we consider the sparsity approach in MFA model through the spike and slab
prior introduced by George and McCulloch (1993). The details of a Gibbs sampling are
provided to sample from the posterior distribution. The analysis of some simulated data are
presented in Section 5.3 to study the properties of the proposed approach. In Section 5.4 the
methodology is applied to the OC data, while finally Section 5.5 provides a discussion.

5.1 A brief introduction to the sparse setting

In recent years many statistical applications involve high-dimensional data. Here, high
dimension refers to settings with p > n, with singular covariance matrix for the sth study Σs,
preventing the application of maximum likelihood estimation. Such settings arise crucially
in genomic applications where the number of genes are greater than the number of subjects.

FA models are still used in such settings, but some sort of regularization is required
(Carvalho et al., 2008; Engelhardt and Stephens, 2010; Lopes and West, 2004). The relation
between the latent factors and the observed variables is described by the coefficient of the
factor loadings matrix Ωs. In the applications where there are more components than subjects
it is crucial to include in the formalization some strong regularization on the elements of the
factor loadings matrix. In the statistical literature, in order to regularize the factor loadings,
priors or penalties are used to induce sparsity, namely selection of some features. Sparsity
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removes some entries of the loading matrix, thus assuming that only some of the variables are
associated to some of the latent factors. Indeed, in the genomic context, sparsity implies that
if we take in consideration a set of genes, only a few are interacting and can reveal relevant
biological factors (Tegner et al., 2003). Sparse factor loadings can be used to identify clusters
of genes and interpret them as classes of interacting genes (Lucas et al., 2010; Pournara and
Wernisch, 2007). This situation is visualized in Figure 5.1.

Figure 5.1 Visualization of MFA under the sparsity assumption

As represented in Chapter 3, the MFA has two different matrices of loadings in each
study, those related to the common factor and then the study-specific part. In the sparsity
context the objective remains the same, i.e. to capture the common biological features and
isolating the artifactual and biological variation. Here, an important additional complication
is due to the high-dimension involved.

In order to choose the most suitable regularization to induce sparsity in the MFA model,
we here summarize the theory and the application of sparse FA developed in the statistical
literature.



5.1 A brief introduction to the sparse setting 49

Sparsity in factor model has been investigated through regularization via L1-type penalties
in frequentist analyses (Witten et al., 2009; Zou and Hastie, 2005). In contrast to the
frequentist approach, Bayesian methods model sparsity through the introduction of shrinkage
priors.

In the Bayesian approach to sparsity, three main priors has been used and developed.
These three approaches have been considered here in turn, in order to choose that most
suitable to extension to the MFA setting.

The first one is the Bayesian lasso prior, introduced by Park and Casella (2008) and
developed in high-dimensional linear models by Hans (2009).

Based on the Lasso penalty of Tibshirani (1996), the Bayesian lasso prior is a conditional
Laplace prior for the loadings

λp js|ψps ∼
τ

2√ψps
e−τ|λp js|/√ψps,

where ψps is the diagonal element of the covariance error matrix and τ > 0 is the scale
hyper parameter. In this modeling setting, the posterior mode of λp js is the lasso estimate
with the penalty equal to 2τψps, which regulates the amount of shrinkage. Posterior inference
is developed via Gibbs sampling.

The major limitation of this approach lies on the lack of unimodality for the posterior
distribution of λp js. Indeed, the posterior distribution of the factor loadings could present a
bimodal trend and this problem leads to point estimates less meaningful (Park and Casella,
2008). This problem can also occur considering the prior of the error variance ψps as proper.
In some preliminary experiments with the data analyzed in the previous chapter, a clear
suggestion of bimodality occurred for the posterior distribution of the elements of Φ, see
Figure 5.2.

The second sparse Bayesian approach is taken from the paper of Bhattacharya and
Dunson (2011). They develop a multiplicative gamma shrinkage prior on the factor loadings,
with increasing shrinkage as the column index increases.

