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ABSTRACT 

The folding of DNA molecule into non-canonical secondary structures has been shown to be 

implicated in many important biological processes which regulate cell proliferation and 

proteins expression. In particular one of these peculiar secondary structures, called G-

quadruplex (G4), has been shown to potentially impair cancer development. G4 occurs along 

DNA sequences rich of consecutive guanines which can fold through Hoostein pairs by 

forming stacked planes of guanines tetrads. This conformation prevalently forms along the 

termini of chromosomes (telomeres) but also along the promoter sites of several oncogenes 

directly involved in many cancers. The G4 formation leads to an hindrance on DNA molecule 

which hinder the telomere elongation and transcription process. The result is a switching off 

of these mechanisms which are directly involved in cancer progression. Several factors can 

influence the G4 equilibria for example, saline conditions, temperature, pH, the binding with 

specific proteins as well as the presence of dehydrating cosolutes. Additionally, the overall 

structural feature of the G4 is strictly dependent upon the DNA sequence. As a results, 

different G4 can be identified inside the cells.  

In this project, we focused on the conformational study of the promotorial regions of EGFR 

and BRAF oncogenes since, on these sites the existence of G4 putative forming regions was 

found. In particular, the sequences at positions -272, -37 of EGFR and -176 of BRAF from the 

transcription start site were analyzed. Indeed, no previous literature data were reported 

about the structural equilibria in solution of these sequences. We found that our tested 

sequences are actually able to fold into G4 by setting the most proper experimental 

conditions and also close to the intracellular physiological environment (KCl 150 mM, pH 

7.5).  

However, oncogenes are double stranded sequences and the folding of the complementary 

cytosine rich strand into i-motif (iM) can be involved in the switching off of gene 

transcription. Although, so far, no physiological evidence has been observed for i-motif 

conformation, here, we aimed to investigate also the cytosine rich strand conformation, to 

assess if this folding in the case of our sequences is compatible with the physiological 

conditions and if it can synergically works with the G4 to destabilize the double strand. Our 

data showed that in physiological condition the preferential form is represented by the 

double strand . However, some selected ligands showed to shift the DNA B-form toward the 
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non canonical conformation. Indeed, here we implemented our work with the screening of 

two libraries of compounds in order to find a selective and efficient binder. We carried on 

the binding study of anthraquinones and naphthalene diimides derivatives, known to have 

the chemical features of efficient G4 binders. These ligands were first tested on different G4 

templates, known to be validated models for G4 binding study, and their efficiency on G4 

has been compared with the double strand. The most G4 selective derivatives were than 

investigated towards our oncogenic G4s. Although more work is required to identify a lead 

compound, we were able to demonstrate how the use of asymmetrical substitution pattern 

on a aromatic core can implement the selectivity among different G4s. 

Finally, in order to map the occurrence of G4 conformation in vivo, we set up a novel 

technique which consists in an in vivo footprinting protocol. This work, performed  at 

University of Mississippi, Oxford, MS (USA), under the supervision of Dr  Tracy  A.  Brooks, 

should provide novel insight on the G4 formation in the cells according to their 

physiological and environmental conditions. 
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RIASSUNTO 

Molti studi dimostrano che l’assunzione di strutture “non canoniche” da parte della 

molecola di DNA sia coinvolto in molti importanti processi biologici che regolano la 

proliferazione cellulare e l’espressione proteica. In particolare, è stata dimostrata 

l’implicazione di una di queste particolari strutture secondarie, chiamata G-quadruplex (G4), 

nel blocco della progressione del cancro. La struttura G4 è propria di sequenze di DNA ricche 

in guanine consecutive che assemblandosi tramite legami di Hoostein, formano piani di 

tetradi di guanine impilati tra loro. Questa particolare conformazione si forma 

prevalentemente lungo i tratti terminali dei cromosomi, i telomeri, ma anche lungo siti 

promotoriali di diversi oncogeni coinvolti in molti tipi di cancro. La formazione del G4 porta 

ad una sorta di ingombro sulla molecola di DNA che inibisce l’elongazione del telomero e i 

processi di trascrizione. Questo porta ad uno “spegnimento” di questi meccanismi che sono 

direttamente coinvolti nello sviluppo del cancro. Molti fattori possono influenzare gli 

equilibri delle conformazioni G4, per esempio, le condizioni saline, la temperatura, il pH, il 

legame con specifiche proteine, così come la presenza di cosoluti. Inoltre, la struttura 

globale del G4 é rigorosamente dipendente dalla sequenza oligonucleotidica. Pertanto, 

diverse strutture G4 possono essere identificate a livello cellulare. 

In questo progetto, è stato condotto uno studio conformazionale di regioni promotoriali 

degli oncogeni EGFR e BRAF, dal momento che, su questi oncogeni è stata riscontrata la 

presenza di regioni “G-rich” (ricche in guanine) potenzialmente in grado di assumere una 

struttura G4. In particolare, sono state analizzate le sequenze a partire dalle posizioni -272,   

-37 di EGFR e -176 di BRAF dal “transcription start site” (sito di inizio della trascrizione). 

Finora, non sono presenti dati in letteratura riguardanti la caratterizzazione strutturale di 

queste sequenze in soluzione. Con questo studio, è stata dimostrata la capacità delle 

suddette sequenze di assumere una conformazione G4 nelle idonee condizioni sperimentali 

e soprattutto in un ambiente che mimi quello fisiologico (150mM KCl e pH 7.5). Poiché gli 

oncogeni sono sequenze a doppio filamento, anche la conformazione i-motif assunta dal 

filamento complementare ricco in citosine (“C-rich”) può essere coinvolta nella regolazione 

del processo di trascrizione genica. Tuttavia, sinora non è stata riscontrata alcuna rilevanza 

fisiologica della conformazione i-motif. In questo lavoro, è stata caratterizzata anche la 
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conformazione assunta dal filamento “C-rich”, in particolare se essa possa esistere in 

condizioni fisiologiche e se fosse in grado di destabilizzare la doppia elica insieme al G4. I dati 

ottenuti dimostrano che in condizioni fisiologiche la forma prevalente è il doppio filamento. 

Tuttavia, è stato dimostrato come alcuni ligandi siano in grado di spostare l’equilibrio del 

DNA dalla sua forma di doppia elica-B, verso le conformazioni non canoniche. È stato infatti 

condotto uno studio su due librerie di composti con lo scopo di evidenziare un composto 

selettivo ed efficace. Ci siamo focalizzati su derivati antrachinonici e di naftalendiimidi noti 

come efficaci ligandi per il G4. Questi composti sono stati prima testati su diversi templati 

G4, noti per essere dei modelli validati per lo studio di binding sul G4. Quindi la loro 

efficienza sul G4 è stata poi comparata a quella sul doppio filamento. I derivati più selettivi 

verso il G4 sono stati poi testati su G4 oncogenici. Sebbene una continuazione dello studio 

fosse necessaria per identificare un composto “lead”, con questo lavoro è stato dimostrato 

come l’uso di una sostituzione asimmetrica sull’anello aromatico possa implementare la 

selettività tra più G4.  

Infine, per identificare la formazione del G4 in vivo, è stata messa a punto una nuova tecnica 

che consiste in un protocollo di footprinting in vivo. Questo lavoro, svolto nell’Università del 

Mississippi, Oxford, MS (USA) sotto la supervisione della dr.ssa Tracy A. Brooks, dovrebbe 

fornire nuovi sviluppi per la formazione del G4 nelle cellule in accordo con le loro condizioni 

fisiologiche. 



1 

 

Chapter 1 

STRUCTURAL CHARACTERIZATION OF EGFR AND BRAF 

PROMOTORIAL REGIONS 

 

1.1 INTRODUCTION 

Human and animal cancers are characterized by shared properties, which comprise 

invasion, metastasis, replicative immortality, angiogenesis, cell death resistance, 

sustained proliferative signaling and evasion of growth suppressors (fig. 1.1). These six 

hallmarks of cancer were first outlined by Hanahan and Weinberg in 2000 (Hanahan 

and Weinberg, 2000). Each of them is associated to peculiar gene mutations that bring 

to the expression of oncogenes with dominant gain of function or tumor suppressor 

genes with recessive loss of function. These gene mutations are responsible of the 

molecular, biochemical and cellular properties shared by the most, even all, types of 

cancers. Although various types of mutations, such as base substitutions, deletions, 

and insertions, induce  proto-oncogenes overexpression, it has been shown that 

human cancers are mainly associated to point mutation of oncogenes(Kufe DW, 

Pollock RE, Weichselbaum RR, et al., 2003)  

Of the 50.000-100.000 genes in our genome, about 100 have been identified as proto-

oncogenes and about a dozen as tumor suppressor genes. Some examples of proto-

oncogenes are myc, raf, ras, growth factors etc...which overexpression has been 

associated to different kind of cancer such as lymphomas, stomach, colon and lung 

carcinomas. 
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Fig.1.1: the six hallmarks of cancer 

Conversely, tumor suppressors act by protecting cell from cancer progression by 

different mechanisms which are not completely known yet. Generally, they can 

suppress cell division, induce apoptosis and DNA damage repair and inhibit metastasis. 

Among them, the most important is p53, which misregulation is associated with about 

50% of human cancers. It acts with more than one mechanism, for example by 

triggering DNA repair processes, inducing the transcription of other tumor 

suppressors, such as p21 and p16, and initiating cell apoptosis(Sun and Yang, 2010) 

Anticancer therapy uses different approaches depending on cancer progression and 

localization. They include surgery, radiotherapy, immunological therapy usually all 

combined with chemotherapy. The first anticancer compounds were introduced in 

1948, when nitrogen mustards were used as weaponry during World War I. Their 

potential to cause bone marrow aplasia was exploited as a chemical approach for 

leukemia treatment. Besides mustards, during years, more other compounds were 

synthesized as anticancer agents such as folic acid derivatives, nitrogen bases synthesis 

inhibitors and vinca alkaloids (fig. 1.2). 
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Fig.1.2: mechanism of action of anticancer drugs 

 

Although chemotherapy approach is often essential for cancer eradication, the main 

negative aspect regards the high number of side effects. Nowadays, modern 

anticancer therapy looks at limiting this aspect with the utopia to develop a specific 

drug for a specific illness.   

Since the discovery of the chemotherapeutics, the delivery of the drugs only to the 

damaged portion of the nucleic acids has been pursued with the aim to massively 

reduce side effects. These effects however, proved to partially fail when small 

molecules are used for their inability to “read” unique DNA sequences.  

Cancer development is strictly related to specific mutations at DNA level which lead to 

the overexpression of defined growth factors or the lost of expression of tumor 

suppressing genes promoting cancer cells growth and immortality. For this reason, the 

targeting of DNA sequences involved in cancer could be a significant breakthrough in 

the field of cancer therapy. 

In this contest, a novel strategy, involves gene therapy approach. Conceptually, the 

technique involves the identification of appropriate DNA sequences which can 
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interfere, once injected in the cell, with DNA translation processes or possibly even 

correct genetic mutations.  

Many different approaches can be used for cancer gene therapy depending on the 

kind of the disorder. An example is the delivery of gene-specific antisense 

oligonucleotide or ribozyme to bind/cleave oncogene mRNA. A cancer gene therapy 

trial which is being conducted regards the  delivery of antisense KRAS genes in the case 

of some forms of non-small-cell lung cancer (Strachan and Read, 1999). 

The main issues regardless gene therapy approaches is linked to the delivery of nucleic 

acids and also the immunological response which can be caused by the introduction of 

foreign oligonucleotides. Nowadays, the sequence targeting approach is going to be 

replaced by the structure-specific recognition approach by the use of specific ligands 

for specific DNA strucutures. 
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1.1.1 DNA polymorphism 

The predominant secondary structure assumed by DNA in solution is the right handed 

B-double helix. In this conformation, nitrogen bases are paired following Watson and 

Crick rules(Watson and Crick, 2003). The B-double helix is 23.7 Å wide and extends 34 

Å per 10 bp of sequence. It makes one complete turn about its axis every 10.4-10.5 

base pairs in solution. This frequency of twist (known as the helical pitch) depends 

largely on stacking forces that each base exerts on its neighbours in the chain. The 

bases are oriented perpendicular to the helix axis. The interaction energy between two 

bases in double-helical structure is therefore a combination of hydrogen-bonding 

between complementary bases, and hydrophobic interactions between the 

neighboring stacks of base-pairs.  

 

Fig.1.3: representation of Watson and Crick base pairings. 

 

Besides the Watson and Crick pairings, DNA can assume other secondary structures, 

which commonly depend on solution conditions (salt, dehydration, binding with 

nuclear proteins), such as the A and Z form of the double helix. 

The Z-DNA helix is an unstable structure of the double helix, it is left-handed and has a 

structure that repeats every 2 base pairs. The major and minor grooves, unlike A- and 

B-DNA, show little difference in width, it can also form a junction with B-DNA (called a 

"B-to-Z junction") in a structure which involves the extrusion of a base pair (de Rosa et 

al., 2010). 
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Furthermore, they exists some other secondary structures classified as “non-

canonical” as they completely differ from the common double helix. Some examples 

are cruciform DNA, slipped hairpins, triplexes, G-quadruplexes (G-tetraplexes), and i-

motifs (i-tetraplexes) (fig 1.4). 

  

 

Fig. 1.4: examples of non-canonical DNA secondary structures(Bacolla and Wells, 2004). 

These structures are involved in many important  biological processes, including 

replication, regulation of gene expression, nucleosome structure and recombination. 

For example, cruciform DNA, are characterized by the presence of inverted 

complementary repeats thus inducing the folding of the one strand sequence, and 

they have been implicated in the evolution and development of diseases including 

cancer, Werner's syndrome and others(Brazda et al., 2011). Furthermore, a DNA 
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triplex is formed when pyrimidine or purine bases occupy the major groove of the DNA 

double helix through Hoogsteen pairs with purines of the Watson-Crick basepairs 

(Frank-Kamenetskii and Mirkin, 1995). Their formation prevents the processing of the 

DNA by several nuclear proteins. Hairpins is an intramolecular folding of the single 

stranded DNA and it occurs when two regions of the same strand, usually 

complementary in nucleotide sequence pair to form a double helix that ends in an 

unpaired loop.  
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1.1.2 The G-quadruplex 

The G-quadruplex (G4) is a “non-canonical” secondary structure assumed by gene 

sequences rich in consecutive guanines (“G-rich sequences”). In this case, four 

guanines assemble each other through Hoogstein hydrogen bonds, involving the N1, 

N7, O6, and N2 of guanine molecule, forming the G-tetrad plane. The stacking of more 

G-tetrads brings to the G4 structure (fig. 1.5, 1.6).  

 

Fig. 1.5: guanines assembly in a G-quadruplex conformation(age855.html).() 

 

 

Fig. 1.6: stacking of guanines tetrads to form a G4 conformation(Balasubramanian et al., 2011) 

Several factors can influence this conformation for example, saline conditions, the 

number of guanines, molecular crowding and dehydrating agents as well as the 

binding with nuclear proteins. The presence of salts is very important for quadruplex 

stability. As the O6 guanine carbonylic group determines a negative charged cavity in 

the center of the tetrad plane, the selection of a suitable cation based on size and 

charge dramatically determines the overall stability of the final folded quadruplex. The 

contribution of several ions has been studied so far, such as K+, Na+, NH4+, Li+ etc…, 
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The most relevant turned out to be Na+ and K+ which are also largely prevalent in the 

physiological environment. Since Na+ has a smaller ionic radius compared to K+, it 

intercalates in the tetrad plane conversely, K+ interposes between two tetrads (fig. 

1.7).  

 

Fig. 1.7: stabilizing effect of K+ and Na+ cations. Na+ intercalates in the tetrad plane, whereas K+ among 

two stacked tetrads.  

 

The preference of quadruplex central cavity for potassium over sodium ion is the result 

of two opposite effects: from one side the free energy of Na+ binding to a G4 is more 

favorable than that of K+, but from the other side this effect is neutralized by a greater 

cost for Na+ dehydration. The net result is a more negative free energy change for the 

potassium form.  

Besides stability, these factors can influence also the topology of the G-quadruplex 

structure. The switching between various conformations can be induced by ions, 

temperature and, above all, by the bases sequence (Neidle and Balasubramanian, 

2006). In order to classify, the different G4 several properties can be considered. 

Indeed, topology is determined by the relationship between backbone strand 

orientation (+,−), glycosidic torsion angles (syn-anti-) and groove widths (w,m,n). The 

glycosidic is the one bond linking the guanine base (N9) to the sugar in the G-tetrad; 

the torsion angle χ (C4-N9-C1′-O4′) is limited in the stacked tetrad to be either syn (0 to 

90°) or anti (−120 to 180°). In turn, depending on strand orientation the four G-

containing strand can be all parallel, antiparallel or mixed type (fig. 1.9)(Neidle and 
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Balasubramanian, 2006; Patel et al., 2007; Webba da Silva, 2007; Webba da Silva et al., 

2009)  

Strand orientation and glycosidic torsion angle contribute to define groove widths: all-

parallel backbone strand alignments generate equal groove widths, while anti-parallel 

arrangements of the phosphate backbones generate both wide and narrow grooves. 

The combinations of syn and anti base orientations around the tetrads changes 

significantly the access to hydrogen bond donors and acceptors within the grooves, 

altering hydration networks, accessibility and a variety of surfaces for proteins, DNA 

and ligands interactions(Collie and Parkinson, 2011). 

a)    b)  

Fig. 1.8: chemical structures of anti and syn conformers of 2′-deoxyguanosine a)(Webba da Silva et al., 

2009) (Webba da Silva, 2007) 

Another level of G4 polymorphism is related to the number of strands it involves. For 

example, G4 can be monomeric, dimeric or tetrameric.   

Combining strand orientation, glicosidic torsion angle, groove width and number of 

strands,  different G4 structures occur; as a result, G4 can be compared to a library of 

different tridimensional structures where each single topology can be a valuable 

molecular target to study important biological processes and to develop possible 

selective therapeutic ligands.   
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Fig. 1.9: G4 polymorphism(Yaku et al., 2012). 
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1.4 G-quadruplex in the cell 

The first discovery of guanines assembly to form a planar tetrad, is dated back to 1962, 

when Gellert M. et al. proposed a model of arrangement of the bases in a guanylic acid 

gel(GELLERT et al., 1962).  The recognition of G4 structures and their implication in 

many biological processes such as aging and cancer, led many researchers to point 

their attention on this topic. Only several years later, nucleic acid G4, was first 

proposed to occur along the termini of eukaryotic chromosomes, telomeres, due to 

the presence of consecutive guanines on these sequences (-(TTAGGG)n-). However, G-

rich sequences were identified not only along telomeres but also along different 

genomic DNA sites. For this reason, G4 structures can occur also along promoter sites 

and the 5’UTR coding regions of several oncogenes, transient single stranded DNA 

occurring during replication processes as well as on 5’UTR of mRNA outside the 

nucleus (fig. 1.10)(Lipps and Rhodes, 2009). 

 

Fig. 1.10: G-quadruplex formation at different level into the cell(Lipps and Rhodes, 2009).  

 

1.4.1 G4 at telomeric level 

Telomeres consist of tandem repeats of (TTAGGG/CCCTAA)n where the G-rich strand 

protrudes at the 3’terminal as single stranded overhang of about 100-300 bases. 

Telomere length is reduced at each cell replication cycle due to the end-replication 

effect. Since DNA polymerase is not capable to completely copy DNA at the very ends 
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of chromosomes, approximately 50 nucleotides are lost during each cell cycle, which 

results in gradual telomere length shortening and loss of genetic information. When 

the number of tandem repeats falls below a critical value, the cell stops to divide and 

enters a state of senescence (Cech, 2004; Zvereva et al., 2010). The enzyme 

responsible for the physiological maintenance of the length of telomeres is 

telomerase. This is a ribonucleoprotein which acts as a reverse transcriptase by adding 

guanine-rich repetitive sequences and reducing telomeres shortening (Zvereva et al., 

2010). Nevertheless, telomerase is overexpressed in the 80-90% of cancer cells, 

leading to an uncontrolled cellular proliferation and consequent immortalization. The 

shift of the conformational balance of telomeres towards G-quadruplex, has been 

proposed as a novel strategy to prevent telomerase activity because the enzyme 

recognizes only linear oligonucleotides (Fig.1.11). It is for this reason that the 

development of selective drugs, which recognize and stabilize the G-quadruplex folded 

form of telomeres could be a great strategy to control cancer diffusion (Neidle and 

Balasubramanian, 2006)(Sun et al., 1997). 

 

Fig. 1.11: telomerase inhibition by G4 structure at telomeric level 

(http://www.chem.iitb.ac.in/~pradeep/G-quadruplex.html). 
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Nevertheless, also telomere is characterized by a high polymorphism which mainly 

depends on sequence length and salt conditions. NMR and X-ray evidences assess the 

potential of the Human Telomeric Sequence (HTS) (d[AG3(T2AG3)3T]) to mainly fold in a 

population of prevalently hybrid conformations in the presence of K+. Conversely, in 

Na+ it assumes a defined antiparallel folding. Furthermore, Tel24 [d(T2AG3)4] and 

mutTel26 d[(A3(G3T2A)3G3A2] adopt a hybrid-1 folding in K+ containing solutions, 

whereas wtTel26 d[(T2AG3)4T2] in the same conditions, folds into a hybrid-2 type of 

arrangement (fig. 1.12). 

 

 

Fig. 1.12: X-ray and NMR representation of telomeric G4 structures assumed at different saline 

conditions. 

Here is reported a resuming table with the topologies assumed by short telomeric 

sequences of different legth in K+ (fig. 1.13). 
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Fig. 1.13: G4 structures assumed by different length telomeres(Dai et al., 2007). 

 

To date the existence of several G4 topologies under physiological conditions has been 

shown and the predominance of a unique G4 structure of the telomeric sequence in 

vivo has not been identified yet. Several works aim to outline this aspect by trying to 

isolate and identify G4 from genomic DNA. An important breakthrough was reached in 

2013, when S.Balasubramanian research group visualized the G4 structures at the 

telomeres of ciliate macronuclei using a fluorescent labelled antibody, selective for G4 

structures. In fig. 1.14 it can be observed the G4 formation within the telomeres. 

Interestly, this approach evidenced also the occurrence of G4 structure at non-

telomeric regions (Biffi et al., 2013). 

 

Fig. 1.14: immunofluorescence for G4 structure on metaphase chromosomes isolated from Hela cervical 

cancer cells. Discrete G4 foci (red) were observed both within the non-telomeric regions and at the 

telomeres. Adapted from:(Biffi et al., 2013) 
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1.4 2. G4 structures as switching on/off of oncogenes transcription  

Oncogenes are physiologically expressed in humans, where they are involved in cell 

proliferation and differentiation. Several factors can alter the physiological expression 

of these oncogenes leading to their overexpression or to the expression of mutant 

forms which can be responsible for cancer development(Huppert and 

Balasubramanian, 2005; Huppert and Balasubramanian, 2007; Huppert et al., 2008; 

Hurley, 2009; Zhao et al., 2010). Bioinformatic analysis identified G-rich sequences 

upstream the promotorial region of several oncogene but not on tumor suppressor 

gene. In this regard, a correlation between the G4 folded state of the promoter 

sequence and the repression of gene transcription exists, which confirms a role of G-

quadruplex structures in controlling gene expression in physiological conditions(Brooks 

and Hurley, 2010). This is due to the inability of proteins involved in the translation 

processes to bind to G-quadruplex and to carry on transcription process (Fig. 1.15).  

 

Fig. 1.15:Mechanism of the inhibition of gene expression in eukaryotic cells by G-quadruplex folding 

(Daekyu Sun and Laurence H. Hurley, 2009). 
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Despite the large number of putative G4 folding sequences identified along the human 

genome, only few of them have been structurally characterized in solution (NMR) or 

by X-ray crystallography (fig. 1.16). Some examples are c-myc, c-kit, KRAS and VEGF.  

 

Fig. 1.16: NMR and X-ray representation of the G4 of several oncogenes 

 

Again a variegate landscape of tridimensional structures emerged.
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1.1.4 The effect of cosolutes on G4 equilibria  

The accurate structural characterization of the G4 structures under physiological 

conditions is a very important starting point for the design of selective ligands. Data on 

G4 structures obtained so far, refer to NMR and crystallographic studies which can 

implement each other and although sometimes are even discordant. For example, in 

2002 Parkinson et al. published the crystal structure of the telomeric sequence as a 

mainly parallel folded(Parkinson et al., 2002), but three years later, Chaires et al., 

through NMR studies, showed that it was not the main conformation assumed in 

solution(Li et al., 2005). Thus they outlined the potential existence of an antiparallel 

structure, too. Later on, NMR studies underlined the presence of hybrid structures 

according to the sequence length. 

Nowadays, cosolvents as molecular crowding and dehydrating agents have been 

extensively used to  reproduce the physiological conditions(Lannan et al., 2012; 

Petraccone et al., 2012a; Petraccone et al., 2012b). Indeed, molecular “crowding” and 

dehydrating agents such as poliethylen glycol (PEG), Ficoll, sucrose, acetonitrile and 

ethanol, simulate the intracellular environment which is crowded with biomolecules 

that occupy a significant fraction (up to 40%) of the cellular volume, with a total 

concentration in the range 300–400 mg/ml.  

 

  

Fig. 1.17: examples of cosolutes commonly employed to mimic intracellular “crowded” environment. 
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Cosolutes significantly affect the structural e thermodynamic equilibria of G4 as they 

increase the excluded volume and they alter water activity and molecules hydration, 

thus affecting any equilibrium involving changes in bound water molecules upon 

complex formation. Depending on the cosolute nature, they can act as crowding 

and/or decrease water activity. For example, small cosolutes (ethanol, acetonitrile, 

DMSO, betaine) at high molar fractions, greatly reduce the water activity and act 

mainly as dehydrating agents, whereas  larger molecules such as water soluble 

proteins or polysaccharides (BSA, hemoglobin, lysozyme, ficoll, dextrans, PEG) 

generate a significant excluded volume (crowding) also at low molar concentration and 

have a small effect on water activity. As regards G4 structural studies, the most studied 

“crowding” solute is the highly water-soluble synthetic polymer polyethylene glycol 

(PEG), usually with low molecular weight (PEG 200 and PEG 400). However, recent 

evidences outlined that  PEG interacts with macromolecules rather than being an inert 

agent thus contributing significantly to lower the water activity by mainly acting as a 

dehydrating rather than steric crowding agent(Petraccone et al., 2012b). 

  

 

 

Fig. 1.18: representation of dehydration and crowding conditions generated by cosolutes affecting G4 

folding. 

Cosolute 

Water molecule 

Cations  
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Several studies outlined that molecular crowded conditions simulated by 40% PEG200 

(w/v) switch the double strand vs G4 equilibrium towards the G4 conformation, in 

particular towards a parallel G4 structure (fig. 1.19).   

 

 

Fig. 1.19: shift of the double strand vs quadruplex equilibrium induced by a crowding/dehydrating 

agent.  
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1.6  Targeting G4 structures  

The many experimental evidences on G4 existence in cells and on its multiple role in 

vivo indicate G4 as a novel target potentially leading to novel strategies with a wide 

therapeutic potential(Balasubramanian et al., 2011; Brooks and Hurley, 2009; Brooks 

and Hurley, 2010; Brown et al., 2011). The recognition of the G4 tridimensional fold by 

a small molecule might replace the nucleic acid-based approaches by overcoming the 

poor availability of this therapy(Alcaro et al., 2013; Murat et al., 2011). However so far, 

a G4 binding drug has not been developed yet, but modern pharmaceutical chemistry 

is focusing its attention on this topic. The ability to bind DNA is the first assumption to 

design putative G4 binders. The goal would be the development of a 

chemical/biological agent, which could discriminate between different folding of DNA 

in particular between G4 and the dsDNA that is overexpressed inside the cell. A model 

lead compound for G4 recognition can be considered the telomerase inhibitor 

telomestatin, isolated from  Streptomyces anulatus. The solution structure of the 

complex quadruplex-telomestatin, shows the interaction mode of the compound with 

the G4. In particular, the telomestatine molecule stabilizes the folding by stacking on 

the G-tetrad(Chung et al., 2014).  

