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Abstract

Biofuels derived from microalgae may represent a key source for alternative energy vectors.

Moreover, microalgae exhibit a great potential for sustainable production of a wide

range of commodities and value-added products, including cosmetics, pharmaceuticals and

nutraceuticals, which makes them suitable for biorefinery applications. Their high productivity

and their ability to accumulate large amounts of lipids, along with their independence from

arable land, put them in a competitive position with respect to traditional oil crops. However,

the economical and energetic sustainability of large scale microalgae cultivation for biodiesel

production are still debated. The most optimistic previsions are in fact based on gross estimates

of productivity, derived by extrapolation of laboratory-scale data.

Therefore, the development of reliable mathematical models that are capable of quantitative

predictions of the behaviour of large-scale outdoor microalgae culture is of paramount

importance. Such models prove especially useful in identifying which parameters have

the largest impact on productivity, thereby providing a means for enhancing the growth

conditions through design and operational changes. Moreover, accurate forecasts of microalgal

growth in the outdoor conditions can lead to a better understanding of the real potential of

microalgae-based biofuels.

This Thesis aims of investigating the complex effect of light in the photosynthetic apparatus

activity, and its effect on microalgae growth. The work presented in this Thesis follows

two general lines. The first contribution has been to propose a general approach for model

development. The proposed methodology guides the modelling effort in order to assure both

an accurate representation of the calibration data, but most importantly also the identifiability

of the model. The identifiability of a model, i.e. the possibility to estimate in accurate and

reliable way its parametric set, is in fact, a necessary property for the model to be confidently

used in process scale-up and optimization. The proposed methodology has been successfully

applied to growth and fluorescence data of the sea water alga Nannochloropsis Salina.

A second contribution is concerned with Pulsed Amplitude Modulation (PAM) fluorometry.

A dynamic model of chlorophyll fluorescence has been developed. The model integrates

photoproduction, photoregulation and photoinhibition processes in a semi-mechanistic way.

The model has been calibrated against fluorescence data of a sample of the microalga

Nannochloropsis gaditana. The proposed fluorescence model is capable of quantitative

prediction of the state of the photosynthetic apparatus of microalgae in terms of their open,

closed and damaged reaction centres under variable light conditions. Two promising application

of the fluorescence model have also been analysed: (i) the model has been used for the prediction
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of photosynthesis rate versus irradiance (PI)-response curves based on PAM fluorometry; and

(ii) a model based experiment design (MBDoE) approach has been followed to define new

information rich PAM protocols to further validate and refine the model structure.



Riassunto

Nonostante la crisi finanziaria, il consumo energetico negli ultimi anni è continuato

ad aumentare, spinto principalmente dall’aumento della popolazione mondiale e dalla

crescita economica dei paesi in via di sviluppo (in particolare Cina ed India). Oltre a

preoccupazioni riguardanti la limitatezza delle riserve di energia fossile, il problema del

riscaldamento globale rende sempre più evidente l’insostenibilità ambientale dell’attuale sistema

di approvvigionamento di energia. Particolarmente critico è il settore dei trasporti, che

attualmente è quasi del tutto dipendente dal petrolio. L’elevata densità energetica fornita

dai combustibili liquidi, infatti, lascia poco spazio ad alternative quali i motori elettrici o a

biogas, almeno per quanto riguarda il breve e medio periodo.

Uno dei principali vantaggi dei biocarburanti è precisamente quello di poter essere impiegati

nei motori attualmente sul mercato in sostituzione ai combustibili fossili o miscelati ad essi

e di poter sfruttare il sistema di distribuzione impiegato per i carburanti tradizionali. Tra le

alternative disponibili per la produzione di biomassa idonea alla conversione in biocombustibili,

le microalghe sono considerate una delle fonti di biomassa più promettenti. L’elevata

produttività, l’indipendenza da terreni agricoli e la possibilità di utilizzare acque non potabili e

non adatte alle coltivazioni (acqua di mare o salmastra), assieme alla capacità di alcune specie

di microalghe di accumulare elevate quantità di olio, le rendono il candidato ideale. Tuttavia, la

produzione su larga scala di microalghe in modo economicamente ed ambientalmente sostenibile

richiede ancora un notevole lavoro di ricerca.

Le previsioni più ottimistiche, infatti, sono basate su estrapolazioni da dati ottenuti in

laboratorio, dove le condizioni di crescita sono notevolmente diverse da quelle in un sistema

di produzione su larga scala. La disponibilità di modelli matematici in grado di prevedere

il comportamento delle colture microalgali in sistemi di coltivazione industriali è quindi di

primaria importanza per progettare, simulare e ottimizzare i processi di produzione. Per essere

sufficientemente robusto e affidabile quando utilizzato in predizione, un modello matematico

deve basarsi per quanto possibile su considerazioni di tipo meccanicistico e in secondo luogo deve

essere identificabile (ovvero deve essere possibile stimare in modo univoco il set di parametri

che lo caratterizzano).

L’analisi di letteratura svolta sui modelli esistenti ha messo in luce alcune limitazioni che

questa Tesi si propone di superare. Il primo limite individuato è che spesso i modelli letteratura

sono, o eccessivamente semplificati, e quindi incapaci di descrivere in modo sufficientemente

accurato il sistema considerato, o al contrario, estremamente complessi e quindi difficilmente

identificabili. Di conseguenza, il primo obiettivo di questa Tesi (affrontato nel Capitolo 3) è
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stato quello di proporre uno schema generale in grado di guidare lo sviluppo di nuovi modelli,

assicurando due caratteristiche fondamentali: la prima è che i modelli devono essere in grado

di rappresentare i dati in modo preciso, la seconda è che il modello sviluppato deve essere

identificabile sulla base dei dati disponibili.

Un secondo limite evidenziato dall’analisi di letteratura riguarda invece l’utilizzo di

misure di fluorescenza. Strumenti quali la fluorometria PAM (Pulsed Amplitude Modulation)

rappresentano infatti lo stato dell’arte degli strumenti di analisi dei processi fotosintetici e

hanno portato ad importanti scoperte in abito biologico negli ultimi 40 anni. Tuttavia, il loro

utilizzo è spesso limitato ad analisi di tipo qualitativo e poco è stato fatto per lo sviluppo di

modelli matematici in grado di fornire informazioni quantitative. Questo ha dato l’impulso

alla seconda parte della Tesi (Capitoli 4-6) nella quale è stato sviluppato un modello dinamico

in grado di rappresentare la fluorescenza della clorofilla in funzione dell’intensità luminosa.

Il modello, tenendo conto dei processi di fotoproduzione, fotoregolazione e fotoinibizione, è

in grado di fornire previsioni accurate del flusso di fluorescenza misurato in varie condizioni

sperimentali e ha permesso la derivazione di relazioni quantitative tra le misure di fluorescenza

e lo stato del fotosistema in termini di centri di reazione aperti, chiusi e inibiti. Inoltre, sono

state studiate altre due importanti applicazioni del modello di fluorescenza. La prima riguarda

la possibilità di predire la produttività fotosintetica basandosi su misure di fluorescenza, molto

più veloci ed affidabili rispetto alle misure tradizionali. La seconda applicazione del modello

riguarda invece l’utilizzo di tecniche di progettazione ottimale di esperimenti basate su modello

(Model based experiment design, MBDoE) per la determinazione di esperimenti ottimali in

termini di informazione contenuta in essi.

Il lavoro di Tesi è organizzato secondo il seguente schema concettuale.

Nel Capitolo 1 dopo aver inquadrato il panorama bibliografico di riferimento, vengono

illustrate le principali limitazione degli attuali approcci modellistici usati per descrivere la

crescita delle microalghe.

Nel Capitolo 2 vengono illustrati i principali strumenti matematici e sperimentali utilizzati

nel proseguo della Tesi. Dopo aver presentato uno schema generale per lo sviluppo di un

modello matematico che sia sufficientemente affidabile e robusto vengono discussi i concetti di

identificabilità a priori e a posteriori ; i fondamenti teorici delle tecniche MBDoE e il metodo

di stima parametrica basato sulla massima verosimiglianza. Nella seconda parte del capitolo

vengono introdotte le misure di fluorescenza della clorofilla fornendo alcune informazioni

biologiche di base necessarie a comprendere le fondamenta teoriche di questo tipo di misure.

Nel Capitolo 3 viene sviluppato un modello in grado di rappresentare dei dati di crescita e

di fluorescenza riguardanti la specie Nannochloropsis salina. Attraverso opportune tecniche di

discriminazione è stato selezionato il modello più promettente tra dei candidati reperiti nella

letteratura scientifica. Tale modello è stato ulteriormente modificato, da un lato per meglio

rappresentare alcuni importanti fenomeni biologici, dall’altro per assicurare l’identificabilità
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strutturale del modello stesso.

Il Capitolo 4 presenta un modello semi-meccanicistico della fluorescenza della clorofilla. Il

modello considera i principali processi biologici che agiscono in tempi caratteristici compresi tra

i millisecondi (fotoproduzione) e le ore (fotoinibizione). In particolare, vengono usate misure

di fluorescenza PAM per sviluppare e calibrare il modello. Tra i vantaggi offerti da un modello

matematico come quello proposto ci sono: (i) la possibilità di verificare le condizioni sotto le

quali sono valide alcune ipotesi biologiche, correntemente utilizzate in letteratura; e (ii) stimare

l’andamento del numero di centri di reazione inibiti durante l’esperimento di fluorescenza.

Il Capitolo 5 propone un’estensione del modello sviluppato nel Capitolo 4. In particolare

viene introdotto nel modello il processo di fotoacclimatazione e un’espressione per il calcolo

della produttività fotosintetica in termini di evoluzione di ossigeno (curve PI). La simulazione

dinamica delle curve PI ha messo in luce l’importanza del protocollo usato durante gli

esperimenti per misurare l’evoluzione di ossigeno. Questo è un risultato particolarmente

significativo dal momento che spesso in letteratura viene trascurato l’effetto della dinamica

e l’utilizzo di curve PI viene fatto ipotizzando che esse rappresentino uno stato stazionario.

L’analisi dei risultati ottenuti mostra invece come l’assunzione di tale ipotesi possa causare una

sovrastima della produttività e debba essere pertanto evitata.

Nel Capitolo 6 attraverso l’utilizzo di tecniche MBDoE la struttura del modello di

fluorescenza viene ulteriormente raffinata e validata. Viene inoltre migliorata l’accuratezza della

stima parametrica. Infine, un nuovo tipo di misure di fluorescenza, ottenute con un diverso tipo

di fluorometro vengono utilizzate per caratterizzare meglio la dinamica della fotoproduzione.

Il capitolo 7 conclude la Tesi riassumendo i principali risultati raggiunti e indicando possibili

sviluppi futuri per proseguire la ricerca sull’argomento.
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Chapter 1

Introduction

The need for finding economically competitive and renewable energy sources as a substitute

to fossil fuels is becoming even more pressing. Microalgae-based processes are considered one

of the most promising alternative technology for the production of liquid fuels for transport

sector (Hannon et al., 2010; Sheehan et al., 1998; Mata et al., 2010). Their high productivity,

their ability to accumulate triacylglycelos (TAGs) under certain stress conditions, and their

independence from arable land and fresh water all together put them in a competitive position

against traditional oil crops (Chisti, 2007; Williams and Laurens, 2010; Mutanda et al., 2011).

Nonetheless, much research is still needed in order for algal-derived biofuel to become a reality,

starting with making large-scale microalgae cultivation both economically and energetically

sustainable. In fact, the most optimistic previsions are based on crude extrapolation of the

productivities obtained in the lab, where conditions differ drastically from those in outdoor

culture systems, and no pilot or larger scale demonstration plant has been able to reproduce

them as of yet (Quinn et al., 2012; Moody et al., 2014). A better understanding of the underlying

biophysical and biochemical processes and their interactions is clearly necessary in order to

assess the true potential of microalgae culture systems.

Sunlight provides the energy to support microalgae growth and this energy must therefore

be exploited with the highest possible efficiency for optimizing productivity. Algae efficiency

in converting solar radiation, however, depends on many environmental factors, including light

intensity, temperature, and nutrient availability. Photobioreactor design and operation too

can play a major role as the culture concentration, depth and mixing can all affect light use

efficiency, and therefore productivity. Optimising microalgae productivity in such a complex

environment hinges on our ability to describe, in a quantitative manner, the effect of these

various parameters as well as their mutual interactions.

The work presented in this Thesis aims at developing robust and reliable mathematical

model to describe the bioprocesses involved in microalgae growth so as to provide for

quantitative predictions. Such models prove especially useful in identifying which parameters

have the largest impact on productivity, thereby providing a means for enhancing the growth

conditions through design and operational changes. They can also provide guidance for genetic

1



2 Introduction

engineering related work by identifying those modifications having the largest potential impact

on productivity.

The main objective of this Chapter is to present the motivation of the research effort.

First, a general overview of the energy situation is presented with a particular concern to the

fossil fuels consumption and their effect on climate change is discussed. Next, the biofuels as

a possible substitute of the fossil fuels are presented. After a general introduction the third

generation biofuels based on microalgae production are presented. The main advantage and

bottlenecks for microalgae-derived biodiesel mass production are discussed. Finally, a review of

the modelling effort in the literature is carried out and the main limitation of current models are

assessed. The motivation of the work and a roadmap of the Thesis will conclude the Chapter.

1.1 Energy outlook

Recent years have seen a continuously increasing energy demand, regardless of financial crisis.

The main driver of the growing trend is the population growth and the supply reliability is

forecast to fall. Moreover, the actual energy system is based mainly on non-renewable sources

and is recognised to be unsustainable from an environmental point of view.

In 2013 the annual world primary energy consumption was estimated at 12730 million tonnes

of oil equivalent (MTOE). Fossil resources in 2013 accounted for 87% of the primary energy

consumption with oil (33 %), natural gas (24 %) and coal (30 %) (BP, 2014). According to the

International Energy Agency (IEA) global energy demand is set up to grow by 37% by 2040

(IEA, 2014). China, which is currently the largest energy-consuming country, will consolidate

its leadership in the next decades. A landmark in the geography of energy consumption is

forecast in the early 2030s, when China is expected to become also the largest oil-consuming

country, crossing paths with United States. But, by this time, India South-east Asia, Middle

East and sub-Saharan Africa are expected to take over as the engines of global energy demand

growth (IEA, 2014).

Figure 1.1: World primary energy demand by region (source IEA (2011))

The global energy market can be essentially divided into two areas: the power and fuel
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Figure 1.2: Crude oil price between 1970 and 2011 in US dollars (source WTRG 2014).

sector. According to IEA, the power sector accounted for the 38% of global primary energy

demand in 2009 and is expected to increase up to 42% in 2035 (IEA, 2011). However, the fuel

sector will hold the larger share and alternatives to fossil fuel not as obvious, but are advocated

to reduce the greenhouse gasses emissions and meet the reduction required from international

legislated targets.

Apart from the environmental issues there are also growing concerns about the finiteness of

the resources, in particular for the oil production. On the one hand, there are growing evidence

that present levels of oil production will probably be insufficient to satisfy the fast growing

demand in many countries (among others China and India). On the other hand, concerns

have been arising about the so called peak of oil production, i.e. the point in time when the

maximum oil productivity is reached, after which the oil production is expected to decrease

(Hubbert, 1949). Although the precise date for the peak of oil production is far from being

consensual, many experts agree that the world’s oil supply cannot expand fast enough to satisfy

the growing demand for energy. As a result, they warn, we can expect more price spikes like

the ones that have shocked the economy in recent years (Kaufmann, 2011) (see Figure 1.2). At

the same time, the petroleum toll on the environment is becoming clearer, especially its huge

role in warming the Earth’s climate.

1.2 Climate change

Anthropogenic green house gases (GHG) emissions since the pre-industrial era have driven large

increases in the atmospheric concentrations of CO2, CH4 and N2O. Between 1750 and 2011,
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cumulative anthropogenic CO2 emissions to the atmosphere were 2040±310GtCO2. About 40%

of these emissions have remained in the atmosphere; the rest was removed from the atmosphere

and stored on land (in plants and soils) and in the ocean. The ocean has absorbed about 30% of

the emitted anthropogenic CO2, causing ocean acidification. About half of the anthropogenic

CO2 emissions between 1750 and 2011 have occurred in the last 40 years (Figure 1.3(a)) (IPCC,

2014).

Despite the increased number of climate change mitigation policies, anthropogenic GHG

emissions have continued to increase over 1970 to 2010 with larger absolute increases between

2000 and 2010. Anthropogenic greenhouse gas emissions in 2010 reached 49 GtCO2-eq/yr.

Emissions of CO2 from fossil fuel combustion and industrial processes contributed about 78%

of the total greenhouse gas emissions increase from 1970 to 2010, with a similar percentage

contribution for the increase during the period 2000 to 2010. Total annual anthropogenic GHG

emissions have increased by about 10 GtCO2-eq between 2000 and 2010. Since 2000, GHG

emissions have been growing in all sectors, except in agriculture, forestry and other land use

(AFOLU)(IPCC, 2014).

In 2010, 35% of GHG emissions were released by the energy sector, 24% (net emissions)

from AFOLU, 21% by industry, 14% by transport and 6.4 % by the building sector. When

emissions from electricity and heat production are attributed to the sectors that use the final

energy (i.e. indirect emissions), the shares of the industry and building sectors in global GHG

emissions are increased to 31% and 19%, respectively (Figure 1.3(b))(IPCC, 2014).

Globally, economic and population growth continued to be the most important drivers of

increases in CO2 emissions from fossil fuel combustion. The contribution of population growth

between 2000 and 2010 remained roughly identical to the previous three decades, while the

contribution of economic growth has risen sharply. Increased use of coal has reversed the

long-standing trend of gradual decarbonization (i.e., reducing the carbon intensity of energy)

of the world’s energy supply (IPCC, 2014).

According to IEA (2011) the global energy-related CO2 emissions are predicted to grow by

about 6 GtCO2-eq from 2010 and 2035. In Figure 1.4 we can observe that OECD countries

are predicted to reduce their emissions (e.g. United States and Europe are expected to reduce

their energy-related emission by 15% and 22% respectively). However, the non-OECD countries

and in particular China and India more than compensate the reductions achieved by OECD

countries and therefore the world total emission will increase.

Previsions of future energy supply show a wide variety of promising approaches to address

the energy problem in the power sector. However, the knotty quest refers to the transport sector,

relying almost completely on oil and where complexities in establishing new logistics along

with the very high requirements in energy content per volume gives little room to present-day

substitutes like hydrogen or electricity (IEA, 2011).
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(a)

(b)

Figure 1.3: (a) Annual global anthropogenic CO2 emissions (GtCO2/yr) from fossil fuel combustion,
cement production and flaring, and forestry and other land use (FOLU), 1750-2011. Cumulative
emissions and their uncertainties are shown as bars and whiskers, respectively, on the right-hand side.
(b) Total anthropogenic GHG emissions (GtCO2-eq/yr) from economic sectors in 2010. The circle
shows the shares of direct GHG emissions (in % of total anthropogenic GHG emissions) from five
economic sectors in 2010. The pull-out shows how shares of indirect CO2 emissions (in % of total
anthropogenic GHG emissions) from electricity and heat production are attributed to sectors of final
energy use. Source: IPCC (2014)
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Figure 1.4: Predicted energy-related CO2 emissions by region in 2035 according to IEA (2011) and
the change from 2010.

1.3 Renewables in transport sector

The transport sector is totally dependent on fossil fuels with a share of about 97% of the supply.

Its overall GHG emissions in 2010 has been approximately the 14% of the total GHG emissions

(IPCC, 2014) (see Figure 1.3(b)). Global demand for transport appears unlikely to decrease in

the foreseeable future; the world energy outlook 2014 (IEA, 2014) projects that increased oil

use for transport and petrochemicals will drive demand higher, from 90 million barrels per day

(mb/d) in 2013 to 104 mb/d in 2040.

The main drivers in the expansion of transport requirements are again the non-OECD

countries and the global increase in the transport sector will be approximately 1.4% per year

from 2008 and 2035 (IEA, 2011). To contain the emissions from this sector, policy makers

should first and foremost encourage improved vehicle efficiency and increase the share of public

transportation and, finally, promote new low-carbon fuels. These include electricity, hydrogen

and greater use of biofuels (also as gasoline and diesel fuel blends). One of the main advantages

of biofuels with respect to other renewable energy, is the possibility to use them as direct

substitute to traditional fossil fuels both for the end users and for the distribution systems.

Biofuels are usually divided into three categories: first generation biofuels are made from

traditional crops that are also utilised as food or feed (corn, sugar cane, soybeans; etc.); second

generation biofuels are made from non-edible terrestrial biomass such as lignocellulosic material;

third generation biofuels aim at not exploiting arable land, microalgae represent their champion.

The main limitation of biofuels utilisation is the high production costs compared to fossil

fuels. Moreover, mass production of first generation biofuels have several drawbacks (Sims

et al., 2010). One of most common concerns is the food-for-fuel dilemma; i.e. they divert food
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supply towards the fuel sector, and exploit arable land and fresh water that can be used for

food production. The increased pressure on arable land currently used for fuel production could

lead to severe food shortage, in particular in developing countries. Palm oil which represent

one of the crop with the highest oil producing potential, requires a rainforest-like weather and

vast regions, in Brazil, Thailand and Malaysia are currently being cleared at a very fast rate to

make room for plantations for biodiesel production (Schenk et al., 2008) resulting in remarkable

ecological problems. Another concern is about the high water consumption related to biomass

production (Gerbens-Leenes et al., 2009; Bernardi et al., 2012). Second generation biofuels try

to overcome the problems related to first generation but the arable land requirement is still

present. Another concern related to second generation biofuels is the requirement of a complex

and costly collection network that may hinder the economical feasibility (Nigam and Singh,

2011).

Microalgae are considered one of the most appealing solution for the medium term biofuels

production (Mata et al., 2010) and extensive research has been carried out to investigate the

utilisation of microalgae as energy feedstock. They are considered one of the most promising

alternatives to target a newly emerging clean energy market which is predicted to expand

rapidly to a value of 500 bn $ by 2050 (Stern et al., 2006).

Several advantages are related to microalgae based biofuels, with respect to traditional crops

(Mata et al., 2010). The first one is the extremely high, with respect to terrestrial feedstock,

potential oil productivity. However, the absence of industrial scale production system results in

high uncertainty in the assessment of the real microalgae oil production potential (the current

estimates span two orders of magnitude and the most optimistic projection are based on crude

extrapolation of lab-scale results). Recently, Moody et al. (2014) based on a thermal growth

model validated with data from outdoor photobioreactors confirm that most of the reported

microalgal oil productivities in the literature overestimate the real potential productivity for

a large scale microalgae cultivation system, at least in the short-term. However, based on

their analysis that can be considered conservative, they conclude that, for example United

States and China, the two greatest oil consuming countries, could substitute 30 % of their

diesel requirement using only 8 and 5 % of their arable land respectively, or alternatively 11

and 49% of their non-arable land respectively. A second advantage of microalgae is the short

harvesting cycle, that allow multiple or continuous harvest, depending on cultivation systems

used, in contrast with the traditional crops that are harvested once or twice a year. Moreover,

the utilisation of closed photobioreactors could lead to a significant reduction of fresh water

requirements.

Finally, another significant aspect is the possibility to enhance with biotechnological

techniques the performance of microalgal strains (Radakovits et al., 2010). In fact, it turns

out that certain features of microalgae, which have been selected in wild-type species through

evolution, can cause a significantly loss of productivity in an artificial environment and are

therefore detrimental to large-scale cultivation (Formighieri et al., 2012). One prototypical
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example here is the size of the antenna of photosystems, which comprises hundreds of chlorophyll

molecules per reaction center in most eukaryotic algae. This large array of pigments maximizing

light-harvesting efficiency provide an evolutionary advantage in a natural environment where

solar radiation is often limiting for growth and where the ability to be competitive with other

photosynthetic organisms is essential to thrive (Kirst and Melis, 2014a). In contrast, such

a large antenna is the main cause for non-uniform light distribution in dense microalgae

cultures, entailing a significant loss in overall productivity. In fact, the shallow layers are

exposed to saturating light and the microalgae present there must activate their protection

mechanisms to reduce photo-oxidative damage. Although effective for reducing damages, these

mechanisms may end up dissipating up to 80% of the absorbed energy as heat (Barber and

Andersson, 1992), strongly reducing light use efficiency in these layers. Then, as most of

the light is absorbed in the first few centimeter of the culture, microalgae present in deeper

layers become strongly light limited and are therefore at risk of finding themselves below the

light compensation point between photosynthesis and respiration. Removing these productivity

barriers requires synergies between the development/optimization efforts in photobioreactor

design and operation on one hand, and research on genetic modification of microalgae on

the other hand. A great deal of research has focused on re-engineering the composition

and regulation of the photosynthetic apparatus, so that the modified microalgae can grow

faster under dense culture conditions in photobioreactors (Simionato et al., 2013a; Wobbe and

Remacle, 2014).

1.4 Photosynthesis fundamentals

Photosynthesis is the key process responsible for the conversion of light energy in chemical

energy that is stored in energy rich molecules which can be used for the production of biofuels.

A wide range of molecules can be produced by photosynthetic organism: sugar and starch, for

bioethanol production, oil, for biodiesel production, biohydrogen, or biomass for biomethane

production. In plant and algae the photosynthesis occurs in organells called chloroplasts.

Traditionally, photosynthesis is divided into two main reactions sets: the so called “light

reactions” of photosynthesis involves the capture of photons and their conversion to energy

carriers as ATP and NADPH. At this stage oxygen is produced by the water splitting reaction

as a side product. ATP and NADPH are used in the second stage, the so called “dark reactions”,

which are independent of light and use the energy stored in the ATP and NADPH molecules

to fix the CO2 producing sugars or other energetic molecules (see Figure 1.5).

In higher plant and microalgae, the light reactions occurs in the thylakoids membrane (see

Figure 1.6). The initial step of light reactions is carried out by specialised light harvesting

complex proteins, responsible of light capturing, referred as Light-Harvesting Complex of

photosystem I (LHCI) and Light-Harvesting Complex of photosystem II (LHCII). These

proteins bind the bulk of chlorophyll and carotenoids of the cell and are involved both in light
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Figure 1.5: Photosynthetic pathways: light reaction for energy capture and dark reaction to fix carbon
dioxide.

capturing and in the dissipation of excess energy, which otherwise would cause the formation of

oxygen reactive species leading to the inhibition of photosystem II (Horton and Ruban, 2005).

The light energy captured by LHCI and LHCII is funnelled to the respective reaction

centres of Photosystem I (PSI) and Photosystem II (PSII) via a highly coordinated network

of pigments bounded by the LHC. The energy absorbed by LHCII and passed to the PSII

reaction centre is used to drive the water splitting reaction, which turns water into electrons,

protons, and oxygen. The electrons are shuttled by a series of electron carriers (plastoquinone

(PQ), cytochrome b6f (Cyt b6f), plastocyanin (PC), PSI) along the photosynthetic electron

transport chain following the so-called Z-scheme. The final acceptor is the NPDP+ molecule,

which is converted in NADPH, an energetic molecule that will be used in the dark phase of

photosynthesis. Simultaneously, a proton gradient is built between the lumen, the inner part

of thylakoids, and the stroma, the outer part, by PSII and the PQ/PQH2
1 cycle. The proton

gradient drives the ATP production in the ATP synthase.

The above mentioned process is called linear electron flow. An alternative light energy

utilisation is the cyclic electron flow, driven by PSI. The cyclic reaction is similar to the linear

reaction but produces only ATP and no NADPH is generated. The cyclic reaction takes place

only in PSI: once the electrons are displaced from the photosystem they are passed down

through the electron carriers and returns to PSI from where they were emitted, thus the name

cyclic electron flow.

The dark reaction of the photosynthesis occurs in the stroma and process is a cyclic reaction,

referred as Calvin cycle, which uses ATP and NADPH generated by the light reactions to fix

1PQH2 is the reduced form of PQ
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Figure 1.6: The Z-scheme.