Their model, called the Sparse Bayesian infinite factor model, uses the prior

λp js|ζp js,τ j ∼ N(0,ζ−1
p jsτ

−1
j ), ζp js ∼ Ga(η/2,η/2), τ j =

j

∏
l=1

δl,

δ1 ∼ Ga(a1,1), δl ∼ Ga(a2,1), l ≥ 2, where δl(l = 1, . . . ,∞) are independent, τ j is a
global shrinkage parameter for the jth column and ζp js are local shrinkage parameters for
the elements in the jth column. As Bhattacharya and Dunson (2011) report, the ζp js are
stochastically increasing only with a2 > 1. So, more shrinkage is obtained as the column
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Figure 5.2 Density plot of the full conditional of the first two common factor loadings with
the lasso prior

index increases. The idea is rather suitable to high dimensions, where if more factors are
added it is crucial to consider an increment of the shrinkage. They develop a Gibbs sampling
and study the inferential implications of the prior. In their formalization, the identification
problem is not considered since they focus on the estimation of the covariance matrix, and
not on the estimation of the factor loadings. An algorithm is provided where the number of
factors are chosen adaptively. They adapt with probability

p(t) = exp(α0 +α1t)

at tht iteration, with α0 and α1 so that at the beginning adaptation arises every 10 iterations,
and then it decreases. They provide a quite useful Matlab code, that we ported to R.

We use this code to apply the Sparse Bayesian infinite factor model to the ovarian data,
on the DNA-repair pathway presented in Section 4.2.

We take in consideration the data showed in Table 2.1 and we fit the Sparse Bayesian
infinite factor model in each data set since this method does not consider multiple studies.
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Figure 5.3 Number of selected latent factors in the Bhattacharya and Dunson (2011) approach
for the TCGA data on ovarian cancer

In Figure 5.3 the results of the application to the TCGA data set are represented. The
figure shows that after 15000 iterations the choice of the total latent dimension Ts is more
than 40 latent factors, much higher than what found in Chapter 4. In other words, this method
tends to overestimate the number of latent dimension at least in this data set with p = 100.

The last approach adopts the spike and slab prior, developed by George and McCulloch
(1993, 1997) in the context of variable selection for linear regression.

The prior is a normal mixture defined by the random variable δ s
p j = 1 or 0

λp js|δ s
p j ∼ (1−δ

s
p j)N(0,τ2

p js)+δ
s
p jN(0,c2

λp js
τ

2
p js),

and P(δ s
p j = 1) = ps

p j.

When δ s
p j = 0, the prior λp js ∼N(0,τ2

p js), with τ2
p js quite small, is nearly a spike implying

that the related factor loadings are concentrated around zero. Instead, when δ s
p j = 1, λp js ∼

N(0,c2
λp js

τ2
p js), and for large values of c2

λp js
, the prior is a flat distribution, called the slab.
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George and McCulloch (1993) report some indications for the choice of τp js, cλp js and
δ s

p j, and a Gibbs sampling algorithm is provided.

When prior knowledge is absent, as reported by Gelman et al. (2014), it is possible to
set ps

p j = ps and so consider in the formalization an hyperprior ps ∼ Beta(αp,βp). Particular
attention should be given to the choice of hyperparameters, especially in the context of p > n,
where informative choices are mandatory.

This approach has been successfully applied to genetic data by Carvalho et al. (2008);
West (2003). This is the approach followed here. In the rest of this chapter, it will be extended
to the MFA model.

5.2 Model and prior specification

As showed in Section 3, the MFA assumes that each observed variable in each study is
decomposed as follow

xis = Φfi +Λslis + eis .

In order to follow the Bayesian approach, we assume a prior distribution on each element
of the factor loading matrices.

A sparsity mixture prior defined by the random variable δpk is assigned to each element
φpk, p = 1, . . . ,P, k = 1, . . . ,K, of the common factor loadings matrix Φ:

φpk | δpk ∼ (1−δpk)N(0,ζ 2
pk)+δpkN(0,c2

φpk
ζ

2
pk),

and
P(δpk = 1) = 1−P(δpk = 0) = ppk.

If we denote the pth row of Φ by φ
t
p, then the φps have the prior distributions

φ p | δ p ∼ Np(0,Dpδ ),

where Dpδ = diag(ap1ζ 2
p1, . . . ,apKζ 2

pK) and apk = 1 if δpk = 0 and apk = c2
φpk

if δpk = 1.

A beta prior distribution is used for ppk. When prior information on the expected level of
sparsity is scarce, such choice is recommendable.