 

Fig. 1.20: G4 stabilization by telomestatin molecule(Chung et al., 2014). 
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In the last decades, several G4 stabilizer compounds have been screened, among 

them, porphyrines, anthraquinones and naphthalene diimides derivatives provided 

promising results(Collie et al., 2012; Di Antonio et al., 2007; Gatto B., Zagotto G., Sissi 

C., Cera C., Uriarte E., Palu` G. , Capranico G., and Palumbo M.; Grand et al., 2002). As 

an example, the porphyrine TMPyP4 is the most studied G4 binding agent until now 

and its ability to discriminate between double stranded DNA and G4 has been 

confirmed many times(Grand et al., 2002). Though, solubility issues, as well as 

problems related to the permeation into the cell nucleus and the lack of significant 

binding specificity in vivo  did not allow it to overcome pre-clinical trials.  

 

Fig. 1.21: molecular structure of the porphyrin TMPyP4 (a) and X-ray structure of the compound (red) 

bound to the d(TAG3T2AG3) bimolecular G-quadruplex (Patel et al., 2007).  

a) 

b) 
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Fig. 1.22: chemical structure of a tetrasubstituted naphthalene diimide derivative. 

As regards anthraquinones and naphthalene diimides scaffolds, they have been 

considered as suitable starting point for G4 binding ligands thanks to their chemical 

accessibility and large planar surfaces(Collie G.W. Promontorio R., Hampel S.M., Micco 

M., Neidle S., and Parkinson G.N.; Milelli et al., 2012; Nadai et al., 2011). These classes 

of derivatives are able to efficiently bind to double strand DNA thanks to their 

planarity, which allows an intercalation between base pairs of DNA in the B 

conformation. However, their chemical and biological properties are greatly affected 

by the different substituents on the planar ring system. Side chains are usually 

introduced with one or two positive charges, in order to establish an electrostatic 

interaction with the phosphate backbone of the polynucleotide. The volume and 

position of side chain substituents balance the preferential recognition of G-

quadruplex versus double strand structure. Despite their distinct chemical features, all 

these derivatives share a general binding mode on G4. In particular, they are 

hypothesized to interact with the G-quadruplex through π-stacking and electrostatic 

interactions. This is first of all, due to their aromatic surface and planarity(Sissi and 

Palumbo, 2014)(Zagotto et al., 2008a; Zagotto et al., 2008b; Zagotto et al., 2011) 
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Fig. 1.23: representation of the binding of two tetrasubstituted naphthalene diimide  (BMSG-SH-3 and 

BMSG-SH-4) derivatives on a G4 tetrad.  

 

However, other binding modes have been proposed for G-quadruplex ligands, 

including binding into the grooves(Jain and Bhattacharya, 2010), electrostatic 

interactions with the loops and with negatively charged phosphate groups of the 

backbone(Sissi and Palumbo, 2014). In particular, G-quadruplex groove targeting is a 

very attractive strategy that can lead to an increased selectivity of recognition 

between duplex and quadruplex DNA. Some example of compounds that fit these 

regions are reported in fig. 1.24.  

DB832

pyrene imidazolium

benzothiazole cyanines

+

+

 

 

Fig. 1.24: examples of G4 groove binders(Sissi and Palumbo, 2014). 

 

Quadruplex grooves are very different from double helix grooves for shape and for 

dimensions. Moreover, due to the high polymorphism of the structure, quadruplex 
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grooves can vary significantly according to the type of sequence, the nature of cations 

and the syn/anti conformation of guanine residues resulting in an ensemble of possible 

groove geometries. Selective targeting of the different grooves will allow the 

recognition of quadruplex DNA with a high degree of selectivity(Sissi and Palumbo, 

2014). 

Thus, this open the chance to design derivatives that can discriminate among G4 of 

different topologies and it is valuable for the development of new potent anticancer 

drugs. 
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1.7  I-motif structure 

Distinctly from the telomeres end, G-rich regions in oncogene promoters are paired to 

their complementary C-rich strand. Under particular conditions also these sequences 

can fold, , into a peculiar non-canonical secondary structure called i-motif(Day HA, 

Pavlou P, Waller ZA, 2014). This is a four-stranded DNA secondary structure comprised 

of two parallel-stranded DNA duplexes held together in an antiparallel orientation by 

intercalated, cytosine–cytosine+ base pairs (fig. 1.25). This conformation requires 

hemiprotonated cytosines thus it preferentially occurs at low pH (4-5) due to the pKa 

of N3 of cytosines (~4.5).  

 

Fig. 1.25: (a) A hemiprotonated cytosine–cytosine base pair which intercalate to form the i-motif 

structure. (b) A schematic representation of i-motif structure(Day HA, Pavlou P, Waller ZA, 2014). 

 

No physiological evidence of iMs has been shown yet, but these structures are now 

widely employed as pH switches in nanotechnology devices. However, as previously 

outlined, the folding into i-motif can reinforce the switching off of transcription 

processes mediated by non-canonical G4 secondary structures, thus leading to 

efficient cancer arrest. For this reason, several studies are now facing the topic of the 

occurrence of iMs at pH values, closer to the physiological one (pH 7.5). For example, 

the presence of a crowding agent such as PEG200 at 40% w/w induces the iMs 

formation at slight higher pH values(Bhavsar-Jog et al., 2014). Furthermore, the 

presence of silver cation (Ag+) has been showed to induce i-motif folding at room 
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temperature and physiological pH and that folding is reversible with the addition 

of cysteine(Day et al.).  

Actually, the study of the best conditions at which this structure exist, could be a 

starting point for the design of selective ligands for gene silencing and the possibility 

for this structure to assume an important role in anticancer therapy as G4 does.  

A considerable breakthrough in targeting iM with small molecules regards BCL2 

oncogene. Indeed, it was shown that two molecules, IMC-48 and IMC-76,  act with 

antagonistic effects on the formation of the complex of i-motif with the activating 

transcription factor (hnRNP LL), thus controlling BCL2 expression. IMC-48 stabilizes the 

complex by activating transcription, whereas IMC-76 stabilizes the hairpin structure of 

the C-rich strand by hindering the process. This was the first evidence in which i-motif 

was exploited as controlling element for oncogene expression through the use of small 

molecules(Kang et al., 2014). 



Structural characterization of EGFR and BRAF promotorial regions Aim of 

the study 

 

28 

 

1.2 AIM OF THE STUDY 

An in silico prediction tool (http://www.quadruplex.org) disclosed the existence of 

several G4 putative sequences among the upstream of the promotorial start sites of 

other several oncogenes. Among these, along BRAF and EGFR oncogenes promoter 

site . BRAF encodes for a serine-threonine protein kinase. Activating mutations in the 

BRAF oncogene (BRAFV600E) are seen in about 70% of primary melanomas, 10% of 

colorectal cancers and some 30-70% of papillary thyroid carcinoma. Specific BRAF 

kinase inhibitors are undergoing rapid clinical development and promising data on 

efficacy have been demonstrated. However, clinical responses to the highly selective 

small molecule inhibitor of the BRAF (V600E) oncoprotein, PLX4032, differ widely, 

ranging from a response rate of approximately 80% in melanoma to only 5% in BRAF 

mutant colorectal cancer. It has been demonstrated that the unresponsiveness of 

colon cancer to BRAF (V600E) inhibition relies on a rapid feedback activation of EGFR. 

EGFR is the epidermal growth factor receptor.  Upon ligand binding it undergoes to 

dimerization which activates its tyrosine kinases activity leading to a complex signal 

transduction cascade that modulates cell proliferation, survival, adhesion, migration 

and differentiation. Several evidences correlate its overexpression with different types 

of cancer(Goffin and Zbuk, 2013).  
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Fig. 1.26: effect of the feedback activation of EGFR (Epidermal Growth Factor) by mutation of RAF 

protein(Sun and Yang, 2010).  

 

Nowadays, therapeutic resources to counteract EGFR overexpression concern, for 

example, humanized monoclonal antibodies against the extracellular domain of 

growth factor receptors or ATP mimetics which compete with ATP for binding to the 

receptor kinase pocket, thus disabling signal transduction (Arteaga, 2001). 

The structural characterization of the promoter regions  of EGFR and BRAF oncogenes 

have been carried on in this project. A prediction software allowed to identify two G-

rich sequences at position -37 and -272 from the transcription start site of EGFR of 26 

and 30 bases respectively. No data regardless the structural characterization of these 

sequences are reported so far. Besides EGFR we then explored also BRAF oncogene 

and we identified a 30 bases (rich of 27 ganines) G4 putative forming sequence at 

position -176 from transcription start site of BRAF promoter. Another G-rich sequence 

along BRAF promoter have already been identified and characterized. Indeed,  the 

crystal structure of the 5’UTR coding region of BRAF oncogene has been characterized 

as an intertwined dimeric G4 (fig. 1.27)(Wei et al., 2013). 
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Fig. 1.27: crystal structure of 5’UTR coding region of BRAF oncogene. 

 

Our main goal is to first structurally characterize the above mentioned sequences 

belonging to EGFR and BRAF oncogene.  

 

 

 

Fig. 1.28: localization and representation of EGFR and BRAF G4 forming regions, object of the study. 

EEGGRRFF--227722:: 5’-GGG GAC CGG GTC CAG AGG GGC AGT GCT GGG-3’ 

EEGGRRFF--3377:: 5’-GGG GAG GCA GGG CGG GAG GAG GAG GG-3’ 

BBRRAAFF--117766:: 5’-GGG GGT GCG GGG GGG AGC GGG GGA AGG GGG-3’ 
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As previously mentioned, the reported sequences were not previously characterized, 

for this reason beside the structural investigation, we also explored the conditions 

which best allow the folding and which best fit with the physiological ones. In this 

contest, since oncogenes are double stranded sequences it was interesting to 

investigate also the folding of the  complementary cytosine rich strand into i-motif as it 

could also be implicated in switching off oncogene transcription. Furthermore, the G4/ 

i-motif folding vs the double strand has been studied in order to identify the prevalent 

conformation when at physiological conditions. 
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1.3 RESULTS AND DISCUSSIONS 

1.3.1  G-quadruplex characterization  

1.3.1.1 EGFR-272 

In order to assess the potential of EGFR-272 to fold into a defined secondary structure, the 

effect of KCl as a G-quadruplex stabilizer was investigated.  

In this contest, the Electrophoretic Mobility Shift Assay (EMSA)(Sun and Hurley, 2010) is a 

commonly used technique to observe the formation of species characterized by different 

folding states. DNA is a negative charged molecule, so it always migrates towards the 

positive electrode. However, DNA molecules present the same mass/charge ratio 

irrespectively of their length. Thus, when they are subjected to an electric field, the 

migration on a poliacrylamide native gel is largely influenced by their hydrodynamic volume. 

In particular, species with higher hydrodynamic volume will migrate slower in the gel, 

conversely the ones with lower hydrodynamic volume will have a higher electrophoretic 

mobility. Considering that G4 is a more compacted form with respect the linear form, it will 

run faster in the poliacrylamide gel, and this is the feature which allows the recognition of 

the G4 formation.   

The EMSA performed for EGFR-272 titrated by increasing KCl concentrations, showed the 

presence of two forms, which differ for their hydrodynamic volume, in particular, one of 

them has a higher electrophoretic mobility, thus indicating it as an intramolecular folded 

form (fig. 1.29). 

 

Fig.1.29: 20% acrylamide/bisacrylamide native gel (0.5% TBE, 10mM KCl, pH 7.5) of single stranded EGFR-272 

folded in the presence of increasing KCl concentrations. 
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In order to identify the nature of the species resolved by the gel shift experiment, 

spectroscopic analysis were performed which consist in thermal difference spectra (TDS) and 

circular dichroism (CD). Nucleic acid circular dichroism provides important information on 

DNA conformational properties. DNA structures differ one from each other for their strands 

polarities, sugar conformation and nucleobases orientation around the glycosidic bond. As a 

result each DNA structure present a different CD spectrum. For example double stranded 

DNA has a dichroic signal generally characterized by one positive and one negative band 

centered at about 275 and 245nm, respectively. Conversely, a positive band at 260nm and a 

negative one at 240nm are characteristic of parallel G-quadruplex, whereas the spectra of 

anti-parallel G-quadruplexes have a negative band at 260nm and positive band at 290nm. 

Thus, CD technique allows to monitor the structural equilibria which occur on the selected 

G-rich sequences(Randazzo et al., 2013). 

The titration of EGFR-272 sequence with increasing KCl concentrations showed that the 

spectrum in the absence of KCl is different from the one of the oligonucleotide titrated by 

the ion. In particular, the metal ion induced a positive pick at 260nm and a negative one at 

240nm. This suggests the ability of this sequence to assume a parallel G4 conformation. This 

is the explication that the parallel G4 folding is promoted the presence of the potassium ion. 

The plotting of the molar ellipticity obtained at 265nm for increasing KCl concentration, 

showed  that saturation is reached at about 200mM KCl (fig. 1.30). By fitting data with one 

site saturation binding equation (y=Bmax*x)/(Kd+x)) a dissociation constant of 28,46 ± 

4,19mM towards KCl was estimated. The final DNA conformation showed a melting 

temperature of 58 °C when saturated with 200mM KCl moreover, it can be recovered after a 

melting-annealing step, thus confirming the reversibility of the process.  
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Fig. 1.30: dichroic spectra of EGFR-272 in the absence of KCl and in the presence of 200mM KCl (saturation) (a); 

variation of molar ellipticity in function of increasing KCl concentrations (b); melting (green) and annealing (red) 

curves of EGFR-272 after KCl titration (c). 

 

Also the thermal difference spectrum (TDS)(Mergny et al., 2005) is unique for each type of 

nucleic acid structure as it reflects the base stacking interactions that occur uniquely within 

each type of conformation. It consists in the difference of the UV spectrum of the denatured 

oligonucleotide at 95 °C and the one of the folded oligonucleotide at 25 °C. The absorbance 

spectra of nucleic acid bases are deceptively simple: they actually correspond to a number of 

different π → π* and n → π* transitions. At 295nm, hypochromicity (negative TDS pick) at 

295nm, due to the changes in light absorption occurring upon denaturation, is attributed to 

the interaction between the dipoles induced in the chromophore by the light. This might be 

the result of the significant contribution of n → π* transition moments at this wavelength 

when stacking interactions are lost due to denaturation. However, Although the dissociation 

of all G-quadruplexes analyzed so far show an inverted transition at 295 nm, this property is 

not unambiguously indicative of G-quadruplexes. Indeed, Z-DNA, i-motif, Hoogsteen 
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duplexes, and pyrimidine triplex formation also leads to this effect. It is for this reason that 

the global shape rather than the wavelength of the peak is specific for each 

structure(Mergny et al., 2005; Mergny and Lacroix, 2009) 

Table 1I summarizes the different structures which involve a negative differential 

absorbance at 295 nm and fig 1.31 the characteristic TDS shape of G4 assumed by the 

telomeric sequence in KCl. 

 

Structure Major positive peak Negative peaks 

Z-DNA   241 ± 2 nm 295 ± 1 nm (−0.37) 
Triplexes 
Triplex TC 247 ± 1 nm 295.5 ± 1 nm (−0.30) 
Quadruplexes 
i-motif  239 ± 1 nm 294.5 nm (−0.60) 
G-quartet 243 ± 2 nm 295 ± 1 nm (−0.73) 
 273 ± 1 nm  

Table 1I: attribution of characteristic picks of TDS to peculiar DNA folding 

 

 

Fig. 1.31: TDS of the G-quadruplex structure of the telomeric sequence in KCl, arrows outline the characteristic 

hyperchromisms and hypochromism (positive and negative picks) of the G4 folding. 

 

The TDS shape of more than 200 oligonucleotidic sequences have been compared each 

other so that the TDS shape of a G-quadruplex and i-motif conformation have been outlined 

(Mergny et al., 2005; Mergny and Lacroix, 2009). As reported in literature (Mergny et al., 

2005) a G-quadruplex TDS spectra shows two positive picks at 243 (±2)nm and 273 (±1) nm, 

and a negative one at 295(±1) nm at -0.73 AU , but its shape is highly sequence dependent. 
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TDS performed on EGFR-272 confirmed CD data.  Its shape is different from the TDS of the 

telomeric G4, but considering that TDS is sequence dependent, the negative pick at about 

295-300nm and the two positive ones at about 245 and 270nm (fig. 1.32) assess the 

assumption of the G-quadruplex conformation when oligonucleotide is folded at 

physiological KCl concentrations (150mM). 

 

220,0 240 260 280 300 320 340 360 380 400,0

-0,10

0,5
0,62
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Fig. 1.32: TDS of the G-rich EGFR-272 strand recorded at 150mM KCl concentrations. 

 

Thus, from data obtained so far, we can conclude that the G-rich tract of EGFR-272 assumes 

a stable intramolecular folded form, attributed to a parallel G4 conformation. Its stability at 

150mM KCl, suggests its occurrence at physiological conditions.    
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1.3.1.2 EGFR-37 

The sequence EGFR-37 showed a peculiar folding behavior depending upon its concentration 

in solution. Indeed, when the oligonucleotide is at mM concentration, the dichroic spectrum 

has a high positive signal at 260nm and a negative one at 240nm. In these conditions, KCl 

further stabilizes the dichroic signal without altering the overall shape of the spectrum (fig. 

1.33). The resulting species is thermally stable with a of melting temperature >90 °C (fig. 

1.34). 

 

Fig. 1.33: CD spectra of EGFR-37 recorded at µM and mM oligonucleotide concentrations in the presence and in 

the absence of KCl  

 

 

Fig. 1.34: melting curve of EGFR-37 at mM concentration after KCl titration (50mM). 
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However, mM DNA strand concentrations are not compatible with physiological conditions 

as the oligonucleotide in cells is at very lower concentrations. For this reason, also the 

dichroic spectrum at µM strand concentration was acquired and oligonucleotide was titrated 

with KCl. In this case, the oligonucleotide in the absence of KCl didn’t show a defined 

spectrum, suggesting that the sequence is not significantly folded. Conversely, the spectrum 

obtained after KCl titration suggested the conversion into a more structured form and it 

showed two positive picks; one at 295 and one at 260nm, only with a modest negative one 

at 240nm. This may suggest the presence of different  G4 conformations, in particular of 

parallel and antiparallel form (fig. 1.33). Indeed the variation of the 260 vs 290 nm 

contribution was differently regulated by KCl concentration. In particular, the conformation 

at 260nm was induced only at metal ion concentrations higher than the physiological ones 

(fig. 1.35). The affinity constant towards KCl was also estimated at the previous mentioned 

different experimental conditions and data are summarized in table 1II. 
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Fig. 1.35: normalized molar ellipticity in function of KCl increasing concentrations. Data refers to the 

oligonucleotide at mM and µM concentrations at 260 and 295nm. 

 

  Kd (mM) 

260nm at mM conc. 0,7042 ± 0,2279 

295nm at µM concentration 19,41 ± 4,32 

260nm at µM concentration >300 
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Table 1II: Kd value obtained from oligonucleotide KCl titration at mM and µM concentrations. 

 

Thus, CD data preliminary suggest that the selected sequence is able to fold into G4 but that 

its topology is a function of strand concentration. These first hypothesis was supported by 

gel shift and thermal-UV experiments. The gel shift outlined the formation of multimeric 

species at high concentrations oligonucleotide (fig. 1.36). Consistently, the thermal 

difference spectrum could not be attributed to a unique G-quadruplex conformation (1.37b). 

Conversely, as it emerges from the gel shift, samples prepared at µM concentration, in KCl 

migrates only as a unique intramolecular folded form (fig. 1.36). Taking into account CD and 

TDS results, it can be identified as a G4 folding, in particular into a mixed antiparallel parallel 

G-quadruplex structure (1.37a).  

Focusing on the experimental conditions which comprise the diluted oligonucleotide and 

physiological KCl concentrations (150mM), the high melting temperature (Tm~74°C)  of the 

G4 conformation at 295nm further suggests EGFR-37 G4 as a possible species in the 

intracellular environment.  

                           

Fig. 1.36: gel shift assay of EGFR-37 performed in diluted conditions and at higher concentrations 

oligonucleotide at increasing KCl concentrations (0-5-10-50-100-200 mM). 

 

mM  KCl 

Diluted conditions (µM) Higher concentrations (mM) 

 
Multimeric  

species 

  

Single strand 



Structural characterization of EGFR and BRAF promotorial regions Results and 

discussions 

 

40 

 

a)
220,0 240 260 280 300 320 340 350,0

-1,1

0

1,0

nm

A 

 

 

b) 
220,0 240 260 280 300 320 340 350,0

-0,03

0,5

1,00

nm

A 

 

Fig. 1.37: TDS of EGFR-37 in KCl at diluted (a) and higher (b) concentrations. 

 

 

Fig. 1.38: Melting curve of the diluted oligonucleotide after KCl titration. 
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1.3.1.3 BRAF-176 

The 30 bases promotorial sequence of BRAF oncogene is characterized by 24 guanines which 

can easily lead to the potential formation of multiple G4 structures. PAGE analysis confirmed 

that the presence of KCl causes the samples to migrate faster than a linear oligonucleotide 

of comparable length. To monitor the associated structural equilibria the conformational 

changes associated to the folding were analyzed by CD spectroscopy in the 

presence/absence of K+. Titration curves showed that the metal ion altered the dichroic 

spectrum and that the process reached saturation al low K+ concentration (about 10mM) 

with an apparent Kd=0.64 ± 0.03 mM. The extent of such a variation was modest but lead to 

a final form identified by a strong positive band at 295 nm and a modest negative 

contribution at 248 nm.  The melting temperature of the folded form was clearly directly 

related to the presence of the metal ion reaching values higher than 90 °C at physiological 

concentrations of K+ (> 100 mM). A good correlation between the thermal stabilization 

driven by the metal ion and the variation of the CD signal it promotes, was found. These 

evidences allowed us to propose also that this sequence is actually able to fold into a G-

quadruplex structure, likely arranged into a main antiparallel folding deriving from 

overlapping of guanosine of alternating syn/anti glycosidic bond. This model was in line with 

TDS results.  

Nevertheless, the potential folding of BRAF-176 into G-quadruplexes of different topologies 

was not fully excluded. Indeed, working at KCl concentrations higher than 50 mM two 

thermal transitions were observed. Additionally, a fast annealing step allowed to trap a CD 

signal characterized by a strong positive band centered at 265 nm. Since along the time, it 

slowly converts to the above described form, we can indicate it as a kinetically but not 

thermodynamically favored form (fig. 1.39).   
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a) 

38bp-

22bp-

0     0.25 0.5  0.1  2.5   5    10    15mM KCl

b)  

c) d)  

Fig. 1.39: EMSA of BRAF-176 folded in the presence of increasing KCl concentrations (0-150mM) (a); CD spectra 

of 4 µMBraf-176 recorded in the absence (solid lines) or in the presence of 100mMKCl in 10 mMTris, 1 mM 

EDTA, pH 7.0after a slow (dashed lines ) or a fast annealing step (dotted lines ) (b); the thermal difference 

spectrum corresponding to the slow annealed sample is reported in c. Melting temperature and % of bound 

DNA at increasing KCl concentrations (0-30mM) is reported in d.  

 

To further explore G4 formation, we included in our analysis a 40% of polyethylene glycol 

(200 w/v), too. Indeed, it is reported in literature that this polymer acts as a crowding agent, 

and thus it mimics the high nucleic acid and proteins concentration typical of the cell 

nucleus. Moreover, it is known that PEG200 causes dehydration and condensed environment. 

These conditions allow a highest stabilization of the tetrads in a unique parallel 

conformation. 

The dichroic spectrum of BRAF-176 annealed in 100mM KCl was not influenced by the 

addition of 40% PEG200 showing a high contribution of the antiparallel structure and a very 

low contribution of the parallel conformation. However, when the sequence was melted and 
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annealed in the presence of the crowding agent the pick at 295nm (which is related to an 

antiparallel structure) consistently decreased in favor of the parallel one (pick at 260nm), 

suggesting that PEG200 can provide the rearrangement of the G4 structure assumed by BRAF-

176 towards a parallel arrangement. This data agrees with literature which shows that also 

the telomeric sequence (TTAGG)n which is hybrid type in KCl, shifts towards a parallel G4 

conformation (Miyoshi and Sugimoto, 2008) in 40% PEG (fig. 1.40).  
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Fig. 1.40: effect of 40% of PEG200 on the CD spectra of the G-rich BRAF-176 strand in the presence of 100mM 

KCl. 

 



Structural characterization of EGFR and BRAF promotorial regions Results and 

discussions 

 

44 

 

1.3.2 i-Motif conformational study 

As previously outlined, oncogenes are double stranded sequences, so it was interesting to 

characterize also the folding of the C-rich complementary strand. Indeed, at particular 

conditions it can assume the non-canonical secondary structure called i-motif that can also 

be implicated in the switching off transcription mechanism. However, i-motif conformation 

is not favored at physiological pH because it prevalently forms at pH 5.0 where cytosines are 

hemiprotonated. Also i-motif has a peculiar CD spectrum: in particular, it was demonstrated 

for short C-rich oligonucleotide sequences that the CD spectrum of an i-motif exhibits a 

positive band around 285 nm and a negative band around 265 nm(Zikich et al., 2011). 

Since the maximum stabilization of the i-motif is achieved under mild acidic conditions (pH 

4–5), where both concentration of the protonated and the deprotonated forms of cytosines 

is nearly equal, besides KCl contribution, we also observed the influence of pH variations on 

the dichroic spectrum of the C-rich strands folded in 100mM KCl. Fig. 1.41 outlines the 

dependency from pH of i-motif formation.  
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Effect of pH on C-rich strand in KCl
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d)

Variation of Molar Ellipticity at increasing pH values for C-rich strand at 100mM KCl
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Fig. 1.41: CD spectra of EGFR-272 (a), EGFR-37 (b) C-rich strands at different pH values: 7,0 (green); 5,0 (blue); 

3,0 (black) in the presence of 100mM KCl, influence of pH on the CD spectrum of BRAF-176 C-rich strand (c) and 

variation of molar ellipticity in function of pH (d).  
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As expected, the optimal folding occurred at pH 5.0, thus suggesting a remarkable 

dependence of the folded fraction with the protonation state. Consistently, the thermal 

difference spectra (TDS) recorded at pH 5,0 showed the characteristic signature of the i-

motif conformation with a maximum centered at 239 ±1nm and a minimum at 295nm (fig. 

1.42). These data were reproducible for all the three sequences analyzed. 

 

 

a)                      b)  

c)  

Fig. 1.42: TDS of EGFR-272 (a), EGFR-37 (b), BRAF-176 (c) C-rich strand in 10mM NaCacodilate/ 100mM KCl pH5. 

 

Conversely, small pH variations lead to large variations of the extend of the structured form. 

In particular, fig. 1.41 shows that the dichroic spectra progressively decreases lowering pH 

up to 3. This is due to a full protonation of cytosines, which bring to higher repulsions by 

hindering the i-motif structuring. As expected, a more dramatic effect is observed by 

increasing pH up to 8.0 where all secondary structure appears to be lost. The interesting 

emerging data is the persistence of the i-motif at pH7.0, a condition more close to the 

physiological one. 