CO2. The Calvin cycle can be divided in three main steps. In the first step CO2 enters the cycle

to react with ribulose-1,5-biphosphate (RuBP) to form two molecules of 3-phosphoglycerate

(3PG) and is catalysed by ribulose-1,5-biphosphate carboxylase-oxygenase (RUBISCO).The

forward reaction is strongly favoured by the negative change in free energy of the process.

During the second step, which is dependent upon ATP and NADPH, the 3PG molecules are

reduced to form two molecules of glyceraldehyde-3-phosphate (G3P). The third step, consists

in a series of reactions that convert a portion of G3P back to RuBP to allow the photosynthetic

reduction cycle to continue (Taiz and Zeiger, 2010).

1.5 Third generation biofuels from microalgae

In Figure 1.7 a block diagram of a typical biodiesel production process from microalgae is

presented.

The first step of the biodiesel production is of course the biomass cultivation phase.

Microalgae can be grown in several types of culture systems that are usually grouped into

two main categories: open ponds and closed photobioreactors (described in Section 1.5.2). This

stage require nutrients and CO2 to sustain the microalgae growth and fresh water to compensate

the evaporative losses. Biomass cultivation is crucial for the economic and environmental

sustainability of the overall biodiesel production process and there is a great research effort

to improve both microalgal strains and cultivation systems. The second step is the harvesting

of microalgae followed by a dewatering step in order for the biomass to be suitable for lipid

extraction. Water separated by biomass needs to be recycled as much as possible to improve

sustainability. Oil extraction cost reduction is another challenge that needs to be addressed.

The three major alternatives to extract oil from algae are: oil press/expeller, hexane extraction,
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Figure 1.7: Block diagram of a typical biodiesel production process from algal biomass.

and supercritical CO2 fluid extraction (Krichnavaruk et al., 2008). These technologies have all

been successfully demonstrated but are relatively expensive, either in terms of equipment need

or energy required to extract the oil. Fortunately, all are amenable to engineering improvements

(Hannon et al., 2010). Once extracted, the lipids are converted through a transesterification

process into biodiesel. At this stage also glycerol is produced as a side product. The solid

waste resulting from lipid extraction has to be used in order to enhance the economic and

environmental performances of the biodiesel production process. One of the most promising

alternative is to perform an anaerobic digestion for the production of biogas (Sialve et al.,

2009). The advantage of anaerobic digestion is that the majority of the nutrients are kept in

a bacterial slurry that can be sterilised and used for algal fertilizer. Biogas is not currently a

high-value commodity, but can help provide energy to operate algae cultivation system.

1.5.1 Environmental challenges and opportunities of microalgae

One of the main potential limiting factors for large scale microalgae-based biofuels is fresh water

consumption. Perhaps surprisingly, algae grown in open ponds have water requirements per

unit area similar to that of cotton or wheat (but less than that of corn) to replenish the water

lost in evaporation (Gerbens-Leenes et al., 2009). However, it is imperative when considering

broad deployment of algae, to consider water use to avoid a future water versus fuel debate. In

fact, even if microalgae cultivation will occupy non-arable land, water requirement has to be

accounted for. Fortunately, many regions have substantial alkaline or saline water reservoirs

beneath them, providing a significant source of non-potable water that is suitable for growth

of many algal species (Hannon et al., 2010).

Another challenge regards the nutrients supply. In fact, like terrestrial crops microalgae

require certain amount of nutrients to grow efficiently. Most of microalgae require to grow

phosphorus, nitrogen and potassium (macro-nutrients) as well as micro-nutrients such as iron

and sulphur. Most of the fertiliser currently used in terrestrial agriculture to provide nutrients
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contain components that are generated from fossil fuels or mined and therefore not renewable

(Vance, 2001). A promising alternative to address this issue consists in combining nutrient-rich

waste water treatment with algal growth facilities. Extensive works have been conducted to

explore the feasibility of using microalgae for wastewater treatment, especially for the removal

of nitrogen and phosphorus from effluents (Kong et al., 2010; Chinnasamy et al., 2010; Pittman

et al., 2011). Moreover, waste water utilisation will help reducing fresh water requirements

Finally, an important environmental application of microalgae culture is CO2 mitigation.

One of the key advantages, in comparison with terrestrial plants, which typically absorb CO2

from the atmosphere, is that microalgae can capture CO2 from high-CO2 streams such as flue

gases and flaring gases (Li et al., 2008).

1.5.2 Microalgae culture systems

As anticipated, the culture system used to cultivate microalgae is a crucial design activity

of the overall process. Conventional open ponds and even some closed photobioreactors

have already achieved economic viability in the production of high value products such as

astaxanthin and nutraceuticals. However, economic margins are much smaller in the biofuel

market and therefore it is crucial to optimize the biomass cultivation systems to achieve an

economic biodiesel production (Soeder, 1980; Richmond, 2008; Li et al., 2007; Haag, 2007).

Recently Jorquera et al. (2010) proposed a comparative life cycle assessment (LCA) analysis

for production of biomass using the oil rich microalga Nannochloropsis. The authors compared

runaway open ponds, tubular and flat plate photobioreactorss (PBRs) and the net energy ratio

(NER) was calculated. The results showed that only runaway open ponds and flat plate PBRs

are economically sustainable, with a NER > 1; while tubular PBRs have a NER < 1, thus

underlying the unsustainability of this PBR configuration.

Open ponds

A raceway pond is typically made of a closed loop recirculation channel mixed by a

paddle-wheel. In order to prevent sedimentation and enhance mixing, baffles are placed in

the flow channel. The first applications of raceway ponds for mass production of microalgae

date back to the 1950s (Spolaore et al., 2006). Production of microalgal biomass for biodiesel

has been extensively evaluated in raceway ponds in studies sponsored by the United States

Department of Energy (Sheehan et al., 1998).

The main advantage of raceways with respect to closed reaction systems is the lower capital

and operative cost. However, several issues are related to the raceway operation. First of all,

the biomass productivity is lower than a photobioreactor. In addition, carbon dioxide is used

less efficiently than in a closed system and they are affected of contamination by unwanted algae

and microorganisms that limits the biomass productivity. Finally, open ponds are characterised

by high evaporative losses, and the biomass concentration remains low because raceways are
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(a) (b)

Figure 1.8: Open ponds (from http://www.seambiotic.com)

poorly mixed and cannot sustain an optically dark zone (Mata et al., 2010).

Photobioreactors

PBRs are defined as reactors in which phototrophs (microbial, algal or plant cells) are grown

or used to carry out a photobiological reaction. PBRs are flexible systems that can be

optimised according to the biological and physiological characteristics of the algal species being

cultivated, allowing to cultivate algal species that cannot be grown in open ponds. PBRs

have several advantages over open ponds: they offer better control over culture conditions and

growth parameters (pH, temperature, mixing, CO2 and O2), prevent evaporation, reduce CO2

losses, allow to attain higher microalgae densities or cell concentrations, i.e. higher volumetric

productivities, offer a safer and more protected environment preventing contamination or

minimizing invasion by competing microorganisms (Mata et al., 2010). PBR have been

successfully applied for producing large quantities of microalgal biomass (Rubio et al., 1999).

However, there are no PBR examples at industrial scale.

(a) (b)

Figure 1.9: Examples of closed photobioreactors as flat plate and tubular reactors.
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Several PBR designs have been proposed in the literature over the years. Two of the

most widely studied configurations are the tubular and the flat panel reactor (Figure 1.9).

Despite their advantages, it is not clear if PBRs could have a significant impact in the near

future on any product or process that can be attained in large outdoor raceway ponds. PBRs

suffer from several drawbacks that need to be considered and solved. Their main limitations

include: overheating, bio-fouling, oxygen accumulation, difficulty in scaling up, high capital

and operating costs, cell damage by shear stress, and deterioration of material used for the

photo-stage. The cost of biomass production in PBRs may be one order of magnitude higher

than in open ponds (Mata et al., 2010).

1.6 Models for microalgae growth

A large part of the modelling efforts related to microalgae growth have been developed to

account to the growth of phytoplankton in its natural environment. The first phytoplankton

model has been developed by Riley (1946) to describe the population of Georges Bank and

accounts for light and nutrients effect on the growth (also considering a light exponential

attenuation along the depth). It is worth noting that some assumptions that are usually

involved in models for phytoplankton in the natural environment are not suitable for an artificial

environment. For example, as microalgae evolved over eons to adapt to their environment, it can

be assumed that the photosynthetic apparatus is optimally designed to maximise the growth

(or more in general the fitness, in an evolutionary sense). When dealing with an artificial

environment the algae can be not-optimally adapted as the conditions differs significantly

from the natural habitat. The main difference is of course biomass concentration, that in

nature is usually very low whereas in an production system must be as high as possible.

Another difference is related to the nutrients availability: typically in a natural environment

micronutrients, such as iron, can be limiting while in an artificial environment only the

macronutrient limitations are of interest, as their optimisation is necessary for the process

to be economically sustainable. Finally, the temperature can vary within a wide range on

seasonal and also daily basis in open ponds and even more in closed photobioreactors, while in

the natural environment temperature variations are much smaller.

A number of contributions regarding the nutrients effect has been proposed in the literature:

one of the first models for the study of nutrients uptake was the one of Dugdale (1967); the effect

of nutrients on growth has been studied by Droop (1968) and later reformulated by Burmaster

(1979). The resulting model is the Droop model, which essentially differs from a classical Monod

model by the fact that relates the growth to the intracellular limiting nutrient concentration and

not to the dissolved concentration. The Droop model has been extensively validated over the

years (Droop, 1983; Bernard and Gouzé, 1999; Vatcheva et al., 2006) and proved to accurately

represents the growth in a constant light environment, despite its simplicity. However, the light

effect on the growth is not accounted for in the Droop model.
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In parallel to nutrient effect, several kinetic models of photosynthesis to represent the impact

of light availability have been proposed. The effect of light on microalgae culture systems is

intricate. Besides providing the energy need to drive CO2 fixation, light can be responsible

for the production of ROS that lead to a loss of photosynthetic production, a mechanism

known as photoinhibition, when the incoming irradiance exceeds a cell capacity to perform its

photochemistry. The main target of photoinhibition is PSII and more specifically the D1 protein

that disrupts the electron transport chain when damage occurs (Vass, 2012). The continuous

repair of damaged D1 proteins allows microalgae to cope with very high light irradiance, making

it an effective mechanism to ensure their survival, yet this strategy requires continuous protein

synthesis, which incurs a significant energetic penalty and requires large amounts of nutrients

(Marshall et al., 2000; Loebl et al., 2010).

Photoinhibition is not the only mechanism influencing light use efficiency. Microalgae

have evolved by developing a complex system of regulatory mechanisms to protect their

photosynthetic apparatus via dissipating excess energy as heat. This thermal dissipation,

the Non Photochemical Quenching (NPQ), is triggered by short-term fluctuations in light

and can be activated on a timescale of seconds or minutes. It provides microalgae with an

effective protection against photo-oxidative damage, even in the case of drastic variations in

light irradiance (Peers et al., 2009). NPQ is activated when light absorption exceeds the light

utilization capacity, a situation that leads to the accumulation of protons in the thylakoids

lumen. The proteins in the antenna, also called LHC, undergo a conformational change in

response to lumenal pH variations, which can result in up to 80% of the total absorbed

energy being diverted as heat (Barber and Andersson, 1992). Even though it is crucial for

microalgae to protect themselves from high light irradiance in their natural environment, such

a massive energy loss drastically hampers biomass productivity in an artificial system. In

particular, this constitutes a major drawback in biofuel applications, whereby all energy losses

should be minimised. Another key regulatory mechanism in microalgae is photoacclimation,

which relates to a cell ability to adjust its pigment/protein content and composition to the

growth conditions. These slow regulatory mechanisms, which act on a timescale of days

to weeks, are aimed at optimizing the light-harvesting efficiency on account of physiological

needs. When exposed to high light irradiance, for instance, microalgae will reduce their light

harvesting efficiency via decreasing the chlorophyll content per cell. They will also increase their

photosynthetic capacity via enhancing the capacity for oxygen evolution, electron transport and

CO2 consumption (Walters, 2005). In addition, long-term and short-term light responses turn

out to be inter-dependent and act synergistically. In the process of acclimating to a higher

light irradiance, for instance, a cell may increase its capacity to dissipate energy as heat on

the short term as well (Gerotto et al., 2011). In a dynamic environment, microalgae must

therefore balance out the needs of efficient light harvesting between sustained growth and

sufficient protection against light-induced damage. While different microalgae have achieved

this balance through a gradual adaptation over eons, their efficiency is not as high when



16 Introduction

cultivated in environments other than their natural habitats, including industrial ponds and

photobioreactors.

The development of mathematical models describing photosynthesis as function of light

intensity is made particularly arduous by the large number of governing phenomena, acting on

multiple time scales from milliseconds to days: photoproduction, occurs in a fraction of a second

(Williams and Laurens, 2010); NPQ acts on time scales of seconds or minutes (Eberhard et al.,

2008); photoinhibition, on time scales of minutes to hours (Long et al., 1994); photoacclimation,

on time scales of hours to days (MacIntyre et al., 2002). The first mathematical model that tries

to represent the light effect on photosynthesis is the model by Baly (1935), which describe the

photosynthesis as an hyperbolic function of the light intensity. This empirical model has been

extended by Vollenweider (1966) to account also for the photoinhibition process. Opposed

to the empirical models, mechanistic models are based on the physical and biological laws

characterising the phenomena of interest and therefore exhibit a sound predictive capability

and can be used to design and optimise the system they represent. Several mechanistic models

have been developed over the years and can be divided into two main categories: physiological

models and state models.

Physiological models attempt to describe the dynamic behaviour of photosynthetic cells and

propose approximations for the actual mechanisms involved in the cells growth. These models

may try to represent the optimal allocation of energy and nutrients during cells activities

(Ross and Geider, 2009) or to represent a specific metabolic reaction (e.g. Marshall et al.

(2000), where the damage and repair cycle of protein D1 is described). Usually these models

are extremely detailed and involve a large amount of variables and parameters. The actual

identification procedure may be extremely complex (sometimes even impossible) and require

numerous, highly specific and costly experiments. For instance, Kroon and Thoms (2006) have

recently presented a model of photosynthetic electron transfer in chlorophytes that explicitly

considers the entire reaction sequence from QA to NADPH. The model includes 31 state

variables and 29 rate constants. It can simulate the types of signals generated by fast repetition

rate fluorescence and other fluorescence techniques. The main limitation of the model is the

numerical complexity. Moreover, despite the high number of variables and parameters some

important biological processes, like the photoregulation mechanism, are neglected (and will

require additional parameters to be accounted for).

State models are instead based on the concept of PSU and are more instrumental for

simulating and optimising industrial cultivation systems. These models are based on the

concept of PSU, which is comprised of the antenna and the reaction center, together with the

associated apparatus that is activated by a given amount of light energy to produce a certain

amount of photoproduct. The name “state models” was coined to reflect that PSUs can be

in different states of excitation, and many such models have been proposed over the years,

including (but not limited to): Rubio et al. (2003); Eilers and Peeters (1988); Garćıa-Camacho

et al. (2012); Han (2001); Pahlow (2005); Papadakis et al. (2012); Wu and Merchuk (2001);
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Ross et al. (2008). Recently, multiphysics models have started to appear that integrate these

state models within CFD simulation in order to represent the effects of light attenuation and

mass-transfer limitation (Nauha and Alopaeus, 2013; Hartmann et al., 2014).

Models that try to study the coupled effect of limitations both in nutrients and light have

been proposed by Geider et al. (1998), Faugeras et al. (2004) and Pahlow (2005). These models

also account for photoacclimation by modelling the chlorophyll content of the cells, which

is a variable of the model. More complex models accounting for acclimation are Zonneveld

(1998) and Flynn (2001) but being more accurate in the detail of the described mechanisms,

they involve more parameters and state variables, which makes their calibration and validation

more difficult.

The effect of temperature on growth has been studied with two possible approach: the first

one considers light and temperature as independent factors affecting the growth (uncoupled

models); the second one aims at describing also the interdependency between the light and

the temperature effects (coupled models). The uncoupled models describe the growth as the

product of two distinct functions of light and temperature. An example of uncoupled model

can be found in Bernard and Rémond (2012): the growth rate at the optimal temperature is

multiplied by a function bounded between zero and one (being one the value at the optimal

temperature). The curve is an asymmetric bell-shaped curve described in Rosso et al. (1993).

Another semi-empirical model of temperature dependence on growth has been proposed by

Norberg (2004). On the other hand, coupled models are more accurate as they aim to describe

also the interdependencies between the light and temperature effect. For instance, (Duarte,

1995) describe the effect of temperature on growth by expressing some of the parameters of

a state model in the form of Arrhenius-like terms. A similar approach has been followed by

Dermoun et al. (1992), where the parameters related to photoinhibition are assumed to vary

with the temperature. Although coupled models theoretically better represent the impact

of temperature than uncoupled models, the limiting step of photosynthesis is not always

temperature-dependent (Béchet et al., 2013). In addition, coupled models require a large

number of parameters to be fitted experimentally. Therefore, an apparent good fit during

validation may only be due to a good adjustment of the set of parameters. This issue, usually

referred to as overfitting, can affect the accuracy of the prediction because the model describes

noise rather than important trends (Hawkins, 2004).

In conclusion, the available literature models offer a wide range of complexities and consider

several limiting factors as independent or interdependent limiting factors. However, we need

to recognise that still there is a lack of fundamental knowledge and modelling expertise on a

number of key phenomena, which are at the core of microalgae photosynthesis and metabolism.

In this Thesis the effect of light intensity on the photosynthetic apparatus will be investigated.

The aim is to develop robust and reliable models that could be useful for process scale-up and

optimisation. For this reason, the developed models will be based on mechanistic considerations

as much as possible. Moreover, a key point of our approach will be to assure the identifiability of
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the developed models, i.e. that the optimal parameter values are unique and that these values

can be determined in a precise way (Miao et al., 2011). In fact, a non-identifiable model behaves

more like an interpolating function and, as such, it may fail to be predictive. Accordingly, the

use of such models in assessing design or operational choices is not recommended, even though

it may represent some experimental data well.

1.7 Motivation of the work

In view of the above, it is clear that microalgae are among the most promising feedstock to

displace, or at least to complement, liquid fuels in the transport sector, where renewable electric

power is not (yet) widely applicable (Chisti, 2007). Despite the recognised potential, one of the

main issues to address is to bridge the gap between maximal theoretical biomass productivity

(or even lab-scale realised productivities) and large-scale realised biomass productivity. The

key point is to maximise as much as possible the light utilisation efficiency.

Finding the best compromise between light harvesting efficiency and photoprotection in

microalgae cultivation systems calls for a deep understanding of the effect of the key parameters

on productivity. Mathematical models can be a great help for this goal. However, as anticipated

in the previous section, many of the literature models are oversimplified, or, on the opposite,

too detailed resulting in overparametrised models. What we aim to propose is a general model

developing approach to guide the model built up. In Chapter 3 we will illustrate such a

procedure with respect to literature data by Sforza et al. (2012) coupled with fluorescence

measurements. On the one hand, we will demonstrate how literature models, applied out of

their development context, may fail to represent the experimental evidences. On the other hand,

introducing new processes requires to increase the models complexity and thus the identifiability

of the model has to be evaluated. According to the proposed approach both a priori (global

if computationally feasible, local otherwise) and a posteriori identifiability will be assessed.

Finally, a validation will always be carried out to prove the model predictive capability against

data not used for model developing.

The development of a mathematical model using both growth and fluorescence data pointed

out another gap of the literature. This gap concerns the utilisation of the chlorophyll

fluorescence measurements. In fact, fluorescence measurements are widely used in biological

studies and led to important discoveries in the last decades (Baker, 2008), however, they

are usually considered only as qualitative indicators of photosynthetic apparatus properties.

Traditionally, a number of fluorescence indexes, such as the realized quantum yield of

photosynthesis or the NPQ index, have been used for monitoring specific photosynthetic

mechanisms, by qualitatively relating these mechanisms to the measured fluorescence fluxes

(Roháček and Barták, 1999a). In contrast, little effort has been devoted to quantifying these

relations in the form of mathematical models, which would enable accurate predictions of the

quantum yield of photosynthesis and in particular of its dynamic response to variable light
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conditions. This motivates a more fundamental investigation of chlorophyll fluorescence and a

dynamic model incorporating photoproduction, photoregulation and photoinhibition has been

developed. In the remaining part of the Thesis (Chapters 4-6), we will show how, the developed

model can be used to have quantitative relationship between fluorescence indexes and some key

variables of the system, such as the fraction of damaged reaction centres.

Another useful application of the fluorescence model regards the prediction of the

photosynthesis rate in terms of oxygen productivity as function of irradiance. In fact, this

kind of measurements usually require time consuming and inaccurate experiments, while with

our model we can predict the photosynthesis rate, based on fast and and reliable fluorescence

measurements. The utilisation of a dynamic model for photosynthesis rate prediction also

underline that the usual utilisation of steady state assumption when dealing with photosynthesis

rate curves may be inaccurate and lead to severe overestimation of biomass productivity.

Finally, a mathematical model of fluorescence can be used to guide the design of information

rich experiments, providing a useful tool to further improve and validate the model structure

and to enhance the parameter estimation accuracy.

1.8 Thesis roadmap

A basic roadmap is presented in Figure 1.10. The Thesis structure is as follows.

Chapter 2 presents a general model developing framework to achieve a robust and reliable

mathematical model and discusses the main mathematical techniques that will be used in this

Thesis. Moreover, the chlorophyll fluorescence measurements theoretical basis will be presented

along with the current state-of-the-art way of utilising fluorescence measurements.

Chapter 3 aims at developing a mathematical model able to represent some available growth

data of Nannochloropsis Salina along with some fluorescence measurements. The model will

be developed from existing literature models. An identification analysis will be carried out and

reparametrisation techniques will be used to tackle some identification issues. The final model

will be shown to correctly represent the experimental data.

Chapter 4 leads to the definition of a semi-mechanistic model of chlorophyll fluorescence,

describing the main biological processes that acts in time scales from milliseconds

(photoproduction) to hours (photoinihibition), as well as the energy dependent quenching.

In particular, the Pulse Amplitude Modulation (PAM) fluorescence experiments will be used

for model developing. The model will provide a useful tool to assess the correctness of some

hypotheses used in Chapter 3 and will allow the estimation of the dynamic profile of inhibited

reaction centres during the fluorescence experiment.

Chapter 5 extends the model presented in Chapter 4 to account for photoacclimation and

to be able to predict the photosynthesis rate as a function of light intensity. The dynamic

model of photosynthesis rate will unveil some important issues in the usage of experimental

photosynthesis-irradiance curves. In addition, the potential advantage of coupling fluorescence
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Figure 1.10: Thesis roadmap.

measurements with photosynthesis rate measurements will be assessed.

Chapter 6 aims of improving the accuracy of parameter estimation of the fluorescence model

presented in Chapter 4. Moreover, Fast Repetition Rate (FRR) fluorescence measurements will

be utilised to better characterise the dynamic of the photoproduction.

Chapter 7 summarises the main achievements of the Thesis also suggesting a future roadmap

to continue the research initiated through this Thesis.
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Materials and methods

In this chapter1, are presented the main mathematical tools and experimental techniques used

in this Thesis will be introduced. In the fist part of the chapter a general framework for model

development is presented and discussed. Next the theoretical basis of model identifiability and

experiment design will be explained. The second part of the chapter focuses on the fluorescence

measurements, a particular class of measurements widely used in photosynthesis studies and in

this Thesis too. The aim of the section is to show how these measurements are currently used

in the literature, thus outlining the main limitations related to the standard approach.

2.1 Mathematical background

In this section the main mathematical methods used in this Thesis will be briefly discussed.

First, a general procedure for model development will be presented; next, the methods for

the global and local identifiability analysis will be introduced. Finally, model based design of

experiments (MBDoE) approaches will be discussed.

2.1.1 Developing a first-principles model

The development of a new model is inherently a complex procedure that requires a sound

knowledge of the key physical phenomena at play, the ability to formalise this knowledge into a

set of algebraic and differential equations, and of course experimental data to support or reject

the modelling assumptions. As obvious as this procedure may appear, anyone proposing even

the simplest regression model does exactly that. If we start going into more details, however,

answers to the following few questions may not look so straightforward anymore: How can we

discriminate effectively among several modelling hypotheses? How can we guarantee that a

model is identifiable? How can we estimate the model parameters in a statistically meaningful

way? How can we deal with uncertainty related to measurement noise, model mismatch and

variability in biological responses? And how can we guarantee that a model will be reliable for

1Part of this chapter has been published in Meneghesso et al. (submitted)
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Figure 2.1: Model development information flow. The block diagram represents the key modelling
and experimental activities to be carried for reliable model development.

the purpose of design or operations optimization?

Figure 2.1 summarises the basic tasks and flow of information that are needed for an effective

model development. The preliminary step involves identifying the phenomena that need

describing and the fundamental physical principles to represent them. Usually some modelling

assumptions are already available, or else preliminary experimental data can be used to

decipher correlations among the data and to set up a suitable physical interpretation through a

mathematical model. In general, there may be competitive modelling approaches at this stage

and the ability to discriminate among them clearly depends on the available experimental

data. However, the discrimination procedure can be much more effective, in the sense of

minimizing the experimental effort or producing sufficiently informative data, if the experiments

are suitably designed. Ideally, input-output data should depend only on the phenomena that
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are being investigated and, for this, the interaction between a modelling expert and a biologist

is of paramount importance. Moreover, effective discrimination techniques based on advanced

methodologies should be considered for the design of such experiments (Chen and Asprey,

2003).

After a suitable candidate model has been selected, the next step involves verifying that the

model is identifiable, i.e. that the optimal parameter values are unique and that these values

can be determined in a precise way (while still retaining a physically meaning ideally) (Miao

et al., 2011). This property is particularly important as multiple parameter combinations may

otherwise provide an equally good fit of the experimental data. This would not only lead to a

loss of physical significance for the parameters, but a non-identifiable model may turn out to

be unreliable when used to simulate or optimise processing/growth conditions differing from

the ones used during the calibration. In other words, a non-identifiable model behaves more

like an interpolating function and, as such, it may fail to be predictive. Accordingly, the use

of such models in assessing design or operational choices is not recommended, even though it

may represent some experimental data well. When identifiability issues arise in practice, a first

approach to tackle the problem is to re-parameterise the model (Meshkat et al., 2009). If a

reparameterisation is still not enough, the model structure should then be modified.

Once a candidate model turns out to be identifiable for the available input-output data,

one can proceed with the actual parameter estimation. Note that even though a model is

structurally identifiable, measurements noise and other uncertainty effects may still hinder

its practical identifiability. MBDoE (Franceschini and Macchietto, 2008) is an effective

methodology to address this issue in a systematic way, by determining an experiment that

contains the maximum possible information based on a mathematical model. Similar to

black-box design of experiments, three consecutive steps are needed to determine the model

parameters: (i) design of a new set of experiments based on the current knowledge; (ii) execution

of the designed experiment and collection of the new data; and (iii) estimation of the new

parameter values and statistical assessment (Asprey and Macchietto, 2000). Multiple Iterations

between steps 1-3 lead to a reduction of the uncertain parameter region by progressively adding

new experimental information. What is specific to MBDoE compared to black-box DoE here

is the use of a system model in step 1 to evaluate the experiment design objective function, as

part of a systematic optimization framework based on mathematical programming.

A number of recent MBDoE techniques, including robust MBDoE techniques (Asprey and

Macchietto, 2002) and backoff-based MBDoE techniques (Galvanin et al., 2009), have been

developed to preserve the experiment design effectiveness despite the presence of significant

uncertainty, which can be caused by a large uncertain parameter set, measurement noise, or

model mismatch. The integration of backoff-based and online MBDoE techniques (Galvanin

et al., 2010) allows for an optimal design of dynamic experiments even when limited prior

knowledge is available for the system, with great improvement in terms of design efficiency and

flexibility of the overall iterative model development scheme.
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Once the final parameter estimation has been performed, different data from the ones

used during model calibration should be used to validate the model. Such an interplay

between modelling effort and experimental activities allows building-up of model complexity

in a controlled manner, keeping in mind the final objective of obtaining a reliable model that

can capture the complex multi-scale mechanisms involved in microalgae growth and using this

model for optimization and control purposes.