A mixture prior defined by the variable δ s
p j is assigned to each element λp js, p =

1, . . . ,P j = 1, . . . ,Js and s = 1, . . . ,S of the specific factor loading matrix Λs:

λp js|δ s
p j ∼ (1−δ

s
p j)N(0,τ2

p js)+δ
s
p jN(0,c2

λp js
τ

2
p js),
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and
P(δ s

p j = 1) = 1−P(δ s
p j = 0) = ps

p j.

As for the δpk, a beta prior is used for ps
p j.

As before, if we denote the pth row of Λs by λ
⊤
ps, so that we write the prior distributions

λ ps | δ
s
p ∼ Np(0,Dpδ s),

where Dpδ s = diag(ap1sτ
2
p1s, . . . ,apJssτ

2
pJss), ap js = 1 if δ s

p j = 0 and ap js = c2
λp js

if δ s
p j = 1.

The priors for the factor loadings, both common and specific, belong to the class of
absolutely continuous spike and slab priors where ζ 2

pk and τ2
p js are small constants , thus rep-

resenting the spike of the common and specific factors, respectively, and so the distributions
are concentrated on zero. Instead, c2

φpk
and c2

λp js
are large constants (≫ 1), thus representing

the slab part of the mixture of the common and specific factor loadings.
For each of the erratic variance ψps, p = 1, . . . ,P we assume an inverse gamma prior.

This choice comes from the standard FA (Bhattacharya and Dunson, 2011; Lopes and West,
2004). In details, the ψps are formalized as

ψps ∼ Ga(aψ ,bψ).

As we reported in Section 3.2.2, MFA must be further constrained to define a model free
from identification problems. As applied in the classical approach of Chapter 3, we use here
the block lower triangular matrix constraint and then we adjust the sign of each column of
the loading matrices by post processing.

5.2.1 Posterior Computation

We propose a Gibbs sampler for posterior computation, through data augmentation (Gelman
et al., 2014; Tanner and Wong, 1987). In the data augmentation, first we proceed conditionally
on the latent variables, common and specific factors. The algorithm is given by the following
steps, which are performed cyclically

• STEP 1. Sample from the conditional posterior of lis, i = 1, . . . ,ns, s = 1, . . . ,S, the
specific factors in each study.

• STEP 2. Sample from the conditional posterior of fi, i = 1, . . .ns, the common latent
factors.

• STEP 3. Sample from the specific factor loadings, λps, p = 1, . . . ,P, s = 1, . . . ,S.
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• STEP 4. Sample from the common factor loadings, φp, p = 1, . . . ,P.

• STEP 5. Update δ s
p j, j = 1, . . . ,Js, the Bernoulli random variables for the choice of

spike or the slab for the specific factors.

• STEP 6. Update δpk, k = 1, . . . ,K, the Bernoulli random variables for the choice of
spike or the slab for the common factors.

• STEP 7. Update ps
p j the probability for the spike and slab in the specific factor.

• STEP 8. Update pp j the probability for the spike and slab in the common factors.

• STEP 9. Update Ψs, the covariance matrix of the error terms.

For the sampling in each step that we use the complete log-likelihood, as done for the
ECM algorithm. Indeed, the data augmentation approach leads to an algorithm similar to the
EM algorithm, though here the aim is sampling from the posterior distribution.

The likelihood function has the usual form

|Ψs|−ns/2
S

∏
s=1

ns

∏
i=1

exp

{
− [xis −Φfi −Λslis]⊤Ψ

−1
s [xis −Φfi −Λslis]

2

}
. (5.1)

The (5.1) is conditional on the latent variables

xis|fi, lis ∼ N(Φfi +Λslis,Ψs),

and
fi ∼ N(0,IK), lis ∼ N(0,IJs).

In what follows, we provide the details for the full conditionals employed for the Gibbs
sampling.

STEP 1.