As far as it concerns the role of KCl, previous studies, say that it does not have any effect in 

incrementing i-motif folding. Spectra acquired in the presence/absence of KCl showed that 

in our conditions EGFR-37 i-motif is negatively perturbed by the presence of 100mM KCl 

(saturating conditions) at pH7. Indeed, the molar ellipticity at 290nm is decreased indicating 

a reduced folded fraction. This is not the case for EGFR-272 and BRAF-176 whose i-motif 

structures are not significantly influenced by KCl (fig. 1.43).  
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Fig. 1.43: molar ellipticity of the C-rich sequences at pH 7.0 in the presence or in the absence of 100mM KCl 
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Fig. 1.44: CD spectra of c-rich EGFR-37 recorded in the presence and in the absence of KCl (100mM). 
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1.3.3 Effect of crowding conditions on i-motif structure 

So far, the stabilization induced by crowding agents on G-quadruplex structures has been 

confirmed by several works but, Bhavsare-Jog et al.(Bhavsar-Jog et al., 2014), reported a 

study of the influence of pH, crowding agents such as polyethylene glycole (PEG), 

dehydrating agents and epigenetic mutations also on i-motif. Although it is known that this 

conformation preferentially occurs at not physiological pH values, they observed the 

potential of PEG to increase stabilization at slightly higher pH (about 6.5). For this reason, we 

considered interesting to evaluate the effect of 40% PEG200  in inducing the i-motif at 

increasing pH. We focused on the sequence BRAF-176 as we observed a higher intensity of 

the dichroic spectrum which could suggest a easier propensity to fold into i-motif. We 

observed that at low pH values (5.0 and 3.0), PEG impairs the i-motif of the BRAF-176 C-rich 

strand. This can be probably due to inappropriate PEG/pH conditions, which lead to an 

increase of the electrostatic repulsion between the cytosine pairs due to the decrease of the 

dielectric constant for the water/PEG, mixed solvent. Actually, this is not the case at pH 7.0 

where cytosines are not charged and this avoid the predominance of repulsion forces by 

favoring the iMs folding. Indeed, the iM spectrum, at physiological pH value and in the 

presence of 40% PEG200, has the same signature of the iM at pH 5.0 in the absence of PEG200 

(fig.1.46) thus suggesting that crowding conditions, which reproduce the physiological 

environment, allow the occurrence of iM at slightly higher pH.  
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Fig. 1.45: dependence of molar ellipticity on pH and on the presence/absence of 40% PEG200. 
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Fig. 1.46: CD of C-rich EGFR-37 recorded in 100mM KCl at pH 5.0 and at pH 7.0 in 40% PEG200. In this latter case, 

samples were annealed in 40% PEG200. 
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1.3.4 Double strand stability at physiological conditions  

The rearrangement of both the G-rich and C-rich strands in peculiar non-canonical secondary 

structures has been characterized at different experimental conditions and data obtained by 

different techniques are consistent each other in order to identify specific foldings. So far, 

the isolated single stranded sequences were studied therefore, to better highlight the 

potential role of the herein described G4 or iM conformations in cells we investigated their 

formation within double stranded fragments at KCl intracellular concentrations (150mM). 

Generally, the G-C pairing highly contributes to the formation of a stable double stranded 

sequence as it involves three hydrogen bonds with a ΔG° of -24,42 kcal/mol with respect the 

A-T pairing which is supported by just two hydrogen bonds (ΔG° -17,20 kcal/mol). The high 

content in GC pairs, in our tested sequences, allows to predict a high stability for the double 

stranded forms. Besides sequence itself, also ions which are physiologically present in cells 

can influence DNA structural equilibria. Indeed, positive ions, neutralize the negative charges 

of the phosphates in the DNA backbone and induce a consequent stabilization of the paired 

strands.  

According to the metal ion nature, this effect can be more pronounced on selected DNA 

structural arrangements. For this reason, here we investigated the effect of KCl on double 

strand, if it is able to sufficiently promote G4 formation over the double strand or conversely 

if the stabilization of the double helix predominates.  

The CD spectrum of the double helix EGFR-272 showed a positive signal at 265nm with a 

shoulder at 285nm and a negative pick at about 240nm. By monitoring the variations of the 

265nm CD signal a melting temperature of about 71 °C in the absence of KCl was found (fig. 

1.47). This is relevant since the stability of G-quadruplex EGFR-272 is lower (Tm=58 °C) in the 

same experimental conditions. Upon addition of KCl, the double strand dichroic spectrum 

was not perturbed by the presence of the ion. 
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a) b)  

Fig. 1.47: a) KCl titration on double strand EGFR-272 (0-200mM); b)melting profile of double stranded EGFR-

272 in the absence of KCl. 

 

Comparable results were obtained on EGFR-37 and BRAF-176 double strands. CD spectra are 

not significantly influenced by KCl titration (fig. 1.48). Furthermore, they both show a 

melting temperature of 68 °C in the absence of the potassium ion which is incremented by 

the addition of the ion (tab. 1III). This is due to the neutralization of the phosphate negative 

charges of the nucleotides by incrementing double helix stability. 
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Fig. 1.48: molar ellipticity of double stranded sequences in the presence and in the absence of KCl. 

 

Through a predictive software, the theoretical thermal stabilities of the double stranded 

oligonucleotides at physiological KCl concentrations were evaluated and data were 

compared with the experimental ones obtained recording the variation of the dichroic signal 

of the double strand when temperature is progressively increased. Data are resumed in 

table 1III from which it emerges that experimental data well agree with the predicted ones. 
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 EXPERIMENTAL TEORETHICAL 

Double strand no KCl 150mM KCl no KCl 150mM KCl 

EGFR-272 pH7 71 °C 86 °C 52.4 °C 81.6 °C 
EGFR-37 pH7 68 °C 83.4 °C 52.1 °C 80.4 °C 

BRAF-176 pH7 68 °C 82.4 °C 58.1 °C 86.5 °C 

 

Table 1III: comparison of the theoretical and experimental melting temperatures of the double stranded 

sequences obtained in the presence (150mM) and in the absence of KCl. 

 

In addition to the effect of KCl, the structural study on double stranded sequences has 

been carried on by testing other conditions. In particular, we focused on pH since iM is 

favored at pH 5.0.   

Resuming experiments of data obtained on this aspect are the gels reported in fig.2 which 

refer to the EGFR-272 sequence. It emerged that by increasing the strand ratio of the G-rich 

versus its complementary the formation of the double strand occurs. As evidenced by the 

appearance of a band at low migration mobility. At physiological pH (7.5) this process is 

efficient. The presence of K+ allows to identify the excess of G-rich strand in its G4 form. 

However, it is completely absent in samples containing stoichiometry amounts of C-rich, 

thus confirming that the double strand is the preferred one. Interestingly, working at acidic 

conditions (pH 4.5) the folding of the cytosine rich strand into a dimeric i-motif appears. 

Indeed, two bands are visible in the lane containing the cytosine rich strand, in the gel of fig. 

1.49. The lower band refers to the single stranded C-rich strand conversely, due to its higher 

electrophoretic mobility, the upper band refers to the dimeric form. This results is in line 

with literature data which report  i-motif as a dimeric or tetrameric structure, and further 

support the ability of the sequence to fold into i-motif. The formation of the dimeric form is 

supported by KCl since in its absence it is not more detectable. However, also the dimeric iM 

is not sufficiently stable to impair the ds formation. 

However, the dimeric i-motif species do not occur when the experiment is performed at 

physiological pH. In this case the G-quadruplex structure is more evident. 
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C    G  0.2 -0.4-0.6-0.8-1.6          C         G                  C        G      0.2  - 0.4 - 0.6 - 0.8  - 1        

150mMKCl pH 7.5               10mM KCl pH 4.5                   150mM KCl pH 4.5
 

Fig. 1.49: EMSA performed at physiological pH (7.5) and at pH 4.5. C and G correspond respectively to the 

cytosine and guanine rich strands and 0.2, 0.4, 0.6, 0.8, 1 and 1.6 refer to the fraction of G-rich strand added to 

the complementary one in the reaction. 
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Fig. 1.50: melting temperatures of the G4 structures when the C-rich and G-rich strands are paired at different 

KCl concentrations and at pH 7.0 and 5.0. 

 

The modest effect of pH variations on the double stranded EGFR-272 stability was also 

observed by melting assay (fig. 1.50). Data obtained perfectly agree with electrophoretic 

ones. Indeed, the double strand melting temperature was not significantly reduced by 

switching pH from 7.0 to 5.0 thus making difficult to actually relate it to iM formation or to a 

direct destabilization of the ds by acidic conditions.  The same melting profiles were 

obtained also for the sequences EGFR-37 and BRAF-176. 
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The reduced occurrence of the G-quadruplex structure over the double stranded at pH 7.0 

and 150mM KCl was confirmed by gel shift and fluorescence melting experiments. By 

comparing the behavior of the G-rich vs double strand EGFR-272 by a native acrylamide gel, 

it appears that, starting from the paired form, the formation of  a second band with a higher 

electrophoretic mobility is observed at higher KCl concentrations and at a lower intensity 

(fig. 1.51).  

 

 

Fig. 1.51:   EMSA performed on G-rich single stranded EGFR-272 (a) and on the double stranded EGFR-272. 

 

This model was verified also on dsBRAF-176. Despite the higher affinity of BRAF for KCl, 

EMSA showed that addition of KCl was not sufficient to cause the strand separation required 

in order to form G4. However, not the same occurred when the two complementary strands 

were annealed in the presence of KCl: in these conditions a significant competition between 

the ds and G4 structures was evident as highlighted by PAGE.  

For all the tested sequences, the G4 formation over the double strand was further 

highlighted by melting curves of the double stranded sequences in which only the labelled G-

rich strand was monitored. Fluorescence changes are strictly related to oligonucleotide 

conformational changes. In particular, when the oligonucleotide, labeled with fluorofore and 

quencher at each end, is in G4 conformation, the probes are close and fluorescence is lower 

as its intensity depends on Förster distance. Conversely, when annealed in double strand, 

fluorofore and quencher are more distant and fluorescence high.  

Regardless the sequence BRAF-176, starting from its double strand form, in the absence of 

KCl, we observed only the transition from the double strand to the single stranded form 

(1.52). Conversely, when KCl was included in the reaction mixture, this step was associated 

a)                                                   b) 

    0        5       10      50      150mM KCl                  0         5        10     50   150  300mM KCl 
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to a remarkable reduction of the fluorescence signal which describes the folding of the 

labeled G-rich strand into a G-quadruplex structure.  
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Fig. 1.52: melting curves of the double stranded BRAF-176 at different KCl concentrations. 

 

In fig. 1.53 the example of the melting profiles of the three double stranded sequences are 

reported in the presence of 150mM KCl. 
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Fig. 1.53: melting profile of the double stranded three sequences at 150mM KCl 

 

Despite a clear competition between double strand/G-quadruplex is evident for all the three 

sequences, BRAF-176 shows a higher propensity in structuring into G-4 (fig. 1.53).  

This behaviour is probably the result of the high guanines number (24 guanines on 30 bases 

sequence) which characterize the sequence BRAF-176. Another explication is the BRAF-176 

Kd value (0.64±0.05mM) towards KCl which is significantly lower with respect the ones of 

the other sequences, thus suggesting a higher propensity to fold into G4.  

By merging these data we can conclude that G4 formation can be clearly detected only upon 

heating the dsDNA at a temperature higher or close to its Tm and by including a KCl 

concentration sufficient to stabilize the tetrahelix to a larger extent. In these conditions, the 

preferential stabilizing effect of the metal ion on G4 versus ds, shifts the equilibrium toward 

the tetrahelix thus allowing to detect the G4 form although always at temperatures higher of 

the physiological one (fig. 1.54). Nevertheless, we can take into account that transient 

lowering of the stability of the double helix can be promoted by different other 

physiologically relevant events like a structural stress of the ds form, helicases, etc. 
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Fig. 1.54: EMSA of dsBRAF-176 when pre-folded in the absence of KCl than incubated with increasing 

concentrations of the ion (A)  and when oligonucleotide was annealed in KCl (B). 

 

In the case of BRAF-176 sequence, we extended the competition study, by investigating 

other physiological factors which can further modulate the G4/double strand equilibria, 

among these, we take into account the potential role of the crowding conditions. Starting 

from these evidences we monitored the structural equilibria of the double stranded also in 

the presence of PEG200. Distinctly from what observed by adding just the potassium ion, the 

addition of the polymer perturbed the structural features of the double helix which results 

into an increment of the 280 nm signal. Interestingly this increments reaches a maximum 

after an annealing step. It is significant to underline that this signature perfectly matches the 

one obtained by combining the contribution related to the G-and C-rich strand. This allows 

to assume that PEG can actually play a favorable role in promoting the structural conversion 

of the double helix towards the G-quadruplex and iM structures (fig. 1.5).  
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Fig. 1.55: comparison of dsBRAF-176 dicroic spectra in the presence of KCl and with or without PEG200.  
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1.4 CONCLUSIONS 

 

In conclusion, we can say that all the three tested sequences are actually able to fold 

into a G4 structure. However, the features of the folded forms are very different.  

Here is reported a summarizing table (table 1IV) with the Kd values towards KCl 

obtained for the three sequences, the Tm at 50mM and the main conformation 

assumed in KCl. 

 

 

Table 1IV: summary of Kd values towards KCl calculated for the three sequences, Tm values obtained at 

50mM KCl and prediction of the conformation assumed by the G-rich strand at physiological conditions 

(150mM KCl, pH7.5). 

 

 

Since our aim was to assess the potential of these sequences as drug target the result 

herein collected are very promising. Indeed, they underline that for all tested 

sequences the G4 can exist in conditions comparable to those found in the nucleus. 
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Moreover, all of them fold according to different topologies thus representing a 

different target for a potential drug.   

Conversely, the structural properties of the three complementary C-rich strands are 

more conserved. In any instances, the iM folding is strictly dependent on pH.KCl does 

not affect this conformation except for the sequence EGFR-37 which is negatively 

influenced by the presence of the ion. However, crowding conditions, which mimic the 

intracellular environment are able to increase the stabilization of the iM folding even 

at pH close to the physiological one (pH 7.0). 

As a result we observed a direct correlation between the binding affinity of the three 

G-rich sequenced for KCl and their attitude to assume a G4 folding starting from the 

double strand form. Nevertheless, in all the experimental conditions we applied we 

were never able to observe a complete conversion of the B-form to the non-canonical 

structures at 37 °C. In the next sections we will take into account also this point in 

order to evaluate if the binding of proper ligands can implement the structural 

conversion.    
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Chapter 2 

G-QUADRUPLEX FOLDING OF ONCOGENE PROMOTERS IN CELLS 

 

So  far,  we  always  worked  in  vitro  with  synthetic  short  sequences  and  choosing  the  

best  conditions  to promote their structural rearrangements. We considered interesting, 

for our purpose, to study also the potential G-quadruplex formation into a cellular 

environment(Pfeifer et al., 1990). For this reason, we set up an “in vivo” footprinting by 

inducing G-quadruplex directly in cells. Footprinting assay is a useful technique that can be 

suitably applied in DNA structural studies. Different chemical agents or enzymes are used 

for footprinting analysis depending on the  needed information.  For examples, S1 

nuclease enzyme preferentially cleaves single-stranded regions over locally unwound 

regions, normal duplex regions, or secondary structures, such as  cruciform  DNA.  KMnO4   

is  a  chemical  probe  that preferentially  reacts  with  the  C5–C6  double  bond  of 

unpaired thymidines. Br2  is used to probe for secondary structures that can be formed 

by the C-rich strand.  

DAMAGE PROTECTION

+

30min, 90 ⁰C

+

 

Fig. 2.1: DMS-footprinting reaction on G4 structure. In the gel, the guanines pattern of the  unfolded (ss) and  

G4 (band1) folded oligonucleotide is shown (Siddiqui-Jain et al., 2002).  

 

In fact Br2  reacts with the C5–C6 double bond of the pyrimidine base within DNA, but its 

reaction with the impaired cytosine is at least 10-fold higher than that in duplex DNA. We 
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focussed on DMS footprinting that is particularly useful for fine-mapping the presence of 

G-quadruplex structures. In fact, DMS (dimethyl sulfate) is  a  chemical  agent  which  

selectively  methylates  the  guanines  and,  to  a  lower  efficiency,  adenines.  In particular, 

the methylation occurs on the N7 of the guanines and it generates a bond tension which 

produces a cleavage site in basic conditions. Since the N7 of the guanines are involved in 

the hydrogen bonds in the G-tetrads, if the G-quadruplex occurs, the N7 are protected by 

DMS attack. Consequently, no cleavage is detected at this sites on a sequencing gel [9] 

(fig.2.1). This protocol is widely applied on short sequences, thus we decided to assess 

its suitability in cells. 

To set up the protocol, we choose as G-quadruplex template the purine-rich sequence 

in the anti-sense strand  of  the  nuclease  hypersensitive  element  III1   (NHE  III1)  

upstream  of  the  P1  promoter  of  c-myc oncogene (fig.2.2). Indeed, the G-quadruplex 

structure of this oncogene has been well characterized in physiological conditions and its 

implication as silencer element in cancer cells has been firmly confirmed(Brooks and 

Hurley, 2009; Brown et al., 2011; Grand et al., 2005; Siddiqui-Jain et al., 2002). 

 

                                                                                       Fig.2.2:  NHE III1  region on c-myc oncogene. 

                                            Pu27 is the purine rich sequence upstream the P1 promoter which fold in G4. 

 

By using a synthetic fragment of the c-myc promotorial region we verify by gel shift 

assay (fig.2.3), the G- quadruplex formation promoted by KCl physiological conditions. 

The occurrence of a band corresponding to the G4 form is evident starting from 50mM 

KCl. 

                            

0     5   10 25  50 100 150200300 mM KCl

ss

G4
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Fig.2.3: gel shift assay performed on Pu27 c-myc after incubation at increasing KCl concentrations for 48hours. 

15% polyacrilamide (19:1) native gel with 12.5mM KCl/NaCl in 0.5X TBE. 

 

We then moved to DMS-footprinting on Del4 plasmid, in which the c-myc G-quadruplex 

forming region was previously inserted between the sequence p3X2 and p3r used as 

selecting primers at the last step of the protocol (fig.2.4). 

G4 region

p3X2 p3r

XhOI cut site

(our 1 primer)

Del4 

 

Fig.2.4: Schematic representation of Del4 plasmid with its G4 (G-quadruplex) region and primers design. 

 

A scheme of the footprinting protocol is reported in fig.2.5. We first induced G-quadruplex 

on the plasmid with KCl (100mM). Then, we treated it with DMS and piperidine to 

generate the cleavage sites at the N7 of guanines  not  involved  in  G-quadruplex.  Then,  

we  transcribed  the  G-rich  strand  with  1  cycle  of  PCR (Polymerase Chain Reaction), 

step 2, using as primer1 the complementary sequence of XhOI cleavage site. The so 

obtained fragments are blunt ends at the 5’ terminal of the G-rich strand. Moreover 

here the end contain unknown terminal sequences, due to the DMS-piperidine cleavage. 

So, in order to amplify them, we added a double strand blunt end short sequence 

containing p3x2 site at the cleavage site by a T4-lygase catalyzed ligation reaction (step3). 

At this point, a 25 cycles PCR (step4) was performed with two primers (forward and 

reverse) each pairing at known ends. Finally, we labelled the complementary strand of 

the G- rich sequence by an elongation step, using two sets of FAM-labelled primers: p3X2 

in the forward or p3r in the reverse direction of the G-quadruplex region. 
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XhOIG4
G-rich

C-rich

1) DMS+piperidine treatment

XhOIG4 XhOIG4

XhOIG4

different length fragment (cuts at guanines level)

2) Elongation of the fragments

XhOIG4 XhOIG4

XhOIG4

primer1

primer1

primer1

3) T4-ligase catalyzed reaction 
XhOIG4

XhOIG4

4) Amplification: 25 PCR cycles 

5) Elongation 

primer

primer2R

FAM-primer3R FAM-primer2F

+

 

Fig.2.5: Schematic representation of in cells DMS-footprinting procedure 

 

Due to the  complexity of  the protocol  we actually  were not able to obtain a  defined  

DMS pattern  from treated cells but we focused to verify the suitability of each step. In 

particular, we first verify step 1, to verify that after DMS reaction, piperidine was able to 

induce the cleavage of the methylated DNA sites. This is shown in the gel in fig.10 in 

which a band of <500 base pairs is related to the formation of Del4 cleavage products after 

DMS+piperidine treatment (fig. 2.6). This suggested us that the use of restriction enzymes 
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to select the G-quadruplex region is not required and that piperidine and specific primers 

would act as selecting elements for the G-quadruplex sequences. 

1            2  

500bp <500bp
 

Fig.2.6: 1) Del4 DMS treated without piperidine treatment; 2)Del4 DMS treated and then incubated with 

10% piperidine at 90°C for 30min. 

 

So, we checked the suitability for our assay of selected primers. In lane 5 in the gel of 

fig.2.7 is visible the band (<500bp) referring to PCR products obtained combining primer2F 

and primer3r (see also fig.2.5). 

 

Fig.2.7: 1)molecular weight marker (1kbp); 2) del4 cut with PvuII enzyme; 3) del4 not cut 4) del4 cut with 

PvuII and amplified with the primers couple p1 and p3x2; 5) del4 cut with PvuII and amplified with the 

primers couple p2F and pr; 6)H2O control with primers p1 and p3x2 and p2F and pr (7); 8) genomic DNA cut 

with PvUII and amplified with p1 and p3x2 and px2 and pr (9); 10 and 11) respectively: genomic DNA cut 

with PvUII and uncut. 

Once assessed the suitability of this technique and the right functioning of the primers and 

PCR cycles, we shifted in vivo, by transfecting HEK-293 (Human Embryonic Kidney) cells 

with Del4 plasmid. We also tried on genomic DNA, by using lymphoma cells (Raji), which 

overexpress c-myc oncogene. We treated cells with two different compounds: GCQ-05 

(NSC338258), which is a potent G-quadruplex stabilizer and SN-38 which is a 

topoisomerase I inhibitor, known also to induce G-quadruplex structure (Brooks and 

Hurley, 2009; Brown et al., 2011)(fig. 2.9). 
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Fig. 2.9: chemical structures of GCQ-05 and SN38 compounds. 

 

As in literature is reported that an efficient DMS reaction occurs when DNA fragments are 

of an average of <500 nucleotides long ( P f e i f e r  e t  a l . ,  1 9 9 0 ) we also checked the 

efficient of DMS/piperidine reaction in vivo through an agarose gel (fig.2.10). However, 

we obtained DMS/piperidine treated DNA with a length higher than 1000bp. 

 

 

500bp

 

   Fig. 2.10:  to in vivo DMS/piperidine reaction. The average length of the nucleotides doesn’t allow to continue the protocol with a high 

efficiency. 

 

Nevertheless,  we  completed  the  protocol  up  to  the  last  step  and  we  performed  

sequencing  gel  on  the obtained products. The bands on the sequencing gel are not 

related to myc sequence. We hypothesize first we should implement the plasmid 

transfection and extraction yield but also that, during PCR, aspecific amplifications can 

occur. Thus, we started the design of different sets of primers. Also, we thought that 

electrophoresis technique is not so sensitive for the detection of the products. Our future 

perspective on this set up protocol is to check the remaining steps and also to try 

products detection by capillary electrophoresis as a more sensitive alternative to 

sequencing gel. 

SN38 
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Chapter 3:  

BINDING STUDY OF ANTHRAQUINONES DERIVATIVES ON G4 

TEMPLATES 

 

3.1  INTRODUCTION 

Anthraquinone derivative (AQs) represent an interesting scaffold to develop selective and 

multifunctional G4 ligands, with many potential applications. This derives from their well 

characterized DNA-binding properties(Cairns et al., 2002; Ndlebe and Schuster, 2006; Sun et 

al., 1997),
 
fairly low redox potential and their ability to act as photosensitizers by one-

electron oxidation(Ndlebe and Schuster, 2006).
 
Structurally, AQs are strictly related to the 

anthracycline antibiotics like doxorubicin and daunomycin(Monneret, 2001).
 
It has been 

shown that doxorubicin and daunomycin can interact with telomeric DNA via G4 

stabilization, mediated by the anthraquinone scaffold and demonstrated by the crystal 

structure of a complex between the telomeric G4 DNA with daunomycin (fig. 3.1)(Neidle and 

Parkinson, 2008). 

 

Fig.3.1: daunomycin-d(TG4T) complex. Adapted from: (Neidle and Parkinson, 2008) 

 

With the aim to optimize G4 recognition the synthesis of several 1,4- 1,5- 1,8- 2,6- and 2,7-

difunctionalized amidoanthracene-9,10-diones, have been performed and the resulting 

compounds have been tested as G4 ligands(Clark et al., 2003; Perry et al., 1998; Perry et al., 
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1999; Zagotto et al., 2008a; Zagotto et al., 2008b).
 
The five different region-isomers showed 

different abilities to recognize G4 telomeric structures according to the nature and the 

position of the substituent side chains. Consistently, conjugation of the anthraquinone core 

with aminosugars or amino acids(Zagotto et al., 2008a; Zagotto et al., 2008b; Zagotto et al., 

2011) was applied to modulate their G4 binding properties. One such example is a 

neomycin-anthraquinone conjugate that exhibits a nanomolar affinity for telomeric G4 DNA, 

which is 1000 fold higher when compared to its constituent units(Zagotto et al., 2008a; 

Zagotto et al., 2011). This higher affinity is ascribed to a dual binding mode of the conjugate 

which can interact with the grooves (neomycin) and with the guanines of the G4 

(anthraquinone) via π-stacking interactions. For AQ-amino acid conjugates, the combination 

of a basic aminoacid (Lys) with a more hydrophobic residue (Phe) has provided a better G4 

selectivity versus the duplex DNA(Zagotto et al., 2011).
 

Unlike the large majority of G4 ligands, AQs exhibit interesting redox properties, as they 

easily generate radical anions and di-anions by bio-compatible reduction(van Dijk et al., 

2006).
 
Recently, we demonstrated that formation of stable radical anion can be exploited to 

generate alkylating agents such as Quinone Methides (QMs, generated from o- or p-benzyl 

substituted phenols)(Di Antonio et al., 2007; Modica et al., 2001).
 
We anticipate that AQs 

could be similarly exploited for in situ generation of QMs at G4 sites, thus enabling G4 

covalent targeting. Alkylation has been proposed as an alternative approach to physically 

lock the DNA G4 in its folded conformation, enabling the investigation of the biological 

implications associated with G4s stabilization(Doria et al., 2012; Doria et al., 2013).
 
Effective 

electronic conjugation between the AQ core and the aryl moiety (embedding the QM 

precursor) will ensure generation of the alkylating QM under reductive conditions. 

Furthermore, it has been shown, recently, that V-shaped compounds have an enhanced 

affinity towards G4-DNA suggesting disubstituted compounds with a central symmetric and 

planar core. Starting from this data, we postulated that increasing the aromatic surface and 

the structural constrains by introducing aryl side chains at positions 1 and 7 of the 

anthraquinone molecule, would have been beneficial on both the AQs G4 binding properties 

and on G4 vs duplex selectivity. 
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3.2  AIM OF THE STUDY 

We started our work using the human telomeric DNA. Indeed, it is widely used as a model 

for the screening of novel G4 binders. Moreover, by properly turning its length and 

experimental conditions it is possible to trap it into different G4 conformations. In this study, 

we focused on a small library of aryl ethynylanthraquinones which were syntesized as 

potential G4 binders. The synthesis involved the symmetric functionalization of the 

anthraquinone core at 2 and 7 positions with chemically divers aryl moieties, such as: 

negatively charged phenolates arising from AQ05 and AQ10, positively charged secondary 

amines (AQ11, AQ12) and zwitterionic Mannich bases (AQ06, AQ18). 

All the  synthesized ligands have been tested for their G4 binding properties in comparison 

to double stranded DNA. Furthermore, in order to explore the potential recognition of G4 of 

different topologies, selectivity of the compounds was investigated by testing them on 

oncogene EGFR and BRAF selected sequences. 

Due to the differential binding properties observed on the selected DNA substrates, the 

selected aryl ethynylanthraquinones represent an interesting platform for the development 

of a new generation of multifunctional G4 interacting ligands. 