2.1.2 Identifiability analysis

When considering a mathematical model, a crucial aspect to investigate is whether unknown

parameters values can be uniquely estimated, based on experimental data. In the literature,

several identifiability definitions have been proposed. First of all, identifiability testing can be

classified into two categories: a priori identifiability (or structural identifiability testing, based

only on the model structure) and a posteriori identifiability (based on collected experimental

information).

A priori identifiability (Bellman and Åström, 1970) aims at verifying if, under ideal

conditions of noise-free observations and absence of external disturbances, the unknown

parameters of a postulated model can be estimated from a designed experiment. Let us consider

M (θ) being a generic multiple-input-multiple-output (MIMO) system that can be described

by a nonlinear parametric model:

M (θ) :=

{
f (ẋ(t),x(t),u(t),w,θ) = 0

ŷ = g (x(t))
(2.1)

where θ ∈ <Nθ is the set of unknown parameters to be estimated, x(t) ∈ <Nx is the

vector of time-dependent state variables, u(t) ∈ <Nu and w ∈ <Nw are, respectively, the

time-dependent and time-invariant control variables (manipulated inputs), ŷ ∈ <M is the

vector of output responses predicted by the model and t is the time. A definition for a priori

structural identifiability is given in the following lines.

Definition (structural identifiability): if we denote the equality of the model inputs

(u(t) and w) and outputs (ŷ(t)) for two distinct set of parameters θ and θ∗ by M (θ) ≈M(θ∗),

a parameter θi ∈ θ is a priori structurally globally identifiable (SGI) if for almost any θ∗

M (θ) ≈M(θ∗)⇒ θi = θ∗i (2.2)

and it is structurally locally identifiable (SLI) if, for almost any θ∗, there exists a

neighbourhood ν(θ∗) such that 2.2 is still verified (Walter and Lecourtier, 1981).

SLI is a necessary condition to have global identifiability, and a model is said to be SGI

if 2.2 is verified for the entire parametric set. A parameter that is not SLI is structurally

non-identifiable (SNI) and a model is said to be SNI if any of its parameters is SNI. To test the
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identifiability of non-linear parametric models, a local study may be misleading while a global

identifiability test should be carried out.

In the literature, several methods to study the structural identifiability of non-linear models

have been developed in the last two decades and are nicely reviewed in the work by (Miao

et al., 2011). A rather common approach is given by the series expansion method (Pohjanpalo,

1978). It requires that functions representing the model are infinitely differentiable, as the

method involve the calculation of arbitrary order derivatives. Several examples of application

of this method can be found in literature. However, the series expansion method has a serious

drawback: for high dimensional models high order derivatives are necessary and the resulting

equations can easily become too complicated to solve.

Ljung and Glad (1994) proposed a method and an explicit algorithm based on differential

algebra, demonstrating how the testing of global structural identifiability can be reduced to the

question of whether the given model structure can be rearranged as a linear regression. Bellu

et al. (2007) developed a specific software tool (named DAISY), based on a new improved

differential algebra approach (Saccomani et al., 2003) to test global identifiability of biological

and physiological systems. As discussed in Saccomani et al. (2003) a-priori identifiability is

a necessary condition (not sufficient) to guarantee successful parameter estimation from real

data (a-posteriori identifiability) and, for complex models, the analysis of the model practical

identifiability may be the only test that can be carried out, since the a-priori identifiability

testing may not be viable because of the computational complexity.

2.1.3 Model based design of experiments

In general an experiment can be described by a series of experimental design variables. We can

group all the experimental design variables in one vector, known as design vector, φ ∈ <Nφ :

φ = [y0,u(t),w, tsp, T ] (2.3)

where y0 is the set of the initial conditions of the measured variables; tsp is the vector of Nsp

sampling times, defining the instants at which the measured variables are sampled; T is the

duration of the experiment. In the general case, each of the above mentioned variables can be

decided by the experimenter.

Model based experiments design try to define the optimal design vector to achieve a

statistically satisfactory parameter estimation. Model based experiment design requires some

preliminary information on the model. In particular, we need to have a preliminary estimate of

the model parameters θ0 and a model to describe the experimental error on the measurements.

Once these requirements are met the optimal design of experiments consists in varying the

vector φ in order to optimise a certain metric of the Fisher information matrix (FIM), Hθ (θ, φ)
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defined as (Zullo, 1991):

Hθ (θ, φ) =

NM∑
r=1

NM∑
s=1

σr,sQ
T
r Qs (2.4)

where σr,s is the r, s-th component of the inverse of the variance-covariance matrix of the

experimental measurements Σy and Qr and Qr are the dynamic sensitivity matrix of the r-th

and s-th measured variable respectively. Q is defined as:

qi,j,k =
∂yi
∂θj
|t=tk with i = 1, .., NM ; j = 1, .., Nθ; k = 1, .., Nsp (2.5)

If Nexp experiments are carried out in series the resulting FIM can be expressed as:

Hθ (θ, φ) =

Nexp∑
j=1

NM∑
r=1

NM∑
s=1

σr,sjQ
T
r,jQs,j + H0

θ (2.6)

where H0
θ is the initial FIM, that can be neglected if the initial uncertainty on model parameters

is very high.

The design problem is usually formulated is an optimisation problem aiming to minimise

some metric ψ of variance-covariance matrix, Vθ (θ, φ), obtained as the inverse of the Hθ (θ, φ).

During the optimisation of the design vector the set of model parameters are kept fixed at

the current estimated value θ̂. The most common optimisation criteria are the so-called

alphabetical criteria (Kiefer, 1959):

• D-optimal criterion: the optimisation aims at minimising the determinant of the

variance-covariance matrix, ψ = det(Vθ (θ, φ));

• E-optimal criterion: the optimisation aims at minimising the larger eigenvalue of the

variance-covariance matrix, ψ = maxk=1,..,Nθ λk(Vθ (θ, φ));

• A-optimal criterion: the optimisation aims at minimising the trace of the

variance-covariance matrix, ψ = tr(Vθ (θ, φ))

The geometrical interpretation of the alphabetic design criteria, with reference to a two

parameters problem, is illustrated in Figure 2.2.

If we consider linear confidence regions, an A-optimal design aims at decreasing the

hyper-rectangular enclosing the confidence ellipsoid. On the other hand, a D-optimal design

try to decrease the volume of the confidence ellipsoid. Finally, the E-optimal design aims

at minimising the major axis of the confidence ellipsoid, which is defined by the maximum

eigenvalue of the variance-covariance matrix. Several other optimisation criteria have been

proposed in the literature over the years. Among them we mention the SV-optimal criteria

(Galvanin et al., 2007), particularly useful to designing parallel experiments, aims at maximising

the information linked to the Nλ largest eigenvalues of Vθ (θ, φ).
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Figure 2.2: Geometric representation of the alphabetic design criteria.

2.1.4 Parameter estimation

Once the (designed) experiments have been carried out the parameter of the model should be

estimated based on the experimental data. The goal of parameter estimation is dual: the first

one is to achieve a statistically sound parameter estimation, providing a precise and accurate2

parameter estimation; the second one is maximise the ability of the model to represent the

experimental data.

Various estimators have been proposed in the literature to achieve the parameter estimation.

The simplest one is the least square method, which tries to minimise the sum of squared

residuals, a residual being the difference between a measured variable and the fitted value

predicted by the model. A slightly more sophisticated estimator is the weighted least square

estimator, where the variance-covariance matrix of measurements errors, Σi, has to be provided

for each experimental trial. Accordingly, the objective function to minimise is:

ΦWLS
(
y,Σ1, ..,ΣNexp

)
=

Nexp∑
i=1

[
(yi − ŷi)

T Σ−1i (yi − ŷi)
]

(2.7)

The least squares methods only provide an estimate of model parameters but do not give

a-posteriori statistics concerning the precision of parameter estimation.

For this reason, in this Thesis maximum likelihood method will be used, providing both an

estimates of model parameters and the a-posteriori statistics of the parameters. The maximum

likelihood method is based on the minimisation of the likelihood function, L
(
θ,Σ1, ..,ΣNexp

)
,

which, when the measurements errors can be considered normally distributed, is expressed as

2Note that in case of real experiment the “true” parameter values is obviously unknown and the accuracy
of the parameter estimation is difficult to assess
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(Bard, 1974):

L
(
θ,Σ1, ..,ΣNexp

)
= 2πNy/2

Nexp∏
i=1

|Σi|−1/2exp

{
−1

2

Nexp∑
i=1

[
(yi − ŷi)

T Σ−1i (yi − ŷi)
]}

(2.8)

The output of the parameter estimation will be the current estimates and some a-posteriori

statistics defining the confidence of the estimate. To evaluate the a-posteriori identifiability a

widely used method is the t-value test. For every estimated parameter it is calculated:

ti =
θ̂i√
Vii

(2.9)

where Vii is the i-th diagonal term of the parametric variance-covariance matrix. The obtained

value is compared with the reference t-value, usually given by a Student t-distribution with

Nsp − Nθ degrees of freedom. If the t-value of a given parameter is higher than the reference

t-value, the estimate is statistically satisfactory. Very high t-values usually mean that the

parameters are estimated with a high confidence.

2.2 Experimental background

In this Thesis data from Nannochloropsis Salina and Nannochloropsis Gaditana will be used

to calibrate and validate the developed models. In each chapter the basic informations about

the experimental set up used to obtain the data will be specified. The aim of this section is to

give a general overview of PAM fluorescence techniques. The overview will be useful to have

a clear understanding of the theoretical basis of such a technique and to understand the main

limitations related to the state-of-the-art approach of using this kind of data.

2.2.1 Principle of chlorophyll fluorescence

When exposing a photosynthetically active volume to light, a fraction of the light is absorbed

by pigment molecules, another fraction is scattered out, and the rest passes through the

volume without interaction. In particular, the absorbed photons have four possible fates: they

are either captured by the reaction centre of photosystem II (RCII) to drive photosynthesis

(photoproduction), dissipated as heat (photoregulation), re-emitted as fluorescence (Müller

et al., 2001; Demmig-Adams and Adams, 2002), or lead to the formation of reactive oxygen

species (ROS), which are linked to photoinhibition. A nice representation of the energy balance

is the so-called funnel scheme reported in Figure 2.3.

The light absorbed by the LHC results in formation of singlet excited chlorophyll (1Chl∗).

The energy stored in the excited molecule can drive photosynthesis leading to oxygen formation

and carbon fixation, or if in excess of what can be used, can be dissipated as heat. Heat

dissipation is regulated by the proton gradient between thylakoid membrane, which increases
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Figure 2.3: Scheme showing the possible fates of light energy absorbed by LHC. Energy absorbed by
chlorophyll and resulting in singlet excited chlorophyll (1Chl∗) can be used for photoproduction (green
arrow), dissipated as heat (blue arrow), dissipated as fluorescence (red arrow) or lead to ROS (purple
arrow). The photoregulation mechanism is triggered by variations in pH gradient across the thylakoid
membrane. The funnel representation has been inspired by Demmig-Adams and Adams (2002).

when the amount of absorbed energy exceed the maximum photosynthesis rate. The rationale

of photoregulation is to prevent as much as possible the formation of ROS that can be formed

through an over-excitation of chlorophyll molecules into the highly reactive triplet excited state

or as side products of photoproduction. In fact, the ROS lead to a net degradation of key

photosynthetic proteins, such as the D1 protein of photosystem II (Vass, 2012). In view of the

above, it is clear that much information about the photosynthetic processes can be inferred by

measuring the fluorescence flux under specific lighting protocols that preferentially activate or

inactivate the photoproduction and photoregulation mechanisms.

The funnel scheme described above considers a single reaction centre. When an array of

reaction centres are considered a number of configuration can be proposed. In the literature

several models have been proposed to describe the LHC-RC complex and are nicely reviewed

by Lazr (1999). Among the available models, the most widely used are three: the puddle

model, the lake model and the connected units model. The puddle model considers that each

reaction centre has his own antenna system. On the other extreme, the lake model considers

that a common antenna system is shared by all reaction centres that compete for the excitation

energy. The connected units model is intermediate between the puddle and the lake model and

considers that each reaction centre has his own antenna system, but, with a certain probability,

p, the excitation energy can be transferred from one antenna system to another. It is clear

that, if the p is equal to zero the connected units model reduces to the puddle model, on the

other hand, while, as p approaches 1 the connected units model approximate the lake model.
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Figure 2.4: Representative PAM protocol and outcome. The orange shaded area represents the light
irradiance; the red line shows the corresponding fluorescence flux measurements (in volts).

It is clear from extensive research (Butler, 1978; Lavergne and Trissl, 1995; Lazr, 1999;

Barber, 2003) that the PSUs do not act as a puddle. A number of elegant measurements have

shown that the PSUs are fairly well approximated by the lake model, but are most accurately

described by connected units model (Lavergne and Trissl, 1995). However, as suggested by

Kramer et al. (2004) connected units models introduce additional free-fitting parameters and

according to an Occam’s razor approach should be avoided whenever possible. The simpler

lake model is usually preferred. In this Thesis the lake model will be assumed to represent the

antenna system configuration.

2.2.2 Pulsed amplitude modulation protocols

PAM fluorometry measures the photosynthetic efficiency of photosystem II in a given sample

of microalgae, by applying three distinct light: a continuous light (actinic light) is used

to trigger all the photosynthetic processes, saturating pulses are applied to saturate the

photoproduction, and a weak modulated light (measuring light) is used to have a fluorescence

signal without interfering with the photosynthetic processes, on top of the actinic light used to

drive photosynthesis (Roháček and Barták, 1999b). The outcome of a PAM experiment is a

record of the fluorescence flux against time, as illustrated in Figure 2.4.

Before conducting a PAM experiment, the microalgae sample is kept is the dark during

a sufficient long time in order for (i) all RCIIs to be ready to accept electrons (open state),
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and (ii) NPQ to be inactive — the sample is said to be dark-adapted. At the start of the

experiment, the measuring light is switched on to a level weak enough (e.g., 0.1 µE/m2s) not

to cause significant excitation of the photosynthetic apparatus or trigger NPQ activation —

there, the fluorescence detector records the dark-adapted minimal fluorescence flux, F0. Soon

after, an intense actinic light pulse is applied (e.g., 6000 µE/m2s), and the detector measures

the dark-adapted maximal fluorescence flux, Fm. The short duration of the pulse (usually 0.6 s)

aims to prevent NPQ activation, while triggering complete excitation of all the RCIIs. Next,

the actinic light is switched on at a desired irradiance, so the microalgae progressively transit

from dark-adapted to light-adapted state as a result of NPQ activation. During this transition,

the detector continuously records the light-adapted realised fluorescence flux, F
′
, which is

decreasing until NPQ has reached a steady state. Every once in a while, a saturating pulse is

applied on top of the actinic light to record the light-adapted maximal fluorescence flux, F
′
m,

and the actinic light is also briefly switched off to record the light-adapted minimal fluorescence

flux, F
′
0. After NPQ has reached its steady state, the actinic light is switched off and recording

of the realised, maximal and minimal fluorescence fluxes can continue until the microalgae

have reverted back to dark-adapted state. Note that the new dark-adapted state at the end of

the experiment may be different from the initial dark-adapted state due to the accumulation

of damaged RCIIs (Rees et al., 1990).

2.2.3 Inference of fluorescence protocols: fluorescence indexes

The main fluorescence indexes, also commonly referred to as fluorescence parameters in the

literature, are expressed as combinations of the characteristic fluxes F0, Fm, F
′
0, F

′
m and F

′

described earlier. By discriminating either between dark- and light-adapted states, or between

realised, maximal and minimal excitation states, these indexes allow monitoring of specific

photosynthetic mechanisms.

The maximum quantum yield of photosynthesis, q, is given by (Kitajima and Butler, 1975):

q =
Fm − F0

Fm
, (2.10)

whereby the difference between Fm and F0 represents the maximum amount of photons that

can be used for photoproduction since NPQ is inactive (dark-adapted). In contrast, the realised

quantum yield of photosynthesis, ΦPS2, considers light-adapted states:

ΦPS2 =
F

′
m − F

′

F ′
m

, (2.11)

an index also known as the Genty parameter, after the researcher who first derived it (Genty

et al., 1989). An index related to the Genty parameter, that will be useful for monitoring the
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photoinhibition is :

ΦL = ΦPS2
F

′
0

F ′ (2.12)

Other two useful indexes are:

qP =
F

′
m − F

′

F ′
m − F

′
0

, and qL = qP
F

′
0

F ′ , (2.13)

qP is a widely used parameter to quantify the oxidation state of RCIIs ‘in a first approximation,

assuming a linear relationship between fluorescence yield and the percentage of open RCII’

(Schreiber, 1986). Kramer et al. (2004) demonstrates that parameter qP is linear with respect to

the fraction of open reaction centres only if a puddle model is used to describe the photosynthetic

apparatus. Moreover, they introduce the parameter qL that reflects the fraction of RCII in the

open state with respect to the amount of active RCII if a lake model is assumed. In this Thesis

the lake model will be assumed to represent the antenna system configuration and therefore qL

will be used to represent the oxidation state of the reaction centres.

Finally, the extent of photoregulation can be monitored through the NPQ index, qNPQ,

defined as (Bilger and Björkman, 1990):

qNPQ =
Fm − F

′
m

F ′
m

, (2.14)

whereby the difference between F
′
m and Fm represents the dissipation of energy due to

photoregulation.

2.2.4 Utilisation of PAM experiments

Even if the level of understanding of the various fluorescence parameters has significantly

increased the past years, little effort has been devoted to the development of dynamic models

that associate the operation of the photosynthetic machinery with fluorescence measures. In

most literature, the fluorescence indexes are only used to compare different cultures in a

qualitative way, but only few contributions try to exploit the quantitative information that

can be extracted from those kind of measurements (Wu and Merchuk, 2001).

One prototypical example concerns the photoinihibition process. It is well established in the

biological literature the use of fluorescence as a proxy for evaluating photosystems efficiency

and the parameter q is commonly employed for evaluation of PSII quantum yield (Maxwell

and Johnson, 2000). When cells are exposed to intense light, q decreases as a result of PSII

inhibition (Figure 2.5), and when the cells are moved back to dim light, damaged PSII are

repaired and PSII quantum yield returns to its normal level within a few hours.

Such a proxy has been extremely helpful in biological investigations of the photoinhibition

process, making it possible to isolate the proteins responsible for PSII repair by identifying
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Figure 2.5: Light induced damages in Nannochloropsis. Cells were treated for one hour of strong
illumination (2000 µE/m2s) in atmospheric CO2 and then allowed for recovery overnight at 10
µE/m2s.

mutants from their delayed recovery in q after exposure to a high light irradiance (Park et al.,

2007). Although precise, however, q does not quantify the extent of PSII damage. In the work

by Wu and Merchuk (2001) a linear relationship is assumed between the fluorescence index q

and the fraction of inhibited PSII. This assumption can be acceptable as first approximation but

mathematical models describing fluorescence fluxes can help unveiling the actual relationship

between the measured parameters and the fraction of inhibited reaction centres.

The only fluorescence index that is quantitatively related to the PSII oxidation state is

parameter qL (Kramer et al., 2004). In particular, qL is the ratio between open reaction centres

and active (i.e. the sum of open and closed) reaction centres. This relationship has been

mathematically derived by Kramer et al. (2004) considering the lake model to describe the

antenna system configuration.

In Chapter 3 a growth model will be developed starting from existing literature models.

Both q and qL indexes will be considered to discriminate between candidate models and to

calibrate and validate the resulting growth model. For q the same hypothesis as in Wu and

Merchuk (2001) will be assumed as first approximation. In Chapter 4 a mathematical model of

fluorescence will be developed. The model will be calibrated directly on the fluorescence fluxes

and will not be necessary to assume any relationship between the fluorescence indexes and the

oxidation state of PSII. The developed model will be tested to be consisted with the definition

of qL and will also provide a tool to investigate under which constraints the hypothesis on q

made Chapter 3 is valid.





Chapter 3

An identifiable state model to describe

light intensity influence on microalgae

growth

In this chapter1 a model describing microalgae growth as function of light intensity will be

presented and discussed. The model has been developed starting from literature models

and exploiting existing data of biomass growth coupled with fluorescence measurements.

Two main topics are dealt with in this chapter: on the methodological side a step by

step approach will be presented and applied to guarantee the identifiability of the growth

model. Secondly, the utilisation of both biomass concentration (growth curves) and multiple

fluorescence measurements will allow shading light on some fundamental phenomena in

the correlation between illumination and growth; in particular differently from previous

contributions, measurements of the light profile of PSU saturation will be exploited.

The general identification methodology followed to develop the model is first presented.

Next, the available experimental data and two candidate models will be introduced and

discussed. The successive section is about model discrimination and the enhancement of the

selected model. Then, an identifiability analysis and a reparametrisation approach will allow

setting up an identifiable model. The performance of the model in describing algal growth will

be critically discussed. Some final remarks will conclude the chapter.

3.1 Motivation

Despite the high potential as feedstock for the production of fuels and chemicals, the industrial

cultivation of microalgae still exhibits many issues. Yield in microalgae cultivation systems

is limited by the solar energy that can be harvested. The availability of reliable models

representing key phenomena affecting algae growth may help designing and optimising effective

1Part of this chapter has been published in Bernardi et al. (2014) and Meneghesso et al. (submitted)

35
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production systems at an industrial level. In this chapter the complex influence of different

light regimes on seawater alga Nannochloropsis salina growth is represented by first principles

models. Experimental data such as in vivo fluorescence measurements are employed to develop

the model. The proposed model allows describing all growth curves and fluorescence data in

a reliable way. Most importantly, the model structure is assessed and modified in order to

guarantee the model identifiability and the estimation of its parametric set in a robust and

reliable way.

Algae growth is affected by several variables such as nutrient availability, temperature,

mixing, etc. However, being algae photosynthetic organisms, light is a key variable affecting

growth efficiency and kinetics: for this reason the focus of this chapter will be on the

representation of its influence on growth. It is worth stressing that the correlation between

light intensity and growth is a very complex one, and while low irradiation is limiting, its

excess drives to the formation of reactive oxygen species and has inhibitory effect (Li et al.,

2009). The choice of investigating light influence is also justified by the fact that the surface of

industrial scale photobioreactors or ponds determines the amount of energy they can harvest.

In fact, increasing surface do improve overall production, but also energetic and economic costs

and thus competitiveness is only reached by increasing light use efficiency.

In this chapter we will consider two literature models: the model by Rubio et al. (2003)

and the model by Eilers and Peeters (1988) (initially developed by Eilers and Peeters (1988)

and then improved by Wu and Merchuk (2001)). These models are capable of representing

the key phenomena of interest in this chapter, and they are reasonably simple so as to limit

possible identifiability issues. In the Eilers and Peeters model, the authors assume that if an

activated PSU absorbs an additional photon it may become inhibited. For this reason they

assume the rate of photoihibition to be proportional to light intensity. It is also assumed that

photosynthesis (and by consequence biomass growth) is proportional to the transition between

activated state and resting state. Later Wu and Merchuck modify the model of Eilers and

Peeters introducing a constant maintenance factor in the description of biomass growth.

In the model by Rubio et al. (2003) both photoinhibition and photoacclimation are

considered 2. Photo-acclimation was at first represented as a steady state process, but more

recently extended by the same authors in order to represent its dynamics, together with the

effect of NPQ and dark respiration (Garćıa-Camacho et al., 2012). This last model is indeed

very flexible but the number of model parameters to be estimated is very high and their precise

identification may become a long and difficult task, especially if a limited amount of data is

available and for this reason it will not be discussed further in this chapter.

For model development and identification we consider experimental data referring to

a particular species of microalgae of industrial interest (Nannochloropsis salina) grown in

2note that in the original work, and in several others, photoacclimation is instead called photo-adaptation.
Photoacclimation is however a more accurate definition: in fact, adaptation refers to the organisms modification
during evolution to their environment, thus responses with time scales extremely longer that the ones considered
here
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non-limiting nutrients conditions and in a flat-plate photobioreactor (Sforza et al., 2012). These

datasets were selected because experimental conditions were optimised to minimise all influences

on algae growth other than light intensity. In fact, nutrients and CO2 were provided in excess,

but also the photobioreactor light path was minimised to reduce as much as possible light

attenuation due to cells shading and scattering. Sforza et al. (2012) demonstrated that this

assumption was an acceptable approximation, especially considering that we are interested

in representing the exponential growth phase, where nutrients availability is high and cells

concentration low. Accordingly, these data represent an accurate description of the influence

of light alone on algae growth, minimising the effect of other parameters. It is worth stressing

the fact that other phenomena, which also play a major influence on algae productivity in

industrial photobioreactors, such as the dark/light cycles due to mixing are not considered in

this model.

3.2 Model developing approach

Identifiability is a key issue to guarantee reliability and predictive capability in a model being

developed. Figure 3.1 outlines the basic tasks and information flux required to achieve such

a target. The preliminary step is to identify the phenomena that need describing and the

fundamental mathematical laws that should be implemented to represent them. Here we assume

that some modelling assumptions are already available. In other cases, preliminary experimental

data may be needed to envisage the correlation among data and to set up a suitable physical

interpretation through a mathematical model.

Typically, some available data may be exploited at this stage to choose among competitive

modelling approaches through suitable discrimination techniques (Box and Hill, 1967; Stewart

et al., 1996). At least in the easiest cases a χ2 test on experimental data may be sufficient

to make the discrimination (Akaike, 1974; Stewart et al., 1998). Ad hoc experiments can also

specifically be designed to allow for a more effective and reliable discrimination among different

candidates (Alberton et al., 2012; Chen and Asprey, 2003). Once a suitable candidate model has

been selected (and a preliminary estimation of its parameter has been carried out), model may

need upgrading to improve its capability of representing the phenomena being investigated (new

experiments may be needed and possibly designed, and an estimation of all model parameters

should be attempted).

Then it is extremely important to verify the model identifiability, i.e. to confirm that the

optimal set of parameters values is unique and that their values can be determined in a precise

way (and ideally in a physically meaningful way). If some identifiability issues arise, then a

first approach to tackle the problem is to reparameterise the model (Meshkat et al., 2009). If

this is not enough, then the model structure should be modified.

Once the model is proved to be identifiable, the final parameter estimation can be performed.

Note that even when a model is identifiable, measurements noise and other uncertainty effects
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Figure 3.1: Information flux of model identification procedure.
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may still hinder its practical identifiability, although properly designed experiments may help

tackling the issue (Galvanin et al., 2013). Once the final parameters estimation has been

performed, new data, not involved in model calibration, should be used to validate the model.

This approach has been applied to the specific case study and is discussed in the following

sections.

3.3 Modelling approaches

The main advantage of state models is that they reduce the complexity of photosynthesis into

few possible states of the PSUs. This simple structure is also particularly effective in the use

of fluorescence measurements, which can be exploited to monitor the PSUs populations at

different states. The Eileers and Peeters model in the form proposed by Wu and Merchuk

(2001) (afterwards denoted as EPM) and the Camacho Rubio model (Rubio et al. (2003),

later called CRM) are two of the simplest models that can describe photosynthetic biomass

growth as a function of light intensity. Both models consider that a PSU can assume three

different states of excitation: 1) the resting (or open) state, which is the state of PSU before

the light energy excites the reaction centre; 2) the activated (or closed) state, that is the state

of PSU excited by light energy; 3) the inhibited state, which is the state of PSU damaged by

an excess of light energy. Both models do not consider any limitation on nutrients availability

or mass transport of nutrients, i.e. only the exponential growth phase is described. CRM

considers photo-acclimation too, but without any representation of its dynamics. This is a

reasonable assumption also in our case study, since acclimation characteristic time scale (days)

is significantly larger than the time scales of the other phenomena being investigated.

In the work of Wu and Merchuk (2001) EPM was used to fit the data of experiments

carried out in a thin tubular loop reactor. Part of the reactor was kept in dark to simulate the

ordered mixing, and light intensities used for the experiments are 110, 220 and 550 µE/m2s.