The full conditional of lis, with the prior lis ∼ N(0,IJs) is

π(lis|−) = |Ψs|−ns/2
S

∏
s=1

ns

∏
i=1

exp

{
− [xis −Φfi −Λslis]⊤Ψ

−1
s [xis −Φfi −Λslis]+ l⊤is lis

2

}
.
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Expanding terms in the exponent leads to

− [xis −Φfi −Λslis]⊤Ψ
−1
s [xis −Φfi −Λslis]+ l⊤is lis =

= x⊤is Ψ
−1
s xis + f⊤i Φ

⊤
Ψ

−1
s Φfi + l⊤is Λ

⊤
s Ψ

−1
s Λslis

− 2x⊤is Ψ
−1
s Φfi −2x⊤Ψ

−1
s Λslis +2f⊤i Φ

⊤
Ψ

−1
s Λslis + l⊤is lis

= l⊤is (IJs +Λ
⊤
s Ψ

−1
Λs)lis −2l⊤is (Λ

⊤
s Ψ

−1xis −Λ
⊤
s Ψ

−1
Φfi)

+ x⊤is Ψ
−1xis + f⊤i Φ

⊤
Ψ

−1
Φfi −2x⊤is Ψ

−1
Φfi,

so the mean of lis is

l̄s = (IJs +Λ
⊤
s Ψ

−1
Λs)

−1(Λ⊤
s Ψ

−1xis −Λ
⊤
s Ψ

−1
Φfi).

We can then write

(lis − l̄s)⊤(IJs +Λ
⊤
s Ψ

−1
Λs)

−1(lis − l̄s) = l⊤is (IJs +Λ
t
sΨ

−1
Λs)

−1lis
− 2l⊤is (IJs +Λ

⊤
s Ψ

−1
Λs)

−1l̄s + l̄⊤s (IJs +Λ
⊤
s Ψ

−1
Λs)

−1l̄s,

adding and subtracting l̄⊤s (IJs +Λ
⊤
s Ψ

−1
Λs)

−1l̄s we find

[xis −Φfi −Λslis]⊤Ψ
−1
s [xis −Φfi −Λslis]+ l⊤is lis = l⊤is (IJs +Λ

⊤
s Ψ

−1
s Λs)

−1lis
− 2l⊤is l⊤is (IJs +Λ

⊤
s Ψ

−1
s Λs)

−1l̄s + l̄⊤s (IJs +Λ
⊤
s Ψ

−1
s Λs)

−1l̄s − l̄⊤s (IJs +Λ
⊤
s Ψ

−1
s Λs)

−1 l̄s
+ x⊤is Ψ

−1
s xis + f⊤i Φ

⊤
Ψ

−1
s Φfi −2x⊤is Ψ

−1
s Φfi

= (lis − l̄s)⊤(IJs +Λ
⊤
s Ψ

−1
s Λs)

−1(lis − l̄s)− l̄⊤s (IJs +Λ
⊤
s Ψ

−1
s Λs)

−1 l̄s
+ x⊤is Ψ

−1
s xis + f⊤i Φ

⊤
Ψ

−1
s Φfi −2x⊤is Ψ

−1
s Φfi.

Dropping the constant

π(lis|−) = exp
{
−1

2
(lis − l̄s)⊤(IJs +Λ

⊤
s Ψ

−1
s Λs)

−1(lis − l̄s)
}
,

and finally the full conditional for ls is

π(ls| . . .)∼ N
{
(IJs +Λ

⊤
s Ψ

−1
s Λs)

−1(Λ⊤
s Ψ

−1
s xis −Λ

⊤
s Ψ

−1
s Φfi),(IJs +Λ

⊤
s Ψ

−1
s Λs)

−1
}
.

STEP 2.

We compute the full conditional for fi, the common latent factors:
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π(fi|−) = |Ψs|−ns/2
S

∏
s=1

ns

∏
i=1

exp

{
− [xis −Φfi −Λslis]⊤Ψ

−1
s [xis −Φfi −Λslis]+ f⊤i fi

2

}
.

Expanding terms in the exponent leads to

[xis −Φfi −Λslis]⊤Ψ
−1
s [xis −Φfi −Λslis]+ f⊤f =

= x⊤is Ψ
−1
s xis + f⊤i Φ

⊤
Ψ

−1
s Φfi + l⊤is Λ

⊤
s Ψ

−1
s Λslis

− 2x⊤is Ψ
−1
s Φfi −2x⊤Ψ

−1
s Λslis +2f⊤i Φ

t
Ψ

−1
s Λslis + f⊤i fi

= f⊤i (IK +Φ
⊤

Ψ
−1
s Φ

⊤)fi −2f⊤i (Φ
⊤

Ψ
−1
s xis −Φ

⊤
Ψ

−1
s Λslis)

+ x⊤is Ψ
−1
s xis + l⊤is Λ

⊤
s Ψ

−1
s Λslis −2x⊤is Ψ

−1
s Λslis.