 

 

 

AQ05 AQ12 

AQ10 AQ06 

AQ11 AQ17 
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3.3 RESULTS AND DISCUSSIONS 

To assess the potential of the AQs to stabilize peculiar G4  topologies we screened them by 

fluorescence melting using DNA telomeric sequences properly labeled at the 5′-end with a 

quencher (dabcyl) and at the 3′-end with a fluorophore (fluorescein).  An increase of the 

oligonucleotide melting temperature upon addition of the tested compound relies on the 

ability of the ligands to stabilize the DNA G4 folded structure. Since the human telomeric G4 

is characterized by a large conformational flexibility, the analysis was performed under 

different conditions and with different sequences known to promote distinct folding: HTS 

(d[AG3(T2AG3)3T]) which in the presence of K+ folds mainly in a population of prevalently 

hybrid conformations, whereas in Na+ it assumes a defined antiparallel folding, and Tel24 

[d(T2AG3)4] which adopts a hybrid-1 folding in K+ containing solutions. The same analysis 

was additionally performed using a double stranded random sequence (dsDNA) to check for 

duplex vs. quadruplex selectivity. To summarize our results we report the variation of the 

oligonucleotide melting temperature as a function of ligand concentration (Fig. 3.2)(Darby et 

al., 2002). Among the tested ligands only AQ05 and AQ10 did not induce any modification of 

the melting profile of the tested DNA sequences. This sustained the fundamental 

requirement of protonable groups in the side chain to grant effective nucleic acid 

recognition. Although the ΔTm values remain quite low at 1 μM ligand concentration, all the 

other compounds stabilized the G4 forms. In particular, a sigmoidal correlation emerged 

between the observed ΔTm and ligand concentrations, which suggested the presence of 

cooperative binding events. In particular, AQ06 and AQ07 were the most active compounds 

towards telomere. Furthermore, at concentrations higher than 5 μM AQ11 and AQ12 

behaved as good ligands for Tel22 in K+ . If we compare the behavior of each anthraquinone 

derivative for the different tested G4 targets, we did not observe prominent selectivity for 

any of them. The only exception was AQ12, which was less active on Tel24. Thus, the 

presence of oxygen in the meta position on the aromatic ring of the side chains seems to 

negatively perturb the DNA recognition process. Interestingly, the regio-isomers AQ06 and 

AQ17 showed very different binding profiles and this can suggest a peculiar binding 

interaction for the para isomer AQ06 with the G4 structures. Finally, all tested compounds 
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almost did not affect the thermal stability of the double stranded DNA (Fig. 3.2), indicating 

their use as potential G4 selective binders. 
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Fig. 3.2: Variation of the melting temperature of HTS, Tel24 and double stranded DNA (dsDNA) by increasing 

concentrations of the tested ligands in K+ or Na+ containing buffer. 

 

CD titrations were performed to investigate the ability of the novel compounds to induce 

structural modifications to the tested G4. Thus, the study was performed using the same 

oligonucleotide sequences used for thermal stabilization experiments. Moreover, we 

extended our analysis to wtTel26: d[(T2AG3)4T2] which, in the presence of K+ , folds into a 

hybrid-2 type of arrangement. The recorded dichroic spectra of the oligonucleotides in the 

presence of potassium are all characterized by two positive bands, one centered at 290 nm 

and the other at 265–268 nm which reflect the principal 3 + 1 hybrid arrangement assumed. 

Conversely, in the presence of sodium, the dichroic spectrum of Tel22 shows a negative 

band at 260 nm and a positive band at 290 nm, typical of the antiparallel conformation 
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signature identified by NMR spectroscopy. Fig. 3.2 Variation of the melting temperature of 

HTS, Tel24 and double stranded DNA (dsDNA) by increasing concentrations of the tested 

ligands in K+ or Na+ containing buffer. Variations of the intensity of the dichroic features of 

all tested G4 folded DNA sequences were detected upon addition of the ligands (Fig. 3.3). 

This confirmed the occurrence of a DNA–ligand interaction, which does not affect the G4 

topology to a large extent. Interestingly, the most relevant CD variations occurred generally 

with AQ06. In this instance, induced dichroic bands (ICD) in the ligand absorption range were 

also observed (Fig. 3.3). Such contribution should derive from the insertion of the ligand 

chromophore into the chiral environment provided by the nucleic acid. Since this effect is a 

function of the mutual orientation of the AQ chromophore and DNA, we can assume that its 

presence/lack among the tested derivatives is linked to a significant repositioning of the 

ligand in the complex as a consequence of the side chain nature and position. Thus, distinct 

binding modes for AQ06 vs. AQ11, AQ12 and AQ17 can be further inferred. When the DNA 

substrate was arranged into a double helix, the most prominent effect was reduction of the 

275 and 245 nm DNA dichroic bands. This should exclude the occurrence of an efficient 

intercalation binding mode for these ligands, since this process usually causes an increment 

of these optical contributions. This result is in agreement with the above reported lack of 

thermal stabilization induced by the tested ligands in this nucleic acid conformation.  
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Fig. 3.3: circular dichroism spectra of DNA templates (4 μM strand concentrations) alone (solid lines) or upon 

addition of 4 equivalents of tested AQs recorded in 10 mM TRIS, 50 mM KCl or NaCl, pH 7.0, 25 °C. 

 

The above described results were collected to evaluate the recognition of a G4 structure by 

the tested ligands. Additionally, we analyzed whether they can promote G4 folding 

generating species sufficiently stable to interfere with enzymes devoted to the processing of 

the nucleic acid. Thus, the DNA polymerase stop assay was performed using a template 

containing a four repeat human telomeric sequence (HT4-temp)(Han et al., 1999). In a 

typical experiment, if the compounds under investigation promote G4 formation by the 

template, the formation of truncated products due to the collision of polymerase with the 

folded G-rich tract (see the cartoon on the right side of gel reported in fig. 3.4) appears. The 

results summarized in Fig. 3.3 showed that increasing concentrations of the tested ligands 

lead to a slight decrease of the intensity of the band relative to the fully processed 

oligonucleotide, which is more evident for AQ06. At the same time, the tested compounds 

blocked, by some other means, the primer extension by DNA polymerase starting from 5 to 

10 µM, the same concentration range in which they stabilized the G-quadruplex as 
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determined by the melting assay. The observed stop occurs at a well-defined site 

corresponding to the template G-rich stretch. Interestingly, AQ11 and AQ17 tend to arrest 

the enzyme at position-1 with reference to the G-rich tract at 5 µM concentration. This 

behavior is not shared by AQ06, thus further sustaining  the different binding mode of this 

derivative. Conversely, the same reaction performed on a DNA sequence not G-rich (HT4sc-

temp) failed to evidence any interference in the enzymatic activity by tested ligands up to 40 

μM. This result correlates with the increased ability of the tested compound to recognize G4 

over other nucleic acid arrangements. 

Referring to spectroscopic analysis on anthraquinones compounds, we focused on AQ06, 

AQ11 and AQ17 to evaluate if they are able to stop the progression of polymerase due to 

induction of G-quadruplex structure on the template sequence(Han et al., 1999; Sun and 

Hurley, 2010). Stop assay performed with these derivatives (fig.3.4) highlights that all of 

them stop polymerase activity starting from 5-10 µM concentration. Interestingly, AQ11 and 

AQ17 behave in a similar way and in particular they tend to arrest the enzyme also at 

position -1 with reference to the G-rich tract. This behavior was not shared by AQ06 which 

start arresting the enzyme at 10 µM and also it can sustain differences in the binding mode 

of these derivatives. 
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Fig. 3.4: Taq-polymerase stop assay performed with increasing concentrations of AQ06, AQ11 and AQ17 on the 

HT4-temp template in the presence of 50 mM K+.  

 

As previously mentioned, the potential of anthraquinone derivatives to alkylate DNA has 

been exploited as a strategy to trap the G4 folded form. Thus, we investigated this effect in 

the presence of the most selective of our compounds. Since different conditions can 

positively contribute to the activation of the quinonemethide, we incubated the telomeric 

G4 with our derivatives at different temperature (50 °C) as well as in the presence of 

reducing agent dithiothreitol  (DTT) or in basic conditions(pH 9.5). The results are 

summarized in fig. 3.5. At the higher AQ concentrations (50µM AQ18), the formation of a 

higher electrophoretic mobility band can be observed. Due to the denaturation conditions 

applied during the product resolution, it can be attributed to the formation of a covalent 

complex ligand-DNA. We expected that upon changing the experimental conditions a 

modulation in the extent of the formation of this product could be evidenced This was not 

the case. This suggests that the DNA-AQ18 adducts occur but with low efficiency. The same 

result was obtained also for the other screened compounds. 
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Fig.3.5: adducts experiment performed on 5’FAM-labelled 22 bases scramble sequence at 0-0.1-1-10-50 µM 

concentration of AQ18 at three different conditions: A refers to incubation for 1h at room temperature, B 

refers to the incubation at 50°C and C at pH 9.5 for 24hours and D to the incubation for 1h in 2mM DTT.   

 

Considering the G4 stabilization of these class of compounds, and the consequent stop of 

polymerase activity, it was interesting to assess if they were able to interfere with telomere 

elongation, too. We took AQ11 and AQ06 as representative of good binders with different 

G4 binding modes. The telomeric repeat amplification protocol (TRAP) outlined that 

compounds AQ11 and AQ06 actually interfere with telomerase activity starting from 20 µM 

concentration (fig. 3.6). This suggests that tested compounds significantly stabilize telomeric 

G4 by inducing the arrest of telomerase enzyme. 

 

Fig. 3.6: TRAP assay performed with AQ11 and AQ06 compounds using protein extract obtained by HeLa cell 

line. 

 

Finally, MTT assay was performed with tested anthraquinones on HeLa (cervical cancer) cells 

in order to assess if they can impair cell growth on this cell line. As reference compounds we 

AQ06                                                               AQ11                                                  
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used Mitoxantrone (MX), a widely clinically used anthracencedione. MTT is a tetrazolium 

derivative (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) which is 

bioreduced by NAD(P)H-dependent cellular oxidoreductase enzymes into the purple 

coloured formazan salts (fig. 3.7, 3.8). Formazan salts, insoluble in cell cultural media, are 

solubilised in DMSO (dimethyl sulfoxide) and their absorbance was read at 490-500nm. The 

degree of absorbance at this wavelength is directly proportional to the number of living cells 

in culture.  

  

Fig.3.7: MTT assay and HeLa cell line representation. 

 

Fig. 3.8: bioreduction of tetrazolium in the colored compound formazan  

In the case of compounds AQ05, AQ10 it was not possible to obtain a consistent data for 

solubility issues which didn’t allow to explore a wide range of concentrations.  

As it concerns the other tested derivatives, none were as cyctotoxic as MX. Nevertheless, the 

results summarized in Table 3I indicate that the tested derives are cytotoxic in the low 

micromolar range with AQ11 and AQ06 being the most actives. The only exception is 

represented by AQ07 for which an IC50 >100µM was obtained. This is probably due to its 

charge nature which does not allow the compound to permeate through the cellular 

membrane. 
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Compound IC50  

AQ05 - 

AQ10 - 

AQ11 2.55 ± 0.40 µM 

AQ12 3.66 ± 1.25 µM 

AQ06 2.10 ± 0.34 µM 

AQ18 3.00 ± 0.51 µM 

AQ07 >100 µM 

AQ17 7.78 ± 2.69 µM 

mitoxantrone 0.54 ± 0.18 µM 

  

Table 3I: summary of the IC50 values of AQs compounds obtained from MTT assay on HeLa cells 

 

It is worth to underline that the above reported enzymatic assays showed impairment of 

telomerase and polymerase activity at higher ligands concentrations. Thus, we cannot relate 

the observed cytotoxic effect only to an interference with telomerase.  

Nevertheless, our evidenced indicate these compounds as promising G-4 binders.  
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4.3.1 ANTHRAQUINONES DERIVATIVES ON ONCOGENIC SEQUENCES 

Due to the significative G4 stabilization properties of tested AQ, we decided to test them 

also on our oncogenic sequences. In order to screen these potential binders, first we needed 

to identify proper experimental conditions which would allow to properly identify the 

melting of the free G-quadruplex. Indeed, the temperature at which the unfolding occurs 

must be not too high in order to allow its determination even when DNA is bound to the 

ligand. Thus we monitor the behavior of our sequences in the presence of increasing KCl 

concentrations since this metal ion modulates the thermal stability of the corresponding G-

quadruplexes. As reported in fig. 3.9 the  three sequences require different KCl 

concentration to melt at a temperature between 50-60 °C. This is in line with their different 

G-quadruplex arrangements and with their different affinity for the metal ion.  Once 

assessed the proper KCl concentration for each oncogenic sequence, the stabilizing effect of 

the ligands was investigated. 
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Fig. 3.9: melting temperature obtained for the three G-rich sequences at increasing KCl concentrations at 0.5 

µM concentration of oligonucleotide. 

 

In particular, the fluorescence melting analysis were performed at 50 mM, 0.1mM and 1mM 

KCl for EGFR-272, EGFR-37 and BRAF-176 respectively. Considering their higher efficiency on 

telomeric G4, AQ11, 18, 06 and 07 were chosen as candidates of this screening. 
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Fig. 3.5 summarizes our screening results, and it outlines the preference of the selected 

derivatives to stabilize the G-quadruplex conformation with respect the double strand and 

the telomeric sequence.  

 

 

Fig. 3.5: melting temperature differences (ΔTm) of some AQs derivatives on different telomeric and oncogenic 

G4 templates.   

 

All the selected compounds showed the same stabilizing potential on BRAF-176 although no 

compound emerged as selective on this template. Conversely, EGFR-272 was not 

significantly stabilized by any of them. Not the same occurred on EGFR-37. In this case, AQ11 

emerged as the most selective for the parallel/antiparallel mixed type G-quadruplex 

structure of EGFR-37, even if AQ07 also showed a high thermal stabilization, too.   

ΔTm 
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3. CONCLUSIONS 

According to all of the performed assays, compound AQ06 was the most effective ligand. 

The change of the relative position of the substituents on the phenolic aromatic ring from 

para to ortho(AQ06 and AQ17 respectively) provided compounds with quite different 

G4binding and stabilization properties. Additionally, despite an overall conserved binding 

mode we showed that the hydroxyl groups on the lateral chains are crucial to cause a 

substantial shift in the localization of the AQ core over the G-tetrads.  

Thus, our investigation highlights thatstructural positioning of Mannich basesis a key 

parameter for the design of efficient G4 binding. Although our best candidate is not as 

efficient as some the most potent G4 binder among the AQ derivatives tested so far(Perry et 

al., 1998; Perry et al., 1999; Zagotto et al., 2008a), it apparently lack of significant 

intercalation into the double helix. This finding highlights the potential correlation of the 

observed cytotoxicity with G4 recognition. In this connection we have to take into account 

that for these compounds telomeric DNA might not represent the real preferential G4 target 

in the cells. Indeed, our preliminary results evidenced one of the screened compound, AQ11, 

as a potential selective binder for the oncogenic sequence EGFR-37.  

Although further structural refinements are required to increase to optimize the recognition 

of this scaffold towards G4-DNA, these preliminary results are encouraging. We are currently 

working on the development of a larger library of aryl (QM precursor) ethynylanthaquinone 

as G4 bi-modal ligands, acting as selective reversible binders endowed with a subsequent 

DNA alkylation mechanism upon reductive activation. 

This would provide more potent G4 stabilizers with unprecedent potential applications  as 

therapeutic agents as well as in diagnostic.  
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Chapter 4 

DISUBSTITUTED NAPHTHALENE DIIMIDES AS POTENTIAL SELECTIVE 

BINDERS FOR G4 TEMPLATES 

 

4.1 INTRODUCTION 

As previously mentioned, the binding of G4 structures is supported by several chemical 

structures generally characterized by notably planar aromatic chromophores and positively 

charged lateral chains(Haider et al., 2011). It is known that intercalation between the two G-

tetrads inside the quadruplex is thought to be difficult because of the high stability and 

rigidity of the G4 structure. Thus, stacking of the drug on the outer planes of the G-tetrads 

seems to be energetically more favored. Naphthalene diimides and related derivatives are 

confirmed G-quadruplex stabilizing compounds, particularly due to their chemical nature. 

Some substitution of the chemical scaffold have been shown to be essential for affinity and 

selectivity. In particular, the length of the lateral chain affects selectivity and the N-methyl 

piperazine at the termini of the lateral chain affects affinity towards G4. Also the number of 

side chain can be relevant for selectivity. Recently developed tetrasubstituted naphthalene 

diimide-based compounds(Collie et al., 2012) showed to significantly thermal stabilize 

human telomeric G-quadruplex DNA and inhibit the growth of several cancer cells. 

Furthermore, several studies show that positive charged polyamines, can interfere on gene 

expression through different mechanisms, for  example, by interacting with DNA, they can  

modulate its flexibility or interconvert it into alternative structures, thus hindering the 

binding with proteins involved in transcriptions processes. The association of polyamines 

with DNA molecule has been confirmed by several biophysical techniques which include 

NMR spectroscopy, X-ray crystallography, Raman spectroscopy and molecular dynamics. As 

it concerns the G4 recognition, the interaction of the physiological polyamine spermine on 

the G4 of the thrombin-binding aptamer (TBA) has been shown and, most of all, the 

localization 
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of the polyamine on the narrow groove of the [d(G4T4G4)]2 has been related to long-lives 

complex. This is clearly due to the high negative electrostatic field on the G4 groove with the 

positive charged spermine molecule(Keniry and Owen, 2013). Furthermore, as polyamines 

have been found to be in higher concentrations of in some tumor cells with respect the 

normal cells, their role in cancer proliferation has been investigated. In particular, it has 

been shown that these molecules at lower concentrations (less than 1mM) promote G4, by 

inducing cancer cells apoptosis, whereas at higher concentrations (more than 1mM) 

denature the G4 structure(Sun et al., 2011). This data on polyamines mechanism is 

important to outline the possibility to enhance G4 recognition by targeting the grooves with 

ligands containing a polyamine lateral chain.  
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4.2 AIM OF THE STUDY 

Considering these important evidences, we aimed to design a strategic ligand with at least 

two specific features: affinity, and selectivity. In particular, affinity can be provided by 

compound disubstitution, and the introduction of a protonable polyamine lateral chain 

brings to an increment in selectivity by groove recognition (fig. 4.1).  

 

Fig.4.1: binding model of a diisubstituted naphthalene diimide derivative containing a polyamine lateral chain, 

with an antiparallel G4 structure. 

A previous work performed in our lab identified some NDI derivatives as good G4 binders. 

They were characterized by symmetrical substituents on the lateral chain. Although most of 

them lack a relevant selectivity for this conformation showing a good affinity also towards 

the double strand, two compounds emerged for their higher preferential for the G4 

template (fig. 4.2). 

 

 

Fig. 4.2: melting temperature differences on telomeric G4 and double strand of AN82 and AN169. 

 

Two libraries of disubstituted naphthalene diimides derivatives were thus synthesized by the 

pharmaceutical department of University of Bologna. In particular, the first library comprises 

derivatives containing an aromatic ring on the lateral chain. Starting from the symmetrical 

groove interaction 

π-π stacking 
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AN82 and AN169, several derivatives were synthesized and the asymmetrical lateral chain 

containing a polyamine substituent was also considered. Conversely, the second library 

comprises naphthalene diimides without the aromatic ring on the lateral chain.  

1° LIBRARY 

 

2° LIBRARY 

 

 

We carried on the binding study of these derivatives on several G4 templates assumed by 

the telomeric sequence and we compared their affinity towards double strand. Starting from 

a symmetrical chemical structure, the effect of the introduction of a asymmetrical 

substituents was explored and the selectivity towards G4 templates was studied.

 n  m

 1: n = 1, m = 2, R = H CM32          5: n = 1, m = 2, R = (CH2)3NH2 AN222

 2: n = 1, m = 3, R = H CM52          6: n = 1, m = 3, R = (CH2)3NH2 CM3

 3: n = 2, m = 2, R = H CM28          7: n = 1, m = 3, R = (CH2)4NH2 CM85

 4: n = 1, m = 1, R = (CH2)3NH2 CM50

 n  m  o

 n  m

 8: n = 1, m = 2, R = 3 CM139

 9: n = 1, m = 3, R = (CH2)3NH3 CM141

 10 CM33

 11 CM105

 12 CM95

 13 CM17
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4.3 RESULTS AND DISCUSSIONS 

 

The stabilizing effect on the telomeric G4 and the random double stranded DNA (dsDNA) 

was first considered. Generally, all derivatives were active on both templates. The 

fluorescence melting assay allowed to select the derivatives with the higher G4/dsDNA ΔTm 

ratio. In particular, as shown in fig. 4.3, the LF series compounds showed no significant 

selectivity towards the telomere, and they were excluded from additional screening. A 

similar behavior was shown by the asymmetrical CM17, AN222, CM141, CM95 whereas 

CM105 was not able to significantly stabilize the two secondary DNA structures. Conversely, 

the asymmetricals CM52, CM28, CM32, CM3, CM33 apparently have the telomeric sequence 

as preferential template (fig. 4.3), with CM52 being the most active. 

 

 

 

 

Fig. 4.3: ∆Tm (y axis) on double stranded DNA and telomeric G4.  
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By comparing these data with those related to the symmetrical AN82 and AN169, the 

selectivity is conserved but the efficiency is improved. Thus, we selected CM52 and CM28 as 

the most promising compounds and CM32 was considered for its modest activity 

(selectivity) for further analysis in comparison to the symmetrical derivatives. 
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Fig.4.4: symmetrical and asymmetrical selected derivatives. 

 

Considering the potential of most compounds to bind also the double stranded DNA, even 

with different affinities, we first point our attention on this template. By  agarose gel 

electrophoresis (fig. 4.5) we actually confirmed that our compounds bind, also the plasmidic 

DNA (pBR322) even with different affinities. These data perfectly agree with the previous 

spectroscopic analysis. Indeed, it clearly emerged that CM52 lower the pBR322 

electrophoretic mobility at higher concentrations with reference to CM28 and CM32. 

Compound CM32 was considered as positive control, as from the fluorescence melting 

experiment it emerged to preferentially bind the double strand form.  Also AN82 and AN169 

are able to bind the plasmid even with less efficiency in comparison to the asymmetrical 

derivatives. 
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Fig. 4.5: plasmid binding of compounds CM52, CM28, CM32, AN82 and AN169 at the following concentrations:  

1-5-10-25-50-100 µM 

 

Another aspect we focused on, was the potential of the selected compounds to interfere 

with the activity of nuclear proteins such as Taq-polymerase, topoisomerase IIα and 

telomerase, all involved in cell replication processes. In particular, we observed a clear 

difference among the symmetrical and asymmetrical substituents to hinder taq-polymerase 

activity (fig. 4.6).  

 

 

Fig. 4.6: Taq polymerase inhibition assay performed for compounds CM52, CM28, CM32, AN82 and AN169 at 

the following concentrations:  0.25-0.5-1.0-2.5-5.0-10-20-40 µM. 

 

Conversely, none of them is able to interfere with telomerase activity, as shown by TRAP 

assay in fig. 4.7. The exception was AN169 which showed inhibition, even low, starting from 

8µM concentration. It is worth to underline that TRAP assay cannot be performed at ligand 

concentrations that affect taq polymerase. Thus, only for AN169 we were able to test NDI 

concentrations ≥ 1µM (table 4I). Nevertheless, its lower taq polymerase inhibition and its 

consequently higher interference with telomerase activity is probably due to AN169 lower 

affinity towards the double strand DNA.    
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Table 4I: taq inhibition concentrations for the selected compounds. 

 

 

Fig. 4.7: TRAP assay performed for compounds CM52, CM28, CM32, AN82 and AN169. 

 

As previously mentioned, also the interference with topisomeraseIIα mechanism of action 

was studied. First we explored the potential of NDIs to inhibit the enzyme activity. For this 

assay, we used protein which fully relax the supercoiled plasmid. Moreover, due to the 

previously discussed DNA binders properties of our ligands before loading, samples were 

added of 200mM NaCl and 0.1% sodium dodecyl sulphate (SDS). The high ionic strength 

allows to break potential DNA-Topoisomerase adduct which would result in a reduction of 

the nucleic acid electrophoretic mobility and the SDS remove the DNA-ligand interaction. As 

a result, variations on the electrophoretic run rely only on the activity of the enzyme before 

loading. It emerged again that all compounds were actually able to hinder topoisomerase 

relaxation effect on pBR322 which the asymmetricals being the most active compounds. 
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Indeed in the gel (fig. 4.8), the band corresponding to the relaxed plasmid (lower band) is 

visible starting from low concentrations.  

Then, we moved to verify the ability of the tested compounds to stabilize the DNA covalent 

complex where the enzyme is covalently linked to the DNA in a cleaved form.  In order to do 

this, the experiments were repeated in the presence of higher enzyme amount. In this case 

before loading the enzyme was digested by proteinase K in order to trap cleavage complexes 

which should appear as a linear plasmid (band L in the etoposide line in the gel of fig. 4.9).  

From the gel (example in fig. 4.9) it emerges that no compound was able to induce the 

poisoning of topoisomeraseIIα. The slowing down of the band at higher compound 

concentrations was attributed to the tight binding of the compound to DNA rather than to 

the enzyme inhibition. 

 

 

Fig. 4.8: topoisomerase IIα inhibition assay (1% agarose in 1X TAE:10/1mM Tris-EDTA, 0.1% acetic acid pH 8.0). 
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Fig. 4.9: topoisomerase IIα cleavage assay for compound AN169. 200µM etoposide was used as positive 

control. L, OC and S refer respectively to the linear, open circular and supercoiled plasmid. 

 

 

Table 4II: IC50 of the selected compounds towards taq polymerase, telomerase and topoisomerase IIα 

inhibition. 

 

Once characterized the binding on double strand DNA and the consequent enzyme 

inhibition, the G4 was investigated as potential target for these naphthalene diimides 

derivatives.  

As anticipated, focusing on these compounds, a high difference in terms of thermal stability 

regardless the symmetrical and asymmetrical derivatives was observed. In particular, 

comparing compounds CM52 and AN169, it emerged that the asymmetrical substituent has 

a higher stabilizing potential on G4 (fig. 4.5).  

 



Disubstituted naphthalene diimides as potential selective binders for G4 templates Results and 

discussions 

 

95 

 

Tel23 50mM KCl

µΜ

0 5 10 15 20 25

F

0

5

10

15

20

25

30

35

AN82

AN169

CM32

CM28

CM52

 

Fig. 4.5: fluorescence melting experiment performed on telomeric sequence annealed in 50mM KCl containing 

buffer. 

 

This evidence prompted us to investigate the selectivity of the selected compounds towards 

different G4 template, in particular the oncogenic sequences previously characterized.   

From our data, it emerged a clear difference among the two groups with the asymmetrical 

NDIs being always the best performers (fig. 4.6). Interestingly, this modulation is maximally 

evident on EGFR-272 probably due to its tendency to fold into a unique, well defined parallel 

G4 structure thus suggesting it as a preferential target for the asymmetrical binders.  
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Fig. 4.6: fluorescence melting experiments on EGFR-272 50mM KCl, BRAF-176 on 1mM KCl, EGFR-37 0.1mM 

KCl, with selected NDIs. 

 

Considering these preliminary results, we decided to better characterize the stabilizing effect 

on EGFR-272 G4 template with reference to the one on telomere. As model compounds we 

choose CM52 and AN169 (fig. 4.7). 
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Fig. 4.7: melting temperature differences (∆Tm) of the selected naphthalene diimides substituents  on 

telomere and double stranded DNA. Data refer to 2,5µM concentration compound. 

 

Fluorescence melting data evidenced that the preferred template is the telomere for both 

compounds. However, a higher difference in terms of thermal stabilization occurs on EGFR-

272. Indeed, on EGFR-272 the asymmetrical CM52 induces a higher ∆Tm with respect the 

symmetrical AN169. Thus, we pointed our attention on the binding mechanism of the two 

NDIs on EGFR-272 by investigating the binding modes and the binding affinities.  

The dichroic spectrum is strictly related to the topology of the DNA molecule, for this reason 

circular dichroism was useful to outline if upon binding EGFR-272, the selected derivatives 

alter its folding. We first annealed the oligonucleotide in buffer at 50mM KCl concentration. 

Indeed, as previously outlined, at this experimental conditions, the EGFR-272  is partially 

parallel folded and the effect of the compound on the sequence can be appreciated. When 

the oligonucleotide was titrated with tested  compounds, its dichroic spectrum was 

significantly switched from a parallel type shape towards an antiparallel one by suggesting a 

specific interaction of the compound on the G4 molecule (fig. 4.8). Parkinson et al.(Parkinson 

et al., 2008), previously reported that the topology of the telomeric G4 is not perturbed by 

the NDI interaction. Probably it is due to the parallel and hybrid type conformation assumed 

by the telomere which best fit with the NDI interaction mode.  
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a) b)  

Fig.4.8: circular dichroism titration of single stranded EGFR-272 by CM52 (a) and AN169 (b). 