The measurements used to calibrate the model were both biomass concentration and dark

fluorescence measurements. Each experiment was carried out for 48 hours and measurements

were taken every 12 hours. In the work of Rubio et al. (2003) Camacho Rubio model (CRM)

model was applied to a wider range of light intensities (ranging from 0 to 2000 µE/m2s) and

to different light regimes (constant light, flashing light, day-night cycle). Data used by the

authors were growth rate constant and P-I curves taken from the literature.

EPM assumes that the number of PSUs is constant with respect to light intensity and

accordingly refers to the PSU x1, x2 and x3 to represent the resting, activated and inhibited

states, respectively. Conversely, CRM assumes that the number of PSUs is a function of light

intensity (indicated as at) and the model equations are expressed as a function of the amount

of the PSUs in each of the three states (a1, a2 and a3). Note that the photoacclimation effect

described by CRM Figures 3.2(a) and 3.2(b) illustrate the two model structures.
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Figure 3.2: In Figure (a) the scheme of EPM is reported; x1, x2 and x3 represent the fraction
of PSUs in resting, activated and inhibited state, respectively. In Figure (b) the scheme of CRM is
reported; a1, a2 and a3 are the number of PSUs in resting, activated and inhibited state, respectively,
at represents the total number of PSUs.

3.3.1 Eilers Peeters model

In Figure 3.2(a) the three PSU states are represented by circles and the possible state transitions

are represented by the arrows. The resting state PSU can capture light energy and transfer

it to an activated state. The PSU in the activated state can be damaged by light, or pass

down the energy to start the dark phase of photosynthesis (and then return to a resting state).

An inhibited PSU can be recovered and then return to the resting state. The reaction rate

of the transitions involving the absorption of light (i.e. x1 → x2 and x2 → x3) is assumed

to be first order with respect to light intensity. The other two transitions are assumed to be

zero order with respect to light intensity. Each transition is assumed to be first order with

respect to the PSU fraction involved in the transition. The growth rate constant µEP [h−1] is

assumed to be proportional to the state transition from activated to resting state, representing

the photochemical reactions. Considering that the growth rate can be negative in the dark or

at very low light intensity, a constant maintenance (MEP [h−1]) factor is introduced. The model

equations are as follows:

dx1
dt

= −kEPa Ix1 + kEPd x2 + kEPr x3 (3.1)

dx2
dt

= kEPa Ix1 − kEPd x2 − kEPi Ix2 (3.2)

x1 + x2 + x3 = 1 (3.3)

µEP = kEPp kEPd x2 −MEP (3.4)



Chapter 3 41

The set of parameters (whose physical meaning is summarised in Table 3.1 is represented by

vector θ̂EP = [kEPa , kEPd , kEPi , kEPr , kEPp ,MEP ].

Table 3.1: Parameters of EPM significance and units.

Parameter Significance Units

kEP
a

Kinetic constant of the
activation reaction rate

m2/µE

kEP
d

Kinetic constant of the
deactivation reaction rate

(photochemical quenching)
s−1

kEP
i

Kinetic constant of
inhibition reaction rate

m2/µE

kEP
r

Kinetic constant of the
recovery reaction rate

s−1

kEP
p

Proportionality factor
between photochemical
quenching and biomass
growth rate constant

s/h

MEP Maintenance factor h−1

3.3.2 Camacho Rubio model

In CRM, the photoinhibition rate is assumed to be proportional to the sum of resting state

and activated PSUs, i.e. the active PSUs represented by a1 + a2 [PSUs/cells] in Figure 3.2(b).

As in EPM, PSU activation reaction is assumed to be first order with respect to light intensity

and to the amount of resting state PSUs. However, in CRM the transition from activated to

resting state, related to biomass growth, is defined as a Michaelis-Menten kinetic, assuming

an enzymatic reaction as limiting step of this process. Also, from an analysis of experimental

data, the authors assume that the photo-inhibition reaction rate is first order with respect to

the square root of light intensity. As in EPM the recovery of damaged PSUs is assumed to

be first order reaction with respect to the number of damaged PSUs. Finally, as anticipated,

CRM includes photo-acclimation. The total amount of PSUs (at[PSUs/cells]) in CRM is thus

assumed to be a hyperbolic decreasing function of light intensity. As for EPM, the growth rate

constant is assumed to be proportional to the transition from activated to resting state and a

constant maintenance factor (MCR[h−1]) is introduced. The model equations are as follows:

da2
dt

= −kCRa Ia1 +
rCRm

KCR
S + a2

a2 (3.5)

da3
dt

= kCRi
√
I (a1 + a2)− kCRr a3 (3.6)

a1 + a2 + a3 = at (3.7)

(3.8)
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at =
rCRm

kCRc +
kCRa kCRr
kCRi

√
I

(3.9)

µCR = kCRp
rCRm

KCR
S + a2

a2 −MCR (3.10)

As reported in the literature, it appears that the condition KCR
S � a2 is true for

the entire range of light intensities considered in the experiments (ranging from 50 to

1000 µE/m2s). Thus, the Michaelis-Menten kinetic may be well approximated by a first

order kinetic as in EPM. Accordingly, the reduced set of parameters is represented by vector

θ̂CR = [kCRa , kCRd , kCRi , kCRr , kCRp , kCRc ,MCR] (parameters physical meaning and units are

reported in Table 3.2).

Table 3.2: Parameters of CRM significance and units.

Parameter Significance Units

kCR
a

Kinetic constant of the
activation reaction rate

m2/µE

kCR
d

Kinetic constant of the
deactivation reaction rate

(photochemical quenching)
s−1

kCR
i

Kinetic constant of
inhibition reaction rate

m2/µE

kCR
r

Kinetic constant of the
recovery reaction rate

s−1

kCR
p

Proportionality factor
between photochemical
quenching and biomass
growth rate constant

s/h

kCR
c

Rate constant involved in
the photoacclimation process

−

MCR Maintenance factor h−1

3.4 Experimental set-up and available data

The aim of this chapter is to describe the growth of microalgae in non-limiting nutrient

conditions and according to the hypothesis that the light intensity is constant with respect

to the culture time and depth. The fundamental phenomena to be described are: (i) reaction

centres oxidation/reduction cycle, to represent the photosynthesis and (ii) the damaging effect

of excess light on PSUs (photoinhibition).

Our data refer to algal cultures grown at different light intensities (Sforza et al., 2012).

During the experiments the microalgae were acclimated to the light used and to the geometry

of the photobioreactor. Each experiment was conducted in parallel at least twice and in

two identical photobioreactors, in order to assure its reproducibility. Only the data in the

exponential phase of the original growth curves were used for the parameters estimation,
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since our model represents only exponential growth and does not consider nutrients limitation.

Experimental set up was built to limit as much as possible cells shading, decreasing as much

as possible light path and working at low cells concentration. This, together with the presence

of nutrients and CO2 in non-limiting amounts, ensures that growth is dependent only from the

light intensity reaching the culture.

Moreover, experimental measurements of fluorescence will be used as additional data for the

parameters estimation (Baker, 2008). These data are commonly available for the photosynthetic

organisms and have been exploited to estimate photosynthetic efficiency in a large body of

experimental literature (reviewed by Maxwell and Johnson (2000)). In this chapter we will use

two of the fluorescence parameters introduced in Section 2.2.3: the parameter q (or Fv/Fm)

(Barber and Andersson, 1992) and the parameter qL (Kramer et al., 2004).

The parameter q = Fv/Fm is rather commonly used in similar studies to quantify active

PSUs (Wu and Merchuk, 2001). The precise value of Fv/Fm in the case of fully active PSUs

is known to be variable between species, since it depends on specific properties such as the

antenna size. Here it is set to be equal to 0.65 as this is a value commonly measured in several

microalgae (Kolber and Falkowski, 1993) and also in healthy Nannochloropsis cultures, exposed

to low light (Sforza et al., 2012; Simionato et al., 2011). In order to have a parameter bounded

between 0 and 1 is it possible to define the parameter qnorm = q/qmax, where qmax is the value

of Fv/Fm in the case of fully active PSUs.

A decrease in this value, in cultures exposed to different light intensities, indicates the

presence of photo-inhibited PSUs, as normally experienced in high light conditions. For this

reason, it can be used to estimate the content of photo-inhibited PSUs and thus of x3 and a3

populations, using the definition of EP and CR models respectively. Note that at this stage we

are assuming, as Wu and Merchuk (2001), that the relationship between q and the inhibited

PSUs is linear. In the next chapter we will present a more detailed model of fluorescence that will

allow us to explain this assumption from a physical point of view in terms of inhibition-related

quenching (see 4.3.3).

In order to have a better representation of the oxidation state of the PSUs in illuminated

cells, here we also included the fluorescence parameter qL, which provides a linear estimation

of the saturation level of PSU as discussed in detail in the work of Kramer et al. (2004). This

means qL is 0 when all active PSUs are open, while it increases to 1 when all PSUs are closed

and photosynthesis is saturated. Parameter qL was measured for 21 different light intensities

with a PAM fluorometer. Thus, qL can be exploited as an estimation of the relative ratio

of x1 and x2 populations (a1 and a2 according to CRM). The complete set of experimental

measurements used in this chapter are reported in the following.

Table 3.3 reports the growth data at different light intensities. Each datum is the mean

of two experiments conducted in parallel in two identical reactors. Table 3.4 contains the

values of the growth rate constant as obtained from the linear regression of the growth curves

reported in a semi-log scale; the coefficient of determination R2 is also included. From
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every biomass culture, a sample was taken during the exponential growth phase and the

value of q was measured: in Table 3.4 the available measurements are reported. Finally, the

second fluorescence parameter qL was measured for 21 different light intensities using a PAM

fluorometer. The data points obtained by the PAM fluorometer are reported in Table 3.5.

Table 3.3: Measured biomass concentration profiles at different light intensitiesa.

I [µE/m2s] 50 120 150 250 350 550 750 1000

t [h] concentration [g/L]

0 9.93E-02 1.81E-01 1.42E-01 5.49E-02 1.30E-01 1.80E-01 1.21E-01 3.02E-01
24 1.44E-01 3.07E-01 2.40E-01 1.10E-01 1.69E-01 1.61E-01 4.12E-01
36 3.60E-01
48 1.57E-01 4.69E-01 4.68E-01 2.21E-01 2.02E-01 4.10E-01 1.86E-01
60 5.76E-01
72 2.07E-01 8.01E-01 3.32E-01 4.06E-01 6.19E-01 3.50E-01 4.56E-01
84 1.07E+00
96 1.43E+00 5.57E-01 5.17E-01 7.87E-01 4.80E-01 5.70E-01
120 1.78E+00 6.92E-01 9.50E-01 6.30E-01 1.22E+00
144 6.31E-01 8.32E-01 1.61E+00 1.50E+00

a Experiments carried out at 350 and 750 µE/m2shave been used for mCRM model validation.

Table 3.4: On the left are reported values of growth rate constant and coefficient of determination
R2 obtained from the linear regression of the growth curves, reported in a semilog scale. On the right
are reported measured value of parameter q and its normalised value qnorm at different light intensities.

I µE/m2s µ [h−1] R2

45 0.0126 0.976
120 0.0212 0.998
150 0.0215 0.987
250 0.0190 0.954
350 0.0152 0.953
550 0.0144 0.984
750 0.0145 0.975
1000 0.0107 0.875

I µE/m2s q qnorm

0 0.650 1.00
45 0.645 0.992
120 0.611 0.940
150 0.592 0.911
250 0.533 0.820
350 0.509 0.783
550 0.503 0.773
750 0.516 0.794
1000 0.499 0.769

3.5 Model discrimination and preliminary parameter

estimation

The first objective is to discriminate between the two alternative models so as to select the most

suitable one to describe our system. Parameters estimations were performed for both models,

based on the entire set of experimental data. The different performance is quantitatively

summarised by the χ2 test (in the case of EPM, we have χ2= 890.1 ; whereas for CRM, χ2=

301.6).

Figure 3.3 shows the behaviour of the two models in representing fluorescence experimental

profiles. Although both fitting are quite unsatisfactory, CRM clearly outperforms EPM. In
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Table 3.5: Measured value of parameter qL at different light intensities.

I µE/m2s qL

0 0.65
14 0.57
21 0.55
30 0.54
45 0.53
61 0.52
78 0.52
103 0.50
134 0.46
174 0.44
224 0.40
281 0.37
347 0.33
438 0.28
539 0.23
668 0.20
833 0.17
1036 0.14
1295 0.11
1602 0.087
1960 0.059

fact, Figure 3.3(a) shows that although EPM provides a slightly better fit for the profile of q

at low light intensities, only CRM is capable of representing the trend at a higher intensity.

Figure 3.3(b), however, shows that, although EPM performance is still the worst one, both

models cannot properly represent the oxidative state of PSU in light adapted cells, consistent

with the fact that these kind of measurements were not considered in building such models.

This means that both models are not accurate in estimating the PSU oxidative state.

Also in the predictions of the growth rate constant, reported in Figure 3.4, CRM outperforms

EPM. In fact, EPM does not predict the correct value of light intensity at which the maximum

growth rate is reached and underestimates the growth rate constant at low light. CRM correctly

predicts the optimal light intensity but it overestimates the growth rate constant at low light.

No additional experiments are needed for discrimination purposes and CRM is then selected,

although the experimental data demonstrate that further improvements are required to improve

the fitting in the region between 150 and 700 µE/m2s with respect to the PSU oxidation

state. It is worth underlining the main differences between EPM and CRM in order to better

understand the model modifications introduced in the following section. The first difference

between the two model is the presence in CRM of a photo-acclimation estimation in terms

of number of PSUs per cell. This suggests that the inclusion of this response is absolutely

necessary for an accurate description of the photosynthetic performances and is consistent with

its biological relevance, demonstrated by the fact that acclimation responses are conserved in

all photosynthetic organisms. The second difference is the order of the photoinhibition reaction

rate with respect to the light intensity. In EPM we have a first order reaction while in CRM



46 An identifiable state model to describe light intensity influence on microalgae growth

0 200 400 600 800 1000
0.00

0.25

0.50

0.75

1.00

q
norm

-meas

q
norm

-CRM

q
norm

-EPM

q no
rm

[-
]

I [µE/m
2
s]

(a)

0 500 1000 1500 2000
0.00

0.25

0.50

0.75

1.00 q
L
-meas

q
L
-CRM

q
L
-EPM

q L
[-

]

I [µE/m
2
s]

(b)

Figure 3.3: Measurement (black circles) and predicted values of (a) q and (b) qL. Red solid lines
represent the profiles according to EPM, while the dashed green lines represent the profiles according
to CRM.
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Figure 3.4: Growth rate constant predicted by the EPM (solid line) and CRM (dashed line) and
experimental values of the growth rate constant (black squares).

the order is 0.5. Although the value of 0.5 does not have a clear justification from a biological

point of view it can be interpreted as an effect of photoprotective mechanism, such as NPQ.

3.5.1 Enhancing CRM

To improve the model, a more detailed description of some fundamental biological phenomena

needs introducing. According to several works in the literature, PSII photoinhibition occurs at

all light intensities (Nixon et al., 2010; Aro et al., 1993; Miyao, 1994). Therefore, we assumed

that photoinhibition does not depend on the number of active PSUs, but is simply related

to light intensity. Above Icr (the light intensity where photosynthesis is saturated) a second

process (photoprotection) is activated: in these conditions a fraction of the energy absorbed does

not lead either to photochemistry or to PSU damage, but is simply dissipated (e.g., because
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Figure 3.5: Measured NPQ values for different light intensities.

of NPQ). Accordingly, Equation 3.6 has been modified to represent the different behaviour

above and below Icr. Furthermore, in Equation 3.6, the reaction order with respect to the light

intensity is assumed to be 0.5: since there is no clear physical reason for setting such a value,

here we decided to increase the model flexibility and its capability of incorporating all energy

dissipation phenomena, by making the reaction order a parameter (α) to be estimated. As

mentioned above, photoprotection mechanisms are activated when photochemical reactions are

saturated, and accordingly parameter Icr plays a key role to represent this behaviour. The value

of critical light intensity when photosynthesis is saturated has been fixed to 150 µE/m2s, which

is the light intensity in response to which Nannochloropsis growth is maximal, and the limit

over which the growth rate is not linearly dependent on light anymore (Sforza et al., 2012).

This choice is well consistent with the observation of NPQ dependence from light intensity

observed in Nannochloropsis cells, which shows activation only over this limit (Figure 3.5).

This parameter thus depends on both light intensity and the number of active PSUs.

Also Equation 3.9 representing photoacclimation is modified to allow for a higher flexibility:

the hyperbolic form is retained, but the light exponent becomes an additional parameter (α2) to

be estimated (see later on, Equation 3.14). Finally, the representation of maintenance factor is

modified, too. In CRM the maintenance factor is treated as a constant (in fact, this is a typical

assumption). However, maintenance factor should vary with light intensity to account for the

metabolic cost of repairing damaged PSUs (Jansen et al., 1999). In order to do this, the easiest

way is to express the maintenance factor as a linear function of the damaged PSUs fraction.

Since the fluorescence measurements return the number of active PSUs, the variable term of

maintenance factor was related to the difference between the maximum value of fluorescence

(qmax) and the current value of fluorescence (q). Finally the fluorescence measurements q and

qL are related to the oxidation state of the PSUs, as discussed in Section 3.4.

The modified Camacho Rubio model (mCRM) is thus constituted by the following set of
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equations:

da2
dt

= −kaIa1 + kda2 (3.11)

da3
dt

=


ki,0Iat − kra3 if I ≤ Icr

ki,0Icrat + ki,1 (I − Icr)α − kra3 otherwise

(3.12)

a1 + a2 + a3 = at (3.13)

at =
1

kc + Iα2
(3.14)

µ = kpkda2 −M (3.15)

M = M0 + kM (qmax − q) (3.16)

q = qmax
a1 + a2
at

(3.17)

qL =
a1

a1 + a2
(3.18)

where the new vector of model parameters is θ̂ = [ka, kd, ki,0, ki,1, kr, kp, kc, kM ,M0, α, α2].

3.6 Identifiability analysis

In order to be reliable and suitable for process simulation and optimisation, the model for

photosynthetic biomass growth has to be identified against the experimental data. It can

be verified that mCRM shows identifiability issues if a parameter estimation is performed on

the whole parameters vector θ̂. The estimation of the model parameters is characterised by

large confidence intervals for some parameters and more than one set of optimal values can be

determined (i.e. the model is not uniquely identifiable). In order to overcome this problem

both structural (or global) and practical identifiability of the model have been studied. First

of all, the global identifiability has been verified using a differential algebra based method.

Afterwards, the practical identifiability has been assessed through a sensitivity analysis and a

model reparameterisation has been performed, as discussed in the following.

3.6.1 Global identifiability analysis

The first step for testing model identifiability is represented by global identifiability analysis.

Global identifiability analysis is in fact a necessary condition to the practical identifiability and

can provide the minimum number of observations required to identify an unique set of optimal

parameter values. The two hypotheses, upon which structural identifiability analysis rely, are:

i) complete absence of measurement errors, and ii) a perfectly accurate model structure. Those

two assumptions refer to an ideal case and therefore, once a model is verified to be globally

identifiable, practical identifiability, too, needs assessing. In the literature, several methods to
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study the structural identifiability of non-linear models have been developed in the last two

decades and are nicely reviewed in the work by (Miao et al., 2011).

A rather common approach is given by the series expansion method (e.g., Dochain et al.

(1995) applied this approach to kinetic models of activated sludge respiration). It requires

that functions representing the model are infinitely differentiable, as the method involve the

calculation of arbitrary order derivatives. Several examples of application of this method can

be found in literature. However, as pointed out by the authors, the series expansion method

has a serious drawback: for high dimensional models high order derivatives are necessary and

the resulting equations can easily become too complicated to solve. In fact, it was verified

that in this case the series expansion method leads to an intractable problem. Thus, in order

to overcome the difficulties related to high order derivatives calculation and the resolution of

the resulting equations, a method based on differential algebra was taken into account. In

particular, the software package DAISY (Bellu et al., 2007) has been used here. Being DAISY

based on differential algebra techniques, it requires equations of the model to be written in

the form of differential polynomials (Miao et al., 2011). In Equations 3.12 and 3.14 terms

(I − Icr)α and Iα2 have to be modified to be in form of differential polynomials. In particular is

it possible to define two additional state variables, Iα and Iα2 , to be the Taylor series expansion

of (I − Icr)α and Iα2 respectively. Accordingly:

Iα = (I − Icr)α
(

+∞∑
n=0

(α− α)n

n!
logn (I − Icr)

)
(3.19)

Iα2 = Iα2

(
+∞∑
n=0

(α2 − α2)
n

n!
logn (I)

)
(3.20)

Where α and α2 are parameter values at which the series expansion has been considered. Being

α and α2 bounded between 0 and 1 in order to assure the global identifiability of the model

several combinations of α and α2 have been considered. The idea was to analyse different

part of the parametric space to have a good approximation of the original model in all the

parameter space. In particular the following values have been considered for α and α2 [0.1;

0.3; 0.5; 0.7; 0.9]. The Taylor series were truncated at the second order for numerical reasons

as an higher order Taylor expansion do not improve significantly the accuracy of the model

approximation and lead to an higher computational cost. The system of equations 3.11 to 3.18,

where terms 3.19 and 3.20 have been used to substitute (I − Icr)α and Iα2 has been tested for

global identifiability for each possible pair of values of α and α2.

Results indicate that a single experiment is not sufficient to identify a unique value of all

the parameters. However, if (at least) three parallel experiments are carried out at different

light intensities and both concentration and fluorescence parameters are measured during the

experiments, the model is globally identifiable. This means that the experienced identifiability

issues depend on practical identifiability. To tackle the problem, in the following a sensitivity
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analysis and a reparamereterisation will be performed. Note that in several cases, where more

complex models need considering, the analysis of the model practical identifiability may be

the only test that can be carried out, since the verification of global identifiability may not be

viable.

3.6.2 Sensitivity and correlation analysis

As the model is structurally identifiable, its practical identifiability will now be tested. The

first step is represented by sensitivity analysis. The sensitivity of the i-th response to the k-th

model parameter is defined as

qik =
∂yi
∂θk
≈ y

′
i − yi
∆θk

i = 1, ..., NM ; k = 1, ..., Nθ (3.21)

where yi is the i-th measured responses predicted by the model, y
′
i is the same response obtained

from a perturbed value of the k-th parameter θk, and ∆θk is the perturbation (NM is the

number of measured responses and Nθ is the number of model parameters). The principal goal

of sensitivity analysis is to evaluate the impact of each parameter on the measured responses

and to underline the presence of correlation among specific subsets of model parameters. In

an over-parametrised model, near-zero sensitivity values would be obtained, leading to the

non-identifiability of some subsets of model parameters. In the most desirable case, sensitivity

profiles should be clearly distinct and far from being symmetrical (i.e. they should present a

low mutual correlation). As the sensitivity analysis requires pre-specified parameters values,

values by a preliminary parameter estimation have been considered. Perturbation ∆θk was set

equal to 1% of parameter values. First, the sensitivity profiles of biomass concentration will

be taken into account. Although not shown here for the sake of conciseness, it was verified

that all sensitivity profiles behave as exponential curves. As a consequence, the final value

of sensitivities (value at 120 hours) is sufficient to analyse the system behaviour in different

experimental conditions. The sensitivity profiles evaluated at four different light intensities are

reported in Figure 3.6.

For light intensities under the critical value, the sensitivities related to parameters ki,0 and

kr show opposite values. Above the critical value of light intensity, the sensitivity of kr is the

opposite of the sum of the sensitivities of ki,0 and ki,0. This suggests that it may be difficult to

exploit biomass concentration measurements to identify ki,0 and kr.

Another critical aspect is related to the fact that parameters ka and kp exhibit a very similar

sensitivity at low light conditions (availability of growth data at high light intensities may be

necessary for a robust estimation of these parameters). Also it should be noticed that the

parameter related to photoacclimation, kc, and the parameter representing the maintenance

factor in the dark, M , exhibit a very similar (and low) sensitivity in all light conditions.

Fluorescence profiles (q and qL) are also considered. As the dynamics of PSUs are fast with



Chapter 3 51

k
a
k
d
k
i,0
k
i,1

k
r

α α
2
k
c
k
p
k
M
M
0

-8

-6

-4

-2

0

2

4

6
50 µE/m^2s

s c
,k

k
a
k
d
k
i,0
k
i,1

k
r

α α
2
k
c
k
p
k
M
M
0

-8

-6

-4

-2

0

2

4

6
150 µE/m^2s

k
a
k
d
k
i,0
k
i,1

k
r

α α
2
k
c
k
p
k
M
M
0

-8

-6

-4

-2

0

2

4

6

500 µE/m^2s

s c
,k

k
a
k
d
k
i,0
k
i,1

k
r

α α
2
k
c
k
p
k
M
M
0

-8

-6

-4

-2

0

2

4

6

1000 µE/m^2s

Figure 3.6: Final values of dynamic sensitivities for mCRM, evaluated at different light intensities.

respect to the sampling time, and our measurements are steady state measurements, only the

steady state values of sensitivities will be reported. In Figure 3.7(a) and 3.7(b) the values of

the sensitivities of q and qL are reported for four different light conditions. The sensitivities of

parameters α2, kp, kc, kM and M0 are not reported, since they are zero for both fluorescence

measurements (they are related to biomass growth and are not concerned with the oxidation

state of the PSUs).

Considering the steady state sensitivity values of the fluorescence measurements, the

following critical aspects can be noticed:

• parameters ka and kd do not affect the dark fluorescence measurements, while they

are completely anticorrelated if light fluorescence measurements are available, showing

opposite sensitivities in all light conditions;

• parameters ki,0, ki,1, kr and α are not affected by light fluorescence measurements;

• parameter kr is anticorrelated with ki,0, under the critical value of light intensity, and

with ki,1, above the critical value of light intensity;

• the sensitivity of ki,0 is always quite small. The results suggest that a model

reparameterisation may be necessary to help tackling the issue (Meshkat et al., 2009).
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Figure 3.7: Final values for dynamic sensitivities for the mCRM model evaluated at different light
intensities considering literature values for model parameters.

3.6.3 Reparameterisation of Camacho Rubio model

As the fluorescence data considered here are measurements of the PSU oxidation state under

steady state conditions, an analytical expression for fluorescence measurements can be derived

from Equation 3.11 to 3.13:

q

qmax
=
at − a3
at

=

 1−R0I if I ≤ Icr
1−R0Icr

R1 (I − Icr)α + 1
otherwise

(3.22)

qL =
a1

a1 + a2
=

1

R2I + 1
(3.23)

with R0 = ki,0/kr, R1 = ki,1/kr and R2 = ka/kd. The interesting aspect is that only four

parameters affect the steady state values of the fluorescence measurements: the three ratios

R0, R1, R2 and parameter α. This suggests that, in order to have a practically identifiable

model, the values of two parameters affecting the PSU dynamics have to be fixed if no dynamics

fluorescence data can be included in the data set. It was chosen to fix the values of kr and

kd, as those parameters represent the rate constant of the recovery and de-excitation processes,

respectively. An approximated estimation can be obtained, considering the timescales of the

processes involved: according to literature (Han et al., 2000a), values of 100 s−1 for kd and of

2.22 · 10−4s−1 for kr were assumed. The very low sensitivity to available measurements and the

high correlation of kc and M0 make it impossible to identify the two parameters. However, in

the case of M0, previous experiments suggest it to be between 5% and 10% of the maximum

growth rate (Ryther, 1955). Here we set M0 = 1.5 · 10−3h−1 (≈ 8% of the maximum growth

rate). For parameter kc the preliminary estimation suggests that a ’small’ value is required for a

good description of data. Since in Equation 3.14 we have that Iα2 � 1 , we verified that kc = 1
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is a good approximation for representing all experimental conditions. After reparametrisation,

the vector of parameters to estimate is θ̂∗ = [R0, R1, R2, kp, kM , α, α2].

3.7 Results and discussion

In the first part of this section the mCRM parameter estimation results will be presented and

discussed. In the second part two additional growth curves and two new measurements of dark

fluorescence will be used to validate the model.