As showed before for the specific latent variables, the full conditional for fi is

π(fi|−)∼ N((IK +Φ
⊤

Ψ
−1
s Φ)−1(Φ⊤

Ψ
−1
s xis −Φ

⊤
Ψ

−1
s Λslis),(IK +Φ

⊤
Ψ

−1
s Φ)−1).

STEP 3.

The λ pss have independent conditionally conjugate posteriors,

π(λ ps|−)∼ N
{
(D−1

pγs
+ψ

−2
ps l⊤s ls)−1(l⊤s ψ

−2
ps x(p)

s − l⊤s ψ
−2
ps φ pf),(D−1

pγs
+ψ

−2
ps l⊤s ls)−1

}

where f = ( f1, . . . , fns)
⊤, ls = (l1s, . . . , lnss)

⊤ and x(p)
s = (x1ps, . . . ,xns ps).

With more details, the computation of the posterior for Λs is

π(λ ps|−) =
S

∏
s=1

P

∏
p=1

(
ψ

−2
ps
)ns/2

exp

−

[
x(p)

s − fφ p − lsλ ps

]⊤ [
x(p)

s − fφ p − lsλ ps

]
ψ−2

ps

2


exp

{
−

λ
⊤
psD−1

pγs
λ ps

2

}
.
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Expanding terms in the exponent leads to[
x(p)

s − fφ p − lsλ ps

]⊤ [
x(p)

s − fφ p − lsλ ps

]
ψ

−2
ps +λ

⊤
psD

−1
pγs

λ ps =

= ψ
−2
ps x(p)⊤

s x(p)
s +ψ

−2
ps f⊤φ

⊤
p φ pf+ψ

−2
ps l⊤s λ

⊤
psλ psls

− 2x(p)⊤
s ψ

−2
ps φ pf−2x(p)⊤

s ψ
−2
ps λ psls +2f⊤φ

⊤
p ψ

−2
ps λ psls +λ

⊤
psD

−1
pγs

λ ps

= λ
⊤
ps(D

−1
pγs

+ψ
−2
ps l⊤s ls)λ ps −2λ

⊤
ps(l

⊤
s ψ

−2
ps x(p)

s − l⊤s ψ
−2
ps φ pf)

+ ψ
−2
ps x(p)⊤

s x(p)
s +ψ

−2
ps f⊤φ

⊤
p φ pf−2x(p)⊤

s ψ
−2
ps φ pf.

STEP 4.

φ ps have independent conditionally conjugate posteriors:

π(φ p|−)∼N

{
S

∑
s=1

(D−1
pδ

+ψ
−2
ps f⊤f)−1(f⊤ψ

−2
ps x(p)

s − f⊤ψ
−2
ps bslpsls),

S

∑
s=1

(D−1
pδ

+ψ
−2
ps f⊤f)−1

}
,

where f = ( f1, . . . , fp)
⊤, ls = (l1s, . . . , lps)

⊤ and x(p)
s = (x1ps, . . . ,xns ps).

The calculation of the full conditional for Φ is

π(φ p|−) =
S

∏
s=1

P

∏
p=1

(
ψ

−2
ps
)ns/2

exp

−

[
x(p)

s − fφ p − lsλ ps

]⊤ [
x(p)

s − fφ p − lsλ ps

]
ψ−2

ps

2


exp

{
φ
⊤
p D−1

pδ
φ p

2

}
.
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Expanding terms in the exponent leads to

S

∑
s=1

[
x(p)

s − fφ p − lsλ ps

]⊤ [
x(p)

s − fφ p − lsλ ps

]
ψ

−2
ps +φ

⊤
p D−1

pδ
φ p =

=
S

∑
s=1

ψ
−2
ps x(p)⊤

s x(p)
s +ψ

−2
ps f⊤φ

⊤
p φ pf+ψ

−2
ps l⊤s λ

⊤
psλ psls

− 2x(p)⊤
s ψ

−2
ps φ pf−2x(p)⊤

s ψ
−2
ps λ psls +2f⊤φ

⊤
p ψ

−2
ps λ psls +φ

⊤
p D−1

pδ
φ p

=
S

∑
s=1

φ
⊤
p (D

−1
pδ

+ψ
−2
ps f⊤f)φ p −2φ

⊤
p (f

⊤
ψ

−2
ps x(p)

s − f⊤ψ
−2
ps λ psls)

+ ψ
−2
ps x(p)⊤

s x(p)
s +ψ

−2
ps l⊤s λ

⊤
psλ psls −2x(p)⊤

s ψ
−2
ps λ psls.