 

Fig. 4.9: circular dichroism titration of double stranded EGFR-272 by CM52. 

 

Comparing the dichroic spectra of the two derivatives on EGFR-272 it emerged that both act 

with the same binding mode and efficiency on the single strand (fig. 4.8). 

Considering that oncogene promoters are double stranded sequences (fig. 4.9), and 

considering also the role of G4  as a switching off mechanism of gene transcription, we 

investigated also the interactions of CM52 and AN169 on the double stranded EGFR-272. 

Again the double strand spectrum was perturbed in favor of the antiparallel G4 signature by 

both compounds, even with lower efficiency with respect the single stranded 

oligonucleotide (fig. 4.10). This is a relevant result as we previously outlined that the G4 of 

EGFR doesn’t form from the double strand at physiological temperature. Thus the role of 

ligand as conformational switchers was confirmed (fig. 4.11). 
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a)     

b)     

 

Fig. 4.10: normalized molar ellipticity for single stranded and double stranded EGFR-272 in function of 

increasing compounds concentrations, CM52 (a) and AN169 (b). 
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Fig. 4.11: melting curves of the double stranded EGFR-272 (previously annealed in 150mM KCl) at 20 µM 

concentration of CM52 and AN169. 
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To better highlight different affinities of our ligand for the target G4, the binding affinities 

were investigated according to different analytical techniques. As first approach we 

performed ITC (Isothermal Titration Calorimetry) titration which can provide full 

characterization of the thermodynamic parameters(Buurma and Haq, 2007)(Giancola and 

Pagano, 2013; Murat et al., 2011)(Freyer and Lewis, 2008). From isothermal titration 

calorimetry analysis it emerged that both compounds bind EGFR as well as telomeric G4 

according to an exothermic process. Focussing on the binding affinity constants, a higher 

affinity constant of CM52 on EGFR-272 was found (fig. 4.11).  
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Fig. 4.12: thermodynamic parameters obtained through ITC experiment. 

 

This preliminary result, strictly agrees with previous thermal analysis. However, ΔTm and Ka 

well relate. A high binding stoichiometry was always found even it was lower in the case of 

AN169 with telomere. This suggests the occurrence of aspecific bindings on DNA which is 

probably related to the polyaminic lateral chains potentially involved in ionic pairs with the 

DNA molecule. Consistently, AN169 has a lower stoichiometry which we can relate to the 

absence of the polyamine lateral chain. The high analyte concentrations required by ITC 
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analysis, reinforced the formation of the aspecific binding events and they hinder to 

appreciate the thermodynamic parameters due to the analyte-ligand interaction. To 

overcome this problems we shifted to surface plasmon resonance microfluidic system, in 

which the non-static system analysis and the lower analyte-ligand concentrations required, 

should reduce the issues of binding aspecificity(Daghestani and Day, 2010)(Murat et al., 

2011). By observing the RU/RUmax vs ligand concentration curves (fig. 4.14),  the occurrence 

of non-specific bindings is again confirmed at high ligand concentrations, but SPR analysis 

allowed to calculate the affinity constant by fitting data with the one binding site + non-

specific binding equation (fig. 4.13).  
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y=(Bmax*x) /(Kd+x)   +Ns*x 

 

Fig. 4.13: model and equation of the one site saturation+ non specific binding. N (>0) indicate the aspecificity 

and is the slope of nonspecific binding line 

 

Ka values obtained are reported on table 4III. Also in this case, data are concordant with 

thermal and ITC analysis by outlining the higher affinity of CM52 and AN169 for telomere 
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with respect the EGFR-272 sequence but again the higher difference in terms of affinity 

among the two derivatives on EGFR-272.   

 

 Ka  

 TELOMERE EGFR-272 

AN169 (2,28±0,06)*10
6 

M
-1

 (0,56±0,26)*10
6 

M
-1

  

CM52 (2,76±0,07)*10
6 

M
-1

  (1,08±0,11)*10
6 

M
-1

  
 

Table 4III: Ka values obtained by SPR experiment on telomere and EGFR-272 for AN169 and CM52.  
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Fig. 4.14: RU/RUmax plotted in function of ligand concentrations (CM52 and AN 169). Data were obtained by 

SPR experiment by testing compounds on telomere and EGFR-272 sequences. 
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4.4 CONCLUSIONS 

All herein tested naphthalene diimides derivatives differ in terms of affinity towards the G4 

and the double stranded form but they are all able to bind with a significant affinity the 

double strand DNA. This aspect correlates with their interference with some nuclear 

proteins (topoisomerase IIα, taqpolymerase, telomerase) which are involved in cell 

replicative processes. Indeed, the inhibition of proteins activity was found to be higher for 

those compounds which bind with more efficiency the double strand. This can be attributed 

not to a direct interference with the protein, but rather to the binding with DNA.  

Despite this drawback, we observed a different binding behavior among the symmetrical 

and asymmetrical substituents, which was maximal in the case of EGFR-272. In particular, 

considering CM52 and AN169 as representatives for each class of derivatives, not a 

significant difference in terms of telomere recognition has been observed. Conversely, on 

EGFR-272, the symmetry significantly reduce the binding. This was fully confirmed, by 

comparing the experimental binding affinities towards telomere and EGFR-272. Thus we can 

conclude that in this case the more efficient binding of CM52 towards EGFR does not derive 

from a preferential recognition of the oncogenic sequence in comparison to the telomeric 

one but, conversely to a conservation. One explanation for this lack of selectivity of CM52 

might be related the occurrence of aspecific bindings probably due to the high degree of 

protonation sites in its polyaminic lateral chain. Indeed, our data showed that both 

compounds share the same binding mode on the single stranded EGFR-272 shifting the 

parallel G4 conformation towards an antiparallel one. This can explain the not large 

differences in EGFR affinity emerges among the two compounds. 

Finally, we can conclude that, although not a specific ligand has been found to target EGFR-

272 sequence, we can assess that the asymmetry of the naphthalene diimide derivatives can 

be the right approach to develop a selective and high affine compound towards this target. 

Moreover, the herein collected result, confirmed that also if not efficient rearrangement of 

the double strand form of EGFR towards non-canonical structures can be observedin 

physiological conditions, this process is largely speed up in the presence of proper ligands, 

thus confirming the potential relevance of this approach in anticancer chemotherapy.  
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Chapter 5 

EXPERIMENTAL SECTION 

 

Oligonucleotides  were purchased lyophilized from Metabion International AG 

(German), resuspended in milliQ water and then purified by electrophoretic technique:  

 

BRAF-176: 5’-GGG GGT GCG GGG GGG AGC GGG GGA AGG GGG-3’;  

EGRF-272: 5’-GGG GAC CGG GTC CAG AGG GGC AGT GCT GGG-3’;  

EGRF-37: 5’-GGG GAG GCA GGG CGG GAG GAG GAG GG-3’;  

HTS: 5’-AGG GTT AGG GTT AGG GTT AGG G-3’; 

Tel24: 5’-TTG GGT TAG GGT TAG GGT TAG GGA-3’; 

Tel26: 5’-AAA GGG TTA GGG TTA GGG TTA GGG AA-3’; 

wTel26 :5’-TTA GGG TTA GGG TTA GGG TTA GGG AT-3’. 

 

Oligonucleotide sequences labelled with fluorescin at 3’ and Dabcyl at 5’ termini were 

purchased lyophilized from Eurogentech (Belgium) as HPLC purified products.  

Calf thymus DNA (ctDNA) was purchased by Sigma Aldrich (USA) and used with no 

further purification. 

Anthraquinones were synthesized by Prof. Mauro Freccero from Università degli Studi 

di Pavia. 

Naphthalene diimides were synthesized by Prof. Vincenzo Tumiatti and Prof. Anna 

Minarini from Università degli Studi di Bologna. 

 

5.1 Spectroscopic techniques 

5.1.1 Fluorescence melting assay 

Fluorescence melting curves were determined in a Roche LightCycler480 (λecc 488 nm, 

λem 520 nm) in a total reaction volume of 20 µl containing 0.5 µM of the tested 

sequences and increasing ligands concentrations in LiP buffer (10 mM LiOH, 50 mM 
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KCl, pH 7.0 with H3PO4). In a typical experiment the oligonucleotide was first 

denatured by heating to 95° at a rate of 0.1°C s
-1

, maintained at 95°C for 5 min and 

then annealed by cooling to 30°C at a rate of 0.1°C s
-1

. Then, samples were maintained 

at 30° for 5 min before being slowly heated to 95°C (1°C/ min) and annealed at a rate 

of 1°C/min. When double stranded DNA was used, the leading strand and the 

complementary one were mixed at equimolar concentrations, heated to 95°C for 5 

min, and then cooled to room temperature overnight before use. Recordings were 

taken during both the annealing and melting steps.  

Tm values were determined from the first derivatives of the melting profiles using the 

Roche LightCycler software. Each curve was repeated at least three times and errors 

were ± 0.4°C. ΔTm were calculated by subtracting the Tm value recorded in the 

presence of the ligand from the corresponding value in the absence of ligand.  

 

5.1.2 Circular dichroism (CD) measurements 

Circular dichroism spectra from 230 to 320 nm were recorded using 10 mm path 

length cells on a Jasco J 810 spectropolarimeter equipped with a NESLAB temperature 

controller and interfaced to a PC 100 in 10 mM Tris-HCl, 1 mM EDTA pH 8.0. Before 

data acquisition, oligo solutions (ca. 4 µM) were heated at 95°C for 5 min and left to 

cool overnight at room temperature. The reported spectrum of each sample 

represents the average of 3 scans recorded with 1-nm step resolution. Observed 

ellipticities were converted to mean residue ellipticity [Θ] = deg x cm2 x dmol-1 (Mol. 

Ellip.).  

 

5.1.3 Thermal differential spectrum (TDS)  

The thermal difference spectrum was obtained by subtracting of the oligonucleotide 

UV-spectra at 25°C from the one recorded at 95 °C (below and above the oligo melting 

temperature respectively). The experiments were performed in 10 mM 

NaCacodilate/100 mM KCl pH7.0 for the G-rich strand and in 10 mM NaCacodilate/100 

mM KCl pH5.0 and pH3.0 for the C-rich strand. All the resulting thermal difference 
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spectra have been normalized to the value of 1 at the maximal intensity. Before the 

thermal difference spectra, the CD signal of the oligo in the same buffer has been 

recorded.  

 

5.1.4 Surface Plasmon Resonance (SPR) 

Two streptavidine sensor chips were immobilized with 50nM Biotin- TEG-human 

telomeric sequence (HTS) and Biotin-TEG-EGFR-272 in 1M NaCl, 50mM NaOH and 

50mM NaOH, 

1M NaCl in 50%isopropanol in a 0.22µm filtered buffer, containing Tris (10mM)and  

KCl 50mM, 0.025% P20. Before immobilization step, oligos were first annealed in the 

same buffer by boiling for 5 minutes and slowly cooled at room temperature. SPR 

analysis was conducted with progressive dilutions of compounds CM52 and AN169 in 

the running buffer (50µM-0). As the compounds were solved in dimethyle sulfoxyde 

(DMSO), also the  contribution  of  the  organic  solvent  was  evaluated  and  then  

subtracted.  Two  start  up  cycles  were performed before each analysis and a 60 

seconds time of contact was applied. Finally, a 30 seconds regeneration was 

performed with 10mM glycine pH 2.5 followed by a 60 seconds stabilization period 

before each injection. 

 

5.1.5 Isothermal Titration Calorimetry (ITC) 

Oligonucleotides were purified and dialyzed in (0.22µm) Tris (10mM)and    KCl  50mM  

pH  7.5.  The  exact  concentration  of  DNA  to  use  as  analyte  was  first  calculated 

through a UV-vis measurement using a NanoDrop 1000 (Thermo Scientific). Ligands 

CM52 and AN169 were weighted and solved in the same buffer and the exact 

concentration has been calculated through weight method. Samples were degassed 

before each experiment and as a control a water-water titration has been performed. 

Furthermore, a titration buffer on ligand has been performed to calculate the heat of 

dilution and to  be  subtracted  at  each  titration  curve.  Data  were  analyzed  using  a  
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one  site  binding  fitting  equation reporting the exact concentrations of ligands and 

analyte.

 

 

5.2 Electrophoretic techniques 

5.2.1 Electromobility Shift Assay 

 32
P end-labelled single-stranded oligonucleotides were obtained by incubation the 

oligonucleotides with T4 polynucleotide Kinase (M-Medical S.r.l., Italy) and [γ-
32

P] ATP 

(Perkin Elmer S.p.a., Italy) for 30 min at 37°C. The enzyme was then removed by 

extraction with phenol/chloroform/isoamylic alcohol (25:24:1) (Sigma Aldrich). A 

mixture of purified labeled and unlabelled oligonucleotides (total final concentration 1 

µM) was heated to 95°C for 5 min in 10 mM Tris, 1 mM EDTA, pH 8.0 buffer at 

increasing KCl concentrations (0-2,5-10-50-150-300mM) and let to cool overnight at 

room temperature. The folding of the starting material was monitored by native 20% 

polyacrylamide gel electrophoresis in 0.5X TBE (44.5 mM Tris base, 44.5 mM boric acid 

and 1 mM Na2EDTA) added of KCl (10 mM in buffer and in gels). Resolved bands were 

visualized and quantified on a Phosphor Imager (STORM 840, Pharmacia Biotech 

Amersham). 

 

5.2.2 Topoisomerase inhibition 

0.125 μg of pBR322 (Inspiralis) were incubated with increasing concentrations (0.5-100 

µM) of tested compounds (CM28, CM32, CM52, AN82 and AN169) for 1hour at 37 °C n 

the presence/absence of 1 U of human topoisomerase II (Fermentas) in the required 

buffer. Reaction products were resolved on a 1% agarose gel prepared in 1X TAE 

(10/1mM Tris-EDTA, 0.1% acetic acid pH 8.0). When the topoisomerase activity was 

tested, the gel and the buffer were added of 0.1% SDS (Sodium Dodecyl Sulphate, 

Sigma) and a 200mM NaCl (Sigma) loading buffer (10/1 mM Tris-EDTA; 200mM NaCl, 

bromophenol blue, xylene cyanol, pH 8.0) was used. The electrophoretic run was 
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conducted at 80 Volts for 90 minutes and then the bands were stained with ethidium 

bromide (0.5 μg/mL in H2O). 

 

5.2.3 DNA polymerase stop assay 

γ
32

P labeled HT4 primer (96 nM) was annealed with 48nM non-labeled template HT4 

in 100/500mM Tris-HCl/KCl. Then, primer elongation process was initiated by adding 

Taq polymerase (2.5 U) and 100 µM dNTPs, in the presence of increasing ligand 

concentration. The reaction was incubated at 55°C for 30 minutes and Taq polymerase 

inactivated with a fast cooling in ice. Samples were dried and then loaded into a 12% 

denaturing polyacrylamide sequencing gel. 

 

 

5.2.4 Taq polymerase inhibition assay 

The 1065-906 sequence of plasmid pBR322 was amplified through 25 cycles PCR by 

using the primers 3’GYRA (5’ TGA GGA TCC GCC TGG ACA GCA TGG 3’) and 5’GYRA (5’ 

GTC GAA TTC TCG GCG AGA AGC AGG 3’) at 0.5 µM concentration in the 

presence/absence of increasing concentrations of tested derivatives (0; 0.25; 0.5; 1; 

2.5; 5; 10; 20 µM). The reaction was carried out in a Eppendorf thermocycler and the 

following PCR cycles were performed: 30 seconds at 94°C; 30 seconds at 58°C and 30 

seconds at 72 °C. 0.25 µg of plasmid and 2 U of Taq polymerase enzyme (Fermentas) 

were used. PCR products were resolved on a 2% agarose gel in 0.5 X TBE (70 Volts for 

1.5 hours) and stained by ethidium bromide. 

  

5.2.5 Telomerase Repeat Amplification Protocol (TRAP) assay 

Telomerase activity was assayed using a modified Telomere Repeat Amplification 

Protocol (TRAP) assay. 100ng of the substrate TS (5’ AAT CCG TCG AGC AGA GTT 3’) 

was elongated by telomerase by incubation of the reaction mixture with 1.5 µg of 

protein extract at 37°C for 30min in the presence/absence of increasing drug 

concentrations. Then products amplification was performed by addition of 100ng of 
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reverse primer ACX (5’ GCG CGG CTT ACC CTT ACC CTT ACC CTA ACC 3’) and 2U Taq 

polymerase. Then, PCR amplification step was performed (33 cycles of 30 sec at 92°C, 

30 sec at 58°C and 45 sec at 72 °C). The reaction products were loaded onto a 10% 

polyacrylamide gel in 0.5X TBE and visualized after Sybr Green I staining.  

 

5.2.6 Adducts formation 

2.5 µM of 3’FAM-labelled 22 bases scramble oligonucleotide (5’GGA TGT GAG TGT 

GAG TGT GAG G 3’) was incubated at increasing concentrations of AQs compounds (0-

0.1-1-10-50 µm) for 1hour at room temperature. The reaction was also conducted at 

50°C for 24hours, at pH 9.5 for 24 hours and for 1 hour in the presence of 2mM DTT 

(dithiotreitol). Samples were then loaded on a denaturing 20% polyacrilamyde 

sequencing gel with 7M urea in 1X TBE. Resolved bands were visualized and quantified 

on a Phosphor Imager (STORM 840, Pharmacia Biotech Amersham). 

 

 

5.2.7 DMS-treatment and LM-PCR (Ligation Mediated-Polymerase Chain 

Reaction) 

Del4  plasmid  was  extracted  from  transformed  E.coli  (overnight  at  37°C  in  LB  

Broth,  then  extraction procedure  was  applied).  2  µg  of  the  extracted  plasmid  

was  then  incubated  overnight  at  37°C  with  and without 200mM KCl. The plasmid 

was then treated with DMS (4:1 DMS:Ethanol vol/vol) for 10min at room temperature 

in the presence of 1µL of calf thymus DNA (ctDNA) (0,1 µg/µL). Also a control without 

DMS treatment was considered. The reaction was then stopped with 18µL of a 

mixture of 3M β-mercaptoethanol: H2O: NaOAc (1:6:7 vol/vol). DNA was then 

ethanol precipitated and dried. The pellet was resuspended in 

10%  piperidine  and  incubated  for  30min  at  90°C,  then  precipitated  again.  After  

this  step,  LM-PCR  was carried on. PCR (Polymerase Chain Reaction) and T4 ligation 

reaction steps are reported in detail below. 



Electrophoretic techniques Experimental 

section 

 

115 

 

As regards in vivo DMS treatment, we used two different cell lines: HEK-293 and Raji 

cells. The first ones for Del4 transfection and the latter ones to work on genomic 

DNA. In this case, we induced G4 by treating cells with a G4 stabilizer, GQC-05 and a 

G4 inducer SN-38. 2,5 * 10 5  cells/well of HEK-293 were plated in a 6 wells plate 

then transfect with Del4 plasmid (2µg/w). They were treated with 1µM GQC-05 and 

2 µM SN-38 and incubated for 24hours. Raji cells were treated in solution. A 0.1% 

DMS diluted in the growth media (DMEM for HEK and RPMI for Raji) was added at 

each well and incubated for 5min and 10min for HEK-293 (Human Embryonic Kidney) 

and Raji (Burkitt’s lymphoma). The reaction was stopped by diluting 10-fold the cell 

suspension in cold PBS (phosphate saline buffer) and cells collected by 

centrifugation. DNA was then

extracted   and quantified. An agarose gel was performed as a check for the DMS 

reaction. The average fragment size should be <500 nucleotides as it means that DMS 

treatment has been efficient [genes and development 2014].Then, piperidine 

treatment and LM-PCR was carried on. For each step of PCR, a 1µM primer final 

concentration was used. 

 

PCR1: 5min at 95°C 

 

5min at 64°C 

 

10min at 72°C 

 

1µM P1 

 

1X final concentration Dream Taq mix 

 

45µg DNA 

 

T4 catalyzed ligation reaction: 

 

15µL PCR1 products 

 

15µL annealed primers 25µM (linker short and P2f) 
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1X final concentration ligation buffer 

 

2 µL T4 ligase 

 

Final volume of 40 µL reached with water.  

PCR2: 5min at 95°C 

30sec 95°C 

 

30sec 56°C                          x 25 cycles 

 

15sec 72°C 

 

4°C ∞ 

 

8µL PCR1 products 

 

1µM final P2f 

 

1µM final P2r 

 

1X Dream Taq mix 

 

PCR3: 3.5min 95°C 

 

2min 60°C 

 

10min 72°C 

 

1min 95°C 

 

2min 60°C 

 

10min 72°C 

 

9µL PCR2 products 

 

1µM final P3xR/ P3x2 

 

1X Dream Taq mix 

 

After LM-PCR, the amplified DNA was again precipitated, dried, resuspended in 8µL 

80% formamide loading dye,  heated  at  95°C  for  5min  and  fast  cooled  in  ice.  
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Samples  were  then  loaded  in  a  16%  denaturing sequencing gel (7M urea, 1X Tris-

Borate-EDTA).
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5.3 Cellular experiments. 

5.3.1 Protein extract preparation 

An aliquot of 5x106 HeLa cells in exponential phase of growth was pelleted and lysed 

for 30 minutes in ice using 100µL of 0.5% of the zwitterionic detergent CHAPS (3-[(3-

Cholamidopropyl)dimethylammonio]-1-propanesulfonate), 1mM EGTA (ethylene 

glycol tetraacetic acid), 25% 2-mercaptoethanol, 1.74% PMSF (phenylmethylsulfonyl 

fluoride) and 10% w/w glycerol. The lysate was centrifuged at 13000 rpm for 

30minutes at 4°C and the supernatant collected, quantified by Bradford assay and 

stored a -80°C.  

 

5.3.2 MTT assay 

HeLa (human hepitelial) cell line was maintained in DMEM medium supplemented 

with 10% heat-inactivated foetal bovine serum, 50 U/ml of penicillin G and 50 µg/ml of 

streptomycin, at 37°C in humidified atmosphere and 5% of CO2. To evaluate toxic 

profiles of the potential antitelomerasic compounds, MTT assays were performed as 

described: cells were plated in 96 well plates at 10.000 cells/well, and cultured 

overnight. Afterwards, compounds were added in triplicate and plates were incubated 

in presence of the drug for 72 hours. At the end of this period, MTT was added to a 

final concentration of 0.8 mg/ml, and two additional hours of incubation were 

performed. After that, medium was aspirated carefully and 150 µl of DMSO were 

added per well. Soluble formazan salts were homogenated by manual pipetting and 

absorbance at 540 nm was read (BioRad Microplate Reader 680). Curves consisted in 8 

serial dilutions in triplicate in each case (from 0µM to 100µM), the DMSO contribution 

was subtracted and results were analyzed as sigmoid dose-response curves. MTT assay 

was performed on anthaquinones derivatives. 
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Aryl ethynyl anthraquinones: a useful platform for
targeting telomeric G-quadruplex structures†
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Aryl ethynyl anthraquinones have been synthesized by Sonogashira cross-coupling and evaluated as

telomeric G-quadruplex ligands, by the FRET melting assay, circular dichroism, the DNA synthesis arrest

assay and molecular docking. Both the binding properties and G-quadruplex vs. duplex selectivity are

controlled by the structures of the aryl ethynyl moieties.

Introduction

Small molecule-mediated DNA targeting represents one of the
most effective approaches for the development of chemothera-
peutics. The ability of DNA to fold into highly stable secondary
structures could be exploited for the design of anticancer
agents interacting with nucleic acids in a sequence or struc-
tural selective fashion.1,2 One such target is represented by
G-quadruplex (G4) DNA and RNA motifs.3,4 G4 is a four-
stranded nucleic acid structure that can be formed in guanine-
rich nucleic acid sequences via Hoogsten hydrogen bond
formation and cation coordination.5 G4 stabilization has been
proposed to interfere with important biological processes
for cellular homeostasis, such as DNA damage response
activation,6–8 oncogene expression3,9–11 and genomic stabi-
lity.12 Putative quadruplex sequences (PQS) are highly spread
in the genome13 and transcriptome,14 including gene promo-
ter regions or gene bodies and telomeres, providing these
structures with the potential to act as regulatory elements of
different processes. A general lack of evidence of the formation
and the existence of G4 in vivo and its real biological functions
made the G4 relevance as therapeutic targets controversial.15

However, the existence of G4 structures in cells has recently

been demonstrated by means of immuno-fluorescence stain-
ing with an engineered structure-specific antibody16 and by
Chromatin Immuno-Precipitation (ChIP-Seq).7 The potential
therapeutic opportunities offered by the targeting of these
structures prompted the design of a large number of ligands
that specifically interact with the terminal tetrads, G4 loops
and grooves.17 In the last two decades, several selective G4
ligands have been reported and in most of the cases they share
a large planar aromatic surface that provide the ligands with a
π-stacking surface for binding with the external tetrads of the
G4.17,18 Cationic side chains, at physiological pH, further
increase the ligand binding properties, providing an additional
electrostatic interaction with the phosphate backbone.17 Dis-
secting the function of a specific G4 family over the others
could be achieved by developing small molecule ligands that
can discriminate not only over duplex DNA but also over
different G4 architectures.19 The development of these com-
pounds would provide unprecedented tools to analyze cells for
the functions of G4s present in a specific genomic region.

Anthraquinone derivatives (AQs) represent an interesting
scaffold to develop selective and multifunctional G4 ligands,
with many potential applications, because of their well charac-
terised DNA-binding properties,20,21 fairly low redox potential
and their ability to act as photosensitizers by one-electron oxi-
dation.22 Structurally, AQs are strictly related to the anthra-
cycline antibiotics like doxorubicin and daunomycin.23–26

It has been shown that doxorubicin and daunomycin can
interact with telomeric DNA via G4 stabilization, mediated by
the anthraquinone scaffold and demonstrated by the crystal
structure of a complex between the telomeric G4 DNA and
daunomycin.27 With the aim to optimize G4 recognition the
synthesis of several 1,4-1,5-1,8-2,6- and 2,7-difunctionalized
amidoanthracene-9,10-diones has been performed and the
resulting compounds have been tested as G4 ligands.28–31 The
five different regio-isomers showed different abilities to recog-
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nize G4 telomeric structures according to the nature and the
position of the substituent side chains. Consistently, conju-
gation of the anthraquinone core with amino sugars32 or
amino acids33,34 was applied to modulate their G4 binding
properties. One such example is a neomycin–anthraquinone
conjugate that exhibits a nanomolar affinity for telomeric G4
DNA, which is 1000-fold higher when compared to its constitu-
ent units.32 This higher affinity is ascribed to the dual binding
mode of the conjugate which can interact with the grooves
(neomycin) and with the guanines of the G4 (anthraquinone)
via π-stacking interactions.

For AQ-amino acid conjugates, the combination of a basic
amino acid (Lys) with a more hydrophobic residue (Phe) has
provided a better G4 selectivity versus the duplex DNA.34

Unlike the large majority of G4 ligands, AQs exhibit inter-
esting redox properties, as they easily generate radical anions
and di-anions by bio-compatible reduction.35 We demon-
strated that formation of stable radical anions can be exploited
to generate alkylating agents such as Quinone Methides (QMs,
generated from o- or p-benzyl substituted phenols).36,37 We
anticipate that AQs could be similarly exploited for in situ
generation of QMs at G4 sites, thus enabling G4 covalent tar-
geting.38 Alkylation has been proposed as an alternative
approach to physically lock the DNA G4 in its folded confor-
mation, enabling the investigation of the biological impli-
cations associated with G4s stabilization.38–42

Effective electronic conjugation between the AQ core and
the aryl moiety (embedding the QM precursor) will ensure
generation of the alkylating QM under reductive conditions.
Moreover, we postulated that increasing the aromatic surface
and the structural constraints by introducing aryl side chains
would have been beneficial for both the AQs G4 binding pro-
perties and for G4 vs. duplex selectivity. Therefore, we explored
conjugation of suitable QM precursors to the AQ scaffold intro-
ducing ethynyl spacers by means of the Sonogashira cross-

coupling. Our synthetic effort resulted in a small library of aryl
ethynyl anthraquinones (AQs, 1–6, Scheme 1). It involved the
symmetric functionalization of the anthraquinone core at 2
and 7 positions with chemically diverse aryl moieties, such as
negatively charged phenolates arising from 1 and 2, positively
charged secondary amines (3,4) and zwitterionic Mannich
bases (5,6).