3.7.1 Model calibration

In the estimation procedures, parameters are normalised with respect to the initial values

obtained by the preliminary parameter estimation, to increase numerical robustness. The

results of parameters estimation are reported in Table 3.6, along with the confidence intervals

and the t-values (for a statistically precise estimation of a model parameter the t-value has to

be greater than a reference t-value). The t-value statistic shows that the parameter values are

estimated in a statistically satisfactory way.

Table 3.6: Estimated values of parameters of the reparametrised mCRM, normalised values (with
respect to the initial values) of the parameters, confidence intervals and t-student values for parameters.
The reference t-value is equal to 1.67.

Parameter Estimated value Normalized value 95% conf int t-value 95%

R0 4.93× 10−4 1.12 0.21 5.20
R1 1.34× 10−2 0.65 0.21 3.70
R2 3.30× 10−3 2.77 0.41 6.72
kp 1.48× 10−6 0.41 0.12 3.35
kM 1.12× 10−1 1.96 0.91 2.15
α 4.50× 10−1 0.45 0.048 9.52
α2 3.00× 10−1 0.30 0.078 3.89

The profiles of fluorescence, predicted after the identification of the reparametrised mCRM,

are reported in Figure 3.8. We can observe that the model correctly fits both the dark

fluorescence profile (Figure 3.8(a)) and the light fluorescence measurements (Figure 3.8(b)).

Biomass growth profiles are rather well represented by the model as illustrated in Figure 3.9,

where the six different illuminating conditions are represented.

In Figure 3.10 the growth rate constant predicted by the model is reported along with the

experimental value (i.e. the value obtained fitting the experimental data of growth during

exponential phase with an exponential curve). We can observe that for all light intensities

at which an experiment was carried out, the model well describes the experimental values of

growth rate constant. This suggests that, thanks to the fundamental input of the fluorescence

parameters in illuminated cells (qL), the model is capable of reproducing with sufficient accuracy

the basic processes of photosynthesis: photochemistry, light damage and also energy dissipation.
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Figure 3.8: Measurement (black circles) and predicted values of (a) q and (b) qL. Blue solid lines
represent the profiles predicted by the mCRM model. Red stars in panel (a) represent the experimental
data used for model validation.
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Figure 3.9: Biomass concentration profiles at different light intensities predicted by the modified
Camacho Rubio model. Black circles represent the experimental measurements
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Figure 3.10: Growth rate constant predicted by the modified Camacho Rubio model (solid line) and
experimental values of the growth rate constant (black circles). Red stars represent the experimental
values of the growth rate constant for the experiments used in the model validation

From a statistical point of view, the predicted profiles have a χ2 value of 117.7 (whereas

χ2 = 890.1 in the case of EPM, and χ2 = 301.6 for CRM).

3.7.2 Model validation

In order to validate the model, two experiments, not used for model calibration, will be taken

into account. In particular two growth curves at 350 and 750 µE/m2s have been considered.

For both cultures also the value of q has been measured and was exploited for model validation.

In Figures 3.8(a) and 3.10 the validation points are represented by red stars. In Figure 3.11

the growth curves have been reported.
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Figure 3.11: Biomass concentration profiles at different light intensities predicted by the modified
Camacho Rubio model. Red stars represent the experimental measurements used for the model
validation

We can observe that the predictions are accurate for the parameter q. Also the growth
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curves are predicted in a sufficiently accurate way, although the growth at 350µE/m2s is slightly

overestimated by the model, while the growth at 750µE/m2s is somewhat underestimated in

the final part. From a statistical point of view, validation leads to χ2 value of 226.23.

An informative use of the model involves estimating the energy needed for cell maintenance

at different light intensities, predicting an increase in maintenance energy requirements at higher

irradiance, likely caused by a larger repair rate in damaged photosystems. The latter becomes

clear in plotting the ratio between the photosynthesis and maintenance rates (Figure 3.12).

We can observe from Figure 3.12 that the optimal growth intensity, i.e. the light intensity at

which the growth is maximum, correspond to a minimum in the ratio between maintenance

term and gross growth rate (sum of the net growth rate µ with maintenance). Even though the

model may not be generally applicable to any microalgae culture since it fails to account for

key mechanisms such as nutrients limitation, it nevertheless provides a means for quantifying

the weight carried by photoinhibition, clearly suggesting that this mechanism is likely to have

a major impact on microalgae productivity at high light irradiance.
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Figure 3.12: The upper plot shows the dependence of the maintenance factor (expressed in h−1) from
light intensity. The lower plot represent the ratio between the maintenance and the gross growth rate
(sum of net growth rate with maintenance) dependence from light intensity.

3.8 Conclusion

A literature model (Rubio et al., 2003) was selected and modified to describe microalgae growth

through a rigorous identification procedure. The estimation of the model parameters was

performed considering experimental data (growth profiles and fluorescence measurements) on

Nannochloropsis Salina. Results show that the developed model well represents biomass growth
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over a wide range of light intensities. The modified model was also able to reproduce fluorescence

measurements, including the light profile of PSU saturation. This suggests that the proposed

model is accurate enough to represent all major processes of photosynthesis, photochemistry,

PSU damage and energy dissipation. While results in reproducing experimental data are fully

satisfactory, it should be underlined that algae growing in an industrial scale photobioreactor

are exposed to different conditions. In particular light is not homogenously distributed because

of cells shading, and illumination intensity is not constant because of diurnal changes and cells

mixing. Finally nutrient availability can also be limiting.

In the next chapter a semi-mechanistic model of chlorophyll fluorescence will be presented

and discussed. This model will allow us to critically evaluate the relationship between q

and inhibited PSUs. Although it is used in the literature as a proxy of inhibited PSUs in

similar studies (e.g.: Wu and Merchuk (2001)) the linear relationship is indeed still matter of

discussion. The analysis of fluorescence model will show how this hypothesis can be linked to

the inhibition-related quenching. Other two limitations of the model are: (i) the acclimation

effect of reducing the number of PSUs is actually only one of several effect induced from light

adaptation and (ii) the energy dissipation NPQ is only described in a static way while its

activation is light and time dependent. However, the simple way we choose to represent those

effects are related to the type of data we aimed to describe and are enough to represent the

overall light effects on growth. In the following chapter we will show how it is possible to better

represent those phenomena exploiting the fluorescence measurements.
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A model of chlorophyll fluorescence in

microalgae integrating

photoproduction, photoinhibition and

photoregulation

This chapter1 presents a mathematical model capable of delivering a quantitative prediction

of the state of the photosynthetic apparatus of microalgae in terms of their open, closed

and damaged reaction centres under variable light conditions. This model combines the

processes of photoproduction and photoinhibition in the Han model with a novel mathematical

representation of photoprotective mechanisms, including qE-quenching and qI-quenching. For

calibration and validation purposes, the model can be used to simulate fluorescence fluxes, such

as those measured in PAM fluorometry, as well as classical fluorescence indexes. A calibration

is carried out for the microalga Nannochloropsis gaditana, whereby 9 out of the 13 model

parameters are estimated with good statistical significance using the realized, minimal and

maximal fluorescence fluxes measured from a typical PAM protocol. The model is further

validated by considering a more challenging PAM protocol alternating periods of intense light

and dark, showing a good ability to provide quantitative predictions of the fluorescence fluxes

even though it was calibrated for a different and somewhat simpler PAM protocol. Applications

of the model include the ability to predict PI-response curves solely based on PAM fluorometry

togheter with the long term goal of combining it within first-principles models describing the

flow and light attenuation for design and operation of large-scale microalgae production systems.

1Part of the work of this chapter has been published in the work by Nikolaou et al. (2014a) and Nikolaou
et al. (2015)
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4.1 Motivation

Mathematical models are commonly used in chemical engineering for process optimisation

(Biegler et al., 2014), but their application to microalgae culture is made particularly arduous

by the large number of governing phenomena, acting on multiple time scales ranging from

milliseconds to days. Photoproduction refers to all the processes from photons utilization to CO2

fixation and occurs withing milliseconds (Williams and Laurens, 2010). Photoinhibition is the

observed loss of photosynthetic production due to excess or prolonged exposure to light and acts

on time scales of minutes to hours (Long et al., 1994). Photoregulation, often referred as NPQ

is the ability of photosynthetic organisms to dissipate excess excitation energy as heat, thereby

protecting the photosynthetically active components, and occurs within minutes (Müller et al.,

2001). Photoacclimation is the ability of microalgae to adjust their pigment content and

composition under varying light and nutrient conditions and acts on time scales of hours to

days (MacIntyre et al., 2002).Finally, the mechanisms involved in nutrient internalization and

their metabolism into useful products occur within hours to days as well (Falkowski and Raven,

1997).

Chlorophyll fluorescence is a powerful tool for the analysis of the aforementioned processes,

which has led to important discoveries over the past 40 years. Today’s state-of-the-art

equipment, such as PAM, can implement complex protocols with great measurement accuracy.

In order to fully exploit this capability, experimental protocols have been developed that relate

the measured fluorescence fluxes with key photosynthetic parameters such as the quantum yield

of photosynthesis, the photosynthetic apparatus activity, and the NPQ activity. Even if the

level of understanding of the various fluorescence parameters has significantly increased the past

years, little effort has been devoted to the development of dynamic models that associate the

operation of the photosynthetic machinery with fluorescence measures. In most of the literature

the fluorescence indexes are only used to compare different cultures in a qualitative way, but

only few contributions try to exploit the quantitative information that can be extracted from

those kind of measurements (Wu and Merchuk, 2001).

The main objective of this chapter is to develop a mathematical model that can predict the

fluorescence fluxes in terms of the photosynthetic mechanisms occurring inside the chloroplasts.

This model builds upon the widely-accepted state-transition model proposed by Han (2002)

for predicting photoproduction and photoinhibition. An extension of this model in the

form of a semi-empirical expression is proposed in order to encompass a particular type

of photoregulation, namely qE quenching. Moreover, the chlorophyll-a fluorescence flux is

expressed based on the work by Huot and Babin (2010), for a specific type of PSII arrangement,

the so-called lake model (Kramer et al., 2004). The novelty and originality of the model lies

in the way the states of the PSUs, as given by the (extended) Han model, are related to the

measured fluorescence parameters, and how it does so by accounting for qE quenching.

The remainder of the chapter is organized as follows. The experimental measurements used
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to develop, calibrate and validate the model are described in Section 4.2. In Section 4.3 the

fluorescence model is presented and discussed. Next, the calibration and validation results are

reported, showing an excellent agreement between experimental data and model predictions.

Some final remarks will conclude the chapter.

4.2 Material and methods

The microalga Nannochloropsis gaditana (CCAP, strain 849/5) was grown in a sterile, filtered

F/2 medium, using sea salts (32 g/L) from Sigma, 40 mMTris HCl, pH 8 and Sigma

Guillard’s (F/2) marine water enrichment solution. Growth experiments were conducted in

the multi-cultivator MC 1000-OD system (Photon Systems Instruments, Czech Republic),

with daily measurements of the growth rate via changes in optical density OD 720 using

spectrophotometry. The suspension culture was continuously mixed and aerated by bubbling

air, maintained at a temperature of 21 ◦C, and subject to a constant light intensity of 100

µE/m2ssupplied by an array of white LEDs. Samples were harvested from the multicultivator

after 5 days (late exponential phase), so that the microalgae are acclimated to these conditions,

yet still actively growing and not experiencing nutrients depletion. A pre-culture was also grown

at 100 µE/m2sin glass bottles of 0.25 L under a continuous airflow, enriched with 5% CO2. At

the exponential phase, the pre-culture was centrifuged and re-suspended in fresh medium to

reach a final concentration of 9 × 106 cells/ml, before its introduction in the multi-cultivator.

All the fluorescence measurements were performed using a Dual PAM (Walz, Germany), after

a dark adaptation period of 20 minutes, by exposing the microalgae samples to variable actinic

light intensities in time intervals of 60 seconds. Before switching-on of the actinic light and

during the final 2 s of each interval, a saturating light pulse at 6000 µE/m2swas applied during

0.6 s, followed by a dark period (actinic light off) of 1.4 s; measurements were recorded before

and after the saturating pulses and after the dark periods, which correspond to F
′
, F

′
m and F

′
0

respectively.

Two separate experiments were performed for the purpose of model calibration 4.4.1 and

validation 4.4.2. Both light protocols are reported, with the corresponding fluorescence flux

data, in Table 4.1. The simulations of the fluorescence model were conducted in the modelling

environment gPROMS (Process System Enterprise, 2012). The calibration too was performed

in gPROMS using maximum likelihood estimation and statistical confidence analysis (Walter

and Pronzato, 1997), in order for the model predictions to match the measured fluorescence

fluxes F
′
, F

′
m and F

′
0. Due to lack of further information regarding the precision and accuracy

of the PAM fluorometer, a 1% standard deviation was assumed for the measured fluorescence

fluxes to determine the parameters and estimate their confidence intervals.
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Table 4.1: Actinic light and fluorescence flux measurements for the calibration experiment.

Calibration Validation Calibration Validation

Time [s] I µE/m2s F
′

[V] F
′

m [V] F
′

0 [V] F
′

[V] F
′

m [V] F
′

0 [V]

0 0 0 0.077 0.223 0.078 0.09 0.221 0.09
60 14 14 0.083 0.224 0.078 0.094 0.222 0.09
120 21 21 0.082 0.227 0.078 0.094 0.225 0.091
180 45 1602 0.083 0.226 0.078 0.064 0.067 0.047
240 78 1960 0.084 0.222 0.078 0.053 0.055 0.04
300 134 45 0.087 0.214 0.077 0.087 0.161 0.078
360 174 78 0.088 0.209 0.076 0.09 0.174 0.081
420 224 1036 0.088 0.198 0.075 0.051 0.057 0.041
480 281 1295 0.087 0.18 0.072 0.046 0.049 0.037
540 347 134 0.083 0.16 0.069 0.079 0.136 0.072
600 438 174 0.079 0.137 0.064 0.08 0.135 0.071
660 539 1602 0.073 0.116 0.059 0.048 0.05 0.038
720 668 1960 0.067 0.098 0.054 0.042 0.043 0.033
780 833 45 0.061 0.082 0.049 0.075 0.127 0.069
840 1036 78 0.057 0.07 0.044 0.082 0.142 0.073
900 1602 134 0.053 0.061 0.041 0.08 0.137 0.072
960 1602 1960 0.05 0.055 0.038 0.047 0.048 0.036
1020 1960 1960 0.047 0.051 0.036 0.042 0.042 0.033
1080 14 0 0.07 0.146 0.066 0.063 0.102 0.061
1140 14 0 0.07 0.154 0.067 0.064 0.112 0.064
1200 14 0 0.071 0.16 0.069 0.067 0.12 0.067

4.3 A dynamic model of fluorescence in microalgae

This section presents a dynamic model of chlorophyll fluorescence that accounts for key

photosynthetic processes having time scales up to an hour. Specifically, the model encompasses

the processes of photoproduction, photoinhibition and photoregulation, but neglects the

changes in photoacclimation state. The photoacclimation effects will be assessed in Chapter 5.

In PAM fluorometry, the fluorescence flux F [V] emitted by a microalgae sample of volume

V [m3] and chlorophyll concentration chl [gchl m
−3] can be modelled as (Huot and Babin, 2010):

F = Im σ chlΦf (1−Q)V λPAM , (4.1)

where Φf stands for the quantum yield of fluorescence [µEµE−1]; σ, the total cross section

[m2 g−1chl]; Im, the measuring light intensity [µE/m2s]; Q is a dimensionless parameter describing

the percentage of fluorescence absorbed by the sample; and λPAM [V sµE−1] is a gain parameter

aligning the voltage output of a PAM fluorometer with the actual fluorescence flux. In

particular, as chl and Q remain constant for a given photoacclimation state, it is convenient to

lump all the constant terms into a single parameter SF := Im chl (1−Q)V λPAM, giving

F = SF σΦf . (4.2)

In the sequel, we use the Han model to represent the effects of photoproduction and

photoinhibition on the fluorescence flux (Section 4.3.1). Next we formulate two alternative
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Han model extensions in order to encompass photoregulation effects and we discriminate the

two alternatives selecting the best one (Section 4.3.2). Then, we analyze the properties of the

resulting model (Section 4.3.3). Finally we calibrate and validate the final model.

4.3.1 Han model

The model developed by Han (2002) and originating in the works of Kok (1956) and Eilers

and Peeters (1988) is based on the concept of photosynthetic unit (PSU), first introduced by

Gaffron and Wohl (1936) to represent the physical entity responsible for the production of one

O2 molecule. In this conceptual representation, each PSU is comprised of one RCII and its

associated LHC, and the chloroplasts are regarded as PSU arrays. Equivalent state models

have been extensively used to mathematically represent biomass productivity and can prove

particularly useful in studies of fluctuating light effects (Rubio et al., 2003). With respect to

the models considered in the Chapter 3 the Han model makes use of a parametrisation that

gives at all the parameters a precise biological meaning as we will show in the following. In

particular, the Han model parametrisation will be particularly effective to link the fluorescence

expression with the state model.

The description of photoproduction and photoinhibition in the Han model assumes that the

RCII of a PSU can be in either one of three states, namely open (A), closed (B) or damaged

(C). An RCII in state A is ready to accept an electron; in state B, it is already occupied

by electrons; and in state C, it is non-functional. As depicted in Figure 4.1, each RCII can

transit from one state to another depending on the light irradiance I, with processes described

by first-order kinetics. Photoproduction is described by the transition from A to B, while the

reverse transition from B to A represents relaxation of the RCII; photoinhibition, on the other

hand, corresponds to the transition from B to C, while the reverse transition from C to B

describes repair of the damaged RCII by enzymatic processes.

The equations in the Han model describe the dynamics of the fractions of open, closed and

damaged RCIIs in the chloroplasts, denoted by A(t), B(t) and C(t), respectively:

Ȧ = −I σPS2A+
B

τ

Ḃ = I σPS2A−
B

τ
+ kr C − kd σPS2 I B

Ċ = −kr C + kd σPS2 I B .

(4.3)

Here, σPS2 denotes the effective cross section [m2 µE−1]; τ , the turnover time [s]; kd, the damage

rate constant [-]; and kr, the repair rate constant [s−1]. Moreover, A(t) + B(t) + C(t) = 1 at

all times.

Several expressions of the fluorescence quantum yield Φf in (4.2) as a function of the PSU

states A, B and C have been proposed depending on the LHC-RCII configuration. They
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Figure 4.1: Schematic representation of the Han model

typically involve the parameters ΦA
f , ΦB

f and ΦC
f representing the fluorescence quantum yields

of an RCII in state A, B or C, respectively (Huot and Babin, 2010). The one configuration used

subsequently is the so called lake model (Kramer et al., 2004) expressing Φf as the harmonic

mean of ΦA
f , ΦB

f and ΦC
f
2.

Φf :=
1

A

ΦA
f

+
B

ΦB
f

+
C

ΦC
f

. (4.4)

In analogy to parallel electrical circuits, this configuration assumes that all RCIIs are connected

to a common LHC and thus compete for the incoming excitation energy. Naturally, other types

of LHC-RCII configurations can be used in the fluorescence model if desired.

Besides Φf , the total cross-section σ in (4.2) can be related to the parameter σPS2 in the Han

model. In a first step, σ is related to the so-called optical cross section, σPSU [m2 µmol(O2)
−1],

as

σ = σPSUN , (4.5)

with N the number of PSUs [µmol(O2) g−1chl], which remains constant for a given

photoacclimation state. In a second step, σPS2 can be related to σPSU as (Falkowski and Raven,

1997):

σPS2 = νΦA
p σPSU , (4.6)

where ΦA
p [-] denotes the quantum yield of photosynthesis of an open RCII, which is equal to the

realized quantum yield of photosynthesis ΦPS2 in the case that A = 1 (see Section 4.3.3 below for

an expression of ΦA
p ); and ν is a conversion factor that aligns the electrons required to dissociate

one molecule of water. If we consider the water dissociation reaction (2H2O+4e− → O2 +4H+)

a minimum theoretical value of ν = 4 µEµmol(O2)
−1 can be derived.

2a discussion about the Φf expression is presented in Appendix A
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4.3.2 Accounting for photoregulation

An important limitation of the Han model in the context of PAM fluorometry is that some of its

parameters may vary on the time scale of minutes due to certain NPQ regulation mechanisms

being activated. Two types of NPQ mechanisms are accounted for in this work, namely

qI-quenching and qE-quenching, which are often seen as the major contributors to fluorescence

quenching on the time scales of interest (Horton and Hague, 1988). qE-quenching is activated

at high light irradiance by low thylakoid lumenal pH (Bilger and Björkman, 1990); it evolves

within minutes and can result in up to 90% reduction in fluorescence (Huot and Babin, 2010).

qI-quenching is linked to photoinhibition, according to the biological hypothesis that damaged

RCII can trap and dissipate excited electrons as heat; it typically evolves in a time scale of

minutes to hours and can be responsible for up to 40% reduction in fluorescence (Falkowski

et al., 1994).

We start by noting that only qE-quenching requires further consideration as qI-quenching

is already accounted for through the dependence of Φf on the fraction C of damaged RCIIs

in (4.4). Since qE-quenching in the dark is negligible and varies with the light irradiance

via the change in lumenal pH, we introduce a conceptual qE activity reference function αSS

taking values in the range [0, 1] and increasing with I, from the level αSS = 0 at I = 0. After

consideration of experimental measurements of the NPQ index (2.14) as a function of I (Kramer

et al., 2004), we choose to formulate αSS as a sigmoid (Hill) function of I:

αSS(I) :=
In

IqEn + In
, (4.7)

where IqE [µE−1] represents the irradiance level at which half of the maximal qE activity is

realized (αSS = 0.5); and n [–] describes the sharpness of the transition, approaching switch-like

behavior as n becomes larger. In addition, we describe tracking of the qE activity reference

αSS by the actual qE activity level α(t) as a first-order process:

α̇ = ξ (αSS(I)− α) , (4.8)

where ξ [s−1] denotes the rate of NPQ adaptation, which shall be assumed constant here on

the time scales of interest.

The activity variable formulated above needs to be included in the definition of the fluorescence

flux (Equation 4.2 in order to account for the qE-quenching. Since SF is constant for a given

photoacclimation state, the effect can come through a dependence either on σ or on Φf . We

decided to assume both alternatives thereby formulating two distinct models; in the first,

qE-quenching is affecting the absorption efficiency of the LHC through variability in σ; in the

second qE-quenching comes in effect through variability in the fluorescence quantum yields of

A, B and C.
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Variability in σ

The effect of qE-quenching comes forward through the variation in photon absorption by the

LHC. A natural way of modelling this effect is therefore in terms of the total cross section, σ,

the photosynthetic parameter capturing the light absorption effectiveness most directly. More

specifically, we assume that σ is bounded between a maximum value, σmax, and a minimal

value, σmin, which are observed when the NPQ energy dissipation is, respectively, the lowest

and the highest:

σ = σmax (1− α) + σminα (4.9)

Combining 4.9, 4.5 and 4.6 yields the following expression of σPS2 in terms of the photoregulation

parameters:

σPS2 =
ΦA

p

N
(σmax (1− α) + σminα) (4.10)

which can be used in the Han model 4.3 equations.

Variability in Φf

An alternative formulation of qE quenching comes forward by considering analytical expression

for ΦA
f , ΦB

f and ΦC
f . Following Huot and Babin (2010); Kitajima and Butler (1975); Oxborough

and Baker (1997), we express the fluorescence quantum yields as:

ΦA
f =

1

1 + ηP + ηD + ηqE
, ΦB

f =
1

1 + ηD + ηqE
, ΦC

f =
1

1 + ηI + ηD + ηqE
, (4.11)

where the parameters ηP , ηD, ηqE and ηI represent, respectively, the rates of photoproduction,

basal thermal decay in dark-adapted state, qE-quenching and qI-quenching, all relative to the

rate of fluorescence; that is, these four parameters are dimensionless. Observe that ΦB
f does

not depend on ηP as a closed RCII cannot support photoproduction, and ΦC
f depends on ηI

instead of ηP in order to account for the effect of qI-quenching. Moreover, we capture the effect

of qE-quenching by varying ηqE with respect to the qE activity level α as:

ηqE = ηqE α , (4.12)

with ηqE a parameter describing the maximum rate of energy dissipation. Note that a linear

relationship is assumed as a first approximation following the considerations by Oxborough

and Baker (2000), but the model is readily extended to other, more complex dependencies. An

important difference between the two ways of representing the qE-quenching effect is that the

variability on σ affects the fluorescence independently from the RC oxidation state while the

variability on Φf has a stronger effect on closed RC according to 4.11.
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Figure 4.2: Circles, triangles and squares represent the measured values of F
′
m, F

′
0 and F

′
respectively.

The continuous line refers to the variable Φf model, while the dashed line refers to the variable σ model.
Grey shaded area represent the light profiles.

Model discrimination

Having two alternative modelling hypothesis the first objective is to discriminate between them

in order to choose the most suitable one to represent our system. Two different experiments

have been considered for model discrimination. The first experiment considers a PAM protocol

where the light follows an increasing light intensity step profile with steps of 30 seconds constant

light. In the second experiment each light step is 60 seconds long and at the end three minutes of

dark have been added to evaluate the relaxation of the qE quenching. The results are reported

in Figure 4.2: the continuous line represent the variable Φf model, the dashed line represent

the variable σ model.

We can observe the experiment without a recovery phase can not be used to discriminate

between the alternative models (Figure 4.2(a)). In fact, both model correctly represent the

experimental data. On the contrary, the second experiment clearly indicates that the variable

Φf model outperforms the variable σ model. We can observe from Figure 4.2(b) that the

variable σ model is not able to represent the fast recovery of F
′
m while the variable Φf model

perfectly represent the experimental data. For this reason the variable σ model has been

rejected and will not be discussed further.

4.3.3 Properties of fluorescence model

After model discrimination an expression of the fluorescence flux F can be obtained by

substituting (4.11) and (4.12) back into (4.2):

F =
SFσ

1 + ηD + ηqE α + AηP + C ηI
. (4.13)



68
A model of chlorophyll fluorescence in microalgae integrating photoproduction,

photoinhibition and photoregulation

In PAM fluorometry, the fluorescence flux F in (4.13) corresponds to the light-adapted realized

fluorescence flux F
′

(see Section 2.2.2). The remaining characteristic fluorescence fluxes F0,

Fm, F
′
0 and F

′
m are obtained by specializing (4.13) with A = 0 and B = 0 for the maximal

and minimal fluorescence fluxes, respectively, and with α = 0 for the dark-adapted fluorescence

fluxes. These expressions are reported in the left part of Table 4.2.

Table 4.2: Expressions of PAM fluorescence fluxes (left part) and fluorescence indexes (right part).

Flux Expression Index ηP 6= ηI ηP = ηI

F
′ SFσ

1 + ηD + ηqEα+AηP + CηI
ΦPS2

AηP
1 + ηD + ηqEα+AηP + CηI

AηP
1 + ηD + ηqEα+ (1−B)ηP

F
′

m

SFσ

1 + ηD + ηqEα+ CηI
q

(1− C)ηP
1 + ηD + (1− C)ηP + CηI

(1− C)ηP
1 + ηD + ηP

F
′

0

SFσ

1 + ηD + ηqEα+ (1− C)ηP + CηI
qL

A

A+B

A

A+B

Fm
SFσ

1 + ηD + CηI
qNPQ

ηqE + (C − C0)ηI
1 + C0ηI

F0
SFσ

1 + ηD + (1− C)ηP + CηI

Mathematical expressions of the fluorescence indexes discussed in Section 2.2.3 follow readily

from substitution of the foregoing PAM flux expressions. Two sets of expressions are reported

in the right part of Table 4.2, corresponding to whether or not the assumption ΦA
f = ΦC

f is made

- or, equivalently, ηI = ηP . This assumption originates in the work of Maxwell and Johnson

(2000), who argued that quenching related to damage in RCII does not cause a variation in

the level of F
′
0 which imply that the fraction of incoming photons leading to photoproduction

in an open RCII should be the same as the fraction of incoming photons dissipated as heat in

a damaged RCII.