STEP 5.

We compute the full conditional of δ s
p j for the specific factor, noticing that its distribution

does not depend on xs (George and McCulloch, 1993). Each distribution is Bernoulli with
probability

π(δ s
p j = 1|−) =

as

as +bs ,

where

as = π(λp js| . . . ,δ s
p j = 1) ps

p j

bs = π(λp js| . . . ,δ s
p j = 0)(1− ps

p j).

STEP 6.

We compute the full conditional of δpk for the common factors. The result is similar to
that of Step 5, and we obtain the Bernoulli distribution with probability

π(δpk = 1|−) =
a

a+b
,

where

a = π(φp|−,δpk = 1) ppk

b = π(φp|−,δpk = 0)(1− ppk).
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STEP 7.

The full conditional posterior distribution for ps
p j is (Gelman et al., 2014, Section 20.2)

π(ps
p j|−)∼ Beta

(
α

s +
p

∑
p=1

δ
s
pj,β

s +
p

∑
p=1

(1−δ
s
pj)

)
.

STEP 8.

We apply the same approach to the probability ppk of the common factor loadings with
the prior ppk ∼ Beta(αp,βp). Like in the above step, we obtain

π(ppk|−)∼ Beta

(
α +

p

∑
p=1

δpk,β +
p

∑
p=1

(1−δpk)

)
.

STEP 9.

Finally we compute the posterior distribution for the covariance matrix of error term Ψs.
Taking in consideration each element of Ψs, ψps, p = 1, . . . ,P

π(Ψs|−) =
S

∏
s=1

P

∏
p=1

(
ψ

−2
ps
)ns/2

exp
(

Cxsxs

2
ψ

−2
ps

)(
ψ

−2
ps
)αψ

2 −1
exp
(
−βψ

2
ψ

−2
ps

)

=
S

∏
s=1

P

∏
p=1

(
ψ

−2
ps
) ns+αψ

2 −1
exp
(
−Cxsxs +βψ

2
ψ

−2
ps

)
.

Thus, as in FA the full conditional for each ψ−2
ps in the study s is

π(ψ−2
ps |−)∼ Ga

(
ns +αψ

2
,
Cxsxs +βψ

2

)
.

5.3 Analysis of simulated data

In order to validate our procedure, we perform a small simulation experiment. Here, we
present two different studies with p = 60. The number of samples is set to ns = {25,30} to
better understand the behavior of the algorithm proposed in the p > n settings. We consider
the first study having a total latent dimension of 4 and the second one a total latent dimension
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of 5. Table 5.2 provides the details. For simulated data we have the advantage of knowing
exactly the sparsity pattern. Here we set around 70% of the loadings to zero.

Table 5.1 Settings for the simulation study.

S ns K + Js

1 25 4
2 30 5

The data come from a MFA model with K = 1.

As denoted by George and McCulloch (1993), the choice of the parameters of the spike
and slab prior is really crucial. Moreover, the choice is made more complex by the presence
of the common and specific factors. Adopting an informative approach, which is essential in
sparse settings, the beta hyper prior on the probability if belonging to the non-sparse set of
Bernoulli simplifies in part this problem. For the specific factor loadings we set τ2

p js = 10−4

and c2
λp js

= 1000, and we choose the same value for the common factor loadings, ζ 2
pk = 10−4

and c2
φpk

= 1000. Note that setting τp js = 0.01 implies that when δ s
p j = 0, then λp js will

(nearly) assume values in (−0.03,0.03), a range of values compatible with loadings that can
be taken as nil. We place a Beta(25,200) on ps

p j and on ppk. As showed in Figure 5.4, the
beta prior leads to the ps

p j and ppk concentrated around 0.1. This amounts to higher sparsity
level than that used to generate the data, but we checked that other choices, such as a prior
concentrated around 0.2, lead to similar results.
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Figure 5.4 Density function obtained by a Beta(25,200)
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We choose the same beta priors for the common and specific factor loadings since the
sparsity is similar in the common factors and in the specific ones. In other applications where
there is the possibility to have different sparsity level, different beta priors could be chosen.