Then, all the ligands here synthesized have been tested for
their G4 binding properties in comparison with double
stranded DNA. As G4 model sequences, we selected the
human telomeric DNA. Telomeres consist of a hexameric
nucleotide repeat unit d(TTAGGG) and several four repeat
sequences are currently extensively used as mimics, since they
allow exploration of different G4 conformations.

Due to the differential binding properties observed on the
selected DNA substrates, the chemical versatility of the Sono-
gashira cross-coupling involved in the preparation of these
compounds, and their redox properties,35 we believe that our
aryl ethynyl anthraquinones represent a promising platform
for the development of a new generation of multifunctional G4
interacting ligands.

Results and discussion
Chemistry

Final products 1–6 were synthesized starting from the commer-
cially available 1,8-dihydroxyanthraquinone 7. The bromina-
tion reaction was performed at r.t. using NBS in
dichloromethane and NH(iPr)2. The high reactivity of the
hydroxyanthraquinone under these conditions resulted in a
poorly selective bromination of 7, affording the anthraquinone
8 (Scheme 2) as the major product of the mixture (30% yield).

The structure of the most abundant stereoisomer 8 has
been tentatively assigned according to literature data, which

Scheme 1 Aryl ethynyl anthraquinones (AQs) synthesized and evaluated as G4 ligands.
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suggest that direct bromination of the unprotected 1,8-dihy-
droxyanthraquinone such as aloe-emodin and chrysophanol
analogues takes place at the desired 2- and 7-positions (see
Scheme 2 for numbering), in the presence of a catalytic
amount of a secondary amine.43–45 The presence of the two
OH groups is not compatible with the Sonogashira cross-coup-
ling reaction, therefore these groups were protected as methyl
ethers. This step was conducted directly on the bromination
crude, which was extremely challenging to purify under
standard chromatographic conditions. This crude was
suspended in acetone and heated to reflux overnight in the
presence of dimethyl sulfate and K2CO3. The chromatographic
purification of the resulting dimethyl ether 9 was much more
efficient (70%) and straightforward than 8. Unfortunately, the
unambiguous assignment of the corrected bromination regio-
selectivity could not be achieved by NMR through 1H,
13C-HMBC (Heteronuclear Multiple Bond Correlation) experi-
ments as the chemical shifts of the two carbonyls were too

close to each other (180.9 vs. 181.8 ppm). Therefore, such a
task was carried out on the further synthesized anthraquinone
11. A first Sonogashira cross-coupling was conducted
with compound 9 in the presence of a large excess (10 : 1) of
trimethylsilylacetylene (TMSA) in anhydrous THF, TEA and
Pd(PPh3)2Cl2 and CuI (20 mol% each). These reaction con-
ditions provided 10 in reasonably good yield (60%). The yield
of this key step was significantly affected by the sequence of
the reactants addition. Adding TMSA immediately after TEA
was found to provide the best reaction yield (60%). Deprotec-
tion of TMS groups was achieved quantitatively using K2CO3 in
MeOH–DCM at 0 °C, affording the bis-terminal alkyne 11,
which was used without further purification. This synthetic
strategy provided a facile route to the synthesis of the building
block 11 in only 4 steps and fairly good yields. The functionali-
zation of the anthraquinone core at 2- and 7-positions was
finally and unambiguously assigned using HMBC interactions of
the terminal alkyne hydrogens (3.56 ppm) with the quaternary
carbons on the methoxy substituents (C-1 and C-8,
161.7 ppm). In addition, both H-4 and H-5 exhibit the HMBC
interaction with the most de-shielded carbonyl C-10 (ESI†).

With this building block in hand we sought to investigate
convenient synthetic strategies for the preparation of the final
products: 1–6. The aryliodides (14–19, Table 1) required for the
Sonogashira reaction were synthesized starting from the p- and
m-iodophenol (ESI, Scheme S1†). For the synthesis of com-
pounds 1 and 2 a protection/deprotection strategy of the
phenol was required, as expected, while for the Mannich base
the cross-coupling could be carried out using the free phenol
derivatives (18, 19). Such an unexpected difference may be
related to the formation of an intramolecular H-bond within
the Mannich bases 18 and 19, which could introduce a sort of
“self-protective” effect on the phenol OH acidity, recovering
the typical reactivity of an “OH-free” aryl iodide.46 The yields
of the Sonogashira coupling with Mannich bases (18, 19) are

Scheme 2 (i) NBS, DCM, NH(iPr)2, r.t., 4 h (yield 30%); (ii) Me2SO4,
K2CO3, acetone, reflux, overnight (yield 70%); (iii) TMSA, anhydrous THF,
20 mol% PdCl2(PPh3)2, 20 mol% CuI; TEA, reflux 16 h, N2 (yield 60%); (iv)
MeOH–DCM 5 : 1, K2CO3, 1 h, 0 °C, N2 (yield 98%).

Table 1 Sonogashira cross-couplings, yielding AQs 3–6, 12 and 13

AQ Aryl iodide CuI mol% Pd(PPh3)2Cl2 mol%

12 14 H OCOCH3 10 5
13 15 OCOCH3 H 10 5
3 16 H OCH2CH2NMe2 10 10
4 17 OCH2CH2NMe2 H 10 10
5 18 CH2NMe2 OH 10 10
6 19 OH CH2NMe2 10 10
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still lower compared to the reaction with iodoacetylphenol
(14, 15), but the opportunity to avoid the protection and de-
protection steps justified somehow the choice of our synthetic
strategy.

The Sonogashira coupling conditions between the bis-termi-
nal alkyne 11 and the aryl iodides have been optimized with
respect to the solvent, base and catalysts (THF anhydrous,
TEA, Pd(PPh3)2Cl2, CuI) for each single aryliodide substrate
(see the Experimental section for the procedure and yields).
The final products 3–6 were purified as bis-hydrochloride salts
by reverse phase HPLC followed by trifluoroacetate/chloride
exchange. Compounds 12 and 13 required an additional
deprotection step, which was performed in aqueous methanol
in the presence of K2CO3 at r.t. HPLC purification afforded the
final products 1 and 2 (ESI, Scheme S2†).

The new ligands 1–6 were characterized by absorption spec-
troscopy and their molar extinction coefficients were calculated
in 10 mM Tris, 50 mM KCl at pH 7.5 (Experimental section).

The cationic 3–6 showed a linear correlation between
absorption and concentration of up to 50 μM thus confirming
good solubility and the lack of extensive aggregation. The only
exception was provided by derivatives 1 and 2, which evi-
denced a relevant deviation starting from the 15 μM ligand
concentration followed by precipitation at higher levels. There-
fore, all the subsequent analyses for these two derivatives were
performed at concentrations lower than 15 μM.

Fluorescence melting assay

To assess the potential of the AQs 1–6 to stabilize peculiar G4
topologies we screened them by fluorescence melting using
DNA telomeric sequences properly labelled at the 5′-end with a
quencher (dabcyl) and at the 3′-end with a fluorophore (fluor-
escein).47 An increase of the oligonucleotide melting tempera-
ture upon addition of the tested compound relies on the
ability of the ligands to stabilize the DNA G4 folded structure.
Since the human telomeric G4 is characterized by a large con-
formational flexibility, the analysis was performed under
different conditions and with different sequences known to
promote distinct folding: HTS (d[AG3(T2AG3)3T]) which in the
presence of K+ folds mainly in a population of prevalently
hybrid conformations, whereas in Na+ it assumes a defined
antiparallel folding,48 and Tel24 [d(T2AG3)4] which adopts a
hybrid-1 folding in K+ containing solutions.49 The same analy-
sis was additionally performed using a double stranded
random sequence (dsDNA) to check for duplex vs. quadruplex
selectivity.

To summarize our results we report the variation of the
oligonucleotide melting temperature as a function of ligand
concentration (Fig. 1).

Among the tested ligands only 1 and 2 did not induce any
modification of the melting profile of the tested DNA
sequences. This sustained the fundamental requirement of
protonable groups in the side chain to grant effective nucleic
acid recognition. Although the ΔTm values remain quite low at
1 μM ligand concentration, all the other compounds (AQs 3–6)
stabilized the G4 forms. In particular, a sigmoidal correlation

emerged between the observed ΔTm and ligand concen-
trations, which suggested the presence of cooperative binding
events. Among the active derivatives, at low micromolar ligand
concentration, 5 and 6 turned out to be the most and the least
effective, respectively. Conversely, at concentrations higher
than 5 μM 3 and 4 behaved as better ligands for Tel22 in K+. If
we compare the behavior of each anthraquinone derivative for
the different tested G4 targets, we did not observe prominent
selectivity for any of them. The only exception was 4, which
was less active on Tel24. Thus, the presence of oxygen in the
meta position on the aromatic ring of the side chains seems to
negatively perturb the DNA recognition process. Interestingly,
the regio-isomers 5 and 6 showed very different binding pro-
files and this can suggest a peculiar binding interaction for
the para isomer 5 with the G4 structures. Finally, all tested
compounds almost did not affect the thermal stability of the
double stranded DNA (Fig. 1), indicating their use as potential
G4 selective binders.

Circular dichroism

CD titrations were performed to investigate the ability of the
novel compounds to induce structural modifications to the
tested G4. Thus, the study was performed using the same
oligonucleotide sequences used for thermal stabilization
experiments. Moreover, we extended our analysis to wtTel26:
d[(T2AG3)4T2] which, in the presence of K+, folds into a
hybrid-2 type of arrangement.50

The recorded dichroic spectra of the oligonucleotides in the
presence of potassium are all characterized by two positive
bands, one centered at 290 nm and the other at 265–268 nm
which reflect the principal 3 + 1 hybrid arrangement assumed.
Conversely, in the presence of sodium, the dichroic spectrum
of Tel22 shows a negative band at 260 nm and a positive band
at 290 nm, typical of the antiparallel conformation signature
identified by NMR spectroscopy.51

Fig. 1 Variation of the melting temperature of HTS, Tel24 and double
stranded DNA (dsDNA) by increasing concentrations of the tested
ligands (3–6) in K+ or Na+ containing buffer.
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Variations of the intensity of the dichroic features of all
tested G4 folded DNA sequences were detected upon addition
of the ligands (Fig. 2).

This confirmed the occurrence of a DNA–ligand interaction,
which does not affect the G4 topology to a large extent. Inter-
estingly, the most relevant CD variations occurred generally
with 5. In this instance, induced dichroic bands (ICD) in
the ligand absorption range were also observed (Fig. 2). Such
contribution should derive from the insertion of the ligand
chromophore into the chiral environment provided by the
nucleic acid. Since this effect is a function of the mutual orien-
tation of the AQ chromophore and DNA, we can assume that
its presence/lack among the tested derivatives is linked to a
significant repositioning of the ligand in the complex as a con-
sequence of the side chain nature and position. Thus, distinct
binding modes for 5 vs. 3, 4 and 6 can be further inferred.

When the DNA substrate was arranged into a double helix,
the most prominent effect was reduction of the 275 and
245 nm DNA dichroic bands. This should exclude the occur-
rence of an efficient intercalation binding mode for these
ligands, since this process usually causes an increment of
these optical contributions. This result is in agreement with
the above reported lack of thermal stabilization induced by the
tested ligands in this nucleic acid conformation.

Enzymatic assays

The above described results were collected to evaluate the rec-
ognition of a G4 structure by the tested ligands. Additionally,
we analyzed whether they can promote G4 folding generating
species sufficiently stable to interfere with enzymes devoted to
the processing of the nucleic acid. Thus, the DNA polymerase

stop assay was performed using a template containing a four-
repeat human telomeric sequence (HT4-temp). In a typical
experiment, if the compounds under investigation promote G4
formation by the template, the formation of truncated pro-
ducts due to the collision of polymerase with the folded G-rich
tract (see the cartoon on the right side of gel reported in
Fig. 3) appears.52

The results summarized in Fig. 3 showed that increasing
concentrations of the tested ligands lead to a slight decrease
of the intensity of the band relative to the fully processed oligo-
nucleotide, which is more evident for 5. At the same time, the
tested compounds blocked, by some other means, the primer
extension by DNA polymerase starting from 5 to 10 µM, the
same concentration range in which they stabilized the G-quadru-
plex as determined by the melting assay. The observed stop
occurs at a well-defined site corresponding to the template
G-rich stretch. Interestingly, 3 and 6 tend to arrest the enzyme
at position-1 with reference to the G-rich tract at 5 µM concen-
tration. This behavior is not shared by 5, thus further sustain-
ing the different binding mode of this derivative.

Conversely, the same reaction performed on a DNA
sequence not G-rich (HT4sc-temp) failed to evidence any inter-
ference in the enzymatic activity by tested ligands up to 40 μM.
This result correlates with the increased ability of the
tested compound to recognize G4 over other nucleic acid
arrangements.

Evaluation of the best fitting ligand by docking

The conformational polymorphism of the DNA human telo-
meric repeat sequence Tel22 prompted us to generate poses of
our anthraquinone derivatives using Induced Fit Docking
(IFD)53 simulations following our recent experience,54 in order
to take into account the target flexibility and to optimize the
network of DNA–ligand interactions as compared to rigid
docking. In particular, as already reported in our recent model-

Fig. 2 Circular dichroism spectra of DNA templates (4 μM strand con-
centrations) alone (solid lines) or upon addition of 4 equivalents of
tested AQs 3–6 recorded in 10 mM TRIS, 50 mM KCl or NaCl, pH 7.0,
25 °C.

Fig. 3 Taq polymerase stop assay performed with increasing concen-
trations of 5 and 6 on the HT4-temp template in the presence of 50 mM
K+. f, s and p refer to full length product, truncated product and primers
respectively.
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ing work,55 we included in our study the Protein Data Bank
[The Research Collaboratory for Structural Bioinformatics
(RCSB) Protein Data Bank (PDB); http://www.rcsb.org/pdb]
entries with the codes 1KF1,56 143D,51 2HY9,57 2JPZ,58 2JSL59

and 2JSM59 taking into account all available X-ray and
NMR telomeric structures. The binding energy (IFD score)
related to the docking generated ensembles indicated
a different theoretical ligand affinity toward the six used G4
folds (Table S1†).

Recent studies indicated the hybrid-type intramolecular G4
structures as the major conformations formed in human telo-
meric sequences in K+ containing solution, with a dynamic
equilibrium between hybrid-1 and hybrid-2 folds.57,58,60–63

However in K+ solution the parallel structure is also found.
Remarkably, we obtained better docking results with these G4
folds. These data are in agreement with the human telomeric
stabilization reported in Fig. 1 which highlighted a favourable
contribution of K+ in G4 stabilization by tested ligands. Since
this cation is much more abundant than Na+ in cellular
environments, such a finding highlights the preference toward
the physiologically relevant G4 conformations.

Among the analyzed compounds, 5 showed the best average
affinity (consensus score, Table 2) with respect to the
others, in particular against 1KF1, 2JSM and 2JSL models
(Table S1†).

Interestingly, solution studies evidenced a striking differ-
ence between the two regio-isomers 5 and 6. This experimental
observation is in agreement with our theoretical results, since
5 showed an improved affinity compared to 6 in almost all the
considered folds. Such a finding is particularly evident in the
recognition of these ligands towards the G4 2JSM hybrid-
1 model, as indicated in Fig. 4. Specifically 5 was better
embedded in the DNA structure, since it is accommodated in a
kind of internal pocket and is involved in a wide stacking inter-
action network. By contrast 6 is able to recognize only the
bottom site of the 2JSM model, probably due to the different
position of the phenolic hydroxyl moiety.

Moreover IFD simulations revealed the ability of 5 to esta-
blish one pivotal hydrogen bond between its hydroxyl group
with the phosphate oxygen of guanine at position 9 and
another one between the hydrogen atom of its amino moiety
with the phosphate oxygen of guanine at position 2, thus
allowing the ligand to better anchor to the G4 structure.

The best poses of the studied anthraquinone derivatives in
complex with all the G4 considered folds are reported in the
ESI (Fig. S2–S35†).

Conclusions

In conclusion, we reported the synthesis of several aryl ethynyl
anthraquinones (1–6) via the optimized Sonogashira cross-
couplings. This synthetic protocol is flexible and can be
exploited to introduce further chemical diversity into the
ethynyl-AQ scaffold. The ethynyl-AQ derivatives demonstrated
to interact and stabilize G4 structures of the telomeric DNA
sequence. Their binding properties and quadruplex vs. duplex
selectivity have been characterized by FRET melting, CD, stop
assay as well as IF docking experiments. Compound 5 was the
most effective ligand according to all of the assays performed.
Varying the relative position of the substituents on the pheno-
lic aromatic ring from para to ortho (5 and 6, respectively) pro-
vided compounds with quite different G4 binding and
stabilization properties. Our investigation highlights that struc-
tural positioning of Mannich bases is crucial for efficient G4
binding. Although our best candidate (5) is not the most
efficient G4 binder among the AQ derivatives tested so far,28–31

it lacks significant intercalation into the double helix. This
finding highlights the potential to exploit 5 and its analogues
as precursors of alkylating QMs, targeting G4s. Although
further structural refinement is required to increase the
affinity of this scaffold towards telomeric G4-DNA, these pre-
liminary results are encouraging. We are currently working on
the development of a larger aryl (QM precursor) ethynyl
anthraquinone library as G4 bi-modal ligands, acting on a
selective reversible recognition and subsequent alkylation
upon reductive activation.

Experimental section
Synthesis of 2,7-dibromo-1,8-dihydroxyanthracene-
9,10-dione (8)

10 g of 1,8-dihydroxyanthraquinone 7 (0.042 mol) were dis-
solved in 300 ml of dichloromethane and 7.35 ml of diisopro-
pylamine NH(iPr)2 were added under stirring. A solution of

Fig. 4 Best pose of (A) 5 and (B) 6 against 2JSM hybrid-1 model of the
DNA human telomeric repeat sequence d[AG3(T2AG3)3]. 5 and 6 are indi-
cated as green carbon stick representation, while the DNA is shown as
transparent surface. Nonpolar hydrogen atoms are omitted for sake
of clarity.

Table 2 Evaluation of the Induced Fit docking consensus score, calcu-
lated for AQs 1–6 towards the six G4 folds

AQ Consensus score (kcal mol−1)

1 −6.42
2 −6.79
3 −8.84
4 −9.01
5 −9.29
6 −9.00
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N-bromosuccinimide (18.5 g, 0.104 mol in 800 ml of DCM) was
added dropwise over 30 min and the mixture was stirred for
4–6 h at room temperature. After that time the reaction was
quenched in slightly acidic water (500 ml, 1% HCl) and the
organic layer was separated. The aqueous solution was then
washed with DCM (2 × 250 ml); the organic phases were
recombined and dried over Na2SO4. The solvent was removed
under vacuum to afford an orange solid. The crude product
can be used directly for the next protection step. To determine
the reaction yield and characterize the product, 8 was isolated
by column chromatography in cyclohexane–toluene 1 : 1
affording a yellow-orange solid. Yield 30%. Mp >300 °C.
1H-NMR (300 MHz, DMSO-d6): δ 7.60 (d, 2H, J = 7.9 Hz), 8.17
(d, 2H, J = 7.9 Hz), 12.41 (br s, 2H).

Anal. found: C, 42.2; H, 1.6. Calc. for C14H6Br2O4: C, 42.2;
H, 1.5%.

Synthesis of 2,7-dibromo-1,8-dimethoxyanthracene-9,10-
dione (9)

18.0 g of the crude product 8 were suspended in acetone
(900 ml) and K2CO3 (19.1 g, 0.128 mol) and Me2SO4 (44 ml,
0.461 mol) was added. The mixture was heated to reflux over-
night while stirring under argon (18–20 h). During the reaction
the mixture became dark while at the end of it a yellow solid
crashed out. After 20 h the suspension was cooled down and
the solvent was removed under reduced pressure. The crude
product was dissolved in DCM (200 ml) and an ammonia
aqueous solution (5%) was added. The biphasic mixture was
stirred at room temperature for 1 h. After this period the
organic phase was separated and washed twice (2 × 200 ml)
with an acidic aqueous solution (1% HCl), while the aqueous
phase was washed with DCM to recover all the product traces
(2 × 200 ml). The organic phases were then recombined, dried
over Na2SO4 and the solvent removed under vacuum to afford
a brown solid. The crude product was purified by flash chrom-
atography (MPLC) with a cyclohexane–ethyl acetate gradient
(TLC eluent cyclohexane–ethyl acetate 7 : 3) affording a yellow
solid. Yield 70%. Mp >300 °C. 1H-NMR (300 MHz, CDCl3):
δ 4.07 (s, 6H), 7.90–7.99 (m, 4H). 13C-NMR (CDCl3):
δ 62.3, 123.7, 127.5, 128.8, 133.6, 138.1, 156.8, 180.9, 181.8.
Anal. found: C, 45.0; H, 2.4. Calc. for C16H10Br2O4: C, 45.1;
H, 2.4%.

Synthesis of 1,8-dimethoxy-2,7-bis((trimethylsilyl)ethynyl)-
anthracene-9,10-dione (10)

3.0 g of 9 (7.30 mmol) were dissolved in anhydrous THF
(400 ml) and then in order Pd(PPh3)2Cl2 (20 mol%, 1.02 g,
1.46 mmol) and CuI (20 mol%, 0.278 g, 1.46 mmol) were
added under stirring while bubbling the solution with an
argon flow. 10.1 ml of TEA (10 equiv., 73 mmol) were added
followed immediately by 10.4 ml of TMSA (10 equiv.,
73 mmol). The stirred solution was heated to reflux for 16 h
under an argon atmosphere. After this period the dark solu-
tion was cooled and poured in 200 ml of water. The mixture
was then extracted with DCM (3 × 250 ml); the organic phase
was collected and dried over Na2SO4. The solvent was removed

under reduced pressure affording the crude product as a dark
solid. The crude was purified by flash chromatography with a
hexane–ethyl acetate gradient (TLC eluent hexane–ethyl
acetate, 9 : 1) to give 10 as a yellow product. Yield 60%. Mp
>300 °C. 1H-NMR (300 MHz, CDCl3): δ 0.31 (s, 18H), 4.13
(s, 6H), 7.74 (d, 2H, J = 8.0 Hz), 7.94 (d, 2H, J = 8.0 Hz).

13C-NMR (CDCl3): δ −0.4, 62.0, 99.7, 104.5, 122.0, 125.5,
128.4, 133.8, 137.7, 161.4, 181.6, 182.1. Anal. found: C, 67.8;
H, 6.2. Calc. for C26H28O4Si2: C, 67.8; H, 6.1%.

Synthesis of 2,7-diethynyl-1,8-dimethoxyanthracene-9,10-
dione (11)

1.13 g of 10 (2.46 mmol) was dissolved in a MeOH–DCM
5 : 1 mixture (167 : 33 ml) and the solution obtained was
cooled at 0 °C. 0.60 g of K2CO3 was added and the mixture was
stirred at 0 °C for 1 h under Ar. The solution was then allowed
to reach room temperature and quenched in 100 ml of water.
The aqueous solution was extracted with DCM (3 × 150 ml)
and the organic phase was collected and dried over Na2SO4.
The solvent was then removed under vacuum to afford quanti-
tatively 11 as a yellow solid. Yield ≥98%. Mp >300 °C. 1H-NMR
(300 MHz, CDCl3): δ 3.56 (s, 2H), 4.13 (s, 6H), 7.79 (d, 2H, J =
8.0 Hz), 7.97 (d, 2H, J = 8.0 Hz). 13C-NMR (CDCl3): δ 62.5, 78.6,
85.8, 122.2, 124.7, 128.3, 133.2, 138.2, 161.7, 181.4, 182.0.
Anal. found: C, 75.8; H, 3.8. Calc. for C20H12O4: C, 75.9;
H, 3.8%.

General procedure for the synthesis of 12–13

The corresponding aryl iodide 14 or 15 (2.0 mmol, 0.53 g) was
dissolved in anhydrous THF (60 ml) and Pd(PPh3)2Cl2
(5 mol%, 70.4 mg, 0.10 mmol) and CuI (10 mol%, 38.2 mg,
0.2 mmol) were added under stirring while bubbling the solu-
tion with an argon flow. TEA (0.56 ml, 2 equiv., 4.0 mmol) was
then added immediately followed by a solution of 11
(0.4 equiv., 254 mg, 0.80 mmol) in a degassed anhydrous THF
solution (15 ml).

The mixture was heated to reflux for 5 h under Ar, and then
cooled down and poured into water (100 ml). The aqueous
solution was extracted with DCM (3 × 100 ml) and the organic
phases were collected and dried over Na2SO4. The solvent
was removed under reduced pressure to afford an orange
solid. The crude products were purified by flash chromato-
graphy (eluent: cyclohexane–acetate) to give 12 (17%) and 13
(20%).

2,7-Bis((p-acetoxylphenyl)ethynyl)-1,8-dimethoxyanthracene-
9,10-dione (12)

Orange powder. Yield 17%. Mp >300 °C. 1H-NMR (300 MHz,
CDCl3): δ 2.34 (s, 6H), 4.20 (s, 6H), 7.16 (d, 4H, J = 8.6 Hz), 7.62
(d, 4H, J = 8.6 Hz), 7.83 (d, 2H, J = 8.0 Hz), 8.02 (d, 2H, J = 8.0
Hz). 13C-NMR (CDCl3): δ 21.0, 62.3, 84.8, 97.3, 120.1, 121.8,
122.3, 125.7, 128.4, 132.9, 133.7, 137.3, 151.1, 160.9, 168.9,
181.7, 182.0. Anal. found: C, 73.9; H, 4.1. Calc. for C36H24O8:
C, 74.0; H, 4.1%.
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2,7-Bis((m-acetoxyphenyl)ethynyl)-1,8-dimethoxyanthracene-
9,10-dione (13)

Yellow powder. Yield 20%. Mp >300° C. 1H-NMR (300 MHz,
CDCl3): δ 2.35 (s, 6H), 4.20 (s, 6H), 7.15–7.18 (m, 2H),
7.34–7.35 (m, 2H), 7.40–7.50 (m, 4H), 7.83 (d, 2H, J = 8.0 Hz),
8.03 (d, 2H, J = 8.0 Hz). 13C-NMR (CDCl3): δ 20.9, 62.4, 85.3,
97.0, 122.3, 122.6, 123.7, 124.7, 125.6, 128.4, 129.2, 129.5,
133.9, 137.4, 150.5, 169.1, 171.3, 181.7, 182.0. Anal. found: C,
74.1; H, 4.1. Calc. for C36H24O8: C, 74.0; H, 4.1%.

General procedure for the synthesis of 1–2

Compounds 12 or 13 (0.59 g, 1 mmol) were dissolved in a
mixture of MeOH–H2O 4 : 1 (80 : 20 ml). K2CO3 was added
(1.68 g, 12.1 mmol) and the mixture was stirred at room temp-
erature under Ar for 5 h (12) or 20 h (13). After the indicated
time, the solution was poured in 50 ml of water and methanol
was eliminated by evaporation. The aqueous solution was then
acidified with HCl 10% and extracted with CHCl3 (3 × 250 ml).
The organic phase was collected and dried over Na2SO4. The
solvent was removed under reduced pressure to afford
the crude products.

Both crude products were purified by reverse phase HPLC
(gradient H2O + 0.1% TFA, CH3CN) to afford the final products
1 (15%) and 2 (10%).

2,7-Bis((p-hydroxyphenyl)ethynyl)-1,8-dimethoxyanthracene-
9,10-dione (1)

Orange needles. Yield 15%. Mp >300 °C. A319(H2O) = 37 300
M−1 cm−1. 1H-NMR (300 MHz, DMSO-d6): δ 4.07 (s, 6H), 6.86
(d, 4H, J = 8.7 Hz), 7.47 (d, 4H, J = 8.7 Hz), 7.90 (br s, 4H),
10.12 (br s, 2H). 13C-NMR (DMSO-d6): δ 61.8, 83.2, 98.8, 11.7,
116.0, 122.0, 125.3, 128.3, 133.2, 133.4, 137.0, 158.9, 159.7,
181.3, 181.5. Anal. found: C, 76.8; H, 3.9. Calc. for C32H20O6:
C, 76.8; H, 4.0%.