A number of comments are in order regarding the fluorescence index expressions:

• The realized quantum yield of photosynthesis, ΦPS2, turns out to be a nonlinear function

of the open, closed and damaged RCII fractions, irrespective of the assumption ΦA
f = ΦC

f .

This result suggests that the usual hypothesis of a linear relationship between ΦPS2 and

the fraction A of open RCIIs could be inaccurate, especially when the fraction B of closed

RCIIs is small. An expression of the quantum yield of photosynthesis of an open RCII,

defined as ΦA
p earlier in (4.6), can also be derived from the expression of ΦPS2 in the

special case that A = 1:

ΦA
p =

ηP
1 + ηD + ηqEα + ηP

. (4.14)

• The maximum quantum yield of photosynthesis, q, is a nonlinear function of the fraction

C of damaged RCIIs in the dark-adapted sample in general, but this dependency becomes

linear under the assumption that ΦA
f = ΦC

f . In other words, only if the quenching effect of
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inhibited reaction centres perfectly compensate the loss of photoproduction capability, due

to a smaller fraction of active reaction centres, the linear relationship assumed between

q and inhibited PSU used in Chapter 3 and in literature work, such as Wu and Merchuk

(2001), is valid.

• The photochemical quenching index, qL, is found to be equal to the ratio of open-to-active

RCIIs, which is in agreement with the considerations in Kramer et al. (2004).

Finally, we note that an expression of the fraction C of damaged RCIIs can be obtained as a

function of the fluorescence indexes ΦL and qL in the form (see Section 2.2.3 for fluorescence

indexes definition):

C = 1−
ΦL(1 + ηD + ηqEα− ηI)

ΦL(ηI − ηP ) + qLηP
. (4.15)

This relation is particularly useful from a practical standpoint as it allows predicting the level

of damage of the photosynthetic apparatus based on experimental measurements of ΦL and

qL, in combination with the qE activity level α predicted by (4.7)-(4.8). In particular, the

latter equations are independent of the states of the PSUs due to the cascade structure of

the fluorescence model. Similar expressions can be obtained for the fractions A and B of

open/closed RCIIs by noting that A = (1− C)qL and B = (1− C)(1− qL).

4.4 Results and discussion

This section presents the calibration results of the chlorophyll fluorescence model developed in

Section 4.3 together with a validation analysis.

4.4.1 Model calibration

The chlorophyll fluorescence model developed in 4.3 comprises a total of 13 parameters, many of

which have unknown values and thus need to be estimated. The light protocol and fluorescence

flux measurements used for purpose of model calibration are shown on 4.3 (grey-shaded area and

points with error bars, respectively). The first part of the experiment shows a gradual increase

of the actinic light intensity from 0 to 1960 µE/m2sin stages of 60 s, before the switching-off

of the actinic light around 1000 s until the final time of 1200 s. The corresponding data are

reported in Table 4.1.

Not all 13 parameter values can be estimated with high confidence from this data set, as

certain parameters are insensitive or turn out to be highly correlated, if at all identifiable. Model

reduction techniques could be used in order to arrive at a simpler model, but this would entail

loss of physical meaning for (part of) the states and/or parameters and so was not considered

here. After solving multiple instances of the parameter estimation problem for various subsets

of parameters, it was found that nine parameters can be confidently estimated by keeping the

following four parameters τ , kr, N and ηD constant:
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• The parameter τ representing relaxation of the closed RCIIs in the Han model, a process

acting on very fast time scales, turns out to have a very small effect on the predicted

fluxes. On the other hand, the parameter kr describing repair of the damaged RCIIs on

a time scale of hours cannot be confidently estimated from experimental data collected

over 20 minutes only. The values for τ and kr in Table 4.3 are the mean values of the

ranges reported by Han et al. (2000b). One way of determining τ experimentally would

be to use FRR fluorometry that can apply flashes at microsecond intervals (Kolber and

Falkowski, 1993). Likewise, a more confident estimate for kr could be obtained by simply

extending the dark phase at the end of the calibration PAM experiment, e.g., by an hour

or two.

• The total number of PSUs, N , cannot be confidently estimated due to its large correlation

with the total cross section σ. The value for N in Table 4.3 is based on the Emerson

number of 2500 mol(chl)mol(O2)
−1, as reported by Falkowski and Raven (1997).

• The parameter subset formed by the relative rate constant ηP , ηD, ηqE, ηI and the scaling

factor SF is structurally unidentifiable based on fluorescence flux measurements only,

calling for fixing the value of one of these parameters. The parameter ηD representing the

ratio between the rate of basal thermal decay and the rate of fluorescence can be estimated

considering the probability of thermal dissipation and the probability of fluorescence for

a photon absorbed by a dark adapted RCII. The value reported in Table 4.3 is the mean

of those ηD values for which the resulting fluorescence quantum yields are consistent with

the data by Huot and Babin (2010).

Table 4.3: Default values of the constant parameters (left part), and estimated values with confidence
intervals of the calibrated parameters (right part).

Parameter Value Units Parameter Estimate ±95% Conf. Int. Units
kr 5.55× 10−5 s−1 ξ 5.95× 10−2 ±6.65× 10−3 s−1

τ 5.50× 10−3 s n 2.26× 100 ±7.76× 10−2 s−1

N 4.50× 10−7 µE g−1
chl IqE 8.56× 102 ±2.88× 101 µE/m2s

ηD 5.00× 100 - kd 6.41× 10−7 ±3.38× 10−7 -
ηP 1.14× 101 ±1.60× 10−1 -
ηI 7.87× 101 ±3.94× 101 -
ηqE 1.98× 101 ±6.69× 10−1 -
σ 8.74× 10−1 ±4.35× 10−2 m2µE−1

SF 1.56× 100 ±7.80× 10−2 gchl µE−1 V−1

The parameter values and 95% confidence intervals determined by gPROMS using maximum

likelihood estimation are reported in the right part of Table 4.3. The corresponding fits of F
′
,

F
′
m and F

′
0 against the measured fluxes are shown in Figure 4.3, both without and with the

assumption ΦA
f = ΦC

f . Note that the predicted fluorescence fluxes are in excellent agreement

with the measured fluxes, thereby providing a first confirmation that the proposed model

structure captures the interplay between photoproduction, photoinhibition and photoregulation
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Figure 4.3: Comparison between the predicted and measured fluorescence fluxes F
′
m (circles), F

′
0

(triangles) and F
′

(squares) in response to various actinic light levels I (grey-shaded area) for the
calibration experiment. The dotted and continuous lines are obtained without and with the assumption
φA equals φC , respectively.

in a typical PAM experiment. Moreover, all the parameter estimates, but kd and ηI , have

95% confidence interval below 10%, which is quite remarkable given the large number of

estimated parameters and the apparent simplicity of the PAM protocol in Figure 4.3. Although

the estimated values of kd and ηI are found to pass the statistical t-test, the presence of a

large correlation between these parameters explains their relatively poor precision. Under

the assumption that ΦA
f = ΦB

f , or equivalently ηI = ηP , the 95 % confidence intervals are

reduced under 10 % without significantly affecting the rest of the parameters. Nonetheless this

assumption would require further testing and validation before adoption.

4.4.2 Model analysis and validation

Besides predicting the fluorescence fluxes well, the ability of the model to predict the

fluorescence indexes qL, ΦPS2 and qNPQ is depicted in Figure 4.4, based on the expression

given in the right part of Table 4.2.

The index ΦPS2 is predicted quite accurately by the model throughout the entire time

horizon, and the smooth transition in the ΦPS2 profile observed once the actinic light is switched

off is a consequence of qE-quenching acting directly on the quantum yield of photosynthesis

in the proposed NPQ representation. Moreover, the predicted value of 0.65 for the quantum

yield of photosynthesis of a dark-adapted open RCII - this value corresponds to the ΦPS2 at

initial time here - is in excellent agreement with values widely reported in the literature (Sforza

et al., 2012). The overall fitting quality of the index qL is also satisfactory, apart from the last

few experimental points during the light phase (between 800-1000 s), which are over-predicted

by the model. Nonetheless, the model captures well the sharp change in qL that occurs when

the actinic light is switched off, a property that comes forward with the expression of qL in

Table 4.2 due to the fast dynamics of A and B. Finally, the accurate predictions of qNPQ in



72
A model of chlorophyll fluorescence in microalgae integrating photoproduction,

photoinhibition and photoregulation

0

250

500

750

1000

1250

1500

1750

2000

I 
[µ

E
/m

2 s]

0 150 300 450 600 750 900 1050 1200
0.0

0.2

0.4

0.6

0.8

1.0

1.2

q L
[-

],
 Φ

P
S

2
[-

]

time [s]

(a)

0

250

500

750

1000

1250

1500

1750

2000

I 
[µ

E
/m

2 s]

0 150 300 450 600 750 900 1050 1200
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

q N
P

Q
[-

]

time [s]

(b)

Figure 4.4: (a) Comparison between the predicted and measured fluorescence indexes ΦPS2 (blue
lines, square) and qL (red lines, triangles) at various actinic light levels I (grey-shaded area). (b)
Comparison between the predicted and measured fluorescence index qNPQ.

Figure 4.4(b) provide another confirmation that the NPQ regulation is captured adequately by

the selected model structure.

Further validation of the model can be obtained upon analyzing the level of photoinhibition

created by the continuously increasing actinic light. Specifically, the main plot on Figure 4.5

shows a comparison between the fraction C of damaged RCIIs predicted by the full calibrated

model and the same fraction given by (4.15). We recall that the later uses the available

fluorescence flux measurements in combination with the predicted qE-activity level α, but

does not rely on the Han model at all. These two damage fractions are found to be in good

agreement, especially when considering the error bars and the red envelope of predictions

computed from the 95% confidence intervals of the calibrated parameters in both cases. These

rather large errors - between 0.02-0.07 at the end of the light phase - are caused by the rather

large confidence intervals for the parameters kd and ηI in this case. For comparison purposes,

the smaller plot on Figure 4.5 shows the predictions of the alternative model of qE quenching,

whereby the qE activity variable α modifies the absorption cross section σ in (4.1) instead of the

quantum yield of fluorescence Φf . As well as the large discrepancy between both predictions

of the damage level, it is the unusually large damage level (up to 60% after 1000 s) along with

the fast repair rate that clearly invalidate this alternative qE-quenching representation.

The foregoing results suggest that the proposed fluorescence model is capable of quantitative

predictions of the state of the photosynthetic apparatus under varying light conditions. To

confirm it, we carry out a validation experiment for an (unusually) challenging PAM experiment,

as shown in grey-shaded area on Figure 4.6. The corresponding model predictions, based on

the default and calibrated model parameters in Table 4.3, are compared to the actual flux

measurements in Figure 4.6. Although calibrated for a quite different and somewhat simpler

PAM protocol, the calibrated model remains capable of reliable quantitative predictions of the

fluorescence fluxes. Deviations are observed in various parts of the response flux profiles, which

are possibly due to effects and processes not accounted for in the proposed model, yet these
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Figure 4.5: Large plot: Comparison between the fraction C of damaged RCIIs predicted by the full
calibrated model (blue lines) and by the expression (4.15) (blue squares) at various actinic light levels I
(grey-shaded area). Small plot: Similar comparison for the variable σ model alternative (red lines and
circles).

deviation remain small, within 10-20%. We also note that such extreme variations of the light

conditions, however useful in a model validation context, are unlikely to be found in a practical

microalgae culture systems.

4.5 Conclusions

In this chapter we presented a mathematical representation of key photosynthetic processes

acting on time scales up to an hour and triggered by varying light conditions, which are

typical in PAM experiments. The dynamic fluorescence model relies on the combination of

fast photosynthetic mechanisms with slower photoprotective mechanisms in order to yield a

light-dependent expression of the quantum yield of photosynthesis. Despite comprising a total

of 13 parameters, a careful calibration and subsequent validation against multiple experimental

data sets shows that the model is capable of quantitative predictions of the state of the

photosynthetic apparatus in terms of its open, closed and damaged reaction center. This makes

it the first model of its kind capable of reliable predictions of the levels of photoinhibition and

NPQ activity, while retaining a low complexity and a small dimensionality.

Such generic capability to predict the development of photoinhibition and photoregulation,

yet without the need for dedicated experiments (Ruban and Murchie, 2012), addresses a

long-standing challenge in the modelling of photosynthetic productivity and holds much promise

in regard of future applications. By design, the fluorescence model is indeed capable of

simulating experimental protocols used for the determination of PI-response curves, yet avoiding

the usual - and somewhat problematic - static growth assumption. This opens the possibility
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Figure 4.6: Comparison between the predicted and measured fluorescence fluxes F
′
m (circles), F

′
0

(triangles) and F
′

(squares) in response to various actinic light levels I (grey-shaded area) for the
validation experiment.

for a cross-validation framework, whereby both fluorescence and classical growth experiments

could be used for model validation purposes. This issue will be addressed in Chapter 5.

In combination with dedicated PAM experiments, there is also hope that the model could

serve as a platform for unveiling previously hidden information concerning the operation of the

photosynthetic apparatus. Because PAM experiments are both precise and fast, a full validation

of the model appears tractable in this context, especially if model-based experimental design is

used for testing the model structure further, e.g., through the determination of information-rich

PAM protocols. A MBDoE approach will be presented in Chapter 6.

Incorporating photoacclimation processes is currently investigated as part of future work,

and preliminary results are presented in Chapter 5, in order to widen the applicability of the

model, such as predicting the evolution of a microalgae culture over time periods of several days

or even weeks. Eventually, the vision is to integrate a fully validated model of photosynthesis

within first-principle models describing the flow and light attenuation in large-scale microalgae

culture systems as a means to guide their design and operations.



Chapter 5

A framework for the dynamic

modelling of PI curves in microalgae

In this chapter1 we present an extension of the model discussed in Chapter 4 able to predict

the photosynthesis rate under dynamic light conditions. Photoproduction, photoinhibition and

photoregulation are well represented once the model is validated against experimental data of

chlorophyll fluorescence for the microalga Nannochloropsis gaditana. Photoacclimation effects

are incorporated using fluorescence data for three photoacclimation states. The model shows

a very good agreement with the available experimental data and the values of the calibrated

parameters are deemed valid from a biological viewpoint. The predicted PI exhibits reasonable

trends regarding their initial slope, maximum photosynthesis rate and photoinhibitory effects.

Moreover, we will show that different PI curve characteristics arise as a result of different

experimental protocols thus underlying the importance of the accurate description of the

protocols used to derive the experimental data. Finally, a preliminary calibration against

experimental data from the literature is attempted to show the descriptive capability of the

model.

5.1 Motivation

Photosynthesis-Irradiance (PI) response curves constitute a powerful tool in characterizing

the photosynthetic properties of microalgae. Accurate representation of such curves in a

mechanistic manner has been an important challenge for many years, since both the effects

of light and nutrients can be captured and optimal productivities of large scale production

systems can be inferred (Bernard, 2011). The most usual approach in representing PI curves

is in the form of static relationship between the light irradiance and the photosynthesis rate,

the latter is often expressed in terms of oxygen evolution or CO2 fixation as measured using

of oxygen electrodes or radioactive carbon tracing (Jassby and Platt, 1976). Nonetheless, the

1Part of this chapter has been published in Bernardi et al. (2015a)
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inherently dynamic nature of microalgae cultures, together with the experimental protocol used

to obtain such PI curves, introduces a great level of uncertainty in the actual measurements

and also raise legitimate questions as to the validity of the underlying biological hypothesis

of a static model. Moreover, the experimental procedure used to obtain PI curves is time

consuming and are carried out in conditions that are very different from the growing conditions

in the photobioreactors (e.g. no mixing and no CO2 excess).

The main objective of this chapter is to extend the model presented in Chapter 4 in order

to predict photosynthesis rate for different acclimation states. The model was calibrated

and validated using data from PAM fluorometer showing very good agreement between the

experimental data and the model predictions. The model is able to represent in sufficiently

accurate way all the dynamic processes involved in photosynthesis. Once validated the model

can be used to predict PI curves from fast and accurate fluorescence measurements.

In particular, dynamic simulations of PI curves allows to evaluate the effect of the

experimental protocol in the PI curves characteristic. Despite the rather common hypothesis

from the literature that PI curves are independent from the protocol used to obtain them, we

will show the importance of taking into account the exact experimental protocol to prevent

misleading conclusions or wrong parameter estimations. The effect of the initial amount of

damaged PSUs will be analysed as well. Finally, a preliminary calibration against experimental

data from the literature is attempted to show the descriptive capability of the model. The

results will show good agreement between the experiment and the model prediction even if the

uncertainty regarding the experimental protocol still represent a limitation in the analysis.

5.2 Dynamic modelling of Photosynthesis-Irradiance

curves

The fluorescence model in Chapter 4 accounts for photoproduction, photoregulation and

photoinhibition. To complete the model, the photoacclimation process has to be included.

In the following the main effect of photoacclimation will be discussed. Next an expression for

the photosynthesis rate will be introduced.

5.2.1 Photoacclimation extension

Photoacclimation refers to physiological adaptations of the photosynthetic apparatus that

enables microalgae to optimally grow under long term variations in the light intensity

(MacIntyre et al., 2002). The most profound effect of photoacclimation is a decrease in the

chlorophyll content, when irradiance is increased and vice-versa (Fisher et al., 1996; Dubinsky

and Stambler, 2009). Figure 5.1(a) reports the experimental data from Anning et al. (2000)

demonstrating a 4-fold variation in the chlorophyll-a composition when the culture is transiting

from low light (LL) to high light (HL).
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(a) (b) effect of C0

Figure 5.1: (a) Experimental data of chlorophyll content by Anning et al. (2000) (b) Experimental
data of total cross section by Falkowski et al. (1985).

(a) (b) effect of C0

Figure 5.2: (a) Experimental data by Falkowski et al. (1985) demonstrating the variation of parameter
N (b) Experimental data by Sforza et al. (2012) demonstrating the different activity of NPQ for
different acclimation states.

The chlorophyll variations affect the photosynthetic apparatus in several ways:

• The total cross section, σ decreases as chlorophyll increases due to shading effects.

Literature data from Falkowski et al. (1985) are reported in Figure 5.1(b);

• the number of chlorophyll associated with each PSU, i.e. the reverse of parameter N

decreases with the growth irradiance. Literature data from Falkowski et al. (1985) are

reported in Figure 5.2(a).

Finally the variation of pigment composition affects the activity of photoregulation (Anning

et al., 2000) as we can observe from Figure 5.2(b). Accordingly, microalgae samples, acclimated

at different light intensities show different fluorescence responses under identical PAM protocols.

Our data comprise three standard PAM experiments for three samples acclimated to three
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different growing irradiances, Ig. As the experiments considered to calibrate the model are

only 20 minutes long we can confidently assume that the acclimation dependent parameters

are constants within the same experiment.

5.2.2 Photosynthesis rate

The photosynthesis rate expression comes forward as (Falkowski et al., 1994):

P = σΦ I (5.1)

where Φ is the oxygen photosynthesis quantum yield [molO2/µE]. The aforementioned

units, give dimensions for P in [molO2/gchls], which by definition is the chlorophyll specific

photosynthesis rate, in terms of O2 production. The dynamic model of fluorescence predicts

the value of the realised quantum yield of photosynthesis, ΦPS2 in units of [mol e−/µE], which

is known from the literature to be closely related to Φ (Suggett et al., 2003). We only need

to introduce a stoichiometric coefficient that aligns the electrons delivered in RCII to the O2

produced there. If we consider the water dissociation reaction in PSII we can derive a theoretical

minimum value of 4 mol e−/mol O2 as conversion factor.

5.3 Results and discussion

The model has been calibrated using data from three independent fluorescence experiments

performed with samples acclimated to different Ig (15, 100 and 625 µE m−2 s−1). We will

not propose empirical equation to describe photoacclimation as the available data are not

sufficient to discriminate between different modelling hypotheses and beyond the scope of the

work. For this reason we will use different parametrisation to account for photoacclimation:

each acclimation state will have unique values for the parameters σ,SF , N , IqE and ηD. The

remaining parameters take the same values for all three model replicates.

Table 5.1 reports the values of the acclimation dependent parameters. The fitting results

for the fluorescence fluxes are presented in Figure 5.3, which shows a good agreement between

the model and the experimental data.

Table 5.1: Parameter values for different photoacclimation states.

Parameter 15 µE/m2s 100 µE/m2s 625 µE/m2s

IqE 796 847 1076
σ 7.86× 10−1 8.74× 10−1 9.44× 10−1

ηD 4.80 5.00 5.75
N 3.47× 10−7 4.50× 10−7 6.62× 10−7

SF 2.59 1.56 1.05
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(a) Ig = 15µE/m2s
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(b) Ig = 100µE/m2s
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(c) Ig = 625µE/m2s

Figure 5.3: Fitting results of the fluorescence fluxes for 3 photoacclimation states. Upper, middle
and lower plots correspond to 625, 100 and 15 µE/m2s.

Regarding the parameter estimates in Table 5.1 we can observe that they are consistent with

the biological meaning following the trends mentioned in Section 5.2.1. In particular: SF , which

indirectly represents the chlorophyll content, shows a decreasing trend with growth irradiance;

σ is inversely related to SF due to the packaging effect; N is decreasing with increasing chl;

ηD is increasing as growth irradiance increases and that can be linked to the accumulation

of photoprotective pigments; the relation of IqE and growth irradiance is almost linear, and

it is reasonable that microalgae acclimated at higher Ig need to activate the NPQ at higher

irradiances.

5.3.1 Dynamic simulation of PI curves

In order to construct the PI curves a light protocol with a step profile for the light has been

considered. The light was kept constant for 5 minutes and then increased by 200 µE/m2s

ranging from 0 to 2000 µE/m2s. The value at the end of each light phase was then plotted

against the irradiance to determine the PI curve. The initial fraction of C was assumed to be

zero based on the experimental data used for model calibration.

In Figure 5.4 we can observe that the predicted PI curves are very similar to published

data. The initial slope is constant, and the maximum photosynthesis rate is greater for

higher acclimated cells, two phenomena widely reported in the literature (Anning et al., 2000).
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Figure 5.4: PI curves (a) and evolution of damaged RCIIs (b) for 3 photoacclimation states. Dotted,
dashed and continuous lines correspond to 625, 100 and 15 µE/m2s.

Moreover the optimum light intensities and the maxima of photosynthesis rate for different

acclimation states are linearly related as reported in the literature (Hartmann et al., 2013).

Finally, the damaged RCII profiles, reported in Figure 5.4 show that cells acclimated at

lower light (hence with higher chlorophyll content) are more prone to inhibition, which is

also consistent with biological understanding.

With respect to the sample acclimated to 100 µE/m2swe now want to assess the effect of the

light protocol. In the following we will compare two different experimental set up. In the first

experimental set up, indicated as Type A, we consider that to determine an experimental point

a sample of the culture has to be kept at constant light for a certain amount of time, called

incubation time, before measuring the value of P. The second experimental set up, indicated

as Type B, considers to have only one sample exposed to a varying light intensity. The light

will follow a step profile with the light increasing from zero to a maximum value and P will

be measured at the end of each constant light step. Note that in the literature PI curves data

are, in majority, reported without the experimental protocol that was used to obtain them. We

will show how dynamic modelling plays a crucial role and the experimental protocol can lead

to different PI curves behaviour.

Figure 5.5(a) compares the Type A and Type B experiments. For each experimental set

up two alternatives are considered regarding the duration of the experiment. The blue (dotted

and the dashed) line refers to Type A experiment. Ten samples are assumed to be exposed

independently to ten different light intensities ranging from 0 to 2000 µE/m2s. The incubation

time has been set to 1800 s for the dotted line and to 3600 s for the dashed line. The red

(continuous and the dot-dash) line refers to Type B experiment. The irradiance is assumed

to increase from 0 to 2000 µE/m2sfollowing a step profile with ten constant light steps. Each

step lasts 300 s for the continuous line and 600 s for the dash-dot line; at the end of each step

P is measured and the light is increased by 200 µE/m2s. The continuous black line represents

the steady state PI profile predicted by the model. Figure 5.5(b) investigates the effect of the
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Figure 5.5: (a) PI curves for a sample acclimated at 100 µE/m2sand different light protocols: dotted
line considers a Type A experiment with an incubation time of 1800 s and dashed line considers a Type
A experiment with an incubation time of 3600 s; continuous red line consider a Type B experiment with
constant light steps of 300 s; dash-dot line considers Type B experiment with steps of 600 s constant
light. Black continuous line represent the steady state PI profile predicted by the model. (b) PI curves
obtained for a Type B experiment with 300 s constant light step and different initial conditions for
damaged reaction centres.

initial condition of damage in the predicted profile if a Type B experiment is considered (Type

A results lead to equivalent conclusions). The three curves of Figure 5.5(b) consider a step

duration of 300 s. The continuous line is the same as in Figure 5.5(a), while the dashed line

considers an initial value of C (i.e. C0) equal to 0.1 whereas the dotted line considers C0 equal

to 0.2.

From Figure 5.5(a) we can observe how both the experimental set up and duration affect

the PI curves. The type of experiment affects the shape of the PI curves, while the initial slope

remain constant. Note that the experiment duration affects the behaviour of PI curves at high

light intensities. In fact, a longer experiment will cause an higher amount of photoinhibition

at high light intensities, thus leading to diminished photosynthetic production. Moreover, we

can observe that the steady state PI photosynthesis rate profile is significantly lower than the

dynamic profiles. In practical terms, this means that if someone uses the dynamic profiles as

an estimate of the steady state photosynthesis rate he can drastically overestimate the culture

performances. From Figure 5.5(b) we can observe that, if at the beginning of the protocol the

sample has a certain amount of inhibited reaction centres, we have a reduction both on the

initial slope and on the maximum photosynthesis rate. In view of the above, we can conclude

that it is necessary to consider a dynamic model and that the exact experimental protocol

used to obtain the PI curves should be taken into account, if misleading conclusions or wrong

parameter estimation are to be avoided. Also the initial condition of damage needs to be

evaluated in order to correctly compare different PI curves. This is particularly important if

we consider cells acclimated at high light conditions, where an initial damage is likely to be

present as consequence of the stressful growing environment.
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5.4 Coupling PI curves with fluorescence data for model

calibration

In the previous section we showed how dynamic modelling have to be taken into account when

considering PI curves experiments. In fact, since different PI curve characteristics can be

obtained varying the experimental protocol used to obtain them, only a dynamic model that

implement the exact experimental protocol can represent the system in a reliable way.

In this section we want to assess the potential advantages of coupling PI curves

measurements with fluorescence data. In particular, we want to understand if the effect

on the quality of parameter estimation, in terms of the estimation accuracy and number of

estimated parameters, is significant. Moreover we also want to quantify the error related to a

wrong hypothesis regarding the experimental protocol. In particular, we want to answer to the

following questions: (i) is it possible to discriminate between alternative hypothesis regarding

the experimental protocol using the fluorescence model? and (ii) which are the parameters

affected by a wrong hypothesis regarding the experimental protocol?

In order to answer the above mentioned questions we will use an in silico experiment. In

fact, using a simulated experiment we know the correct values of the parameters and the exact

experimental protocol used to obtain the data; therefore is an easy task to precisely quantify

the error induced by a wrong hypothesis on the protocol.

Finally, a PI curve from the literature (Gentile and Blanch, 2001) will be used to show the

model behaviour against real experimental data. Unfortunately, this will not lead to a proper

validation, since in Gentile and Blanch (2001) the acclimation state of the culture was different

from the acclimation state of the samples used to perform the fluorescence experiments and

the experimental protocol to obtain the photosynthesis rate was not clearly specified. For this

reason the estimates obtained can not be confidently used and new data will be required to

have an accurate estimation of parameter N .

5.4.1 Case study: in silico PI curves experiment

The continuous curve of Figure 5.4(a) is considered as an in silico experiment to be used in the

calibration set, along with the PAM experiment. The utilisation of an in silico experiment allow

to analyse the response of the model under the hypothesis that the model perfectly represent

the data. Moreover, as we know the light protocol and the correct values of the parameters we

can analyse the effect of assuming the wrong experimental protocol in the parameter estimation.