Finally we choose a Ga(1,0.3) for aψ and bψ , as customary in FA (Bhattacharya and
Dunson, 2011; Lopes and West, 2004; West, 2003) .

We run the Gibbs sampler described before for 10000 iterations with a burn-in of 1000.
First, we check the convergence properties of the algorithm. The convergence is sug-

gested by some indexes and tests performed, such as Gelman and Rubin Multiple Sequence
Diagnostic (Brooks and Gelman, 1998), and Geweke Diagnostic (Cowles and Carlin, 1996).
The chains hint to stationarity and we proceed with the analysis. In order to validate our
procedure we check whether the posterior results reproduce the true sparsity pattern.
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Figure 5.5 Comparison of the two factor loading matrices in the first study, one obtained
with the true parameters (on the left) and the other one obtained by the mean of the posterior
sampling (on the right).

This is depicted in Figure 5.5 in which, after adjusting the sign of a column, we perform
a comparison of the posterior medians with the true parameters, reporting only the first study
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for brevity. As reported by Figure 5.5, the proposed method is able to capture the sparsity
components of the Φ and Λ1, and also to broadly identify the elements of the loadings
different from zero.

We turn then to the problem of selecting the latent dimensions of common and specific
factors. What we expect, especially with large dimensions, is to have some loadings with
no contribution to the relation between the observed and the latent components. So when
the number of the fitted latent dimension is too large, we expect to find some columns in the
factor loadings matrix with all the elements close to zero.

We note in passing that some experiments with the usage of the Deviance Information Cri-
teria (DIC) (Spiegelhalter et al., 2002) for model selection were performed. Not surprisingly
for sparsity settings, the results were not encouraging, and this route abandoned.

We perform the Bayesian MFA in the settings define in Table 5.2 with seven common
factors, six specific factors for the first study and eight for the second one.

In order to assess the total latent dimension, we pay attention to the following two steps.

• Monitor the columns of the loadings. In this process, we use the posterior median
to estimate the loadings, since when the dimension of the loading matrix increases
the estimation becomes more demanding. Indeed, when the dimension of the latent
factors increases, the trace plots of MCMC iterations for some columns of the loading
matrices may exhibit some unsatisfactory mixing, with high uncertainty about the
sparsity pattern. The posterior median is therefore a more cautious estimate.

• Take as a indication of non-sparsity for a column j of Φ (and similarly for the other
loading matrices) if

1
p∗

p∗

∑
i=1

| Φ̂pk |≥ ε, ε = 0.03,

where p∗ denotes the number of loadings of the pth column. Here we exclude the
elements set to zero due to identify the model, so that p∗ < p.

By doing this, we obtained a suggestion of k = 1, j1 = 3 and j2 = 4, so that the fitted latent
dimension are actually the same as the true one.

Some further considerations are in order. The threshold ε is chosen equal to 0.03 accord-
ingly to the prior chosen for the loadings, but a sensitive analysis is warranted considering
also other values. Moreover, for higher-dimensional settings other choices might be sensible.
Furthermore, a further outcome of the proposed approach is that Bernoulli random variables
δpk and δ s

p j provide some useful information (see also Gelman et al., 2014, p.491). Indeed,
Carvalho et al. (2008) make an intense use of the posterior probabilities P(δpk = 1|data)
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in order to define the total latent dimensions and also to check about the inclusion of fur-
ther variables in the model. In particular, their approach identifies a significant gene-factor
interaction when such posterior probability is higher than a given threshold.

5.4 Application in a p > n context

In this section some analyses to the ovarian cancer are performed to validate the procedure
described before. We consider the first two studies presented in Table 2.1, GSE9891 and
GSE20565, performing the analysis with the two pathways described in Chapter 4. So we
have ns = 285,140 and p = 163, thus resulting in a p > n setting.
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Figure 5.6 Heatmap of the posterior median for Φ with k=10.
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For the common factor loadings, we set ζ 2
pk = 10−4 and c2

φpk
= 5000, and we choose

the same value for the specific factor loadings, τ2
p js = 10−4 and c2

λp js
= 5000. We place a

Beta(25,200) on ps
p j and on ppk in order to have a prior concentrated on 0.1. This choice

corresponds to higher sparsity level than that obtained by the frequentist analysis of Chapter 4
as the latter is based on a non-singular covariance matrix. Furthermore, the Beta(25,200) gave
satisfactory results in recovering the sparsity pattern of the simulated data of the previous
section.