2,7-Bis((m-hydroxyphenyl)ethynyl)-1,8-dimethoxyanthracene-
9,10-dione (2)

Yellow needles. Yield 10%. Mp >300 °C. A315(H2O) = 35 700
M−1 cm−1. 1H-NMR (300 MHz, DMSO-d6): δ 4.18 (s, 6H), 7.00
(d, 2H, J = 8.0 Hz), 7.10 (br s, 2H), 7.17 (d, 2H, J = 8.0 Hz), 7.39
(t, 2H, J = 8.0 Hz), 8.03 (d, 2H, J = 8.0 Hz), 8.08 (d, 2H, J =
8.0 Hz), 9.90 (s, 2H). 13C-NMR (DMSO-d6): δ 62.0, 84.2, 97.7,
111.3, 117.1, 117.8, 122.1, 122.4, 124.6, 128.3, 130.1, 133.7,
137.4, 157.5, 160.1, 181.3, 181.4. Anal. found: C, 76.7; H, 4.0.
Calc. for C32H20O6: C, 76.8; H, 4.0%.

General procedure for the synthesis of 3–6

0.28 mmol of the corresponding aryliodide (14, 15, 16, 17) was
dissolved in 10 ml of anhydrous THF. Pd(PPh3)2Cl2 (10 mol%,
20.0 mg, 0.28 mmol) and CuI (10 mol%, 5.4 mg, 0.28 mmol)
were added under stirring while purging the solution with an
argon flow. The mixture was heated at 50 °C and TEA (2 equiv.,
78 μl, 0.57 mmol) was added.

The bis-ethynyl derivative 11 (0.33 equiv., 30 mg,
0.094 mmol) was dissolved in 10 ml of THF. This solution was

purged with Ar and added dropwise over 20 minutes in the
reaction vessel containing the iodide and the catalysts at
50 °C. After all of the alkyne was added to the solution the
reaction was stopped. The mixture was cooled to r.t. and then
poured in 20 ml of water. The aqueous phase was extracted
with DCM containing 20% of methanol (3 × 30 ml) to increase
the solubility of the products in the organic phase.

The organic phase was dried over Na2SO4 and the solvent
was removed under reduce pressure to afford the crude
products.

Ethynyl-AQs (3, 4, 5 and 6) were purified by reverse phase
HPLC (gradient H2O + 0.1% TFA, CH3CN). TFA salts were
exchanged with HCl to afford bis-hydrochloride as final salt
products. Due to the low solubility of the products the crude
solid was subjected to a particular preparation method before
the injection in preparative HPLC. In more detail, the crude
was suspended in MeOH–H2O (slightly acidic) 3 : 1, sonicated
and heated at 60 °C for 10 min. The suspension was then
filtered and injected directly in HPLC, while the solid was
subjected to another treatment before being wasted.

2,7-Bis(4-(2-(dimethylamino)ethoxyphenyl)ethynyl)-1,8-
dimethoxyanthracene-9,10-dione·2HCl (3)

Yellow oil. Yield 7%. A310 (H2O) = 29 300 M−1 cm−1. 1H-NMR
(300 MHz, CD3OD): δ 3.03 (s, 12H), 3.66 (t, 4H, J = 4.6), 4.18 (s,
6H), 4.44 (t, 4H, J = 4.6), 7.13 (d, 4H, J = 8.9 Hz), 7.62 (d, 4H,
J = 8.9 Hz), 7.89 (d, 2H, J = 8.0 Hz), 8.02 (d, 2H, J = 8.0 Hz).
13C-NMR (CD3OD): δ 44.2, 58.0, 63.1, 63.5, 85.1, 99.3, 116.5,
117.5, 123.8, 127.6, 130.1, 134.9, 135.4, 138.8, 160.2, 162.1,
183.4, 183.8. Anal. found: C, 67.2; H, 5.7; N, 3.9. Calc. for
C40H40Cl2N2O6: C, 67.1; H, 5.6; Cl, 9.9; N, 3.9%.

2,7-Bis(3-(2-(dimethylamino)ethoxyphenyl)ethynyl)-1,8-
dimethoxyanthracene-9,10-dione·2HCl (4)

Yellow oil. Yield 20%. A300 (H2O) = 34 500 M−1 cm−1. 1H-NMR
(300 MHz, CD3OD): δ 3.02 (s, 12H), 3.64 (t, 4H, J = 4.6 Hz), 4.13
(s, 6H), 4.41 (t, 4H, J = 4.6 Hz), 7.08 (d, 2H, J = 8.2 Hz), 7.21 (br
s, 4H), 7.32–7.38 (m, 2H), 7.82 (d, 2H, J = 8.0 Hz), 7.92 (d, 2H,
J = 8.0 Hz). 13C-NMR (CD3OD): δ 44.3, 58.0, 63.2, 63.6, 86.0,
98.8, 117.6, 118.9, 123.8, 125.3, 126.8, 127.0, 129.9, 131.4,
135.6, 139.1, 159.3, 162.3, 183.2, 183.5. Anal. Found: C, 67.1;
H, 5.7; N, 4.0. Calc. for C40H40Cl2N2O6: C, 67.1; H, 5.6;
N, 3.9%.

2,7-Bis((3-((dimethylamino)methyl)-4-idroxyphenyl)ethynyl)-
1,8-dimethoxyanthracene-9,10-dione·2HCl (5)

Orange powder. Yield 15%. Mp >300 °C. A326 (H2O) = 28 200
M−1 cm−1. 1H-NMR (300 MHz, CD3OD): δ 2.91 (s, 12H), 4.12 (s,
6H), 4.36 (s, 4H), 7.00 (d, 2H, J = 8.4 Hz), 7.54 (d, 2H, J =
8.4 Hz), 7.62 (s, 2H), 7.74 (d, 2H, J = 8.0 Hz), 7.88 (d, 2H, J =
8.0 Hz). 13C-NMR (CD3OD): δ 43.7, 58.0, 63.2, 85.2, 99.0, 115.6,
117.3, 118.9, 123.8, 127.4, 129.8, 135.2, 136.8, 137.4, 138.7,
159.3, 162.0, 183.2, 183.6. Anal. found: C, 66.5; H, 5.3; N, 4.0.
Calc. for C38H36Cl2N2O6: C, 66.4; H, 5.3; N, 4.1%.
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2,7-Bis((4-((dimethylamino)methyl)-3-idroxyphenyl)ethynyl)-
1,8-dimethoxyanthracene-9,10-dione·2HCl (6)

Yellow powder. Yield 10%. Mp >300 °C. A302 = 29 300 M−1

cm−1. 1H-NMR (300 MHz, CD3OD): δ 2.91 (s, 12H), 4.17 (s, 6H),
4.37 (s, 4H), 7.10–7.25 (m, 4H), 7.45 (d, 2H, J = 8.2 Hz), 7.91 (d,
2H, J = 8.0 Hz), 8.01 (d, 2H, J = 8.0 Hz). 13C-NMR (CD3OD):
δ 43.7, 58.2, 63.3, 85.8, 98.2, 119.3, 119.5, 123.8, 124.8, 126.9,
127.4, 130.03, 134.2, 135.9, 139.1, 158.2, 162.5, 183.3, 183.6.
Anal. found: C, 66.5; H, 5.3; N, 4.1. Calc. for C38H36Cl2N2O6:
C, 66.4; H, 5.3; N, 4.1%.

General procedures and synthesis of the aryliodo-derivatives
14–19 have been reported in the ESI.†

Circular dichroism measurements

Circular dichroism spectra were recorded on a Jasco J-810
spectropolarimeter equipped with a Peltier temperature con-
troller in 10 mM Tris, 50 mM KCl at pH 7.5 using a 10 mm
path-length cell. DNA substrates were the four-repeat human
telomeric sequences Tel22: d[AG3(T2AG3)3], Tel24: d(T2AG3)4
and wtTel26: d[(T2AG3)4T2] provided by Eurogentec. As double
stranded DNA we used calf thymus DNA (ctDNA, Sigma).
Before data acquisition, G4 forming solutions (4 µM strand
concentration) were heated at 95 °C for 5 min and left to cool
at room temperature overnight. The spectra of the nucleic acid
alone and in the presence of increasing ligand concentrations
(0–20 μM) were acquired. Each reported spectrum represents
the average of 3 scans recorded with 1 nm step resolution. The
observed CD signals were converted to the mean residue ellip-
ticity [Θ] = deg cm−2 dmol−1 (Mol. Ellip.).

Fluorescence melting studies

Melting experiments were performed using a Roche Light-
Cycler, using an excitation source at 488 nm and recording the
fluorescence emission at 520 nm. Target DNA (Eurogentec)
were the human telomeric sequence HTS d[AG3(T2AG3)3T],
Tel24 d[(T2AG3)4], and a 18 bp double stranded DNA (5′-GTGA-
GATACCGACAGAAG) labeled with Dabcyl at the 5′ end and
FAM at the 3′ end. Samples contained 0.25 µM of target DNA
and increasing concentrations of tested derivatives in 50 mM
potassium buffer (10 mM LiOH; 50 mM KCl pH 7.5 with
H3PO4). They were first heated to 95 °C at a rate of 0.1 °C s−1,
maintained at 95 °C for 5 min and then annealed by cooling
to 30 °C at a rate of 0.1 °C s−1. Then, samples were maintained
at 30 °C for 5 min before being slowly heated to 95 °C (1 °C
min−1) and annealed at a rate of 1 °C min−1. Recordings were
acquired during both these melting and annealing steps to
check for hysteresis. Tm values were determined from the first
derivatives of the melting profiles using the Roche LightCycler
software. Each curve was repeated at least three times
and errors were ±0.4 °C. ΔTm values were calculated by
subtracting the Tm value recorded in the presence of the
ligand from the corresponding value in the absence of the
ligand.

Polymerase stop assay

The DNA primer d[TAATACGACTCACTATAG], the human telo-
meric template sequence HT4-temp d[TC2A2CTATGTATAC-
(T2AG3)4ACATATCGATGA3T2GCTATAGTGAGTCGTATTA] and
the control template sequence HT4sc-temp d[TC2A2CTATGTA-
TACT2G2ATGTGAGTGTG AGTGTGAG2ACATATCGATGA3T2GC-
TATAGTGAGTCGTATTA] were obtained from Eurogentec. The
primer was initially 5′-labeled with 32P and T4 polynucleotide
kinase (Thermo Scientific), by incubating the reaction mixture
at 37 °C for 30 min. The kinase activity was inactivated by
heating the reaction mixture at 85 °C for 5 min, followed by
two extractions with one volume of phenol–CHCl3 (50 : 50). An
equimolar mixture of the labeled primer and template (20 nM)
had been annealed in the polymerase required buffer and sub-
sequently, increasing ligand concentrations have been added.
After incubation (30 min at r.t.) 2.5 U of Taq polymerase
(Thermo Scientific) and 100 μM dNTP mixture were added to
each sample and the resulting solutions were kept for 30 min
at 55 °C. Reaction products were resolved by gel electrophor-
esis (12% polyacrylamide gel with 7 M urea) in 1× TBE (89 mM
Tris base, 89 mM boric acid, 2 mM Na2EDTA). Gels were dried
and resolved bands were visualized on a PhosphorImager
(Amersham).

Docking experiments

In order to take into account the conformational polymorph-
ism of the DNA human telomeric repeat sequence
d[AG3(T2AG3)3], we included in our study six PDB entries
(codes 1KF1,56 143D,51 2HY9,57 2JPZ,58 2JSL59 and 2JSM59)
among X-ray and NMR structures, using all the conformations
stored in each experimental structure. Initially, both ligands
and DNA were pretreated. For ligand preparation, the 3D struc-
tures of all the studied compounds were generated with the
Maestro Build Panel [Maestro, version 9.3; Schrödinger, LLC:
New York, NY, 2012] and submitted to 20 000 iterations
of energy minimization using the Polake–Ribiere Conjugated
Gradient (PRCG) algorithm, OPLS200564 as a force field with
the all atoms notation, and the implicit model of solvation GB/
SA water.65 Co-crystallized water molecules and counter ions
were removed from the DNA X-ray structure. In their
sequences, all the hybrid models presented head and tail caps,
each formed by a different number of additional nucleotides.
In particular, the hybrid NMR structures 2HY9 and 2JPZ
resulted both formed by 26-mer, while in the hybrid models
2JSL and 2JSM they were reported sequences with, respectively,
25- and 23-mer. Thus, to obtain a similar analysis with respect
to the first two models, the hybrid PDB structures were
modified by deleting these caps, that is, considering them
as conformational templates for the canonical 22-mer
d[AG3(T2AG3)3]. The 47 experimental conformations stored in
the six PDB models were energy-optimized exactly under the
same conditions (force field, implicit salvation model, iter-
ations and convergence criterion) adopted for the ligands. The
energy minimization was performed until the rmsd of all
heavy atoms was within 0.05 Å of the original PDB model. The

Paper Organic & Biomolecular Chemistry

3752 | Org. Biomol. Chem., 2014, 12, 3744–3754 This journal is © The Royal Society of Chemistry 2014

Pu
bl

is
he

d 
on

 0
4 

A
pr

il 
20

14
. D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ita
 d

i P
ad

ov
a 

on
 2

9/
01

/2
01

5 
14

:4
2:

28
. 

View Article Online

http://dx.doi.org/10.1039/c4ob00220b


evaluation of the most stable conformations of the DNA struc-
tures, for each model, has been performed after the pre-treat-
ment. Docking studies were carried out using IFD.51 An initial
Glide SP docking of each ligand was carried out using a sof-
tened potential, a van der Waals radius scaling factor of 0.50
for receptor/ligand atoms, and a number of 20 poses per
ligand to be energy minimized with the OPLS-AA force field.66

The poses were saved for each ligand and submitted to the
subsequent Prime side chain orientation prediction of resi-
dues with a distance cutoff of 5 Å around each ligand. After
the prime minimization of the nucleobases and the ligand for
each pose, a Glide SP redocking of each DNA–ligand complex
structure within 30 kcal mol−1 above the global minimum was
performed. Finally, each output pose was estimated by the
binding energy (IFD score) and visually examined.

All the 3D figures were obtained with PyMOL graphics and
the modeling package, version 0.98 [Delano W. L. The PyMOL
Molecular Graphics System, 2002. http://www.pymol.org].
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a b s t r a c t

Pyrimidopyrimidine derivatives 1 were prepared as rigid thioanalogues of merbarone (a catalytic
topoisomerase II inhibitor) and screened as antiproliferative agents against different tumor cell lines. A
number of the synthesized compounds emerged as cytotoxic in cell-based assays (MT-4, HeLa and
MCF-7 cells) at low micromolar concentrations. In a National Cancer Institute screening, selected member
of the series showed a broad spectrum of antiproliferative activity against various tumours (melanoma,
renal, CNS, colon and breast cancers). The acid–base and steric properties of the substituent at position 7
of the pyrimidopyrimidine scaffold deeply affected potency. Enzymatic assays evidenced that a subset of
tested derivatives efficiently inhibit topoisomerase IIa accordingly to merbarone mechanism of action.
However this property does not fully rationalize the cytotoxicity data of the full ligand panel, suggesting
that different target(s) should be additionally involved.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Merbarone (Chart 1) is a thiobarbituric catalytic topoisomerase
type II (topoII) inhibitor identified by the National Cancer Institute
(Bethesda, MD, USA) screening program. Merbarone blocks the to-
poII-mediated DNA cleavage with some selectivity toward the IIa
isoform.1–3 In in vitro assays, merbarone exhibits curative activity
against L1210 leukemia and important activity against some other
murine tumors.4 However, clinical tests toward many different
tumor types showed a general lack of antitumor activity,5–8 poten-
tially ascribable to merbarone high ionizability (and therefore poor
bioavailability) at physiological pH.

With the aim to prepare merbarone analogues endowed with
improved pharmacodynamic and pharmacokinetic properties, we
previously synthesized compounds I (Chart 1). They can be consid-
ered as conformational constrained merbarone analogues in which
the H-bonded pseudo-bicyclic structure of merbarone has been
converted in a pyrimidopyrimidine moiety.9 In MT-4 cell-based as-
says, derivatives Ib and Ie showed IC50 values of 3.3 and 3.6 lM,
respectively and were identified as the most active compounds of
the series (Chart 1). Moreover, Ib showed submicromolar activity
against leukemia cell lines in NCI screening. Finally, Ib emerged
to be more efficient than merbarone in inhibiting topoII catalytic
activity.9

To extend the structure activity relationship (SAR) studies on
compounds I, the aza-isosteres 1 were designed and synthesized
(Chart 2). The novel derivatives 1 share the triphenyl substituted
pyridopyrimidine substructure which was functionalized at posi-
tion 7 with side chains endowed with different steric, conforma-
tional and acid/base properties. To better rationalize the SARs,
the substituent at position 7 was formally fragmented into three
parts: connecting group (CG), linker and terminal group (TG)
(Chart 2). The nitrogen atom of CG can be either a monosubstituted
(compounds 1a–l, Scheme 1) or a disubstituted (1m) amine group
or part of an hydrazino functionality (1n). The linker portion sepa-
rating CG and TG varied from one carbon atom to three carbon
atoms. In compound 1m, the linker portion was conformationally
restricted in a 6-membered ring whereas in 1n the linker portion
was missing being the CG directly connected to the TG. The TGs in-
serted include tertiary amines (1a–f, 1m), basic heteroaromatic
rings (pyridine for 1g, h, j, k, imidazole for 1l) and phenyl moieties
(1i and 1n).

2. Chemistry

Compounds 1a–n were prepared starting from the key
intermediate A (Scheme 1) obtained as previously reported.9

Briefly, the condensation of malononitrile (1 molar equiv) and
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Chart 1. Molecular structures of merbarone and its rigid thioanalogues Ib and Ie.
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phenylisothiocyanate (3 molar equiv) in the presence of sodium
hydride (1.5 molar equiv) led to the formation of the pyrimidopyr-
imidine scaffold which was then S-methylated at position 7 to
afford product A in good yields.

The desired compounds 1 were obtained by the displacement of
A thiomethyl group with the nucleophiles a–n (Chart 3). To over-
come the variable reactivity of a–n building blocks towards A, dif-
ferent synthetic procedures were set up. Thus, for amines a–l the
reaction was carried out in dry DMF at rt either using a slight
excess of the amine (1.2 equiv, for a–f) or by adding diisopropyl-
ethylamine (DIPEA, 1 equiv, for g–l). The steric bulkiness of N-
methylpiperazine reduced the reactivity of the amine towards A.
Therefore, more drastic solvent-free reaction conditions were
adopted (120 �C for 5 h) and 1m was obtained in good yield
(57%). The hydrazo derivative 1n was obtained in moderate yields
(c)

(a), (b)

A
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Scheme 1. Synthesis of derivatives 1a–n. Yields are reported within brackets. Reagents a
(2 equiv), rt, 15 h; (b) CH3I, NaHCO3, rt, 12 h; (c) R-NH2 (1.2 equiv), dry DMF, (DIPEA), rt
by refluxing the S-methyl intermediate and phenylhydrazine in a
1:1 mixture of acetonitrile and absolute ethanol.

3. Result and discussion

The antiproliferative properties of compounds 1a–n were ini-
tially assessed in MT-4, HeLa and MCF-7 cell based assays (Table 1).
Merbarone was considered as the reference compound.

The antiproliferative activity of compounds 1 appeared to be af-
fected by the length of the linker and the nature of the terminal
group (TG) and different trend were observed for the tested cell
lines. Thus, the reduction of the TG steric hindrance did not lead
to a consistent decrease in potency (compare 1a and 1b). The
dimethylamino derivative 1a was less active than its diethylamino
congener 1b against MT-4 cells but the two compounds showed
1a-l
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Table 1
Cell based cytotoxicity for compounds 1

Compd IC50
a (lM)

MT-4 HeLa MCF-7

1a 8.4 ± 0.2 12.6 ± 1.1 16.0 ± 2.1
1b 2.5 ± 0.1 16.9 ± 0.1 11.1 ± 0.1
1c 1.7 ± 0.05 7.8 ± 0.5 5.5 ± 0.5
1d 1.6 ± 0.1 2.0 ± 0.2b <1.0b

1e 1.7 ± 0.2 5.2 ± 0.1b 26.7 ± 1.4b

1f 2.0 ± 0.3 8.5 ± 0.3b 5.7 ± 0.6b

1g 7.0 ± 0.2 >50 >50
1h >100 12.6 ± 3.4 (14.6 ± 1.4)b 24.3 ± 0.8b

1i 2.4 ± 0.05 5.9 ± 0.6 (5.6 ± 0.9)b 25.6 ± 1.3b

1j 8.0 ± 0.1 10.5 ± 0.3 17.3 ± 1.9
1k 16.0 ± 1.0 15.4 ± 2.4 17.8 ± 0.8
1l 8.0 ± 0.5 >100 >100
1m >100 >50 >50
1n >100 NDc NDc

Merbarone 12 ± 1 43.8 ± 9.1 61.6 ± 4.9

a Data mean values for three separate experiments.
b Activity of the hydrochloride salt.
c Not determined.
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similar IC50 values in the HeLa and MCF-7 assays. Conversely, the
elongation of the linker chain of one methylene unit raised up
activity (compare 1a and 1c) which was further improved through
the introduction of a bulky dibutylamino TG (compare 1d and 1c).
Good antireplicative potency was also observed for derivative 1f
bearing the dibasic N-methylpiperazine TG. Interestingly, the di-
rect anchoring of the N-methylpiperazine substructure on the
pyrimido-pyrimidine scaffold cancelled activity (compare 1f and
1m). Even though with a reduction in potency in comparison with
the MT-4 cell based assay, 1e was found to be active also against
HeLa and MCF-7 cell lines.

The 2-pyridyl derivative 1g showed a micromolar antiprolifera-
tive activity against MT-4 cells but was ineffective against HeLa
and MCF-7 cell lines. Conversely, its 3-pyridyl isomer 1h showed
an opposite cytotoxicity profile against the three considered cell
lines. The elongation of the linker chain marginally effected the
activity of the 2-pyridyl compounds against MT-4 cells whereas
HeLa and MCF-7 activities were improved (compare 1g and 1j).
The 4-pyridyl compound 1k resulted to be slightly less potent than
its congener 1j against all the three cell lines. The 3-(1-imidazo-
lyl)propyl congener 1l paralleled the activity profile of the 2-pyri-
dyl compound 1g against all the considered cell lines.

Despite the lack of a basic TG, 1i showed good micromolar
activity against MT-4 and HeLa cells with a reduction in potency
for the MCF-7 cell line. Conversely, the insertion of a phenylhyd-
razino substructure led to the inactive compound 1n (data avail-
able for MT-4 cell only).

Furthermore, 1h and 1i showed similar IC50 values when tested
as free bases or as hydrochloride salts thus indicating that the
difference in activity among the cell lines cannot be ascribable to
solubility issues. Noteworthy, the majority of the tested (namely,
1a–f, i, j) compounds emerged to be more active than merbarone
against all the considered cell lines (Table 1).

Compounds 1a, d, g were selected by the National Cancer Insti-
tute (NCI) (Bethesda, MD, USA) for a screening on a panel of 60 dif-
ferent tumor cell-lines (Tables 2–4). Preliminarily, the derivatives
were tested at a fixed concentration (10 lM) and growth percent
inhibition was measured (Table 2). Compound 1g did not show
any significant antiproliferative activity (grow percentage range:
57.91–118.52%, data not shown) and therefore was discarded. Ana-
logues 1a and 1d were further tested to assess the GI50 (measure of
the growth inhibitory power), TGI (measure of the cytostatic activ-
ity) and LC50 (measure of the cytocidal effect). As summarized in
Table 3, both compounds showed antiproliferative activity against
all the cell lines investigated (60 out of 60) and demonstrated to be
cytostatic and cytocidal at (sub)micromolar concentrations in a
good number of cell lines (57–60 for 1a and 56–57 for 1d). The
average GI50 values reported in Figure 1 indicate that both deriva-
tives showed a widespread antiproliferative activity against all the
considered cancer subpanels. In particular (Table 4), 1a emerged as
particularly effective against leukemia (K-562 cell line GI50 = 0.4 -
lM; RPMI-8226 GI50 = 0.4 lM) and melanoma (SK-MEL-28 cell line



Table 2
Growth percent of different cancer cell lines in culture in the presence of 1a and 1d at
the concentration of 10 lMa

Panel cell line Compounds growth percent

1a 1d

Leukemia
CCRF-CEM �8.26 �78.41
HL-60 (TB) 36.60 �74.77
K-562 �11.39 �90.35
MOLT-4 3.92 �55.84
RPMI-8226 �4.62 �53.40
SR 34.73 �65.16

Non-small cell lung cancer
A549/ATCC 35.35 �38.43
EKVX 39.76 �74.15
HOP-62 6.19 �99.55
HOP-92 n.d.b �66.94
NCI-H226 82.30 �82.47
NCI-H23 67.64 �56.27
NCI-H322M 58.54 �57.77
NCI-H460 3.80 �95.68
NCI-H522 3.16 �54.78

Colon cancer
COLO 205 6.65 �74.06
HCC-2998 �39.64 �91.46
HCT-116 �22.12 �24.97
HCT-15 18.84 �73.34
HT29 �35.69 �63.34
KM12 0.20 �100.00
SW-620 �59.11 �100.00

CNS cancer
SF-268 24.00 �94.01
SF-295 �61.52 �100.00
SF-539 �86.90 �97.73
SNB-19 26.14 �87.44
SNB-75 79.04 �94.22
U251 2.10 �100.00

Melanoma
LOX IMVI �61.37 �89.69
MALME-3M �89.51 �91.52
M14 �84.40 �86.29
MDA-M-435 �64.55 �100.00
SK-MEL-2 n.d.b n.d.b

SK-MEL-28 �100.00 �100.00
SK-MEL-5 �98.77 �100.00
UACC-257 �74.63 �73.12
UACC-62 �90.31 �99.42

Ovarian cancer
IGROV1 36.27 �70.87
OVCAR-3 �48.73 �100.00
OVCAR-4 41.73 �82.03
OVCAR-5 63.10 �60.25
OVCAR-8 33.57 �36.07
NCI/ADR-RES 58.75 �71.14
SK-OV-3 76.30 �86.52

Renal cancer
786-0 �83.54 �100.00
A498 40.29 �100.00
ACHN 28.27 �95.78
CAKI-1 n.d.b n.d.b

RXF 393 �39.10 �67.67
SN12C 52.27 �99.22
TK-10 47.73 �89.58
UO-31 3.10 �80.92

Prostate cancer
PC-3 31.04 �70.77
DU-145 44.99 �100.00

Breast cancer
MCF7 17.87 �88.05
MDA-MB-231/ATCC �12.96 �89.07
HS 578T 12.31 �64.57
BT-549 4.45 �90.56

Table 2 (continued)

Panel cell line Compounds growth percent

1a 1d

T-47D �19.38 �62.09
MDA-MB-468 �34.62 �89.92

a Data obtained from NCI’s in vitro disease-oriented human tumor cell lines
screen.

b Not tested.
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GI50 = 0.6 lM) cancers; 1d showed submicromolar GI50 values
against a large number of cell lines (Table 4) being its average
GI50 value less than 1 lM for all the considered cancer subpanels
exception made for ovarian cancer (average GI50 = 1.2 lM, Fig. 1).

In order to assess whether derivatives 1 targeted topo-II, enzy-
matic assays on isolated human topoIIa enzyme were carried out
on selected members of the series. Merbarone was used as refer-
ence drug (Table 5). Derivatives 1h and 1i (tested either as free
bases or as hydrochloride salts) were found to inhibit the enzyme
more efficiently than the reference drug, being the IC50 values in
the low micromolar concentration range. Similarly, the piperidine
derivative 1e emerged to be active against topoIIa enzyme with
an IC50 value of 3.0 lM. In the required buffer, above 50 lM ligand
aggregation was verified for compounds 1d and 1f, thus preventing
the analysis at the higher tested concentrations. Nevertheless, a
well reproducible limited enzyme inhibition (10–15%) around
30 lM was observed suggesting a poor activity on the enzyme.