If we estimate the model parameters using the correct light protocol an accurate parameter

estimation can be achieved. Moreover, parameter N , that has to be fixed if we only consider a

PAM experiment, can be confidently estimated.

In Table 5.2 we can observe that the parameter N is very precisely identified with a

confidence interval 95% smaller that 10% of the estimated value. Moreover all the parameters
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Table 5.2: Parameter values along with 95% confidence interval and t-values if a PI curve
measurement is considered in the calibration set along with the PAM experiment used in Chapter 4.
The parameter values are normalised by the values obtained from calibration in Chapter 4. Reference
t-value is 1.67.

Par Norm val 95% c.i. t-val 95%

ξ 1.00 1.11× 10−1 8.98
IqE 1.00 3.36× 10−2 29.81
kd 1.02 4.93× 10−1 2.06
kr 1.00 - -
N 1.00 8.34× 10−2 12.03
n 1.00 3.42× 10−2 29.23
ηI 0.98 4.53× 10−1 2.17
ηqE 1.00 3.36× 10−2 29.71
ηD 1.00 - -
ηP 1.00 1.37× 10−2 72.69
SF 1.00 8.02× 10−2 12.41
σ 1.00 8.12× 10−2 12.36
τ 1.00 - -

are estimated correctly (the values are normalised by the “real” value used to simulate the

in silico experiment). We can therefore conclude that, if the protocol used to obtain the PI

curve is known, the information contained in the experiment allows the accurate estimation of

parameter N , which otherwise is unidentifiable.

We now want to study the error that a wrong assumption about the experimental protocol

can introduce in the parameter estimation. The in silico experiment used has been obtained

with a Type B experiment with 300 s constant light step. We will now considers two alternative

scenarios: in Scenario 1 we assume a Type A experiment with 3600 s incubation time; in

Scenario 2 we assume the correct experiment type but the wrong constant light step duration

(600 s).

In Figure 5.6 the profiles for the two alternative scenarios are reported. The dotted line

refers to Scenario 1, while the continuous line refers to Scenario 2.

We can observe that in Scenario 1 (wrong experiment type) the model can represent the

data with good accuracy, while in Scenario 2 (correct experiment type but different experiment

duration) the fitting quality is lower but still acceptable. This result points out that is not

possible to discriminate between alternative protocols based on model simulation and therefore

a lack of knowledge about the experimental protocol is a systematic error in the parameter

estimation difficult to detect.

It is important to underline that, the fact that the model is able to fit the data even

with a wrong hypothesis about the experimental protocol does not mean that the model

is unidentifiable or overparametrised. In fact, a wrong assumption about the experimental

protocol affects the parameter estimation results, resulting in a wrong estimation. In Table 5.3
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Figure 5.6: The squares represent the in silico experiment obtained by model simulation and assuming
a Type B experiment with 300 s constant light steps. The continuous line is the predicted profile if a
calibration is attempted considering a Type B experiment with 600 s constant light steps; the dotted line
consider the predicted profiles if a calibration is attempted considering a Type A experiment with 3600
s incubation time. Table 5.2 and Table 5.3 summarise the results of the two parameter estimations.

are reported the estimates along with the t-values obtained in the aforementioned scenarios.

We can observe in Table 5.3 that both scenarios lead to wrong parameter estimations. In

particular, the subset of model parameters that are affected by the wrong hypothesis about

the protocol comprises: σ, N , SF , kd and ηI . In Scenario 1 the estimation of parameters σ, N

and SF are different from the nominal values. Also parameters kd and ηI are slightly different

from the nominal values but the relatively large confidence intervals include the correct values.

In Scenario 2, where the model showed larger discrepancy with the in silico data, parameters

σ, N and SF are again wrongly estimated. Moreover, the model mismatch introduced with

the wrong assumption regarding the experimental protocol, lead to a decreased accuracy of

parameter estimation and in particular parameters kd and ηI fails the t-test.

To summarise, a calibration has been attempted using an in silico experiment along with a

standard fluorescence experiment. The information contained in the photosynthesis rate profile

lead to a precise parameter estimation and to the identification of one extra parameter, N . In

order to assess the effect of a wrong assumption regarding the protocol used to obtain the PI

curve two additional scenarios have been considered. The results show that the model is able to

represent with good accuracy the data, even if a wrong protocol is assumed, but the resulting

parameter estimations are not consistent.

5.4.2 Case study: calibration with literature data

A preliminary calibration based on real PI curves data has been carried out considering

data from the literature. The data by Gentile and Blanch (2001) consider a sample of

Nannochloropsis Gaditana acclimated at 200 µE/m2s. In the paper the authors both describe

Type A and Type B experiments but it is not clear which protocol they have used to obtained
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Table 5.3: Parameter estimates, confidence intervals 95%and and t-values 95% considering the PI
curve in silico experiment in the calibration set if a wrong light protocol is assumed. Reference t-value
is 1.67. Statistically unsatisfactory estimates are indicated by (*).

Par Norm val 95% c.i. t-val 95% Norm val 95% c.i. t-val 95%
Scenario 1 Scenario 2

ξ 1.00 1.10× 10−1 9.11 0.99 1.08× 10−1 9.18
IqE 1.00 3.34× 10−2 29.89 1.00 3.35× 10−2 29.87
kd 0.79 4.48× 10−1 1.77 0.67 4.54× 10−1 1.47 *
kr 1.00 - - 1.00 - -
N 1.48 1.59× 10−1 9.31 1.17 1.06× 10−1 11.00
n 1.00 3.41× 10−2 29.3 1.00 3.42× 10−2 29.22
ηI 1.24 6.75× 10−1 1.84 1.48 9.76× 10−1 1.56 *
ηqE 1.00 3.35× 10−2 29.78 1.00 3.35× 10−2 29.76
ηD 1.00 - - 1.00 - -
ηP 1.00 1.34× 10−2 74.0 0.99 1.35× 10−2 73.78
SF 0.68 7.07× 10−2 9.55 0.86 7.52× 10−2 11.38
σ 1.48 1.56× 10−1 9.47 1.16 1.03× 10−1 11.31
τ 1.00 - - 1.00 - -

the PI curve data. For this reason we will consider two alternative calibrations, assuming

either Type A or Type B experiments. The PI curve will be used to calibrate the model

along with the PAM experiment in Figure 5.3(b). The aim is to assess if the model is able to

reproduce accurately literature data and to test the practical identifiability of parameter N .

One of the main limitation of the analysis is that the acclimation state of the sample used to

perform the fluorescence experiment is different from the sample used by Gentile and Blanch

(2001). However, the difference in the growth irradiances is not very high and the microalgae are

expected to have similar characteristics. Another limitation is related to the lack of information

regarding the experimental protocol.

Since the photosynthesis rate is zero at 120 µE/m2sa constant respiration rate, R, has been

assumed. Accordingly, Equation 5.1 has to be modified in order to account for respiration:

P = σΦ I −R (5.2)

In the following the model parameters will be normalised by the values obtained during the

calibration in Chapter 4 except for R. Note that the respiration rate has not been considered

in the previous sections because the focus was not on the absolute values but only on the shape

of the PI curves, and therefore subtracting a constant term did not affect the results. On the

contrary, when real experimental data are considered the respiration rate is necessary, as it

represents the oxygen consumption in the dark, that is usually greater than zero.

From Figure 5.7 we can observe that both Type A and Type B experiment can explain the

experimental data. Type A experiment seem to be more accurate in capturing the trend of
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Table 5.4: Parameter estimates, confidence intervals 95%and and t-values 95% considering a PI
curve from the literature. The results considered a Type A experiment with 3600 s of incubation
time or a Type B experiment with a 300 s step duration. Reference t-value is 1.67. Statistically
unsatisfactory estimates are indicated by (*).

Par Norm val 95% c.i. t-val 95% Norm val 95% c.i. t-val 95%
Type A experiment Type B experiment

kd 0.11 4.34× 10−1 0.25 * 0.80 4.80× 10−1 1.68
N 2.41 3.20× 10−1 7.54 2.08 2.52× 10−1 8.28
R 3.81 7.90× 10−1 4.81 3.57 7.39× 10−1 4.84
ηI 8.97 3.60× 101 0.25 * 1.24 7.08× 10−1 1.75
SF 0.42 5.46× 10−2 7.64 0.48 5.81× 10−2 8.31
σ 2.39 3.14× 10−1 7.59 2.07 2.50× 10−1 8.27
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Figure 5.7: The squares represent PI curve measured by Gentile and Blanch (2001). The continuous
line is the predicted profile if a Type A experiment with 1800 s incubation time is assumed. The dotted
line is the predicted profile if a Type B experiment with 300 s constant light steps is assumed. Table 5.4
summarise the results of the two parameter estimations.

photosynthesis rate against the irradiance but also Type B experiment lead to a satisfactory

prediction. As analysed in the previous section the assumption related to the experimental

protocol affects the values of a subset of the model parameter. The parameter estimation

results on the data by Gentile and Blanch (2001) confirm the results obtained with the in

silico experiment, thus, in Table 5.4 we only reports the parameters that are affected by the

introduction of the new experiment (i.e. σ, N , SF , kd and ηI), as the other parameters are the

same as in Table 5.2.

We can observe that if a type A experiment is assumed the parameters kd and ηI fail the

t-test, while if a type B experiment is assumed the parameter estimation is more accurate.

Moreover, the parameter values obtained by the two calibrations are very similar, except

for parameter kd (this is due to the fact that most of the experimental points are obtained

at low-medium irradiances where the difference between the profiles predicted for different

experimental set-up is lower). The main issue related to the Type B experimental set up is
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concerned with the unevenly distributed light intensities for the step profiles. This results

in a more complex profile in the second part of the experiment, which does not seem to be

fully representative of the available data. To conclude, although the model fit the PI curve

experiment, the estimates can not be confidently used due to the uncertainty regarding the

experimental protocol and the different acclimation state of the sample used for PI curves

determination with respect to the sample used in the PAM experiment.

5.5 Conclusion

The chlorophyll fluorescence model presented in Chapter 4 has been extended to be able

to predict photosynthesis rate. The semi-mechanistic representation of the photoproduction,

photoregulation and photoinhibition phenomena of the fluorescence model provide an accurate

representation of the biological processes occurring in time-scales for seconds to hours, whereas

photoacclimation is accounted for by varying a subset of parameters in the model. The model

is able to represent the available experimental fluorescence data for three different acclimation

states. Moreover the model is able to predict photosynthesis-irradiance response curves based

only on fluorescence measurements. Once validated the model will allow to predict PI curves

using fast and reliable fluorescence measurement, instead of performing a time consuming and

inaccurate PI curve protocol.

Simulation results underline that is extremely important for the utilization of PI in

estimation of biomass productivity to specify the exact protocol followed to measure PI curves

and the initial condition of the photosynthetic apparatus. Moreover, the effect of coupling

fluorescence and PI measurements has been assessed. An in silico experiment has been used to

analyse the error in parameter estimation if the wrong experimental protocol is assumed and the

practical identifiability of the model, under the assumption that the model perfectly represents

the data. Finally, a preliminary calibration against literature data has been carried out to

show that the model is capable of representing experimental PI curves with good accuracy and

confirm the practical identifiability results of the theoretical case study.





Chapter 6

MBDoE approach for information rich

PAM experiments

This chapter1 aims to improve the accuracy of parameter estimation of the fluorescence model

presented in Chapter 4. Model based design of experiments (MBDoE) techniques are at the

core of the proposed procedure. Local sensitivity analysis as well as a-posteriori identifiability

testing will be carried out to underline possible problems on model identification. As discussed

in Chapter 4 four out of thirteen parameter have to be fixed and two of the estimated parameters

have large confidence intervals. In this chapter a new type of fluorescence measurement has been

used to have an estimation of the dynamic of photoproduction, that cannot be investigated by

the PAM fluorometry due to its very fast time scale. Next, experiments with long recovery

phases have been considered to estimate the recovery rate of damaged PSUs. Finally, a

sequential MBDoE approach will be applied to develop information rich PAM experiments.

6.1 Motivation

In Chapter 4 a novel dynamic model of chlorophyll fluorescence has been presented and

discussed. The fluorescence model represents with excellent accuracy the experimental data

and is able of quantitative prediction of fluorescence flux of a complex validation experiment.

The model can be used also for the estimation of damaged PSU during a PAM experiment.

However, the model showed some identification issues even if a very small experimental error

has been assumed: four out of thirteen parameters needs to be fixed to literature values and

two parameters has large confidence intervals. In particular, the large confidence intervals of

parameter kd lead to a large error bars in the estimation of inhibited PSU. In this Chapter we

will assume a more realistic variance model where a constant term (equal to 0.0015), related

to the sensitivity of the photomultiplier that measure the fluorescence, is added to a relative

term (1% of the fluorescence intensity), depending upon the intensity of the fluorescence flux.

1Part of this chapter has been published in Bernardi et al. (2015b)
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The utilization of a more realistic variance model leads to a worsening of parameter estimation

thus advocating for a design of experiments.

The main issues we want to address in this Chapter are: (i) to introduce a new type of

measurement, called antenna size measurements, for the estimation of parameter τ ; (ii) to

reduce the confidence intervals of parameters kd and ηI through a MBDoE approach; and, (iii)

to estimate parameter kr considering experiments with a long recovery phase in the calibration

set. The long recovery phase experiments will underline a model incapability at representing

NPQ dynamics and a more detailed description of the photoregulation will be necessary to

describe the data.

After introducing the antenna size measurements for the estimation of τ a sequential

experiment design is presented: the fluorescence model of Chapter 4 is used to design an

information rich PAM experiment. The theoretical results considering in silico experiments are

presented and discussed. Next, the practical identifiability with the real experiments is tested.

Moreover, a constant actinic light experiment with a recovery phase one hour long will be used

to estimate the recovery rate kr. The model structure needs to be enhanced to represent the

new data, leading to a more complex model. A second experiment design will be performed

for the identification of the complex model. The effectiveness of the design will be tested from

a theoretical and practical point of view. Although some experimental issues still need to be

tackled, the results prove that experiment design can be very useful to increase the information

contained in a PAM experiment and a confident estimation of 14 out of 16 parameters are

estimated with good statistical significance. Some final remarks will conclude the Chapter.

6.2 Antenna size measurements

As discussed in Chapter 4 the parameter τ need to be fixed to a literature value, as PAM

experiments are not suitable to investigate the very fast dynamic related to photoproduction.

Here we want to introduce a different type of measurement, that can be coupled to the standard

PAM experiments to gather the necessary information to estimate τ .

The fluorescence kinetics are measured with a LED pump and probe JTS10

spectrophotometer in the fluorescence mode. Fluorescence inductions are measured

in the infra-red region of the spectrum upon excitation with blue light at 450 nm.

3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) was added at a concentration of 80 µM to

prevent oxidation of the primary quinone acceptor QA, i.e. the reaction rate from B to A

in the Han model (Joliot and Joliot, 2006; Simionato et al., 2013b). In the presence of this

inhibitor, the half saturation time of the fluorescence rise is inversely proportional to the so

called ASII (Bonente et al., 2012). In the Han model ASII is equal to the product σPS2I as

the reaction from open to closed RCs is assumed to be a first order reaction with respect to

the light intensity. The saturation curves are measured for different actinic light and are fitted

with exponential curves to estimate the values of ASII. The analysis of these measurement will
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be used both to verify the correctness of Han model hypothesis of first order reaction and to

estimate parameter σPS2 of the Han model.
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Figure 6.1: (a) Fluorescence emission kinetics of PSII from dark-adapted acclimated cells were
treated with DCMU. The time required for reaching half of the maximum is inversely proportional
to the so-called functional PSII antenna size. The fluorescence flux are reported for three different
actinic light and normalised by the maximum value (a.u.: arbitrary units). (b) The value of ASII is
reported for five different light intensities along with the linear fit. The orange envelope represents the
confidence region of the linear fitting.

In Figure 6.1(a) an example of saturating curves for three different actinic light intensities

has been reported. The experiment we considered has been performed for five different actinic

light intensities (45, 80, 150, 320, 950 and 2050 µE/m2s) and four repetition for each light

intensities have been executed. The values of ASII for the different light intensities are reported

in Figure 6.1(b). The variances are very small with a maximum value of approximately 2.5%

of the ASII value at 2050 µE/m2s. The slope of the fitting line is equal to 0.25 ± 0.009 with

an R2 value of 0.993. The orange envelop represent the confidence region of the linear fitting.

The fitting results reported in Figure 6.1(b) validate the Han assumption and provide useful

information to enhance the parameter estimation of the fluorescence model: an additional

experiment where the value of σPS2 is a measurement with a constant variance equal to 0.009 has

been added to the calibration set. Note that σPS2 according to the fluorescence model is variable

with NPQ activity, the measured value correspond to the value of σPS2 for a dark adapted

sample as the fast time horizon of the experiment, 0.3 seconds, is sufficiently small to prevent

the activation of photoregulation mechanisms. With respect to the parameter estimation results

of Chapter 4 the additional experiment allows to obtain a more accurate estimation of σ and

SF , moreover parameter τ can be estimated with good accuracy (see Table 6.1).
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Table 6.1: Effect of the introduction of σPS2 measurements. The parameters not reported here are
not significantly affected by the additional experiment. Normalised values of parameters are reported
along with 95% confidence interval and t-values. The reference t-value is 1.65.

Parameter Estimate 95% conf. int. t-value 95%

SF 2.06× 10 0 1.13× 10−1 18.32
σ 6.60× 10−1 3.51× 10−2 18.74
τ 7.28× 10−3 5.36× 10−4 13.58

6.3 Model based design of experiment to improve the

parameter estimation of fluorescence model

Two new PAM experiments will be introduced in the calibration set to improve the accuracy

of parameter estimates. In order to have a more precise estimation of parameters estimated in

Chapter 4 a MBDoE approach will be used, next a constant light experiment with a recovery

phase one hour long will be used to estimate kr as additional parameter.

6.3.1 Optimal experimental design

The experiment considered for model calibration refers to a sample of N. Gaditana acclimated

at 100 µE/m2s(the experiment will be referred as Ch4Exp in the following). As discussed

in Chapter 4 some of the parameters of the model have been fixed to a literature value,

as they require specific experiments to be accurately estimated. Table 6.2 summarises the

estimates of the parameters values as obtained by a parameter estimation in the case a standard

(non-designed) PAM experiment is used. The confidence intervals and t-values are also reported

in Table 6.2. Although, there is a very good agreement between experimental data and the

model as presented in Chapter 4, from Table 6.2 it can be observed that the model is not

accurately identified. In fact, the parameter estimation is not satisfactory from a statistical

point of view, as some parameters are characterised by large confidence intervals (and low

t-values). In particular, parameters kd and ηI have a t-value well below the reference t-value,

thus suggesting a correlation between the two parameters. However, C dynamics as represented

by the third equation in set 4.3, shows the importance of parameter kd at representing kinetics

leading to damage in the reaction centres.Parameter kd is therefore quite a significant parameter

and its precise estimation is advocated for an accurate description of light induced inhibition.

Thus, in order to improve the precision of parameter estimation and to identify the model

an MBDoE has been performed. The design is based on the A-criterion2 and aims at optimising

a PAM protocol with 20 light steps and 57 measurements. The optimisation determines the

light intensity of each light step and the measuring points (i.e. the time at which a saturating

2Also D-criterion and E-criterion has been considered but they lead to numerical issues and for this reason
the A-criterion has been preferred.



Chapter 6 93

Table 6.2: The first three column report parameter values estimated using one standard
(non-designed) PAM experiment along with 95% confidence interval and t-values. Reference t-value is
1.65. The last three columns report the parameter estimates, confidence intervals and t-values using
an optimally designed experiment. Statistically unsatisfactory estimates are indicated by (*).

Par Par. Value 95% c.i.. t-val 95% Par. Value 95% c.i. t-val 95%
Non designed experiment Optimally designed experiment

ξ 5.83× 10−2 1.39× 10−2 4.19 5.73× 10−2 3.81× 10−3 15.05
IqE 8.32× 10 2 8.21× 10 1 10.13 8.56× 10 2 5.26× 10 1 16.28
kd 7.17× 10−7 1.08× 10−6 0.67* 6.91× 10−7 2.35× 10−7 2.94
n 2.35× 10 0 2.03× 10−1 11.59 2.34× 10 0 1.48× 10−1 15.88
ηI 7.57× 10 1 1.10× 10 2 0.69* 78.1× 10 1 2.17× 10 1 3.60
ηqE 1.91× 10 1 1.93× 10 0 9.95 1.96× 10 1 1.00× 10 0 19.58
ηP 1.13× 10 1 3.53× 10−1 32.01 1.13× 10 1 2.84× 10−1 39.91
SF 1.65× 10 0 2.49× 10−1 6.61 1.60× 10 0 1.59× 10−1 10.09
σ 8.23× 10−1 1.25× 10−1 6.60 8.47× 10−1 8.40× 10−2 10.09
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Figure 6.2: Optimal designed experiment (DOE1) for the simple NPQ model for the two alternative
experiment structure considered.

pulse is applied). The minimum time gap between two measurement has been set to 40 s in

order to assure the validity of the biological assumption that the saturating pulses do not affect

photoinhibition and photoregulation. Finally, the actinic light profiles were approximated using

the intensities that the PAM fluorometer can apply. In fact the AL in the PAM can assume

only a particular set of values, i.e.: 0, 6, 13, 22, 37, 53, 70, 95, 126, 166, 216, 273, 339, 430, 531,

660, 825, 1028, 1287, 1594 and 1952 µE/m2s. In Figure 6.2 the optimal experiment is reported

along with the simulated measurements.

The last three columns of Table 6.2 report the newly estimated values of the parameters,

the confidence intervals, and t-values after the designed experiment. The results show that

a confident parameter estimation can be achieved through the utilisation of MBDoE. It is

important to underline that measurement noise or model mismatch can hinder the practical
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(a) Ch4Exp (b) DOE1

Figure 6.3: Calibration results for the simple NPQ model and two different values of initial damage
C0: continuous lines consider C0 = 0, dashed lines C0 = 0.01

identifiability. In the next section the experimental validation of the suggested procedure will

be reported.

6.3.2 Practical model identifiability

Although the theoretical results seem to be promising, the practical identifiability with the real

experiments has to be tested. The optimally designed experiment reported in previous section

has been realised using a sample of Nannochloropsis Salina acclimated to 100 µE/m2sand added

to the calibration set. In Figure 6.3 the calibration results are reported for two different initial

condition of damage: the continuous curves consider C0 = 0 while the dashed lines consider

C0 = 0.01.

The fitting in the two scenarios is equivalent but if an initial value of damage is considered

a better parameter estimation is achieved. The initial damage has been assumed because the

value of Fv/Fm at the beginning of the protocol of the designed experiment was smaller than

the value for Ch4Exp (0.58 instead of 0.625) indicating an initial inhibition of the sample.

The parameter estimation results are reported in Table 6.3. The introduction of optimally

design experiments lead to a better parameter estimation in terms of statistical significance.

However, the mismatch between the model predictions and the experimental data lead to a

significant decrease in parameter estimation accuracy. In fact, the model is in fairly good

agreement with experimental data but tends to overestimate the fluorescence fluxes between

700 and 1500 seconds and fails to predict accurately the NPQ relaxation during the two dark

phases at the end of the protocol. These mismatches lead to a great reduction of accuracy of

parameter estimation with respect to the theoretical one. In particular, only if we assume an

initial damage we can have a statistically meaningful estimation of the critical parameters kd

and ηI . These issues will be tackled in the next sections. However, first a procedure will be

proposed for estimating kr.
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Table 6.3: Normalised values of parameters are reported along with 95% confidence interval and
t-values. The reference t-value is 1.65. The normalisation factors are the estimates in the first column
of Table 6.2. Statistically unsatisfactory estimates are indicated by (*).

Parameter Normalised value 95% conf. int. t-value 95%
C0 = 0 C0 = 0.01 C0 = 0 C0 = 0.01 C0 = 0 C0 = 0.01

ξ 2.05 2.03 2.71× 10−1 2.85× 10−1 7.56 7.118
IqE 0.91 0.93 6.21× 10−2 6.65× 10−2 14.65 14.01
kd 0.50 0.94 3.95× 10−1 4.02× 10−1 1.255* 2.351
n 1.00 1.02 7.45× 10−2 7.50× 10−2 13.37 13.61
ηI 1.97 1.21 1.47× 10 0 4.87× 10−1 1.337* 2.49
ηqE 0.95 0.98 5.79× 10−2 6.66× 10−2 16.41 14.72
ηP 0.98 1.00 2.63× 10−2 2.59× 10−2 37.06 38.5
SF 1

a 0.93 0.98 1.07× 10−1 1.18× 10−1 8.63 8.275
SF 2

a 0.58 0.64 6.91× 10−2 8.45× 10−2 8.36 7.601
σ 1.09 1.04 1.26× 10−1 1.25× 10−1 8.63 8.287

aAs the two PAM experiments have very different absolute values of fluorescence
flux due to different cells concentration in the samples a scaling factor for each
experiment has been used. SF 2 refers to the optimally designed experiment.

6.3.3 Estimating recovery of inhibited PSUs

We want to tackle the problem of estimating kr using a standard (non designed) experiment.

In particular, the experiment used to estimate kr (that in the following will be indicated as

RecExp) is an experiment where a strong actinic light of 2000 µE/m2shas been kept constant for

10 minutes in order to induce a certain amount of damage in the photosynthetic apparatus, after

that a dark phase of one hour has been considered to analyse the recovery, thus estimating kr.

Before running the experiment, a simulated experiment has been considered to assure that one

hour of dark phase is enough to obtain a statistically meaningful estimation of kr. However,

the realised experiment underlined a strong model mismatch that hinder the possibility of

estimating kr and will be analysed in detail in the following section where the fluorescence

model will be enhanced to better describe the dynamic of the recovery phase. In Figure 6.4(a)

the experiment RecExp is compared with the predicted fluorescence fluxes.

6.4 Model enhancing: two steps NPQ

The experiment in Figure 6.4(a) is necessary to estimate accurately the parameter kr that

represent the recovery rate of inhibited PSUs. However the fluorescence model developed so

far is not able of representing those data. In fact, the recovery phase suggests a bi-exponential

behaviour of NPQ relaxation as we can observe in Figure 6.4(b), while the current model

represent it with a simple exponential curve where ξ determines the time constant of the

relaxation process. A new process with time scales of minutes needs introducing. Note that

the recovery of inhibited PSUs must act on a time scales of hours and a fast (time scale of
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Figure 6.4: (a) Comparison between the predicted and measured fluorescence fluxes F
′
m (triangles), F

′
0

(squares) and F
′

(circles) in response to a constant light experiment. The grey-shaded area represents
the light intensity. (b) Measured value of qNPQ during the recovery phase of experiment RecExp along
with predicted values using a single exponential curve or a biexponential curve.

seconds) component of NPQ is required to explain the recovery in the first minute of the dark

phase (the interval between the last measurement point of the light phase and the first one of

the dark phase).

From a biological point of view, this is explained by the fact that the NPQ is related to

two main processes. The first one is a fast process that involves the activation of the LHCSR

protein. This process has a time constant of seconds for both activation and relaxation. The

second one is related to the zeaxanthin and acts in time scales of minutes. Moreover, zeaxanthin

has a complex effect on the NPQ activity: it both enhances the quenching effect of LHCSR

and acts as an additional quencher (Pinnola et al., 2013). Accordingly, we can express NPQ

activity as:

ηqE = αF
(
ηFqE + αS η

int
qE

)
+ αS η

S
qE (6.1)

As both LHCSR and zeaxanthin activity are activated by low lumen pH, we can make the

hypothesis that the reference activity function of αF and αS is the same and equal to αSS.

Using this hypothesis we do not need to have two independent Hill functions but the complexity

of the model is still high as we introduce three additional parameters: the time constants of the

slow NPQ process (ηSqE), and the parameters ηintqE and ηSqE that represent the quenching effects of

the slow NPQ process. Moreover, the estimation problem is more difficult as the three recovery

processes partially overlap, while in the original model NPQ relaxation and damaged PSUs

recovery were acting on very different time scales. A calibration of the new model has been

attempted considering the Ch4Exp along with RecExp. Moreover, the ASII experiment has

been included in order to estimate parameter τ . Figure 6.5 the calibration results are reported

showing a good agreement between the experimental data and the model. In Table 6.4 are

reported the parameter values along with 95% confidence intervals and t-values.
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Figure 6.5: Calibration results for complex NPQ model. Measured fluorescence fluxes F
′
m (triangles),

F
′
0 (squares) and F

′
(circles) are reported along with model predictions. The grey shaded area represents

the light intensity.