Some preliminary analyses with large latent dimensions, such as k = 15, j1 = 10 and
j2 = 10, readily suggest that there are several sparse specific factor loadings, not significantly
contributing to the relation between the observed and latent components. We then decided
to switch to a model with k = 10, j1 = 5, j2 = 3. Such values are similar to those obtained
in the frequentist analysis of Chapter 4. More precisely, in the frequentist analysis with
p = 63 we obtained k = 4, j1 = 2 and j2 = 3, and with p = 100 we obtained k = 5, j1 = 1
and j2 = 2.

We run a Gibbs sampling with these latent dimensions for 50000 iterations with a burn-in
of 10000. The results are represented in Figure 5.6, restricted to the common factor loadings
Φ.

Here, an adjustment to the sign of columns 7 and 10 has been performed. Table 5.2

Table 5.2 Non-sparsity index values for Φ with k=10.

K Non-sparsity index
1 0.209
2 0.189
3 0.137
4 0.050
5 0.050
6 0.080
7 0.025
8 0.057
9 0.062

10 0.062

summarizes the posterior non-sparsity index 1
p∗ ∑

p∗
i=1 | Φ̂pk | . These results hint to a model

with just nine common latent factors, five specific factors for the first study and three for the
second study. For the common factor we get the same dimension of the frequentist analysis.

Figure 5.7 shows the elements of Φ for which P(δpk = 1|data)≥ 0.95 on the right and
for P(δpk = 1|data)≥ 0.99 on the left. Following Carvalho et al. (2008), they can be taken
as expressing significant gene-factor associations.
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Figure 5.7 Heatmap of P(δpk = 1|data)≥ 0.95 (left) and P(δpk = 1|data)≥ 0.99 (right) with
k = 10.

5.5 Discussion

Modeling sparsity settings becomes crucial in contexts with more variables than subjects,
which are common with microarray gene expression data. The proposal of this chapter allows
to fit the MFA model also to this kind of settings, and the results obtained seem encouraging,
but there are some points worth noting.

Indeed, the settings considered here involve more variables than subjects, yet the two
dimensions are not too dissimilar. In a suitable sense, this is demonstrated by the fact that
for the the analysis of the real data of Section 5.4 we could compare the results obtained
employing the Bayesian sparse prior with those obtained with p = 100 (or p = 63) variables
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by means of maximum likelihood estimation. Extensions to settings with p >> n, for which
frequentist analyses of a very small portion of the available variables would be much less
meaningful, would require more care.

Fitting sparse MFA adopting a spike-and-slab prior requires quite informative prior
distributions, and very high ratios p/n would require to adopt a much stronger prior level
of sparsity than that chosen here. Furthermore, the uncertainty about the nullity of some
loadings alluded to in Section 5.3, leading to unsatisfactory mixing in the MCMC results,
would be even greater in such settings. To this end, the proposal of Carvalho et al. (2008),
who adopted a further spike-and-slab structure for the beta prior on the success probability
for the δ s, seems worth investigating for possible extension to the MFA model. This is
actually a point deserving further study, but whose implementation appears within reach. We
end by noting that, on the computational side, the Julia programming language used for the
analyses of this chapter would be a rather good choice also for this kind of extension.



Appendix A

Computational tools

The thesis deals with models for high-dimensional data, involving a large number of parame-
ters. The R statistical software, used for most of the data-cleaning and graphical analyses,
turned out to be inadequate for the simulation studies of Chapter 3 or the Bayesian analyses
on the sparse settings of Chapter 5. The high-performance Julia programming language
was then employed for such tasks. More details on this powerful programming tool are
available at http://julialang.org. For the Bayesian analysis of Chapter 5, the public
Matlab code associated to the paper by Bhattacharya and Dunson (2011) turned out to be
useful, and we thanks these Authors to make it available. Finally, several models were also
implemented in JAGS (http://mcmc-jags.sourceforge.net), which was rather valuable
at the developing stage, for cross-checking the results obtained both in R and Julia.
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