Spectrophotometric and electrophoretic analyses showed that
neither 1h nor 1i were able to bind DNA or to stabilize cleavage
complex thus supporting a common inhibition mechanism to-
wards topoIIa (Supplementary Figs. S1 and S2). Interestingly, these
findings were in line with previous data on merbarone.1

To address if topoisomerases of different types can be equally
sensitive to our derivatives, compound 1i was further tested
against Escherichia coli Topoisomerase IV, E. coli Topoisomerase I
and human Topoisomerase I. The compound was not able to inhibit
the catalytic activity of the above listed enzymes (data not shown).

If the efficiency on topoIIa exerted by 1e, 1h and 1i correlated
with the observed antiproliferative activity, not the same occurred
with 1c, 1d and 1f. Indeed, these compounds, which share a propyl
linker between the bicyclic scaffold and the basic TG, were not sig-
nificantly active against topoIIa (Table 5). In order to shed some
light on the mechanism of action, a COMPARE analysis was per-
formed on compound 1d.10–16 This bioinformatic tool correlates
the antiproliferative profiles of two agents calculating a Pearson
correlation coefficient (PCC). A high PCC suggests that the two mol-
ecules share a similar antiproliferative mechanism. Thus, the indi-
vidual 1d screening results at the GI50 end point were used as
probes to search the NCI standard agent compound set containing
171 agents with confirmed mechanism(s) of action. A significant
(p < 0.01) correlations involved 1d and spirogermanium and the
estrogen receptor antagonist tamoxifen (correlation coefficients:
0.650 and 0.643, respectively, Table 6). Interestingly, a recent
investigation,17 pointed out the ability of 1d to bind to the nonclas-
sical estrogen receptor GPER/GPR30 thus supporting the indication
provided by the COMPARE analysis.

4. Conclusion

The data acquired on the antiproliferative activity of derivatives
1 showed that the biological profile of the prepared compounds is
deeply affected by the nature of the substituent at position 7 of the



Table 3
Anticancer activity of 1a and 1da

Compound Investigated Number (No) of human tumor cell linesb

Giving positive GI50, TGI and LC50

GI50
c (lM) TGId (lM) LC50

e (lM)

No Range No Range No Range

1a 60 60 0.4–16.8 60 2.1–42.1 57 5.3–91.0
1d 60 60 0.1–1.9 57 0.3–3.8 56 0.6–36.8

a Data obtained from NCI’s in vitro disease-oriented human tumor cell lines screen.
b The table shows the number of cell lines against which each compound was screened, the number of lines against which it gave a positive GI50, or TGI or LC50 value

(<100 lM) and the corresponding concentration range.
c Compound concentration that produces 50% growth inhibition.
d Compound concentration that produces total growth inhibition.
e Compound concentration that produces 50% cytocidal effect.
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pyrimido-pyrimidine scaffold. In cell-based assays, derivatives 1d–
f emerged as the most promising compounds in terms of either
antiproliferative potency or spectrum of action. In enzymatic as-
says, topoIIa was identified as a potential macromolecular target
for derivatives 1e, h, i. Noteworthy, compounds 1d and 1f sharing
a x-aminopropyl chain were avoided of any topoIIa activity thus
suggesting different mechanisms of action within the same chem-
ical class.

5. Experimental protocols

5.1. Chemistry

All building blocks used are commercially available. Amines
(a–m, Chart 3), phenylhydrazine n, phenylisothiocyanate and 60%
sodium hydride dispersion in mineral oil were purchased by Chimi-
nord and Aldrich Chemical, Milan (Italy). Intermediate A was pre-
pared as previously reported.18 Solvents were reagent grade. DMF
was dried on molecular sieves (5 Å 1/1600 inch pellets). Unless
otherwise stated, all commercial reagents were used without fur-
ther purification. Organic solutions were dried over anhydrous so-
dium sulphate. Thin layer chromatography (TLC) system for routine
monitoring the course of reactions and confirming the purity of
analytical samples employed aluminium-backed silica gel plates
(Merck DC-Alufolien Kieselgel 60 F254): CHCl3 was used as develop-
ing solvent and detection of spots was made by UV light and/or by
iodine vapours. Yields were not optimized. Melting points were
determined on a Fisher-Johns apparatus and are uncorrected. IR
spectra were recorded on a Perkin Elmer 398 spectrometer as KBr
discs. 1H NMR spectra (200 lMHz) were recorded in CDCl3 on a Var-
ian Gemini 200 instrument. Chemical shifts were reported in d
(ppm) units relative to the internal standard tetramethylsilane,
and the splitting patterns were described as follows: s (singlet), t
(triplet) and m (multiplet). The first order values reported for cou-
pling constants J were given in Hz. Elemental analyses were per-
formed by an EA1110 Elemental Analyser (Fison-Instruments,
Milan); all compounds were analyzed for C, H, N and S and the ana-
lytical results were within ±0.4% of the theoretical values.

5.1.1. General procedure for the synthesis of compounds 1a–l
Intermediate A (0.97 g, 2 mmol) was added in a single portion

at rt to a stirred solution of the proper amine (a–l, 2.4 mmol) in
dry DMF (10 mL). For derivatives 1a–f, the mixtures were stirred
overnight at rt and then heated at 60 �C for 3 h. For compounds
1g–l, DIPEA (0.19 mL, 2 mmol) was added to the mixtures after
6 h at rt. Stirring was prolonged at rt for 6 h and then mixtures
were heated at 60 �C for 3 h. After addition of cold water (50 mL),
a solid precipitated. The raw solid was collected by filtration and
purified by crystallization from DCM and absolute ethanol.
Compounds 1d–f, h, i were converted into the corresponding
hydrochloride salts by using a 2 N HCl solution in absolute ethanol.
Hydrochlorides purity was assessed by elemental analyses.

5.1.1.1. 7-{[2-(Dimethylamino)ethyl]amino}-5-imino-1,3,6-
triphenyl-5,6-dihydropyrimido[4,5-d]pyrimidine-2,
4(1H,3H)-dithione (1a). Mp: 234–236 �C; yield: 47%. IR (KBr)
cm�1: 3186; 1625; 1575. 1H NMR (CDCl3) d: 1.94 (s, 6H, 2 CH3);
2.66–2.97 (m, 2H, CH2N(CH3)2); 3.23–3.70 (m, 2H, CH2N); 6.20–
8.30 (m, 16H, 15 arom H and amine NH, exchangeable); 11.5 (bs,
1H, imine NH, exchangeable). Anal. Calcd for C27H25N7S2: C,
63.38; H, 4.92; N, 19.16; S, 12.63. Found: C, 63.40; H, 4.98; N,
19.27; S, 12.52.

5.1.1.2. 7-{[2-(Diethylamino)ethyl]amino}-5-imino-1,3,6-tri-
phenyl-5,6-dihydropyrimido[4,5-d]pyrimidine-2,4(1H,3H)-
dithione (1b). Mp: 153–155 �C; yield: 54%. IR (KBr) cm�1: 3279;
1627; 1574. 1H NMR (CDCl3) d: 0.65 (t, J = 7.2 Hz, 6H, 2 CH3); 1.96–
2.36 (m, 6H, 3 CH2N); 2.58–2.88 (m, 2H, CH2NH); 6.68–8.13 (m,
16H, 15 arom H and amine NH, exchangeable); 11.43 (bs, 1H, imine
NH, exchangeable). Anal. Calcd for C28H27N7S2: C, 63.97; H, 5.18; N,
18.65; S, 12.20. Found: C, 63.99; H, 5.27; N, 18.68; S, 12.05.

5.1.1.3. 7-{[3-(Dimethylamino)propyl]amino}-5-imino-1,3,6-
triphenyl-5,6-dihydropyrimido[4,5-d]pyrimidine-2,4(1H,3H)-
dithione (1c). Mp: 217–220 �C; yield: 56%. IR (KBr) cm�1:
3174; 1626; 1572. 1H NMR (CDCl3) d: 1.08–1.34 (m, 2H, C–CH2–
C); 1.37–1.94 (m, 6H, 2 CH3); 2.01–2.34 (m, 2H, CH2N(CH3)2);
2.67–3.02 (m, 2H, CH2N); 6.44–8.04 (m, 16H, 15 arom H and amine
NH, exchangeable); 11.5 (bs, 1H, imine NH, exchangeable). Anal.
Calcd for C29H29N7S2: C, 64.54; H, 5.42; N, 18.17; S, 11.08. Found:
C, 64.74; H, 5.48; N, 17.94; S, 10.85.

5.1.1.4. 7-{[3-(Dibutylamino)propyl]amino}-5-imino-1,3,6-tri-
phenyl-5,6-dihydropyrimido[4,5-d]pyrimidine-2,4(1H,3H)-
dithione (1d). Mp: 180–182 �C; yield: 50%. IR (KBr) cm–1:
3189; 1624; 1568. 1H NMR (CDCl3) d: 0.91 (t, J = 6.8 Hz, 6H, 2
CH3); 1.25–1.32 (m, 4H, 2 CH2Me); 1.36–1.60 (m, 6H, 3 C–CH2–C);
2.12 (s, 1H, NH amine, exchangeable); 2.74–2.87 (m, 4H, 2 CH2N
but); 2.96–3.03 (m, 4H, 2 CH2N); 7.14–7.20 e 7.34–7.45 e 7.66–
7.69 (m, 15H, arom H); 9.25 (bs, 1H, amine NH, exchangeable);
12.88 (s, 1H, imine NH, exchangeable). Anal. Calcd for C35H41N7S2:
C, 67.38; H, 6.62; N, 15.72; S, 10.28. Found: C, 67.38; H, 6.70; N,
15.68; S, 10.03. Anal. Calcd for C35H41N7S2.3HCl: C,57.33; H, 6.05;
N, 13.37; S, 8.75. Found: C, 57.73; H, 6.48; N, 13.37; S, 8.10.

5.1.1.5. 5-Imino-1,3,6-triphenyl-7-[(2-piperidin-1-yleth-
yl)amino]-5,6-dihydropyrimido[4,5-d]pyrimidine-2,4(1H,3H)-
dithione (1e). Mp: 245–247 �C; yield: 62%. IR (KBr) cm�1:
3168; 1624; 1575. 1H NMR (CDCl3) d: 0.64–1.50 (m, 6H, 3 C–
CH2–C) 1.83–2.53 (m, 6H, 3 CH2Npip); 2.61–2.90 (m, 2H, CH2N);



Table 4
GI50, TGI and LC50 values of compounds 1a and 1d against different cancer cell lines in culturea

Panel cell line Compound

1a 1d

GI50
b (lM) TGIc (lM) LC50

d (lM) GI50
b (lM) TGIc (lM) LC50

d (lM)

Leukemia
CCRF-CEM 1.4 3.6 9.2 0.1 0.3 0.6
HL-60 (TB) 1.5 3.3 7.1 0.2 — —
K-562 0.4 2.2 6.8 0.2 — —
MOLT-4 1.8 4.7 17.2 0.3 — —
RPMI-8226 0.4 2.2 7.3 0.2 0.3 0.7
SR 1.4 3.3 8.2 0.3 1.5 7.0

Non-small cell lung cancer
A549/ATCC 4.1 18.6 70.4 0.7 2.4 8.3
EKVX 12.1 32.2 85.8 0.4 1.9 4.7
HOP-62 2.9 10.1 55.6 1.2 2.6 5.4
HOP-92 1.8 10.3 60.1 0.2 0.8 3.5
NCI-H226 11.6 26.3 59.5 1.4 2.8 5.5
NCI-H23 16.8 42.1 — 1.6 3.4 8.4
NCI-H322M 6.2 20.7 53.8 1.4 3.2 7.4
NCI-H460 3.2 11.8 61.2 0.4 1.6 4.0
NCI-H522 2.1 5.4 27.6 0.2 1.3 5.1

Colon cancer
COLO 205 1.6 3.8 9.1 0.2 1.4 6.0
HCC-2998 2.3 6.8 43.0 0.4 1.8 4.7
HCT-116 2.7 16.0 — 0.3 1.1 3.4
HCT-15 1.4 4.5 17.7 0.3 1.1 3.4
HT29 1.4 3.4 8.3 0.2 0.5 1.8
KM12 4.3 14.6 49.9 0.4 1.5 3.8
SW-620 2.1 5.1 18.8 0.4 1.4 3.7

CNS cancer
SF-268 4.1 15.3 45.6 1.0 2.2 4.7
SF-295 2.9 8.3 51.1 1.2 2.7 5.8
SF-539 1.8 3.5 7.0 1.2 2.7 5.7
SNB-19 4.9 19.0 50.0 1.2 2.7 5.8
SNB-75 2.4 7.5 31.9 0.4 1.6 4.1
U251 1.5 3.4 7.8 0.3 1.2 3.5

Melanoma
LOX IMVI 1.4 2.7 5.3 0.2 0.3 0.6
MALME-3M 2.6 5.0 9.5 0.2 0.5 1.5
M14 1.8 4.3 89.1 0.2 0.4 0.8
MDA-MB-435 1.9 4.7 22.1 0.2 0.5 1.5
SK-MEL-2 1.7 3.4 6.7 1.7 3.5 6.9
SK-MEL-28 0.6 2.1 5.8 0.2 0.3 0.7
SK-MEL-5 1.6 3.1 6.1 0.9 2.1 4.6
UACC-257 1.7 3.6 7.5 0.2 0.4 0.9
UACC-62 1.8 3.5 6.6 0.3 1.2 3.5

Ovarian cancer
IGROV1 8.1 23.0 57.5 1.9 3.8 7.5
OVCAR-3 3.0 12.5 45.4 0.8 2.1 4.6
OVCAR-4 3.1 10.8 0.6 1.9 4.4
OVCAR-5 12.1 29.5 72.1 1.4 2.8 5.5
OVCAR-8 4.1 15.7 58.7 0.9 2.7 —
NCI/ADR-RES 10.5 31.0 91.0 1.6 3.3 8.1
SK-OV-3 10.3 24.1 56.7 1.5 2.9 5.8

Renal cancer
786-0 1.4 4.3 21.4 0.2 0.4 0.8
A498 2.4 6.8 28.1 1.1 2.4 5.2
ACHN 3.2 11.3 34.1 0.5 1.6 4.1
CAKI-1 3.6 17.6 72.0 0.1 0.8 3.1
RXF 393 1.2 3.1 8.1 0.2 0.5 36.8
SN12C 6.2 19.9 48.0 1.2 2.4 4.9
TK-10 3.5 14.3 48.8 1.3 2.7 5.6
UO-31 1.6 3.9 9.6 0.2 0.5 1.1

Prostate cancer
PC-3 4.0 17.9 51.9 0.6 1.9 4.6
DU-145 5.3 18.8 48.8 1.1 2.3 4.8

Breast cancer

(continued on next page)
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Table 4 (continued)

Panel cell line Compound

1a 1d

GI50
b (lM) TGIc (lM) LC50

d (lM) GI50
b (lM) TGIc (lM) LC50

d (lM)

MCF7 2.2 10.9 48.8 0.3 1.3 3.6
MDA-MB-231/ATCC 1.8 5.6 24.7 0.3 0.9 3.0
HS 578T 2.3 7.7 40.0 0.5 1.9 5.5
BT-549 5.3 21.3 62.1 1.5 3.2 6.7
T-47D 2.1 5.4 30.5 0.2 0.5 8.3
MDA-MB-468 1.2 2.7 6.0 0.2 0.3 0.6

a Data obtained from NCI’s in vitro disease-oriented human tumor cell lines screen.
b Compound concentration that produces 50% growth inhibition.
c Compound concentration that produces total growth inhibition. Only the values <100 lM are reported.
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Figure 1. Mean Growth Inhibition (GI50) values of 1a and 1d. For each compound, the average GI50 (lM) concentration has been calculated both for each tumour subpanel
and for all cell lines (Mean Graph Midpoint, MG_MID). The so obtained values were converted in the corresponding 1/GI50 and plotted.

Table 5
Enzymatic activity human topoIIa

IC50 (lM)a

1a >100
1b >100
1c >100
1d >32b

1e 3.0b

1f. >35b

1g >100
1h 3.0 (3.0)b

1i 2.0 (2.0)b

1j >100
1k >100
Merbarone 32

a Data mean values for three separate
experiments.

b Activity of the hydrochloride salt.

Table 6
Top ten results of the COMPARE analysis of compound 1d

Rank Target vector descriptor PCC Common cell lines

1 Spirogermanium 0.650 56
2 Tamoxifen 0.643 60
3 Fluorodopan 0.610 43
4 Thalicarpine 0.600 50
5 Tamoxifen 0.567 57
6 Caracemide 0.563 58
7 L-Cysteine analogue 0.552 58

8 Thalicarpine 0.539 58
9 D-Tetrandrine 0.533 58

10 Dichloroallyl lawsone 0.512 59
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6.22–8.30 (m, 16H, 15 arom H and amine NH, exchangeable); 11.37
(bs, 1H, imine NH, exchangeable). Anal. Calcd for C31H31N7S2: C,
65.81; H, 5.52; N, 17.33; S, 11.33. Found: C, 65.77; H, 5.87; N,
17.38; S, 11.03. Anal. Calcd for C31H31N7S2.3HCl: C, 55.15; H,
5.08; N, 14.52; S, 9.50. Found: C, 55.29; H, 5.40; N, 14.49; S, 9.11.

5.1.1.6. 5-Imino-7-{[3-(4-methylpiperazin-1-yl)propyl]amino}-
1,3,6-triphenyl-5,6-dihydropyrimido[4,5-d]pyrimidine-
2,4(1H,3H)-dithione (1f). Mp: 142–144 �C; yield: 39%. IR
(KBr) cm�1: 3168; 1624; 1575. 1H NMR (CDCl3) d: 1.06–1.58 (m,
2H, C–CH2–C); 2.25 (s, 3H, CH3); 1.95–2.47 (m, 10H, 5 CH2N);
3.20–3.72 (m, 2H, NHCH2–C); 6.78–8.35 (m, 16H, 15 arom H and
amine NH, exchangeable); 11.45 (bs, 1H, imine NH, exchangeable).
Anal. Calcd for C32H34N8S2: C, 64.62; H, 5.76; N, 18.84; S, 10.78.
Found: C, 64.62; H, 5.99; N, 18.62; S, 10.68. Anal. Calcd for C32H34-

N8S2.3HCl: C, 54.58; H, 5.30; N, 15.91; S, 9.11. Found: C, 54.95; H,
5.80; N, 15.91; S, 9.28.

5.1.1.7. 5-Imino-1,3,6-triphenyl-7-[(pyridin-2-ylmethyl)amino]-
5,6-dihydropyrimido[4,5-d]pyrimidine-2,4(1H,3H)-dithione
(1g). Mp: 260–262 �C; yield: 73%. IR (KBr) cm�1: 3195; 1629;
1576. 1H NMR (CDCl3) d: 4.04 (s, 2H, CH2N); 6.55–8.56 (m, 21H, 19
arom H, imine NH and amine NH, exchangeable). Anal. Calcd for
C30H23N7S2: C, 66.03; H, 4.25; N, 17.97; S, 11.75. Found: C, 66.04;
H, 4.35; N, 18.25; S, 11.59.

5.1.1.8. 5-Imino-1,3,6-triphenyl-7-[(pyridin-3-ylmethyl)amino]-
5,6-dihydropyrimido[4,5-d]pyrimidine-2,4(1H,3H)-dithione
(1h). Mp: 264–266 �C; yield: 35%. IR (KBr) cm�1: 3175; 1625;
1569. 1H NMR (DMSO) d 3.95 (s, 2H, CH2N); 6.30–9.0 (m, 21H, 19
arom H, imine NH and amine NH, exchangeable). Anal. Calcd for
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C30H23N7S2: C, 66.03; H, 4.25; N, 17.97; S, 11.75. Found: C, 66.17;
H, 4.53; N, 18.05; S, 11.34. Anal. Calcd for C30H23N7S2.3 HCl: C,
55.01; H, 4.00; N, 14.97; S, 9.79. Found: C, 54.79; H, 4.36; N,
14.63; S, 9.51.

5.1.1.9. 7-{[2-(4-Chlorophenyl)ethyl]amino}-5-imino-1,3,6-tri-
phenyl-5,6-dihydropyrimido[4,5-d]pyrimidine-2,4(1H,3H)-
dithione (1i). Mp: 236–238 �C; yield: 27%. IR (KBr) cm�1

3329; 1644; 1569. 1H NMR (CDCl3) d: 2.45–2.48 (m, 2H, C–CH2–
Ph); 6.66–6.70 and 7.06–7.69 (m, 19H, arom H); 8.80 (bs, 1H,
amine NH, exchangeable); 12.90 (s, 1H, imine NH, exchangeable).
Anal. Calcd for C32H25ClN6S2: C, 64.80; H, 4.25; N, 14.17; S, 10.81.
Found: C, 64.84; H, 4.27; N, 14.21; S, 10.69. Anal. Calcd for C32H25-

ClN6S2.2HCl: C, 57.70; H, 4.09; N, 12.62; S, 9.36. Found: C, 57.81; H,
4.25; N, 12.30; S, 9.27.

5.1.1.10. 5-Imino-1,3,6-triphenyl-7-[(2-pyridin-2-ylethyl)
amino]-5,6-dihydropyrimido[4,5-d]pyrimidine-2,4(1H,3H)-
dithione (1j). Mp: 250–252 �C; yield: 46%. IR (KBr) cm�1: 3195;
1625; 1571. 1H NMR (DMSO) d: 2.87–3.05 (m, 2H, CH2N); 3.20–
3.28 (m, 2H, CH2N); 6.85–7.51 (m, 20H, 19 arom H and amine
NH, exchangeable); 11.16 (bs, 1H, imine NH, exchangeable). Anal.
Calcd for C31H25N7S2: C, 66.52; H, 4.50; N, 17.52; S, 11.46. Found:
C, 66.55; H, 4.52; N, 17.56; S, 11.37.

5.1.1.11. 5-Imino-1,3,6-triphenyl-7-[(2-pyridin-4-ylethyl)
amino]-5,6-dihydropyrimido[4,5-d]pyrimidine-2,4(1H,3H)-
dithione (1k). Mp: 254–257 �C; yield: 62%. IR (KBr) cm�1 3156;
1624; 1575. 1H NMR (CDCl3) d: 2.40 (bs, 1H, NH amine, exchange-
able); 3.0–3.3 (m, 2H, CH2–py); 3.60–3.80 (m, 2H, CH2N); 6.55–
7.74 e 8.22–8.58 (m, 20H, 19 arom H and amine NH, exchange-
able); 11.87 (bs, 1H, imine NH, exchangeable). Anal. Calcd for
C31H25N7S2: C, 66.52; H, 4.50; N, 17.52; S, 11.46. Found: C, 66.47;
H, 4.88; N, 17.52; S, 10.62.

5.1.1.12. 7-{[3-(1-Imidazolil)propil]ammino}-5-immino-1,3,6-
trifenil-5,6-diidropirimido[4,5-d]pirimidin-2,4(1H,3H)-ditione
(1l). Mp: 178–180 �C; yield: 68%. IR (KBr) cm�1: 3155; 1622;
1572. 1H NMR (DMSO) d: 1.25–1.44 (m, 2H, C–CH2–Ph); 2.41–2.43
(t, 2H, CH2-imidaz); 2.60 (bs, 1H, NH amine, exchangeable); 3.27–
3.43 (m, 2H, CH2–N); 6.78 (s, 1H, H2 imidaz); 6.93 (s, 2H, H4,5 imi-
daz); 7.06–7.16 and 7.27–7.46 (m, 16H, 15 arom. H and amine NH,
exchangeable); 11.10 (bs, 1H, imine NH, exchangeable). Anal. Calcd
for C30H26N8S2: C, 64.03; H, 4.66; N, 19.91; S, 11.40. Found: C,
64.05; H, 4.67; N, 19.94; S, 11.27.

5.1.2. Synthesis of 5-imino-7-(4-methylpiperazin-1-yl)-1,3,6-
triphenyl-5,6-dihydropyrimido[4,5-d]pyrimidine-2,4(1H,3H)-
dithione (1m)

A mixture of A (0.96 g, 2 mmol) and 4-methylpiperazine (5 mL)
was heated at 120 �C for 6 h, prolonging stirring at rt overnight.
The addition of cold water (50 mL) caused the precipitation of a so-
lid which was collected by filtration and purified by crystallization
from DCM and EtOH.

Mp: 262–264 �C; yield: 57%. IR (KBr) cm�1: 3024; 1609; 1587.
1H NMR (CDCl3) d 2.26 (s, 3H, NCH3); 1.81–3.06 (m, 7H, NCH3

and 2 CH2N); 3.16–3.86 (m, 4H, 2 CH2N); 6.50–8.64 (m, 15H, arom.
H); 13.53 (bs, 1H, imine NH, exchangeable). Anal. Calcd for
C29H27N7S2: C, 64.76; H, 5.06; N, 18.23; S, 11.92. Found: C, 64.72;
H, 5.01; N, 18.25; S, 11.87.

5.1.3. Synthesis of 5-imino-1,3,6-triphenyl-7-(2-
phenylhydrazino)-5,6-dihydropyrimido[4,5-d]pyrimidine-
2,4(1H,3H)-dithione (1n)

To an ACN/EtOH mixture (3:1, 20 mL) of A (0.96 g, 2 mmol),
phenylhydrazine (3 mmol, 0.31 g) was added and the mixture
was refluxed for 10 h. The solvent was evaporated under reduced
pressure and the oily residue was treated with water (100 ml)
and extracted with DCM (2 � 20 ml). The pooled organic phases
were washed with water (4 � 10 ml), dried over anhydrous Na2SO4

and filtered through a pad of Florisil. Evaporating in vacuo gave a
residue which was crystallized from EtOH/DCM mixture.

Mp: 293–295 �C.; yield: 17%. IR (KBr) cm�1 3424; 1617; 1584.
1H NMR (CDCl3) d: 6.48–8.25 (m, 23H, 20 arom. H, imine NH and
amine NH, exchangeable). Anal. Calcd for C30H23N7S2: C, 66.03;
H, 4.25; N, 17.97; S, 11.75. Found: C, 66.14; H, 4.26; N, 17.98; S,
11.70.

5.2. Biology

5.2.1. Cell based assays
The biological evaluation of the compounds 1a–n against MT-4

cells was performed according to the previously reported proce-
dures.18 The screening against HeLa and MCF7 cells were carried
out as previously reported.19

5.2.2. NCI-screening
The NCI high-flux anticancer drug screen utilized a panel of 60

human tumor cell lines in culture derived from nine cancer types
(lung, colon, CNS, ovarian, renal, prostate and breast cancer, leuke-
mia and melanoma).15,16,20 The compound were tested at 10-fold
dilutions of five concentrations ranging from 10�4 to 10�8 M.
According to the NCI protocol, cell lines were exposed to test
agents in 96-well plates for the last 48 of a 72 h incubation and a
sulforhodamine B (SRB) protein assay was used to estimate cell
viability or growth. For each compound, the drug concentration re-
quired to produce 50% (GI50) and total (TGI) growth inhibition, and
50% cytocidal effect (LC50) were obtained for 56–58 cell lines.
Values were calculated for each of these parameters if the level
activity was reached; if the effect was not reached or was ex-
ceeded, the value is expressed as greater or lesser than the maxi-
mum or minimum concentration tested.

5.2.3. Enzymatic assay
Supercoiled plasmid pBR322 (Fermentas, 0.15 lg) was incu-

bated with 1 U Topoisomerases (Inspiralis) in the provided buffer
for 1 h at 37 �C. Reaction products were resolved on 1% agarose gels
in TBE 0.5X (45 mM Tris, 45 mM boric acid, 1 mM Na2EDTA) and
the DNA bands were visualized by ethidium bromide staining
and photographed. The relative amounts of different DNA topoi-
somers were quantified using a Geliance 2000 apparatus. Each as-
say was performed at least in triplicate and error were found ±10%.
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