Table 6.4: Parameter estimates are reported along with 95% confidence interval and t-values. The
reference t-value is 1.65. The calibration set is composed by Ch4Exp, RecExp and σPS2 measurement.

Parameter Estimated value 95% conf. int. t-value 95%

ξF 1.86× 10−1 1.95× 10 1 0.0095 *
ξS 9.74× 10−4 6.71× 10−5 14.53
IqE 5.99× 10 2 4.20× 10 1 14.26
kd 2.16× 10−6 1.30× 10−6 1.62 *
n 2.18× 10 0 1.75× 10−1 12.56
ηI 3.05× 10 0 1.56× 10 0 1.954
ηFqE 8.20× 10 0 9.21× 10−1 8.9
ηSqE 1.91× 10 1 1.19× 10 0 16.1
ηintqE 2.43× 10 1 3.32× 10 0 7.31
ηP 1.13× 10 1 3.06× 10−1 37.02
SF 1

a 2.09× 10 0 1.17× 10−1 17.83
SF 2

a 2.32× 10 0 1.38× 10−1 16.87
σ 6.61× 10−1 3.50× 10−2 18.85
τ 8.35× 10−3 1.07× 10−3 7.808

aSF 1 refers to Ch4exp, SF 2 refers to RecExp experiment. The
different values are due to different cells concentration of the
samples.

With the new expression of NPQ dynamic the model is able to reproduce in a satisfactory

way the experimental data. However due to the higher complexity of the model a number of

identifiability issues arise: (i) parameters ξF and kd fail the t-test and in particular ξF has huge

confidence intervals and is not identified at all; (ii) parameter ηI has a t-value greater than the

reference t-value but the confidence intervals are still quite large; and, (iii) parameter kr can

not be estimated and for this reason has been kept fixed. The unidentifiability of parameter

kr, despite the utilisation of RecExp, is due to the fact that the dynamics of the slow NPQ
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Figure 6.6: (a)Sensitivity profile of parameter ξF . The red continuous line represent the sensitivity
for F

′
m, the green dotted line represent the sensitivity for F

′
and the blue dashed line represent the

sensitivity for F
′
0. The protocol to obtain those curves was 60 seconds of strong AL followed by 60

seconds of dark. The actual value of ξF used was 0.18 s−1. (b) Dependence of optimal time for the
sensitivity of F

′
m with respect to the reverse of ξF The square represent the optimal sampling time after

that the light is switched off, the triangles represent the optimal sampling time after that the light is
switched to 2000 µE/m2s.

partially overlap with the recovery of inhibited PSU. The overlapping of the two relaxation

processes requires a longer dark phase to discriminate between the two processes.

In order to better identify the model, an MBDoE approach will be used. The parameter

ξF , is particularly difficult to identify due to the rapid dynamics of the fast NPQ processes. An

important issue to underline is the practical identifiability of parameter ξF . In Figure 6.6(a)

we report the sensitivity profile for a case study where the light is switched from zero to

2000 µE/m2sand after 60 seconds is switched off. The sensitivity is calculated as (y′ − y)/∆θ

where y and y′ are the measured variables calculated with the nominal value of ξF and with a

perturbed one respectively, while ∆θ is the parameter perturbation. If we look at the profiles

we can observe that: (i) the most sensitive variable is F
′
m followed by F

′
, (ii) the maximum (or

minimum) sensitivities are reached after few seconds. Moreover, the time when the maximum

is reached strongly depends on the value of ξF as showed in Figure 6.6(b). The strategy is to

tune the measuring points after a big step variation of actinic light in order to improve the

accuracy of estimation of parameter ξF without affecting the accuracy of the estimation of the

other parameters. Having some measurements after 10 seconds after a step variation from high

irradiance to dark has shown to be a robust strategy for a wide range of ξF that corresponds

to a time scale from approximately 5 to 30 seconds.
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Figure 6.7: Optimal designed experiments for complex NPQ model.

6.5 Design of experiment for the complex NPQ model

The design considers two experiments 2400 seconds long with 57 measurement points, optimised

under the constraint of 40 seconds minimum between two measurements. The first experiment

has 20 equidistant control intervals while the second has 23 intervals of variable length. In

Figure 6.7 are reported the optimal AL profiles and the predicted experimental points. In

Table 6.5 are reported the new estimates (normalised by the values in Table 6.4) considering

the optimally designed experiments along with 95% confidence intervals and t-values.

Table 6.5: Normalised parameter values, 95% confidence interval and t-values for a calibration set
composed by Ch4exp, RecExp one of the optimally designed experiments and σPS2 measurement. The
reference t-value is 1.65.

Par. Norm. val. 95% conf.int. t-val 95% Norm. val. 95% conf.int. t-val 95%
DOE2 optimal exp DOE3 optimal exp

ξF 0.85 8.82× 10−2 9.60 0.88 6.44× 10−2 13.64
ξS 1.02 5.47× 10−2 18.65 0.98 5.23× 10−2 18.71
IqE 1.10 5.99× 10−2 18.38 1.08 6.13× 10−2 17.69
kd 0.70 1.04× 10−1 6.69 0.85 1.21× 10−1 7.02
n 0.89 5.15× 10−2 17.35 0.88 4.03× 10−2 21.77
ηI 2.52 5.61× 10−1 4.49 1.35 5.56× 10−1 2.42
ηFqE 1.07 6.67× 10−2 16.09 1.02 7.60× 10−2 13.42
ηSqE 1.10 5.91× 10−2 18.58 1.09 5.07× 10−2 21.51
ηintqE 1.18 1.10× 10−1 10.77 1.19 9.33× 10−2 12.77
ηP 1.00 2.02× 10−2 49.93 1.00 2.00× 10−2 50.04
SF 1

a 0.98 5.17× 10−2 18.99 0.99 1.24× 10−2 80.35
SF 2

a 1.14 6.05× 10−2 18.90 1.12 2.02× 10−2 55.49
σ 1.03 5.23× 10−2 19.65 1.01 1.45× 10−2 69.89
τ 1.04 1.08× 10−1 9.57 0.98 1.05× 10−1 9.31

aSF 1 refers to Ch4exp, DOE2 and DOE3, SF 2 refers to RecExp experiment. The different
values are due to different cells concentration of the samples.
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(a) Ch4Exp (b) RecExp

(c) DOE2 (d) DOE3

Figure 6.8: Experimental error in long recovery experiment 6.8(b), Ch4Exp 6.8(a), DOE2 6.8(c)
and DOE3 6.8(d) along with error profiles predicted by the linear variance model considered in this
chapter. The two profiles refers to F

′
m and F

′
, each profile is simmetric with respect to the x-axis.

We can observe that both experiments lead to very accurate parameter estimations, at least

from a theoretical point of view. In experiment DOE3 a dark period of two hours has been

added to gather some additional information for the estimation of kr. The realised experiments

will be used in the next section to validate the theoretical results.

6.5.1 Measurement error evaluation

The fluorescence flux is measured by the PAM every 0.3 seconds and the variation between

two consecutive points, if we exclude the saturating pulses, can be considered an estimation of

the measurement noise. In Figure 6.8 is reported a scatter plot for each experiment with the

measurement noise as a function of time. Moreover, the error bars calculated by the variance

model utilised in this chapter are reported for F
′
m and F

′
. The profiles representing the error

bars are symmetrical and the value for F
′
m always has a bigger absolute value, as F

′
m is always
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Table 6.6: Effect of MBDoE: Parameter estimates are reported along with the normalised values (with
respect to the values reported in Table 6.4), 95% confidence interval and t-values. The reference t-value
is 1.65. Calibration set A includes the experiments Ch4Exp and DOE3; calibration set B includes the
experiments Ch4Exp, RecExp and DOE3.

Par. Norm. val. 95% conf.int. t-val 95% Norm. val. 95% conf.int. t-val 95%
Calibration set A Calibration set B

ξF 1.20 1.08× 10−1 11.12 1.44 1.89× 10−1 7.66
ξS 1.39 1.01× 10−1 13.75 1.36 7.30× 10−2 18.61
IqE 0.80 5.21× 10−2 15.29 0.99 3.43× 10−2 28.84
kd 0.41 1.62× 10−1 2.55 0.43 1.24× 10−1 3.46
kr 1.00 - - 1.01 5.28× 10−1 1.91
n 1.11 9.12× 10−2 12.13 1.11 5.89× 10−2 18.84
ηI 4.56 1.85× 10 0 2.47 5.00 1.52× 10 0 3.29
ηFqE 0.41 6.20× 10−2 6.58 0.72 6.06× 10−2 11.91
ηSqE 0.38 1.95× 10−2 19.48 0.64 3.03× 10−2 20.97
ηintqE 1.24 8.09× 10−2 15.31 1.01 6.88× 10−2 14.62
ηP 0.91 2.20× 10−2 41.33 0.91 2.06× 10−2 44.27
SF 1

a 1.93 1.08× 10−1 17.90 1.92 1.05× 10−1 18.18
SF 2

a 1.34 7.52× 10−2 17.87 2.19 1.21× 10−1 18.18
SF 3

a - - - 1.38 7.58× 10−2 18.28
σ 1.03 5.48× 10−2 18.74 1.04 5.46× 10−2 19.01
τ 0.70 8.72× 10−2 7.99 0.83 8.99× 10−2 9.24

aSF 1 refers to Ch4exp; SF 2 refers to RecExp; SF 3 refers to DOE3 experiment. The
different values are due to different cells concentration of the samples.

bigger than F
′

by definition.

We can observe that the variance model represents the measurement error for the four

experiments in a reasonable way. On the contrary the variance model used in Chapter 4 that

can be obtained subtracting the constant term from the reported profiles clearly underestimates

the measurement errors. Another alternative is to use a constant variance model; however, it

makes sense that the measuring noise has a component proportional to the signal intensity.

6.5.2 Practical model identifiability

In order to identify the model, the designed experiments have been performed and added to

the calibration set. Experiment DOE2 leads to parameter values very different from the values

reported in Table 6.4 and in particular activity of NPQ seems to be quite peculiar. The reason

of the mismatch may be related to some experimental issues and for this reason the experiment

will not be used for calibration. Future experiments will replicate experiment DOE2 in order to

understand the reason of the mismatch. In the following, only experiment DOE3 is considered

as additional calibration experiment.

In order to have a fair comparison between the standard and the optimally designed PAM

experiments we have compared a calibration set composed by two standard PAM experiments,



102 MBDoE approach for information rich PAM experiments

Ch4exp and RecExp (Table 6.4) with a calibration set composed by the experiment of

Ch4Exp and the optimally designed experiment DOE3. Both calibration sets include the ASII

experiment to estimate τ . The parameter estimation results for the optimal calibration set

are reported in Table 6.6 and the predicted fluorescence profiles for Ch4Exp and DOE3 are

reported in Figure 6.9(a) and 6.9(c).

The results in Figure 6.9 show an excellent agreement between experimental data and model

predictions. Moreover, the parameter are estimated with good accuracy. From Table 6.6 we

can observe how the parameter ξF is now estimated in a reliable way, with a confidence interval

95% smaller than 10% of the estimated value. The parameters kd and ηI are also estimated

with higher accuracy, even if from the theoretical results a better estimation of kd was expected.

6.5.3 Estimating recovery of inhibited PSUs

At this point, it is eventually possible to proceed with the estimation of parameter kr. With

respect to the simple NPQ model here the problem is much more complex as the slow NPQ

process partially overlap the damaged PSUs recovery process. In order to maximise the

information about recovery processes the two experiments with long recovery phase (i.e. RecExp

and DOE3) need considering. A calibration set composed by Ch4Exp, RecExp, DOE3 and ASII

experiment will be used. The parameter estimation results are reported in Table 6.6 and the

model prediction are reported in Figure 6.9.

We can observe that the model represent with sufficient accuracy the data. The mismatch

between experimental data and model prediction is mainly due to the fact that the RecExp

experiment is slightly different from the other two (we can consider this difference due to

biological variability). This point needs to be further analyse to determine which processes are

more influenced by the biological variability and what are the expected range of variability.

Although some minor problems are still present and related to the intrinsic variability that a

biological system always has the model is able to reproduce experiments that are very different

from each other and a statistically meaningful parameter estimation can be obtained. Parameter

kr is the less precisely identified, with a confidence interval approximately equal to 50% of the

nominal value. To further improve the estimation of this parameter, even longer recovery phases

need to be considered.

6.6 Complex NPQ model validation

The sequential MBDoE approach we followed has guided the model enhancement and led to

a statistically meaningful parameter estimation. The experiments not used in calibration can

now be used to validate the model. In order to test several light conditions the experiment used

in Chapter 4 for calibration will be used, along with a constant light experiment. Moreover,

experiments DOE1 and DOE2, not used in calibration will be used for validation purpose. The
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Figure 6.9: Fluorescence profiles predicted by the model with two calibration experiments (dashed
blue profile) and three calibration experiments (continuous red profiles).

alternative model calibrations reported in Table 6.6 are both shown in Figure 6.10.

The continuous line refers to parameter values reported in Table 6.6 obtained with the

calibration set A while the dotted line refers to the parameter values obtained with the

calibration set B. The main difference between the two sets of predicted profiles can be observed

in the dark periods of the validation experiments suggesting that parameter values obtained

with the calibration set B are better than the values obtained with the calibration set A and

thus underlying the reliability in the kr estimation. The main model mismatch is present in

the time interval between 600 and 1080 seconds of experiment DOE2 where a value of F
′
m

20% smaller that the measured value is predicted. However, the results are overall very good

showing that the model is able of accurate prediction for a wide range of PAM experiments. To

our knowledge, there are no literature models that have been tested through such challenging

experimental trials and have been proved to perform with such a consistent quality.
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(a) validation experiment of Chapter 4
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Figure 6.10: Validation of florescence model. The continuous line refers to parameter values reported
in Table 6.6 obtained with the calibration set A, the dotted line refers to the parameter values obtained
with the calibration set B.

6.7 Conclusion

In this chapter we proposed a model based design of experiments (MBDoE) approach to increase

the accuracy of parameter estimation in fluorescence model. The measurement error has been

described with a linear variance model and the assumption has been tested against experimental

data. New measurements has been added to the calibration set to increase the number of

estimable parameters. In particular, antenna size measurements has been used to investigate

the fast dynamic process related to the photoproduction. On one hand, the antenna size

measurements provided a clear verification of one of the hypothesis of the Han model, on the

other hand the parameter τ related to the dynamic of photoproduction has been confidently

estimated. Moreover, optimally designed experiments have been carried out to have a more

precise parameter estimation. The new data required a more detailed representation of NPQ

mechanism that reflects the actual biological process that is composed by two interdependent

mechanisms. Experiments design provided information rich PAM experiments that have been

proved to lead to accurate parameter estimation even if the complex NPQ representation is
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considered.

The developed model has been validated against both constant light and variable light PAM

experiments showing good agreement with experimental data. The results show that the NPQ

dynamics can be investigated in an accurate way using PAM fluorometry. Longer time scales

processes like damaged PSUs recovery can be studied as well but PAM experiments with a

recovery phase longer than two hours are necessary to shrink the confidence intervals of the

PSUs reparation rate.





Chapter 7

Conclusions and future perspectives

Microalgae are among the most promising alternative to substitute or at least to complement

fossil fuels in the transport sector. However, the technical feasibility as well as the economics

and environmental benefits of large-scale algal cultivation for biodiesel production are still

matter of debate. Of particular concern, many economic and life cycle assessment are based

on crude extrapolation of productivities obtained in the lab, where conditions differ drastically

from those in outdoor culture systems, and no pilot or larger-scale demonstration plant has

been able to reproduce them as of yet.

In this context, mathematical modelling can be a great help for developing a better

understanding, and in turn enabling a better prediction capability, of microalgae culture

dynamics. Models that convey state-of-the-art scientific knowledge are invaluable tools for

unveiling and untangling the underlying photosynthetic and metabolic mechanisms. These

models can be tested in a systematic way through dedicated experiments and, conversely,

they can be used to guide the design of dedicated, information-rich experiments. For process

development purposes too, models can be used to improve the design, operation and control of

a microalgae culture system in order to enable and sustain a higher productivity.

7.1 Summary of thesis achievements

Although several modelling framework have been proposed in the literature, they still suffer

from some limitations. In fact, many literature models are tailored to some experimental

data, but their application out of the context in which they were developed is often infeasible.

This is due to two main reasons: the first one is a lack of a general modelling development

scheme that aims to assure the model identifiability; the second one, is the fact that many

literature models are based on not fully verified biological assumptions and this can hinder their

predictive capability. Hence, the first objective of this Thesis was to propose a general modelling

development methodology, which can provide a useful tool to guide the model build-up.

Moreover, we wanted to better exploit the information obtained by chlorophyll fluorescence

measurements (in particular PAM fluorometry has been considered). Traditionally, a number

107
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of fluorescence indexes have been used for monitoring specific photosynthetic mechanisms, by

qualitatively relating these mechanisms to the measured fluorescence fluxes. In contrast, little

effort has been devoted to quantifying these relations in the form of mathematical models, which

would enable accurate predictions of the quantum yield of photosynthesis and in particular of

its dynamic response to variable light conditions. In the following the main achievements of

this Thesis are summarised.

(i) On the methodological side, a step-by-step approach has been presented and applied to

guarantee the identifiability of the proposed models. The methodology has been applied

to a case study where, some existing experimental data may be exploited to develop a

model describing the growth as function of light intensity. A literature review has been

carried out and two alternative models have been selected and discriminated to determine

the best candidate model. The selected model has been enhanced to better represent

some biological processes and a rigorous identifiability analysis has been performed on

the modified model. The proposed methodology proved to be effective in selecting the

best candidate model and to overcome the identifiability issues that arose. The results

suggest that the developed model is accurate enough to represent all major processes of

photosynthesis, photochemistry, PSU damage and energy dissipation. While results in

reproducing experimental data are fully satisfactory, it should be underlined that algae

growing in an industrial scale photobioreactor are exposed to different conditions. In

particular light is not homogenously distributed because of cells shading, and illumination

intensity is not constant because of diurnal changes and cells mixing. Finally nutrient

availability can also be limiting and future efforts will be made to expand the model to

include these phenomena, also by designing appropriate experiments. Moreover, although

the identifiability analysis assures that the parameter set can be determined in a precise

way the model is still based on some critical biological assumption. In particular the

maximum quantum yield of photosynthesis is assumed to be linearly related to the fraction

of inhibited PSUs. This hypothesis has already been used in literature but there is not

a clear consensus regarding its validity. This motivates the following of the work, along

with the necessity to represent some biological processes in a more general way, e.g. the

energy dissipation via NPQ has only been accounted for in a static way.

(ii) A dynamic model of chlorophyll fluorescence has been developed and calibrated against

PAM experimental data. The model accounts for photoproduction, photoregulation

and photoinhibition in a semi-mechanistic way and aims at exploiting the quantitative

informations that can be inferred from chlorophyll fluorescence. The model has been

calibrated using a standard PAM experiment where the light follows an increasing step

profile and proved to predict in an accurate way the fluorescence fluxes when validated

against a challenging PAM protocol where high light periods are alternated with dark

periods. The validation results suggest that the model grasp in a reliable way the main
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processes acting on time scales from milliseconds to hours. The models capability to

predict, in quantitative way, the state of the photosynthetic apparatus in terms of its

open, closed and damaged reaction center has been assessed. This made it the first model

of its kind capable of reliable predictions of the levels of photoinhibition and NPQ activity

without the need for dedicated experiments (Ruban and Murchie, 2012), addressing a

long-standing challenge in the modelling of photosynthetic productivity. Moreover, the

availability of mathematical model that represent directly the fluorescence fluxes provide

a tool to investigate the quantitative relationship between the fluorescence indexes and

the state of photosynthetic apparatus. In particular, we have demonstrated that the linear

relationship between q and the fraction of inhibited PSU, assumed by Wu and Merchuk

(2001) and used also in Chapter 3, is valid only if the quenching effect of inhibited PSU

is equal to the quenching effect of open reaction centres.

(iii) Two promising applications of the developed fluorescence model have been analysed in

this Thesis. The first one, concerns the prediction of PI curves, based on chlorophyll

fluorescence measurements and the possibility to set up a cross-validation framework,

whereby both fluorescence and photosynthesis rate experiments could be used for model

validation. The second one, is the utilisation of a MBDoE approach to design information

rich PAM experiments. The first point has been analysed in Chapter 5. The fluorescence

model has been extended to account for the photoacclimation process by varying a subset

of the model parameters. The available data were not sufficient to propose robust

empirical relationships to describe the variations of acclimation-dependent parameters.

However, the results showed the PI curves predicted by our model are very similar to

published literature data and a preliminary model validation has been carried out with

experimental data from Gentile and Blanch (2001). Once validated the model allows to

predict PI curves based on fast and reliable fluorescence measurements, thus avoiding the

usual - and somewhat problematic - oxygen productivity measurements. The dynamic

simulation of PI curves also underlines an important issue regarding the utilisation of the

PI measurements. Typically in the literature PI curves are considered to be independent

from the protocol used to obtain them; on the contrary, our results clearly show that the

this assumption could lead to a significant overestimation of the productivity. The second

issue has been addressed in Chapter 6. A MBDoE approach has been used to improve

the accuracy of parameter estimation and for further testing the model structure. The

new experiments revealed that the dynamic behaviour of NPQ cannot be described by a

simple first order process, as initially assumed, but is the results of two interdependent

mechanisms acting on different time scales. In fact, the two time scale NPQ mechanism

is necessary to describe the dynamical transition between the dark adapted and the light

adapted state if a constant light PAM experiments is considered. The optimally designed

experiments allowed a statistically satisfactory parameter estimation and the final model
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has been validated against several PAM protocols, showing a very good agreement with

the experimental evidences. To our knowledge there are no literature models that have

been tested through such challenging experimental trials and have been proved to perform

with such a consistent quality.

(iv) One of the limitation of the fluorescence model was the necessity to fix to a literature

value the parameter τ , which represents the time constant of the reaction rate from

closed to open reaction centres, thus representing the dynamic of photoproduction. In

fact, the time resolution of PAM measurement is too low to investigate the fast dynamic

of photoproduction, which acts in a time scale of milliseconds. In order to confidently

estimate τ antenna size measurements, obtained with a LED pump and probe JTS10

spectrophotometer in the fluorescence mode, have been considered. The utilisation of

antenna size measurements provided an effective solution to achieve an accurate estimation

of parameter τ . Moreover, one of the assumption on which is based the Han model

and other state models is that the reaction rate from open to close reaction centres is

a first order reaction with respect to the light intensity. The analysis of antenna size

measurements at different light intensities allowed us to have a clear verification of this

hypothesis.

7.2 Future perspective

Some considerations about future research challenges will be detailed in the following.

A first issue to address is to incorporate the photoacclimation process in the fluorescence

model in order to widen its applicability, such as predicting the evolution of microalgae

culture over time periods of several days or even weeks. The preliminary results presented

in Chapter 5 need extension. The aim should be to propose an empirical equation or a

set of alternative empirical equations for each acclimation-dependent parameter. Ad hoc

experiments could be specifically designed to an effective and reliable discrimination between

alternatives. A calibration and validation against experimental data will be a crucial step of

modelling development. Next, the dynamic modelling of photoacclimation could be introduced,

a promising approach is the one proposed by Bernard (2011). The main originality of the

model by Bernard (2011) is that it uses a conceptual variable, I∗, which is the irradiance at

which the cells are photoacclimated. The variable I∗ is in turn described by a differential

equation which depends upon the growth rate, the average light intensity reaching the

culture, and a time constant for the acclimation process. I∗ is then linked to the pigment

composition and to other acclimation dependent parameters, such as the total cross section of

the photosystem. Eventually the vision is to integrate a fully validated model of photosynthesis

within first-principles models describing the flow and light attenuation in large-scale microalgae

culture systems as a mean to guide their design and operations. At this stage there will be
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the need to design suitable experiments at varying light and to identify the most convenient

modelling approaches and measurements to represent the system in a reasonably comprehensive

way.

A second challenge could be to couple the hydrodynamic effect with light effect. A possible

way to couple the light effect with the mixing effect will be to calculate the trajectories of the

microalgae cells in the photobioreactor and to carry out a stochastic simulation considering

the light profile at which the cells are exposed. The biomass productivity will be calculated

from the average growth rate of the system. An alternative approach, more detailed but even

more costly from a numerical point of view is to represent the system as a reacting system

in which the microalgae growth is calculated along with the flow field and the variation of

biomass concentration affects both the flow field and the light distribution. In the literature, a

similar approach has been proposed by Hartmann et al. (2014) but the growth model utilised

to describe the growth was quite simple. If a more complex growth model is used numerical

issues might arise. The best compromise between numerical cost and accurate description of

the system would have to be identified in order to assure the robustness of the approach.

A third interesting research direction is to study the effects of nutrients on growth and

the possible interaction with light. This might be a very challenging task as there is still a

lack of knowledge in the fundamental processes that regulates the effect of nutrients on the

photosynthetic apparatus. Very recently experimental evidence that photosynthetic response

is related to nitrogen concentration in rather sophisticated way has been published (Sforza

et al., 2014). Those data could be exploited to formulate the first modelling hypothesis on the

system. The various modelling hypotheses should be discriminated by means of MBDoE.





Appendix A

Fluorescence quantum yield

In this appendix we want to discuss the expression used for the calculation of Φf in Chapter 4.

In particular we want to justify the utilisation of the harmonic mean to calculate the fluorescence

quantum yield.

A.1 Alternative representation of the LHC-RC complex

As discussed in Chapter 2 two models are currently the most widely used in literature to

represent the LHC-RC complex: the puddle and the lake model. A graphical representation of

the two models is presented in Figure A.1.

In the puddle model every RC has its own antenna system. In Figure A.1(b) an array of

j LHC-RC complexes is represented. Each complex will have a certain fluorescence yield Φf ,j,

that depends on the oxidation state of the RC and on the NPQ activity. The fluorescence

yield of the entire array is the algebraic mean of the j-th yields, as any of the j complexes is

independent from the others. On the other hand, in a lake model configuration (Figure A.1(b))

the antenna system is shared by all the reaction centres and each reaction centre compete with

the others for the excitation energy. The total fluorescence yield is therefore the harmonic mean

(a) puddle model (b) lake model

Figure A.1: Graphical representation of the puddle (a) and the lake model (b) of the LHC-RC
complex.
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of the j-th yields.

The utilisation of the harmonic mean can be justified as follows: the fluorescence flux from

LHC is proportional to the average lifetime of the excited state of chlorophyll molecules, which

in turn depends on the effectiveness of energy dissipation, according to the funnel scheme (see

Section 1.4). If a reaction centre is closed its fluorescence yield is larger, because it cannot

perform the photoproduction process. The higher yield can be seen as an higher resistance in

the electron transfer from the LHC to the RC. Thus, since the resistances are placed in parallel,

the equivalent resistance of all the reaction centres is the harmonic mean.

The correctness of utilising the harmonic mean is confirmed by the fact that the qL parameter

is consistent with the definition given by Kramer et al. (2004). In fact, if we consider the

harmonic mean for the calculation of Φf , substituting the fluorescence fluxes expressions

reported in Table 4.2 in the qL definition, we obtain qL = A/(A+ B) while with the algebraic

mean the resulting expression for qL is:

qL =
A

A+B

(ΦA
f − ΦC

f )(A+B) + ΦC
f

(ΦA
f − ΦC

f )A+ (ΦB
f − ΦC

f )B) + ΦC
f

(A.1)

which is different from the definition by Kramer et al. (2004).
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Bernard, O., Gouzé, J.-L., 1999. Non-linear qualitative signal processing for biological systems:
application to the algal growth in bioreactors. Mathematical biosciences 157 (1), 357–372.
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